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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 I describe, in this dissertation, a series of studies observing behavior and neural 

activity of  macaque monkeys to understand better the physiological processes that 

underlie saccade execution and evaluation.  The studies are presented in two parts.  To 

gain insight on saccade execution, I developed methods for recording and isolating the 

extraocular electromyogram (EMG) from implanted surface electrodes normally used to 

recorded the electroencephalogram (EEG).  I also made detailed observations of the 

small eye movements called microsaccades elicited from monkeys while they attempted 

to prevent their eyes from moving.  I have analyzed these data in light of current theories 

on the physiological basis of saccade execution.  These studies, are presented in 

Chapters 2 and 3.  In the second part of this work, I sought to better understand the 

neural processes that underlie saccade evaluation.  To this end, I recorded the electrical 

activity of single neurons, small groups of neurons, and large ensembles of neurons 

from medial frontal cortex.  This area is thought to serve a role in evaluating actions and 

their outcomes.  The macaque monkey serves as an animal model to test theories of 

human cognition.  The work detailed here strengthens this model, making explicit links 

between research carried out in human and non-human primates.  By better 

understanding how monkeys evaluate the outcomes of their eye movements, I hope to 

provide insight on the neural mechanisms that underlie humans' ability to reflect on their 

own actions.   

 In this introductory chapter, I will provide background material to motivate and 

facilitate understanding of these studies.  I will first discuss the different types of eye 
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movements, placing special emphasis on the saccades and microsaccades that provide 

the main behavioral measures in these studies.  I will then turn to the oculomotor 

system, focusing attention on the structures that are of greatest interest to the present 

work.  I will conclude the section on the oculomotor system with a discussion of the 

higher cognitive functions attributed to the medial, frontal cortex.  This will lead naturally 

to a discussion of executive control with special emphasis on performance monitoring.  I 

will then conclude this chapter by foreshadowing each of the studies with a brief 

summary.   

 However, before launching into the taxonomy of eye movements, it will be useful 

for us to consider a general principle that guides, informs, and provides a backdrop for 

this work.  The oculomotor system constantly strives either to execute or to actively 

inhibit eye movements.  This idea was alluded to by Carpenter (1981) when he coined 

the phrase "oculomotor procrastination".  I will argue that this basic principle provides a 

key insight through which the oculomotor system can be understood1. 

 

1.2 The tension between going and stopping 

To understand the primate oculomotor system, one must first appreciate several 

basic principles of primate vision.  After all, these systems have evolved in parallel, and 

in mutual service to one another.  With our forward facing eyes, humans can perceive 

~180° of visual angle at any moment and ~140° binocularly (Carpenter, 1988; for 

comparison with other vertebrates see Walls, 1942).  Based on subjective experience, it 

seems as though we perceive a large portion of this scene with high acuity.  But the truth 

is quite different from this intuition.  Unlike sensors in digital cameras, the photoreceptors 
                                                            
1 Portions of this chapter were published as Godlove DC. Good looking... better looking! 
Performance monitoring and behavioral adjustments in the oculomotor system. 
Vanderbilt Reviews Neuroscience 1: 62-68, 2010, and as Schall JD, Godlove DC. 
Current advances and pressing problems in studies of stopping. Current Opinion in 
Neurobiology 22:1012-1021 
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of the retina that transduce light into neural impulses are not evenly distributed.  Instead, 

specialized photoreceptors serving high-acuity vision called cones are packed most 

densely in the fovea, which subtends about 1° of the total inner circumference of the 

eye.  When viewed at arm's length, one's thumbnail subtends around 1° of visual angle, 

so this image is approximately the same size as the fovea.  Outside of this central area, 

acuity falls off exponentially.  Within 1° of the area centralis visual acuity is reduced by 

half (Green, 1970).  In fact, only 1 ten thousandth of the visual field can be processed 

with full visual acuity by the fovea at any given moment (Carpenter, 1988).  It is 

obviously necessary for us to perceive a much larger portion of the scene before us with 

high visual acuity.  Luckily, the solution to this problem is simple; the optics must be 

moved. 

In addition to spatial considerations, the oculomotor system has demands placed 

on it by the temporal properties of the visual system.  When the eyes move, light moves 

across the retina, introducing retinal slip.  As the pattern of light fluctuates across the 

photoreceptors, the fidelity of the image is determined by the speed with which light can 

be transduced to neural impulses.  The primate visual system is actually relatively slow 

at this process (reviewed by Carpenter, 1988).  Luckily, the solution to this problem is 

also quite simple: the optics must remain stationary.   

The oculomotor system is thus defined by a competition between two rival 

demands. On the one hand, images must be stabilized on the retina.  On the other hand 

images must be sampled from different points in space.  This concept of balancing 

fixations against gaze shifts provides a useful starting point for studying the oculomotor 

system.  It will be a constant theme in this Dissertation, and frames many of the studies 

presented.  As we shall see below, almost all eye movements fall into one of two 

categories; those that stabilize images on the retina such as the optokinetic reflex, and 

the vestibular reflex, and those that realign images with respect to the retina so that 
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different areas can be sampled such as saccadic eye movements.  Saccades 

themselves are best understood as attempts to balance the competing demands of 

movement and fixation.  The saccadic system minimizes the duration of retinal slip by 

executing extremely fast, accurate gaze shifts (reviewed by Carpenter, 1991).  At 

virtually every level, from the brain stem to the prefrontal cortex, oculomotor areas 

contain neurons important for both fixation and gaze shifting.  Accordingly, great 

progress has been made studying the oculomotor system using a task which capitalizes 

on the tension between movement and fixation.  This stop-signal task was originally 

developed to study response inhibition in the skeletal motor system (Lappin and Eriksen, 

1966; Logan and Cowan, 1984).  The saccadic variant of this task (Hanes and Schall, 

1995; Hanes and Carpenter, 1999) has proven extremely useful for elucidating 

properties of the oculomotor system, and it provides the main behavioral data for most of 

the studies described here.  I will briefly introduce this task below.  More thorough 

introduction with accompanying schematic figures will be presented in the chapters that 

follow. 

In most implementations, the stop-signal task is simply a two-alternative forced 

choice task with an additional rule (reviewed by Verbruggen and Logan, 2008; Aron, 

2011; Schall and Godlove, 2012).  Subjects must react quickly and appropriately to 

stimuli that are mapped onto specific responses.  The twist that distinguishes the stop-

signal task from other two-alternative forced choice tasks is that subjects are also 

instructed to cancel partially prepared movements when infrequent stop signals occur.  

Thus, in practice, three trial outcomes are possible.  On trials that don't contain stop 

signals (hereafter referred to as no-stop trials), subjects respond to stimuli.  On trials that 

do contain stop signals a subject may either successfully cancel a movement (hereafter 

referred to as canceled trials) or erroneously respond even though they have been 

instructed not to do so (hereafter referred to as noncanceled trials).  One final 
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characteristic distinguishes the stop-signal task from the closely related go/nogo task 

which is also used to study behavioral inhibition.  In the stop-signal task, a range of short 

delays (usually ~50-500 ms) is introduced between the instruction to go and the 

instruction to stop.  These stop-signal delays (SSDs) allow subjects to engage in brief 

periods of motor preparation before actions must be canceled.  The longer the SSD, the 

further motor preparation proceeds, and the more difficult it is to stop in the event that a 

stop signal is presented.  This clever feature of the stop-signal task also allows 

experimenters to measure the timing with which partially prepared responses can be 

withheld.   

This stop-signal task provides crucial leverage to investigate response control, 

because performance can be understood as a race between 2 processes that initiate 

(GO process) or cancel (STOP process) movement (Logan and Cowan, 1984).  Using 

this race model, the duration of the covert STOP process, known as the stop-signal 

reaction time (SSRT) can be derived from the proportion of successful stop trials and the 

distribution of reaction times (RTs) on trials without stop signals (Logan and Cowan, 

1984; Colonius, 1990; Logan, 1994; Band et al., 2003; Matzke et al., 2012).  SSRT 

measures the time needed for subjects to cancel movements, thus providing a temporal 

estimate of a process that cannot be observed directly.  This paradigm is very general, 

applying to simple and choice response tasks accomplished with any effector system, 

including the oculomotor system (Hanes and Schall, 1995; Hanes and Carpenter, 1999; 

Kornylo et al., 2003).  We shall now turn our attention back to the oculomotor system.  I 

will refer to the stop-signal task throughout this discussion as I introduce relevant 

discoveries and concepts. 

 

 

 

5 
 



1.3 A taxonomy of eye movements 

1.3.1 The gaze holding eye movements 

 Movements that stabilize the eyes during rapid head shifts using vestibular 

information from the semicircular canals and otoliths are called vestibulo-ocular reflexes.  

These reflexes have extremely short latencies but also decay rapidly as acceleration 

ceases and the sensory organs of the vestibular system habituate to constant velocities.  

The vestibulo-ocular reflex is complimented by the opto-kinetic reflex which stabilizes 

gaze during slower head shifts using feedback derived from visual cues.  Opto-kinetic 

reflexes have longer latencies, allowing them to take over after the rapid decay of the 

vestibulo-ocular reflex.  Using these two reflex types, animals can adjust gaze quickly in 

response to movements of the head and then to continuously update eye position in 

response to ongoing movement.  Together, the vestibulo-ocular and opto-kinetic reflexes 

are the most phylogenetically ancient eye movements (reviewed by Goldberg et al., 

1991) and can be observed even in zebra fish (Brockerhoff et al., 1995).  Ongoing 

movements of an animal’s head in relation to its surroundings do not cause the eyes to 

become frozen in their most eccentric positions.  Instead, this situation leads to a 

stereotyped, sawtoothed pattern of eye movements called nystagmus.  Nystagmus is 

characterized by a slow phase during which animals counteract head movements with 

eye movements to minimize retinal slip, and a quick phase during which animals reset 

eye position to the opposite orbital eccentricity in order to avoid freezing in a position 

which supplies little or no visual information (reviewed by Goldberg et al., 1991; Krauzlis, 

2008).  These phases of nystagmus parallel the two types of eye movements discussed 

in the next section, smooth pursuit and saccadic eye movements, which have evolved to 

allow animals to track moving objects or explore visual scenes.   
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1.3.2 The gaze shifting eye movements 

 Smooth pursuit movements use ongoing visual feedback to track targets moving 

at more or less constant velocities of under 30 visual degrees per second, although 

these movements may track faster objects if object movement follows predicable 

trajectories (Sparks, 2002).  Traditional accounts of smooth pursuit place emphasis on 

pathways through the oculomotor flocculus and oculomotor vermis of the cerebellum, but 

recently focus has shifted to structures which are traditionally considered part of the 

saccadic motor system (reviewed by Lisberger et al., 1987; Krauzlis, 2004).  Since these 

movements vary in velocity and are under control of ongoing feedback from the visual 

system, they are quite similar to movements during the slow phase of nystagmus.  

Although most authors classify smooth pursuit as gaze shifting eye movements (e.g. 

Carpenter, 1988; Sparks, 2002) it is worth noting that their primary purpose is to 

immobilize the image of a moving target on the retina.  In this sense, they may be better 

thought of as gaze holding eye movements.   

 Saccadic eye movements are highly stereotyped, somewhat ballistic movements 

which resemble the fast phase of nystagmus (Dodge and Cline, 1901; Yarbus, 1956; 

Robinson, 1964; reviewed by Carpenter, 1988; Goldberg et al., 1991).  An impressive 

volume of classic research has been carried out investigating the saccades made by 

human subjects while reading.  These studies highlight the nuanced cognitive control of 

the oculomotor system.  For instance, the frequency of a particular word within a sample 

of text is negatively correlated with the amount of time that it is fixated during reading 

(Just and Carpenter, 1980).  And as the conceptual difficulty of a passage increases, so 

too does the number of regressions (right to left as opposed to left to right saccades 

while reading English) (Jacobson and Dodwell, 1979; Rayner and Pollatsek, 1989).  

Reading itself is a complex behavior involving high-level cognitive processes such as 

semantic processing.  Accordingly, sacccades are used to study reading as often as 
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reading is used to study saccades (reviewed by Rayner, 1998).  Interesting as the 

reading literature is, these studies tend to deal more closely with target identification 

than with the execution or evaluation of saccades, and they will therefore not be a focus 

of our discussion.   

 Unlike smooth pursuit movements, saccades can be prepared in response to 

visual stimulation or in its absence under voluntary control (reviewed by Munoz and 

Everling, 2004).  The latency of saccadic eye movements is long compared to the other 

categories of eye movements at around 200 ms in humans (Westheimer, 1954; Saslow, 

1967; reviewed by Becker, 1991), although “express saccades” can be generated under 

some conditions with latencies under 100ms (Fischer and Ramsperger, 1984).  This long 

latency may be explained, in part, by the fact that visual acuity is much higher when 

saccades are NOT being made and may therefore reflect a mechanism which evolved to 

limit the number of saccades made (Carpenter, 1981).  Thus, we see the tension 

between going and stopping played out behaviorally in the oculomotor system.   

The velocity with which saccades are executed can be very high reaching 

speeds of around 800°/s.  Consistent relationships between the amplitude, peak velocity, 

and duration of saccades have been repeatedly noted and have been termed the main 

sequence (Zuber and Stark, 1965; Bahill et al., 1975).  These relationships remain 

constant from the very smallest saccades to saccades of around 10° in amplitude (see 

Chapter 3 for examples).  Peak velocity saturates at ~800°/s for saccades of ~10°, and 

saccades of larger amplitude are not made with higher velocity.  During natural viewing, 

saccades larger than ~15-20° are typically not elicited; larger gaze shifts usually include 

rotation of the head (Bahill et al., 1975; Becker, 1991).  This estimate includes saccades 

made from one hemifield to the other, so saccades made from the primary position (the 

position of the eyes when a subject stares straight forward) during natural viewing will 

usually not exceed ~7.5-10°.  The observation that all saccades exhibit stereotyped and 
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highly predictable dynamics suggests that the same neural pathways are involved in 

generating saccades of all sizes (Bahill et al., 1975; Martinez-Conde et al., 2009).  We 

will return to this important point when considering fixational eye movements below.  It is 

also worth noting that eye movements made during the quick phase of nystagmus follow 

the main sequence, suggesting that the same neural pathways are responsible for both 

types of eye movements (Carpenter, 1988).   

  

1.3.3 The fixational eye movements 

 A third class of eye movements can neither be classified as gaze-holding since 

they do not stabilize images on the retina nor as gaze-shifting since they are not thought 

to realign images for high-acuity processing by the fovea (with the possible exception of 

microsaccades.  See below.)  These are the fixational eye movements. The smallest of 

these movements, tremor, causes the eye to oscillate slightly during fixation.  These 

oscillations are usually of ~5 to 30 arc seconds in amplitude at frequencies ranging from 

25 and 200 Hz.  Tremor is thought to be a byproduct of the digital nature of the action 

potentials of extraocular motor neurons (Collewijn and Kowler, 2008).  Each action 

potential causes individual sarcomeres of the extraocular muscles to contract.  These 

tiny contractions do not completely average out as they combine to form larger muscle 

contractions, and they can cause the eyes to oscillate with very small amplitude.  The 

second fixational eye movement, drift, is perhaps the most mysterious of all eye 

movements.  Each eye constantly moves at a relatively low velocity (~4 arc min/s) in a 

trajectory that can best be described as a self-avoiding random walk (Collewijn and 

Kowler, 2008; Engbert, 2012).  These movements are largely monocular, allowing each 

eye to move independently (Engbert and Kliegl, 2003).  Currently, the mechanism and 

purpose of these eye movements are not well understood.  Some models (e.g. Engbert, 

2012) assume that these eye movements are a product of the stochastic fluctuations of 
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neurons in the superior colliculus (SC, discussed in more detail below).  The most well-

studied fixational eye movements are the fascinating microsaccades.  In Chapter 3, I 

present a detailed study of the microsaccades elicited by monkeys during the saccade 

countermanding task.  Therefore, I will devote some time to their introduction here.   

 Microsaccades are small, high velocity eye movements made by subjects during 

fixation (Riggs et al., 1954).  Definitions vary, but there is general agreement that 

microsaccades are <1° in amplitude (Martinez-Conde et al., 2009; but see Collewijn and 

Kowler, 2008).  On average, their amplitude is actually quite a bit smaller, being around 

12 arc minutes.  For comparison, this is roughly equal to the size of an image made on 

the retina by light reflecting from a thumbtack viewed at a distance of 10 feet.  However, 

although they are typically quite small, the term "microsaccade" is actually a misnomer.  

These eye movements are not defined primarily by their size, but by the intention of the 

subject that elicits them.  Subjects are able to inspect features and track moving objects 

by making saccades with very small amplitude.  In fact, subjects are able to make 

saccades to track object movements as little as 10 arc seconds in amplitude (Carpenter, 

1988).  The saccades made during these experiments should probably still be 

considered normal saccades since it is the subjects intention to shift gaze when making 

them.  Microsaccades are generally understood to be involuntary saccades made while 

subjects are attempting to fixate.  However, while individual microsaccades are made 

involuntarily and without subject awareness, it is incorrect to suppose that 

microsaccades are completely outside of voluntary control.  It is possible for subjects to 

suppress microsaccades when performing tasks that demand high acuity such as 

threading needles or sighting rifles on distant targets (Winterson and Collewun, 1976). 

 The purpose of microsaccades has been controversial since they first became 

the focus of serious study in the 1950’s (reviewed by Rolfs et al., 2008).  As pointed out 

above, the primate visual system is unable to process high temporal frequencies.  
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However, the system also breaks down at extremely low spatial frequencies.  If images 

remain stationary on the retinal for extended periods of time, the photoreceptors 

habituate to the constant light input and cease to transduce light into neural impulses.  

This causes a subject to experience Troxler fading in which the image disappears from 

subjective view (Troxler, 1804; Clarke, 1961).  One of the first proposals related to 

microsaccades is that they are necessary to prevent Troxler fading (Barlow, 1952; 

Ditchburn and Ginsborg, 1952; Ditchburn et al., 1959; Martinez-Conde et al., 2006).  

This view has intrinsic, teleological appeal and has persisted for decades in the face of 

much contradictory evidence.  For instance, the ability to perform a change detection 

task is degraded, not enhanced, by the presence of microsaccades (Hafed et al., 2011).  

And tremor, drift, and small head movements provide ample image displacement to 

prevent this kind of fading (Cornsweet, 1956; reviewed by Collewijn and Kowler, 2008).  

Another theory suggests that microsaccades serve to synchronize the visual system by 

sending coordinated volleys of visual stimulation through the systems at regular 

intervals.  The frequency of microsaccades varies somewhat across individuals and 

within different contexts, but it averages ~1 to 3 Hz (Collewijn and Kowler, 2008; 

Martinez-Conde et al., 2009).  Microsaccades produce transient changes in activity in 

primary visual cortex and throughout extrastriate cortex (Bair and O'Keefe, 1998; 

Leopold and Logothetis, 1998; Martinez-Conde et al., 2000; Snodderly et al., 2001; 

Kagan et al., 2008).  These waves of activity may serve to provide coordinated neural 

activity to aide in edge detection (Gaarder, 1966), to increase overall gain in the visual 

system while viewing static images (Martinez-Conde et al., 2000, 2002), or to reset and 

synchronize neural activity across areas (Leopold and Logothetis, 1998).  At least two 

other hypotheses have been advanced.  The first is that, aside from their diminutive size 

and the difficulty involved in measuring them, microsaccades are really no different from 

normal saccades.  They simply form the small end of a continuum of saccade amplitude.  
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This theory suggests that microsaccades serve to foveate different portions of the scene 

for high-acuity inspection, or to correct deviations in gaze introduced by drift (Engbert 

and Kliegl, 2003; Ko et al., 2010; Engbert, 2012).  A similar theory holds that 

microsaccades are just noise in the system, produced by stochastic fluctuations of 

neural activity (Steinman et al., 1973; Hafed et al., 2008; Hafed et al., 2009).  

 These competing theories can be organized around one central, unresolved 

question that has been asked repeatedly of microsaccades.  Are they special?  In other 

words, do they differ fundamentally in any way from normal saccades.  The answer to 

this question may help to illuminate the underlying neurophysiology of microsaccades.  

Are they produced by the same neural mechanisms that give rise to regular saccades, or 

are there other neural mechanisms at work?  Evidence that the same neural pathways 

give rise to saccades of all amplitude can be found in main sequence plots.  It has been 

known for some time that the dynamics of microsaccades obey the same relationships 

as those of normal saccades (Bahill et al., 1975).  Recently, an interesting link between 

attention and microsaccades has been reported in both humans (Hafed and Clark, 2002; 

Engbert and Kliegl, 2003) and monkeys (Hafed et al., 2011).  When subjects deploy 

covert attention to a  given area, as they do during a Posner cueing task (Posner, 1980), 

microsaccades tend to be elicited in that direction.  As we shall see below, this finding is 

important in a theory of microsaccade production that places special emphasis on 

neurons in the rostral pole of the SC.   

 

1.4 Elements of the oculomotor system 

 I will not exhaustively review all of the areas of the oculomotor system here, 

choosing instead to focus in more detail on several specific structures that are most 

relevant to the work presented in the following chapters.  This is not meant to diminish 

the contribution of other areas to saccade.  Several structures deserve special note.  
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The basal ganglia serve an important role in both saccade execution and evaluation 

(Hikosaka and Wurtz, 1989; reviewed by Hikosaka et al., 2000).  The specific nuclei that 

have best been characterized in these respects are the substantial nigra pars reticulata 

(Hikosaka and Wurtz, 1983c, b, c) and the caudate (Hikosaka & Sakamoto 1989a; 

1989b; Kawagoe et al., 1998).  The cerebellum  (Keller, 1989; reviewed by Voogd and 

Barmack, 2006) also serves an important role in saccade execution (Takagi et al., 1998) 

and in the process of tuning saccade amplitude to increase accuracy known as saccade 

adaptation (Optican and Robinson, 1980).  Posterior parietal cortex, and in particular the 

lateral intraparietal area has also received a great deal of interest.  Studies have 

famously concluded that it serves an important role in target selection (reviewed by 

Colby and Goldberg, 1999), and saccade evaluation (Platt and Glimcher, 1999).  

However, interesting as these areas are, we will not devote further discussion to them.  

We will begin our exploration of the oculomotor system with the effectors.      

 

1.4.1 The extraocular muscles 

 Movements of each eye are controlled by 6 extraocular muscles (reviewed by 

Goldberg et al., 1991; Sparks, 2002; Krauzlis, 2008).  Two muscles, the medial rectus 

and the lateral rectus, insert rostra-caudally into the nasal and temporal surfaces of the 

ocular globe respectively.  Similarly, the superior and inferior recti insert rostra-caudally 

in the positions indicated by their respective nomenclature.  Finally, the superior and 

inferior oblique muscles insert temporally in such a way that their fibers run more or less 

parallel to the ocular equator.  For simplicity, consideration of the small translational 

movements produced by these muscles is usually omitted and the eye is conceptualized 

as a ball and socket joint with three rotational degrees of freedom.  The antagonistic 

activation of the medial and lateral recti rotate the eye in the horizontal plane producing 

leftward and rightward movements.  Movements produced by the remaining muscles are 
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more complex since their individual activation produces both vertical and torsional 

rotation, causing the eye to rotate around its polar axis.  The relative amount of vertical 

and torsional eye movement produced by each of these muscles is dependant, in part, 

on the position of the eye when the movement is initiated.  Thus, to obtain strictly vertical 

eye movements, combinations of the superior and inferior recti and oblique extraocular 

muscles must be recruited.   

 Innervation of the extraocular muscles is provided by 3 cranial nerves.  The 

abducens nerve (cranial nerve VI) innervates the lateral rectus.  Excitation of the muscle 

by cranial nerve VI therefore causes the eye to abduct, or rotate away from midline.  The 

trochlear nerve (cranial nerve IV) innervates the superior oblique muscle which 

contributes to elevation and torsion of the eye such that the dorsal portion of the globe 

traverses nasally.  The four remaining ocular muscles are innervated by the oculomotor 

nerve (cranial nerve III).  Thus, horizontal, eye movements are initiated by antagonistic 

innervation from the oculomotor and abducens nerve, while vertical and torsional 

movements are (roughly) initiated by antagonistic innervation of the oculomotor and 

trochlear nerve.  Oblique eye movements are produced by synergistic combinations of 

these innervations.   

 In Chapter 2, I report measurements of extraocular muscle activation during the 

saccade stop-signal task.  To carry out these studies, I relied on EMG measured using 

EEG electrodes.  In most EEG studies, electrical activity associated with eye movements 

are treated as nuisance artifacts and steps are taken to isolate and remove them (Luck, 

2005; Godlove, 2010).  One of these artifacts, the saccadic spike potential, is associated 

primarily with contractions of the lateral rectus muscle (Blinn, 1955; Thickbroom and 

Mastaglia, 1985).  Instead of treating this component as an artifact, I treated the EEG 

activity as an artifact and developed methods to remove it, isolating the spike potential 

(see also Keren et al., 2010).  As we shall see, activity of the extraocular muscles differs 
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somewhat from that reported for the skeletal muscles when movements are canceled, 

and the data verify predictions about eye movements based on the circuitry of the brain 

stem nuclei that generate saccades.   

 

1.4.2 The brainstem saccade generator 

 Three brainstem nuclei innervate the extraocular muscles.  The oculomotor 

nucleus is located most rostrally at the level of the SC, the trochlear nucleus is located 

more caudally at the level of the inferior colliculus, and the abducens nucleus is located 

most caudally in the pons inferior to the fourth ventricle  (Goldberg et al., 1991).  Several 

other brainstem nuclei house neurons important for the production of saccades.  These 

include the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), the 

paramedian pontine reticular formation (PPRF) along with its subdivision the nucleus 

raphe interpositius (nRIP), the interstitial nucleus of Cajal (NIC), the nucleus prepositus 

hypoglossi (NPH) and its companion the medial vestibular nucleus (MVN).  Together, 

this collection of nuclei form the brainstem saccade generator (BSG) that performs 

necessary calculations, initiates, and executes saccadic eye movements. 

 Saccade-related firing patterns of motor neurons in the oculomotor nuclei consist 

of a pulse-slide-step arrangement (Fuchs and Luschei, 1970; Robinson, 1970; Fuchs et 

al., 1985; Scudder et al., 2002).  During fixation, motor neurons discharge at a constant 

rate which is dependent on the current position of the eye.  Five to 8 ms before a 

saccade in a given motor neuron's on direction (the contractile direction of the muscle it 

innervates) the neuron begins to fire a vigorous burst of spikes initiating the pulse phase 

of the discharge pattern.  The neuron continues to fire at an elevated level throughout 

the saccade, but the discharge rate falls off with exponential decay.  This period of the 

firing pattern is referred to as the slide.  Around 10 ms before the end of the saccade the 

decay in firing rate asymptotes at a new tonic level proportional to the new eye position.  
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This final phase of the saccadic firing pattern is called the step.  Each component of the 

pulse-slide-step firing profile serves a distinct function in the gaze shift.  The initial pulse 

portion of the discharge provides strong excitation to the extraocular muscle to 

overcome the viscous drag of the orbital tissue (Sparks, 2002; Porter et al., 2003).  The 

duration of the pulse discharge is directly proportional to the duration of the saccade, the 

number of spikes generated during the pulse is proportional to saccade amplitude, and 

the peak firing rate of the pulse is proportional to the peak velocity of the saccade (Fuchs 

et al., 1985; Sparks, 2002).  As the saccade is initiated, the inertia of the eye and its 

surrounding connective tissue is overcome allowing it to glide more easily, but the slide 

portion of the saccadic discharge ensures that the eye rotates with an accelerating and 

then decelerating velocity arc.  Finally, the step phase of the firing pattern provides tonic 

innervation to the extraocular muscle, allowing the new eye position to remain fixed until 

the next movement is generated.  This tonic firing rate is highly linearly correlated with 

eye position although the slope of the regression line varies from one cell to another and 

is related to the position at which a cell is first recruited to help maintain ocular rotation, 

or its position threshold (Fuchs et al., 1985).  

 Neurons innervating the extraocular muscles produce this pulse-slide-step 

discharge pattern by integrating activity from several upstream neurons; burst neurons 

contribute to the pulse by firing short high frequency spike trains before and during 

saccades.  Burst neurons actually form a broad class of saccade related cells.  As their 

names imply short lead burst neurons and long lead burst neurons fire in anticipation of 

saccades with different lead times.  Long lead burst neurons serve several different 

functions, they are thought to be one of the major input pathways to the BSG, and they 

are less well understood than short lead burst neurons.  They are reviewed in depth 

elsewhere (Fuchs et al., 1985), and will not be discussed in detail here.  Short lead burst 

neurons can be further subdivided based on the type of input they provide to motor 
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neurons.  Excitatory burst neurons project monosynaptically to ipsilateral motor neurons 

where they provide the excitation leading to the initial pulse of muscle contraction.  

Inhibitory burst neurons project monosynaptically to the contralateral motor nuclei in 

control of muscle antagonists, where they contribute to inhibitory postsynaptic potentials 

during saccades (Fuchs et al., 1985).  Tonic neurons contribute to the step by emitting a 

constant, lower frequency discharge in response to eye position.  Omnidirectional pause 

neurons (or simply omnipause neurons OPNs) exert tonic inhibition on contralateral 

short lead burst neurons (Goldberg et al., 1991).  By ceasing to fire when saccades are 

initiated, they coordinate the activity of burst neurons and thus the action of multiple 

extraocular muscles to produces accurate saccades.  Thus, burst neurons and OPNs 

instantiate the tension between going and stopping at the level of the brainstem.  

Together, these neurons form the basic circuitry of the BSG (Fuchs et al., 1985; 

Goldberg et al., 1991; Scudder et al., 2002; Krauzlis, 2008)   

 Excitatory and inhibitory burst neurons associated with vertical saccades lie in 

the riMLF while those associated with horizontal saccades lie in the PPRF (Scudder et 

al., 2002; Sparks, 2002; Krauzlis, 2008).  Tonic neurons in the NPH and MVN provide 

the step function to the appropriate motor neurons for horizontal saccades, while tonic 

neurons in the NIC provide steps to the appropriate motor nuclei to control vertical eye 

movements (Sparks, 2002).  OPNs inhabit the nRIP of the PPRF alongside burst cells 

which initiate horizontal saccades.   

 The BSG can be conceptualized metaphorically as a function in the mathematical 

or computer programming sense.  It acts as a unitary and largely independent system 

receiving input (retinal position error commands from the midbrain and cerebral cortex), 

performing calculations, and issuing output (instructions for coordinated muscle 

contractions).  Inputs from these areas synapse on long lead burst neurons as well as 

directly on short lead burst neurons and OPNs.  In addition to ipsilateral projections to 

17 
 



extraocular muscles, some inhibitory burst neurons in these nuclei project via the medial 

longitudinal fasciculus to nuclei innervating contralateral extraocular muscles (Hikosaka 

et al., 1978).  This decussation provides a mechanism keeping the eyes tightly yoked 

during conjugate movements (but see Collewijn et al., 1988; Zhou and King, 1998; 

Sylvestre et al., 2003).  As we shall see in Chapter 2, this property constitutes an 

important difference between the oculomotor and the spinal motor systems.  Under 

normal circumstances, agonist and antogonist muscles of the oculomotor system are not 

coactivated precluding this as a viable method for canceling saccades.  This circuitry 

also accounts for the somewhat ballistic nature of saccades (reviewed by Carpenter, 

1988; Becker, 1989).  The BSG calculates saccade trajectories while the OPNs ensure 

that gaze remains fixed.  Then, all at once, OPNs release their inhibition and allow 

saccades to be executed in discreet quanta as all or nothing events (Carpenter, 1988).   

 

1.4.3 The superior colliculus 

 The SC is a laminar midbrain structure lying in an excellent position to integrate 

sensory input with motor commands (reviewed by Sparks and Hartwich-Young, 1989; 

Guitton, 1991; Gandhi and Katnani, 2011).  The superficial layers of the SC are primary 

related to visual processing (reviewed by Robinson and McClurkin, 1989).  They receive 

extraretinal projections as well as projections from the ventral lateral geniculate nucleus, 

striate and extrastriate visual cortices, pre-motor cortex, the parabigeminal nucleus, and 

the pretectum.  Efferents from the superficial layers include projections to pre-motor 

cortex, the parabigeminal nucleus, the pretectum, the lateral posterior pulvinar, and both 

the dorsal and ventral lateral geniculate nucleus.  The deep layers of the SC exhibit 

more diverse anatomical conductivity.  They receive afferents from many areas involved 

in visual, auditory, and somatosensory processing as well as areas associated with 

saccadic eye movements such as the frontal eye fields (FEF see below), and 
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supplementary eye fields (SEF see below).  Efferents from the deep layers project to 

several thalamic nuclei including the medial dorsal nucleus (MD).  This pathway plays a 

central role in conveying corollary discharge signals from SC to cortical structures, 

allowing fast accurate updating of changing eye positions (Sommer and Wurtz, 2002).  

The deep layers of SC also project to a wide array of nuclei in the pons, medulla, and 

mesencephelon including the BSG nuclei discussed above (Benevento and Fallon, 

1975; Harting et al., 1980; Huerta et al., 1986; Huerta and Kaas, 1990; Moschovakis et 

al., 1996).  For our purposes, it is important to note that SC projects to OPNs in the nRIP 

of the PPRF, and that these projections emanate most densely from rostral SC (Gandhi 

and Keller, 1997; Büttner-Ennever et al., 1999).  Rostral SC has been found to project 

monosynaptically to OPNs while cells in caudal SC project disynaptically to OPNs 

(Shinoda et al., 2011).  The majority of the descending efferents from the deep SC 

layers project to their targets either contralaterally via the predorsal bundle or tectospinal 

tract, or ipsilaterally via the tectopontine-bulbar tract.  Although there has been some 

controversy, there is currently general agreement that the deep and superficial layers of 

the SC share reciprocal projections with each other as well (Sparks and Hartwich-

Young, 1989; King, 2004).  These connections likely help to mediate the sensorimotor 

transformation from target to saccade.   

 Lesion studies have demonstrated that the SC plays an important role in normal 

saccade production, although this role can be difficult to observe.  Initial lesion studies 

just before and around the turn of the 20th century suggested little or no involvement of 

the SC in saccadic eye movements (reviewed by Ferrier and Turner, 1901; Sparks and 

Hartwich-Young, 1989).  Neither lesions of SC nor lesions of striate cortex permanently 

impair monkeys on simple saccade detection tasks, but combined lesions of SC and 

striate cortex produce profound and irreversible deficits (Mohler and Wurtz, 1977).  

Similarly, either FEF or SC can be lesioned without significant impairment on a simple 
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task in which monkeys find, grasp, and feed themselves small pieces of apple.  

However, simultaneous lesions produced in both of these areas destroy the monkeys’ 

ability to foveate the apple pieces as it reaches for them (Schiller et al., 1979, 1980).  

This is not to say that the monkey is blinded or that spatial attention has been severely 

compromised, because lesioned animals still reach for apple slices manually, albeit 

without making saccades to them.  

 Neurophysiological recording studies confirm the importance of SC in making 

saccades.  The deep layers of the SC contain cells which respond to auditory, 

somatosensory, and visual stimuli, as well as multisensory cells which integrate stimuli 

from multiple modalities (Stein and Meredith, 1993; King, 2004; Stein and Stanford, 

2008).  In addition, the deep collicular layers contain cells which fire before and during 

eye movements.  Saccade related SC cells respond either with low frequency prelude 

activity, or high frequency bursts which are more tightly coupled to saccade production, 

while fixation neurons in the rostral SC fire at a high tonic rate and pause when 

saccades are made (Munoz and Guitton, 1991; Munoz and Wurtz, 1993a; Munoz and 

Wurtz, 1993b; Munoz and Wurtz, 1995).  Thus, the tension between gaze holding and 

gaze shifting is apparent in the biological responses of midbrain neurons.   (Although 

there is some controversy concerning the actual role of the rostral SC.  See below.)  

Saccade related neurons may also demonstrate sensory evoked responses and these 

responses may, in turn, be high frequency bursts tightly coupled with stimulus onset or 

low frequency firing patterns following the presentation.  Sparks & Harwich-Young 

(1989) review 3 main categories of movement related cell in the SC.  One category, 

visual motor cells, contains neurons which show both stimulus and saccade related 

activity.  Another category of neuron, visually triggered movement cells, may appear as 

visual motor cells initially.  However, these neurons show saccade related activity that is 

dependent on visual stimuli; they will not fire action potentials when saccades are 

20 
 



produced in the absence of a visual target.  Finally, saccade related burst neuron is a 

term used to describe any cell which reliably demonstrates presaccadic activity in the 

clear absence of a sensory response.  These cells may have long low frequency prelude 

activity before a saccade, or may show temporally discrete high frequency bursts 18-20 

ms before saccade onset.   

 Saccade related burst neurons form a retinal position error map in deep SC 

layers. Wurtz and Goldberg (1972) first demonstrated that neurons in the deep layers of 

SC cells show reliable patterns of discharge before saccade initiation.  Robinson (1972; 

see also Adamük, 1872) stimulated in the deep layers and recording eye movements.  

He reported that suprathreshold stimulation elicited saccades of an amplitude and 

velocity which was uniquely determined by the electrode location, and that this motor 

map showed a “delightful” correspondence with the visuotopic map reported in the 

superficial layers.  Larger amplitude saccades are represented more caudal and 

saccades with upward trajectory are represented more medial.  The medial/lateral 

dimension shows a smooth, linear transition of saccade angle, while the rostral caudal 

amplitude map is logarithmic: a larger portion of the map represents small amplitude 

saccades (Ottes et al., 1986).  The saccade vectors elicited by microstimulation are not 

affected by eye position, and multiple “staircase” saccades are elicited with longer 

pulses.  These observations show that the motor map in SC represents a retinal position 

error frame of reference.  Robinson (1972) also noted that simultaneous stimulation of 

multiple sites elicited saccades which were weighted vector averages of the saccade 

vectors elicited with individual stimulation.  These findings laid the groundwork for vector 

summation (Georgopoulos et al., 1986) and vector averaging (Lee et al., 1988; Walton et 

al., 2005) accounts of saccadic generation in the SC.  Although the details of these two 

hypotheses differ (Gandhi and Katnani, 2011), the basic premise remains the same.  

Individual burst neurons in SC display broad saccade vector tuning curves.  A mound of 
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neural activity (usually pictured as a two dimensional Gaussian) occurs in the deep SC 

leading up to a saccade.  Roughly 28% of the total saccade related burst neurons are 

active in one SC before and during a contralateral saccade (Munoz and Wurtz, 1995).  

By aggregating the preferred vectors of these widely tuned neurons, precise direction 

and amplitude signals are conveyed to the BSG.   

 In considering the effects of SC microstimulation, it is important to note that 

elicited orienting responses are not limited to the eyes themselves (reviewed by Gandhi 

and Katnani, 2011).  SC stimulation also elicits contractions of the neck muscles leading 

to orienting of the head in unrestrained animals (Cowie and Robinson, 1994; Corneil et 

al., 2002), and even movements of the lower body in several species (Hess et al., 1946; 

Schaefer, 1970; Syka and Radil-Weiss, 1971; Dean et al., 1986; Tehovnik and 

Yeomans, 1986).  In animals with motor systems that make this possible, SC stimulation 

can elicit orienting of different sensory organs such as pinna movement in monkey, cats, 

and rodents (McHaffie and Stein, 1982; Cowie and Robinson, 1994), whisker orienting in 

rodents (McHaffie and Stein, 1982; Hemelt and Keller, 2008), and even vocalization 

signals used for echolocation in bats (Valentine et al., 2002).  Finally, SC stimulation 

elicits escape responses in freely moving rodents (Dean et al., 1986).  Similar findings 

have been obtained in primates using the GABAA antagonist bicuculline methiodide 

(DesJardin et al., 2013). These findings suggest there is still much to learn about this 

fascinating midbrain structure.   

Reversible, chemical inactivation experiments have been particularly useful in 

elucidating the role of SC in generating saccades.  Hikosaka and Wurtz (1985) first used 

small collicular injections of muscimol and bicuculline to modify saccades of specific 

trajectories.  Reversible inactivation studies later showed that activity in SC is not strictly 

motor related, but that SC neurons participate in a target selection process.  Reversible 

inactivation of a small portion of caudal SC does not lead to motor deficits per se but 
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produces selection errors during visual search when targets fall within the response field 

of the inactivated neurons (McPeek and Keller, 2004).  Inactivation has also been critical 

in the study of rostral SC function.  The classic view since Robinson's (1972) 

microstimulation experiments held that neurons in SC formed a continuous map of 

saccade amplitude down to the smallest saccades in the rostral pole.  In a later series of 

studies, Munoz and Wurtz (1993a;1993b) challenged this view by showing that rostral 

SC contains neurons that are involved in gaze holding rather than gaze shifting.  After 

recording from the rostral pole and describing neurons that fired briskly during fixation, 

they inactivated the rostral SC.  They demonstrated that monkeys make more saccades 

and are impaired in fixation after inactivation of neurons in this region.  However, these 

results have since become controversial.  Krauzlis and colleagues have hypothesized 

that the classic view of Robinson is correct, and that neurons in the rostral pole of SC 

represents microsaccades.  Supporting this view, these authors recorded neurons in the 

rostral pole that fire in advance of microsaccades (Hafed et al., 2009).  It should be 

noted that Munoz and Wurtz (1993a) also observed many neurons in rostral SC that 

fired in advance of saccades, but they reported another smaller population that did not 

fire in advance of any recorded saccades.  They may have overlooked these responses 

because their techniques were inadequate to detect microsaccades.  However, it is also 

possible that Krauzlis and colleagues excluded neurons that did not show saccade 

related activity (i.e. fixation neurons) since their inclusion criteria for that study required 

that neurons show prelude activity before saccades (Hafed et al., 2009).  Nevertheless, 

another discrepancy exists.  Krauzlis and colleagues have also performed inactivation 

studies in rostral SC and have not reported any deficits in fixation behavior (Hafed et al., 

2008; Hafed et al., 2009; Hafed and Krauzlis, 2012).  In fact, they propose that fixation 

was more stabile after inactivation since the number of microsaccades they recorded 
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was decreased (Hafed et al., 2009; Hafed and Krauzlis, 2012).  What are we to make of 

these conflicting reports? 

 Based in part on the observation that inactivation in rostral SC induces stabile 

eye position offsets while monkeys track an inferred target with smooth pursuit 

movements, Krauzis and colleagues have proposed the following model of rostral SC 

function (Hafed et al., 2008; Hafed et al., 2009; Hafed and Krauzlis, 2012; see also 

Engbert, 2012).  Consistent with the classic view, neurons are thought to form a 

continuous map of saccade amplitude down to the smallest microsaccades in the rostral 

SC.  Fixation is achieved when neural activity is balanced across the collicular map.  

Whenever the center of mass of neural activity deviates by some (yet to be determined) 

threshold, a microsaccade is produced.  As noted above, microsaccades are often made 

in the direction of peripheral attention.  The microsaccade hypothesis of rostral SC 

explains this interesting phenomenon by suggesting that peripheral attention causes 

subthreshold activation at the corresponding location in rostral SC (Kustov and 

Robinson, 1995; Bergeron et al., 2003), and this causes the collicular activity map to 

become unbalanced.  As we shall see in Chapter 3, this model makes specific 

predictions about the pattern of microsaccades that should be observed when large 

overt saccades are canceled in the stop-signal task.  Interestingly these predictions are 

not borne out in the data, suggesting a method of fixation other than balanced neural 

activity in SC.   

 We will now turn our attention to the cortical control of saccadic eye movements 

with special emphasis on areas anterior of the central sulcus.  In macaque monkeys, eye 

movements are elicited by low-current, electrical stimulation of at least three areas of 

frontal and medial frontal cortex; the FEF (Bruce et al., 1985), SEF (Schlag and Schlag-

Rey, 1987) and the rostral cingulate motor area of the anterior cingulate cortex (ACC) 

(Mitz and Wise, 1987).  The first of these areas to be discovered was FEF.   
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1.4.4 Frontal eye field 

In monkeys, FEF is located in dorso-lateral prefrontal cortex in the rostral bank 

and the fundus of the arcuate sulcus (Bruce and Goldberg, 1985; Bruce et al., 1985).  

The location of the human homologue shows some variability between subjects which is 

more pronounced in the medial/lateral dimension, but is usually located either in or near 

the precentral sulcus or in the fundus of the caudal superior frontal sulcus (Paus, 1996; 

Curtis, 2006; Neggers et al., 2007).  FEF is densely connected with subcortical and 

cortical visual and oculomotor areas.  FEF projects to the SC, with especially dense 

projections to the deep layers.  FEF and SC also demonstrate similar subcortical 

projection patterns.  FEF projects to the pretectum and many nuclei of the BSG, 

including the nRIP of the PPRF that contains OPNs (Schnyder et al., 1985; Huerta et al., 

1986; Stanton et al., 1988; Segraves, 1992).  FEF also shares a reciprocal projection 

with MD, allowing it to receive corollary discharge signals from SC (Huerta et al., 1986).  

Cortically, FEF demonstrates extensive billateral connections with adjacent areas of 

frontal cortex including the supplementary motor areas, pre-supplementary motor area, 

SEF, and periprincipal prefrontal cortex (Huerta et al., 1987).  In addition, FEF shows 

bilateral projections with many areas of extrastriate cortex such as visual area 4 (V4), 

the superior temporal sulcus, and the lateral intraparietal area (LIP).  Interestingly, these 

projections show topographical specificity such that ventral stream areas and areas 

representing foveal locations tend to connect with ventrolateral FEF, while dorsal stream 

areas, areas representing peripheral space, and areas showing auditory and multimodal 

responses tend to connect with dorsomedial FEF (Schall et al., 1995; Stanton et al., 

1995; Bullier et al., 1996).  Since neurons in the inferior, ventrolateral limb of the arcuate 

sulcus tend to encode saccades of smaller amplitude, while neurons in the superior 

dorsomedial limb of the arcuate tend to encode saccades of larger amplitude (Robinson 
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and Fuchs, 1969; Bruce and Goldberg, 1985; Bruce et al., 1985; Stanton et al., 1989; 

Schall et al., 1993), these projection patterns suggest a topographical and functional 

segregation of saccades for object identification and exploration vs. target localization 

and orienting in FEF.   

Electrical microstimulation studies have long shown that areas in and around the 

arcuate sulcus are associated with saccades.  In classic experiments Ferrier (1875) 

mapped the cerebral cortex of anesthetized monkeys.  In all 10 of the monkeys tested, 

Ferrier noted that microstimulation of a large area in prefrontal cortex produced 

contralateral saccades and head movements, opening of the eyelids and lifting of the 

brow, and pupil dilation of both eyes.  Other classic work replicated and extended these 

findings (Mott and Schaefer, 1890; Levinsohn, 1909).  As microstimulation techniques 

were refined and frontal cortex was mapped with greater precision, the area that we now 

call FEF grew progressively smaller (reviewed by Schlag and Schlag-Rey, 1987).  We 

now know that the original area studied by Ferrier using relatively large epicortical 

stimulating electrodes probably included not only FEF, but also SEF (see below).   

 Several attributes of microstimulation in FEF are very similar to microstimulation 

in SC.  For instance, stimulation of a particular location in FEF produces fixed vector 

saccades and prolonged stimulation elicits “staircased” saccadic eye movements 

(Robinson and Fuchs, 1969).  This suggests that FEF also encodes saccades in retinal 

position error coordinates.  As in SC, stimulation of FEF produces generalized orienting 

responses including contractions of the neck muscles (Tu and Keating, 2000; Elsley et 

al., 2007; Knight and Fuchs, 2007).  Also similar to SC, FEF contains a map of saccade 

amplitude, although this representation is much more course that it is in SC (Robinson 

and Fuchs, 1969; Bruce and Goldberg, 1985; Bruce et al., 1985; Stanton et al., 1989; 

Schall et al., 1993).   
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Lesion studies further elucidate the role of FEF in eliciting saccades.  As stated 

above, selective lesions of both SC and FEF are needed to produce profound deficits in 

orienting responses and saccadic eye movements (Schiller et al., 1979).  These findings 

suggest similarity and redundancy between FEF and SC, positioning them as principle 

players in a distributed network for saccade production.  In addition to projection patterns 

and effects of lesion studies, FEF and SC share many similarities in neural responses 

and in proposed functional roles. 

Seminal studies of response properties of single neurons in FEF identify several 

different cell types (Bruce and Goldberg, 1985; Schall, 1991b).  These are commonly 

categorized as visual cells, movement cells, and visual/movement (or vis-mov) cells.  

Differences between these neuron types can be observed using a delayed- or memory-

guided saccade task (Hikosaka and Wurtz, 1983a).  Visual cells respond to stimuli within 

their receptive fields regardless of whether or not saccades are made toward these 

locations.  Movement cells increase activity before and during saccades made into their 

response fields regardless of whether these saccades are made under visual guidance.  

Vis-mov cells respond both to visual stimuli and before and during saccades made in the 

directions of these stimuli.  These are an interesting class of neuron, and recent 

functional (Ray et al., 2009) and biophysical (Cohen et al., 2009) evidence suggests that 

they may be fundamentally different than the other cell types listed above.  Visual cells 

have been recorded from both supra- and infra-granular layers (Thompson et al., 1996).  

Pyramidal neurons that project to subcortical structures are found in infragranular layers, 

and particularly in layer V (Segraves and Goldberg, 1987; Segraves, 1992; Sommer and 

Wurtz, 2002),while cells that project to extrastriate cortex tend to originate in superficial 

layers (Pouget et al., 2005).  As a side note, it is worth mentioning that that only about 

54% of neurons in FEF show visual or movement related responses, and some types of 

neural responses have received little attention.  For instance, although it is rarely noted, 
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some FEF neurons respond to auditory stimuli (Schall, 1991b).  These considerations 

leave open the possibility that there are other important functions carried out by FEF that 

have not yet been identified and  studied.   

Neurons that are best described as fixation cells have also been identified in FEF 

(Hanes et al., 1998; Izawa et al., 2009).  As in SC, these neurons fire at a high tonic rate, 

pause before and during eye movements, and increase activity when planned saccades 

are canceled.  Thus, the tension between stopping and going is instantiated 

physiologically at the cortical level as well.  Fixation cells are more rarely reported in the 

literature than visual and movement cells, and, anecdotally, they are more difficult to 

locate and record.  At least one group reports that fixation cells are primarily 

concentrated near the center of FEF in the middle saccade amplitude range (Izawa et 

al., 2009).  Although it has been proposed that fixation cells in SC actually encode 

microsaccades, no such proposal has been made concerning fixation cells in FEF.   

FEF’s primary role in the oculomotor system appears to be one of target 

selection.  In addition to encoding the location of visual stimuli and upcoming eye 

movements, neurons in FEF encode the location of spatial attention.  Neurons in FEF 

select behaviorally relevant targets from distracters(Schall and Hanes, 1993; Schall, 

1995).  Activity related to spatial attention can be dissociated from simple motor 

preparation in FEF (Sato et al., 2001; Juan et al., 2004; Schall, 2004; Schafer and 

Moore, 2011).  From a computational standpoint, decision making has long been 

modeled as a process that integrates information over time accumulating activity toward 

a threshold (e.g. Nosofsky and Palmeri, 1997; Ratcliff and Rouder, 1998; Usher and 

McClelland, 2001; Bogacz et al., 2006).  Recent work shows that visual neurons in FEF 

sample perceptual information and movement neurons integrate this activity toward a 

threshold (Hanes and Schall, 1996; Purcell et al., 2010; Purcell et al., 2012b; Schall et 

al., 2012).  Thus, FEF instantiates a decision making process concerning which 
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upcoming stimuli to foveate.  Target selection is the subject of a vast, active field of 

research.  But it falls outside of the purview of this dissertation, which is concerned with 

saccade execution and evaluation and will therefore not be reviewed in detail. 

 

1.4.5 Movement cells, fixation cells and Logan’s race model 

Now that we have discussed some basic elements of the oculomotor system, we 

may revisit the saccade-response variant of the stop-signal task (Hanes and Schall, 

1995; Hanes and Carpenter, 1999).  By training macaque monkeys to perform the 

saccade countermanding task, and recording responses of single neurons in SEF and 

SC, clear mechanistic explanations of saccade execution and inhibition in the 

oculomotor system have been obtained (Hanes et al., 1998; Paré and Hanes, 2003; 

Brown et al., 2008; Schall and Godlove, 2012; see also Kornylo et al., 2003).  Two 

criteria must be met for neurons to participate in executing eye movements.  First, 

neurons must discharge differently when movements are initiated or withheld; if neurons 

still discharge when movements are canceled, their activity was not affected by the stop 

process.  Second, the differential modulation on canceled trials must occur before 

SSRT; otherwise, the neural modulation happens after the movement has already been 

canceled.  Movement cells and fixation cells in FEF and SC satisfy these two criteria.  

After the target appears, movement-related activity begins to grow toward a threshold 

that triggers response initiation (Hanes and Schall, 1996).  If the activity reaches 

threshold, a response is produced regardless of whether a stop-signal was presented.  

However, responses are canceled when the movement-related activity is inhibited so 

that it does not reach the threshold activation level.  The source of this inhibition is a 

signal such as that conveyed by fixation neurons in FEF and SC.  Crucially, the 

pronounced modulation of fixation- and movement-related activity precedes SSRT.   
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It is tempting to hypothesize that movement and fixation neurons are a literal, 

biological instantiation Logan's race model.  But the central assumption that finish times 

of the GO and STOP processes must be independent complicates this interpretation 

(Logan and Cowan, 1984).  If circuits that instantiate the race model consist of 

interacting neurons, how can they produce behavior that can be described 

mathematically by a model consisting of independent processes?  This paradox has 

been resolved through another model consisting of a network of interacting GO and 

STOP units with randomly accumulating activation (Boucher et al., 2007a; see also 

Wong-Lin et al., 2010).  This model fits performance data and replicates neural data if 

and only if the STOP unit inhibits the GO unit in a delayed and potent fashion.  Thus, a 

neurally plausible mechanism of interaction is the only way that the model naturally fits 

behavior.  This interactive race model has since been extended to a network of 

biophysically realistic spiking neurons (Lo et al., 2009).  Thus, the race model has 

afforded precise description at multiple levels, both neural and behavioral, during the 

stop-signal task.  This rare coordination between psychophysics, formal mathematical 

modeling, and neurophysiology establishes a clear linking proposition between the GO 

and STOP processes of the race model and gaze-shifting and gaze-holding neurons in 

the ocular motor circuit.   

These gains were made possible by studying the physiological basis of response 

inhibition in the oculomotor system.  It is obviously of great interest to know whether 

these findings generalize to the skeletal motor system since most stop-signal 

experiments test manual responses.  To investigate the generality of stopping 

mechanisms across effectors, Boucher et al., (2007b) tested whether human subjects 

could stop eye and hand movements independently.  SSRTs were longer for hand 

movements than for eye movements, and advanced knowledge of which effector to stop 

did not confer any stopping advantage.  This study shows that there must be some 
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independence between the processes which stop eye and hand movements (see also 

Logan and Irwin, 2000).  Additional evidence for differences between effectors comes 

from studies examining the fine dynamics of movements on stop trials.  In a series of 

classic studies, De Jong and colleagues (1990, 1995) attempted to determine the stages 

of preparation during which responses can be canceled.  They found that stop-signals 

sometimes result in partial responses (defined as subthreshold squeezes of a 

dynamometer) or partial EMG in the absence of an overt detectable response.  These 

results indicate that manual responses can be canceled at any stage of preparation up 

to and including the initiation of the response itself.  Several other groups have also 

reported partial muscle activation when overt manual responses are canceled (McGarry 

and Franks, 1997; McGarry et al., 2000; van Boxtel et al., 2001; Scangos and Stuphorn, 

2010) and one group has reported reduced response force on noncanceled trials (Ko 

and Miller, 2011).  Similarly, when combined eye and head gaze shifts are canceled, 

neck muscles are often active (Corneil and Elsley, 2005; Goonetilleke et al., 2010).  At 

least one group has reported that average saccade amplitude is similarly decreased on 

errant noncanceled trials, suggesting that some saccades may be canceled at the latest 

stages of execution and truncated in midflight (Colonius et al., 2001; Ozyurt et al., 2003; 

Akerfelt et al., 2006).  However, these results differ from the original saccade stop-signal 

report of Hanes and Schall (1995) in which no amplitude differences were found 

between no-stop and noncanceled trials.  There is reason to believe that saccades are 

fundamentally different from manual responses and cannot be canceled at such a late 

stage of execution.  Saccades are thought to be programmed in advance and triggered 

as ballistic units (Carpenter, 1988; Becker, 1989).  And, owing to the circuitry of the 

brainstem saccade generator covered above, it should be nearly impossible to cancel 

saccades by coactivating agonist and antagonist muscles (Hikosaka et al., 1978; 

Scudder et al., 2002; Sparks, 2002).  I will revisit these questions in Chapter 2 where I 
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present EMG measurements of the extraocular muscles during the saccade 

countermanding task.  For now, we turn our attention back to the elements of the 

oculomotor system.  

 

1.4.6 Supplementary eye field 

 In monkeys, SEF is located on the dorsal surface of medial frontal cortex in a 

slight depression known as the dorsal-medial convexity.  It is a small patch of cortex (~9 

mm2) situated at roughly the same position anterior or slightly rostral to the most anterior 

aspect of the superior limb of the arcuate sulcus 4 or 5 mm lateral of midline.  The 

human homologue of SEF probably lies within the medial wall in the upper part of the 

paracentral sulcus (Grosbras et al., 1999; Neggers et al., 2012).  Like FEF, the 

projection patterns of SEF position it as an important structure in the oculomotor circuit.  

Subcortically, SEF is connected to several visual nuclei of the thalamus including MD.  It 

also projects to subcortical oculomotor structures, including the deep layers of SC and 

several nuclei of the BSG including the riMLF and the nRIP of the PPRF (Shook et al., 

1988; Huerta and Kaas, 1990; Shook et al., 1990). Cortically, SEF is reciprocally 

connected with the surrounding areas of frontal and medial cortex, including FEF, ACC, 

and the supplementary (SMA) and pre-supplementary (pre-SMA) motor areas (Huerta 

and Kaas, 1990; Bates and Goldman-Rakic, 1993; Schall et al., 1993; Stanton et al., 

1993; Luppino et al., 2003) Stanton et al., 1993; Luppino et al., 2003).  It receives visual 

input from many areas of extrastriate cortex, both in the ventral stream along the ventral 

extent of the superior temporal sulcus, and in the dorsal stream including area LIP, area 

6a, area 7a, and the medial superior temporal area (Barbas and Pandya, 1987; Huerta 

and Kaas, 1990; Shipp et al., 1998).  Notably, the cytoarchitecture of SEF differs from 

that of most other cortical areas.  SEF, like many areas of motor cortex, is agranular, 

meaning that it lacks a granular layer IV.  This is particularly interesting, because it 
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means that the microciruitry of SEF may differ from that of other cortical areas.  The 

canonical microcircuit that is used as a model for every area of cortex depends critically 

on granular layer IV which is thought to receive ascending thalamic and cortical input 

(reviewed below).  Afferents from extrastriate cortex tend to terminate in layers III and V 

of SEF, while afferents from FEF terminate in all layers (Barbas and Pandya, 1987; 

Huerta and Kaas, 1990; Schall et al., 1993; Stanton et al., 1993; Maioli et al., 1998; 

Shipp et al., 1998).  How may microcircuitry in SEF differ from the canonical cortical 

microcircuit?  I examine this issue in detail using laminar recordings from SEF in 

Chapters 4 and 6, and we will return to this issue below after introducing SEF in more 

detail. 

 As with FEF, SEF was first identified and characterized using electrical 

microstimulation (Schlag and Schlag-Rey, 1987; Schall, 1991a).  However, unlike 

saccades elicited with FEF and SC stimulation, the trajectories of saccades elicited 

during SEF stimulation often depend critically on eye position.  At most locations within 

SEF, stimulation elicits convergent saccades, in head, body, or external space centered 

coordinates (Schlag and Schlag-Rey, 1987; Schall, 1991a; Tehovnik and Lee, 1993; 

Tehovnik et al., 1998; Martinez-Trujillo et al., 2004; but see Russo and Bruce, 

1993,1996).  Also unlike FEF stimulation, prolonged stimulation in SEF does not lead to 

repetitive saccades resembling the fast phase of nystagmus.  Instead, the eyes tend to 

converge on a single point and then to remain fixed for as long as stimulation continues 

(Schall, 1991a; Tehovnik and Lee, 1993; Tehovnik et al., 1994).  The behavioral state of 

the subject also plays an important role in determining whether or not saccades will be 

elicited with SEF stimulation of a given threshold (Mann et al., 1988; Russo and Bruce, 

1993; Fujii et al., 1995).  While one can often locate sites in FEF and SC where 

stimulation will cause subjects to break fixation and make fixed vector saccades, it is 

difficult to locate sites in SEF that will cause subjects to break active fixation and 
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stimulation is often delivered in the absence of a visible fixation point (e.g. Tehovnik et 

al., 1999; Martinez-Trujillo et al., 2004).  Intriguingly, stimulation delivered below the 

threshold for evoking saccades has been shown to elicit context-specific improvements 

in task performance which may take the form of either increases or decreases in 

saccade reaction times (Stuphorn and Schall, 2006).  These findings provide valuable 

clues as to the role of SEF in saccade execution and evaluation.   

Like FEF and SC, SEF contains neurons that are responsive to visual stimuli, 

and neurons that increase activity before and during saccades (Schlag and Schlag-Rey, 

1987; Bon and Lucchetti, 1991; Schall, 1991a; Bon and Lucchetti, 1992; Hanes et al., 

1995; Russo and Bruce, 2000).  Some have also suggested that SEF contains fixation 

neurons, (Schlag et al., 1992; Lee and Tehovnik, 1995), but these neurons differ from 

those that fire tonically between saccades in FEF and SC; they are probably more 

closely related to anticipation of reward when monkeys are given incentive to fixate.  

There does exist a class of neuron in SEF that increase firing during the stop-signal task 

when saccades are actively canceled.  But tests with the stop-signal paradigm have 

produced unambiguous results; unlike FEF and SC, the majority of neurons in SEF 

modulate too late during the stop-signal task to play a direct role in executing or 

withholding saccades (Stuphorn et al., 2000; Stuphorn et al., 2010).  At least one report 

may contradict this finding.  Isoda and Hikosaka (2007) recorded from an area of pre-

SMA that showed saccade related activity and may therefore have included neurons 

from SEF.  One of the tasks that monkeys performed in this study was a go/nogo task.  

This task resembles a stop-signal task with SSD = 0, but lacks a well-defined behavioral 

measure comparable to SSRT.  These researchers identified some neurons in pre-SAM 

with increased activity on successful no-go  trials that look very similar to those identified 

by Stuphorn and colleagues (2000; 2010) which increase activity on canceled trials.  

However, whereas activity in SEF modulated too late to contribute to response inhibition 
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in the stop-signal task, the modulation of neurons in pre-SMA (and perhaps SEF) did 

occur within the transition between error and correct response times during the go/nogo 

paradigm (Isoda and Hikosaka, 2007).  Isoda and Hikosaka took this as evidence that 

the neurons they recorded modulated early enough to affect behavior on the current trial.  

Notwithstanding the high degree of experimental expertise evident in this study, it is not 

clear if the transition between error and correct RT distributions in the go/nogo task 

should be taken as a reflection of the time needed to cancel action.  Further research is 

needed to resolve this potential ambiguity, but for now, SEF appears to modulate too 

late to be directly involved in saccade execution.  

 If SEF does not play a direct part in saccade execution, what is its role in the 

oculomotor system?  Many different theories have been advanced.  Upon verifying SEF 

as an eye field independent of FEF, Schlag and Schlag-Rey (1987) initially hypothesized 

that these areas may be important for fixed-vector and goal-directed or self-initated 

saccades respectively.  These hypotheses were based in part on the observation that 

SEF neurons were active when monkeys made saccades in total darkness.  However, in 

order to encourage monkeys to make saccades in darkness, these researchers 

periodically illuminated targets at random intervals and locations.  Monkeys were then 

rewarded for quickly foveating these targets.  Hence, monkeys were not eliciting 

spontaneous saccades in these studies, but were actively searching for targets in 

anticipation of reward.  Later work showed that SEF neurons are poorly activated when 

animals generate truly spontaneous saccades in darkness (Schall, 1991a).   I will revisit 

these hypotheses and provide new data in Chapter 4.  Further evidence that SEF may 

be important for generating voluntary saccades (as opposed to the involuntary saccades 

often described as ocular grasp reflexes) comes from studies using the antisaccade 

task.  In this task, subjects are instructed to make saccades to locations diametrically 

opposite of visible targets (reviewed by Munoz and Everling, 2004).  Several studies 
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suggest that SEF neurons fire at a higher rate for antisaccades than for prosaccades 

(made to visible targets), and that this activity scales with the probability of successfully 

completing an antisaccade (Schlag-Rey et al., 1997; Amador et al., 2004).  But it is 

difficult to evaluate whether these neural responses are specific to the antisaccade per 

se since generating an antisaccade is a complex behavior made up of several 

components including the suppression of a prosaccade to the visible target.  An obvious 

suggestion is that SEF may contribute to target selection by representing salience, but 

recent work shows that this is not the case (Purcell et al., 2012a).  The converging 

saccade trajectories elicited by microstimulation of SEF lead naturally to the idea that 

this area is important for transforming object-centered, space-centered, or head-

centered reference frames into eye-centered coordinate systems (Schall et al., 1993; 

Olson and Gettner, 1999; Martinez-Trujillo et al., 2004; Moorman and Olson, 2007).  In 

analogy to the complex patterns of movements elicited by long trains of microstimulation 

in SMA and pre-SMA, some have proposed that SEF encodes and tracks the ordinal 

position of learned sequences of eye movements (Isoda and Tanji, 2002; Lu et al., 2002; 

Isoda and Tanji, 2003; Berdyyeva and Olson, 2009).  A related hypothesis is that SEF 

encodes the passage of time in a more general sense (Ohmae et al., 2008).  Or it may 

be the argued that SEF is involved in maintaining the current task set (Tremblay et al., 

2002; Kim et al., 2005; Yang et al., 2010; Heinen et al., 2011) or in updating stimulus 

reward mappings(Chen and Wise, 1995a, b, 1996).  How can we distinguish between 

these alternatives?  Is it possible that SEF is carrying out all of these functions?  Are 

there common traits between these studies that lead to common activation of SEF 

during all of these tasks?   

Instead of playing a direct role in saccade execution, neurons in SEF may be 

involved in some aspect of saccade evaluation.  Indeed, in almost all of the studies 

mentioned above, highly trained monkeys performed tasks that required ongoing 
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behavioral evaluation in order to obtain appetitive rewards.  Perhaps the common thread 

of performance monitoring unites these seemingly disparate findings.  Interestingly, SEF 

exhibits pre- and post-saccadic activity related to evaluating the outcome of a saccade.  

For instance, neurons and local field potentials (LFPs) in SEF show elevated activity 

when subjects commit errors (Stuphorn et al., 2000; Emeric et al., 2010; Purcell et al., 

2012a).   SEF also shows activity in anticipation of, during, and after the delivery of 

reward when saccades are performed successfully or in the absence of reward when 

errant saccades are committed (Amador et al., 2000; Stuphorn et al., 2000; Roesch and 

Olson, 2003; Seo and Lee, 2009; So and Stuphorn, 2010).  As mentioned above, some 

neurons in SEF respond preferentially when planned saccades are canceled, but they 

modulate too late to play a direct role in countermanding the movements.  These 

neurons are thought to encode the degree of response conflict present on canceled trials 

(see below).  Consistent with this hypothesis, their activity and the amplitude of LFPs in 

SEF is positively correlated with the probability of committing an error on these trials 

(Olson and Gettner, 2002; Emeric et al., 2010; So and Stuphorn, 2010; but see 

Nakamura et al., 2005).  Error detection, reward prediction, and conflict monitoring are 

all proposed mechanisms for performance monitoring (reviewed below).  Thus, the 

observation of these signals in SEF lead to the hypothesis that this area participates in 

performance monitoring of saccadic eye movements (reviewed by Schall et al., 2002; 

Schall and Boucher, 2007; Schall and Godlove, 2012).  Careful reading of the original 

description of the SEF reveals mention of reinforcement related cells, and cells which 

discharged rhythmically when the animal licked juice reward from a spout (Schlag and 

Schlag-Rey, 1987).  Moreover, many of the wide ranging findings from SEF detailed 

above can be explained in terms of performance monitoring.   

Monitoring one's performance is only useful insomuch as one is able to modulate 

subsequent behavior.  Does SEF also play a direct role in influencing oculomotor 

37 
 



behavior (reviewed by Stuphorn and Emeric, 2012)?  To date, findings have been mixed.  

As mentioned above, sub-threshold microstimulation of SEF has been shown to 

decrease RTs when subjects make simple visually guided saccades but to increase RTs 

and overall accuracy in the context of the stop-signal tasks (Stuphorn and Schall, 2006).  

In agreement with this finding, individual neurons in SEF show both positive and 

negative correlations with post-error RT and accuracy within a variety of trial epochs in 

the stop-signal task (Stuphorn et al., 2010).   However, LFPs fail to show an analogous 

amplitude differences that correlates with post-error adjustments (Emeric et al., 2010).  

Another study failed to find any differences in neural responses when executive control 

was exerted after errors to overcome prepotent responses engendered through priming 

(Purcell et al., 2012a).  Thus, it is unclear whether SEF directly contributes to 

performance adjustments, or whether it simply monitors performance.  It has been 

hypothesized that error-related activity in SEF may contribute to the error-related 

negativity (ERN), an event-related potential that reflects performance monitoring and is 

often recorded in human (see below).  Much progress could be gained by establishing a 

clear link between activity in SEF and the ERN.  On the one hand, the study of SEF 

could be greatly facilitated by the wealth of data that has been collected concerning the 

human ERN.  On the other hand, investigation of the ERN could be facilitated greatly 

with the establishment of a clear animal model and the wealth of data that has been 

accumulated in SEF.  In Chapters 5 and chapters 6, I report studies to establish just 

such a link by demonstrating a monkey homologue of the ERN, and showing that local 

current flow in SEF measured using the current source density (CSD) is predictive of 

ERN amplitude.  Below, I will introduce ACC which has also been implicated in 

evaluating saccadic eye movements and follow with a more general discussion of 

performance monitoring framed by the ERN.  But first, let us briefly turn our attention 

back to microcircuiry and the agranular structure of SEF.   
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It has long been thought that the cortex is made up of repeating elementary units.  

Today, this idea is encapselated by the phrase canonical cortical microcircuit meaning 

that a single recognizable pattern of interlaminar and interareal projection patterns can 

be found wherever one looks in cerebral cortex.  This view has its roots in anatomical 

studies of cortical columns, so we will begin by briefly reviewing this literature.   

 In classic experiments using Golgi stain to visualize neurons in rat barrel fields, 

Lorente de Nó (1949) found connections between neurons arranged as vertical chains, 

leading him to conclude that information transmission between neurons occurs primarily 

within vertical columns.  Although later work (e.g. Szentagothai, 1978) established the 

existence of widespread horizontal connections, the columnar view of cortical processing 

quickly became established.  It soon drew physiological support from Mountcastle's 

classic recordings in somatosensory cortex (1957; Powell and Mountcastle, 1959) and 

Hubel and Wiesel's work in V1 (1962, 1965).  Ultimately, these experiments culminated 

in the theory that columns are the fundamental unit of cortical processing (Hubel and 

Wiesel, 1972; Szentagothai, 1978), and that a ubiquitous canonical cortical microcircuit 

is repeated across all neocortical areas (Gilbert, 1983).  This view, that neocortex is 

functionally homogeneous, became popular partially in reaction against the 

cytoarchitectonic studies of the day that sought to parse cortex into ever finer anatomical 

detail (Creutzfeldt, 1977; Szentagothai, 1978; Rockel et al., 1980).  Nevertheless, this 

framework of columnar processing within canonical cortical microcircuits remains the 

standard simplifying assumption used to reduce and discern the vast complexities of the 

cerebral cortex (Mountcastle, 1997; Silberberg et al., 2002; Thomson et al., 2002; 

Douglas and Martin, 2004; Bastos et al., 2012), and it underlies some of most financially 

ambitious and computationally intensive neuroscientific research endeavors ever 

attempted (reviewed by Markram, 2006; de Garis et al., 2012).   
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However, the columnar view of cerebral cortex has been increasingly challenged 

in recent years, since anatomy shows great variation across neocortex both within and 

across species (Elston, 2000; Collins et al., 2010), since the concept of a cortical column 

is loosely defined and is used by various authors to describe very different anatomical 

and physiological phenomena (Jones, 2000; Rockland and Ichinohe, 2004; Rockland, 

2009; De Felipe et al., 2012), and since columns themselves may be epiphenomenal 

having little or no functional significance (for review see Horton and Adams, 2005).  It is 

ironic that the first evidence for a cortical column was derived by Lorente de Nó from rat 

barrel field (which he incorrectly guessed to be auditory cortex).  This irony stems from 

the fact that barrels themselves are probably not credible examples of columns.  The 

area surrounding a whisker on a rat's nose happens to be round.  According, the cortical 

representation of this somatosensory region that is revealed using stains for cytochrome 

oxidase also happens to be round.  But referring to a barrel as a column is similar to 

referring to a digit representation in macaque somatosensory cortex as a column.  

Barrels are much larger and functionally quite different from the types of columns 

identified neurophysiologically in early sensory cortex of monkeys.  According to Hubel 

and Weisel  

"Whether [barrels] should be considered columns seems a matter of taste and 

semantics."  

-Hubel and Wiesel 1974 

This confusion becomes a major cause for concern when we consider its implications for 

the Blue Brain project (Markram, 2006).  The core assumptions underlying this billion 

dollar project to simulate a mammalian brain are that 1) the rat barrel field is a cortical 

column, 2) it is identical in all important functional aspect to the columns found in 

humans and other mammals, 3) columns and cortical microcircuits are interchangeable, 

and 4) by simulating hundreds of thousands or millions of barrel fields interacting with 

40 
 



one another one will therefore be able to simulate a rat, monkey, or human brain.  On 

the other hand, some researchers have taken the view canonical cortical microcircuits 

are best described functionally, may have no clear anatomical correlate, and that these 

circuits transcend and exist independently of columns (da Costa and Martin, 2010).  I will 

adopt this view for the remainder of our this dissertation.   

Virtually all of our current ideas about canonical cortical microcircuits are derived 

from neurophysiological recordings in early sensory cortex like primary visual and 

primary somatosensory cortex.  Granular layer IV, which is prominent in early sensory 

cortex plays an important role in this model as the key terminal for ascending 

projections.  But, as mentioned above, SEF does not have a granular layer IV, and 

virtually nothing is known about the microcircuitry of this, or any other area of neocortex 

outside of early sensory areas.  CSD is a powerful tool for gaining insight about cortical 

microcircuitry, and it also has not been recorded in any area of frontal or prefrontal 

cortex.  Therefore, before carrying out the CSD recordings and analysis described in 

Chapter 6 to provide a clear link between SEF and the ERN, I carried out a preliminary 

set of CSD experiments detailed in Chapter 4 using CSD to characterize the intrisic 

microcircuitry of SEF under the same conditions that have been used to characterize 

microcircuitry in early visual cortex using CSD recorindgs in the past (Schroeder et al., 

1998; Maier et al., 2010).  This set of experiments serves 3 functions.  First, it provides, 

foundational data about the structure and function of SEF.  Second it provides the first 

evidence that the canonical cortical microcircuit model has validity outside of primary 

sensory cortex.  And finally, it shows that reasonable CSD can be recorded from 

agranular frontal cortex, paving the way for additional CSD recordings testing functional 

responses in Chapter 6.  But the details of these studies can wait for their appropriate 

chapters.  For now, let us turn our attention back to the role of medial frontal cortex in 

evaluating eye movements.   

41 
 



 

1.4.7 Anterior cingulate cortex 

 In his classic studies, Broca (1861) identified ACC as the most dorsal region of 

what he termed the limbic lobe, which he presumed to be involove primarily in olfaction.  

Later authors identified these regions with emotional experience (Papez, 1937; reviewed 

by Allman et al., 2001).  The word cingulate derives from the Latin word cingulum 

meaning "belt".  This adjective is apt because the cingulate cortex traverses the medial 

wall wrapping around and partially encircling the dorsal aspect of the corpos collosum.  

In monkeys the anatomy of cingulate cortex is fairly similar from one animal to the next.  

In humans the anatomy is more variable; some subjects exhibit a second, paracingulate 

sulcus appearing dorsal to the cingulate proper.  The presence or absence of this 

feature forms a continuum across subjects. 

 Before discussing the role that ACC plays in evaluating saccades, it is helpful to 

say several words concerning its anatomy.  In comparison to the other areas covered 

thus far, our discussion of cingulate cortex is somewhat complicated by the fact that this 

is not one homogeneous area but instead contains many sub-regions.  Both 

anatomically, and functionally, the cingulate cortex is also somewhat less well 

understood than the areas discussed above.  In both the human and monkey brain, 

Brodmann (1909) recognized a clear distinction between anterior and posterior cingulate 

cortices.  In the latter (area 23) Brodmann noted a clear granular layer IV, while the 

former (area 24) appeared agranular (see also Walker, 1940).  In human tissue, 

Brodmann also identified dorsal divisions of both posterior (area 31) and anterior (area 

32) cingulate cortex, as well as separate areas anterior to the genu of the corpos 

collosum (area 33) and ventral to the genu (area 25).  In the monkey, Brodmann 

identified only 3 subdivisions; posterior (area 23) anterior (area 24), and pregenual (area 

32).  Matelli and colleagues (1991) further subdivided area 24 into several 
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cytoarchitecturally distinct subregions (see also von Economo and Parker, 1929).  In the 

ventral to dorsal direction, they identified areas 24a, 24b, and 24c.  They also described 

a fourth subdivision, 24d, caudal to 24c based on the presence of large pyramidal cells.  

Vogt (1993) proposed a separate parcellation in the rosto-caudal dimension of an 

anterior area 24 and a posterior area 24' based on cytoarchitectural and connectivity 

differences between the two areas.  Vogt and colleagues later proposed similar divisions 

in the human brain with the addition of area 32' which forms a transitional area between 

frontal cortex and area 24 (Vogt et al., 1995).  In later work, this group incorporated the 

divisions proposed by Matelli and colleagues noting in particular that area 24d can be 

distinguished anatomically from area 24c' and that earlier work may have conflated 

these areas (Vogt et al., 2005).   

 Because of its many sub-regions, it is difficult to elaborate possible homologies 

between human and monkey ACC.  In Brodmann's original description (1909), he 

maintained that the human subgenual area 25 had no homologue in the old world 

monkey.  This is an intuitively appealing assertion, since it is typically the rostral areas of 

cortex that have undergone the most evolutionary development in humans.  In contrast, 

Vogt and colleagues (1995, 2005) suggested that there are four main ways in which 

human and macaque cingulate cortex differ; (1) the presence of a callosal sulcus 

contributing to the deep extent of cingulate cortex in humans, (2) the rostocaudal extant 

of the 24' areas which are larger in humans, (3) a large and folded transitional region 

between posterior cingulate and parietal cortex that is only present in humans, and (4) 

the presence of transitional region 32' between frontal cortex and areas 24/24' in 

humans which is lacking in monkeys.  This last feature is especially important for our 

discussion.  As we shall see below, some have suggested that this distinction is key for 

resolving perceived differences between human and monkey neurophysiological 

findings.  In sum, ACC is actually a conglomeration of several different anatomical sub-
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regions.  Unless further distinctions are necessary, when I discuss ACC in humans I will 

be referring to Brodmann's areas 24, 25, 32, and 33, and when I discuss ACC in 

monkeys I will be referring to areas 24 and 32.  It is also worth pointing out that most 

researchers using non-human primates to study ACC do not specify the sub-region from 

whence they have recorded.  However, unless otherwise specified, it is safe to assume 

that these recordings are typically carried out in area 24 (including all subdivisions) 

because it is difficult to access pregenual cingulate cortex due to its close proximity with 

the sinuses and ocular orbits.  Based on their location ventral to SEF, most of the data 

collected by Schall and colleagues from ACC (reviewed below) were probably recorded 

from areas 24a', 24b', 24c', or in the most rostral aspect of area 24d.   

 As with other areas involved in the execution and evaluation of saccades, 

microstimulation studies have been valuable for determining the function of ACC.  

Microstimulation of area 24d and 24c' produces many types of skeletal muscle 

movements (Mitz and Wise, 1987; Luppino et al., 1991) and this area sends extensive 

projections directly to the spinal cord (Biber et al., 1978; Dum and Strick, 1991; Dum and 

Strick, 1993).  This area has been dubbed the rostral cingulate motor area (CMAr) to 

differentiate it from the two other motor representations (the dorsal and ventral cingulate 

motor areas) that can be found more caudal (for a compact review see Hatanaka et al., 

2003).  Stimulation of a specific, small region in area 24 has also been reported to 

produce eye movements including conjugate gaze shifts (Mitz and Wise, 1987; Mitz and 

Godschalk, 1989; Luppino et al., 1991).  Based on the position of these stimulation sites 

near the fundus of the cingulate sulcus and at a rostro-caudal position near the most 

posterior extent of the arcuate sulcus it is likely that these eye movements were evoked 

from area 24c' of Vogt and colleagues (Mitz and Wise, 1987; Luppino et al., 1991) or 

slightly more anterior from  24c proper (Mitz and Godschalk, 1989).  Projection patterns 

suggest that these eye movements may be elicited via a pathway through SEF.  ACC 
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has strong reciprocal projections with SEF (Huerta and Kaas, 1990), but fewer 

projections with other oculomotor structures.  ACC is only weakly connected to FEF 

(Barbas and Mesulam, 1981; Vogt and Pandya, 1987; Stanton et al., 1993).  Although it 

certainly projects to the brainstem including several pontine nuclei, it is not clear if ACC 

projects specifically to the nuclei of the BSG (Schnyder et al., 1985; Keizer and Kuypers, 

1989; Giolli et al., 2001), and it does not send projections to the SC (Fries, 1984)2.  

Thus, although more data must be collected, it seems that ACC is anatomically more 

remote from the areas involved in saccade execution than the other structures we have 

reviewed thus far.   

 A modest number of studies have been carried out testing the role of ACC in 

ocular motor tasks.  These have almost universally implicated ACC in the evaluation of 

eye movements.  As we shall see in the next section, these data are in agreement with 

the myriad studies that have implicated the ACC in action evaluation and performance 

monitoring more generally.  Similar to SEF, single units and LFPs show error- and 

reward-related responses during the saccade countermanding task (Ito et al., 2003; 

Emeric et al., 2008).  However, unlike SEF, neural signals in those areas do not encode 

response conflict (see also Nakamura et al., 2005).  Interesting, these studies have 

shown that neuronal responses in the ACC tend to depend less on the animals behavior 

and more on trial outcome than those of the SEF.  The antisaccade task has further 

provided evidence that neural activity in ACC is important for maintaining the current set 

of task rules dictating stimulus response mapping, evaluating whether or not these rules 

lead to desired outcomes, and recruiting executive control after errors (Johnston et al., 

2007; Womelsdorf et al., 2010).  Analagous to the effects observed while stimulating in 

SEF (Stuphorn and Schall, 2006), stimulation in ACC improves performance in the anti-

                                                            
2 Although, it is possible that this last finding was skewed by incidental damage to medial 
frontal cortex caused during the surgical approach to SC for tracer injections. 
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saccade task by reducing RT in a context-dependant manner (Phillips et al., 2010).  

Several other studies have been carried out using simple oculomotor tasks that varied 

the probability of reward, its magnitude, or the effort required to obtain it.  The authors of 

these studies have generally concluded that ACC neurons encode and update the 

expected value of stimuli and/or stimulus response associations (Seo and Lee, 2007; 

Quilodran et al., 2008; Kennerley and Wallis, 2009b, a). However, the results of one 

study suggest that ACC neurons play a role in directing reward-based attention 

independent of stimulus value (Kaping et al., 2011).  ACC has also been implicated in 

several aspects of performance monitoring during manual response tasks.  Much of this 

work has been carried out using fMRI or the event-related potential technique in human 

subjects (discussed below).  The human ACC and surrounding medial frontal cortex are 

thought to produce the error-related negativity that is visible on frontal medial EEG 

electrodes when subjects commit errors.  Hemodynamic activation in ACC is often 

observed on error trials during fMRI experiments, and this activity is implicitly or explicitly 

considered synonymous with the ERN by many researchers (Botvinick et al., 2001; 

Kerns et al., 2004; Debener et al., 2005a; Debener et al., 2005b).  One of major goals of 

the work presented in this dissertation has been to bridge the gap between this vast 

body of literature carried out using human subjects, and the work detailed above carried 

out using non-human primates.  To this end, I investigate the functional microcircuitry of 

one cortical area thought to be involved in generating the ERN in Chapter 4, I 

demonstrate a monkey homologue of the ERN in Chapter 5, and I provide a concrete 

link between the microcircuitry and the ERN recorded at the surface in Chapter 6.  My 

results show that SEF contributes to the ERN, but that other areas must also play a role 

in generating this ERP.  Accordingly, for the rest of the introduction we will review the 

ERN and its proposed hemodynamic correlates in medial frontal cortex.   
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1.5 A wider view: Executive control beyond the oculomotor system 

 In the early 1990's two groups independently discovered that when humans 

commit errors during a speeded response task, an ERP can be reliably recorded from 

frontal medial electrode sites (Falkenstein et al., 1990; Falkenstein, 1991; Gehring et al., 

1993).  This ERP is characterized by an initial negativity, the ERN3, peaking around 100 

ms after the errant response followed by a later positivity, the Pe.  Here I focus on the 

initial negativity (for review of the Pe, see Overbeek et al., 2005)).  The ERN is observed 

across a wide range of tasks and in multiple response modalities (reviewed by Gehring 

et al., 2011).  For our purposes, it is useful to note that an ERN has been consistently 

reported when subjects fail to cancel responses during the stop-signal task (Liotti et al., 

2005; van Boxtel et al., 2005; Kramer et al., 2007; Stahl and Gibbons, 2007; Vocat et al., 

2008; see also Sharp et al., 2010), and the ERN is also observed during saccadic 

response tasks (Nieuwenhuis et al., 2001), including the saccade stop-signal task 

(Endrass et al., 2005).  However, the distribution and morphology of the saccadic ERN 

suggest that it may be generated by a slightly different, if overlapping, network in medial 

frontal cortex (Reinhart et al., 2012). Based in part on work carried out recording LFPs 

from non-human primates, Gehring suggested that ACC and SMA may produce the 

neural activity that gives rise to the ERN recorded at the surface (Gehring et al., 1993).  

Dipole source localization studies quickly lent corroborating evidence to this hypothesis 

(Dehaene et al., 1994).  Many studies have since focused exclusively on the potential 

                                                            
3 In their original reports, Falkenstein and colleagues (1990; 1991) referred to this 
phenomenon as the "error negativity" and abbreviated it using subscript notation  (NE), 
while Gehring and colleagues (1993) referred to the phenomenon as the error-related 
negativity (ERN).  ERN now appears to be the modal terminology used throughout the 
literature and we adopt it herein.  Pe has been generally adopted to describe the later 
positivity that develops after errors.  Falkenstein and colleagues' original reports include 
neither the term "error positivitiy" nor the abbreviations PE or Pe.  However, it is easy to 
see how this abbreviation came into being since using ERP to denote the error-related 
positivity would obviously cause grief and consternation.  This explains the mixture of 
nomenclature that currently exists in the literature.   
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role of ACC, although some researchers have emphasized contributions from broader 

areas (Dehaene et al., 1994; Kiehl et al., 2000; Menon et al., 2001; Luu et al., 2003; 

Agam et al., 2011).  Since the ERP technique measures the combined voltage of many 

areas of cortex simultaneously (Luck, 2005; Woodman, 2011), and since several areas 

are active when errors are made as reviewed above, this historical focus on single areas 

may be somewhat misguided; the ERN probably measures simultaneous activity from 

across a broad performance monitoring network.  This idea may account for the wide 

range of findings associated with the ERN.  After all, different areas in medial frontal 

cortex are involved in a wide range of activities during error trials (reviewed by 

Ridderinkhof et al., 2004; Rushworth et al., 2004).   

 Around the same period of time that the ERN was initially discovered, advances 

in positron emission tomography (PET) and later functional magnetic resonance imaging 

(fMRI) technology allowed researchers to begin investigating activity associated with 

performance monitoring in medial frontal cortex of humans (Posner et al., 1988; Pardo et 

al., 1990; Carter et al., 1998; d'Esposito et al., 1998).  Some researchers tend to view 

the functional imaging results of these and later studies as homologous and 

interchangeable with the ERN (e.g. Carter et al., 1998; Botvinick et al., 1999; Botvinick et 

al., 2001) while others tend to focus more exclusively on the ERN itself (e.g. Holroyd and 

Coles, 2002).  Several groups have hypothesized that the ERN is actually just one ERP 

in a larger family of frontal medial negativities indicating mismatch between expected 

and actual events (reviewed by Folstein and Van Petten, 2008).  Another frontal medial 

negativity can be recorded when subjects are given feedback instructing them that their 

previous responses were incorrect (Miltner et al., 1997; Gehring and Willoughby, 2002).  

This feedback-related negativity (FRN) may be elicited by the same neural generators 

that gives rise to the ERN (reviewed by Nieuwenhuis et al., 2004), although contradictory 
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evidence can also be found (Luu et al., 2003).  We will explore these ideas in greater 

detail below as we discuss the proposed anatomical and functional bases of the ERN. 

 

1.5.1 Neural origins of the ERN 

 It has been known for some time that neural activity in medial frontal cortex is 

correlated with performance monitoring.  Gemba and colleagues (1986) recorded LFPs 

in ACC related to errors when monkeys made manual responses during a lever pressing 

task (see also Niki and Watanabe, 1979; Shima and Tanji, 1998).  Based in part on 

these recordings, and in part on theories of the role of SMA in producing actions 

(Goldberg, 1985), Gehring and colleagues (1993) first suggested that these areas 

probably play a key role in generating the ERN.  Dehaene and colleagues (1994) 

provided evidence to support this assertion by providing scalp distributions and modeling 

the probable sources of dipoles giving rise to the ERN.  These researchers found a best-

fitting dipole solution at midline, directed downward, and located roughly consistent with 

generation by ACC.  Others soon replicated this result (van Veen and Carter, 2002; 

Herrmann, 2004; Mathewson et al., 2005).  Converging evidence comes from studies 

combining ERPs with fMRI data.  Ullsperger and von Cramon (2001) and later Mathalon 

and colleagues (2003) recorded ERPs and fMRI in separate sessions and located 

performance monitoring signals in ACC and pre-SMA.  Using particularly challenging 

techniques both to gather and analyze data, Debener and colleagues (2005b) recorded 

simultaneous fMRI and EEG, used independent component analysis to isolate 

components across individual trials that were most closely related to the grand average 

ERN, convolved these components with a canonical hemodynamic function, and 

correlated the amplitude of this signal to the amplitude of the hemodynamic response in 

ACC during errors.  These authors also found evidence for post-error slowing during 

their version of the Erikson flanker task that was correlated with the amplitude of their 
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single trial ERN measure.  But evidence contradicting ACC and pre-SMA as the locus of 

the ERN can also be found.  Recently, Agam and coworkers (Agam et al., 2011) 

recorded complimentary EEG, MEG, and fMRI and localized the origins of the ERN to 

posterior cingulate cortex.  Contradictory evidence can also be found in the lesion 

literature.  Although patients with damage to medial frontal cortex including ACC exhibit 

reduced ERN, they are still aware of committing errors (Stemmer et al., 2004).  And the 

ERN is also reduced by lesions of lateral prefrontal cortex that spare ACC (Gehring and 

Knight, 2000; Ullsperger et al., 2002; Ullsperger and von Cramon, 2006; reviewed by 

Ullsperger, 2006).  As reviewed above ACC and SEF both show error related activity in 

single units responses and in LFPs (Stuphorn et al., 2000; Ito et al., 2003; Emeric et al., 

2008, 2010).  But action potentials contribute little if any to the ERPs (Woodman, 2011).  

Additionally, one cannot be certain that LFPs reflect local activity that is restricted to the 

area surrounding an electrode: LFP activity has been documented to originate 

centimeters away from the location of the contact (Kajikawa and Schroeder, 2012).  In 

comparison, SEF subtends only ~3x3 mm.  Thus these studies cannot definitively 

localize anatomical origins of the ERN. Because of these considerations, I endeavored 

to determine the origins of the ERN by recording simultaneous EEG and LFPs from 

medial frontal cortex.  I did this using a multicontact linear microelectrode array allowing 

me to construct CSD.  These methods ensure that neural current flow measures are  

spatially constrained to the area bracketed by the electrode array.  The results of this 

study are detailed in Chapter 6.     

  

1.5.2 The ERN and behavioral adjustments 

Classic psychophysics studies have identified common behavioral adjustment 

strategies that are evident after errors.  In particular, subject tend to display increased 

RTs and accuracy on trials that follow errors (Rabbitt, 1966; Rabbitt and Rodgers, 1977; 
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Laming, 1979).  One of the first reports of the ERN noted a positive correlation between 

the amplitude of the ERN and the RT on subsequent correct trials (Gehring et al., 1993).  

These authors also reported that ERN amplitude was increased in conditions that 

favored response accuracy over speed, that the force with which errant responses were 

committed decreased as the amplitude of the ERN increased, and that the probability of 

attempting to correct an errant response increased with the amplitude of the ERN.  

These findings support the hypothesis that the ERN reflects activities of a supervisory 

system that can recruit increased behavioral control during the execution of ongoing as 

well as future actions.  Unfortunately however, these results have been less clear in 

subsequent studies.  On the one hand, some researchers have replicated the first of 

these findings, showing that the ERN (or it's presumed hemodynamic counterpart) 

scales in magnitude with RT adjustments on subsequent trials (Rodriguez-Fornells et al., 

2002; Kerns et al., 2004; Debener et al., 2005b; Ladouceur et al., 2007; West and 

Travers, 2008).  On the other hand, others have not found such a link, or have found 

contradictory evidence (Gehring and Fencsik, 2001; Hajcak et al., 2003; Nunez Castellar 

et al., 2010; Reinhart et al., 2012).  Part of this discrepancy may have to do with whether 

or not errors are perceived.  At least two groups have reported that the ERN can be 

recorded even when patients are unaware of the errors they have made, and that 

awareness of these errors is necessary for post-error slowing (Nieuwenhuis et al., 2001; 

Klein et al., 2007; but see Woodman, 2010).  Another issue may have to do with 

measures of performance monitoring.  Post-error RT adjustments may not be the only 

way in which performance is modified (reviewed by Ullsperger, 2006).  This is especially 

true in the stop-signal task, where RT slowing actually occurs after both canceled and 

noncanceled trials (Emeric et al., 2007; Nelson et al., 2010; Bissett and Logan, 2011, 

2012).  Gehring (2011) asks us to consider the whole "psychological terrain" rather than 

simply assuming that post-error slowing is the only strategy for optimizing behavior.  
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Finally, although it is rarely discussed, it is not immediately clear if the amplitude of the 

ERN should be taken as an indication of the strength or magnitude with which errors are 

detected and cognitive control should be recruited.  This idea is intuitively appealing.  

Larger amplitude ERPs are probably produced by more extensive neural activity, and 

the more neurons that are recruited in a process, the stronger the activation of that 

process must be.  But there are many reasons that this intuition may not stand up to 

experimental inquiry.  I am not aware of any work that has sought to address this issue.   

Of course, performance adjustments need not be implemented via RT adaptation 

alone.  In the stop-signal task, subjects may also adjust SSRT.  These changes may be 

observed by manipulating a subject's motivational state.  To date, only one study has 

manipulated motivational state and tested for changes in SSRT (Leotti and Wager, 

2010).  These researchers manipulated reward contingencies to favor either speed or 

accurate inhibition, and found that SSRTs were lower when subjects were encouraged 

to value stopping.  Unfortunately, SSRT estimates in this study were unreliable since 

only a single SSD was used.   When estimating SSRT from a single SSD, it is important 

to use the SSD which yields 50% errors.  Since the probability of making a noncanceled 

error was higher in the motivated speed condition, sampling error rates in both 

conditions at a single SSD means that SSRT was estimated from different tails of the RT 

distribution.  Thus, the observed SSRT differences in this study probably represent well-

known confounds in SSRT estimates rather than motivational factors.  I shed additional 

light on this matter in Chapter VI by manipulating the motivational state of monkeys 

using an asymmetric reward paradigm.  In contrast to Leotti and Wager's study, I find 

that SSRT does not change with motivational state.   

 Lesion studies have also provided mixed evidence for ERN-related performance 

adjustments.  As we have seen above, the definitive loci giving rise to the ERN have not 

been precisely identified.  We should note that this makes lesions studies more difficult 
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to evaluate in reference to the ERN.  Stemmer and colleagues (Stemmers, 2000) 

reported that patients with damage to ACC exhibited reduced amplitude ERNs.  

However, post-error slowing was spared in these patients (see also Fellows and Farah, 

2005).  Additionally patients who have undergone cingulotomy to treat intractable 

epilepsy exhibit few long term deficits in performance monitoring or executive control 

(Cohen et al., 1999; Jung et al., 2006).  In Chapter 5, I provide additional data on this 

subject.  The ERN that I report in non-human primates was not associated with post-

error slowing.   

 Consideration of the potential link between the ERN and performance 

adjustments highlights a more fundamental question.  What cognitive processes or 

neural computations are reflected in the activity that give rise to the ERN recorded at the 

surface?  For the remainder to the introduction we shall examine the potential cognitive 

functions indexed by the ERN.   

 

1.5.3 Theories of the ERN 

1.5.3.1 Error detection 

 The first theory of the ERN suggested simply that this component reflected the 

brain's process of error detection (Falkenstein, 1991; Gehring et al., 1993; reviewed by 

Gehring et al., 2011).  According to this view, subjects have access to a representation 

of the correct response in a given context, and an efference copy of the actual response 

that was elicited.  When the response and the representation are not aligned, a 

mismatch occurs, and an error is detected.  This theory was originally proposed based 

on the idea that the ERN originates in ACC, and that ACC serves primarily as a neural 

comparator (Brooks, 1986).  Evidence for this view is mixed (reviewed by Gehring, 

2011).  For instance, one prediction of this theory is that the ERN should be larger in 

amplitude when the mismatch between the intended and the actual response is greater.  
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Some authors report that this is indeed the case (Bernstein, 1995; Falkenstein et al., 

1996) while others have gathered contrary evidence (Gehring and Fencsik, 2001).  

Another possible interpretation of the error detection theory is that more salient task-

related cues should lead to higher magnitude ERNs.  This follows because the increased 

cue salience should lead to stronger representations of the correct, intended response 

for comparison to the actual, errant response.  Several researchers have confirmed this 

prediction (Yeung et al., 2007; Vocat et al., 2008).  However, it should also be noted that 

these predictions are not unique to the error detection theory, but are, in fact, predicted 

by every major theory of the ERN (Yeung et al., 2007; Gehring et al., 2011).  This points 

to a general shortcoming of the error-detection theory.  The theory has not been stated 

in explicit, formal terms, making it difficult to perform rigorous hypothesis testing.   

 Perhaps the most forceful criticism of the error detection view is conceptual.  It is 

unclear how or why the brain would have access to a representation of the correct 

response in a particular situation, but would be unable to use this information to guide 

action.  It is a bit like stating that the brain "intended" to perform one action but 

performed another instead.  At a deeper level, this explanation is also somewhat 

circular.  Intending one action and committing a different action is simply the definition of 

an error.  So, in essence, the error detection hypothesis states that the brain detects 

errors by detecting errors.  However, these criticisms may not be as damning as they 

initially appear.  As we shall see below, the reinforcement learning theory of the ERN is 

actually similar in many respects to this simple error detection hypothesis.  However, 

instead of comparing intended responses to actual ones, this theory suggests that the 

ERN reflects a comparison of predicted future outcomes to an updated representation of 

future outcomes in light of new information arising from the subject's errant actions.  

Finally, from an empirical perspective, the error detection hypothesis is somewhat less 

attractive than other theories since it has not been elaborated in sufficient biological 
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detail to provide specific testable neurophysiological hypotheses.  Although corollary 

discharge signals that provide efferent copies of motor representations have been 

studied (reviewed by Sommer and Wurtz, 2008), it is difficult to know what a 

representation of a correct response would look like or how to test for its presence or 

absence in terms of neural activation.     

  

1.5.3.2 Conflict monitoring 

 The conflict monitoring theory of the ERN is unique in that it does not suggest 

that the ERN is specific to situations in which errors occur.  Rather, this theory suggests 

that the ERN reflects a special instance of a more general neural process that monitors 

the degree to which competing responses are co-activated at any given time (Botvinick 

et al., 2001; Yeung et al., 2004).  Error trials happen to coincide, on average, with trials 

on which there is a large degree of competition between responses, and on trials in 

which this competition remains at high levels during the time of response execution.  

Therefore, an ERP created by averaging EEG data from error trials will exhibit larger 

negative amplitude following the response than an ERP produced by averaging EEG 

from correct trials only.  Unlike the other theories listed, the conflict monitoring 

hypothesis was not originally formulated to explain the ERN.  Rather, this theory has its 

origins in imaging experiments that were being carried out around the time that the ERN 

was first reported (Carter et al., 1995, 1998, 2000; Botvinick et al., 1999).  The conflict 

monitoring hypothesis has intuitive appeal, because it does not invoke the homunculus 

that many have argued is necessary in the error monitoring theory.  It is also attractive 

from an empirical perspective, because it has been formalized as a computational model 

generating explicit, testable predictions.  On the other hand, one may contend that the 

conflict monitoring theory has been heavily shaped by the methods employed in its 

study.  The theory has been built from the "top down" to explain a particular 
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phenomenon observed during a few tasks (Stroop, 1935; Eriksen and Eriksen, 1974) 

and extrapolated to other contexts post hoc rather than being built from the "bottom up" 

to explain general phenomena and then applied to specific tasks.   

 Evidence for the conflict monitoring hypothesis is mixed.  Influential studies have 

used computational modeling to show that conflict monitoring can account for and 

explain many key aspects of behavioral and electrophysiological data (Botvinick et al., 

2001; Yeung et al., 2004).  Other work has demonstrated increased activity in ACC 

during task switching when conflict is high (Dreher and Berman, 2002).  As mentioned 

above, some of the findings in the error-monitoring literature can also be taken as 

evidence for conflict monitoring (e.g. Gehring and Fencsik, 2001).  However, other 

reports contradict the conflict monitoring hypothesis.  For instance, if we assume that 

response conflict can be measured based on muscle contractions in the periphery, than 

if follows that more forceful error responses or those that show more co-activation of 

competing muscle groups will be associated with increased amplitude ERNs.  But when 

sought, this link has not been observed (Carbonnell and Falkenstein, 2006; Masaki et 

al., 2007).  The conflict model of Cohen and colleagues predicts that increased levels of 

response conflict will be associated with trials on which errors are followed by fast 

corrections, but these trials do not produce larger amplitude ERNs (Burle et al., 2008).  

The same model predicts that response conflict will also occur on correct trials, though it 

is resolved before the response is committed.  Several have suggested that the N200 

reflects this conflict signal on correct trials, but this component can be experimentally 

dissociated from the ERN (Ridderinkhof et al., 2002; Swick and Turken, 2002).  Several 

imaging studies have found more activation in ACC on error trials than correct trials even 

when both trial types contain the same degree of response conflict (Braver et al., 2001; 

Ullsperger and von Cramon, 2001; Garavan et al., 2003).  Finally, lesion work in non-
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human primates shows that bilateral damage to ACC does not impair task switching on 

trials with high degrees of response conflict (Rushworth et al., 2003).  

 The most forceful criticism of the conflict monitoring hypothesis may be that it has 

not been precisely defined, or rather, that the definition often differs across studies.  

There are several instances in which one group has documented findings inconsistent 

with the conflict monitoring theory only to be met with revised predictions capable of 

accommodating these disparate findings (e.g. Holroyd and Coles, 2002; Yeung et al., 

2004; Emeric et al., 2008; Cole, 2009; Cole, 2010; Grinband et al., 2011; Yeung et al., 

2011).  In recent reports, some authors have begun to suggest that conflict monitoring 

and error detection are two distinct and dissociable processes (e.g. Cole, 2009) even 

though the conflict monitoring theory was originally formulated, in part, to describe how 

errors are detected.  It is unclear why an agent would need to monitor for response 

conflict if errors can be detected via other means.  Response conflict has begun to 

assume a life of its own, independent of other aspects of executive control.  Emphasis 

has also begun to move away from response conflict in the pure motor sense and 

toward decision conflict in a more abstract sense (Pochon et al., 2008; Cole, 2009).  This 

theoretical fluidity frustrates meaningful hypotheses testing.   

 Response conflict has often been defined as the co-activation of mutually 

incompatible responses (Botvinick et al., 2001; Yeung and Nieuwenhuis, 2009).  This 

begs an operational definition for incompatible.  In laboratory tasks, participants are 

often instructed to respond either with right or left hands depending on which cue is 

presented.  In this context, these two responses may be viewed as incompatible.  But in 

most tasks, the left and right hand work in unison.  For instance, when a cyclist wishes to 

stop and squeezes both brake levers, the co-activation of left and right hands is 

compatible with the goal of braking.  How does the brain keep track of context and 

assign the appropriate meaning to the co-activation of effectors (see Brown and Braver, 
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2005)?  Perhaps response conflict is restricted to cases that are more naturally 

incompatible, such as the co-activation of agonist and antagonist muscles of the same 

effector.  In either case, it is difficult to see how response conflict may generalize to the 

oculomotor system.  With the exception of small vergence movements, the two eyes 

remain tightly yoked while moving.  And recall that it is impossible to co-activate agonist 

and antagonist muscles of the extraocular muscle system.  Still, as noted above, an 

ERN is clearly present during tasks which require eye movements.  Perhaps the co-

activation of mutually incompatible responses occurs further upstream in the oculomotor 

system at the level of SC or cortex before being resolved in the BSG.  But the use of the 

stop-signal task to study executive control presents another thorny issue.  Does 

response conflict extend to situations in which the mutual incompatibility arises between 

executing and canceling a response?  Ironically, although these types of conflict are 

given little consideration in the human literature, the tension between going and stopping 

as expressed by movement and fixation cells in the oculomotor system may be the most 

well-documented and precisely defined neural description of response conflict described 

to date.  As discussed above, movement cells and fixation cells in SC and FEF are co-

activated during the stop-signal task (Paré and Guitton, 1994; Hanes et al., 1998).  The 

degree to which these cells are co-active is dependent on the probability of making an 

error (Stuphorn et al., 2000).  The greater the probability of error commission, the 

greater the co-activation of these neural populations, and hence the greater the degree 

of response conflict.  Curiously however, this co-activation only occurs on successfully 

canceled trials suggesting that this type of response conflict may be a poor signal for 

recruiting executive control following errors.  Nevertheless, the behavioral data seems to 

support the interpretation that this type of conflict may be utilized as an signal for 

increased executive control in the stop-signal task.  Post-error slowing is rarely observed 

during the stop-signal task, but many researchers have noted slower responses after 
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successfully canceled trials (Emeric et al., 2007; Nelson et al., 2010)(Emeric et al., 2007; 

Nelson, 2010; but see Bissett and Logan, 2011) for an alternate intepretation).  Thus, 

response conflict and subsequent increases in RT are dissociated from errors in the 

stop-signal task.   

 The response conflict that is present on successfully canceled trials in the stop-

signal task is reflected in the single-unit and LFP responses of SEF, but not in those of 

ACC (Stuphorn et al., 2000; Ito et al., 2003; Emeric et al., 2008; Emeric et al., 2010).  

Since the functional imaging literature from whence the conflict monitoring hypothesis 

originated has focused almost exclusively on ACC, this finding has led to some 

controversy regarding the ability of non-human primates to monitor response conflict and 

the utility of this animal model of human performance monitoring and executive control 

(Cole, 2009, 2010; but see Schall and Emeric, 2010).  As mentioned above, the area 

termed 32' by Vogt and colleagues (2003) forming a transitional region between frontal 

cortex and ACC is not observed in monkeys.  Cole and colleagues (2009) suggest that 

this is the key region mediating conflict monitoring in humans and that its absence in 

monkeys render them unable to monitor conflict.  Of course, this assessment ignores the 

fact that conflict related activity has been reported in monkey SEF (Stuphorn et al., 2000; 

Emeric et al., 2010).  It also ignores the rather obvious fact that monkeys can learn to 

perform remarkably complicated tasks given that they are missing a hypothesized key 

aspect of executive function.  Motivated in part by this controversy, I strengthen the link 

between human and non-human performance monitoring research by reporting an ERN 

recorded from monkeys in Chapter 5.  I then investigate the contribution made by SEF to 

this ERN in Chapter 6.   
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1.5.3.3 Reinforcement learning 

 In order to understand the reinforcement learning theory of the ERN, one must 

first understand some basics of reinforcement learning theory itself.  Reinforcement 

learning theory has roots in the behavioralist research of the early to mid 20th century.  

Based on his dissertation work studying associative processes in several species, 

Thorndike formulated the law of effect stating, in essence, that stimulus/response 

associations followed by favorable outcomes will be strengthened whereas those 

followed by negative consequences will be weakened (Thorndike, 1898, 1927 reviewed 

by Boring, 1950).  This idea was later formalized using simple equations to represent the 

strength of a learned association as an exponential series in which past information 

about a given outcome resulting from a stimulus/response combination is integrated.  

The most recent information is weighted most strongly in these equations according to a 

variable representing the learning rate (Bush and Mosteller, 1951b, a; Rescorla and 

Wagner, 1972).  Sutton and Barto (1998) refined this paradigm founding the current 

theory of reinforcement learning.  Through Sutton's background in psychology and 

Barto's expertise in mathematics and computer science they extended these equations 

in search of practical, effective machine learning algorithms.  Ultimately, they developed 

a system of equations that describes a process whereby an agent learns to predict the 

likelihood of future rewards given current stimuli and actions.  When the resulting reward 

does not match the expectation, a reward prediction error (RPE) is encountered, and this 

information is used to update the value representation of the states and actions that 

preceded it.  RPE is defined simply as the magnitude of the actual reward that is 

received minus the expected value of the stimulus or stimulus/action association that 

preceded it.  Positive RPEs are experienced when unexpected rewards are encountered 

while negative RPEs are experienced when expected rewards are not realized.  Sutton 

and Barto's key insight (aside from conceptualizing machines as "wanting" things) was 
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that an unexpected encounter with a high-value state (i.e. a state that has come to 

predict future reward), should also generate a RPE so that the stimulus/action 

association that led to that state can be strengthened as well.  In this way, value 

propagates backward in time to the earliest events that predict rewards in a process 

called the method of temporal differences.  These are the basic elements of the machine 

learning algorithm known as reinforcement learning theory.   

 Around the same period of time that Sutton and Barto were solidifying these 

ideas in what would become their most influential work (Sutton and Barto, 1998), Schultz 

and colleagues began a classic series of experiments recording from midbrain dopamine 

neurons in non-human primates (Schultz et al., 1993; Schultz et al., 1997).  In a well-

known series of studies, they and others demonstrated that these neurons respond to 

stimuli that predict upcoming reward in a manner consistent with the specific type of 

RPE instantiated by the method of temporal differences (reviewed by Glimcher, 2011; 

Schultz, 2013).  Many of these neurons fire at steady tonic rates and respond with a 

burst of action potentials when unexpected rewards are received or with a pause in 

activity when anticipated rewards are not delivered.   

 A mistake is an unexpected event that deceases the probability of obtaining 

future rewards.  Once an agent has sufficient experience with the contingencies 

associated with a particular task, mistakes should therefore elicit negative RPEs.  This is 

the critical intuition underlying the reinforcement learning theory of the ERN first 

formulated by Holroyd & Coles (2002).  Based loosely on earlier studies (Bunney and 

Aghajanian, 1976; Reader et al., 1979; Gaspar et al., 1989; Berger et al., 1991; Williams 

and Goldman-Rakic, 1993; Richardson and Gratton, 1998), these investigators made the 

following anatomical assumptions: first, a population of dopamine neurons projects to 

the apical dendrites of layer V pyramidal neurons in medial frontal cortex, and second, 

dopamine neurons exert tonic inhibition on these pyramidal cells.  They then put forth 
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the hypothesis that the ERN reflects the negative RPE that is encountered when a 

subject makes a mistake.  According to their theory, the negative RPE associated with 

an errant response is encoded as a phasic decrease in firing by midbrain dopamine 

neurons.  This releases pyramidal neurons in medial frontal cortex (particularly ACC) 

from tonic inhibition, allowing widespread dendritic depolarization that sums to produce 

the ERN recorded from the surface.  In this model, the ERN and the FRN both reflect the 

same process.  The ERN simply reflects a RPE triggered by a subjects own actions, 

while the FRN reflects a RPE triggered by an external event (reviewed by Nieuwenhuis 

et al., 2004). 

 The reinforcement learning theory of the ERN has garnered interest and support, 

both in explaining the ERN, and in explaining hemodynamic responses in ACC.  For 

instance, one of the main predictions of this theory is that the FRN recorded before 

subjects fully understand task contingencies should show larger amplitude.  However, as 

subjects learn the task and become more adept at predicting upcoming reward based on 

their own actions, the FRN should grow smaller and the ERN should grow proportionally 

larger.  These predictions have been verified in several ERP studies (Holroyd and Coles, 

2002; Nieuwenhuis et al., 2002; Holroyd and Coles, 2008).  Also in agreement with the 

hypothesis that ACC processes RPEs, both negative feedback and errors elicit similar 

hemodynamic responses in ACC (Holroyd et al., 2004b).  Several researchers have 

shown that more unexpected errors or errors resulting in larger magnitude losses elicit 

FRNs of larger amplitude (Holroyd et al., 2003; Potts et al., 2006; Bellebaum and Daum, 

2008; Goyer et al., 2008).  Finally, single unit recordings in non-human primates have 

also identified neurons that encode RPEs in medial frontal cortex, both in ACC 

(Matsumoto et al., 2007; Seo and Lee, 2007) and in SEF (So and Stuphorn, 2010).   

 However, the reinforcement learning account of the ERN is not without 

shortcomings.  Just as some have found that the FRN scales with the magnitude of 
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losses, others have found contradictory evidence (Holroyd et al., 2004a; Nieuwenhuis et 

al., 2004; Yeung et al., 2004; Yeung and Sanfey, 2004; Hajcak et al., 2005, 2006, 2007).  

Some researchers have even found evidence for a FRN on trials associated with 

positive RPEs resulting from unexpected favorable outcomes (Donkers et al., 2005; 

Donkers and van Boxtel, 2005; Oliveira et al., 2007; Alexander and Brown, 2011).  One 

perceived positive attribute of the reinforcement learning theory of the ERN is its relative 

specificity in biological terms.  Of the various theories relating the ERN to cognitive 

function, the reinforcement learning theory makes the most specific predictions 

concerning its underlying neural basis.  Unfortunately, many of these predictions derive 

from scant neurophysiological evidence.  For instance, there is little data to suggest that 

dopamine neurons tonically inhibit pyramidal cells in medial frontal cortex, or that 

dopamine is capable of disinhibiting these neurons quickly enough to produce the ERN 

(reviewed by Jocham and Ullsperger, 2009).  Dopamine receptors are not ligand-gated 

ion channels like those activated by GABA and glutamate.  Instead, they are G-coupled 

protein receptors that rely on slow second messenger systems to enact intracellular 

changes in target neurons (reviewed by Seamans and Yang, 2004).  The actions of 

dopamine on glutamatergic neurons in medial prefrontal cortex are various, complex, 

and depend critically on many factors including the presence or absence of other 

neurotransmitters (reviewed by Tzschentke, 2001).  In addition, there is also evidence 

that the RPE signals encoded by dopamine neurons are biased toward representing 

positive RPEs (reviewed by Glimcher, 2011).  Another neural system, possibly involving 

the lateral habenula (Matsumoto and Hikosaka, 2007), and internal globus pallidus 

(Hong and Hikosaka, 2008) may aide in encoding negative RPEs.  Finally, the central 

tenant of reinforcement learning theory that dopamine neurons signal RPEs has been 

repeatedly questioned (Pennartz, 1995; Berridge and Robinson, 1998; Redgrave et al., 

1999b; for possible reconciliation see Bromberg-Martin et al., 2010)  In Chapter 6, I shed 
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additional light on this theory by testing the hypothesis that SEF contributes to the ERN 

through a RPE signal when subjects make mistakes.  I do this by introducing an 

asymmetric reward manipulatoin to the classic saccade stop-signal paradigm (Kawagoe 

et al., 1998) thereby inducing errors with high or low magnitudes of RPE.   

 

1.5.3.4 Other theories 

 Although the theories listed above have dominated the field commanding the 

lion's share of attention, several other ideas concerning the ERN have also been 

advanced.  The error-likelihood theory of ACC (Brown and Braver, 2005) is similar in 

many respects to the reinforcement learning account of the ERN.  Both theories suggest 

that RPE signals conveyed by dopamine projections to the ACC produce the ERN.  

However, the error likelihood account differs by suggesting that ACC uses this 

information as a training signal to learn to predict error likelihood, whereas the original 

reinforcement theory of the ERN proposed by Holroyd and Coles (2002) suggests that 

ACC uses these signals to select an appropriate motor controller for upcoming action.  In 

this way, the error likelihood theory is more an account of the function of ACC rather 

than a new explanation for the ERN.  Alexander and Brown (2010, 2011) have recently 

updated this theory suggesting that ACC functions primarily to predict the future 

outcomes of current actions rather than errors in particular. 

 The reinforcement learning theory of the ERN has been widely influential and has 

sparked many studies on the potential role of dopamine.  But some suggest that the 

ERN actually reflects the activity of other neurotransmitter systems (reviewed by Jocham 

& Ullsperger 2009).  Surprisingly little work has actually been done to investigate these 

alternative neurotransmitters.  Candidates include norepinephrine (Riba et al., 2005b; 

Riba et al., 2005a), GABA (Johannes et al., 2001; de Bruijn et al., 2004), and adenosine 

(Tieges et al., 2004). 
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 Some have suggested instead that the ERN reflects the emotional reaction 

associated with detecting that an error has been committed (Luu et al., 2000; Luu et al., 

2003).  Much of the evidence for this view comes from a myriad of studies that have 

been published attempting to link particular traits of various clinical disorders such as 

obsessive compulsive disorder or depression to aspects of the ERN (reviewed by Olvet 

and Hajcak, 2009).  From a neurophysiological standpoint, this theory is somewhat 

difficult to test, since it does not make specific predictions concerning neural activity.  It 

is also worth noting that this theory is not exclusive of the others mentioned above (Luu 

and Pederson, 2004; Gehring et al., 2011).  It is perfectly reasonable that a red flag from 

an error detection, conflict monitoring, or reward prediction system may lead to, or 

coincide with a negative affective response.  Furthermore, the brain region or neural 

population giving rise to cognitive affect may contribute to the ERN recorded at the 

surface.  In truth, similar logic may apply to all theories of the ERN.  It may be overly 

simplistic to assume that the ERN reflects one single process of error detection (Logan 

and Crump, 2010).  Different areas of medial frontal cortex have been implicated in a 

wide range of functions that all fall under the general heading of performance monitoring 

(reviewed by Ridderinkhof et al., 2004; Rushworth et al., 2004).  Any, or all of these 

functions may be carried out simultaneously by different areas of cortex or 

subpopulations of neurons.  This would explain why so many authors have found 

support for their preferred theory of the ERN.  In Chapter 6, I shed additional light on the 

idea that the ERN may in fact reflect a mixture of activity from several different areas 

carrying out various performance monitoring functions using concurrent intracranial and 

surface recordings to link the ERN to specific aspects of performance monitoring.   
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1.6 The studies presented here 

 In the first study, detailed in Chapter 2, I investigate the pattern of extraocular 

muscle activation when planned saccades are quickly withheld.  When manual 

responses are canceled during the stop-signal task, partial movement or EMG activation 

in the absence of overt movement is still sometimes observed (De Jong et al., 1990; 

McGarry and Franks, 1997; McGarry et al., 2000; van Boxtel et al., 2001; Scangos and 

Stuphorn, 2010).  If the GO process and STOP process of Logan's race model tie, we 

may observe truncated motor responses.  Some researchers have reported shorter 

amplitude saccades on noncanceled trials in the stop-signal task, suggesting a similar 

effect in the oculomotor system (Colonius et al., 2001; Ozyurt et al., 2003; Akerfelt et al., 

2006; but see Hanes and Schall, 1995).  In the spinal motor system, it is also possible 

that manual responses may be canceled by coactivating agonist and antagonist 

muscles, leading to EMG in the absence of overt responses.  But based on the 

properties of the brain stem saccade generator detailed above, these phenomena 

should not be observed in the oculomotor system.  Therefore, I hypothesized that I 

would not observe partial extraocular EMG in the absence of overt saccades when eye 

movements were canceled.  I tested this hypothesis by recording and isolating the 

saccadic spike potential from anterior EEG electrodes in macaque monkeys.  As I had 

hypothesized, there is no detectable increase in extraocular EMG when planned 

saccades are withheld.  Thus, as anticipated by previous behavioral and anatomical 

studies, saccades prove to be ballistic processes and they are not canceled by 

coactivation of agonist and antagonist muscles.  Unexpectedly however, a significant 

decrease in the average level of extraocular EMG is also detected when saccades are 

canceled.  I interpret this decrease as a likely decrease in the number of microsaccades 

that were initiated when saccades were canceled.  Thus, the process responsible for 

canceling large, task relevant saccades likely inhibits microsaccades as well. 
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 In the next study, detailed in Chapter 3, I followed this hypothesis by directly 

measuring microsaccades while monkeys performed the stop-signal task.  As reviewed 

above, deep layer neurons in the rostral pole of the SC have long been considered to be 

fixation cells.  A similar population of cells is also recognized in FEF (Izawa et al., 2009).  

However, recently another view has been advanced, suggesting that neurons in the 

rostral pole of the SC actually code for microsaccades (Hafed et al., 2009).  As detailed 

in the introduction to Chapter 3, based on the reported neural activity of neurons in SC 

during the stop-signal task, these two theories make different predictions concerning the 

overall pattern and number of microsaccades made when large task relevent saccades 

are canceled.  In agreement with the EMG data I describe in Chapter 2 and with the 

hypothesis that neurons in rostral SC serve fixation, I observed decreased incidence of 

microsaccades.  Thus the tension between movement and fixation is represented 

explicitly by two populations of neurons in SC and FEF.   

 Next, in Chapter 4, we turn our attention from the execution of eye movements 

and consider their evaluation.  As reviewed above, the precise functions subserved by 

SEF are unknown, although it is thought to play an important role in the evaluation of 

eye movements.  Various tasks have been used to correlate neural responses in this 

area to one cognitive process or another.  These studies have yielded a wide range of 

observations that are difficult to evaluate as a whole.  I began investigation of SEF using 

a different approach, choosing to characterize basic response properties and 

microcircuitry in this area as my starting point.  Using a multi-contact electrode array to 

record LFP and single unit data and to derive current source density from all layers of 

SEF simultaneously, I characterize, for the first time, functional microcircuitry in 

agranular frontal cortex.  The functional microcircuit in this area looks very similar to that 

described in early sensory cortex.  I report visual and motor responses from all layers of 

SEF.  By understanding the intracranial projection patterns of SEF as well as the 
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microcircuitry of this area, we can gain greater insight into its role in evaluating 

saccades.   

 In the next study, described in Chapter 5, I sought to strengthen the link between 

SEF and saccade evaluation, as well as provide a keystone in the bridge uniting the 

monkey and human performance monitoring literature.  As reviewed above, it has been 

suggested that SEF, along with other areas of medial-frontal cortex, may contribute to 

the performance monitoring event related potential known as the ERN.  However, 

although intracranial recordings have highlighted performance monitoring activity in non-

human primates, it is not known if they exhibit an ERN in surface potentials homologous 

to those recorded in humans.  By recording surface potentials, in non-human primates 

during the saccade stop-signal task, I report that monkeys do exhibit an ERN 

homologous to that recorded in humans.   

 Finally, to better understand the role of SEF in monitoring and evaluating the 

outcome of eye movements, I bring the techniques of Chapters 4 and 5 together in 

Chapter 6 by recording from all layers of SEF simultaneously while recording ERNs at 

the surface during a stop-signal task.  I report error-related CSD in SEF.  Using Granger 

causality analysis, I further show that this activity likely contributes to the ERN recorded 

at the surface.  Finally, by using an asymmetrica reward manipulation, and recording 

from neurons with different response properties, I show that the contribution of SEF to 

the ERN is produced by a process specific to error detection, and is not mediated by 

reinforcement learning. 

 In the final chapter, we will consider these results as a whole, and discuss future 

directions suggested by them.    
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CHAPTER 2 

 

MEASUREMENT OF THE EXTRAOCULAR SPIKE POTENTIAL DURING SACCADE 

COUNTERMANDING 

 

2.1 Abstract 

 The stop-signal task is used to investigate motor inhibition.  Several groups have 

reported partial electromyogram (EMG) activation when subjects successfully withhold 

manual responses, and have used this finding to define the nature of response inhibition 

properties in the spinal motor system.  It is unknown whether subthreshold EMG 

activation from extraocular muscles can be detected in the saccadic response version of 

the stop-signal task.  The saccadic spike potential provides a way to examine 

extraocular EMG activation associated with eye movements in electroencephalogram 

(EEG) recordings.  We used several techniques to isolate extraocular EMG activation 

from anterior electrode locations of EEG recorded from macaque monkeys.  Robust 

EMG activation was present when eye movements were made, but no activation was 

detected when saccades were deemed canceled.  This work highlights a key difference 

between the spinal motor system and the saccade system.4  

 

2.2 Introduction  

Rapid inhibition of prepared motor responses has been studied extensively with 

the stop-signal or countermanding task (reviewed by Verbruggen and Logan, 2008).  In 

this task, subjects make quick responses to target stimuli.  On a subset of trials, a 

second stimulus follows the target, instructing subjects to withhold their responses.  
                                                            
4 This chapter was published as Godlove DC, Garr AK, Woodman GF, Schall JD. 
Measurement of the extraocular spike potential during saccade countermanding. Journal 
of Neurophysiology 106: 104-114, 2011. 
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When subjects are successful in canceling their responses, behavioral measures cannot 

be recorded because no overt behavior occurs.  However, using a modeling approach, 

the timing of the covert inhibitory process can be estimated (Logan and Cowan, 1984; 

Colonius, 1990; Logan, 1994).  A saccadic response version of the stop-signal task has 

been used to characterize properties of the ocular motor system (Hanes and Schall, 

1996; Hanes et al., 1998; Hanes and Carpenter, 1999; Logan and Irwin, 2000; Paré and 

Hanes, 2003; Corneil and Elsley, 2005; Walton and Gandhi, 2006; Boucher et al., 

2007b; Emeric et al., 2007).   

 Several groups have reported subthreshold electromyogram (EMG) activation on 

canceled trials in the manual response version of the countermanding task (De Jong et 

al., 1990; McGarry and Franks, 1997; McGarry et al., 2000; van Boxtel et al., 2001; 

Scangos and Stuphorn, 2010).  However, it is unknown if partial extraocular EMG 

activation is present when eye movements are deemed canceled.  The possibility that 

extraocular muscles may contract without producing  detectable eye movement seems 

unlikely.  However, the literature is inconclusive on this point.  While it is true that the 

inertia of the eye within the orbit is negligible, the surrounding tissue of the oculomotor  

plant exerts viscous and elastic forces on the eye which are significant (Porter et al., 

2003).  It is difficult to estimate the extent to which these forces counteract eye 

movement production, because research has resulted in contradictory evidence 

(Robinson, 1964; Sklavos et al., 2005; Anderson et al., 2009; Quaia et al., 2009).  In 

fact, very few experiments have been reported on this matter.  Furthermore, most of 

these studies have been conducted using anesthetized animals, but larger time 

constants for visco-elastic relaxation of orbital tissues have been noted in alert animals 

(Anderson et al., 2009).   

 When considering whether or not extraocular muscles are able to generate 

contractions that do not result in eye movements, it is also important to consider the 
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muscles themselves.  The extraocular muscles are relatively poor actuators.  During 

periods of fixation, only 23% of muscle innervation is ultimately transferred to the 

tendons to result in rotation of the eyeball (Quaia and Optican, 2003).  Thus, when 

saccades are initiated, a force of much larger magnitude must be supplied to overcome 

that dissipated by the muscles themselves.  This initial burst of force can be observed in 

the well known "pulse-slide-step" discharge pattern of oculomotor neurons (Fuchs and 

Luschei, 1970; Robinson, 1970).  The "pulse" portion of muscle innervation is thought to 

be necessary in order to overcome static viscous drag exerted by the passive orbital 

tissue (Sparks, 2002).  These considerations leave open the possibility that small 

extraocular muscle contractions may occur in the absence of detectable eye 

movements. 

If partial EMG activation were observed in the primate ocular motor system when 

trials were deemed canceled, it would provide a powerful and versatile tool for examining 

motor control in saccadic tasks.  This development would be particularly useful for 

neurophysiological research, since most work using the stop-signal paradigm with 

monkeys has been carried out in the ocular motor domain.  On the other hand, there is 

reason to believe that partial muscle activation should not be readily produced by the 

primate ocular motor system.  First, saccades are thought to be initiated in an all-or-none 

manner.  Second, although manual responses can be canceled by coactivating agonist 

and antagonist muscles, it should be nearly impossible to perform this type of 

cancelation in the ocular motor domain.  The contralateral inhibitory circuitry of the 

brainstem saccade generator precludes this type of muscle coactivation (Hikosaka et al., 

1978; Scudder et al., 2002; Sparks, 2002).   

Because of their positions in the orbit, it is difficult to record EMGs directly from 

the extraocular muscles.  However, an EEG effect associated with eye movements, the 

saccadic spike potential (SP), has been consistently noted in humans and monkeys 
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(Blinn, 1955; Keren et al., 2010; Sander et al., 2010).  Several studies provide strong 

evidence that the SP does not originate in cortical activity or from the corneo-retinal 

potential (Thickbroom and Mastaglia, 1985; Moster and Goldberg, 1990; Picton et al., 

2000).  Instead, this component is myogenic, derived from contraction of the lateral and 

medial recti (Blinn, 1955; Thickbroom and Mastaglia, 1985).  The SP appears as a 

prominent, high-frequency component occurring just prior to or concomitant with 

saccade onset.  It takes the form of a frontal negativity with scalp distribution ipsilateral 

to the direction of eye movements (Thickbroom and Mastaglia, 1985; Moster and 

Goldberg, 1990; Keren et al., 2010).  With appropriate filtering techniques, SPs have 

been shown to reliably precede saccades as small as 0.2° in amplitude, and to predict 

saccades with amplitudes less than 0.2° above chance level (Keren et al., 2010)5.  

Research on the SP has lapsed over the last few decades, but interest was recently 

renewed with the observation that many findings of gamma-band activity in scalp EEG 

recordings that were attributed to cognitive processes may actually have been artifacts 

from the SP associated with microsaccades (Yuval-Greenberg et al., 2008).  

Consequently, methods for isolating and removing SP activation from EEG recordings 

have been described (Keren et al., 2010). 

 In the present study, we tested the hypothesis that partial activation of eye-

movement responses are made in the stop-signal task, similar to findings from manual 

                                                            
5 Keren et al. (2010) report data from a bin that included saccade amplitudes ranging 
from 0.2° to 0.5°.  As correctly pointed out by an anonymous reviewer, the distribution of 
saccade amplitudes within this bin was not reported.  Strictly speaking, it is therefore 
impossible to say with certainty that SPs associated with saccades of 0.2° in amplitude 
could be reliably detected.  However, it is well known that histograms displaying 
amplitudes of saccades recorded during a given time interval tend to take the form of 
decreasing exponential distributions (e.g. Collewijn & Kowler, 2008).  In other words for 
any given distribution, saccades of smaller amplitude tend to be made with exponentially 
higher frequency than saccades of larger amplitude.  Therefore, it is reasonable to 
expect that saccades with amplitudes ~ 2° made up a large proportion of the saccades 
used for this analysis.    
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stop-signal studies.  This hypothesis predicts that partial muscle activation can occur on 

canceled trials.  We tested this prediction by recording EEG and isolating SPs during 

periods when eye movements were prepared but not detected.  We found strong SPs 

when saccades were made, but found no evidence of SP activation when movements 

were deemed canceled. 

 

2.3 Methods 

2.3.1 Animal Care 

 Data were collected from one male bonnet macaque monkey (Macaca radiata 

~8.5 kg) and one female rhesus macaque monkey (Macaca mulatta ~7 kg).  Both 

animals were cared for in accordance with policies set forth by the USDA and Public 

Health Service Policy on Humane Care and Use of Laboratory Animals.  Animal care, 

procedures, and experiments were also carried out with supervision and approval from 

the Vanderbilt Institutional Animal Use and Care Committee. Fruit juice was given as 

positive reinforcement for correctly completed trials.  During periods of testing, ad libitum 

access to liquids was withdrawn.  In consultation with attending veterinarians, each 

animal’s weight and food intake were monitored, and fluids were supplemented as 

needed.   

 

2.3.2 Surgical Procedures 

 All surgical procedures were carried out under aseptic conditions.  Access to 

food was withdrawn 12 hours prior to surgery.  Animals were sedated with ketamine (10-

30 mg/kg) and provided with an initial dose of buprenorphine (0.005-0.010 mg/kg) to 

alleviate post operative discomfort.  Ophthalmic ointment was applied to prevent corneal 

drying.  Robinul (0.004-0.008 mg/kg) was administered to minimize mucosal secretions 

and help prevent vagal bradycardia.  Animals were intubated and catheters were 
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inserted into saphenous veins for administration of support fluids throughout the 

procedure.  Monkeys were anesthetized with an isoflurane/oxygen mixture (1-3% 

C3H2CIF5O), shaved, positioned in stereotax, and scrubbed.  EKG, rectal temperature, 

respiration, and blood pressure were monitored.  Expiratory CO2 was maintained at 

~4%.  After subcutaneous administration of lidocaine (~1-2 ml of 2% soln'), the subjects’ 

skulls were exposed and titanium headposts were firmly attached with titanium, 

orthopedic screws (Synthes, West Chester, PA) to immobilize the animals' heads during 

testing.  Solid gold surface electrodes, Teflon coated stainless steel wires, and plastic 

connectors were constructed and implanted following the method of Woodman et al. ( 

2007).  Surgical sutures and staples were used to close incisions in layers. In 

consultation with attending veterinarians, analgesics (bupronorphine 0.005-0.010 mg/kg) 

and prophylactic antibiotics (naxcel 2.2 mg/kg) were administered for at least 3 days 

following surgery.   

 

2.3.3 Task 

 During testing, monkeys were seated comfortably 51 cm from a cathode ray tube 

monitor (48 x 48°, 80Hz) in enclosed polycarbonate and stainless steel primate chairs 

and head restrained using surgically implanted head posts.  Stimulus presentation, task 

contingencies related to eye position, and delivery of liquid reinforcement were all under 

computer control in hard real time (TEMPO, Reflective Computing, Olympia, WA).  

Stimuli were presented using computer-controlled raster graphics (TEMPO Videosync 

1,280 x 1,040 pixel resolution , Reflective Computing, Olympia, WA).  Stimuli had a 

luminance of 30 cd/m2 (fixation point) or 10 cd/m2 (targets) on a 1 cd/m2 background. 

 Behavior and electrophysiological signals were recorded during the 

countermanding (i.e., stop-signal) task (Figure 2.1).  Additional details about the 

behavioral training regime and task have been described previously (Hanes and Schall,
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Figure 2.1.  The stop-signal (or countermanding) task in a schematic representation.  
No-stop trials (top) were initiated when monkeys fixated a centrally presented fixation 
point.  After a variable time, the fixation point was extinguished and simultaneously a 
peripheral target was presented at one of two possible locations.  Monkeys were 
required to fixate targets with quick saccades for juice rewards.  Stop trials (bottom) 
were initiated in the same way.  After a variable time termed stop-signal delay (SSD) the 
fixation point was reilluminated, instructing the monkeys to withhold movement.  
Successful inhibition of saccades resulted in rewarded Canceled trials, but errant 
saccades resulted in unrewarded Noncanceled trials.  Black squares indicate stimulus 
locations.  Dotted circles represent area of fixation.  F = fixation point, T = target, RT = 
reaction time, SSD = stop-signal delay. 
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1995; Hanes et al., 1998).  Trials were initiated when monkeys fixated a centrally 

presented square which subtended 0.34° of visual angle.  After a foreperiod ranging 

from 200 ms to 1100 ms, the central fixation point was extinguished and a target 

subtending 3° of visual angle simultaneously appeared at 10° to the left or right of 

fixation.  The foreperiod was randomly sampled from a distribution described by the 

function; 

ሻݐሺ݌ ൌ ሺ1 െ exp ሺെݐ/߬௚ሻሻ · ሺexp ሺെݐ/߬ௗሻሻ 

where p(t) describes the probability of selecting a specific foreperiod, τg describes the 

growth rate, and τd describes the decay rate.  We chose a growth rate of 1000 ms and a 

decay rate of 200 ms to approximate a non-aging foreperiod.  We added 200 ms to this 

distribution and truncated it at 1100 ms to achieve the desired range.  On no-stop trials 

(Figure 2.1 top), no further visual stimuli were presented.  Monkeys were required to 

make a saccade to the target within 600 ms to obtain reward.  Correct trials were 

rewarded with several drops of juice and an audible tone.  On stop trials (Figure 2.1 

bottom), the fixation point was re-illuminated after a variable delay providing a “stop-

signal” which instructed the monkeys to cancel their impending eye movements and 

maintain central fixation.  In practice, two trial outcomes were then possible.  If monkeys 

successfully withheld the eye movement and maintained fixation for a minimum of 600 

ms, they obtained tone and juice reward.  These trials were designated as "canceled”.  If 

monkeys were unable to inhibit the movement, a 1500 ms timeout was added to the 

normal inter-trial interval of 200 ms, no rewards were given, and the trial was termed 

“noncanceled”.  The stop-signal delay (SSD) or time between target and stop-signal 

presentation determines the probability with which movements can be successfully 

countermanded (Logan and Cowan, 1984). An initial set of SSDs from 0 to 420 ms and 

separated by either 40 or 60 ms was selected for each recording session.  We then 

manipulated SSD using an adaptive staircasing algorithm which adjusted stopping 
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difficulty based on performance. When subjects failed to inhibit responses, the SSD was 

decreased by a random step of 1, 2, or 3 increasing the likelihood of success on the next 

stop trial.  Similarly, when subjects were successful in inhibiting the eye movement, the 

next SSD was increased by a random step of 1, 2, or 3 decreasing the future probability 

of success.  This procedure was used to ensure that subjects failed to inhibit action on 

~50% of stop trials overall.  Stop trials were 30 to 70% of all trials in a given session with 

a typical session consisting of several thousand trials. Reaction time data did not show 

any evidence that subjects slowed responses to “wait for” the stop signal (see Results).  

Saccade initiation and termination were detected offline using a custom algorithm 

implemented in the MATLAB programming environment (MathWorks, Natick, MA) which 

first detected instantaneous velocity elevated above 30°/s and then calculated the 

beginning and ending of the monotonic change in eye position. 

 

2.3.4 Data Acquisition 

 Time stamps of relevant trial events were recorded at 1 kHz with analog data 

using a Plexon Multichannel Acquisition Processor (MAP) box (Plexon, Dallas, TX).  Eye 

position was monitored using a video based infrared eye-tracking system (ASL, Bedford, 

MA) and was streamed to the Plexon MAP box parallel with trial events and EEG data 

using a 64 channel Plexon Breakout Board (PBOB, Plexon,Dallas, TX).  We estimated 

the spatial resolution of our eye tracking setup by recording standard deviations while 

monkeys were actively fixating the central fixation point.  Across all sessions, the mean 

standard deviations were ±0.54° and ±0.51° for monkeys F and Y respectively.  The 

maximum standard deviations while fixating for a session were ±0.74 and ±0.67 for 

monkey F and Y respectively.  Unfortunately, this spatial resolution was not high enough 

to detect microsaccades, although it was more than sufficient to detect the onsets of 

large task related responses.  Implanted EEG surface electrodes were referenced to clip 
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style Ag/AgCl cup electrodes (Electro-Cap International, Eaton, OH) which were filled 

with conductive paste and clipped to either the left ear (monkey F) or linked to both ears 

(monkey Y).  All data are recorded from an electrode approximating Fz of the 

international 10-20 system for humans in monkey F, and an electrode approximating Fpz 

in monkey Y.  Since data are reported from a single midline electrode in both subjects, 

the asymmetric referencing used for monkey F did not result in any significant 

differences.  The EEG from each electrode was amplified with a high-input impedance 

head stage (>1 GΩ , ~2 pF of parallel input capacitance, HST/8o50-G1-GR, Plexon Inc.) 

and filtered between 0.7 and 170 Hz with two cascaded, one-pole, low-cut, Butterworth 

filters and a four-pole, high-cut, Butterworth filter. 

 

2.3.5 Race model behavioral analysis 

 A race model has been used with great success to account for both behavioral 

performance and neural activity in the countermanding paradigm (Logan and Cowan, 

1984; Boucher et al., 2007a; Lo et al., 2009; reviewed by Verbruggen and Logan, 2008).  

On no-stop trials, reaction times (RTs) can be observed directly. On stop-signal trials, 

noncanceled RTs can be recorded, along with the probability of committing an errant 

noncanceled saccade at each SSD.  The latter measure tends to assume the form of an 

increasing sigmoid curve, and has traditionally been referred to as an inhibition function.  

By treating the inhibition function as a cumulative probability distribution and comparing 

it to the distribution of RTs on no-stop trials, one is able to use the logic of the race 

model to estimate the median time required to cancel execution of a motor response 

(Logan, 1994; Band et al., 2003; see also Colonius, 1990).  This stop-signal reaction 

time (SSRT) provides a measure of the otherwise covert stop process. 

 Following the methods of Hanes et al. (1998), we first fit a Weibull function with 

the following form to the inhibition function for each monkey averaged across sessions. 
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ܹሺݐሻ ൌ ሺߛ െ ሻߜ  · exp ሺെሺߙ/ݐሻఉሻ  ߛ െ

 Where t = time after target onset, γ = the maximum probability value, δ = the minimum 

probability value, α = 64% of the maximum probability value, and β = slope.  Next, we 

used the fitted inhibition functions and the combined no-stop RT data to estimate SSRTs 

for each monkey using two different methods.  The first of these methods assumes that 

SSRT is a random variable, while the second method assumes that SSRT is constant 

across SSDs (Hanes et al., 1998; Band et al., 2003).  Since there is no reason to 

suppose an advantage of either of these SSRT estimation methods, we averaged the 

two estimates together to obtain a final SSRT estimate separately for each monkey 

(Hanes et al., 1998; Paré and Hanes, 2003).   

 A robust finding in the stop-signal literature is that noncanceled RTs are 

significantly lower than no-stop RTs.  This is a straightforward prediction of Logan and 

Cowan's (1984) horse race model, since trials with faster GO processes will tend to 

finish before the STOP process, thus escaping behavioral inhibition.  It also suggests 

that noncanceled trials cannot be accurately compared to the entire distribution of no-

stop trials when RT is a potential confounding variable.  An accurate comparison can 

only be made between noncanceled trials and no-stop trials with relatively faster RTs.  

Specifically, noncanceled trials should only be compared to no-stop trials with RTs < 

SSRT + SSD.  These are the trials which would have escaped behavioral inhibition and 

resulted in errant saccades had a stop-signal been presented.  Similarly, for accurate 

comparisons, canceled trials must be matched to slower no-stop trials with RTs > SSRT 

+ SSD.  Thus, even though no response is generated on successfully canceled trials, RT 

ranges can be estimated for this trial type.  The technique of matching noncanceled and 

canceled trials to no-stop trials with RTs from the appropriate portion of the RT 

distribution has been termed “latency matching” (Hanes et al., 1998).  In the current 

study, it was especially important that we compare canceled trials to their latency 
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matched no-stop counterparts.  This allowed us to estimate times when eye movements 

were likely even though they were not detected.  Where appropriate, we used our 

derived SSRT estimates to latency match at each SSD. 

 

2.3.6 Event-Related Potential (ERP) and Event-Related Velocity (ERV) analyses 

ERPs were time-locked to saccade initiation or target onset and baseline corrected to 

the interval from 150 ms to 50 ms before these events. Canceled trials did not contain 

saccade events.  Instead, a virtual saccade event was created for trials in this condition 

by randomly sampling from the distribution of latency matched no-stop RTs with 

replacement.  Canceled trials were then aligned to this virtual saccade event and 

baseline corrected .  Trials with voltage deflections greater than ±300 µV due to artifacts 

were excluded from further analysis.  This threshold for rejection was an order of 

magnitude greater than the variability in the ERPs observed across monkeys (i.e., 

maximum root mean square for monkey F target aligned no-stop trials = 42.2 µV, 

canceled trials = 39.8 µV, noncanceled trials = 41.4 µV; maximum root mean square for 

monkey Y target aligned no-stop trials = 42.7 µV, canceled trials = 45.2 µV, noncanceled 

trials = 40.7).  Single trial EEG signals were truncated 50 ms before the onset of the 

second, non-task related saccade to eliminate “smeared” saccade related artifacts.  It 

was important to estimate the relative timing of saccades and to display this estimate 

graphically.  Instead of using a traditional method such as displaying a histogram of 

saccade latencies, we collapsed across saccade velocity profiles.  This method is 

essentially the same as creating an ERP from EEG data, except the data were radial 

eye velocity traces (Figure 2.2).  The resulting average does not only contain information 

about saccade latency, but also takes into consideration saccade amplitude and 

duration, making it a more complete descriptor of average saccade dynamics.  Since 

these velocity profiles have been aligned to particular events and collapsed across trials
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Figure 2.2.  The timing of eye movements relative to task events was displayed using 
event related velocity (ERV) plots.  This technique is similar to creating ERPs from raw 
EEG signal.  Top left shows single trial radial positions for a sample session aligned on 
saccade onset.  Bottom left shows instantaneous radial velocity for the same trials 
(black) along with the mean instantaneous velocity collapsed across all trials (red).  Top 
right shows the same single trial radial positions in relation to target onset.  Bottom right 
shows single trial instantaneous velocity in relation to target onset, as well as the 
average radial velocity collapsed across all trials.  This target aligned ERV gives 
information about average saccade latency, velocity, and duration relative to target 
onset. 
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 in the same way as ERPs, we will refer to them as "event-related velocities" (ERVs).  

ERVs were not baselined since an ERV value of 0 is not arbitrary as it is in an ERP.  As 

a rule, the single trial velocity profiles which made up the ERVs were truncated at the 

onset of the second, non-task related saccade to avoid contamination of the task related 

saccade velocity trace. 

 Narrow digital band-pass filters (frequency ± 1 Hz) were employed to 

discriminate the SP from other saccade related components (see results).  Each filter 

was created using a Hamming window of length ሺ2  · ܶ ൅ .001ሻs, where ܶ ൌ ଵ
௙
 .  A zero 

phase-shift digital filter was applied to the data using the specified hamming window.  

Analytical power of the filtered data at each time ti was approximated using a sliding 

window function of the form: 

ܲሺݐ௜ሻ ൌ
maxሺܣሻ െ  minሺܣሻ

2
 

where A is the time interval ሾݐ௜ ି ೅మ 
௜ ା ೅మݐ  

]..  These methods ensured a high level of filter 

specificity while minimizing sacrifices in timing estimation accuracy at each band-pass 

frequency. 

 A signal to noise ratio was estimated for each applied filter to assess how well it 

isolated the SP from the surrounding EEG.  After applying each filter to single session 

data and estimating analytical power, the mean value in a 41 ms time window centered 

on the peak of the SP was recorded.  This value was termed the "signal".  The mean 

value in a 1 s time window centered on saccade onset and excluding the signal time 

window was also recorded.  This value was termed "noise".  (Note that in this context, 

noise does not just refer to variability, measurement error, or unwanted line voltage 

fluctuations.  Noise also refers to EEG fluctuations and includes those fluctuations which 

are task related.  Task related EEG fluctuations do not average out in ERPs, and they 
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can obscure the SP which is our component of interest.)  The filter yielding the highest 

signal to noise ratio was then used to isolate single trial SPs in subsequent analysis. 

 

2.4. Results 

2.4.1 Behavior 

 Reaction times, average probability of committing errors, and SSRT estimates 

collapsed across sessions are summarized in Table 2.1.  Both animals exhibited 

noncanceled trials with probability > 50%.  Since we used a staircasing algorithm to 

adjust SSD, this departure suggests that both animals tended to speed up, causing a 

reduction in SSD.   This pattern of behavior has been described before in animals 

performing the saccade stop-signal task, and it appears to be an effective strategy for 

speeding up trial presentation and maximizing the rate of reward delivery (Godlove et al., 

2009).  In any case, our estimates of SSRT are lower than the more typical estimates of 

80 to 100 ms recorded in the literature.  If our estimates are artificially low due to 

violations of the race model, it presents a problem for latency matching, since we may 

have erroneously underestimated the time of probable SP activation on canceled trials.  

Accordingly, when results depend on latency matching, large reaction time windows 

have been displayed and analyzed to ensure that late SP activation was not missed in 

canceled trials. 

 

2.4.2 Saccade Dynamics   

 Figure 2.3 plots main sequences of no-stop (blue) and noncanceled (red) 

saccades separately for each subject and each target.  These data are summarized 

numerically in Table 2.2.  We carried out 3 way ANOVAs to test the hypotheses that 

saccade amplitude and/or velocity differed between subjects, targets, or trial types.  Both 

amplitude (p < 0.001, df = 87), and velocity (p < 0.001, df = 87) were found to differ 
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243 ± 77 206 ± 75 0.53 59monkey Y

224 ± 52 211 ± 57 0.58 59monkey F

no-stop RT noncanceled RT p(noncanceled) SSRT

 

 

 

 

 

 

 

 

 

 

 

Table 2.1. Summary statistics for stop-signal task performance.  Reaction times (± 1 
standard deviation), probability of committing errant noncanceled saccades, and SSRTs 
for each subject collapsed across sessions. 
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Figure 2.3.  Saccade dynamics do not differ between no-stop and noncanceled trials.  
Scatter plots display saccade amplitude vs. peak saccade velocity (main sequences) 
across all sessions.  Histograms display associated probability densities for each 
measurement.  Binwidths are 10 deg/s for velocity distributions and 0.25 deg for 
amplitude distributions.  Blue dots and broken lines represent saccades on no-stop trials.  
Red dots and solid lines represent saccades on noncanceled trials.  Rows separate data 
by target.  Columns separate data by subject.   
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monkey F

monkey Y

left target right target left target right target

no-stop noncanceled no-stop noncanceled no-stop noncanceled no-stop noncanceled

amplitude (deg.) peak velocity (deg. s-1)

9.7 ± 0.7 9.6 ± 0.9 10.7 ± 0.8 10.5 ± 1.2 473 ± 92 463 ± 97 623 ± 66 607 ± 104

9.3 ± 0.9 9.8 ± 2.9 10.5 ± 0.9 10.5 ± 2.2 428 ± 97 469 ± 306 502 ± 52 509 ± 247

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.2 Countermanding saccade dynamics. Mean amplitude and mean peak 
velocities (± 1 standard deviation) across sessions separated by subject, target location, 
and trial type. 
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between targets.  Monkeys tended to make slightly larger amplitude and higher velocity 

saccades toward the right target.  This may be an artifact induced by the monocular eye 

tracking procedures we employed.  Since we only tracked the right eye of each subject, 

saccades traces to the right target reflected abduction of the tracked eye while saccade 

traces to the left target reflected adduction of the tracked eye.  On the other hand, the 

difference may reflect a real bias that both monkeys developed toward the right target.  

Peak saccade velocity was also found to differ between subjects (p < 0.001, df = 87).  

Monkey F made saccades with higher peak velocities than monkey Y.  However, neither 

amplitude (p = 0.701, df = 87) nor peak velocity (p = 0.380, df = 87) differed significantly 

between trial types.  Since main effects of around 1° proved highly significant in the 

target contrast, the failures to reject null hypotheses in the trial type contrasts cannot be 

attributed to a deficiency of statistical power.  These results replicate earlier findings by 

Hanes and Schall (1995).   

 

2.4.3 Saccade Aligned ERPs 

 Figure 2.4 plots saccade aligned ERPs and ERVs from both subjects. On trials in 

which saccades were detected, we observed a high amplitude, high frequency negativity 

occurring concomitant with or slightly before saccade initiation.  This saccade-related 

component has been described many times in human subjects (Evdokimidis et al., 1991; 

Everling et al., 1997) and at least once in non-human primates (Sander et al., 2010).   

 For our purposes, the most important finding is the absence of the SP on 

canceled trials.  At least two alternatives exist to explain this finding.  First, we may 

conclude that partial muscle activation does not occur on canceled saccade trials, so no 

saccadic SP is evident.  Second, we may conclude that aligning EEG to a virtual 

saccade event obtained by random sampling from existing RT distributions is too coarse 

a method to detect the saccadic SP on canceled trials.  If partial motor activation did 
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Figure 2.4.  No SP is evident in canceled trials aligned on a virtual saccade event.  Black 
traces show ERPs and colored traces show ERVs (see text).  The thin solid traces show 
saccade aligned ERPs and ERVs on no-stop trials.  The most prominent components in 
the ERPs are the sharp negative SPs, which occurs just prior to or concomitant with 
saccade onset and the several positive and negative deflections which follow.  The first 
several components which follow saccade onset probably include a strong contribution 
from the corneo-retinal potential.  The broken traces show ERPs and ERVs on errant 
noncanceled trials.  Note the extreme similarity of the ERVs for no-stop and 
noncanceled trials.  Note also the similarity between no-stop and noncanceled ERPs.  
This similarity is especially apparent in the time before saccade onset when the SP is 
visible.  The thick solid traces depict ERPs and ERVs on canceled trials aligned to a 
virtual saccade event.  No elevated velocity can be detected in the ERVs, and no SP can 
be detected around time 0 in the ERP.  Data are collapsed across 15 sessions and 
recorded from a location approximating Fz for monkey F.  Data are collapsed across 7 
sessions and recorded from a location approximating Fpz for monkey Y.  ERP data are 
baselined to the period from 150 ms to 50 ms before saccade onset.  The number of 
trials in each ERP follows.  Monkey F; no-stop n = 13,764, canceled n = 6,256, 
noncanceled n = 6,552.  Monkey Y; no-stop n = 4,782, canceled n = 1,489, noncanceled 
n = 1,120. 
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occur on these trials, we do not know when.  Therefore, aligning on virtual randomly 

sampled RT events and collapsing across the data may have smeared any partial SPs 

and rendered them difficult to detect.  We note that even if small amplitude SPs had 

been generated on the canceled trials but were temporally smeared by averaging, they 

should be revealed by a low amplitude, broad negativity during the measurement epoch.  

As is evident in Figure 2.4, we did not observe a waveform on canceled trials consistent 

with this pattern.  However, we carried out an additional time-frequency analysis to 

isolate SP activation from the surrounding EEG and test for the presence of extraocular 

EMG activation during canceled stop trials. 

 

2.4.4 Isolated SP activation 

In our data, the SP is readily visible as a stereotyped high frequency negativity 

(Figure 2.4).  Because of its unusually high frequency and its invariance across 

sessions, we hypothesized that SP activation could be discriminated from the 

surrounding EEG on a trial-by-trial basis after application of an appropriate filter (see 

also Keren et al. 2010).  We applied narrow digital band-pass filters in steps of 10 Hz to 

search for a frequency which optimally discriminated SP activation from the surrounding 

EEG.  After filtering the data and calculating power as a function of time, we constructed 

response aligned ERPs for no-stop trials at each band-pass frequency for each 

recording session.  We then calculated signal-to-noise ratios for each filtered ERP.  The 

result of this analysis is plotted in Figure 2.5f.  A band-pass filter centered on 95 Hz was 

found to provide the greatest discrimination between the SP and the surrounding EEG 

for monkey F, while a band-pass filter centered on 35 Hz was found to be optimal for 

monkey Y.  At first glance, this difference may seem surprising.  However, our technique 

does not simply measure the frequencies contributing power to the SP.  Instead, it 

isolates the frequency which optimally discriminates the SP from the surrounding EEG.  
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Figure 2.5.  Band-pass filters were optimized to find frequencies which allowed for the 
highest discrimination between the SP and non SP components.  a One second 
example of raw EEG centered on saccade onset.  Note that in this and following panels 
negative is plotted down so that later power traces appear facing upward.  b The same 
EEG signal processed  with a 35 Hz band-pass filter.  After filtering, the analytical power 
was estimated (see methods) and this estimate is depicted by the thick blue line.  c 
Power at 35 Hz for every no-stop trial in the example session.  Each horizontal line of 
color depicts a single trial centered on saccade onset.  Warmer colors indicate more 
power.  Note the faint band adjacent to saccade onset indicating that the 35 Hz band-
pass filter was somewhat successful in isolating SP related activation.  d This result is 
further demonstrated by collapsing across all trials and creating an ERP from the power 
traces at 35 Hz.  A "signal" and "noise" time period was chosen based on SP peak time 
measured from unfiltered session ERPs.  The time period highlighted in white was the 
signal time period, and the time period in gray was the noise time period for monkey F.  
Average power in both time periods was recorded and used to calculate signal to noise 
ratios (S:N).  e S:N for each band-pass frequency was calculated for each session.  
These traces show the average S:N separately for monkey F (blue) and monkey Y 
(green) ± SEM.  The highest S:N was found at a band-pass frequency of 95 Hz for 
monkey F (f) and 35 Hz for monkey Y (g). 
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therefore, this difference reflects variations in overall EEG frequency spectra between 

the two monkeys.  Differences in EEG frequency spectra are to be expected due to 

several factors.  For example, the skulls of monkeys F and Y were observed to be of 

different thicknesses during surgery (Nunez and Srinivasan, 2006). 

Application of optimal discrimination band-pass filters allowed us to observe the 

SP separate from the surrounding EEG.  By using this technique, we were able to 

search for SP activation in target aligned ERPs made up either of no-stop or canceled 

trials.  This comparison is plotted for for a sample session from monkey F in Figure 2.6.  

The SP is visible in the unfiltered data when aligned on response onset, but is 

impossible to resolve, even on no-stop trials, when aligned on target onset (left column).  

After filtering, the SP is readily apparent in the response aligned, single trial data as a 

vertical band of elevated power (Figure 2.6 top right).  A diffuse band of power can also 

be observed in the target aligned no-stop trials during the period of time when saccades 

are initiated (Figure 2.6 middle right).  But no coherent band of elevated power can be 

discriminated on successfully canceled trials (Figure 2.6 bottom right). 

Our band-pass filtering technique also provided us with power measurements 

which were amenable to statistical testing.  After filtering the data, and performing 

latency matching to compare canceled trials with the appropriate no-stop trials, we 

measured average normalized power during a discrete window around mean RTs.  For 

our window, we chose the period from the 25th percentile RT to the 75th percentile RT.  

Following this method ensured that we sampled power on canceled trials during the 

period of time when SPs were most likely to occur.  Since power was baseline corrected 

to the interval 150 ms to 50 ms before target onset, power measurements collected at 

each SSD could be subjected to t-tests allowing us to test the null hypothesis that 

canceled trials do not show SP activation in the absence of overt eye movements.  

Results from this analysis are plotted in Figure 2.7.  Each observation represents the 
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Figure 2.6.  Filtering EEG makes it possible to observe the SP independent of 
surrounding EEG, but no SP is observed on canceled trials.  Traces at top show ERVs 
to display saccade timing (conventions as in Figure 4).  Heat maps show individual trials 
(conventions as in Figure 5).  Black lines show ERPs collapsed across trials.  Thin lines 
show no-stop trial ERPs, and thick lines show canceled trial ERPs.  The left column 
displays raw voltage.  At top, data are presented from no-stop trials aligned to saccade 
onset.  The ERV appears as a narrow component beginning at saccade onset.  The heat 
maps display negative bands of activation at saccade onset corresponding to the SP.  
Collapsing across the data in the ERP makes the SP readily apparent in both the raw 
and filtered data.  At middle, data are presented from no-stop trials aligned to target 
onset.  The ERV reflects this change.  Now saccades are smeared around 200 ms 
centered roughly at 210 ms after target onset.  Because of this smearing, it is no longer 
possible to discern negative activation associated with the SP in the raw heat map.  This 
activation should be apparent centered around 200 ms after target onset.  SP activation 
is also smeared in the raw ERP, rendering it invisible.  However, in the filtered data, SP 
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activation is clear around 200 ms in both the heat map and ERP.  At bottom, data are 
presented from canceled trials aligned to target onset.  The ERV never approaches 30 
deg. s-1 (criteria for saccade initiation).  No SP is apparent in the raw heat map data, or 
in the raw ERP.  But it is impossible to tell if no SP exists, because it is also 
unobservable in the raw no-stop data plotted above due to overlapping components and 
smear.  The filtered data at right allows for examination of SP activation.  No SP 
activation can be observed in the time around saccade initiation.  If anything, a small 
depression in high frequency SP activation is all that can be observed. 
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Figure 2.7.  No-stop trial EEGs display significantly increased SP activation during 
periods when saccades are produced, but canceled trial EEGs show no increase in SP 
activation.  After latency matching trials and filtering EEG data (see Figure 6), the 
average power during a discreet time window was measured on a trial by trial basis.  For 
the time window, we chose the period between the 25th and 75th RT percentiles.  Since 
no-stop trials were latency matched to canceled trials, this is the period of time during 
which SP activation was most likely to occur in both trial types.  Power averages were 
collected from this time window at each SSD. Each SSD from each recorded session 
yielded a single observation for each trial type.  Histograms depict the results of this 
analysis.  The observations are gathered in 0.1 μV bins for display purposes.  Grand 
average power is reported for each trial type above the appropriate histogram.  Note that 
the sign of these averages is negative for canceled trials.  Both distributions deviate 
significantly from 0 (students t-test, p < 0.001, df = 167). 
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average power for one SSD measured during the period of time when saccades were 

likely.  No-stop trials (left) show an increase in power above baseline when saccades 

were produced (mean = 0.26 µV).  This increase is statistically significant (p < 0.001, df 

= 167), and demonstrates that there was a reliable increase in SP activation associated 

with saccades.  In contrast, canceled trials (right) show slightly decreased power during 

the period of time when saccades were likely to occur (mean =  -0.11 µV).  Although this 

effect is small, it is statistically significant (p < 0.001, df  = 167) suggesting a small but 

reliable decrease in SP activation during periods when saccades were canceled.  Thus, 

no partial EMG activation is present when monkeys cancel eye movements in the 

saccade countermanding task.    

 

2.5 Discussion 

 We have provided evidence indicating that partial muscle activation does not 

occur in the primate ocular motor system when monkeys inhibit saccades in a 

countermanding task.  Our conclusion is supported by the following observations.  First, 

when canceled ERPs are aligned on a virtual saccade event to create saccade aligned 

ERPs, no evidence of EMG activation in the form of a SP can be observed around the 

time of saccade initiation.  Second, when the SP activation is isolated from the 

surrounding EEG using band-pass filters, no-stop trials show EMG power which is 

significantly elevated above baseline while saccades are being made.  Canceled trials, 

on the other hand, do not show EMG power that is elevated above baseline.  Instead, 

trials in which saccades were deemed canceled display slightly reduced EMG activation 

as measured  by the SP. This is strong evidence against partial motor activation in the 

ocular-motor system on canceled saccade trials. 

 The saccadic countermanding paradigm is a versatile tool which has led to many 

key findings over the last two decades.  Human psychophysics experiments using the 
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saccadic stop-signal task have helped elucidate the nature of conjugate gaze shifts 

(Corneil and Elsley, 2005), differences between predictive and reactive stimulus tracking 

(Joiner et al., 2007), the relative contributions of reflexive foveal stimulation to stopping 

(Cabel et al., 2000), and the influence of stimuli timing and salience on saccade 

inhibition (Morein-Zamir and Kingstone, 2006; Stevenson et al., 2009).  Physiological 

recordings from monkeys carrying out the stop-signal task have helped uncover cortical 

(Hanes et al., 1998; Brown et al., 2008; Ray et al., 2009; Scangos and Stuphorn, 2010; 

Stuphorn et al., 2010) and subcortical (Paré and Hanes, 2003) mechanisms of saccade 

generation.  The task is useful for investigating performance monitoring in both human 

(Curtis et al., 2005; Endrass et al., 2005) and animal subjects (Stuphorn et al., 2000; Ito 

et al., 2003; Stuphorn and Schall, 2006; Emeric et al., 2008, 2010).  In addition, the 

saccadic countermanding task has given rise to a strong computational modeling 

literature leading to breakthroughs in understanding neural saccade production and 

regulation (Hanes and Schall, 1996; Asrress and Carpenter, 2001; Boucher et al., 

2007b; Lo et al., 2009; Wong-Lin et al., 2010).  Finally, the saccadic stop-signal task has 

had broad clinical significance, providing insight on the action of several popular 

anesthetic agents (Khan et al., 1999; Nouraei et al., 2003), as well as the core 

dysfunctions underlying disorders such as mild traumatic brain injury (DeHaan et al., 

2007), Parkinson's disease (Joti et al., 2007), and ADHD (Armstrong and Munoz, 2003; 

Hanisch et al., 2006).  Given the wide experimental significance of the saccadic stop-

signal paradigm, the observation of partial muscle activation on canceled saccade trials 

would have provided important theoretical leverage to the study of behavioral inhibition.   

Several groups have found partial motor activation on canceled trials during the 

manual response version of the countermanding task.  Partial motor activation on 

canceled trials has been taken as evidence against a ballistic phase of motor execution 

(De Jong et al., 1990; McGarry and Franks, 1997; McGarry et al., 2000).  Partial motor 
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activation has also been used to study the unity or diversity of stopping under different 

circumstances (De Jong et al., 1990; van Boxtel et al., 2001).  In addition, partial motor 

activation on canceled trials has been compared to full motor activation on no-stop trials, 

used as a proxy measure for SSRT, and compared to neural data to assess the relative 

contribution of supplementary motor neurons to movement initiation (Scangos and 

Stuphorn, 2010).  Clearly, partial motor activation on canceled trials is a useful 

measurement for characterizing countermanding behavior.  In contrast to manual 

response countermanding, partial extraocular muscle activation appears to be absent on 

canceled trials in the saccade countermanding task. 

Lack of partial extraocular muscle activation on canceled trials is not surprising 

given our current understanding of the saccadic system.  The saccadic system and the 

spinal motor system differ in several important ways.  Unlike manual responses and 

smooth pursuit eye movements, saccade initiation is, in many ways, ballistic (reviewed 

by Sparks 2002; Scudder et al. 2002).  Kornylo and colleagues (2003) found that pursuit 

eye movements could be canceled more quickly than saccadic eye movements, and 

concluded that saccade production includes a final ballistic stage which is not observed 

during pursuit.   

One possible criticism of this work concerns the linking proposition identifying the 

SP with the extraocular EMG.  Since its first observation and characterization as the 

external rectus muscle potential (Blinn, 1955) the SP has been almost uniformly 

appreciated as myogenic in nature (Picton et al., 2000; but see also Kurtzberg and 

Vaughan, 1982; Balaban and Weinstein, 1985; Riemslag et al., 1988).  This conclusion 

is supported by the following seven observations.  First, the corneo-retinal potential 

cannot contribute to the SP since the SP can still be recorded in total darkness (Riggs et 

al., 1954; Moster and Goldberg, 1990) and observed in patients with ocular prosthesis 

and intact extraocular musculature (Thickbroom and Mastaglia, 1985).  Second, the SP 
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is not considered to be cortical in origin, since it has been obtained with normal 

topography after complete hemispherectomy (Thickbroom and Mastaglia 1985).  Third, 

the SP is attenuated or absent in patients with lateral rectus palsy or patients in whom 

the intra-orbital musculature have been surgically removed (Thickbroom and Mastaglia, 

1985).  Fourth, the amplitude of the SP remains constant, but its scalp distribution 

changes predictably with saccades made in different directions (Thickbroom and 

Mastaglia, 1985; Moster and Goldberg, 1990; Keren et al., 2010).  Fifth, both its scalp 

distribution (Moster and Goldberg, 1990; Lins et al., 1993a; Keren et al., 2010; Sander et 

al., 2010) and dipole source modeling (Thickbroom and Mastaglia, 1985; Lins et al., 

1993b) suggest that the SP is maximal around the eyes.  Sixth, there is a close and 

consistent timing correlation between the peak of the SP and saccade onset 

(Thickbroom and Mastaglia, 1985; Keren et al., 2010).  Seventh, the amplitude of the SP 

shows a positive correlation with saccade amplitude (Keren et al., 2010).  Thus, using 

the strong inference method advocated by Platt (1964), an extensive body of evidence 

demonstrates that the SP should be viewed as an extraocular EMG.  It is a natural step 

then, to search for the presence of extraocular EMG activation using SPs recorded in the 

stop-signal task.   

 Another possible criticism concerns the resolution of our EMG measurement.  

One may argue that our proxy measure of extraocular EMG was not sensitive enough to 

detect small muscle activations.  If so, partial muscle activation may have been present 

on some canceled trials which was unobservable as single trial SP.  Using a wide band-

pass filter, Keren et al. (2010) were able to reliably isolate single SPs from the raw EEG.  

They then used signal detection theory to quantify the accuracy with which single SPs 

predict saccades.  These researchers found that they could detect greater than 80% of 

saccades 0.5 - 1° in amplitude with close to zero false alarms, and they could detect 

saccades of 0.02 - 0.2V° in amplitude above chance level.  They concluded that single 
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SPs might serve as more reliable saccade indicators than the traditional method of 

detecting corneo-retinal dipole shifts in EEG recordings.   

We refined the technique presented by Keren et al. (2010) by adopting a 

frequency optimization procedure which ensured that small SPs would be highly 

detectable.  The average power traces which we were able to construct for no-stop trials 

containing 10° saccades suggest that we would have been able to detect SPs 

associated with very small amplitude movements (see Figures 2.5 and 2.6).  Still, the 

fact remains that canceled trials may be associated with subthreshold EMG activation 

which is too small to detect with surface electrodes.  In order to test this hypothesis 

further, recordings would be needed from microelectrodes inserted into the motor nuclei 

themselves. 

It is noteworthy that we did not simply observe a lack of extraocular EMG on 

canceled saccade trials.  Instead, we report a small but significant decrease in EMG 

activity when eye movements were withheld.  Before baselining, a tonic increase in EMG 

was observed in the period of time around task related saccades.  (Figure 2.5f and 

2.5g.)  We speculate that this tonic resting EMG activity was produced by 

microsaccades which occurred throughout our recordings (Yuval-Greenberg et al. 2008).  

On canceled trials, we observed a significant decrease in tonic EMG activity during 

periods when saccades were likely (Figure 2.6 lower right).  Following this logic, we 

suggest that fewer microsaccades are probably made while eye movements are 

suppressed during canceled trials.  This would be an interesting finding, useful for further 

characterizing the function of fixation cells during the countermanding task.  

Unfortunately, the spatial resolution of our current eye tracking data set does not allow 

us to test this hypothesis directly.  Future work should measure the presence or absence 

of microsaccades during periods when task related saccades are canceled in the 

countermanding task.   
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In summary, we isolated EMG activation associated with eye movements from 

the EEGs of monkeys performing a saccade-countermanding task.  We found that eye 

movements were reliably accompanied by EMG activation on noncanceled trials, but no 

subthreshold EMG activation was detectable on successfully canceled trials.  This 

finding demonstrates the ballistic nature of saccade initiation, and highlights a basic 

difference between the spinal motor system and the saccadic ocular motor system.

100 
 



CHAPTER 3 

 

 MICROSACCADE PRODUCTION DURING SACCADE CANCELATION IN A 

STOP‐SIGNAL TASK 

 

3.1 Abstract 

We obtained behavioral data to evaluate two alternative hypotheses about the 

neural mechanisms of gaze control.  While there is agreement that the caudal superior 

colliculus (SC) is involved in saccade production to peripheral targets, disagreement 

persists about the role of rostral SC.  The “fixation” hypothesis states that rostral SC 

maintains fixation of gaze.  The “microsaccade” hypothesis states that rostral SC 

produces microsaccades rather than fixation per se.  These hypotheses have been 

framed as mutually exclusive and have not been tested under normal physiological 

conditions.  Previously reported neuronal activity in monkey SC during the saccade stop-

signal task leads to specific, dissociable predictions of these two hypotheses.  When 

subjects are required to cancel partially-prepared saccades, unbalanced activity spreads 

across rostral and caudal SC with a predictable, temporal profile.  Because of 

unbalanced activation in monkey SC, the microsaccade hypothesis predicts increased 

microsaccade production with bias toward the target location during the period when 

response saccades are canceled.  The fixation hypothesis predicts decreased 

microsaccade production during this time period.  With this neural data in mind, we 

adopted a psychophysical approach to test predictions of the fixation and microsaccade 

hypotheses.  We measured microsaccades of monkeys performing the saccade stop-

signal task.  We found that microsaccade production was consistent with the fixation 

hypothesis but not the microsaccade hypothesis.  We suggest that the fixation and 
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microsaccade hypotheses are not mutually exclusive because both types of neurons are 

present in rostral SC.6 

 

3.2 Introduction 

 The caudal superior colliculus (SC) plays an important role in gaze-shifting (e.g., 

Munoz et al., 2000; Munoz and Schall, 2004; Krauzlis, 2008; Gandhi and Katnani, 2011).  

However, disagreement persists about the role of neurons in rostral SC.  One line of 

work indicates that neurons in rostral SC aide in gaze-holding (Munoz and Wurtz, 

1993a).  Electrical stimulation in rostral SC can interrupt saccades midflight (Munoz and 

Wurtz, 1993a; Paré and Guitton, 1994; Munoz et al., 1996).  This effect is probably 

mediated by connectivity with brainstem omnipause neurons (OPNs) that exert potent 

inhibition on saccade-related burst neurons.  Anatomical studies show that rostral SC 

projects more heavily than caudal SC to brainstem OPNs (Gandhi and Keller, 1997; 

Büttner-Ennever et al., 1999).  Inactivation of rostral SC with the GABA agonist 

muscimol has been reported to increase saccade production (Munoz and Wurtz, 1993b).  

Thus, SC may be composed of spatially organized gaze-shifting "movement" and gaze-

holding "fixation" neurons.  We will refer to this view as the "fixation hypothesis".   

 Another line of work indicates that rostral SC neurons contribute to small eye 

movements called microsaccades (Krauzlis et al., 1997; Hafed and Krauzlis, 2012).  

During visual fixation, balanced population activity of SC neurons averages to a vector 

with zero magnitude, resulting in no eye movements (Goffart et al., 2012).  However, 

fluctuations in firing rates or subthreshold activation in caudal SC can create an 

imbalance in this activity that is supposed to lead to microsaccades (Hafed et al., 2008; 

Hafed and Krauzlis, 2012).  The microsaccade hypothesis accommodates some findings 

                                                            
6 This chapter has been submitted as Godlove DC, Schall JD. Microsaccade production 
during a stop-signal task.   
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that seem incompatible with the fixation hypothesis (Sugiuchi et al., 2007; Gandhi and 

Katnani, 2011).  For example, trajectories show deviation when saccades are interrupted 

by stimulation of rostral SC (Gandhi and Keller, 1999b).  This stimulation may excite 

microsaccade neurons causing deviation in the vector average guiding saccade 

production.  Neural chronometry also indicates that rostral SC projections do not provide 

simple driving input to OPNs (Gandhi and Keller, 1997; Everling et al., 1998; Gandhi and 

Keller, 1999a) results summarized above, inactivation of rostral SC has been reported to 

decrease saccade production (Hafed et al., 2008; Hafed et al., 2009; Goffart et al., 

2012).  Thus, rostral SC neurons may encode small motor error and produce 

microsaccades.  We will refer to this view as the "microsaccade hypothesis".   

The microsaccade hypothesis may explain a possible link between 

microsaccades and covert attention (Hafed and Clark, 2002; Engbert and Kliegl, 2003; 

Hafed et al., 2011; but see Tse et al., 2004; Horowitz et al., 2007) through an imbalance 

in the saccade map.  Vector average asymmetries are thought to be caused by 

subthreshold activation of caudal SC at the attended location (Hafed et al., 2009).  Thus, 

attention-related microsaccades may stem from partially prepared saccades leading to 

unbalanced activation in SC (Engbert, 2012).  

 A saccade stop-signal task is ideally suited to test these hypotheses (Hanes and 

Schall, 1995; Hanes and Carpenter, 1999) (Figure 3.1).  Task participants are instructed 

to cancel partially prepared saccades shortly after a cue to respond.  These conditions 

mirror those thought to give rise to microsaccades.  Furthermore, recordings from 

macaque monkeys have revealed the detailed time course of unbalanced neural activity 

in SC (Paré and Hanes, 2003) and FEF (Hanes et al., 1998) during this task (Figure 

3.2).  Specifically, activity in caudal SC is interrupted as neurons in rostral SC rapidly 

increase firing rates during saccade cancelation.  Critically, this modulation occurs within 

stop signal reaction time (SSRT), the duration of the STOP process in Logan's race 
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Figure 3.1.  The saccadic stop-signal (countermanding) task.  Top, No-stop trials were 
initiated when monkeys fixated a central point.  After a variable time, the center of the 
fixation point was extinguished leaving an outline.  A peripheral target was presented 
simultaneously at one of two possible locations.  Monkeys were required to fixate targets 
with quick saccades for juice rewards.  Bottom, Stop trials were initiated in the same 
way. After a variable time (SSD), the center of the fixation point was reilluminated in a 
different color, instructing the monkeys to withhold movement.  Successful inhibition of 
saccades resulted in rewarded canceled trials, but errant saccades resulted in 
unrewarded noncanceled trials.  Microsaccade data from canceled trials were analyzed. 
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Figure 3.2.  Timing and spatial distribution of unbalanced activity in superior colliculus 
(SC) during the stop-signal task.  A Application of Logan's race model yields estimates 
of stop-signal reaction time (SSRT blue).  This is the time necessary for a movement to 
be canceled.  Given the presentation of a stop-signal on a particular trial, motor 
processes on trajectory to reach threshold after SSRT will not result in movement, 
effectively truncating the reaction time distribution.  B Unbalanced activity in SC shows a 
predictable spatial and temporal evolution during the saccade stop-signal task.  Thick 
traces represent activity on canceled trials.  Thin traces depict activity on latency 
matched no-stop trials.  Diagram is adapted from data presented by Paré and Hanes 
(see their Fig. 3 and Fig. 7).  C Spatial activity in SC is stereotyped around SSRT.  
Neural activity is taken from gray window in B.  Rostral and caudal SC show coactivation 
just before and concomitant with SSRT on canceled trials.  This coactivation is most 
pronounced at longer stop-signal delays (SSDs).  According to the microsaccade 
hypothesis, this coactivation should increase the likelihood of microsaccades 
concomitant with SSRT. 
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model (Logan and Cowan, 1984; Boucher et al., 2007a; Lo et al., 2009).  Thus, 

movement-related neurons in caudal SC and neurons in rostral SC are concurrently 

active before SSRT and show maximal coactivation resulting in maximal collicular 

imbalance, concomitant with SSRT (Hanes et al., 1998; Paré and Hanes, 2003).   

 The microsaccade hypothesis predicts that unbalanced activation across the 

collicular map will lead to increased microsaccade production (Hafed et al., 2009; Hafed 

and Krauzlis, 2012).  During the stop-signal task, unbalanced activity in SC is maximal 

concomitant with SSRT (Paré and Hanes, 2003).  It follows logically that we should 

observe, on average, increased microsaccade activity concomitant with SSRT on 

canceled trials during the stop-signal task.  Furthermore, microsaccades should proceed 

toward target locations, because unbalanced vector averages will be biased toward 

targets by increased activity in caudal SC (Hafed et al., 2008; Hafed et al., 2009).  In 

contrast, the fixation hypothesis predicts that microsaccade production will decrease 

concomitant with SSRT; elevated activity of gaze-holding fixation neurons will inhibit 

task-related saccades and microsaccades alike.  We previously reported that extraocular 

electromyogram (EMG) activity showed a small but reliable decrease during periods 

when saccades were successfully canceled (Godlove et al., 2011a).  This finding 

provides preliminary support for the fixation hypothesis.  In the current study, we use 

high-resolution eye tracking and detection techniques in macaque monkeys to test 

predictions of these 2 hypotheses directly.   

 

3.3 Materials and Methods 

3.3.1 Animal care 

 Data were collected from 3 male bonnet macaques (Macaca radiata 6.9 to 8.5 

kg) and one female rhesus macaque (Macaca mulatta 6 kg).  Animals were cared for in 

accordance with policies set forth by the USDA and Public Health Service Policy on 
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Humane Care and Use of Laboratory Animals and all procedures were carried out with 

supervision and approval from the Vanderbilt Institutional Animal Care and Use 

Committee.  Titanium headposts were surgically implanted to facilitate head restraint 

during eye tracking.  Surgical methods have been described in detail (Godlove et al., 

2011b). 

 

3.3.2 Stimuli and Task 

 Monkeys were seated in enclosed primate chairs with heads restrained using 

surgically implanted head posts.  Depending on primate chair and recording setup, 

monkeys sat 43-49.5 cm from a 70 Hz CRT monitor subtending 47.8-51.8° horizontal 

visual angle and 34.5-37.4° vertical visual angle.  Stimulus presentation, task 

contingencies related to eye position, and delivery of liquid reinforcement were all under 

computer control in hard real time (TEMPO, Reflective Computing, Olympia, WA).  

Stimuli were presented using computer-controlled raster graphics (TEMPO Videosync 

640 x 400 pixel resolution, Reflective Computing, Olympia, WA).  Stimulus sizes and 

eccentricities were automatically adjusted by the computer program to account for 

subject viewing distance and had luminance values of 10 cd/m2 on a 0.02 cd/m2 

background or 39 cd/m2 on a 10 cd/m2 depending on which recording setup was used. 

 Data were recorded during the saccade stop-signal (i.e., countermanding) task 

(Figure 3.1).  Additional details about the behavioral training regime and task have been 

described previously (Hanes and Schall, 1995; Hanes et al., 1998).  Trials were initiated 

when monkeys fixated a centrally presented square which subtended 0.34° of visual 

angle.  After a foreperiod ranging from 600 ms to 1100 ms, the center of the fixation 

point was extinguished, leaving an open square outlined 1 pixel thick, and a target 

subtending 3° of visual angle simultaneously appeared centered at 10° to the left or right 
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of fixation.  The foreperiod was approximately non-aging, randomly sampled from a 

distribution described by the function: 

ሻݐሺ݌ ൌ ݁ି௧/௞ 

where the probability of selecting a specific foreperiod p(t) is an exponential function with 

time constant of k.  We set k equal to 250 ms and shifted the distribution to fall between 

600 and 1100 ms.  On no-stop trials (Figure 3.1 top), no further visual stimuli were 

presented.  Monkeys were required to make a saccade to the target within 800 ms and 

hold fixation for 600 ms to obtain reward.  Correct trials were rewarded with an audible 

tone followed 600 ms later by several drops of juice.  On stop trials (Figure 3.1 bottom), 

the center of the fixation point was re-illuminated either red or green (constant for each 

monkey) after a variable delay providing a “stop-signal” which instructed the monkeys to 

cancel their impending eye movements and maintain central fixation.  In practice, two 

trial outcomes were then possible.  If monkeys successfully withheld the eye movement 

and maintained fixation for a minimum of 1600 ms, they obtained tone and juice reward.  

These trials were designated as "canceled”.  If monkeys were unable to inhibit the 

movement, an audible tone signaling timeout sounded and a variable timeout was added 

to the normal inter-trial interval.  These trials were termed “noncanceled”.  During some 

recording sessions with monkey X, a third trial type was introduced containing an 

irrelevant visual stimulus.  These trials will be the subject of a future report, and their 

presence did not change behavior in the main task.  An initial set of SSDs was selected 

for each recording session based on the animals' previous behavior.  We then 

manipulated SSD using an adaptive staircasing algorithm that adjusted stopping 

difficulty based on performance.  When monkeys failed to inhibit responses, the SSD 

was decreased by a random step of 1, 2, or 3 increasing the likelihood of success on the 

next stop trial.  Similarly, when monkeys successfully inhibited an eye movement, the 

next SSD was increased by a random step of 1, 2, or 3 decreasing the future probability 
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of success.  This procedure was used to ensure that subjects failed to inhibit action on 

~50% of stop trials overall.  Stop trials comprised 30-50% of all trials in a given session 

with a typical session consisting of several thousand trials.  

 

3.3.3 Data acquisition 

 All data were streamed to a single data acquisition system (Plexon, Dallas, TX).  

Time stamps of trial events were recorded at 500 Hz, while eye position was recorded at 

1 kHz.  Eye position data were calibrated, acquired, and streamed to the Plexon 

computer using the EyeLink 1000 infrared eye-tracking system (SR Research Kanata, 

Ontario, Canada).  This system has a resolution of 0.01° (36′′).   

 

3.3.4 Saccade detection 

 All saccade analyses were performed in the MATLAB programming environment 

using custom written code.  Eye channels were first convolved with a 12 ms Gaussian 

polynomial to remove small line voltage fluctuations.  We then used a modified version 

of the algorithm proposed by Engbert and Kliegl (2003) to detect microsaccades.  In this 

method, instantaneous velocity measures are obtained by calculating the first derivative 

across a 20 ms window separately for horizontal and vertical eye positions.  This 

procedure yields a representation of eye positions in 2 dimensional velocity space.  

Values tend to cluster around zero, and outliers signal eye movements.  Trial by trial 

noise levels are calculated and used to set detection thresholds.  Since horizontal and 

vertical eye velocities are calculated separately, detection thresholds assume elliptical 

shapes in velocity space reflecting horizontal and vertical noise levels on each trial.  

Finally, monocular eye movement events are excluded since microsaccades are 

binocular.  We modified this procedure in the following ways.  Since our task included 

large response saccades, we focused on periods of fixational eye movements for 
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threshold estimation by removing periods when radial velocity was elevated above 30°/s.  

We were unable to judge binocularity with our monocular eye tracking setup, so we 

excluded tremor, drift, and false positives using several other common-sense criteria.  

First, we excluded post-saccadic drift and eye tracker ringing by removing eye 

movements that began less than 50 ms prior to the end of the preceding eye movement.  

Respecting the eye tracker limitations, we excluded eye movements with amplitude < 

0.01°, and eye movements which strayed outside of our calibrated field (central 22° x 

22°).  Finally we excluded saccades with excessively short or long durations.  Inspection 

of color-coded main sequence plots showed that 10 - 65 ms provided a reasonable 

range for acceptable saccade durations.  We defined microsaccades as those with 

amplitude ≤ 1° (Martinez-Conde et al., 2009).  We repeated our analysis using the more 

conservative definition of ≤ 15′  (Collewijn and Kowler, 2008).  These analyses yielded 

qualitatively identical results.   

 

3.3.5 Saccade analysis 

 We constructed sorted rasters and peri-event time histograms of microsaccade 

frequency using standard methods (Lemon, 1984).  We convolved the peri-event time 

histograms with a Gaussian kernel (σ = 10 ms) to create microsaccade density 

functions. 

 We used a running Wilcoxon rank-sum test to judge times at which microsaccade 

frequency became significantly elevated or depressed relative to baseline levels.  First 

we constructed microsaccade density functions for each session as described above.  

Baseline average microsaccade frequency was measured in the 50 ms before target 

onset.  The frequency of microscaccade production was contrasted with this baseline at 

ms resolution.  Probability for significance was set at < 0.01.  The results were not 

different if 10 or 50 ms windows were tested.  This approach was also used to test for 
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differences between microsaccade frequency in different conditions.  Each session 

contributed a single observation to these tests, and significance was again assessed at 

the p < 0.01 level.  

 

3.4 Results 

3.4.1 Behavior  

 We recorded data from 4 monkeys that performed the saccade stop-signal task 

(Figure 3.1) summarizes behavior for each monkey.  Reaction times and probability of 

committing errors show that monkeys were appropriately sensitive to the stop signal and 

did not violate the assumptions of Logan’s race model.  In particular, noncanceled 

saccade RTs were less than saccade RTs on trials with no stop signal.  Stop-signal 

reaction times (SSRTs) are within the range of those reported previously for monkeys 

carrying out the same task.  Figure 3.3 shows normalized inhibition functions and 

Weibull distribution fits for each monkey collapsed across all sessions.  Z-scoring 

inhibition functions normalizes them in time, allowing them to be compared across 

recording sessions regardless of incidental reaction time differences due to normal 

fluctuations in arousal and motivation.  Short stop-signal delays yielded near 0% errors 

while long stop-signal delays yielded near 100% errors.  These inhibition functions rise in 

an ordered and predictable fashion.  Error rates on stop trials were close to 50% for all 

monkeys demonstrating the success of the SSD tracking algorithm.  Thus, the 

performance conformed very well to race model assumptions, and SSRT estimates are 

reliable.  These considerations validate the use of  

SSRT as an index of maximal unbalanced activation in SC based on previous work 

(Paré and Hanes, 2003).   
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Figure 3.3.  ZRFT (z-scored inhibition) functions and Weibull distribution fits for each 
monkey.  Inhibition functions plot the probability of committing a noncanceled error at 
each SSD.   
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3.4.2 Microsaccade frequency   

 We used a modified version of Engbert and Kliegl's (2003) algorithm for saccade 

detection. The well-known relationship between saccade velocity, duration and 

amplitude, known as the "main sequence" (Zuber and Stark, 1965; Bahill et al., 1975) is 

displayed for each monkey in Figure 3.4.  Our saccade detection method identified eye 

movements with very small amplitudes having the same main sequence relationship as 

those of larger magnitude.  This finding replicates well-known observations and 

demonstrates the robustness of our saccade detection approach.   

 We studied the evolution of microsaccade production during canceled trials by 

constructing rasters marking the time of each microsaccade and deriving density 

functions collapsed across sessions for each monkey (Figure 3.5)7.   Data were aligned 

on target presentation and on stop-signal presentation.  The raster plots are useful for 

illustrating relationships between microsaccade frequency and task events, while the 

density functions show differences in microsaccade frequency relative to pre-target 

levels.  Following changes in visual stimuli, microsaccade production shows a 

characteristic suppression followed by facilitation in humans (Engbert and Kliegl, 2003; 

Laubrock et al., 2005; Valsecchi and Turatto, 2007; summarized by Rolfs et al., 2008) 

and macaques (Brien et al., 2009; Cui et al., 2009; Hafed et al., 2011).  Consistent with 

these reports, the raster plots and density functions show clear changes in 

microsaccade production following stimulus presentation.  We used a running Wilcoxon 

approach to test for periods of elevated or depressed microsaccade frequency relative to 

baseline (see Materials and Methods).  Gray bars beneath microsaccade density 

                                                            
7 In these and following plots, please note differences in ordinate scale of microsaccade 
density functions.  In particular, all monkeys showed similar baseline levels of 
microsaccade production as reported in Table 1.  Monkey U showed the same patterns 
of microsaccade modulation as the other monkeys, but peak levels of microsaccade 
production were reduced for this monkey compared to the other monkeys.  This is 
consistent with individual differences noted in humans (Collewijn and Kowler 2008). 
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Figure 3.4.  Saccade velocity plotted against saccade amplitude with duration color-
coded for each monkey.  Microsaccades (left of vertical black lines) are continuous with 
main sequence of longer saccades.  Each plot displays 5000 randomly sampled 
saccades drawn from complete data sets.   
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functions show periods of depressed microsaccade frequency, while black bars show 

periods of elevated microsaccade frequency (p < 0.01).  Each monkey made significantly 

fewer microsaccades after target presentation, show a second decrease in 

microsaccade production associated with stop-signal presentation.  At shorter SSDs, 

microsaccade suppression associated with the target and the stop-signal overlap.  It is 

less clear if the decrease associated with the stop-signal is absent for monkeys F and X, 

or if the two periods of microsaccade suppression have simply merged into one.  

Subsequent to this suppression, all monkeys showed elevated microsaccade production 

beginning on average ~220 ms after the stop-signal (Figure 3.5 right column black bars 

after stop signal and SSRT; latencies relative to stop-signal Monkey A 178 ms, F 239 

ms, U 276 ms, X 182 ms).  The rasters show clearly that this elevation is synchronized 

on the stop-signal and not the target. 

 The timing of microsaccade production during canceled trials permits a test of the 

fixation and the microsaccade hypotheses.  The first prediction of the microsaccade 

hypothesis is that microsaccade production increases with the elevated discharge rate of 

rostral SC neurons concomitant with SSRT (Hafed et al., 2009; Hafed and Krauzlis, 

2012).  We found that during the 50 ms around SSRT, microsaccade frequency showed 

significant suppression in all 4 monkeys relative to baseline levels (Figure 3.5 right 

column gray bars in interval around SSRT).  The later increase of microsaccade 

production occurred on average ~100 ms after SSRT (Figure 3.5 right column black bars 

after stop signal and SSRT; latencies relative to SSRT Monkey A 85 ms, F 119 ms, U 

174 ms, X 51 ms).  Even allowing for efferent delay (Hafed and Krauzlis, 2012) and 10-

20 ms standard deviation in the estimate of SSRT (Table 3.1), the timing of 

microsaccade production is inconsistent with the microsaccade hypothesis.  
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Figure 3.5.  Microsaccade production plotted for each monkey in rasters (top) and 
density functions (bottom) aligned to presentation of target (left) and stop-signal (right).  
Target presentation (green), stop-signal presentation (red), and average stop signal 
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reaction time (SSRT) (blue) are indicated for each discrete stop signal delay.  Gray 
outlines on density functions indicate 95% confidence intervals across recording 
sessions.  Gray bars beneath density functions denote periods when microsaccade 
frequency is suppressed below baseline levels, while black bars denote periods when 
microsaccade frequency exceeds baseline levels (p < 0.01).  Axes are scaled to 
accommodate idiosyncratic differences in microsaccade rate.  Each monkey exhibited a 
pronounced reduction of microsaccades after the stop signal followed by an equally 
clear elevation well after SSRT. 
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350 ± 34 315 ± 27 0.47 120 ± 10monkey F

399 ± 80 368 ± 73 0.50 102 ± 18monkey U

371 ± 43 353 ± 41 0.45 130 ± 20monkey X

355 ± 44 321 ± 38 0.49 93 ± 15

0.11

0.42

0.23

0.19monkey A

no-stop RT noncanceled RT p(noncanceled) SSRT
mean fixating

microsaccade rate (s-1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3.1.  Summary statistics for stop-signal task performance.  Values are means ± 

  .DS
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 The direction of microsaccade production during canceled trials permits another 

test of the microsaccade hypotheses.  The second prediction of the microsaccade 

hypothesis is that on canceled trials microsaccades should proceed more often toward 

the target because of unbalanced activation in SC (Hafed et al., 2008; Hafed et al., 

2009).  Figure 3.6 plots the frequency of microsaccades toward and away from the 

target as a function of time.  We used a running Wilcoxon approach to test differences 

between the frequency of saccades directed toward or away from the target (see 

Materials and Methods).  Black bars beneath microsaccade density functions illustrate 

periods of significant differences between microsaccade direction (p < 0.01).  Around 

200-300 ms after the target, all monkeys except for U made significantly more 

microsaccades toward the target location (Figure 3.6 left column black bars after target 

onset).  However, the increases in microsaccades observed after SSRT (Figure 3.6 right 

column black bars after stop signal and SSRT) were directed away from the target more 

often than expected by chance (A, F, U) or showed no significant directional bias (X).  

Although these microsaccades tended to move the eyes away from the target location, 

they did not cause the eyes to exit the invisible fixation window.  Also, the peak in 

microsaccade production was followed by reduced microsaccade production throughout 

the 1500 ms period until reward delivery (data not shown).    

 In sum, all 4 of the monkeys produced microsaccade patterns inconsistent with 

either the first or the second prediction of the microsaccade hypothesis.   

 

3.4.3 Directional biases   

 We studied microsaccade frequency as a function of visual field.  Figure 3.7 plots 

the results of this analysis.  Each monkey showed an idiosyncratic pattern of spatial bias 

in microsaccade frequency that appeared unrelated to the task.  These biases did not 

depend greatly on alignment event, so we describe them as a whole.  After target and 
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Figure 3.6.  Microsaccades produced toward (cyan) or opposite (magenta) the target (± 
45°) aligned to target (left) and stop-signal (right) presentation.  Black bars denote 
periods of significant differences between density functions.  Conventions as in Figure 
3.5.   
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Figure 3.7.  Microsaccade density functions by direction plotted individually for each 
monkey.  Microsaccades are separated depending on whether they were directed right 
(cyan), up (magenta), left (yellow), or down (black).  Conventions as in Figure 3.5.  
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stop signal presentation, Monkey A tended to make microsaccades initially to the right, 

followed by microsaccades to the left.  Monkey F showed the opposite pattern with initial 

microsaccades to the left followed by ones to the right.  Monkey F also showed a 

tendency to make microsaccades in the downward direction during the period after 

target and stop-signal presentation.  Monkey U showed a bias for upward saccades and 

a smaller bias for left and right saccades.  Monkey X tended to make more saccades in 

the upward and downward direction than in the left and right direction.  Of these, monkey 

X favored upward more frequently.   

 A speaker positioned either in front and above the animal or directly on the left 

provided secondary reinforcement and punishment depending on trial outcome.  On 

successfully canceled trials, secondary reinforcement was delivered 1600 ms after stop 

signal onset.  We hypothesized that covert attention may have been directed toward the 

speaker after stop-signal onset in anticipation of this tone, and that this may have led to 

additional microsaccades in the direction of the speaker.  Figure 3.8 displays the results 

of this analysis.  As in Figure 3.6, black bars illustrate periods of significant differences 

between microsaccade direction (p < 0.01).  During the period after the stop signal, 

Monkey A and F made microsaccades in the direction opposite the speaker, while 

monkey U and X tended to make microsaccades toward speaker locations.  Directional 

biases away from the speaker location can also be observed during the pre-target and 

pre-stop-signal intervals in data collected from monkeys A, U, and X.  These results 

provide no conclusive evidence that attention-related microsaccades were directed 

toward the location of secondary reinforcement delivery.   

 

3.4.4 Conservatively defined microsaccades   

 We repeated our main analyses using a more conservative definition of 

microsaccades, only including high-velocity fixational eye movements ≤ 15′ amplitude 
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Figure 3.8.  Microsaccades produced toward (cyan) or opposite (magenta) the speaker 
location  (± 45°) aligned to target (left) and stop-signal (right) presentation.  Conventions 
as in Figure 3.5. 
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(Collewijn and Kowler, 2008).  The same basic results are obtained with the data 

subsampled in this manner (Figure 3.9).  No monkeys exhibited the increase in 

microsaccade production concomitant with SSRT predicted by the microsaccade 

hypothesis.  An increase in conservative microsaccade frequency occurred after SSRT 

in three monkeys (143 ms monkey A, 351 monkey F, 123 ms monkey X) with an 

increase that did not reach statistical significance for the fourth monkey.  With this 

conservative data set, only monkey U produced significant differences in microsaccade 

direction (Figure 3.10); these microsaccades were more likely to be directed away from 

the target.  In sum, neither of the predictions of the microsaccade hypothesis were 

obtained even when analysis was restricted to a conservative subset of fixational eye 

movements. 

 

3.5 Discussion 

 Contrary to predictions of the microsaccade hypothesis, monkeys did not make 

more target directed microsaccades during periods of unbalanced activation in SC.  

Monkeys actually exhibited attenuation of microsaccade production around SSRT when 

they canceled saccades to perform the saccade stop-signal task.  This was followed by 

a late period of elevated microsaccade production around the fixation spot but avoiding 

the direction of the target.  Interpreted in light of previous neurophysiological findings 

(Paré and Hanes, 2003), these results are inconsistent with the hypothesis that rostral 

SC functions solely to produce microsaccades.  But the data are consistent with the 

hypothesis that rostral SC contributes to gaze-holding.  Further evidence for active gaze-

holding during this task comes from our previous observation of reduced EMG when 

task-related saccades are canceled indicating that fixational eye movements are also 

gated during this time period (Godlove et al., 2011a).  
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Figure 3.9.  Conservatively defined microsaccade production plotted for each monkey in 
rasters (top) and density functions (bottom) aligned to presentation of target (left) and 
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stop-signal (right).  Microsacades are here defined as high velocity fixational eye 
movements ≤ 15′ amplitude.  Conventions as in Figure 3.5.   
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Figure 3.10.  Conservatively defined microsaccades produced toward (cyan) or opposite 
(magenta) the target (± 45°) aligned to target (left) and stop-signal (right) presentation.  
Microsacades are here defined as high velocity fixational eye movements ≤ 15′ 
amplitude.  Conventions as in Figure 3.5. 
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 The remarkable consistency of our results across tens of thousands of trials and 

4 individual monkeys should be stressed.  All 4 monkeys showed significantly reduced 

microsaccade frequency in the interval around SSRT corresponding to increased activity 

in rostral  SC.  Similarly, all 4 monkeys showed increased microsaccade production 

away from the target, opposite the prediction of the microsaccade hypothesis; this 

observation reached statistical significance in 3 of the monkeys tested.  This 

stereotyped, predictable behavior is even more surprising when contrasted with the 

idiosyncrasies observed in microsaccade directional bias.  Even though all monkeys 

made microsaccades with different directional biases during the task, and these 

directions were unaffected by the location of secondary reinforcement, all monkeys 

made the same stereotyped responses with respect to target location during saccade 

cancelation.  This stereotyped behavioral suggests consistency in the underlying 

neurophysiology as well.  Indeed, neurons in SC show predictable responses across 

visually-guided oculomotor tasks (Gandhi and Katnani, 2011), and both SC and FEF 

neurons show similar responses during the stop-signal task when compared across 

studies (Hanes et al., 1998; Paré and Hanes, 2003).  All in all, it can be reasonably 

concluded that neural activity in SC of the monkeys completing our task did not differ 

substantially from that reported previously.    

 It may be argued that rostral SC functions exclusively to produce microsaccades, 

but that microsaccade activity is gated downstream of SC during saccade cancelation 

under cortical control.  For example, FEF is known to project to both SC and to the 

paramedian pontine reticular formation (PPRF) including the nucleus raphe interpositus 

(nRIP) that contains OPNs (Huerta et al., 1986; Stanton et al., 1988).  FEF fixation 

neurons may be responsible for issuing a saccade cancelation command to brainstem 

OPNs.  In this scenario, activity in rostral SC would be gated by fixation neurons in FEF 

through brainstem OPNs preventing microsaccades.  Our present data cannot exclude 
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this alternative.  However, we consider it unlikely, because fixation neurons in FEF and 

SC probably carry out similar functions.  First, these cell types are very similar in their 

physiological responses (Bizzi, 1968; Hanes et al., 1998; Paré and Hanes, 2003; Izawa 

et al., 2009).  Second, both FEF and SC project to PPRF with similar density (Scudder et 

al., 2002), and both areas project specifically to nRIP (Stanton et al., 1988; Büttner-

Ennever et al., 1999).  The distribution and morphology of these projections are 

suggestive of a fixation role for rostral SC.  The majority of projections from SC to nRIP 

arise from the rostral pole of SC, and these tend to be thick collateral axons, whereas 

projections to nRIP from more caudal regions tend to show up as thin branching axons 

(Büttner-Ennever et al., 1999).  Other cortical eye fields are less likely to gate 

microsaccade activity during saccade cancelation.  The supplementary eye field also 

projects to nRIP (Huerta and Kaas, 1990; Shook et al., 1990), but the neural activity in 

this area does not control directly saccade initiation (Stuphorn et al., 2010).  And while 

the lateral intrapariatal area projects to dorsal and lateral pontine nuclei, projections to 

PPRF are lacking (May and Andersen, 1986; Schmahmann and Pandya, 1989).  In sum, 

functional and anatomical data are in agreement with the fixation hypothesis, showing 

that rostral SC is equally or better positioned to serve fixation functions than cortical 

oculomotor areas.    

 How can these results be reconciled with recent findings supporting the 

microsaccade hypothesis?  Until now, the fixation and microsaccade hypotheses have 

been framed as mutually exclusive.  But this need not be the case.  The most graceful 

reconciliation seems the acknowledgement that some neurons in rostral SC are involved 

in producing microsaccades while other neurons are responsible for gaze-holding.  It 

seems beyond dispute that some neurons in rostral SC contribute to generating 

microsaccades (Munoz and Wurtz, 1993a; Hafed et al., 2009; Hafed and Krauzlis, 

2012).  Consistent with the model of Hafed et al. (Hafed et al., 2009), 3 of 4 monkeys 
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tested exhibited increased microsaccade production toward target locations 200-300 ms 

after target onset.  But it is equally clear that gaze-holding fixation neurons exist in 

rostral SC (Munoz and Wurtz, 1993a) as well as frontal eye field (Segraves and 

Goldberg, 1987; Hanes et al., 1998; Izawa et al., 2009) and the basal ganglia (Hikosaka 

and Wurtz, 1983b).  Consistent with this well-known finding, we observed decreased 

microsaccade production coinciding with periods of increased activation of neurons in 

rostral SC and of fixation neurons in FEF.  Some recent studies contradict this 

interpretation, suggesting that microsaccade cells constitute the same population of 

neurons originally described as fixation cells (Hafed et al., 2009; Hafed and Krauzlis, 

2012).  However, we note that the inclusion requirement of these studies dictated that 

neurons demonstrate build up activity in the interval before memory-guided saccades.  

This means that neurons with unequivocal gaze-holding activity were explicitly excluded 

from analysis.   

 Replicating many studies (Engbert and Kliegl, 2003; Laubrock et al., 2005; 

Valsecchi and Turatto, 2007; Rolfs et al., 2008; Brien et al., 2009; Cui et al., 2009; Hafed 

et al., 2011), we also found increased microsaccade production ~220 ms after the visual 

stimulus used as the stop signal.  These microsaccades were elicited too late to be a 

product of unbalanced activity in SC associated with SSRT (Hafed and Krauzlis, 2012).  

Surprisingly, they also tended to be directed contralateral to the target, and ipsilateral to 

SC activation.  The timing and direction of these microsaccades are reminiscent of the 

"inhibition of return" phenomenon (Posner and Cohen, 1984; Klein, 2000) that has been 

associated with oculomotor programming (Rafal et al., 1989) mediated at least in part by 

SC (Dorris et al., 1999).  Future work will aim to elucidate the neural mechanisms 

underlying this interesting observation.   

 In sum, our results provide a better understanding of the neural mechanisms 

underlying response inhibition.  They extend our original finding that partial muscle 
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contraction does not occur when saccades are successfully countermanded (Godlove et 

al., 2011a).  Furthermore, they demonstrate that microsaccades do not occur when 

normal saccades are canceled.  Together with previous work, these findings show that 

the prevention of saccade initiation in a stop-signal task is accomplished by explicit 

motor inhibition. 
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CHAPTER 4 

 

FUNCTIONAL EVIDENCE FOR A CANONICAL CORTICAL MICROCIRCUIT IN 

AGRANULAR CORTEX 

 

4.1 Abstract 

 Neuroscientists frequently rely on the assumption that a canonical microcircuit is 

repeated throughout neocortex. This biological blueprint, derived from primary sensory 

cortex, emphasizes ascending input to granular layer IV that is then transmitted to upper 

and lower cortical layers. Here we show that an area lacking a granular layer, the 

supplementary eye field (SEF), also exhibits laminar processing consistent with this 

canonical microcircuit. We recorded visually evoked spikes and field potentials 

simultaneously from all layers of SEF. Multiple predictions derived from the canonical 

microcircuit model were confirmed. Most notably, synaptic current flow began in the 

middle layers and spread sequentially to superficial and deep layers. At the neural level, 

firing patterns exhibited a period of enhanced spiking that was followed by suppression, 

the spike suppression lasted longer in superficial versus deep layers, and putative 

pyramidal cells and interneurons displayed similar response latencies. These findings 

are consistent with the hypothesis that the entire neocortex is comprised of a canonical 

microcircuit. 

 

4.2 Introduction 

 The hypothesis of a canonical cortical microcircuit (CCM) was originally 

formulated based on data from primary visual cortex (V1) where most ascending 

projections from the dorsal lateral geniculate nucleus terminate in a dense granular layer 
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IV (Figure 4.1A) (Gilbert, 1983; Callaway, 1998; Douglas and Martin, 2004). Layer IV 

neurons project to layers II and III, which project to layers V and VI in turn. In addition to 

these interlaminar projections, local, recurrent interactions between neurons play an 

important role (Figure 4.1B). Ascending input targets both pyramidal cells and 

interneurons (Douglas and Martin, 1991). Recurrent connections amplify this input, 

producing an initial wave of excitation (Douglas et al., 1995), followed by a longer lasting 

period of suppression (Douglas and Martin, 1991). Owing to differences in GABAA and 

GABAB receptor distribution, superficial layers show longer lasting suppression than 

deep layers. These defining features of a CCM are hypothesized to be repeated 

throughout neocortex (Douglas and Martin, 2004). The importance of this CCM 

hypothesis cannot be overstated. Among other consequences, it guides influential 

cortical hierarchies (Felleman and Van Essen, 1991; Markov et al., 2011), it underlies 

the interpretation of the fMRI BOLD signal (Logothetis, 2008; Boynton, 2011), and it is 

the foundation for large-scale implementations of cortical function including the 

ambitious Blue Brain Project (Markram, 2006; Heinzle et al., 2007; Helmstaedter et al., 

2007).  This basic, textbook idea is crucial to our understanding of neocortex. 

 Physiological evidence for this CCM has been obtained from several species and 

sensory areas using various techniques. For instance, optogenetic studies in mice 

describe specific contributions of neurons in deep and superficial layers to local 

recurrent network dynamics (Olsen et al., 2012; Petersen and Crochet, 2013). Similarly, 

post-synaptic current source density (CSD) derived from recordings of local-field 

potentials (LFPs) across layers in visual cortex (Mitzdorf and Singer, 1979; Schroeder et 

al., 1998), auditory cortex (Lakatos et al., 2007), and somatosensory cortex (Lipton et 

al., 2010; Riera et al., 2012) exhibit the earliest current sinks in granular layer IV followed 

by activation in supragranular and infragranular layers.  
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Figure 4.1. Essential characteristics of the CCM. A) Interareal and interlaminar excitatory 
projections, highlighting projections thought to determine the timing of Current Source 
Density (CSD) in specific laminae. Projections are numbered in order of temporal 
precedence for clarity. (Diagram adapted from Gilbert, 1983.) B) Lateral, recurrent 
excitatory and inhibitory projections. GABA-ergic projections exert inhibitory influence 
and are depicted in red. Glutamatergic projections exert excitatory influence and are 
depicted in blue. Pools of superficial and deep layer pyramidal neurons are modeled 
separately to account for differences in GABAA and GABAB receptor distributions. 
(Diagram adapted from Douglas and Martin, 1991.)  
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However, the universality of CCM across neocortex is not guaranteed because of 

pronounced architectural variation across cortical areas (Brodmann, 1909; Elston, 2000; 

Collins et al., 2010). Virtually all data supporting CCM has been obtained from sensory 

areas, and CSD in frontal cortex has never been reported. Thus, the pivotal idea of a 

functionally uniform neocortex is a convenient assumption rather than an established 

fact. 

 We investigated the universality of the CCM by recording laminar spiking activity 

and CSD from an area of frontal, motor cortex that lacks a granular layer. The 

supplementary eye field (SEF) is located in area 6 (also known as F7) (Schlag and 

Schlag-Rey, 1987), a classical agranular area in frontal cortex (Matelli et al., 1991). 

Examined with Nissl stain, neurofilament protein (SMI-32), myelin, and 

acetylcholinesterase (AChE), SEF differs markedly from primary visual cortex. Most 

notable is the absence of a granular layer IV (Figure 4.2). The structure of frontal, motor 

areas is so different from sensory cortex that accommodating it in the CCM framework 

seems very challenging. How can a pattern of microcircuitry that stresses granular layer 

IV as the critical input hub be a global blueprint for cortical areas lacking any granular 

layer (Shipp, 2005)? 

The location and functional responses of SEF facilitate testing the generality of 

the CCM hypothesis. First, macaque SEF is located in the dorsal medial convexity, 

making it readily accessible for laminar electrode array recordings perpendicular to the 

cortical layers. Second, neurons in SEF display visual responses (Schall, 1991a; Pouget 

et al., 2005) making it possible to evaluate laminar CSD and spiking responses with the 

same procedures used in sensory areas. Neurons in SEF also exhibit modulated activity 

associated with eye movements (Schlag and Schlag-Rey, 1987; Schall, 1991a; Olson 

and Gettner, 1995; Stuphorn et al., 2010; Heinen et al., 2011) affording investigation of 
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Figure 4.2 (opposite).  Cytoarchitecture of early visual areas contrasted with that of 
agranular frontal cortex. A) Data reproduced from (Paxinos et al., 2000) with permission. 
Sections were reacted immunohistochemically for the demonstration of neurofilament 
protein SMI32. Sulcal landmarks and specific areas are labeled to aid in orientation (V1 
primary visual cortex, V2 visual area 2, SEF supplementary eye field). Schematic insets 
show approximate planes from which sections were taken. Areas outlined in blue are 
magnified at right. V1 can be clearly delineated by laminae and shows a distinct layer IV 
separating layers III and V. In contrast, SEF exhibits clusters of pyramidal cells in layer 
III with less dense pyramidal cells in layer V (see also Geyer et al., 2000). B) 
Comparison of laminar distribution of acetylcholinesterase (AChE), myelin fibers and 
Nissl substance in primary visual cortex (top) and SEF (bottom). Each pair represents 
tissue taken from the same monkey. The pronounced laminated structure of visual 
cortex contrasts with the more homogeneous appearance of SEF. The laminar pattern of 
AChE staining in SEF is very different from that in V1, being most dense in layer I and 
dense as well in layers V and VI. Likewise, the laminar pattern of myelin fiber staining in 
SEF is markedly different from that in V1, lacking lamination and being most dense only 
up to layer II. In Nissl SEF is quite distinct from V1 with no clear boundary separating the 
homogeneous layers II and III that contain mostly small pyramids except in the lowest 
part of III in which medium-size pyramids are present. Layer VI contains mainly fusiform 
cells and can be divided by cell density into superficial, relatively sparse and deeper, 
relatively dense sublayers (Matelli et al., 1991) (Histological material kindly provided by 
T. Hackett). C) Distribution of GABA-ergic interneurons in SEF. Color panels on the left 
show coronal sections through SEF immunohistochemically reacted for the calcium 
binding proteins indicated. Panels on the right plot the location of reacted neurons 
identified using a semi-automatic classification routine (see Supp Experimental 
Procedures) and display associated histograms. Calretinin and calbindin neurons are 
densest in layer II with diminishing deeper density, while parvalbumin neurons are more 
uniformly distributed across layers. (Histological material kindly provided by I. 
Stepniewska).  
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whether laminar CSD and spiking patterns are consistent across sensory and motor 

processes. 

 

4.3 Results 

 Using linear microelectrode arrays (150 µm inter-contact spacing), we recorded 

visually evoked and saccade-related LFPs and spikes from SEF of 2 macaque monkeys 

across 17 sessions. SEF was located through intracortical electrical microstimulation to 

elicit eye movements (Schlag and Schlag-Rey, 1987; Huerta and Kaas, 1990) (Figure 

4.3 A,B). To obtain interpretable CSD, we verified that electrode arrays entered the 

cortex perpendicular to the cortical surface through combined MR and CT imaging 

(Figure 4.3 C-J). After the electrode array had settled in the cortex (>4 hrs), we 

presented wide-field (40° x 36° visual angle) light flashes (34.80 cd/m2) in blocks of 100-

200 presentations, similar to stimuli used previously to characterize laminar 

microcircuitry in visual cortex (Schroeder et al., 1998; Maier et al., 2010). Interleaved 

with these blocks of visual stimulation, we recorded activity during spontaneous eye 

movements produced while the monkeys rested in darkness for periods of 5-10 minutes.  

The laminar sequence of CSD and spike rate facilitation and suppression 

corresponded well to predictions of the CCM. These findings suggest that the neocortex 

is indeed organized according to a common blueprint. 

 

4.3.1 Single-session visually evoked CSD  

 Figure 4.4 shows data collected during a representative session. To interpret 

these data, it was necessary to estimate the depth of the electrode array relative to gray 

matter (see Experimental Procedures). Several physiological measures provided 

information about electrode position. First, an artifact associated with the cardiac rhythm 

(hereafter referred to as the pulse artifact) was observed on a superficial channel. This 
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Figure 4.3. Location and penetration angle of recordings. (A,B) Maps derived from 
effects of intracortical electrical microstimulation for both monkeys. The anterior location 
of the center of the chamber is indicated at left. Circles depict grid hole locations spaced 
1 mm apart. Legend shows the types of movement that were elicited with 50-200 µA of 
injected current. Crosshairs show the locations of guide tubes in CT images on right. (C-
J) Co-registered MR (green) showing soft tissue including gray matter and white matter 
with CT (red) showing bone, stainless steel chamber adapters, titanium screws, titanium 
headposts, some dental acrylic used in the implants, and stainless steel guide tubes. (C) 
and (D) show coronal and sagittal planes for monkey X. (E) and (F) show coronal and 
sagittal planes for Monkey E. Blue squares in (C-F) are magnified in (G-J). Cyan lines in 
(G-J) show pial surface and transition from gray matter to white matter. Thin yellow lines 
show the result of an automated algorithm that minimized distance between the pial 
surface and gray matter to calculate angles perpendicular to gray matter (see 
Experimental Procedures). Thick yellow lines plot the trajectory of electrode arrays 
based on the orientation of guide tubes. Thick and thin yellow lines are virtually parallel 
at points of entry. This orientation validates the CSD measurement. 
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Figure 4.4. Raw and processed data from a representative session (1,316 trials). (A) 
Schematic diagram of electrode array drawn to scale and positioned on Nissl section 
from SEF (adapted from Matelli et al., 1991 with permission). (B) 3 s of raw LFP 
recorded from each of the contacts. The red trace (8th from top) shows pulse artifact. (C) 
LFP bandpass filtered from 40 to 80 Hz. Blue traces show γ activity elevated above the 
mean. (D) Normalized mean γ power recorded at each electrode site across entire 
session (blue) compared to average gamma power recorded across all contacts (vertical 
black line). Note the pronounced increase in γ power at the contacts in the neuropil. (E) 
Summary figure showing depth of pulse artifact (red line), elevated γ power (blue line), 
and the number of well-isolated single units (black triangles) recorded simultaneously. 
During this session, we recorded 29 well-isolated single units with 2 units on 5 channels 
and 3 units on another 5 channels (examples of isolation quality are illustrated in Fig 
S2). (F) 300 ms of event related LFP aligned to the flash stimulus (vertical black line). 
Note the reversal in voltage polarity occurring on the channel with the pulse artifact. 
Above this channel the signal is volume conducted EEG moving through saline in the 
recording chamber. Below this channel the signals is either the electrocorticogram 
recorded from the pial surface (perhaps in the 9th channel from top) or LFPs recorded 
from within gray matter. (G) 300 ms of CSD derived from the LFP, interpolating between 
contacts with 10 µm resolution. Vertical black line shows onset of flash stimulus.  
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signal indicated where the electrode was in contact with either the dura mater or the 

epidural saline in the recording chamber, which pulsated visibly with the monkey's 

heartbeat. Second, across all sessions, we observed a marked increase of power in the 

γ frequency range (40-80 Hz) at several electrode contacts, which diminished gradually 

at deeper locations. Several recent studies have shown elevated γ power in superficial 

and middle layers (Maier et al., 2010; Xing et al., 2012; Smith and Sommer, 2013), so 

this measure provides another useful marker for estimating depth. Finally, we recorded 

well-isolated single units simultaneously with the LFP, and co-localized their position 

with the markers described above (Figure 4.5C). This set of diverse physiological signals 

provided converging evidence to evaluate the electrode position with regard to laminar 

depths that were assigned through an automated alignment procedure described below. 

Based on the known thickness of individual layers in SEF (Matelli et al., 1991), 

we estimated laminar boundaries and assigned visually evoked current sinks to specific 

layers. In the representative recording session, the largest sink (min -42 nA/mm3) 

occurred in layer III starting ~50 ms after presentation of the stimulus. A second sink 

(min -25 nA/mm3) began a few milliseconds later in layer V. A later sink (min -23 

nA/mm3) occurred more superficially in layers I/II, and additional weaker sinks (min -20 

nA/mm3) were evident in layer VI. Effectively simultaneous sinks in layers III and V are 

consistent with anatomical studies of the laminar termination of visual afferents in middle 

layers of SEF (reviewed by Shipp, 2005). 

Several current sources are also apparent, including one at the level of the pulse 

artifact. Consistent with existing research, we interpret this source as passive current 

returning to the sinks below because it was recorded at the same level as the pulse 

artifact, and therefore, cannot have a cortical origin (Mitzdorf, 1985). In general, current 

sources can be caused either by passive return current or dendritic hyperpolarization
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Figure 4.5 (opposite). Results of the automated alignment procedure for estimating recording depth across sessions. A) 
Visually evoked CSD recorded individually for each session. The first 7 sessions are taken from monkey E and the remaining 
10 sessions were recorded from monkey X. Black bars indicate our estimate of the average location of gray matter based on 
the observed physiological signals. B) Visually evoked CSDs masked to show locations of the 4 grand-averaged visually 
evoked sinks reported in Fig. 4. Note the close correspondence in location of these sinks across recording sessions 
demonstrating the similarity in CSD recorded on subsequent days, and the success of our automated alignment procedure. 
C) Physiological signals apparent in the raw data on individual sessions. Pulse artifact (red lines), elevated γ activity (blue 
lines), and single-units (black triangles) show good correspondence with our estimate of the location of gray matter (gray 
shading). 
 



making them harder to interpret than current sinks (Nicholson and Freeman, 1975; 

Mitzdorf, 1985). We therefore focus on current sinks for the remainder of this study. 

 To increase the signal-to-noise ratio, we averaged the evoked CSD patterns 

across recording sessions, analogous to creating grand average ERPs from EEG data, 

as done previously (Maier et al., 2010; Riera et al., 2012). To do this in an unbiased, 

data-driven manner, we developed an automated depth alignment procedure to 

maximize similarity between recording sessions using the entire source and sink laminar 

structure and timing. This mathematically optimized solution for depth alignment relies 

on the simple assumption that there are reliable similarities in CSD measured across 

recording sessions (see Experimental Procedures). Figure 4.5 shows the results of this 

procedure with data from every recording session. In every session, we observed a clear 

sink in layer III ~50 ms after the visual stimulus. In 15 of 17 sessions (88%) we also 

observed a second sink in layer V, and in 16 of 17 sessions (94%) we observed a third 

sink in layers I/II. On several recording sessions we placed our electrode array too 

superficial to sample from layer VI, but we observed a sink in this location in 11 of 13 

sessions (85%). These consistencies validate the assumption that CSD is reliable 

across recording sessions and monkeys. Our automated alignment technique was blind 

to the physiological signals detailed above (i.e., pulse artifact, LFP γ power, and single 

unit locations), because it relied only on the CSD data. Nevertheless, we observed a 

close correspondence between its estimates of cortical depth and the other physiological 

signals observed in the raw data, lending further support for the accuracy of this 

approach (Figure 4.5C). Additional evidence for the accuracy of our automated 

alignment procedure comes from our findings of neural responses that differ by layer in 

SEF (see below). An alternate alignment procedure based on the depth of increased 

LFP γ power yielded the same qualitative results (Figure 4.6, see section 4.6.2), 
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Figure 4.6. Results of aligning based on γ power A) Normalized mean γ power recorded at each electrode site on every 
individual session. A pronounced increase followed by gradual decrease in γ power was observed in each individual session. 
B) Grand average visually evoked CSD replicated using the γ -based alignment. Conventions as in Figure 4.4.  Note the 
presence of 4 initial visually evoked current sinks consistent with the results obtained using the automated alignment 
technique. Note also the decrease in scale indicating a weaker effect using the γ -based alignment. C-E) Results of the γ -
based alignment procedure showing data from each individual session.  Conventions as in Figure 4.5. 
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although the CSD was spatially "blurred" due to variability in aligning to elevated γ power 

reducing the overall magnitude. 

 

4.3.2 Visually evoked CSD 

 Visually evoked current sinks were observed across 2 mm of recording depth, 

and reached a maximum magnitude of -25 nA/mm3 (Figure 4.7). This is only ~15% of the 

magnitude of visually evoked current flow reported for V1 using similar recording and 

analysis techniques (Maier et al., 2010).  

Nevertheless, a clear laminar sequence of current sinks was apparent. Two initial 

sinks were observed in the grand average CSD, suggesting that visual afferents 

terminate in 2 distinct laminae. These findings agree with published anatomy. SEF is 

reported to be 1,992 µm (± 31 µm) thick in histological preparations (Matelli et al., 1991). 

Although it lacks a granular layer, SEF contains 2 layers of relatively dense pyramidal 

cells, one in deep layer III and a second forming layer V, which both receive visual input 

(Maioli et al., 1998; Shipp et al., 1998). The first sink (min -25 nA/mm3) appeared in layer 

III 51 ms after the stimulus, becoming maximal after 72 ms. The second sink (min -22 

nA/mm3) developed in layer V at 55 ms, becoming maximal after 105 ms. Subsequent 

sinks occurred in layer I/II (min -14 nA/mm3) at 147 ms (peaking at 168 ms) and in layer 

VI (min -10 nA/mm3) at 172 ms (peaking at 173 ms). 

To quantify these observations, we divided the time course following visual 

presentation into early (51-150 ms) and late (151-250 ms) epochs and conducted a 

between session 4x2 ANOVA using layers and epochs as factors. We observed 

significant differences in CSD by layer [F(3,122) = 177.74, p < 0.001], and a marginally 

significant decrease in CSD across layers during the late epoch [F(1,122) = 78.40, p = 

0.05]. Importantly, a significant interaction between layers and time periods was also 

observed in the grand average CSD [F(3,122) = 264.97, p < 0.001]. Thus, even though 
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the magnitude of current density was lower than that observed in early sensory cortex, 

the pattern of middle layer synaptic current followed by current in superficial and deep 

layers was consistent across sessions and reflected CSD obtained in early sensory 

cortex (Mitzdorf and Singer, 1979; Schroeder et al., 1998; Lakatos et al., 2007; Lipton et 

al., 2010; Riera et al., 2012). As an additional test, we conducted across-session running 

Wilcoxon tests on channels binned by the inter-electrode spacing (150 µm). All 4 current 

sinks differed significantly from baseline (Figure 4.7C). 

 

4.3.3 Saccade-related CSD 

 To determine whether this pattern of sinks is specific to visual input or occurs 

with other events during which SEF is modulated, we derived CSD associated with self-

generated saccadic eye movements in darkness. The saccade-related CSD on 

individual sessions was very weak, but following alignment and averaging we observed 

distinct sinks (Figure 4.7B,D). Although SEF neurons tend to have contralateral 

movement fields (Schall, 1991a), no channels showed significant differences between 

ipsilateral and contralateral conditions (Wilcoxon rank sum, p > 0.05), so we describe the 

findings collapsed across all saccade directions. Saccade related CSD was of 

comparatively small magnitude, mainly post-saccadic, and concentrated in the upper 

layers, peaking in layer III (min -9 nA/mm3) 32 ms after saccade initiation and more 

superficially (min -10 nA/mm3) after 162 ms. The absence of a strong presaccadic sink in 

layer V is consistent with other evidence that SEF does not contribute directly to 

saccade production (Stuphorn et al., 2010). Thus, the pattern of current sinks elicited by 

visual stimulation is specific to visual input. 
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Figure 4.7. Grand average visually evoked and saccade-related CSD from SEF. Nissl 
section from SEF in center indicates laminar architecture(adapted from Matelli et al., 
1991 with permission). (A) CSD recorded while monkeys passively viewed wide-field 
flashes of light. Four current sinks were observed and are numbered in order of 
appearance for clarity. (B) CSD recorded while monkeys made spontaneous saccades 
in darkness. (C,D). Data from A,B reproduced without interpolation highlighting times 
periods when channels deviate significantly from baseline. (Running Wilcoxon, p < 0.05 
for > 5 consecutive ms in 10 ms window). Sixteen channel depths are shown. Due to the 
placement of the electrode array, deeper channels were sampled less often than 
superficial channels (N = 17 channels 1-12, N = 15 channel 13, N = 13 channel 14-15, N 
= 11 channel 16). 
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4.3.4 Visually evoked spiking activity 

 The CCM hypothesis makes detailed predictions about spiking activity (Douglas 

and Martin, 1991; Douglas et al., 1995). First, excitation followed by suppression is 

proposed to be a common feature of the CCM. Second, excitatory and inhibitory neurons 

receive synchronized inputs; otherwise, recurrent excitatory connections would lead to 

unrestricted excitation. Third, in an effect thought to be mediated by the action of GABAA 

and GABAB receptors, intracellular recordings in V1 show that pyramidal cells in 

superficial layers reach a maximum state of hyperpolarization later than those in deep 

layers. 

To test these predictions, discharge rates were measured from 295 well-isolated 

single units recorded simultaneously with the LFPs (115 monkey E, 180 monkey X, see 

section 4.6.1, Figure 4.8, and Figure 4.9 for details). Of these units, 103 (35%) showed 

clear modulation following presentation of the flashed stimulus (63 monkey E, 40 

monkey X). We also recorded visually evoked, thresholded multi-unit activity with clearly 

defined latencies from 58 electrode contacts (42 monkey E, 16 monkey X). Units with 

saccade-related modulation were also recorded from all layers of SEF. However, unlike 

visually responsive units, saccade-related responses were weak and relatively rare, also 

consistent with evidence that SEF does not contribute directly to saccade production 

(Stuphorn et al., 2010) (Table 4.1). Consequently, we focus on units with visual 

responses. 

 Visually responsive single units were recorded in all layers of SEF (Figure 4.10). 

As reported before (Schlag and Schlag-Rey, 1987; Schall, 1991a; Chen and Wise, 

1995a) some units showed spiking enhancement (80, 50%) and others showed spiking 

suppression (81, 50%) following visual stimuli. We carried out a 4x2 ANOVA to 

determine whether the latency of these responses differed between layers (4 levels) and 

response types (i.e. enhancement vs. suppression). Latencies were significantly shorter 

149 
 



 

150 
 



Figure 4.8 (opposite).Sample waveforms and PCA space for 8 sorted channels. 
Channels 1-4 are taken from recordings with monkey X and channels 5-8 are taken from 
recordings with monkey E. 
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Figure 4.9. Biophysical characteristics of single units. A) All biphasic waveforms in 
population. Red and blue denote narrow and broad spikes respectively (split at 250 µS). 
This color code is the same in remaining panels. B) Cumulative probability distributions 
of coefficient of variation (CV) of inter-spike intervals plotted separately for broad spiking 
and narrow spiking units. Narrow spiking units showed more variability in spike timing. 
C) Spike width as a function of recording depth. Scatter plot shows regression of spike 
width by depth separated by broad and narrow spiking populations. Histograms show 
distributions of broad and narrow spiking units across each dimension. Broad spiking 
units increased in width with depth. No such trend was observed for narrow spiking 
units. D) Counts of broad spiking and narrow spiking units recorded in each layer. 
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41 17 84(41)Layer III

33 12 82(37)Layer V

17 17 89(51)Layer VI

12 12 78(53)

119(41)

99(38)

120(47)

120(45)Layer II

# of SU # of MU Enhancement latencies Suppression latencies

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4.1.  Summary statistics of units with saccade-related responses recorded from 
each layer.  SU = single units.  MU = multi units.  Latencies are means (SD) 
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Figure 4.10. Single and multi-unit visually evoked responses to flashed stimuli. (A). 
Representative units recorded from layer II (red), layer III (green), layer V (blue), and 
layer VI (black) demonstrating either enhanced (left) or suppressed discharge (right) 
rates following the stimulus. Fill area represents 95% confidence intervals measured 
across stimulus presentations. Vertical lines mark response latencies. (B). Cumulative 
distributions of unit response latencies separated by layer and response type. Enhanced 
responses showed shorter latencies than suppressed responses. See also Table 4.1 
and Table 4.2. 
  

154 
 



for units with enhanced than for units with suppressed responses [F(1,153) = 17.64, p < 

0.001]. Thus, collectively, SEF exhibits excitation followed by suppression. The latencies 

of visually evoked unit responses were not significantly different across layer [F(3,153) = 

0.77, p = 0.51], nor was the interaction between layers and response type [F(3,153) = 

0.48, p = 0.67] (Table 4.2). Thus, the temporal and spatial pattern of excitation and 

suppression in SEF is consistent with the CCM model. 

To test whether excitatory and inhibitory neurons receive synchronized inputs, 

we determined whether putative pyramidal cells and interneurons in SEF show similar 

latencies. We classified neurons as either putative pyramidal cells or putative 

interneurons based on spike width (Constantinidis et al., 2002; Mitchell et al., 2007). 

New evidence for this biophysical distinction was obtained (Figure 4.9  and section 

4.6.4). Narrow spiking neurons exhibited greater spiking variability. Also, the spike width 

of the broad spiking neurons increased with depth in parallel with the increase in 

pyramidal cell size from upper to lower layers of SEF. Meanwhile, the spike width of the 

narrow spiking neurons did not vary with depth. The incidence of narrow spiking neurons 

corresponded to the density of parvalbumin but not of calretinin or calbindin neurons in 

SEF (Figure 4.2C). Of neurons so classified, 101 broad spiking units and 22 narrow 

spiking units showed clearly detectable onset times (means ± SD, 108 ± 44 ms broad 

spiking units, 98 ± 38 ms narrow spiking units). Consistent with predictions of the CCM 

model, these onset times did not differ significantly (Wilcoxon rank sum W = 6403, p = 

0.35). 

 Finally, to test whether superficial and deep layers can be distinguished based on 

the timing of hyperpolarization, we determined whether visually-evoked spike 

suppression followed a longer time course in neurons recorded from upper versus lower 

layers in SEF. Further, because the classic CCM model replicates neural responses 

using a single pool of GABAergic neurons (Figure 4.1), we predicted that this effect 
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12 8 27(52)Layer III

7 5 22(41)Layer V

4 6 -3(46)Layer VI

4 5 -27(46)

-6(41)

29(55)

48(45)

7(43)Layer II

# of SU # of MU Enhancement latencies Suppression latencies

 

 

 

 

 

 

 

 

 

Table 4.2.  Summary statistics of units with visual responses recorded from each layer.  
SU = single units.  MU = multi units.  Latencies are means (SD) 
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would be restricted to broad spiking units only. Extracellular recordings in SEF confirmed 

these predictions (Figure 4.11). We limited this analysis to visually related units that 

showed any decrease in spiking after stimulus onset relative to baseline. The time of 

maximum spike suppression recorded from units in layers II and III (mean ± SD, 144 ± 

61 ms), was significantly later than the time of maximum spike suppression from units 

recorded in layers V and VI (mean ± SD, 115 ± 62 ms) (Wilcoxon rank sum W = 6223, p 

< 0.01). We further probed this effect by analyzing broad and narrow spiking units 

separately. As predicted, broad spiking neurons recorded in superficial layers showed 

significantly later spike suppression than broad spiking neurons recorded in deep layers 

(Wilcoxon rank sum W = 1719, p < 0.01), but this was not observed for narrow spiking 

units (Wilcoxon rank sum W = 471, p = 0.13). Adding evidence for differences in 

inhibition between layers, the overall probability of recording units with suppressed 

responses was also higher in superficial layers as reflected by a significant difference in 

depth by response type (Wilcoxon rank sum W = 7353, p < 0.01). Thus, the time course 

of inhibitory processes in SEF is consistent with the CCM model. 

 

4.4 Discussion  

 Our data provide the first physiological evidence that the CCM framework can be 

applied to primate agranular motor cortex in the frontal lobe. The fact that a functional 

parallel can be drawn between anatomically distinct granular (sensory cortex) and 

agranular (motor cortex) provides critical support to the hypothesis that CCMs are a 

universal feature of neocortical architecture. (See section 4.6.5 for discussion of these 

results in relation to previous physiological studies.)  
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Figure 4.11. Latency to maximum spike suppression differentiated by depth and width.  
Superficial layers (II and III) vs. deep layers (V and VI) and broad spiking units (in blue) 
vs. narrow spiking units (in red). Error bars are SEM. Left, representative unit illustrating 
the estimate of latency to maximum spike suppression. Upper-right inset shows broad 
and narrow spikes for the sample. A statistically significant difference was observed in 
the latency to maximum spike suppression between broad units recorded in superficial 
layers and broad units recorded in deep layers. No other comparisons differed 
significantly. 
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4.4.1 Relation to models of CCMs 

 Based on data collected in V1, Gilbert and Wiesel (Gilbert, 1983) provided the 

first account of a laminar CCM. They described the ascending projections that underlie 

our current understanding of CCMs (Gilbert, 1983; Callaway, 1998; Douglas and Martin, 

2004). The sequential, laminar pattern of CSD that we report mirrors this CCM derived 

from early visual cortex. The earliest sinks in SEF were in the middle layers and spread 

to more superficial and deeper layers. Douglas and Martin extended and refined the 

CCM model by describing the recurrent activity that amplifies (Douglas et al., 1995) 

ascending input and the recurrent inhibition (Douglas and Martin, 1991) that prevents 

uncontrolled excitation (see also Haider et al., 2006). Their model was spawned by the 

observation that stimulation of thalamic afferents produced brief excitation followed by 

longer lasting suppression in all layers. We found a similar sequence of activity in SEF 

with enhanced responses preceding suppressed responses by ~30 ms in all layers. 

In the classic CCM model, ascending input excites both pyramidal cells and 

interneurons. Interneurons project to pyramidal cells leading to this characteristic pattern 

of excitation and suppression (Douglas and Martin, 1991; Douglas et al., 1995; see also 

Brunel and Wang, 2001; Chance et al., 2002)). Consistent with this model, we noted that 

putative pyramidal neurons (broad spiking units) and putative interneurons (narrow 

spiking units) were equally likely to display an initial enhancement in spiking following 

visual stimulation and that onset latencies did not differ between these populations. 

Finally, intracellular recording studies highlight key differences in the time course 

of late suppression between superficial and deep pyramidal cells, and evidence 

suggests these differences are produced by GABAA and GABAB receptors (Douglas and 

Martin, 1991). The CCM model reflects these details by representing superficial and 

deep layers as two specialized nodes in the cortical microcircuit, and this laminar 

architecture forms the basis for several biologically constrained theories of cognitive 
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function (Douglas and Martin, 2004; Bastos et al., 2012). Consistent with these results, 

we also found differences in suppression between superficial and deep layers in SEF. 

Units recorded in superficial layers were more likely to respond with suppression, and, 

identical to classic findings in V1 (Douglas and Martin, 1991), we noted a longer time 

course for suppression in superficial layers compared to that recorded in deep layers. As 

expected, this effect was restricted to putative pyramidal cells suggesting laminar 

differences in GABAA versus GABAB expression in this cell type alone. Taken together, 

our CSD and unit data describe, in considerable detail, a functional CCM in SEF very 

similar to that observed in early sensory areas despite their gross anatomical 

differences. 

 

4.4.2 Relation to previous anatomical studies 

 We observed short latency visual responses in SEF in layers III and V. Visual 

afferents to SEF include subcortical and cortical projections. Fast visual input may be 

received from the mediodorsal nucleus of the thalamus (Huerta and Kaas, 1990; Shook 

et al., 1990) that is innervated by the superior colliculus (Benevento and Fallon, 1975; 

Harting et al., 1980). Afferents from this nucleus terminate in lower layer III of SEF 

(Giguere and Goldman-Rakic, 1988). Visual afferents to SEF are also supplied by 

cortical areas, including the lateral intraparietal area, area 7a, the frontal eye field, the 

superior temporal polysensory area, visual area 6a (V6a), and the medial superior 

temporal area (MST) (Barbas and Pandya, 1987; Huerta and Kaas, 1990; Schall, 1991a; 

Shipp et al., 1998). Inputs from dorsal stream areas like MST and V6a can provide fast 

visual input to SEF. Consistent with our observations of initial sinks in layer III and V, 

orthograde tracer injections in MST (Maioli et al., 1998) and in V6a (Shipp et al., 1998) 

reveal terminals in layers III and V in SEF. Also, consistent with our observation that 

layer VI is the last layer to show visually related CSD, projections from dorsal stream 
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areas terminate only sparsely in layer VI of SEF (Maioli et al., 1998; Shipp et al., 1998). 

Thus, the laminar distribution of latencies is in good agreement with known anatomy. 

 

4.4.3 Relation to cortical hierarchy 

 It is possible that this CCM will help reveal a cortical hierarchy in agranular cortex 

much as it has in granular cortex (Felleman and Van Essen, 1991). Our findings provide 

evidence supporting a model proposed by Shipp (2005) who extended principles of 

microcircuitry derived from early visual areas and conducted a meta-analysis to 

elucidate the hierarchical structure of agranular cortex. Across many tracer studies, 

Shipp noted that orthograde label appears in layers III and V of agranular cortex, and 

proposed that the ratio of layer III to layer V projections can be used to place agranular 

areas at their appropriate hierarchical level. The visually evoked CSD we report provides 

the first direct physiological support for this hypothesis by demonstrating driving input in 

layers III and V of agranular cortex. It remains to be seen, however, if the relative 

strength of these activations indicates the hierarchical location of a given agranular area. 

In our data, current sinks were observed in layers III and V with similar latency and 

magnitude after visual stimulation. This suggests both layers receive visual afferents. 

Future, laminar recordings from other areas of agranular cortex will provide data to test 

this agranular-hierarchy hypothesis. 

 

4.5 Methods 

4.5.1 Monkey care and surgical procedures  

 Data were collected from 1 male bonnet macaque (monkey E Macaca radiata 8.8 

kg) and one female rhesus macaque (monkey X Macaca mulatta 6 kg). Animal care 

exceeded policies of the USDA and Public Health Service Policy on Humane Care and 

Use of Laboratory Animals. All procedures supervised and approved by the Vanderbilt 
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Institutional Animal Care and Use Committee. MRIs were acquired to aide in placement 

of recording chambers (Godlove et al., 2011b), with a Philips Intera Achieva 3 tesla 

scanner using SENSE Flex-S surface coils placed above and below the head. T1-

weighted gradient-echo structural images were obtained with a 3D turbo field echo 

anatomical sequence (TR = 8.729 ms; 130 slices, 0.70 mm thickness). Cilux recording 

chambers (Crist Instruments, Hagerstown, MD) were implanted normal to the cortex (17° 

monkey E, 9° monkey X relative to stereotaxic vertical) centered on midline 30 mm 

(monkey E) and 28 mm (monkey X) anterior to the interaural line. Surgical placement of 

headposts has been described in detail (Godlove et al., 2011a).  

 

4.5.2 Cortical mapping and electrode placement  

 Following recovery after surgery, chambers were mapped using tungsten 

microelectrodes (2-4 MΩ, FHC, Bowdoin, ME) to apply 200 ms trains of biphasic 

microstimulation (333 Hz, 200 µs pulse width) of up to 200 µA using a BAK (Sanford, FL) 

pulse generator and microstimulator in combination with an FHC (Bowdoin, ME) isolator 

in constant current mode to elicit limb, orofacial, and eye movements (Figure 4.3 A,B). 

SEF was identified as the area from which saccades could be elicited using < 50 µA of 

current (Schlag and Schlag-Rey, 1987; Schall, 1991a; Stuphorn and Schall, 2006). 

 We found lateral position granting access to SEF perpendicular to the cortical 

layers by consulting MRI scans. These positions were further refined through mapping 

the three dimensional orientation of gray matter within the chamber by listening to 

spontaneous neural activity as a function of depth, using a Grass Technologies 

(Warwick, RI) audio monitor. SEF is 1,992 µm (± 31 µm) thick in histological 

preparations (Matelli et al., 1991). Using Teflon coated tungsten microelectrodes, and 

driving at a speed of 25 µm per second, discriminated the gray-to-white matter transition 

(GWT) by the sudden paucity of units and the overall decrease in background "hash". 
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When entering cortex obliquely, the GWT was encountered >2 mm after contacting the 

pial surface. In the extreme, when the electrode was positioned within ~2 mm of the 

midline, electrode tracks traversed the medial wall so that GWT was never encountered. 

We found the position allowing a penetration perpendicular to the cortical surface by 

advancing electrodes at gradually more lateral positions until we discerned the GWT 2 

mm after contacting the pial surface. 

 To confirm that these coordinates placed electrodes perpendicular to gray 

matter, we conducted CT scans with guide tubes in place and co-registered these data 

with structural MRIs using a point-based method implemented in OsiriX (Geneva 

Switzerland see section 4.7.2). CT scans were acquired using a Siemens microCAT II 

with an x-ray beam intensity of 180 mAs and an x-ray tube potential of 80 kVp. Images 

were reconstructed at 512 x 512 x 512 with a voxel size of 0.252 x 0.252 x 0.122 mm3.  

In monkey E, all recordings were obtained in a location 31 mm anterior to the 

interaural line, 5 mm lateral to the midline. In monkey X all recordings were obtained 

either 29 or 30 mm anterior and 5 mm lateral. These are the positions depicted in Figure 

4.3 (30 mm anterior for monkey X). During mapping of the bank of the medial wall of 

cortex, we noted that both monkeys seemed to have chambers placed ~1 mm to the 

right with respect to midline of the brain. This was confirmed in the co-registered CT/MRI 

data. Thus, our stereotaxic estimates of 5 mm lateral may have actually been recorded 

~4 mm lateral with respect to the cortical (as opposed to the skull-based stereotaxic) 

midline. 

 

4.5.3 Estimation of electrode track angles 

 We segmented the pial surface and the GWT in coronal and sagittal slices 

directly beneath the guide tube for each monkey (cyan lines in Figure 4.3G-J) without 

reference to the co-registered CT images, and then transferred these boundaries to the 
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co-registered data. We then implemented a custom algorithm in MATLAB to estimate 

angles perpendicular to gray matter (thin yellow lines in Figure 4.3G-J). For every pixel 

representing the pial surface in the 2D image, the algorithm found and recorded the 

closest pixel in Euclidean space representing the GWT. This resulted in a network made 

up of triangular webs since a single GWT pixel was often found to be closest to several 

pial surface pixels. The algorithm then worked in reverse, matching every GWT pixel to 

its closest pial surface counterpart. Finally, the algorithm recorded the average angle of 

all connections between the pial surface and the GWT in a sliding window. We found 

that smoothing across 25 angles provided a balance between angle accuracy and 

spatial resolution. For display purposes we only plot every 10th angle calculated in this 

fashion in Figure 4.3. By comparing the estimated angles perpendicular to gray matter to 

the angle of the guide tubes (thick yellow lines in Figure 4.3G-J), one can clearly see 

that electrode tracks were made perpendicular to gray matter. 

 

4.5.4 Data collection protocol 

 During recordings, monkeys sat in enclosed primate chairs with heads restrained 

45 cm from CRT monitor (Dell, P1130 background luminance of 0.10 cd/m2) running at 

70 Hz subtending 46° x 36° of visual angle. The monitor was unplugged while saccades 

were recorded in darkness; the only source of illumination was a small bank of infrared 

light emitting diodes (5° x 7° of visual angle, 0.03 cd/m2), which was necessary for video-

based eye tracking. Flash presentation was contingent on eye position under computer 

control (TEMPO, Reflective Computing, Olympia, WA). 

 We carried out an identical daily recording protocol across monkeys and 

sessions. After advancing the electrode array to the desired depth, we waited 3-4 hours 

until recordings stabilized across contacts. This waiting period resulted in extremely 

stabile recordings since single units could almost always be held indefinitely. After 
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achieving recording stability, we recorded 1 hour of "resting state" activity in near-total 

darkness with the CRT monitor unplugged. These data will be the subject of a future 

report. We then presented wide-field flashes of light to the monkeys in blocks of 100-200 

presentations. Whenever the monkey's gaze fell within 11° of the center of the CRT 

monitor, the central 40° x 36° of the CRT monitor flashed white (34.80 cd/m2) for a single 

frame (14.3 ms at 70 Hz) every 500 ms for as long as the monkey maintained gaze. 

These blocks were interleaved with periods of near total darkness of ~5-10 minutes in 

length. Saccades made during these periods form the basis for the saccade-related CSD 

analysis. This blocked design prevented the monkeys from becoming fully dark adapted. 

We collected 500-1000 presentations of light flashes and ~30 minutes of saccades in 

darkness per day. After this, we allowed monkeys to complete ~2000-3000 trials of a 

saccade stop-signal task (Schall and Godlove, 2012); these data will be presented in a 

separate report. Daily recording sessions ran from around 8:00 AM to 5:00 PM. Data for 

this report was collected between 1:00 PM and 3:00 PM. 

 We acquired 12,342 trials (6,448 monkey E, 5,894 monkey X) across 17 

sessions (7 monkey E, 10 monkey X). The number of sessions is similar to that used in 

previous studies (Maier et al., 2010; Maier et al., 2011; Spaak et al., 2012) although the 

number of trials per session is somewhat larger.  

 

4.5.5 Data acquisition 

 Intracranial data were recorded using a 24-channel Plexon uprobe (Dallas, TX) 

with 150 µm inter-electrode spacing. The uprobes had 100 mm probe length with 30 mm 

reinforced tubing, 210 µm probe diameter, 30° tip angle, 500 µm to first contact. 

Contacts were referenced to the probe shaft, and grounded to the headpost. We 

penetrated uprobes into the cortex using custom built guide tubes consisting of 26 gauge 

polyether ether ketone (PEEK) tubing (Plastics One, Roanoke, VA) cut to length and 
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glued into 19 gauge stainless steel hypodermic tubing (Small Parts Inc., Logansport, IN) 

that had been cut to length, deburred, and polished. The stainless steel guide tube 

provided mechanical support, while the PEEK tubing electrically insulated the shaft of 

the uprobe, and provided an inert, low-friction interface that aided in loading and 

penetration. We used microdrive adapters that were fit to our recording chambers with < 

400 µm of tolerance and locked in place at a single radial orientation (Crist Instruments, 

Hagerstown, MD). After setting up hydraulic microdrives (FHC, Bowdoin, ME) on these 

adapters, pivot points were locked in place by means of a custom mechanical clamp and 

neither guide tubes nor uprobes were removed from the microdrives once recording 

commenced within a single monkey. These methods ensured that we were able to 

sample neural activity from precisely the same location relative to the chamber on 

repeated sessions.  

 All data were streamed to a single data acquisition system (MAP box, Plexon, 

Dallas, TX). Time stamps of trial events were recorded at 500 Hz. Eye position data 

were streamed to the Plexon computer at 1 kHz using an EyeLink 1000 infrared eye-

tracking system (SR Research, Kanata, Ontario, Canada). LFP and spiking data were 

processed with unity-gain high-input impedance head stages (HST/32o25-36P-TR, 

Plexon). LFP data were bandpass filtered at 0.2-300 Hz and amplified 1000 times with a 

Plexon preamplifier, and digitized at 1 kHz. Spiking data were bandpass filtered between 

100 Hz and 8 kHz and amplified 1000 times with a Plexon preamplifier, filtered in 

software with a 250 Hz high-pass filter and amplified an additional 32,000 times. 

Waveforms were digitized 200 µS before and 1200 µS after threshold crossings at 40 

kHz. Single units were sorted online using a software window discriminator and refined 

offline using principal components analysis implemented in Plexon offline sorter. Figure 

4.8. shows 20 example channels (10 from each monkey) taken from various recording 

sessions in PCA space.  
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4.5.6 LFP and CSD analysis 

 Data analyses were carried out in MATLAB (Mathworks, Natick, MA). LFPs were 

time locked to stimulus onset or saccade initiation (defined as the instant that the eye 

exceeded 30°/s). Data were baseline corrected to the 200 ms interval preceding stimulus 

onset, or to the period -400 ms to -200 ms relative to saccade onset for our motor-

related CSD analysis. To observe power in the γ range, LFP data were bandpass filtered 

40-80 Hz using a zero phase shift digital filter with an order of 50 ms. 

 After constructing event-related LFPs, we estimated CSD by approximating the 

2nd spatial derivative at each point in time using the equation: 

ܦܵܥ ൌ
ݔሺߔ െ ݄ሻ െ ሻݔሺߔ2 ൅ ݔሺߔ ൅ ݄ሻ

݄ଶܵ  

where Φ = the observed voltage, h = the inter-electrode spacing (150 in our case) and S 

= the average conductance of primate gray matter (0.4 S/m) (Logothetis et al., 2007). 

The CSD reveals local dendritic activity in gray matter where neural ensembles arborize 

together and depolarize in unison, allowing the summation of current flow to be observed 

at the mesoscopic scale (Freeman and Nicholson, 1975; Riera et al., 2012). We 

multiplied the results by 106, converting units from A/m3 to the more tractable nA/mm3. 

This allowed us to compare the magnitude of our CSD directly to published results 

(Maier et al., 2010; Maier et al., 2011). To approximate CSD continuously across space, 

we interpolated between electrode contacts using nearest neighbors to a density of 10 

µm and convolved the result with a Gaussian filter (σ = 100 µm) (Pettersen et al., 2006). 

This was important since CSD data were averaged across recording sessions and 

successive CSD recordings could be offset by increments smaller than 150 µV (our 

inter-electrode spacing). Thus grand averaged CSD was sampled with higher resolution 

than our inter-electrode spacing, conceptually similar to the way in which the Hubble 
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Ultra Deep Field is increased in resolution by slight (half-pixel) perturbations in the 

position of the telescope across imaging sessions (Beckwith et al., 2006). 

 

4.5.7 Automated depth alignment technique 

 Our recording depths were jittered from session to session, both intentionally by 

advancing the electrode array to different levels, and unintentionally by slight day-to-day 

deviations in cortical "dimpling" caused by viscoelasticity of the neural tissue. This made 

it necessary to develop methods to realign our CSD recordings in an unbiased fashion 

allowing comparison across sessions. We were unable to rely on microdrive depth 

measures, since these values do not take variable cortical dimpling into account. We 

adopted methods similar to those used by (Maier et al., 2010; see also Di et al., 1990; 

Riera et al., 2012), who aligned and averaged consecutive recording sessions relative to 

the peak of the initial visually evoked sink that is readily apparent in V1 following 

presentation of a flashed visual stimulus. Although we consistently observed a sink in 

consecutive recording sessions around 50 ms after presentation of a flashed stimulus, 

this sink was smaller in magnitude causing reductions in our overall signal-to-noise ratio 

(Figure 4.5). This lower signal-to-noise ratio may have biased our results if we had 

adopted a manual alignment procedure. Thus, we devised an automated depth 

alignment procedure to minimize differences between recording sessions using all 

available source and sink information in a given time window. 

 Specifically we treated the alignment across recording sessions as a model with 

N parameters (where N equals the number of recording sessions) specifying the optimal 

depth of each session. An error term was calculated for a given set of depth parameters 

by subtracting each CSD matrix from every other CSD matrix, squaring the results, and 

summing across space, time, and session number. This method was sensitive to the 

number of overlapping data points which differed as a function of the depth parameters 
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chosen. To address this issue, we divided the error term by the number of overlapping 

data points normalizing the sum of squared errors by the number of observations. We 

then implemented a genetic algorithm for parameter optimization to minimize our 

calculated error term. In practice, we fit the period of time 50-100 ms after stimulus 

onset, since we systematically observed large visually evoked activity during this time 

across monkeys and sessions. We also constrained the depth parameters to ensure at 

least 50% overlap between every recording session. Given our microdrive depth 

estimates, this was a conservative estimate. 

 

4.5.8 Statistical Methods 

 We used 2 approaches to assess the statistical significance of the CSD. First we 

carried out a 4x2 ANOVA with factors of layer (I/II, III, V, versus VI) and time epoch (50-

150 ms versus 151-250 ms after flash stimulus), to test for differences in the CSD across 

space and time. ANOVA assumes independence across samples, and this assumption 

was not strictly met by our CSD data. Additionally, of the sessions (N = 17), only a 

subset recorded activity from the deeper layers (N = 13). This difference in N was not 

accounted for in our across-sessions ANOVA. We therefore conducted a second test 

that compared CSD activity recorded at each channel location to CSD activity on the 

same channel recorded during the baseline period before stimulus presentation 

(reported in Figure 4.6). To do this, we adopted the same criteria applied to LFP data by 

Purcell et al., (2012a). We binned channels into 150 µm intervals (the inter-electrode 

spacing) and then compared CSD magnitude to that recorded during the 20 ms 

immediately before stimulus onset, or during the -220 to -200 period before saccade 

onset. To correct for multiple comparisons, channels were deemed to show saccade- or 

motor-related activity only if the CSD deviated significantly from baseline for 5 

consecutive 10 ms time bins (Wilcoxon rank-sum test, p < 0.05) (Figure 4.6C,D). 
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Importantly, by carrying out statistics on individual recording depths differences in N 

caused by changes in electrode depth across days is accounted for and power is 

appropriately adjusted. Results of the ANOVAs and running Wilcoxon tests were in 

agreement, showing significant differences in CSD measured across depth and time.  

 We classified units as visually responsive or saccade related using the same 

running Wilcoxon method adopted by Purcell et al., (2012a) and described above. 

Rasters were convolved with a kernel resembling a postsynaptic potential (Thompson et 

al., 1996) to construct spike density functions for individual trials, and analyses were 

carried on these data. 

 CSD and single-unit onset latencies were measured using the same running 

Wilcoxon approach adopted by Purcell et al., (2012a). For CSD latency measures, data 

were collapsed across channels within layers and the Wilcoxon rank sum test was 

carried out on session means (N = 17). For single unit data, Wilcoxon rank sum tests 

were carried out within sessions on individual trials. Visual latency was defined as the 

first instant that the response deviated significantly from baseline (p < 0.01) given that 

this difference remained significant for at least 10 consecutive ms bins. The mean 

activation during this epoch was also used to classify units as either enhanced or 

suppressed. We classified units by depth simply by assigning them to the compartment 

belonging to the closest visually evoked sink. We carried out a 4x2 ANOVA with factors 

of layer (II, III, V, and VI) and response type (enhanced or suppressed) to test for 

differences in latencies between depths and unit groups. 

 Spike width was determined by interpolating mean spike waveforms to a 

resolution of 1 µs using a smoothing spline and then measuring the distance from peak 

to trough (Cohen et al., 2009). We excluded triphasic spikes [often recorded from axons 

(Lemon, 1984)] and abnormal monophasic spikes from our analysis by requiring that the 

peak exceed the maximum activity recorded before the trough by at least 1 SD. Across 
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our entire data set of 295 well-isolated units, this criterion eliminated 39 units (13%). This 

number is larger than the number of units excluded by visual inspection in a previous 

report (Mitchell et al., 2007). We speculate that this discrepancy may be explained by 

online selection bias in the recording methods. We did not select the units we recorded 

based on their waveforms or response characteristics, choosing instead to record from 

every neuron that we encountered near one of our electrode contacts. 

 

4.6 Supplementary Results and Discussion 

4.6.1 Single units recorded using the plexon uprobe 

 Few researchers have reported single unit data recorded with the newly 

developed electrode array used in the current study (Hansen and Dragoi, 2011; Hansen 

et al., 2012). Therefore in addition to spike width and spiking variability, we include 

samples of PCA space from representative recording sessions to demonstrate the 

signal-to-noise ratio of the units we recorded (Figure 4.8). 

 

4.6.2 Gamma based alignment 

 Although the observed correspondence between visually evoked CSDs and 

physiological signals is close, it is not exact (Figure 4.5). In particular, our estimates of 

the average location of gray matter appear to be ~100-200 µm deep for several of 

monkey E's sessions, causing a few neurons to appear to have been recorded outside of 

the brain. Likewise, our average estimate of gray matter appears too superficial for a few 

of monkey X's sessions, since the pulse artifact (and presumably dura) is estimated to 

be within gray matter. Ideally, we could align our data on the locations of well-isolated 

single units since they must be recorded from cortex. But, there is considerable 

variability in the number and location of single units that we isolated from one day to 

another. However, we noted a clear relationship between the location of single unit 
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activity and elevated γ power on the majority of recording sessions, and elevated γ power 

was consistent in our recordings even when single units were few. Several recent 

studies have shown elevated γ power in superficial and middle layers (Maier et al., 2010; 

Xing et al., 2012; Smith and Sommer, 2013). We therefore attempted a second 

alignment using elevated γ power as a proxy of single unit activity to locate gray matter. 

Figure 4.6 shows the result of this alignment procedure. As expected, this alignment 

introduced more variability in the location of visually evoked sources and sinks recorded 

across sessions. This was guaranteed to be the case since our automated alignment 

routine explicitly searched for the solution that minimized differences between visually 

evoked sources and sinks. However, in a majority of sessions, we were still able to 

observe consistency in the location of visually evoked sources and sinks recorded 

across days. The γ-based alignment tended to place sessions recorded with monkey E 

somewhat deeper with respect to sessions recorded with monkey X. 

 The results (Figure 4.6B) are quite similar to those obtained using the automated 

alignment algorithm (Figure 4.7), showing 4 visually evoked sinks similar in timing and 

location to those we reported in the main text albeit with reduced magnitude. The 

deepest sink is somewhat less distinct when aligning to gamma onset. This may be 

because the γ alignment arranged the sessions so that deeper layers were sampled 

fewer times than they were with our automated alignment procedure. Since these results 

are qualitatively identical to those produced using our automated alignment technique, 

but the magnitude of the sources and sinks is reduced using the γ -based alignment, we 

conclude that visually evoked CSD is a more reliable depth measure than increased γ 

power alone. Aligning to LFP γ power simply produces a "blurred" (and therefore 

reduced magnitude) version of the same result. 
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4.6.3 Saccade-related neural responses 

 We recorded 27 single units (9%) with activity related to spontaneous saccades 

made in darkness (14 monkey E, 13 monkey X). Ten of these neurons (37%) also 

displayed visually evoked activity. We additionally recorded saccade-related multi-unit 

activity from 24 locations (12 monkey E, 12 monkey X). Seventeen of these multi-unit 

recordings (71%) also displayed visually evoked activity. Of these 51 saccade-related 

units, 23 (45%) showed pre-saccadic modulation and 28 (55%) showed post-saccadic 

responses. 26 units (51%) showed increased firing rates before and during saccades 

while the remaining 25 (49%) showed suppression. Neither depth (mean = 0.38 mm 

relative to current sink 1, sd = 0.67 mm, Wilcoxon rank sum W = 17323, p = 0.64), nor 

spike widths (mean = 350 µs, sd = 99 µs, Wilcoxon rank sum W = 5224, p = 0.44), nor 

the coefficients of variation in inter-spike intervals (mean CV = 1.42, sd CV = 0.49, 

Wilcoxon rank sum W = 6597, p = 0.39), differed significantly between visually related 

and saccade-related units. A 4x2 ANOVA showed that latencies did not differ across 

layers [F(3,43) = 1.12, p = 0.35], unlike visually responsive neurons, the latencies of 

enhanced and suppressed responses did not differ significantly [F(1,43) = 1.09, p = 

0.30], and neither did the interaction between depth and response type reach 

significance [F(3,43) = 2.04, p = 0.12]. Table 4.1presents summary statistics for this 

neural population separated by layer. Other than demonstrating a relative lack of 

saccade related activity in SEF when saccades are initiated without visible goals, we do 

not consider these results to be definitive owing to the relatively small sample we 

recorded and the comparatively weak responses we observed. 

 

4.6.4 Spike widths and variability 

We classified neurons as either putative pyramidal cells or putative interneurons 

based on their respective spike widths (Constantinidis et al., 2002; Barthó et al., 2004; 
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Mitchell et al., 2007; Cohen et al., 2009; but see Vigneswaran et al., 2011). We did not 

include multi-unit activity in this analysis, focusing instead on well-isolated, biphasic 

single-units (Mitchell et al., 2007). The overall distribution of spike widths was similar to 

that reported for V4 (Mitchell et al., 2007) and FEF (Cohen et al., 2009) using similar 

criteria (Figure 4.9). We assessed variability in firing rates by calculating coefficients of 

variation measured on inter-spike intervals. Consistent with the hypothesized association 

between narrow spikes and interneurons, and in agreement with a previous report 

(Cohen et al., 2009), we found that narrow-spiking units displayed greater variability in 

spike timing than broad-spiking units (Wilcoxon rank sum W = 23971, p < 0.001). Across 

the pooled sample of single units, we found a small but significant correlation between 

spike width and recording depth [r(254) = 0.15 p < 0.01]. Separate regression analysis 

for narrow- and broad- spiking units revealed that broad-spiking units were the primary 

cause for this result. Broad-spiking units (N = 203) increased in width with recording 

depth [r(201) = 0.42 p < 0.001], while narrow-spiking units (N = 53) remained of the 

same width at successive depths [r(51) = 0.07 p = 0.60]. Testing for differences between 

spike widths of units with enhanced visual responses (340 µs mean ± 84 µs sd) and 

spike widths of units with suppressed responses (333 µs mean ± 89 µs sd) yielded no 

significant differences (Wilcoxon rank sum W = 1979, p = 0.57). These data provide 

additional information concerning the laminar microcircuitry of agranular frontal cortex. 

Broad-spiking units (putative pyramidal cells) and narrow-spiking units (putative 

interneurons) were observed in all layers and were equally likely to display enhanced or 

suppressed responses to flashed stimuli. This finding opens the interesting possibility 

that narrow-spiking units may reflect parvalbumin expressing interneurons since these 

are found throughout all layers in SEF (Figure 4.1C). 
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4.6.5 Relation to other physiological studies 

 Schroeder and colleagues recorded CSD and multi-unit activity from many areas 

of primate visual cortex using identical stimuli (Schroeder et al., 1989; Givre et al., 1994; 

Schultz, 1998). This enabled them to compare laminar activation profiles at successive 

stages of the visual hierarchy. Their findings generally matched feedforward and 

feedback patterns of activation consistent with anatomical descriptions of cortical 

microcircuitry (Hendrickson et al., 1978; Rockland and Pandya, 1979). Their work can be 

regarded as a standard description of laminar dendritic activation in the visual system of 

awake primates. We used the same stimulus paradigm, enabling us to compare the 

laminar activation profile of agranular frontal cortex with their findings in visual cortex. 

 The latency with which visually evoked CSD appeared in SEF was short (51 ms), 

but comparable to the latencies of visually evoked LFP onsets reported in SEF recently 

during a visual search task (Hendrickson et al., 1978; Rockland and Pandya, 1979; 

Purcell et al., 2012a). This latency also shows excellent agreement with the classic work 

of Schroeder and colleagues who reported latencies throughout the dorsal and ventral 

visual pathways and reported that the longest latencies were found in inferotemporal 

cortex at 49.2 ms (Schroeder et al., 1998). Moreover, the latencies of our single- and 

multi-unit responses are also in good agreement with previous reports (Purcell et al., 

2012a) showing no signs of anticipatory responses. Thus, the visual latencies measured 

here correspond to previous values even though we used large, repetitive stimuli. 

 Overall, visual latencies did not differ statistically across depth, unlike 

observations in early visual areas (Bullier and Henry, 1980; Maunsell and Gibson, 1992; 

Raiguel et al., 1999). In combination with the CSD results, this suggests that our flashed 

stimuli excited neurons via distal dendritic arbors. As noted SEF lacks a granular layer 

where small spiny stellate cells arborize primarily in the layer containing the soma. 

Response suppression was a common feature of our unit recordings. Several 
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researchers have noted suppression of neural activity in response to visual stimuli in 

SEF, although the proportion of units displaying suppression varies across studies 

(Chen and Wise, 1995; Schall, 1991; Schlag and Schlag-Rey, 1987). This finding may 

depend crucially on stimulus parameters and task contingencies. Center/surround 

receptive field architecture has not been characterized in SEF, but a recent report 

documented such receptive fields in FEF (Cavanaugh et al., 2012). While the wide-field 

stroboscopic flash paradigm we employed is a necessary step for comparing CSD to 

published reports from early visual areas, it is difficult to compare our neural activity to 

that recorded previously in SEF using behaviorally relevant stimuli. Still, as noted above, 

our single- and multi-unit latency measures are in good agreement with previous results. 

 Our measurements of spike width and variability in SEF are also consistent with 

measures from other visual areas. Spike widths measured from trough to peak were 

very similar to those observed previously using similar metrics (Mitchell et al., 2007; 

Cohen et al., 2009). The proportion of narrow spiking to broad spiking units that we 

observed (79%) is similar to that reported in V4 (73%) (Mitchell et al., 2007). 

Additionally, narrow-spiking units in SEF displayed increased variability in spike timing, 

consistent with previous work in FEF (Cohen et al., 2009). In future work, it may be 

fruitful to apply this approach to individual recording sessions. By studying biophysical 

markers such as spike width and variability (Constantinidis et al., 2002; Barthó et al., 

2004; Mitchell et al., 2007; Cohen et al., 2009) and combining these data with 

techniques such as Granger causality (Kaminski and Blinowska, 1991; Gregoriou et al., 

2009; Hirabayashi et al., 2013) it may be possible to describe intact cortical microcircuits 

with unprecedented detail. In addition to studying microcircuitry in frontal cortex, these 

findings highlight a new and exciting development in the CSD technique as advances in 

electrode array technology now allow researchers to record well-isolated single units 

alongside CSD. Using sink/source patterns, one is now able to obtain an empirical 
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measure of the depth of each recorded neuron in vivo. This advance will undoubtedly 

prove crucial to future work describing neural interactions within intact, behaving 

monkeys.  

 

4.7 Supplementary experimental procedures 

4.7.1 MR/CT co-registration 

 We used 4 points on the skull that could be easily seen in both CT and MR 

images to carry out the co-registration; 1) the crest of the bone surface on the brow ridge 

midway between the supraorbital processes, 2) the point where the interior of the skull 

protrudes between the base of the occipital lobe and the cerebellum, and 3-4) the most 

lateral positions of the interior aspects of the left and right zygomatic arches. In both the 

MRI and the CT data, points 1 and 2 could be easily identified in a midline sagittal 

section. Points 3 and 4 could be identified in both imaging modalities by gradually 

advancing more lateral through sagittal slices and marking the location in the first slice 

where the anterior and posterior aspect of the zygomatic arch merged into one. These 

points were advantageous for several reasons. First, because each of these points 

represents an area of bone surrounded by soft tissue (as opposed to air filled sinuses) 

they were readily apparent in both imaging modalities. Second, these points are widely 

separated encompassing the majority of the skull in all 3 dimensions. Because these 

points bound the outer limits of the skull, and because our guide tube was positioned in 

between and close to the middle of all of these points, deviations in their placement 

resulted in comparatively small deviations in the guide tube position relative to cortex. By 

inspecting the data in all 3 dimensions we found that these points yielded excellent co-

registrations. 
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4.7.2 Histology and cell counts 

 Histological material was gathered and processed as described previously 

(Schall et al., 1995; Pouget et al., 2009). Bright field images were photographed using a 

Nikon microscope through a 2x objective. A semi-automatic method for cell identification 

was implemented in the MATLAB program environment. The logic of this algorithm 

follows. A user first identified ~30 to 40 cells in each image manually. The algorithm 

recorded 8-bit RGB color data from each user-defined neuron and used these data to 

set threshold criteria for automated cell detection. Clusters of pixels that passed 

threshold criteria in each of the 3 color dimensions were isolated as candidate cells for 

further analysis. Clusters of pixels were discarded if they failed to pass any of the three 

following criteria: 1) the number of pixels within a given cluster was required to exceed a 

lower limit, 2) the number of pixels within a given cluster was required to fall below an 

upper limit, and 3) a given cluster was required to contain spatial frequencies (measured 

simply using the sum of gradients across all three 8-bit color dimensions, or ∑׏ RGB) 

higher than a lower limit. We found that neurons were satisfactorily identified within our 

images when color detection thresholds were set to 0.5 sd below the mean within each 

RGB dimension, when clusters were required to contain 30-400 pixels, and ∑׏ RGB 

values were required to exceed 30 8-bit color units.  
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CHAPTER 5 

 

EVENT‐RELATED POTENTIALS ELICITED BY ERRORS DURING THE STOP‐SIGNAL 

TASK. I. MACAQUE MONKEYS 

 

5.1 Abstract 

 The error-related negativity (ERN) and positivity (Pe) are components of event-

related potential (ERP) waveforms recorded from humans that are thought to reflect 

performance-monitoring.  Error-related signals have also been found in single-neuron 

responses and local-field potentials recorded in supplementary eye field and anterior 

cingulate cortex of macaque monkeys.  However, the homology of these neural signals 

across species remains controversial.  Here, we show that monkeys exhibit ERN and Pe 

components when they commit errors during a saccadic stop-signal task.  The voltage 

distributions and current densities of these components were similar to those found in 

humans performing the same task.  Subsequent analyses show that neither stimulus- 

nor response-related artifacts accounted for the error-ERPs.  This demonstration of  

macaque homologues of the ERN and Pe forms a keystone in the bridge linking human 

and nonhuman primate studies on the neural basis of performance monitoring.8 

 

5.2 Introduction 

To thrive, organisms must detect when their responses fail to meet expectations 

through performance monitoring.  Researchers investigating performance monitoring in 

humans have made inferences based on event-related potentials (ERPs) or 

neuroimaging methods, whereas investigators using monkeys have relied on intracranial 
                                                            
8 This chapter was published as Godlove DC, Emeric EE, Segovis CM, Young MS, 
Schall JD, Woodman GF. Event-related potentials elicited by errors during the stop-
signal task. I. macaque monkeys. Journal of Neuroscience 31: 15640-15649, 2011. 
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recordings (reviewed by Paus et al., 1993; Ridderinkhof et al., 2004; Schall and 

Boucher, 2007; Taylor et al., 2007; Hikosaka and Isoda, 2010; Passingham et al., 2010).  

The present work addresses this fundamental question:  Is the monkey executive control 

system a valid model of human performance monitoring? 

The first electrophysiological correlate of performance monitoring discovered in 

humans, the error-related negativity (ERN, also known as the Ne), was independently 

reported by Falkenstein et al. (1990) and Gehring et al. (1993).  The ERN has a 

frontocentral scalp distribution and peaks ∼50-100 ms following incorrect manual 

responses (reviewed by Gehring et al., 2011).  Several groups have observed the ERN 

during the stop-signal task (also known as the countermanding task), which is used to 

investigate behavioral inhibition and executive control (Endrass et al., 2005; Liotti et al., 

2005; van Boxtel et al., 2005; Kramer et al., 2007; Stahl and Gibbons, 2007; Vocat et al., 

2008).  Although the ERN is clearly associated with error commission, a variety of 

hypotheses concerning its relation to cognitive processes have been proposed (e.g. 

Gehring et al., 1993; Falkenstein et al., 2000; Holroyd and Coles, 2002; Luu et al., 2003; 

Yeung et al., 2004; Brown and Braver, 2005).  A number of these theories make specific 

predictions concerning the anatomical, neurophysiological, and neurochemical 

mechanisms of the ERN.  However, these theories have proven difficult to distinguish 

using behavioral and imaging data from humans.  Animal models of error-ERPs can 

provide leverage to distinguish between alternative hypotheses of performance 

monitoring. 

However, some have proposed that macaque monkeys do not have the neural 

substrates necessary to generate performance monitoring ERPs similar to those 

observed in humans (Cole, 2009; Cole, 2010; but see Schall and Emeric, 2010).  The 

argument is based on cytoarchitectural differences in medial frontal cortex between 

species, as well as perceived differences in the signals observed in human and monkey 
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medial frontal cortex.  The presence or absence of an ERN in monkeys would therefore 

shed light on an important, unresolved issue.    

We recorded ERPs from monkeys while they performed the saccade stop-signal 

task.  On trials without stop-signals (no-stop trials), monkeys made saccades to 

peripheral targets.  These correct responses were rewarded.  On trials containing stop-

signals (stop trials), monkeys often made saccades to targets.  These errant responses 

were not rewarded.  Thus, saccades led to either correct responses or errors.  By 

contrasting response aligned ERPs from these two trial types, we demonstrate the first 

evidence of error-ERPs in nonhuman primates.   

 

5.3 Materials and Methods 

5.3.1 Animal care 

 Data were collected from one male bonnet macaque (Macaca radiata ~8.5 kg) 

and one female rhesus macaque (Macaca mulatta ~7 kg).  Both animals were cared for 

in accordance with policies set forth by the USDA and Public Health Service Policy on 

Humane Care and Use of Laboratory Animals and all procedures were carried out with 

supervision and approval from the Vanderbilt Institutional Animal Care and Use 

Committee.   

 Surgical details have been described (Godlove et al., 2011a).  Most critically, 

solid gold surface electrodes, Teflon coated stainless steel wires, and plastic connectors 

were constructed and implanted following the method of Woodman et al. (2007).  

Implanted electrode locations are provided in Table 5.1.    
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Monkey F Monkey Y

Electrode AP ML AP ML

Fpz \ \ 5.33 0
FpFz \ \ 4.3 0
Fp1 \ \ 4.12 -1.75
Fp2 \ \ 4.12 1.63
Fz 4.1 0 3.28 0
F1 2.7 -1.4 \ \
F2 2.7 1.4 \ \
F3 \ \ 2.69 -1.59
F4 \ \ 2.69 1.49
FCz \ \ 2.24 0
Cz \ \ 1.23 0
P3 \ \ -0.61 -2.19
P4 \ \ -0.61 2.19
Pz \ \ -1.75 0
POz \ \ -2.5 0
O1 -2.1 -1.4 -2.81 -1.64
O2 -2.1 1.4 -2.81 1.54
Oz -2.5 0 -3.58 0

 

 

 

 

 

 

Table 5.1.  Implanted electrode locations.  Stereotaxic locations of imlanted electrodes in 
cm relative to interaural zero.  Elecrode names refer to homologous human electrode 
locations from the international 10-20 electrode placement system.  ML = medial to 
lateral, AP = anterior to posterior.   
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5.3.2 Stimuli and task 

 Stimulus presentation, task contingencies related to eye position, and delivery of 

liquid reinforcement were all under computer control in real time (TEMPO, Reflective 

Computing, Olympia, WA).  Behavior and electrophysiological signals were recorded 

during the saccadic stop-signal (countermanding) task (Figure 5.1).  Stimulus properties 

and task timing have been reported in detail (Godlove et al., 2011a).  Additional details 

about the behavioral training regime and task have also been described (Hanes and 

Schall, 1995; Hanes et al., 1998).   

 Trials were initiated when monkeys fixated a centrally presented square.  After a 

variable time, the central fixation point was extinguished and a target simultaneously 

appeared at 10° to the left or right of fixation.  On no-stop trials (Figure 5.1 top), no 

further visual stimuli were presented.  Monkeys were required to make saccades to 

targets and hold gaze for 600 ms to obtain reward.  On stop trials (Figure 5.1 bottom), 

the fixation point was re-illuminated after a variable delay providing a stop-signal.  To 

obtain reward on stop trials, monkeys  withheld eye movements and maintained fixation 

for a minimum of 1800 ms.  These trials were designated as canceled.  If monkeys were 

unable to inhibit the movement, a 1500 ms timeout was added to the normal inter-trial 

interval of 200 ms, no rewards were given, and the trial was termed noncanceled.  Thus, 

identical responses could be either correct or errant depending on trial context.   

 An initial set of stop-signal delays (SSDs) from 0 to 420 ms and separated by 

either 40 or 60 ms steps was selected for each recording session.  We then manipulated 

SSD using an adaptive, stair-casing algorithm, which adjusted stopping difficulty based 

on performance.  Stop trials made up 30 to 40% of all trials in a given session with a 

typical session consisting of several thousand trials. Saccade initiation and termination 

were detected offline using a custom algorithm which first detected instantaneous 

velocity elevated above 30°/s and then calculated the beginning and ending of the 
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Figure 5.1.  Schematic representation of the saccadic stop-signal (or countermanding) 
task.  No-stop trials (top) were initiated when monkeys fixated a centrally presented 
fixation point.  After a variable time, the fixation point was extinguished and 
simultaneously a peripheral target was presented at one of two possible locations.  
Monkeys were required to fixate targets with quick saccades for juice rewards.  Stop 
trials (bottom) were initiated in the same way.  After a variable time termed stop-signal 
delay (SSD), the fixation point was re-illuminated, instructing the monkeys to withhold 
movement.  Successful inhibition of saccades resulted in rewarded Canceled trials, but 
errant saccades resulted in unrewarded Noncanceled trials.  Black squares indicate 
stimulus locations.  Dotted circles represent area of fixation.  F = fixation point, T = 
target, RT = reaction time, SSD = stop-signal delay. 
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monotonic change in eye position.  We adopted the procedures of Logan and Cowan 

(1984) implemented by Hanes et al. (1998) to estimate stop signal reaction time (SSRT).  

In brief, we estimated SSRT using one method which assumes that SSRT is a constant, 

and another method which assumes that SSRT is a random variable.  Since there is no 

reason to assume an advantage of either of these methods, we averaged the two 

estimates together to obtain final SSRT measures.   

 

5.3.3 Data acquisition 

Eye position was monitored using an infrared eye-tracking system (ASL, Bedford, 

MA).  Implanted EEG surface electrodes were referenced to linked ears using ear-clip 

electrodes (Electro-Cap International, Eaton, OH). All electrode impedances were less 

than 10 kΩ.  The EEG from each electrode was amplified with a high-input impedance 

head stage (Plexon, Dallas, TX) and bandpass filtered between 0.7 and 170 Hz. 

 

5.3.4 ERP analyses 

 ERPs were time-locked to saccade initiation or stop-signal onset.  Waveforms 

were baseline corrected during the interval from 150 ms to 50 ms before these events.  

Stop trials on which subjects responded before stop-signal presentation (37% monkey F, 

49% monkey Y) were not included in error-ERPs since subjects did not have the 

necessary information to deduce that an error had been committed at time of response.  

When constructing grand averages collapsed across left and right target locations, the 

number of trials presented at each location was matched in a given condition by 

excluding random trials from one target (26% monkey F, 18% monkey Y).  Trials with 

voltage deflections greater than ±300 µV and trials with amplifier saturation were also 

excluded from analysis (3% monkey F, 1% monkey Y).  Single trial EEG signals were 
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truncated 50 ms before the onset of the second, non-task-related saccade to eliminate 

artifacts arising from temporally smeared second-saccade activity (Godlove, 2010).   

 Significant ERP differences were assessed using the method of Emeric et al. 

(2008).  This method tests for differences between error and correct ERPs using a 

thresholding approach similar to those often employed in single unit studies measuring 

activity onsets in spike-density functions.  First, a difference wave was calculated by 

subtracting noncanceled error-ERPs from no-stop correct ERPs.  Negative difference 

wave values indicated that error-ERPs were more negative than correct ERPs, while 

positive difference wave values indicated an opposite polarity effect.  Difference wave 

values near zero indicated that error and correct ERPs did not differ.  Thus, to test for 

significant differences between error and correct ERPs, we simply observed periods 

when the difference wave deviated from zero (i.e. baseline) by values larger than those 

expected by chance.   

 The intrinsic variability of the difference wave was assessed by calculating the 

standard deviation across time during the baseline period.  This provided a measure of 

chance fluctuations between error and correct ERPs.  Significant epochs were defined 

as periods when the difference wave deviated from baseline by >2 standard deviations 

for longer than 50 ms, provided it exceeded 3 standard deviations in that interval.  For 

presentation, the grand average ERP collapsed across both monkeys was digitally 

filtered with a zero phase shift 35 Hz low-pass hamming window (sd = 6 ms).  Unfiltered 

ERPs are presented individually for each monkey, and all statistical analyses were 

carried out on the unfiltered data.   

 

5.3.5 Current density estimation 

 MRIs were acquired with a Philips Intera Achieva 3 Tesla scanner using SENSE 

Flex-S surface coils placed above and below the head.  T1-weighted gradient-echo 
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structural images were obtained with a 3D turbo field echo anatomical sequence (TR = 

8.729 ms; 130 slices, 0.70 mm thickness).  Segmentations of skin, skull, and brain were 

carried out in CURRY 6 (Compumedics Neuroscan, Singen, Germany).  The cranial 

surface electrode locations were co-registered to the head model guided by stereotaxic 

coordinates recorded during surgery.  From this 3D head model, a three-compartment 

Boundary Element Method (BEM) volume conductor geometry was generated.   

 Source estimation used ERP difference waves (noncanceled error minus no-stop 

correct) at time windows of ±30 ms (ERN) and ±40 ms (Pe) centered on the peak 

amplitude of the difference wave from electrodes showing maximal ERN and Pe.  

Current density was estimated using the sLORETA-Weighted Accurate Minimum Norm 

method (SWARM) (Wagner et al., 2007).  SWARM combines the methods of diagonally 

weighted Minimum Norm Least Squares (MNLS) (Dale and Sereno, 1993) and 

sLORETA (Pascual-Marqui, 2002) to compute a current density vector field with low 

localization error (see Wagner et al., 2007).  

 

5.3.6 Tests for behavioral adjustments 

For all analyses of behavioral adjustments related to error-ERPs, data were 

collected from electrodes that displayed maximum error-related amplitude differences, 

and data were drawn from the same windows used in current density analysis.  We used 

two methods to test for relationships between error-ERPs and post-error RT 

adjustments.  The first method relied on single trial amplitude measures.  We identified 

errant noncanceled trials (trial n) which were followed by no-stop trials (trial n+1).  We 

measured the maximum negative and positive deflections during ERN and Pe windows 

on trial n, and then determined post-error RT adjustments defined as ∆RT (RT on trial 

n+1 minus RT on trial n).  We measured the correlation coefficient (ρ) values for 

maximum ERN/Pe amplitude versus ∆RT and subjected these distributions of ρ values 
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to 1 sample t-tests.  This allowed us to determine if correlations tended to deviate from 

zero across the entire data set.  For our second method, we first calculated median ∆RT 

separately for each monkey.  We then constructed 2 ERPs aligned to the errant saccade 

on trial n based on a median split of ∆RT and tested for significant differences using 2 

sample t-tests.  To account for the effects of non-stationarity on RT estimates we 

repeated both of these analyses using the correction suggested by Nelson et al. (2010).  

For this correction, ∆RT was calculated as RT on trial n+1 minus RT on trial n-1.  Since 

similar findings were obtained using both ∆RT measures, only data from the first ∆RT 

analyses are reported. 

 

5.3.7 Tests for conflict 

 We also tested for relationships between the amplitude of the ERP negativity 

around SSRT and neural response conflict.  We first normalized the raw EEG traces by 

z-scoring them to remove incidental inter-subject and inter-electrode amplitude 

differences.  We then identified successfully canceled trials at each SSD.  According to 

findings from Hanes et al. (1998) and Paré and Hanes (2003) canceled trials are those 

containing the largest magnitude of neural response conflict in the saccadic stop-signal 

task (see also Stuphorn et al., 2000).  We identified no-stop trials from each session with 

RTs > SSD + SSRT.  These latency-matched trials are those which were slow enough to 

have been successfully canceled had stop-signals been presented, providing an 

appropriate control for canceled trials (e.g. Hanes et al., 1998; Godlove et al., 2011a).  

We then constructed ERPs from canceled and no-stop trials at each SSD and measured 

mean amplitude on canceled trials and latency matched no-stop trials in the window -50 

to +100 ms around SSRT.  This window corresponds to the time of conflict-related 

neural modulation in the supplementary eye field (SEF)(Stuphorn et al., 2000; Emeric et 

al., 2010).  By subtracting mean no-stop voltage from mean canceled voltage we 
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obtained measurements of the amplitude of the canceled-trial negativity.  Finally, we 

tested to see if the amplitude of canceled-trial negativity was related to response conflict 

by assessing its correlation with SSD and the probability of committing an errant 

saccade.    

 

5.4 Results 

5.4.1 Behavior 

 Behavioral results are summarized for each monkey in Table 2.  Both animals 

exhibited noncanceled trials with probability slightly > 50%.  Because we used a stair-

casing algorithm to adjust SSD, this departure suggests that both animals tended to 

speed up, causing a reduction in SSD.   We have observed and reported this pattern of 

behavior before in animals performing the saccadic stop-signal task (Godlove et al., 

2009; Godlove et al., 2011a).  Other than a small tendency to speed responses, the data 

summarized in Table 2 suggest that the monkeys performed the task in a manner 

consistent with the race model of Logan and Cowan (1984).   

 

5.4.2 Grand average error-ERPs  

 Figure 5.2 shows the saccade-aligned ERPs at electrode Fz collapsed across 

sessions and monkeys.  In both instances, monkeys made saccades to target locations, 

but different contexts rendered no-stop trial responses correct and stop trial responses 

errant.  In comparison to the correct no-stop ERPs, the errant noncanceled ERPs show 

a negativity beginning approximately 8 ms after the error and ending 73 ms later.  This 

ERN reverses from 150-215 ms post response, becoming an error-related positivity (Pe).  

Taking into consideration known neural conduction velocity differences between human 

and macaque nervous systems (Woodman, 2011), the timing of these potentials show a 
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252 ± 87 218 ± 92 0.53 71monkey Y

285 ± 77 250 ± 75 0.54 94monkey F

no-stop RT noncanceled RT p(noncanceled) SSRT

 

 

 

 

 

 

 

 

 

 

Table 5.2. Summary statistics for stop-signal task performance.  Reaction times (±1 SD), 
probability of committing errant noncanceled saccades, and SSRTs for each subject 
collapsed across sessions 
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Figure 5.2.  Monkey ERPs showing the ERN and Pe when errors are committed in the 
saccadic stop-signal task relative to correct trials with the same behavior.  Response-
aligned ERPs from correct no-stop trials (thin solid line) and errant noncanceled trials 
(thick broken line) are displayed.  ERPs are collapsed across monkeys.  On error trials, 
a significant negativity can be observed which begins 8 ms after the response and ends 
81 ms after the response (light gray shading).  A later positivity can also be observed 
150 to 215 ms after the errant response (dark gray shading). 
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tight correspondence to the time courses of the ERN and Pe observed in humans 

(Reinhart et al., 2012). 

 

5.4.3 Individual monkey error-ERPs 

 Figures 5.3 and 5.4 show that a similar pattern of ERN and Pe components was 

apparent in the frontal medial electrodes of each monkey.  In monkey F, the observed 

ERN was maximal at electrode Fz, 97 ms after the response, and the Pe was maximal at 

electrodes F1 and F2 at 170 ms and 176 ms after the errant saccade, respectively.  

Monkey Y was implanted with a denser electrode array.  This monkey showed a 

maximal ERN deflection at electrode FCz, 64 ms after the saccade, and a maximal Pe 

deflection at electrode Fz, 188 ms after the saccade. 

 

5.4.4 Current density model 

 The dense electrode array of monkey Y, enabled us to investigate the spatial 

distribution of error-related components in more detail.  We calculated current density 

distributions with the SWARM algorithm using the anatomical MRI from monkey Y. This 

method takes into account individual skull and brain morphology.  Figure 5.5 shows the 

results.  The current distribution contributing to the ERN explains 84% of the variance; 

while that contributing to the Pe explains 86% of the variance.  The current density maps 

show that the ERN has a broad frontocentral distribution while the Pe has a more focal 

frontal distribution.  The distribution of current sources extended onto medial frontal 

cortex for both the ERN and the Pe (Figure 5.6).  These results are strikingly similar 

those obtained from humans performing the same task (Reinhart et al., 2012). 

 Because the stop-signal was only presented on trials in which errors were 

committed, our ERN and Pe results include a contribution from visually evoked ERPs 

elicited by the stop-signal.  We addressed the contributions of this potential confound by 
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Figure 5.3.  ERPs from monkey F showing the ERN and Pe when errors are committed 
in the saccadic stop-signal task.  The figure uses the same conventions as in Figure 5.2.  
Response aligned ERPs from correct no-stop trials and errant noncanceled trials are 
displayed for multiple electrode locations.  On error trials an early negativity can be 
observed on electrodes Fz, F1, and F2.  This negativity was not of long enough duration 
to pass significance criteria.  A later negativity can also be observed on electrode Fz 
which does pass significance criteria.  Following this, a significant positivity is evident on 
electrodes F1 and F2.  A later significant positivity is also evident on electrodes O1 and 
O2.   
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Figure 5.4.  ERPs from monkey Y showing the ERN and Pe when errors are committed 
in the saccadic stop-signal task with the same conventions as in Figure 5.2.  Response 
aligned ERPs from correct no-stop trials and errant noncanceled trials are displayed for 
multiple electrode locations.  On error trials a significant negativity can be observed on 
electrodes FCz and F3, and a later negativity can also be observed on electrode Pz.  
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Following this, a significant positivity can be observed on the majority of electrodes.  This 
positivity is earliest and highest in amplitude at frontal medial electrode sites. 
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Figure 5.5.  Current density distribution for ERN (A), Pe (B) and visual response to stop 
signal (C).  Current density estimates are projected onto MRI reconstruction from the 
same monkey.  Warmer colors indicate greater density of current flow according to 
scales for ERN (left) and Pe (right).  Error minus correct difference wave (red) and 
response to stop signal on correct canceled trials (black) are shown with temporal 
windows measured for each component.  Vertical line shows median stop signal 
presentation time relative to saccade initiation.   
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Figure 5.6.  Saggital view of current density spatial distributions for ERN and Pe.  
Conventions are as in Figure 5.5. 
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comparing current density distributions of canceled and noncanceled trial ERPs during 

the same time periods relative to the stop-signal (Figure 5.5C).  On these trials, the 

monkey held gaze at central fixation for at least 1800 ms following stop-signal 

presentation.  Therefore, the current distribution on canceled trials reveals the 

contribution of stimulus-related ERPs to the error-related ERPs.  No significant current 

densities were observed over medial frontal cortex during the ERN epoch when 

saccades were correctly canceled.  Instead, significant effects were restricted to occipital 

and parietal regions.  These results show that the ERN and Pe we observed are not 

sensory artifacts associated with stop-signal presentation. 

 

5.4.5 Error-ERPs, RT adjustments, and response conflict 

 Some studies have suggested that error-ERP magnitudes are correlated with 

performance adjustments such as post-error slowing (Gehring et al., 1993; Nieuwenhuis 

et al., 2001; Rodriguez-Fornells et al., 2002; Kerns et al., 2004; Debener et al., 2005b; 

Holroyd et al., 2005; Klein et al., 2007; Ladouceur et al., 2007; West and Travers, 2008; 

Huster et al., 2011; but see Gehring and Fencsik, 2001; Hajcak et al., 2003; Nunez 

Castellar et al., 2010).  To test for these effects and relate our ERP data to intracranial 

local-field potentials recorded in the SEF and anterior cingulate cortex (ACC) during this 

task (Emeric et al., 2008; 2010), we examined the relationship between error-related 

ERPs and post-error RT adjustments, as described above.  Figure 5.7A illustrates this 

analysis for a sample session.  Neither ERN amplitude nor Pe amplitude were 

significantly correlated with ∆RT in this session.  Figure 5.7B and 5.7C display 

distributions of ρ values collapsed across all sessions.  Neither of these distributions 

deviated significantly from zero (ERN t(14) = 0.68, p = 0.51; Pe t(14) = -1.67, p = 0.12).   

 Because raw EEG contains a great deal of variability, we also averaged the 

ERPs using a median split based on ∆RT and measured amplitudes during the windows 
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Figure 5.7.  Single trial test for correlations between ERN/Pe amplitude and post-error 
RT adjustments.  A Correlations between maximum ERN/Pe amplitude and ∆RT (RT on 
no-stop trial n+1 minus RT on noncanceled trial n) for a representative session.  Neither 
the correlation between maximum ERN amplitude and ∆RT nor the correlation between 
maximum Pe amplitude and ∆RT reached significance.  B Distribution of correlation 
coefficients (ρs) between maximum ERN amplitude and ∆RT across all sessions.  C 
Distribution of ρs between maximum Pe amplitude and ∆RT across all sessions. 
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centered on the peak ERN and Pe.  Figure 5.8A displays mean ERN amplitude for the 

fastest and slowest ∆RT trials separately for each monkey and averaged across both 

monkeys.  Figure 5.8B displays the same relationship between Pe amplitude and ∆RT.  

Neither monkey showed significant differences in ERN amplitude (monkey F t(18) = -0.18, 

p = 0.86; monkey Y t(8) = -1.17, p = 0.28; grand t(28) = -0.71, p = 0.48) or in Pe amplitude 

as a function of ∆RT (monkey F t(18) = -0.06, p = 0.96; monkey Y t(8) = -1.47, p = 0.18; 

grand t(28) = -1.07, p = 0.29).   

 An influential theory posits that the ERN is produced by neural processing of 

response conflict (Botvinick et al., 2001; Yeung et al., 2004).  The occurrence of 

response conflict is not restricted to error trials only, but is hypothesized to occur with 

varying timing and magnitude on all trial types (Yeung et al., 2004).  In the stop-signal 

task, subjects must choose between committing responses and canceling them.  Thus, 

in the saccadic stop-signal context, response conflict is engendered when subjects must 

choose between producing saccades and maintaining fixation.  Distinct neural 

populations are active in the superior colliculus (SC) and frontal eye field (FEF) when 

saccades are produced or fixation is maintained.  We and others have classified these 

neurons as movement cells and fixation cells (Bruce and Goldberg, 1985; Munoz and 

Wurtz, 1993a; Hanes et al., 1998), although alternate classifications have been 

proposed (Hafed et al., 2009).  Movement and fixation cells in the SC (Paré and Hanes, 

2003) and FEF (Hanes et al., 1998) are briefly coactive on canceled trials around the 

time that saccade cancelation occurs (SSRT).  This coactivation is largest when 

saccades are successfully canceled under conditions in which they are likely to occur.  

Similar coactivation of movement and fixation cells has not been observed on errant 

noncanceled trials.  In sum, the probability of successfully canceling action which varies 

as a function of SSD yields a reliable proxy measurement of neural response conflict on 

canceled trials in the saccadic stop-signal task.  Using this metric, it has been shown 

200 
 



that response conflict may be reflected in single cell and LFP signals of SEF (Stuphorn 

et al., 2000; Emeric et al., 2010).  But this conflict signal has not been observed in the 

single cell and LFP responses of ACC (Ito et al., 2003; Emeric et al., 2008).   

 We tested for conflict-related activity in ERPs aligned to SSRT on canceled trials 

using the method of Stuphorn et al. (2000).  The mean voltage differences between 

canceled and no-stop trials in the -50 ms to +100 ms time window around SSRT at each 

SSD are plotted in Figure 5.9 as a function of both SSD and the probability of failing to 

cancel.  These voltage differences did not show significant correlations with either SSD 

(ρ(35) = -0.08, p = 0.63) or the probability of committing errant noncanceled responses 

(ρ(35) = 0.27, p = 0.11). 

 

5.4.6 Control for saccade related artifacts 

 To ensure that the observed error-ERPs were not due to response-related 

components, we quantified saccade dynamics on no-stop and noncanceled trials.  

Because we time-locked our ERPs to response onset, we could rule out the confounding 

effects of RT differences between trial types. However, if the task-related saccade 

amplitude or duration differed between correct and errant saccades it could lead to 

differences in the electromyogram or the corneoretinal potential between trial types 

(Luck, 2005; Godlove et al., 2011a) and these artifacts could be interpreted as 

performance monitoring ERPs (Godlove, 2010).   

 Figure 5.10 summarizes saccade amplitude and duration separated by monkey, 

target, and trial type.  We carried out 3-way ANOVAs to test the hypotheses that 

saccade amplitude, velocity, or duration differed between monkey, target, or trial type.  

Saccade velocity and duration both differed significantly between monkeys.  Monkey F 

made saccades with higher peak velocity (F(1,52) = 12.37, p < 0.001), and longer duration 

(F(1,52) = 5.22, p < 0.05) than monkey Y.  This means that monkey F also tended to make 
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Figure 5.8.  Median split ERP test for relationship between ERN/Pe amplitude and ∆RT.  
A Mean amplitude of the ERN followed by no-stop trials with faster RTs (left) or trials 
with slower RTs (right) for monkey F (cyan), monkey Y (magenta), and grand average 
(black).  Error bars display standard error of the mean.  B Mean Pe amplitude data 
presented in same format as in A.  No comparisons reached statistical significance. 
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Figure 5.9.  Test for conflict related activity in canceled ERP data.  A Normalized mean 
voltage difference between canceled trials and latency matched no-stop trials in the -50 
to 100 ms time window around SSRT plotted against SSD.  B Same voltage data as in A 
plotted against the probability of committing an errant noncanceled saccade at each 
SSD.  Significant correlations were not observed in either case (see Results).   
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Figure 5.10.  Saccade dynamics between conditions.  Scatter plots display saccade 
amplitude versus duration across all sessions and both monkeys.  Histograms display 
associated probability densities for each measurement.  Bin widths are 4 ms for saccade 
duration distributions and 0.25 deg for amplitude distributions.  Magenta dots and solid 
lines represent saccades on no-stop trials.  Cyan dots and broken lines represent 
saccades on noncanceled trials.  Rows separate data by target.  Columns separate data 
by monkey.  Although saccade dynamics were found to differ between monkeys and 
targets, neither saccade amplitude, nor saccade duration were found to differ 
significantly between trial types. These findings indicate that the observed monkey ERN 
and Pe are not caused by differences in saccade dynamics between conditions. 
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slightly larger amplitude saccades although this comparison did not reach statistical 

significance.  Saccade dynamics differed modestly between targets for both monkeys.  

When monkeys made saccades to the rightward target, they tended to be of larger 

amplitude (F(1,52) = 27.36, p < 0.001), higher peak velocity (F(1,52) = 71.19, p < 0.001), and 

shorter duration (F(1,52) = 28.66, p < 0.001).  This may be an artifact induced by the 

monocular eye tracking procedures we employed.  Because we only tracked the right 

eye of each monkey, saccade traces to the right target reflected abduction of the tracked 

eye while saccade traces to the left target reflected adduction of the tracked eye.  To 

ensure that target bias did not affect ERP component analysis, approximately equal 

numbers of trials were included in each ERP for each trial type (see Methods).  A 

marginally significant effect was noted for saccade velocity between correct and errant 

trials.  Both monkeys tended to make higher velocity saccades on error trials than 

correct trials (F(1,52) = 4.17, p = 0.05).  However, velocity effects could not explain the 

different ERPs observed on error and correct trials unless saccadic endpoints also 

differed, shifting the corneoretinal potential to a greater degree on one type of trial 

relative to the other, or saccade duration differed smearing temporal saccade artifacts in 

one condition more than another.  Critically, neither saccade amplitude (F(1,52) = 1.62, p = 

0.2) nor saccade duration (F(1,52) = 1.17, p = 0.3) differed significantly between correct 

and errant trials. Therefore, no difference in correct and error saccade dynamics could 

explain the error-ERP effects.  

 

5.5 Discussion 

 We have shown that during a saccadic stop-signal task macaques exhibit ERN 

and Pe components homologous to those recorded from humans.  The precise timing 

and distributions of these error-related ERPs might initially appear to differ from those 

reported in humans using manual responses (reviewed by Gehring et al., 2011).  
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However, parallel experiments with humans show that the anterior distribution of monkey 

error-ERPs recorded during the saccadic stop-signal task is virtually identical to that 

found in humans (Reinhart et al., 2012).  

 In agreement with our parallel experiments with human subjects (Reinhart et al., 

2012), we observed no single-trial correlations between ERN or Pe amplitude and post-

error RT adjustments.  Reported relationships between error-ERPs and post-error RT 

adjustments vary across the literature.  Although some report such correlations (Gehring 

et al., 1993; Nieuwenhuis et al., 2001; Rodriguez-Fornells et al., 2002; Kerns et al., 

2004; Debener et al., 2005; Holroyd et al., 2005; Klein et al., 2007; Ladouceur et al., 

2007; West and Travers, 2008; Huster et al., 2011), others report no or contradictory 

evidence (Gehring and Fencsik, 2001; Hajcak et al., 2003; Nunez Castellar et al., 2010).  

Additionally, post-error slowing is not consistently observed in the stop-signal task 

(Emeric et al., 2007; Nelson et al., 2010; Bissett and Logan, 2011).  Single-trial EEG has 

variability that is approximately an order of magnitude higher than ERPs (Luck, 2005), so 

we also analyzed the ERP data using a median split of post-error RT.  Even with 

reduced variability due to averaging, we did not observe consistent error-ERP 

fluctuations predicting post-error RT adjustments.  In addition, we did not observe 

conflict related modulation of ERPs.  These findings agree with those from our parallel 

study with humans performing the same task, but challenge the view that error-ERPs 

reflect the activity of a general conflict monitoring system (Yeung et al. 2004).   

We previously reported error-related LFPs recorded in ACC and SEF during the 

saccadic stop-signal task (Emeric et al., 2008; 2010).  It is tempting to speculate that 

these LFPs give rise to the error-ERPs recorded at the surface, but several observations 

complicate this interpretation.  First, error-related LFPs and ERPs differ in their 

relationships to behavior.  Error-related LFP amplitude recorded from SEF is correlated 

with post error RT adjustments.  And SEF LFPs also exhibit a negative potential during 
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periods of increased response conflict (Emeric et al., 2010).  In contrast, LFPs recorded 

in ACC exhibit a positivity with increased response conflict (Emeric et al., 2008).  We 

observed no such correlations in surface ERPs.  These conflicting results from recording 

inside and outside the brain support the assumption that ERP signals arise from the 

summation of LFPs generated broadly throughout the brain (Luck, 2005; Nunez and 

Srinivasan, 2006).  Thus, surface ERPs cannot be fully explained by LFPs in SEF or 

ACC.  Second, timing differences between the ERPs and LFPs are obvious (Figure 

5.11).  The onset of the ERN and Pe on the surface precede intracranial LFP onsets.  

One possible explanation for these results is that subjects may show individual 

differences in timing of error-ERP onset, or that timing may change as subjects gain 

experience.  Simultaneous ERP and LFP recordings must be carried out to test these 

explanations.  

The observation of monkey error-ERPs will allow for their detailed 

neurophysiological characterization.  Single units in ACC (Shima and Tanji, 1998; Ito et 

al., 2003; Amiez et al., 2005), and SEF (Stuphorn et al., 2000) are modulated when 

monkeys commit errors.  Neurons in ACC modulate when monkeys switch responses 

after errors (Johnston et al., 2007; Quilodran et al., 2008).  SEF neurons also show 

activity which may bias performance toward rewarding responses (Coe et al., 2002; 

Stuphorn et al., 2010), and stimulation of SEF improves saccadic stop-signal 

performance (Stuphorn and Schall, 2006).  Despite these results, some have wondered 

whether intracranial recordings in monkeys are generated by the same error monitoring 

processes reflected in human ERPs (Cole et al., 2009; 2010; but see Schall and Emeric, 

2010).  The finding of monkey error-ERPs thus bridges a gap between human and 

monkey studies of executive control.   

 Several issues require clarification.  First, the precise neuroanatomical loci of 

error-ERPs have not been described.  Second, the neurophysiological events which give 
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Figure 5.11. Comparison of error-ERPs to error-related LFPs.  Error-ERPs from the 
current study (top) are plotted alongside error-related LFPs recorded in SEF (middle) 
(Emeric et al. 2010) and ACC (bottom) (Emeric et al. 2010) for amplitude and timing 
comparisons.  Conventions are as in Figure 5.2. 
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rise to the ERN and Pe remain obscure.  Third, several models have been proposed to 

explain the relationship of error-ERPs to performance monitoring generally, but the 

neural plausibility of these theories remains speculative.  Neurophysiological recordings 

with nonhuman primates can shed much needed light on these questions.  For the 

remainder of the Discussion, we will consider each of these issues in turn. 

 

5.5.1 What are the anatomical sources of error-ERPs?   

 Dipole source modeling efforts and fMRI results suggest a central role for the 

dorsal ACC (e.g. Dehaene et al., 1994; Carter et al., 1998; Holroyd et al., 1998; 

reviewed by Taylor et al., 2007).  However, it is well known that dipole source techniques 

rely on under-constrained solutions to the inverse problem of ERP localization 

(Helmholtz, 1853; Luck, 2005).  Moreover, the link between electrophysiology and 

haemodynamic regulation is poorly understood (Logothetis and Wandell, 2004).  

Evidence indicates that other areas may play an important role in producing error-ERPs 

(reviewed by Gehring et al., 2011).  In addition to the studies with monkeys described 

above, researchers have implicated the supplementary motor area, and rostral ACC as 

potential substrates for error-ERPs (Dehaene et al., 1994; Kiehl et al., 2000; Menon et 

al., 2001; Luu et al., 2003).  And intracranial recordings in patients show error-related 

activity in multiple cortical areas beyond medial frontal cortex (Halgren et al., 2002; 

Brázdil et al., 2005).  An animal model will be a great asset in the search for definitive 

neural generators. 

 

5.5.2 What is the physiology underlying observed ERN and Pe?   

 The idea that mesocortical dopaminergic (DAergic) signaling produces the ERN 

has received substantial interest (Holroyd and Coles, 2002).  However, relatively few 

researchers have experimentally manipulated DAergic signaling pathways (reviewed by 
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Jocham and Ullsperger, 2009).  Because studies using the ERN have been carried out 

in humans, invasive neuroscientific techniques have been impractical.  This is 

discouraging, since the DA hypothesis is rooted in classic neurophysiological studies 

using monkeys (Schultz et al., 1997; Schultz, 1998; see also Redgrave et al., 1999a, b).  

Although DA has received the most attention, several other neurotransmitters may also 

play a role in generating error-ERPs.  These include norepinephrine (Riba et al., 2005b), 

serotonin (Fallgatter et al., 2004), and GABA (Johannes et al., 2001; de Bruijn et al., 

2004; Riba et al., 2005a).  The discovery of monkey error-ERPs will open new avenues 

for research on the neurochemical and neurophysiological events underlying these 

components.  Now, tools such as selective agonist and antagonist micro-injections can 

be combined with surface electrode recordings to determine the contributions of various 

neurotransmitters and cell populations to error-ERPs.  

 

5.5.3 What is the relationship between error-ERPs and performance monitoring? 

 The relationship between error-ERPs and performance monitoring is unclear.  

They were first thought to reflect neural processing of mismatch between committed and 

intended responses (Falkenstein et al., 1990; Gehring et al., 1993; Coles et al., 2001).  

This view has several drawbacks.  For instance, if some area has access to a 

representation of the intended response, why was a different response executed (but 

see Murthy et al., 2007; Murthy et al., 2009)?  Other theories allow performance 

monitoring to proceed without a priori knowledge of future outcomes.  Several of these 

have been expressed as computational models that frame precise hypotheses (Botvinick 

et al., 2001; Holroyd and Coles, 2002; Yeung et al., 2004; Brown and Braver, 2005).  

The most influential computational models cannot be resolved using behavioral data 

alone.  For instance, a major obstacle in testing the conflict monitoring theory arises from 

an inability to measure response conflict directly (Gehring et al., 2011).  Similarly, 
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reinforcement-learning theories (e.g. Holroyd & Coles, 2002; Brown & Braver, 2005) 

have proven difficult to test using behavioral measures alone.  However, specific 

assumptions of these models can be tested with neurophysiological measures in an 

animal model of error-ERP. 
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CHAPTER 6 

 

THE CIRCUITRY UNDERLYING PERFORMANCE MONITORING IN MEDIAL 

FRONTAL CORTEX 

 

6.1 Abstract 

 Error detection is an important aspect of human cognition, but its neural basis is 

poorly understood.  Research has identified an electrophysiological correlate of error 

detection in humans and monkeys: the error-related negativity (ERN).  By measuring 

local, intracranial current flow between electrodes combined with simultaneous EEG 

recordings in monkeys, we identify a cortical origin of the ERN in the supplementary eye 

field (SEF).  Granger causality analysis showed that current flow in SEF was predictive 

of ERN voltage.  A reward manipulation was used to parse the specific processes in 

SEF that contribute to the ERN.  The ERN was sensitive to the magnitude of reward 

prediction errors (RPEs), but current flow in SEF was not.  Populations of error- and 

RPE-related neurons showed little overlap and responded during separate trial epochs 

suggesting that these represent two independent processes.  These results support a 

multi-process, multi-area view of error detection.   

 

6.2 Introduction, Results, and Discussion 

 Humans make mistakes.  Fortunately, we can reflect on our actions and detect 

our errors before experiencing the consequences.  This faculty allows us to correct our 

errors and to avoid making similar mistakes in the future (Rabbit 1967; Laming 1979).  

Error detection is a hallmark of cognitive control, yet we know little about the neural 

basis of this ability.     

212 
 



 Research has focused on an event-related potential (ERP) known as the error-

related negativity (ERN) and its hemodynamic counterparts in medial frontal cortex 

(Falkenstein et al. 1990; Gehring et al. 1993; Kerns et al., 2004).  These observations 

have led to several influential theories of performance monitoring.  For example, the 

ERN may be produced by neural activity encoding mismatch between intended and 

actual responses (Gehring et al., 1993), monitoring response conflict (Botvinick et al., 

2001), or detecting reward prediction errors (RPEs) (Holroyd & Coles 2002).  Many 

researchers assume a single process model, viewing these theories as mutually 

exclusive, but each account may have merit.  Behavioral studies have dissociated error 

awareness from the strategic adjustments that follow errors, suggesting that multiple 

processes are involved in error detection (Logan & Crump 2010).  Neurophysiological 

studies have identified single units that encode error detection, response conflict, and 

reward-related variables (Stuphorn et al., 2000; Ito et al., 2003), suggesting that each 

process may contribute to the ERN.  Anatomically, investigators have emphasized 

anterior cingulate cortex (ACC) as the origin of the ERN (Dehaene et al., 1994; Debener 

et al., 2005).  But work carried out in non-human primates suggests that other areas may 

also play an important role.  For instance, the supplementary eye field (SEF) contains 

neurons that encode errors and RPE (Stuphorn et al., 2000).  Recently, we recorded 

ERNs from monkeys when they made errors during a saccade stop-signal task (Godlove 

et al., 2011b).  Here, we asked if local current flow in SEF gives rise to the ERN, and if 

this activity can be explained as a RPE signal originating in SEF. 

 We recorded simultaneous ERPs, LFPs, and single unit responses while 

monkeys performed an asymmetrically rewarded saccade stop-signal task (Fig. 6.1A, 

behavior is presented in Fig. 6.4 and in section 6.7) (Kawagoe et al., 1998; Godlove et 

al., 2011a).  Previous work identified error-related voltage deflections in SEF (Emeric et 

al., 2010), and suggested that this activity may underlie the ERN (Schall & Godlove 
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Figure 6.1 Error-related current flow in superficial layers of SEF Granger causes the 
ERN during the stop-signal task.  A) Asymmetrically rewarded saccadic stop-signal task.  
Top, No-stop trials were initiated when monkeys fixated a central point.  After a variable 
time, the center of the fixation point was extinguished leaving an outline.  A peripheral 
target was presented simultaneously at one of two possible locations.  The location of 
the target cued the monkey that either a large or small magnitude reward could be 
obtained on the current trial.  These reward/location mappings reversed predictably in 
blocks.  (Data in subsequent panels are collapsed across reward magnitude conditions.)  
Monkeys were required to fixate targets with quick saccades for juice rewards.  Bottom, 
Stop trials were initiated in the same way using the same asymmetric reward 
manipulation. After a variable time (SSD), the center of the fixation point was re-
illuminated, instructing the monkeys to withhold movement.  Successful inhibition of 
saccades resulted in rewarded canceled trials, but errant saccades resulted in 
unrewarded noncanceled trials.  B) MR (green) showing soft tissue with co-registered 
CT (red) showing bone and recording hardware.  Guide tubes (highlighted with white 
arrows) indicate location and trajectory of recordings.  C,D) Grand average laminar CSD 
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aligned on saccades recorded from SEF on correct (no-stop) and error (noncanceled) 
trials.  Middle inset shows schematic representation of electrode array drawn to scale 
overlaid on Nissl section from SEF to indicate laminar architecture.  (Adapted from 
Matelli et al., 1991 with permission.)  E) CSD differences between correct and error 
trials.  Outlined regions show layers and time periods at which CSD on error trials differs 
significantly from CSD on correct trials (FDR adjusted p < 0.05 in cluster sizes > 1,500 
pixels).  F) Response aligned ERPs recorded on correct and error trials.  Upper left inset 
shows location of the surface electrode (approximating Fz).  Light gray shading indicates 
interval when error-trial ERPs are significantly more negative than correct trial ERPs 
while dark shading indicates interval when error trial ERPs are significantly more 
positive.  G) Difference wave subtracting correct trial from error trial ERPs.  Monkey 
ERN begins ~95 ms after errant saccade and reverses to the error-related positivity at 
~250 ms.  H) Results of Granger causality analysis modeling interactions between 
current flow in SEF following errors and voltage recorded simultaneously at the surface.  
Red lines indicate significant bi-directional Granger causation, and green lines represent 
significant unidirectional Granger causation. 
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2012).  However, this study did not rule out volume conduction from adjacent ACC.  

Therefore, we measured local current flow originating in SEF using a linear 

microelectrode array and deriving current source density (CSD) (Mitzdorf, 1985; 

Nicholson and Freeman, 1975; Schroeder et al., 1998; Chapter 4).  We first asked if 

local current flow in SEF exhibits error-related activity.  We contrasted CSD on correct 

and error trials and found activity in all layers that differed significantly between 

responses (Fig 6.1C-E).  Thus error-related activity is reflected in local current flow 

originating in SEF.  We also replicated our earlier finding of a monkey ERN during the 

stop-signal task in the simultaneously recorded EEG data (Fig 6.1F,G).   

 Next, we asked if error-related current flow in SEF contributes to this ERN.  We 

used single-trial based Granger causality analysis applied to data realizations9 0-250 ms 

after the error response to test this hypothesis (Granger, 1969; Seth, 2010).  Several 

potential problems with Granger causality as applied to fMRI data have recently been 

identified.  But these problems are rooted in the variable timing of the hemodynamic 

response when used as a proxy for neural activity, and the fact that blood flow in one 

voxel cannot be logically claimed to cause blood flow in another voxel (David et al., 

2008; Friston, 2009).  In contrast, our recordings provide direct, temporally precise 

measures of neural activity, and according to Ohm's law intracranial current flow logically 

causes voltage fluctuations at the surface.  Figure 6.1H plots the results of this analysis.  

As expected, all cortical layers showed significant bi-directional Granger causality with 

all other layers (Bonferroni corrected p < 0.01) indicating that current flow in each layer 

provides information useful for  predicting subsequent current flow in all other layers.  

Thus, as in other areas of cortex, the layers of SEF are densy interconnected (Chapter 

4).  Activity in superficial layers I/II, and III also significantly Granger caused the EEG on 

                                                            
9 Here, the phrase "data realizations" is used in place of "trial data" in keeping with the 
nomenclature of Seth 2010 
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Figure 6.2  RPE modulation of ERN, but not SEF current flow.  A) Response aligned 
ERP on error trials is more negative when the error prevents monkeys from obtaining 
large rewards (cyan) than when the error prevents monkeys from obtaining small 
rewards (magenta).  Light gray shading highlights time of significant difference between 
waveforms.  Upper right inset diagrams trial types under comparison.  B) Average error-
related voltage recorded at the  cranial surface (left), and current flow recorded in SEF 
layers (right) during the interval highlighted in A (±SEM).  Significant differences are only 
observed in surface potentials. 
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error trials indicating that current flow in these areas was predictive of subsequent EEG 

fluctuations.  None of these interactions remained significant after randomly shuffling 

and reanalyzing the data.  Moreover, current flow in SEF Granger caused EEG 

polarization on error trials with significantly greater magnitude than on correct trials 

(Wilcoxon rank sum W = 2738, p < 0.001).  These results support the hypothesis that 

local current flow measured in SEF on error trials contributes to the ERN. 

 Dopaminergic projections conveying RPE signals to medial frontal cortex may 

underlie the ERN (Holroyd & Coles 2002), and RPE signals have been recorded in 

single unit responses of SEF (So & Stuphorn 2012).  Therefore, we asked if the error 

related current flow in SEF and the ERN are both mediated by a RPE signal.  We 

investigated this question using an asymmetrically rewarded variant of the stop-signal 

task.  The initial target position cued the monkey that it would receive either a large or a 

small reward for completing the trial successfully.  Mistakes resulted in negative RPEs 

because they suddenly reduced the probability of earning future rewards.  When the 

target location signaled a small reward, we reasoned that the RPE would be reduced in 

magnitude, and that this effect would be evident as a reduced magnitude ERN.  Fig. 

6.2A demonstrates this effect.  The ERN was reduced in magnitude when monkeys 

failed to earn small rewards compared to trials in which they failed to earn large rewards.  

Curiously, however, this RPE modulation was not present in the SEF current flow.   

 If we assume a single-process model of the ERN, this combination of results is 

confusing.  On the one hand, Granger causality shows that error-related current flow in 

SEF is predictive of ERN amplitude.  On the other hand, a RPE effect is evident in the 

ERN that is not mediated by SEF.  To better understand these results, we recorded 538 

single-units from SEF with task-related modulation.  We capitalized on the fact that RPE 

signals are present during 2 trial epochs of the asymmetrically rewarded stop-signal 

task.  As noted above, monkeys experienced large or small negative RPEs when they 
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Figure 6.3 RPE and error-related activity signals are encoded by largely distinct neural 
populations in SEF.  A) Target aligned spike density function (mean ± 1SD) for an 
example RPE unit contrasting target locations associated with large rewards (cyan) with 
target locations associated with small rewards (magenta).  Inset in this and following 
panels provides schematic representation of trial types under comparison.  B) Response 
aligned spike density function for an example error-related unit comparing correct trials 
(solid line) to error trials (broken line).  This comparison is collapsed across high and low 
reward magnitude conditions.  C) Proportional Venn diagram showing the number of 
units in each population and their relative overlap.  92% of the population falls in the 
XOR region.  D)  Average spiking rates (50-400 ms after response) for all error-related 
units in population contrasting errors on which monkeys failed to earn large rewards 
(cyan axis) with errors on which monkeys failed to earn small (magenta axis) rewards.  
No significant differences were noted across the population. 
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committed errors during the response epoch.  But monkeys also experienced either 

positive or negative RPEs during the target-presentation epoch.  A target that randomly 

appeared in one position cued the monkey that a large reward could be obtained at the 

end of the trial, eliciting a positive reward prediction error.  Meanwhile, a target at the 

other location cued the monkey that a small reward would be delivered for a correct 

response, eliciting a negative reward prediciton error.  Of the single units we recorded 46 

(9%, 14 monkey E, 32 monkey X) encoded this stimulus-associated RPE.  These results 

replicate an earlier report of stimulus-associated RPE activity in SEF during a gambling 

task (So & Stuphorn, 2012).  We also recorded 110 single units (20%, 56 monkey E, 54 

monkey X) that encoded error-related activity during the response epoch (Stuphorn et 

al., 2000).  However, few neurons signaled both (8%, Figure 6.3C).  And error-related 

units did not display RPE-related differences in firing rates during the response epoch 

(Figure 6.3D).  Thus, stimulus-associated RPE and error detection are encoded 

separately in SEF.   

 Our results show that the amplitude of the ERN is partially determined by RPE 

signals, and partially determined by error-related current flow in SEF.  The dissociation 

of these two determinants suggests that error detection is best explained by a 

combination of processes and is likely produced by several areas that monitor 

performance as a network.  We suggest that the current focus on single process theories 

and on ACC as the locus of error detection is overly simplistic.   

 

6.3 Methods 

6.3.1 Animal care and surgical procedures 

 Data were collected from 1 male bonnet macaque (monkey E Macaca radiata 8.8 

kg) and one female rhesus macaque (monkey X Macaca mulatta 6 kg).  Animal care 

exceeded policies of the USDA and Public Health Service Policy on Humane Care and 

220 
 



Use of Laboratory Animals.  All procedures were supervised and approved by the 

Vanderbilt Institutional Animal Care and Use Committee.  MRIs were acquired to aide in 

placement of recording chambers as described before (Godlove et al., 2011b).  Cilux 

recording chambers (Crist Instruments, Hagerstown, MD) were implanted normal to the 

cortex (17° monkey E, 9° monkey X relative to stereotaxic vertical) centered on midline 

30 mm (monkey E) and 28 mm (monkey X) anterior to the interaural line.  EEG 

electrodes used for these recordings were implanted centered on midline ~32 mm 

(monkey E) and ~30 mm (monkey X) anterior to the interaural line.  Surgical placement 

of EEG electrodes and headposts has been described in detail (Woodman et al., ; 

Godlove et al., 2011a).  

 

6.3.2 Data collection protocol 

 EEG and CSD data for this study were recorded in tandem during the same 

sessions as the data set reported in our previous CSD study (Chapter 4).  Accordingly, 

cortical mapping using microstimulation, electrode placement using co-registered MR/CT 

imaging, estimation of electrode track angles, alignment of recordings across 

subsequent sessions, and estimation of the location of cortical layers were all carried out 

using methods identical to those reported previously.  Single units were recorded 

simultaneously with this data set and during an additional 25 sessions.  After advancing 

the electrode array to the desired depth, we waited 3-4 hours until recordings stabilized 

across contacts.  This waiting period resulted in extremely stabile recordings since single 

units could almost always be held indefinitely.  After achieving recording stability, we 

recorded 1 hour of "resting state" activity in near-total darkness with the CRT monitor 

unplugged.  These data will be the subject of a future report.  We then presented wide-

field flashes of light to the monkeys in blocks of 100-200 presentations.  As described 

previously, these data form the basis for our automated alignment algorithm that allowed 
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us to average data across recording sessions (Chapter 4).  After this, we allowed 

monkeys to complete ~2000-3000 trials of the asymmetrically rewarded stop-signal task 

(Fig 6.1A; Schall and Godlove, 2012a; Kawagoe et al., 1998).  These data form the 

basis for our current report.   

 The stop-signal task requires subjects to make quick responses to target stimuli.  

On some randomly interleaved trials, subjects are cued to withhold responses shortly 

after the target is presented.  Additional details about the behavioral training regime and 

task have been described previously (Hanes and Schall 1995; Hanes, Patterson et al. 

1998).  In our implementation, trials were initiated when monkeys fixated a centrally 

presented square which subtended 0.34° of visual angle.  After a foreperiod ranging 

from 600 ms to 1100 ms, the center of the fixation point was extinguished, leaving an 

open square outlined 1 pixel thick, and a target subtending 1° of visual angle 

simultaneously appeared centered at 10° to the left or right of fixation.  The foreperiod 

was approximately non-aging, randomly sampled from a distribution described by the 

function: 

ሻݐሺ݌ ൌ ݁ି௧/௞ 

where the probability of selecting a specific foreperiod pሺtሻ is an exponential function 

with time constant of k.  We set k equal to 250 ms and shifted the distribution to fall 

between 600 and 1100 ms.  On no-stop trials (Fig. 6.1A top), no further visual stimuli 

were presented.  Monkeys were required to make a saccade to the target within 800 ms 

and hold fixation for 600 ms to obtain reward.  Correct trials were rewarded with an 

audible tone followed 600 ms later by several drops of juice.  On stop trials (Fig. 6.1A 

bottom), the center of the fixation point was re-illuminated either red or green (constant 

for each monkey) after a variable delay providing a “stop-signal” which instructed the 

monkeys to cancel their impending eye movements and maintain central fixation.  In 

practice, two trial outcomes were then possible.  If monkeys successfully withheld the 
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eye movement and maintained fixation for a minimum of 1600 ms, they obtained tone 

and juice reward.  These trials were designated as "canceled”.  If monkeys were unable 

to inhibit the movement, an audible tone signaling timeout sounded and a variable 

timeout was added to the normal inter-trial interval.  These trials were termed 

“noncanceled”.  As in our previous report (Godlove et al., 2011b) we studied error-

related activity by comparing no-stop trials to noncanceled trials.  An initial set of SSDs 

was selected for each recording session based on the monkey's previous behavior.  We 

then manipulated SSD using an adaptive staircasing algorithm that adjusted stopping 

difficulty based on performance.  When monkeys failed to inhibit responses, the SSD 

was decreased by a random step of 1, 2, or 3 increasing the likelihood of success on the 

next stop trial.  Similarly, when monkeys successfully inhibited an eye movement, the 

next SSD was increased by a random step of 1, 2, or 3 decreasing the future probability 

of success.  This procedure was used to ensure that subjects failed to inhibit action on 

~50% of stop trials overall.  Stop trials comprised 50% of all trials in a given session.  All 

stimuli in the countermanding task had luminance values of 10 cd/m2 on a 0.02 cd/m2 

background. 

 During the asymmetric reward manipulation, one stimulus location was 

associated with larger magnitudes of juice reward than the other stimulus location.  The 

lower magnitude reward ranged from 0-50% of the higher magnitude reward and was 

adjusted by the experimenter to encourage the monkey to continue responding to both 

targets. The location of the high reward target changed predictably in blocks.  Block 

lengths was determined by the number of correct trials performed, and ranged from 10-

60.  The experimenter adjusted block length to maintain the monkeys interest in both 

targets.  In the vast majority of sessions block length was set at either 10 or 30 correct 

trials.  As in previous implementations of asymmetrically rewarded tasks (Kawagoe et 

al., 1998), errors led to repetitions of target location, ensuring that monkeys did not 
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neglect low-reward targets in favor of high-reward targets.  Figure 6.4 and Table 6.1 

(Section 6.7) detail behavior during this task.      
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monkey E

monkey X

HR LR HR LR HR LR HR LR

300 ± 4 345 ± 8 291 ± 8 327 ± 7 53 ± 1 43 ± 2 135 ± 5 150 ± 5

269 ± 11 302 ± 7 253 ± 6 282 ± 8 55 ± 1 48 ± 1 107 ± 5 111 ± 5

no-stop RT noncanceled RT p(noncanceled) SSRT

 

 

 

 

 

 

 

 

 

Table 6.1. Summary statistics for asymmetrically rewarded stop-signal task 
performance.  Vaues are means ± SEM.  Shown are reaction times (RTs), probabilities 
of committing errant noncanceled responses on stop trials (p(noncanceled)), and stop-
signal reaction time (SSRTs) for each subject in each reward condition collapsed across 
sessions.   
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Figure 6.4 RT and SSRT during the asymmetrically rewarded stop-signal task.  A) 
Inhibition function which plots the probability of committing a noncanceled error at each 
stop-signal delay (SSD) taken from an example session.  Circles show data collected 
during the trials and curves plot fitted Weibull functions used to estimate SSRT.  Data 
are plotted separately for high-reward (cyan) and low-reward (magenta) target locations.  
In this session, the monkey was significantly more likely to commit noncanceled errors in 
the high-reward condition.  B) Cumulative RT distributions in separated by reward 
magnitude from the same session.  In this session, the monkey was significantly faster 
when responding to high-reward targets.  C) RT and SSRT differences between high 
and low reward conditions across the entire data set.  Each circle represents data from a 
single session.  The red circle shows data from the example session plotted in A and B.  
Its location in the upper right quadrant indicates that the monkeys RTs and SSRT were 
faster in the high reward condition than in the low reward condition.  Across the data set, 
this RT effect was highly significant, but SSRTs were not significantly different between 
the two conditions. 
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6.3.3 Data acquisition 

 Implanted EEG surface electrodes were referenced to linked ears using ear-clip 

electrodes (Electro-Cap International).  Data for this study were recorded from an EEG 

electrode approximating Fz in humans.  All electrode impedances were < 10 kΩ.  EEG 

and LFP data were amplified with high-input impedance head stages (Plexon), bandpass 

filtered between 0.7 and 170 Hz, and digitized at 1 kHz.  LFP data acquisition has been 

described in detail (Chapter 4).  Briefly, intracranial data were recorded using a 24-

channel Plexon uprobe (Dallas, TX) with 150 µm inter-electrode spacing referenced to 

the probe shaft, and grounded to the headpost.  All data were streamed to a single data 

acquisition system (MAP box, Plexon, Dallas, TX). Time stamps of trial events were 

recorded at 500 Hz. Eye position data were streamed to the Plexon computer at 1 kHz 

using an EyeLink 1000 infrared eye-tracking system (SR Research, Kanata, Ontario, 

Canada).  LFP and spiking data were processed with unity-gain high-input impedance 

head stages (HST/32o25-36P-TR, Plexon).  LFP data were bandpass filtered at 0.2-300 

Hz and amplified 1000 times with a Plexon preamplifier, and digitized at 1 kHz.  Spiking 

data were bandpass filtered between 100 Hz and 8 kHz and amplified 1000 times with a 

Plexon preamplifier, filtered in software with a 250 Hz high-pass filter and amplified an 

additional 32,000 times. Waveforms were digitized 200 µS before and 1200 µS after 

threshold crossings at 40 kHz. Single units were sorted online using a software window 

discriminator and refined offline using principal components analysis implemented in 

Plexon offline sorter.   

 

6.3.4 LFP and CSD analysis 

 Data analyses were carried out in MATLAB (Mathworks, Natick, MA).  LFPs were 

time locked to target onset or saccade initiation (defined as the instant that the eye 

exceeded 30°/s).  Data were baseline corrected to the 200 ms interval preceding the 
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alignment event.  After constructing event-related LFPs, we estimated CSD by 

approximating the 2nd spatial deri e ing the equation: vative at ach point in time us

ܦܵܥ ൌ
ݔሺߔ െ ݄ሻ െ ሻݔሺߔ2 ൅ ݔሺߔ ൅ ݄ሻ

݄ଶ
ܵ  

where Φ = the observed voltage, h = the inter-electrode spacing (150 in our case) and S 

= the average conductance of primate gray matter (0.4 S/m) (Logothetis et al., 2007).  

The CSD reveals local dendritic activity in gray matter where neural ensembles arborize 

together and depolarize in unison, allowing the summation of current flow to be observed 

at the mesoscopic scale (Freeman and Nicholson, 1975; Riera et al., 2012).  We 

multiplied the results by 106, converting units from A/m3 to the more tractable nA/mm3. 

This allowed us to compare the magnitude of our CSD directly to our previous results 

(Chapter 4) and other published results (Maier et al., 2011; Maier et al., 2010). To 

approximate CSD continuously across space, we interpolated between electrode 

contacts using nearest neighbors to a density of 10 µm and convolved the result with a 

Gaussian filter (σ = 100 µm) (Pettersen et al., 2006).  

 

6.3.5 Statistical Methods 

 The nature of our recording and alignment procedure also meant that some 

deeper layers were not sampled on all recording sessions.  Since our statistical tests 

were carried out on session means they automatically took these differences in N into 

account when calculating p-values. 

 Significant differences between CSD data in error and correct conditions were 

assessed in a continuous manner across space and time using the following methods.  

Matrices of p-values were calculated using point-by-point t-tests measured across a 5 

ms window.  The p-values were then corrected for multiple comparisons using a 

combined false-discovery rate (FDR) and cluster-based approach.  The FDR correction 
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was applied first using the method of Benjamini & Hochberg (1995) as described by 

Ashby (2011).  For this approach, p-values are rank-ordered.  Each individual p-value 

(pi) is then judged significant if it meets the cr :  iteria

௜݌ ൏  
ܽ · ݅
ܰ
  

We used α = 0.05.  To eliminate remaining false positives, we then applied a cluster-

based criterion.  FDR corrected p-values had to remain below α in a continuous cluster 

of no fewer than 1,500 pixels (the equivalent of activation across a single electrode 

location for 100 ms or some combination thereof) before being judged significant.  ERPs 

were tested for significance using the same approach adopted by Emeric et al., (2008; 

2010) to assess LFPs, and Godlove et al., (2011a) to assess ERPs.  A difference wave 

was calculated by subtracting noncanceled error-ERPs from no-stop correct ERPs (Fig. 

6.1G).  The intrinsic variability of the difference wave was assessed by calculating the 

standard deviation across time during the baseline period.  This provided a measure of 

chance fluctuations between error and correct ERPs.  Significant epochs were defined 

as periods when the difference wave deviated from baseline by >2 standard deviations 

for longer than 50 ms, provided it exceeded 3 standard deviations in that interval. 

 Granger causality analysis was carried out in the time domain using the MATLAB 

toolbox developed by Seth (2010).  Single trial data were isolated 0-250 ms after correct 

or error responses, and the multiple realization variants of each function were used.  

Data were first differenced, demeaned, and detrended.  In all cases, this procedure 

produced covariance stationary time-series as assessed using the Augmented Dickey 

Fuller and KPSS tests.  Appropriate model orders (i.e. the number of previous data 

points to fit in each autoregressive model) were determined using Bayesian information 

criteria scores.  The model order was allowed to reach 100, but never saturated (mean 

26.3, SEM 1.9).  F statistics were determined using multivariate regression.  Significance 
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thresholds were set at α = 0.01 and were corrected for multiple comparisons using the 

Bonferroni method.   

 Neurons were classified as RPE- or error-related using a regression approach.  

The number of action potentials recorded from a given neuron on individual trials were 

binned in 2 windows of interest, and regressed against dummy variables representing 

trial type and against reaction times.  To identify neurons with RPE activity after target 

onset, action potentials were binned during the 400 ms immediately following target 

onset and regressed against dummy variables representing either high value targets or 

low value targets.  Spike rates were also regressed against the latency of the task-

related saccade that was made during this epoch.  Neurons that showed significant 

correlations between spike rate and trial type while not showing significant correlations 

between spike rate and RT were deemed RPE related.  Error-related units were 

identified using a similar approach.  Spike rates were binned during the 400 ms following 

correct or error response and regressed against dummy variables.  Spike rates were 

also regressed against the RT of the second non-task related saccade that often 

occurred during this epoch on error trials.  Neurons that showed significant correlations 

between spike rate and trial outcome while not showing significant correlations between 

spike rate and RT of the second task irrelevant saccade were deemed error-related.  

The number of trials per condition were matched for these analyses.   

 

6.4 Supplementary Material 

6.4.1 Behavior during the asymmetrically rewarded stop-signal task 

 Table 6.1 summarizes behavior during the asymmetrically rewarded saccade 

stop-signal task used in this study.  Both monkeys performed the stop-signal task in a 

manner that conformed to the assumptions of Logan's race model.  In particular, as the 

race model predicts, noncanceled RTs were faster than no-stop RTs.  The probability of 
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committing a noncanceled error was near 50% in all conditions (though it as slightly 

higher in the high-reward condition and slightly lower in the low-reward condition).  This 

shows that the tracking algorithm was successful in matching the monkeys' behavior.  

RTs and SSRTs were slightly higher than those reported previously for monkeys 

performing the saccade stop-signal task, but not unreasonable.  The RT data also show 

that monkeys were appropriately sensitive to the asymmetric reward manipulation.  As 

reported previously (Kawagoe et al., 1998) monkeys showed decreased RTs when 

responding to high-reward targets as compared to RTs toward low-reward targets.  

 Figure 6.4 summarizes the RT and SSRT findings across the data set.  Although 

RTs were significantly faster when the monkeys responded to high-reward targets 

(Wilcoxon rank sum W = 2117, p < 0.001), SSRTs did not show significant differences in 

the two reward conditions (Wilcoxon rank sum W = 1814, p = 0.30).   
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CHAPTER 7 

 

GENERAL DISCUSSION 

 

7.1 Summary of results 

 Here I have presented studies of saccade execution and evaluation carried out 

using the saccade stop-signal paradigm.  This task is ideally suited to studying saccade 

execution because it serves to poise the system on the knife's edge between executing 

and withholding a saccade.  As we saw in Chapter 1, the tension between going and 

stopping is instantiated by separate neural populations at multiple levels within the 

oculomotor system.  The task is also excellent for studying the evaluation of eye 

movements, because it elicits a large proportion of errors that are salient to the subject.   

 In the first group of studies, I sought to better characterize mechanisms of 

saccade execution by measuring muscle activity and small fixational eye movements 

when partially prepared saccades are canceled.  Based on the known circuitry of the 

brainstem and on neural data recorded previously from SC and FEF during the stop-

signal task, I reasoned that I would not observe increased muscle activation during 

periods when saccades were successfully canceled.  This prediction was borne out by 

the data.  Unexpectedly, however, I also observed a small but significant decrease in 

muscle activation during periods when saccades were canceled.  This led me to 

hypothesize that microsaccades would show a similar decrease during the same period.  

I tested this hypothesis in the second study, and found that microsaccade frequency was 

reduced when monkeys canceled prepared saccades.  Based on these studies, we can 

make several new conclusions concerning saccade execution.  First of all, this work 

highlights a basic difference between the oculomotor system and skeletal motor system.  

Although exceptions to this general rule surely exist (McPeek and Keller, 2002; Murthy 
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et al., 2007), saccades are, in large part, ballistic movements (Becker, 1991).  That is to 

say, once triggered, a saccade will proceed through to completion.  As detailed in 

Chapter 3, based on previous data reporting the patterns of activity of neurons in rostral 

and caudal SC during the stop-signal task, my findings of decreased muscle activity and 

microsaccade production during periods when planned saccades are canceled also 

contradict predictions made by a new theory that suggests SC does not contain neurons 

related to fixation (Hafed et al., 2008; 2012).  These data also have application outside 

of the immediate field of oculomotor control.  They have implications for the premotor 

theory of attention which is intimately associated with the microsaccade theory of rostral 

SC function.  This theory suggests that microsaccades should be directed toward areas 

that are attended covertly, and that this effect is mediated by attention-related 

subthreshold activation in SC (Hafed et al., 2009).  Subthreshold activation is clearly 

present in caudal SC neurons during the time that saccades are canceled during the 

stop-signal task.  But the microsaccade activity predicted by these theories were not 

observed in my data.   

 In the second series of studies, I investigated the evaluation of eye movements 

with particular focus on error-detection and the SEF.  These studies also have 

implications that range far beyond the oculomotor system.  First, I probed the functional 

microcircuitry of SEF using a newly developed microelectrode array to record single-unit 

responses and CSD.  SEF is thought to play a critical role in evaluating eye movements 

and this area may participate in generating the ERN.  I found many intriguing similarities 

between the laminar patterns of activation in SEF and those that have been described in 

early visual areas, suggesting that the same microcircuitry motifs are represented across 

all areas of cortex.  These results suggest that microcircuitry models originally proposed 

to explain visual and somatosensory activation in primary sensory cortices may be 

usefully extended to performance monitoring signals in medial frontal cortex.  This study 
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also deteails the development of several new techniques, making it possible to record 

and analyze CSD averaged across recording sessions, and to assign single- and multi-

unit responses specific laminar origins based on the CSD recorded simultaneously.  In 

my next study, I demonstrated that monkeys exhibit electrophysiological correlates of 

error-processing  during eye-movement tasks homologous to those observed in humans 

(Godlove et al., 2011b; Reinhart et al., 2012).  On the one hand, this finding creates a 

solid link between work that has been carried out in humans and non-human primates to 

investigate the bases of performance monitoring.  On the other hand, this work 

establishes an animal model to investigate the neural origins of these error-related 

ERPs.  Finally, in my last study, I combined recordings of the newly discovered monkey 

ERN with these newly developed recording techniques to better understand the neural 

basis of saccade evaluation.  This work shows that local current flow in SEF contributes 

to the ERN recorded using surface EEG electrodes.  Using an asymmetric reward 

manipulation, I also showed that the ERN is sensitive to the magnitude of reward 

prediction error (RPE) encountered by the monkeys.  But I also demonstrated that SEF 

does not mediate this RPE effect.  Taken together, these findings suggest that the ERN 

likely results from multiple overlapping components that arise from multiple cortical areas 

and reflects several neural processes.  One of these processes must be a RPE signal, 

since the ERN is sensitive to the magnitude of RPE experienced by the subjects.  But 

the contribution of SEF during the response epoch appears to be more closely related to 

detecting errors in and of themselves rather than evaluating errant saccades in light of 

the magnitude of RPEs that they produce.  Together, this series of studies provides 

important new insight on the neural basis of saccade evaluation, and perhaps on 

performance monitoring more generally.   
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7.2 Potential limitations 

 The oculomotor system is, of course, an interesting topic and more than worthy 

of study in its own right.  However, especially in reference to my second group of 

studies, it is also of interest to know to what extent these results generalize to other 

aspects of motor evaluation.  Two important questions should be acknowledged.  First, 

are the same neural processes of performance monitoring recruited in natural settings 

when subjects are not explicitly rewarded for appropriate saccadic responses?  And 

second, are these same neural processes active when subjects make responses using 

other effector systems?  I will address these two topics in turn. 

 In some respects, the saccade stop-signal task I have used to collect data for this 

work is specific to laboratory conditions.  Under natural circumstances, targets rarely 

appear from thin air (discounting fireflies and lighting bugs).  Also, under natural 

conditions activity in the oculomotor system does not lead to the immediate receipt of 

appetitive reward [discounting the "fly detectors" and "bug perceivers" of frog optic 

tectum (Lettvin et al., 1959)].  In any case, I can think of no examples from nature in 

which a primate redirects gaze to receive a squirt of juice.  Animals look at things to 

attain information.  Some researchers question the relevance of using the oculomotor 

system to study reward related activity (Goldberg personal communication).  But, this 

criticism may not be as damaging as it appears.  Recent work has shown that the same 

midbrain dopamine neurons that fire in response to unexpected rewards also fire in 

response to cues that instructs a subject that it will soon receive information pertaining to 

an upcoming reward outcome (Bromberg-Martin and Hikosaka, 2009).  Importantly, in 

this study, the cue itself did not provide any information about whether or not a particular 

trial would be rewarded, and these results cannot therefore be explained as a simple 

RPE signal.  Rather, these results show that the same circuitry which becomes active 

when appetitive rewards are unexpectedly delivered becomes active when information is 
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delivered even when that information is neutral with respect to reward outcomes.  One 

way to interpret these results is that information is intrinsically rewarding, and making 

eye movements to attain information under natural circumstances may not be so 

different from making eye movements to receive squirts of juice in the laboratory.   

 However, other differences between effector systems persist.  As discussed in 

Chapter 2, saccadic eye movements are somewhat ballistic processes, whereas manual 

responses can be canceled even during the response execution phase.  There may also 

exist differences between the neural mechanisms that evaluate actions carried out using 

different effector systems.  Several researchers have recorded error ERPs when 

subjects make errant saccades during oculomotor tasks (Nieuwenhuis et al., 2001; 

Endrass et al., 2005).  But recent work suggests a more anterior distribution for these 

components (particularly the error-related positivity) than in tasks where subjects make 

manual responses (Reinhart et al., 2012).  Further work is needed to identify similarities 

and differences, but for now, we must remain tentative in generalizing these results 

beyond the oculomotor system.    

 

7.3 Future directions 

7.3.1 Additional recordings in SC, FEF, and ACC 

 Many new and potentially fruitful avenues for future research are suggested by 

this work.  The results from my first set of experiments of unexpected decreases in 

extraocular EMG and reduced incidence of microsaccades during the time of saccade 

cancelation point to the need for better understanding of the neural basis of saccade 

execution.  The most widely accepted, current theory of the role of SC saccade 

execution and inhibition proposes that gaze is stabilized and saccades are withheld 

when neural activity is balanced across the vector map.  It has been previously shown 

that neural activity is imbalanced across the vector map in SC when saccades are 
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canceled (Paré & Hanes 2003).  Therefore, either an additional mechanism to prevent 

saccade execution must be proposed, or the current theory of SC function must be 

revised.  Additionally, the late increase in microsaccades that were directed away from 

the target location remains unexplained by current theory.  New data recorded from SC 

during the stop-signal task would shed light on these issues.  In particular, duel, 

simultaneous recordings of neurons in the rostral and caudal SC, as well as duel 

recordings from ipsilateral and contralateral SC would be helpful for resolving these 

issues.  It would also be helpful to record from omnipause neurons in the nRIP of the 

PPRF during the stop-signal task.  Omnipause neurons cease tonic activity during 

microsaccades and normal saccades alike (Brien et al., 2009), so their behavior on 

canceled trials during the stop-signal task may prove to be enlightening.   

 The role of FEF during saccade cancelation should also be further explored.  

Previous work showed that movement and fixation cells in FEF are sufficient in their 

timing and response characteristics to control the execution of saccades during the stop-

signal task (Hanes et al., 1998).  But fixation neurons in FEF should be reevaluated in 

light of current theories of SC function.  Just as in SC, further recordings should be 

carried out to collect data from fixation neurons in FEF during the stop-signal task using 

techniques that afford measurement of microsaccades.   

 Finally, the experiments that I detailed in Chapter 6 should be repeated in ACC.  

ACC has long been hypothesized to be an area important for detecting errors and 

generating the ERN.  My results suggest the involvement of areas outside of SEF in 

generating the ERN.  It may be found that the RPE effect that is evident in the ERN is 

mediated by activity in ACC.   
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7.3.2 Neural interactions 

 These experiments raise important questions about the nature of interactions 

between different populations of neurons.  I recorded activity from many neurons, across 

all cortical laminae, representing several different functional groups.  To advance our 

understanding of microcircuitry in agranular cortex, it would be useful to characterize 

interactions between neurons recorded simultaneously in different layers.  It would also 

be useful to search for interactions between different classes of neurons both within and 

across layers.  For instance, in Chapter 6 I recorded activity from neurons displaying 

both error-related and RPE-related activity.  Although error-related neurons tended not 

to display RPE-related modulation and vice versa, it is possible that these two groups of 

neurons interact to perform a calculation related to performance monitoring.  If so, 

perhaps one type of neuron tends to project to the other type of neuron.  If this were 

found to be the case, it would aid in specifying a direction for information flow and help 

constrain the types of calculations that may be carried out by interacting populations of 

neurons in this area. 

 Several techniques have been used to test for interactions between neurons.  

One promising technique that has not yet been applied extensively to single cell 

recordings is Granger causality (but see (Kaminski and Blinowska, 1991; Gregoriou et 

al., 2009; Hirabayashi et al., 2013).  As we have seen in Chapter 6, Granger causality 

can be a useful tool for assessing temporal correlations between continuous signals.  

This technique cannot be applied to point processes such as discrete action potential 

recordings, and it is sensitive to filtering which may preclude its use in analyzing spike 

density functions (Seth, 2010).  However, Granger causality can be assessed in either 

the time or the frequency domain, and point processes such as sequences of action 

potentials can be converted to frequency spectra.  Applying these techniques to search 
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for neural interactions could prove useful for studying the neural bases of saccade 

execution and evaluation.   

  

7.3.3 Closing the loop: How does evaluation lead to better execution? 

 As stated in the introduction, a system for evaluating behavior is not much good 

unless this information helps to improve subsequent behavior.  I did not observe any link 

between the amplitude of the ERN and subsequent changes in RT during my 

characterization of the monkey ERN in Chapter 5.  However, the stop-signal task is 

unusual in that post-error slowing is often not observed (Emeric et al., 2007; Nelson et 

al., 2010; Bissett and Logan, 2011, 2012).  Additionally, in the version of the stop-signal 

task that I employed, RT adjustments are actually not useful in optimizing performance.  

The SSD tracking procedure ensures that subjects commit errant noncanceled saccades 

on ~50% of stop trials regardless of the speed with which they respond.  The monkeys I 

trained quickly learned that no advantage could be gained by slowing their responses.  

And in the version of the task that I designed and implemented, trial length was held 

constant such that the period of time from the start of one trial to the next does not 

change.  Because of this contingency, monkeys are unable to increase the reward rate 

by responding faster.  Faster response times simply lead to longer inter-trial intervals.  

Under these conditions, it is difficult to determine what a behavioral adjustment strategy 

would entail.  The monkeys in these studies were (necessarily) highly trained.  

Exploratory behavior and learning-related adjustments were no longer produced by 

monkeys once neural recordings commenced.  

 On the other hand, my final study, detailed in Chapter 6, did elicit a form of speed 

accuracy tradeoff from monkey subjects.  Although it was not the primary focus of the 

work presented here, monkeys sped up and showed decrements in their ability to cancel 

saccades when presented with targets indicating large rewards were possible.  
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Moreover, this reaction time effect unfolded gradually over the course of several trials 

after the target location signaling a large reward switched (Fig. 7.1).  These behavioral 

adjustments are presumably driven by updating value representations of targets, and not 

evaluation of errant saccades.  However, as we have seen in Chapter 6, error 

processing (as reflected electrophysiologically by the ERN) interacts with, and may be 

partially driven by reward-related activity.  By testing if these electrophysiological and 

neurophysiological signals also evolve over time, and by testing for testing for potential 

correlations between the magnitude of these signals and the RT effects pictured in Fig. 

7.1, we should gain additional insight into the potential link between saccade evaluation 

and subsequent execution.   

 

7.3.4 Models linking action evaluation to execution  

 Many models deal primarily with the execution of actions.  For instance, popular 

accumulator models assume that actions are executed when an accumulation process 

reaches a threshold (e.g. Nosofsky and Palmeri, 1997; Ratcliff and Rouder, 1998; Usher 

and McClelland, 2001; Bogacz et al., 2006).  These models suggest mechanisms for 

instantiating performance adjustments.  For example, it is often assumed that a speed-

accuracy adjustment may be implemented by adjusting the model threshold (but see 

Pouget et al., 2011; Heitz and Schall, 2012).  However, these models do not specify any 

details about the process that determines when behavioral adjustments are needed.  

Other models deal primarily with the process that signals the need for increased 

executive control (reviewed by Alexander and Brown, 2010).  However, these models 

are typically vague as to the way in which executive control may be implemented.  For 

example, Holroyd & Coles' (2002) much cited model linking the ERN to reinforcement 

learning simply suggests that multiple motor controllers vie to determine ultimate 
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Figure 7.1. Grand average reaction times (±95% confidence intervals) for correct 
responses to stimuli that represent high reward vs. low reward. 
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behavioral outputs, and that executive control (implemented in ACC) selects from among 

these motor controllers to allow actions to occur.  This is conceptually similar to the idea 

of competing schemas originally put forth by Norman and Shallice (1980).  However, it is 

difficult to know what type of neural this type of cognitive control would reflect.  The data 

presented in Chapter 6 may prove useful for developing links between these models, 

and for modeling performance monitoring at a lower, more biologically realistic level than 

has previously been possible.  Not only do these data contain ERPs, CSD, and single-

units recorded during a task that induces repeated speed accuracy trade-offs, but the 

intracranial data are also indexed by layer.  This means that information about canonical 

cortical microcircuits may be brought to bear to help constrain new biophysically 

plausible models of performance monitoring.  Ultimately, the tremendous gains made in 

describing the visual system during the 1970's and 1980's by describing and modeling 

the underlying microcircuitry may also prove useful in describing the neural bases of 

saccade execution and evaluation.   

  

242 
 



REFERENCES 

 

Adamük E (1872) Über angeborene und erworbene Association von F. C. Donders. 
Albrecht o Gruefes Arch Ophrhal 18:153-164. 

 
Agam Y, Hämäläinen MS, Lee AKC, Dyckman KA, Friedman JS, Isom M, Makris N, 

Manoach DS (2011) Multimodal neuroimaging dissociates hemodynamic and 
electrophysiological correlates of error processing. Proceedings of the National 
Academy of Sciences 108:17556-17561. 

 
Akerfelt A, Colonius H, Diederich A (2006) Visual-tactile saccadic inhibition. 

Experimental Brain Research 169:554-563. 
 
Alexander WH, Brown JW (2010) Computational models of performance monitoring and 

cognitive control. Topics in Cognitive Science 2:658-677. 
 
Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome 

predictor. Nature Neuroscience 14:1338-1344. 
 
Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate 

cortex. Annals of the New York Academy of Sciences 935:107-117. 
 
Amador N, Schlag-Rey M, Schlag J (2000) Reward-predicting and reward-detecting 

neuronal activity in the primate supplementary eye field. Journal of 
Neurophysiology 84:2166-2170. 

 
Amador N, Schlag-Rey M, Schlag J (2004) Primate antisaccade. II. Supplementary eye 

field neuronal activity predicts correct performance. Journal of Neurophysiology 
91:1672-1689. 

 
Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is 

modulated by predicted reward. European Journal of Neuroscience 21:3447-
3452. 

 
Anderson SR, Porrill J, Sklavos S, Gandhi NJ, Sparks DL, Dean P (2009) Dynamics of 

primate oculomotor plant revealed by effects of abducens microstimulation. 
Journal of Neurophysiology 101:2907-2923. 

 
Armstrong IT, Munoz DP (2003) Inhibitory control of eye movements during oculomotor 

countermanding in adults with attention-deficit hyperactivity disorder. 
Experimental Brain Research 152:444-452. 

 
Ashby FG (2011) Statistical analysis of fMRI data. Cambridge, MA: MIT Press. 
 
Asrress KN, Carpenter RHS (2001) Saccadic countermanding: a comparison of central 

and peripheral stop signals. Vision Research 41:2645-2651. 
 

243 
 



Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye 
movements. Mathematical Biosciences 24:191-204. 

 
Bair W, O'Keefe LP (1998) The influence of fixational eye movements on the response 

of neurons in area MT of the macaque. Visual Neuroscience 15:779-786. 
 
Balaban CD, Weinstein JM (1985) The human pre-saccadic spike potential - influences 

of a visual target, saccade direction, electrode laterality and instructions to 
perform saccades. Brain Research 347:49-57. 

 
Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the 

stop-signal procedure. Acta Psychologica 112:105-142. 
 
Barbas H, Mesulam MM (1981) Organization of afferent input to subdivisions of area 8 in 

the rhesus monkey. Journal of Comparative Neurology 200:407-431. 
 
Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the 

premotor cortex (area 6) in the rhesus monkey. Journal of Comparative 
Neurology 256:211-228. 

 
Barlow HB (1952) Eye movements during fixation. The Journal of Physiology 116:290-

306. 
 
Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G (2004) 

Characterization of neocortical principal cells and interneurons by network 
interactions and extracellular features. Journal of Neurophysiology 92:600-608. 

 
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical 

microcircuits for predictive coding. Neuron 76:695-711. 
 
Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the 

rhesus monkey. Journal of Comparative Neurology 336:211-228. 
 
Becker W (1989) Metrics. In: The neurobiology of saccadic eye movements (Wurtz RH, 

Goldberg ME, eds), pp 13-61. Amsterdam: Elsevier. 
 
Becker W (1991) Saccades. In: Vision and Visual Dysfunction. Eye Movements 

(Carpenter RHS, ed), pp 95-137. Boca Raton, FL: CRC Press. 
 
Beckwith SVW, Stiavelli M, Koekemoer AM, Caldwell JAR, Ferguson HC, Hook R, Lucas 

RA, Bergeron LE, Corbin M, Jogee S (2006) The Hubble ultra deep field. The 
Astronomical Journal 132:1729. 

 
Bellebaum C, Daum I (2008) Learning-related changes in reward expectancy are 

reflected in the feedbackâ€ related negativity. European Journal of 
Neuroscience 27:1823-1835. 

 
Benevento LA, Fallon JH (1975) The ascending projections of the superior colliculus in 

the rhesus monkey (Macaca mulatta). Journal of Comparative Neurology 
160:339-361. 

 

244 
 



Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society 
Series B (Methodological):289-300. 

 
Berdyyeva TK, Olson CR (2009) Monkey supplementary eye field neurons signal the 

ordinal position of both actions and objects. The Journal of Neuroscience 29:591-
599. 

Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: 
unexpected differences between rodents and primates. Trends in Neurosciences 
14:21-27. 

 
Bergeron A, Matsuo S, Guitton D (2003) Superior colliculus encodes distance to target, 

not saccade amplitude, in multi-step gaze shifts. Nature Neuroscience 6:404-
413. 

 
Bernstein P, Scheffers, MK, Coles, MGH. (1995) Where did I go wrong? A 

psychophysiological analysis of error detection. Journal of Experimental 
Psychology: Human Perception and Performance 21:1312–1322. 

 
Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic 

impact, reward learning, or incentive salience? Brain Research Reviews 28:309-
369. 

 
Biber MP, Kneisley LW, LaVail JH (1978) Cortical neurons projecting to the cervical and 

lumbar enlargements of the spinal cord in young and adult rhesus monkeys. 
Experimental neurology 59:492-508. 

 
Bissett PG, Logan GD (2011) Post-stop-signal slowing: Strategies dominate reflexes and 

implicit learning. Journal of Experimental Psychology: Human Perception and 
Performance 38:746-757. 

 
Bissett PG, Logan GD (2012) Post-stop-signal adjustments: Inhibition improves 

subsequent inhibition. Journal of Experimental Psychology: Learning, Memory & 
Cognition. 

 
Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye 

movements in unanesthetized monkeys. Experimental Brain Research 6:69-80. 
 
Blinn KA (1955) Focal anterior temporal spikes from external rectus muscles. 

Electroencephalography and Clinical Neurophysiology 7:299-302. 
 
Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal 

decision making: a formal analysis of models of performance in two-alternative 
forced-choice tasks. Psychological Review 113:700. 

 
Bon L, Lucchetti C (1991) Behavioral and motor mechanisms of dorsomedial frontal 

cortex of macaca monkey. International Journal of Neuroscience 60:187-193. 
 
Bon L, Lucchetti C (1992) The dorsomedial frontal cortex of the macaca monkey: fixation 

and saccade-related activity. Experimental Brain Research 89:571-580. 
 

245 
 



Boring EG (1950) A History of Experimental Psychology, 2nd Edition: New York: 
Appleton. 

 
Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring 

versus selection-for-action in anterior cingulate cortex. Nature 402:179-181. 
 
Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring 

and cognitive control. Psychological Review 108:624-652. 
 
Boucher L, Palmeri TJ, Logan GD, Schall JD (2007a) Inhibitory control in mind and 

brain: An interactive race model of countermanding Saccades. Psychological 
Review 114:376-397. 

 
Boucher L, Stuphorn V, Logan GD, Schall JD, Palmeri TJ (2007b) Stopping eye and 

hand movements: Are the processes independent? Perception & Psychophysics 
69:785-801. 

 
Boynton GM (2011) Spikes, BOLD, Attention, and Awareness: A comparison of 

electrophysiological and fMRI signals in V1. Journal of Vision 11:1-16. 
 
Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A (2001) Anterior cingulate cortex 

and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex 
11:825-836. 

 
Brázdil M, Dobšík M, Mikl M, Hlušík P, Daniel P, Pažourková M, Krupa P, Rektor I 

(2005) Combined event-related fMRI and intracerebral ERP study of an auditory 
oddball task. Neuroimage 26:285-293. 

 
Brien DC, Corneil BD, Fecteau JH, Bell AH, Munoz DP (2009) The behavioural and 

neurophysiological modulation of microsaccades in monkeys. Journal of Eye 
Movement Research 3:1-12. 

 
Broca P (1861) Perte de la parole, ramollissement chronique et destruction partielle du 

lobe antérieur gauche du cerveau. Bull Soc Anthropol 2:235-238. 
 
Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE 

(1995) A behavioral screen for isolating zebrafish mutants with visual system 
defects. Proceedings of the National Academy of Sciences 92:10545-10549. 

 
Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren 

Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth. 
 
Bromberg-Martin ES, Hikosaka O (2009) Midbrain dopamine neurons signal preference 

for advance information about upcoming rewards. Neuron 63:119-126. 
 
Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational 

control: rewarding, aversive, and alerting. Neuron 68:815-834. 
 
Brooks VB (1986) How Does the Limbic System Assist Motor Learning? A Limbic 

Comparator Hypothesis (Part 1 of 2). Brain, Behavior and Evolution 29:29-41. 
 

246 
 



Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior 
cingulate cortex. Science 307:1118-1121. 

 
Brown JW, Hanes DP, Schall JD, Stuphorn V (2008) Relation of frontal eye field activity 

to saccade initiation during a countermanding task. Experimental Brain Research 
190:135-151. 

 
Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. 1. Single neurons discharging 

before saccades. J Neurophysiol 53:603–635. 
 
Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. 2. 

Physiological and anatomical correlates of electrically evoked eye movements. 
Journal of Neurophysiology 54:714-734. 

 
Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of 

object working memory dominated by recurrent inhibition. Journal of 
Computational Neuroscience 11:63-85. 

 
Büttner-Ennever JA, Horn AKE, Henn V, Cohen B (1999) Projections from the superior 

colliculus motor map to omnipause neurons in monkey. Journal of Comparative 
Neurology 413:55-67. 

 
Bullier J, Henry GH (1980) Ordinal position and afferent input of neurons in monkey 

striate cortex. Journal of Comparative Neurology 193:913-935. 
 
Bullier J, Schall JD, Morel A (1996) Functional streams in occipito-frontal connections in 

the monkey. Behavioural Brain Research 76:89-97. 
 
Bunney BS, Aghajanian GK (1976) Dopamine and norepinephrine innervated cells in the 

rat prefrontal cortex: pharmacological differentiation using microiontophoretic 
techniques. Life Sciences 19:1783-1792. 

 
Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (2008) Error negativity does not reflect 

conflict: A reappraisal of conflict monitoring and anterior cingulate cortex activity. 
Journal of Cognitive Neuroscience 20:1637-1655. 

 
Bush RR, Mosteller F (1951a) A mathematical model for simple learning. Psychological 

Review 58:313-323. 
 
Bush RR, Mosteller F (1951b) A model for stimulus generalization and discrimination. 

Psychological review 58:413. 
 
Cabel DWJ, Armstrong IT, Reingold E, Munoz DP (2000) Control of saccade initiation in 

a countermanding task using visual and auditory stop signals. Experimental Brain 
Research 133:431-441. 

 
Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. 

Annual Review of Neuroscience 21:47-74. 
 
Carbonnell L, Falkenstein M (2006) Does the error negativity reflect the degree of 

response conflict? Brain Research 1095:124-130. 

247 
 



 
Carpenter RHS (1981) Oculomotor procrastination. In: Eye movements: Cognition and 

visual perception (Fisher DF, Monty RA, Senders JW, eds), pp 237-246. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

 
Carpenter RHS (1988) Movements of the eyes 2nd Edition. London: Pion Limited. 
 
Carpenter RHS (1991) The visual origins of ocular motility. In: Vision and Visual 

Dysfunction. Eye Movements (Carpenter RHS, ed), pp 1-10. Boca Raton, FL: 
CRC Press. 

 
Carter CS, Mintun M, Cohen JD (1995) Interference and facilitation effects during 

selective attention: an H215O PET study of Stroop task performance. 
Neuroimage 2:264-272. 

 
Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior 

cingulate cortex, error detection, and the online monitoring of performance. 
Science 280:747-749. 

 
Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA, Noll D, Cohen JD (2000) 

Parsing executive processes: Strategic vs. evaluative functions of the anterior 
cingulate cortex. Proceedings of the National Academy of Sciences 97:1944-
1948. 

 
Cavanaugh J, Joiner WM, Wurtz RH (2012) Suppressive surrounds of receptive fields in 

monkey frontal eye field. The Journal of Neuroscience 32:12284-12293. 
 
Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic 

input. Neuron 35:773-782. 
 
Chen LL, Wise SP (1995a) Supplementary eye field contrasted with the frontal eye field 

during acquisition of conditional oculomotor associations. Journal of 
Neurophysiology 73:1122-1134. 

 
Chen LL, Wise SP (1995b) Neuronal activity in the supplementary eye field during 

acquisition of conditional oculomotor associations. Journal of Neurophysiology 
73:1101-1121. 

 
Chen LL, Wise SP (1996) Evolution of directional preferences in the supplementary eye 

field during acquisition of conditional oculomotor associations. The Journal of 
Neuroscience  16:3067-3081. 

 
Clarke FJJ (1961) Visual recovery following local adaptation of the peripheral retina 

(Troxler's effect). Journal of Modern Optics 8:121-135. 
 
Cohen JY, Pouget P, Heitz RP, Woodman GF, Schall JD (2009) Biophysical support for 

functionally distinct cell types in the frontal eye field. Journal of Neurophysiology 
101:912-916. 

 
Cohen RA, Kaplan RF, Moser DJ, Jenkins MA, Wilkinson H (1999) Impairments of 

attention after cingulotomy. Neurology 53:819-819. 

248 
 



 
Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annual Review of 

Neuroscience 22:319-349. 
 
Cole M, Yeung, N., Freiwald, WA., Botvinick, M. (2009) Cingulate cortex: diverging data 

from humans and monkeys. Trends in neurosciences 32:566-574. 
 
Cole MW, Yeung, N., Freiwald, W., Botvinick, M. (2010) Conflict over cingulate cortex: 

Between-species differences in cingulate may support enhanced cognitive 
flexibility in humans. Brain, Behavior, and Evolution 75:239-240. 

 
Coles MGH, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct 

trials? Response representations, stimulus-related components, and the theory 
of error-processing. Biological Psychology 56:173-189. 

 
Collewijn H, Kowler E (2008) The significance of microsaccades for vision and 

oculomotor control. Journal of Vision 8:1-21. 
 
Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human vertical 

saccadic eye movements. The Journal of Physiology 404:183-197. 
 
Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary 

across and within cortical areas in primates. Proceedings of the National 
Academy of Sciences 107:15927-15932. 

 
Colonius H (1990) A note on the stop-signal paradigm, or how to observe the 

unobservable. Psychological Review 97:309-312. 
 
Colonius H, Ozyurt J, Arndt PA (2001) Countermanding saccades with auditory stop 

signals: testing the race model. Vision Research 41:1951-1968. 
 
Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping 

the temporal flow of information in prefrontal cortex. Nature Neuroscience 5:175-
180. 

 
Corneil BD, Elsley JK (2005) Countermanding eye-head gaze shifts in humans: 

Marching orders are delivered to the head first. Journal of Neurophysiology 
94:883-895. 

 
Corneil BD, Olivier E, Munoz DP (2002) Neck muscle responses to stimulation of 

monkey superior colliculus. I. Topography and manipulation of stimulation 
parameters. Journal of Neurophysiology 88:1980-1999. 

 
Cornsweet TN (1956) Determination of the stimuli for involuntary drifts and saccadic eye 

movements. Journal of the Optical Society of America 46:987-988. 
 
Cowie RJ, Robinson DL (1994) Subcortical contributions to head movements in 

macaques. I. Contrasting effects of electrical stimulation of a medial 
pontomedullary region and the superior colliculus. Journal of Neurophysiology 
72:2648-2664. 

 

249 
 



Creutzfeldt OD (1977) Generality of the functional structure of the neocortex. 
Naturwissenschaften 64:507-517. 

 
Cui J, Wilke M, Logothetis NK, Leopold DA, Liang HL (2009) Visibility states modulate 

microsaccade rate and direction. Vision Research 49:228-236. 
 
Curtis CE (2006) Prefrontal and parietal contributions to spatial working memory. 

Neuroscience 139:173-180. 
 
Curtis CE, Cole MW, Rao VY, D'Esposito M (2005) Canceling planned action: An fMRI 

study of countermanding saccades. Cerebral Cortex 15:1281-1289. 
 
d'Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI 

studies of spatial and nonspatial working memory. Cognitive Brain Research 7:1-
13. 

 
da Costa NM, Martin KAC (2010) Whose cortical column would that be? Frontiers in 

Neuroanatomy 4. 
 
Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG 

and MEG with MRI cortical surface reconstruction - a linear-approach. Journal of 
Cognitive Neuroscience 5:162-176. 

 
David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A (2008) 

Identifying neural drivers with functional MRI: an electrophysiological validation. 
PLoS biology 6:e315. 

 
de Bruijn ERA, Hulstijn W, Verkes RJ, Ruigt GSF, Sabbe BGC (2004) Drug-induced 

stimulation and suppression of action monitoring in healthy volunteers. 
Psychopharmacology 177:151-160. 

 
De Felipe J, Markram H, Rockland KS (2012) The neocortical column. Frontiers in 

Neuroanatomy 6. 
 
de Garis H, Shuo C, Goertzel B, Ruiting L (2012) A world survey of artificial brain 

projects, Part I: Large-scale brain simulations. Neurocomputing 74:3-29. 
 
De Jong R, Coles MGH, Logan GD (1995) Strategies and mechanisms in nonselective 

and selective inhibitory motor control. Journal of Experimental Psychology-
Human Perception and Performance 21:498-511. 

 
De Jong R, Coles MGH, Logan GD, Gratton G (1990) In search of the point of no return 

- the control of response processes. Journal of Experimental Psychology-Human 
Perception and Performance 16:164-182. 

 
Dean P, Redgrave P, Sahibzada N, Tsuji K (1986) Head and body movements produced 

by electrical stimulation of superior colliculus in rats: effects of interruption of 
crossed tectoreticulospinal pathway. Neuroscience 19:367-380. 

 
Debener S, Ullsperger M, Fiehler K, von Cramon DY, Engel AK (2005a) Monitoring error 

processing by means of simultaneous EEG/fMRI recordings II: Single-trial 

250 
 



independent component analysis of the error-related negativity (ERN). Journal of 
Psychophysiology 19:111-111. 

 
Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005b) Trial-

by-trial coupling of concurrent electroencephalogram and functional magnetic 
imaging identifies the dynamics of performance monitoring. The Journal of 
Neuroscience 25:11730-11737. 

 
DeHaan A, Halterman C, Langan J, Drew AS, Osternig LR, Chou LS, van Donkelaar P 

(2007) Cancelling planned actions following mild traumatic brain injury. 
Neuropsychologia 45:406-411. 

 
Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error-

detection and compensation. Psychological Science 5:303-305. 
 
DesJardin JT, Holmes AL, Forcelli PA, Cole CE, Gale JT, Wellman LL, Gale K, Malkova 

L (2013) Defense-like behaviors evoked by pharmacological disinhibition of the 
superior colliculus in the primate. The Journal of Neuroscience 33:150-155. 

 
 
Di S, Baumgartner C, Barth DS (1990) Laminar analysis of extracellular field potentials 

in rat vibrissa barrel cortex. Journal of Neurophysiology 63:832-840. 
 
Ditchburn RW, Ginsborg BL (1952) Vision with a stabilized retinal image. Nature 170:36-

37. 
 
Ditchburn RW, Fender DH, Mayne S (1959) Vision with controlled movements of the 

retinal image. The Journal of Physiology 145:98-107. 
 
Dodge R, Cline TS (1901) The angle velocity of eye movements. Psychological Review 

8:145. 
 
Donkers FCL, van Boxtel GJM (2005) Mediofrontal negativities to averted gains and 

losses in the slot-machine task. Journal of Psychophysiology 19:256-262. 
 
Donkers FCL, Nieuwenhuis S, van Boxtel GJM (2005) Mediofrontal negativities in the 

absence of responding. Cognitive Brain Research 25:777-787. 
 
Dorris MC, Taylor TL, Klein RM, Munoz DP (1999) Influence of previous visual stimulus 

or saccade on saccadic reaction times in monkey. Journal of Neurophysiology 
81:2429-2436. 

 
Douglas RJ, Martin KA (1991) A functional microcircuit for cat visual cortex. The Journal 

of Physiology 440:735-769. 
 
Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annual Review of 

Neuroscience 27:419-451. 
 
Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH (1995) Recurrent excitation in 

neocortical circuits. Science 269:981-985. 
 

251 
 



Dreher J-C, Berman KF (2002) Fractionating the neural substrate of cognitive control 
processes. Proceedings of the National Academy of Sciences 99:14595-14600. 

 
Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor 

areas in the frontal lobe. The Journal of Neuroscience 11:667-689. 
 
Dum RP, Strick PL (1993) Cingulate motor areas. In: Neurobiology of cingulate cortex 

(Vogt BA, Gabriel M, eds), pp 415-441. Cambridge, MA: Birkhäuser. 
 
Elsley JK, Nagy B, Cushing SL, Corneil BD (2007) Widespread presaccadic recruitment 

of neck muscles by stimulation of the primate frontal eye fields. Journal of 
Neurophysiology 98:1333-1354. 

 
Elston GN (2000) Pyramidal cells of the frontal lobe: All the more spinous to think with. 

The Journal of Neuroscience 20:RC95. 
 
Emeric EE, Leslie M, Pouget P, Schall JD (2010) Performance monitoring local field 

potentials in the medial frontal cortex of primates: Supplementary eye field. 
Journal of Neurophysiology 104:1523-1537. 

 
Emeric EE, Brown JW, Leslie M, Pouget P, Stuphorn V, Schall JD (2008) Performance 

monitoring local field potentials in the medial frontal cortex of primates: Anterior 
cingulate cortex. Journal of Neurophysiology 99:759-772. 

 
Emeric EE, Brown JW, Boucher L, Carpenter RHS, Hanes DP, Harris R, Logan GD, 

Mashru RN, Paré M, Pouget P, Stuphorn V, Taylor TL, Schall JD (2007) 
Influence of history on saccade countermanding performance in humans and 
macaque monkeys. Vision Research 47:35-49. 

 
Endrass T, Cosima F, Norbert K (2005) Error awareness in a saccade countermanding 

task. Journal of Psychophysiology 19:275-280. 
 
Engbert R (2012) Computational modeling of collicular integration of perceptual 

responses and attention in microsaccades. Journal of Neuroscience 32:8035-
8039. 

 
Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert attention. 

Vision Research 43:1035-1045. 
 
Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target 

letter in a nonsearch task. Perception & Psychophysics 16:143-149. 
 
Evdokimidis I, Liakopoulos D, Papageorgiou C (1991) Cortical potentials preceding 

centrifugal and centripetal self-paced horizontal saccades. 
Electroencephalography and Clinical Neurophysiology 79:503-505. 

 
Everling S, Krappmann P, Flohr H (1997) Cortical potentials preceding pro- and 

antisaccades in man. Electroencephalography and Clinical Neurophysiology 
102:356-362. 

 

252 
 



Everling S, Paré M, Dorris MC, Munoz DP (1998) Comparison of the discharge 
characteristics of brain stem omnipause neurons and superior colliculus fixation 
neurons in monkey: Implications for control of fixation and saccade behavior. 
Journal of Neurophysiology 79:511-528. 

 
Falkenstein M, Hohnsbein J, Blanke L (1990) Effects of errors in choice reaction tasks 

on the ERP under focused and divided attention. Psychophysiological Brain 
Research. 

 
Falkenstein M, Hoormann J, Hohnsbein J (1996) Event-related potential components 

related to errors. Zeitschrift fur experimentelle Psychologie: Organ der Deutschen 
Gesellschaft fur Psychologie 44:117-138. 

 
Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction 

errors and their functional significance: a tutorial. Biological Psychology 51:87–
107. 

 
Falkenstein M, Hohnsbein, J., Hoormann, J., Blanke, L. (1991) Effects of crossmodal 

divided attention on late ERP components. 2. Error processing in choice reaction 
tasks. Electroencephalography and Clinical Neurophysiology 78:447–455. 

 
Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, 

Zeng Y, Lesch KP (2004) Allelic variation of serotonin transporter function 
modulates the brain electrical response for error processing. 
Neuropsychopharmacology 29:1506-1511. 

 
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate 

cerebral cortex. Cerebral Cortex 1:1-47. 
 
Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making 

following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral 
cortex 15:58-63. 

 
Ferrier D (1875) Experiments on the brain of monkeys. Philosophical Transactions of the 

Royal Society B: Biological Sciences 165:409-430. 
 
Ferrier D, Turner WA (1901) Experimental lesion of the corpora quadrigemina in 

monkeys. Brain 24:27-46. 
 
Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction 

times of goal directed eye movements. Experimental Brain Research 57:191-
195. 

 
Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 

component of the ERP: a review. Psychophysiology 45:152-170. 
 
Freeman JA, Nicholson C (1975) Experimental optimization of current source-density 

technique for anuran cerebellum. Journal of Neurophysiology 38:369-382. 
 

253 
 



Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a 
retrograde study using horseradish peroxidase. Journal of Comparative 
Neurology 230:55-76. 

 
Friston K (2009) Causal modelling and brain connectivity in functional magnetic 

resonance imaging. PLoS biology 7:220-225. 
 
Fuchs AF, Luschei ES (1970) Firing patterns of abducens neurons of alert monkeys in 

relationship to horizontal eye movement. Journal of Neurophysiology 33:382-392. 
 
Fuchs AF, Kaneko CRS, Scudder CA (1985) Brain-stem control of saccadic eye-

movements. Annual Review of Neuroscience 8:307-337. 
 
Fujii N, Mushiake H, Tamai M, Tanji J (1995) Microstimulation of the supplementary eye 

field during saccade preparation. NeuroReport 6:2565-2568. 
 
Gaarder K (1966) Transmission of edge information in the human visual system. Nature 

212:321-323. 
 
Gandhi NJ, Keller EL (1997) Spatial distribution and discharge characteristics of superior 

colliculus neurons antidromically activated from the omnipause region in monkey. 
Journal of Neurophysiology 78:2221-2225. 

 
Gandhi NJ, Keller EL (1999a) Activity of the brain stem omnipause neurons during 

saccades perturbed by stimulation of the primate superior colliculus. Journal of 
Neurophysiology 82:3254-3267. 

 
Gandhi NJ, Keller EL (1999b) Comparison of saccades perturbed by stimulation of the 

rostral superior colliculus, the caudal superior colliculus, and the omnipause 
neuron region. Journal of Neurophysiology 82:3236-3253. 

 
Gandhi NJ, Katnani HA (2011) Motor functions of the superior colliculus. Annual Review 

of Neuroscience 34:205. 
 
Garavan H, Ross TJ, Kaufman J, Stein EA (2003) A midline dissociation between error-

processing and response-conflict monitoring. Neuroimage 20:1132-1139. 
 
Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of 

the human cerebral cortex as revealed by comparative immunohistochemistry of 
tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative 
Neurology 279:249-271. 

 
Gehring WJ, Knight RT (2000) Prefrontal-cingulate interactions in action monitoring. 

Nature Neuroscience 3:516-520. 
 
Gehring WJ, Fencsik DE (2001) Functions of the medial frontal cortex in the processing 

of conflict and errors. Journal of Neuroscience 21:9430-9437. 
 
Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of 

monetary gains and losses. Science 295:2279-2282. 
 

254 
 



Gehring WJ, Liu Y, Orr JM, Carp J (2011) The error-related negativity (ERN/Ne). In: 
Oxford handbook of event-related potential components (Luck SJ, Kappenman 
E, eds). New York: Oxford University Press. 

 
Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for 

error-detection and compensation. Psychological Science 4:385-390. 
 
Gemba H, Sasaki K, Brooks VB (1986) Error potentials in limbic cortex (anterior 

cingulate area-24) of monkeys during motor learning. Neuroscience Letters 
70:223-227. 

 
Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of 

movement direction. Science 233:1416-1419. 
 
Geyer S, Zilles K, Luppino G, Matelli M (2000) Neurofilament protein distribution in the 

macaque monkey dorsolateral premotor cortex. European Journal of 
Neuroscience 12:1554-1566. 

 
Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and 

tangential distribution of afferents and efferents in the frontal lobe of rhesus 
monkeys. Journal of Comparative Neurology 277:195-213. 

 
Gilbert CD (1983) Microcircuitry of the visual cortex. Annual Review of Neuroscience 

6:217-247. 
 
Giolli RA, Gregory KM, Suzuki DA, Blanks RH, Lui F, Betelak KF (2001) Cortical and 

subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine 
nuclei in the macaque monkey. Visual Neuroscience 18:725-740. 

 
Givre SJ, Schroeder CE, Arezzo JC (1994) Contribution of extrastriate area V4 to the 

surface-recorded flash VEP in the awake macaque. Vision Research 34:415-428. 
 
Glimcher PW (2011) Understanding dopamine and reinforcement learning: the 

dopamine reward prediction error hypothesis. Proceedings of the National 
Academy of Sciences 108:15647-15654. 

 
Godlove DC (2010) Eye movement artifact may account for putative frontal feedback-

related potentials in nonhuman primates. The Journal of Neuroscience 30:4187-
4189. 

 
Godlove DC, Emeric EE, Boucher L, Schall JD (2009) Express saccade production in a 

stop signal task. Society for Neuroscience Abstract. 
 
Godlove DC, Garr AK, Woodman GF, Schall JD (2011a) Measurement of the 

extraocular spike potential during saccade countermanding. Journal of 
Neurophysiology 106:104-114. 

 
Godlove DC, Emeric EE, Segovis CM, Young MS, Schall JD, Woodman GF (2011b) 

Event-related potentials elicited by errors during the stop-signal task. I. macaque 
monkeys. The Journal of Neuroscience 31:15640-15649. 

 

255 
 



Goffart L, Hafed ZM, Krauzlis RJ (2012) Visual fixation as equilibrium: evidence from 
superior colliculus inactivation. The Journal of Neuroscience 32:10627-10636. 

 
Goldberg G (1985) Supplementary motor area structure and function: review and 

hypotheses. Behavioral and Brain Sciences 8:567-588. 
 
Goldberg ME, Eggers HM, Gouras P (1991) The oculomotor system. In: Principles of 

neural science, 3rd Edition (Kandel ER, Schwartz JH, Jessell TM, eds), pp 660-
676. New York, NY: Elsevier. 

 
Goonetilleke SC, Doherty TJ, Corneil BD (2010) A within trial measure of the stop signal 

reaction time in a head-unrestrained oculomotor countermanding task. Journal of 
Neurophysiology 104:3677-3690. 

 
Goyer JP, Woldorff MG, Huettel SA (2008) Rapid electrophysiological brain responses 

are influenced by both valence and magnitude of monetary rewards. Journal of 
Cognitive Neuroscience 20:2058-2069. 

 
Granger CWJ (1969) Investigating causal relations by econometric models and cross-

spectral methods. Econometrica: Journal of the Econometric Society:424-438. 
 
Green DG (1970) Regional variations in the visual acuity for interference fringes on the 

retina. The Journal of Physiology 207:351. 
 
Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range 

coupling between prefrontal and visual cortex during attention. Science 
324:1207-1210. 

 
Grinband J, Savitskaya J, Wager TD, Teichert T, Ferrera VP, Hirsch J (2011) The dorsal 

medial frontal cortex is sensitive to time on task, not response conflict or error 
likelihood. Neuroimage 57:303-311. 

 
Grosbras MH, Lobel E, Van de Moortele PF, LeBihan D, Berthoz A (1999) An 

anatomical landmark for the supplementary eye fields in human revealed with 
functional magnetic resonance imaging. Cerebral Cortex 9:705-711. 

 
Guitton D (1991) Control of saccadic eye and gaze movements by the superior colliculus 

and basal ganglia. In: Vision and Visual Dysfunction. Eye Movements (Carpenter 
RHS, ed), pp 244-276. Boca Raton, FL: CRC Press. 

 
Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert attention shifts. 

Vision Research 42:2533-2545. 
 
Hafed ZM, Krauzlis RJ (2012) Similarity of superior colliculus involvement in 

microsaccade and saccade generation. Journal of Neurophysiology 107:1904-
1916. 

 
Hafed ZM, Goffart L, Krauzlis RJ (2008) Superior colliculus inactivation causes stable 

offsets in eye position during tracking. The Journal of Neuroscience 28:8124-
8137. 

 

256 
 



Hafed ZM, Goffart L, Krauzlis RJ (2009) A neural mechanism for microsaccade 
generation in the primate superior colliculus. Science 323:940-943. 

 
Hafed ZM, Lovejoy LP, Krauzlis RJ (2011) Modulation of microsaccades in monkey 

during a covert visual attention task. Journal of Neuroscience 31:15219-15230. 
 
Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity 

in vivo is generated through a dynamic balance of excitation and inhibition. The 
Journal of Neuroscience 26:4535-4545. 

 
Hajcak G, McDonald N, Simons RF (2003) To err is autonomic: Error-related brain 

potentials, ANS activity, and post-error compensatory behavior. 
Psychophysiology 40:895-903. 

 
Hajcak G, Holroyd CB, Moser JS, Simons RF (2005) Brain potentials associated with 

expected and unexpected good and bad outcomes. Psychophysiology 42:161-
170. 

 
Hajcak G, Moser JS, Holroyd CB, Simons RF (2006) The feedback-related negativity 

reflects the binary evaluation of good versus bad outcomes. Biological 
psychology 71:148-154. 

 
Hajcak G, Moser JS, Holroyd CB, Simons RF (2007) It's worse than you thought: The 

feedback negativity and violations of reward prediction in gambling tasks. 
Psychophysiology 44:905-912. 

 
Halgren E, Boujon C, Clarke J, Wang C (2002) Rapid distributed fronto-parieto-occipital 

processing stages during working memory in humans. Cerebral Cortex 12:710-
728. 

 
Hanes DP, Schall JD (1995) Countermanding saccades in macaque. Visual 

Neuroscience 12:929-937. 
 
Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 

274:427-430. 
 
Hanes DP, Carpenter RHS (1999) Countermanding saccades in humans. Vision 

Research 39:2777-2791. 
 
 
Hanes DP, Thompson KG, Schall JD (1995) Relationship of presaccadic activity in 

frontal eye field and supplementary eye field to saccade initiation in macaque: 
Poisson spike train analysis. Experimental Brain Research 103:85-96. 

 
Hanes DP, Patterson WF, Schall JD (1998) Role of frontal eye fields in countermanding 

saccades: Visual, movement, and fixation activity. Journal of Neurophysiology 
79:817-834. 

 
Hanisch C, Radach R, Holtkamp K, Herpertz-Dahlmann B, Konrad K (2006) Oculomotor 

inhibition in children with and without attention-deficit hyperactivity disorder 
(ADHD). Journal of Neural Transmission 113:671-684. 

257 
 



 
Hansen BJ, Dragoi V (2011) Adaptation-induced synchronization in laminar cortical 

circuits. Proceedings of the National Academy of Sciences 108:10720-10725. 
 
Hansen BJ, Chelaru MI, Dragoi V (2012) Correlated variability in laminar cortical circuits. 

Neuron 76:590-602. 
 
Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending 

pathways from the monkey superior colliculus: an autoradiographic analysis. 
Journal of Comparative Neurology 192:853-882. 

 
Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, 

Nambu A, Takada M (2003) Thalamocortical and intracortical connections of 
monkey cingulate motor areas. Journal of Comparative Neurology 462:121-138. 

 
Heinen S, Yang S-n, Ford J (2011) Microstimulation supports a causal role for the 

supplementary eye field in an oculomotor decision. Journal of Vision 11:529-529. 
 
Heinzle J, Hepp K, Martin KAC (2007) A microcircuit model of the frontal eye fields. The 

Journal of Neuroscience 27:9341-9353. 
 
Heitz RP, Schall JD (2012) Neural mechanisms of speed-accuracy tradeoff. Neuron 

76:616-628. 
 
Helmholtz H (1853) Ueber einige gesetze der verteilung elektrischer ströme in 

körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche. 
Psychophysiology 17:259-273. 

 
Helmstaedter M, de Kock CPJ, Feldmeyer D, Bruno RM, Sakmann B (2007) 

Reconstruction of an average cortical column in silico. Brain Research Reviews 
55:193-203. 

 
Hemelt ME, Keller A (2008) Superior colliculus control of vibrissa movements. Journal of 

Neurophysiology 100:1245-1254. 
 
Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of 

pathways between the dorsal lateral geniculate nucleus and visual cortex in Old 
World and New World primates. The Journal of comparative neurology 182:123. 

 
Herrmann M, Rommler, J, Ehlis, AC, Heidrich, A, Fallgatter, AJ. (2004) Source 

localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity 
(Pe). Brain Research Cognitive Brain Research 20:294-299. 

 
Hess WR, Burgi S, V. B (1946) Motorische funktion des tektalund tegmentalgebietes. 

Psychiat Neurol 112:1-52. 
 
Hikosaka O, Wurtz RH (1983a) Visual and oculomotor functions of monkey substantia 

nigra pars reticulata. 1. Relation of visual and auditory responses to saccades. 
Journal of Neurophysiology 49:1230-1253. 

 

258 
 



Hikosaka O, Wurtz RH (1983b) Visual and oculomotor functions of monkey substantia 
nigra pars reticulata .2. visual responses related to fixation of gaze. Journal of 
Neurophysiology 49:1254-1267. 

 
Hikosaka O, Wurtz RH (1983c) Visual and oculomotor functions of monkey substantia 

nigra pars reticulata. 3. Memory-contingent visual and saccade responses. 
Journal of Neurophysiology 49:1268-1284. 

 
Hikosaka O, Wurtz RH (1989) The basal ganglia. In: The neurobiology of saccadic eye 

movements (Wurtz RH, Goldberg ME, eds), pp 257-276. Amsterdam: Elsevier. 
 
Hikosaka O, Isoda M (2010) Switching from automatic to controlled behavior: cortico-

basal ganglia mechanisms. Trends in Cognitive Sciences 14:154-161. 
 
Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of 

purposive saccadic eye movements. Physiological Reviews 80:953-978. 
 
Hikosaka O, Igusa Y, Nakao S, Shimazu H (1978) Direct inhibitory synaptic linkage of 

pontomedullary reticular burst neurons with abducens motoneurons in cat. 
Experimental Brain Research 33:337-352. 

 
Hikosaka OD, Wurtz RH (1985) Modification of saccadic eye movements by GABA-

related substances. I. Effect of muscimol and bicuculline in monkey superior 
colliculus. Journal of Neurophysiology 53:266-291. 

 
Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y (2013) Functional Microcircuit 

Recruited during Retrieval of Object Association Memory in Monkey Perirhinal 
Cortex. Neuron 77:192-203. 

 
Holroyd CB, Coles MGH (2002) The neural basis. of human error processing: 

Reinforcement learning, dopamine, and the error-related negativity. 
Psychological Review 109:679-709. 

 
Holroyd CB, Coles MGH (2008) Dorsal anterior cingulate cortex integrates reinforcement 

history to guide voluntary behavior. Cortex 44:548-559. 
 
Holroyd CB, Dien J, Coles MGH (1998) Error-related scalp potentials elicited by hand 

and foot movements: evidence for an output-independent error-processing 
system in humans. Neuroscience Letters 242:65-68. 

 
Holroyd CB, Larsen JT, Cohen JD (2004a) Context dependence of the event-related 

brain potential associated with reward and punishment. Psychophysiology 
41:245-253. 

 
Holroyd CB, Nieuwenhuis S, Yeung N, Cohen JD (2003) Errors in reward prediction are 

reflected in the event-related brain potential. Neuroreport 14:2481-2484. 
 
Holroyd CB, Yeung N, Coles MGH, Cohen JD (2005) A mechanism for error detection in 

speeded response time tasks. Journal of Experimental Psychology-General 
134:163-191. 

 

259 
 



Holroyd CB, Nieuwenhuis S, Yeung N, Nystrom L, Mars RB, Coles MGH, Cohen JD 
(2004b) Dorsal anterior cingulate cortex shows fMRI response to internal and 
external error signals. Nature neuroscience 7:497-498. 

 
Hong S, Hikosaka O (2008) The globus pallidus sends reward-related signals to the 

lateral habenula. Neuron 60:720-729. 
 
Horowitz TS, Fine EM, Fencsik DE, Yurgenson S, Wolfe JM (2007) Fixational eye 

movements are not an index of covert attention. Psychological Science 18:356-
363. 

 
Horton JC, Adams DL (2005) The cortical column: a structure without a function. 

Philosophical Transactions of the Royal Society B: Biological Sciences 360:837-
862. 

 
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional 

architecture in the cat's visual cortex. The Journal of Physiology 160:106. 
 
Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two 

nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology. 
 
Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical 

fibers in the macaque monkey. Journal of Comparative Neurology 146:421-450. 
 
Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns 

in the monkey striate cortex. Journal of Comparative Neurology 158:267-293. 
 
Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical 

microstimulation - connections in macaques. Journal of Comparative Neurology 
293:299-330. 

 
Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical 

microstimulation in squirrel-monkeys, owl monkeys, and macaque monkeys 1. 
Subcortical connections. Journal of Comparative Neurology 253:415-439. 

 
Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye field as defined by intracortical 

microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys 2. 
Cortical connections. Journal of Comparative Neurology 265:332-361. 

 
Huster RJ, Eichele T, Enriquez-Geppert S, Wollbrink A, Kugel H, Konrad C, Pantev C 

(2011) Multimodal imaging of functional networks and event-related potentials in 
performance monitoring. Neuroimage 56:1588-1597. 

 
Isoda M, Tanji J (2002) Cellular activity in the supplementary eye field during sequential 

performance of multiple saccades. Journal of Neurophysiology 88:3541-3545. 
 
Isoda M, Tanji J (2003) Contrasting neuronal activity in the supplementary and frontal 

eye fields during temporal organization of multiple saccades. Journal of 
Neurophysiology 90:3054-3065. 

 

260 
 



Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey 
medial frontal cortex. Nature Neuroscience 10:240-248. 

 
Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by the anterior 

cingulate cortex during saccade countermanding. Science 302:120-122. 
 
Izawa Y, Suzuki H, Shinoda Y (2009) Response properties of fixation neurons and their 

location in the frontal eye field in the monkey. Journal of Neurophysiology 
102:2410-2422. 

 
Jacobson ZJ, Dodwell PC (1979) Saccadic eye movements during reading. Brain and 

Language 8:303-314. 
 
Jocham G, Ullsperger M (2009) Neuropharmacology of performance monitoring. 

Neuroscience and Biobehavioral Reviews 33:48-60. 
 
Johannes S, Wieringa BM, Nager W, Dengler R, Munte TF (2001) Oxazepam alters 

action monitoring. Psychopharmacology 155:100-106. 
 
Johnston K, Levin HM, Koval MJ, Everling S (2007) Top-down control-signal dynamics in 

anterior cingulate and prefrontal cortex neurons following task switching. Neuron 
53:453-462. 

 
Joiner WM, Lee JE, Shelhamer M (2007) Behavioral analysis of predictive saccade 

tracking as studied by countermanding. Experimental Brain Research 181:307-
320. 

 
Jones EG (2000) Microcolumns in the cerebral cortex. Proceedings of the National 

Academy of Sciences 97:5019-5021. 
 
Joti P, Kulashekhar S, Behari M, Murthy A (2007) Impaired inhibitory oculomotor control 

in patients with Parkinson's disease. Experimental Brain Research 177:447-457. 
 
Juan C-H, Shorter-Jacobi SM, Schall JD (2004) Dissociation of spatial attention and 

saccade preparation. Proceedings of the National Academy of Sciences of the 
United States of America 101:15541-15544. 

 
Jung HH, Kim CH, Chang JH, Park YG, Chung SS, Chang JW (2006) Bilateral anterior 

cingulotomy for refractory obsessive-compulsive disorder: long-term follow-up 
results. Stereotactic and functional neurosurgery 84:184-189. 

 
Just MA, Carpenter PA (1980) A theory of reading: From eye fixations to 

comprehension. Psychological Review 87:329-354. 
 
Kagan I, Gur M, Snodderly DM (2008) Saccades and drifts differentially modulate 

neuronal activity in V1: effects of retinal image motion, position, and extraretinal 
influences. Journal of Vision 8. 

 
Kajikawa Y, Schroeder CE (2012) How Local Is the Local Field Potential? Neuron 

72:847-858. 
 

261 
 



Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information 
flow in the brain structures. Biological cybernetics 65:203-210. 

 
Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T (2011) Specific 

contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for 
attentional selection and stimulus valuation. PLoS biology 9. 

 
Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive 

signals in the basal ganglia. Nature Neuroscience 1:411-416. 
 
Keizer K, Kuypers H (1989) Distribution of corticospinal neurons with collaterals to the 

lower brain stem reticular formation in monkey (Macaca fascicularis). 
Experimental Brain Research 74:311-318. 

 
Keller EL (1989) The cerebellum. In: The neurobiology of saccadic eye movements 

(Wurtz RH, Goldberg ME, eds), pp 391-409. Amsterdam: Elsevier. 
 
Kennerley SW, Wallis JD (2009a) Evaluating choices by single neurons in the frontal 

lobe: outcome value encoded across multiple decision variables. European 
Journal of Neuroscience 29:2061-2073. 

 
Kennerley SW, Wallis JD (2009b) Encoding of reward and space during a working 

memory task in the orbitofrontal cortex and anterior cingulate sulcus. Journal of 
Neurophysiology 102:3352-3364. 

 
Keren AS, Yuval-Greenberg S, Deouell LY (2010) Saccadic spike potentials in gamma-

band EEG: Characterization, detection and suppression. Neuroimage 49:2248-
2263. 

 
Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS (2004) Anterior 

cingulate conflict monitoring and adjustments in control. Science 303:1023-1026. 
 
Khan O, Taylor SJ, Jones JG, Swart M, Hanes DP, Carpenter RHS (1999) Effects of 

low-dose isoflurane on saccadic eye movement generation. Anaesthesia 54:142-
145. 

 
Kiehl KA, Liddle PF, Hopfinger JB (2000) Error processing and the rostral anterior 

cingulate: An event-related fMRI study. Psychophysiology 37:216-223. 
 
Kim Y-G, Badler JB, Heinen SJ (2005) Trajectory interpretation by supplementary eye 

field neurons during ocular baseball. Journal of Neurophysiology 94:1385-1391. 
 
King AJ (2004) The superior colliculus. Current Biology 14:R335-R338. 
 
Klein RM (2000) Inhibition of return. Trends in Cognitive Sciences 4:138-147. 
 
Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M (2007) 

Neural correlates of error awareness. Neuroimage 34:1774-1781. 
 

262 
 



Knight TA, Fuchs AF (2007) Contribution of the frontal eye field to gaze shifts in the 
head-unrestrained monkey: effects of microstimulation. Journal of 
Neurophysiology 97:618-634. 

 
Ko H-k, Poletti M, Rucci M (2010) Microsaccades precisely relocate gaze in a high visual 

acuity task. Nature Neuroscience 13:1549-1553. 
 
Ko YT, Miller J (2011) Nonselective motor-level changes associated with selective 

response inhibition: evidence from response force measurements. Psychonomic 
Bulletin & Review 18:813-819. 

 
Kornylo K, Dill N, Saenz M, Krauzlis RJ (2003) Canceling of pursuit and saccadic eye 

movements in humans and monkeys. Journal of Neurophysiology 89:2984-2999. 
 
Kramer UM, Cunillera T, Camara E, Marco-Pallares J, Cucurell D, Nager W, Bauer P, 

Schule R, Schols L, Rodriguez-Fornells A, Munte TF (2007) The impact of 
catechol-O-methyltransferase and dopamine D4 receptor genotypes on 
neurophysiological markers of performance monitoring. Journal of Neuroscience 
27:14190-14198. 

 
Krauzlis RJ (2004) Recasting the smooth pursuit eye movement system. Journal of 

Neurophysiology 91:591-603. 
 
Krauzlis RJ (2008) Eye Movements. In: Fundamental Neuroscience, 3rd Edition (Squire 

LR, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC, eds), pp 775-792. 
Burlington, MA: Academic Press. 

 
Krauzlis RJ, Basso MA, Wurtz RH (1997) Rostral superior colliculus influences pursuit 

eye movements in the primate as well as fixation and saccades. Investigative 
Ophthalmology & Visual Science 38:4343-4343. 

 
Kurtzberg D, Vaughan HG (1982) Topographic analysis of human cortical potentials 

preceding self-initiated and visually triggered saccades. Brain Research 243:1-9. 
 
Kustov AA, Robinson DL (1995) Modified saccades evoked by stimulation of the 

macaque superior colliculus account for properties of the resettable integrator. 
Journal of Neurophysiology 73:1724-1728. 

 
Ladouceur CD, Dahl RE, Carter CS (2007) Development of action monitoring through 

adolescence into adulthood: ERP and source localization. Developmental 
Science 10:874-891. 

 
Lakatos P, Chen CM, O'Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations 

and multisensory interaction in primary auditory cortex. Neuron 53:279-292. 
 
Laming D (1979) Choice reaction performance following an error. Acta Psychologica 

43:199-224. 
 
Lappin JS, Eriksen CW (1966) Use of a delayed signal to stop a visual reaction-time 

response. Journal of Experimental Psychology 72:805-&. 
 

263 
 



Laubrock J, Engbert R, Kliegl R (2005) Microsaccade dynamics during covert attention. 
Vision Research 45:721-730. 

 
Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by 

neurons in the superior colliculus. Nature 332:357-360. 
 
Lee K, Tehovnik EJ (1995) Topographic Distribution of Fixation-related Units in the 

Dorsomedial Frontal Cortex of the Rhesus Monkey. European Journal of 
Neuroscience 7:1005-1011. 

 
Lemon R (1984) Methods for neuronal recording in conscious animals. New York: Wiley. 
 
Leopold DA, Logothetis NK (1998) Microsaccades differentially modulate neural activity 

in the striate and extrastriate visual cortex. Experimental Brain Research 
123:341-345. 

 
Leotti LA, Wager TD (2010) Motivational influences on response inhibition measures. 

Journal of Experimental Psychology-Human Perception and Performance 
36:430-447. 

 
Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the 

frog's brain. Proceedings of the IRE 47:1940-1951. 
 
Levinsohn (1909) Uber die Beziehungen der Grosshimrinde beim Affen zu den 

Bewegungen des Auges. Graefe Arch Ophthalm 71:313-378. 
 
Lins OG, Picton TW, Berg P, Scherg M (1993a) Ocular artifacts in EEG and event-

related potentials I: Scalp topography. Brain Topography 6:51-63. 
 
Lins OG, Picton TW, Berg P, Scherg M (1993b) Ocular artifacts in recording EEGs and 

event-related potentials II: Source dipoles and source components. Brain 
Topography 6:65-78. 

 
Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity 

related to performance monitoring and error detection in children with ADHD. 
Cortex 41:377-388. 

 
Lipton ML, Liszewski MC, O'Connell MN, Mills A, Smiley JF, Branch CA, Isler JR, 

Schroeder CE (2010) Interactions within the Hand Representation in Primary 
Somatosensory Cortex of Primates. Journal of Neuroscience 30:15895-15903. 

 
Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor 

integration for smooth pursuit eye movements. Annual Review of Neuroscience 
10:97-129. 

 
Lo CC, Boucher L, Paré M, Schall JD, Wang XJ (2009) Proactive inhibitory control and 

attractor dynamics in countermanding action: A spiking neural circuit model. 
Journal of Neuroscience 29:9059-9071. 

 

264 
 



Logan GD (1994) On the ability to inhibit thought and action: A users' guide to the stop 
signal paradigm. In: Inhibitory processes in attention, memory, and language 
(Dagenback D, Carr TH, eds), pp 189-239. San Diego: Academic Press. 

 
Logan GD, Cowan WB (1984) On the ability to inhibit thought and action - a theory of an 

act of control. Psychological Review 91:295-327. 
 
Logan GD, Irwin DE (2000) Don't look! Don't touch! Inhibitory control of eye and hand 

movements. Psychonomic Bulletin & Review 7:107-112. 
 
Logan GD, Crump MJC (2010) Cognitive illusions of authorship reveal hierarchical error 

detection in skilled typists. Science 330:683-686. 
 
Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 

453:869-878. 
 
Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annual Review of 

Physiology 66:735-769. 
 
Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical 

impedance spectrum in monkeys: Implications for signal propagation. Neuron 
55:809-823. 

 
Lorente de Nó R (1949) Cerebral cortex: architecture, intracortical connections, motor 

projections. Physiology of the nervous system:288-330. 
 
Lu X, Matsuzawa M, Hikosaka O (2002) A neural correlate of oculomotor sequences in 

supplementary eye field. Neuron 34:317-325. 
 
Luck SJ (2005) An introduction to the event-related potential technique. Cambridge, MA: 

MIT Press. 
 
Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate 

projections to the dorsal premotor areas F2 and F7 in the macaque monkey. 
European Journal of Neuroscience 17:559-578. 

 
Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G (1991) Multiple 

representations of body movements in mesial area 6 and the adjacent cingulate 
cortex: an intracortical microstimulation study in the macaque monkey. Journal of 
Comparative Neurology 311:463-482. 

 
Luu P, Pederson SM (2004) The anterior cingulate cortex: regulating actions in context. 

Cognitive neuroscience of attention:232-244. 
 
Luu P, Collins P, Tucker DM (2000) Mood, personality, and self-monitoring: negative 

affect and emotionality in relation to frontal lobe mechanisms of error monitoring. 
Journal of Experimental Psychology: General 129:43. 

 
Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C (2003) Electrophysiological 

responses to errors and feedback in the process of action regulation. 
Psychological Science 14:47-53. 

265 
 



 
Maier A, Aura CJ, Leopold DA (2011) Infragranular sources of sustained local field 

potential responses in macaque primary visual cortex. The Journal of 
Neuroscience 31:1971-1980. 

 
Maier AV, Adams GK, Aura C, Leopold DA (2010) Distinct superficial and deep laminar 

domains of activity in the visual cortex during rest and stimulation. Frontiers in 
Systems Neuroscience 4:1-11. 

 
Maioli MG, Squatrito S, Samolsky-Dekel BG, Riva Sanseverino E (1998) Corticocortical 

connections between frontal periarcuate regions and visual areas of the superior 
temporal sulcus and the adjoining inferior parietal lobule in the macaque monkey. 
Brain Research 789:118-125. 

 
Mann SE, Thau R, Schiller PH (1988) Conditional task-related responses in monkey 

dorsomedial frontal cortex. Experimental Brain Research 69:460-468. 
 
Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, 

Ercsey-Ravasz M, Pilaz LJ (2011) Weight consistency specifies regularities of 
macaque cortical networks. Cerebral Cortex 21:1254-1272. 

 
Markram H (2006) The blue brain project. Nature Reviews Neuroscience 7:153-160. 
 
Martinez-Conde S, Macknik SL, Hubel DH (2000) Microsaccadic eye movements and 

firing of single cells in the striate cortex of macaque monkeys. Nature 
Neuroscience 3:251-258. 

 
Martinez-Conde S, Macknik SL, Hubel DH (2002) The function of bursts of spikes during 

visual fixation in the awake primate lateral geniculate nucleus and primary visual 
cortex. Proceedings of the National Academy of Sciences 99:13920-13925. 

 
Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA (2006) Microsaccades 

counteract visual fading during fixation. Neuron 49:297-305. 
 
Martinez-Conde S, Macknik SL, Troncoso XG, Hubel DH (2009) Microsaccades: a 

neurophysiological analysis. Trends in Neurosciences 32:463-475. 
 
Martinez-Trujillo JC, Medendorp WP, Wang H, Crawford JD (2004) Frames of reference 

for eye-head gaze commands in primate supplementary eye fields. Neuron 
44:1057-1066. 

 
Masaki H, Falkenstein M, Stürmer B, Pinkpank T, Sommer W (2007) Does the error 

negativity reflect response conflict strength? Evidence from a Simon task. 
Psychophysiology 44:579-585. 

 
Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area-6 and 

the adjacent cingulate cortex in the macaque monkey. Journal of Comparative 
Neurology 311:445-462. 

 
Mathalon DH, Whitfield SL, Ford JM (2003) Anatomy of an error: ERP and fMRI. 

Biological Psychology 64:119-141. 

266 
 



 
Mathewson KJ, Dywan J, Segalowitz SJ (2005) Brain bases of error-related ERPs as 

influenced by age and task. Biological Psychology 70:88-104. 
 
Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward 

signals in dopamine neurons. Nature 447:1111-1115. 
 
Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal cell activity 

signaling prediction errors of action values. Nature Neuroscience 10:647-656. 
 
Matzke D, Dolan CV, Logan GD, Brown SD, Wagenmakers EJ (2012) Bayesian 

Parametric Estimation of Stop-Signal Reaction Time Distributions. Journal of 
Experimental Psychology. 

 
Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the 

macaque monkey. Journal of Neurophysiology 68:1332-1344. 
 
May JG, Andersen RA (1986) Different patterns of corticopontine projections from 

separate cortical fields within the inferior parietal lobule and dorsal prelunate 
gyrus of the macaque. Experimental Brain Research 63:265-278. 

 
McGarry T, Franks IM (1997) A horse race between independent processes: Evidence 

for a phantom point of no return in the preparation of a speeded motor response. 
Journal of Experimental Psychology-Human Perception and Performance 
23:1533-1542. 

 
McGarry T, Inglis JT, Franks IM (2000) Against a final ballistic process in the control of 

voluntary action: Evidence using the Hoffmann reflex. Motor Control 4:469-485. 
 
McHaffie JG, Stein BE (1982) Eye movements evoked by electrical stimulation in the 

superior colliculus of rats and hamsters. Brain Research 247:243-253. 
 
McPeek RM, Keller EL (2002) Superior colliculus activity related to concurrent 

processing of saccade goals in a visual search task. Journal of Neurophysiology 
87:1805-1815. 

 
McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of 

superior colliculus. Nature Neuroscience 7:757-763. 
 
Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain 

activation during a Go/NoGo response inhibition task. Human Brain Mapping 
12:131-143. 

 
Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following 

incorrect feedback in a time-estimation task: Evidence for a "generic" neural 
system for error detection. Journal of Cognitive Neuroscience 9:788-798. 

 
Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent 

response modulation across cell classes in macaque visual area V4. Neuron 
55:131-141. 

 

267 
 



Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor 
area: intracortical microstimulation mapping. The Journal of Neuroscience 
7:1010-1021. 

 
Mitz AR, Godschalk M (1989) Eye-movement representation in the frontal lobe of rhesus 

monkeys. Neuroscience Letters 106:157-162. 
 
Mitzdorf U (1985) Current source-density method and application in cat cerebral-cortex - 

Investigation of evoked-potentials and EEG phenomena. Physiological Reviews 
65:37-100. 

 
Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties in the visual-cortex 

of the macaque monkey - Current source density analysis of electrically evoked-
potentials. Journal of Comparative Neurology 187:71-83. 

 
Mohler CW, Wurtz RH (1977) Role of striate cortex and superior colliculus in visual 

guidance of saccadic eye movements in monkeys. Journal of Neurophysiology 
40:74-94. 

 
Moorman DE, Olson CR (2007) Combination of neuronal signals representing object-

centered location and saccade direction in macaque supplementary eye field. 
Journal of Neurophysiology 97:3554-3566. 

 
Morein-Zamir S, Kingstone A (2006) Fixation offset and stop signal intensity effects on 

saccadic countermanding: a crossmodal investigation. Experimental Brain 
Research 175:453-462. 

 
Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and 

physiology of the mammalian saccadic system. Progress in Neurobiology 
50:133-254. 

 
Moster ML, Goldberg G (1990) Topography of scalp potentials preceding self-initiated 

saccades. Neurology 40:644-648. 
 
Mott FW, Schaefer EA (1890) On associated eye-movements produced by cortical 

faradization of the monkey’s brain. Brain 13:165-173. 
 
Mountcastle VB (1957) Modality and topographic properties of single neurons of cat's 

somatic sensory cortex. J neurophysiol 20:408-434. 
 
Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701-722. 
 
Munoz DP, Guitton D (1991) Control of orienting gaze shifts by the tectoreticulospinal 

system in the head-free cat. II. Sustained discharges during motor preparation 
and fixation. J Neurophysiol 66:1624-1641. 

 
Munoz DP, Wurtz RH (1993a) Fixation cells in monkey superior colliculus. I. 

Characteristics of cell discharge. Journal of Neurophysiology 70:559–575. 
 
Munoz DP, Wurtz RH (1993b) Fixation cells in monkey superior colliculus .2. reversible 

activation and deactivation. Journal of Neurophysiology 70:576-589. 

268 
 



 
Munoz DP, Wurtz RH (1995) Saccade-related activity in monkey superior colliculus. I. 

Characteristics of burst and buildup cells. Journal of Neurophysiology 73:2313-
2333. 

 
Munoz DP, Schall JD (2004) Concurrent, distributed control of saccade initiation in the 

frontal eye field and superior colliculus. In: The Superior Colliculus: New 
Approaches For Studying Sensorimotor Integration (Hall WC, Moschovakis AK, 
eds), pp 55-82. Boca Raton, FL: CRC Press. 

 
Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control 

of eye movement. Nature Reviews Neuroscience 5:218-228. 
 
Munoz DP, Waitzman DM, Wurtz RH (1996) Activity of neurons in monkey superior 

colliculus during interrupted saccades. Journal of Neurophysiology 75:2562-
2580. 

 
Munoz DP, Dorris MC, Pare M, Everling S (2000) On your mark, get set: Brainstem 

circuitry underlying saccadic initiation. Canadian Journal of Physiology and 
Pharmacology 78:934-944. 

 
Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG (2009) Neural control of visual 

search by frontal eye field: effects of unexpected target displacement on visual 
selection and saccade preparation. Journal of Neurophysiology 101:2485-2506. 

 
Murthy A, Ray S, Shorter SM, Priddy EG, Schall JD, Thompson KG (2007) Frontal eye 

field contributions to rapid corrective Saccades. Journal of Neurophysiology 
97:1457-1469. 

 
Nakamura K, Roesch MR, Olson C R (2005) Neuronal activity in macaque SEF and 

ACC during performance of tasks involving conflict. Journal of Neurophysiology 
93:884–908. . 

 
Neggers SFW, Huijbers W, Vrijlandt CM, Vlaskamp BNS, Schutter DJLG, Kenemans JL 

(2007) TMS pulses on the frontal eye fields break coupling between visuospatial 
attention and eye movements. Journal of Neurophysiology 98:2765-2778. 

 
Neggers SFW, van Diepen RM, Zandbelt BB, Vink M, Mandl RCW, Gutteling TP (2012) 

A functional and structural investigation of the human fronto-basal volitional 
saccade network. Plos One 7. 

 
Nelson MJ, Boucher L, Logan GD, Palmeri TJ, Schall JD (2010) Nonindependent and 

nonstationary response times in stopping and stepping saccade tasks. Attention, 
Perception & Psychophysics 72:1913-1929. 

 
Nicholson C, Freeman JA (1975) Theory of current source-density analysis and 

determination of conductivity tensor for anuran cerebellum. Journal of 
Neurophysiology 38:356-368. 

 

269 
 



Nieuwenhuis S, Holroyd CB, Mol N, Coles MGH (2004) Reinforcement-related brain 
potentials from medial frontal cortex: origins and functional significance. 
Neuroscience and Biobehavioral Reviews 28:441-448. 

 
Nieuwenhuis S, Ridderinkhof KR, Blow J, Band GPH, Kok A (2001) Error-related brain 

potentials are differentially related to awareness of response errors: Evidence 
from an antisaccade task. Psychophysiology 38:752-760. 

 
Nieuwenhuis S, Ridderinkhof KR, Talsma D, Coles MGH, Holroyd CB, Kok A, Van der 

Molen MW (2002) A computational account of altered error processing in older 
age: dopamine and the error-related negativity. Cognitive, Affective, & Behavioral 
Neuroscience 2:19-36. 

 
Niki H, Watanabe M (1979) Prefrontal and cingulate unit-activity during timing behavior 

in the monkey. Brain Research 171:213-224. 
 
Norman DA, Shallice T (1980) Attention to action: Willed and automatic control of 

behavior. In: DTIC Document. 
 
Nosofsky RM, Palmeri TJ (1997) An exemplar-based random walk model of speeded 

classification. Psychological Review; Psychological Review 104:266. 
 
Nouraei SAR, de Pennington N, Jones JG, Carpenter RHS (2003) Dose-related effect of 

sevoflurane sedation on higher control of eye movements and decision making. 
British Journal of Anaesthesia 91:175-183. 

 
Nunez Castellar E, Kuhn S, Fias W, Notebaert W (2010) Outcome expectancy and not 

accuracy determines posterror slowing: ERP support. Cognitive Affective & 
Behavioral Neuroscience 10:270-278. 

 
Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG: 

Oxford University Press. 
 
Ohmae S, Lu X, Takahashi T, Uchida Y, Kitazawa S (2008) Neuronal activity related to 

anticipated and elapsed time in macaque supplementary eye field. Experimental 
Brain Research 184:593-598. 

 
Oliveira FTP, McDonald JJ, Goodman D (2007) Performance monitoring in the anterior 

cingulate is not all error related: expectancy deviation and the representation of 
action-outcome associations. Journal of Cognitive Neuroscience 19:1994-2004. 

 
Olsen SR, Bortone DS, Adesnik H, Scanziani M (2012) Gain control by layer six in 

cortical circuits of vision. Nature 483:47-52. 
 
Olson CR, Gettner SN (1995) Object-centered direction selectivity in the macaque 

supplementary eye field. Science 269:985-988. 
 
Olson CR, Gettner SN (1999) Macaque SEF neurons encode object-centered directions 

of eye movements regardless of the visual attributes of instructional cues. 
Journal of Neurophysiology 81:2340-2346. 

 

270 
 



Olson CR, Gettner SN (2002) Neuronal activity related to rule and conflict in macaque 
supplementary eye field. Physiology & behavior 77:663-670. 

 
Olvet DM, Hajcak G (2009) The stability of error-related brain activity with increasing 

trials. Psychophysiology 46:957-961. 
 
Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate 

saccadic system. Journal of Neurophysiology 44:1058-1076. 
 
Ottes FP, Van Gisbergen JAM, Eggermont JJ (1986) Visuomotor fields of the superior 

colliculus: a quantitative model. Vision Research 26:857-873. 
 
Overbeek TrsJM, Nieuwenhuis S, Ridderinkhof KR (2005) Dissociable components of 

error processing: On the functional significance of the Pe vis-à-vis the ERN/Ne. 
Journal of Psychophysiology 19:319. 

 
Ozyurt J, Colonius H, Arndt PA (2003) Countermanding saccades: Evidence against 

independent processing of go and stop signals. Perception & Psychophysics 
65:420-428. 

 
Papez JW (1937) A proposed mechanism of emotion. Archives of Neurology and 

Psychiatry 38:725. 
 
Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex 

mediates processing selection in the Stroop attentional conflict paradigm. 
Proceedings of the National Academy of Sciences 87:256-259. 

 
Paré M, Guitton D (1994) The fixation area of the cat superior colliculus - effects of 

electrical-stimulation and direct connection with brain-stem omnipause neuron. 
Experimental Brain Research 101:109-122. 

 
Paré M, Hanes DP (2003) Controlled movement processing: Superior colliculus activity 

associated with countermanded saccades. Journal of Neuroscience 23:6480-
6489. 

 
Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic 

tomography (sLORETA): Technical details. Methods and Findings in 
Experimental and Clinical Pharmacology 24:5-12. 

 
Passingham RE, Bengtsson SL, Lau HC (2010) Medial frontal cortex: from self-

generated action to reflection on one's own performance. Trends in Cognitive 
Sciences 14:16-21. 

 
Paus T (1996) Location and function of the human frontal eye-field: a selective review. 

Neuropsychologia 34:475-483. 
 
Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate 

cortex in the control of oculomotor, manual, and speech responses: a positron 
emission tomography study. Journal of Neurophysiology 70:453–469. 

 

271 
 



Paxinos G, Huang X-F, Toga AW (2000) The rhesus monkey brain in stereotaxic 
coordinates. San Diego, CA: Academic Press  

 
Pennartz C (1995) The ascending neuromodulatory systems in learning by 

reinforcement: Comparing computational conjectures with experimental findings. 
Brain Research Reviews 21:219-245. 

 
Petersen CCH, Crochet S (2013) Synaptic computation and sensory processing in 

neocortical layer 2/3. Neuron 78:28-48. 
 
Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density 

estimation based on inversion of electrostatic forward solution: effects of finite 
extent of neuronal activity and conductivity discontinuities. Journal of 
Neuroscience Methods 154:116-133. 

 
Phillips JM, Johnston K, Everling S (2010) Effects of anterior cingulate microstimulation 

on pro-and antisaccades in nonhuman primates. Journal of Cognitive 
Neuroscience 23:481-490. 

 
Picton TW, van Roon P, Armilio ML, Berg P, Ille N, Scherg M (2000) Blinks, saccades, 

extraocular muscles and visual evoked potentials (reply to Verleger). Journal of 
Psychophysiology 14:210-217. 

 
Platt JR (1964) Strong inference. Science 146:347-353. 
 
Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. 

Nature 400:233-238. 
 
Pochon J-B, Riis J, Sanfey AG, Nystrom LE, Cohen JD (2008) Functional imaging of 

decision conflict. The Journal of Neuroscience 28:3468-3473. 
 
Porter JD, Andrade FH, Baker RS (2003) The extraocular muscles. In: Adler's 

physiology of the eye, 10 Edition (Kaufman PL, Alm A, eds), pp 787-817. St. 
Louis: Mosby. 

 
Posner MI (1980) Orienting of attention. Quarterly Journal of Experimental Psychology 

32:3-25. 
 
Posner MI, Cohen Y (1984) Components of visual orienting. In: Attention and 

performance (Bouma H, Bouwhuis D, eds), pp 531-556: Erlbaum. 
 
Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations 

in the human brain. Science 240:1627-1631. 
 
Potts GF, Martin LE, Burton P, Montague PR (2006) When things are better or worse 

than expected: the medial frontal cortex and the allocation of processing 
resources. Journal of Cognitive Neuroscience 18:1112-1119. 

 
Pouget P, Emeric EE, Stuphorn V, Reis K, Schall JD (2005) Chronometry of visual 

responses in frontal eye field, supplementary eye field, and anterior cingulate 
cortex. Journal of Neurophysiology 94:2086-2092. 

272 
 



 
Pouget P, Logan GD, Palmeri TJ, Boucher L, Paré M, Schall JD (2011) Neural basis of 

adaptive response time adjustment during saccade countermanding. Journal of 
Neuroscience 31:12604-12612. 

 
Pouget P, Stepniewska I, Crowder EA, Leslie MW, Emeric EE, Nelson MJ, Schall JD 

(2009) Visual and motor connectivity and the distribution of calcium-binding 
proteins in macaque frontal eye field: implications for saccade target selection. 
Frontiers in Neuroanatomy 3. 

 
Powell TP, Mountcastle VB (1959) Some aspects of the functional organization of the 

cortex of the postcentral gyrus of the monkey: a correlation of findings obtained 
in a single unit analysis with cytoarchitecture. Bulletin of the Johns Hopkins 
Hospital 105:133. 

 
Purcell BA, Weigand PK, Schall JD (2012a) Supplementary eye field during visual 

search: salience, cognitive control, and performance monitoring. The Journal of 
Neuroscience 32:10273-10285. 

 
Purcell BA, Schall JD, Logan GD, Palmeri TJ (2012b) From salience to saccades: 

multiple-alternative gated stochastic accumulator model of visual search. The 
Journal of Neuroscience 32:3433-3446. 

 
Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ (2010) Neurally 

constrained modeling of perceptual decision making. Psychological Review 
117:1113. 

 
Quaia C, Optican LM (2003) Three-dimensional rotations of the eye. In: Adler's 

physiology of the eye (Kaufman PL, Alm A, eds), pp 818-829. St. Louis: Mosby. 
 
Quaia C, Ying HS, Optican LM (2009) The viscoelastic properties of passive eye muscle 

in primates. III: force elicited by natural elongations. PLoS One 5:A236-A254. 
 
Quilodran R, Rothe M, Procyk E (2008) Behavioral shifts and action valuation in the 

anterior cingulate cortex. Neuron 57:314-325. 
 
Rabbitt P, Rodgers B (1977) What does a man do after he makes an error? An analysis 

of response programming. The Quarterly Journal of Experimental Psychology 
29:727-743. 

 
Rabbitt PM (1966) Errors and error correction in choice-response tasks. Journal of 

Experimental Psychology 71:264. 
 
Rafal RD, Calabresi PA, Cameron CW, Sciolto TK (1989) Saccade preparation inhibits 

reorienting to recently attended locations. Journal of Experimental Psychology: 
Human Perception and Performance 15:673-685. 

 
Raiguel SE, Xiao DK, Marcar VL, Orban GA (1999) Response latency of macaque area 

MT/V5 neurons and its relationship to stimulus parameters. Journal of 
Neurophysiology 82:1944-1956. 

 

273 
 



Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. 
Psychological Science 9:347-356. 

 
Ray S, Pouget P, Schall JD (2009) Functional distinction between visuomovement and 

movement neurons in macaque frontal eye field during saccade countermanding. 
Journal of Neurophysiology 102:3091-3100. 

 
Rayner K (1998) Eye movements in reading and information processing: 20 years of 

research. Psychological bulletin 124:372. 
 
Rayner K, Pollatsek AW (1989) The psychology of reading. Englewood Cliffs, NJ: 

Prentice Hall. 
 
Reader T, Ferron A, Descarries L, Jasper HH (1979) Modulatory role for biogenic 

amines in the cerebral cortex. Microiontophoretic studies. Brain Research 
160:217-229. 

 
Redgrave P, Prescott TJ, Gurney K (1999a) The basal ganglia: A vertebrate solution to 

the selection problem? Neuroscience 89:1009-1023. 
 
Redgrave P, Prescott TJ, Gurney K (1999b) Is the short-latency dopamine response too 

short to signal reward error? Trends in Neurosciences 22:146-151. 
 
Reinhart RMG, Carlisle NB, Kang MS, Woodman GF (2012) Event-related potentials 

elicited by errors during the stop-signal task. II: Human effector specific error 
responses. J Neurophysiol. 

 
Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations in the 

effectiveness of reinforcement and nonreinforcement. Classical conditioning II: 
Current research and theory:64-99. 

 
Riba J, Rodriguez-Fornells A, Munte TF, Barbanoj MJ (2005a) A neurophysiological 

study of the detrimental effects of alprazolam on human action monitoring. 
Cognitive Brain Research 25:554-565. 

 
Riba J, Rodriguez-Fornells A, Morte A, Munte TF, Barbanoj MJ (2005b) Noradrenergic 

stimulation enhances human action monitoring. Journal of Neuroscience 
25:4370-4374. 

 
Richardson NR, Gratton A (1998) Changes in medial prefrontal cortical dopamine levels 

associated with response-contingent food reward: an electrochemical study in 
rat. The Journal of Neuroscience 18:9130-9138. 

 
Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuiss S (2004) The role of the medial 

frontal cortex in cognitive control. Science 306:443-447. 
 
Ridderinkhof KR, de Vlugt Y, Bramlage A, Spaan M, Elton M, Snel J, Band GPH (2002) 

Alcohol consumption impairs detection of performance errors in mediofrontal 
cortex. Science 298:2209-2211. 

 

274 
 



Riemslag FCC, Vanderheijde GL, Vandongen MMMM, Ottenhoff F (1988) On the origin 
of the presaccadic spike potential. Electroencephalography and Clinical 
Neurophysiology 70:281-287. 

 
Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima 

R (2012) Pitfalls in the dipolar model for the neocortical EEG sources. Journal of 
Neurophysiology 108:956-975. 

 
Riggs LA, Armington JC, Ratliff F (1954) Motions of the retinal image during fixation. 

Journal of the Optical Society of America 44:315-321. 
 
Robinson DA (1964) The mechanics of human saccadic eye movement. Journal of 

Physiology 174:245-264. 
 
Robinson DA (1970) Oculomotor unit behavior in monkey. Journal of Neurophysiology 

33:393-&. 
 
Robinson DA (1972) Eye-movements evoked by collicular stimulation in alert monkey. 

Vision Research 12:1795-1808. 
 
Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye 

fields. Journal of Neurophysiology. 
 
Robinson DL, McClurkin JW (1989) The visual superior colliculus and pulvinar. In: The 

neurobiology of saccadic eye movements (Wurtz RH, Goldberg ME, eds), pp 
337-356. Amsterdam: Elsevier. 

 
Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the 

neocortex. Brain 103:221-244. 
 
Rockland KS (2009) Five points on columns. Frontiers in Neuroanatomy 4. 
 
Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical 

connections of the occipital lobe in the rhesus monkey. Brain Research 179:3-20. 
 
Rockland KS, Ichinohe N (2004) Some thoughts on cortical minicolumns. Experimental 

Brain Research 158:265-277. 
 
Rodriguez-Fornells A, Kurzbuch AR, Munte TF (2002) Time course of error detection 

and correction in humans: Neurophysiological evidence. Journal of Neuroscience 
22:9990-9996. 

 
Roesch MR, Olson CR (2003) Impact of expected reward on neuronal activity in 

prefrontal cortex, frontal and supplementary eye fields and premotor cortex. 
Journal of Neurophysiology 90:1766-1789. 

 
Rolfs M, Kliegl R, Engbert R (2008) Toward a model of microsaccade generation: The 

case of microsaccadic inhibition. Journal of Vision 8:1-23. 
 

275 
 



Rushworth MFS, Hadland KA, Gaffan D, Passingham RE (2003) The effect of cingulate 
cortex lesions on task switching and working memory. Journal of Cognitive 
Neuroscience 15:338-353. 

 
Rushworth MFS, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and 

decisions in the medial frontal cortex. Trends in Cognitive Sciences 8:410-417. 
 
Russo GS, Bruce CJ (1993) Effect of eye position within the orbit on electrically elicited 

saccadic eye movements: a comparison of the macaque monkey's frontal and 
supplementary eye fields. Journal of Neurophysiology 69:800-818. 

 
Russo GS, Bruce CJ (1996) Neurons in the supplementary eye field of rhesus monkeys 

code visual targets and saccadic eye movements in an oculocentric coordinate 
system. Journal of Neurophysiology 76:825-848. 

 
Russo GS, Bruce CJ (2000) Supplementary eye field: representation of saccades and 

relationship between neural response fields and elicited eye movements. Journal 
of Neurophysiology 84:2605-2621. 

 
Sander V, Soper B, Everling S (2010) Nonhuman primate event-related potentials 

associated with pro- and anti-saccades. Neuroimage 49:1650-1658. 
 
Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for 

saccadic eye movement. Journal of the Optical Society of America 57:1024-
1029. 

 
Sato T, Murthy A, Thompson KG, Schall JD (2001) Search efficiency but not response 

interference affects visual selection in frontal eye field. Neuron 30:583-591. 
 
Scangos KW, Stuphorn V (2010) Medial frontal cortex motivates but does not control 

movement initiation in the countermanding task. Journal of Neuroscience 
30:1968-1982. 

 
Schaefer KP (1970) Unit analysis and electrical stimulation in the optic tectum of rabbits 

and cats. Brain, Behavior and Evolution 3:222-240. 
 
Schafer RJ, Moore T (2011) Selective attention from voluntary control of neurons in 

prefrontal cortex. Science 332:1568-1571. 
 
Schall JD (1991a) Neuronal activity related to visually guided saccadic eye movements 

in the supplementary motor area of rhesus monkeys. Journal of Neurophysiology 
66:530-558. 

 
Schall JD (1991b) Neuronal-activity related to visually guided saccades in the frontal eye 

fields of rhesus-monkeys - comparison with supplementary eye fields. Journal of 
Neurophysiology 66:559-579. 

 
Schall JD (1995) Neural basis of saccade target selection. Reviews in the 

Neurosciences 6:63-85. 
 

276 
 



Schall JD (2004) On the role of frontal eye field in guiding attention and saccades. Vision 
Research 44:1453-1467. 

 
Schall JD, Hanes DP (1993) Neural basis of saccade target selection in frontal eye field 

during visual search. Nature 366:467-469. 
 
Schall JD, Boucher L (2007) Executive control of gaze by the frontal lobes. Cognitive 

Affective & Behavioral Neuroscience 7:396-412. 
 
Schall JD, Emeric EE (2010) Conflict in cingulate cortex function between humans and 

macaque monkeys: more apparent than real. Comment on "Cingulate cortex: 
diverging data from humans and monkeys. Brain, Behavior and Evolution 
75:237–238. 

 
Schall JD, Godlove DC (2012) Current advances and pressing problems in studies of 

stopping. Current Opinion in Neurobiology. 
 
Schall JD, Morel A, Kaas JH (1993) Topography of supplementary eye field afferents to 

frontal eye field in macaque: implications for mapping between saccade 
coordinate systems. Visual Neuroscience 10:385-393. 

 
Schall JD, Stuphorn V, Brown JW (2002) Monitoring and control of action by the frontal 

lobes. Neuron 36:309-322. 
 
Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections 

with frontal eye field in macaque: convergence and segregation of processing 
streams. The Journal of Neuroscience 15:4464-4487. 

 
Schall JD, Purcell BA, Heitz RP, Logan GD, Palmeri TJ (2012) Neural mechanisms of 

saccade target selection: gated accumulator model of the visualâ€“motor 
cascade. European Journal of Neuroscience 33:1991-2002. 

 
Schiller PH, True SD, Conway JL (1979) Effects of frontal eye field and superior 

colliculus ablations on eye movements. Science 206:590-592. 
 
Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal 

eye-field and superior colliculus ablations. Journal of Neurophysiology 44:1175-
1189. 

 
Schlag-Rey M, Amador N, Sanchez H, Schlag J (1997) Antisaccade performance 

predicted by neuronal activity in the supplementary eye field. Nature 390:398-
401. 

 
Schlag J, Schlag-Rey M (1987) Evidence for a Supplementary Eye Field. Journal of 

Neurophysiology 57:179-200. 
 
Schlag J, Schlag-Rey M, Pigarev I (1992) Supplementary eye field: influence of eye 

position on neural signals of fixation. Experimental Brain Research 90:302-306. 
 

277 
 



Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis 
pontis from posterior parietal association cortices in rhesus-monkey. Journal of 
Comparative Neurology 289:53-73. 

 
Schnyder H, Reisine H, Hepp K, Henn V (1985) Frontal eye field projection to the 

paramedian pontine reticular formation traced with wheat germ agglutinin in the 
monkey. Brain Research 329:151-160. 

 
Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system 

activation revealed by current source density analysis in the awake macaque. 
Cerebral Cortex 8:575-592. 

 
Schroeder CE, Tenke CE, Arezzo JC, Vaughan Jr HG (1989) Timing and distribution of 

flash-evoked activity in the lateral geniculate nucleus of the alert monkey. Brain 
Research 477:183-195. 

 
Schultz W (1998) Predictive reward signal of dopamine neurons. Journal of 

Neurophysiology 80:1-27. 
 
Schultz W (2013) Updating dopamine reward signals. Current Opinion in Neurobiology 

23:229-238. 
 
Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to 

reward and conditioned stimuli during successive steps of learning a delayed 
response task. The Journal of Neuroscience 13:900-913. 

 
Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. 

Science 275:1593-1599. 
 
Scudder CA, Kaneko CRS, Fuchs AF (2002) The brainstem burst generator for saccadic 

eye movements - A modern synthesis. Experimental Brain Research 142:439-
462. 

 
Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine 

modulation in the prefrontal cortex. Progress in neurobiology 74:1-58. 
 
Segraves MA (1992) Activity of monkey frontal eye field neurons projecting to 

oculomotor regions of the pons. Journal of Neurophysiology 68:1967-1985. 
 
Segraves MA, Goldberg ME (1987) Functional-properties of corticotectal neurons in the 

monkeys frontal eye field. Journal of Neurophysiology 58:1387-1419. 
 
Seo H, Lee D (2007) Temporal filtering of reward signals in the dorsal anterior cingulate 

cortex during a mixed-strategy game. The Journal of Neuroscience 27:8366-
8377. 

 
Seo H, Lee D (2009) Behavioral and neural changes after gains and losses of 

conditioned reinforcers. The Journal of Neuroscience 29:3627-3641. 
 
Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. Journal of 

Neuroscience Methods 186:262-273. 

278 
 



 
Sharp DJ, Bonnelle V, De Boissezon X, Beckmann CF, James SG, Patel MC, Mehta MA 

(2010) Distinct frontal systems for response inhibition, attentional capture, and 
error processing. Proceedings of the National Academy of Sciences of the United 
States of America 107:6106-6111. 

 
Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement 

selection based on reward. Science 282:1335-1338. 
 
Shinoda Y, Sugiuchi Y, Takahashi M, Izawa Y (2011) Neural substrate for suppression 

of omnipause neurons at the onset of saccades. Annals of the New York 
Academy of Sciences 1233:100-106. 

 
Shipp S (2005) The importance of being agranular: a comparative account of visual and 

motor cortex. Philosophical Transactions of the Royal Society B: Biological 
Sciences 360:797-814. 

 
Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior 

parietal cortex in the macaque monkey: cortical connections of areas V6 and 
V6A. European Journal of Neuroscience 10:3171-3193. 

 
Shook BL, Schlag-Rey M, Schlag J (1988) Direct projection from the supplementary eye 

field to the nucleus raphe interpositus. Experimental Brain Research 73:215-218. 
 
Shook BL, Schlagrey M, Schlag J (1990) Primate supplementary eye field .1. 

comparative aspects of mesencephalic and pontine connections. Journal of 
Comparative Neurology 301:618-642. 

 
Silberberg G, Gupta A, Markram H (2002) Stereotypy in neocortical microcircuits. Trends 

in Neurosciences 25:227-230. 
 
Sklavos S, Porrill J, Kaneko CRS, Dean P (2005) Evidence for wide range of time scales 

in oculomotor plant dynamics: Implications for models of eye-movement control. 
Vision Research 45:1525-1542. 

 
Smith MA, Sommer MA (2013) Spatial and Temporal Scales of Neuronal Correlation in 

Visual Area V4. The Journal of Neuroscience 33:5422-5432. 
 
Snodderly D, Kagan I, Gur M (2001) Selective activation of visual cortex neurons by 

fixational eye movements: Implications for neural coding. Visual Neuroscience 
18:259-277. 

 
So NY, Stuphorn V (2010) Supplementary eye field encodes option and action value for 

saccades with variable reward. Journal of Neurophysiology 104:2634-2653. 
 
Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of 

movements. Science 296:1480-1482. 
 
Sommer MA, Wurtz RH (2008) Brain circuits for the internal monitoring of movements. 

Annual review of neuroscience 31:317. 
 

279 
 



Spaak E, Bonnefond M, Maier A, Leopold DA, Jensen O (2012) Layer-specific 
entrainment of gamma-band neural activity by the alpha rhythm in monkey visual 
cortex. Current Biology. 

 
Sparks DL (2002) The brainstem control of saccadic eye movements. Nature Reviews 

Neuroscience 3:952-964. 
 
Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. In: The 

neurobiology of saccadic eye movements (Wurtz RH, Goldberg ME, eds), pp 
213-245. Amsterdam: Elsevier. 

 
Stahl J, Gibbons H (2007) Dynamics of response-conflict monitoring and individual 

differences in response control and behavioral control: an electrophysiological 
investigation using a stop-signal task. Clinical Neurophysiology 118:581-596. 

 
Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque 

monkey .2. topography of terminal fields in midbrain and pons. Journal of 
Comparative Neurology 271:493-506. 

 
Stanton GB, Bruce CJ, Goldberg ME (1993) Topography of projections to the frontal 

lobe from the macaque frontal eye fields. Journal of Comparative Neurology 
330:286-301. 

 
Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior 

cortical areas from the macaque frontal eye fields. Journal of Comparative 
Neurology 353:291-305. 

 
Stanton GB, Deng SY, Goldberg EM, McMullen NT (1989) Cytoarchitectural 

characteristic of the frontal eye fields in macaque monkeys. Journal of 
Comparative Neurology 282:415-427. 

 
Stein BE, Meredith MA (1993) The merging of the senses. Cambridge, MA: MIT Press. 
 
Stein BE, Stanford TR (2008) Multisensory integration: current issues from the 

perspective of the single neuron. Nature Reviews Neuroscience 9:255-266. 
 
Steinman RM, Haddad GM, Skavenski AA, Wyman D (1973) Miniature eye movement. 

Science 181:810-819. 
 
Stemmer B, Segalowitz SJ, Witzke W, Schönle PW (2004) Error detection in patients 

with lesions to the medial prefrontal cortex: an ERP study. Neuropsychologia 
42:118-130. 

 
Stemmers B, Segalowitz, S.J., Witzke, W., Lacher, S., Schönle, P.W., (2000) Do 

patients with damage to the anterior cingulate and adjacent regions produce an 
error-related negativity (ERN)? Psychophysiology 37:S95. 

 
Stevenson SA, Elsley JK, Corneil BD (2009) A "gap effect" on stop signal reaction times 

in a human saccadic countermanding task. Journal of Neurophysiology 101:580-
590. 

 

280 
 



Stroop JR (1935) Studies of interference in serial verbal reactions. Journal of 
experimental psychology 18:643. 

 
Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the 

supplementary eye field. Nature Neuroscience 9:925-931. 
 
Stuphorn V, Emeric EE (2012) Proactive and reactive control by the medial frontal 

cortex. Frontiers in Neuroengineering 5. 
 
Stuphorn V, Taylor TL, Schall JD (2000) Performance monitoring by the supplementary 

eye field. Nature 408:857-860. 
 
Stuphorn V, Brown JW, Schall JD (2010) Role of supplementary eye field in saccade 

initiation: executive, not direct, control. Journal of Neurophysiology 103:801-816. 
 
Sugiuchi Y, Izawa Y, Takahashi M, Na J, Shinoda Y (2007) Controversy on "fixation 

zone" of the superior colliculus. Neuro-Ophthalmology 31:147-155. 
 
Sutton RS, Barto AG (1998) Reinforcement learning: An introduction: Cambridge Univ 

Press. 
 
Swick D, Turken U (2002) Dissociation between conflict detection and error monitoring in 

the human anterior cingulate cortex. Proceedings of the National Academy of 
Sciences 99:16354-16359. 

 
Syka J, Radil-Weiss T (1971) Electrical stimulation of the tectum in freely moving cats. 

Brain Research 28:567-572. 
 
Sylvestre PA, Choi JTL, Cullen KE (2003) Discharge dynamics of oculomotor neural 

integrator neurons during conjugate and disjunctive saccades and fixation. 
Journal of Neurophysiology 90:739-754. 

 
Szentagothai J (1978) The Ferrier lecture, 1977: the neuron network of the cerebral 

cortex: a functional interpretation. Proceedings of the Royal Society of London 
Series B, Biological Sciences:219-248. 

 
Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on 

eye movements in primate: saccades. Journal of Neurophysiology 80:1911-1931. 
 
Taylor SF, Stern ER, Gehring WJ (2007) Neural systems for error monitoring: Recent 

findings and theoretical perspectives. Neuroscientist 13:160-172. 
 
Tehovnik EJ, Yeomans JS (1986) Two converging brainstem pathways mediating 

circling behavior. Brain Research 385:329-342. 
 
Tehovnik EJ, Lee K (1993) The dorsomedial frontal cortex of the rhesus monkey: 

topographic representation of saccades evoked by electrical stimulation. 
Experimental Brain Research 96:430-442. 

 

281 
 



Tehovnik EJ, Lee K, Schiller PH (1994) Stimulation-evoked saccades from the 
dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal 
eye fields and superior colliculus. Experimental Brain Research 98:179-190. 

 
Tehovnik EJ, Slocum WM, Schiller PH (1999) Behavioural conditions affecting saccadic 

eye movements elicited electrically from the frontal lobes of primates. European 
Journal of Neuroscience 11:2431-2443. 

 
Tehovnik EJ, Slocum WM, Tolias AS, Schiller PH (1998) Saccades induced electrically 

from the dorsomedial frontal cortex: evidence for a head-centered representation. 
Brain Research 795:287-291. 

 
Thickbroom GW, Mastaglia FL (1985) Presaccadic spike potential - investigation of 

topography and source. Brain Research 339:271-280. 
 
Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor 

processing stages identified in the activity of macaque frontal eye field neurons 
during visual search. Journal of Neurophysiology 76:4040-4055. 

 
Thomson AM, West DC, Wang Y, Bannister AP (2002) Synaptic connections and small 

circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and 
cat neocortex: triple intracellular recordings and biocytin labelling in vitro. 
Cerebral Cortex 12:936-953. 

 
Thorndike EL (1898) Animal intelligence: An experimental study of the associative 

processes in animals. Psychological Monographs: General and Applied 2:i-109. 
 
Thorndike EL (1927) The law of effect. The American Journal of Psychology 39:212-222. 
 
Tieges Z, Richard Ridderinkhof K, Snel J, Kok A (2004) Caffeine strengthens action 

monitoring: evidence from the error-related negativity. Cognitive brain research 
21:87-93. 

 
Tremblay Lo, Gettner SN, Olson CR (2002) Neurons with object-centered spatial 

selectivity in macaque SEF: Do they represent locations or rules? Journal of 
Neurophysiology 87:333-350. 

 
Troxler D (1804) Ophthalmologische Bibliothek. Jena: Springer. 
 
Tse PU, Sheinberg DS, Logothetis NK (2004) The, distribution of microsaccade 

directions need not reveal the location of attention - Reply to Rolfs, Engbert, and 
Kliegl. Psychological Science 15:708-710. 

 
Tu TA, Keating EG (2000) Electrical stimulation of the frontal eye field in a monkey 

produces combined eye and head movements. Journal of Neurophysiology 
84:1103-1106. 

 
Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical 

dopamine system. Progress in Neurobiology 63:241-320. 
 

282 
 



Ullsperger M (2006) Performance monitoring in neurological and psychiatric patients. 
International Journal of Psychophysiology 59:59-69. 

 
Ullsperger M, von Cramon DY (2001) Subprocesses of performance monitoring: a 

dissociation of error processing and response competition revealed by event-
related fMRI and ERPs. Neuroimage 14:1387-1401. 

 
Ullsperger M, von Cramon DY (2006) The role of intact frontostriatal circuits in error 

processing. Journal of Cognitive Neuroscience 18:651-664. 
 
Ullsperger M, von Cramon DY, Müller NG (2002) Interactions of focal cortical lesions 

with error processing: evidence from event-related brain potentials. 
Neuropsychology 16:548. 

 
Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, 

competing accumulator model. Psychological Review 108:550. 
 
Valentine DE, Sinha SR, Moss CF (2002) Orienting responses and vocalizations 

produced by microstimulation in the superior colliculus of the echolocating bat, 
Eptesicus fuscus. Journal of Comparative Physiology A 188:89-108. 

 
Valsecchi M, Turatto M (2007) Microsaccadic response to visual events that are invisible 

to the superior colliculus. Behavioral Neuroscience 121:786-793. 
 
van Boxtel GJM, Van Der Molen MW, Jennings JR (2005) Differential involvement of the 

anterior cingulate cortex in performance monitoring during a stop-signal task. 
Journal of Psychophysiology 19:1–10. 

 
van Boxtel GJM, van der Molen MW, Jennings JR, Brunia CHM (2001) A 

psychophysiological analysis of inhibitory motor control in the stop-signal 
paradigm. Biological Psychology 58:229-262. 

 
van Veen V, Carter CS (2002) The timing of action-monitoring processes in the anterior 

cingulate cortex. Journal of Cognitive Neuroscience 14:593-602. 
 
Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. 

Trends in Cognitive Sciences 12:418-424. 
 
Vigneswaran G, Kraskov A, Lemon RN (2011) Large identified pyramidal cells in 

macaque motor and premotor cortex exhibit "thin spikes" : implications for cell 
type classification. The Journal of Neuroscience 31:14235-14242. 

 
Vocat R, Pourtois G, Vuilleumier P (2008) Unavoidable errors: A spatio-temporal 

analysis of time-course and neural sources of evoked potentials associated with 
error processing in a speeded task. Neuropsychologia 46:2545-2555. 

 
Vogt BA (1993) Structural organization of cingulate cortex: areas, neurons, and 

somatodendritic transmitter receptors. Neurobiology of cingulate cortex and 
limbic thalamus: A comprehensive handbook:19-70. 

 

283 
 



Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: II. Cortical 
afferents. Journal of Comparative Neurology 262:271-289. 

 
Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface 

features, flat maps, and cytoarchitecture. Journal of Comparative Neurology 
359:490-506. 

 
Vogt BA, Vogt L, Farber NB, Bush G (2005) Architecture and neurocytology of monkey 

cingulate gyrus. Journal of Comparative Neurology 485:218-239. 
 
von Economo CF, Parker S (1929) The cytoarchitectonics of the human cerebral cortex: 

Humphrey Milford. 
 
Voogd J, Barmack NH (2006) Oculomotor cerebellum. Progress in brain research 

151:231-268. 
 
Wagner M, Fuchs M, Kastner J (2007) SWARM: sLORETA-weighted accurate minimum 

norm inverse solutions. International Congress Series 1300:185-188. 
 
Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque 

monkey. Journal of Comparative Neurology 73:59-86. 
 
Walls GL (1942) The vertebrate eye and its adaptive radiation. Bloomfield Hills, Mich: 

Cranbrook Institute of Science. 
 
Walton MMG, Gandhi NJ (2006) Behavioral evaluation of movement cancellation. 

Journal of Neurophysiology 96:2011-2024. 
 
Walton MMG, Sparks DL, Gandhi NJ (2005) Simulations of saccade curvature by 

models that place superior colliculus upstream from the local feedback loop. 
Journal of Neurophysiology 93:2354-2358. 

 
West R, Travers S (2008) Tracking the temporal dynamics of updating cognitive control: 

An examination of error processing. Cerebral Cortex 18:1112-1124. 
 
Westheimer G (1954) Eye movement responses to a horizontally moving visual stimulus. 

Archives of Ophthalmology 52:932. 
 
Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic 

innervation of the primate frontal cortex using a dopamine-specific antibody. 
Cerebral Cortex 3:199-222. 

 
Winterson BJ, Collewun H (1976) Microsaccades during finely guided visuomotor tasks. 

Vision Research 16:1387-1390. 
 
Womelsdorf T, Johnston K, Vinck M, Everling S (2010) Theta-activity in anterior 

cingulate cortex predicts task rules and their adjustments following errors. 
Proceedings of the National Academy of Sciences 107:5248-5253. 

 
Wong-Lin K, Eckhoff P, Holmes P, Cohen JD (2010) Optimal performance in a 

countermanding saccade task. Brain Research 1318:178-187. 

284 
 



285 
 

 
Woodman GF (2010) Masked targets trigger event-related potentials indexing shifts of 

attention but not error detection. Psychophysiology 47:410-414. 
 
Woodman GF (2011) Homologues of human event-related potential components in 

nonhuman primates. In: Oxford handbook of event-related potential components 
(Luck SJ, Kappenman E, eds). New York: Oxford University Press. 

 
Woodman GF, Kang MS, Rossi AF, Schall JD (2007) Nonhuman primate event-related 

potentials indexing covert shifts of attention. Proc Natl Acad Sci U S A 
104:15111-15116. 

 
Wurtz RH, Goldberg ME (1972) Acitvity of superior colliculus in behaving monkey .3. 

cells discharging before eye-movements. Journal of Neurophysiology 35:575-
586. 

 
Xing D, Yeh C-I, Burns S, Shapley RM (2012) Laminar analysis of visually evoked 

activity in the primary visual cortex. Proceedings of the National Academy of 
Sciences 109:13871-13876. 

 
Yang S-n, Hwang H, Ford J, Heinen S (2010) Supplementary eye field activity reflects a 

decision rule governing smooth pursuit but not the decision. Journal of 
Neurophysiology 103:2458-2469. 

 
Yarbus AL (1956) The motion of the eye in the process of changing points of fixation. 

Biofizika 1:76-78. 
 
Yeung N, Sanfey AG (2004) Independent coding of reward magnitude and valence in 

the human brain. The Journal of Neuroscience 24:6258-6264. 
 
Yeung N, Nieuwenhuis S (2009) Dissociating response conflict and error likelihood in 

anterior cingulate cortex. The Journal of Neuroscience 29:14506-14510. 
 
Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: Conflict 

monitoring and the error-related negativity. Psychological Review 111:931-959. 
 
Yeung N, Cohen JD, Botvinick MM (2011) Errors of interpretation and modeling: A reply 

to Grinband et al. Neuroimage 57:316-319. 
 
Yeung N, Bogacz R, Holroyd CB, Nieuwenhuis S, Cohen JD (2007) Theta phase 

resetting and the error-related negativity. Psychophysiology 44:39-49. 
 
Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced 

gamma-band response in EEG as a manifestation of miniature saccades. Neuron 
58:429-441. 

 
Zhou W, King WM (1998) Premotor commands encode monocular eye movements. 

Nature 393:692-695. 
 
Zuber BL, Stark L (1965) Microsaccades and velocity-amplitude relationship for saccadic 

eye movements. Science 150:1459-1460. 


	EXECUTION AND EVALUATION OF EYE MOVEMENTS: 
	FROM MUSCLES TO MEDIAL FRONTAL CORTEX
	By
	David C. Godlove
	Dissertation
	Submitted to the Faculty of the
	Graduate School of Vanderbilt University
	in partial fulfillment of the requirements
	for the degree of
	DOCTOR OF PHILOSOPHY
	in
	Neuroscience
	December, 2013
	Approved:       Date:
	_____________________________________________ _______________________
	_____________________________________________ _______________________
	_____________________________________________ _______________________
	_____________________________________________ _______________________
	_____________________________________________ _______________________
	ACKNOWLEDGMENTS
	pg1-4.pdf
	EXECUTION AND EVALUATION OF EYE MOVEMENTS: 
	FROM MUSCLES TO MEDIAL FRONTAL CORTEX
	By
	David C. Godlove
	Dissertation
	Submitted to the Faculty of the
	Graduate School of Vanderbilt University
	in partial fulfillment of the requirements
	for the degree of
	DOCTOR OF PHILOSOPHY
	in
	Neuroscience
	December, 2013
	Approved:
	Professor Jeffrey D. Schall, advisor
	Professor Geoffrey F. Woodman, chair of committee
	Professor Okihide Hikosaka
	Professor Gordon B. Logan
	Professor David H. Zald
	ACKNOWLEDGMENTS




