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CHAPTER I 

 

INTRODUCTION 

 
Multiple myeloma  

Multiple myeloma is a fatal hematological malignancy that develops within 

the bone marrow microenvironment.  The American Cancer Society estimated 

that approximately 20,000 new multiple myeloma diagnoses and 10,800 

myeloma deaths were expected in 2007 in the United States alone, making it the 

second most common hematological malignancy (Jemal, Siegel et al.).  Myeloma 

is characterized by the uncontrolled clonal proliferation of malignant plasma cells 

within the bone marrow, resulting in numerous pathological features.  One of 

these features unique to multiple myeloma, in contrast to other hematological 

malignancies, is the destructive osteolytic bone disease that develops in the 

majority of patients.  This myeloma bone disease often results in lytic lesions 

(Figure 1A), pathological fractures (Figure 1B), and spinal cord compression 

(Figure 1C).  Other clinical features that manifest in patients include anemia, 

renal failure, immune suppression, and hypocalcaemia.  The mechanisms 

involved in the development of myeloma are not well understood; therefore, 

despite many advances in the treatment of multiple myeloma, it still remains an 

incurable and fatal malignancy.   

Plasma cells are terminally differentiated B cells derived in the germinal 

centers following T cell-mediated activation.  Following activation, germinal 

center B cells become either memory B cells or antigen-producing plasma cells  
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Figure 1. Clinical features of myeloma bone disease. A) 
Radiograph displaying lytic bone lesions in the skull of a myeloma 
patient.  B) Pathological fracture in humerus of myeloma patient, 
demonstrated by radiograph.  C) Tumor cells present in the 
spines of myeloma patients often cause spinal cord compression 
resulting from the collapse of vertebral bodies (white arrow). 
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(Honjo, Alt et al. 2004).  Differentiating B cells undergo a process called somatic 

hypermutation, where the immunoglobulin genes undergo mutations in order to 

create antibodies specific for particular antigens (Janeway 2005).  In pathological 

conditions, malignant plasma cells can have abnormal antibody production and 

accumulate in the bone marrow.  

Monoclonal gammopathies of undetermined significance (MGUS) is 

considered a precursor condition to multiple myeloma (Waldenstrom 1960; 

Axelsson 1986).  Clinical diagnosis of MGUS is classically characterized as 

abnormal protein production by plasma cells (<10% of plasma cells), in the 

absence of bone disease, anemia, and hypocalcaemia (Kyle, Therneau et al. 

2006).  On average, approximately 1% of patients with MGUS progress to 

multiple myeloma every year (Kyle and Rajkumar 2007); however the reasons for 

this progression are unknown. Some clinical evidence suggests the progression 

is due to changes that occur to the bone marrow microenvironment, but there are 

no reliable predictors for disease progression (Blade, Rosinol et al. 2008). It is 

critical to identify novel predictors of malignant transformation to determine what 

patients are at risk. Myeloma progression and the development of osteolytic bone 

disease are inextricably linked and dependent upon cellular interactions within 

the bone marrow microenvironment. Therefore, the study of the bone marrow 

microenvironment in myeloma is critical for both understanding of mechanisms 

involved in disease progression, and the identification of novel therapeutic 

targets.    
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In vivo models of multiple myeloma 

Advances in the treatment of myeloma are limited due to the number of 

clinically relevant animal models that allow for the in vivo study of myeloma 

development in the context of a bone marrow microenvironment. The current 

animal models for myeloma include the murine Radl 5T model, the SCID-hu/rab 

xenograft model, and models generated by genetic manipulation, such as 

overexpression of the transcription factor X-box binding protein. Of these models, 

the murine Radl 5T model, which shares a number of clinical, histological, 

immunological and cytogenetic features with human myeloma bone disease, is 

one of the most promising.  The Radl 5T murine model of myeloma was originally 

identified as occurring spontaneously in aging mice of the C57BL/6 substrain, 

C57Bl/KaLwRij (Radl, De Glopper et al. 1979; Radl, Croese et al. 1988). Several 

5T cell lines have been developed from this model, which include 5T2, 5T33 and 

5TGM1, all of which result in tumor growth within bone and osteolytic bone 

disease when cells are inoculated into the syngeneic C57Bl/KaLwRij strain or 

bg/Nu/Xid mice (Garrett, Dallas et al. 1997). In contrast, myeloma does not 

develop when cells are inoculated into closely related C57Bl6 mice. The genetic 

mutation that defines C57Bl/KaLwRij mice is unknown. The SCID-hu xenograft 

model provides a system where primary human myeloma cells can be injected 

into either a fetal human or rabbit bone that is implanted subcutaneously into 

immunocompromised mice (Yaccoby, Barlogie et al. 1998).  Both of these 

models allow the study of tumor growth and myeloma bone disease, and have 

proven to be effective preclinical models to test novel therapeutic approaches for 
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the treatment of myeloma bone disease. A major limitation of both models is that 

manipulation of the bone marrow microenvironment independent of the tumor is 

limited to systemic pharmacological reagents, rendering it impossible to elucidate 

specific cellular and molecular mechanisms of myeloma bone disease within the 

bone marrow microenvironment. Current research demonstrates the critical role 

that the tumor microenvironment plays in disease progression, however the 

existing animal models for the study of the tumor microenvironment in myeloma 

severely impair both clinical and basic research in this field.     

 

Tumor-host cell interactions in myeloma  

The bone marrow microenvironment consists of a complex network of 

cellular interactions and exposure of numerous secreted factors.  Cell types 

within this microenvironment include stromal cells, osteoclasts, osteoblasts, 

hematopoietic stem cells, B and T lymphocytes, macrophages, and various other 

immune cells.  Myeloma and the associated bone disease can be perpetuated by 

alterations to resident bone marrow cells and surrounding stroma found within 

this microenvironment.   

 

Osteolytic bone disease 

Osteolytic bone disease is a major clinical complication that arises in 

patients with multiple myeloma.  Multiple myeloma, and other cancers that 

metastasize to the bone marrow, create an interdependent relationship between 

tumor cells and cells of the bone marrow microenvironment which promotes both 
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tumor growth and bone destruction (Edwards, Zhuang et al. 2008).  This bone 

disease is typically associated with increased osteoclast number and activity 

(Figure 2A), decreased osteoblast formation and function, decreased overall 

trabecular bone volume (Figure 2B), and lytic lesions through the cortical bone 

(Figure 2C). In the normal bone marrow microenvironment, bone is constantly 

undergoing remodeling with a delicate balance between osteoclastic bone 

resorption and osteoblastic bone formation.  The initial stages of normal bone 

remodeling involve the systematic recruitment and activation of osteoclasts, 

which are mediated by the interaction of RANKL- and M-CSF- expressing 

osteoblasts and BM stroma with osteoclast precursors expressing the receptor 

RANK (Roodman 1999; Yavropoulou and Yovos 2008).  Following exposure to 

RANKL, these mononuclear osteoclast precursors fuse to form functionally 

mature multinucleated osteoclasts.  These mature osteoclasts ultimately bind to 

the exposed bone matrix where they form resorbing compartments and secrete 

matrix-degrading enzymes such as tartate-resistant acid phosphatase (TRAP), 

cathepsin K, and matrix metalloproteinase-9 (Delaisse, Andersen et al. 2003).  

The digestion of the bone matrix is followed by osteoclast apoptosis and a 

transition to osteoblastic bone formation.  The signalling involved in this transition 

is unknown, however it has been suggested to be mediated by osteoclasts 

(Martin and Sims 2005).  Mesenchymal stem cell differentation into osteoblasts is 

mediated by the Wnt/β-catenin pathway (Logan and Nusse 2004).  Mature 

osteoblasts synthesize and regulate mineralization of new bone matrix resulting 

in increased bone formation and volume (Anderson 2003).  
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Figure 2. Characteristics of myeloma bone disease. Myeloma bone 
disease is characterized by A) an increase in TRAP-positive 
osteoclasts (white arrowheads) and their function, B) a decrease in 
trabecular bone volume, and C) formation of osteolytic lesions (black 
arrows) through the cortical bone.    
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Enhanced osteoclastic bone resorption 

Within the myeloma microenvironment, there is a dysregulation in normal 

remodeling that results in decreased bone formation and enhanced osteoclast 

function.  Myeloma cells play an active role in creating this imbalanced 

pathological process.  This dysregulated process was initially described as a 

reciprocal relationship between tumor growth and osteoclastic bone resorption, 

where myeloma cells release “osteoclast activating factors” and the process of 

resorbing bone further promotes tumor growth and survival (Figure 3A) (Mundy, 

Raisz et al. 1974).  Among some of these “osteoclast activating” cytokines 

produced by myeloma cells are IL-1, IL-3, IL-6, TNF, macrophage inflammatory 

protein-1α (MIP-1α), hepatocyte growth factor (HGF), and parathyroid hormone-

related protein (PTHrP) (Cozzolino, Torcia et al. 1989; Bataille, Chappard et al. 

1992; Caligaris-Cappio, Gregoretti et al. 1992; Hjertner, Torgersen et al. 1999; 

Callander and Roodman 2001; Lee, Chung et al. 2004).  Several studies were 

able to show myeloma cells in close proximity to sites of bone resorption (Mundy, 

Luben et al. 1974; Mundy, Raisz et al. 1974; Valentin-Opran, Charhon et al. 

1982); therefore supporting their role in stimulating osteoclast formation and 

activity.  The last decade of myeloma research has provided extensive evidence 

implicating two pathways, NF-κB and MIP-1α, as having major roles as 

“osteoclast activating factors” and as being key components in myeloma bone 

disease. 
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Figure 3. Progression of our understanding of the complex cellular 
relationships in myeloma bone disease. (A) The original studies first 
described the relationship between myeloma cells and osteoclasts, whereby 
myeloma cells released “osteoclast activating factors’ (OAFs) that stimulated 
osteoclastic bone resorption which in turn released growth factors which 
promoted myeloma cell growth and survival. (B) Identification of many more cell 
types and factors has advanced our current knowledge of contributors to 
disease progression, although the original concepts of tumor cells promoting 
bone destruction which in turn promote tumor growth remain the fundamental 
aspects of this increasingly complex network of interactions. 
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RANKL 

Three proteins that belong to the tumor necrosis factor (TNF) receptor family 

were identified as critical components for normal osteoclastogenesis and bone 

remodeling.   These factors are receptor activator of nuclear factor κB (RANK) 

(Anderson, Maraskovsky et al. 1997), its ligand RANKL (Anderson, Maraskovsky 

et al. 1997; Wong, Rho et al. 1997; Lacey, Timms et al. 1998; Yasuda, Shima et 

al. 1998); and the RANKL decoy receptor osteoprotegerin (OPG) (Simonet, 

Lacey et al. 1997; Tsuda, Goto et al. 1997; Yasuda, Shima et al. 1998).  The 

interaction between the transmembrane receptor RANK and the membrane-

bound protein RANK ligand is part of normal and pathologic bone remodeling.   

In the context of myeloma, early studies demonstrated that bone marrow 

from patients had increased RANKL expression (Giuliani, Bataille et al. 2001; 

Pearse, Sordillo et al. 2001).  Additionally, myeloma cells decrease expression of 

OPG expressed by bone marrow stromal cells and osteoblasts (Shipman and 

Croucher 2003).  Some studies have demonstrated that myeloma cells can 

directly stimulate osteoclastogenesis, independent of osteoblasts, through their 

own expression of RANKL (Croucher, Shipman et al. 2001; Sezer, Heider et al. 

2002).  Furthermore, other resident bone marrow cell types contribute to increase 

RANKL expression.  RANKL is upregulated in T cells following antigen 

stimulation (Anderson, Maraskovsky et al. 1997; Wong, Rho et al. 1997) that can 

occur from exposure to numerous infectious agents.  Any activation of T cells 

under inflammatory or even pathologic conditions could potentially augment 

osteoclast formation and activity (Walsh and Choi 2003; Rho, Takami et al. 2004; 
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Takayanagi 2005).  Giuliani et al. showed that myeloma cells have effects on T 

cells and their function (Giuliani, Colla et al. 2002).  The authors demonstrated 

that RANKL expression in T cells was increased following co-culture with human 

myeloma cell lines and this soluble RANKL could enhance osteoclastogenesis.  

These studies found that IL-6 secretion by the myeloma cells was largely 

responsible for the increased RANKL expression.  These authors, as well as 

others (Colucci, Brunetti et al. 2004), have shown T cells from multiple myeloma 

patients with osteolytic bone disease expressed RANKL.  Given the numerous 

sources of RANKL within the myeloma bone marrow microenvironment, RANKL 

serum concentrations are elevated while OPG concentrations are decreased in 

patients with multiple myeloma (Terpos, Szydlo et al. 2003).    

Various in vivo models of multiple myeloma and therapeutic studies 

support the importance of inhibiting RANKL in myeloma bone disease.  

Treatment of 5T2 myeloma-bearing mice with recombinant OPG was shown to 

decrease osteoclastogenesis, resulting in an overall reduction of bone loss and 

osteolytic bone lesions (Croucher, Shipman et al. 2001).   Additionally, several 

groups demonstrated that the over-expression of OPG by either ARH-77 

myeloma cells or bone marrow stromal cells resulted in inhibition of myeloma 

bone disease (Doran, Turner et al. 2004; Rabin, Kyriakou et al. 2007).    

 

Macrophage inflammatory protein-1α (MIP-1α) 

 The second pathway critical for activating osteoclasts is MIP-1α.  MIP-1α 

is first implicated in myeloma bone disease in studies by Choi et al, when it was 
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detected at elevated levels in the bone marrow of myeloma patients (Choi, Cruz 

et al. 2000).  These elevated levels of MIP-1α were later shown to have 

correlation with the development of myeloma bone disease (Terpos, Politou et al. 

2003).  The effects of MIP-1α on osteoclast formation and activation have been 

reported to be both dependent (Abe, Hiura et al. 2002; Oyajobi, Franchin et al. 

2003) and independent of RANKL (Han, Choi et al. 2001); therefore this function 

remains unclear.  Not only has MIP-1α been shown to stimulate osteoclasts, but 

it also can activate signaling pathways in myeloma cells that are important for 

survival and growth (Lentzsch, Gries et al. 2003).     

             

Osteoblast suppression and decreased bone formation 

The uncoupling of normal bone remodeling not only involves enhanced 

osteoclastic bone resorption but also the suppression of new bone formation.  

Despite the effectiveness of bisphosphonates, patients with myeloma still 

develop skeletal related events (Levy and Roodman 2009) and the existing 

damage to the bone remains unrepaired.  This has lead to research focused 

upon preventing the suppression of bone formation and stimulating repair. 

New bone formation is inhibited in two ways in the context of myeloma.  

Firstly, the activity of already existing osteoblasts is suppressed (Bataille, 

Chappard et al. 1986; Evans, Galasko et al. 1989; Bataille, Delmas et al. 1990) 

Secondly, differentiation of mesenchymal stem cells (MSCs) into mature 

osteoblasts is impaired (Bataille, Chappard et al. 1986; Bataille, Chappard et al. 

1990; Bataille, Chappard et al. 1991).   In addition to overall suppression of bone 
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formation, this block in differentiation exacerbates the osteolytic bone disease 

experienced in these patients as immature osteoblasts provide a rich source of 

RANKL ligand (Atkins, Kostakis et al. 2003), a critical factor for 

osteoclastogenesis.  The molecular mechanisms responsible for the inhibition of 

osteoblast differentiation are only now becoming clear. 

 

Wnt signaling Pathway 

Investigations of myeloma-induced osteoblast suppression have largely 

focused on the Wnt/β-catenin signaling pathway because of its critical role in 

normal bone physiology. The first evidence for a role for the Wnt signaling 

pathway, and specifically the Wnt-signaling antagonist Dickkopf-related protein 1 

(Dkk1), in myeloma bone disease came from a study by Tian and colleagues, 

who demonstrated that patients with multiple myeloma had increased expression 

of Dkk1 which correlated with the extent of the osteolytic bone disease (Tian, 

Zhan et al. 2003). Subsequent studies have also observed a significant increase 

in Dkk1 expression in patients with myeloma, a correlation between Dkk1 

expression and osteolytic bone lesions, and a reduction in serum Dkk1 

concentrations following anti-myeloma treatment (Politou, Heath et al. 2006; 

Haaber, Abildgaard et al. 2008; Kaiser, Mieth et al. 2008). In contrast to these 

findings, Oshima and colleagues demonstrated a role for myeloma cell-derived 

soluble frizzled related protein-2 (sFRP-2), another antagonist of Wnt signaling, 

in the suppression of bone formation (Oshima, Abe et al. 2005).  
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In vitro investigations by Tian et al. demonstrated that osteoblast 

differentiation was blocked by bone marrow serum from patients with myeloma, 

and the inhibitory effect was found to be due to the presence of Dkk1 (Tian, Zhan 

et al. 2003). Dkk1 was found to inhibit Wnt-3A-induced β-catenin accumulation 

and bone morphogenetic protein (BMP-2) mediated osteoblast differentiation. In 

contrast to these studies, Giuliani and colleagues found that although myeloma 

cells or bone marrow plasma from myeloma patients could inhibit canonical Wnt 

signaling in murine osteoprogenitor cells, and express high concentrations of 

soluble Wnt antagonists, that they did not block canonical Wnt signaling in 

human mesenchymal stem cells or osteoprogenitor cells (Giuliani, Morandi et al. 

2007). In addition to direct effects on myeloma bone disease, Gunn et al. have 

reported that conditioned media from mesenchymal stem cells can promote 

myeloma cell proliferation and increase expression of Dkk1 by myeloma cells. 

Dkk1 then acts back on the mesenchymal stem cells to prevent their osteoblastic 

differentiation and maintain them in an immature state. Immature osteoblasts 

express higher levels of IL-6 and therefore have greater potential to stimulate 

myeloma cell proliferation. This interdependent relationship between 

mesenchymal stem cells and myeloma cells results in stimulation of myeloma 

cell proliferation and decreased osteoblastogenesis (Gunn, Conley et al. 2006). 

Until recently, the major focus has been on Dkk1 derived from myeloma 

cells; however there is increasing evidence to suggest that myeloma cells may 

not be the sole source for Dkk1 within the myeloma bone marrow 

microenvironment. Several studies have identified an increase in Dkk1 in 
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mesenchymal stem cells isolated from patients with multiple myeloma (Corre, 

Mahtouk et al. 2007; Garderet, Mazurier et al. 2007). Drake and colleagues 

recently demonstrated that serum Dkk1 was significantly increased in patients 

with MGUS, as compared to controls. Furthermore, these increases were 

associated with bone loss and changes in skeletal microstructure, quantitated by 

high resolution pQCT (Drake, Ng et al. 2009). In support of a role for bone 

marrow stromal cell derived Dkk1 in myeloma bone disease, our data presented 

in this dissertation demonstrate that myeloma-associated fibroblasts, which are 

capable of promoting myeloma growth in vivo, can induce osteoblast suppression 

in vivo with no requirement for the presence of myeloma cells, and that this effect 

may be mediated, at least in part, via secretion of Dkk1 (Fowler, Mundy et al. 

2009). 

 

Targeting the Wnt signaling pathway in myeloma bone disease  

Preclinical studies using murine models of myeloma strongly support 

targeting the Wnt signaling pathway for the treatment of myeloma bone disease.  

Inhibition of Dkk1, using neutralizing antibodies, has proven to be effective in 

several murine models of myeloma, with a significant reduction in myeloma bone 

disease and tumor burden (Yaccoby, Ling et al. 2007; Fulciniti, Tassone et al. 

2009; Heath, Chantry et al. 2009).  In addition to directly targeting Dkk1, several 

studies have investigated targeting other components of the Wnt signaling 

pathway.  Sukhedo et al. used a novel small molecule inhibitor, which acts to 

disrupt the interaction between β-catenin and TCF and so inhibit Wnt signaling 
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(Sukhdeo, Mani et al. 2007).  Inhibition of Wnt signaling was found to inhibit 

tumor growth and prolong survival in a xenograft model of myeloma, however the 

effects of this small molecule have not been evaluated in models of myeloma 

bone disease.  Edwards et al. used a systemic pharmacological approach, by 

treatment with lithium chloride, which acts to inhibit glycogen synthase kinase 3β 

(GSK-3β) and so activate β-catenin (Edwards, Edwards et al. 2008).  Lithium 

chloride was found to significantly prevent myeloma bone disease and reduce 

tumor burden within bone in the 5TGM1 murine model of myeloma.  In support of 

this, a small molecule inhibitor of GSK-3 has been shown to prevent myeloma 

bone disease in the 5T2 myeloma model (Abdul, Stoop et al. 2009). Qiang et al. 

have also demonstrated that systemic Wnt3A treatment could prevent the 

development of myeloma bone disease and reduce tumor burden in a SCID 

mouse model of myeloma (Qiang, Shaughnessy et al. 2008).  

Although there is compelling evidence that targeting Dkk1 and Wnt 

signaling prevents myeloma bone disease in experimental models, concern has 

been raised over the implications for tumor growth.  Activation of the Wnt 

signaling pathway through  β-catenin plays a critical oncogenic role in many 

human malignancies and expression of β-catenin has been demonstrated in 

myeloma cell lines and in malignant plasma cells from patients with multiple 

myeloma (Derksen, Tjin et al. 2004; Giuliani, Morandi et al. 2007).  Currently, 

published data are conflicting as to the role of Wnt signaling in myeloma cells 

(Qiang, Endo et al. 2003; Derksen, Tjin et al. 2004; Edwards, Edwards et al. 

2008; Qiang, Shaughnessy et al. 2008).  Importantly, in all studies, when the 
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tumor cells were present within the bone marrow microenvironment, activation of 

Wnt signaling resulted in a reduction in tumor burden and prevention of myeloma 

bone disease (Edwards, Edwards et al. 2008; Qiang, Shaughnessy et al. 2008).  

These data highlight the importance of interactions in the local microenvironment 

and demonstrate that, despite potential direct effects to increase tumor growth at 

extraosseous sites, increasing Wnt signaling in the bone marrow 

microenvironment can prevent the development of myeloma bone disease.  

Overall, targeting the Wnt signaling pathway represents an attractive therapeutic 

approach for the treatment of myeloma bone disease.  However, further work 

needs to be undertaken to establish the effects of blocking Dkk1 and promoting 

Wnt signaling on myeloma growth and survival in both intra-osseous and 

extramedullary sites. 

 

Alternative contributions to myeloma bone disease by the bone marrow 

microenvironment 

In addition to osteoclast stimulation and suppression of osteoblasts, 

myeloma bone disease can be perpetuated by alterations to surrounding stroma 

and other cell types found within the bone marrow (Figure 2B).  Only recently has 

myeloma research begun to focus on how other cell types within the bone 

marrow microenvironment contribute to myeloma pathogenesis.  The limited 

study of the host microenvironment in myeloma has been due to the availability 

of appropriate mouse models for myeloma and its associated bone disease.  

However, we have recently developed a mouse model of myeloma that utilizes 
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mice deficient in the recombinase activating gene-2 (RAG-2) (Fowler, Mundy et 

al. 2009).  These mice possess a host microenvironment that allows for growth of 

the 5T murine myeloma cells.  The RAG-2 deficient mice are easy to breed with 

other genetically modified mice and so permit examination of the host 

microenvironment in myeloma in vivo. These studies will be described in more 

detail in Chapter III.  The ability to target specific factors and cell types within the 

bone marrow microenvironment will both enhance our understanding of the 

cellular and molecular mechanisms that contribute to myeloma bone disease and 

identify and validate novel therapeutic approaches. 

 

Bone marrow mesenchymal stem cells/Bone marrow stromal cells/fibroblasts 

Recently Todoerti et al, performed gene expression analysis of MSCs and 

osteoblasts from normal donors, and patients with monoclonal gammopathy of 

undetermined significance (MGUS) or myeloma. For those patients with 

myeloma they also compared those with or without osteolytic bone lesions 

(Todoerti, Lisignoli et al.).  There were no differences in the phenotype, in terms 

of cell proliferation, between MSCs and osteoblasts from any of the groups 

examined. These studies demonstrated that Dkk1 expression is higher in MSCs 

from myeloma patients with osteolytic bone disease than without bone disease. 

Overall, the microarray analysis revealed that MSCs in myeloma patients are 

greatly altered in regards to gene expression, compared to osteoblasts.  Prior to 

the gene expression studies performed by Todoerti et al., there were expression 

studies by Bourin and colleagues examining bone marrow mesenchymal stem 
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cells in normal, MGUS, and myeloma patients (Corre, Mahtouk et al. 2007).  In 

contrast to the more recent study, the investigation by this group used bone 

marrow cells that were in culture for an extended period of time.  A concern with 

these expression studies is that the expression profiles in this population of cells 

could be dramatically altered given the plasticity of these cells.  Among the genes 

that were identified as differentially expressed in myeloma BM MSCs compared 

to normal MSCs were Dkk1, IL-6, and IGF-1.  These factors are known to play an 

important role in osteoblast differentiation (Tian, Zhan et al. 2003), 

osteoclastogenesis (Wang, Nishida et al. 2006), and support of myeloma growth 

and survival (De Bruyne, Bos et al. ; Abe, Hiura et al. 2004).  Additionally, the 

authors found that MSCs from myeloma patients were less capable of forming 

mineralized nodules, indicative of mature osteoblasts, during in vitro 

differentiation studies (Corre, Mahtouk et al. 2007). Even though these studies 

focused on the MSC populations specifically, they stimulate the intriguing 

question of the extent to which other cell types contribute to disease progression 

and development of osteolytic bone disease, and whether these changes are a 

cause or consequence of the presence of tumor and bone disease. 

 

Myeloma growth and survival 

The interaction of myeloma cells with the bone marrow microenvironment 

is not only important for growth and survival of these cells, it is also critical in 

terms of drug resistance using clinical treatments.  Interactions with bone marrow 

stromal cells can activate proliferative and anti-apoptotic signaling cascades in 
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myeloma cells, such as adhesion-mediated nuclear factor-κB (NF-κB) activation 

and growth factor-induced activation of MAPK, JAK/STAT, and PI3K/Akt 

signaling pathways (Chauhan and Anderson 2003; Hideshima, Mitsiades et al. 

2007).  Bone marrow stromal cells also activate NF-κB transcription and secrete 

cytokines, like interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) 

in response to these cellular interactions, which further enhance myeloma 

pathogenesis and promote drug-resistance (Chauhan, Uchiyama et al. 1996; 

Gabrilovich, Chen et al. 1996).    Additionally, NF-κB activation can result in 

increased expression of adhesion molecules present on both myeloma cells and 

bone marrow stroma (Hideshima, Chauhan et al. 2001).  Myeloma cells adhere 

to resident bone marrow cells and also to matrix proteins.  Interaction of 

myeloma cells with fibronectin present in the local matrix via the α4 and α5β1 

integrins results in MM cell drug-resistance (Damiano, Cress et al. 1999; Shain, 

Landowski et al. 2002).  Current therapies must target not only the cancer cells 

themselves, but also the microenvironment that provides a protective milieu for 

continued survival.       

 

Current therapeutic approaches 

The chemotherapeutic drug melphalan and the synthetic corticosteroid 

prednisone have historically been the main treatment for myeloma (Palumbo and 

Rajkumar); however there is evidence that these therapies themselves may have 

deleterious effects on bone (Arrington, Fisher et al. ; Hu, Lu et al.).  The 

introduction of autologous stem-cell transplantation has dramatically improved 
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myeloma patient outcomes following conventional chemotherapy treatment 

(Attal, Harousseau et al. 1996; Child, Morgan et al. 2003).  Unfortunately, this 

therapeutic approach is limited to younger myeloma patients because of 

increased risk with age (Palumbo and Rajkumar).  Therapeutic regimens for the 

treatment of multiple myeloma ideally must provide a double advantage for 

patients—elimination of cancer cells and benefit to the associated osteolytic bone 

disease.  Recent studies in myeloma treatment have started to appreciate how 

myeloma growth is intrinsically linked to the bone marrow microenvironment; 

therefore treatments also target the surrounding microenvironment to make it 

less hospitable to myeloma cells.   

 

Anti-myeloma therapies 

Proteasome inhibitors  

A recent success in the treatment of myeloma is the proteasome inhibitor 

bortezomib, commonly known as Velcade.  This therapeutic agent has been 

shown to induce apoptosis and reduce proliferation in numerous malignant cell 

types and tumors (Adams, Palombella et al. 1999; Lun, Zhang et al. 2005; Zhu, 

Zhang et al. 2005).  Some of the most pronounced anti-tumor effects of the 

proteasome inhibitors are observed in myeloma and other hematologic 

malignancies (Zheng, Georgakis et al. 2004).  These therapeutic agents inhibit 

the degradation of important cell cycle regulatory proteins that are ubiquitinated 

and targeted for destruction by the proteasome (King, Deshaies et al. 1996).  

More importantly, the use of proteasome inhibitors in the treatment of multiple 
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myeloma is believed to correlate with its ability to block the degradation of the 

IκBα, a regulator and inhibitor of NF-κB (Dai, Rahmani et al. 2003; Lun, Zhang et 

al. 2005).  The NF-κB signaling pathway is a major pathway involved in the 

development of multiple myeloma because its constitutive activity inhibits 

apoptosis leading to various cancers.  A variety of stimuli can activate the 

inactive NF-κB/IκBα complex causing the initiation of various signal transduction 

pathways (Karin and Ben-Neriah 2000).  Despite suggestive evidence for the NF-

κB pathway being a potential target, disappointing clinical trial results using NF-

κB-specific inhibitors (Bentires-Alj, Hellin et al. 1999) suggest that the NF-κB 

pathway is necessary but not sufficient for disease progression.   

In addition to the anti-tumor effects, proteasome inhibitors have 

demonstrated benefits to bone disease.  Proteasome inhibition in osteoblasts is 

necessary for bone formation as transcription factors critical for this process are 

regulated by proteolytic processing (Muller and Basler 2000).  When proteasome 

inhibitors are given systemically to mice, there is evidence of increased bone 

formation rates and overall bone volume (Garrett, Chen et al. 2003); however 

there are no clinical studies indicating osteoblast stimulation in the context of 

myeloma bone disease.  Additionally, proteasome inhibitors also act to inhibit 

osteoclastogenesis via the inhibition of p38, AP-1, and NF-κB activation (Ahn, 

Sethi et al. 2007; von Metzler, Krebbel et al. 2007).  The inhibition of osteoclasts 

has been demonstrated clinically where peripheral blood from myeloma patients 

that received bortezomib showed a reduction in osteoclast formation and function 

(Hongming and Jian 2009).  Despite the success of proteasome inhibitors in 
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myeloma treatment, there are many other cellular processes that are regulated 

by the proteasome.  There is the need for a more specific therapy that could 

benefit both sides of multiple myeloma.   

   

HDAC inhibitors 

 Histone deacetylases are enzymes critical for prevention of DNA 

transcription by acting to remove acteyl groups on histone, resulting in 

condensed DNA (Zupkovitz, Tischler et al. 2006; Choudhary, Kumar et al. 2009).  

HDAC overexpression in myeloma cells often results in loss of tumor suppressor 

gene expression (Ocio, Mateos et al. 2008).  HDAC inhibitors inhibit proliferation 

and promote myeloma cell apoptosis despite presence of BMSCs and IL-6, by 

altering gene transcription that benefits myeloma progression (Mitsiades, 

Hideshima et al. 2009).  Similar to the proteasome inhibitors, HDAC inhibitors 

prevent transcription of genes in the ubiquitin/proteasome pathway (Mitsiades, 

Mitsiades et al. 2004).   

 

Treatments for the associated bone disease 

Bisphosphonates 

Bisphosphonates are thought of as the most fundamental therapy for 

multiple myeloma bone disease.  Bisphosphonates are analogs of inorganic 

pyrophosphate that contain stable P—C—P bonds and are nonhydrolyzable 

(Rogers, Frith et al. 1999).  The two phosphonate groups of these drugs allow for 

strong binding to calcium-rich bone mineral and antiresorptive potency (Russell, 
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Muhlbauer et al. 1970).  Bisphosphonates inhibit osteoclastic bone resorption by 

acting directly on osteoclasts to inhibit intracellular signaling pathways and 

induce apoptosis (Yeh and Berenson 2006).  Considering the high-affinity of this 

reagent for bone mineral, bisphosphonates home to sites of bone resorption 

where osteoclasts are exposing mineral through the process of resorption 

(Azuma, Sato et al. 1995).  Osteoclasts are endocytic therefore it is likely that 

localized bisphosphonates at sites of resorption are internalized.  Nitrogen-

containing bisphosphonates cause the dysregulation of small GTPases resulting 

in a decrease in osteoclast attachment to bone and ultimately osteoclast 

inactivation (Luckman, Hughes et al. 1998).  Osteoclast inactivation by these 

bisphosphonates functions through inhibition of the mevalonate pathway, 

resulting in inhibition of FFP synthase and preventing prenylation of small 

GTPases.  Prenylation is required for post-translational modification and proper 

function of small GTP-binding proteins, such as Ras, Rho, and Rac, that are 

necessary for cytoskeleton structure and intracellular trafficking (Luckman, 

Hughes et al. 1998).  The disruption of the cytoskeleton through reduction in 

functional small GTPases could explain the morphological changes of 

osteoclasts following bisphosphonate treatment (Sato and Grasser 1990; 

Murakami, Takahashi et al. 1995) as well as lack of cell survival.    Previous 

clinical studies have shown that treatment with bisphosphonates results in the 

reduction of myeloma bone disease.  These reagents prevent further accelerated 

bone resorption in the disease by inhibiting osteoclasts, but they cannot repair 
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already existing bone lesions; therefore representing a major disadvantage in the 

treatment of osteolytic bone disease.  

 

Therapies targeting the bone marrow microenvironment 

Thalidomide and lenalidomide 

 In recent years, thalidomide (Thal) has proven to have strong anti-

myeloma capabilities (Mitsiades, Hideshima et al. 2009).  Despite the use of this 

therapeutic agent to inhibit angiogenesis, clinical evidence suggests the anti-

myeloma effects of thalidomide are not due to decreases in bone marrow 

angiogenesis in multiple myeloma patients.  Examination of Thal and Thal 

analogs have demonstrated immunomodulatory effects, including direct inhibition 

of myeloma cell proliferation (Hideshima, Chauhan et al. 2000) and acting as a 

costimulatory signal to T cells (Haslett, Corral et al. 1998).  In previous studies, 

Thal could only increase T cell proliferation in the presence of anti-CD3 or 

dendritic cells (Haslett, Corral et al. 1998).  Anderson and colleagues further 

examined Thal action on the immune system indicating specific effects on NK 

cell function (Davies, Raje et al. 2001).  In multiple myeloma patients and in 

healthy individuals, there was an increase in CD3+ T cell proliferation together 

with IFN-γ and IL-2 secretion.  Additional T cell subsets, including CD4+ and 

CD8+ T cells, also demonstrated an increase in proliferation in response to Thal 

and Thal analog treatment.  Thal treatment of PBMCs in combination with IL-2 

resulted in increased myeloma cell lysis.  Additionally, depleted PBMC cultures 

containing CD56+ NK cells still had enhanced myeloma cell lysis in the presence 
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of Thal; however, CD56+ depletion showed reduced lysis.  The increase in NK-

mediated lysis was not dependent on the upregulation of NK activation markers.  

In PBMCs from multiple myeloma patients, Thal or Thal analog treatment, 

following IL-2 treatment, resulted in enhanced lysis of myeloma cells.  In treated 

multiple myeloma patients, there were increases in NK function and number; 

however, there were no differences in other T cell subsets.  The increase in 

CD56+ NK cells correlated with patients who responded to Thal treatment.   

 Many of the therapies for the treatment of multiple myeloma must consider 

both the inhibition of tumor growth and benefit the associated osteolytic bone 

disease.  Lenalidomide, a thalidomide analog, not only has immunomodulatory 

effects, but studies have also show it to have specific effects on osteoclasts.  In 

vitro studies revealed that lenalidomide could dose-dependently decrease 

osteoclast formation and resorption activity (Breitkreutz, Raab et al. 2008).  The 

inhibition of osteoclast differentiation and function were due to a decrease in 

αVβ3 integrin and cathepsin K expression following lenalidomide treatment.  The 

authors determined that lenalidomide inhibits osteoclastogenesis during stages 

of differentiation, indicated by the inhibition of both ERK activation and the 

transcription factor, PU.1.  Lenalidomide treatment of osteoclast cultures resulted 

in decreased secretion of the cytokines MIP-1α, BAFF, and APRIL, which are all 

important for osteoclast and myeloma cell survival and growth.  Additionally, 

bone marrow stromal cells treated with lenalidomide showed a reduction in 

RANKL secretion, further enhancing the inhibition of osteoclastogenesis.  

Multiple myeloma patients with osteolytic bone disease often have a high ratio of 
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RANKL/OPG concentrations present in their serum.  Myeloma patients treated 

with lenalidomide had an increase in OPG serum concentrations while RANKL 

concentrations were significantly reduced.   

 

MAP kinase inhibitors 

 MAP kinase inhibitors have demonstrated dramatic effects on the 

myeloma microenvironment.  Following treatment with MAPK inhibitors there was 

a decrease in myeloma cell-mediated vessel formation through the inhibition of 

VEGF secretion (Giuliani, Lunghi et al. 2004).  Neovascularization within the 

bone marrow cavity is one of the hallmark features in patients with myeloma.  

Myeloma cells are not the only source of VEGF in the myeloma 

microenvironment. Tumor-associated macrophages (TAMs) contribute a rich 

source of proangiogenic factors and cytokines.  Scavelli and colleagues have 

shown that macrophages from multiple myeloma patients can display 

“vasculogenic mimicry” (Scavelli, Nico et al. 2008).  Regulating pathological 

angiogenesis is one way to control myeloma progression.        

The effects of MAPK inhibitors on resident BMSCs may be critical for 

combination therapy for drug-resistant myelomas.  Myeloma cell proliferation was 

inhibited indirectly because of the effects on BMSC-derived IL-6, a known 

stimulatory factor of myeloma cells (Giuliani, Lunghi et al. 2004; Nguyen, 

Stebbins et al. 2006).  Proteasome inhibitor cytotoxicity against myeloma cells 

was enhanced via upregulated pro-apoptotic signaling, with the addition of these 

kinase inhibitors (Hideshima, Podar et al. 2004). 
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 Dhodapkar and colleagues demonstrated that myeloma cells have effects 

on dendritic cells (DCs) and have the ability to promote differentiation of these 

cells into osteoclasts (Kukreja, Radfar et al. 2009).  Antigen-presenting cells, 

such as DCs, produce various cytokines that are responsible for induction and 

differentiation of T cells.  Recent findings by Anderson and colleagues have 

shown a role for a specific population of DCs in immunosuppression, often 

associated with myeloma.  These studies demonstrated pDCs from patients with 

multiple myeloma had impaired ability to stimulate allogeneic T cell response 

despite elevated numbers of these cells present in their bone marrow, in 

comparison to pDCs from normal donors (Chauhan, Singh et al. 2009).  MAPK 

inhibitors can restore myeloma-altered DCs to normal function, characterized by 

cytokine secretion and stimulation of T cell responses (Wang, Yang et al. 2006).    

  

IKK inhibitors 

NF-κB activation is evident in both myeloma cells and from the 

interactions between myeloma cells and the bone marrow microenvironment.  

Recent gene expression profiling studies by Annunziata and colleagues 

demonstrated specific signatures indicative of dependence on NF-κB signaling 

(Annunziata, Davis et al. 2007).  Among the genes found within the expression 

signature were NIK and TRAF3, which encode for key regulators of both 

alternative and classical signaling of NF-κB (Woronicz, Gao et al. 1997; 

O'Mahony, Lin et al. 2000; Xiao and Sun 2000; Yin, Wu et al. 2001; Claudio, 

Brown et al. 2002; Coope, Atkinson et al. 2002; Liao, Zhang et al. 2004; 
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Ramakrishnan, Wang et al. 2004).  Patients with multiple myeloma had high 

expression of the NF-κB activating kinase, NIK, and low expression of TRAF3, a 

known negative regulator of NIK, in their plasma cells in comparison to normal 

patients (Annunziata, Davis et al. 2007).  Studies with NIK overexpression or 

disrupted NIK/TRAF3 interactions can cause B cell hyperplasia by either 

amplifying B cell-activating factor of the TNF family (BAFF or BLyS) -induced 

alternative NF-κB signaling or inducing independent mechanisms (Sasaki, 

Calado et al. 2008).  NF-κB activation in immune cells, specifically T cells within 

the myeloma microenvironment, can contribute to the resulting pathological bone 

disease as discussed in a previous section of this chapter.   

IκB kinase (IKK) is responsible for phosphorylating the inhibitory IκBα 

protein, which results in the dissociation and activation of NFκB signaling 

cascades (Karin 1999).  A combination of IKK inhibitors can block both the 

canonical and non-canonical NFκB pathways resulting in myeloma growth 

inhibiton (Hideshima, Chauhan et al. 2009).  IKK inhibitors offer some level of 

specificity for inhibiting myeloma cells, as Jourden et al found that one of these 

inhibitors did not alter survival of other mononuclear cells within the bone marrow 

microenvironment (Jourdan, Moreaux et al. 2007).  Despite having little effect on 

growth and survival of non-myeloma cells, IKK inhibitors can alter IL-6 and IGF-1 

secretion from BMSCs that indirectly contribute to myeloma growth inhibiton 

(Hideshima, Neri et al. 2006).  These studies demonstrate how inhibition of NFκB 

pathways can eliminate both the growth advantage and the protective benefits 

that BMSCs provide to myeloma cells.        
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Heat shock protein 90 inhibition 

Heat shock proteins, specifically 90 kDa (HSP-90), are overexpressed in 

many types of cancer (Whitesell and Lindquist 2005).  The overexpression of 

these proteins is thought to be a requirement for cancer cell survival; therefore 

the inhibition of HSP-90 is thought to be a viable therapeutic option for the 

treatment of various cancers.  Myeloma cells have also been responsive to HSP-

90 inhibition both in vitro and in in vivo models of myeloma (Mitsiades, Mitsiades 

et al. 2006).  HSP-90 inhibition in myeloma cells results in a disruption of protein 

chaperoning and an accumulation of misfolded proteins, ultimately resulting in 

myeloma cell death (Mitsiades, Hideshima et al. 2009).  Ansamycin-based 

compounds, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), are 

used for the inhibition of HSP-90s and are currently being assessed in clinical 

trials for multiple myeloma.  Cippitelli and colleagues investigated the mechanism 

of action by which HSP-90 inhibitors induce myeloma cell death (Fionda, Soriani 

et al. 2009).  Considering the immunomodulatory capabilities of multiple 

myeloma therapies thalidomide and lenalidomide, these authors examined 

whether HSP-90 inhibitors had the ability to stimulate NK cell cytotoxic function 

by regulating the expression of NK-activating ligands present on myeloma cells.  

The authors found HSP-90 inhibitors, 17-AAG and radicicol, upregulated the 

expression of NK-activating ligands MICA/B, at both the protein and mRNA level.  

Their studies showed the unfolded protein response (UPR) was not responsible 

for the upregulation of these ligands.  The activation and binding of the 

transcription factor HSP-1 to MICA and MICB promoters results from HSP-90 
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inhibition.  Treatment with HSP-90 inhibitors also increased NK degranulation in 

response to enhanced NK-activating ligands.      

Current therapies for multiple myeloma do not offer a cure for either the B-

cell malignancy itself or the accompanied bone disease.  The major treatment 

regimens for patients with multiple myeloma must involve combination therapy, 

which can target all the components of the disease.  Even though extensive use 

of these therapies is seen in the clinic, there is a significant gap in understanding 

the mechanisms of action of these reagents.  Additionally, there are few 

therapeutic reagents that can act on both the malignant plasma cells and the 

associated bone disease.  Despite the advancements in the treatment of 

myeloma with reagents like proteasome inhibitors, thalidomide, and lenalidomide 

that approve survival, none of these therapies are curative.  The investigation of 

new treatment options is critical for enhancing patient survival and quality of life.   
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Goals of dissertation 

 The goal of my dissertation research was to investigate alterations to the 

bone marrow that make this microenvironment susceptible as a myeloma cell 

niche. Despite the use of the C57Bl/KaLwRij strain of mice in the field of 

myeloma for many years, the exact genetic mutation(s) and/or modifications to 

the bone marrow that constitute the myeloma cell niche are not known. In the 

following chapters, I sought to identify bone marrow microenvironmental changes 

that create the unique and permissive milieu for myeloma growth and 

progression. Initially, these changes were identified in the C57Bl/KaLwRij mice 

since these mice share many of the same features of human myeloma and the 

associated bone disease. After the initial identification of these factors in the 

C57Bl/KaLwRij mice, findings in patients, either from the literature or by direct 

examination of specimens, provide strong support that these changes have 

clinical relevance. In addition to identifying critical changes within the bone 

marrow microenvironment, this research also discovered a new in vivo tool for 

the study of specific host-derived factors (chapter III) and was utilized in several 

studies in this dissertation.   

The ultimate goal of this dissertation was to gain a better understanding of 

the mechanisms that precede myeloma bone disease. The investigation of 

strains of mice that are permissive for myeloma growth may provide clues to 

human disease development.  Specific to the adiponectin studies, the future of 

these studies would be to advance the screening process for MGUS patients and 

potentially a new treatment option for both MGUS and myeloma patients.      
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell culture 

The 5TGM1-GFP myeloma (MM) cell line was cultured as previously described 

(Dallas, Garrett et al. 1999).  For primary BMSCs, bone marrow was flushed from 

the tibia and femur of age- and sex-matched C57Bl/KaLwRij and C57Bl6 mice to 

isolate primary bone marrow stromal cells.  Cells were used to establish long-

term Dexter type marrow cultures.  Briefly, cells were plated at 1x107/mL in Alpha 

DMEM supplemented with 10% FCS.  Adherent cells were washed and culture 

media replaced after 3-4 days, to remove red blood cells.  Cells were cultured for 

approximately 3 weeks, until confluent.  Non-adherent cells were removed, and 

adherent cells used as a source of primary stromal cells.  RNA and protein was 

isolated from C57Bl/KaLwRij and C57Bl6 bone marrow stromal cells.  

 

In vivo 5TGM1 myeloma studies 

Studies were performed using 8- to 10-week-old female C57Bl6 (Harlan U.S., 

Indianapolis, Indiana), C57Bl/KaLwRijHsd (Harlan Netherlands, Horst, The 

Netherlands), RAG-2-/-, RAG-2-/-/MMP-9-/-, or RAG-2-/-/Adiponectin-/- mice.  

Studies were approved by the Institution of Animal Care and Use Committee at 

Vanderbilt University and conducted in accordance with the National Institute of 

Health (NIH) Guide for the Care and Use of Laboratory Animals (National 
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Research Council. Guide for the Care and Use of Laboratory Animals 1985; 

Washington, DC National Academy Press pp. 86–23 NIH publication no.).  

Myeloma in these animals was propagated by the intravenous inoculation of 

5x105 5TGM1-GFP tagged MM cells in 100µL of phosphate buffered saline 

(PBS).   

 

Assessment of tumor burden by ELISA 

Retro-orbital blood was taken weekly from mice used in the in vivo studies to 

obtain serum.  Tumor burden was assessed by serum analysis of the myeloma-

specific immunoglobulin IgG2bκ, as described previously (Dallas, Garrett et al. 

1999).  A high binding ELISA plate was coated overnight at 4°C with 2µg/mL of 

IgG2bκ antibody (Research Diagnostics, Fitzgerald Industries).  An 8-point 

standard curve was generated from recombinant mouse IgG2bκ serially diluted 

in PBS/0.3% BSA.  Serum was diluted 1:20,000 for baseline, week 1, and week 2 

time points and 1:40,000 for week 3 and endpoint.  The substrate reagent used 

for detection was O-phenylene-diamine tablets (Sigma, St. Louis, MO) with 

0.05% H2O2 in H2O.  Upon color development (~15min), ELISA plates were read 

at 450nm OD.             

 

Assessment of tumor burden by flow cytometry 

Bone marrow was flushed from the tibia and femur of 5TGM1 MM-bearing mice.  

Splenic cells from myeloma-bearing mice were obtained by homogenization in 

tissue culture media.  Cell suspensions from both organs were filtered through a 
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70 µm filter followed by analysis for GFP fluorescence using a 3 laser BD LSRII 

(Becton Dickinson, San Jose, CA).   

 

Bone histomorphometry analysis 

Histomorphometric analysis was performed to quantify bone volume, osteoclast 

and osteoblast number and surface, trabecular number and trabecular spacing.  

Tibia and femur were formalin-fixed, decalcified in 14% EDTA, paraffin-

embedded, sectioned along the mid-sagittal plane in 4-µm-thick sections.  

Sections were stained with haematoxylin and eosin and for tartrate-resistant acid 

phosphatase (TRAP) activity to stain osteoclasts.  Three non-consecutive 

sections were evaluated using Osteomeasure histomorphometry software as 

previously described (Edwards, Edwards et al. 2008).  Briefly, trabecular bone 

surface area, within the cortical bone, at the proximal and distal metaphyses of 

the long bones was traced manually using this software.  Additionally, the 

number of TRAP-positive multinucleated osteoclasts and mononuclear cuboidal 

osteoblasts present on the trabecular bone surface were quantified.   

 

Microcomputed tomography (microCT) analysis 

Cortical bone lesions were measured using microCT analysis on the proximal 

tibia.  Bones were fixed in formalin and scanned at an isotropic voxel size of 12 

µm using a microCT40 (SCANCO Medical, Bassersdorf, Switzerland).  For 

analysis of cortical bone lesions, cross-sectional images of the entire metaphysis 

including the cortices and extending 0.25 mm from the growth plate were 
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exported in tiff format then imported into AMIRA 3-D graphics software (Mercury 

Computer Systems, Chelmsford, MA).  AMIRA software generated a 3-D 

reconstruction of the metaphyses using a consistent threshold.  The number of 

osteolytic lesions that completely penetrate the cortical bone seen in the virtual 

reconstruction were counted.  MicroCT analysis was also performed on the 

trabecular bone to assess overall volume and structural characteristics of the 

trabeculae.   Contours were drawn within the cortices of the proximal tibia using 

the microCT40.  The analysis provided a ratio measurement of bone volume to 

total tissue volume within the cortical bone. 

 

Mesenchymal lineage differentiation studies 

Differentiation of 14M1 and ST2 BMSCs into mature adipocytes and osteoblasts 

was induced by culture in either adipogenic or osteogenic media, respectively.  

Adipogenic differentiation media consisted of alpha-MEM with 5 µg/mL insulin 

(Sigma, St. Louis, MO) and 10nM dexamethasone (Sigma, St. Louis, MO).  

Osteogenic media consisted of alpha-MEM with 50 µg/mL ascorbic acid (Sigma, 

St. Louis, MO), 10 mM β-glycero-phosphate (Sigma, St. Louis, MO), and 

10ng/mL BMP-2 (R&D Systems, Minneapolis, MN).  Cells were fixed with 10% 

formalin for 10 minutes and assessed for either adipocytes or osteoblast 

differentiation.  Adipocytes were visualized with Oil Red-O staining following 10 

days of culture.  Osteoblasts were visualized by von Kossa staining following 15 

days of culture.   
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BMSC co-inoculation in vivo studies 

Age- and sex-matched non-permissive C57Bl6 and permissive C57Bl/KaLwRij 

mice were intravenously inoculated with either 106 5TGM1-GFP MM cells alone, 

106 dsRed2 14M1 BMSCs alone, ST2 BMSCs alone, 5x105 5TGM1-GFP + 5x105 

14M1 BMSCs, or 5x105 5TGM1-GFP MM cells + 5x105 ST2 BMSCs.  Mice were  

inoculated with PBS alone to serve as a control.  The permissive C57Bl/KaLwRij 

mice were inoculated with 5x105 5TGM1-GFP cells alone to serve as a positive 

control for myeloma development.  To determine the contribution of 14M1 

BMSC-derived Dkk1, Dkk1 expression was stably knocked down using 500 

ng/mL of mouse Dkk1 shRNA plasmid in addition to a control scrambled shRNA 

sequence (Santa Cruz Biotechnology, Santa Cruz, CA).  Stable Dkk1 knockdown 

cells were selected with 10 µg/mL of puromycin in cell culture media. The 

efficiency of Dkk1 silencing was determined by measurement of Dkk1 in 

conditioned media by ELISA according to the manufacturer’s instructions (R&D 

Systems, Minneapolis, MN).      

 

Bone marrow comparison by microarray 

RNA was isolated from whole bone marrow of age- and sex-matched C57Bl6 

and C57Bl/KaLwRij mice for microarray gene expression analysis.  Bone marrow 

was flushed from three separate mice of each strain.  Red blood cells were 

eliminated using a lysis buffer consisting of NH4Cl, KCO3, and Na2EDTA.  RNA 

was isolated from the remaining cells using a monophasic isolation reagent, 

TRIzol (Invitrogen, Carlsbad, CA).  Following RNA precipitation, the RNA pellet 
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was treated with DNase I on-column and cleaned using RNeasy kit (Qiagen, 

Germantown, MD) to ensure high quality RNA.  Pooled RNA samples from each 

strain were submitted to the Vanderbilt Functional Genomics Shared Resource 

(FGSR) for hybridization using the Affymetrix GeneChip exon expression array.  

Differentially expressed genes were based on changes of 2 fold or more between 

C57Bl6 and C57Bl/KaLwRij bone marrow. 

 

Reverse transcription-PCR 

RNA from both cell lines and primary BMSCs was isolated using the RNeasy kit 

(Qiagen, Germantown, MD).  The cDNA was generated using the SuperScript III 

First Strand Synthesis SuperMix kit (Invitrogen, Carlsbad, CA).  Mouse 

hydroxyprostaglandin dehydrogenase 15 (NAD), glycerophosphodiester 

phosphodiesterase domain containing 3, and adiponectin were detected using 

Taqman Gene Expression assay primer sets (Applied Biosystems, Carlsbad, 

CA).  Relative gene expression of adiponectin was normalized to the Taqman 

Gene Expression assay for GAPD (Applied Biosystems, Carlsbad, CA).   

PCR primers for mouse adiponectin receptor 1 and adiponectin receptor 2:  

5’-ACGTTGGAGAGTCATCCCGTAT-3’, mouse adiponectin receptor 1 (forward);  

5’-CTCTGTGTGGATGCGGAAGAT-3’, mouse adiponectin receptor 1 (reverse);  

5’-GCCCAGCTTAGAGACACCTG-3’, mouse adiponectin receptor 2 (forward);  

5’-GCCTTCCCACACCTTACAAA-3’, mouse adiponectin receptor 2 (reverse).   
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Generation of RAG-2-/-Adiponectin-/- mice 

To order to determine the effect of host-derived adiponectin on myeloma 

development in vivo using a genetic model, 5T myeloma cell growth in 

adiponectin deficient mice was assessed.  As will be discussed in chapters of this 

dissertation, the genetic mutation that defines C57Bl/KaLwRij mice of the 5T 

Radl model of myeloma is unknown.  Additionally, 5T myeloma cells will not grow 

in the closely related C57BL/6 mice; therefore genetic manipulation in order to 

study the role of specific host-derived factors is limited.  It was determined 

through the studies discussed in chapter III that mice deficient in recombinase 

activating gene-2, or RAG-2, are permissive for 5T myeloma cell growth.  These 

mice can be successfully bred with other strains that are genetically modified; 

therefore these mice were utilized for the adiponectin studies discussed in 

chapter V to generate double deficient mice.  Adiponectin deficient mice had 

been generated and used by others groups previously (Maeda, Shimomura et al. 

2002; Summer, Little et al. 2008) and were obtained as a gift from Dr. Ken Walsh 

of Boston University for our studies.  The breeding scheme is outlined in Figure 

4.  These adiponectin deficient mice were bred with RAG-2 deficient mice (cross 

1) to generate 100% RAG-2+/-Adiponectin+/- (heterozygous for both RAG-2 and 

adiponectin).  These heterozygous mice were crossed with RAG-2-/- mice (cross 

2) to generate a second generation with 25% RAG-2-/-Adiponectin+/-.  RAG-2-/-

Adiponectin+/- mice were bred with each other (cross 3) to produce mice that 

were all deficient in RAG-2 but littermates were Adiponectin+/+ (WT—25%),  
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RAG-2-/-Adipo+/+     WT !25% !!

cross 2:! RAG-2+/-!Adipo+/-   X   RAG-2-/-!

!    100%  !
! ! !!

cross 1:! RAG-2-/- !    X !    Adipo-/-  !

cross 3:! RAG-2-/- !Adipo+/-   X   RAG-2-/-Adipo+/-!

!    25%  ! ! ! !

Experimental mice:!

RAG-2-/-Adipo+/-      Het !50%!

RAG-2-/-Adipo-/-       KO !25% !!

Figure 4. Mouse breeding scheme for host-derived 
adiponectin in vivo studies.  The percentage of each genotype 
generated from each cross is indicated.  As shown, it will take 
three crosses to generate littermates of WT and KO genotypes 
to be used in adiponectin studies.  This breeding scheme is the 
most efficient way to generate greater numbers of each 
genotype that are deficient for RAG-2.     
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Adiponectin+/- (Het—50%), or Adiponectin-/- (KO—25%).  Mice were genotyped 

from tail DNA by PCR amplification for adiponectin and RAG-2 genes.    

PCR primers used to genotype adiponectin wildtype, heterozygous, and 

knockout mice: 5’-TGGATGCTGCCATGTTCCCAT-3’, wildtype adiponectin 

(forward);  

5’-CTTGTGTCTGTGTCTAGGCCTT-3’, wildtype adiponectin (reverse);  

5’-CTCCAGACTGCCTTGGGA-3’, mutant adiponectin (reverse).    

 

Immunoblotting  

Total adiponectin and the three different isoforms of adiponectin (high, HMW; 

middle, MMW; and low, LMW, molecular weight forms) were detected in the 

serum of mice using an adiponectin antibody (Abcam, Cambridge, MA).  To 

detect the various isoforms, the samples were loaded in a non-reducing/non-

denaturing gel without boiling the protein samples with a reducing agent.  For 

adiponectin treatment studies, AMPK and p38 activation was detected with 

antibodies for phosphorylated AMPK (Cell Signaling, Danvers, MA), total AMPK 

(Cell Signaling, Danvers, MA), phosphorylated p38 (Santa Cruz Biotechnology, 

Santa Cruz, CA) and total p38 (Santa Cruz Biotechnology, Santa Cruz, CA). 

Apoptotic downstream signaling was detected with antibodies for cleaved 

caspase-3 and cleaved PARP-1 (Cell Signaling, Danvers, MA).   
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ELISAs 

Tumor burden in myeloma-bearing mice was assessed by ELISA of the 

myeloma-specific immunoglobulin IgG2bκ (Research Diagnostics Inc., Division of 

Fitzgerald Industries International), as described in a previous section.  ELISAs 

for mouse adiponectin and Dkk1 (R & D Systems, Minneapolis, MN) were used 

to measure total adiponectin and Dkk1 serum concentrations in mice according 

to the manufacturer’s instructions.   

 

Adiponectin treatment and apoptosis 

5TGM1 MM cells, ST2, and primary C57Bl6 and C57Bl/KaLwRij BMSCs were 

cultured for 48 hours with 5, 10, and 15 µg/mL of recombinant adiponectin 

(ProSpec, Rehovot, Israel).   

Following treatment with either recombinant adiponectin or vehicle for 48 hours, 

the percentage of viable, apoptotic, and necrotic cells was determined by 

annexin V and SYTOX AADvanced cell staining for flow cytometry analysis 

(Molecular Probes, Invitrogen, Carlsbad, CA).  Cells positive for both annexin V 

and SYTOX AADvanced are considered necrotic cells, cells positive for only 

annexin V are apoptotic, and cells negative for both are viable cells. 

 

L-4F treatment in vitro  

BMSCs and 5TGM1 MM cells were plated at 5x104 cells/mL and allowed to 

adhere (~4-5hrs) prior to being treated with L-4F.  Once attached, BMSCs were 

washed with PBS before replacing with L-4F containing media.  Cells were 
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treated with vehicle, 20, or 40 µg/mL of L-4F.  L-4F vehicle is ABC diluent 

consisting of 50mM ammonium bicarbonate and 0.1 mg/mL Tween-20.     

 

L-4F treatment in vivo 

L-4F or vehicle was administered daily by intra-peritoneal injection at a 

concentration of 200µg/100g prior to tumor cell inoculation until treated mice 

showed an increase in adiponectin expression present in the serum.  5TGM1 

myeloma cells were inoculated once increased adiponectin expression was 

detected and mice continued to receive daily treatment with L-4F.  To determine 

whether L-4F treatment increased overall survival in myeloma-bearing mice, we 

performed a survival study.  The survival study was performed as above except 

animals were sacrificed at the time when mice first became paraplegic.  Time to 

paraplegia was used as a surrogate for survival.    

 

Immunohistochemistry and TUNEL 

For MMP-9 and tartrate resistant acid phosphatase (TRAcP) localization, the 

following technique was employed.  Sections were rehydrated through a series of 

ethanols and then rinsed in Tris buffered saline (TBS; 10mM Tris at pH 7.4, 

150mM NaCl) with Tween-20 (0.05%).  For antigen retrieval, slides were 

immersed in a 20µg/ml solution of proteinase K according to the manufacturer’s 

instructions for 10 minutes at room temperature.  Following washing in TBS, 

tissue sections were blocked using standard blocking criteria for 1 hour at room 

temperature.  MMP-9 (Oncogene, Cat. No. AB3-IM37L) antibodies at a dilution of 
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1:100 were added in blocking solution overnight at 4oC.  Slides were washed 

extensively in TBST prior to the addition of a species-specific fluorescently 

labeled secondary antibody (Alexafluor 568nm, Invitrogen) diluted 1:1,000 in 

blocking solution for 1 hour at room temperature.  Slides were washed in TBS 

and then equilibrated in an acetate buffer as described (Filgueira 2004).  The 

ELF97 TRAcP stain (Invitrogen, Cat. No. 6601) was diluted 1:1,000 in acetate 

buffer and slides were incubated for 15 minutes at room temperature.  Following 

washing, slides were aqueously mounted in media (Biomeda Corp, Foster City, 

CA) containing 2µM DAPI (4´, 6 diamidino-2-phenylindole) for nuclear 

localization.   

Tibia sections adjacent to those used to assess bone disease were 

stained for TUNEL (AP kit, Roche) for quantification of apoptotic myeloma cells 

and phosphorylated histone H3 to measure proliferating myeloma cells.  Sections 

were rehydrated and rinsed as mentioned above.  For antigen retrieval, slides 

were then incubated in 100mM citrate buffer for 1-2 minutes in the microwave.  

After washes, sections were blocked in solution containing 3% BSA and 20% 

FCS for TUNEL or in 10% normal goat serum for histone H3, for 1 hour at room 

temperature.  Histone H3 antibody was diluted 1:500 in blocking solution and 

incubated overnight at 4oC.  Following washes, histone H3 sections were 

incubated at room temperature for 1 hour in species-specific biotinylated 

secondary antibody diluted 1:500 in appropriate blocking solution.  For TUNEL 

stained sections, the manufacture’s protocol were followed accordingly.  TUNEL 

reaction mixture was prepared fresh and sections incubated in mixture for 1 hour 
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at 37oC.  Slides were washed following incubation and then incubated with 

Converter-AP for 30 minutes at 37oC.  The substrate solution was applied for 10 

minutes at room temperature and then mounted as mentioned above.  Apoptotic 

or proliferating myeloma cells were quantified using MetaMorph (Molecular 

Devices) computer software.            

 

Human serum specimens     

All serum samples were age-, sex-, and BMI-matched from patients with multiple 

myeloma, MGUS patients with progression to myeloma, MGUS patients with no 

progression to myeloma. These and the respective matched control serum 

samples were obtained through collaborations with Matthew T. Drake, M.D. at 

the Mayo Clinic, Rochester, MN.  Prior to receiving these specimens, we 

obtained IRB approval to measure serum concentrations of adiponectin in these 

samples.  ELISAs for human total adiponectin and high molecular weight 

adiponectin (Millipore) were used to measure the serum concentrations in 

myeloma and MGUS patients.               

 

Statistical analysis  

Statistical significance was determined using a Mann-Whitney U test for 

nonparametric data and considered significant given P less than or equal to .05.  

Oneway ANOVA and Tukey–Kramer method tests were used for analysis of 

multiple groups in both in vivo and in vitro studies.  Data are presented as means 

(± S.E.M) unless otherwise stated. 
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CHAPTER III 

 

DEVELOPING A MURINE MODEL OF MYELOMA THAT ALLOWS GENETIC 

MANIPULATION OF THE HOST MICROENVIRONMENT 

 

Summary 

Multiple myeloma, and the associated osteolytic bone disease, is critically 

dependent upon cellular interactions within the bone marrow microenvironment. 

A major limitation of existing myeloma models is the requirement for a specific 

host strain of mouse, preventing molecular manipulation of the bone marrow 

microenvironment. The aim of the current study was to develop a model of 

myeloma in which the host microenvironment could be genetically modified. The 

Radl 5T murine model of myeloma is well characterized and closely mimics 

human myeloma. In the current study, we demonstrate 5T myeloma 

establishment in recombinase activating gene-2 (RAG-2) deficient mice, which 

have improper B and T cell development. Importantly, these mice can be easily 

bred with genetically modified mice to generate double knockout mice; allowing 

manipulation of the host microenvironment at a molecular level. Inoculation of 

5TGM1 myeloma (MM) cells into RAG-2-/- mice resulted in myeloma 

development, associated with tumor within bone and an osteolytic bone disease, 

as assessed by microCT, histology and histomorphometry. Myeloma-bearing 

RAG-2-/- mice displayed many features similar to both human myeloma and the 

original 5T Radl model. To demonstrate the use of this model, we have examined 
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the effect of host derived MMP-9 in the development of myeloma in vivo. 

Inoculation of 5TGM1 myeloma cells into mice deficient in RAG-2 and MMP-9 

resulted in a reduction in tumor burden and osteolytic bone disease as compared 

with RAG-2 deficient wild-type myeloma-bearing mice. The establishment of 

myeloma in RAG2-/- mice permits molecular examination of the host contribution 

to myeloma pathogenesis in vivo. 

 

Introduction 

Myeloma progression and the development of the osteolytic bone disease 

are inextricably linked and dependent upon cellular interactions within the bone 

marrow microenvironment. Therefore, the study of the bone marrow 

microenvironment in myeloma is critical for both our understanding of 

mechanisms involved in disease progression, and the identification of novel 

therapeutic targets.  The advances in the treatment of myeloma are limited due 

to the number of clinically relevant animal models that allow for the in vivo study 

of myeloma development in the context of a bone marrow microenvironment.  

The current animal models for myeloma include the SCID-hu/rab 

xenograft model, a conditional mouse model dependent upon MYC activation in 

germinal center B cells and the Radl 5T model. The SCID-hu/rab xenograft 

model provides a system where primary human myeloma cells can be injected 

into either a fetal human or rabbit bone that is implanted subcutaneously into 

immunocompromised mice (Yaccoby, Barlogie et al. 1998) (Yaccoby, Ling et al. 

2007). The Radl model utilizes 5T MM cells that spontaneously arose in aged, in-



 48 

bred C57Bl/KaLwRijHsd mice and is propagated by the inoculation of these 

myeloma cells into syngeneic mice (Radl, de Glopper et al. 1979; Radl, Croese et 

al. 1988; Garrett, Dallas et al. 1997). Both of these models allow the study of 

tumor growth and myeloma bone disease, and have proven to be effective 

preclinical models to test novel therapeutic approaches for the treatment of 

myeloma bone disease (Dallas, Garrett et al. 1999; Croucher, Shipman et al. 

2001; Croucher, De Hendrik et al. 2003; Oyajobi, Franchin et al. 2003; Yaccoby, 

Wezeman et al. 2004; Edwards, Mueller et al. 2007; Yaccoby, Ling et al. 2007; 

Edwards, Edwards et al. 2008). Activation of MYC under the control of the kappa 

light chain regulatory elements results in the development of myeloma with 

features similar to human multiple myeloma (Chesi, Robbiani et al. 2008). A 

major limitation of all existing models is that manipulation of the bone marrow 

microenvironment independent of the tumor is limited to systemic 

pharmacological reagents, rendering it impossible to elucidate specific cellular 

and molecular mechanisms of myeloma bone disease within the bone marrow 

microenvironment. Current research has demonstrated the critical role that the 

tumor microenvironment plays in disease progression, but the existing animal 

models for the study of the tumor microenvironment in myeloma severely impair 

both clinical and basic research in this field.     

The aim of the study presented in this chapter was to develop a murine 

model of myeloma in which the host microenvironment could be genetically 

modified, thus enabling molecular studies of the host contribution to multiple 

myeloma progression in vivo. The Radl 5T murine model of myeloma was 



 49 

originally identified as occurring spontaneously in aging mice of the 

C57Bl/KaLwRij strain. Several 5T MM cell lines have been developed from this 

model, which include 5T2 and 5TGM1, all of which result in tumor growth within 

bone and osteolytic bone disease when cells are inoculated into the syngeneic 

C57Bl/KaLwRij strain or bg/Nu/Xid mice (Garrett, Dallas et al. 1997; Asosingh, 

Radl et al. 2000). In contrast, myeloma does not develop when cells are 

inoculated into C57Bl6 mice. The genetic mutation that defines C57Bl/KaLwRij 

mice is unknown, and the deleterious effects of the bg/nu/Xid mutation on 

breeding and lifespan mean that neither of these strains of mice can be crossed 

with genetically modified mice in order to modify the host microenvironment in 

mice, which are permissive to myeloma growth. In the current study, we 

investigated the establishment of 5TGM1 MM in immunocompromised 

recombinase activating gene-2 (RAG-2) deficient mice on a C57Bl6 background. 

These mice have a targeted disruption of the RAG-2 gene resulting in the 

absence of functional recombinases leading to improper B and T cell 

development (Shinkai, Rathbun et al. 1992). Importantly, these mice can be 

easily bred with genetically modified mice to generate double knockout mice; 

therefore greatly improving our ability to genetically manipulate the host 

microenvironment. 
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Results 

RAG-2-/- mice develop characteristic myeloma tumor burden 

RAG-2 deficient mice on a C57Bl6 background were inoculated with 106 

GFP-tagged 5TGM1 MM cells by intravenous tail vein injection. Tumor burden 

was measured by serum IgG2bk ELISA, histomorphometric analysis of tumor 

burden in bone, and flow cytometric analysis of tumor burden in bone marrow 

and spleen. The development of myeloma in RAG-2 deficient mice was 

compared with the syngeneic C57Bl/KaLwRij mice, C57Bl6 mice, bg/Nu/Xid 

mice, and T cell-deficient athymic nude mice.  

Following intravenous inoculation of 5TGM1 MM cells, the RAG-2 deficient 

mice developed myeloma at the same rate as that observed with the syngeneic 

C57Bl/KaLwRij mice of the 5T model. Tumor burden of the RAG-2 deficient mice 

increased over time as determined by measurement of serum levels of myeloma-

specific immunoglobulin IgG2b (Figure 5A). The increase of IgG2b levels in the 

RAG-2 deficient mice was comparable to the tumor burden found in the 

myeloma-bearing C57Bl/KaLwRij mice (Figure 5A). Inoculation of 5TGM1 MM 

cells into immune-competent C57Bl6 mice did not result in myeloma 

development. Tumor burden was also assessed by measuring the percent of 

GFP-positive myeloma cells present in the bone marrow and spleen. The 

myeloma-bearing RAG-2 deficient mice showed significant accumulation of GFP-

positive myeloma cells in both the bone marrow and spleen (Figure 5B) and this 

burden was comparable to that observed in the C57Bl/KaLwRij mice. Therefore, 

the development of multiple myeloma in RAG-2 deficient mice occurs in an  



 51 

 

 

 

(A) (B) 

(C) 

0 

20 

40 

60 

80 

NT 5TGM1 NT 5TGM1 

Rag-2-/- KalwRij 

%
 G

FP
 p

os
it

iv
e 

Bone marrow 

0 

20 

40 

60 

NT 5TGM1 NT 5TGM1 

Rag-2-/- KalwRij 
%

 G
FP

 p
os

it
iv

e 
 

Spleen 

*** *** 

*** *** 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

NT 5TGM1 NT 5TGM1 

Bg-nu-XID Nude 

Ig
G

2b
k 

(m
g/

m
L)

 

0 

SAC 

* Day 0 

Day 28 

0 

4 

8 

12 

16 

20 

0 5 10 15 20 25 

Ig
G

2b
k 

(m
g/

m
L)

 

Time (days) 

Rag-2-/- NT 

Rag-2-/- 5TGM1 

KalwRij NT 

KalwRij 5TGM1 

*** 

*** 

*** 

*** *** 

*** 

Figure 5. RAG-2-/- mice develop characteristic myeloma tumor burden.  
Intraveneous inoculation of 5TGM1 MM cells into RAG-2-/- mice, which have 
improper B and T cell development.  A) Tumor burden represented by 
myeloma-specific immunoglobulin levels, IgG2bκ, present in the serum of 
5TGM1 myeloma bearing and non-tumor (NT) mice. B) Tumor burden 
represented by GFP positive 5TGM1 myeloma cells within the bone marrow 
and spleen, measured by flow cytometry. (NT n=8, MM n=12) C) Serum 
IgG2b levels in non-tumor and 5TGM1 MM-bearing Bg-nu-XID (deficient in 
B, T, and natural killer cells) and Nude (T-cell deficient) mice at day 0 and 
day 28 following tumor cell inoculation (n=5 per group).  Data are shown as 
mean ± S.E.M. Significant differences are indicated by * p<0.05, ** p< 0.01, 
*** p<0.001 as compared with NT mice (One-way ANOVA).    



 52 

identical manner, both with respect to time for tumor development and extent of 

tumor burden, in RAG-2 deficient mice as compared with C57Bl/KaLwRij mice.  

In contrast to the accumulation of myeloma cells observed in RAG-2 

deficient mice and in bg/nu/Xid mice, when 5TGM1 MM cells were inoculated into 

T cell deficient athymic nude mice, measurement of the myeloma-specific 

immunoglobulin levels in the serum demonstrated that there was no increase in 

IgG2b levels in 5TGM1-bearing athymic nude mice (Figure 5C). This 

demonstrates that a lack of T cells is not sufficient to permit myeloma 

development in vivo.  

 

RAG-2-/- mice develop myeloma-associated bone disease   

In addition to indices of tumor burden, we also evaluated the myeloma-

associated osteolytic bone disease in RAG-2 deficient mice in comparison to the 

well-characterized bone disease of the C57Bl/KaLwRij mice. Trabecular bone 

volume and osteolytic lesions were analyzed by microCT, osteoclast number and 

osteoblast number were determined by bone histomorphometry. Myeloma-

bearing RAG-2 deficient mice were found to have characteristic features of 

myeloma bone disease, both identical to those seen in C57Bl/KaLwRij mice and 

strikingly similar to human multiple myeloma. The myeloma-bearing RAG-2 

deficient mice had a significant number of osteolytic lesions found within the 

cortical bone, whereas the non-tumor mice had no lesions (Figure 6A and B). 

Histological analysis confirmed areas where the cortical bone had been 

destroyed with tumor cells expanding through the cortices, leading to the  
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Figure 6. RAG-2-/- mice develop myeloma-associated bone disease.  
Myeloma-associated bone disease assessed by microCT analysis, 
histomorphometry and histology.  A) microCT analysis of osteolytic bone 
lesion through the cortical bone B) representative microCT images of 
cortical bone lesions (black arrows) C) microCT analysis of trabecular 
bone volume.  D) Histomorphometry analysis of osteoclast and 
osteoblasts per bone surface (mm2/mm3) in RAG-2-/-. Data are shown as 
mean ± S.E.M. * p<0.05, ** p< 0.01, *** p<0.001 as compared with NT 
bearing mice (Mann-Whitney U test).  (NT n=4, MM n=5) 
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Figure 7. RAG-2-/- mice develop characteristic pathology typical of 
clinical myeloma.  The pathology present in myeloma-bearing RAG-2 
deficient mice is similar to that seen in the well-established 5T Radl murine 
model of myeloma in C57Bl/KaLwRij mice.  (Top) Myeloma cell growth 
within the bone marrow cavity and osteolytic lesions through the cortical 
bone (black arrows). Bars, 2mm  (Bottom) Myeloma-bearing mice display 
characteristic increase in TRAP-positive osteoclasts. (black arrowheads). 
Bars, 200µM.  
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development of discrete osteolytic lesions (Figure 7). We found the myeloma-

bearing RAG-2- deficient mice had a significant decrease in the overall trabecular 

bone volume when compared to the non-tumor control mice (Figure 6C and 

Figure 7). Histomorphometric analysis of the RAG-2 deficient myeloma-bearing 

mice demonstrated other features characteristic of myeloma-associated bone 

disease, such as an increase in bone-resorbing osteoclasts and a decrease in 

bone-forming osteoblasts (Figure 6D and Figure 7). Histological analysis 

demonstrated a striking similarity both in terms of tumor expansion within the 

bone marrow cavity and development of myeloma bone disease in 5TGM1 

myeloma-bearing RAG-2-/- mice as compared with the myeloma-bearing 

syngeneic C57Bl/KaLwRij mice (Figure 7). 

 

Matrix metalloproteinase-9 deficiency decreases tumor burden and severity 

of associated osteolytic bone disease 

The MMP family of proteolytic enzymes has been extensively studied for 

their role in extracellular matrix degradation resulting in cancer progression in 

various tumor cell types including myeloma (Barille, Akhoundi et al. 1997; Vacca, 

Ribatti et al. 1998; Barille, Bataille et al. 1999; Vacca, Ribatti et al. 1999). 

Previous studies have demonstrated a role for tumor-derived matrix 

metalloproteinase-9 (MMP-9) in myeloma progression, but also revealed the 

presence of host-derived MMP-9 within the bone marrow microenvironment (Van 

Valckenborgh, Mincher et al. 2005). In order to demonstrate the use of this model 

of myeloma, we chose to investigate myeloma development in mice deficient in 
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MMP-9. MMP-9 expression in the bone marrow of C57Bl/KaLwRij mice was 

demonstrated by immunohistochemistry in TRAP-positive multi-nucleated 

osteoclasts on the surface of trabecular bone (Figure 8A). Similar expression 

was observed in RAG-2 deficient mice. Mice deficient in both RAG-2 and MMP-9, 

in addition to mice deficient for RAG-2 alone, were inoculated intravenously with 

5TGM1 MM cells to determine how MMP-9 deficiency would affect tumor burden 

and the associated bone disease.  Tumor burden, as indicated by IgG2b serum 

levels, in myeloma-bearing mice deficient in both RAG-2 and MMP-9 was 

significantly decreased at 14 and 21 days following tumor inoculation as 

compared with mice deficient only for RAG-2 (Figure 8B).  Mice deficient in both 

RAG-2 and MMP-9 showed a significant decrease in the proportion of GFP-

positive 5TGM1 MM cells present in the bone marrow, as compared to myeloma-

bearing mice RAG-2 deficient mice, however there was no significant difference 

in the proportion of GFP-positive myeloma cells in the spleen (Figure 8C). These 

results suggest that MMP-9 present in the bone marrow may have a more 

important role in myeloma progression.  The contribution of host-derived MMP-9 

from the osteoclasts within the microenvironment also had significant effects on 

myeloma bone disease.  The number of lesions present through the cortical bone 

of myeloma-bearing mice deficient in both RAG-2 and MMP-9 was significantly 

decreased as compared to myeloma-bearing RAG-2 deficient mice (Figure 8D).  

Additionally, the overall bone loss in myeloma-bearing double deficient mice was 

significantly less as compared to the control RAG-2 deficient mice, as indicated 

by microCT analysis of trabecular bone volume (Figure 8E).  Histomorphometric 
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Figure 8. Lack of host-derived MMP-9 significantly reduces tumor burden 
and myeloma bone disease in vivo. Intravenous inoculation of 5TGM1 cells 
into either RAG-2-/- mice or mice deficient in both RAG-2 and MMP-9 followed 
by assessment of tumor burden.  A) MMP-9 localization in KaLwRij bone 
marrow. Fluorescent TRAcP staining (green) was used to localize osteoclasts 
(arrows) while immunofluorescence was used to localize MMP-9. DAPI (blue) 
was used as a nuclear stain. Murine IgG was used as a negative control. 
Scale bars are 50 µM. B) Tumor burden represented by IgG2bκ levels present 
in the serum of 5TGM1 myeloma bearing and NT mice.  C) Tumor burden 
represented by GFP positive 5TGM1 myeloma cells within the bone marrow, 
measured by flow cytometry. Myeloma bone disease was assessed by 
microCT analysis, histomorphometry and histology D) microCT analysis of 
osteolytic bone lesions through the cortical bone, E) microCT analysis shows 
a loss of trabecular bone volume, both indicative of bone disease. F) 
Histomorphometric analysis of osteoclast number per bone surface. Data are 
shown as mean ± S.E.M.  *p<0.05 as compared with tumor-bearing RAG-2-/- 

mice (Mann-Whitney U test).  (RAG-2-/- n=4, RAG-2-/-MMP-9-/- n=6)   
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analysis demonstrated a trend towards a reduction in osteoclasts in myeloma-

bearing MMP-9 deficient mice as compared to myeloma–bearing RAG-2 deficient 

mice (Figure 8F). No difference in osteoblast number was observed (Figure 8F).  

 

Conclusions 

The present study demonstrates a new in vivo system for the examination 

of the host tumor microenvironment and the contributions of this specialized 

niche to myeloma development.  Despite many therapeutic advancements in the 

treatment of myeloma using existing mouse models, the field of myeloma 

research has long been limited by the inability of these models to permit specific 

investigation of the tumor microenvironment.  The results from the current study 

demonstrate that myeloma development in RAG-2 deficient mice shares many of 

the clinical and histological features of human myeloma and the associated 

osteolytic bone disease that is also demonstrated in the established Radl 5T 

model. Myeloma-bearing RAG-2 deficient mice displayed extensive tumor burden 

within the bone marrow, an increase in osteoclasts, a decrease in osteoblasts 

and the development of destructive lytic lesions and overall bone loss. In the 

5TGM1 model of myeloma, inoculation of myeloma cells results in homing of 

myeloma cells to both the bone marrow and the spleen, with homing to the 

spleen a result of the hematopoietic nature of this organ in mice. The growth of 

myeloma cells in bone and non-bone sites is a useful tool for elucidating the role 

of the bone marrow microenvironment, and this important feature was also 

observed in myeloma-bearing RAG-2 deficient mice, with an accumulation of 



 59 

myeloma cells within the bone marrow and spleen. The use of RAG-2 deficient 

mice in a myeloma model is an extremely important advance for myeloma 

research as gene expression in the host compartment of the tumor 

microenvironment can be more specifically manipulated.  

The use of the RAG-2 deficient mice in a model of multiple myeloma 

creates many opportunities to improve current therapies by increasing our 

understanding of specific mechanisms within the host tumor microenvironment. 

The use of this new animal model will allow for the specific manipulation of the 

host tumor microenvironment through genetic mutation.  An example of this was 

demonstrated here where the use of this model system allow for the specific 

examination of host-derived MMP-9 and how it contributes to myeloma 

progression.  MMPs are known to play important roles in tumor progression, 

however, it is has been difficult to discern their specific contributions due to the 

lack of specificity of MMP inhibitors.  The ability to inhibit specific MMP 

expression in the host microenvironment using MMP deficient mice permits the 

investigation of the specific roles of individual MMPs in myeloma pathogenesis. 

In a previous study, Van Valckenborgh, et al. used an MMP-9 pro-drug to 

specifically target tumor cells within the bone marrow microenvironment.  MMP-9 

activity was higher in myeloma-bearing mice compared to non-tumor-bearing 

mice (Van Valckenborgh, Mincher et al. 2005).  However, cells in the bone 

marrow of non-tumor-bearing mice still showed elevated levels of MMP-9 

expression, suggesting the presence of MMP-9 in the bone marrow of 

C57Bl/KaLwRij mice.  Our studies confirmed this, using immunofluorescence to 
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demonstrate expression of MMP-9 in osteoclasts within both C57Bl/KaLwRij and 

RAG-2 bone marrow.  By investigating the development of 5TGM1 MM in mice 

deficient in RAG-2 and MMP-9, we were able to demonstrate a significant 

reduction in both tumor burden and the associated osteolytic bone disease in 

MMP-9 deficient mice.  This both identifies a role for host-derived MMP-9 in 

myeloma pathogenesis, and illustrates the potential for this new model of 

myeloma to study the host microenvironment in myeloma.  

There are many important questions in myeloma research regarding the 

relative contribution of host-derived versus tumor-derived factors, such as 

Receptor Activator for Nuclear Factor κ B Ligand (RANKL) and Dickkopf homolog 

1 (DKK1), which are known to be expressed by both tumor cells and other cells 

within the bone marrow microenvironment, including stromal cells. The study of 

myeloma growth in vivo combined with genetic modification of the host 

microenvironment offers a novel molecular approach to elucidate such specific 

host-tumor interactions. The development of this in vivo tool was critical for this 

dissertation research, specifically to determine the role of host-derived 

adiponectin in myeloma growth and progression described in chapter V.  Overall, 

the establishment of multiple myeloma in RAG-2 deficient mice and the resultant 

ability to study myeloma growth and the associated bone disease in a genetically 

modified host microenvironment is a major advance in myeloma research and 

provides a critically important tool for the myeloma research community.   
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CHAPTER IV 

 

BONE MARROW STROMAL CELLS PROMOTE THE INITIAL 

ESTABLISHMENT AND PROGRESSION OF MYELOMA VIA STROMAL-

DERIVED DKK1 

 

Summary 

The contributions of the bone marrow microenvironment to the early 

stages of myeloma development are poorly understood. To investigate this, we 

have utilized the 5T Radl myeloma model, where transplantation of 5T myeloma 

cells into mice of the specific C57Bl/KaLwRijHsd (KaLwRij) substrain, but not 

closely related C57Bl6 mice, results in the propagation of myeloma with many 

features of the human disease. Co-inoculation of 5TGM1 myeloma (MM) cells 

and a BMSC line isolated from KaLwRij mice (14M1 BMSCs) resulted in 

myeloma development in non-permissive C57Bl6 mice, associated with tumor 

growth within the bone marrow and osteolytic bone disease. 14M1 BMSCs 

inoculated alone induced osteoblast suppression and increased circulating Dkk1 

concentrations. Dkk1 was over-expressed in myeloma-permissive KaLwRij bone 

marrow, and knockdown of Dkk1 expression in 14M1 BMSCs decreased their 

effect to promote myeloma development in C57Bl6 mice. Collectively, our results 

demonstrate a novel role of BMSCs to promote myeloma development in a non-

permissive microenvironment and of BMSC-derived Dkk1 in the pathogenesis of 

multiple myeloma. 
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Introduction 

 Much of current cancer research has been dedicated to the study of the 

tumor microenvironment and how host cells within this microenvironment 

contribute to cancer progression.  Evidence in many solid tumor cancers has 

demonstrated that cancer cells can directly alter surrounding stroma to form a 

permissive and supportive environment for tumor progression.  Some of these 

alterations in the surrounding stroma include changes in extra-cellular matrix 

composition, angiogenesis, and altered fibroblasts (De Wever and Mareel 2003).    

Despite the somewhat extensive study of the altered tumor microenvironment in 

solid tumors, there has been limited research in non-solid tumor or hematological 

malignancies.  

The bone marrow tumor microenvironment has a critical role in myeloma 

cell growth and survival, as well as the development of a destructive osteolytic 

bone disease; however the contributions of this microenvironment during early 

stages of the disease are poorly understood.  The Radl 5T model of myeloma 

utilizes 5T MM cells originally derived from myeloma-bearing C57Bl/KaLwRij 

mice.  The transplantation of these 5T MM cells results in consistent myeloma 

development similar to human disease in syngeneic C57Bl/KaLwRij mice. 

Interestingly, myeloma does not develop in closely related C57Bl6 mice.  The 

emerging role of the microenvironment in cancer progression and this unique 

feature of the C57Bl/KaLwRij mice suggest that there are critical differences in 

this bone marrow milieu.     



 63 

In the study presented in this chapter, we hypothesized that BMSCs from 

myeloma-permissive C57Bl/KaLwRij mice may promote myeloma development 

in a host microenvironment usually not permissive to 5T MM cell growth.  We 

found that non-permissive C57Bl6 mice developed characteristic myeloma when 

co-inoculated with 5TGM1 MM cells and BMSCs from myeloma-bearing 

C57Bl/KaLwRij mice (14M1 BMSCs).  There is increasing evidence that patients 

with the pre-myeloma condition MGUS have elevated Dkk1 (Todoerti, Lisignoli et 

al. ; Corre, Mahtouk et al. 2007), which suggests a role for host-derived Dkk1 in 

early stages of myeloma development.  These studies demonstrate that 

C57Bl/KaLwRij BMSCs create a myeloma-permissive microenvironment through 

the secretion of Dkk1 and this has important implications in myeloma 

pathogenesis.    

 

Results  

C57Bl/KaLwRij BMSCs promote myeloma in non-permissive mice  

To investigate the role of bone marrow stromal cells (BMSCs) in myeloma 

pathogenesis, we utilized 14M1 BMSCs that were originally isolated from 

myeloma-bearing C57Bl/KaLwRij mice.  The C57Bl/KaLwRij mice of the 5T Radl 

model for multiple myeloma possess a unique bone marrow microenvironment in 

that they are permissive for 5T MM cell growth in contrast to C57BL6 mice (Radl, 

De Glopper et al. 1979; Radl, Croese et al. 1988; Garrett, Dallas et al. 1997; 

Fowler, Mundy et al. 2009).  After initial characterization of the 14M1 BMSCs, we 

determined that 14M1 BMSCs did not possess osteogenic or adipogenic  
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differentiation potential, commonly seen in BMSCs (Figure 9A).  14M1 BMSCs 

expressed both vimentin and fibroblast-specific protein-1 (S100A4), indicative 

that these cells are fibroblasts (Figure 9B). These traits combined suggest that 

14M1 BMSCs are a more differentiated fibroblast-like cell population. 

To investigate the contribution of these BMSCs to myeloma cell growth, 

non-permissive C57Bl6 mice were inoculated with 5TGM1 MM cells alone, 14M1 

BMSCs alone, or 5TGM1 and 14M1 cells combined.  4 weeks following cell 

inoculation, C57Bl6 mice inoculated with either 5TGM1 MM cells alone or 14M1 

BMSCs alone did not develop myeloma.  However, C57Bl6 mice inoculated with 

5TGM1 and 14M1 cells combined developed myeloma, characterized by a 

significant increase in tumor burden as assessed by measurement of myeloma-

specific immunoglobulin concentrations present in the serum and a significant 

increase in GFP positive myeloma cells present in the bone marrow and spleen 

(Figure 10A and B).  At the experimental endpoint, flow cytometric analysis of 

dsRed2 positive cells showed that approximately 13% of the BM was composed 

of these BMSCs (Figure 9D).  The rate of tumor growth and the features of 

myeloma development were identical to myeloma development in the 

C57Bl/KaLwRij mice of the Radl model.   

Histological examination of the co-inoculated C57Bl6 mice demonstrated 

pathology similar to that seen in myeloma-bearing C57Bl/KaLwRij mice (Figure 

11).  Histology of co-inoculated C57Bl6 mice demonstrated myeloma cells filling 

the BM cavity and the presence of osteolytic lesions through the cortical bone, 

respectively (Figure 11).  The single-cell inoculated mice, either 5TGM1 or 14M1  
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Figure 9. Characterization of 14M1 bone marrow stromal cells 
(BMSCs). A) 14M1 BMSC characterization by mesenchymal stem cell 
differentiation studies into osteoblasts and adipocytes. Mature 
osteoblasts indicated by alkaline phosphatase staining following 
differentiation.  Mature adipocytes indicated by Oil Red O staining 
following differentiation   B) 14M1 characterization by Western blot 
analysis of fibroblast-specific proteins. C) Fluorescent microscope 
image of dsRed2 positive 14M1 BMSCs. D) Flow cytometric analysis of 
dsRed2 positive BMSCs in the bone marrow at experimental endpoint.      
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Figure 10: C57Bl/KaLwRij BMSCs promote myeloma cell 
growth in non-permissive mice.  Non-permissive C57Bl6 mice 
co-inoculated with 14M1 BMSCs and 5TGM1 MM cells 
development characteristic myeloma tumor burden represented 
by A) IgG2bκ serum concentrations and B) GFP positive 
myeloma cells present in the bone marrow and spleen. Data are 
shown as mean ± S.E.M.  **p<0.01, ***p<0001 as compared to 
5TGM1 (One-way ANOVA). (n=5 per group)    
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Figure 11. C57Bl/KaLwRij BMSCs promote pathology similar to 
myeloma-bearing C57Bl/KaLwRij mice of the Radl model.  Histological 
sections of bone marrow from C57Bl6 non-tumor and 14M1 BMSC co-
inoculated mice, compared to section from MM-bearing C57/KaLwRij mice.  
Lesions through the cortical bone are typical of myeloma bone disease (black 
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BMSCs alone appeared similar to the non-tumor control mice.  MicroCT analysis 

also indicated the presence of cortical bone lesions in the C57Bl6 mice co-

inoculated with 5TGM1 MM cells and 14M1 BMSCs (Figure 12A).  Mice co-

inoculated with 14M1 BMSCs also had a significant decrease in trabecular bone 

(Figure 12B) and osteoblasts (Figure 12C), with a significant increase in bone 

resorbing osteoclasts (Figure 12C).  Importantly, co-inoculation of mice with 

5TGM1 MM cells and normal ST2 BMSC had no significant difference in tumor 

burden compared to mice with 5TGM1 MM cells alone (31.5% difference, 1.58 ± 

1.06 for 5TGM1 alone and 2.31 ± 1.01 for ST2 with 5TGM1 MM cells in IgG2bκ 

serum concentrations, p=0.64).  These studies suggest that BMSCs from 

myeloma-permissive C57Bl/KaLwRij mice can promote myeloma development in 

C57Bl6 mice, which is an effect specific to 14M1 BMSCs and not a general effect 

of all BMSCs. 

We wanted to determine whether these cells simply enhanced 5TGM1 MM cell 

growth in order for them to grow in the non-permissive C57Bl6 mice.  

Considering the C57Bl/KaLwRij mice of the Radl model are already permissive to 

5T MM cell growth, we decided to co-inoculate these mice with 14M1 BMSCs. 

Interestingly, C57Bl/KaLwRij mice co-inoculated with 14M1 BMSCs did not have 

an increase in tumor burden compared to when 5TGM1 myeloma cells were 

inoculated alone (Figure 13A and B).  The myeloma-promoting effect of these 

cells together with the results in the C57Bl/KaLwRij mice suggests that these 

BMSCs do not merely enhance myeloma cell growth but may alter the bone 

marrow microenvironment, making it favorable for myeloma.   
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Figure 12. C57Bl/KaLwRij BMSCs promote myeloma bone disease in 
non-permissive mice.  A) Osteolytic lesions through the cortical bone, 
measured by microCT analysis.  B) Trabecular bone volume to total volume 
ratio, measured by microCT. C) Osteoblast surface to bone surface 
(Ob.S/BS) and osteoclast surface to bone surface (Oc.S/BS) ratios, 
measured by histomorphometry.  Data are shown as mean ± S.E.M.  
*p<0.05 as compared to 5TGM1 (One-way ANOVA & Tukey-Kramer tests). 
(n=5 per group)        
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Figure 13. C57Bl/KaLwRij BMSCs do not enhance myeloma cell 
growth in myeloma-permissive C57Bl/KaLwRij mice.  A) Tumor 
burden represented by measuring myeloma-specific immunoglobulin 
concentrations present in the serum of co-inoculated C57Bl6 and 
C57Bl/KaLwRij mice.  B) Tumor burden represented by measuring 
the GFP positive myeloma cells present in the bone marrow. Data 
are shown as mean ± S.E.M.  *p<0.05 as compared to 5TGM1. (n=5 
per group)    
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C57Bl/KaLwRij BMSCs create a permissive microenvironment independent 

of tumor cell presence 

We next wanted to examine whether these BMSCs could alter the 

microenvironment independent of tumor cell presence.  To investigate this, 

C57Bl6 mice were inoculated with 14M1 BMSCs alone.  Following a 4-week 

timeframe similar to the 5T myeloma model, we assessed the bone parameters 

by microCT and histomorphometry.  Assessment of the bone in the BMSC-

inoculated mice showed a 23.4% decrease in trabecular bone volume, 

determined by microCT (control mice, 7.38 ± 1.50 compared to 14M1 inoculated, 

5.65 ± 2.13; mean±standard error).  Histomorphometry demonstrated that mice 

BMSCs alone also had a significant decrease in osteoblasts present on the 

trabecular bone surface and in bone formation rates; however there was no 

change in osteoclast number (Figure 14A and B).  Mice inoculated with ST2 

BMSCs alone did not show a significant change in osteoblasts (31.75 ± 2.658 

compared to control at 36.95 ± 3.569) or osteoclasts (18.75 ± 1.315 compared to 

control at 14.63 ± 2.300).   

Since 14M1 BMSCs promote myeloma in mice that normally do not 

develop 5T myeloma, we sought to determine whether these cells modify the 

host microenvironment in order to make it permissive for myeloma cell growth.  

Considering 14M1 BMSCs can suppress osteoblasts in vivo and a major 

mediator of osteoblast suppressor in myeloma bone disease is the Wnt 

antagonist Dickkopf-1 (Dkk1), we examined the expression of Dkk1 in these 

cells.  In vitro characterization of the myeloma-promoting 14M1 BMSCs  
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Figure 14. C57Bl/KaLwRij BMSCs create a permissive 
microenvironment independent of tumor cell presence.  A) 
Histomorphometry of osteoblasts and osteoclasts in C57Bl6 inoculated 
with 14M1 BMSCs alone.  B) Histomorphometry of bone formation rates 
per year (BFRs) in C57Bl6 mice inoculated with 14M1 BMSCs alone.  C) 
ELISA measurement of Dkk1 concentrations present in the conditioned 
media of 14M1 BMSCs in comparison to ST2 BMSC line.  D) ELISA 
measurement of Dkk1 concentrations present in the serum of C57Bl6 
mice inoculated with 14M1 BMSCs alone.  Data are shown as mean ± 
S.E.M.  *p<0.05. **p<0.01 as compared to control (Mann-Whitney U  
test). (n=5 per group) 
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demonstrated strong expression and secretion of Dkk-1 (Figure 14C).  We 

measured Dkk1 concentrations in the serum of mice inoculated with 14M1 

BMSCs alone and found that there was a significant increased in Dkk1 serum 

concentrations, compared to control mice (Figure 14D).  Additionally, mice 

inoculated with ST2 BMSCs do not show this effect.  In support of increased 

Dkk1 concentrations in myeloma-permissive microenvironments, C57Bl/KaLwRij 

mice have a significant reduction in trabecular bone volume, in addition to 

elevated Dkk1 as compared to C57Bl6 mice (Figure 15A and B).  These results 

combined supported further investigation to determine the contribution of BMSC-

derived Dkk1 in myeloma pathogenesis.     

 

C57Bl/KaLwRij BMSCs modify the BM microenvironment via Dkk1 

Finally, we wanted to investigate the contribution of 14M1 BMSC-derived 

Dkk1 in creating a permissive microenvironment.  To do this, Dkk1 expression 

was stably knocked down using a mouse Dkk1 shRNA (Santa Cruz).  Dkk1 

secretion by the 14M1 BMSCs was significantly knocked down (KD) in 

comparison to conditioned media from control scrambled 14M1 BMSCs (Figure 

16A).  To determine whether Dkk1 KD would abolish myeloma-promoting effect, 

C57Bl6 mice were co-inoculated with 5TGM1 MM cells and either 14M1 control 

BMSCs or 14M1 Dkk1 KD BMSCs.  We found that mice co-inoculated with 14M1 

Dkk1 KD BMSCs had a significant reduction in tumor burden, compared to mice 

co-inoculated with control 14M1 BMSCs (Figure 16B).  Additionally, mice co-

inoculated with 14M1 Dkk1 KD BMSCs did not show a reduction in trabecular  
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Figure 15. Myeloma-permissive C57Bl/KaLwRij mice have 
decreased bone volume and elevated Dkk1.  A) Trabecular bone 
volume measured by microCT analysis in age- and sex-matched 
C57Bl6 and C57Bl/KaLwRij mice.  B) Elevated Dkk1 serum 
concentrations in C57Bl/KaLwRij mice.  Data are shown as mean ± 
S.E.M.  **p<0.01, compared to control (Mann-Whitney U test).  (n=5 
per group)  
 



 75 

 

 

 

A! B!

C!

0!

2!

4!

6!

8!

10!

12!

14!

16!

18!

20!

0! 5! 10! 15! 20! 25! 30!

Non-tumor!

14M1 control !

14M1 Dkk1 KD !

14M1 control + 5TGM1!

14M1 Dkk1 KD + 5TGM1!

Se
ru

m
 c

on
ce

nt
ra

tio
ns

 o
f I

gG
2b

 (m
g/

m
L)
!

♯!

Time (days)!

♯♯!

D
kk

1 
co

nc
en

tr
at

io
ns

 (p
g/

m
L)
!

0!

200!

400!

600!

800!

1000!

control! Dkk1 KD!

***!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

Non-tumor! 14M1 control ! 14M1 Dkk1 
KD !

14M1 control 
+ 5TGM1!

14M1 Dkk1 
KD + 5TGM1!

%
 B

on
e 

vo
lu

m
e/

To
ta

l v
ol

um
e 
!

p<0.05!
p<0.05!

D!

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

Non-tumor! 14M1 control ! 14M1 Dkk1 
KD !

14M1 control 
+ 5TGM1!

14M1 Dkk1 
KD + 5TGM1!

**!

**!
***! ***!

**!

B
on

e 
Fo

rm
at

io
n 

R
at

e/
B

on
e 

Su
rf

ac
e!

(μ
m

3 /μ
m

2 /y
)!

Figure 16. C57Bl/KaLwRij BMSCs modify the BM microenvironment via 
Dkk1.  A) ELISA measurement of Dkk1 concentrations in conditioned media 
of 14M1 BMSCs transfected with scrambled control shRNA or with Dkk1 KD 
shRNA.  B) Tumor burden assessed by measurement of IgG2bκ serum 
concentrations.  C) Trabecular bone volume assessed by microCT analysis. 
D) Bone formation rates assessed by histomorphometric analysis.  Data are 
shown as mean ± S.E.M.  #p<0.05, ##p<0.01 as compared to 14M1 control 
+ 5TGM1 (Mann-Whitney U  test). **p<0.01, ***p<0.001 as compared to 
control (One-way ANOVA and Tukey-Kramer). (n=5 for single cell-inoculated 
mice, n=10 for co-inoculated mice)   
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bone volume while co-inoculation of control 14M1 BMSCs resulted in a 

significant reduction in bone volume (Figure 16C).  Interestingly, it appears in 

contrast to mice inoculated with 14M1 control BMSCs, that mice inoculated with 

14M1 Dkk1 KD BMSCs had little to no decrease in bone volume (Figure 16C).  

Histomorphometric analysis revealed that mice inoculated with 14M1 Dkk1 KD 

BMSCs had less of a decrease in osteoblast activity than 14M1 control BMSCs 

(Figure 16D).  These results raise the possibility that osteoblasts within the BM 

microenvironment may be protective against myeloma growth and progression.   

 

Conclusions 

There is increasing evidence to suggest that cells of the BM 

microenvironment are altered in the pre-myeloma state, MGUS, and that Dkk1 is 

increased in these patients along with a generalized bone loss (Drake, Ng et al 

2009).  In support of this, these data demonstrate that BMSC derived-Dkk1 from 

myeloma-permissive C57Bl/KaLwRij mice were able to alter the BM 

microenvironment directly by promoting a generalized bone loss seen similar to 

that seen in MGUS and myeloma patients.  These studies also support the 

concept that myeloma cells are not the only source of Dkk1 in the context of 

myeloma.  The secretion of Dkk1 by BMSCs suggests that alterations in BM 

stroma may be important in early stages of myeloma before significant 

populations of myeloma cells are present in the BM cavity (Figure 17).  As 

depicted in figure 17, these studies suggest that contributions of Dkk1 from other 

resident cells within the microenvironment may be important for myeloma 
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progression.  Our studies with altered BMSCs from C57Bl/KaLwRij mice also 

support this notion, as the 5TGM1 MM cells used in our system do not secrete 

Dkk1 themselves.   

The creation of a myeloma permissive microenvironment through 

osteoblast suppression also generates interesting questions for future 

examination.  It is necessary to question whether the myeloma promoting effect 

is due specifically to Dkk1 secretion resulting in osteoblast suppression or 

whether other methods of osteoblast suppression would be sufficient to promote 

myeloma growth.  Osteoblasts play a critical role in maintaining bone mass, but 

also in regulating normal and (more recently) pathological hematopoiesis.  The 

involvement of osteoblasts in this process was made evident in studies where 

osteoblast ablation resulted in dramatic alterations in cell populations resident in 

the bone marrow, including decreases in myeloid and lymphoid populations 

(Visnjic, Kalajzic et al. 2004).  Distinguishing the role of osteoblast suppression 

from a generalized bone loss is necessary for understanding the mechanisms 

involved in creating a myeloma-permissive microenvironment.  Recent studies 

have implicated alterations of the bone marrow microenvironment, associated 

with bone loss, as having an active role in initiation of hematological 

malignancies (Raaijmakers, Mukherjee et al. ; Walkley, Olsen et al. 2007; 

Walkley, Shea et al. 2007).   

Furthermore, the 14M1 Dkk1 KD studies highlight important contributions 

of osteoblast and stromal-derived factors.  Mice inoculated with the Dkk1 KD 

BMSCs appeared to be protected against bone loss, in comparison with mice 
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inoculated with 14M1 control BMSCs.  These results provoke an interesting 

question as to whether the BMSCs are themselves protective or alternatively if 

functional osteoblasts within the BM microenvironment are protective against 

myeloma progression and subsequent bone loss.  There is other evidence in the 

literature suggesting that the presence of osteoblasts within the bone marrow 

microenvironment provides protection against myeloma progression.  Takeuchi 

et al demonstrated that terminally differentiated osteoblasts have the ability to 

suppress myeloma cell growth and survival (Takeuchi, Abe et al.).  Additionally, 

decorin was recently identified as an osteoblast-derived factor that can suppress 

myeloma cell growth and survival.  However, there are currently a limited number 

of studies investigating osteoblast-derived factors responsible for myeloma 

suppression.   

Of additional interest is that the 14M1 BMSCs were derived from 

myeloma-bearing C57Bl/KaLwRij mice.  The origin of these cells raises the 

obvious question as to whether the myeloma-promoting effect of these cells is 

due to the altered microenvironment of the C57Bl/KaLwRij mice or because they 

are cancer-associated.  Mesenchymal stem cells are pluripotent progenitor cells 

that reside primarily in the bone marrow.  It is now well accepted that cancer cells 

can directly alter their adjacent stroma, which in turn forms a permissive and 

supportive environment for tumor progression and metastasis (Karnoub, Dash et 

al. 2007).  The metastatic potential of human breast cancer cells was greatly 

increased when the cancer cells were mixed with bone marrow-derived 

mesenchymal stem cells.  These studies suggest that aggressive and metastatic 
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characteristics can be acquired through interactions between tumor cells and the 

surrounding stroma.  This study also strongly supports our overall hypothesis that 

changes in the bone marrow microenvironment promote the development of 

multiple myeloma in vivo.  Examination of cancer-associated fibroblasts has not 

been investigated in the context of non-solid tumors; therefore research is 

needed in this area.  The direct effects of cancer-associated fibroblasts on 

osteolytic bone disease are unknown.  A detailed investigation of primary cancer-

associated fibroblasts in future studies will be discussed in chapter VI.                  
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Figure 17. Contributions of altered BMSCs in the bone marrow 
microenvironment early in myeloma development.  (A) In the early 
myeloma microenvironment, altered BMSCs secrete Dkk1 prior to the 
accumulation of myeloma cells within the bone marrow cavity.  (B) BMSC-
derived Dkk1 modifies the BM microenvironment by suppressing osteoblast 
activity resulting in decreased bone, which creates a permissive environment 
for myeloma cell growth.      
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CHAPTER V 

 

DECREASED HOST-DERIVED ADIPONECTIN CONTRIBUTES TO MYELOMA 

PATHOGENESIS 

 

Summary 

The contributions of the host microenvironment to the early stages of 

myeloma pathogenesis are poorly understood.  Microarray analysis identified a 

decrease in adiponectin in mice permissive for myeloma development, as 

compared to mice that were not permissive to myeloma. Clinical evidence 

demonstrates that MGUS patients who progress to myeloma have a decrease in 

serum adiponectin concentrations, as compared to normal controls or MGUS 

patients that do not progress to myeloma.  Adiponectin induced caspase-

dependent apoptosis in myeloma cells.  Myeloma pathogenesis was exacerbated 

in adiponectin-deficient mice with increased tumor burden and osteolytic bone 

disease.  Increasing circulating adiponectin in vivo resulted in reduced tumor 

burden, the prevention of myeloma bone disease, and increased overall survival 

of myeloma-bearing mice.  These data demonstrate that decreased adiponectin 

contributes to myeloma pathogenesis, and establishes the potential therapeutic 

benefit of increasing adiponectin in the treatment of both MGUS and myeloma 

patients. 
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Introduction 

Adiponectin is among a group of proteins called adipokines originally 

identified as a protein secreted by the adipose tissue into the bloodstream.  More 

recent studies have found it to be expressed by multiple other cell types, 

including bone marrow-derived osteoblasts and fibroblasts (Berner, Lyngstadaas 

et al. 2004).  There are three circulating forms of adiponectin, all of which differ in 

their biological activities and tissue specificities (Waki, Yamauchi et al. 2003).  

The variation in biological activity may be due to the differences in expression 

patterns of adiponectin receptors (Yamauchi, Kamon et al. 2003).  Adiponectin 

has two receptors (AdipoR1 and AdipoR2) with seven transmembrane domains.   

These domains are similar to G-protein-coupled receptors (GPCRs); however 

their topology is the opposite with the amino (N)-termini intracellular (Yamauchi, 

Kamon et al. 2003).  Stimulation with adiponectin results in an increase in the 

phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and AMP-

activated protein kinase (AMPK) in various cell types (Yamauchi, Kamon et al. 

2002; Tsao, Tomas et al. 2003; Mao, Kikani et al. 2006; Cheng, Lam et al. 2007).  

Only recent research has begun to study adiponectin signaling and its 

downstream mediators; therefore the physiological signaling pathways mediated 

through these receptors have not been fully elucidated.  One major role of 

adiponectin is the regulation of insulin sensitivity (Beltowski 2003). 

Adiponectin deficiency (hypoadiponectinaemia) is thought to have a role in 

obesity, cardiovascular disease and diabetes; however the exact physiological 

functions of adiponectin are currently unclear.  Adiponectin levels are inversely 
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correlated with body fat percentage; in that adiponectin serum levels are reduced 

in patients with obesity and diabetes (Hu, Liang et al. 1996; Arita, Kihara et al. 

1999; Hotta, Funahashi et al. 2000).  Adiponectin also has potent anti-

inflammatory activities.  These activities include its ability to reduce TNF-α 

production and activity (Maeda, Shimomura et al. 2002), inhibit pro-inflammatory 

IL-6, and induce anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist 

(Kumada, Kihara et al. 2004; Wolf, Wolf et al. 2004; Wulster-Radcliffe, Ajuwon et 

al. 2004).  Recently, low adiponectin serum levels have been associated with a 

high incidence of obesity-related cancer, including endometrial, breast, prostate, 

and gastric cancers.  Hypoadiponectiniaemia is known to be an independent risk 

factor for breast cancer, and is associated with more aggressive phenotypes 

(Miyoshi, Funahashi et al. 2003; Schaffler, Scholmerich et al. 2007).    

The condition known as monoclonal gammopathies of undetermined 

significance is defined by elevated protein production by plasma cells resulting in 

hypercalcaemia with minor bone involvement (Berenson, Anderson et al. ; Kyle, 

Therneau et al. 2006; Berenson and Yellin 2009).  In recent years, MGUS has 

been demonstrated to consistently precede myeloma (Landgren, Kyle et al. 

2009; Weiss, Abadie et al. 2009).  On average, approximately 16% of MGUS 

patients progress to myeloma (Kyle and Rajkumar 2007); however the reasons 

for this progression are unknown despite investigation of potential risk factors.  

Some clinical evidence suggests the progression is due to changes that occur to 

the bone marrow microenvironment, but there are no reliable predictors for 



 84 

disease progression (Blade, Rosinol et al. 2008).  It is critical to identify novel 

predictors of malignant progression to determine what patients are at risk. 

The study of the bone marrow microenvironment in the initial 

establishment myeloma is critical for both our understanding of mechanisms 

involved in disease progression, and the identification of novel therapeutic 

targets.  To elucidate the necessary features and mechanisms that contribute to 

myeloma development in humans, we used the myeloma-permissive 

C57Bl/KaLwRij mice of the Radl 5T model of myeloma as a tool to provide 

insights into the changes that occur to the bone marrow microenvironment that 

are critical for disease progression.  An important feature of this model is that 5T 

MM cells will not grow in the closely related, immune-competent C57Bl6 strain of 

mice (Radl, De Glopper et al. 1979; Radl, Croese et al. 1988; Garrett, Dallas et 

al. 1997; Fowler, Mundy et al. 2009), which suggests a critical role for the host 

bone marrow microenvironment.  In this chapter, we examined the differences 

between a myeloma permissive and non-permissive bone marrow 

microenvironment using the C57Bl/KaLwRij mice and determined that these mice 

have a significant decrease in adiponectin expression.  Using mice deficient in 

adiponectin, we further demonstrate that decreased adiponectin production is 

critical for myeloma establishment and progression.  Finally, we determined the 

therapeutic benefit of increasing adiponectin concentrations in vivo on myeloma 

development and progression.     
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Results 

Adiponectin is decreased in the host microenvironment of mice permissive 

for multiple myeloma 

The BM microenvironment is known to play a critical role in tumor growth 

and the development of myeloma bone disease.  The C57Bl/KaLwRij strain of 

mice of the well-established Radl model of multiple myeloma is unique in that 5T 

MM cells will only grow in syngeneic C57Bl/KaLwRij mice, and not in closely 

related C57Bl6 mice (Figure 18) (Fowler, Mundy et al. 2009).  This suggests an 

important role for the C57Bl/KaLwRij host microenvironment in the establishment 

of multiple myeloma.  Additionally, the similarities between human myeloma and 

that observed in the C57Bl/KaLwRij mice lead us to hypothesize that differences 

between a myeloma-permissive and non-permissive microenvironment may 

provide valuable insights into human disease.   

Given that the C57Bl/KaLwRij microenvironment is permissive for 

myeloma establishment and progression, we investigated factors that were 

differentially expressed between the C57Bl/KaLwRij and C57BL6 BM 

microenvironment.  We performed a microarray analysis on pooled whole BM 

from C57Bl/KaLwRij and C57Bl6 mice.  The microarray revealed a short list of 

genes that were differentially expressed between the BM of the two strains of 

mice (Table 1).  Several of the expression profiles found in the microarray were 

verified by quantitative real-time PCR, including a significant reduction in 

hydroxypostaglandin dehydrogenase 15, a significant increase in 

glycerophosphodiesterase domain containing 3 and a significant reduction in  
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Gene ! Gene Description ! Fold change*!
Abhd6! abhydrolase domain containing 6! 2.01 increase!
Adipoq! adiponectin, C1Q and collagen domain containing! 2.08 decrease!
Abca13! ATP-binding cassette, sub-family A (ABC1), member 13! 2.15 increase!
C5ar1! complement component 5a receptor 1! 2.06 increase!
Cysltr2! cysteinyl leukotriene receptor 2! 2.98 decrease!
Gdpd3! glycerophosphodiester phosphodiesterase domain containing 3! 32.7 increase!
Gnal! guanine nucleotide binding protein, alpha stimulating, olfactory type! 2.05 decrease!
Grap2! GRB2-related adaptor protein 2! 2.38 decrease!
Hist1h2bc! histone cluster 1, H2bc! 2.27 decrease!
Hist1h4c! histone cluster 1, H4c! 3.18 decrease!
Hpgd! hydroxyprostaglandin dehydrogenase 15 (NAD)! 5.05 decrease!
Mgl1! macrophage galactose N-acetyl-galactosamine specific lectin 1! 2.19 decrease!
Mrgpra2! MAS-related GPR, member A2! 2.08 increase!
Mc2r! Melanocortin 2 receptor! 2.06 increase!
Olfm4! olfactomedin 4! 2.21 increase!
Plxdc2! plexin domain containing 2! 2.62 decrease!
Samsn1! SAM domain, SH3 domain and nuclear localization signals, 1! 6.82 decrease!
Sirpb1! signal-regulatory protein beta 1! 2.17 increase!
Snord61! small nucleolar RNA, C/D box 61! 2.31 decrease!
Stfa1! stefin A1! 2.28 increase!
Stfa2! stefin A2! 2.55 increase!
Stfa3! stefin A3! 2.49 increase!
Tcte3! t-complex-associated testis expressed 3! 2.21 decrease!
Tnfrsf26! tumor necrosis factor receptor superfamily, member 26, mRNA! 5.08 decrease!
Trdn! Triadin! 2.29 increase!
*Change in expression in KaLwRij bone marrow as compared to C57Bl6 bone marrow.!
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Figure 18. Myeloma permissive and non-permissive mice.  Tumor 
burden in non-permissive C57Bl6 (C57) and myeloma-permissive 
C57Bl/KaLwRij (KaLwRij) mice, determined by measuring myeloma-specific 
IgG2bκ concentrations. Data are shown as mean ± S.E.M. ***p<0.005 
KaLwRij+MM compared to C57Bl6+MM (One-way ANOVA). (n=8 per group) 
 

Table 1. List of differentially expressed genes identified in microarray 
comparison of pooled whole bone marrow from permissive C57Bl/KaLwRij 
and non-permissive C57Bl6 mice (2-fold or more change).   
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adiponectin expression  (Figure 19A-C).  Myeloma is often associated with a 

destructive bone disease; therefore one gene, adiponectin, drew particular 

interest based on its association with both cancer and bone biology.  The 

adipokine adiponectin was significantly decreased in the BM of the myeloma-

permissive C57Bl/KaLwRij mice (Figure 19C).  Since adiponectin is a secreted 

factor, we also assessed the serum concentrations of adiponectin in both non-

permissive C57Bl6 and permissive C57Bl/KaLwRij mice.  We found that the 

permissive C57Bl/KaLwRij mice of the myeloma model had significantly lower 

serum concentrations of total adiponectin, compared to non-permissive C57Bl6 

(Figure 19D).  There was also a decrease in the high molecular weight (HMW) 

form of adiponectin (Figure 19E).    

Although adiponectin was originally identified as an adipocyte-specific 

factor, it is now known that adiponectin is also secreted other cell types, including 

BM stromal cells and osteoblasts.  To identify the source of differential 

adiponectin expression, we determined adiponectin expression in a panel of 

BMSCs, including populations from the permissive C57Bl/KaLwRij and the non-

permissive C57Bl6 mice.  Adiponectin was strongly expressed in the normal ST2 

BM stromal cell line and primary BMSCs isolated from non-permissive C57Bl6 

mice.  In contrast, primary BMSCs from myeloma permissive C57Bl/KaLwRij 

mice did not express adiponectin (Figure 19F), providing evidence for decreased 

adiponectin in the myeloma-permissive C57Bl/KaLwRij host microenvironment.  

We also showed that adiponectin was not expressed by our 5TGM1 myeloma 

cells (Figure 19F).  These data demonstrate that circulating and local  
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Figure 19. Strain comparison of permissive and non-permissive BM 
microenvironments by microarray analysis. (A-C) QPCR confirming 
differential expression of genes identified in the microarray comparing pooled 
whole BM from C57Bl6 and C57Bl/KaLwRij mice.  Results show a decrease in 
A) hydroxyprostaglandin dehydrogenase 15 (NAD) (*p<0.05), a increase in B) 
glycerophosphodiester phosphodiesterase domain containing 3 (*p<0.05), and 
a decrease in C) adiponectin expression levels in BM of myeloma-permissive 
C57Bl/KaLwRij mouse stain, as compared to C57Bl6 mouse bone marrow 
(***p<0.005). (n=3 per group for expression studies) D) C57Bl/KaLwRij mice 
have decreased concentrations of total adiponectin  (***p<0.005) (C57 n=8, 
KaLwRij n=7) and decreased HMW adiponectin in the serum determined by 
ELISA, in comparison to C57Bl6 mice. (n=4 per group)  F) BMSCs from 
myeloma-permissive C57Bl/KaLwRij mice do not express adiponectin 
compared to normal BMSCs (ST2 and primary C57Bl6 BMSCs). Data are 
shown as mean ± S.E.M.  (Mann-Whitney U test)  
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concentrations of adiponectin are decreased in myeloma-permissive mice; 

however the function of decreased adiponectin in myeloma pathogenesis would 

need to be further investigated.   

 

Adiponectin induces myeloma cell apoptosis 

The function of adiponectin in multiple myeloma is unknown.  Since our 

studies demonstrated a significant reduction in host-derived adiponectin in 

myeloma-permissive C57Bl/KaLwRij mice, we next investigated receptor 

expression in cells of the bone marrow microenvironment.  Primary BMSCs from 

both C57Bl6 and C57Bl/KaLwRij mice express both adiponectin receptor 1 

(AdipoR1) and 2 (AdipoR2) (Figure 20A).   

The detection of adiponectin receptor expression on 5TGM1 MM cells 

suggests that bone marrow-derived adiponectin may have direct effects on 

myeloma cells.  Adiponectin signaling has been previously reported to be 

dependent upon phosphorylation-dependent activation of AMP kinase and MAP 

kinase. Treatment with recombinant adiponectin for 48 hours resulted in 

activation of the downstream signaling kinase, AMPK (Figure 20B).  The level of 

AMPK activation was comparable to the activation seen after treatment with the 

known AMPK activator, aminoimidazole carboxamide ribonucleotide (AICAR) 

(Figure 20B).  Additionally, adiponectin treatment also resulted in the activation of 

p38 (Figure 20C).  Adiponectin is known to induce apoptosis in a number of solid 

tumors, including breast cancer, however its role in myeloma is unknown.  

Furthermore, the activation of AMPK has been shown to inhibit growth of      
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Figure 20. Adiponectin treatment induces myeloma cell apoptosis.  A) 
Adiponectin receptor expression in BMSCs (ST2 and primary C57 and KaLwRij 
BMSCs) and 5TGM1 MM cells.  B) Western blot showing activation of AMPK 
and C) p38 kinase in 5TGM1 MM cells upon treatment with 5 and 10 µg/mL 
adiponectin.  D) 5TGM1 MM cells treated with 5 µg/mL of adiponectin for 48 
hours showed a significant increase in apoptotic cells from vehicle-treated 
controls (**p<0.01) as measured by annexinV and SYTOX staining and flow 
cytometric analysis.   Data are shown as mean ± S.E.M.  (Mann-Whitney U test)  
E) Western blot showing cleavage of apoptotic caspase-3 and F) cleaved 
PARP-1 induced upon treatment with 5, 10, and 15 µg/mL recombinant 
adiponectin.   
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myeloma cells and other types of cancer cells (Gonzalez-Angulo and Meric-

Bernstam 2010(Gonzalez-Angulo and Meric-Bernstam ; Woodard and Platanias ; 

Baumann, Mandl-Weber et al. 2007).  Given this inhibition, we wanted to 

determine the downstream effects of adiponectin on myeloma cells.  5TGM1 MM 

cells were treated with recombinant adiponectin and then assessed for apoptosis 

with annexin V and SYTOX AADvanced cell staining for flow cytometry.  After 48 

hours, 5TGM1 MM cells treated with adiponectin showed a significant increase in 

the percent of apoptotic cells, in comparison to vehicle treated control cells 

(Figure 20D).  Finally, we investigated whether downstream apoptotic effectors 

were induced in response to adiponectin treatment.  Following treatment with 

adiponectin, there was an increase in cleaved caspase-3 expression (Figure 

20E) and increased PARP-1 cleavage (Figure 20F) present in 5TGM1 MM cells, 

indicative of apoptotic signaling activation.    

   

Adiponectin is decreased in the serum of patients with MGUS and multiple 

myeloma 

Given the similarities between the Radl model of myeloma in 

C57Bl/KaLwRij mice and human myeloma, we next wanted to determine whether 

our observations of decreased adiponectin in myeloma-permissive 

C57Bl/KaLwRij mice translated to the clinical setting. In collaboration with the 

Mayo Clinic serum, we obtained serum samples from patients with MGUS that 

subsequently progressed to MM, and patients with MGUS that had not 

progressed to myeloma over an average period of 19 years.  Patient samples 
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were age-, sex-, and BMI-matched to normal controls.  Measurement of total 

adiponectin concentrations demonstrated a significant difference between MGUS 

patients that or did not progress to myeloma, with a trend towards a reduction in 

serum adiponectin in those MGUS patients who did progress to myeloma, as 

compared to control (Figure 21A).  Previous studies in the field of metabolism 

and diabetes suggest that high molecular weight (HMW) adiponectin is a better 

predictor of metabolic parameters, insulin sensitivity, and is thought to be more 

biologically active (Salani, Briatore et al. 2006; Bluher, Brennan et al. 2007).  

Accordingly, measurement of HMW adiponectin demonstrated not only a 

significant difference between MGUS patients that did or did not progress to 

myeloma, but also a significant decrease in those patients that did progress to 

myeloma, as compared to control (Figure 21B and C).  Furthermore, analysis of 

serum paraprotein concentrations in those patients with MGUS that subsequently 

progressed to myeloma, revealed a clear trend towards a negative correlation 

between concentrations of serum paraprotein and adiponectin (Figure 21D).  

These data support our observations from a murine system of model that 

decreased adiponectin is associated with myeloma-permissive 

microenvironments, and so validate the further use of the 5T Radl model to 

investigate the role of adiponectin in myeloma pathogenesis in vivo.  

Furthermore, the significant difference between adiponectin concentrations in 

MGUS patients that do or do not progress to myeloma suggests that adiponectin 

may play a tumor suppressive role in myeloma development.  
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Figure 21. Decreased serum adiponectin in MGUS patients is associated 
with myeloma progression.  Serum concentrations of both total and HMW 
adiponectin were measured by ELISA.  A) Percent decrease from normal 
patient serum in total adiponectin in MGUS patients that either progress or do 
not progress to MM.  B) HMW adiponectin concentrations are lower in MGUS 
patients that progress to MM, compared to control and MGUS patients that do 
not progress to MM.  C) Percent decrease in HMW adiponectin is significant 
from normal patients compared to MGUS patients that progress to myeloma.  
D) A trend towards a negative correlation between plasma cell derived-serum 
paraprotein and total adiponectin concentrations present in the serum of 
MGUS patients.  Data are shown as mean ± S.E.M.  *p<0.05 compared to 
normal controls and #p<0.05 compared to MGUS patient with progression 
(One-way ANOVA). (control n=16, MGUS with progression n=9, and MGUS 
with no progression n=7)  
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Lack of host-derived adiponectin is important in myeloma pathogenesis  

 To specifically address the contribution of host-derived adiponectin to 

myeloma development in vivo, we investigated myeloma development in 

adiponectin deficient mice.   Since we have previously shown that mice deficient 

in the recombinase activating gene-2 (RAG-2) are permissive to 5TGM1 MM cell 

growth and provide a tool for examining contributions of host-derived factors 

(Fowler, Mundy et al. 2009), we utilized these mice to determine how lack of 

host-derived adiponectin contributes to myeloma cell growth in vivo.  RAG-2 

deficient mice were bred with adiponectin deficient mice to obtain littermate 

adiponectin wildtype (RAG-2-/-Adipo+/+) and homozygous deficient (RAG-2-/-

Adipo-/-) genotypes.  Western blot analysis confirmed that the double knockout 

(RAG-2-/-Adipo-/-) mice do not express total adiponectin, or any of the other 

circulating isotypes (Figure 22A).   

To determine whether myeloma development was more severe in mice 

that lack adiponectin, RAG-2-/-Adipo-/- and RAG-2-/-Adipo+/+ mice were inoculated 

with 5TGM1 MM cells.  Both wildtype and adiponectin-deficient mice developed 

myeloma in a period of approximately four weeks, similar to what is seen in the 

C57Bl/KaLwRij mice of the Radl model.  RAG-2-/-Adipo-/- mice had a significant 

increase in tumor burden, as measured by myeloma-specific IgG2b serum 

concentrations following myeloma cell inoculation, in comparison to RAG-2-/-

Adipo+/+ mice (Figure 22B).  Of note, this increase in tumor burden was seen as 

early as one-week post-tumor cell inoculation and persisted through the 

experimental endpoint.  The osteolytic bone disease associated with myeloma     
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Figure 22. Lack of host-derived adiponectin exacerbates myeloma 
pathogenesis.  Adiponectin deficient mice bred on a RAG-2 deficient 
background inoculated with 5TGM1 MM cells.  A) Western blot showing 
adiponectin expression (total and various isoforms) in all three genotypes used 
in myeloma comparison study. B) A significant increase in tumor burden over 
time in KO RAG-2-/-Adipo-/-, represented by IgG2b serum concentrations.  Data 
are shown as mean ± S.E.M. *p<0.05, **p<0.001, and ***p<0.005 as compared 
to WT RAG-2-/-Adipo+/+ (One-way ANOVA and Tukey-Kramer tests).  Myeloma-
associated bone disease was more severe in KO RAG-2-/-Adipo-/- with C) a 
significant increase in lesions through the cortical bone, D) a significant 
decrease in trabecular bone, and E) a significant decrease in bone formation 
rates, compared to WT RAG-2-/-Adipo+/+ mice.  F) TUNEL staining showing that 
myeloma-bearing RAG-2-/-Adipo-/- mice show a decrease in apoptotic myeloma 
cells present in the bone marrow cavity, in comparison to RAG-2-/-Adipo+/+ mice.  
Data are shown as mean ± S.E.M.  *p<0.05, **p<0.001, and ***p<0.005 as 
compared to WT RAG-2-/-Adipo+/+ (Mann-Whitney U test).  (WT RAG-2-/-Adipo+/+ 
n=3, KO RAG-2-/-Adipo-/- n=6) 
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was more severe in the RAG-2-/-Adipo-/- mice, which displayed increased lesions 

through the cortical bone (Figure 22C), decreased trabecular bone volume 

(Figure 22D), and decreased osteoblast activity (Figure 22E).  There was also a 

decrease in osteoblasts and osteoclasts present on the trabecular bone surfaces 

(data shown as mean ± S.E.M.; WT 8.06 ± 0.423 versus KO 3.72 ± 1.31 

osteoblast surface/bone surface; WT 22.4 ± 3.05 versus KO 13.4 ± 3.08 

osteoclast surface/bone surface); however this is likely due to the overall 

decrease in trabecular bone.  Histological assessment of the bone marrow 

demonstrated a decrease in myeloma cells undergoing apoptosis in RAG-2-/-

Adipo-/- mice compared to RAG-2-/-Adipo+/+ mice  (Figure 22F), providing further 

evidence of a myeloma-suppressive effect of adiponectin.  There was no 

difference in myeloma cell proliferation in the RAG-2-/-Adipo-/- mice, compared to 

RAG-2-/-Adipo+/+ mice  (WT 0.0029 ± 0.0007 versus KO 0.0010 ± 0.0002 p-

histone H3 positive myeloma cells/total cells).  Given there was a significant 

increase in both tumor burden and the associated osteolytic bone disease in the 

RAG-2-/-Adipo-/- mice; this provides strong evidence that lack of circulating 

adiponectin has a role in myeloma pathogenesis. 

To examine whether adiponectin deficient mice had a significant bone 

phenotype at time of tumor cell inoculation that may impact myeloma growth and 

progression, we evaluated the bone phenotype of adiponectin deficient mice at 

the time of tumor cell inoculation.  Assessment of bone parameters in RAG-2-/-

Adipo-/- mice by microCT and histomorphometry show a slight decrease in 

trabecular bone volume in RAG-2-/-Adipo-/- mice in comparison to RAG-2-/- 
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RAG-2-/-Adipo+/+ ! RAG-2-/-Adipo-/- !

% BV/TV! 5.48 ± 0.67 ! 3.82 ± 0.75!

OB.S./BS. (mm2/mm3)! 15.6 ± 1.23! 16.4 ± 1.96!

OC.S./BS.! 15.3 ± 1.27! 17.5 ± 1.90!

Tb.N (1/mm)! 4.61 ± 0.35! 3.95 ± 0.50!

Tb.Th. (mm)! 0.04 ± 0.003! 0.04 ± 0.001!

Tb.Sp. (mm)! 0.22 ± 0.02! 0.27 ± 0.05!

Table 2. Bone parameters of RAG-2-/-Adipo-/- and RAG-2-/-Adipo+/+ 
mice.  MicroCT analysis of bone parameters in WT RAG-2-/-Adipo+/+ 

and KO RAG-2-/-Adipo-/- mice, including trabecular bone volume 
(%BV/TV), osteoblast surface (OB.S/BS) and osteoclast surface to 
bone surface (OC.S./BS), trabecular number (Tb.N.), trabecular 
thickness (Tb.Th.), and trabecular spacing (Tb.Sp.). Data are shown as 
mean ± S.E.M.  (WT n=9, KO n=5).   
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Adipo+/+ mice (Table 2), however this decrease was not significant.  There were 

no significant differences between the RAG-2-/-Adipo+/+ and RAG-2-/-Adipo-/- mice 

in any of the bone parameters measured.     

 

L-4F increases adiponectin production in vitro and in vivo 

 Since our data strongly suggest that a decrease in host-derived 

adiponectin promotes myeloma, we hypothesized that pharmacological 

enhancement of adiponectin may represent a novel therapeutic approach.  In 

order to increase adiponectin production we utilized L-4F, an apolipoprotein 

mimetic peptide, which has been previously shown to increase serum 

concentrations of the HMW form of adiponectin in obese mice when administered 

daily (Peterson, Drummond et al. 2008).  Apolipoprotein mimetics have a strong 

lipid-associating ability because of their class A amphipathic helical structural 

motif (Sparrow, Gotto et al. 1973; Mishra, Palgunachari et al. 1995; 

Palgunachari, Mishra et al. 1996).  The 4F refers to the number of phenylalanine 

residues present on the non-polar face of the helical structure (Figure 23A) 

(Mishra, Palgunachari et al. 2008).  We undertook initial studies to confirm that 

treatment of C57Bl/KaLwRij mice, which we know to have decreased 

adiponectin, with L-4F also resulting in an increase in circulating adiponectin 

(Figure 23B).    We next examined whether L-4F could induce adiponectin 

expression in BMSCs resident in the bone marrow microenvironment, particularly 

from the C57Bl/KaLwRij microenvironment that we previously demonstrated has  

decreased adiponectin.   Both ST2 and primary C57Bl/KaLwRij BMSCs showed  
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Figure 23. L-4F treatment increases adiponectin expression by BMSCs and 
increases adiponectin expression in vivo. A) The amino acid sequence of the 
L-4F peptide and the helical structure. The black arrows indicate the four-
phenylalanine residues. B) Mice treated L-4F show increased serum 
concentrations of high molecular weight (HMW) adiponectin (*p<0.05, Mann-
Whitney U test). C) L-4F induced adiponectin expression in dose-dependent 
manner with 20 and 40 µg/mL in BMSCs, determined by quantitative RT-PCR  
(**p<0.01, ***p<0.005 as compared to vehicle, one-way ANOVA).  D) MTS assay 
over 72 hours of 5TGM1 MM cells treated with vehicle, 10, 20, and 40 µg/mL of 
L-4F showed no direct effect on viability. E) 5TGM1 MM cell apoptosis measured 
by annexin V positive cells, after treatment with conditioned media from 
C57Bl/KaLwRij and RAG-2-/-Adipo-/- BMSCs treated with 40 µg/mL of L-4F 
(*p<0.05 as compared to vehicle conditioned media, Mann-Whitney U test.  Data 
are shown as mean ± S.E.M.   
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a significant induction of adiponectin expression following 48 hours of L-4F 

treatment (Figure 23C).  This increase in expression was demonstrated at both 

20 and 40 µg/mL (Figure 23C).  Interestingly, the C57Bl/KaLwRij BMSCs showed 

adiponectin expression following L-4F treatment despite basal expression being 

undetectable.  In contrast, 5TGM1 myeloma cells treated with L-4F failed to 

induce adiponectin expression and adiponectin remained undetected in these 

cells.  

Increasing concentrations of L-4F had a direct effect on myeloma cell 

viability (Figure 23D).  However, treatment of 5TGM1 MM cells with the 

conditioned media from the C57Bl/KaLwRij stroma that were treated with L-4F 

showed a significant 82% increase in the percentage of apoptotic cells (Figure 

23E).  In contrast, treatment of 5TGM1 MM cells with conditioned media from L-

4F-treated RAG-2-/-Adipo-/- BMSCs had no significant effect on apoptosis, 

indicating that L-4F can indirectly induce myeloma cell apoptosis via induction of 

adiponectin in BMSCs (Figure 23E).  These results suggest that the BMSCs of 

the myeloma-permissive C57Bl/KaLwRij mice is not irreversibly altered since 

adiponectin expression can be restored and supports therapeutic potential of 

using L-4F in vivo. 

 

L-4F treatment has potential as an anti-myeloma therapy 

Given that L-4F treatment in mice increases adiponectin expression and 

production in vivo, we next wanted to address whether L-4F treatment of MM-

bearing C57Bl/KaLwRij mice had an anti-tumor effect.  Since our data 
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demonstrates that decreased adiponectin is present in MM-permissive 

microenvironments, prior to myeloma and suggests a role for adiponectin in the 

early stages of myeloma development, we first investigated the effect of L-4F, 

administered as a pre-treatment in order to increase host adiponectin prior to 

inoculation of myeloma cells.  Following 28 days of daily L-4F treatment, 

C57Bl/KaLwRij mice showed a significant 28% increase in both high molecular 

weight (HMW) and total adiponectin concentrations present in serum (Figure 24A 

and B).  This level of increase is equivalent to the reduction in adiponectin in MM-

permissive C57Bl/KaLwRij mice, as compared to non-permissive C57Bl6 mice.  

At this time point, mice were inoculated with 5TGM1 MM cells.  Treatment with L-

4F or vehicle was continued throughout the experiment, in order to maintain the 

change in the host microenvironment.  Measurement of tumor burden in vehicle 

and L-4F-treated mice demonstrated that mice treated with L-4F had a significant 

reduction in tumor burden throughout myeloma development and at experimental 

endpoint (Figure 24C and D).  Interestingly, the decrease in tumor burden was 

seen early and throughout myeloma development, suggesting that increases in 

adiponectin are critical for tumor establishment (Figure 24D).  The difference in 

tumor burden at early stages of disease is similar to the tumor burden in 

myeloma-bearing RAG-2-/-Adipo+/+ versus RAG-2-/-Adipo-/- mice (Figure 22B).  

Immunohistochemical analysis of the bone marrow demonstrated a significant 

increase in the number of apoptotic myeloma cells present in the bone marrow of 

mice treated with L-4F in comparison to vehicle treated mice, determined by 

TUNEL staining (Figure 25A).  There was also a significant decrease in Ki67  
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Figure 24.  L-4F treatment results in decreased tumor burden in the 
myeloma model.  Myeloma-bearing C57Bl/KaLwRij mice of the Radl 
myeloma model have decreased tumor burden with L-4F.  A) Adiponectin 
western blot showing elevated HMW adiponectin serum levels after 
treatment with L-4F for 28 days.  B) HMW adiponectin ELISA showed a 
significant increase in HMW adiponectin serum concentrations with L-4F 
treatment.  C) Tumor burden represented by GFP positive 5TGM1 
myeloma cells is significantly reduced within the bone marrow of L-4F 
treated mice, measured by flow cytometry.  *p<0.05, **p<0.01 as 
compared to vehicle (Mann-Whitney U test).  D) L-4F treatment results in 
a significant decrease in the rate of tumor development, indicated by 
IgG2b serum concentrations over time.  Data are shown as mean ± S.E.M.  
*p<0.05, **p<0.01 (One-way ANOVA ).  (Vehicle n=9, L-4F-treated n=10).    
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Figure 25. L-4F treatment increases myeloma cell apoptosis in vivo 
and increases survival.  A) Mice treated with L-4F show a significant 
increase in TUNEL positive myeloma cells present in the BM, indicative of 
apoptosis.  B) Mice treated with L-4F show a significant decrease in Ki67 
staining present in the BM.  Data are shown as mean ± S.E.M.  *p<0.05 
compared to vehicle (Mann-Whitney U test).  (Vehicle n=9, L-4F-treated 
n=10).  C) Kaplan-Meier plot showing L-4F treated mice had a significant 
increase in survival in comparison to vehicle treated mice.  p<0.0001, 
compared to vehicle treated mice (Log –rank Mantel-Cox test). (n=15 per 
group)   
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staining and 55% decrease in phospho-histone H3 positive myeloma cells in the 

bone marrow of mice treated with L-4F, indicative of a decrease in overall 

myeloma cell proliferation (Figure 25B).  In contrast, L-4F treatment of MM-

bearing mice from time of tumor inoculation had no significant effect on tumor 

burden (38% ± 13.5 reduction in IgG2b serum concentrations in L-4F treated 

mice), suggesting that the modification of the BM microenvironment prior to 

myeloma cell presence is critical for the anti-myeloma effect of L-4F and 

adiponectin.  To further investigate the anti-myeloma effects of L-4F in vivo, we 

wanted to investigate the effects of L-4F on survival. Myeloma-bearing mice 

treated with L-4F showed an increase in survival in comparison to vehicle treated 

animals (Figure 25C).   

Finally, since adiponectin is a secreted factor detected in the serum, we 

wanted to examine the effect of L-4F on myeloma growth independent of the BM 

microenvironment using a plasmacytoma model.  C57Bl/KaLwRIj mice were 

treated with L-4F daily following subcutaneous injection of 5TGM1 MM cells.  L-

4F treatment resulted in a significant decrease in tumor growth, compared to 

vehicle treated mice (Figure 26A).  Additionally, there was a significant increase 

in myeloma cells undergoing apoptosis in response to L-4F treatment (Figure 

26B).  These combined results demonstrate that increasing serum adiponectin 

levels via L-4F inhibits tumor cell growth and increases survival in vivo.        
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Figure 26.  L-4F treatment decreases tumor growth in a 
plasmacytoma model.  A) Mice treated with L-4F showed a significant 
decrease in tumor growth, compared to vehicle treated mice.  B) L-4F 
treated mice had a significant increase in myeloma cells undergoing 
apoptosis in the subcutaneous tumor.  Data are shown as mean ± 
S.E.M.  *p<0.05 as compared to vehicle (One-way ANOVA for part A 
and Mann-Whitney U test for part B). (Vehicle n=7, L-4F-treated n=8) 
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L-4F treatment is beneficial to myeloma bone disease 

Myeloma is associated with a destructive osteolytic disease; therefore 

when investigating new potential therapeutic options, it is important to consider 

the benefits to myeloma bone disease, in addition to anti-tumor effects.  Myeloma 

bone disease is associated with a reduction in trabecular bone volume and an 

increase in osteolytic lesions and osteoclasts, plus a decrease in osteoblasts and 

bone formation.  MicroCT analysis showed that myeloma-bearing mice treated 

with L-4F had significantly less osteolytic lesions present through the cortical 

bone, compared to vehicle-treated mice (Figure 27A).  Histomorphometric 

analysis revealed although there was no significant difference in osteoclast 

number, L-4F treated mice showed a significant increase in bone formation rates 

compared to vehicle treated mice (Figure 27B).   

Considering myeloma tumor burden and the associated bone are 

intrinsically linked, we wanted to determine whether L-4F had benefits to bone, 

independent of tumor cell presence; therefore we assessed the bones of non-

tumor mice treated with either vehicle or L-4F.  Following treatment with L-4F, 

mice showed a significant increase in trabecular bone volume measured by 

microCT analysis, in comparison to vehicle treated animals (Figure 28A).  

Additionally, histomorphometry showed that L-4F-treated mice had a significant 

increase in osteoblasts present on the bone surface (Figure 28B) and in bone 

formation rates (Figure 28C).  Contrary to the increase in osteoblasts in response 

to L-4F, there was no significant change in osteoclasts present in the bone 

marrow (Figure 28B).  These data provide strong evidence that L-4F has positive  
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Figure 27. L-4F treatment reduces myeloma 
associated bone disease.  A) Myeloma-bearing mice 
treated with L-4F had significantly less lesions (white 
arrowheads) through the cortical bone as compared to 
vehicle treated control mice. B) Myeloma-bearing mice 
treated with L-4F showed a significant increase in bone 
formation rates (per year), in comparison to vehicle-
treated control mice. Data are shown as mean ± S.E.M.  
***p<0.001 as compared to vehicle treated mice (Mann-
Whitney U test).   (Vehicle n=9, L-4F-treated n=10) 
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Figure 28. L-4F treatment has beneficial effects on bone.  A) Non-
tumor mice treated with L-4F showed a significant increase in trabecular 
bone volume, in comparison to vehicle-treated mice. B) Non-tumor mice 
treated with L-4F had a significant increase in osteoblasts per bone 
surface (Ob.S./BS) compared to vehicle-treated mice; however there was 
no difference in osteoclasts per bone surface (Oc.S./BS).  C) L-4F treated 
mice also had a significant increase in bone formation rates, compared to 
vehicle-treated mice.  Data are shown as mean ± S.E.M.  *p<0.05 as 
compared to vehicle treated mice (Mann-Whitney U test). (n=5 per group)      
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effects on both myeloma bone disease and normal bone, likely mediated through 

increasing osteoblastic bone formation.   

 

The anti-myeloma and bone effects of L-4F are mediated through 

adiponectin  

 Finally, to determine whether the beneficial effects of L-4F are mediated 

specifically through the promotion of adiponectin production, we performed a 

proof of principle experiment.  RAG-2-/-Adipo+/+ and RAG-2-/-Adipo-/- mice were 

treated with either vehicle or L-4F prior to tumor cell inoculation in order to 

elevate circulating concentrations of HMW adiponectin to the same level as the 

previous myeloma study.  Following pre-treatment, these mice were inoculated 

with 5TGM1 MM cells while L-4F treatment continued throughout myeloma 

development.  At experimental endpoint, we found that only WT RAG-2-/-Adipo+/+ 

mice responded to L-4F treatment resulting in a decrease of tumor burden, 

compared to mice deficient in adiponectin (Figure 29A).  Additionally, adiponectin 

deficient mice did not receive any beneficial bone effects from L-4F treatment.   

The WT RAG-2-/-Adipo+/+ mice treated with L-4F had an increase in trabecular 

bone volume and bone formation rate compared to vehicle treated mice while KO 

RAG-2-/-Adipo-/- mice did not show these increases (Figure 29B and C).  These 

data together provide evidence that L-4F mediates its anti-myeloma effect via 

stimulation of adiponectin expression and secretion.      

 

 



 110 

 

 

 

A!

C!B!

-100!

0!

100!

200!

300!

400!

WT! KO!

%
 c

ha
ng

e 
in

 B
on

e 
vo

lu
m

e/
To

ta
l v

ol
um

e 
w

ith
 L

-4
F 

tre
at

m
en

t!

-50!

-40!

-30!

-20!

-10!

0!

10!

20!

30!

WT! KO!%
 c

ha
ng

e 
in

 Ig
G

2b
κ 

w
ith

 L
-4

F 
tre

at
m

en
t!

-40!

-20!

0!

20!

40!

60!

80!

100!

WT! KO!

%
 c

ha
ng

e 
in

 B
on

e 
fo

rm
at

io
n/

Bo
ne

 s
ur

fa
ce

 
w

ith
 L

-4
F 

tre
at

m
en

t!

Figure 29. The anti-myeloma and bone effects of L-4F are mediated via 
adiponectin.  A) Myeloma-bearing WT RAG-2-/-Adipo+/+ mice treated with L-
4F showed a decrease in tumor burden, compared to vehicle-treated mice.  In 
contrast to KO RAG-2-/-Adipo-/- mice that did not show this decrease 
(p=0.887).   Myeloma-bearing WT RAG-2-/-Adipo+/+ mice treated with L-4F had 
an increase in B) trabecular bone volume and C) bone formation rate 
compared to vehicle treated WT mice; however KO RAG-2-/-Adipo-/- mice did 
not show an increase in bone volume in response to L-4F treatment (p=0.119 
and p=0.058, respectively). Data are shown as mean ± S.E.M. (Mann-Whitney 
U test).  (WT n=5, KO n=6)    
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Conclusions 

Following the identification of decreased adiponectin in a myeloma-

permissive microenvironment, we investigated the role of adiponectin in myeloma 

pathogenesis and its potential as a therapeutic target.  Adiponectin was 

decreased in MM-permissive C57Bl/KaLwRij mice, as compared to non-

permissive C57Bl6 mice.  These observations in the murine myeloma model 

were supported by clinical evidence demonstrating that MGUS patients who 

progressed to myeloma had decreased adiponectin concentrations present in 

their serum.  There are currently very few studies measuring circulating 

adipokines in MGUS patients.  To date, there are only two studies demonstrating 

an association between abnormal adipokine production and risk of developing 

myeloma (Dalamaga, Karmaniolas et al. 2009; Reseland, Reppe et al. 2009).  

Our studies provide the first direct in vitro and in vivo evidence to link decreased 

adiponectin and myeloma pathogenesis, using both pre-clinical models and 

evidence from MGUS patients.   Our study is the first time an adipokine has 

demonstrated such a potent anti-myeloma effect through the induction of 

apoptosis.  Finally, adiponectin deficiency exacerbated myeloma pathogenesis 

while increasing circulating adiponectin in MM-bearing mice resulted in reduced 

tumor burden, the prevention of myeloma bone disease, and increased overall 

survival.  These data demonstrate that decreased adiponectin contributes to 

myeloma pathogenesis, and establishes the potential therapeutic benefit of 

increasing adiponectin in the treatment of both MGUS and myeloma patients. 
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In this study, we demonstrate both pharmacologically and genetically, that 

reduced or absent adiponectin is important in myeloma progression and suggest 

that adiponectin may be tumor suppressive in myeloma.  We demonstrated that 

adiponectin activates AMPK resulting in myeloma cell apoptosis.  Previous 

studies by Baumann et al. demonstrated that activation of AMPK inhibited 

myeloma cell growth in vitro; however this was never demonstrated using 

physiologically relevant activators of AMPK, such as adiponectin (Baumann, 

Mandl-Weber et al. 2007).   Adiponectin was shown to induce apoptosis through 

the activation of the caspase cascade in endothelial cells resulting in decreased 

angiogenesis (Brakenhielm, Veitonmaki et al. 2004).   Additionally, there is recent 

evidence in the cancer field showing that AMPK may have an important role in 

controlling cancer because of its role in regulating cell growth and metabolism 

(Fogarty and Hardie ; Gonzalez-Angulo and Meric-Bernstam ; Woodard and 

Platanias).   

We have demonstrated that decreased adiponectin is important during 

early stages of myeloma development.  Observations in the clinical setting have 

found that MGUS often precedes myeloma development (Landgren, Kyle et al. 

2009; Weiss, Abadie et al. 2009).  We found decreased adiponectin in MGUS 

patients that progress to myeloma compared to those that do not progress, which 

supports our hypothesis that adiponectin is important during the initial stages of 

disease.  Supporting this observation, adiponectin deficient mice have higher 

tumor burden even at early time points in myeloma development compared to 

wildtype mice.  Furthermore, L-4F only has a potent anti-myeloma effect with pre-
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treatment to modify the microenvironment prior to tumor cells being present 

within the bone marrow.  All of these results together suggest that adiponectin 

has a protective effect against myeloma establishment and progression, which 

manifests early in disease development.  It is critical to identify risk factors in 

MGUS patients that are predictive of myeloma progression and our studies 

suggest that decreased adiponectin may predict such progression.   

These studies suggest adiponectin and L-4F-mediated adiponectin 

production may be potential therapeutic agents for MGUS patients to prevent 

progression to MM, and that this approach may be more effective in MGUS than 

MM.  Adiponectin is a secreted factor and can act through endocrine pathways.  

The strong anti-myeloma effect of L-4F in the plasmacytoma model supports the 

potent effects of L-4F-mediated adiponectin expression on myeloma cells and 

also the therapeutic potential for treatment of other cancers not localized to the 

BM.      

A destructive osteolytic bone disease is often associated with MM.  We 

demonstrate in MM-bearing mice that L-4F, through increased adiponectin 

production, can benefit bone disease by enhancing osteoblastic bone formation 

resulting in increased bone volume.  Additionally, we show that L-4F has positive 

effects on bone without the presence of tumor cells, suggesting that L-4F may a 

beneficial treatment option for other conditions where bone health is 

compromised.  Adiponectin not only acts on bone through endocrine pathways 

as a secreted hormone but also in an autocrine/paracrine fashion through local 

production within the bone marrow microenvironment that acts to promote bone 
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formation and osteogenesis (Shinoda, Yamaguchi et al. 2006).  Adiponectin can 

have direct effects on both osteoblasts and osteoclasts, by stimulating 

proliferation and inhibiting RANKL-mediated osteoclastogenesis, respectively 

(Oshima, Nampei et al. 2005; Yamaguchi, Kukita et al. 2007; Williams, Wang et 

al. 2009).  Some of the current data in the literature are conflicting in regards to 

the effects of adiponectin on bone; however our data suggest that its effects are 

mainly through stimulation of osteoblasts.  Finally, the additional benefits of L-4F 

on bone suggest that increasing adiponectin would be beneficial for MGUS 

patients that experience bone loss.  Drake, et al. recently demonstrated that 

MGUS patients experience a generalized bone loss despite the absence of lytic 

lesions.   

   The phenotype in AMPK β subunit knockout mice suggests that the 

beneficial effects of L-4F on bone may be through adiponectin-mediated AMPK 

activation.  L-4F acts to stimulate adiponectin production, which then activates 

AMPK.  Mice with a germline deletion of the AMPK β subunits have low AMPK 

activity in tissues and decreased trabecular bone, in both mass and density 

(Quinn, Tam et al.).  Interestingly, the double deficient generated for these 

studies did not appear to have a dramatic bone phenotype as was observed in 

other studies using adiponectin deficient mice (Williams, Wang et al. 2009).  The 

lack of a strong bone phenotype in the RAG-2-/-Adipo-/- mice is supportive that a 

decrease in overall bone is not responsible for increasing the severity of 

myeloma and associated bone disease; therefore is more likely due to the lack of 

protection against myeloma progression.  Also of interest to better understanding 
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the effect of L-4F on bone is a recent study by Huang et al. showing that 

adiponectin stimulated BMP-2 expression in osteoblasts.  Stimulation of BMP-2 

may be a possible indirect downstream effect of L-4F on bone.  The effects of L-

4F on resident bone marrow cells is a future direction for this work and will be 

discussed further in the next chapter.       

Obviously, of additional interest in the future is the effect of other 

adipokines and adiposity, in general, on myeloma progression.  Other 

adipokines, including leptin and resistin are shown to be elevated in myeloma 

patients (Alexandrakis, Passam et al. 2004; Pamuk, Demir et al. 2006; 

Dalamaga, Karmaniolas et al. 2009; Reseland, Reppe et al. 2009).  In contrast to 

examining some adipokines in myeloma patients, little to no investigation has 

been performed in patients with MGUS.  The studies presented in this chapter 

are the first to provide evidence using in vivo models of disease and to provide 

some mechanism by which an adipokine contributes to myeloma progression.  

Given the close association of adiponectin and other adipokines with adiposity 

and obesity, it is difficult to separate the role of adipocytes in myeloma 

development.  In the next chapter, the future directions of this work will be 

discussed involving diet-induced obesity in the context of the myeloma model.       

The proposed mechanism by which circulating adiponectin concentrations 

have negative effects on myeloma progression is displayed in Figure 30.  In 

healthy physiological conditions, adiponectin is at normal or even high circulating 

concentrations.  These levels of adiponectin are protective against myeloma 

growth and progression, and adiponectin could be acting to directly inhibit 
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myeloma cell growth by inducing apoptosis.  The protective effects could be 

acting on the local microenvironment to prevent a generalized bone loss often 

seen in older individuals and MGUS patients.  The results presented in this 

chapter suggest that decreased adiponectin in early stages of disease results in 

the loss of tumor suppression and ultimately progression to myeloma.  Our 

studies suggest that adiponectin acts on both osteoblasts within the 

microenvironment to stimulate bone formation and directly inducing apoptosis of 

myeloma cells.  As the BMSC studies presented in chapter IV suggest, a 

generalized bone loss may be important in for myeloma progression; therefore 

benefits to overall bone health are critical.  Future studies are needed to 

determine whether other in vivo models with bone loss are permissive to 

myeloma and whether adiponectin treatment could prevent myeloma growth in 

these mice. 
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Figure 30. Circulating adiponectin concentrations contribute to myeloma 
pathogenesis. (A) When normal circulating levels of adiponectin are present in 
early stages of myeloma, adiponectin acts to suppress tumor growth, stimulate 
osteoblast activity, and inhibit osteoclast activity*.  Additionally, L-4F treatment 
increases circulating adiponectin concentrations, which is shown to have a 
protective effect against myeloma progression.  (B) When adiponectin 
concentrations are low, myeloma cells are no longer suppressed and can act to 
suppress osteoblasts and stimulate osteoclasts*. 
*previously shown in the literature 
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CHAPTER VI 

 

CONCLUSIONS AND SIGNIFICANCE 

 

The combined results from the studies described in this dissertation 

provide compelling evidence that the bone marrow microenvironment is critical 

for myeloma development.  This evidence includes (i) differences between 

myeloma-permissive and non-permissive strains, (ii) contributions of altered 

BMSCs in myeloma establishment and progression, and (iii) decreased host-

derived adiponectin playing a role in myeloma pathogenesis (Figure 31A and B).  

These studies provided novel concepts of investigation in the field of myeloma as 

demonstrated by this work receiving numerous forms of recognition either 

through grants, awards, or oral presentations at international conferences: 

Awards 
2010 ASBMR Young Investigator Travel Grant Award, Toronto, Canada. 

2009 Lai Sulin Scholarship Award from Vanderbilt University Graduate School  

2008 Young Investigator Award from ASBMR, Montreal, Canada. 

2008 Cancer Induced Bone Disease Travel Award, Edinburgh, Scotland.  

Presentations 
 

J.A. Fowler, et al.  Myeloma-associated fibroblasts suppress osteoblasts in vivo 
independent of tumor presence.  31th Annual Meeting of the American Society for Bone 
and Mineral Research, Denver, Colorado (2009) 
 

J.A. Fowler, et al. Decrease in bone marrow-derived adiponectin contributes to 
myeloma pathogenesis in vivo.  31th Annual Meeting of the American Society for Bone 
and Mineral Research, Denver, Colorado (2009) 
 

J.A. Fowler, et al.  Host bone marrow-derived stromal cells promote myeloma initiation 
and development of osteolysis. 30th Annual Meeting of the American Society for Bone 
and Mineral Research, Montreal, Canada (2008)  
 

J.A. Fowler, et al.  Essential role of host bone marrow-derived stromal cells in the initial 
establishment and progression of multiple myeloma.  VII International Meeting on 
Cancer Induced Bone Disease, Edinburgh, Scotland (2008).   
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First, we are able to demonstrate critical differences between 5TGM1 

myeloma-permissive and non-permissive strains of mice.  The concept of 

permissive versus non-permissive is a common theme throughout all the work 

presented in this dissertation.  We found significant differences in myeloma 

establishment and progression in various strains of mice despite similar genetic 

backgrounds. The most interesting example is the difference of tumor 

establishment in the C57Bl/KaLwRij used in the Radl model and the lack of tumor 

take and growth in the C57Bl6 mice of the same genetic background.  The 

differences between C57Bl/KaLwRij and C57Bl6 mice were examined further in 

chapters IV and V with the use of the BMSCs and performing the microarray 

analysis.   

In chapter III, a role for the immune system in myeloma development was 

implicated.  Of specific interest was the difference in tumor establishment 

between two immunocompromised strains of mice.  Athymic nude mice do not 

develop characteristics of myeloma, whereas RAG-2 deficient mice develop 

pathology identical to the Radl C57Bl/KaLwRij mice.  Although the use of RAG-2 

deficient mice will not allow for the investigation of the immune system, 

specifically B and T cells, in myeloma, our results demonstrates that a lack of T 

cells is not sufficient to permit myeloma development in vivo.  Since the major 

difference between RAG-2 deficient mice and nude mice is the absence of B 

cells, this raises the intriguing possibility that the development of 5T myeloma in 

RAG-2 deficient mice may not be simply due to immunodeficiency, but may in 

part be dependent on specific B cell regulation.  Nude mice are also known to 
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have increased natural killer cell and macrophage activity, and it is possible that 

theses differences may also contribute their inability to permit development of 

myeloma (Budzynski and Radzikowski 1994).  A generalized suppression of B 

lymphopoiesis is one clinical feature of patients with advanced multiple myeloma.  

The reduction of normal immunoglobulin levels found in these patients is 

attributed to defects in normal B cell differentiation (Pilarski, Mant et al. 1984; 

Pilarski, Ruether et al. 1985; Jacobson and Zolla-Pazner 1986; Pilarski, Andrews 

et al. 1986; Duperray, Bataille et al. 1991; Rawstron, Davies et al. 1998).  

Secreted factors from patient myeloma cell lines and marrow cells have a role in 

suppressing normal B cell proliferation (Farnen, Tyrkus et al. 1991; Quesada, 

Leo et al. 1995).  The contribution of B cell deficiency in disease development 

and growth is difficult to study in human myeloma patients, as the pathology is 

already extensive upon diagnosis.  Not only do our data demonstrate that RAG-2 

deficient mice provide a useful tool for studying the host microenvironment in 

myeloma develop, but these studies also suggest that lack of mature B cells may 

have a role on myeloma development. 

Cancer-associated stroma and fibroblasts have received a reputation for 

promoting cancer progression mainly in solid or epithelial-derived tumors.  As the 

studies presented in chapter IV have demonstrated, hematological malignancies 

can be influenced by the stromal microenvironment.  In this chapter, 14M1 

BMSCs were utilized that were originally isolated from myeloma-bearing 

C57Bl/KaLwRij mice.  Our initial characterization of the 14M1 BMSCs showed 

that these cells express markers of both fibroblasts and cancer-associated 
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fibroblasts; therefore a thorough examination is necessary to properly distinguish 

the C57Bl/KaLwRij microenvironment effects from the effects produced by 

cancer-associated stroma.  In the future, primary BMSCs from either non-tumor 

or myeloma-bearing C57Bl/KaLwRij mice will be used in co-inoculation 

experiments similar to the 14M1 BMSC studies.     

The significance of the research described in this dissertation is the 

demonstration of the significant contributions that the bone marrow 

microenvironment has in myeloma establishment and progression.  The studies 

focused on adiponectin are the first to demonstrate the role of an adipokine in 

inducing myeloma cell apoptosis.  The therapeutic potential of both adiponectin 

and more specifically L-4F, could lead to improved survival of patients with 

multiple myeloma.  Additionally, the evidence of decreased adiponectin serum 

concentrations in MGUS patients may provide a prognostic indicator for which 

MGUS patients might be at risk for progression to multiple myeloma.  Screening 

MGUS patients for adiponectin levels may provide an opportunity for clinical 

intervention prior to progression.   

Future directions for this work would include several areas of investigation.  

First, would be to explore the possible link between Dkk1 secretion and 

suppression of adiponectin production.  Given the protective effect that 

osteoblasts appear to have against myeloma progression, as we saw in chapter 

IV with Dkk1 knockdown in BMSCs, it will be interesting to examine factors 

produced by the osteoblasts that might be responsible for this effect, as was 

described in the previous chapter. Osteoblasts are one of the major producers of 
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adiponectin within the bone marrow microenvironment.  Data that was not 

included in this dissertation provides supporting evidence for Dkk1 being 

responsible for suppression of adiponectin production.  We have found that Dkk1 

transgenic mice have decreased circulating serum concentrations of adiponectin.  

Additionally, we have seen that primary BMSCs from C57Bl/KaLwRij mice have 

high expression of Dkk1 in comparison to BMSCs from the myeloma non-

permissive C57Bl6 mice.  These data show an inverse relationship between high 

Dkk1 and decreased adiponectin.  We also have evidence suggesting that 

elevated Dkk1 is upstream of adiponectin suppression.  In 14M1 BMSCs that 

secrete concentrations of Dkk1, upon overexpression of adiponectin in these 

cells there is no suppression of Dkk1 expression.  Furthermore, in the studies 

described in chapter IV when 14M1 BMSCs are inoculated alone, we see 

decreased circulating adiponectin levels in these mice.  The clinical evidence 

also supports this hypothesis.  We demonstrated that MGUS patients who 

progress to myeloma have decreased concentrations of serum adiponectin.  

Drake, et al. have documented that elevated Dkk1 serum concentrations are not 

only present in myeloma patients but also in MGUS patients who progress to 

myeloma.  These initial observations provide ample cause to investigate the links 

between Dkk1 and adiponectin in the context of MGUS and MM.     

A second topic of examination in the future of this work will be to 

understand the role of diet-induced obesity as a risk factor for myeloma 

pathogenesis.  The epidemic of obesity has become increasingly problematic 

worldwide in recent years.  Obesity is associated with numerous aliments 
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including type II diabetes and cardiovascular disease, and is considered a state 

of low-grade systemic inflammation (Wang, Goalstone et al. 2004).  This 

association with pathology has lead to the examination of adipose tissue in both 

physiologic and pathologic processes.  Adipose tissue was previously thought of 

as simply an inert tissue dedicated to energy storage.  However in recent years, 

studies have demonstrated its role as an endocrine organ with active secretory 

functions.  Adipose tissue releases various factors and cytokines including tumor 

necrosis factor-α (TNF-α) and interleukin-6 (IL-6) (Fantuzzi 2005).  Of particular 

interest would be to determine whether mice that are otherwise non-permissive 

to myeloma cell growth could develop myeloma while on a high-fat diet.  C57Bl6 

mice on a high fat diet for a period of 16 weeks showed decreased expression of 

adiponectin in the adipose tissue (Bonnard, Durand et al. 2008).  These studies 

would be interesting in terms of further understanding the role of adiponectin in 

myeloma.  Additionally, these studies would examine the role of increased 

adipose tissue in myeloma pathogenesis.  In conjunction with high fat diet, mice 

under caloric restriction would also be a necessary part of these studies.  

Contrary to the expected result, young C57Bl6 mice under caloric restriction 

displayed high bone marrow adiposity in addition to lower bone mineral density 

and decreased trabecular bone volume, compared to mice on a normal diet 

(Devlin, Cloutier et al.).  The results presented in chapter V in this dissertation 

and previous research in the cancer field has shown a role for adipokines, as well 

as obesity in cancer risk.  There is already epidemiological evidence linking 

obesity with various types of cancer and most importantly with MGUS (Landgren, 
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Rajkumar et al. ; Miller, Lipsitz et al. ; Saxena, Fu et al. ; Wei, Wolin et al.), 

providing ample support for further investigation.  Finally, bone marrow 

adipocytes are also a source of Dkk1, providing another link between Dkk1 and 

decreased adiponectin (Figure 30C).   

In addition to our own initial observations linking Dkk1 and adiponectin, 

there are also links between metabolic diseases, such as type I and type II 

diabetes, and bone loss.  In type I diabetes, bone loss is implicated as the cause 

of increased fracture risk (Bouillon 1991; Meyer, Tverdal et al. 1993; Forsen, 

Meyer et al. 1999; Schwartz, Sellmeyer et al. 2001) and subsequent delay in 

healing of these fractures (Herskind, Christensen et al. 1992; Hofbauer, Brueck 

et al. 2007).  The bone phenotype seen in mice with type I diabetes induced by 

streptozotocin injection had osteoblast-specific suppression (Coe, Irwin et al.), 

similar to that seen in the in MM-bearing adiponectin deficient mice.  In these 

diabetic studies, the authors demonstrated that osteoblast death was mediated 

by TNF-α production, which is stimulated by the inflammatory state of diabetes.  

Interestingly, initial examination of the myeloma permissive C57Bl/KaLwRij mice 

indicated that they have elevated serum concentrations of TNF-α, compared to 

the non-permissive C57Bl6 mice.   

Another area of interest would be to investigate the anti-inflammatory 

capabilities of adiponectin and L-4F.  Among the differentially expressed genes, 

the gene for hydroxyprostaglandin dehydrogenase-15 (15-PGDH or 15-HPGD) 

was identified as being significantly down regulated in the bone marrow of 

myeloma-permissive C57Bl/KaLwRij mice.  However, measurement of C-reactive 
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protein, a marker indicative of inflammation, showed no elevation in 

C57Bl/KaLwRij mice.    Prostaglandin E2 (PGE2) levels are regulated by this 

enzyme, as 15-HPGD is responsible for the degradation of this prostaglandin 

(Tai, Cho et al. 2006).  15-HPGD is often reduced in various types of cancer 

(Backlund, Mann et al. 2005; Ding, Tong et al. 2005) and associated with 

elevated COX-2 expression.  Cyclooxygenase-2, or COX-2, is the rate-limiting 

enzyme for PGE2 production (Wang and Dubois).  The effect of prostaglandins 

on adipokine production has become evident in the literature.  Peeraully et al 

have shown that PGD2 reduced adiponectin mRNA expression and secretion in 

adipocytes (Peeraully, Sievert et al. 2006).  In these studies, the authors showed 

that these prostaglandins stimulated the adipocyte production of IL-6 and MCP-1, 

which both play a role in myeloma pathogenesis (Cao, Luetkens et al. ; 

Pellegrino, Ria et al. 2005; Huston and Roodman 2006).  Independent from the 

effect on adiponectin, prostaglandins also have dramatic effects on the bone.  

Two-month old C57Bl6 mice treated with PGE2 demonstrated a significant 

reduction in trabecular bone volume ad number (Gao, Xu et al. 2009).  As 

discussed in chapter IV of this dissertation, we have data suggesting that 

decreased bone volume and altered stroma within the bone marrow 

microenvironment are critical for myeloma establishment and growth.              

Osteolytic bone disease is one of the many devastating features 

associated with multiple myeloma.   Despite advances in myeloma research, the 

contributions of various cell types found within the bone marrow 

microenvironment to myeloma bone disease are not fully elucidated.  Our current 
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knowledge is limited due to the difficulty of studying the intact bone marrow 

microenvironment in its entire complexity; however some of the work within this 

dissertation will expand the available tools for studying the host 

microenvironment.  It will be critical in the coming years to begin to understand 

what components of the bone marrow are important for progression and some of 

these have been discussed within this chapter and outlined in Figure 30C.  The 

relationship between myeloma cells and these cells within the microenvironment 

contribute to the destructive bone disease, which is one of the defining features 

of multiple myeloma.  Emerging evidence in cancer research of recent years not 

only demonstrates genetic alterations to the cancer cells but also to the 

surrounding microenvironment.  The future of effective cancer therapeutics will 

have a dual focus; treating both the tumor cells and the altered 

microenvironment.   
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Figure 30.  Bone marrow microenvironmental changes that contribute to 
myeloma pathogenesis. A) In a normal non-permissive bone marrow 
microenvironment, circulating adiponectin concentrations act to prevent 
myeloma cell growth.  Additionally, the BMSCs within this microenvironment 
have not become altered and therefore provide the necessary factors for 
normal bone remodeling and hematopoiesis.  B) In a permissive or pre-
myeloma bone marrow microenvironment, circulating adiponectin levels are 
decreased resulting in lack of protection against myeloma progression.  
Additionally, BMSCs have altered expression of secreted factors such as 
Dkk1.  The increased Dkk1 secretion from the BMSCs can modify the bone 
marrow microevironment also making it permissive for myeloma progression.  
C) Future directions of this work will include investigating the link between 
Dkk1 and adiponectin.  Dkk1 is produced not only by altered BMSCs but also 
by adipocytes.  Preliminary data suggest that elevated Dkk1 can cause a 
reduction in circulating adiponectin concentrations.  Also of interest is 
examining the role of adipocytes and fat-induced obesity in myeloma 
pathogenesis.         
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