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CHAPTER I 

 

INTRODUCTION 

 

Understanding the obesity epidemic  
 
 Over 1 billion people in the world(Organization 2003), and nearly one-third of 

children in the United States(Ogden et al. 2012), are currently overweight or obese.  The 

prevalence of obesity has increased dramatically over the past century with a 

concomitant explosion in obesity-associated disease.  Increased obesity is associated 

with increased risk for a striking number of chronic diseases, including insulin resistance, 

heart disease, osteoarthritis, and cancer, and obesity alone is the 2nd leading cause of 

preventable death in the United States(Flegal et al. 2013).  

 Genetic and endocrine factors alone cannot account for the sudden increase in 

obesity over the course of a generation(Niswender and Schwartz 2003; Speliotes et al. 

2010). The present food environment, including modern food processing, increased food 

availability, and a sedentary lifestyle, is a more likely contributor to the obesity 

epidemic(Hill and Peters 1998). But despite increased education about the 

consequences of food overconsumption and excess weight, the obesity epidemic 

continues to worsen(Flegal et al. 2010).  Subtle dysregulation of internal factors engaged 

in responding to the external food environment may play a key role in the development 

and maintenance of obesity.  

 The brain is critical in regulating feeding behavior and the body’s response to 

food. Recent research in obesity points to the role of the dopamine system, the same 

brain network disrupted in drug addiction. The brain dopamine system regulates 

important behaviors, including reward processing, habits, and cognition. Dysfunction in 

the dopamine system disrupts these behaviors, and may do so in a way that promotes 
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food overconsumption and weight gain(Adam and Epel 2007; Berridge et al. 2010; 

Davis, Strachan, and Berkson 2004; Palmiter 2007; Volkow, Wang, and Baler 2011).  

The mechanisms by which obesity affects brain dopaminergic circuits, and whether 

these changes are therapeutically reversible, are still unknown.  In this introduction, I 

review the role of the brain in feeding behavior and obesity, focusing on the relationship 

between dopamine and insulin, and the parallels between addiction and obesity.  Based 

on this information, I then propose a model for dopamine disruption in obesity and 

discuss the potential for treatment. 

 

Hypothalamic control of energy homeostasis  

 The hypothalamus regulates food 

consumption for the purpose of 

maintaining energy balance around a 

physiologic set point(Niswender, Baskin, 

and Schwartz 2004; Schwartz et al. 2000; 

Morton et al. 2006) by responding to 

peripheral hormonal signals relaying 

information about the body’s energy 

state(Moran 2006; Saper, Chou, and 

Elmquist 2002). Specifically, cells 

expressing cocaine and amphetamine 

regulated transcript (CART) and pro-

opiomelanocortin (POMC) in the arcuate 

nucleus (ARC) function to cleave POMC 

mRNA to !-MSH during post-translational processing. !-MSH then activates 

melanocortin-4 receptors (MC4R) on second-order neurons in the paraventricular 

Figure 1. Hypothalamic control of energy homeostasis in 
response to the feeding signals insulin, leptin, and ghrelin. LepR, 
leptin receptor; InsR, insulin receptor; Ghsr, growth hormone 
secretagogue receptor; Mc3/4r, melanocortin 3/4 receptor; Y1R, 
neuropeptide Y receptor. Adapted with permission from Barsh & 
Schwartz (2002) 
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nucleus (PVN) and lateral hypothalamic area (LHA) to suppress appetite and decrease 

food intake. ARC neurons expressing neuropeptide Y (NPY) and agouti-related peptide 

(AgRP) counterbalance the POMC/CART system to increase appetite and food intake by 

inhibiting POMC neurons and MC4R activation(Cone 2006; Ellacott and Cone 2006) 

(see Figure 1). 

 These hypothalamic neurons are targets of peripheral feeding signals including 

leptin, insulin, and ghrelin(Schwartz et al. 2000). The anorexigenic peptides leptin and 

insulin are negative feedback satiety signals respectively circulating in proportion to body 

fat mass and plasma glucose levels.  In the hypothalamus, these peptides activate 

POMC/CART neurons while inhibiting NPY/AGRP neurons, indicating that the body is in 

a positive energy balance and suppressing feeding to bring the body back into energy 

equilibrium. In contrast, the orexigenic gut peptide ghrelin, whose levels inversely 

correlate with adiposity, signal a negative energy balance by promoting NPY/AgRP 

neuron activity to stimulate feeding directly(Nakazato et al. 2001; Garin et al. 2013). This 

system thus tightly regulates energy intake and energy expenditure through active 

processes that control body weight and composition.   

 

Dopamine and insulin resistance in obesity  
 
 In addition to their action in the hypothalamus, peripheral hormonal signals also 

interact with multiple neurotransmitters outside the hypothalamus to affect feeding 

behavior.  The brain dopamine system modulates reward, habits, and cognition through 

an extensive network of neurons projecting from the midbrain ventral tegmental area 

(VTA) and substantia nigra (SN) diffusely to corticostriatal regions. Current evidence 

suggests that peripheral hormonal signals influence feeding behavior by modulating 

central dopamine signaling. Gut peptides signaling a positive energy balance negatively 

modulate midbrain dopamine (DA) neurotransmission and food reward while those 
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signaling a negative energy balance are positive DA modulators. For example, leptin 

acts directly on the DA neurons of the ventral tegmental area (VTA) to inhibit action 

potential firing(Hommel et al. 2006; Fulton et al. 2006) and reduce food intake(Hommel 

et al. 2006). In contrast, ghrelin activates VTA DA neurons, triggering feeding(Abizaid et 

al. 2006).  

 Insulin and dopamine systems converge in the central nervous system; insulin 

receptors (IRs) colocalize with DA neurons, and insulin binding to IRs modulates 

dopamine neurotransmission(Figlewicz 2003). Insulin/IR binding promotes the 

intracellular trafficking and surface expression of the dopamine transporter (DAT), 

increasing dopamine clearance in subcortical dopaminergic brain areas(Carvelli et al. 

2002; Daws et al. 2011; Figlewicz et al. 2003; Garcia et al. 2005; Williams et al. 2007). 

Peripheral insulin depletion in rodents leads to internalization of DAT, blunting dopamine 

clearance, while insulin restores DAT surface expression(Williams et al. 2007).   

 Central insulin resistance induced by a high-fat diet can further impair DAT 

surface expression and dopamine homeostasis(Speed et al. 2011).  Lower DAT 

availability in the striatum is observed in high body mass index (BMI) humans(Chen et 

al. 2008), in whom it is likely that tissue insulin signaling is blunted(Kahn et al. 2001).  

Unlike the subcortical targets of dopamine innervation, extracellular dopamine in cortical 

regions is cleared to a significant degree by the norepinephrine transporter 

(NET)(Wayment, Schenk, and Sorg 2001; Moron et al. 2002).  In contrast to DAT, NET 

trafficking and surface expression is inhibited by insulin(Robertson et al. 2010), 

suggesting that impaired insulin signaling might increase dopamine clearance in cortex. 

Dopamine functions on an inverted-U shaped curve in both subcortical and cortical 

dopaminergic brain areas, where either too much or too little dopamine impairs brain 

function(Gjedde et al. 2010; Cools and D'Esposito 2011; Goldman-Rakic 1998; 

Takahashi 2013; Dent and Neill 2012).  Thus, insulin’s opposing effect on surface 
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expression of DAT and NET suggests a convergent mechanism by which impaired 

insulin signaling may uncouple the subcortical and cortical (corticostriatal) dopamine 

circuits regulating feeding behavior (see Figure 2). 

 
 

 

 

 

 

 

Disrupted striatal dopamine neurotransmission in obesity and addiction  

 In the central nervous system, dopamine functions as a modulatory 

neurotransmitter in circuits crucial for regulating reward, habits, and cognitive control. In 

the mesolimbic pathway, connecting the midbrain ventral tegmental area (VTA) to limbic 

regions including the ventral striatum (nucleus accumbens), dopamine encodes the 

expectation of, motivation for, and approach behaviors seeking reward(Berridge and 

Robinson 1998; Schultz 2007; Schultz, Dayan, and Montague 1997).  Consistent with 

dopamine’s role in reward, dopamine levels are elevated during food seeking(Hernandez 

and Hoebel 1988; Salamone et al. 1991), exposure to and consumption of novel food 

stimuli(Bassareo and Di Chiara 1997, 1999), and daily intermittent consumption of both 

sugar(Avena, Rada, and Hoebel 2008; Avena et al. 2006; Rada, Avena, and Hoebel 

Figure 2. Insulin modulation of reward, habitual motor, and inhibitory neural circuits. A) Insulin 
action at brain insulin receptors promotes the intracelleular trafficking and surface expression of the 
dopamine transporter (DAT) while inhibiting that of the norepinephrine transporter (NET).  The DAT and 
NET are largely responsible for dopamine reuptake in the striatum and cortex respectively, regions 
involved in reward, habits, and response inhibition. B) Impaired insulin signaling decreases expression of 
the DAT and increases expression of NET.  The opposing action of insulin on these transporters may 
uncouple corticostriatal circuits involved in the regulation of feeding behavior. 
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2005) and fat(Rada et al. 2010; Liang, Hajnal, and Norgren 2006). The phasic firing of 

these dopamine neurons encodes food reward(Roitman et al. 2004; Roitman, Wheeler, 

and Carelli 2005; Roitman et al. 2008; Schultz, Dayan, and Montague 1997).  

 The nigrostriatal dopamine pathway plays a similar role for feeding, connecting 

the substantia nigra to the dorsal striatum.  Studies in dopamine deficient mice, a 

severely hypoactive phenotype which will die of starvation without supplemented 

dopamine, show that restoration of dopamine to the nucleus accumbens does not 

restore feeding behavior(Heusner et al. 2003; Palmiter 2007). However, restoration of 

dopamine to the dorsal striatum rescues the dopamine-deficient phenotype and induces 

feeding(Darvas and Palmiter 2010; Hnasko et al. 2006; Szczypka et al. 2001), 

suggesting a role for dopamine outside the mesolimbic reward system in supporting 

feeding behavior.  In fact, it is the dorsal striatum that appears to mediate habit 

formation, such as the repeated seeking of reward-conditioned, highly salient, food 

stimuli(Faure et al. 2005; Graybiel 2008; Yin, Knowlton, and Balleine 2004).  

 Habits are “sequential, repetitive, motor, or cognitive behaviors elicited by 

external or internal triggers that, once released, can go to completion without conscious 

oversight”(Graybiel 2008). They begin as goal-directed behaviors in response to 

rewarding stimuli(Berridge, Robinson, and Aldridge 2009) that evolve with repeated 

reward training to cue-mediated behaviors that persist even with reward 

devaluation(Balleine and Dickinson 1998; Dickinson, Nicholas, and Adams 1983). This 

progression involves an underlying ventral-to-dorsal striatal shift(Graybiel 2008; Koob 

and Volkow 2010; Hyman, Malenka, and Nestler 2006) as dopamine-directed reward 

behaviors of the ventral striatum are replaced by dorsal striatal cue-initiated action 

sequences(Yin 2010; Yin, Knowlton, and Balleine 2005; Graybiel 2008; Ikeda et al. 

2013).  Indeed, this shift is well defined with food reward, indicating that foods and food 

cues are sufficient to initiate reward-seeking and the subsequent habitual behaviors 
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characteristic of drug, and possibly food, addiction(Koob and Volkow 2010; Kalivas 

2009).  

 The observed disruptions in dopamine neurotransmission in obesity are strikingly 

similar to the known dysregulation of dopamine pathways that contribute to the 

compulsive drug seeking and use that characterize drug addiction.  Dopaminergic drugs 

that impair the activity of DAT increase synaptic dopamine levels, and with prolonged 

use, it is hypothesized that these drugs produce an allostatic downregulation of the 

dopamine receptor (D2R) in the striatum(Wee et al. 2007; Nader et al. 2006; Koob and 

Le Moal 2001; Koob and Volkow 2010), effectively blunting dopamine 

neurotransmission.  Indeed, recent human positron emission tomography (PET) studies 

demonstrate BMI-associated reductions in striatal D2R availability that are similar to 

those observed in substance use disorders(Wang et al. 2001; Volkow, Wang, Fowler, et 

al. 2008).  Like the plasticity in dopamine circuits seen in chronic drug 

addiction(Beveridge et al. 2009; Barak et al. 2011), studies show that rats given 

extended access to an obesogenic cafeteria diet gain weight and have reduced striatal 

D2R availability compared with pair chow-fed animals(Bello, Lucas, and Hajnal 2002; 

Fetissov et al. 2002; Hamdi, Porter, and Prasad 1992; Johnson and Kenny 2010). 

Studies in humans are fewer, and less consistent. Both increases(Steele et al. 2010a) 

and decreases(Dunn et al. 2010) in striatal D2R availability have been reported in obese 

patients within weeks following bariatric surgery. These results should be interpreted 

with caution as such surgeries alter multiple endocrine/incretin signals known to or 

suspected of influencing central dopamine systems.  Nonetheless, these findings 

combined with the BMI-dependent decrease in DAT availability in humans(Chen et al. 

2008), suggest the possibility of allostatic striatal D2R responses resulting from impaired 

dopamine clearance by DAT, itself a consequence of obesity-associated impaired insulin 

signaling. 
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Disrupted brain networks in obesity and addiction 

 In conjunction with the similarities in striatal dopamine dysregulation, functional 

magnetic resonance imaging (fMRI) studies reveal homology in patterns of altered brain 

activation between obesity and drug addiction suggesting that changes in the neural 

circuitry underlying obesity and drug addiction may be mediated by similar 

mechanisms(Volkow, Wang, and Baler 2011; Volkow and Wise 2005). Brain activation 

patterns in response to reward-cues for obesity (food) and addiction (drug) reveal 

overlapping regions of activation in the amygdala, anterior and middle insula, 

orbitofrontal cortex, and striatum(Tang et al. 2012), highlighting the role of reward 

processing and salience attribution. Overweight and obese individuals further 

demonstrate BMI-dependent increases in activation in circuits related to drug and food 

reward in response to the visual presentation of food cues including the 

striatum(Fletcher et al. 2010; Rothemund et al. 2007; Stoeckel et al. 2008). Activation in 

these regions is significantly potentiated by hunger in obese compared to healthy weight 

individuals(Small et al. 2001; Uher et al. 2006; Cornier et al. 2009; Del Parigi et al. 2002; 

LaBar et al. 2001; Pelchat et al. 2004), supporting dysfunctional reward responsiveness 

in obesity. The BMI-dependent potentiation of activity in the striatum suggests a model 

for molecular disruptions in striatal dopamine neurotransmission associated with insulin 

resistance, as dopamine levels in the striatum correlate with fMRI activity(Knutson and 

Gibbs 2007).   

 Imaging studies of obese individuals also reveal disruptions in frontal 

areas(Stoeckel et al. 2008; Simmons, Martin, and Barsalou 2005; Rothemund et al. 

2007; Stice et al. 2009), including prefrontal cortex, that receive dopaminergic 

projections from the midbrain. One fMRI study specifically demonstrated a BMI-

dependent decrease in activation in the prefrontal areas related to inhibitory control 

during response inhibition(Batterink, Yokum, and Stice 2010).  The PFC plays a role in 
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‘top-down’ regulation of subcortical function to promote situation and task-relevant 

behaviors(Li, Huang, et al. 2006; Arnsten 2009; Miller and Cohen 2001; Robbins and 

Arnsten 2009), including the inhibition of dorsal striatal cue-initiated action sequences 

when they are inappropriate. There is strong evidence for the specific role of dopamine 

in regulating such PFC activity(Goldman-Rakic 1998; Seamans and Yang 2004) through 

volume transmission maintaining extrasynaptic dopamine tone(Seamans and Yang 

2004). Dopamine appears to improve prefrontal cortical function(Phillips, Ahn, and 

Floresco 2004; Mehta and Riedel 2006; Chudasama and Robbins 2004) by enhancing 

glutamatergic signaling through DA receptor binding(Kruse et al. 2009; Sarantis, 

Matsokis, and Angelatou 2009); however, this effect is non-linear, where either too 

much(Zahrt et al. 1997) or too little(Crofts et al. 2001; Robbins and Roberts 2007) 

dopamine actually impairs proper PFC function. 

 The inverted-U model for dopamine modulation of prefrontal cortical function is 

readily seen in measures of response inhibition, where both deficits(Langley et al. 2004; 

Eagle et al. 2007; Bari et al. 2011; Congdon, Lesch, and Canli 2008) and 

excesses(Colzato et al. 2009) in central dopamine degrade PFC performance, including 

a decreased ability to rapidly inhibit unwanted responses. Impaired response inhibition is 

a hallmark of addiction(Li, Milivojevic, et al. 2006; Li, Morgan, et al. 2010; Li, Luo, et al. 

2010; Li, Huang, Yan, Bhagwagar, et al. 2008; Fillmore and Rush 2002; Lawrence et al. 

2009; Monterosso et al. 2005; Tolliver et al. 2012) and impulse control disorders(Solanto 

et al. 2001; Lijffijt et al. 2005; Schachar et al. 2000).  As dopamine tone in the prefrontal 

cortex may be under the regulatory influence of insulin through its action on NET, even 

minor deviations from optimal tone, such as what might occur with central insulin 

resistance, could alter PFC function(Seamans and Yang 2004).  Indeed, a small 

preliminary fMRI study demonstrated BMI-dependent impairments in the prefrontal 

circuits mediating response inhibition in obesity(Hendrick et al. 2011). Given that ready 
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availability and promotion of highly palatable food in the modern environment requires 

the continuous inhibition of cue-mediated feeding behaviors, it is easy to see how 

impairments in prefrontal response inhibition could unmask the established, and possibly 

enhanced, subcortical salience attributions and response patterns leading to excess 

feeding and consequent obesity(George and Koob 2010) (see Figure 2B). 

 

Bridging molecules and brain systems to inform obesity treatment: a hypothesis  

 The similarities of the molecular and neural correlates of obesity to those of 

classical addiction, and the potential impact of obesity-associated impairments in central 

insulin signaling on dopaminergic function, suggest a model by which the modern 

obesogenic diet might disrupt brain dopaminergic circuits: insulin plays an important role 

in the appropriate coding of food reward, and cognitive control of feeding by maintaining 

dopamine homeostasis. Mild insulin resistance resulting from repeated consumption of 

highly palatable food may drive an increase in striatal synaptic dopamine resulting from 

decreased insulin-mediated dopamine clearance. This would lead to an allostatic 

downregulation of dopamine receptor availability, effectively blunting the impact of 

phasic dopamine reward signaling and facilitating the emergence of cue-driven food 

seeking behavior.  Further, concomitant cortical neuroadaptations in DA signaling driven 

by insulin resistance could then unmask response patterns of cue-directed non-

homeostatic food acquisition and consumption (see Figure 3). 
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Figure 3. Proposed model for dopamine neurotransmission in the context of A) 
normal insulin signaling and B) impaired insulin signaling 
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 Although the precise etiology of dopamine dysregulation in obesity remains 

unclear, imaging studies support the idea that plasticity in brain DA circuits contribute to 

the development of obesity. Restoration of normal DA signaling might offer an effective 

strategy for promoting and, more importantly, maintaining weight loss. Promising 

observations come from preclinical and clinical studies demonstrating that bariatric 

surgery(Steele et al. 2010a) and weight loss(Thanos et al. 2008) increase D2 receptor 

levels and decrease functional activity in dopamine reward circuitry(Ochner et al. 2011) 

while increasing activity in the prefrontal cortex(McCaffery et al. 2009).  One explanation 

for these effects on dopamine circuits is the drastic changes in insulin sensitivity 

following bariatric surgery; however, there have been no longitudinal controlled human-

subjects trials to examine the direct effect of insulin on normalizing dopamine 

neurotransmission in obesity. Such research will be critical in understanding the 

pathogenesis of obesity, potential therapeutic targets in insulin signaling pathways, and 

future opportunities for treatment. 

 

Summary  

 Recent scientific evidence demonstrating that central nervous system dopamine 

is regulated by insulin suggests a plausible mechanism for understanding obesity as a 

dysregulation of dopaminergic circuits controlling reward, habits, and cognitive control.  

The molecular processes underlying insulin’s effect on dopamine circuitry and feeding 

behavior suggest a mechanistic model whereby the progressive uncoupling of prefrontal 

cortical and subcortical striatal dopamine circuits, driven by progressive central insulin 

resistance, might lead to obesity in the modern food environment. The hypothesis of 

insulin’s ability to reset central dopamine tone and subsequently reshape feeding 

behavior offers exciting new opportunities for the clinical management of obesity.   
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 To address this hypothesis, we use a longitudinal human-subjects research 

design where participants with mild-to-moderate obesity and insulin resistance either 

receive insulin or remain insulin-naïve over the course of four weeks.  Functional 

magnetic resonance imaging (fMRI) and dopamine D2 receptor positron emission 

tomography (PET) were collected before and after insulin treatment.  Using this design 

to examine insulin’s ability to reset central dopamine tone and dopamine-associated 

corticostriatal circuits, we examine: 

• behavioral and neural dysregulation in individuals prior to insulin therapy 

(Chapter 2) 

• relationship of striatal dopamine to behavioral and neural dysregulation prior to 

insulin therapy (Chapter 3) 

• insulin’s ability to normalize basal striatal dopamine neurotransmission and 

prefrontal cortical brain activity (Chapter 4) 
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CHAPTER II 

 

BRAIN MOTOR AND ATTENTION NETWORKS MEDIATE IMPULSIVITY IN  

 INSULIN RESISTANCE 

  

Introduction 

 

 A growing body of behavioral and psychometric findings supports an association 

between obesity and deficits in behavioral self-regulation(Nederkoorn et al. 2010; 

Hendrick et al. 2011; Yokum, Ng, and Stice 2011; Batterink, Yokum, and Stice 2010; 

Nederkoorn et al. 2006). Recent neuroimaging studies support these findings and have 

identified specific structural, functional and molecular differences between healthy-

weight and obese individuals in brain areas implicated in impulsive responding and 

impaired inhibitory control(Hendrick et al. 2011; Volkow, Wang, Telang, et al. 2008; 

Yokum, Ng, and Stice 2011). 

 The degree to which obesity-associated deficits in the regulation of feeding are a 

consequence of impaired inhibitory control and/or heightened drive or wanting remains 

unclear.  Impaired inhibitory control is a hallmark of substance use disorders, and is 

reflected in the brain as depressed basal frontal activity and blunted activation of fronto-

striatal inhibitory circuits(Bari and Robbins 2013; Elton et al. 2012; Fillmore and Rush 

2002; Li, Huang, Yan, Bhagwagar, et al. 2008; Li et al. 2009; Monterosso et al. 2005; 

Volkow et al. 2004).  Increased activation of attention and dorsal striatal motor systems 

in response to salient cues is also a defining feature of the addicted brain(Everitt and 

Robbins 2005; Hyman, Malenka, and Nestler 2006; Koob and Volkow 2010).  Similar 

patterns of cue reactivity and depressed frontal activity have been observed in 

obesity(Stoeckel et al. 2008; Volkow, Wang, and Baler 2011; Volkow, Wang, Fowler, et 
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al. 2008; Wang et al. 2004), suggesting that drug- and obesogenic food-seeking 

behaviors may share overlapping neural and molecular substrates. 

 Potential mechanisms linking these changes to harmful changes in feeding 

behavior are beginning to emerge from pre-clinical studies in animals. The importance of 

endocrine and incretin reporters of energy balance in regulating brain areas/networks 

beyond those traditionally associated with energy homeostasis - particularly those 

subserving reward, habits, and cognitive control - suggest that obesity-associated 

blunting of the sensitivity of these networks to peripheral satiety signals may contribute 

to impaired regulation of non-homeostatic feeding(Baicy et al. 2007; Jastreboff et al. 

2013; Malik et al. 2008).  For example, it is now clear that impairments in central insulin 

signaling can disrupt synaptic and extracellular dopamine dynamics(Garcia et al. 2005; 

Robertson et al. 2010; Speed et al. 2011; Williams et al. 2007), suggesting a mechanism 

by which obesity and insulin resistance might degrade inhibitory and/or heighten 

impulsivity and food-cue reactivity. 

 The stop signal task (SST)(Logan and Cowan 1984) is a frequently-used and 

well-validated paradigm for assessing inhibitory control(Logan 1994) and 

impulsivity(Winstanley, Eagle, and Robbins 2006).  One preliminary neuroimaging study 

of obesity using the stop signal task found no BMI-dependent effect on the behavioral 

aspects of inhibitory control but did observe a BMI-dependent decrease in activity in 

brain areas subserving inhibitory control(Hendrick et al. 2011). The degree to which BMI 

impacts impulsivity remains unclear, as does the impact of insulin resistance on 

inhibitory and impulsivity brain circuits.  

 We therefore examined the association of behavioral, psychometric and neural 

measures of inhibitory/self regulatory capacity with obesity and insulin resistance in our 

sample, prior to insulin treatment. We hypothesized that poorer inhibitory control would 

be associated with increased BMI and/or insulin resistance, and that this association 
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would be mediated by decreased neural activity in brain areas implicated in inhibitory 

control, and/or increased activity in those identified as substrates of salience attribution 

and cue reactivity.  

  

Methods 

 

Research Participants 

 The Vanderbilt University Institutional Review Board approved all research 

procedures. Men and women between the ages of 31 and 60 years, with a BMI range 

between 30 and 50 kg/m2, were recruited through print, radio, and internet 

advertisements. To be eligible for the study, all participants were required to be mildly 

diabetic (hemoglobin A1c [HbA1c] levels between 6 and 8%) but otherwise healthy, have 

maintained a stable body weight during the previous three months, and have never 

received insulin treatment for type 2 diabetes. Participants were excluded for: significant 

physical medical conditions (neurologic disease, cardiovascular disease, atherosclerotic 

disease, pulmonary disease, metabolic disease, liver or renal insufficiency, uncontrolled 

hypertension, anemia, endocrinologic disorders); substance abuse or dependence; 

tobacco use in the past 3 months; current Axis I psychiatric disorders as determined by 

the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental 

Disorders, fourth edition (DSM-IV)(First et al. 2002); use of centrally acting medications 

such as stimulants, anti-depressants excluding SSRIs, mood stabilizers, anti-psychotics 

in the last 12 months; polycystic ovarian disease; weight loss surgery; dietary or weight 

loss supplements; any MRI incompatibility due to metal implants, claustrophobia or 

pregnancy.  
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General Study Protocol  

 Visit Schedule. The study lasted 6 weeks from the initial consent visit (week 0).  

The initial consent visit included informed consent, treatment arm randomization, and 

screening to determine if participants met the aforementioned inclusion/exclusion 

criteria.  All participants completed a mock scan with the stop signal task (described 

below) to acclimate them to the scanner environment, confirm their understanding of the 

stop signal task, and achieve stable behavioral data prior to one fMRI study. All 

participants successfully completing the mock task provided signed informed consent 

prior to participation. 

 At each visit (weeks 2 and 6), participants arrived for imaging in the afternoon at 

1:30pm with instructions to have eaten breakfast and a light lunch before 11:00am and 

then after water only.  All subjects abstained from alcohol, caffeine, and physical 

exercise for 48 hours prior to the imaging study. Participants were admitted to the 

Vanderbilt Clinical Research Center where recent dietary intake was evaluated and they 

completed the Barratt Impulsiveness Scale (BIS-11)(Patton, Stanford, and Barratt 1995) 

and the Three Factor Eating Questionnaire (TFEQ)(Stunkard and Messick 1985) to 

assess trait impulsiveness and disordered eating.  Following initial evaluation, 

participants were escorted by wheelchair to the Vanderbilt University Institute for 

Imaging Science (VUIIS) where magnetic resonance imaging (MRI) and positron 

emission tomography (PET) began at approximately 4:00pm. Study visits were four 

weeks apart (see Figure 4). 

 Insulin Treatment. Participants randomized to receive insulin began treatment 

following the initial imaging visit (Week 2).  Insulin detemir, a long-acting insulin analog, 

was administered subcutaneously in the thigh or abdomen using a 3 ml FlexPen.  

Subjects maintained the same injection area throughout the trial. Insulin was given daily 

with the evening meal or at bedtime as add-on to additional oral antihyperglycemia 
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medication.  Insulin dosing began at 0.1-0.2 U/kg and, under the supervision of trained 

study personnel, was titrated up by 3 units until participants’ morning fasting glucose 

levels were normoglycemic (90-110 mg/dl).  Participants were instructed to monitor 

fasting glucose levels daily and if morning hypoglycemia (blood sugars less than 70 

mg/dl) occurs, daily insulin dose was reduced.   

 

 

 

 

 Biochemical Evaluation. All participants completing the study stayed overnight at 

the Vanderbilt Clinical Research Center (CRC) during each visit. At each visit, 

participants were in a food-intake controlled state and fasted until the following morning 

(approximately 10:00am) when the mixed-meal glucose tolerance test (MGTT) was 

performed. An intravenous (IV) catheter was placed into a superficial vein of the hand or 

forearm and IV function was verified prior to the onset of the MGTT.  Beginning at time 

Figure 4. Study design and timeline. Participants were consented, screened for inclusion and 
exclusion criteria, and enrolled at Week 0.  Upon enrolment, participants were randomized to a treatment 
arm to receive or not receive insulin detemir.  Collection of imaging and physiologic / metabolic data 
were performed at baseline (Week 2) and four weeks later (Week 6).  All participants maintained a 
weight neutral state during the study in order to assess the effect of insulin treatment. CRC, clinical 
research center. 



 19 

point 0, participants ingested a 75gram glucose load via a mixed meal. Sampling times 

for plasma glucose, insulin and C-peptide concentrations include two baseline samples 

at -5 and 0 minutes and at 10, 20, 30, 60, 90, 120, 150, 180, and 240 minutes post 

glucose load. The 11-sample protocol for minimal model index of insulin 

sensitivity(Caumo, Bergman, and Cobelli 2000), which highly correlates with the 

frequently sampled (22 samples)  oral glucose tolerance test(Breda et al. 2001), was 

used. The approximate total blood volume collected during MGTT was 80-110ml. 

 Samples were stored at -20 to -70°C. Plasma glucose concentrations were 

determined using the glucose oxidase method with an Analox GM10 glucose analyzer 

(Analox Instruments). Plasma insulin, leptin, ghrelin, and C-Peptide were measured 

using a double-antibody radioimmunoassay as previously described(Thorell and Lanner 

1973; Morgan and Lazarow 1963; Ma et al. 1996). Free fatty acids (FFAs) were 

quantified using a coupled enzyme assay. Insulin resistance was calculated using both 

the homeostatic model of insulin resistance(Matthews et al. 1985) (HOMA-IR) and 

disposition index(Utzschneider et al. 2009) (DI).  HOMA-IR was calculated as HOMA-IR 

= (fasting plasma glucose [FPG] * fasting plasma insulin [FPI])/405. The disposition 

index (DI) was calculated as DI = ("I0–30/"G0 –30) x  (1/fasting insulin) where !0-30 

represents the baseline and 30-minute values for plasma insulin (I) and plasma glucose 

(G) derived from the MGTT.  Area under the curve (AUC) measurements for C-Peptide, 

insulin, and glucose during the MGTT were calculated using a spline rule consisting of a 

trapezoidal function and cubic spline function(Ivaz and Taghvafard 2006).  

 Amphetamine Challenge. Structural and functional brain MRI were performed on 

Day 1 at baseline without amphetamine (Brain Pre-AMPH) and following oral 

administration of amphetamine on Day 2 (Brain Post-AMPH). Structural and functional 

MRI was performed using the same protocol as performed on Day 1 with the addition of 

oral Dextro-amphetamine administration. D-amphetamine was provided to each 



 20 

participant 45 minutes prior to brain imaging at a dosage of 0.43 mg/kg orally as 5mg 

tablets rounded upwards to the nearest whole tablet based on weight.  AMPH dosage 

was prepared by the Vanderbilt Investigational Drug Service.  Maximum allowable 

dosage was 45mg. 

 All participants were screened for contraindications prior to receiving 

amphetamine.  Inclusion criteria for AMPH were a resting blood pressure less than 

140/90 mmHg.  Following drug administration, heart rate and blood pressure was 

measured every 15 minutes prior to entering the scanner, and every 20 minutes 

throughout the scan.  Participants were observed for a minimum of 4 hours after AMPH 

dosing and two normal blood pressures separated by 20 minutes were required prior to 

discharge.  Participants receiving amphetamine were instructed to contact the study 

physician with any concerning symptoms after discharge. 

 

Imaging Protocol 

 Magnetic resonance imaging (MRI) and positron emission tomography (PET) 

were performed at Week 2 and repeated at Week 6 (see Figure 5).  

 Dopamine D2 Receptor Positron Emission Tomography (D2R-PET). Participants 

received the dopamine D2 receptor ligand 18F-Fallypride. Prior to each PET study an IV 

line was placed and a brief neurological examination by the study physician was 

performed. Each subject was asked to lie supine on the PET scanner with his/her head 

positioned in the scanner, and 5 mCi of 18F-Fallypride (specific activity greater than 

2,000 Ci/mmol, mass of less than 2.5 nanomoles) was injected over a 15 second period. 

Trained staff in the Vanderbilt Radiology Department of the Vanderbilt University Medical 

Center administered the radioligand. 
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 All PET studies were performed using a GE Discovery DSTE PET/CT scanner.  

Images were collected with a reconstructed resolution of 5 mm in plane, 3.2 mm axially, 

and 47 planes over a 15 cm axial field of view.  The mass dose of 18F-Fallypride given 

occupied no more than 5% of D2R in all brain regions ensuring that mass dose does not 

affect regional estimates of BPND. Twenty-seven serial scans of increasing duration 

(4x15s, 9x20s, 5x60s, 4x150s, 2x5min, and 4x10min) were performed over the 70 

minutes following injection. After the initial scans, subjects received a 15-minute break 

followed by a second set of scans (4x15min) collected over a 60-minute period. A 

second break of 20-25 minutes was followed by a third set of scans lasting 60 minutes. 

This total sequence lasted approximately 3.5 hours. At the conclusion of the PET study, 

a brief neurological motor examination, withdrawal of 12 ml of blood for CBC, differential 

and comprehensive metabolic panel, and vital signs were repeated.  

 MRI. Imaging was performed using a 3T Phillips Achieva MRI Scanner using an 

8-channel head coil.  High-resolution anatomical images were collected using a 3D T1-

weighted TFE gradient echo with an isotropic resolution of 1mm3, 5° flip angle, TI/TR/TE 

Figure 5. Imaging timeline. Imaging data was collected at baseline (Week 2) and 4 weeks later (Week 
6). Each imaging visit lasted two days. Pre-amphetamine functional and structural brain magnetic 
resonance imaging (MRI) and 18F-Fallypride positron emission tomography (PET) occurring on day 1 
and fat water imaging (FW-MRI) and post-amphetamine MRI occurring on day two.  The same imaging 
parameters were used at each visit.  
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=959.74/8.3/3.9 ms, in 170 volumes.  T2*-Weighted Gradient FFE Echoplanar BOLD 

(EPI-BOLD) were acquired using TR/TE = 2000/35 ms, 79° flip angle, SENSE factor = 

1.8, 3x3x4.5mm3 voxel size interpolated to 1.8x1.8x4.95mm, and acquired parallel to the 

AC-PC line based on the 3D structural image.  Fat-water MRI (FW-MRI) consisted of a 

multi-slice, multi-echo gradient echo (fast field echo, FFE) acquisition across 12 slices, 

slice thickness 8mm, zero slice gap. Acquisition details include: TR/TE1/TE2/TE3 [ms] = 

75/1.34/2.87/4.40; FA=20°; water-fat shift (WFS) = 0.325 pixels (BW=1335.5 Hz/pixel); 

field of view (FOV) = 500 mm # 390 mm, acquired matrix size = 252 # 195; acquired 

voxel size = 2 mm # 2 mm # 8 mm. Total scan time lasted approximately 90 minutes. 

 Stop Signal Task. All participants completed stop signal task(Logan and Cowan 

1984), which requires participants to execute a motor response to a visual “go” cue (Go 

Trials) on a majority of trials and inhibit this motor response on less frequent “stop” cues 

(Stop Trials). Trials were presented in a pseudo-randomized order. Each trial was 

preceded by a yellow dot centered on the viewing screen to promote attention and eye 

fixation (fore-period; lasting from 1 and 5 seconds).  Go trials were presented in a 3:1 

ratio with stop trials in order to entrain a prepotent motor response. Go trials began with 

the appearance of the yellow fixation cue which turned into a green circle after the 

pseudorandomized fore-period.  This circle served as the motor prompt for the 

participant to press the response button with his/her right index finger.  The green circle 

disappeared following a button press or after 1s had passed, whichever came first.  A go 

trial where the button was pressed prematurely, pressed after 1s, or was never pressed, 

was considered incorrect.  Stop trials were the same as go trials except that a red X, 

serving as the stop cue, appeared after a variable stop signal delay (SSD).  Upon the 

appearance of the red X, participants must withhold their response. Each trial was 

separated by a fixed 2s interval (see Figure 6A).   
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 The SSD began at 200 msec and progressed across stop trials according to a 

staircase design: if the participant successfully inhibited his/her response, the SSD 

increased by 64ms, whereas if the response was unsuccessfully inhibited, the SSD 

decreased by 64ms.  By using this staircase design, variations in participant responding 

can be controlled by maintaining an individual success rate at approximately 50% and 

the critical stop signal delay (cSSD) can be calculated(Levitt 1970).  Specifically, 

individual trials were grouped into runs, where each run was defined as a monotonically 

increasing or decreasing series, and the mid-run estimate of every other run was 

averaged to derive the cSSD(Li, Yan, et al. 2008; Wetherill, Chen, and Vasudeva 1966). 

The stop signal reaction time (SSRT), the time required to inhibit a prepotent motor 

response after seeing the stop signal, was then calculated by subtracting the cSSD from 

the median go response time (mGRT, see Figure 6B). Post-error slowing (PES), the 

phenomenon by which individuals slow down following an error(Rabbitt 1966), was 

calculated as the difference in go response time before and after an error on a stop 

trials(Dutilh et al. 2012).    

 The mGRT and SSRT are dissociable components of the stop signal task 

reflecting the respective speeds of “going” and “stopping”, while the cSSD represents 

overall SST performance as the difference in speeds between the go and stop 

horses(Logan 1994) (see Figure 6B).  A shorter mGRT indicates impulsivity while a 

longer SSRT indicates poor response inhibition(Bari et al. 2011; Li, Huang, et al. 2006; 

Eagle et al. 2011). Post-error slowing (PES), the phenomenon by which individuals slow 

down following an error, indicates the speed of error monitoring and cognitive control 

processes(Botvinick et al. 2001; Rabbitt 1966). 

 On the day of scanning, participants completed five minutes of the stop signal 

task prior to entering the fMRI scanner. Participants were reminded of the stop signal 

task instructions.  Specifically, participants were informed that they would see three 
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types of cues in the scanner: a yellow “get ready” cue, a green circle (“GO”), and a green 

circle followed by a red X (STOP).  Participants were instructed to, as soon as the “go” 

stimulus appeared, press the response button as quickly as possible.  Conversely, 

participants are instructed to abstain from pressing the button during the “stop” trial.   

 In the scanner, participants completed three runs of the stop signal task, with 

each run consisting of 100 trials (75 go trials, 25 stop trials) and lasting approximately 10 

minutes.  All participants used their right hands to respond to the visual cues using an 

MRI-compatible response box.  The presentation of stimuli and collection of response 

data were completed using E-Prime Software v2.0 (Psychology Software Tools). 

 

 

  

 

 

 

 

Data Analysis 

 Behavioral Analyses. The percentage of successful go and stop trials were 

calculated for each participant, as well as the median of the go response time (mGRT).  

Figure 6. Stop signal task. A) The stop signal task in an fMRI design where the green circle begins 
each trial and is preceded by a variable-length foreperiod.  In stop trials, the red X is presented following 
a variable stop signal delay (SSD).  A button press on a go trial is a go success (GS) while failing to 
press the button on a go trial is a go error (GE).  Inhibiting the button press on the stop trial is a 
successful stop (SS) while pressing the button on a stop trial is a stop error (SE). B) The horse race 
model assumes that the go and stop processes are independent where the inhibitory response (stop 
signal response time) is calculated by subtracting the critical stop signal delay (the time between the “go” 
signal [green circle] and “stop” signal [red X]) from the median go response time). SSRT, stop signal 
response time; SSD, stop signal delay; mGRT, median go response time. 
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Custom Matlab (Mathworks) code was used to calculate the cSSD, SSRT, and PES as 

previously described.  These measures were calculated for each of the three runs 

separately and for the entire imaging session. Performance criteria for inclusion in 

behavioral analyses were successful inhibition on 25-75% of Stop trials and >60% 

response rate on Go trials(Congdon et al. 2012; Ghahremani et al. 2012).  

 PET Analyses. An in-house algorithm(Dunn et al. 2010) was used for kinetic 

modeling of raw images to produce voxel-wise maps of non-displaceable binding 

potentials (BPND) using the cerebellum as a reference region(Byas-Smith et al. 2004). 

BPND’s were coregistered and normalized to MNI space, and smoothed with a 6mm 

Gaussian kernel in SPM8. 

 fMRI Analyses. All data were analyzed using Statistical Parametric Mapping 

(SPM8, Welcome Department of Imaging Neuroscience, University College London, 

UK). Data were motion corrected to the central slice using a 6-parameter spatial 

transformation and realigned to the mean image of all the runs from each subject, slice-

time corrected, and high-pass temporally filtered with a cutoff of 128 sec.  The mean 

functional image from the slice time correction was then coregistered with the high-

resolution 3D anatomic image using an affine transformation, spatially normalized to MNI 

space using a 12-parameter nonlinear transformation, then spatially smoothed using a 

Gaussian kernel of 6.0 mm FWHM(Ashburner and Friston 1999).  Subjects exceeding 

motion parameters (3° rotation, 3mm translation) were excluded from future analysis. 

 Four types of trial outcomes were identified: go success (GS; successful go trials), go 

error (GE; unsuccessful go trials), stop success trials (SS), and stop error trial (SE; 

unsuccessful stop trials).  The onset and reaction times for each trial were identified and 

entered into a statistical design matrix for each participant using a general linear model 

(GLM).  Realignment parameters (rotation and translation) were also entered into the 
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model. During the first level analysis, the onsets associated with each trial type were 

convolved with a canonical hemodynamic response function(Friston et al. 1995), and 

constructed into first-level contrasts: GS vs SS to identify the neural correlates of 

“stopping” and “going”, and SS vs SE to determine the neural correlates of successful 

and failed stops.  The individual participant contrasts maps were then entered into a 

second-level group analysis for the same contrasts. 

 Statistical Analyses. Stop signal performance measurements, including the 

SSRT, cSSD, mGRT, and PES, are linked to the adequate functioning of brain 

dopamine systems.  Based on the hypothesis that obesity and insulin-resistance 

produce dopaminergic disruption, we determined the degree to which stop signal 

performance was influenced by markers of obesity (BMI) and insulin resistance (HOMA-

IR). Stop signal performance markers were entered into a multiple linear regression as 

dependent variables (those being affected by BMI and/or HOMA-IR associated 

dopaminergic disruptions) and BMI and HOMA-IR as independent variables, while 

controlling for nuisance variables that may impact performance including age(Cohen et 

al. 2010) and insulin-sensitizing medications (data not shown).  Results were considered 

statistically significant at p$0.05 and marginally significant at p$0.08. 

 Voxelwise and volume-of-interest (VOI) analyses were implemented to examine 

the relationship between brain activation, BMI, and HOMA-IR.  After examining the 

group-level GS vs. SS and SS vs. SE contrasts (punc<0.001, kE = 10 voxels), we 

performed wholebrain voxelwise regressions within these contrasts against stop signal 

performance to identify the neural correlates of impulsivity, inhibition, and error 

monitoring.  These maps were generated at an uncorrected threshold of p=0.005 with a 

cluster extent threshold of 10 voxels.  Significant clusters from these voxelwise 

regressions were considered VOIs within which to examine the effects of HOMA-IR and 
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BMI on brain activation. Marsbar was used to calculate the individual participant 

weighted parameter estimates of the activity within the VOIs(Brett et al. 2002).  These 

measures of activation were then used in statistical comparisons with stop signal 

behavior and biochemical composition.  Regression analyses were corrected for multiple 

comparisons using an FDR threshold of p<0.05. Regression analyses are presented 

without correction for multiple comparisons, however regions meeting significance with 

FDR correction are mentioned as such in the text. 

 Finally, we performed a mediation model to determine whether brain activation 

mediated the effects of BMI or HOMA-IR on stop signal performance.  Within this model 

we examined both the direct mediation effects and indirect mediation effects.  The 

indirect mediation effects were calculated using the Goodman test(Goodman 1960). All 

statistical analyses were performed in SPSS v20 (SPSS Statistics).  For  

 

Results 

 

Participant demographics and clinical information  

 Table 1 summarizes the demographic and clinical characteristics of the study 

cohort.  Fifty-eight subjects were enrolled in the study (age: 47.55 ± 0.89 yrs [mean ± 

SE]; BMI: 36.95 ± 0.60 kg/m2; 36 female, 22 male).  Of the enrolled 58 subjects, thirty-

two received PET imaging (age: 46.44 ± 1.29 yrs, BMI: 37.86 ± 0.63 kg/m2, 22 female, 

10 male), and fifty received stop signal fMRI imaging.  Three participants were excluded 

from the behavioral analysis because they did not meet the behavioral performance 

thresholds previously described(Congdon et al. 2012; Ghahremani et al. 2012). 

Performance criteria for inclusion were: successful inhibition on 25-75% of stop trials and 

>60% response rate on Go trials.  Seventeen participants did not meet the strict motion 
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parameters (3° rotation, 3mm translation) for fMRI analysis and were further excluded 

from the imaging analysis only. In total, data from forty-seven participants (age, 47.1 ± 

1.0 yrs (mean ± SE); BMI, 37.1 ± 0.7 kg/m2; HOMA-IR, 7.8 ± 0.8; 18 male, 29 female) 

were included in the behavioral analysis and a representative subset of thirty participants 

(age, 48.1 ± 1.25 yrs (mean ± SE); BMI, 36.5 ± 0.74 kg/m2; HOMA-IR, 6.29 ± 0.63; 12 

male, 18 female) was included in the fMRI analysis.  

 

 Across subjects, body mass index averaged 36.95 ± 0.60 kg/m2 (mean±SE; 

normal weight $ 25 kg/m2), indicating that the sample is comprised of Class I and Class 

II mildly obese individuals. Markers of insulin resistance and glucose disposal 

demonstrate the anticipated mild impairments in insulin sensitivity: HOMA-IR values 

averaged 7.66 ± 0.70 (normal range < 2), fasting plasma glucose averaged 130.2 ± 6.08 

Table 1. No difference in demographics and clinical information between analysis subgroups 
(mean ± SE). Analysis subgroups include the total sample (n=53), the 18F-Fallypride PET subset (n=32), 
the stop signal task behavior subset (n=47), and the stop signal task imaging subset (n=30). 

 Total Sample PET Stop Signal Task: 
Behavior 

Stop Signal 
Task: fMRI p-value 

N 58 32 47 30 - 

Sex 36F, 22M 22F, 10M 29F, 18M 18F, 12M - 

Race 25B, 3H, 30W 15B, 2H, 15W 20B, 2H, 25W 11B, 1H, 18W - 

Age (yrs) 47.55 ± 0.89 46.44 ± 1.29 47.12 ± 1.03 48.10 ± 1.25 0.797 

Education (yrs) 14.81 ± 0.22 14.87 ± 0.31 14.81 ± 0.29 15.07 ± 0.37 0.926 

BMI (kg/m2) 36.95 ± 0.60 37.86 ± 0.63 37.14 ± 0.70 36.45 ± 0.74 0.607 

HOMA-IR 7.66 ± 0.70 7.90 ± 0.90 7.83 ± 0.80 6.29 ± 0.63 0.510 

Disposition Index 1.37 ± 0.41 1.50 ± 0.55 0.96 ± 0.12 1.03 ± 0.16 0.689 

C-Peptide AUC (ng/ml) 1058.8 ± 86.9 1105.0 ± 93.6 1006.1 ± 78.52 1037.7 ± 101.2 0.889 

Glucose AUC (mg/dl) 10375.1 ± 675.8 9807.9 ± 744.6 10329.5 ± 719.2 10295.9 ± 827.7 0.947 

Insulin AUC (uu/ml) 15332.8 ± 2176.6 16497.9 ± 2991.9 14833.86 ± 2321.9 12738.9 ± 1556.7 0.789 

Fasting AcylGhrelin (pg/ml) 23.7 ± 2.10 25.7 ± 2.32 24.65 ± 2.44 24.20 ± 2.68 0.931 

Fasting C-Peptide (ng/ml) 4.12 ± 0.27 4.35 ± 0.31 4.12 ± 0.29 3.71 ± 0.26 0.572 

Fasting Glucose (mg/dl) 130.2 ± 6.08 122.9 ± 5.05 126.68 ± 6.09 125.54 ± 7.74 0.864 

Fasting Insulin (uu/ml) 24.8 ± 1.80 25.3 ± 2.43 25.17 ± 1.98 21.16 ± 1.79 0.498 

Fasting Leptin (ng/ml) 27.6 ± 1.89 27.8 ± 2.07 27.25 ± 2.18 27.43 ± 2.37 0.998 

Note: Values in the same row with a subscript are significantly different at p< .05 in the two-sided test of equality for 
column means. 
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mg/dl (normal range 70 mg/dl to 99 mg/dl), FPI averaged 24.8 ± 1.80 µU/ml (normal 

range 5-15 µU /ml) and C-peptide averaged 4.12 ± 0.27 ng/ml (normal range 0.51 to 

2.72 ng/ml)(Mager et al. 2010).   

 Demographic and clinical information was similar across the behavioral and 

imaging subsets. No differences were observed in participant age or education, BMI, 

HOMA-IR, and measurements of insulin, glucose, c-peptide, leptin, or acylghrelin.  All 

behavioral and imaging subsets had a small female bias, with approximately 60-70% of 

each subset being female.  Further, there was no difference between the behavioral and 

fMRI imaging subsets with respect to stop signal behavior (see Table 2). The homology 

between analysis subgroups indicates that the results within each subgroup are 

generalizable to the sample as a whole. Notably, there was no correlation between 

individual volunteers’ BMI and HOMA-IR (R2 = 0.006, p = 0.627, behavioral; R2 = 0.030, 

p = 0.399, fMRI), allowing for the relationship of behavioral and neural responses to 

obesity and insulin sensitivity to be examined independently. 

 

Table 2. No difference in stop signal task performance between behavioral and 
imaging subgroups (mean ± SE). 

 Behavioral Analysis Imaging Analysis p-value 

cSSD (ms) 309.6 ± 17.4 319.1 ± 23.1 0.742 
SSRT (ms) 295.1 ± 4.7 300.6 ± 5.5 0.456 

mGRT (ms) 604.7 ± 15.6 619.7 ± 21.0 0.562 
PES (ms) 52.8 ± 7.5 35.7 ± 7.9 0.132 

 

 

Stop signal task performance in insulin resistance and obesity  
 
 SST performance was similar to that previously observed in comparable healthy 

control subjects(Hendrick et al. 2011; Zandbelt et al. 2013; Li, Huang, Yan, Paliwal, et al. 

2008): cSSD (310 ± 17 ms; mean ± SE), mGRT (605 ± 16 ms), SSRT (295 ± 5 ms).  



 30 

There was a significant slowing of Go responses following stop error (PES; 53 ± 7 ms), 

but not stop success trials.  

 Within the behavioral sub-group, there was a significant reduction of cSSD with 

increasing HOMA-IR (R2 = 0.140, p = 0.046), but no relationship between cSSD and 

BMI. Insulin resistance was also a predictor of mGRT where faster “Go” responding is  

associated with increasing HOMA-IR (R2 = 0.124, p = 0.061).  No relationship was 

observed between HOMA-IR and SSRT; however, SSRT showed a weak positive 

association with BMI (R2 = 0.096, p = 0.101).  Interestingly, PES increased with HOMA-

IR (R2 = 0.261, p = 0.005), but showed no dependence on BMI (Table 3, Figure 7).  The 

association of increasing PES with HOMA-IR was not explained by the impact of HOMA-

IR on mGRT.  We additionally tested for a BMI x HOMA interaction, finding no significant 

interaction effect on stop signal performance (data not shown).  This suggests that 

impaired insulin signaling promotes a faster ‘go’ response when ‘braking’ circuits are 

engaged to prospectively show impulsive responding. 

 

 

 

 Model BMI HOMA-IR 

 F p R p R p 

cSSD 3.352 0.011 0.038 0.845 -0.374 0.046 

SSRT 1.118 0.381 0.311 0.101 0.126 0.513 

mGRT 3.138 0.015 0.144 0.457 -0.352 0.061 

PES 2.095 0.079 0.260 0.173 0.511 0.005 

Table 3. Impulsiveness and error monitoring in a stop-signal task are predicted by insulin 
resistance (HOMA-IR), but not BMI.  The critical stop signal delay (cSSD), a measure of the difference 
between the stop signal response time (SSRT) and median go response time (mGRT), is predicted by 
HOMA-IR.  The median go response time (mGRT), the representative components of impulsivity, and 
post-error slowing (PES). a measure of error monitoring and attention, are further by predicted HOMA 
(n=47). BMI does not predict any aspect of stop signal behavior. 
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Insulin resistance and BMI predicts neuropsychological measures of impulsivity and 

disordered eating 

 The Barratt Impulsiveness Scale (BIS-11)(Patton, Stanford, and Barratt 1995) 

and the Three Factor Eating Questionnaire (TFEQ)(Stunkard and Messick 1985) self-

report tests respectively measure impulsive personality traits and disordered food intake 

and feeding behavior. In conjunction with the relationship between HOMA-IR and 

impulsivity in the stop signal task, the attentional component of the Barratt Impulsiveness 

Scale (BIS-11) was positively correlated with HOMA-IR (R2 = 0.099, p = 0.043), but not 

BMI (see Table 4).  Supporting the trend-level finding of impaired SSRT with obesity, 

increasing BMI was a positive predictor of the total Three Factor Eating Questionnaire 

(TFEQ-51) score (R2 = 0.070, p = 0.071) and the cognitive restraint subscale (R2 = 

0.096, p = 0.032).    

Figure 7. Insulin resistance (HOMA-IR) and body mass index (BMI) respectively predict 
dissociable impulsive, inhibitory, and error monitoring components of the stop signal task. A) 
Increasing HOMA-IR predicts impaired stop signal task performance delineated by the critical stop signal 
delay (cSSD). This effect can separated into behaviors underlying the respective go and stop processes. 
Specifically, B) increasing BMI impairs response inhibition (SSRT) at trend levels, while HOMA-IR 
significantly predicts C) impulsive responding (mGRT), and D) error monitoring / attention (PES). 
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Table 4. HOMA-IR and BMI respectively predict impulsiveness and disordered eating in 
the BIS-11 and TFEQ-51 self report measures. 

 BMI HOMA-IR 

 R p R p 

Barratt Impulsiveness Scale (BIS-11) 

 Attention -0.190 0.186 0.314 0.043 

 Motor -0.151 0.295 0.101 0.524 

 Non-Planning -0.195 0.174 0.139 0.379 

 TOTAL -0.224 0.118 0.205 0.192 

Three Factor Eating Questionnaire (TFEQ-51) 

 Cognitive Restraint 0.263 0.071 -0.050 0.755 

 Disinhibition 0.235 0.108 0.050 0.755 

 Hunger 0.126 0.393 0.265 0.095 

 TOTAL 0.310 0.032 0.073 0.652 

 

 

Brain networks of response inhibition in obesity and insulin resistance 

 The neural substrates of “going” and “stopping” are revealed in the stop signal 

task by comparing stop success (SS) and go success (GS) trials.  Brain regions active in 

these contrasts are consistent with previous studies of response inhibition, impulsivity, 

and performance/error monitoring(Ghahremani et al. 2012; Li, Huang, et al. 2006; Li, 

Huang, Yan, Paliwal, et al. 2008; Zandbelt et al. 2013; Cohen et al. 2010). Whole-brain 

analyses of stop success and go success trials revealed greater activation in SS 

compared to GS trials bilaterally in cortico-striatal-thalamo-cortical regions subserving 

cognitive and motor control including inferior, middle, medial, and superior frontal gyri, 

supplementary and pre-supplementary motor areas, precentral gyrus, insula, cingulate 

gyrus, thalamus, and the dorsal striatum.  Bilateral activation was also observed in 

parietal attention and visual areas (see Table 5, Figure 8A).  

 In contrast, GS trials showed greater activation than SS trials bilaterally in the 

precuneus (see Figure 8B).  Limited research is available examining the go component 
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of the stop signal task, as the SST is specifically designed to assess response inhibition.  

Studies reporting activation compared GS trails to a baseline null condition, finding 

contralateral activation of motor cortex and bilateral visual cortex (Congdon et al. 2010; 

Cohen et al. 2010).  Faster response times are linked with activation of motor cortex 

while slower go response times have been associated with greater antecedent activity of 

the default mode network (DMN) including the precuneus (Hinds et al. 2013).  This 

suggests that the present contrast may not have the temporal resolution to resolve faster 

response times in order to observe motor activation.   However, the precuneus has been 

linked with visuospatial processing and shifting attention during the planning and 

execution of motor performance(Cavanna and Trimble 2006), and has numerous 

connections to frontal- and oculo-motor regions that are implicated in the visual guidance 

of hand motion(Goldman-Rakic 1988; Ferraina et al. 1997). The observed activation may 

thus be due to the role of the precuneus in the attention shift between the visual go cue 

and the motor button press. 
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Table 5. Brain activation in the stop signal task comparing stop success (SS) and go success 
(GS) trials. All maps were generated at an uncorrected threshold of p<0.001 and a cluster size of 
greater than 10 voxels 
Brain Region Hemi Voxels Max. T-

statistic x y z 
Stop Success greater than Go Success (SS>GS) 
Anterior Cingulate Gyrus R 10 4.6325 12 35 13 
Caudate L 41 5.1681 -9 11 4 
Cerebellum L/R 331 7.823 -18 -67 -35 
Cingulate Gyrus L/R 13 3.8179 6 -22 34 
Frontal Lobe / Striatum L 680 6.8426 -45 26 31 
 R 1820 6.9749 42 26 34 
           - Inferior Frontal Gyrus       

           - Middle Frontal Gyrus       

           - Medial Frontal Gyrus       

           - Superior Frontal Gyrus       

           - Supplementary Motor Area       

           - Pre-Supplementary Motor Area       

           - Precentral Gyrus       

           - Insula       

           - Caudate       

           - Putamen       

Hippocampus L 35 4.5435 -27 8 -14 
 R 22 4.6423 33 -13 -8 
Occipital / Parietal Lobes L/R 2058 8.4912 57 -46 -8 
 L 736 8.4461 -33 -46 37 
           - Cuneus       

           - Precueus       

           - Lingual Gyrus       

           - Inferior Occipital Gyrus       

           - Fusiform Gyrus       

           - Middle Temporal Gyrus       

           - Superior Temporal Gyrus       

           - Inferior Temporal Gyrus       

           - Supramarginal Gyrus       

           - Angular Gyrus       

           - Inferior Parietal Lobule       

Paracentral Lobule L 27 5.0715 -12 -37 64 
 R 12 4.0237 6 -25 70 
Precuneus R 82 4.3958 9 -70 58 
Superior Temporal Gyrus L 16 5.4897 33 5 -11 
Thalamus L 24 4.5245 -24 -28 -2 
 R 19 4.8633 18 -28 1 
Go Success greater than Stop Success (GS>SS) 
Precuneus L/R 112 5.3432 27 -46 22 
  R 17 4.7917 6 -58 22 
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Figure 8A-B. Regional brain activation T-maps in the stop signal task. In comparing stop 
success (SS) and go success (GS) trials, there is A) greater activation in SS trials bilaterally in 
the frontal regions (IFG/MFG/SFG/MeFG/SMA), dorsal striatum, cingulate gyrus, insula, 
thalamus, temporal gyri, inferior parietal cortex, angular gyrus, fusiform gyrus, supramarginal 
gyrus, and occipital gyrus, and B) greater activation in GS trials in the precuneus bilaterally.  
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 Contrasting “stop success” with “stop error” trials (i.e. SS>SE) to isolate those 

areas specifically associated with successful motor inhibition revealed increased activity 

in precentral gyrus/supplementary motor areas (SMA) and the dorsal striatum.  This 

pattern of activation is consistent with numerous studies implicating these areas in 

controlling successful stopping (Li, Huang, et al. 2006; Duann et al. 2009; Ide and Li 

2011; Rubia et al. 2001; Swick, Ashley, and Turken 2011). SE trials showed greater 

activation than SS trials in salience attribution, error monitoring, and motor control areas 

including the bilateral cerebellum, cingulate gyrus, insula, and pre-SMA / medial frontal 

gyrus (see Table 6, Figure 8C-D). No areas of prefrontal activation were observed in this 

contrast, suggesting that that the cognitive control component response inhibition is best 

visualized in the SS>GS contrast; however, other cognitive processes such as attention 

or saliency can confound the interpretation of the SS>GS contrast. 

Table 6. Brain activation in the stop signal task comparing stop success (SS) and stop error 
(SE) trials. All maps were generated at an uncorrected threshold of p<0.001 and a cluster size of 
greater than 10 voxels 
Brain Region Hemi Voxels Max. T-stat. x y z 
Stop Success greater than Stop Error (SS>SE) 
Anterior Cingulate Gyrus R 13 5.5957 6 32 -2 
Caudate/Putamen L 147 6.4413 -18 11 -5 
 R 196 6.8297 18 14 -2 
Hippocampus L 13 4.6395 -33 -43 1 
Middle Occipital Gyrus L 57 5.6398 -42 -70 7 
 R 44 5.614 21 -85 7 
Middle Temporal Gyrus R 37 5.3596 45 -67 4 
Parahippocampal Gyrus L 10 4.103 -24 -19 -17 
Postcentral Gyrus R 11 4.5868 54 -16 49 
Precentral Gyrus L 54 5.9114 -33 -19 49 
 R 85 4.9799 33 -28 49 
Precuneus L 54 4.9169 -30 -73 34 
 R 17 5.4281 27 -76 34 
SMA L/R 264 5.8732 -3 -25 58 
Superior Parietal Lobule R 16 5.3096 24 -55 55 
Stop Error greater than Stop Success (SE>SS) 
Cerebellum L 14 3.7239 -36 -58 -26 
 R 75 5.1984 21 -58 -20 
Cingulate Gyrus L/R 17 4.5074 0 23 34 
Insula L 37 4.5641 -45 5 -5 
 R 18 4.94 42 8 -5 
preSMA / Medial Frontal Gyrus R 37 4.8283 12 20 61 
 

L 11 4.3431 -9 26 58 
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Figure 8C-D. Regional brain activation T-maps in the stop signal task. In comparing stop success 
and stop error (SE) trials, there is C) greater activation in SS trials in in the bilateral dorsal striatum, 
precentral gyrus, supplementary motor and visual areas, as well as the right cingulate gyrus, temporal 
gyri, and right superior parietal lobule and D) greater activation in SE trials in the bilateral cingulate 
gyrus, medial frontal gyrus/preSMA, insula, and cerebellum in stop error trials. All charts were generated 
at puncorrected<0.001, kE>10 voxels. 
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Brain activation predicts stop signal task performance  

 The neural substrates of “going” and “stopping”, revealed widespread activation 

in the expected motor, cognitive, salience, and attention networks.  Given the specific 

relationship of obesity and insulin resistance to stop signal behavior, we performed 

whole-brain regressions of brain activation against these behaviors.  Because the horse 

race model (Logan, Cowan, and Davis 1984) parameterizes SST performance as the 

difference in speeds between the “go” and “stop” processes, we regressed performance 

against the contrasts where the go and stop processes compete: stop success greater 

than go success (SS>GS; “stop” wins) and stop error greater than stop success 

(SE>SS; “go” wins).  In the former contrast the “stop” horse wins to successfully inhibit a 

motor response, suggesting regions with greater activation will be associated with 

successful inhibitory SST performance (long cSSD, long mGRT, short SSRT).  In the 

latter contrast the “go” horse wins in the stop trials to generate an error, indicating that 

regions with greater activation promote failed inhibition (short cSSD, short mGRT, long 

SSRT) (see Table 7). 

Table 7. Interpretation of Stop Signal Task Regressions 

 SS>GS SE>SS 

Interpretation of " Brain 
Activity 

Successful inhibition due to 
appropriate cognitive and 

motor mechanisms 

Failed inhibition; may be due 
to impulsivity or impaired 

cognitive control 

Associated SST Behavior 
(direction of correlation [r]) 

long cSSD (+r) 
long mGRT (+r) 
short SSRT (-r) 

short cSSD (+r) 
short mGRT (+r) 
long SSRT (-r) 

 

 As the critical stop signal delay (cSSD) represents overall SST performance as 

the difference in speed between the “go” and “stop” processes, we first regressed cSSD 

against brain activation. Several brain regions appeared to modulate overall SST 

performance (see Table 8, Figure 9A).  In SS>GS trials, increasing cSSD was 

associated with both areas of increased and decreased regional brain activation. 
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Positive correlations between cSSD and brain activity were observed in a predominantly 

left-sided network including the left insula, middle and superior temporal gyri, putamen, 

and the right amygdala. The involvement of limbic and emotional processing regions 

(Cauda et al. 2011; Olson, Plotzker, and Ezzyat 2007; Ostrowsky et al. 2002) with 

successful stopping suggests that the perceived salience of the “stop” acts to facilitate 

response inhibition.   

 In contrast, negative correlations between cSSD and brain activity were observed 

in a predominantly right-sided inhibitory motor and attention network including the 

angular gyrus, middle and inferior frontal gyrus, precentral gyrus, pre-supplementary 

motor area, thalamus, and the left supplementary motor area.  The association of poorer 

overall performance (shorter cSSD due to faster “go” horse) with greater activation in 

motor control regions suggests that heightened inhibitory network activity is required to 

maintain performance.  When examining activation during stop error trials, we found that 

poorer performance was associated primarily with greater activation of dorsal striatal 

inhibitory motor regions, potentially due to the activation of striatal movement pathways 

(Aron and Poldrack 2006) (see Figure 9B). 
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Figure 9. Stop signal delay duration modulates brain activity in inhibitory motor, attention, and 
salience circuits where impaired (shorter) cSSD produces A) greater activity in inhibitory motor and 
attention regions including the precentral gyrus, supplementary motor area, middle and inferior frontal 
gyrus, thalamus, and angular gyrus in stop success compared with go success trials but less activity in 
dorsal striatum and emotional / salience processing regions including the ventral insula, temporal gyri, 
and amygdala; B) greater activity in inhibitory motor regions including the bilateral putamen during stop 
error trials. (+) indicates a positive relationship between cSSD and brain activity, (-) indicates a negative 
relationship between cSSD and brain activity. All charts were generated at puncorrected<0.001, kE>10 
voxels. 
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Table 8. Brain regions sensitive to the stop signal delay predicted through the wholebrain regression of cSSD 
against brain activation 
Brain Region Hemi. Voxels Max. T-

Statistic x y z R p 
Correlation with SS > GS Activation 

Angular Gyrus R 28 3.5825 30 -52 43 -0.592  0.001 
Inferior Frontal Gyrus R 10 3.4569 39 20 13 -0.592 0.001 
Middle Frontal Gyrus* R 21 4.0997 36 38 25 -0.630 <0.001 

 
R 64 4.6625 48 17 28 -0.642 <0.001 

Precentral Gyrus
† R 28 3.4062 42 5 49 -0.567 0.001 

preSMA R 15 3.3207 12 14 61 -0.598 <0.001 
Supplementary Motor Area L 27 3.7179 -6 -10 67 -0.562 0.001 
Thalamus

† R 14 3.0165 9 -16 10  -0.518 0.003 
Amygdala* R 30 4.8119 21 2 -14 0.549 <0.001 
Insula L 19 5.3167 -36 11 -17 0.675 <0.001 
 L 11 3.74 -42 -19 -8 0.590 0.001 
Middle Temporal Gyrus L 36 4.1704 -39 -64 16 0.615 <0.001 

 
L 24 4.3562 -51 -31 1 0.610 <0.001 

Putamen L 20 4.3891 -30 5 -8 0.677 <0.001 
Superior Temporal Gyrus L 28 4.0017 -54 -1 -8 0.643 <0.001 

Correlation with SE > SS Activation 
Inferior Parietal Lobule L 15 3.5565 -32 -25 28  -0.654 <0.001 
Putamen L 110 5.6124 -18 14 -8 -0.544 0.002 

 
R 76 4.34 24 14 -2 -0.571 0.001 

Superior Temporal Gyrus R 10 4.1208 51 -31 4 -0.675 <0.001  
Medial Frontal Gyrus R 11 3.3752 6 35 34  0.599 <0.001  

Brain regions and the associated t-statistic, cluster sizes, and MNI coordinates are from the location of peak voxel at 
each local cluster maxima. Maps were thresholded at an uncorrected p<0.005. 

† 
HOMA-IR predicts brain activity in these regions 

* BMI predicts brain activity in these regions 
 

 Since “go” and “stop” speeds interact to determine overall SST performance, we 

next performed whole brain regressions against mGRT and SSRT to dissociate the 

neural correlates of “going” and “stopping”.  Regression of SS>GS against mGRT 

revealed regions similar to the cSSD regression. Faster mGRT was associated with 

greater activation in inhibitory motor and attention regions including the precentral gyrus, 

supplementary motor area, thalamus, middle frontal gyrus, precuneus, cuneus and 

angular gyrus during SS trials, but decreased activation of emotional and salience 

processing regions including the amygdala, insula, middle temporal gyrus, and inferior 
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frontal gyrus.  Faster mGRTs were also associated with increased activation in the 

putamen during stop error trials, suggesting heightened engagement of subcortical 

motor circuits facilitate impulsive responding to “drive” an error in a stop trial (see Table 

9, Figure 10A-B).  Regression of SS>SE against SSRT did not yield any areas that might 

be potential predictors of successful stopping; however, regression of SS>GS against 

SSRT, a less stringent screen for neural correlates of stopping performance, revealed 

negative correlations with SSRT (i.e. greater activation contrast with faster “stopping”) in 

the left superior, middle, and inferior frontal gyri (Table 9, Figure 10C). 

Table 9. Neural correlates of “going” and “stopping” in the stop signal task 
 

Contrast Brain Region Hemi. Voxels T-Statistic x y z R p 
Median Go Response Time 

SS
>G

S  

Angular Gyrus R 16 3.3998 33 -58 43 -0.548  0.002 
Cuneus L/R 13 3.6767 3 -88 1 -0.530 0.003 
Middle Frontal Gyrus* R 21 3.7815 36 38 25 -0.608 <0.001 
 

R 57 4.216 48 17 28 -0.620 <0.001 
Precentral Gyrus

† R 21 3.5566 42 5 49 -0.552 0.002 
Precuneus

† R 11 3.362 15 -73 52 -0.513 0.003 
Supplementary Motor Area

† L 25 3.6703 -6 -10 67 -0.560 0.001 
Thalamus

† L/R 20 3.1663 9 -16 10 -0.528  0.001 
Amygdala R 28 4.9367 21 2 -14 0.652 <0.001 
Inferior Frontal Gyrus L 12 4.4576 -36 11 -17 0.624 <0.001 
 

L 11 3.984 -45 38 10 0.482 0.007 
Insula L 10 3.7112 -45 -16 -8 0.576 0.001 
Middle Temporal Gyrus L 30 3.8062 -39 -64 16 0.582 0.001 
 

L 25 4.109 -51 -31 1 0.611 <0.001 
 

L 16 3.8012 -54 -1 -8 0.580 0.001 
Putamen L 11 3.8772 -30 5 -8 0.578   0.001 

SE
>S

S  Putamen
† L 104 5.5469 -18 14 -8 -0.645 <0.001 

 
R 88 4.6923 24 5 -11 -0.677 <0.001 

Insula R 12 3.2916 45 -4 13 -0.569 0.001 
 Stop Signal Response Time 

SS
>G

S  

Supramarginal Gyrus R 24 3.5862 33 -49 31 0.592  0.001 
Insula R 12 3.4889 39 17 7  0.703 <0.001 
Superior Frontal Gyrus L 11 4.0994 -18 -1 55 -0.711 <0.001 
Middle Frontal Gyrus L 13 3.5829 -21 8 46 -0.684 <0.001 
Inferior Frontal Gyrus L 46 4.5674 -30 17 -14 -0.551 0.002 
  L 17 4.9397 -39 29 -14 -0.611  <0.001  

Brain regions and the associated t-statistic, cluster sizes, and MNI coordinates are from the location of peak voxel at 
each local cluster maxima. Maps were thresholded at an uncorrected p<0.005. 

† 
HOMA-IR predicts brain activity in these regions 

* BMI predicts brain activity in these regions 
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Figure 10. Neural correlates of “going” and “stopping” in the stop signal task A) faster responding 
is associated with greater activity in motor control and attention regions including the precentral gyrus, 
supplementary motor area, middle frontal gyrus, precuneus, thalamus, and angular gurus in stop 
success compared with go success trials but less activity in the ventral insula, middle temporal gyrus, 
and amygdala; B) faster responding is also associated with greater activity in the bilateral putamen 
during stop error trials; C) improved stopping performance is associated with increased activation in the 
inferior, middle, and superior frontal gyri and less activation in the supramarginal gyrus and the insula. All 
charts were generated at puncorrected<0.001, kE>10 voxels. 
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Impact of insulin resistance on obesity on SST-associated brain activation   

 To address the hypothesis that obesity and/or impairments in central insulin 

signaling may influence SST performance, we next determined whether BMI and/or 

HOMA-IR explained inter-individual variations in the strength of activation in any brain 

areas previously identified as neural predictors of cSSD, mGRT, and/or SSRT (see 

Table 10).  Of those areas identified in the SS>GS contrast as neural predictors of 

cSSD, we found a significant negative correlation of activation with HOMA-IR in right 

precentral gyrus (R2 = 0.305, p = 0.014) and marginally in the right thalamus (R2 = 0.182, 

p = 0.068).  We also found a negative correlation between activation in the right middle 

frontal gyrus and BMI (R2 = 0.421, p = 0.003), and a positive correlation with amygdala 

activation and BMI (R2 = 0.203, p = 0.053), in SS>GS trials (see Table 10, Figure 11).  

None of these relationships remains significant after correcting for multiple comparisons 

at pFDR<0.05. No correlation between activation in SE>SS and HOMA and/or BMI was 

observed.  

 

 

 

Figure 11. BMI and HOMA predict cSSD-related regional brain activity involved in emotional, inhibitory 
motor, and cognitive control A) brain activity in the right middle frontal gyrus negatively correlates with both 
cSSD and BMI while right amygdala brain activity correlates positively at trend-levels with both cSSD and BMI in 
SS>GS trials B) brain regions whose activity negatively correlates with cSSD but positively correlates with HOMA 
in SS>GS trials, including the right thalamus and right precentral gyrus . 
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 To distinguish the impact of obesity and insulin resistance on speed of going and 

stopping, we also tested areas identified as neural correlates of mGRT and SSRT, for 

any association of contrast strength with HOMA-IR and/or BMI.  Consistent with our 

findings that insulin sensitivity had no significant impact on SSRT, none of the areas 

identified as neural predictors of SSRT in the SS>GS contrast showed any significant 

association of activation strength with HOMA-IR or BMI.  However, there was a 

significant positive association of activation strength with HOMA-IR for several areas 

identified as neural correlates of mGRT in the SS>GS and SE>SS contrasts.  In the 

SS>GS contrast, the right precentral gyrus (R2 = 0.278, p = 0.020), right precuneus (R2 = 

0.558, p < 0.001), left SMA at trend-levels (R2 = 0.178, p = 0.072), and right thalamus 

(R2 = 0.215, p = 0.046) were all positively correlated with HOMA-IR.  In the SE>SS 

contrast, activation in the right putamen also positively correlated with HOMA-IR (R2 = 

0.192, p = 0.053) (see Table 10, Figure 12).  After correcting for multiple comparisons at 

pFDR<0.05, only the relationship between HOMA-IR and the right precuneus remains 

significant. 

Table 10. BMI and HOMA-IR predict SST-related regional brain activity in 
attention, motor, and cognitive control circuits. *regression analyses meets FDR 
correction of p<0.05. 

Critical Stop Signal Delay (cSSD) R p 

B
M

I Right Middle Frontal Gyrus -0.649 0.003 

Right Amygdala 0.450 0.053 

H
O

M
A

-IR
 Right Precentral Gyrus 0.552 0.014 

Right Thalamus 0.427 0.068 

Median Go Response Time (mGRT) R p 

H
O

M
A

-IR
 

Right Precentral Gyrus 0.527 0.020 

Right Precuneus 0.747 <0.001* 

Left Supplementary Motor Area 0.422 0.072 

Right Thalamus 0.464 0.046 

Right Putamen 0.438 0.053 
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Brain activation mediates the effects of insulin resistance  

 Given that insulin resistance is associated the median go response time and the 

neural circuits subserving the mGRT, we performed a mediation analysis to examine 

whether these neural circuits mediated HOMA-IR’s effect on stop signal performance 

(see Table 11, Figure 13).  Here we have shown the effects of HOMA-IR on brain 

activation (a path) and stop signal performance (c path), and the effect of brain activation 

on stop signal performance (b path).  When controlling for regional brain activation, 

HOMA-IR does not predict stop signal performance implying that brain activation 

mediates HOMA-IR’s effect on the mGRT (c’ path, direct analysis).  Testing the degree 

to which brain activation mediates HOMA-IR’s effect on stop signal performance (a x b 

path), we performed an indirect mediation analysis showing that the brain regions 

correlating with both stop signal performance and insulin resistance mediated HOMA-

IR’s effect on behavior.  These results indicate that it is through these brain networks 

that insulin resistance produces the impulsivity observed in obesity. 
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Figure 12. Insulin resistance predicts brain activation in regions whose activity correlates with 
mGRT in the stop signal task. A) Brain regions whose activity negatively correlates with mGRT but 
positively correlates with HOMA in SS>GS trials, including the right precuneus, right thalamus, left 
supplementary motor area, and right precentral gyrus. B) Brain activity in the right putamen negatively 
correlates with mGRT but positively correlates with HOMA in SE>SS trials. 
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Table 11. Regional brain activation mediates the relationship between HOMA-IR and the median go 
response time.  Mediation is shown by the loss of significance of HOMA-IR on stop signal performance 
when brain activation is included as a mediating variable in the analysis directly (c’ path) and indirectly (ab 
path). 

Brain Region 

Effect of 
HOMA-IR on 

brain 
activation 

Effect of brain 
activation on 

mGRT 

Effect of HOMA-
IR on mGRT 

Effect of 
HOMA-IR on 

mGRT 
controlling 
for regional 

brain 
activation 

Effect of HOMA-
IR on mGRT 
mediated by 

regional brain 
activation 

  a path b path c path c' path 
(Direct) 

a x b path 
(Indirect) 

 Effect (p-value) 

R Precentral Gyrus 0.34 (0.02) -13.71 (0.002) -6.93 (0.06) -3.50 (0.44) -2.13 (0.03) 

R Precuneus 0.79 (<0.001) -6.86 (0.004) -6.93 (0.06) -3.82 (0.42) -2.66 (0.01) 

L Supplementary Motor Area 0.17 (0.07) -19.51 (0.001) -6.93 (0.06) -4.20 (0.31) -1.72 (0.08) 

R Thalamus 0.42 (0.04) -8.88 (0.003) -6.93 (0.06) -3.91 (0.36) -1.87 (0.06) 

R Putamen -0.36 (0.05) 19.51 (<0.001) -6.93 (0.06) -2.46 (0.53) -1.93 (0.05) 
 
 

 
 

 

 

Figure 13. Regional brain activation mediates the effect of insulin resistance on the median go 
response time. Corticostriatal circuits subserving impulsivity [red, mGRT] mediate HOMA’s effect on the 
median go response time in the stop signal task.  All fronto-cortical and striatal brain regions where the 
HOMA predicted brain activation in the stop signal task (a), as determined by the wholebrain regressions 
with mGRT (b), significantly mediated HOMA’s effect on stop signal behavior (c) using both a direct (c’) 
and indirect (ab) mediation model.  
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Discussion 

 

 Here we demonstrate that obesity and insulin resistance have dissociable effects 

on stop signal performance.   Insulin resistance enhanced impulsivity and performance 

monitoring. Although the trend-levels were not significant, obesity may have impaired 

response inhibition and cognitive restraint. Activation in attention and dorsal striatal 

motor neural networks significantly mediated the relationship between insulin resistance 

and impulsivity, suggesting that insulin resistance differentially impacts brain systems 

promoting the responsiveness to and acquisition of salient (e.g. food) stimuli. 

 

Action Control in Obesity and Insulin Resistance 

 Action control is the cognitive and behavioral processes underlying the execution 

or inhibition of a response. The independent processes of going and stopping act in 

concert with attention and cognitive flexibility to monitor and adjust performance(Boucher 

et al. 2007; Bari and Robbins 2013; Logan and Cowan 1984). Operational definitions of 

inhibition and impulsivity are challenging. Response inhibition refers to “inhibition of 

impulses to act” and encompasses both the cognitive and motor action of inhibition.  

Impulsivity is the inability to inhibit a response or thought, which may be due to the failed 

inhibition of motor responses and/or the enhanced motivation/wanting for salient stimuli 

(Logan, Schachar, and Tannock 1997; Skaggs 1929; Nigg 2000; Winstanley, Eagle, and 

Robbins 2006).  

 Several studies have examined response inhibition in obesity (Nederkoorn et al. 

2010; Hendrick et al. 2011); however, this is the first study that finds even trend-level 

impaired response inhibition with increased BMI. Other studies using a stop signal or 

go/no-go task link obesity to impulsivity(Yokum, Ng, and Stice 2011; Batterink, Yokum, 

and Stice 2010; Nederkoorn et al. 2006), which coincides with our novel finding of an 
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accelerated mGRT in insulin resistance.  In a cohort for which obesity and insulin 

resistance are unrelated, we found a dissociation between obesity and insulin resistance 

in measures of action control. This suggests that the underlying mechanisms behind the 

BMI-dependent deficits in response inhibition and HOMA-IR-dependent enhancements 

of impulsivity may be separable. 

 The molecular underpinnings of inhibition and impulsivity are becoming clearer 

and may inform our present results.  The go process is heavily dependent on 

dopamine(Robbins and Arnsten 2009; Dalley, Everitt, and Robbins 2011; Dalley et al. 

2007) and the speed of the go response is a measure of impulsivity(Muggleton et al. 

2010). Elevated synaptic DA decreases go response time(Eagle et al. 2007) and 

antagonizing dorsal striatal D2R increases mGRT(Eagle et al. 2011). In humans, an 

increase in striatal DA due to amphetamine-evoked DA efflux from DAT is linked with 

heightened impulsivity(Buckholtz et al. 2010).  These effects may be due to increased 

activation of the direct pathway of movement(Aron and Poldrack 2006), although recent 

data support that the direct and indirect pathways of movement cooperatively act to 

initiate motor responding to reward(Isomura et al. 2013; Cui et al. 2013). Increased 

impulsiveness in obesity may be due to insulin-mediated elevations in DA due to 

impaired DAT expression at the level of the dorsal striatum, which promotes enhanced 

responsiveness to salient stimuli.  However, our analyses are at this point associational 

and it may be that impulsivity is an endophenotype that drives the brain-associated 

changes leading to obesity. 

 Inhibition of an already initiated response, such as in the stop signal task, is 

under the influence of prefrontal noradrenergic and, to a lesser degree, dopamine 

neurotransmission(Bari et al. 2011; Eagle, Bari, and Robbins 2008).  How this works is 

unclear, as is the mechanism behind why obesity but not insulin resistance, would 

selectively impair stopping. Increasing BMI is associated with elevated leptin, 



 51 

triglycerides, and free fatty acids, each of which been linked with cognitive 

deficits(Tschritter et al. 2009; Farr et al. 2008; Morrison 2009). These factors may 

underlie BMI’s effect on inhibition in the absence of an effect of HOMA-IR.  In addition to 

metabolic factors, elevated BMI has also been associated with hormonal elevations due 

to chronic stress(Dallman et al. 2003), and preliminary studies show that chronic stress 

impairs prefrontal executive function(Mika et al. 2012) and response inhibition(Zack et al. 

2011).   

 We further find insulin resistance is associated with increased post-error slowing 

(PES).  Dopamine contributes to modulation of post-error slowing, where both 

methylphenidate(Moeller et al. 2012) and amphetamine(Wardle, Yang, and de Wit 2012) 

increase PES.  This is consistent with our model of elevated DA due to insulin-mediated 

impairments of DAT expression. However, the positive relationship between HOMA-IR 

and PES contrast with the addiction literature where current(Lawrence et al. 2009) and 

abstinent(Li, Milivojevic, et al. 2006) substance abusers fail to slow down after an error. 

Many theories of PES posit that the increase in reaction time following an error is an 

adaptive mechanism to reduce future errors and that the deficient cognitive control in 

addiction impairs such slowing (Botvinick et al. 2001).  However, others propose PES is 

an orienting response that occurs following an unexpected and salient event(Notebaert 

et al. 2009) and that PES represents a failure to disengage from the error(Compton et al. 

2011).  In the context of insulin resistance, this failure of attention reorientation may be 

driving the delayed response time on the subsequent trial and is consistent with the 

correlation of insulin resistance with attentional impulsivity on the Barrett Impulsiveness 

Scale.  Insulin resistance may therefore modulate dopamine neurotransmission in a way 

that biases towards impulsivity and error-related braking and is reminiscent of binge 

eating and crash dieting. 
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Motor and Attention Networks Mediate Effects of Insulin Resistance on Impulsivity 

 Using the stop signal task, we replicated the cortical and subcortical brain 

regions involved in successful stopping in an obese, mildly insulin resistant cohort. 

Activation of inhibitory motor areas (IMAs; including pre-supplementary motor area 

[preSMA], supplementary motor area [SMA] and precentral gyrus [PCG]), the 

subthalamic nucleus (STN), and the dorsal striatum are consistently implicated in the 

motor component of response inhibition(Aron, Behrens, et al. 2007; Aron, Durston, et al. 

2007; Boehler et al. 2010; Ghahremani et al. 2012; Li, Huang, et al. 2006; Mostofsky et 

al. 2003; Rubia et al. 2001; Rubia et al. 2003; Swick, Ashley, and Turken 2008; Swick, 

Ashley, and Turken 2011; Zandbelt et al. 2013); however, SMA and PCG are also 

engaged in motor execution(Rowe, Hughes, and Nimmo-Smith 2010). Regions such as 

the dorsolateral prefrontal cortex (DLPFC) and insula contribute to inhibitory processes 

by processing motivational and emotional components of inhibition(Dosenbach et al. 

2008). Parietal regions and precuneus are engaged due to the attentional component of 

the task(Rubia et al. 2001).  

 To elicit the circuits engaged in going and stopping, we studied the regression of 

participants’ stop signal behavioral performance against brain activation.  We found 

performance-specific activation of the expected motor, saliency, and attention networks. 

Consistent with the behavioral and psychometric data, the effect of insulin resistance on 

impulsive responding was mediated through a cortico-striatal-thalamo-cortical network 

including the putamen, PCG, SMA, thalamus, and precuneus. 

 Cortico-striatal-thalamo-cortical circuits are heavily implicated in emotional, 

motor, and cognitive processing(Haber 2003). The mediodorsal nucleus (MD) and the 

centromedian/parafasicular (CM/Pf) subregions of the thalamus were engaged during 

impulsive responding.  These nuclei are important relay nuclei linking the basal ganglia 
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and cortex(Haber and Calzavara 2009).  Both nuclei project to the dorsal and ventral 

striatum(Cheatwood, Reep, and Corwin 2003; Eckert et al. 2012) but differ in their 

cortical projections, with MD projecting to regions such as SMA/PCG(Jakab, Blanc, and 

Berenyi 2012; Rouiller et al. 1999) and CM/Pf projecting to more ventral regions 

including the anterior insula(Eckert et al. 2012; Jasmin et al. 2004).  Consistent with their 

projections, MD is involved in the acquisition of goal-directed behavior(Corbit, Muir, and 

Balleine 2003; Mitchell, Browning, and Baxter 2007), action selection(Ostlund and 

Balleine 2008) and behavioral flexibility(Block et al. 2007; Pickens 2008) while CM/Pf is 

involved in motor preparation, attention, and saliency processing(Metzger et al. 2010; 

Nelson et al. 2010; Smith et al. 2009).  These regions reflect those in our identified 

HOMA-dependent network, with the putamen, SMA, and PCG likely participating in the 

motor component of the response(Zandbelt et al. 2013) and the precuneus engaging as 

part of the frontoparietal attention network(Petersen and Posner 2012). Activation in 

saliency processing regions, including the hippocampus and insula, also correlated with 

impulsive responding but only correlated at trend-levels (p = 0.08-0.10) when regressed 

against HOMA-IR.  This may reflect the ability of the stop-signal task to detect areas 

involved in saliency processing rather than an inability of insulin resistance to modulate 

those regions, as the insular response to salient food cues has been previously identified 

as being dependent on insulin resistance(Jastreboff et al. 2013).  The heightened 

activation of these regions with both insulin resistance and impulsive responding 

suggests that the brain’s response to insulin resistance promotes goal-directed impulsive 

responding through attention and motor cortico-striatal-thalamo-cortical networks, 

however additional studies are necessary to determine the functional coupling of these 

circuits in insulin resistance. 

 This insulin-dependent impulsivity network that includes key cortico-striatal-

thalamo-cortical regions coincides with the role of dopamine in impulsive responding.   
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Corticostriatal and thalamostriatal glutamatergic projections converge alongside 

dopaminergic terminals on medium spiny neurons (MSNs) in the dorsal striatum(Moss 

and Bolam 2008; Huerta-Ocampo, Mena-Segovia, and Bolam 2013). Together, these 

glutamatergic and dopaminergic projections interact to guide attention, action selection, 

and motor function through reciprocal engagement of these loops (Kimura et al. 2004; 

Thorn and Graybiel 2010; Doig, Moss, and Bolam 2010; Alexander, DeLong, and Strick 

1986). Increases in dopaminergic activation of striatal movement pathways induced by 

impaired DAT expression in insulin resistance could facilitate the observed heightened 

engagement of these attention and motor networks and, in turn, impulsivity.   

 

Mild Obesity and Insulin Resistance as an Early Process in Addiction 

 The hypothesized overlap between obesity and substance use disorders is 

heavily discussed in research and the popular press, with much of the literature 

highlighting the involvement of the dopamine system(Pelchat 2009; Taylor, Curtis, and 

Davis 2010; Avena 2011; Kenny 2011; Volkow et al. 2013). Although there may be 

similarities in reward, salience, motivation, and cognitive control, there are important 

differences between obesity and addiction including the clinical definition of tolerance 

and withdrawal to food(Salamone and Correa 2012; Ziauddeen, Farooqi, and Fletcher 

2012) and the unclear role of dopamine in the development of obesity(Dunn et al. 2010; 

Wang et al. 2001; Steele et al. 2010b). Prior studies have shown that both 

methamphetamine(Monterosso et al. 2005; Tolliver et al. 2012) and cocaine(Li, 

Milivojevic, et al. 2006; Fillmore and Rush 2002) dependent subjects exhibit blunted 

inhibitory processing through a slowing of the stop signal response time and the go 

response time.  Behavioral impairments are associated a hypoactivation of inhibitory 

circuits(Li, Milivojevic, et al. 2006; Elton et al. 2012). These deficits in inhibitory control 

are considered to be a core component of substance use disorders(Koob and Volkow 
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2010; Volkow, Wang, Fowler, et al. 2008); however, we fail to find similar parallels in 

inhibitory networks in obesity and insulin resistance. 

 Heightened impulsivity, however, is a central process early in the addiction 

cycle(Koob and Volkow 2010). We demonstrate striking associations between insulin 

resistance and cortico-striatal-thalamo-cortical impulsivity networks suggesting that mild 

obesity and insulin resistance may parallel the early stages of addiction.  Longitudinal 

research across a wider range of insulin resistance and obesity will be useful in 

determining whether similarity exists between the neurobiological substrates in the 

transition to addiction or obesity. 

 

Conclusion 

 In summary, we have identified a specific cortico-striatal-thalamo-cortical network 

whose activity mediates the link between insulin resistance and impulsivity.  These 

findings indicate that insulin resistance may have specific action in the central nervous 

system to promote the responsiveness to, and acquisition of, salient stimuli.  Similar 

dysregulation occurs during early stages of addiction, suggesting the developmental 

trajectory of obesity and insulin resistance may parallel the transition from substance use 

to abuse. 
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CHAPTER III 
 

THE IMPACT OF VISCERAL ADIPOSE AND INSULIN RESISTANCE ON 

STRIATAL DOPAMINE AND IMPULSIVITY 

 

Introduction 

 

 Parallels between obesity and substance use disorders highlight the role of the 

dopaminergic striatum due to its role in reward, habits, and cognitive control(Berridge 

and Robinson 1998; Schultz 2007; Schultz, Dayan, and Montague 1997; Faure et al. 

2005; Graybiel 2008; Yin, Knowlton, and Balleine 2004).  Our prior work identified a 

cortico-thalamo-striatal-cortical network mediating the effects of insulin resistance on 

impulsivity. Impaired striatal dopamine signaling promotes impulsivity(Eagle et al. 2007; 

Eagle et al. 2011; Buckholtz et al. 2010), suggesting that insulin’s effect on the 

impulsivity may be due to its action on dopamine neurotransmission in the striatum. 

 The striatum is divided into its ventral and dorsal components:  the ventral 

striatum (nucleus accumbens [NAc]) receives its dopaminergic projections from the 

ventral tegmental area (VTA) via the mesolimbic pathway while the dorsal striatum 

(caudate [Ca], putamen [Pu]) is the recipient of dopamine neurons from the substantia 

nigra (SN) via the nitrostriatal pathway.  While striatal subregions receive different 

projections, they are engaged sequentially during addictive processes as dopamine 

signals encode behaviors progressing from reward-driven actions to cue-mediated 

habits(Graybiel 2008; Koob and Volkow 2010; Hyman, Malenka, and Nestler 2006; Yin 

2010; Yin, Knowlton, and Balleine 2005).  Heightened dopamine signaling in 

combination with dopamine excess driven by drugs of abuse is believed produce an 

allostatic downregulation of the dopamine receptor (D2R) in the striatum(Koob and Le 



 57 

Moal 2001; Koob and Volkow 2010).  Similar to addiction, reductions in striatal D2R are 

observed with an obesogenic diet(Bello, Lucas, and Hajnal 2002; Fetissov et al. 2002; 

Hamdi, Porter, and Prasad 1992; Johnson and Kenny 2010) and increasing BMI(Wang 

et al. 2001; Volkow, Wang, Fowler, et al. 2008).   

 Having uncovered the impact of insulin resistance on striatal activation and 

impulsivity, we sought to determine the molecular underpinnings behind this 

dysregulation. We hypothesized that obesity and insulin resistance would be associated 

with reductions in striatal D2R that in turn would facilitate impulsive responding. 

 

Methods 

 

General Study Protocol 

 Research participants, visit schedule, biochemical evaluation, PET / fMRI 

imaging parameters, and the stop signal task behavioral and imaging analysis were 

implemented as discussed in Chapter 2.   

 

Fat Water Imaging (FW-MRI) 

 Lean and adipose tissue volumes were measured using fat water imaging on the 

second visit day at approximately 8:00am. A multi-station protocol with multiple table 

positions was used to acquire whole-body data. Each stack consisted of a multi-slice, 

multi-echo gradient echo (fast field echo, FFE) acquisition with 12 slices, slice thickness 

8mm, zero slice gap. Other acquisition details include: TR/TE1/TE2/TE3 [ms] = 

75/1.34/2.87/4.40; FA=20°; water-fat shift (WFS) = 0.325 pixels (BW=1335.5 Hz/pixel); 

field of view (FOV) = 500 mm # 390 mm, acquired matrix size = 252 # 195; acquired 

voxel size = 2 mm # 2 mm # 8 mm. First order shimming was performed for each slice 

stack and flyback gradients were employed between echoes so that the chemical shift 
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direction for all echo readouts was the same. Acquired and deidentified FWI data were 

analyzed by collaborators at the University of Uppsala. FW-MRI data were 

reconstructed, segmented, and quantified into lean tissue (LT), total adipose tissue 

(TAT), subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) 

compartments using previously described methods(Kullberg et al. 2009).  Adipose tissue 

volumes were normalized to participant lean tissue volume to examine the specific 

effects of adipose tissue depots. 

 

Statistical Analyses 

 Adipose tissue depot volumes, biochemical markers, stop signal associated 

activation and behavioral performance, and D2R non-displaceable binding potentials 

were examined for relationships between obesity, insulin resistance, and brain structure 

and function.  Adipose tissue depots were comprised of SAT (normalized to LT) and 

VAT (normalized to LT). Stop signal performance measurements included the SSRT, 

cSSD, mGRT, and PES. SST-associated brain activation included the parameter 

estimates from stop success greater than go success (SS>GS), stop error greater than 

stop success (SE>SS), and the regression of brain activity in these contrasts against 

behavior discussed in Chapter 2. 

 To determine the degree to which D2R PET, stop signal activation, and SST 

behaviors were influenced by markers of obesity (BMI, VAT%LT, SAT%LT) and insulin 

resistance (HOMA-IR), these measurements were entered into a multiple linear 

regression as dependent variables with obesity and insulin resistance markers as 

independent variables, while controlling for nuisance variables that may impact 

performance including age(Cohen et al. 2010) and insulin-sensitizing medications. 

Results were considered statistically significant at p$0.05 and marginally significant at 

p$0.08. 
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 For all potential direct and indirect relationships between the aforementioned 

variables, mediation analyses were performed to determine whether brain structure and 

function mediated the effects of obesity and insulin resistance on stop signal 

performance. The indirect mediation effects were calculated using the Goodman 

test(Goodman 1960). All statistical analyses were performed in SPSS v20 (SPSS 

Statistics). 

 

Results 

 

Demographics and clinical information 

 The demographic and clinical characteristics of the study cohort are summarized 

in Table 1.  At baseline, fifty-eight subjects were enrolled in the study. Of the enrolled 58 

subjects, thirty-two received PET imaging (age: 46.44 ± 1.29 yrs, BMI: 37.86 ± 0.63 

kg/m2, 22 female, 10 male), forty-seven completed the behavioral component of the stop 

signal task (age: 47.12 ± 1.03 yrs; BMI: 37.14 ± 0.70 kg/m2; 29 female, 18 male) and 

thirty successfully completed the fMRI component of the stop signal task (age: 48.10 ± 

1.25 yrs; BMI: 36.45 ± 0.74 kg/m2; 18 female, 12 male).  There were no differences in 

the clinical profiles between these sub-groups, allowing for the data collected across 

these groups to be compared in a single model. 

 

Visceral adipose tissue predicts striatal dopamine D2 receptors and brain activation 

 Having established that striatal brain activation mediates the relationship 

between insulin resistance and impulsivity (see Figure 13), we sought to examine the 

relationship of obesity and insulin resistance to striatal D2 receptors prior to short-term 

insulin treatment.  While we were unable to link striatal D2R to BMI as previously 



 60 

reported(Wang et al. 2001) in the literature, or to insulin resistance, we found a strong 

relationship between visceral adipose tissue (VAT) and striatal D2R (see Figure 14A). 

Increasing VAT was negatively associated with striatal D2R in the caudate (R2 = 0.498, 

p = 0.001), caudate head at trend-levels (R2 = 0.203, p = 0.058), nucleus accumbens (R2 

= 0.293, p = 0.021), and putamen (R2 = 0.356, p = 0.009). 

 Interestingly, increasing VAT was also marginally associated with increased brain 

activation in the functionally-defined dorsal striatum during stop error greater than stop 

success trials (R2 = 0.195, p = 0.067; see Figure 14B), the same pattern observed 

between insulin resistance and activation in the putamen in SE>SS trials (see Figure 

12B).  Although the ventral striatum was not significantly activated in the SE>SS 

contrast, brain activity extracted from the atlas-defined nucleus accumbens also 

increased at non-significant trend-levels during SE>SS trials with greater VAT (R2 = 

0.204, p = 0.060).  

 

 

 

Figure 14. Visceral adipose tissue predicts striatal dopamine D2 receptors and activation at 
baseline A) increasing VAT is associated with decreased striatal D2R across striatal sub-regions 
including the caudate, caudate head, nucleus accumbens, and putamen B) increasing VAT is associated 
with increased dorsal and ventral striatal brain activation during stop error trials compared with stop 
success trials (SE>SS)  
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Striatal activation and dopamine D2 receptors predicts impulsive behavior 

 We next examined the link between striatal D2R and stop signal performance.  

Although we found no relationship between stop signal response time (SSRT) and 

striatal D2R, we found strong association between striatal D2R and the median go 

response time (mGRT).  Both ventral striatal (R2 = 0.184, p =  0.036) and dorsal striatal 

D2R (R2 = 0.187, p =  0.035) were positively associated with the mGRT, linking lower 

D2R with impulsive responding (see Figure 15). 

 

 

 

 

Striatal dopamine circuits mediate the effect of visceral adipose and insulin 

resistance on impulsive behavior 

 Although lower ventral and dorsal striatal D2R are associated with increased 

VAT and increased impulsivity, we found only a trend-level negative relationship 

between VAT and mGRT (R2 = 0.110, p = 0.104).  However, because of the link 

Figure 15. Decreased striatal D2R predict impulsive behavior in the stop signal task in the A) 
ventral striatum and B) dorsal striatum 
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between HOMA and impulsivity, and the relationship of VAT to both ventral and dorsal 

striatal D2R and activity, we performed multiple mediation analyses to examine the 

degree to which both increasing insulin resistance and increasing VAT promote 

impulsivity through striatal circuits (see Figure 16). 

 

 

 

 

 

 The impact of HOMA-IR on impulsivity was mediated at non-significant trend 

levels through dorsal striatal brain activity (ab-path, p = 0.058) as reported in Chapter 2. 

Using the Goodman indirect mediation analysis(Goodman 1960), we next tested the 

degree to which VAT impacted impulsivity through striatal circuits. Dorsal striatal brain 

activity (db-path, p = 0.068) and, to a lesser degree, ventral striatal brain activity (gi-path, 

p = 0.089) during SE>SS trials marginally mediated VAT’s effect on increased 

impulsivity.  Similarly, dorsal striatal D2R (ef-path, p = 0.062) and less significantly, 

ventral striatal D2R (hj-path, p = 0.078) marginally mediated VAT’s effect on increased 

impulsivity (see Table 12 for individual path strengths and mediation effects).  

Figure 16. Multiple mediation model for the influence of insulin resistance and visceral adipose 
tissue on impulsivity via dorsal and ventral striatal circuits. Each path is represented by a letter with 
the associated R-value ††p=0.10, †p<0.10, *p<0.05, **p<0.01. 
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 Together, these results indicate that the dorsal and ventral striatum may serve as 

an important focal point through which insulin resistance and visceral adipose tissue 

produce dysregulation of neural networks promoting impulsivity. 

 

Table 12. Mediation model for the influence of insulin resistance (HOMA-IR) and visceral 
adipose tissue (VAT) on impulsivity (mGRT) via dorsal and ventral striatal brain activation 
(BOLD) and dopamine D2 receptors (D2R). Effect size and p-value from the Goodman test are 
reported. 

Path Strength Effect Size p-value 
a: impact of HOMA-IR on dorsal striatal BOLD -0.359 0.053 
b: impact of dorsal striatal BOLD on impulsivity 17.501 0.001 
c: impact of HOMA-IR on impulsivity -8.068 0.022 
d: impact of VAT on dorsal striatal BOLD 32.933 0.067 
e: impact of VAT on dorsal striatal D2R -57.239 0.009 
f: impact of dorsal striatal D2R on impulsivity 11.619 0.035 
g: impact of VAT on ventral striatal BOLD  32.514 0.060 
h: impact of VAT on ventral striatal D2R -54.027 0.021 
i: impact of ventral striatal BOLD on impulsivity -19.028 0.011 
j: impact of ventral striatal D2R on impulsivity 11.072 0.036 
k: impact of VAT on impulsivity -853.913 0.104 

Indirect Path Strength T-statistic p-value 
ab: impact of HOMA on impulsivity via dorsal striatal BOLD -1.891 0.058 
db: impact of VAT on impulsivity via dorsal striatal BOLD 1.822 0.068 
ef: impact of VAT on impulsivity via dorsal striatal D2R -1.862 0.062 
gi: impact of VAT on impulsivity via ventral striatal BOLD -1.697 0.089 
hj: impact of VAT on impulsivity via ventral striatal D2R -1.762 0.078 
 

 
Discussion 

 

 In this study, we examined predictors of striatal neurotransmission to better 

understand dopamine dysregulation in obesity. Visceral adipose tissue (VAT) burden 

was associated with lower D2 receptors and heightened activation during stop error trials 
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in the striatum.  Blunted D2R and heightened activation further predicted impulsiveness 

in the stop signal task.  While VAT burden increased impulsivity at only trend-levels, 

these effects were significantly mediated by striatal D2R and activation.  Notably, both 

dorsal and ventral striatal neurotransmission marginally  mediated the effect of VAT on 

impulsivity.  This extends our prior finding that the dorsal striatum facilitates the effect of 

insulin resistance on impulsivity, and points to an additional role for ventral striatal 

dysregulation in obesity and insulin resistance. 

 

The Dopaminergic Striatum and Impulsivity in the Shift from Reward-Seeking to Habits  

 Interpreting the impact of obesity and insulin resistance on striatal 

neurotransmission requires an understanding of how the ventral and dorsal striatum and 

their associated behaviors are temporally engaged in the transition from substance use 

to dependence.  A spiraling striato-nigro-striatal dopaminergic circuit including the 

nucleus accumbens shell (NAcs), nucleus accumbens core (NAcc), dorsomedial 

striatum (DMS), and dorsolateral striatum (DLS) is engaged in series as behavior shifts 

from voluntary, goal-directed actions to habitual, stimulus-response patterns(Belin et al. 

2013; Everitt and Robbins 2013; Ikeda et al. 2013; Haber 2003; Yin, Knowlton, and 

Balleine 2004).   

 Unexpected rewards or exteroceptive simuli predicting reward produce phasic 

dopamine release in the NAc and act as positive reinforcement for the goal-directed 

behavior(Schultz 2002). The nucleus accumbens receives its dopaminergic innervation 

from the VTA, but additionally integrates cognitive/behavioral input from the prefrontal 

cortex (PFC) and limbic input from the basolateral amygdala (BLA)(Goto and Grace 

2008b, 2008a).  Phasic dopamine release promotes limbic inputs via activation of 

postsynaptic D1Rs while presynaptic D2Rs in the NAc facilitate the inhibitory effects of 

the PFC. This balance coordinates goal-directed motor output(Haber et al. 1985). Over 
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time, these goal-directed behaviors progress to stimulus-response habits where a 

specific response pattern can be elicited without reinforcement by contextual cues 

previously associated with a reward.  The transition to habitual behavior is reflected by a 

ventral-to-dorsal shift whereby the dorsolateral striatum and its inputs from the 

substantia nigra are progressively recruited for behavioral control(Faure et al. 2005; 

Zapata, Minney, and Shippenberg 2010). This ventral-to-dorsal shift is believed to 

underlie impaired habit learning in drug addiction(Everitt and Robbins 2005).   

 Impulsiveness is highly related to striatal function across this transition. The 

impulsive phenotype promotes goal-directed reward seeking and predicts risk for 

addiction, increasing drug use, and relapse(Dalley et al. 2007; Perry et al. 2005; Piazza 

et al. 1989; Diergaarde et al. 2008; Radwanska and Kaczmarek 2012; Oberlin and 

Grahame 2009; Broos et al. 2012).  Impulsivity further predicts the transition from goal-

directed behavior to habitual response patterns in the development of addiction(Belin et 

al. 2008).  While several neurotransmitter systems are implicated, there is a clear role for 

impaired dopamine neurotransmission with impulsivity that may underscore the 

relationship between impulsivity and substance use. Impulsivity is associated with lower 

dopamine D2Rs and D2R mRNA in ventral striatum prior to drug exposure(Dalley et al. 

2007; Besson et al. 2013; Caprioli et al. 2013), but with increased D1-receptor-mediated 

neurotransmission(Pezze, Dalley, and Robbins 2007).  Further, impulsiveness increases 

with D2R blockade in the NAc(Besson et al. 2010) but decreases D1R(Pattij et al. 2007).  

Following chronic drug exposure, lower D2R are observed in the dorsolateral, but not 

ventral, striatum(Besson et al. 2013; Volkow et al. 2004; Lee et al. 2009).  This suggests 

that impulsivity blunts NAc-mediated dopamine neurotransmission at the postsynaptic 

D2Rs on prefrontal glutamatergic projections to facilitate limbic drive of NAc goal-

directed behavior. 
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 Parallels in this ventral-to-dorsal shift are demonstrated in obesity.  As with drug 

addition, there is a heightened ventral striatal response to high calorie foods(Goldstone 

et al. 2009; Stoeckel et al. 2008; Fletcher et al. 2010) that correlates with reward(Prechtl 

de Hernandez et al. 2009), predicts subsequent weight gain(Lawrence et al. 2012; 

Demos, Heatherton, and Kelley 2012), and predicts poorer response to weight loss 

treatment(Murdaugh et al. 2012).  In healthy weight individuals, BMI positivity correlates 

with D2R sensitivity when imaging with a D2R agonist(Caravaggio et al. 2013), similar to 

drug early addiction(Seeman, McCormick, and Kapur 2007).  In obese individuals, there 

is a BMI-dependent decrease in dorsal striatal D2R(Wang et al. 2001), reduced reward 

sensitivity with increased compulsivity(Johnson and Kenny 2010), and greater activity in 

the dorsal striatum to high-calorie food cues(Rothemund et al. 2007) predicts treatment 

failure(Murdaugh et al. 2012). Obesity and insulin resistance are linked to heightened 

impulsivity(Yokum, Ng, and Stice 2011; Batterink, Yokum, and Stice 2010; Nederkoorn 

et al. 2006) (see Chapter 2), however whether impulsivity is an endophenotype that 

predicts obesity and insulin resistance remains to be seen.   

 In the present study of developing obesity and insulin resistance, we 

demonstrate that obesity (VAT) was associated with lower D2 receptors and heightened 

activation in the dorsal and ventral striatum.  Insulin resistance additionally predicted 

dorsal striatal brain activation. In turn, impaired striatal neurotransmission predicted 

impulsiveness.  The finding that both ventral and dorsal striatal dysfunction mediated the 

effects of VAT and insulin resistance on impulsive responding suggests our cohort may 

represent a population transitioning from reward-seeking to habitual responding, and 

these early effects may be due to the combined role of visceral adiposity and insulin 

resistance.  The ventral-to-dorsal shift occurs more rapidly with drugs compared with 

food rewards(Dickinson, Wood, and Smith 2002), which may be reflected in the 

observed dysregulation in both the dorsal and ventral striatum.  This pattern may 
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alternatively be distinct from drug addiction as food is necessary for survival and readily 

accessible in the modern environment.  Future work should focus on the relationship 

between striatal neurotransmission and changes in weight, adiposity, and insulin 

resistance to determine placement on the ventral-to-dorsal striatal shift and response to 

treatment. 

 

Impact of Visceral Adiposity on the Brain 

 Contrary to our hypothesis that insulin resistance would primarily drive changes 

in striatal dopamine neurotransmission, we found that visceral adipose tissue burden 

instead predicted striatal D2R and activation.  While the mechanism behind the 

association between VAT and the brain is unclear, prior research has demonstrated its 

impact on brain structure.  As measured by whole-body CT or MRI, increasing visceral 

adipose tissue is associated with decreasing total brain and hippocampal volume(Anan 

et al. 2010; Debette et al. 2010; Isaac et al. 2011), decreasing gray matter density in 

sensorimotor regions of the cerebellum(Raschpichler et al. 2013), and increasing white 

matter lesions(Anan et al. 2009).  These deficits were associated with increasing VAT 

independent of individual BMI and insulin resistance. Our study is the first to link VAT 

burden with molecular and functional changes in the brain, demonstrating that increasing 

VAT is associated with decreasing striatal D2Rs and hyperactivation during response 

errors.  The specific negative relationship between VAT and striatal D2Rs independent 

of BMI suggests that prior observations of decreasing striatal D2R with increasing body 

mass(Wang et al. 2001) may be specifically due to the deleterious effects of VAT. 

 Visceral (intra-abdominal) adipose is a physically and metabolically unique tissue 

conferring specific risk for insulin resistance, cardiovascular disease, and certain 

cancers(Kuk et al. 2006; Kang et al. 2010; Despres 1993).  By virtue of its increased rate 

of lipolysis(Reynisdottir et al. 1997), VAT is associated with elevated 
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triglygerides(Veilleux et al. 2011) and “bad” cholesterol(Hoffstedt et al. 2010) (LDL, 

VLDL).  VAT additionally produces inflammatory cytokines including tumor necrosis 

factor-!(Cartier et al. 2010) and interleukin-6(Fried, Bunkin, and Greenberg 1998).  Intra-

abdominal adipose, unlike subcutaneous or epicardial fat deposits, is uniquely drained 

by the portal vein.  This directly exposes the liver to free fatty acids (FFAs) and 

inflammatory cytokines released from visceral fat and results in an increase in the liver-

produced inflammatory factor C-reactive protein (CRP)(Bjorntorp 1990; Yudkin et al. 

1999; Lemieux et al. 2001).  Both inflammatory factors and FFAs have been associated 

with alterations in brain function(Tschritter et al. 2009; Felger and Miller 2012; Debette et 

al. 2010).  While CRP and FFAs did not explain the effect of VAT in our cohort (data not 

shown), we cannot exclude the possibility that other inflammatory cytokines may play a 

role. 

 Visceral adiposity has also recently been associated with elevated 

endocannabinoids(Cote et al. 2007; Bartelt et al. 2011; Frost et al. 2010). 

Endocannabinoids cross the blood brain barrier and bind to endocannabinoid 

receptors(Willoughby et al. 1997). The endocannabinoid receptor (CB1R) is expressed 

presynaptically on ventral striatal neurons and is functionally opposed to D2Rs(Pickel et 

al. 2006) to modulate prefrontal cortical input to the striatum(Fitzgerald, Shobin, and 

Pickel 2012; Mathur and Lovinger 2012). CB1R activation enhances VTA burst 

firing(Cheer et al. 2004) and facilitates cue-mediated behavior(Oleson et al. 2012), while 

blocking CB1R activation reduces food and drug consumption(Horder et al. 2010; 

Navarro et al. 2001; De Vries et al. 2001; Cohen et al. 2002; Colombo et al. 1998).  It 

has recently been shown that CB1R antagonist increases striatal dopamine D2 receptor 

availability(Crunelle et al. 2013) indicating that VAT-associated elevations in 

endocannabinoid signaling may contribute to the observed decrease in striatal D2R with 

greater VAT burden.  Notably, endocannabinoids have recently been shown to inhibit 
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DAT and DA reuptake(Oz et al. 2010; Pandolfo et al. 2011), similar to that observed in 

diet-induced obesity and insulin resistance.  No studies have examined the direct effect 

of VAT-associated endocannabinoid signaling on brain dopamine systems, however this 

may offer a non-insulin mediated mechanism functioning as a “second-hit” for dopamine 

dysfunction in obesity and insulin resistance. 

  

Implications for Treatment 

 Despite substantial questions regarding mechanism, this research offers exciting 

opportunities for treatment strategies.  Alongside diet and/or exercise for management of 

obesity and insulin resistance(Vissers et al. 2013; Goss et al. 2013), these results 

suggest that targeting a reduction in VAT and impulsivity may improve dopamine 

neurotransmission and promote healthy weight and improved insulin sensitivity. For 

example, treatment with bupropion/naltrexone, currently in phase III clinical 

trials(Apovian et al. 2013), reduces VAT(Smith et al. 2013) and alters brain activation in 

obese subjects(Wang et al. 2013) although it’s effect on impulsivity is unknown.  This 

effect may partially be due to bupropion’s effect as a dopamine reuptake inhibitor and 

improved dopamine signaling(Arias, Santamaria, and Ali 2009). Alternatively, the 

success of combined bupropion/naltrexone instead may be due to its modulation of 

multiple neurotransmitters involved in addiction other than dopamine, including opioids 

and norepinephrine. Future work examining the combined interactions of VAT and 

insulin signaling on multiple neurotransmitter systems involved in impulsivity and 

addiction will be necessary to determine effective pharmaceutical treatment approaches 

for weight loss and insulin resistance. 
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Conclusions 

 Here we demonstrate that visceral adipose tissue and insulin resistance alter 

striatal dopamine neurotransmission and activity in a way that may bias towards 

impulsive behaviors.  The function of both the dorsal and ventral striatum was impaired 

by VAT suggesting a ventral-to-dorsal striatal disruption, similar to addictive processes 

that could underlie a transition from reward-driven food consumption to compulsive 

eating.  Given the impact of both visceral adiposity and insulin resistance, it is likely that 

several mechanisms are involved in this shift, offering novel treatment approaches for 

improving weight and insulin resistance. 
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CHAPTER IV 

 

SHORT-TERM INSULIN TREATMENT HAS NO EFFECT ON BASAL 

CORTICOSTRIATAL DOPAMINE CIRCUITS 

 

Introduction 

 

 In the previous chapters, we identified specific neural and behavioral 

impairments in insulin resistance.  Given these deficits, we next sought to examine 

whether improving insulin sensitivity could restore the behavioral impairments and their 

underlying neural circuits. The mainstay of initial treatment for obesity and type 2 

diabetes mellitus (T2DM) is dietary modification, weight loss, and exercise to achieve 

healthy blood glucose levels(Henry, Scheaffer, and Olefsky 1985; Wing et al. 1994; 

Schneider et al. 1992). Insulin therapy is commonly used for glycemic control as 

endogenous insulin secretion decreases and insulin resistance increases. However, 

weight gain causes and is a consequence of insulin therapy (UK Prospective Diabetes 

Study [UKPDS] 1998; Diabetes Control and Complications Trial [DCCT] 2001) and 

weight gain as a result of treatment may further promote insulin resistance(Russell-

Jones and Khan 2007).  Treatment-induced weight gain thus represents a substantial 

challenge in the management of T2DM.  One form of insulin, the basal insulin analogue 

detemir, has recently been shown to have beneficial weight-sparing effects(Hermansen 

et al. 2006; Hermansen and Davies 2007; Meneghini et al. 2013; Rojas, Printz, and 

Niswender 2011) that may be due to detemir’s ability to regulate insulin signaling not 

only peripherally, but also centrally in the brain(Hennige et al. 2006; Hallschmid et al. 

2010; Tschritter et al. 2007). 
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 Insulin acts at the level of the hypothalamus as an adiposity negative feedback 

signal to limit food intake and weight gain(Bruning et al. 2000; Woods et al. 1998; 

Niswender et al. 2003).  While the weight-sparing effects of detemir may be due to its 

anorexigenic action in the hypothalamus, insulin therapy has been shown to impact 

more diffuse brain circuits (Guthoff et al. 2011; Guthoff et al. 2010). Within these circuits, 

dopamine acts as a key modulator of numerous behaviors that may facilitate addictive 

processes, including the pleasure derived from and motivation to seek reward, habitual 

motor patterns, and the cognitive control of behavior(Palmiter 2007).   

 Despite the previously-discussed impairments in dopamine neurotransmission in 

obesity and insulin resistance, there appears to be plasticity in these striatal dopamine 

circuits. Animal studies demonstrate that rats given extended access to an obesogenic 

cafeteria diet gain weight and have reduced striatal D2R compared with pair chow-fed 

animals(Bello, Lucas, and Hajnal 2002; Fetissov et al. 2002; Hamdi, Porter, and Prasad 

1992; Johnson and Kenny 2010), but that insulin therapy can restore dopamine release, 

transporter function, and dopamine-mediated behavior(Schoffelmeer et al. 2011; Sevak 

et al. 2007).  Clinical studies further show alterations in striatal D2R availability in obese 

human subjects following bariatric surgery(Steele et al. 2010a; Dunn et al. 2010).  Given 

its action in the central nervous system, we hypothesize that treatment with insulin 

detemir modulates corticostriatal dopamine circuits in a way that is beneficial for weight 

loss and behavior modification.  Specifically, we hypothesize that short-term insulin 

detemir treatment will improve impaired striatal D2R, prefrontal cortical activation in a 

task of cognitive control, and dopamine-associated cognitive performance. 
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Methods 

 

General Study Protocol 

 Research participants, visit schedule, insulin treatment, biochemical evaluation, 

PET / fMRI imaging parameters, and the stop signal task behavioral and imaging 

analysis were implemented as discussed in previous chapters.   

 

Statistical Analysis 

 Atlas-defined regions of interest including the dorsal striatum (caudate, head of 

caudate, putamen), ventral striatum (nucleus accumbens), and prefrontal cortex (PFC) 

were defined using WFU Pickatlas(Maldjian et al. 2003). ROIs for the ventral tegmental 

area (VTA), substantia nigra (SN) and olfactory bulb (OB) were defined on participants’ 

individual T1W structural images using MIPAV(Bazin et al. 2007).  

 For 18F-Fallypride PET imaging, D2R non-displaceable binding potentials (BPND) 

were extracted from the defined striatal ROIs while activation (BOLD) during the stop 

signal task was extracted from the prefrontal cortex using Marsbar(Brett et al. 2002).  

D2R BPND’s were extracted from manually-defined ROIs using MIPAV. Independent 

sample t-tests were performed at baseline to assess differences in SST behavior, SST-

related brain activation, and striatal D2R binding between treatment arms. To test 

whether insulin treatment altered striatal dopamine levels, we performed a repeated 

measures 2x2 ANOVA (treatment arm x visit week) while controlling for age(Cohen et al. 

2010). All statistical analyses were performed in SPSS v20 (IBM SPSS Statistics). 

Results were considered statistically significant at p$0.05 and marginally significant at 

p$0.08. 
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Results 

 

 No difference in baseline characteristics between treatment arms  

 Participants’ clinical and demographic information has been described in 

previous chapters. The ability to assess changes in corticostriatal dopamine circuits and 

associated behaviors following insulin therapy depends on the correspondence between 

treatment arms at baseline. Prior to receiving insulin treatment, there were no 

differences in body mass index (p = 0.854), HOMA-IR (p = 0.147), disposition index (p = 

0.562), plasma glucose AUC (p = 0.608), plasma insulin AUC (p = 0.540), plasma C-

peptide AUC (p = 0.737), fasting plasma leptin (p = 0.951), and fasting plasma 

acylghrelin (p = 0.871) between treatment arms (see Figure 17).  

 Sixteen of the thirty-two subjects with successful 18F-Fallypride PET imaging 

received insulin treatment.  There was no baseline difference in dopamine D2 receptor 

non-displaceable binding potential (BPnd) in the caudate (p = 0.182), caudate head (p = 

0.480), putamen (p = 0.271), and nucleus accumbens (p = 0.589) (see Table 13, Figure 

18).  Across all subjects, baseline D2R BPnd in the caudate (21.8 ± 0.60, mean ± SE), 

caudate head (15.7 ± 0.44), putamen (24.5 ± 0.63), and nucleus accumbens (17.0 ± 

0.63) are consistent with those observed in the literature for healthy controls(Rominger 

et al. 2012; Kegeles et al. 2010). 
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Table 13. No difference in baseline striatal dopamine D2 receptor non-displaceable 
binding potentials (BPnd; mean ± SE) between the no insulin (n=16) and insulin (n=16) 
treatment arms in the caudate, caudate head, nucleus accumbens, and putamen.  
Striatal Subregion Arm D2R BPnd p-value 

 Caudate 
Total 21.8 ± 0.60 

0.182 No Insulin 22.7 ± 0.76 
Insulin 21.0 ± 0.91 

 Caudate Head 
Total 15.7 ± 0.44 

0.480 No Insulin 15.4 ± 0.71 
Insulin 16.0 ± 0.53 

 Nucleus Accumbens 
Total 17.0 ± 0.63 

0.271 No Insulin 16.3 ± 0.99 
Insulin 17.7 ± 0.78 

 Putamen 
Total 24.5 ± 0.63 

0.589 No Insulin 24.1 ± 1.03 
Insulin 24.8 ± 0.77 

Figure 17. Obesity, insulin resistance, and metabolic markers do not differ between treatment 
arms at baseline. Box plots of non-displaceable binding potentials (BPnd) for D2R shown for striatal sub-
regions.  The dark horizontal lines represent the median, with the box representing the 25

th
 and 75

th
 

percentiles, the whiskers represent 1.5*interquartile range, and outliers are represented by the dots.  A) 
body mass index (BMI; p = 0.854) B) HOMA-IR (p = 0.147) C) disposition index (DI; p = 0.562), D) fasting 
acylghrelin (p = 0.871) E) c-peptide AUC (0.737) F) glucose AUC (p = 0.608) G) insulin AUC (p = 0.540) 
H) fasting leptin (p = 0.951) 
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 Finally, there were no differences between treatment arms in stop signal task 

performance including the critical stop signal delay (cSSD, p = 0.831), stop signal 

response time (SSRT, p = 0.791), median go response time (mGRT, p = 0.751), and 

post-error slowing (PES, p = 0.084; see Table 14, Figure 21A). Together, these data 

Figure 18. Striatal dopamine D2R non-displaceable binding potentials do not differ between 
treatment arms at baseline. A) Wholebrain binding potential map demonstrating high [18F]-Fallypride 
binding in the dorsal and ventral striatum, and extrastriatal binding frontocortical regions [n=32] B) Box 
plots of striatal D2R BPnd shown for striatal sub-regions comparing the insulin (n=16) and no insulin 
(n=16) arms. The dark horizontal lines represent the median, with the box representing the 25th and 75th 
percentiles, the whiskers represent 1.5*interquartile range, and outliers are represented by the dots.  For 
all regions, p > 0.05. 
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show no baseline differences between treatment arms, allowing for the evaluation of 

short-term insulin therapy on corticostriatal dopamine circuits and associated behaviors. 

  

 
Insulin treatment has no effect on striatal or extrastriatal D2R 

 Twenty-five (n=11, non-insulin; n=14, insulin) of the original thirty-two subjects 

successfully completed 18F-Fallypride imaging 4 weeks after the initial imaging visit. 

Dopamine D2 receptor non-displaceable binding potentials in the dorsal and ventral 

striatal sub-regions were not significantly altered by short-term insulin treatment (see 

Table 15, Figure 19); no differences were observed in the caudate (p = 0.768), caudate 

head (p = 0.979), nucleus accumbens (p = 0.964), or putamen (0.963).  Present results 

are corrected for participant age to control for the age-related decrease in dopamine 

D2R(Kaasinen et al. 2000; Backman et al. 2000).  Subsequent analyses controlling for 

baseline levels of obesity and insulin resistance similarly did not reach significance (data 

not shown). Extrastriatal D2R-rich regions were also unaffected by short-term insulin 

Table 14. No difference in baseline stop signal task performance (mean [ms] ± SE) 
between the no insulin (n=26) and insulin (n=21) treatment arms for the critical stop signal 
delay (cSSD), stop signal response time (SSRT), median go response time (mGRT), and 
post-error slowing (PES). 
SST Performance Arm D2R BPnd p-value 

 cSSD 
Total 309.6 ± 17.4 

0.831 No Insulin 306.2 ± 24.1 
Insulin 313.8 ± 25.6 

 SSRT 
Total 296.1 ± 4.74 

0.791 No Insulin 294.0 ± 6.51 
Insulin 296.5 ± 7.05 

 mGRT 
Total 604.7 ± 15.6 

0.751 No Insulin 600.1 ± 20.4 
Insulin 610.3 ± 24.6 

 PES 
Total 52.8 ± 7.45 

0.084 No Insulin 64.3 ± 9.75 
Insulin 38.4 ± 11.0 
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treatment. No alterations in D2R BPnd were observed in the olfactory bulb (p = 0.556), 

ventral tegmental area (p = 0.823), and substantia nigra (p = 0.541).   

 

 

 

 Given the hypothesis that insulin modulates the corticostriatal circuits underlying 

response inhibition, we lastly defined the dorsal striatum functionally using the SS>SE 

contrast that identifies brain regions active during motor component of successful 

inhibition.  Consistent with the results from atlas-derived dorsal striatal ROIs, short-term 

insulin treatment had no impact on D2Rs in the functionally-defined dorsal striatum (p = 

0.468, see Table 15, Figure 20). 

 

Figure 19. Short-term insulin treatment has no effect on dopamine D2 receptors in the striatum or 
extrastriatal D2R-rich brain regions A) nucleus accumbens, p = 0.964 B) caudate, p = 0.768 C) 
caudate head p = 0.979 D) putamen p = 0.963 E) olfactory bulb, p = 0.556 F) substantia nigra, p = 
0.541G) ventral tegmental area, p = 0.823 (n=25) 
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Figure 20. Short-term insulin treatment does not effect functionally-defined striatal dopamine D2 
receptor non-displaceable binding potential (BPnd) from the dorsal striatal region during 
successful inhibition during the stop signal task. The dorsal striatum was defined based on 
activation during stop success compared with stop error trials (SS>SE; n=25; p = 0.468). 
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Table 15. Insulin therapy does not alter dopamine D2 receptors, stop signal task performance, or 
brain activation. A 2x2 repeated measures ANOVA comparing treatment arm by time-point for dopamine 
D2 receptors and stop signal task associated performance and brain activation. 

Measurement Arm 
Week 2  

(mean ± SE) 
Week 6 

(mean ± SE) p-value 

Dopamine D2 Receptors (BPnd) 

Caudate 
No Insulin 22.7 ± 0.8 24.0 ± 0.9 

0.768 Insulin 21.0 ± 0.9 21.2 ± 1.0 

Caudate Head No Insulin 15.4 ± 0.7 16.5 ± 1.0 0.979 
Insulin 16.0 ± 0.5 15.5 ± 0.9 

Nucleus Accumbens 
No Insulin 16.3 ± 1.0 17.8 ± 1.4 

0.964 Insulin 17.7 ± 0.8 16.7 ± 1.1 

Putamen 
No Insulin 24.1 ± 1.0 26.1 ± 1.1 

0.963 Insulin 24.8 ± 0.8 24.5 ± 0.9 

Olfactory Bulb No Insulin 0.7 ± 0.2 0.6 ± 0.1 0.556 Insulin 0.6 ± 0.1 0.7 ± 0.1 

Substantia Nigra No Insulin 1.7 ± 0.1 1.9 ± 0.1 0.541 Insulin 1.8 ± 0.1 1.8 ± 0.1 

Ventral Tegmental Area 
No Insulin 2.4 ± 0.1 2.5 ± 0.1 

0.823 Insulin 2.3 ± 0.1 2.3 ± 0.1 
Stop Signal Performance (ms) 

cSSD 
No Insulin 306.2 ± 24.1 334.5 ± 27.5 

0.862 Insulin 313.8 ± 25.6 351.0 ± 36.0 

SSRT 
No Insulin 293.9 ± 6.5 276.0 ± 10.9 

0.356 Insulin 296.5 ± 7.1 279.5 ± 6.7 

mGRT No Insulin 600.2 ± 20.5 610.5 ± 24.1 0.712 
Insulin 610.3 ± 24.6 630.5 ± 33.2 

PES 
No Insulin 64.3 ± 9.8 34.7 ± 11.7 

0.531 Insulin 38.4 ± 11.0 10.4 ± 16.1 
Functionally-Defined Striatal and Prefrontal Regions 

Dorsal Striatum (D2R BPnd) No Insulin 23.6 ± 0.9 26.7 ± 1.8 0.468 
Insulin 22.2 ± 0.9 23.0 ± 0.1 

Prefrontal Cortex (BOLD) 
No Insulin 1.5 ± 0.6 1.6 ± 0.8 

0.911 Insulin 2.2 ± 0.4 1.4 ± 0.4 
 

 

Insulin treatment has no effect on prefrontal networks subserving response inhibition 

 To evaluate impact of short-term insulin treatment on prefrontal executive control 

networks, we first examined insulin’s effect on stop signal performance data. The critical 

stop signal delay (cSSD) represents the difference in speed between “go” and “stop” 

processes and is therefore influenced by the measure of response inhibition, the stop 

signal response time (SSRT)(Logan and Cowan 1984).  Stop processes engage 

inhibitory motor areas (IMAs), including regions of the prefrontal cortex(Li, Huang, et al. 
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2006; Aron, Durston, et al. 2007).  Similarly, prefrontal brain networks have been shown 

to be active during the “go” and error monitoring processes(Sakai et al. 2013; Li, Huang, 

Yan, Paliwal, et al. 2008).   Thirty-nine (n=21, non-insulin; n=18, insulin) of the forty-

seven subjects completed Week 6 of the stop signal task.  In concordance with the lack 

of effect of insulin on striatal circuits, there was no impact of insulin on stop signal 

behavior (see Table 15, Figure 21B-E); cSSD (p = 0.862), SSRT (0.356), median go 

response time (mGRT, p = 0.712), post-error slowing (PES, p = 0.531). 

 

 

 

 

 

 

 As previously discussed, prefrontal cognitive control networks are more active 

when comparing successful stop greater than successful go trials.  Twenty-three (n=13, 

no insulin; n=10, insulin) of the baseline thirty subjects had successful Week 6 stop 

signal task imaging.  Prefrontal cortical networks active during the SS>GS contrast were 

Figure 21. Short-term insulin treatment has no effect on stop signal behavior A) Box plots showing 
no difference in SST performance between arms.  The dark horizontal lines represent the median, with 
the box representing the 25th and 75th percentiles, the whiskers represent 1.5*interquartile range, and 
outliers are represented by the dots.  Stop signal performance in unaffected by insulin treatment, B) 
critical stop signal delay [cSSD, p=0.862], C) stop signal response time [SSRT, p=0.356], D) median go 
response time [mGRT, p=0.712], E) post error slowing [PES, p=0.531] (n=39) 
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unresponsive to insulin treatment (p = 0.911; see Table 15, Figure 22).  Combined with 

the results from the longitudinal 18F-Fallypride and stop signal behavior, the lack of 

prefrontal modulation with insulin treatment suggests that short-term insulin treatment 

has no effect on corticostriatal inhibitory circuits and the underlying striatal dopamine D2 

receptors. 

 

 

 

 

 
 

Discussion 
 

 
 In this study, we demonstrate that four weeks of insulin detemir treatment does 

not significantly change striatal dopamine D2 receptors, prefrontal cortical activation 

during successful inhibition in the stop signal task, or SST behavioral performance.  This 

contrasts with our original hypotheses.   

 Blocking insulin receptors(Doolen and Zahniser 2001) and their downstream 

signaling components(Carvelli et al. 2002; Garcia et al. 2005) reduces DAT expression.  

Figure 22. Short-term insulin treatment does not affect prefrontal cortical brain activity during 
successful stopping in the stop signal task. A) Prefrontal cortical circuits were engaged during stop 
success compared with go success trials (SS>GS). The conjunction [yellow] between the prefrontal 
cortex [red] and successful inhibition [blue] defines the region of interest B) inhibition-related prefrontal 
brain activity was unaffected by short-term insulin treatment (p=0.911, n=23) 
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In animal models of diabetes and diet-induced obesity (DIO)(Speed et al. 2011),  insulin 

can restore reduced striatal DAT expression.  Four weeks of treatment with detemir in 

DIO animals decreased food intake and body weight(Rojas, Printz, and Niswender 

2011), and feeding behaviors have been strongly linked to dopamine(Johnson and 

Kenny 2010; Palmiter 2007). BMI-dependent decreases in striatal DAT expression have 

also been observed in humans(Chen et al. 2008).  The hypothesis that detemir acts by 

restoring impaired DAT in obesity is thus plausible, and several factors may explain our 

divergent findings. 

  

Insulin, Insulin Resistance, and the Brain  

 Determir’s ability to act on the brain depends on its ability to enter the central 

nervous system (CNS). The majority of endogenous insulin acting in the brain is 

produced in peripheral tissues and transported into the CNS across the blood brain 

barrier (BBB) through a unidirectional and saturatable transport system(Schwartz et al. 

1991; Baura et al. 1993; Pardridge et al. 1995; Banks et al. 1997).  Insulin transporters 

are not uniformly distributed throughout the BBB, so the passage of insulin into the brain 

varies by location(Banks and Kastin 1998; Banks, Kastin, and Pan 1999). Most 

exogenous insulin does not cross the BBB, but detemir’s ability to do so is unclear. 

Acute peripheral administration of detemir promotes brain insulin receptor action, alters 

brain function, and reduces food intake(Hallschmid et al. 2010; Hennige et al. 2006). 

Other studies report that detemir is not directly transported into the CNS(Banks et al. 

2010).  Although detemir may affect brains of healthy adults, this may not be true in all 

cases. Inflammatory cytokines, triglycerides, and blood glucose levels regulate insulin 

transport across the blood brain barrier(Banks, Jaspan, and Kastin 1997; Banks et al. 

2008; Kaiyala et al. 2000). Because these factors are disrupted in obesity and insulin  

resistance, detemir may not enter the CNS and act directly on the brain.   
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 Another possibility for the lack of detemir effect is the ability of neurons to 

respond to insulin.  T2DM is characterized by both a lack of insulin production and the 

development of tissue insulin 

resistance.  Exogenous insulin 

administration is critical in addressing 

the insulin lack; however, alternative 

treatments are necessary to improve 

tissue insulin sensitivity. Neurons can 

become insulin resistance, and 

neuronal insulin resistance differs 

from peripheral insulin 

resistance(Bhumsoo et al. 2011; 

Pratchayasakul et al. 2011; Gupta and Dey 2012).  Although peripheral detemir 

administration can be helpful in achieving glycemic control, it may have limited or no 

action centrally if neurons are unable to respond to insulin itself. 

 The small sample size and lack of a lean control arm are major limitations to the 

present study, and may explain the lack of an observed effect.  A post-hoc power 

analysis for the variables of interest demonstrated that a much larger sample size is 

necessary to detect differences between treatment arms (see Table 16).  The power 

analysis supports the conclusion that short-term insulin treatment has no effect on 

striatal D2R and components of stop signal behavior. Increasing the sample size to 50 

individuals may provide sufficient power to detect an effect of detemir treatment on 

prefrontal cortical activation and its behavioral component, the stop signal response 

time. 

 

 

Table 16. Sample size to detect a difference 
after insulin treatment with 95% power   
Measurement Sample Size 
Striatal D2 Receptors n 
 Nucleus Accumbens 128 
 Caudate 171 
 Caudate Head 162 
 Putamen 64 
Stop Signal Task Behavior n 
 cSSD 97 
 mGRT 229 
 SSRT 51 
 PES 136 
Stop Signal Task fMRI n 
 Prefrontal Cortex 41 
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Using Baseline Dopamine Tone to Inform Insulin Treatment 

 The inverted U model for dopamine tone and corticostriatal function is conceptually 

appealing because it implies that normalizing dopamine tone will resolve the underlying 

neural deficits perpetuating a disorder.  This is clinically challenging because dopamine-

modifying pharmaceutical treatments either attenuate or enhance dopamine function, 

and the same drug can have opposing effects depending on which arm of the inverted U 

an individual is assigned to. Baseline dopamine tone on the inverted U is determined in 

part by genetic factors in addition to the diet- and insulin resistant-induced impairments 

in DAT.  For example, the enzyme catechol-O-methyltransferase (COMT) metabolizes 

dopamine in the prefrontal cortex. A common variant of the COMT gene translates valine 

(Val) to methionine (Met) and decreases DA metabolism. Val/Mat heterozygotes and 

Met/Met homozygotes have lower COMT activity and higher baseline dopamine 

tone(Chen et al. 2004; Meyer-Lindenberg et al. 2005; Bilder et al. 2004).  In ADHD, this 

single polymorphism dictates the response to treatment with the DAT/NET reuptake 

inhibitory methylphenidate.  Individuals with the Val/Val genotype (lower baseline 

dopamine tone) respond significantly better to dopamine enhancement with 

methylphenidate compared to their Met/Met counterparts (higher baseline dopamine 

tone)(Cheon, Jun, and Cho 2008) indicating that pharmacologic treatment of dopamine-

mediated disorders requires a personalized approach depending on baseline 

dopaminergic function(Farrell et al. 2012; Levy 2013).   

 Similar disruptions in dopamine-regulating genes have been observed in obesity.  

The TaqA1 1A allele, MC4R mutation, and FTO variants are each associated with 

increased obesity(Balthasar et al. 2005; Frayling et al. 2007; Spitz et al. 2000), 

decreased dopamine neurotransmission(Cui et al. 2012; Hess et al. 2013; Neville, 

Johnstone, and Walton 2004), and impaired brain dopamine function(Cui and Lutter 

2013; Hess et al. 2013; Stice et al. 2008).  Without knowing participants’ genotype, a 
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pharmaceutical amphetamine challenge test (ACT) can be used as a probe for 

dopamine neurotransmission. AMPH binds to the dopamine transporter and induces 

dopamine efflux in proportion to the amount of DAT expressed in the plasma 

membrane(Silberman et al. 1981; Kavoussi and Coccaro 1993; Kravitz et al. 1990; 

Schulz et al. 1988).  Based on the inverted U model, participants with lower baseline 

dopamine tone would demonstrate improvements following amphetamine (AMPH) while 

participants with higher dopamine tone would improve to a lesser degree or worsen. The 

inverted U model for treatment has been utilized in the stop signal task, where baseline 

response inhibition determines response to treatment.  Specifically, those with poorer 

response inhibition (longer SSRT) improved with methylphenidate and amphetamine 

treatment, whereas those with short SSRTs got worse (Eagle and Robbins 2003; Eagle 

et al. 2007; Feola, de Wit, and Richards 2000; Hamidovic et al. 2010a, 2010b; 

Hamidovic et al. 2009; Dlugos et al. 2009). This raised the question of whether, in the 

current cohort, the response to amphetamine could unmask the baseline dopaminergic 

tone to inform treatment with insulin detemir.  

 Preliminary analysis of stop signal task performance data during an ACT at 

baseline reveals a differential response to amphetamine based on pre-amphetamine 

behavior that is consistent with these prior studies and support an inverted U model.  

Specifically, participants with longer pre-amphetamine SSRT (slower inhibition) 

demonstrated the greatest improvement (negative "SSRT) while participants with faster 

pre-AMPH SSRT worsened (see Figure 23A).  As the stop signal response time is 

related to dopamine tone(Eagle et al. 2011), the opposing response to AMPH indicates 

our sample is comprised of individuals on both sides of the inverted U (see Figure 23B; 

U is not inverted because longer SSRT indicates impairment).   
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Insulin treatment has been shown to restore impairments in amphetamine-induced 

dopamine efflux (Williams et al. 2007). Using the behavioral response to amphetamine 

as a probe of dopaminergic status, our preliminary analysis suggests that insulin detemir 

improves amphetamine-induced response inhibition (Huda et al. 2013) (see Figure 24).  

While significant future research is required to interpret the observed insulin effect, these 

data suggest that insulin detemir does have central brain action that may be beneficial 

for modulating behaviors facilitating weight maintenance or loss. 

Figure 23. Effects of AMPH-induced changes in stop signal response time (SSRT) depend on 
baseline performance. A) Poorer pre-amphetamine SSRT is associated with greater improvements 
following amphetamine administration. Green circles represent participants whose SSRT improved with 
AMPH. Red circles represent subjects whose performance got worse with AMPH B) Model for how 
amphetamine-induced alterations depend on underlying dopamine tone [U is not inverted because 
longer SSRT indicates impairment] 
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Study Limitations 

 The lack of a healthy-weight control arm is a significant limitation to the present 

study.  Although the decreases in DAT expression in healthy-weight individuals(Chen et 

al. 2008) and the decreases in D2R availability in morbidly obese individuals(Wang et al. 

2001) are BMI-dependent, no studies have been performed in the mild-to-moderate 

obese population. Our study assumes that deficits in dopamine neurotransmission are 

present in mild-to-moderate obesity based on the literature citing a BMI-dependence; 

however, the hypothesis that we can normalize dopamine neurotransmission to levels 

occurring in the healthy-weight population is not testable without this reference arm.  

 Because the injectable administration insulin and the risk of hypoglycemia 

challenge the feasibility and ethics of blinding to treatment, participants in this study 

were not blinded to their treatment arm.  This poses problems as research suggests that 

patients on insulin therapy increase their carbohydrate intake to avoid 

hypoglycemia(Russell-Jones and Khan 2007; Gordon et al. 1992). Although participants 

in the present study were motivated to improve their health, patients on insulin therapy 

may perceive the insulin treatment as the means to this end, and patients not receiving 

Figure 24. Insulin detemir treatment improves amphetamine-induced response inhibition A) 
amphetamine administration improves the stop signal response time (SSRT) at baseline (mean ± SE) B) 
insulin detemir treatment significantly improves amphetamine-induced SSRT performance (data courtesy 
of Imran Huda). 
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insulin may rely more heavily on lifestyle modification, such as improving their diets.  

Despite participants’ maintaining their weight during the 4-week treatment period, a 

change in diet in the absence of weight gain is sufficient to blunt DAT and dopamine 

reuptake(Cone et al. 2013), and may contribute to the lack of an observed insulin effect.   

 PET imaging with 18F-Fallypride measures striatal and extrastriatal D2R(Riccardi 

et al. 2008; Slifstein et al. 2010), but is not a direct measure of extracellular dopamine or 

dopamine transporter expression.  Techniques used to measure extracellular dopamine 

in animals are invasive and not readily accessible in humans(Robinson et al. 2003; 

Phillips et al. 2003; Clapp-Lilly et al. 1999).  PET techniques to measure extracellular 

dopamine in humans increase radiation exposure and potential harm when performing 

longitudinal measurements.  Our selection of 18F-Fallypride as a PET radioligand 

allowed for the measurement of molecular aspects of dopamine neurotransmission and 

provided minimal risk to participants, but was still an indirect measure of synaptic 

dopamine and reuptake.  Future PET studies quantifying DAT expression(Zoghbi et al. 

2006; Goodman et al. 2000) will be valuable for determining the central effects of insulin 

on the dopamine system. 

 

Conclusions  

 Preliminary research using amphetamine-induced dopamine efflux shows 

promising results for an effect of detemir on the brain, short-term insulin treatment with 

insulin detemir had no observable effect on basal dopamine neurotransmission.  Several 

biologic and experimental factors may account for this null finding including neural 

insulin resistance, genetic elements altering dopamine neurotransmission, and study 

design. 
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CHAPTER V 

 

SYNOPSIS AND CONCLUSIONS 

 

 Addressing the rapid increase in the prevalence of obesity and insulin resistance 

in the United States and globally is a vital clinical and research priority.  Research linking 

obesity and insulin resistance to the brain dopamine system, the same network impaired 

by drug addiction, suggests treatments targeting brain dopamine disruptions may be 

beneficial in controlling and/or reducing obesity.  In this dissertation, I proposed the 

following model for impaired dopamine neurotransmission in obesity: impaired insulin 

signaling uncouples corticostriatal dopamine circuits involved in regulating feeding 

behavior, and this uncoupling impairs executive function and promotes excessive food 

intake.  Further, I hypothesized that treatment with a formulation of insulin known to have 

central nervous system action would restore impaired striatal dopamine signaling and 

dopamine-associated behaviors disrupted in obesity and insulin resistance. 

 In this 6-week human subjects trial using multimodal imaging techniques, I 

demonstrate that the effects of obesity and insulin resistance on cognitive performance 

can be dissociated (Chapter 2).  Insulin resistance was associated with significantly 

heightened impulsivity, while obesity was associated with impaired cognitive restraint to 

a lesser degree.  Heightened impulsivity in insulin resistance was dependent on brain 

activity in a cortico-thalamo-striatal-cortical motor and attention network. This suggests 

that mild insulin resistance biases brain systems to respond to and acquire salient 

stimuli. 

 I next linked the impulsivity to striatal dopamine neurotransmission, showing that 

heightened impulsivity was associated with lower striatal D2R and increased striatal 

brain activity in both the dorsal and ventral striatum (Chapter 3).  Although striatal D2R 
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were unrelated to insulin resistance in this cohort, visceral adipose tissue (VAT) was 

associated with decreased striatal D2R and increased striatal activation. Striatal D2R 

and neural activity independently mediated the effects of insulin resistance and VAT on 

impulsivity, suggesting that there are multiple mechanisms underlying striatal dopamine 

dysregulation in the development and pathogenesis of obesity. 

 Short-term insulin treatment did not restore basal corticostriatal dopamine 

neurotransmission (Chapter 4); however, there were some significant limitations in the 

present study. Evaluating dopamine D2 receptors as the sole measure of dopamine 

neurotransmission and not accounting for baseline dopamine tone to assess the 

therapeutic potential of insulin detemir could have affected the results.  Prior research 

strongly suggests that insulin detemir has central action that supports weight loss, thus 

the inability to detect an effect in this study is likely due to the specific outcome 

measurements used in this study rather than insulin’s lack of action on the brain. 

Preliminary work in the same cohort using amphetamine-induced dopamine efflux as a 

measure of insulin signaling suggests that insulin detemir does have central brain action 

that may underlie detemir’s beneficial effects. 

 To date, no other studies have specifically examined a population of mildly obese 

and insulin resistant individuals to characterize the relative contributions of obesity and 

impaired insulin signaling on the brain.  The results presented in this dissertation 

suggest that obesity, visceral adiposity, and insulin resistance exert widespread 

detrimental effects on brain activity and function in a manner that diverges from chronic 

substance use.   Instead of the expected behavioral impairments in response inhibition, 

insulin resistance and adiposity specifically enhanced impulsivity. The impulsiveness 

resulted from blunted striatal dopamine and heightened neural attention and motor 

network activity. This pattern mimics the heightened cue-reactivity and ventral striatal 

dysfunction observed early during hedonic food or drug seeking.  Consistent with my 
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proposed model, mild obesity and insulin resistance represent a phenotype in transition 

from ventral striatal reward-seeking to dorsal striatal habitual responding, although brain 

dysregulation has not reached a stage of “chronic” impairment similar to that of drug 

addiction.   

 The idea that the neural circuitry of mild obesity and insulin resistance is an 

intermediate state rather than an endpoint offers exciting opportunities for treatment.  In 

this study, visceral adiposity and insulin resistance impaired brain dopamine function 

and thus represent therapeutic targets.  Preliminary research combined with the present 

results suggests that reducing visceral adiposity and improving insulin sensitivity to 

healthy levels normalizes the behavioral and neural impairments observed in obesity 

and insulin resistance.  In conclusion, this research demonstrates that mild obesity, 

insulin resistance, and visceral adiposity are associated with impairments in behavioral 

control, widespread neural dysregulation, and blunted striatal dopamine 

neurotransmission. 
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