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CHAPTER I 

 

INTRODUCTION 

 

Polarized Epithelial Cells  

Polarized epithelial cells form sheets that line the external surfaces of the body and all 

internal cavities and glands. They provide a barrier between the inside and outside worlds 

and are the first line of defense against physical, chemical, and biological perturbations. 

Epithelial cells also act as gatekeepers of the body through their functions in secretion, 

absorption, and filtration; any substance that enters the body must first pass through an 

epithelial cell (Guillot and Lecuit, 2013). Tight junctions between cells promote this barrier 

function by forming an impenetrable surface to unwanted substances. A defining 

characteristic of epithelial cells is their ability to polarize into distinct apical and basal 

domains that help aid their functions (Roignot et al., 2013). The apical domain is exposed 

to the outside world and thus contains specialized proteins and organelles necessary to 

perform cellular functions, e.g. filtration in the liver and solute transport in the intestine. In 

contrast, the basal domain is attached to the basement membrane which serves to anchor 

the epithelium to underlying connective tissue. The morphology of an epithelial cell is 

critical for its function and it is often detrimental when the processes that control cell shape 

are lost. For instance, a carcinoma is a type of malignant cancer that derives from 

epithelial cells. This often occurs when cells lose the signals responsible for maintaining 

their shape, leading to a loss of normal function and uncontrollable growth. Thus, it is 
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important to understand the molecules that control cell shape to prevent disease when 

normal shape is compromised.   

Cell shape and organization is controlled by the cytoskeleton, which consists of 

three main components - microtubules, intermediate filaments, and actin. All three 

cytoskeletal proteins form filaments that interact with the plasma membrane to provide 

structure to cellular processes. This introduction will focus on the actin cytoskeleton and 

how it is assembled and regulated by actin-binding proteins. The model system that we 

use to study the actin cytoskeleton, the enterocyte brush border, will first be introduced 

along with linear actin-bundled protrusions. Then, the classes of actin-binding proteins 

that assemble outward protrusions will be discussed with an emphasis on the specific 

molecules necessary for microvillar growth. Finally, we will focus on BAR domain-

containing proteins and how they link the actin cytoskeleton to the plasma membrane in 

a majority of cellular processes that require membrane dynamics. The goal of this 

introduction is to provide perspective on the BAR domain proteins IRTKS and PACSIN2, 

and how our studies on these BAR proteins have advanced the field of epithelial cell 

biology.   

 

Epithelial cell classifications 

Epithelial sheets come in many different shapes and morphologies to simplify their 

functions. There are three main classes of epithelial cells based on their overall shape; 

1) columnar epithelial cells, 2) flat and scale-like squamous epithelial cells, and 3) 

cuboidal epithelial cells (Fig. 1-1). These classifications can be further broken down 

according to the number of epithelial layers the tissue contains.  A simple epithelium has  
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Figure 1-1. Epithelial cell shape and tissue organization. Cartoon schematics 
depicting (A) the three basic shapes epithelial cells take - columnar, squamous and 
cuboidal, and (B) the four classification of epithelial tissue from the number and shape of 
the cell layers. Images from BioRender.com. 

 

one layer of cells with every cell in contact with the basement membrane. These tissues 

are usually involved in solute transfer, diffusion, and secretion and reside in areas of the 

body where large amounts of absorption and filtration are needed. A stratified epithelium 

has multiple layers of cells and are usually in areas of the body where large amounts of 

mechanical or chemical stress occur. Two additional, rarer categories are the 

pseudostratified epithelium, with contains one layer of cells with nuclei positioned to 

resemble multiple layers, and the transitional epithelium, which contains a mix of 

squamous and cuboidal cells (Fig. 1-1). Transitional epithelium is only seen in the urinary 

organs where the combination of cell shapes allows for expansion; transitional cells in the 

bladder appear cuboidal in shape when resting and take on a squamous appearance 

when distended (Apodaca, 2004).  Most epithelial nomenclature states the number of 

layers followed by the cell shape. For example, a stratified squamous epithelium contains 
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multiple layers of squamous cells that protect the tissue against physical and chemical 

abrasion, such as the mouth and esophagus.  

 

Apical surface specializations  

In addition to general cell and tissue morphology, epithelial cells can be further 

specialized through cytoskeleton-based apical surface modifications. There are three 

main classes of surface specializations – cilia, microvilli, and stereocilia. All three 

structures protrude out of the apical surface of the epithelium they derive from to facilitate 

interactions with the external environment.  Cilia are highly motile structures found on the 

surface of the respiratory tract and the female reproductive tract where they clear mucus 

and debris off of the cell surface. They contain a core of microtubule filaments and are 

usually between 5 and 10 m in length. Microvillar protrusions are relatively short and are  

around 30-40 bundled actin filaments and aid in increasing epithelial surface area for 

solute transport (Ohta et al., 2012). Stereocilia are arranged in rows of graded height on 

the apical surface of cochlear and vestibular epithelial cells to promote hearing and 

balance (Tilney and Saunders, 1983). They are originally derived from microvilli and 

range from 1 m to 100 m in length depending on the specific epithelium (Prost et al., 

2007). As we study the actin cytoskeleton in our lab, we will only focus on the two actin-

based surface modifications, stereocilia and microvilli, going forward.  

Both stereocilia and microvilli are supported by a core bundle of actin filaments 

that generates the rigidity needed for membrane deformation. These filaments are 

oriented in the same direction with their fast- growing barbed ends embedded in a dense 

tip complex of proteins that likely consists of actin nucleators and elongators. The filament 
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pointed ends of each protrusion are embedded in an underlying meshwork of filaments – 

the terminal web for microvilli (Hirokawa et al., 1982), and the cuticular plate for stereocilia 

(Pollock and McDermott, 2015). These underlying networks of filaments anchor microvilli 

and stereocilia into the cell to provide stability to the protrusions.   

The main difference between microvilli and stereocilia are in the density of the 

protrusions and their lifetimes. Microvilli are all of a uniform length and densely packed 

on the apical surface of intestinal epithelial cells. Furthermore, they are maintained for the 

entire lifetime of the cell, roughly 3-5 days in enterocytes. In contrast, stereocilia are in 

graded arrays on the surface of inner ear epithelial cells and have to be preserved for the 

entire lifespan of the organism. Therefore, the actin-binding proteins and their regulation 

are highly specific to each structure. Nevertheless, even though the individual molecules 

may differ, the steps leading to protrusion and elongation between both structures are 

relatively similar. These general steps towards membrane protrusion and actin elongation 

are as follows: 1) GTPase signaling molecules need to establish the apical domain and 

sites of protrusion, 2) individual actin filaments need to nucleate, 3) actin filaments need 

to associate with the plasma membrane, 4) actin filaments need to bundle into actin cores, 

and 5) actin cores need to elongate and provide the force to protrude the membrane. 

Though the exact mechanisms, and even the order, of the preceding steps are not 

completely understood, recent studies are shaping our understanding of the protrusion 

process and how the actin cytoskeleton is regulated. Some of these molecules and their 

role in microvillar protrusions will be discussed in the following sections.  

 

Enterocytes as a model to study apical specializations  
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The intestine is the main site of nutrient absorption in the body and functions to protect 

underlying peripheral tissue from bacteria and toxins. The intestinal epithelium is 

subdivided into two main domains – villi and the crypts of Lieberkühn (crypts). Villi are 

finger-like folds of tissue that protrude into the intestinal lumen; they function to increase 

the intestinal surface area for maximal uptake of solutes (Helander and Fandriks, 2014). 

Crypt domains are tissue invaginations that sit between villar protrusions and contain the 

intestinal stem cells. Enterocytes, the main type of intestinal epithelial cell, are initially 

born at the base of the crypts from asymmetric division of stem cells. They then undergo 

several additional rounds of division and differentiation within the crypt transit amplifying 

zone, and emerge onto the villus once fully differentiated. The enterocytes then continue 

to migrate upward until they reach the top of the villus and are sloughed off into the 

intestinal lumen (van der Flier and Clevers, 2009). This entire process takes 

approximately 3-5 days and allows for continuous renewal of the intestinal epithelium (Fig. 

1-2B).  

Enterocytes are simple columnar epithelial cells that form a highly specialized 

structure on their apical surface called the brush border (Fig. 1-2C). Every brush border 

is composed of thousands of actin filled protrusions called microvilli that point into the 

gastrointestinal lumen, functioning to further increase the intestinal nutrient absorbing 

surface area (Mooseker, 1985). Microvilli must be of a uniform length and densely packed 

into hexagonal patterns with little free space between adjacent protrusions (Helander and 

Fandriks, 2014). Perturbations to the structure or packing of microvilli can significantly 

decrease nutrient absorption, often leading to malnutrition and osmotic diarrhea (Bailey 

et al., 1989). Numerous gastrointestinal diseases are also associated with the disruption 
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of brush border structure and function, similarly resulting in diarrhea and nutrient 

malabsorption. These include microvillus inclusion disease, celiac disease, and infections 

with the attaching and effacing bacteria enteropathogenic (EPEC) and 

enterohemorrhagic (EHEC) Escherichia coli (Khubchandani et al., 2011; Vallance et al., 

2002; Wilson et al., 2001), which will be discussed in more detail in a later section.  

Figure 1-2. Architecture of the small intestinal epithelium. Schematic representation 
of (A) the small intestine showing the finger-like folds of tissue called villi, (B) a cross 
section through the intestine along the crypt-villus axis, showing the pit-like crypt domains 
between villi, and (C) the differentiation of an enterocyte with the associated formation 
and organization of the brush border within the crypt domain. Adapted from (Crawley et 
al., 2014a). 
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Mechanisms of microvillar protrusion 

Microvillar protrusion and growth occur as enterocytes differentiate within the crypt 

domain; with microvilli transitioning to their characteristic uniformity as a mature brush 

border when enterocytes migrate onto the villus (Fig. 1-2C). Initial actin nucleation is 

thought to involve the WH2 domain-containing protein cordon bleu (COBL), which 

localizes to the base of microvillar actin bundles and uses its WH2 domains to form an 

actin nucleation core (Grega-Larson et al., 2015; Wayt and Bretscher, 2014). Another 

molecule involved in both promoting outward membrane curvature and in elongation of 

microvilli is the I-BAR domain-containing protein IRTKS (Fig. 1-3). Through its lipid 

binding I-BAR domain, IRTKS associates with the plasma membrane to promote outward  

 

Figure 1-3: Mechanism of microvillar protrusion and growth. Schematic depiction of 
the molecules involved and their prospective order of action in promoting microvillar 
outward protrusion. The BAR domain proteins PACSIN2 and IRTKS first localize to the 
apical membrane before recruiting in the actin-binding proteins COBL and EPS8, 
respectively. Actin polymerization can then occur with subsequent actin elongation as 
enterocytes differentiate along the crypt/villar axis.  
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protrusion; it then stays associated at the distal tips of microvilli throughout their 

elongation within the crypt domain (Postema et al., 2018). IRTKS also associates with the 

actin-binding protein EPS8 (Postema et al., 2018; Sudhaharan et al., 2016), which has 

differential roles in microvillar assembly from capping the barbed ends, to elongation and  

actin bundling (Croce et al., 2004; Disanza et al., 2006; Manor et al., 2011). There are 

also actin-bundling proteins, villin, espin, and fimbrin that stabilize the microvillar core and 

potentially contribute to microvillar elongation (Bartles et al., 1998; Bretscher and Weber, 

1979, 1980). More details on each of these classes of actin-binding proteins and how they 

facilitate microvillar protrusions will be discussed in detail in the following sections.  

 

Actin Assembly 

The cytoskeleton is a series of filamentous structures composed of three categories of 

proteins that assemble into large polymers – microtubules, intermediate filaments, and 

actin. Microtubules are the largest polymer at around 25nm in diameter and are 

composed of assemblies of alpha and beta tubulin dimers. Intermediate filaments have a 

diameter of around 10nm and are constructed from several different types of proteins, but 

mainly keratin in epithelial cells. Actin filaments are the smallest polymer at around 6-7nm 

in diameter and are the primary cytoskeletal filament that will be discussed going forward. 

Actin is assembled from globular actin monomers (termed G-actin) that form filaments 

(termed F-actin) in a process called polymerization. G-actin assembles into a double 

helical structure through head to tail interaction of individual monomers, resulting in an 

actin filament with inherent polarity (Fig. 1-4) (Pollard and Borisy, 2003). In epithelial cells, 
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actin gives shape to the cell cortex, stability to the junctions, and structure to protrusions 

such as microvilli.  

There are many actin-binding proteins that facilitate actin polymerization in a highly 

controlled spatial and temporal manner. These proteins assist with actin nucleation, 

elongation, filament bundling and capping, monomer sequestration, and many additional 

processes (Pollard, 2016). Controlled interactions of these proteins with actin and each 

other give rise to the dynamic actin networks and structures necessary for the function of 

various cell types. The next sections will focus on a few categories of regulatory proteins 

involved in the formation of actin-based protrusions, and the specific proteins within each 

category necessary for microvillar assembly. There will be an emphasis on the structure 

of BAR domain-containing proteins and their regulation in cellular processes as BAR 

proteins are the focus of the studies in the following chapters.  

 

Figure 1-4. Cartoon depicting actin polymerization. A stable nucleus of 3 G-actin 
monomers needs to form before F-actin polymerization can occur.  

 

Nucleating proteins 

De novo actin filament formation is a slow and energetically unfavorable process due to 

the energy needed to generate an actin nucleus, which is a stable core of 2-3 G-actin 

subunits off which subsequent monomers bind (Skau and Waterman, 2015). Nucleating 

proteins help overcome this energy barrier by binding to and bringing in actin monomers 

to form a stable nucleus. This is done through the actin of several domains that nucleation 
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proteins contain, one of which is the WH2 domain. WH2 domains are 17-20 amino acids 

long and form an alpha helix that binds to the hydrophobic cleft at the barbed end of an 

actin monomer, between the subdomains 1 and 3 (Carlier et al., 2011). The three main 

classes of actin nucleators found in a cell are the Arp2/3 complex, the tandem WASP- 

homology 2 (WH2) domain-containing nucleators and formins. These three classes 

express and localize to different areas of a cell where specific actin nucleation is required.  

Tandem WASP- homology 2 (WH2) domain-containing nucleators are a family of 

proteins that contain several WH2 domains to perform their nucleation functions (Ahuja 

et al., 2007; Quinlan et al., 2005). The two main mammalian proteins in this category are 

Spire and Cordon Bleu (COBL). COBL is mainly expressed in neurons and the 

gastrointestinal tract (Ahuja et al., 2007) where it localizes to the terminal web of 

enterocytes; it is thought to nucleate microvillar actin filaments while in this position 

(Grega-Larson et al., 2015; Grega-Larson et al., 2016; Wayt and Bretscher, 2014). COBL 

has a span of three WH2 domains that it uses to nucleate actin filaments; all three of 

these WH2 domains are necessary for the full nucleation potential of COBL in vitro (Ahuja 

et al., 2007). The way the three WH2 domains are arranged suggests that COBL forms a 

trimeric nucleus, different from the elongated nucleus that is produced by Spire (Quinlan 

et al., 2005). Moreover, deletion of a single WH2 domain drastically lowers the ability of 

COBL to being together actin monomers to form a viable nucleus. Interestingly, both Spire 

(Bosch et al., 2007) and COBL (Husson et al., 2011) have also been shown to have 

filament severing capabilities. But this is likely a mechanism used in other processes and 

not in the early formation of linear-based actin structures like microvilli. Currently, COBL 

is the only nucleating protein that has been found to localize to the intestinal brush border 
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(Grega-Larson et al., 2015; Wayt and Bretscher, 2014). However, knocking down COBL 

only leads to ~50% reduction in brush border formation (Grega-Larson et al., 2015), 

suggesting a potential role for additional actin nucleating proteins, perhaps facilitating 

actin monomer addition at microvillar tips.  

 

Capping protein and EPS8 

Capping proteins bind to the ends of actin preventing addition of new monomers or 

depolymerization of existing filaments. Perhaps the most ubiquitous of these proteins in 

capping protein (CP) itself. CP functions as a heterodimer composed of one α and one β 

subunit, and binds stoichiometrically to the barbed ends of actin filaments with pico-molar 

affinity (Cooper and Sept, 2008), and regulates the formation of protruding filopodia, as 

well as the formation of stereocilia and microvilli. Although capping protein effectively 

eliminates barbed end elongation, knockdown of capping protein can lead to distinct 

cellular phenotypes depending on the type of protrusion. Knockdown of capping protein 

in the motile B16F1 cell model leads to a dramatic elongation of filopodia (Mejillano et al., 

2004), leaving barbed end elongation factors free to incorporate new actin monomers. 

However, knockout of capping protein leads to a shortened stereocilia phenotype 

(Avenarius et al., 2017), as capping protein is theorized to stabilize developing stereocilia. 

CP has also been detected in brush border proteomics screen (McConnell et al., 2011) 

and purified microvillar fractions, yet its role in the development of brush border microvilli 

remains unknown.   

Another putative capping protein in microvilli is EPS8, which exhibits actin bundling 

and capping activities through its C-terminal region (Disanza et al., 2004; Hertzog et al., 
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2010). It has been shown to bind to and cap the barbed end of actin filaments (Disanza 

et al., 2004), as well as exhibit bundling activity in vitro, which has been found to rescue 

viability of C. elegans in EPS8 null animals (Hertzog et al., 2010). Studies suggest that 

EPS8 targets to the tips of intestinal microvilli (Croce et al., 2004; Tocchetti et al., 2010), 

hair cell stereocilia (Behlouli et al., 2014; Manor et al., 2011; Zampini et al., 2011), and 

filopodia (Disanza et al., 2006) where it controls the length of these protrusions. It has 

also been shown to be a necessary component of intestinal microvillar morphology, KD 

in intestinal W4 cells leads to reduced brush border formation (Postema et al., 2018). 

However, significant questions remain regarding the mechanism of targeting and action 

of EPS8 in microvillar protrusions.  

 

Bundling proteins 

Single filaments of actin are not strong enough to protrude out of the cell on their own. 

This is because the downward forces of the membrane are higher than the protrusive 

force of one actin filament, leading to filament bucking. To overcome these high 

membrane forces, actin filaments are usually bundled together in higher order actin 

structures like microvilli. Actin bundling proteins have multiple actin-binding sites as well 

as additional domains that help control their regulation. Intestinal microvilli contain the 

three known and well-studied actin bundling proteins, villin, espin and fimbrin that exist in 

a graded pattern throughout the microvillar actin core  (Bartles et al., 1998; Bretscher and 

Weber, 1979, 1980).  Espin is localized through the actin core, while villin is concentrated 

in the upper two thirds and fimbrin is concentrated at the base. However, there are likely 

additional bunding proteins involved in microvillar assembly as loss of all three of these 
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bundlers, villin, espin and plastin, does not eliminate brush border formation, although 

they have reduced length and transverse area (Revenu et al., 2012). This suggests the 

existence of alternate bundling proteins that could be compensating for this loss, with one 

candidate being EPS8, which was discussed in the previous section. However, EPS8 

localizes very specifically to the distal tips of microvillar protrusions (Postema et al., 2018), 

suggesting a capping role for its actin-binding domain rather than a bundling role. Studies 

are currently being performed in our lab to tease out the functions of EPS8 in the brush 

border. Thus, it is likely that additional, currently unknown actin bundlers are playing a 

role in microvillar formation.  

 

BAR domain-containing proteins 

BAR (Bin/Amphiphysin/Rvs) domain-containing proteins are a large family of protein 

scaffolds that link a cell’s signaling pathways between the plasma membrane and the 

actin cytoskeleton. They are known to play a role in membrane deformation through their 

crescent-shaped, N-terminal BAR domains that directly associate with negatively charged 

phospholipids. The link between the membrane and downstream signaling pathways is 

generated through additional domains within BAR proteins, including protein binding SH3 

domains and Rho GTPase binding domains. The BAR domain was first classified as a 

conserved sequence in 1996 when the mammalian protein Bin1 was found to contain the 

same sequence previously seen in two other proteins, Amphiphysin and the yeast Rvs167 

(Lichte et al., 1992; Sakamuro et al., 1996; Sivadon et al., 1995). The functional capacity 

of BAR domains towards membrane binding and deformation was determined a few years 

later through studies on Amphiphysin (Takei et al., 1999). Since then, up to 50 different 
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proteins have been found to contain a BAR domain and to participate in countless 

numbers of cellular processes from filopodial protrusions and neurite growth, to 

endocytosis and vesicle trafficking. In the context of this dissertation, the BAR domain 

proteins IRTKS and PACSIN2 are required molecules in brush border microvillar 

assembly.  

Figure 1-5: BAR domain structure and protein function. Schematic representation of 
(A) averaged crystal structures from the three BAR domain subfamilies, and (B) how the 
BAR domains dimerize/ oligomerize to generate membrane invaginations (BAR and F-
BAR) and membrane protrusions (I-BAR). Adapted from (Suetsugu et al., 2010).   

 

All BAR domains are made of three extended helix bundles between 200 and 300 

amino acids in length that fold in an antiparallel fashion (Peter et al., 2004) (Fig. 1-5). The 

characteristic curved, crescent-shaped BAR structure is generated when the folded alpha 

helices dimerize with other BAR domains. Members of the BAR domain family often do 

not possess any sequence similarity outside of their BAR domains and thus a lot of 
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functional variability exists within the large superfamily of proteins. Additional structural 

variability exists within the BAR domains themselves, and the family is subdivided into 

three categories depending on the direction and degree of curvature the BAR domains 

encompass. They can also be subdivided further depending on whether they possess a 

membrane insertion domain, which is usually an amphipathic helix or loop. The three 

main categories are the BAR, F-BAR (Fer-Cip4 homology domain) and I-BAR (Inverse 

BAR). BAR domains bind to areas of high positive curvature while F-BAR domains are 

slightly more extended and possess a lower degree of curvature. However, both BAR and 

F-BARs associate with areas of positively curved membrane, such as endocytosing 

vesicles. I-BAR domains on the other hand possess negative curvature and associate 

with membranes protruding out of a cell, such as filopodial protrusions (Fig. 1-5).  

 

I-BAR domain-containing proteins 

I-BAR domain proteins are the smallest subfamily of the BAR domain-containing proteins, 

consisting of only five known members (Mattila et al., 2007). The I-BAR domain-

containing proteins can be split into two separate groups based on similarity; though all 

five produce outward membrane protrusions. MIM (missing-in-metastasis) and ABBA 

(actin-bundling protein with BAIAP2 homology) are more similar in identity and are both 

involved in brain specific processes, such as neurite outgrowth. These two have C-

terminal Wasp-homology-2 (WH2) domains, which are actin-binding domains, in addition 

to their N-terminal I-BAR domains. The other three I-BAR proteins, IRSp53 (insulin 

receptor tyrosine kinase substrate 53, BAIAP2), IRTKS (insulin receptor tyrosine kinase 

substrate, BAIAP2L1) and Pinkbar (BAIAP2L2) are involved in outward protrusions 
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elsewhere in the body and are the molecules involved in microvillar and filopodial 

protrusions (Postema et al., 2018; Pykalainen et al., 2011; Scita et al., 2008). These three 

I-BAR molecules have protein binding SH3 domains as well as C-terminal WH2 domains. 

The interactions formed through the SH3 domains are specific to the expression patterns 

of the different I-BARS and help determine their mode of action. In terms of linear, actin-

based protrusions, the interactions are usually with actin regulatory proteins that influence 

their individual functions.  

 The I-BAR protein within the intestinal brush border is IRTKS, which was first 

identified in 1996 as a tyrosine phosphorylated insulin receptor substrate (Yeh et al., 

1996) and then in 2004 found to contain an N-terminal I-BAR domain (Yamagishi et al., 

2004). Work in 2007 found that IRTKS is similar in both structure and function to IRSp53 

and that it induces the formation of microskpikes when overexpressed in Cos7 cells 

(Millard et al., 2007). IRTKS is also one of the mammalian host proteins hijacked by EHEC 

during pedestal formation. During an EHEC infection, the IRTKS SH3 domain binds with 

extremely high affinity to the EHEC effector EspFu, leading to Arp2/3 recruitment and 

branched actin nucleation  (Aitio et al., 2010; Aitio et al., 2012; Crepin et al., 2010; 

Vingadassalom et al., 2009). However, it was not until 2011 that IRTKS was found to be 

a member of the intestinal brush border through a proteomics screen performed by our 

lab (McConnell et al., 2011). It was subsequently found to help elongate brush border 

microvilli within the intestinal crypt domain, which will be examined in more detail in 

Chapter III (Postema et al., 2018).  
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F-BAR domain-containing proteins 

Found in most eukaryotes except plants, F-BAR domains play large roles in endocytosis, 

especially clathrin-mediated vesicle formation and caveolae biogenesis, but also in cell 

division and migration. The first F-BAR domain was discovered in the Cdc42 Interacting 

Protein 4 (CIP4) (Aspenstrom, 1997) that was found to share a similar N-terminal 

structure as Fes, leading to the classification of the Fes/Cip4 Homology Domain (F-BAR). 

Since then, countless more F-BAR proteins have been discovered and found to play roles 

in many cellular processes that require membrane deformation. A few of these processes-  

endocytosis, migration, and contractile ring formation, will be discussed in more detail in 

later sections.  

PACSIN2 is ubiquitously expressed throughout the body and is the main F-BAR 

domain-containing protein studied in the intestinal brush border (Grega-Larson et al., 

2015; Postema et al., 2019). It is one of three PACSIN isoforms that all contain an N-

terminal F-BAR domain that associates with negatively charged phospholipids and a C-

terminal protein interacting SH3 domain. PACSIN proteins are known to be involved in 

several different cellular processes, such as clathrin-dependent endocytosis, caveolae 

formation, endosomal and vesicle trafficking, actin polymerization and dynamics, 

neuronal development, and cell migration (de Kreuk et al., 2011; Qualmann and Kelly, 

2000; Qualmann et al., 2000; Senju et al., 2011). Through several of its SH3 domain 

binding partners, PACSIN2 can be linked to actin nucleation and vesicle scission in 

epithelial cells. One binding partner that has been implicated in microvillar assembly is 

the actin nucleator COBL, which is recruited the apical domain of enterocytes by 

PACSIN2 (Grega-Larson et al., 2015). Previous studies in a cell culture model showed a 
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significant reduction in the percent of cells able to form a brush border when PACSIN2 

was knocked down, implicating it as necessary for microvillar assembly (Grega-Larson et 

al., 2015). A second SH3 domain binding partner linking PACSIN2 to actin nucleation is 

N-WASP, an adaptor protein that activates the branched actin nucleator ARP2/3 (Padrick 

and Rosen, 2010). N-WASP binding connects PACSIN2 to the actin cytoskeleton in 

processes like endocytosis and junctional actin assembly (Kessels and Qualmann, 2002). 

Another way that PACSIN2 has been linked to endocytosis is through binding to the large 

GTPase protein Dynamin2, which wraps around the neck of vesicles to help excise them 

from the membrane. PACSIN2 binds to Dynamin2 in clathrin-mediated endocytosis and 

in the formation of caveolae, where it has also been implicated in Dynamin2 recruitment 

(Kessels and Qualmann, 2006). Other studies have shown that PACSIN2 itself 

oligomerizes and binds around the neck of vesicles through its F-BAR domain to help 

stabilize vesicles on the membrane before they are excised (Senju and Suetsugu, 2015). 

Recent studies in our lab implicate PACSIN2 as a regulator of membrane tension within 

the enterocyte apical domain, which ultimately controls microvillar morphology (Postema 

et al., 2019). More details on this and the experiments performed will be further examined 

in Chapter IV.  

 

Membrane binding and higher order assemblies of BAR domains 

The first BAR domain crystal structure was obtained in 2004 of the Drosophila protein 

Amphiphysin (peter et al science 2004). Since then, over 20 additional crystal structures 

have been obtained that have helped shed light on the physical differences within the 

BAR subfamilies. The Amphiphysin structure was able to identify clusters of positively 
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charged amino acids at the tips and dispersed along the curved surface of the BAR 

dimer’s crescent shape. Similar positive charges are seen on all BAR domains and are 

what associate with the negatively charged phospholipids within the membrane. 

Additionally, some BAR domains (called N-BAR) contain N-terminal sequences of 

approximately 26 amino acids that fold into amphipathic α helices (AH) that physically 

penetrate the lipid bilayer. The association of the AH into one side of the bilayer is thought 

to act like a wedge, displacing the lipids in its vicinity and helping the BAR domain 

generate curvature. The insertion of an AH is also speculated to help anchor the BAR 

domain at the membrane to reinforce its function (Gallop et al., 2006).  

Interestingly, some BAR domains have also been shown to directly bind actin 

filaments through their positive charges associating with the negatively charged actin. 

Examples of this are the I-BAR protein IRSp53 and the F-BAR protein PACSIN2; both 

BAR domains have been shown to bind to low concentrations of actin in vitro (Kostan et 

al., 2014). However, the in vivo relevance of direct actin-binding is speculative as it 

involves the same interface as membrane binding, which is more likely to occur in cells. 

However, there is the possibility that both membrane binding and actin-binding occur 

synonymously within certain cellular processes. There are two proposed mechanisms 

that BAR domain-containing proteins utilize to bind the membrane, 1) through the physical 

rigidity of the BAR domain structure or 2) through higher order assembly, or 

oligomerization, of the proteins. It is generally thought that BAR domain proteins are very 

rigid structures and thus possess ability to shape the lipids within the membrane (Masuda 

and Mochizuki, 2010; Zimmerberg and Kozlov, 2006). Data supporting this comes from 

the BAR protein Amphiphysin where simulations performed on its BAR domain suggested 
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it was the actual rigidity of the structure that enabled membrane bending (Blood and Voth, 

2006).  

However, many BAR domains also possess the ability to oligomerize through their 

BAR domains as they can bind both tip-to-tip and side-by-side along the membrane (Jarin 

et al., 2019; Mim et al., 2012). This allows membrane coating in highly patterned arrays 

that often leads to the formation of stable membrane tubules (Simunovic et al., 2016; 

Sorre et al., 2012). This membrane tubulation ability was first discovered in a liposome 

binding assay with the BAR domain of Amphiphysin, where it was found that the isolated 

N-terminal 265 amino acids could tubulate lipids in vitro (Takei et al., 1999).  Since then, 

many additional studies have been performed on the membrane tubulation ability of BAR 

domains. However, because the additional domains of BAR proteins help control their 

localization and function, membrane tubulation is not often seen in in vivo systems. It is 

likely an overexaggerated phenomenon related to the oligomerization of F-BAR domains 

around the neck of endocytosing vesicles. During cellular controlled endocytosis, other 

proteins function to remove the vesicle from the membrane before extreme membrane 

tubulation occurs. However, there are exceptions to this as overexpression of some F-

BAR domain-containing proteins, such as FBP17 or CIP4, have been shown to 

cause membrane invagination and tubulation in cell culture models (Itoh et al., 2005; 

Tsujita et al., 2006). In contrast, the ability of BAR domains to self-assembly into patterned 

arrays does not always lead to membrane tubule formation. There are several F-BAR 

domain-containing proteins that have been shown to have no tubulation ability in in vitro 

assays and their oligomerization ability is limited to roles in membrane scaffolding 

(McDonald and Gould, 2016; McDonald et al., 2016).  
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Auxiliary domains and regulatory mechanisms of BAR proteins 

The large degree of heterogeneity in the function of BAR domain proteins is due to the 

vast range of additional domains they contain, referred to herein as auxiliary domains. 

The most common auxiliary domain is the Src Homology 3 (SH3) domain, which is found 

in approximately 50 percent of all BAR proteins (Carman and Dominguez, 2018). SH3 

domains are ~60 amino acids long and contain a hydrophobic pocket that associates with 

proline rich (PR) regions in binding partners. Most SH3 domain associations occur with 

actin regulatory proteins and GTPases, such as Dynamin. The actin regulatory proteins 

usually consist of nucleation promoting factors (NPFs), such as  N-WASP and further 

activators of the ARP2/3 complex (Suetsugu and Gautreau, 2012), formins (Garabedian 

et al., 2018; Graziano et al., 2014; Willet et al., 2015; Yan et al., 2013), and Ena/VASP 

family members (Disanza et al., 2013; Krugmann et al., 2001; Vehlow et al., 2013).  

Many BAR proteins contain PR regions themselves that enable intramolecular 

interactions with their SH3 domains leading to autoinhibition. These intramolecular 

interactions can control many aspects of the BAR proteins function, from their localization 

and membrane binding to their interactions with downstream membrane binding proteins 

(Rao et al., 2010). One well studied example of autoinhibition is through the I-BAR protein 

IRSp53 where its CRIB-PR domain binds to its SH3 domain (Kast et al., 2014; Krugmann 

et al., 2001). IRSp53 normally exists in an autoinhibited state and is only released when 

Cdc42 binds to its CRIB-PR, releasing the interaction with its SH3 domain (Kast et al., 

2014); this occurs when IRSp53 is needed for membrane deformation in filopodial 

protrusions. Another example of SH3 facilitated autoinhibition occurs in the F-BAR protein 

PACSIN1 which has intramolecular interactions between its SH3 domain and BAR 
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domain. When PACSIN1 is needed for endocytic vesicle formation, binding of Dynamin1 

to its SH3 domain releases the autoinhibition (Goh et al., 2012; Rao et al., 2010; Wang 

et al., 2009). An interesting case of autoinhibition is seen in the F-BAR protein Nervous 

wreck (Nwk) where binding of the SH3 domain to the F-BAR does not block its membrane-

binding ability, but only increases the amount of phosphatidylinositol-4,5-bisphosphate 

(PI(4,5)P2) required for the binding (Kelley et al., 2015). 

The second most common auxiliary domain found in BAR proteins are Rho family 

GTPase binding domains. Approximately 35% of BAR proteins contain regions that bind 

to Rho GTPases to regulate their activities or are themselves regulated through the 

binding. Examples of proteins with GTPase binding sites are the F-bar proteins FBP17, 

Toca-1 and CIP4 (Aspenstrom, 2014). Other known BAR proteins with GTPase binding 

sites are the I-BAR protein IRSp53, which has cdc42 and Rac binding sites in its CRIB 

domain, and IRTKS, which possesses a Rac binding site in its I-BAR domain. It is thought 

that Rho family GTPases bind the BAR domain proteins to regulate their cellular 

localization and oligomerization ability, thus determining how they function in membrane 

remodeling. Autoinhibitory interactions can also occur through Rho GTPase binding 

domains in BAR proteins to prevent downstream signaling. Examples of this are found in 

ARHGAP45 where an intramolecular interaction between the BAR and RhoGAP domain 

inhibits the GAP activity (de Kreuk et al., 2013) and in GRAFs where an intramolecular 

interaction between the BAR and RhoGAP domains inhibits downregulation of Rho 

GTPase activity via the GAP domain (Eberth et al., 2009; Fauchereau et al., 2003). 

 Additional regulatory mechanisms of BAR domain proteins can occur through the 

membrane structure itself. There have been studies that suggest that localized 
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concentrations of phosphoinositides could be regulating BAR domain proteins through 

their electrostatic interactions. For example, high PI(4,5)P2 concentrations could direct 

membrane binding of BAR proteins to areas of future membrane curvature. Another way 

that the membrane itself can help regulate BAR proteins is through its tension (Tsujita et 

al., 2015). In the BAR protein FBP17, high membrane tension inhibits its ability to bind to 

and invaginate the membrane. Additionally, studies on endocytosis show that increased 

membrane tension is necessary for the formation and scission of vesicles (Boulant et al., 

2011). For instance, during caveolae biogenesis at the plasma membrane, tension 

differences cause Protein Kinase C to phosphorylate the F-BAR protein PACSIN2, which 

then triggers the removal of caveolae (Senju et al., 2015).  

 

BAR domain curvature sensing vs. curvature generation 

The ability of BAR domains to bind areas of membrane curvature and to generate 

membrane tubules is consistently observed in vitro and in cells; however, it is not yet fully 

understood whether BAR domains sense instances of membrane curvature or induce 

them (Fig. 1-6). This question is important because it can shed insight into the relationship 

hierarchy between BAR domain proteins and the actin cytoskeleton. If BAR domain 

proteins only sense curvature, then the actual BAR domain is only necessary for 

localization of the molecule with the additional domains playing the dominant role in 

downstream protein binding and actin regulation. For example, existing membrane 

curvature could need BAR proteins to localize and facilitate downstream pathways like 

GTPase signaling or actin polymerization. Curvature sensing is thought to occur because 

of the preference BAR domains have for curved membrane over flat, which is sometimes 
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dozens or even hundreds of times higher (Mim and Unger, 2012). Tested BAR domains 

from amphiphysin (Sorre et al., 2012), endophilin (Zhu et al., 2012), BIN1 (Wu et al., 

2014), syndapin (Ramesh et al., 2013), and IRSp53 (Prevost et al., 2015) have all shown 

to exhibit preferential binding to membrane tubules. Alternatively, if BAR domains 

physically induce membrane curvature then they are likely cooperating with actin 

polymerization and additional protein domains.   

 

Figure 1-6: Membrane curvature sensing vs. generation. (A) Full-length BAR domain-
containing proteins can localize to areas of membrane with existing curvature. (B) BAR 
domain proteins can also generate membrane curvature through the inherent shape of 
their BAR domains. Adapted from (Zhao et al., 2011). 
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Recent studies are bringing more light to this problem. The current theory is that 

both curvature sensing and generation occur in a concentration dependent manner, with 

low levels of BAR domains able to sense curvature and high levels able to induce it. The 

duel action of both curvature generation and sensing has also been proposed to exist in 

the form of a positive feedback loop, with the generation of curvature by a BAR domain 

causes more domains to sense and localize to the curvature. Recent studies show that 

salt bridge formation between positive amino acids within the upper side of I-BAR 

domains and the head groups of lipids increases the density of phospholipids within the 

region, which contributes to membrane bending (Takemura et al., 2017). Isolated I-BAR 

domains have also been shown to oligomerize and form membrane tubules that are not 

associated with the actin cytoskeleton, suggesting a scaffolding role for the domain (Zhao 

et al., 2011). It is most likely that both curvature generation and sensing take place within 

cells and that they are coupled processes. The initial curvature generation is caused by 

the binding of one BAR domain to the membrane that is then strengthened through the 

sensing of additional BAR domains. When BAR domains bind to membranes they can 

corral PI(4,5)P2 together, even generating stable phosphoinositide containing 

microdomains in the membrane bilayer (Zhao et al., 2013). 

 

Cellular Roles for BAR Domain Proteins 

The variability in the sequence and auxiliary domains of BAR domain superfamily 

members leads to a high variability in cellular functions. A lot of these functions involve 

obvious areas of a cell with high degrees of membrane deformation, such as neurons and 

the intestinal brush border. Cellular functions that will be discussed in further sections are 
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cell migration and endocytosis, where both filopodial growth and vesicle generation 

contain high degrees of membrane curvature and thus necessitate the aid of BAR 

proteins. However, there are also instances of BAR protein cell involvement that does not 

involve distinct membrane deformation, such as cellular junction formation and 

cytokinesis in yeast. Furthermore, there are instances of BAR domain proteins being 

hijacked by pathogens to promote their colonization and infection, such as during EHEC 

pedestal formation. The following sections will highlight just a few of the many cellular 

roles that BAR domain-containing proteins participate, in concluding with an overview of 

IRTKS and PACSIN2 in microvillar protrusions (Fig. 1-7).  

 

Cell Migration  

Cell migration is the directed movement of cells due to chemical signals or mechanical 

stimuli, and is an important aspect of mammalian development and tissue formation. Most 

migration is facilitated through actin-based lamellipodia and filopodial protrusions.  

Lamellipodia are composed of ARP2/3 nucleated branched-actin networks and extend 

over the entire leading edge of a migrating cell, while filopodia are substrate attached 

linear-actin based protrusions that extend out from the lamellipodia. Because both 

filopodia and lamellipodia extend outward from a cell, they exhibit areas of negatively 

curved membrane at their tips, and thus they utilize I-BAR domain-containing proteins. 

The main I-BAR domain protein involved in migration is IRSp53, which has been shown 

to promote filopodial growth through its ability to induce membrane curvature (Lim et 

al., 2008; Mattila et al., 2007; Saarikangas et al., 2009). As I-BARS favor slightly 

negatively curved membranes, it is thought that binding of IRSp53 to areas of 
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premature filopodial and lamellipodial protrusions at the leading edge and can sl ightly 

deform the membrane, thus recruiting more IRSp53. Since I-BARs can also phase 

separate, it is likely that the signal seen along a filopodial shaft of IRSp53 is in two 

different phase separations of the protein, with a higher concentration at the tips and 

lower concentrations binding along the shaft after protrusion (Prevost et al., 2015). 

IRSp53 also contributes to cell migration and filopodial protrusion by binding to many 

actin regulatory proteins such as cdc42, Ena/VASP and EPS8 (Disanza et al., 2013; 

Disanza et al., 2006; Kast et al., 2014). 

  F-BAR domain-containing proteins have also been linked to cell migration, mainly 

through the ability to bind GTPases and actin-regulatory molecules. However, one 

interesting example of F-BAR proteins directly influencing filopodial formation are the F-

BAR protein family slit-robo GTPase activating proteins (srGAPs) (Bacon et al., 2009; 

Chen et al., 2012; Wong et al., 2001). The srGAPs are three proteins that localize to 

neuronal cells and have been shown to generate membrane evaginations when 

dimerized, which is opposite from canonical F-BAR curvatures and resembles the 

outward bending of I-BAR domains (Guerrier et al., 2009; Zaidel-Bar et al., 2010). 

SrGAP2 specifically, has been shown to negatively influence the migration of neuronal 

cells through its ability to induce filopodial protrusions. These protrusions are generated 

directly through the action of its N-terminal F-BAR domain, are highly dynamic in Cos7 

cells, and are filled with F-actin, entirely reminiscent of I-BAR induced protrusions. These 

are just a few examples of the roles of BAR domain proteins in cell migration.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gtpase-activating-protein
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Figure 1-9: BAR domain proteins in common cellular structures. I-BAR proteins 
associate at the tips of filopodial and lamellipodial protrusions between the membrane 
and the actin cytoskeleton. BAR and F-BAR domain proteins bind to the membrane and 
F-actin in cellular processes with positive curvature, e.g. endocytic vesicles and S. pombe 
contractile ring formation.  

 

Endocytosis 

Endocytosis and the formation of vesicles is an important way for cells to uptake nutrients 

and molecules from the environment, and is critical to maintain cellular homeostasis. 

There are many different forms of endocytosis in cells from clathrin-dependent and 

independent to caveolae. However, all endocytosis involves the generation of membrane 

invaginations and thus utilize BAR domain-containing proteins to link the membrane 

curvature with the actin cytoskeleton. The roles for BAR domain proteins in vesicle 

formation during endocytosis also vary and involve budding and neck constriction, 

recruitment of scission proteins such as Dynamin, actin filament assembly, and 

recruitment of vesicle uncoating proteins (dTakei et al., 1999; Farsad et al., 2001; Yarar 

et al., 2007).  
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Several BAR domain-containing proteins, including amphiphysin, endophilin and 

SNX9, participate in clathrin-mediated endocytosis. Amphiphysin helps mediate 

endocytosis through its different protein interactions; it can bind to dynamin and N-WASP 

through its SH3 domain, and clathrin through a binding site between its BAR and SH3 

domain. Clathrin binds to Amphiphysin first during vesicle formation and subsequent 

binding of Dynamin disrupts this interaction for vesicle fission (McMahon et al., 1997). 

Endophilin is also thought to play a role in clathrin mediated endocytosis, but at the later 

stage of vesicle uncoating. Endophilin wraps around the neck of the budding vesicle and 

binds to both Dynamin2 and Synaptojanin (Milosevic et al., 2011; Otsuki et al., 2003). It 

was not until a KO mouse of all three Endophilin A isoforms was studied that the molecule 

was shown to act during vesicle recycling where it binds to Synaptojanin, rather than 

vesicle scission through its Dynamin2 binding (Milosevic et al., 2011). The F-BAR protein 

PACSIN2 is also involved both in clathrin dependent and independent endocytosis as 

well as caveolae formation, as was discussed in earlier sections and in Chapter IV. 

Because it has a narrower F-BAR domain that more closely resembles a BAR domain, 

PACSIN2 also wraps around the neck of budding vesicles and binds to Dynamin2 (Senju 

and Suetsugu, 2015). Its lower membrane curvature is why PACSIN2 can associate 

around the neck of budding caveolae, which are smaller and thus have a thinner neck 

than clathrin- coated vesicles. Even though it binds to vesicles in a similar manner as 

Endophilin, PACSIN2 works at an earlier stage and assists with vesicle scission from the 

plasma membrane.  
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Contractile ring assembly  

Cytokinesis is the last stage in cell division and is where a cell divides its contents into 

two daughter cells. This division is often accompanied by the formation of an actomyosin 

ring, called the contractile ring, below the plasma membrane that physically constricts to 

aid in division. Proper spatial and temporal assembly of the contractile ring is necessary 

to ensure cellular contents are distributed equally between the two daughter cells. The 

generation of a contractile ring during cytokinesis does not involve the characteristic 

membrane curvature normally associated with BAR domain proteins. However, several 

F-BAR proteins have been implicated in its assembly as a link between the actin 

cytoskeleton, the plasma membrane, and additional contractile ring proteins.  

Many studies on the proteins involved in contractile ring formation have been 

performed in the fission yeast Schizosaccharomyces pombe (S. pombe), where 3 

different F-BAR proteins have been found to play a role, Cdc15 (Fankhauser et al., 

1995), Imp2 (Demeter and Sazer, 1998), and Rga7 (Arasada and Pollard, 2011). Cdc15 

is the most highly studied of these three S. pombe proteins during cytokinesis. It has been 

shown to localize to the site of contractile ring formation and oligomerize along the 

membrane forming a scaffold. Once on the membrane, Cdc15 can then bind to additional 

contractile ring proteins through the action of its SH3 domain to promote contractile ring 

assembly (McDonald et al., 2016). Additional studies on F-BAR proteins in the contractile 

ring have been completed in the budding yeast Saccharomyces cerevisiae (S. 

cerevisiae). Here, the F-BAR protein Hof1p was found to regulate contractile ring closure 

through its SH3 domain by binding to and controlling the symmetry of myo1p during ring 

constriction (Korinek et al., 2000; Oh et al., 2013; Vallen et al., 2000). Interestingly, in 
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Drosophila, PACSIN is another F-BAR protein that has been found to promote contractile 

ring formation. It was shown to associate with the PI(4,5)Ps in the membrane to link the 

cleavage furrow to the contractile ring. It provides this link by directly binding to the 

contractile ring component Anillin, thus acting as a scaffold to bind the contractile ring to 

the membrane (Takeda et al., 2013). 

 

EHEC colonization  

EHEC serotype O157:H7 is a non-invasive, highly pathogenic bacterium that colonizes 

the lower mammalian intestinal tract by hijacking the I-BAR domain protein IRTKS.  

During infection, EHEC releases Shiga toxin, which binds to the glycosphingolipid 

receptor Gb3 on systemic cells, leading to severe vascular damage (Robinson et al., 

2006).  Shiga toxin enters the blood stream through intestinal capillaries and damages 

the vascular endothelium throughout the body (Karch, 2001). This can result in major 

complications such as hemolytic colitis and hemolytic-uremic syndrome (HUS), which can 

lead to renal and cardiac failure (Kaplan et al., 1998; Thomas et al., 2005). More active 

Gb3 receptors reside on glomerular endothelial cells than anywhere else in the body, 

making the kidneys especially susceptible to EHEC infection (Noris and Remuzzi, 2005; 

Obrig, 2010). This is particularly hard on children and the elderly, with upwards of 10% of 

EHEC infections leading to diseases such as hemolytic-uremic syndrome, a leading 

cause of renal failure in infants and children (Kaplan et al., 1998; Thomas et al., 2005). 

To promote infection, EHEC hijacks the actin cytoskeleton of enterocytes to form 

actin pedestals that adhere it to the apical surface (Griffin and Tauxe, 1991; Ho et al., 

2013; Lai et al., 2013). EHEC is an example of an attaching/ effacing (A/E) pathogen, it 
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physically attaches to the intestinal wall to colonize the distal small intestine or proximal 

colon epithelium. The actin pedestals built by EHEC are lesions that rearrange underlying 

linear microvillar actin to form a branched actin case holding the bacterium onto the 

intestinal surface (Knutton et al., 1987; Moon et al., 1983). To build its actin pedestals, 

EHEC injects host cells with virulence factors that remodel the actin cytoskeleton (Jarvis 

and Kaper, 1996). To get its virulence factors into the host cell, EHEC utilizes a type 3 

secretion system, (T3SS), which is a hollow protein transport tube that is syringe shaped 

and inserted into the host cell. These are used to insert bacterial proteins into a host cell 

to manipulate host proteins and signaling pathways to aid in the bacterial infection. T3SSs 

originally evolved from the flagellum are used by many different gram-negative bacterial 

species to translocate proteins in a trans-kingdom manner (Hueck, 1998; Macnab, 2003). 

T3SSs span the entire bacterial inner and outer membranes as well as the host cell 

membrane and are composed of more than 20 proteins (Deng et al., 2017). 

Two effector proteins secreted by EHEC into the mammalian host cell through its 

T3SS are the Translocated Intimin Receptor (Tir) and EspFu (Fig. 1-8) (Campellone et al., 

2004; Deibel et al., 1998). These are the main EHEC virulence factors that help reshape 

the mammalian actin cytoskeleton for pedestal formation. Once in the host cell, Tir inserts 

itself into the apical plasma membrane in a hairpin loop. In this confirmation, the central 

loop of Tir is exposed on the outside of the cell while the N- and C- termini are inside. 

Intimin, an EHEC outer membrane protein then binds to the central loop of TIr anchoring 

EHEC onto the epithelial apical surface (Campellone, 2010; Kenny et al., 1997). Large 

clusters of Tir at the apical surface of the host cell causes a signaling cascade to form 



 34 

that reinforces the anchorage of the EHEC bacterium through the emergence of an actin 

pedestal.  

 

Figure 1-8: Mechanism of EHEC actin pedestal formation. Schematic depiction of (A) 
an enterocyte with a branched- actin filled pedestal anchoring an EHEC bacterium onto 
the apical surface on an enterocyte and (B) the pathway necessary for pedestal formation 
and EHEC infection. Intimin is in the bacterial outer membrane and TIR and EspFu are 
bacterial effectors secreted into the host cell. Adapted from (Aitio et al., 2012). 

 
 

This actin pedestal signaling cascade is generated through the action of the I-BAR 

protein IRTKS, which binds to the C-terminus of Tir that remains inside the host cell. 

IRTKS also interacts with the other secreted virulence factor EspFu (Campellone et al., 

2004), through tandem polyproline motifs that bind tightly to its SH3 domain (Aitio et al., 

2010). This interaction is notable due to its high affinity (KD ~500 nM) (Aitio et al., 2010). 

The resulting apically localized Tir-IRTKS-EspFu complex subsequently recruits N-WASP 

and Arp2/3, leading to a massive induction of actin assembly. Branched actin assembly 

by Arp2/3 ultimately leads to pedestal formation beneath adherent EHEC bacterium 

(Campellone et al., 2004; Vingadassalom et al., 2009). Therefore, without IRTKS, actin 
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pedestal formation does not occur (Crepin et al., 2010; Vingadassalom et al., 2009; Yi 

and Goldberg, 2009). This hijacking of the microvillar actin cytoskeleton to form pedestals 

indicates the importance of the specialized shape of enterocytes. When the normal actin-

filled protrusion on the apical domain are rearranged into pedestals, the entire function of 

enterocytes is severely compromised.  

 

Summary 

The intestinal brush border is one of the most highly curved membranous organelles in 

the human body and is composed of vast amounts of linear F-actin. Since BAR domain-

containing proteins link areas of membrane curvature to the actin cytoskeleton in many 

cellular processes, it’s a logical assumption that these would exist within the brush border. 

However, it wasn’t until recently that two proteins, the F-BAR protein PACSIN2 and the I-

BAR protein IRTKS, were identified as necessary components of microvillar assembly. 

This highlights the significant gaps in our understanding of the molecules involved in 

brush border formation. Thus, the goal of this thesis is to shed insight into the molecular 

mechanisms of the two BAR domain proteins and how they physically link the actin 

cytoskeleton with the membrane in microvillar protrusion. 

Our studies are the first to determine a role for the I-BAR domain-containing protein 

IRTKS in promoting microvillar elongation within differentiating enterocytes of the 

intestinal crypt. We show that IRTKS localizes to microvillar tips to promote protrusion 

through the action of its I-BAR domain, and subsequently helps elongate microvilli 

through its WH2 and SH3 domains. IRTKS also binds to and localizes the actin-regulatory 

protein EPS8 through its SH3 domain, which is another molecule necessary for microvillar 
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elongation. Beyond just understanding the mechanisms of brush border assembly, the 

localization of IRTKS at microvillar tips proposes a novel role for I-BAR domain-containing 

proteins within the intestinal brush border.  

The F-BAR domain-containing protein PACSIN2 was first found to recruit COBL to 

the intestinal brush border for actin nucleation at the microvillar base (Grega-Larson et 

al., 2015). To better understand the role of PACSIN2 within the intestinal brush border, 

we characterized PACSIN2 KO mice using tissue staining and ultrastructural studies. It 

was found that loss of PACSIN2 leads to plasma membrane lifting from the base of 

microvillar actin cores leading to increased rootlet lengths. Moreover, Dynamin2 and other 

endocytic factors were lost from their normal localization near the intermicrovillar 

endocytic region, indicating that PACSIN2 helps promote vesicle scission at the 

enterocyte apical domain. A role linking the endocytosis between microvilli to the 

membrane forces that control microvillar morphology is a novel concept. This shows that 

PACSIN2 helps promote apical endocytosis and is a fundamental molecule for both 

microvillar growth and maintenance.  

 Overall, the studies performed over the course of this dissertation show how BAR 

domain-containing proteins use their inherent curvature and ability to bind to the plasma 

membrane to influence microvillar assembly. We were the first to identify and characterize 

the I-BAR protein IRTKS in the intestinal brush border. Furthermore, we determined a 

role for the F-BAR protein PACSIN2 in promoting microvillar membrane coverage through 

its ability to excise endocytic vesicles. Future studies will provide more mechanistic detail 

regarding how BAR domain proteins promote brush border assembly and maintenance, 

ideally in an in vivo context. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell culture and organoids 

Ls174T-W4 cells (female Hs colon epithelial cells) were cultured in DMEM with high 

glucose and 2 mM L-glutamine supplemented with 10% tetracycline-free fetal bovine 

serum (FBS), G418 (1 mg/ml), blasticidin (10 μg/ml), and phleomycin (20 μg/ml). The cell 

line was obtained from Dr. Hans Clevers (Utrecht University, Netherlands) and has not 

been additionally authenticated. B16F1 (Male Mm melanoma cells) and HeLa cells 

(female Hs cervix epithelial cells) were cultured in DMEM with high glucose and 2 mM L-

glutamine supplemented with 10% FBS. Intestinal organoids were generated from P42-

56 mice (C57BL/6, both genders). Organoids were suspended in 50 μl matrigel (BD 

Biosciences) and cultured in advanced DMEM/F12 (Invitrogen) supplemented with the 

following growth factors: 500 ng/ml EGF (Invitrogen), 100 ng/ml Noggin (R&D Systems), 

500 ng/ml R-spondin 1 (R&D Systems), and 1mM N-Acetylcysteine (Sigma). All cells 

were grown at 37°C and 5% CO2. 

 

Transfections and lentivirus production 

All transfections were performed using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions and the cells were allowed to recover overnight (ON). 

Lentivirus was generated by co-transfecting HEK293FT cells (Fetal Hs embryonic 

epithelial cells; T75 flasks at 80% confluency) with 6 μg of pLKO.1 shRNA KD plasmids 
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(Open Biosystems; IRTKS, TRCN0000005350; EPS8, TRCN0000061545; PACSIN2, 

TRCN0000037980), 4 μg of psPAX2 packaging plasmid, and 0.8 μg of pMD2.G envelope 

plasmid using FuGENE 6 (Promega). For efficient lentiviral production, cells were 

incubated for 48 hr, then lentivirus-containing media was collected and concentrated with 

Lenti-X concentrator (Clontech). To transduce W4 cells with lentivirus, the media was 

supplemented with 6 ug/ml polybrene (Sigma) and the lentiviral shRNAs. After a 24-hour 

incubation, the media was changed and resupplemented with 6 ug/ml polybrene and 

lentiviral shRNAs for an additional 24 hours. The cells were then seeded into plates or 

flasks and incubated ON in the absence or presence of 1 μg/ml doxycycline, and then 

prepared for immunofluorescence or SDS-PAGE. For rescue experiments, cells were 

transiently transfected 48 hours after the second lentiviral infection using Lipofectamine 

2000 and induced with 1 ug/ml doxycycline ON. They were then fixed the following 

morning and immunofluorescent staining with respective antibodies (usually anti-mCherry 

and/ or anti-EGFP) was performed according to the protocol outlined in the 

immunofluorescence section below. 

 

Cloning and constructs 

pTOB7-IRTKS (Open Biosystems) corresponding to full-length human IRTKS was 

purchased and shuttled into a pEGFP-C1 vector (Clontech) adapted for Gateway cloning 

using the Gateway conversion kit (Invitrogen) to generate pEGFP-C1-IRTKS (aa 1-511) 

and verified by sequencing. IRTKSΔWH2 (aa 1-482), I-BAR alone (aa 1-249), ΔI-BAR 

(aa 250-511), WH2 alone (aa 473-511) constructs were generated by PCR and TOPO 

cloned into the pCR8 Gateway entry vector (Invitrogen). To generate the IRTKS-SH3* 
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construct, mutations W378K and W391K were introduced into pEGFP-IRTKS using site-

directed mutagenesis. All entry vectors were verified by DNA sequencing and then 

shuttled into the destination vector pEGFP-C1 (Clontech) that was Gateway-adapted 

using the Gateway vector conversion kit (Invitrogen). pDONR221 EPS8 (Open 

Biosystems) was also purchased and shuttled into a pEGFP-C1 vector (Clontech) 

adapted for Gateway cloning using the Gateway conversion kit (Invitrogen) to generate 

pEGFP-C1-EPS8 (aa 1-822) and verified by sequencing. EPS8ΔPR1 (deleted aa 198-

231) construct was generated by reverse PCR and TOPO cloned into the pCR8 Gateway 

entry vector. The mCherry-tagged UtrCH used for B16F1, HeLa, and W4 live-cell imaging 

was purchased from Addgene (26740, deposited by W. Bement). The TOM20-mCherry 

construct was generously provided by the Kaverina Lab (Vanderbilt), and the SH3 domain 

of IRTKS was fused to the C-terminus of mCherry. A non-targeting scramble control 

shRNA (Addgene; plasmid 1864), IRTKS KD shRNA, and EPS8 KD shRNA clones were 

expressed in pLKO.1, corresponding to TRC clones TRCN0000005350 and 

TRCN0000061545 (Sigma) respectively. To generate an IRTKS construct refractory to 

KD, three silent mutations were introduced into full-length IRTKS using site-directed 

mutagenesis. For the IRTKS shRNA, which targets nucleotides (nts) 1190–1211, nt 1190 

(c→ a), nt 1192 (t → a), nt 1196 (a → t), nt 1197 (g→ c), and nt 1198 (t → g) were mutated. 

These silent mutations were also introduced into pEGFP-IRTKS SH3* and pEGFP-

ΔWH2. For the EPS8 shRNA, which targets EPS8 nts 1712–1732, nt 1718 (c→ t), nt 1720 

(g→ a), nt 1724 (t → a), nt 1725 (c→ g), and nt 1726 (t → c) were mutated. The same nts 

were mutated in the EGFP-EPS8PR1 construct.  
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Immunofluorescence 

For SIM imaging, cells were plated on glass coverslips and allowed to adhere for at least 

6 hrs (W4 cells) or 3 hrs (HeLa cells). They were then washed with pre-warmed PBS and 

fixed with warm 4% paraformaldehyde/PBS for 15 min at 37°C. Cells were then washed 

three times with PBS and permeabilized with 0.1% Triton X-100/PBS for 15 min at room 

temperature. Cells were once again washed three times with PBS and blocked for 1 hr at 

37°C in 5% bovine serum albumin (BSA)/PBS. Primary antibodies (listed below) were 

diluted in PBS and incubated with cells at 37°C for 1 hr, followed by four washes with 

PBS. Cells were then incubated for 1 hr with secondary antibodies (listed below) at room 

temperature. Coverslips were then washed four times with PBS and mounted on glass 

slides in ProLong Gold (P36930; Invitrogen).  

Frozen tissue sections of WT and PACSIN2 KO intestinal tissue were washed in 

phosphate-buffered saline (PBS) three times and permeabilized for 10 min with 0.1% 

Triton X-100/PBS at RT. The tissue sections were then blocked with 10% bovine serum 

albumin (BSA) at 37°C for 2 hours and washed once with PBS. Primary antibodies (listed 

below) were diluted in 10% BSA/PBS and incubated with cells at 4°C O/N, followed by 

four washes with PBS. Tissue sections were then stained with phalloidin and secondary 

antibodies (listed below) in 1% BSA/PBS for 2 hrs at RT, washed three times with PBS 

and mounted with Prolong Gold Antifade mounting media (P36930; Invitrogen). Paraffin-

embedded small intestinal tissue sections of WT and PACSIN2 KO were deparaffinized 

using Histo-clear solution (Fisher) and rehydrated in a descending graded ethanol series. 

Slides were then subject to an antigen retrieval step consisting of boiling for 1 hr in a 

solution of 10 mM Tris (pH 9.0) and 0.5 mM EGTA. Slides were then washed in PBS three 
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times and stained O/N at 4C with primary antibodies (see below) in 10% BSA/PBS. After 

washing with PBS four times, samples were stained with secondary antibodies in 1% 

BSA/PBS for 2 hrs at RT. Slides were then washed four times with PBS and mounted in 

ProLong Gold Antifade mounting media. Organoids were processed in a similar manner 

as above with some exceptions. 1) Organoids were fixed with warm 4% 

paraformaldehyde/PBS for 40 min at 37°C and 2) organoids were permeabilized with 

0.1% Triton X-100/PBS for 30 min.  

For live cell confocal imaging of W4 cells, previously transfected cells were plated 

on glass-bottom dishes with 1 μg/ml of doxycycline and allowed to adhere for 6 hours. 

Images of single W4 cells were acquired every 5 seconds for 30 minutes or continuously 

for 4 minutes. For FRAP of scramble and IRTKS KD, images were acquired every 5 

seconds with an initial acquisition of 15 sec followed by bleaching and an additional 10 

minutes. Bleaching was performed within a 20 μm2 ROI using 30% 405 laser power for a 

duration of 100 ms.  For drug treatments, 80M DMSO/ 80M Dynasore (D7693; Sigma-

Aldrich) or 30M DMSO/ 30M Pitstop 2 (SML1169; Sigma-Aldrich) were diluted into 1ml 

media and added to glass-bottom dish of W4s 10 minutes before acquisition. For live-cell 

TIRF imaging, previously transfected B16F1 cells were seeded onto 35 mm glass bottom 

dishes (Invitro Scientific, D35-20-1.5-N) that were coated with 25 μg/ml laminin (Sigma, 

L2020) in PBS. B16F1 cells were plated sparsely on the laminin-coated dishes, allowed 

to adhere for 2 to 3 hours, and images of single cells were acquired every 5 seconds for 

15 minutes. All live cells were maintained in a humid environment at 37°C and 5% CO2 

using a stage-top incubation system. Image acquisition was controlled with Nikon 

Elements software. 
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The following dilutions were used for primary antibodies for staining: anti-IRTKS (2 

μg/ml, HPA021257; Sigma-Aldrich), anti-EPS8 (1 μg/ml Cat# 610143; BD Biosciences), 

anti-GFP (50 μg/ml, GFP-1020; Aves Labs), or anti-mCherry (1 μg/ml, Cat# M11217; 

Invitrogen); anti-PACSIN2 (2.5 μg/ml, HPA049854; Sigma-Aldrich), anti-COBL (1g/ml, 

HPA 019033; Sigma-Aldrich), anti-Dynamin2 (4 g/ml, NBP2-47477; Novus Biologicals), 

anti-villin (4g/ml; Santa Cruz #sc-66022), anti-E-Cadherin (0.5 g/ml; BD Biosciences 

#610182), anti-ZO-1 (5g/ml, 61-7300; Thermo Fisher). The following dilutions were used 

for secondary antibodies and cell dyes for staining: goat anti-rabbit Alexa Fluor 488 

F(ab’)2 Fragment (2 μg/ml, A11070; Molecular Probes), goat anti-mouse Alexa Fluor 488 

F(ab’)2 Fragment (2 μg/ml, A11017; Molecular Probes), Alexa Fluor 568–phalloidin or 

Alexa Flour 647-phalloidin (1:200, A12380 and A22287 respectively; Invitrogen), or 

Wheat Germ Agglutin Oregon Green (WGA) (2g/ml, W67-48; Life Technologies). 

 

Frozen tissue preparation 

Segments of WT and KO intestine were removed and flushed with PBS and pre-fixed for 

10 minutes with 4% paraformaldehyde (PFA) to preserve the tissue structure. The tube 

was then cut along its length, sub dissected into 0.5m2 chunks, fixed for an additional 

30min in 4% PFA at RT, and washed 3 times in PBS. Samples were then gently placed 

on top of a 30% sucrose solution in TBS and allowed to sink to the bottom overnight at 

4C. Specimens were then swirled in three separate blocks of embedding medium, 

oriented in a block filled with fresh embedding medium, and snap-frozen in dry ice-cooled 

acetone. Samples were cut in 10 m sections and mounted on slides for staining.  
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Western blot analysis 

IRTKS and EPS8 knockdown and scramble cells were seeded into T25 flasks and 

allowed to grow for at least 24 hr. Cells were harvested with a cell scraper into PBS, 

pelleted at low speed, and lysed using ice-cold RIPA buffer containing 2 mM ATP, 

cOmplete ULTRA tablets (Roche), and 1 mM Pefabloc (Roche). The resulting cell lysates 

were then centrifuged at 15,000 RPM for 20 min and the soluble material was diluted with 

Laemmli sample buffer and heated at 95°C for 5 min. Equal sample volumes were loaded 

on a 4–12% Nu-Page gradient gel (Invitrogen) and the proteins were transferred to 

nitrocellulose at 25V for 16 hr. The membrane blots were blocked for 1 h in 10% milk-

PBS and incubated with primary antibodies diluted in PBS containing 0.1% Tween-20 

(PBS-T) ON at 4°C. The primary antibodies used were anti-IRTKS (0.08 μg/ml, 

HPA021257; Sigma-Aldrich), anti-EPS8 (0.1 μg/ml, Cat# 610143; BD Biosciences) and 

anti-glyceraldehyde 3-phosphate dehydrogenase (0.5 μg/ml, Cat# 3907; Cell Signaling). 

The membranes were then washed four times with PBS-T and incubated with donkey 

anti-rabbit 800 IRdye (0.01 ug/ml, 926-32213; Li-Cor) or donkey anti-mouse 800 IRdye 

(0.01 μg/ml, 926-32212; Li-Cor) for 30 min at RT on a shaker. Membranes were washed 

with PBS-T an additional four times and imaged using a Li-Cor Odyssey infrared imaging 

system. The same protocol was used to generate EGFP-tagged IRTKS constructs for 

expression levels. Images of membranes were cropped and adjusted using ImageJ (NIH) 

and relative protein expression levels were quantified using the signal from GAPDH. The 

samples were normalized according to their detected protein concentrations during 

loading.  
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Pulldown assays 

COS7 cells were grown in T75 flasks to 80% confluency and transfected with pull-down 

constructs using Lipofectamine 2000 according to the manufacturer’s protocol. After 48 

hr, cells were lysed using 1 ml of ice-cold Cellytic M buffer (Sigma) containing 2 mM ATP, 

1mM Pefabloc (Roche), and cOmplete ULTRA tablets (Roche) and centrifuged at 15,000 

RPM. The soluble material was recovered after centrifugation and incubated with a 30μl 

bed volume pre-equilibrated anti-FLAG M2 resin (Sigma) for 2 hr with continuous rocking 

at 4°C. Resin and bound material were pelleted at 300 RPM, washed four times using 

RIPA buffer supplemented with 2 mM ATP, 1 mM Pefabloc (Roche), and cOmplete 

ULTRA tablets (Roche), and eluted by boiling in SDS buffer to recover bound material. 

Resin-bound material was detected by western analysis with the following antibody 

dilutions: mouse anti-FLAG M2 (10 μg/ml; Sigma cat. #F3165) and chicken anti-EGFP (2 

μg/ml; Aves Labs cat. #GFP-1020). The pull-down assays were repeated three times, 

and the results shown are representative. 

 

Light microscopy 

SIM of W4 and HeLa cells was performed using an Applied Precision DeltaVision OMX 

equipped with a 60X Plan-Apochromat N/1.42 NA oil immersion objective (Olympus) 

using softWorx software (GE Healthcare), or with a Nikon N-SIM with an Apo TIRF 

100x/1.49 NA objective. Confocal microscopy was performed using a Nikon A1R laser-

scanning confocal microscope. Live cell B16F1 imaging was performed on a Nikon TiE 

inverted light microscope equipped with 488 and 561 excitation LASERs, a 100x/1.49 NA 

TIRF objective, and an Andor Neo sCMOS detector. Imaging was performed using near-
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TIRF illumination, where the incident angle of the LASER was adjusted to increase the 

depth of penetration of the excitation field. Live-cell imaging of W4 cells was performed 

on a Nikon Yokogawa CSU-X1 spinning disk confocal microscope. All images used for 

quantitative comparisons were prepared with equal treatment, acquired with identical 

parameters (e.g. pinhole diameter, detector gain), and processed in an identical manner. 

Richardson-Lucy deconvolution of image volumes (20 iterations) was performed using 

Nikon Elements software. Images were contrast enhanced and cropped using ImageJ 

software (NIH).  

 

Electron microscopy 

Segments of WT and KO intestine were placed into 0.1M HEPES (pH 7.3) and sub 

dissected into 2mm chunks at RT. Samples were placed into scintillation vials and 

incubated in RT fix buffer (4% PFA, 2.5% glutaraldehyde, 2mM CaCl2 in 0.1M HEPES) 

for 1 hr and washed 3 times in HEPES buffer. Samples were incubated with 1% tannic 

acid/HEPES for 1 hr, washed 3 times with ddH2O followed by incubation with 1% osmium 

tetroxide/ddH2O for 1 hour. Samples were then washed 3 times with ddH2O, incubated in 

1% uranyl acetate/ddH2O for 30 min then washed with ddH2O. Samples were dehydrated 

in a graded ethanol series and then dried using critical point drying. Samples were then 

mounted on aluminum stubs and coated with gold/palladium using a sputter coater. 

Imaging was performed using a Quanta 250 Environmental SEM operated in high vacuum 

mode with an accelerating voltage of 5 kV. All SEM reagents were purchased from 

Electron Microscopy Sciences. 
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Image analysis  

 All image analysis was performed using FIJI or Nikon Elements software and all 

quantitative data are from at least three independent experiments. To perform line-scan 

analysis, a line was drawn along the axis of microvilli that were entirely in plane with a 

distinct tip and base visible. The intensity of the IRTKS or EPS8 signal was recorded and 

normalized with the lowest intensity set to 0 and the maximum set to 1. The microvillar 

length axis from individual scans was also normalized with the base set to 0 and the tip 

set to 1. Normalized line-scans were then plotted together and fit to a single Gaussian 

using nonlinear regression. For quantification of percentage of cells with BB, cells were 

scored as BB positive if they displayed polarized F-actin accumulation as visualized using 

a 40X objective on a Nikon A1R laser-scanning confocal microscope. Microvillar length 

measurements were performed on projected SIM images by tracing individual microvillar 

actin bundles using FIJI. For analyses in which individual microvilli were measured, at 

least 10 microvillar actin bundles were scored per cell and at least 25 cells measured per 

experiment.  

In B16F1 melanoma cells, filopodia number was quantified in ImageJ by counting 

the number of actin protrusions on the outside of a cell. For measuring enrichment of 

EPS8 and at the distal tips of the BB in Ls174T-W4 cells, BB:cytosol enrichment was 

defined as the ratio of these two mean intensities. Percent BB and microvillar length data 

were analyzed with a D’Agostino and Pearson omnibus normality test to determine 

normal distribution. To perform intensity analyses, the BB and/ or cytosol were 

thresholded in villar confocal images using Nikon Elements software and the mean 

intensity numbers per villus were plotted; BB to cytosol enrichment was defined as the 
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ratio of these two mean intensities. Microvillar length measurements were performed on 

projected SIM images or on TEM images by tracing individual microvillar actin bundles 

using FIJI. For W4 cell microvillar length analysis, at least 10 microvillar actin bundles 

were scored per cell and at least 25 cells measured per experiment. Microvillar membrane 

coverage measurements were performed on projected W4 SIM images or on TEM 

images by dividing the length of a microvilli covered in membrane by the entire actin 

bundle from the rootlet to the tip. Nearest neighbor distance measurements were 

performed by thresholding microvilli in SEM images using Nikon Elements.  

 

Statistical analysis 

For all figures, error bars indicate SD and n values are reported in the figure legends. 

Normally distributed data were statistically analyzed to determine significance using the 

unpaired Student’s t test. Statistical analyses performed are stated in the figure legends. 

All graphs were generated and statistical analyses performed using Prism (v.7, 

GraphPad). 

 

Animal studies 

Animal experiments were carried out in accordance with Vanderbilt University Medical 

Center Institutional Animal Care and Use Committee guidelines. 
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CHAPTER III 

 

IRTKS ELONGATES EPITHELIAL MICROVILLI USING EPS8-DEPENDENT AND 

INDEPENDENT MECHANISMS  

 

Originally published as: 

Postema, M.M., Grega-Larson, N.E., Neininger, A. C., & Tyska, M.J. (2018) IRTKS 

(BAIAP2L1) elongates epithelial microvilli using EPS8- dependent and 

independent mechanisms. Current Biology 28: 2876-2888. 

 

Summary 

Transporting epithelial cells like those that line the gut, build large arrays of actin-

supported protrusions called microvilli, which extend from the apical surface into luminal 

spaces to increase functional surface area. Although critical for maintaining physiological 

homeostasis, mechanisms controlling the formation of microvilli remain poorly 

understood. Here we report that the I-BAR domain-containing protein insulin receptor 

tyrosine kinase substrate (IRTKS, also known as BAIAP2L1) promotes the growth of 

epithelial microvilli. Super-resolution microscopy and live imaging of differentiating 

epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli 

via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS 

promotes elongation through a mechanism involving its C-terminal actin-binding WH2 

domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the 

bundling protein EPS8 to microvillar tips. These results provide new insight on 
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mechanisms that control microvillar growth during the differentiation of transporting 

epithelial cells, and help explain why IRTKS is targeted by enteric pathogens that disrupt 

microvillar structure during infection of the intestinal epithelium.  

 

Introduction 

Transporting epithelial cells line the luminal surface of many hollow organs where they 

promote solute uptake from the external environment. Transport is aided by actin-

supported membrane protrusions called microvilli, which increase apical membrane 

surface area (Helander and Fandriks, 2014). A single microvillus contains a core bundle 

of parallel actin filaments with barbed ends oriented away from the cell and pointed ends 

embedded in an underlying terminal web (Mooseker and Tilney, 1975). Certain epithelial 

cell types, such as intestinal enterocytes, build hundreds of densely packed microvilli in 

an array known as the ‘brush border’ (BB) (Crawley et al., 2014b; Delacour et al., 2016). 

In addition to driving nutrient absorption, intestinal microvilli provide a barrier against 

luminal pathogens and toxins (Shifrin et al., 2012). In one example, infection with 

enterohemorrhagic Escherichia coli (EHEC) disrupts microvillar structure and packing 

and in turn leads to nutrient malabsorption and osmotic imbalances, which can prove life 

threatening (Vallance et al., 2002). Despite the critical physiological role of the BB, the 

molecules and mechanisms controlling microvillar growth remain poorly understood.  

Microvillar growth occurs during enterocyte differentiation, which takes place in pit-

like “crypts”, sites that harbor intestinal stem cells (Friedman, 1945). Although crypt 

epithelial cells exhibit short, disorganized microvilli (Fath et al., 1990; Specian and Neutra, 

1981), the apical domain undergoes a striking transition as nascent enterocytes migrate 
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out of crypts and onto the villus (Fath et al., 1990; van Dongen et al., 1976). Defining 

features of this transition include an increase in packing density (number of microvilli/cell) 

and an increase in microvillar length. Both of these changes increase apical membrane 

surface area and contribute to maximizing the absorptive capacity of mature enterocytes.  

Although mechanisms that drive tight microvillar packing are beginning to emerge 

(Crawley et al., 2014b; Crawley et al., 2016; Li et al., 2016; Li et al., 2017; Weck et al., 

2016; Yu et al., 2017), molecules responsible for elongation of microvilli during 

differentiation remain poorly understood. Previous studies implicated actin filament 

bundling proteins, including villin and espin, in elongation (Friederich et al., 1989; Loomis 

et al., 2003). Bundling proteins also play a role in the growth, elongation, and maintenance 

of other actin-supported protrusions including stereocilia (espin-1, plastin-1 and fascin-2) 

(Krey et al., 2016; Sekerkova et al., 2011; Shin et al., 2010) and filopodia (fascin-1) 

(Vignjevic et al., 2006), respectively. Remarkably, studies on KO mice lacking the three 

major microvillar actin bundlers (villin, espin, and plastin) revealed that BBs are still 

present (Revenu et al., 2012), suggesting the existence of alternate assembly pathways. 

Factors that target to the ends of core actin bundles would also be well positioned to exert 

control over bundle length. Indeed, cordon bleu targets near the pointed ends of 

microvillar actin cores and has been shown to promote their growth (Grega-Larson et al., 

2015; Grega-Larson et al., 2016; Wayt and Bretscher, 2014).  

Given the high outward membrane curvature generated during protrusion, another 

group of molecules likely to play important roles in microvillar elongation are I-BAR 

(Inverse-Bin-Amphiphysin-Rvs) proteins (Ahmed et al., 2010; Zhao et al., 2011). I-BAR 

domains are small membrane-binding, three helix bundles that dimerize and exhibit a 

http://en.wikipedia.org/wiki/Amphiphysin
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structural curvature that is well-matched to outward bending (Lee et al., 2007; Millard et 

al., 2005). Members of the I-BAR family (including IRSp53, IRTKS, Pinkbar, MIM, and 

ABBA) are comprised of an N-terminal BAR domain that interacts with acidic 

phospholipids, a central SH3 domain, and an actin-binding Wiskott-Aldrich syndrome 

protein homology 2 (WH2) motif at the C-terminus (Ahmed et al., 2010; Zhao et al., 2011). 

I-BAR proteins have been implicated in generating filopodia on the surface of motile cells 

(Lim et al., 2008; Yamagishi et al., 2004) and dendritic spines in neurons (Saarikangas et 

al., 2015), physiological scenarios that both require membrane protrusion.  

A proteomic study by our laboratory identified insulin receptor tyrosine kinase 

substrate (IRTKS or brain-specific angiogenesis inhibitor 1-associated protein like 1 or 

BAIAP2L1) as the only I-BAR domain-containing protein in the intestinal BB (McConnell 

et al., 2011). IRTKS was first identified as a tyrosine phosphorylated insulin receptor 

substrate (Yeh et al., 1996) and subsequently predicted to be an I-BAR domain protein 

(Yamagishi et al., 2004). Later work showed that over-expression of IRTKS induced 

dramatic effects on the actin cytoskeleton in a WH2 domain-dependent manner (Millard 

et al., 2007). Studies on IRTKS KO mouse models implicate this molecule in insulin 

signaling and glucose homeostasis (Huang et al., 2013), as well as the formation of dorsal 

filopodia in embryonic fibroblasts (Sudhaharan et al., 2016). IRTKS is also hijacked by 

EHEC during its infection of the intestinal tract.  Under these conditions, the IRTKS SH3 

domain binds tightly to virulence factors that ultimately stimulate actin polymerization and 

adherent pedestal formation, which are required for survival of the microbe and continued 

infection (Aitio et al., 2010; Aitio et al., 2012; Crepin et al., 2010; Vingadassalom et al., 

2009). The dependence of EHEC pathogenesis on IRTKS strongly implicates this 
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molecule as a resident of the enterocyte apical domain, the initial site of EHEC contact 

with the epithelium, yet how IRTKS contributes to normal BB function remains unknown.  

Here we report that IRTKS plays an important role in elongating microvilli. Using 

super-resolution microscopy, we discovered that IRTKS exhibits striking localization to 

the distal tips of microvilli, where the growing ends of actin filaments are found. IRTKS 

targets to these sites of outward membrane curvature using its N-terminal I-BAR domain.  

Once at the tips, IRTKS serves to elongate microvilli via distinct mechanisms that require 

functional WH2 and SH3 domains. A role for the SH3 domain in elongation is in part 

explained by binding to EPS8, an established F-actin capping and bundling protein. We 

show that IRTKS controls the localization of EPS8 and promotes its targeting to microvillar 

tips. Thus, IRTKS functions in microvillar elongation directly using its WH2 domain, and 

indirectly using its SH3 domain to recruit EPS8, which also harbors its own elongation 

activity. Together these studies identify the first I-BAR protein in the epithelial apical 

domain, illuminate molecular mechanisms that promote microvillar growth during 

enterocyte differentiation, and provide an evolutionary rationale on the targeting of IRTKS 

during EHEC infection.  

 

Results 

IRTKS localizes to the tips of microvilli in differentiating epithelial cells 

Using 2D-LC-MS/MS to define the mouse BB proteome, we previously identified IRTKS 

as one of 646 proteins enriched in BB fractions (McConnell et al., 2011). To examine the 

expression and localization of IRTKS, we stained mouse small intestinal organoids with 

an IRTKS specific antibody. Intestinal organoids are derived from isolated stem cell-
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containing crypts; in culture, these structures reseal and differentiate through formation 

of new crypt domains budding from a shared villus domain that encapsulates a closed 

lumen (Fig. 3-1A) (Sato and Clevers, 2013a; Sato et al., 2009). The resulting primary 

cultures are highly amenable to whole mount imaging, which makes it easier to orient and 

capture full crypt-villus axes. Importantly, the accumulation of apical F-actin, which 

defines the crypt-villus transition, is recapitulated in this system (Fig. 3-1A). In these 

cultures, IRTKS is enriched at the apical surface in both crypt and villus domain cells. 

Interestingly, line scans orthogonal to the apex of crypt cells revealed peak IRTKS signal 

close to microvillar tips (0.78 ± 0.21, base = 0, tips = 1) (Fig. 3-1C). To define IRTKS 

localization at higher resolution, we examined Ls174T-W4 (W4) cells, an epithelial cell 

line that can be induced to form microvilli (Baas et al., 2004). W4 cells mimic the partially 

differentiated state of crypt cells and provide a model for studying IRTKS function in cells 

that have actively growing microvilli. Consistent with organoid staining, structured 

illumination microscopy (SIM) of endogenous IRTKS in W4 cells revealed puncta 

throughout the cytoplasm, as well as enrichment at microvillar tips (Fig. 3-1D, 3-1E). 

Thus, IRTKS is expressed in differentiating epithelial cells of the crypt and localizes to the 

tips of nascent microvilli. 

 

IRTKS tracks the distal tips of growing microvilli 

We next examined IRTKS dynamics in live W4 cells expressing EGFP-IRTKS and 

mCherry-Utrophin (UtrCH) to label F-actin (Fig. 3-3A). In kymographs created with lines 

along the microvillar axis, IRTKS tracked the tips of growing bundles, producing diagonal 

features with the slope indicating an elongation rate of ~0.75 m/min (Fig. 3-3B). 
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Figure 3-1: IRTKS localizes to the distal tips of epithelial microvilli. (A) Confocal 
maximum intensity projection of a mouse small intestinal organoid stained with phalloidin 
to label F-actin. Zooms indicate single plane images: 1) crypt cells, arrowheads highlight 
immature microvilli and 2) villar cells, arrows highlight mature microvilli. Scale bar, 25 μm. 
(B) Endogenous IRTKS (green) and phalloidin (magenta) labeling of an intestinal 
organoid. Dashed box indicates zoom of the crypt; arrowheads highlight IRTKS tip 
localization. Scale bar, 40 μm. (C) Line scans (n = 36 microvilli) of normalized 
endogenous IRTKS intensity parallel to the microvillar axis in organoid crypt domains. 
Length values are normalized such that 0 = base and 1 = tip. (D) SIM projection of a 
Ls174T-W4 (W4) cell showing endogenous IRTKS (green) and stained with phalloidin 
(magenta). Dashed box indicates zoom of the BB, arrows point to IRTKS puncta at the 
microvillar distal tips. Scale bar, 5 μm. (E) Line scans (n = 42 microvilli) of normalized 
endogenous IRTKS intensity parallel to the microvillar axis in W4 cells. Length values are 
normalized such that 0 = base and 1 = tip. 
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Figure 3-2: IRTKS is highly expressed in the intestinal crypt domain. (A) Maximum 
intensity projection of the IRTKS stained mouse intestinal organoid used in Fig. 1B. Scale 
bar, 40 μm. 

 

Montages of individual microvilli also showed IRTKS puncta persistently tracking the tips 

of newly emerging protrusions (Fig. 3-3C). Of note, we were unable to detect clear 

examples of IRTKS tip tracking during microvillar retraction. This might suggest that 

IRTKS prefers the tips of growing bundles. However, we cannot rule out the possibility 

that retraction events may be obscured by the dynamic movements of microvilli during 

these time-lapse. To determine if tip targeting was specific to the parallel actin bundles in 

epithelial microvilli, we examined the localization of EGFP-tagged IRTKS in B16F1 

melanoma cells. Time-lapse imaging showed strong localization to the tips of dynamic 

filopodia, as well as an increase in the total number of filopodia over control cells (Fig. 3-

3D- 3-3G). Together, these results suggest that the IRTKS tip targeting mechanism 

senses general features of the distal tip compartment, such as outward membrane 

curvature and/or the actin filament barbed ends. 
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Figure 3-3: IRTKS tracks the tips of growing F-actin protrusions. (A) EGFP-IRTKS 
(green) targets to the tips of mCherry-Utrophin (UtrCH, magenta) labeled microvilli in live 
W4 cells. Scale bar, 5 μm. (B) Kymograph from the white arrow in A; RTKS puncta track 
the tips of protruding microvilli shown with arrows. (C) Montage of IRTKS tracking the tips 
of growing MV in a Ls174T-W4 cell expressing EGFP-IRTKS (green) and mCherry-UtrCH 
(magenta). White and green arrows indicate IRTKS at the tips of two distinct elongating 
microvillar bundles. (D) TIRF live-cell imaging of a control B16F1 melanoma cell 
expressing mCherry-UtrCH. Scale bar, 10 μm. (I) TIRF live-cell imaging of a B16F1 
melanoma cell expressing EGFP-IRTKS (green) and mCherry-UtrCH (magenta); arrows 
point to individual filopodial protrusions with IRTKS enrichment at the distal tips. Dashed 
box indicates single movie frames with time in seconds. Scale bar, 10 μm. (J) Kymograph 
of a B16F1 cell filopodia. IRTKS (green) persists at the tips of filopodial actin bundles 
(magenta) during growth. (K) Quantitation of the number of filopodia per μm of cell 
perimeter in control and IRTKS expressing B16F1 melanoma cells; 20 cells/condition. 
Error bars indicate mean ± SD; p value calculated using a t test (****p<0.0001). 
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IRTKS tip targeting is driven by the N-terminal I-BAR domain 

To define the mechanism of IRTKS tip targeting, we examined the impact of eliminating 

or mutating specific structural motifs (Fig. 3-4A). A full-length EGFP-IRTKS construct 

enriched at the tips of W4 microvilli similar to endogenous IRTKS (Fig. 3-4B, 3-5A). A 

construct containing loss-of-function mutations (W378K/W391K) in the SH3 domain 

(SH3*)(Tu et al., 2001) still displayed some tip targeting, but also accumulated near the 

base of microvilli (Fig. 3-4C, 3-5B). Deletion of the C-terminal WH2 domain (ΔWH2) had 

no impact on tip targeting (Fig. 3-4D, 3-5C), whereas deletion of the N-terminal I-BAR 

domain (ΔI-BAR) completely eliminated all membrane localization and tip targeting (Fig. 

3-4E, 3-5D). The IRTKS I-BAR domain alone displayed targeting to the membrane and 

microvilli (Fig. 3-4F, 3-5E). Thus, IRTKS tip targeting is controlled primarily by the I-BAR 

domain, but is refined by the SH3 domain, likely through its interactions with binding 

partners. 

 

IRTKS promotes microvillar elongation using its SH3 and WH2 domains  

Our analysis of IRTKS targeting mechanisms revealed that overexpression of variants 

significantly impacted microvillar length (Fig. 3-4G). W4 cells overexpressing full-length 

IRTKS exhibited a minor increase in length over WT cells (2.7 ± 0.4 μm vs. 2.5 ± 0.4 μm, 

respectively). However, SH3* and ΔWH2 constructs significantly decreased length (1.8 ± 

0.4 μm and 1.9 ± 0.4 μm, respectively), likely due to a dominant negative effect. Effects 

on length also scaled with expression level (Fig. 3-4H). Constructs lacking the I-BAR or 

with the I-BAR domain alone did not impact microvillar length (Fig. 3-4G). 
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Figure 3-4: IRTKS promotes microvillar elongation. (A) Construct cartoons for the 
IRTKS variants used in this study. *refers to W378K/W391K point mutations within the 
SH3 domain; a.a. refers to the amino acid numbers of the indicated domain. (B-F) SIM 
projections of W4 cells expressing EGFP-IRTKS constructs (green) and stained with 
phalloidin (magenta). Line scans (n > 32 microvilli for each construct) parallel to the 
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microvillar axis show the intensity distribution of each IRTKS construct; 0 = base, 1 = tip. 
Scale bar, 3.5 μm. (G) Quantitation of microvillar length from cells expressing IRTKS 
constructs; >34 cells/condition, >10 microvilli/cell. (H) Quantitation of total IRTKS 
fluorescent intensity within the BB versus averaged microvillar length for individual cells; 
>28 cells per condition, >10 microvilli averaged per cell. The slope of EGFP-IRTKS is 

significantly different from the slopes of EGFP-IRTKS SH3* and EGFP-IRTKSWH2 
(**p<0.0021 and ****p<0.0001 respectively). The slopes of EGFP-IRTKS SH3* and 

EGFP-IRTKSWH2 are not significantly different (p<0.4957). (I) Schematic of KD/rescue 
experimental design. W4 cells are plated with doxycycline (DOX) to induce the formation 
of a BB (Baas et al., 2004). (J) Images of scramble or IRTKS KD W4 cells stained with 
phalloidin. Top panels: low magnification confocal images that were scored to generate 
“% BB positive cells” plots; scale bars, 40 μm. Middle panels: SIM whole cell maximum 
intensity projections (en face, x-y); scale bars, 5 μm. Bottom panels: SIM whole cell 
maximum intensity projections of the same cell as above (lateral, x-z). (K,L) Quantitation 
of IRTKS knockdown and rescue experiments in W4 cells. Percentage of BB positive 
cells; >200 cells/condition, individual points correspond to the percent of cells containing 
a BB for an individual 40x confocal image field. Microvillar length >28 cells/condition, >10 
microvilli averaged/cell. All error bars indicate mean ± SD; all p values calculated using a 
t test (*p<0.033, **p<0.002, ***p<0.0002, ****p<0.0001). 

 

Based on these data, we hypothesized that IRTKS plays a role in controlling 

microvillar length. To determine if IRTKS is required for microvillar growth, we used 

shRNA to knockdown (KD) IRTKS in W4 cells (Figs. 3-4J, 3-5G), and then examined the 

impact using confocal microscopy and SIM (Fig. 3-4J). IRTKS KD significantly reduced 

the fraction of cells able to grow a BB (72.7 ± 12.9% in scramble control vs. 50.1 ± 15.7% 

in KD) (Fig. 3-4K) and significantly decreased microvillar length (2.5 ± 0.5 μm control vs. 

1.3 ± 0.2 μm KD) (Fig. 3-4L). These perturbations were specific to loss of IRTKS, as a 

construct refractory to KD (IRTKSr) rescued the fraction of cells able to grow microvilli 

(71.7 ± 14.9%) and microvillar length (2.7 ± 0.3 μm) (Fig. 3-4K, 3-4L, & 3-5J). Interestingly, 

expression of refractory SH3* and ΔWH2 constructs only partially rescued microvillar 

growth parameters, while refractory ΔI-BAR and I-BAR constructs had no effect on 

microvillar length (Fig. 3-4K, 3-4L, & 3-5K- 3-5N). These overexpression and KD/rescue 
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assays reveal that IRTKS is needed for normal microvillar elongation, which requires 

functional SH3 and actin-binding WH2 domains.  

 

EPS8 colocalizes with IRTKS and interacts with its SH3 domain 

Involvement of the IRTKS WH2 domain in microvillar elongation makes biological sense 

as this motif is known to bind actin directly (Millard et al., 2007). How the IRTKS SH3 

domain contributes to microvillar length control is less clear. To develop our 

understanding of these observations, we sought to identify a binding partner for this 

domain. Previous studies identified the IRTKS SH3 domain as a high affinity-binding 

partner of the proline rich (PR) motifs in the EHEC virulence factor, EspFu (Aitio et al., 

2010). Sequence analysis of EspFu PR motifs implicates several mammalian proteins as 

potential IRTKS binding partners under normal conditions. One candidate that stands out 

based on high sequence conservation is EPS8 (Fig. 3-6A), which exhibits actin bundling 

and capping activities through its C-terminal region (Fig.3-6B) (Disanza et al., 2004; 

Hertzog et al., 2010). Previous studies suggest that EPS8 targets to the tips of intestinal 

microvilli (Croce et al., 2004; Tocchetti et al., 2010), hair cell stereocilia (Behlouli et al., 

2014; Manor et al., 2011; Zampini et al., 2011), and filopodia (Disanza et al., 2006) where 

it controls the length of these protrusions, although significant questions remain regarding 

its mechanism of targeting and action in these different contexts. In W4 cells, endogenous 

EPS8 was highly enriched at the tips of microvilli (Fig. 3-6C, 3-6D) and colocalized with 

endogenous IRTKS puncta at these sites (Fig. 3-6E- 3-6G). Whereas the majority of tip 

puncta contained both EPS8 and IRTKS, the stoichiometry of colocalization in the tip 

compartment was not fixed; this likely reflects structural variability inherent to the tips of 
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individual microvilli. Finally, using in vitro pull-downs, we found that FLAG-tagged EPS8 

interacted with full length EGFP-tagged IRTKS; we also confirmed that the SH3 domain 

was sufficient for binding (Fig. 3-6H). Thus, using its SH3 domain, IRTKS holds the 

potential to interact with EPS8 at the tips of microvilli.  

Interestingly, co-expressing IRTKS and EPS8 in W4 cells did not significantly 

elongate W4 cell microvilli (Fig. 3-7B).  We suspect this is because a major fraction of 

cellular G-actin is incorporated into microvillar actin bundles upon induction with 

doxycycline. We tested this idea by co-expressing IRTKS and EPS8 in cells that do not 

normally build BBs: B16F1 melanoma and HeLa cells (Fig. 3-7C- 3-7F). In both cell types, 

dual expression dramatically increased the number of both dorsal and substrate-attached 

filopodia over control cells, indicating that IRTKS and EPS8 can work together to stimulate 

finger-like protrusion growth.   

 

IRTKS promotes EPS8 enrichment at the tips of microvilli 

To further elucidate the functional relationship between EPS8 and IRTKS at microvillar 

tips, we examined the impact of IRTKS KD on EPS8 localization. Although some EPS8 

was still present in the shortened microvilli on the surface of IRTKS KD cells (Fig. 3-8A, 

3-8B), we also found that cytosolic EPS8 levels were significantly increased relative to 

controls (Fig. 3-8A- 3-8C), suggesting that IRTKS promotes the tip targeting of EPS8 

under normal conditions. To test this concept, we generated a variant of EPS8 lacking 

the predicted IRTKS interacting motif (EPS8ΔPR1, Fig. 3-6A, 3-6B). Strikingly, this variant 

localized in puncta throughout the cytoplasm (Fig. 3-8D), with significantly reduced tip 

targeting relative to EGFP-EPS8 (Fig. 3-8E).  Using pulldowns, we also found that less 
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Figure 3-5: Split channel images of IRTKS overexpression and KD/rescue cells. (A-
E) SIM projections of Ls174T-W4 cells expressing EGFP-IRTKS constructs (green) and 
stained with phalloidin (magenta); single channel zooms of the BB are below each image. 
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Scale bars, 5 μm. (F) Western blot analysis of expression levels of EGFP-IRTKS variants 
in lysates from Ls174T-W4 cells. Both IRTKS and EGFP antibodies were used because 
the IRTKS antibody is towards a peptide sequence within the SH3 domain, thus the 
EGFP-I-BAR alone construct will not be targeted. GAPDH was used as a loading control. 
(G) Western blot analysis of endogenous IRTKS levels in lysates from WT Ls174T-W4 
cells, shRNA scramble control, and shRNA IRTKS KD. GAPDH was used as a loading 
control. (H-I) FRAP curves of shRNA scramble control and shRNA IRTKS KD in Ls174T-
W4 cells. (J-N) SIM projections of IRTKS KD Ls174T-W4 cells expressing refractory 
EGFP-IRTKS constructs in rescue experiments. Zooms of the BB and single IRTKS 
channel below each image. Scale bars, 5 μm. 

 
 

EGFP-EPS8ΔPR1 bound to a FLAG-tagged IRTKS SH3 bait relative to EGFP-EPS8 (Fig. 

3-9A). To further determine if IRTKS is sufficient to control EPS8 localization, we fused 

its SH3 domain to TOM20, thus directing it to the surface of mitochondria. In cells 

expressing TOM20-mCherry-IRTKS-SH3, but not TOM20-mCherry alone, a large fraction 

of endogenous EPS8 was sequestered to mitochondria (Fig. 3-8F- 3-8G). Microvillar 

length was slightly decreased in these cells, likely due to the loss of EPS8 from the BB 

(Fig. 3-8I). Together, these results indicate that IRTKS can use its SH3 domain to promote 

the localization of EPS8 to microvillar tips.  

 

EPS8 promotes microvillar elongation 

Previous studies implicated EPS8 in controlling the length of actin bundle-supported 

protrusions (Croce et al., 2004; Manor et al., 2011), and we confirmed this in EPS8 

depleted W4 cells (Fig. 3-10A, 3-10B & 3-9B). Interestingly, EPS8 KD phenocopied 

IRTKS KD (Fig. 3J-3L), by reducing the fraction of cells able to assemble BBs (71.9 ± 

11.7% scramble control vs. 26.5 ± 10.7% EPS8 KD) (Fig. 3-10C) and decreasing microvilli 

length (2.5 ± 0.4 μm scramble control vs 1.6 ± 0.3 μm EPS8 KD) (Fig. 3-10D). Both 

microvillar growth parameters were rescued by expression of a refractory variant of  
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Figure 3-6: EPS8 colocalizes and interacts with IRTKS. (A) Sequence alignment of 
the proline rich (PR) motifs of EspFu and EPS8 isoforms. Magenta letters indicate EPS8 
amino acids that align with the EspFu PR. (B) Domain organization of human EPS8. 
EPS8ΔPR1 refers to the construct used in Fig. 5 D, E; capping and filament binding refer 
to F-actin interactions. (C) SIM projection of an W4 cell stained for endogenous EPS8 
(green) and phalloidin (magenta). Dashed box indicates zoom of the BB, arrows highlight 
EPS8 puncta at microvillar distal tips. Scale bar, 5 μm. (D) Line scans (n = 42) of 
endogenous EPS8 intensity parallel to the microvillar axis in W4 cells; 0 = base, 1 = tip. 
(E) SIM projection of an W4 cell stained for endogenous IRTKS (green), EPS8 (magenta), 

and phalloidin (blue). Dashed box indicates zoom of the BB (rotated 90 clockwise); 
arrows point to colocalized IRTKS and EPS8 puncta (white spots). Scale bar, 5 μm. (F) 
Colocalization of EPS8 and IRTKS; colocalized pixels (white), EPS8 pixels (blue), and 
IRTKS pixels (green). Teal outline designates the BB and purple outline designates the 
cytosol. (G) Pearson’s Correlation analysis of IRTKS and EPS8 colocalization in the BB 
vs. cytosol (n = 44 cells). Error bars indicate mean ± SD; p value calculated using a t test 
(*p<0.0001). (H) Pulldown of FLAG-tagged EPS8 co-expressed with EGFP-tagged 
IRTKS variants reveals binding between EPS8 and the IRTKS SH3 domain.  
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Figure 3-7: The impact of EPS8 and IRTKS co-expression on the formation of actin-
based protrusions. (A) SIM projection of a Ls174T-W4 cell expressing EGFP-EPS8. 
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Dashed box indicates zoom; scale bar, 5 μm. (B) Quantitation of microvillar length 
comparing WT Ls174T-W4 cells, EGFP-EPS8 overexpression and EGFP-IRTKS and 
mCherry-EPS8 dual overexpression, which do not affect microvillar length. 25 
cells/condition, 10 microvilli/cell; student’s t test (*p<0.0001, ns, not significant) was used 
to determine the significance. (C) TIRF live-cell imaging of a B16F1 melanoma cell 
expressing EGFP-EPS8 (green) and mCherry-IRTKS (magenta). Dashed box indicates 
movie frames with time in seconds. Scale bar, 10 μm. (D-F) En face (x-y) and lateral (x-
z) SIM projections of HeLa cells expressing either EGFP-IRTKS (D), EGFP-EPS8 (E), or 
EGFP-IRTKS and mCherry-EPS8 (F) and stained with phalloidin. Scale bars, 10 μm.  
 
 

EGFP-EPS8, but only partially rescued with a refractory EGFP-EPS8ΔPR1 (Fig. 3-10C, 

3-10D, 3-9B- 3-9D). Thus, EPS8 is also required for normal microvillar elongation though 

a mechanism requiring the PR1 motif. 

 

IRTKS uses EPS8-dependent and independent mechanisms to elongate microvilli 

Our results up to this point suggest a model where IRTKS promotes microvillar elongation 

using two distinct mechanisms: (1) a direct mechanism that involves its own actin-binding 

WH2 domain, and (2) an indirect mechanism that involves SH3 domain-dependent 

recruitment of EPS8, which in turn exerts its own elongation activity. As proposed, both 

mechanisms require functional IRTKS. If this model is accurate, EPS8 co-expression 

should rescue the shortening of microvilli observed in response to overexpression of 

IRTKSΔWH2, but not IRTKS SH3* (Fig. 3-4D, 3-4G). Indeed, EPS8 expression rescued 

microvillar length in cells expressing IRTKSΔWH2, but had no impact on the length 

reduction caused by IRTKS SH3* (Fig. 3-10E- 3-10H). A second prediction is that a 

functional SH3/PR1 interaction should be required for the increase in filopodia numbers 

observed with co-expression of EPS8 and IRTKS in B16 cells. Consistent with this 

proposal, co-expressing EPS8 with IRTKS SH3* or EPS8ΔPR1 on its own did not impact 
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Figure 3-8: IRTKS recruits EPS8 using its SH3 domain. (A,B) SIM projections of scramble 
control and IRTKS KD W4 cells stained for EPS8 (green) and phalloidin (magenta). Inverted black 
and white images highlight the increased cytosolic localization of EPS8 in the IRTKS KD cells. 
Scale bars, 5 μm. (C) Quantitation of the ratio of endogenous EPS8 in the BB vs. cytosol for 
scramble and IRTKS KD W4 cells; scramble n = 29, IRTKS KD n = 31. (D) SIM projection of an 
W4 cell expressing EGFP-EPS8ΔPR1 (green) and stained with IRTKS (blue) and phalloidin 
(magenta). Scale bar, 5 μm. (E) Ratio of expressed EGFP-EPS8 and EGFP-EPS8ΔPR1 
constructs in the BB vs. cytosol in W4 cells; EGFP-EPS8 n = 29, EGFP-EPS8ΔPR1 n = 33. (F) 
SIM projection of an W4 cell expressing mCherry-TOM20 (blue) and stained with EPS8 (green) 
and phalloidin (magenta) in control conditions. Scale bar, 5 μm. (G) SIM projection of an W4 cell 
expressing mCherry-TOM20 fused to the SH3 domain of IRTKS (blue) and stained with EPS8 
(green) and phalloidin (magenta). The SH3 domain of IRTKS recruits EPS8 to the mitochondria. 
Scale bar, 5 μm. (H) Quantitation of the percentage of cells with EPS8 colocalized with 
mitochondria (n = 24). (I) Quantitation of microvillar length from cells expressing mCherry-TOM20 
and mCherry-TOM20-SH3; >26 cells/condition, >10 microvilli averaged/cell. All error bars indicate 
mean ± SD; all p values calculated using t tests (*p<0.033, **p<0.002, ***p<0.0002, ****p<0.0001). 
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Figure 3-9: Images of EPS8 KD/ rescue Ls174T-W4 cells. (A) Pulldown of FLAG-
tagged IRTKS SH3 domain co-expressed with EGFP-tagged EPS8 or EGFP-tagged 

EPS8PR1 reveals binding between EPS8 and the IRTKS SH3 domain. (B) Western blot 
analysis of endogenous EPS8 levels in lysates from WT Ls174T-W4 cells (untransfected), 
shRNA scramble control, and shRNA EPS8 KD. GAPDH was used as a loading control. 
(C) SIM projection of an EPS8 KD Ls174T-W4 cell expressing refractory EGFP-EPS8 
(EGFP-EPS8r) construct in rescue experiments; dashed box indicates zoom of the BB. 
Scale bar, 5 μm. (D) SIM projection of an EPS8 KD Ls174T-W4 cell expressing refractory 

EGFP-EPS8PR1 (EGFP-EPS8PR1r) construct in rescue experiments; dashed box 
indicates zoom of the BB. Scale bar, 5 μm.  
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Figure 3-10: IRTKS elongates microvilli using EPS8 dependent and independent 
mechanisms. (A,B) Images of scramble and EPS8 KD W4 cells stained with phalloidin. 
Top panels: low magnification confocal images that were scored for “% BB positive cells” 
plots; scale bars, 40 μm. Middle panels: SIM whole cell maximum intensity projections 
(en face, x-y); scale bars, 5 μm. Bottom panels: SIM whole cell maximum intensity 
projections of the same cells as above (lateral, x-z). (C) Quantitation of the percentage of 
BB positive cells in EPS8 KD and rescue experiments; >200 cells/condition. Individual 
points correspond to the percent of cells containing a BB as scored in a 40x confocal 
image field. (D) Quantitation of microvillar length in EPS8 KD and rescue experiments; 
>41 cells/ condition, >10 microvilli averaged/cell. (E,F) SIM  projection and quantitation of 
microvillar length in W4 cells expressing EGFP-IRTKSΔWH2 (green) and mCherry-EPS8 
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(blue) and stained with phalloidin (magenta). The WT W4 and ΔWH2 data (shaded gray 
tones) in this graph are replicated from Fig. 2G for a direct comparison. Scale bar, 5 μm; 
>30 cells, >10 microvilli/cell. (G,H) SIM projection and quantitation of microvillar length in 
W4 cells expressing EGFP-IRTKS SH3* (green) and mCherry-EPS8 (blue), and stained 
with phalloidin (magenta). The WT W4 and SH3* data (shaded gray tones) in this graph 
are replicated from Fig. 2G for a direct comparison. Scale bar, 5 μm; 18 cells, >10 
microvilli/cell. (I,J) SIM projection and quantitation of microvillar length in IRTKS KD W4 
cells expressing EGFP-EPS8. Scale bar, 5 μm; 45 cells/condition, >10 microvilli 
averaged/cell. (K,L) SIM projection and quantitation of microvillar length in EPS8 KD W4 
cells expressing EGFP-IRTKS. Overexpressing IRTKS rescues microvillar length, 
whereas overexpressing IRTKSΔWH2 fails to rescue. Scale bar, 5 μm; >33 
cells/condition, >10 microvilli averaged/cell. All error bars are mean ± SD; all p values 
calculated using a t test (*p<0.033, **p<0.002, ***p<0.0002, ****p<0.0001). 

 

filopodia number over controls (Fig. 3-11A, 3-11D, 3-11E). However, co-expressing EPS8 

with IRTKSΔWH2 significantly increased protrusion numbers (Fig 3-11B, 3-11E), likely 

because EPS8 can still localize through the intact IRTKS SH3 domain to induce filopodial 

growth. Similarly, expressing IRTKS with EPS8ΔPR1 significantly increased protrusion 

numbers (Fig 3-11C, 3-11E), likely because IRTKS is able to target without EPS8. 

A third prediction based on our proposed model is that EPS8 overexpression 

should be unable to rescue the shortened microvilli observed with IRTKS KD (Fig. 3-4L). 

We confirmed this experimentally; EPS8 overexpression had no impact on microvillar 

length in cells lacking IRTKS (Fig. 3-10I, 3-10J). A fourth and final prediction states that 

IRTKS overexpression should rescue the shortening of microvilli observed with EPS8 KD 

(Fig. 3-10D), but this rescue would require the IRTKS WH2 domain. We found that 

microvillar shortening in EPS8 KD cells was in fact rescued by overexpression of IRTKS, 

but not IRTKSΔWH2 (Fig. 3-10K, 3-10L). Taken together, these findings indicate that 

IRTKS elongates microvilli using EPS8-dependent and independent mechanisms, which 

represent structurally distinct and thus experimentally separable activities. 



 71 

Figure 3-11: Additional characterization of the IRTKS/EPS8 complex in B16F1 
Melanoma Cells. (A-D) TIRF live-cell imaging of B16F1 melanoma cells expressing 
either EGFP-IRTKS SH3* (green) and mCherry-EPS8 (magenta) (A), EGFP-

IRTKSWH2 (green) and mCherry-EPS8 (magenta) (B), or EGFP-EPS8PR1 (green) 

and mCherry-IRTKS (magenta) (C), and EGFP-EPS8PR1 (green) and mCherry-UtrCH 
(magenta) (D).  Dashed boxes indicate zooms. Scale bars, 10 μm. (E) Quantitation of the 
number of filopodia per μm of cell perimeter in B16F1 melanoma cells from C-E; at least 
15 cells/condition. All error bars indicate mean ± SD; all p values calculated using a t test 
(*p<0.033, **p<0.002, ***p<0.0002, ****p<0.0001).  
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Figure 3-12: Models of IRTKS function in microvillar elongation. (A) Two distinct 
pathways for microvillar elongation: a direct pathway that requires the IRTKS WH2 
domain, and a second indirect pathway that uses the IRTKS SH3 domain to recruit to 
EPS8. (B) IRTKS and EPS8 form a microvillar elongation complex at the tips of actively 
growing microvilli. AB= actin-binding domain. The EPS8 PR1 domain shown binding to 
the IRTKS SH3 domain is representative, as other PR domains may also have the ability 
to bind. 

 

Discussion 

IRTKS has been studied extensively as a target of EHEC virulence factors (Aitio et al., 

2012; Crepin et al., 2010; de Groot et al., 2011; Yi and Goldberg, 2009). EHEC is a Shiga 

toxin-secreting attaching/effacing (A/E) pathogen (Ho et al., 2013) that colonizes distal 

small intestine or proximal colon epithelium by effacing microvilli and building adherent 

‘pedestals’ on the apical surface (Licois et al., 1991). To build pedestals, EHEC injects 

host cells with virulence factors that remodel the actin cytoskeleton (Jarvis and Kaper, 

1996). IRTKS is targeted by the virulence factor EspFu (Campellone et al., 2004), which 

uses tandem polyproline motifs to bind tightly to the SH3 domain (Aitio et al., 2010). This 

interaction is notable due to its high affinity (KD ~500 nM) (Aitio et al., 2010). The resulting 

apically localized IRTKS-EspFu complex recruits N-WASP and Arp2/3, which leads to a 

massive induction of actin assembly and ultimately pedestal formation beneath adherent 
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EHEC organisms (Campellone et al., 2004; Vingadassalom et al., 2009). The current 

study may help explain why EHEC evolved to target IRTKS using EspFu in its pathogenic 

mechanism. Our findings reveal that, as a tip-targeted resident of apical microvilli, IRTKS 

is well-positioned and contains the appropriate domains and activities to influence apical 

actin assembly in response to microbial contact. 

The studies presented here focused on elucidating the normal function of IRTKS 

in the apical domain. We found that IRTKS targets to and tracks the distal tips of growing 

microvilli (Fig. 3-3B, 3-3C), where the barbed ends of core actin filaments interface with 

highly curved plasma membrane. Combined with results from our overexpression and 

loss-of-function experiments, and the demonstrated physical association with the 

established protrusion elongation factor EPS8 (Croce et al., 2004; Tocchetti et al., 2010), 

our results indicate IRTKS plays an important role in elongating microvilli. Indeed, IRTKS 

KD eliminated BB formation in ~50% of the W4 cells assayed (Fig. 3-4K). In cells that 

were still able to form a BB, IRTKS KD significantly shortened microvilli compared to 

controls (Fig. 3-4L). Because short microvilli still form in KD cells, IRTKS-driven 

elongation may involve detection of outwardly curved regions of plasma membrane at 

some point after initiation of microvillar growth.   

Our molecular dissection of IRTKS function revealed that the N-terminal I-BAR 

domain is the primary driver of tip targeting. Deletion of the I-BAR domain completely 

eliminated targeting to microvillar tips (Fig. 3-4E, 3-5D). The I-BAR domain alone was 

able to target to microvillar tips, but also exhibited more general plasma membrane 

labeling (Fig. 3-4F, 3-5E). This suggests that IRTKS probably requires additional motifs 

or interactions with other factors to focus its enrichment at the distal tips. Indeed, mutation 
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of the SH3 domain ligand-binding pocket disrupted localization, although some distal tip 

labeling persisted (Fig. 3-4C, 3-5B). Although it is tempting to speculate that involvement 

of the SH3 domain in targeting is related to EPS8 binding, IRTKS still localized to 

microvillar tips in cells lacking EPS8 (Fig. 3-10K). 

Structure/function studies revealed that the IRTKS WH2 domain is critical for 

microvillar elongation. Whereas WH2 domain deletion had no impact on IRTKS 

localization, overexpression of IRTKSΔWH2 exerted a dominant negative effect on 

protrusion length (Fig. 3-4D, 3-4G, 3-4H), likely mediated by interactions with endogenous 

IRTKS. In addition, IRTKS KD phenotypes were only partially rescued by IRTKSΔWH2 

(Fig. 3-4K, 3-4L). Exactly how the IRTKS WH2 domain contributes to elongation remains 

unclear, but WH2 domain-containing proteins in general have been implicated in actin 

filament nucleation and elongation (Dominguez, 2016). IRTKS is different from many of 

these other factors in two ways. Whereas most WH2 domain molecules contain multiple 

copies of this 17-20 amino acid motif arranged in tandem, IRTKS contains only a single 

WH2 motif at its C-terminus. Moreover, the IRTKS WH2 domain is divergent, containing 

‘LRPT’ rather than the conserved ‘LKKV’ motif that typically contributes to monomer 

binding; IRTKS is also missing canonical hydrophobic residues upstream of this motif 

(Dominguez, 2016). Despite these distinctions, the IRTKS WH2 domain does bind actin 

and may prefer filaments over monomers (Millard et al., 2007). Interestingly, the WH2 

domain of closely related IRSp53 binds strongly to G-actin despite containing an IRTKS-

like ‘LKPT’ motif (Lee et al., 2007). Espin, which functions in the elongation of microvilli 

and stereocilia (Loomis et al., 2003; Sekerkova et al., 2011; Sekerkova et al., 2004; Zheng 

et al., 2000), also contains a WH2 domain characterized by ‘LKPT’ (Loomis et al., 2006). 
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The espin WH2 domain binds to G-actin and may function to increase local monomer 

concentration at the distal tips, which could promote elongation. Notably, espin-2B exerts 

its effects on microvillar length without significantly altering F-actin treadmilling rates in 

microvilli. This is consistent with our FRAP measurements on W4 cells expressing EGFP-

-actin, which revealed IRTKS KD had minimal impact on BB actin turnover (Fig. 3-5H, 

3-5I). 

Our findings suggest that the IRTKS SH3 domain also contributes to microvillar 

length control (Fig. 3-4C, 3-4G, & 3-4H), likely through its interaction with EPS8, an 

established elongation factor that enriches at the tips of protrusions in diverse systems 

(Croce et al., 2004; Manor et al., 2011; Roffers-Agarwal et al., 2005). Interaction with 

EPS8 was predicted in previous structural studies as its proline rich motifs are nearly 

identical to those found in EspFu peptides that bind IRTKS with high affinity (Aitio et al., 

2010). Interestingly, higher cytoplasmic levels of EPS8 were seen with both the IRTKS 

KD and in cells expressing a variant of EPS8 lacking PR1, a predicted IRTKS binding 

motif (Fig. 3-8A- 3-8E). Forced targeting of the IRTKS SH3 domain to the mitochondrial 

surface also recruited EPS8 to these sites (Fig. 3-8F- 3-8G). Thus, we propose that 

IRTKS and EPS8 form a complex at the tips of microvilli, which stabilizes EPS8 in this 

compartment (Fig. 3-12). Once at the tips, both IRTKS and EPS8 hold the potential to 

contribute to core bundle elongation: IRTKS through its WH2 domain, and EPS8 through 

its actin bundling and capping activities (Disanza et al., 2004; Hertzog et al., 2010). Our 

findings indicate these represent separable, parallel activities that both depend on IRTKS 

(Fig. 3-12). 



 76 

Of note, overexpression of the I-BAR domain alone did not impact microvillar 

length (Fig. 3-4G). This might seem to contradict early reports suggesting I-BAR domains 

exhibit actin bundling activity (Bompard et al., 2005; Millard et al., 2007; Yamagishi et al., 

2004). Yet our data are consistent with studies on IRSp53 and MIM, which indicate that 

membrane binding rather than actin filament bundling is the primary function of this 

domain in cells (Mattila et al., 2007). We note here that our results do not rule out the 

possibility that the IRTKS I-BAR domain exerts direct effects on membrane mechanical 

properties that facilitate microvillar elongation (Prevost et al., 2015).   

Early models of microvillar growth emphasized the role of F-actin bundling proteins 

in protrusion assembly (Franck et al., 1990; Friederich et al., 1989). However, more recent 

studies on a mouse model lacking all three established bundling proteins, fimbrin, villin, 

and espin, revealed that microvilli still form (Revenu et al., 2012). Our studies highlight 

new mechanisms that also contribute to this biologically robust process. Future studies 

must focus on understanding how the IRTKS/EPS8 complex interfaces with known 

polarity pathways during enterocyte differentiation, and on defining the temporal 

sequence of molecular recruitment that drives microvillar growth.  

 

Conclusion 

Our studies highlight the role of the I-BAR domain-containing protein IRTKS in promoting 

microvillar elongation. Beyond just understanding the mechanisms of brush border 

assembly, the localization of IRTKS at microvillar tips during enterocyte differentiation 

implies that the molecule helps promote protrusion of microvilli. Because IRTKS binds to 

both PIPs in the membrane through its I-BAR domain and the actin cytoskeleton through 
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its WH2 domain, it could be a crucial molecule in completing the signaling pathways 

towards membrane protrusion. Additional studies are needed to determine the exact 

position of IRTKS in early steps of microvillar growth, and whether it binds and deforms 

the membrane with its I-BAR domain before or after actin polymerization begins. 

Moreover, the exact mechanism of EPS8 within this early protrusion pathway should also 

be determined to define its relationship with IRTKS further. Other future studies should 

focus on how IRTKS transitions to the base of the brush border in mature villar tissue and 

whether this is due to additional binding partners or autoinhibition between the PR motif 

and SH3 domain. Investigating the steps and molecular mechanisms of early microvillar 

protrusion will further our understanding of how the brush border develops and provide 

insight into how I-BAR proteins function.  
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CHAPTER IV 

 

PACSIN2-DEPENDENT APICAL ENDOCYTOSIS REGULATES THE 

 MORPHOLOGY OF EPITHELIAL MICROVILLI 

 

Originally published as: 

Postema, M.M., Grega-Larson, N.E., Meenderink, L.M., & Tyska, M.J. (2019) PACSIN2-

dependent apical endocytosis regulates the morphology of epithelial microvilli. 

Molecular Biology of the Cell. 30: 2515-2526. 

 

Summary 

Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms 

that control the assembly and morphology of these protrusions remain poorly understood. 

Previous studies in intestinal epithelial cell lines suggested a role for F-BAR domain 

protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of 

PACSIN2 KO mice and provide evidence that through its role in promoting apical 

endocytosis, this molecule functions in controlling microvillar morphology. PACSIN2 KO 

enterocytes exhibit reduced numbers of microvilli and defects in microvillar ultrastructure, 

with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding 

partner, and other endocytic factors were also lost from their normal localization near 

microvillar rootlets. To determine if loss of endocytic machinery could explain defects in 

microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis 

inhibition on live intestinal epithelial cells. These assays revealed that when endocytic 
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vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a 

membrane lifting phenomenon reminiscent of that observed in PACSIN2 KO brush 

borders. These findings lead to a new model where inward forces generated by endocytic 

machinery on the plasma membrane control the membrane wrapping of cell surface 

protrusions. 

 

Introduction 

Apical specializations enable epithelial cells to carry out specific functions including solute 

uptake and mechano-sensation. In the context of transporting epithelia, the apical surface 

is occupied by actin bundle-supported microvilli: finger-like protrusions that serve to 

amplify membrane surface area and maximize solute uptake capacity (Helander and 

Fandriks, 2014). A well-studied example is found in the intestinal tract where enterocytes, 

the most abundant epithelial cell type in the gut, provide the sole site of nutrient 

absorption. Enterocytes build tightly-packed arrays of 1000s of microvilli, known as a 

brush borders. Microvillar growth and ordered packing take place as enterocytes 

differentiate, which occurs as they exit stem cell-containing crypt domains and move onto 

the villus surface (Fath et al., 1990; Specian and Neutra, 1981; van Dongen et al., 1976).  

Microvillus formation requires coordination of a variety of activities, including actin 

filament nucleation, elongation, and bundling, which presumably all occur at the interface 

with the apical plasma membrane. Nucleation of the actin filaments that comprise core 

bundles is at least partially controlled by the WH2 domain protein cordon bleu (COBL), 

which is required for normal brush border assembly in intestinal epithelial cell lines 

(Grega-Larson et al., 2015; Grega-Larson et al., 2016; Wayt and Bretscher, 2014). COBL 
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overexpression drives microvillus elongation and also leads to protrusions that are 

straighter, with higher actin content (Grega-Larson et al., 2015). COBL localizes to 

microvillar rootlets, which are embedded in a dense sub-apical network of intermediate 

filaments known as the terminal web (Hirokawa et al., 1982). The actin bundling protein 

fimbrin also localizes to the terminal web and has been shown to link microvillar actin to 

keratin-19 in intermediate filament (Grimm-Gunter et al., 2009). Along with fimbrin, two 

other bundling proteins, villin and espin, stabilize the core bundle in a region-specific 

manner (Bartles et al., 1998; Bretscher and Weber, 1979, 1980; Mooseker et al., 1980) 

and may promote elongation by slowing disassembly at the pointed ends (Loomis et al., 

2003). Later in differentiation, epithelial-specific protocadherins target to the tips of 

microvilli to promote their elongation and tight packing (Crawley et al., 2014b; Crawley et 

al., 2016; Li et al., 2016; Li et al., 2017; Weck et al., 2016; Yu et al., 2017). Such 

intermicrovillar adhesion allows cells to generate the maximum number of protrusions per 

unit apical surface area (Pinette et al., 2019).  

Another recently identified factor that functions in microvillar growth is the I-BAR 

(inverse-Bin-Amphiphysin-Rvs) domain-containing protein, insulin receptor tyrosine 

kinase substrate (IRTKS) (Postema et al., 2018). BAR domains are small, three helix 

bundles that form curved dimers ~20 nm in length, which in turn form higher order 

oligomers capable of sensing and inducing membrane curvature (Peter et al., 2004). I-

BAR domains exhibit a structural curvature that is well matched to membrane bending 

away from the cell (Millard et al., 2005), like that found at the distal tips of microvilli. 

Indeed, IRTKS targets to microvillar tips where it promotes elongation directly by 

interacting with the core actin bundle, and indirectly through its interactions with epidermal 

http://en.wikipedia.org/wiki/Amphiphysin
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growth factor receptor pathway substrate 8 (EPS8), another tip targeting factor implicated 

in the elongation of finger-like protrusions (Croce et al., 2004; Disanza et al., 2006; Manor 

et al., 2011; Postema et al., 2018; Zampini et al., 2011). 

In contrast to the curvature preference of I-BAR domains, F-BAR (Fes-CIP4 

homology Bin-amphiphysin-Rvs161/167) motifs prefer binding to membranes that curve 

in toward the cytoplasm (Frost et al., 2007; Henne et al., 2007; Itoh et al., 2005). Protein 

kinase C and casein kinase substrate in neurons (PACSIN) family members are F-BAR 

proteins that have been implicated in a variety of cellular processes, including clathrin-

dependent and independent endocytosis, caveolae formation, vesicle trafficking, actin 

dynamics, and cell migration (Chandrasekaran et al., 2016; de Kreuk et al., 2012; de 

Kreuk et al., 2011; Hansen et al., 2011; Qualmann and Kelly, 2000; Qualmann et al., 

2000; Senju et al., 2011). Although PACSIN2 is widely expressed (Ritter et al., 1999), 

PACSIN1 exhibits specificity for neural tissues (Plomann et al., 1998), whereas PACSIN3 

is expressed in heart and skeletal muscle (Sumoy et al., 2001). All three PACSIN isoforms 

contain an N-terminal F-BAR domain, along with a C-terminal SH3 domain. Interestingly, 

previous studies in intestinal epithelial cells revealed that PACSIN2 localizes to the 

intermicrovillar region in the terminal web, which exhibits a high degree of inward bending 

and also serves as the site of endocytosis (Grega-Larson et al., 2015). Moreover, through 

its SH3 domain, PACSIN2 also interacts with several binding partners with roles in actin 

filament nucleation and endocytosis at the membrane-cytoskeleton interface (Fig 1A). 

One example is the actin nucleator COBL, which interacts with PACSIN2 in the terminal 

web.  Loss-of-function studies in intestinal epithelial cell lines suggest that PACSIN2 

serves to recruit or anchor COBL in this location (Grega-Larson et al., 2015). COBL in 
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turn uses its multiple WH2 domains to promote elongation of core actin bundles (Grega-

Larson et al., 2016). In this context, PACSIN2 is critical for normal microvillar growth as 

knocking down the molecule in cell culture models leads to defects in brush border 

assembly (Grega-Larson et al., 2015). 

 A second SH3 binding partner that links PACSIN2 to actin assembly is N-WASP, 

a nucleation promoting factor and adaptor protein that activates the ubiquitous branched 

actin nucleator, ARP2/3 (Padrick and Rosen, 2010). N-WASP interactions with PACSIN2 

are believed to physically link the actin cytoskeleton to membranes in processes such as 

endocytosis (Kessels and Qualmann, 2002, 2006). Yet another link between PACSIN2 

and endocytosis is mediated by SH3 domain binding to the large GTPase Dynamin2, 

which drives vesicle excision from the plasma membrane. PACSIN2 binds to and recruits 

Dynamin2 in the context of clathrin-mediated endocytosis and the internalization of 

caveolae (Kessels et al., 2006). Other studies have shown that the F-BAR domain of 

PACSIN2 is capable of oligomerizing and coating the necks of newly forming vesicles, 

which likely stabilize these intermediates before excision (Senju and Suetsugu, 2015).  

In the present study, we sought to develop our understanding of PACSIN2 function 

in the epithelial apical domain through the analysis of mice lacking PACSIN2 expression. 

Ultrastructural studies of tissues from KO animals revealed a plasma membrane lifting 

phenotype, where core actin bundles are no longer fully enveloped in membrane, and in 

some cases fuse with adjacent protrusions. Moreover, Dynamin2 and other endocytic 

factors were lost from their normal localization near the intermicrovillar endocytic region. 

To determine if the loss of endocytic machinery could explain defects in brush border 

morphology, we examined the impact of dynamin inhibition and PACSIN2 KD on live 
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intestinal epithelial cells. We found that when endocytic vesicle scission fails, tubules are 

pulled into the cytoplasm, and this leads directly to a membrane lifting phenomenon 

similar to that observed in PACSIN2 KO brush borders. Our findings illuminate a 

previously unrecognized link between endocytic function and the morphology of the 

epithelial apical domain, and also suggest that inward forces generated on the plasma 

membrane by endocytic machinery control the membrane in cell surface protrusions.  

 

Results 

PACSIN2 KO disrupts COBL localization 

To explore how PACSIN2 contributes to enterocyte apical architecture and brush border 

assembly in vivo, we acquired mice expressing a PACSIN2tm1b(EUCOMM)Hmgu allele from the 

KOMP resource (Friedel et al., 2007). Tm1b mice are “CREed knockout first” and provide 

constitutive loss of expression in all tissues. KO of PACSIN2 was confirmed using western 

blot analysis (Fig. 4-1B). PACSIN2 KO mice did not exhibit gross level phenotypes or 

defects in growth. Analysis of hematoxylin- and eosin-stained swiss roll sections (Fig. 4-

1C,D) and scanning electron microscopy (SEM) of duodenal tissue sections (Fig. 4-1E,F) 

revealed that PACSIN2 KO tissues were morphologically similar to WT. In frozen sections 

of WT tissue, PACSIN2 is strongly enriched at the base of the brush border in the terminal 

web (Fig. 4-1G). However, this labeling is completely lost in KO mice, further confirming 

loss of expression (Fig. 4-1H).  As previous studies in intestinal epithelial cells lines 

suggest that this F-BAR protein functions in the recruitment of COBL, we next sought to 

determine if COBL was mislocalized in the absence of PACSIN2. As expected, COBL 

exhibits high level enrichment in the terminal web of WT tissues (Fig. 4-1I), but this  
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Figure 4-1: PACSIN2 KO disrupts COBL localization. (A) PACSIN2 domain diagram 
depicting SH3 binding partners and prospective functions. (B) Western blot of WT and 
PACSIN2 KO tissue with GAPDH as a loading control. (C, D) H&E-stained swiss roll 
sections of paraffin-embedded small intestine from WT and PACSIN2 KO mice. Scale 
bars, 2mm. (E, F) Scanning EM images of intestinal tissue samples from WT (E) and 

PACSIN2 KO (F) mice. Scale bars, 100 m for i, 100 m for ii, and 10 m for iii; purple 
asterisks in KO Bi indicate bare spaces in the epithelium between adjacent villi. (G, H) 
Endogenous PACSIN2 (green) and phalloidin (F-actin, magenta) labelling of WT and 
PACSIN2 KO frozen tissue sections. Arrows highlight PACSIN2 signal at the base of the 

brush border in WT tissue (G). Scale bars, 50 m for main panels, 10 m for zooms. (I, 
J) Endogenous COBL (green) and phalloidin (magenta) labelling of WT and PACSIN2 
KO frozen tissue sections. Solid arrows highlight COBL signal at the base of the brush 
border in WT tissue (I), dashed arrows highlight mislocalization of COBL signal in KO 

tissue (J). Scale bars, 10 m. (K) Quantification of the ratio of COBL brush border (BB) 
to cytosol signal intensity between the WT and PACSIN2 KO tissue; n = 7 tissue sections 

per condition. Error bars indicate  SD; p value was calculated using a t test (***p<0.001). 

 

labeling is significantly perturbed in KO samples (Fig. 4-1J). This point was also confirmed 

with quantification of brush border to cytosol intensity ratios, which were markedly 

reduced in KO samples (2.83  0.26 WT vs. 1.52  0.18 KO; Fig. 4-1K). Interestingly, in 

KO tissues COBL signal also appears redistributed along the microvillar axis (dashed 

arrows, Fig. 4-1J), suggesting a role for PACSIN2 in anchoring COBL near microvillar 

rootlets. These results confirm the loss of PACSIN2 in the KO intestinal tissue and are 

consistent with previous studies indicating that PACSIN2 is needed for efficient targeting 

of COBL to the apical domain.  

 

Loss of PACSIN2 decreases apical and basolateral F-actin levels 

Given that PACSIN2 and its binding partners have been implicated in actin network 

assembly (Kessels and Qualmann, 2004; Qualmann et al., 2000), we next sought to 

determine if KO tissues exhibited perturbations in the actin cytoskeleton.  Indeed, our 

initial staining of KO frozen tissue sections (Fig. 4-1H) suggested that apical F-actin levels 
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(assessed with phalloidin staining) were reduced, especially in the distal regions of villi. 

To examine this in greater detail, we performed volumetric imaging of whole mounted 

segments of intestinal tissue stained for F-actin. 3D reconstructions of individual villi 

revealed several striking defects in KO samples (Fig. 4-2A,B). Levels of F-actin appeared 

reduced throughout the apical domain, both in the brush border and at the lateral margins 

of cells (Fig. 4-2A,B). We also noted that the apical surfaces of individual cells exhibited 

a domed appearance, curving outward towards the lumen (Fig. 4-2B). This phenotype 

was even more evident when we examined the apical surface of KO tissues using SEM 

(Fig. 4-1E,F). In higher-resolution tilted 3D projections, KO brush borders demonstrated 

an apparent thinning of the F-actin signal, with certain regions exhibiting significantly 

reduced microvillar density relative to WT controls (Fig. 4-2C,E). Line-scans drawn 

through the single plane images (Fig. 4-2C,E, bottom panels) showed an almost 2-fold 

decrease in the PACSIN2 KO F-actin signal with several gaps throughout (maximum F-

actin peak signal of 4095 for WT vs. 2156 for KO; Fig. 4-2D,F). Further quantification 

using thresholding on multiple tissue sections also indicated a marked decrease in brush 

border F-actin intensity in PACSIN2 KO tissues (mean intensity units 1912  323 for WT 

vs. 1123  239 for KO; Fig. 4-2G-I). Together these data indicate that in the absence of 

PACSIN2, actin polymerization at the apical surface is compromised.  

Given the striking reduction of apical F-actin signal observed in PACSIN2 KO 

brush borders, we also examined F-actin levels in actin networks in other parts of the cell 

(Fig. 4-2G,H). Mean F-actin intensity values, measured using a threshold that included 

all cellular structures basolateral to the brush border, were also markedly reduced (127.2 
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Figure 4-2: Loss of PACSIN2 decreases apical and basolateral F-actin levels. (A, B) 

3D projections of 50 m sections of WT (A) and PACSIN2 KO (B) whole mount tissue. 
Zooms highlight differences in cell surface morphology and actin intensity between WT 

and KO. Actin signal is inverted to simplify visualization; Scale bars, 50 m for main 

panels, 10 m for zooms. (C, E) 3D reconstructed volumes of 8 m sections (top) and 
single image planes (bottom) of phalloidin stained WT and PASCIN2 KO frozen tissue 

sections. Scale bars, 25 m. (D, F) Plots of raw 8-bit intensity data from an 80 m line 
drawn through the brush border of the single plane images. PACSIN2 KO tissue has ~2-
fold decrease in brush border actin intensity. (G, H) Phalloidin labelling of WT and 
PACSIN2 KO frozen tissue sections. Right panels show representative thresholding of 

brush border and cell body used in quantification (I-K). Scale bars, 50 m. (I) 
Quantification of brush border (BB) actin intensity between WT and PACSIN2 KO tissue; 
9 tissue sections per condition. (J) Quantification of cell body actin intensity of WT and 
PACSIN2 KO tissue; 9 tissue sections per condition. (K) Quantification of the percent of 
actin in the cell body to total actin between WT and PACSIN2 KO; 9 tissue sections per 

condition. Error bars indicate  SD; p values were calculated using a t test (**p<0.01, 
****p<0.0001). 

 

 34.5 WT vs. 82.7  10.0 KO; Fig. 4-2J). Interestingly, ratios of brush border/cell body F-

actin intensities were unchanged in KO relative to WT samples (Fig. 4-2K), suggesting 

that the overall distribution of actin polymer was similar. Further analysis of the cell body 

F-actin signal revealed that most of the intensity is derived from the basolateral margins, 

at sites of cell-cell contact (Fig. 4-3E-J). Linescan analysis through multiple cells revealed 

that junctional F-actin levels were also significantly reduced at these sites (Fig. 4-3G,J). 

Consistent with this, we also noted defects in the localization of tight and adherens 

junction markers, ZO-1 and E-cadherin; both probes exhibited significantly lower levels 

of junctional enrichment relative to WT tissue sections (Fig. 4-3K-M). These data indicate 

that in addition to promoting the growth of microvilli on the apical surface, PACSIN2 also 

drives the accumulation of F-actin at cell margins, where it promotes accumulation of 

factors that contribute to cell-cell adhesion.  
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Figure 4-3: Loss of PACSIN2 leads to junctional instability. (A, D) Representative 
images used in quantification in D, E, G, H; phalloidin stained.  (B, C) Top, raw intensity 
data of a line (depicted by teal arrow in C) through 5 total cells in WT tissue, peaks indicate 
the actin junctional intensity. Bottom, raw intensity data of lines through 5 cells in 50 WT 
tissue sections, lines have been smoothed for ease of viewing. (E, F) Top, raw intensity 
data of a line (depicted by purple arrow in F) through 5 cells in PACSIN2 KO tissue, peaks 
indicate the actin junctional intensity. Bottom, raw intensity data of lines through 5 total 
cells in 50 KO tissue sections, lines have been smoothed for ease of viewing. (G) 
Endogenous E-Cadherin (green) and phalloidin (F-actin, magenta) labelling of WT and 

PACSIN2 KO frozen tissue sections. Scale bars, 20 m. (H) Endogenous ZO-1 (green) 
and phalloidin (F-actin, magenta) labelling of WT and PACSIN2 KO frozen tissue 

sections. Scale bars, 20 m. (I) Quantification of E-Cadherin signal intensity between WT 
(n = 47 measurements) and PACSIN2 KO (n = 60 measurements). (J) Quantification of 
the ratio of ZO-1 BB to cytosol ratio between WT (n = 52 measurements) and PACSIN2 

KO (n = 50 measurements). Error bars indicate  SD; p value was calculated using a t 
test (****p<0.0001).  
 
 

Endocytic machinery is mislocalized in the absence of PACSIN2 

In addition to scaffolding factors such as COBL and N-WASP, which promote actin 

polymerization in the apical and basolateral compartments, PACSIN2 has also been 

implicated in endocytic function in epithelial cells. Therefore, we sought to determine if 
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the sub-apical endocytic compartment in the terminal web was disrupted in the absence 

of PACSIN2. Under normal conditions, Dynamin2 is highly enriched at the base of 

microvilli in the terminal web, the site of endocytic vesicle formation and fission (Fig. 4-

4A). However, upon KO of PACSIN2, this striking band of enrichment is lost (Fig. 4-4B), 

which is also reflected in a significant decrease of the brush border to cytosol ratio for this 

signal (2.04  0.76 WT vs. 1.20  0.25 KO; Fig. 4-4C). We also stained sections for 

VAMP4 (vesicle associated membrane protein 4), which has established roles in endo- 

and exocytosis (Nicholson-Fish et al., 2015; Steegmaier et al., 1999). Similar to 

Dynamin2, VAMP4 exhibits striking enrichment at the base of the brush border in WT 

samples (Fig. 4-4D), but marked loss from this region in KO tissues (Fig. 4-4E); brush 

border to cytosol ratios confirmed the redistribution of VAMP4 in the absence of PACSIN2 

(1.86  0.52 WT vs. 1.31  0.45 KO; Fig. 4-4F). We also examined the localization of 

RAB14, another factor implicated in endocytic trafficking at the apical membrane of 

polarized epithelial cells (Kitt et al., 2008). Once again, this marker demonstrated 

decreased apical localization in the PACSIN2 KO tissue and a decreased brush border 

to cytosol ratio (Fig. 4-5). Thus, in addition to disrupting F-actin assembly throughout the 

enterocyte, these results show that loss of PACSIN2 disrupts the normal enrichment of 

endocytic machinery including Dynamin2, VAMP4, and RAB14, in the region adjacent to 

the sub-apical terminal web. 
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Figure 4-4: Endocytic machinery is mislocalized in the absence of PACSIN2. (A, B) 
Single confocal image planes of WT and PACSIN2 KO paraffin-embedded tissue sections 
stained with anti-Villin (magenta) to highlight the brush border and anti-Dynamin2 (green). 
Solid arrows in zoom panels highlight Dynamin2 signal at the base of the brush border in 
WT tissue (A), dashed arrows highlight mislocalization of Dynamin2 signal in KO tissue 

(B); Scale bars, 50 m for main panel, 10 m for zoom. (C) Quantification of the ratio of 
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Dynamin2 brush border (BB) to cytosol signal intensity between WT and PACSIN2 KO (n 
= 48 measurements). (D, E) Single confocal image planes of WT and PACSIN2 KO 
paraffin-embedded tissue sections stained with anti-Villin (magenta) and anti-VAMP4 
(green). Solid arrows in zoom panels highlight VAMP4 signal at the base of the brush 
border in WT tissue (D), dashed arrows highlight mislocalization of VAMP4 signal in KO 

tissue (E); Scale bars, 50 m for main panel, 10 m for zoom. (F) Quantification of the 
ratio of VAMP4 brush border (BB) to cytosol signal intensity between WT (n = 45 

measurements) and PACSIN2 KO (n = 50 measurements). Error bars indicate  SD; p 
values were calculated using a t test (****p<0.0001). 
 

 

Figure 4-5: Endocytosis marker Rab14 is mislocalized in the KO mouse. (A, B) 
Single confocal image planes of WT and PACSIN2 KO paraffin-embedded tissue stained 
with anti-Villin (magenta) to highlight the brush border and anti-Rab14 (green). Signal is 

inverted for ease of viewing; scale bars, 50 m in main panels, 10 m in zoom.  (C) 
Quantification of Rab14 signal intensity between WT (n = 17 measurements) and 

PACSIN2 KO (n = 20 measurements). Error bars indicate  SD; p value was calculated 
using a t test (***p<0.001). 

 

Loss of PACSIN2 disrupts microvillar ultrastructure and organization 

To understand how loss of PACSIN2 impacts brush border architecture, we employed 

transmission electron microscopy (TEM) to visualize WT and PACSIN2 KO tissues at the 

ultrastructural level (Fig. 4-6A,B). TEM imaging of sections parallel to the microvillar axis 

allowed us to perform detailed morphometry. Strikingly, microvilli in PACSIN2 KO brush 
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borders were significantly shorter relative to WT (1.93  0.35 m WT vs. 1.08  0.31 m 

KO; Fig. 4-6C). We also found that the extent of membrane coverage, calculated as the 

percent of core actin bundle enveloped in membrane, was significantly reduced in KO 

brush borders (80.22  3.16% WT vs. 66.34  7.10% KO; Fig. 4-6B,D).  Reduced 

membrane coverage was also linked to longer rootlets (0.47  0.12 m WT vs. 0.54  

0.15 m KO; Fig. 6E). In addition, we noted a much more irregular membrane profile in 

the intermicrovillar region (Fig. 4-6F,G). In KO enterocytes, the straightness of this profile 

was significantly reduced compared to WT controls (0.87  0.08 m WT vs. 0.72  0.11 

m KO; Fig. 4-6H). Upon closer inspection of the PACSIN2 KO terminal web, we found 

an increased number of membrane invaginations, most likely stalled endocytic 

intermediates, extending into the cytoplasm (1.98  1.07 WT vs. 4.25  1.87 KO; Fig. 4I). 

Combined with our staining data, these results indicate that loss of PACSIN2 disrupts 

endocytosis, which is associated with profound effects on microvillar morphology and the 

extent of membrane coverage. 

To further analyze the organization of PACSIN2 KO brush borders, we performed 

SEM to visualize the apical surface. En face images immediately revealed perturbations 

in microvillar packing, with more apparent free space between adjacent protrusions (Fig. 

4-7). We also examined inter-microvillar spacing by calculating nearest neighbor 

distances (NND) for large numbers of protrusions. KO brush borders exhibited greater 

NND values with higher variability relative to WT controls (116.9  14.6 nm WT vs. 131.8 

 18.4 nm KO; Fig. 4-7C). To examine the impact of this increase in NND on the 

organization of microvilli, we calculated fast Fourier transforms (FFTs) as previously 
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Figure 4-6: Loss of PACSIN2 disrupts microvillar ultrastructure and organization. 
(A) TEM image of a WT brush border in a plane parallel to the microvillar axis; teal dashed 

box indicates region highlighted in zoom panel below.  Scale bar, 1 m. (B) TEM images 
of PACSIN2 KO brush borders in a plane parallel to the microvillar axis; purple dashed 
boxes indicate region highlighted in zoom panels below.  Arrowhead in zoom 1 highlights 

membrane lifting, arrows in zoom 2 highlight endocytic events. Scale bars, 1 m. (C) 
Quantification of microvillar length in WT (n = 82) and KO (n = 102); measurements were 
selected so that only protrusions with actin cores fully visible along their length were 
scored. (D) Quantification of membrane coverage, the percentage of an actin core 
wrapped in membrane, in WT (n = 83) and KO (n = 102) microvilli. (E) Quantification of 
microvillar rootlet length in WT (n = 83) and KO (n = 102) microvilli. (F, G) Representative 
images of WT (F) and KO (G) tissue used in the quantification of membrane profile 

straightness (H); scale bars, 0.5 m. Teal and purple lines highlight the decreased 
membrane straightness in KO. (H) Quantification of plasma membrane profile 
straightness at the base of WT (n = 102) and KO (n = 88) microvilli; total membrane length 

was measured over 1 m units. (I) Quantification of the number of endocytic events, or 
structures that resemble stalled endocytic intermediates, at the plasma membrane of WT 

(n = 44 image fields) and KO (n = 44 image fields) brush borders. Error bars indicate  
SD; p values were calculated using a t test (**p<0.01, ****p<0.0001). 
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 described (Pinette et al., 2019). FFTs generated by WT brush borders exhibited the 

expected hexagonal pattern with six prominent first order spots (Fig. 4-7D). However, 

FFTs generated from KO brush borders produced a pattern that lacked first order spots, 

indicating a loss of ordered packing (Fig. 4-7E). These data reveal that microvilli in the 

PACSIN2 KO brush borders are less densely packed and no longer organized in the 

hexagonal arrays that are a defining feature of normal enterocyte brush borders.  

 

Figure 4-7: Microvillar packing is decreased in the PACSIN2 KO mouse. (A, B) SEM 
of WT and KO BBs reveal microvillar packing defects. Binary images were used to 
determine the nearest neighbor distances. (C) Quantification of nearest neighbor 
distance. The mean center to center distance between MV was calculated; 6 fields of 

microvilli per condition. Error bars indicate  SD; p value was calculated using a t test 

(****p<0.0001). (D, E) 1.5 m2 images showing differences in microvillar packing and 
FFTs from samples. 
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Inhibition of endocytosis reduces microvillar membrane coverage 

Our measurements indicate that under normal conditions, the distal ~80% of a microvillus 

actin core bundle is enveloped in apical plasma membrane (Fig. 4-6D). In the absence of 

PACSIN2, membrane coverage is significantly reduced with values that are much more 

variable across a population of protrusions (Fig. 4-6D). By promoting endocytic activity 

and/or anchoring the intermicrovillar membrane to the actin cytoskeleton, PACSIN2 could 

play a direct role in controlling the extent of microvillar membrane coverage. Because 

mechanisms that control microvillar membrane coverage remain poorly defined, we 

sought to test this hypothesis using the Ls174T-W4 (W4) intestinal epithelial cell culture 

model, which has been engineered to form microvilli upon exposure to doxycycline (Baas 

et al., 2004). Similar to WT intestinal tissue, W4 cells demonstrate localization of 

PACSIN2 and Dynamin2 in the terminal web (Fig. 4-9A,B).  

We first sought to determine if PACSIN2 KD in W4 cells generated a phenotype 

similar to what we observed with PACSIN2 KO mouse intestinal tissues. W4 cells 

transduced with scramble control shRNA or shRNA targeting PACSIN2 were fixed and 

stained to label the plasma membrane and underlying actin cytoskeleton, and then 

imaged using super-resolution structured illumination microscopy (SIM). KD of PACSIN2 

significantly decreased microvillar membrane coverage relative to scramble controls 

(78.3  8.6% KD vs. 89.1  6.2% SCR; Fig. 4-8A-C). We also imaged PACSIN2 KD W4 

cells live using spinning disk confocal microscopy (SDCM). Remarkably, time-lapse 

acquisitions revealed the formation of long aberrant membrane tubules,  
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Figure 4-8: Inhibition of endocytosis reduces microvillar membrane coverage. (A, 
B) SIM projections of scramble control (A) and PACSIN2 KD (B) W4 cells stained for 
WGA (membrane, green) and phalloidin (magenta). Brackets in zoom panels indicate 
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actin rootlet lengths. Dashed lines denote where line scans were drawn through a single 
microvillus to show increased actin rootlet length; membrane (green), actin (magenta). 

Scale bars, 5 m. (C) Quantification of microvillar membrane coverage; scramble n = 77 
microvilli from 10 cells; PACSIN2 KD n = 88 microvilli from 11 cells. (D, E) Montages of 
scramble control and PACSIN2 KD W4 cells expressing EGFP-CAAX box (last 10aa of 
the GTPase HRas; membrane, green) and mCherry-UtrCH (F-actin, magenta). Arrows in 
the PACSIN2 KD cell (E) indicate membrane tubules forming into the cytosol. Scale bars, 

5 m. (F, G) SIM projections of DMSO control (F) and 80 M Dynasore (G) treated W4 
cells stained for WGA (membrane, green) and phalloidin (magenta). Brackets in zoom 
panels indicate actin rootlet lengths. Dashed lines denote where line scans were drawn 
to show increased actin rootlet length; membrane (green), actin (magenta). Scale bars, 5 

m. (H) Quantification of microvillar membrane coverage; DMSO n = 104 microvilli from 
13 cells; Dynasore n = 105 microvilli from 12 cells.  (I, J) Montages of DMSO control and 

80 M Dynasore treated W4 cells expressing EGFP-CAAX box (membrane, green) and 
mCherry-UtrCH (F-actin, magenta). Arrows in the Dynasore treated cell (J) indicate 

membrane tubules forming into the cytosol. Scale bars, 5 m. Error bars indicate  SD; p 
values were calculated using a t test (****p<0.0001). 

 

presumably stalled endocytic intermediates, which originated in the intermicrovillar region 

(Fig. 4-8E). Coincident with the formation of these tubules, we noted significant apical 

membrane lifting, which exposed the rootlets of adjacent microvillar core actin bundles, 

in a manner that was strikingly reminiscent of membrane coverage perturbations 

observed in PACSIN2 KO brush borders (Fig. 4-6). Thus, in terms of the microvillar 

membrane coverage, PACSIN2 KD in W4 cells phenocopies the defects observed in 

brush borders from PACSIN2 KO mice. 

We next set out to determine if the microvillar membrane coverage defects 

observed in PACSIN2 KO tissues and KD W4 cells were due specifically to perturbations 

in endocytic activity. For these experiments, we exposed differentiating W4 cells to 

Dynasore, a small molecule inhibitor of the GTPase domain of Dynamin2 that is expected 

to prevent the scission of endocytic vesicles from the apical membrane. Dynasore-treated 

W4 cells were fixed and stained to visualize the actin cytoskeleton and plasma  
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Figure 4-9: Pitstop2 inhibits endocytosis in W4 cells. (A) SIM projection of a W4 cell 
showing endogenous PACSIN2 (green) and stained with phalloidin (magenta). Arrows 
point to PACSIN2 puncta at the base of the brush border. (B) SIM projection of a W4 cell 
showing endogenous Dynamin2 (green) and stained with phalloidin (magenta). Arrows 
point to Dynamin2 puncta at the base of the brush border. (C, D) Montages of DMSO 

control and 30 M Pitstop 2 treated W4 cell expressing EGFP-CAAX box (membrane, 
green) and mCherry-UtrCH (F-actin, magenta). Arrows in Pitstop 2 cell (D) indicate 
membrane tubules forming into the cytosol, arrowheads indicate membrane lifting. Scale 

bars, 5 m. 

 
 
membrane, and then imaged using SIM. Remarkably, exposure to Dynasore decreased 

microvillar membrane coverage significantly relative to control DMSO-treated cells (77.2 

 9.1% Dynasore vs. 89.0  6.9% DMSO; Fig. 4-8F-H). We also used SDCM to image 

the impact of Dynasore treatment on live W4 cells. Similar to that observed in PACSIN2 

KD W4 cells, we noted the formation of long aberrant membrane tubules, which again 

originated in the intermicrovillar region (Fig. 4-8J). The formation of these tubules also 

coincided with significant membrane lifting and exposure of microvillar core bundle 

rootlets (Fig. 5J). We verified this effect using a second inhibitor of endocytosis, Pitstop 
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2, which generated similar aberrant tubule formation and membrane lifting (Fig. 4-9D). 

Together, these findings uncover a previously unrecognized link between PACSIN2-

dependent endocytic activity and the extent of microvillar membrane coverage.  These 

data further suggest that inward forces on the apical membrane, normally generated by 

endocytic machinery, serve to control microvillar morphology. 

 

Discussion 

PACSIN family proteins have long been implicated in the regulation of actin assembly in 

the context of membrane deformation during endocytosis and vesicle formation. Indeed, 

in the initial report, PACSIN1 (primarily expressed in neural tissues) co-

immunoprecipitated with synaptic vesicle endocytic factors including dynamin, 

synaptojanin, and synapsin-1, as well as N-WASP, an actin nucleation promoting factor 

that activates the ARP2/3 complex (Qualmann et al., 1999). All of these interactions were 

mediated through the PACSIN1 C-terminal SH3 domain (Qualmann et al., 1999). During 

endocytosis, PACSINs are believed to recruit N-WASP, which in turn targets ARP2/3 to 

generate bursts of actin filament polymerization in the space between the plasma 

membrane and nascent budding vesicles. Combined with activity of the Dynamin 

GTPase, which constricts the necks of forming vesicles, these bursts of actin 

polymerization likely generate additional mechanical force for efficient vesicle scission 

(Kessels and Qualmann, 2002, 2004). Although PACSINs have been implicated in 

various forms of endocytosis, including activity dependent bulk endocytosis (ADBE) and 

clathrin-mediated endocytosis (Qualmann and Kelly, 2000), PACSIN2 has more recently 

been implicated in caveolar endocytosis, where it binds to the necks of nascent caveolae 
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and recruits Dynamin2 to promote vesicle scission (Hansen et al., 2011; Senju et al., 

2011; Senju and Suetsugu, 2015). In support of an endocytic role in transporting epithelia, 

previous studies localized PACSIN2 to the sub-apical terminal web region of native 

enterocytes in the mouse small intestine and human W4 cells in culture (Grega-Larson et 

al., 2015). In the terminal web, endocytic vesicles are formed from the inwardly curving 

membrane found between neighboring microvilli (Michael Danielsen and Hansen, 2016). 

Indeed, SIM imaging of differentiated W4 cells revealed robust PACSIN2 localization in 

the intermicrovillar region, immediately between adjacent core actin bundles (Grega-

Larson et al., 2015). In the present study, we found that markers of endocytosis which 

are normally enriched in the terminal web, including Dynamin2, VAMP4, and RAB14, 

were also lost from this region in the absence of PACSIN2. Together, all of these data 

establish a role for PACSIN2 in the normal targeting of endocytic machinery to the sub-

apical compartment.  

In addition to a role in apical endocytic vesicle formation, PACSIN2 was also found 

to play a role in recruiting the linear actin nucleator, COBL, to the terminal web. In the W4 

cell culture model, COBL loss-of-function impairs brush border assembly, whereas 

overexpression promotes the formation of microvillar actin cores in a manner that 

depends on the number WH2 domains (Grega-Larson et al., 2015; Grega-Larson et al., 

2016). COBL is also recruited to the apex of epithelial cells coincident with the earliest 

events in brush border assembly (Grega-Larson et al., 2015). Consistent with its role in 

targeting COBL to the terminal web, we found significantly lower levels of COBL at the 

base of the brush border in PACSIN2 KO tissues. PACSIN2 KO enterocytes also 

exhibited reduced apical actin levels as assessed with F-actin reporter, phalloidin (Fig. 4-
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2). Confocal volume projections showed a clear thinning of brush border F-actin signal, 

with reduced microvillar density and regions that appeared to lack microvilli completely 

(Fig. 4-2C,E).  In the ultrastructural analysis of KO tissues, we also noted a significant 

decrease in microvillar length (Fig. 4-6C). Together these findings suggest that KO of 

PACSIN2, and subsequent loss of COBL from the terminal web, impairs the production 

of actin filaments that form microvillar actin core bundles.  

Remarkably, measurements of phalloidin intensity from other parts of PACSIN2 

KO enterocytes revealed lower levels of F-actin, although the relative ratio of apical/cell 

body F-actin signal remained unchanged in response to PACSIN2 KO (Fig. 4-2K). 

Because most of the cell body signal derives from the basolateral margins, we propose 

that these perturbations are induced by loss of N-WASP stimulated ARP2/3 activity at the 

basolateral cortex. In support of this, previous studies showed that inactivation of ARP2, 

a component of the ARP2/3 complex, decreased actin polymerization and impairs the 

morphology and stability of epithelial adherens junctions (Tang and Brieher, 2012; 

Yamazaki et al., 2007). Inhibition of actin polymerization also impairs adherens junction 

reassembly and reduces E-cadherin enrichment (Ivanov et al., 2005a; Ivanov et al., 

2005b; Kovacs et al., 2011). Interestingly, in our studies, the loss of junctional actin 

correlates with the loss of ZO-1 and E-Cadherin signal in the PACSIN2 KO mouse (Fig. 

4-9), indicating a disruption in normal junctional stability and architecture.  

Perhaps the most unexpected finding from the current investigation was the 

striking perturbation in microvillar ultrastructure in PACSIN2 KO brush borders. In 

PACSIN2 KO brush borders, we observed a significant decrease in microvillar length and 

the extent of membrane coverage, i.e. the fraction of core actin bundle encapsulated in 
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plasma membrane. These changes were also accompanied by a corresponding increase 

in the length of exposed rootlet. How does loss of PACSIN2 impact microvillar structure 

and membrane coverage? While it is known that membrane-cytoskeleton linkers, such as 

Myo1a and Ezrin, stabilize physical contact between the plasma membrane and the 

underlying actin core, factors that control the extent of membrane coverage are poorly 

understood. A clue to the mechanism might come from our observation of a higher 

frequency of membrane invaginations originating from the intermicrovillar region in 

PACSIN2 KO brush borders. Because PACSIN2 and its binding partners (e.g. Dynamin) 

normally stimulate vesicle scission at these sites, the elongated invaginations that extend 

through the terminal web are most likely stalled endocytic structures, an interpretation 

consistent with their tubular morphology. Indeed, PACSIN2 KD in cultured cells has been 

shown to generate elongated caveolae (Senju et al., 2011). If the entire apical membrane 

is composed of a single continuous surface, the formation of exaggerated tubules in the 

terminal web would directly reduce the amount of membrane material available for 

encapsulating microvilli and thus, compromise the extent of membrane coverage.  To test 

this possibility more directly, we modeled the defects observed in PACSIN2 KO tissues 

in the W4 intestinal epithelial cell line. PACSIN2 KD in this context also lead to reduced 

membrane coverage of microvilli. Strikingly, we also observed that the inward pulling of 

exaggerated tubules temporally coincides with loss of membrane coverage on microvilli 

immediately adjacent to these sites. Because we were able to phenocopy these events 

with two distinct inhibitors of endocytosis, we conclude that the exaggerated tubules 

observed in PACSIN2 KO and PACSIN2 KD cells are in fact stalled endocytic 
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intermediates. Together our findings highlight a mechanistic link between sub-apical 

endocytic activity and the membrane coverage of apical microvilli.  

Interestingly, a role for inward pulling forces on the apical plasma membrane in 

shaping finger-like protrusions has been highlighted in previous studies of the pointed-

end directed motor, MYO6. MYO6 localizes to the terminal web where it interacts with 

endocytic machinery near the pointed-ends of microvillar core actin bundles, including 

DAB2, and GIPC (Tumbarello et al., 2013). In Snell’s Waltzer mice, which lack functional 

MYO6, inner ear hair cells exhibit a membrane lifting phenotype similar what we observe 

in PACSIN2 KO brush borders (Self et al., 1999). These cells also manifest with fused or 

coalesced protrusions, where multiple core bundles appear to be enveloped in a single 

tubule of plasma membrane. Later studies with the same model system revealed similar 

phenomena in the enterocyte brush border, with marked decreases in the membrane 

coverage of core actin bundles and more general disorder in the terminal web (Hegan et 

al., 2012).  In combination with the data we present here, these studies lead to a model 

whereby the formation and steady-state morphology of finger-like protrusions such as 

microvilli and stereocilia, are controlled by a balance of outward and inward mechanical 

forces that impinge on the plasma membrane. PACSIN2 likely limits these forces by 

promoting the budding and scission of endocytic vesicles from the intermicrovillar 

membrane. Whether PACSIN2 functions in the same pathway as MYO6 is not known, 

but functional links between these two factors should be the focus of future studies.  
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Conclusion 

The studies here specify a role for the F-BAR domain-containing protein PACSIN2 in 

controlling the membrane coverage of enterocyte microvilli. Linking the endocytosis 

between microvilli to the membrane forces that control microvillar morphology is a novel 

concept.  This shows that PACSIN2 is playing dual roles in the brush border, and that 

beyond its localization to the microvillar base and recruitment of COBL, PACSIN2 helps 

promote apical endocytosis. Because PACSIN2 binds to PIPs in the membrane through 

its F-BAR domain and both COBL and Dynamin2 through its SH3 domain, it is a crucial 

molecule in both microvillar growth and maintenance. Additional studies are needed to 

determine the type of endocytosis that PACSIN2 facilitates at the apical domain and 

whether it is clathrin-dependent, caveolae, or a mix of the two. As PACSIN2 has been 

shown to bind to Dynamin2 in multiple forms of endocytic vesicles, it is possible both of 

these two types of endocytosis occur in enterocytes. Other future studies should focus on 

the relationship between PACSIN2 and Dynamin2 at the apical domain and whether 

PACSIN2 is necessary to recruit in Dynamin2 directly, or if it is just necessary to stabilize 

the neck of budding vesicles for Dynamin2 to bind. Investigating the molecular 

mechanisms of PACSIN2 in endocytosis and how it controls the morphology of stable 

microvilli on the villar domain will further our understanding of brush border maintenance 

and the many roles of F-BAR domain-containing proteins.  
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CHAPTER V 

 

FUTURE DIRECTIONS AND CONCLUSION 

 

Function of IRTKS in vivo 

IRTKS localizes to the tips of growing microvilli and, along with the actin regulatory protein 

EPS8, is required for microvillar growth and elongation in the intestinal crypt domain. 

Knocking down IRTKS in W4 cells led to a reduction in cells able to build a brush border 

(Fig. 3-4K) and reduced microvillar length (Fig. 3-4L); indicating that the molecule is 

necessary for complete brush border assembly. While these KD studies provided insight 

into what happens to microvilli when IRTKS is lost, the shRNA used only eliminated ~85% 

of total IRTKS protein expression. Thus, we do not know definitively if the presence of the 

reduced brush borders and shorter microvilli is due to compensatory pathways of other 

brush border proteins, or the result of low levels of IRTKS still present in the system. 

There was also an apparent mosaicism to the KD, with the amount of residual IRTKS 

expression in the W4 cells correlating to the degree of brush border formation. This made 

it hard to adequately determine the full effect of from losing IRTKS on microvillar growth. 

Also, as the W4 cells used in the study are thought to exist in a perpetually 

undifferentiated state, no insight into the effect loss of IRTKS has on mature brush borders 

could be gained from the data. Therefore, characterization of an IRTKS KO mouse will 

help us determine further roles for the molecule and whether it is a necessary component 

of brush border assembly in vivo. 
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Ultrastructural analysis of IRTKS KO tissue 

Here, we provide preliminary characterization of mice that are homozygous KO for the 

IRTKS gene using scanning (SEM) and transmission electron microscopy (TEM). In SEM 

images of the IRTKS KO mice, the villi appear to be of a similar size and shape as the 

WT control villi (Fig. 5-1A, D), and there is no increased space between adjacent villi as 

has been observed in KO mice of other brush border molecules (Pinette et al., 2019; 

Postema et al., 2019). There also does not appear to be any extreme packing 

discrepancies in the knockout microvilli (Fig. 5-1C, F). However, there were areas around 

the base of KO villi where the microvilli appeared more disorganized than in WT tissue 

(Fig. 5-1I), which should be investigated further in future SEM tissue preps. Interestingly, 

one thing observed in many of the IRTKS KO images was increased vesicular structures 

at the tips of microvilli (5-1 G, H) which could result from abnormalities in microvillar actin 

cores. Thus, more data needs to be collected before a definitive conclusion can be made 

on whether or not the IRTKS microvilli have reduced packing.  

TEM was performed on the IRTKS KO mouse for characterization of the microvillar 

actin cores. The TEM images did not reveal any organizational issues in the IRTKS KO 

microvilli when they were viewed in a plane parallel to the actin core (Fig. 5-2B). The KO 

microvilli did appear to be slightly shorter than WT and were quantified by measuring the 

length of membrane- bound actin cores (Fig. 5-2C). However, as only one round of tissue 

prep from 2 KO and 2 WT mice was performed, no statistical analysis can be completed 

on the data at present. Orthogonal cross sections through microvilli did appear to show 

differences in the number and packing (Fig. 5-2D-I), therefore fast Fourier transforms 
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(FFTs) were calculated as in Chapter IV (Fig. 4-7D, E) that suggest the KO microvilli are 

more disorganized than WT (Fig. 5-2F, I).  

  

Figure 5-1: Preliminary SEM of the IRTKS KO mouse. (A-C) SEM images WT Intestinal 
duodenal tissue starting with whole villus sections (A) with increasing zooms of microvilli. 
(D-F) SEM images IRTKS KO Intestinal duodenal tissue starting with whole villus sections 
(D) with increasing brush border zooms. (G, H) IRTKS KO brush borders appear to have 
vesicular structures at the distal tips of individual microvilli. (I) Microvillar packing in the 
IRTKS KO tissue is decreased towards the base of villi. 
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The lack of an obvious phenotype in the KO SEM data could result from increased 

expression of other brush border proteins compensating for loss of IRTKS. To test for 

compensation, a candidate list of brush border proteins should be stained for in KO frozen 

tissue sections. If a molecule has increased expression to make up for loss of IRTKS, 

they would show increased staining in the KO tissue. Another way to examine 

compensation is by performing shotgun mass spectrometry on isolated IRTKS KO brush 

borders. This technique has previously been used by our laboratory on intestinal brush 

border samples (Benesh et al., 2010; McConnell et al., 2011), and would provide a direct 

comparison of the peptide levels of common brush border proteins between WT and KO 

mice.  Any protein with increased peptide counts in the IRTKS KO samples would be a 

compensatory candidate. Additionally, mass spectrometry would provide information on 

molecules that could be down regulated in the absence of IRTKS, such as EPS8. Based 

on the reduced localization of EPS8 in the IRTKS KD W4 cells (Fig. 3-8C), it would be 

expected that EPS8 localization would also be reduced in KO tissue. However, with the 

differential localization of IRTKS between the crypt and villar domains (discussed in the 

next section), there is a chance that EPS8 would only be mislocalized within the crypt 

domain. If other proteins are controlling the tip localization of EPS8 on the intestinal villus, 

a loss of IRTKS might not affect its expression within this domain. More data needs to be 

collected before a definitive conclusion on the role of IRTKS in vivo can be made. 
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Figure 5-2: Loss of IRTKS disrupts microvillar ultrastructure. (A) TEM images of WT 
(A) and IRTKS KO (B) brush borders in planes parallel to the microvillar axis; scale bars, 

1 m. (C) Quantification of microvillar length in WT (n = 40) and IRTKS KO (n = 37). 
Measurements were selected so that only protrusions with actin cores fully visible along 
their length were scored. (D, G) TEM images of WT (D) and IRTKS KO (G) brush borders 
in planes orthogonal through the microvillar axis (en face); scale bars, 500 nm. (E, H) 
Zooms of D and G, showing individual actin filaments in the microvillar core; scale bars, 
250 nm. (F, I) Fourier transformations (FFT) obtained from en face TEM images. The 
hexagonal pattern in F indicates normal microvillar packing, while the pattern in I shows 
loss of packing. TEM images were taken by Evan Krystofiak in the Vanderbilt EM core. 
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Utilizing IRTKS KO intestinal organoids to study BB assembly  

Additional data on the role of IRKTS could come in the form of small intestinal organoids, 

which can be made from KO mouse tissue. Organoids are a powerful model system to 

study how differentiating epithelial cells form and maintain a brush border in an in vivo 

context. They are prepared by isolating stem cell containing crypts from mice, which 

reseal into “enterospheres” after being cultured in matrigel; over time, new crypt domains 

bud off from a shared villus. Similar to intestinal tissue, epithelial cells can then migrate 

from the crypt to the villar domain, with their apical BBs oriented into a central lumen (Sato 

and Clevers, 2013b; Sato et al., 2009; Stelzner et al., 2012). Organoids are a valuable 

model system because they can be fixed and stained as whole mount samples which 

allows us to dictate where in the sample we image, making it easier to visualize an entire 

crypt/villus axis in a single plane.  

An organoid line from the IRTKS KO mouse will help determine how eliminating 

IRTKS impacts the time course and extent of BB maturation. Organoids are 

advantageous to use because they can be manipulated in a manner similar to cell culture 

lines, meaning they can be virally transduced to express proteins of interest. This means 

IRTKS truncation and mutant rescue constructs can be expressed in the KO organoids 

similar to the W4 KD/ rescue experiments in Chapter II. However, expressing the 

truncation and mutant constructs in a KO background will give better insight into the 

domains of IRTKS necessary to rescue brush border assembly as it eliminates the impact 

of endogenous protein dimerizing with the expression constructs. Stable fluorescent actin 

(or villin) expressing organoids can also be generated to visualize the enterocyte brush 

border during long-term imaging using spinning disk confocal microscopy. Overnight 
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Figure 5-3: Live cell imaging of intestinal organoids. (A) Spinning disk confocal 
microscopy of EGFP-Lifeact expressing intestinal organoids. Imaging was performed 

overnight with 2-minute intervals and 30 m Z-stacks; scale bar, 25 m.  

 

imaging of Myo5b KO intestinal organoids with 2-minute intervals and 30 m Z-stacks 

has recently been performed in our lab with great success (Fig. 5-3). This means IRTKS 

KO organoids can be visualized with high temporal resolution to determine exactly how 

brush border assembly is affected without IRTKS as enterocytes mature.  

 

Dissecting the Regulatory Mechanisms of IRTKS Targeting 

Our initial studies on IRTKS show that it is expressed at the tips of microvillar protrusions 

in W4 cells and the tips of filopodial protrusions in B16F1 cells (Chapter III). However, in 

sections of native intestinal tissue, IRTKS surprisingly localizes at the base of brush 

border microvilli (Fig. 5-4). In both tissue and organoid staining, we saw that IRTKS was 

localized to the tips of the brush border in the crypt domain (white arrowheads in Fig. 5-

4A and arrows in Fig. 5-4B), similar to the W4 cells. However, at the crypt/villus transition 

as seen in organoids, the IRTKS signal shifts to the base of the brush border (white 
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arrowheads in Fig. 5-4B), where it is localized in villar tissue sections. We believe the 

differences in the localization of IRTKS stems from the differences in the maturity of these 

cell types. For instance, W4 cells polarize after induction with doxycycline (Baas et al., 

2003; Boudeau et al., 2003), leaving them in early stages of brush border formation 

characteristic of immature crypt enterocytes where microvilli are actively growing. 

Similarly, in B16F1 cells the filopodia are actively protruding and growing. However, the 

villus in native intestinal tissue contains mature enterocytes with more stable microvilli. 

Thus, the localization differences of IRTKS can be explained by the stability of the 

protrusion in question; IRTKS targets to brush border tips in both W4 cells and organoid 

crypts where microvilli are unstable and actively growing, while it targets to the base of 

microvilli in differentiated cells with stable BBs.  

To explain the differences in microvillar tip versus base targeting, we speculate 

that IRTKS exists in two populations: one an open, active conformation promoting 

microvillar growth, and the other an autoinhibited, inactive state, perhaps functioning in 

BB maintenance or repair (Fig. 5-5). Autoinhibition is a common regulatory mechanism 

among BAR domain proteins and a previous study has shown that IRSp53 undergoes 

autoinhibition from its SH3 domain binding to an N-terminal PR (Kast et al., 2014). IRSp53 

is the closest family member to IRTKS, and the two proteins have highly conserved I-BAR 

and SH3 domains (Millard et al., 2007), thus it is reasonable that the differential 

localization of IRTKS between the crypt and villus is a result of autoinhibition. The switch 

between these two states could be controlled by a binding partner with a ligand for the 

SH3 domain of IRTKS, which is how many autoinhibited proteins are regulated.  
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Figure 5-4: IRTKS endogenous localization in intestinal tissue and organoids. (A) 
Endogenous IRTKS (green) and phalloidin (magenta) labeling of frozen intestinal tissue. 
Dashed boxes indicate zooms. 1) zoom of the villar domain, arrows highlight IRTKS base 
localization; 2) zoom of the crypt domain, arrowheads highlight IRTKS tip localization.  (B) 
Endogenous IRTKS (green) and phalloidin (magenta) labeling of an intestinal organoid. 
Dashed box indicates zoom of the crypt; arrows highlight IRTKS tip localization, 
arrowheads highlight IRTKS base localization. 

 

Potential IRTKS constructs to determine intramolecular interactions 

Future studies with different IRTKS constructs that will either force or prevent 

intramolecular interactions can be performed to establish if the differential localization of 

IRTKS is actually a result of autoinhibitory binding (Fig. 5-6). These constructs could 

contain 1) an IRTKS PR* construct with a loss of function mutation in the PR, 2) an IRTKS 
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ΔPR construct with a deleted PR, and 3) an IRTKS SAH construct with an added SAH 

between the PR and SH3 domains. The first two constructs should no longer bind to the 

SH3 domain, and the addition of the SAH domain in construct three will force the molecule 

into an extended conformation, and prevent it from folding (Peckham, 2011; Sweeney 

and Houdusse, 2010; Wolny et al., 2014).  

  

Figure 5-5: Proposed model of IRTKS regulation. IRTKS is in an open, active 
conformation at microvillar tips and a closed, inactive conformation at the base.  

 

Two additional IRTKS constructs could be generated to force an intramolecular 

interaction, simulating autoinhibition.  One way to accomplish this would be to utilize the 

EHEC effector EspF0, which binds to the SH3 domain of IRTKS during EHEC infections 

(Vingadassalom et al., 2009) (Fig. 1-8). An NMR structure of this interaction has shown it 

to occur through the highest affinity possible (Aitio et al., 2010). We can take advantage 

of this high affinity interaction to generate an IRTKS construct replacing the canonical PR 

with the PR of EspFu, thus generating a version of IRTKS locked in an autoinhibited state. 
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The final construct generated, IRTKS α-HD, could contain an alpha helical domain (α-

HD) from the ERM protein Moesin. The α-HD interacts with itself in an antiparallel fashion; 

thus, the addition of this domain will force IRTKS into a folded state, blocking the SH3 

domain and imitating an intramolecular interaction (Li et al., 2007; Mangeat et al., 1999; 

Niggli and Rossy, 2008).    

Further characterization of these constructs could be obtained through expression 

in the IRTKS KO organoids proposed in the previous section. If the conformational state 

of IRTKS does indeed determine where the molecule targets, we would expect no 

differential localization occurring with the IRTKS constructs in a forced closed, or forced 

open, conformation. The three IRTKS constructs engineered to prevent intramolecular 

folding (Fig. 5-6) are predicted to show localization only at BB tips throughout both the 

crypt and villus. Because the SH3 domains will never be able to fold back and bind to the 

PR regions, SH3 binding partners will constantly be able to target the IRTKS molecules. 

As a result, the organoids would be expected to have slightly longer microvilli, such as 

those seen in the IRTKS preliminary data (Fig. 3A&B). In contrast, the two IRTKS 

constructs with forced intramolecular binding will likely localize to the BB base throughout 

both the organoid crypt and villus, opposite from the open constructs. It is also likely that 

preventing IRTKS from reaching the microvillar tips would cause the organoids to display 

a shortened BB phenotype, as seen in IRTKS SH3* (Fig. 3-4). This is because the inactive 

IRTKS molecule would no longer be able to interact with other molecules through the SH3 

domain, which could prevent it from targeting to the growing microvillar tips. Significant 

mechanistic information can be gained from investigating the autoinhibitory state of 

IRTKS, and thus should be the focus of future work. If the differential localization is not a 
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result of autoinhibition, other potential binding partners of IRTKS should be examined to 

determine if a novel binging partner along the villar domain is what is controlling the 

localization of IRTKS.   

Figure 5-6: Schematic of proposed IRTKS constructs for future autoinhibition 
studies. Numbers indicate amino acids, * indicates point mutations P285,286,288A. SAH 
is the single α-helical domain, the red box indicates the PR domain from EspFu and the 

blue α-HD box indicates the α-helical domain. Domain aa: I-BAR 1-249, PR 281-303, SH3 
339-402, WH2 483-511. 

 

Utilizing CRSIPR/Cas9 for endogenous tagging  

Overexpressing fluorescently tagged proteins in cell culture models provides a way to 

visualize the localization and function of specific molecules during live cell imaging. 

However, putting more protein in a cell than is normally expressed can generate 

unwanted artifacts. The CRSIPR/Cas9 system uses homologous recombination to 

generate cell lines with genomic insertions or deletions in a gene of interest. We can 

utilize this technology to insert a fluorescent tag in the IRTKS gene that would allow us to 
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visualize the molecule at endogenous levels.  It would be beneficial to use WT intestinal 

organoids for the CRISPR/Cas9 endogenous tagging as they possess both 

undifferentiated crypt domains and mature villar domains.  

The overexpression studies in the previous section will provide information as to 

whether or not autoinhibition is controlling the differential localization of IRTKS; however, 

they will not give insight into why IRTKS migrates from the tips to the base of microvilli. 

Endogenously tagging IRTKS in organoids will allow us use live imaging to visualize the 

molecule in real time as enterocytes migrate out of the crypt domain onto the villus. This 

would provide insight into the function of IRTKS in early microvillar growth as well as 

information on how IRTKS changes its localization, without the artifacts normally 

associated with overexpression. It is hypothesized that the tip to base transition of IRTKS 

occurs because the molecule is no longer needed to be tip localized on the villar domain 

as microvillar growth is complete. However, it begs the question as to why the protein is 

still expressed and localizing to the brush border. One reason might be for general 

microvillar maintenance after disruption or after brush border effacement from bacterial 

infections, like EHEC (de Groot et al., 2011; Vingadassalom et al., 2009). To determine if 

this is the case, the IRTKS tagged organoids could be used to generate brush border 

injury during live cell imaging. This would demonstrate if the IRTKS molecules at the brush 

border base along the villar domain localize back to the tips of microvilli to promote new 

growth. Studies using CRISPR/Cas9 to tag IRTKS in organoids would provide further 

insight into why IRTKS is differentially localized between the crypt and villar domains, as 

well as insight into the steps of early brush border formation. 

 



 119 

Dissecting the Role of IRTKS in Brush Border Polarity Establishment 

Epithelial cell polarity is a highly regulated process involving many signaling and actin 

regulatory molecules, particularly Rho family GTPases. The process of polarization and 

apical domain establishment is readily observed in intestinal epithelial W4 cells. In this 

cell line, the addition of doxycycline initiates the expression of FLAG-STRADα and the 

activation of LKB1, which causes an accumulation of PI(4,5)P2 at one end of a cell and 

the translocation of Mst4 to what will eventually be the apical membrane. This ultimately 

leads to ezrin phosphorylation, cell polarization, and brush border formation (Baas et al., 

2003; Baas et al., 2004; Boudeau et al., 2003). Interestingly, when IRTKS is knocked 

down in W4 cells, the apical domain appears to expand (Fig. 3-4, 3-5). This suggests that 

IRTKS might play a role in epithelial polarity establishment, however where and how the 

molecule fits into the current W4 polarity pathway is not known.  

 In the IRTKS KD studies in Chapter III, it was shown that losing IRTKS led to brush 

borders with shortened microvilli (Fig. 3-4B). However, it was not addressed that IRTKS 

KD also causes the normally apical brush border to expand around the periphery of the 

cell, a phenomenon we defined and quantified as percent BB coverage (Fig. 5-7G). There 

are two possibilities that could lead to an expanded apical domain from loss of IRTKS, 1) 

there is an increase in the number of microvillar protrusions that cause the brush border 

to acquire more surface area of the cell, or 2) without IRTKS the W4 cells can no longer 

restrict their apical domain to the top third of the cell. Preliminary experiments were 

performed on W4 cells to examine these two possibilities further.  

To determine if there is an increase in the number of microvillar protrusions in the 

IRTKS KD cells, individual microvilli were counted using EPS8 as a tip marker because 
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of its specificity (Fig. 3-6). Interestingly, the number of individual microvilli in the IRTKS 

KD cells, as well as the amount of actin that was quantified from mean brush border 

phalloidin intensity, were unchanged from the scramble control (Fig. 5-6 H, I). This 

suggests that the expanded apical domain is not caused by an increase in microvillar 

growth events around the perimeter of the W4 cells, and that the IRTKS KD and scramble 

cells have the same number of microvillar protrusions. We next sought to determine if the 

second possibility, that polarity establishment is lost without IRTKS, is what is occurring 

in the KD cells. Preliminary immunostaining was performed using the polarity marker 

Rab11a, which is a small GTPases that has been shown to help localize signaling proteins 

to the apical domain in intestinal cells (Sobajima et al., 2014). Interestingly, Rab11a 

localizes to the entire periphery of the expanded brush border in the KD cells (Fig. 5-7F). 

This suggests that the actual apical domain is physically expanding along with the brush 

border when IRTKS is no longer expressed.  

It is logical for IRTKS to be a component of the epithelial polarity pathway as it has 

a Rac binding site within its I-BAR domain (Millard et al., 2007), which is a protein that is 

known to help establish the position of the apical domain in epithelial cells (Ngok et al., 

2014). A dominant negative Rac causes a reversal in apical/ basal polarity in MDCK cells 

(O'Brien et al., 2001); thus, if IRTKS is helping establish the localization of Rac, the apical 

domain could be remodeled without it. Additionally, I-BAR domain proteins are thought to 

help restrict PI(4,5)P2 to the appropriate areas of the cell through the electrostatic 

interactions with their I-BAR domains (Zhao et al., 2013).  If IRTKS is no longer able to 

restrict PI(4,5)P2 to the top third of the cell, an expanded apical domain could result. 
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Future studies will need to be performed to examine how the expanded apical domain 

forms in more detail and to determine where IRTKS fits into the polarity pathway.  

 

Figure 5-7: IRTKS KD in W4 cells leads to an expanded apical domain. (A) Phalloidin 
labeling of Scramble control W4 cells; image acquired using a 60x objective for a larger 

field of view. Scale bar, 20 m. (B) Phalloidin staining in a scramble control W4 cell; teal 

line indicates the brush border coverage over ~30% of the cell. Scale bar, 5 m. (C) 
Endogenous Rab11a (green) and phalloidin (magenta) labeling of a scramble control W4 

cell; Rab11a staining highlights the apical domain. Scale bar, 5 m. (D) Phalloidin labeling 
of IRTKS KD W4 cells; image acquired using a 60x objective for a larger field of view. 

Scale bar, 20 m. (B) Phalloidin staining in an IRTKS KD W4 cell; purple line indicates 

the brush border coverage over ~70% of the cell. Scale bar, 5 m. (C) Endogenous 
Rab11a (green) and phalloidin (magenta) labeling of an IRTKS KD W4 cell; Rab11a 

staining highlights the apical domain. Scale bar, 5 m. (G) Quantification of percent BB 
coverage in scramble control and IRTKS KD cells. (H) Quantification of number of 
microvilli in scramble and IRTKS KD cells; microvilli were counted using EPS8 as a tip 
marker. (I) Quantification of the average phalloidin intensity between scramble and IRTKS 
KD cells.  
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Is IRSp53 a Member of the Intestinal Brush Border? 

Functional redundancy of proteins is a defining feature of the intestinal brush border and 

is seen in many of the molecules we study in our lab. An interesting example of the 

redundancy of brush border proteins can be seen in the actin bundling proteins found 

within microvilli, villin, espin and fimbrin, where mice lacking one or more of these proteins 

are still able to assemble microvilli. Indeed, deletion of villin in mice had a minimal impact 

on brush border organization under normal conditions (Ferrary et al., 1999). Even more 

remarkably, a mouse model lacking all three major bundling proteins still assembled a 

functional brush border, although microvillar organization was perturbed (Revenu et al., 

2012). Thus, the ability of IRTKS KD W4 cells (Fig. 3-4) and the IRTKS KO mouse (Fig. 

5-2 and 5-3) to still form brush border indicates the presence of compensatory 

mechanisms.  

In earlier sections, the potential for other brush border proteins to be compensating 

for IRTKS was briefly discussed, however a candidate molecule that was not mentioned 

was the I-BAR domain-containing protein IRSp53. IRTKS has a 59% sequence similarity 

with IRSp53 (Millard et al., 2007) and the two molecules share all of the domains 

previously identified as necessary for brush border assembly, including the I-BAR, SH3, 

and WH2 domains (Fig. 5-8A). IRSp53 is also expressed in the small intestine and 

appears to localize to the brush border in immunostaining by the Human Protein Atlas 

(Fig. 5-8C, D). Furthermore, IRSp53 has been implicated as one of the host molecules 

hijacked in EHEC actin pedestal formation, as it can bind to both Tir and EspFu to 

complete the signaling cascade towards branched actin polymerization (Crepin et al., 

2010; de Groot et al., 2011). However, all of the studies of IRSp53 in EHEC pathogenesis 



 123 

have been done outside of the physiological system, or in non-intestinal epithelial cells. 

Thus, the ability of IRSp53 to be hijacked for pedestal formation could just be a result of 

it being available in the cell lines used for these studies.  

Additional preliminary evidence for the intestinal expression of IRSp53 was 

recently found through a proteomics screen in our lab. The BioID approach was utilized 

with the actin regulatory protein EPS8 to find potential tip localized proteins in W4 cells. 

BioID works by biotinylating proteins in the vicinity of a protein of interest, in our case 

EPS8, which can then be pulled down and sent to proteomics for identification (Roux et 

al., 2018). EPS8 was used because of its specificity at the tips of microvilli in W4 cells, 

which was hypothesized to provide a clean analysis of proteins specific to the brush 

border. Surprisingly, along with IRTKS, IRSp53 was identified as a protein biotinylated in 

the vicinity of EPS8. IRSp53 has been previously shown to bind to EPS8 through its SH3 

domain in filopodial protrusions (Disanza et al., 2006; Funato et al., 2004), so the 

interaction is not surprising. However, one caveat of the BioID experiments performed in 

our lab is that W4 cells can generate filopodia when they are initially plated, so whether 

the EPS8 biotinylation of IRSp53 occurred in filopodia or within the brush border is 

unknown. Further BioID experiments will have to be performed with isolated brush 

borders or in a fully differentiated epithelial cell line to determine if IRSp53 is actually 

binding EPS8 within microvilli.  

Additional future studies that will need to be performed with IRSp53 to determine 

whether it is normally localized to the brush border with IRTKS, upregulated in the 

absence of IRTKS to compensate for its loss, or playing a different role in intestinal 
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Figure 5-8: Small intestinal staining of IRSp53. (A, B) Domain diagrams of IRTKS (A) 
and IRSp53 (B) showing the similarities between the two proteins; numbers indicate 
amino acids. (C, D) IRSp53 staining from the Human Protein Atlas, darker brown indicates 

higher protein levels. Scale bar, 25 m. 

 

epithelial cells. One way to decipher this would be staining for IRSp53 in IRTKS KO tissue 

sections. This would tell us if and where IRSp53 is localized in the brush border, and if 

the expression of IRSp53 is increased in the absence of IRTKS, which would show its 

compensation. Another experiment would be to express an IRSp53 construct in IRTKS 

KO organoids to see if it can rescue brush border defects due to loss of IRTKS.  
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Mechanisms of PACSIN2 in Apical Endocytosis 

Recent studies on PACSIN2 suggest the molecule plays a larger role in the internalization 

of caveolae than other forms of endocytosis (Kessels et al., 2006). It has been found to 

oligomerize around the neck of nascent caveolae for stabilization, before recruiting in the 

large GTPase Dynamin2 for excision from the membrane (Senju and Suetsugu, 2015). 

Caveolea are small, endocytic pits that bud inward from the plasma membrane (Parton, 

1996) and, unlike clatherin-mediated endocytosis, they are uncoated with protein. They 

are important structural features in many mammalian cells and are thought to be inportant 

in lipid regulation and transcellular transport (Drab et al., 2001; Razani et al., 2002; 

Schubert et al., 2001). However, whether or not PACSIN2 localizes to caveola to promote 

their stabilization and excision in enterocytes is currently unknown.  

Before examining the involvement of PACSIN2 in caveola formation, we first 

needed to determine the presence of caveolae at the enterocyte apical domain through 

preliminary staining of caveola proteins in WT intestinal tissue sections. We chose to satin 

for caveolin-1 and caveolin-2, which are two integral membrane proteins that form the 

main membrane component of caveolae (Hansen and Nichols, 2010). Indeed, both 

Caveolin-1 and Caveolin-2 localize to the base of the brush border, exactly where 

PACSIN2 localizes (Fig 5-9). This indicates that caveolae are forming at the intestinal 

apical domain, but more experiments need to be performed to show that PACSIN2 plays 

a role in their formation.  

One way to show that PACSIN2 is involved in caveolar biogenesis is to perform 

immunofluorescence staining of Caveolin-1 and Caveolin-2 in PACSIN2 KO frozen tissue  
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Figure 5-9: Caveolin-1 and Caveolin-2 localize to the enterocyte apical domain. (A) 
Endogenous Caveolin-1 (green) and phalloidin (magenta) labeling of frozen intestinal 

tissue. Dashed box indicates zoom the villar domain; scale bars, 25 m in main panel, 10 

m in zoom.  (B) Endogenous Caveolin-2 (green) and phalloidin (magenta) labeling of 

frozen intestinal tissue. Dashed box indicates zoom the villar domain; scale bars, 25 m 

in main panel, 10 m in zoom.   

 

sections. We would hypothesize that there would be reduced staining of the Caveolin 

proteins in the KO tissue, as caveolae would no longer be stabilized at the apical domain 

without PACSIN2. Another method to directly test for the presence of caveolae is to KD 

both Caveolin-1 and PACSIN2 in W4 cells. If PACSIN2 is promoting the stabilization and 

excision of caveolae in the brush border, then we would expect the membrane tubules 

that form in the PACSIN2 KD W4 cells (Fig. 4-8E) would be absent or reduced in a 

Caveolin-1/ PACSIN2 double KD. Without caveolin-1 to initially form the caveolar 

vesicles, loss of PACSIN2 should have no effect on the plasma membrane tension and 
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thus no membrane tubules should form. However, if PACSIN2 is involved in the excision 

of non-caveolar vesicles at the apical domain, then the membrane tubules would still be 

expected to form. Additional future experiments should focus on the exact mechanism 

PACSIN2 uses for vesicle scission, and how it relates to the mechanism of PACSIN2 in 

complex with COBL in microvillar assembly.  

 

Conclusions 

The work presented here highlights roles for both I-BAR and F-BAR domain-containing 

proteins in brush border assembly and maintenance. We have established that the I-BAR 

domain protein IRTKS, along with the actin-binding protein EPS8, are necessary 

components of brush border assembly and required for microvillar elongation within the 

intestinal crypt domain (Chapter III). Additionally, we have established that the F-BAR 

domain protein PACSIN2 is controlling the membrane coverage of enterocyte microvilli 

by promoting dynamin-dependent endocytosis (Chapter IV). Future experiments 

highlighted in this section will be critical to further understand the mechanisms employed 

by IRTKS and PACSIN2 in brush border assembly. Following up on the IRTKS KO mouse 

data will be especially important to further analyze the need for the IRTKS/ EPS8 complex 

on microvillar growth in vivo. Moreover, further experiments performed that determine the 

type of endocytosis PACSIN2 is facilitating at the apical domain will help establish the link 

between membrane tension and microvillar morphology.  
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