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CHAPTER 1

INTRODUCTION

Risk prediction models are often constructed with the intention of estimating
a predicted probability of disease or outcome for a new patient in the clinic. In
order to apply these established prediction models, all the model covariates need to
be known. Often this is not the case, and a strategy needs to be in place for a
model to be used on a new person in the presence of missing data. Using common
imputation strategies such as zero imputation or mean imputation may lead to subpar
predictions, and using a more computational imputation strategy such as Multiple
Imputation (MI), as outlined by van Buuren (2012), Harrell (2013), Janssen et al.
(2010), Moons et al. (2006) and others, is often an unfeasible solution for on the
spot computations. We detail an approach for dealing with missing covariate data in
prediction models (in both the construction and application phase) whose goal is to
maintain the predictive accuracy of the model (rather than parameter estimation as
the ultimate goal). This approach requires no imputation and preserves the prediction
accuracy achieved with MI. Since missing data are a common problem in both the
construction and implementation of prediction algorithms, practical and accurate
methods for accommodating missing data are sorely needed.

Our proposed solution presented in Chapter 2, is to use Pattern Mixture Ker-
nel Submodels (PMKS) - a series of submodels for every missing data pattern that
are fit using only data from that pattern. PMKS are a computationally efficient
remedy for both stages. We show that PMKS yields the most predictive algorithm
among all naive missing data strategies, such as zero imputation, mean imputation,
and even more advanced strategies such as multiple imputation. We present detailed
simulations and a real data application where the degree of improvement is highly
dependent on the missingness mechanism and the effect size of missing predictors.
When the data are Missing at Random (MAR), MI can yield comparable forecast-
ing performance but generally requires a larger computational cost. When data are
Missing Not at Random (MNAR), often the case in biomedical data, PMKS yields
significantly better prediction than other imputation strategies.

An additional benefit of PMKS is its large sample equivalency to the limiting
predictions from a multiple imputation procedure that uses a mean model dependent
on missingness indicators (something we call the MIMI model). Consequently, the

MIMI model can be used to help evaluate the MAR assumption in practice; a very



useful tool for both prediction and inference.

Large scale data presents the problem of testing thousands, if not millions, of
hypotheses simultaneously. Chapter 3 details an approach to improve inference in
large scale data by combining two well-known statistical techniques. First, we pro-
pose p-values that are standardized to the empirical null distribution (instead of the
theoretical null) (Efron, 2012a). Second, we propose model averaging p-values by
bootstrap aggregation (Bagging) to account for model uncertainty and selection pro-
cedures (Breiman, 1996). The combination of these two key ideas yields Bagged
Empirical Null p-values (BEN p-values). BEN p-values improve operating character-
istics of inferential procedures when the majority of tests are null - an assumption in
these large-scale inference problems.

We have applied our proposed solution to pseudo-simulated gene expression data
and the famous Golub leukemia data (Golub et al., 1999), and have demonstrated that
our method is superior by having the most desirable Type I/Type II error tradeoff.
A strength of our approach is the ability to consider any set of models (parameters,
link function, non-parametric model) during bagging, as well as not being confined
to the conventional theoretical null as the testing distribution. By incorporating
bootstrapping, model selection, and empirical null procedures, the BEN algorithm
has the advantage of using multi-dimensional gene selection metrics, beyond the single
adjusted p-value traditionally used. We even provide biological verification that the
findings are reproducible. Prior clinical experiments support our top selected gene
which is overlooked by the seminal Golub paper.

Finally, Chapter 4 gives recommendations for how the imputation model should
be adapted, regarding the inclusion and exclusion of the outcome, for the three risk
prediction model developmental stages - construction, validation and application.
Specifically, inclusion of the outcome (Y") in the imputation model is known to produce
unbiased and efficient parameter estimates during the model construction (Moons
et al., 2006). We show that using the outcome in the imputation model when data
are missing in the out-of-sample validation set, leads to covariate imputations whose
corresponding risk predictions will result in artificially increased model discrimination
statistics. For a logistic prediction model, the validated AUC, Brier and Logarithmic
scores are optimistically biased.

Extensive simulations and an application of our recommendations are presented.
We demonstrate that in this setting where the prediction model will be used on pa-
tients with a high probability of missing data, it is strongly suggest that the outcome

only be in the imputation of missing predictor values during model construction to



provide unbiased model parameters. Another imputation algorithm should be in
place, excluding the outcome, for the imputation of missing covariates in the valida-
tion sample. These recommendations extend beyond logistic risk models to any type
of prediction models.

Collectively, the entirety of these three papers will be widely applicable to a variety
of biomedical settings. Chapter 2 will allow for near instantaneous predictions when
out-of-sample individuals have missing predictors, a frequent reality where current
imputation methods are degrading model accuracy. Chapter 3 will be widely appli-
cable to a variety large-scale inference problems, and the BEN algorithm will lead to
more robust and reproducible biological findings- a real concern in high-dimensional
data. Chapter 4 suggests thoughtful consideration for the role of the outcome as part
of the imputation model, and recommends the appropriate scenarios for its inclusion
or exclusion. We intend for this work to provide a basis for future work in missing

data, prediction, and large scale inference methodology.



CHAPTER 2

MISSING DATA AND PREDICTION: THE PATTERN MIXTURE KERNEL
SUBMODEL

2.1 Abstract

Missing data are a common problem for both the construction and implementation
of a prediction algorithm. Pattern mixture kernel submodels (PMKS) - a series of
submodels for every missing data pattern that are fit using only data from that
pattern - are a computationally efficient remedy for both stages. Here we show
that PMKS yield the most predictive algorithm among all standard missing data
strategies. Specifically, we show that the expected loss of a forecasting algorithm
is minimized when each pattern-specific loss is minimized. Simulations and a re-
analysis of the SUPPORT study confirms that PMKS generally outperforms zero-
imputation, mean-imputation, complete-case analysis, complete-case submodels, and
even multiple imputation (MI). The degree of improvement is highly dependent on
the missingness mechanism and the effect size of missing predictors. When the data
are Missing at Random (MAR) MI can yield comparable forecasting performance
but generally requires a larger computational cost. We see that predictions from the
PMKS are equivalent to the limiting predictions for a MI procedure that uses a mean
model dependent on missingness indicators (the MIMI model). Consequently, the
MIMI model can be used to assess the MAR assumption in practice. The focus of
this paper is on out-of-sample prediction behavior; implications for model inference

are only briefly explored.

2.2 Introduction

2.2.1 The Problem

While missing data are problematic for both estimation and prediction, the sta-
tistical literature has been largely focused on addressing the impact of missing data
on estimation procedures and parameter inference. Missing data present a two-fold
problem for forecasting: first, in building a model, and second, in using the model
to make out-of-sample predictions for individuals with missing predictors. Here we
focus on the second problem, specifically evaluating what Wood et al. (2015) define
as Pragmatic Model Performance, which refers to the model’s performance in a future

clinical setting where some individuals may have partly missing predictors.



Table 2.1: Comparison of imputation methods for application of an established prediction model
to an out-of-sample individual. PMKS: Pattern Mixture Kernel Submodel, CCS: Complete Case
Submodel, MIMI: Multiple Imputation with Missingness Indicators, MI: Multiple Imputation.

Imputation Strategy Out-of-sample Imputation Requirement Pros Cons
Zero Imputation
Nothing Negligible computation time Zero may not be an appropriate value
Probably results in incorrect predictions
Mean Imputation
Unconditional means Negligible computation time Only works for the average individual
Cond. Mean Imputation
Conditional model for every missing pattern Lower computation time Large bias/variance tradeoff for MNAR
Can approximate a MI procedure
CCs
Submodels Negligible computation time Large bias/variance tradeoff for MNAR
May be advantageous if data are MAR
Fittable for unobserved patterns
PMKS
Submodels Negligible computation time May be less efficient if data are MAR
Works for any missingness mechanism Patterns with low membership may not fit well
MIMI
Original data/Conditional distribution Works for any missingness mechanism High computational cost
Computer /Imputation engine Allows for efficient parameter estimation  Not viable in the clinic
Established method
MI
Original data/Conditional distribution ‘Works when data are MAR High computational clinic
Computer/Imputation engine Not viable in the clinic

Large bias/variance tradeoff for MNAR

It is often assumed that imputation methods, because they improve parameter
estimation procedures, also improve out-of-sample prediction performance. However,
this is just speculation, and our investigation indicates that this is the exception rather
than the rule. Ideally, it would be possible to find a prediction rule that uses simple
imputation or did not require imputation, and thus was much less computationally
burdensome and more readily applied in practice. The impact of missing data for out-
of-sample prediction is uniformly underestimated. A poor imputation algorithm at
the prediction stage can drastically reduce a model’s overall prediction performance,

and data frequently go missing at this stage in real life.

2.2.2  Current Approaches to Imputation

Typical strategies for dealing with missing predictors are driven by practical con-
straints. Common strategies include zero imputation and mean imputation, which
are trivial to implement, but often lead to poor predictions. Conditional mean im-
putation and multiple imputation can be implemented with accessible software when
fitting a model, but they are rarely used in the clinic when predictors are missing for
out-of-sample predictions (Janssen et al., 2009). The advantages and drawbacks of
imputation methods for out-of-sample imputation procedures are listed in Table 2.1.
The obvious issue, not well addressed in the literature, is the extent to which these
approaches degrade prediction performance, as later shown.

Multiple Imputation (MI) draws multiple placeholder values from conditional dis-



tributions derived from the observed data (van Buuren, 2012; Janssen et al., 2010;
Harrell, 2013), uses the placeholder values to fit the model, and then combines the
models using Rubin’s rules (Rubin, 2009). When the data are missing at random
(MAR), MI can substantially increase inferential efficiency by leveraging information
in incomplete data records. The ‘best’ predictions from a multiply imputed prediction
model are the model’s predictions averaged over all imputation sets (Vergouwe et al.,
2010; Wood et al., 2015). Recently, the popularity of MI as the primary ‘principled’
strategy for constructing and applying a prediction model in the presence of missing
data has grown (Harrell, 2013; Janssen et al., 2009).

However, applying a multiply imputed prediction model to an out-of-sample indi-
vidual who is missing predictor information is not straightforward. This is because,
technically speaking, the predictions need to be re-estimated with the imputation
procedure based on the original data and the new out-of-sample record if you want
to apply Predictive Mean Matching or K-Nearest Neighbor imputation techniques
(as we did in our simulatons and examples). Of course, this requires the original
data, the imputation datasets, and substantial on-demand computing power, which
is often impractical in real world settings. Moreover, this approach often has a heavy
computational burden and is not easily programmed in web applications (because
the imputation algorithm must be repeated for every out-of-sample prediction). One
could ignore this step and use the multiply-imputed model along with some one-step
imputation procedure using the saved chain equations or fitted conditional distribu-

tions, but this process is not likely to be congenial with the original fitting approach.

2.2.3 Proposed Solution

Here we propose using an approach that we call the Pattern Mixture Kernel Sub-
models (PMKS) procedure. PMKS postulates a unique prediction model for each
missing data pattern and estimates that model using only the subjects in that pat-
tern. As a result, PMKS requires no imputation algorithm. Details are provided in
section 2.4.1. As a forecasting algorithm, PMKS benefits greatly from the reduction
in prediction bias that comes with the pattern-specific approach. The loss in effi-
ciency that can result when the data are MAR, or when the patterns have common
parameters, is often small in comparison. Moreover, we will see the PMKS is optimal
in the sense of minimizing the expected prediction loss. Because of these advantages,
we anticipate that PMKS will have broad impact in the arena of big data where pre-

diction is paramount and MI is often computationally unfeasible e.g., when using an



entire system of electronic medical records.

2.2.4  Organization

Section 2.3 defines our notation and provides a brief background to key missing
data concepts. Section 2.4 describes our proposed methods, provides a simple ex-
ample, and draws connections between PMKS and MI models in some generality.
Section 2.5 describes extensive simulations of PMKS in order to establish that wide
range of setting under which PMKS excels. Section 2.6 describes the performance of
PMKS compared to other imputation strategies applied to the SUPPORT Study, a
multi-center two phase study of 9105 patients, from which a day 3 Physiology Score
(SPS) was predicted (Phillips et al., 1995). Section 2.7 provides some brief concluding

remarks.

2.3 Notation and Background
2.3.1 Notation

Let Y = (Y1,...,Y,) be the vector of n-length observed responses. With our focus
on prediction, we assume all responses are observed. This assumption can be relaxed,
but it is not necessary to our discussion here. Predictors (covariates) are denoted
by a (n x p) matrix X = (Xy,..., Xp) where X; = (Xyj,..., Xpn;)" for j = 1,..,p
predictor vectors of length n. Let M = {M;;} be the (n x p) matrix of missing data
indicators where indicator M;; = 1 if Xj; is missing and M;; = 0 if X;; is observed
for i = 1,...,n individuals and j = 1, ..., p parameters.

To differentiate between models, we will use different greek symbols for their pa-
rameters. For example, parameters in the pattern mixture kernel submodels (PMKS)
will be denoted with a «v. Parameters in a traditional regression mean model E[Y | X] =
X 3 - those typically of interest in an estimation setting - will be denoted by 3. Notice
this is a strong assumption with regards to the missing data, forcing the same mean-
response function for every missing data pattern, and implying a MAR mechanism

within a single marginal model.
ElY|X]=Xg (2.1)

Parameters representing the effects of the missingness indicators, M, will be denoted
by §; these parameters will distinguish our MIMI model (defined in Section 2.4.5)

from a traditional MI model.



2.3.2 Pattern Mixture and Selection Models

Our approach has roots in the established literature on pattern mixture models
(Little, 1993). The traditional pattern mixture model factorization is:
P(Y M|X,~v,7) = P(Y|X,M,v)P(M|X,), where 7 is a parameter vector for
the missingness mechanism (Little and Rubin, 2014). The pattern-mixture approach
allows for a different response model in each missing data pattern. An alternative for-
mulation is the selection model: P(Y, M|X,0,w) = P(Y|X,0,w)P(M|Y, X, w)
where 6 and w are parameter vectors (Little and Rubin, 2014; Little and Wang,
1996). This factorization describes the (single) marginal response model. In this
paper, we will not explicitly consider selection models except to use them to gener-
ate data from certain missing data mechanisms that cannot be simulated otherwise.
While the selection model allows for Y and M to be either independent or depen-
dent, the pattern-mixture model is used when the response model changes by missing
data pattern. This flexibility, it turns out, lends an advantage to our proposed PMKS

prediction algorithm.

2.3.3 Missingness Mechanisms

To describe missing data, we use the following missingness mechanisms: Missing
Completely at Random (MCAR), Missing at Random (MAR), Missing Not at Ran-
dom (MNAR), Missing at Random where the missingness depends on Y (MARY),
and Missing Not at Random where the missingness depends on Y (MNARY) (Little
and Rubin, 2014). The latter two mechanisms can only be simulated in the selection
model formulation. A more detailed description of these missingness mechanisms is
given later in Section 2.3.

If the missingness mechanism is MCAR, then pattern mixture and selection mod-
els are equivalent (Little, 1993). When the data are not MCAR, the parameters of
the kernel functions associated with the selection and pattern mixture models have
different interpretations and care must be taken when estimating and interpreting
them. The selection model describes the marginal relationship of Y on X while
the pattern mixture model describes the relationship of Y on X conditional on M.
Marginal effects from the selection model are generally not identifiable in the con-
text of a pattern mixture model, although some parameterizations can be identified
though complete case restrictions that essentially force equality restraints on certain
parameters (Little, 1993). Identifiability is obviously a problem when the goal is

estimation and data are MNAR. However, here our goal is prediction and complex



re-parameterizations of marginal effects are not a major impediment even if the map-
ping is not easily reversed. If one marginal model is truly of interest, it is always
possible to marginalize over the pattern-specific model. Of course, how that model

should be interpreted when the data are not MAR is not immediately clear.

2.3.4 Complete Case Models and Submodels

Two alternatives to multiple imputation are complete case models and complete
case submodels. A complete case analysis simply ignores the records with missing
data and estimates a single model. Note that complete-case models have routinely
poor prediction performance when the data are not Missing Completely at Random
(MCAR) (Knol et al., 2010; Janssen et al., 2009). Complete Case Submodels (CCS)
use all available data to fit a submodel for each missing data pattern. That means, for
CCS, a data record often contributes to multiple patterns/submodels. This approach
is vastly different from a complete-case analysis where just a single model is fit using
only subjects with complete data.

Note that the complete case model does not solve the problem with missing out-
of-sample predictors; some type of imputation is still required. In contrast, CCS do
not have this problem. Their predictions come from the submodel that matches the
out-of-sample missing data pattern and so no imputation is needed. For PMKS, each
data record contributes only to a single pattern/submodel, which turns out to be a

key difference compared to CCS.

2.4 Methods

2.4.1 Pattern Mixture Kernel Submodels

PMKS has roots in pattern mixture model, using the kernel of the pattern mixture
model as a prediction machine. These pattern-specific models are the PMKS. To make
predictions, we fit the set of models {fl, s fk} where f,, = fm(X, M) is the pattern
mixture model in pattern m = 1,...,k where k£ < 2P different patterns. Here we
consider straightforward prediction algorithms such as f,, = E (Y| X, M;#,,) where
Ym is the vector of estimated pattern specific parameters. However, our findings apply
to any generalized linear model or machine learning prediction technique. Although
up to k = 2P different models might have to be fit, in practice only a small fraction
of those patterns are observed.

Each PMKS is fit using only subjects from that pattern. This is in contrast to
Complete Case Submodels (CCS) where the submodels are fit using all available data.
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Table 2.2: Comparison of Pattern Mixture Kernel Submodels (PMKS) and Complete Case Submod-
els (CCS).

Pattern PMKS (/) CCS (4m)
1:X70%, Xgbs ElY|Xy, Xy, My =0, My = 0] = o1 + 71, X1 + 12, X2 | E[Y[X1, Xo] = 65, + 511 X1 + 55, X0
25X{ni887X§bS E[Y|X2 Afl = ]., ]\/12 = 0] = "‘/0’2 —+ ’}/272X2 E[Y'XQ] = 562 + ,{SQXQ
33bes, X%niss E[Yle Afl = 0, ]\/12 = 1] = 70,3 -+ ’}/173X1 E[Y'Xl] = ﬁgg + J‘BfigXl
43X{niSS7X£mSS E[Yl]\{l = 17]\12 = 1} = Y0,4 E[Y] = /36(4
Vpums By tepresents the effect of the p* covariate in pattern m

This subtle difference turns out to be critically important; as CCS is only appropriate
under certain missing data mechanisms. For comparison, we denote the set of CCS
models as {§1, ..., gx } where §,, = Gm(X) = E(Y]X;BA*m) for patterns m = 1, ..., k.
Here we use [;*m as the estimated pattern specific parameter vector. The asterisk
here is used to distinguish the CCS parameters from those obtained in a complete case
analysis (3) The difference between fm and @, is illustrated below in the context
of a simple example. Later in Section 3.4, we discuss how to fit PMKS and CCS
when a pattern is not observed or the data are too sparse. CCS have the advantage
of being fittable in many of these situations with the obvious drawback of its strong

dependence on the MAR assumption.

2.4.2 A Simple Example

A simple illustration helps to fix ideas. Consider a linear model for continuous
outcome Y with two covariates X;, X5. There are only four missing data patterns:
(1) X1, X5 both observed; (2) X; missing, X, observed; (3) X; observed, X, missing;
(4) X1, X5 both missing. The pattern mixture kernel submodels are the set of cor-
responding response models in each missing data pattern. These are given in table
2.2.

Using the above notation, the estimated PMKS response function for E[Y'| Xy, M; =
1, M, = 0] is f3 while the CCS analogue for E[Y|X;] is gs. Note that ,,, does not
necessarily equal 37 for any m = 1,2,3,4. Also, none these submodels corresponds
to the typical marginal model expressed as E[Y| X1, Xo] = By + f1 X1 + f2 X2 where
the parameters 3 represent traditional direct effects. It is tempting to assume that
the model based on pattern 1 would yield proper estimates of this marginal model,
but this only happens when the data are MAR on the covariates (and not on the re-
sponse). This is because that is the only case where the marginal model corresponds

exactly with the data generating mechanism in each pattern. That is, it is the only
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case where the marginal model is true mean response model for every pattern (White
and Carlin, 2010; Bartlett et al., 2014).

2.4.3 Prediction Performance of PMKS

PMKS is computationally efficient for missing data because it avoids the issue; it
fits a series of models in which none have any missing data. Fitting each submodel
is now straightforward because the missing data problem has been avoided. The key
realization is that minimizing the expected loss in each pattern amounts to minimizing
the expected loss marginally. Thus, we need only use standard techniques to fit and

cross-validate the pattern specific models.

2.4.83.1 Minimizing the Expected Prediction Error
Minimizing the expected prediction error in each pattern will, in turn, minimize

the overall expected prediction error. To see this, note that:

By [L(Y, f(X))] = Ens [Byixor [L (Y. )]
=> P(M)Eyx.m [L <Y7 f(X, M))}

where fm = fm (X, M). Hence, selecting fm to minimize the pattern specific expected
loss, Ey|x {L (Y, fm(X, M))} , will in turn minimize the overall loss Eyx [L(Y, (X))

Here L (Y, fm(X , M )) must be a properly defined pattern-specific loss function.
The loss function is flexible; it could be squared error or 0/1 loss (Hastie et al., 2009).
But the pattern-specific restriction is important; the result might not hold for certain
metrics where predictions in one pattern are compared with predictions in another
(for example, the area under the ROC curve). In that case, the overall AUC is not
equal to the average of pattern specific AUCs, which is the property we need in
order to take advantage of this approach. Fortunately, most common loss functions
of interest in prediction problems have this property.

Note that constructing a prediction model within each missing data pattern effec-
tively resolves the missing data dilemma because the missing predictors are missing
for everyone in that pattern and only marginal effects can be estimated. The result
implies that, in practice, prediction models should be constructed and cross validated
within each pattern in order to maximize predictive ability. The only reason to do
this marginally is if the MAR assumption is known to hold. Then direct estimation

of By x {Y, f (X )} is complex, in part, because only a single model f is used for all
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predictions and fitting that model with missing data requires a complex algorithm
such as multiple imputation or the EM algorithm to handle the missing data. Since
each PMKS is directly estimable with routine tools, the right side of the equation can
be fit, minimized, and cross validated rather easily. This simple argument impacts
practice because M is often ignored in the modeling stage due to historical concerns

about the missing indicator method.

2.4.3.2 PMKS loss is a weighted average of a full and reduced model

For a linear model the squared prediction error is a common and relevant loss
function. To examine the bias-variance tradeoff in PMKS, it is helpful to revisit
a simple example given by Shmueli (2010) in which the Expected Prediction Error
(EPE) is evaluated for a “fully specified model” (large) versus an “underspecified
model” (small). Suppose data come from the model f(z) = By + S1x1 + Powa + €
with € ~ N(0,1). When no predictors are missing we estimate the full model as
f(x) = By + Brx1 + Baxo. Here the expected prediction error (EPE) is the sum of the
bias, variance, and irreducible error of the predictions or fitted values (Hastie et al.,
2009):

EPE, = E [(Y —~ f(:cl,xg)ﬂ = (1401 o1 2)(Xp X1 21 o))

where EPE; denotes the EPE of the full model. In contrast the EPE of the

underspecified or submodel is given by:
N 2
EPEs = E [(Y - f*(ah)) } = ((v0 + 2171) — (Bo + Bra1 + Bow))*+0?[1 21 )(XeXs)[1 )

where f*(z) = BA*OJ +5A*171x1. Note that in this case f*(z) = g» . The EPE of the

PMKS model is just a weighted average of the large and small prediction models.
EPEpyks = Y, P(M =m)EPE,, = EPE.(1 — P(M)) + EPEgP(M)

To illustrate the bias variance tradeoff, we simulated the EPE in Figure 2.1. The
simulation fixes X; = 1, and draws from the conditional distribution X5|X; = 2y ~
N(p2 4 Zpra(zr = ), (1 — pi,)o3). The EPE for the correctly specified full model
is just the irreducible error, whereas the EPE for the underspecified model increases

as the out-of-sample predictor moves away from its population mean.
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Figure 2.1: Comparison of Expected Prediction Error for the Large fully specified model:
E[Y|X1, Xo] = fo + 1 X1 + f2X2, and Small underspecified model: E[Y|X1] = Bos + B 3X1.
Pattern Mixture Kernel Submodel (PMKS) predictions are a weighted average of the Large and
Small models, weighted by P(M=1)

The out-of-sample prediction error from the large model is given by the green line
in Figure 2.1, and is equal to the model variance. If the data were generated from the
large model and predictions were given from the small model that includes only X5,
then the expected prediction error is approximated by the purple points in Figure
2.1.

The yellow points in Figure 2.1 denote the prediction error that arose from the
PMKS in this setting; f; makes predictions when all data are available and f» makes
predictions when only X5 is available. Clearly, PMKS has smaller EPE for every out-
of-sample Xj. In this case the probability of missingness was 50%, P(M; = 1) = 0.5.
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2.4.4 Practical Considerations

As discussed earlier, multiple imputation has a substantial computational burden
for out-of-sample predictions with missing data because the imputation algorithm
must be repeated adding the new person in the data run. PMKS, on the other hand,
do not need to be re-computed for every new prediction. The upfront computational
effort is large for 2P patterns, but it is often minor compared to the MI machinery
required in the same setting and in practice only a fraction of available patterns are
observed. When data are sparse within a pattern, it may not be possible to fit the
PMKS. In such cases it is necessary to make assumptions and the CCS approach is a
reasonable option. This hybrid approach has worked well for us in practice, in large
part because the contribution to the EPE for patterns that are too sparse to fit with
PMKS is often negligible.

If p is very large, and storing 2P prediction models seems unreasonable, there
are several options. First, fit models only for observable patterns, ignoring patterns
not observed. Second, only fit models for patterns in which the missing variable,
or combinations of missing variables, are ‘important’ to the predictions. Third, if
the data are available in real time, it may be possible to fit PMKS on demand,
since imputation is not necessary, and this reduces the need to store all 2 models
simultaneously. Lastly, shrinkage methods to the MIMI model, discussed in Section
2.4.5, can indicate how best to borrow strength over the patterns.

It is important to distinguish between the computation cost between the in-sample
model construction phase and out-of-sample prediction phase. Both PMKS and MI
could have high in-sample computation cost depending on the number of predictors
and the data size. But as described in Table 2.1, the out-of-sample computational
costs for PMKS are negligible, whereas for MI they can remain intensive, even for
a single individual. Importantly, PMKS does not require missing data mechanisms
to be consistent in the data used to construct the model and the target population.
This is because, conditional on the missingness pattern, the data are effectively MAR.
The MAR assumption implies (M L X;)|X_;,Vj = 1..p. PMKS reformulates this
assumption as (M L X;)[(X_;M_;), allowing the MAR assumption to hold within
each pattern (Little, 1993).

2.4.5 PMKS as the limit of MIMI model
There are some interesting connections between PMKS and MI. PMKS is the

limit of a congenial MI procedure when the mean model depends on the missing data
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indicators. This new MI procedure - which we call this the Multiple Imputation with
Missingness Indicators (MIMI) model - can be used to assess the MAR assumption
in practice. The MIMI model also makes the context clear about what elements of
the model can be assumed identical across the patterns for inference purposes. The
utility of missingness indicators can only be realized through an imputation procedure,
an often overlooked and important point. The implications for estimation will be
discussed elsewhere, as the focus of this paper is on prediction, but the connection is
an important one.

The MIMI model is a multiple imputation model that is dependent on the indica-
tors M; from ¢ = 1, .., p. Typically, the mean model would depend on the missingness
indications. For example, in the past example with p = 2 covariates, X; and X5, we

might consider the following mean model:

EY | X1, Xo, My, M| = Bo + 51Xy + B2 Xo + 61 My + 62 My

(2.2)
+ 03 X1 My + 04 Xo My + 05 X1 My + 06 X2 M,

where the 3 parameters represent the traditional direct effects of interest and the &
parameters, which we will call auxiliary parameters, explain how the traditional effects
change by missing data pattern. If the data are MCAR, then 6; = 0 V ¢. Otherwise,
the traditional effects might not exist as the dependencies in the model parameters
can be complex. An informal test of the § parameters may provide some insight into
the observed missing data mechanism. If there is no evidence to suggest that the
indicators contribute to the model predictions, this may help to make the case for a
MAR mechanism. Shrinkage methods may also be applied to the delta é parameters
to help assess which covariates have non-ignorable missing data mechanisms, and will
be addressed in future work.

Note, Molenberghs et al. (2008) describes a longitudinal setting where every
MNAR model can be decomposed into a set of MAR models. Molenberghs et al.
(2008) rightly asserts that this duality is problematic for inference about a parameter.
However, as noted in the paper, these representations will yield different predictions
and so the implications are different in out context where prediction is the objective.
The results from Molenberghs et al. (2008) are important in that they align with our
results in the non-longitudinal setting, were predictions must match those from the
natural pattern mixture model (that is MAR by definition conditional on the pattern)
in order to retain its predictive optimality.

Unfortunately, Model 2.2 cannot be properly fit unless the missing predictors are
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imputed. When the missing data are imputed with a proper MI algorithm, the coef-
ficients of Model 2.2 are essentially identified by that algorithms imputation scheme
and the auxiliary parameters become estimable under those assumptions. Model 2.2
is an example of the Multiple Imputation with Missingness Indicators (MIMI) model.
Note that MIMI makes certain assumptions about the missingness mechanism, and
these assumptions will lead to different fits of the auxiliary parameters. This flexibil-
ity is both good and bad; good because we could use the auxiliary parameters to check
assumptions, and bad because the auxiliary parameters are inherently unidentifiable.

Adding missingness indicators to a model (when the goal was parameter estima-
tion) has received criticism historically. The simple plug-in varieties of the missing-
indicator method yields biased parameter estimates even in simple cases where data
are missing completely at random (MCAR) (Allison, 2001; Groenwold et al., 2012).
The classical missing-indicator method fills in a constant (often zero or the overall
mean) for the missing values and augments the data design matrix with a binary in-
dicator for each covariate with missing values. However, when the missing-indicator
method is combined with proper imputation methods the model produces unbiased
parameter estimates in the same cases in which complete case estimation is unbiased
(Jones, 1996; Dardanoni et al., 2011, 2015). That is, when M; and Y are conditionally
independent given X, then for any choice of imputation matrix, the OLS estimate of
Model 2.2 coincides with the OLS estimate of 3 in the complete case model (Bartlett
et al., 2014; Jones, 1996; Dardanoni et al., 2011; White and Carlin, 2010). Thus, the
MIMI model is essentially an extension of the ideas in Jones (1996) to a more flexible
multiple imputation setting.

Although the missing-indicator method has been heavily investigated in the con-
text of inference, this method has not been explored for prediction where a bias-
variance tradeoff may be more desirable. The MIMI model leverages multiple impu-
tation to create placeholders for the missing data that do not negatively impact the
model’s predictive ability. But of course, the value of these imputations does impact
the estimation of direct effects and the properties of those estimators.

The connection between the MIMI model and PMKS can be seen through a sim-
ple rearrangement of the mean Model 2.2. There are differences; the MIMI model
forces constant variance across all missing data patterns, whereas PMKS allows the
variance to change by pattern. PMKS are most easily understood as projections of
the true pattern-specific model into the space of observed covariates. As such, slope
parameters for observed covariates may be distorted if missing covariates are corre-

lated with observed covariates. In those cases, the model is really estimating the total
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effect when the direct effect is the quantity of interest. PMKS is a series of models
based on the total effects that can be estimated from the data at hand, while MIMI
tries to reparameterize each patter-specific mean model and average the direct effects
of interests.

Applying the plug-in principle, the MIMI mean model reduces to the PMKS when
conditional mean imputation is used to impute missing covariates. Denote the im-
puted covariates as X = E[X;|Xs] = ap + e X3 if X7 is missing and X;; otherwise.

Rearranging the MIMI model we have:

ElY|Xy, Xo, My, Ms] =(Bo + 01 M7 + d2M5)
(51 + 03 My + 55M2)X1
(Ba + 04 My + 06 M) X

Which just reduces to PMKS. To illustrate, for the 4 patterns in our running

example:

E[Y[X1, Xo, My =0, My = 0] = o + S1 X1 + B X

ElY|Xy, Xo, My =1, My = 0] = (8o + 61) + (B1 + 93) E[X1| Xo] + (B2 + d6) X
= (Bo + 61) + (b1 + 035) (a0 + @2 X2) + (B2 + 06) X2
= (Bo + 01 + Brag + 3a0) + (B2 + d6 + Braz + dzaa) Xo
=Y + 72X

Note that model E[Y|X;, Xo, M7 = 1, My = 0] = 7 + 72X> is the submodel
including only the covariate X5 fit within the group of individuals who are missing
the covariate X (this is why the conditioning on M is important) and is equivalent
to fQ in Section 2.4.1. Hence, PMKS and MIMI are two parameterizations of the
‘same’ model. To examine this, we next present simulations in the linear model case
under a wide variety of missing data mechanisms. This principle extends to the GLM
setting, on the linear predictor scale, and is currently under investigation by the
authors. More complex prediction machines that are highly non-linear should exhibit

the same general behavior.
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2.5 Simulations

We generated n multivariate normal predictor vectors according to (z3 ) ~ N(p, X),
where p = (3,3) and ¥ = (5 %), for example, are set to provide certain predic-
tor profiles in terms of their correlation. Simulated outcomes Y are generated from
various combinations of x; and z5. The pattern mixture model formulation uses X
to induce one of three missing data mechanisms, MCAR, MAR, or MNAR. The out-
come Y is then generated from the MIMI mean model using the true X values and
the simulated missing data indicators. Here the missingness may only depend on the
predictors vector X. In contrast, the selection model formulation simulates Y from
the marginal model Y = By + 1 X7 + (X5 + €, where € ~ N(0,1). Missing data
indictors are then induced according to the desired mechanism. Note that here the
missingness may depend on the outcome Y. A more complex model can always be
reduced to a linear combination of non-missing variables, and missing variables, and
so this simple example is representative of more complicated situations.

We simulated the following five missing data mechanisms as defined in Table
2.3 for this situation: MCAR, MAR, MNAR, MARY, and MNARY. The latter two
mechanisms could only be simulated in the selection model formulation. We forced
the missingness data mechanism to be consistent between the in-sample and out-of-
sample populations, and vy of Table 2.3 is empirically calculated to maintain the

desired probability of missingness.

Table 2.3: Missing data mechanisms used for simulation. v is empirically calculated to allow the

probability of missingness to maintain the desired level. expit = 7.

Missing Data Mechanism for X;
MCAR P
MAR P(M

(
(M)
MARY | P(M) = expit (;/0 +iny <Y/0+X)>
(M)
(M)

2(14cor(Y,X2))

MNAR | P(M
MNARY | P(M

= expit <7/0 + 1y <m)>

2.5.1 Parameters
Parameter profiles explored were 5 = 1,3,5, p = 0,0.5,0.75, P(M; = 1) =
0.20,0.50,0.75, and n = 50, 200, 500, 1000. We present here only one case that was
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largely representative of our findings: f; = 3, p = 0.5, P(M; = 1) = 0.50, and
n = 1000. For the out of sample population we assumed one-by-one enrollment.
Missing data was imputed by zero imputation, unconditional mean imputation, sin-
gle conditional mean imputation using a Bayesian conditional mean model, single
conditional mean imputation using a frequentist conditional mean model, or multiple
imputation (predictive mean matching, 10 imputations). We fixed the imputation
engine based on the in-sample population to closely mimic real world application of
these methods.

2.5.2  Simulation procedure

We compared the performance of PMKS, complete case model predictions, com-
plete case submodel (CCS) predictions, traditional MI and the MIMI imputation
model. The full simulation procedure was as follows: (1) data are generated and
missing data indicators are generated according to the missing data mechanism in
Table 2.3, as described in Section 2.5; (2) missing data are imputed; (3) the MI
model, MIMI model, CCS, and PMKS models are fit; (4) step 1 is repeated to obtain
a new out-of-sample population; (5) individuals are imputed one by one, using the
above imputation procedures, assuming a fixed imputation engine from the in-sample
population; (6) individual predictions and performance measures are computed; (7)
steps 1 through 6 are repeated 10,000 times.

A squared error loss function was used to compare performance of the approaches.
For example the squared error loss across all missing data patterns in the PMKS is
%Zi > P(M; = 1)(Yy; — }A/ij)z where j = 1,...,n subjects and i = 1,..., m patterns.
This loss is the averaged over the 10,000 simulations to approximate the expected loss.
Table 4.1 shows the average squared imputation error for predictor x; as a function

of imputation strategy and missingness mechanism.

2.5.3 Simulation Results

Results are presented for the following set of parameters: fy = 1,8, = 3,0, =
1,6y = 1,03 =1,P(M; =1) = 05,11 = 1,1, = L,iny = L,iny = 1. There were
negligible differences in pattern specific and total squared error loss for the MCAR
missing data mechanism. For all missing data scenarios, MI and conditional mean
imputations resulted in a biased parameter estimation. This bias appears most clearly
in predictions for observations without missing data (blue dots in Figure 2.2). When

Y is added to the MI model, the model parameters had negligible bias. However, since
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the out-of-sample Y is missing, the out-of-sample imputations of x; have greater bias
than the imputation model in which Y is not included resulting in a higher total
prediction error (e.g., see Table 2.4).

When Y is generated from a selection model formulation, all methods perform
similarly (apart from MI as described above) under the MAR missing data mechanism.
When data are MNAR, PMKS and the MIMI models have slightly lower total and
pattern specific squared error loss compared to the traditionally available methods.
When Y is generated under the pattern mixture formulation with a MNAR missing
data mechanism (MNAR PMY), PMKS and MIMI have both lower pattern specific
contributions to the prediction error (PE) in the pattern where x; is missing, and
lower total prediction error compared to all other methods.

As might be expected, PMKS and CCS have different out-of-sample prediction
performance when the missing data are not Missing at Random (MAR). In fact,
PMKS minimizes the expected prediction loss regardless of missingness mechanism,
while CCS tends to rival PMKS only when the data are MAR. We will see that when
the data are modified to induce a Missing Not at Random (MNAR) mechanism,
PMKS has optimal predictions on average compared to traditional methods.

As both the strength of the missingness mechanism and the beta coefficient asso-
ciated with the missing variable increase, the magnitude of the differences in methods
favors PMKS/MIMI over all the other methods.
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Comparison of Pattern Prediction Error Among Missingness Mechanisms
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Figure 2.2: Simulation Results set of parameters: Sy = 1,61 = 3,82, = 1,61 = 1,05 = 1, P(M; =
1) = 05,11 = 1,vp = 1,1y = L,1ny = 1. The missing data mechanisms Missing at Random
(MAR) and Missing Not at Random (MNAR) were generated under a Pattern Mixture Y (PMY)
and Selection Model Y formulation. Red triangles represent the Total Prediction Error (TPE)
summed over all missing data patterns. Blue circles represent the PE for pattern 1 where there is
no missing data. Green circles represent the PE for pattern 2 in which x; is missing.
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Table 2.4 of out-of-sample imputations of z; provides insight into some of the
biases seen in Figure 2.2. When Y is included in the imputation model during model
construction, parameter estimates tend to be unbiased. However, when Y is included
as part of the fixed in-sample MI model, but Y is assumed to be missing for the
out-of-sample individual, MI performed using predictive mean matching and chained
equations bias the imputations of xy. In this case x; has the largest squared error
of all the imputations procedures for every missing data mechanism apart from un-
conditional mean imputation. Although the apparent bias in imputations for missing
covariates seem small, their total contribution over all individuals can be quite signif-
icant. These results show that biases in imputing missing predictors leads to poorer
downstream predictions and larger prediction error for the outcome.

Table 2.4: Squared Imputation Error of the true X; compared to the imputed X; under different
imputation methods and missing data mechanisms: Imputation Error of X; = ) . (X1; — X14)%
MAR: Missing at Random, MAR PMY: Missing at Random with Pattern Mixture Y calculation,
MNAR: Missing Not at Random, MNAR PMY: Missing Not at Random with Pattern Mixture
Y calculation, Cond. Mean: Conditional Mean Imputation using a regression model and a Bayes

procedure, MI: Multiple Imputation with and without Y in the imputation algorithm. The Mean
(SD) are presented for each type of imputation and missingness mechanism.

MAR MAR PMY  MNAR  MNAR PMY

Unconditional Mean  0.56 (0.03) 0.56 (0.03) 0.76 (0.03)  0.76 (0.03)
Cond. Mean 0.38 (0.02) 0.38 (0.02) 0.53 (0.03)  0.53 (0.03)
Cond. Mean (Bayes) 0.49 (0.03) 0.49 (0.03) 0.69 (0.03)  0.69 (0.03)
MI (No Y) 0.47 (0.03) 0.47 (0.03) 0.61 (0.03)  0.61 (0.03)
MI (Y) 0.76 (0.06) 0.74 (0.06)  0.75 (0.6)  0.71 (0.08)

Authors have explored in detail the advantages of including Y in the imputation
model (Moons et al., 2006). Using Y in the imputation model during model construc-
tion leads to unbiased estimates of regression coefficients. Whereas this may be a fine
approach during the model building (in-sample) population, it is not practical in the
prediction setting where the outcome is unknown and would be imputed as part of
the fixed imputation model. The chained equations imputation model can lead to
biased imputations for the missing covariates (in these simulations X;), when the
outcome (in these simulations Y') is imputed as part of the chain. We do not present
the situation in which Y was used in the in-sample imputation model to produce un-
biased regression estimates, but not included in the out-of-sample imputation model

- a combination which would have less propagated imputation bias. Even though it
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may seem that the inclusion of Y in the imputation model will lower prediction error,
careful thought and attention need to be placed on the practicality of this, as well as

the statistical implications.

2.6 Application: SUPPORT Data Example

The Study to Understand Prognoses and Preferences for Outcomes and Risks of
Treatments (SUPPORT') was a multi-center, two phase study, of 9105 patients. The
primary goal of the study was to model survival over a 180-day period in seriously ill
hospitalized adults (Phillips et al. (1995)). A component of the SUPPORT prognos-
tic model was the SUPPORT day 3 Physiology Score (SPS), a risk score created to
account for various sources of health variation and co-morbidities. The SUPPORT
physiology score can range from 0 to 100 and was derived from the following co-
variates: Disease group (4 levels), Partial pressure of oxygen in the arterial blood,
Mean blood pressure, White blood count, Albumin, APACHE III respiration score,
temperature, Heart rate per minute, Bilirubin, Creatinine, and Sodium. The SPS
model allowed Mean Blood pressure, White blood count, Albumin, Temperature,
HR, Bilirubin, Creatinine, and Sodium to have a nonlinear association with SPS, and
included certain interactions with disease group and albumin, and disease group and
white blood count.

For our illustrative example, we choose to model SPS score because it was a
known quantity and we could be sure there were not any major predictive factors
that were completely missing. We allowed for stochastic variation by using a less
sophisticated predictive model (e.g., non-linear terms and interactions were excluded
and the disease group variable was dropped). This provides a controlled setting in
which we can adequately assess the behavior of our predictive models. We note
that obtaining a valid SPS score was important because it was the most important
prognostic factor in the SUPPORT survival model.

After excluding an individual missing SPS score, and one individual missing all
covariates, 9103 individuals remained of which 3842 had complete data, 2323 were
missing partial pressure of oxygen in the arterial blood, 212 were missing white blood
count, 3370 were missing albumin, 2599 were missing bilirubin, and 66 were missing
creatinine, resulting in 23 observed missing data patterns, and 1024 possible missing
data patterns. Ten-fold cross-validation was used to compare the squared error loss of
MI, CCSM, MIMI and PMKS within missing data patterns, as well as total average

squared error loss, weighted by proportion of individuals in each pattern.
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2.6.1 SUPPORT Example Results

For each method, ten-fold cross validation of the prediction models was imple-
mented. For the patterns with less than or equal to N = (p+ 1) x2 = 22 subjects, the
complete case submodel was used, and the hybrid PMKS/CCS approach (as described
in Section 3.2) was implemented. For the original SUPPORT data, all methods per-
formed similarly both across and within patterns. In our simulation, we saw similar
results when data were MAR, giving rise to the possibility that these data also fol-
low a MAR mechanism. To exaggerate the missing data mechanism, we induced a
MNARY mechanism by adding 25 units to individuals SPS scores who were missing
the covariate partial pressure of oxygen in the arterial blood (pafi). This resulted in
a large reduction in PE under PMKS compared to traditional MI methods and CCS,
for the patterns in which partial pressure of oxygen in the arterial blood was missing.

The original data results are shown in the two sub-figures in the left of Figure
2.3. The total model PE does not differ between the four methods. When a MNAR
mechanism is induced in the support data, as shown in the two left sub-figures,
PMKS and MIMI outperform CCS and MI. In the patterns for which partial pressure
of oxygen in the arterial blood (pafi) is missing, the benefits of PMKS and MIMI
compared to CCS and MI are apparent. For these patterns, both the unweighted PE
(Figure 2.3 top-right) and weighted PE (Figure 2.3 bottom-right) show this reduction
in PE. The model PE, which is the sum of all the pattern specific contributions to
the PE results in approximately a 50% reduction in PE for PMKS/MIMI compared
to MI, and a 40% reduction in PE for PMKS/MIMI compared to CCS.
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Figure 2.3: The covariates included in the SPS prediction model include Partial pressure of oxygen in
the arterial blood (pafi), Mean blood pressure (meanbp), White blood count (wblc), Albumin (alb),
APACHE III respiration score (resp), temperature (temp), Heart rate per minute (hrt), Bilirubin
(bili), Creatinine (crea), and Sodium (sod). There are 23 patterns present in the SUPPORT data,
and missing covariates are denoted with 'X’. N is the total number of subjects in each missing
data pattern. Pattern Mixture Kernel Submodels (PMKS), Multiple Imputation with Missingness
Indicators (MIMI), Complete Case Submodels (CCS), and traditional Multiple Imputation (MI)
methods are all compared. The top two figures are the unweighted pattern specific PE, and the
bottom two figures are the pattern specific contribution to the PE in which the partial PE is
weighted by the observed proportion of individuals in each pattern.

2.7 Remarks

Statistical literature abounds with imputation methods for model inference, but
there are very few practical solutions for obtaining predictions for new individuals
who do not present with all of the necessary predictors. In this paper, we have shown
that PMKS provides competitive if not optimal predictions for a variety of missing
data mechanisms, and has large gains in computation time since external data and
imputation models are no longer needed to make new predictions. Our method is
robust, straightforward to implement, and can easily be extended for any generalized

linear model and models with nonlinear effects (this is ongoing work).
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While PMKS is clearly optimal in the sense of minimizing an expected prediction
loss, the procedure also has implications for model inference under non-MAR scenar-
ios. It leads to an important extension of classical MI procedures for estimation where
the MAR can be relaxed or assessed. Moreover, PMKS is more computationally ef-
ficient thanMI procedures. In the age of big data, this is an important consideration

and driving factor in most scientific contexts with big data.

2.7.1 Remark A: Conditioning Y on X and M

One might ask whether we are interested in the model marginalized over M,
E[Y|X] = X3, or the conditional model, E[Y|X, M| = X8+ M. This is a philo-
sophical question with many differing viewpoints. For inferential purposes (which we
do not consider here) it has been argued that the marginal model is the model of
interest, however in many situations can be imagined in which the conditional model
is the simpler way to express a complicated marginal model. From the prediction
point of view, PMKS/MIMI model is robust to both situations and therefore is the
preferred method to use.

By assuming the marginal model is correct, one is making the assumption that
data are MAR and the § parameters are zero. As the number of covariates increase,
this assumption in practice seems to be more plausible. A way to asses this in practice
is to evaluate whether the MI model and PMKS/MIMI model give similar results, as
we did in the SUPPORT example.

2.7.2 Remark B: The Relationship between Y and M

The relationship between Y and M plays an important role in our modeling as-
sumptions. An outcome generated from a selection model formulation is assumed to
be independent of the missing data mechanism, such that the outcome would be the
same regardless of whether covariate information is missing or observed. The pattern
mixture model formulation assumes that the missing data mechanism is part of the
response model, such that the outcome can be depend on the missing data pattern.
Both mechanisms are thought to exist in biomedical data, but unfortunately the two
approaches represent fundamentally different descriptions of the underlying natural
process. The two approach will only coincide when 6, = ... = §, = 0 (the MAR
assumption). The B parameters could be adjusted to account for the differential

missingness across the two approaches, but then the model are not comparable.
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2.7.3 Remark C: Extending to Generalized Linear Models and Other Prediction
Approaches

We performed the same set of simulations assuming a true logistic regression

model, where we used a logarithmic scoring rule to compare methods. The general

ordering of results holds and will be explored in future papers. These results extend

to random forests as well. For example, our results suggest a random forest should

be fit by pattern, using only the data in that pattern.

2.7.4 Final remark

Care should be taken when developing clinical prediction models when missing
data is present. Prediction models should be fit with PMKS and estimation should
be conducted under MIMI for optimal results, since these methods are robust to a

wide variety of missing data mechanisms compared to commonly available MI and
CCS methods.
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2.8 Appendix A. Code for Simulations and Case Study

library(plyr)
library(rms)
library(mice)
library(cvTools)
#library (caret)
library (MASS)
library (Hmisc)
library(lme4)
library (mi)
library (doSNOW)

# Functions to use

#This function creates missing data indicators
#for your dataset and then appends those indicators

#To the original dataset

create.miss.ind <- function(DATA){

tmp.dat <- as.data.frame(is.na(DATA)*1)

names (tmp.dat) <- paste(’m.’,names(tmp.dat),sep="")
cbind (DATA, tmp.dat)

#This function creates missing data indicators

#for your dataset

create.miss.ind.only <- function(DATA){

tmp.dat <- as.data.frame(is.na(DATA)*1)

names (tmp.dat) <- paste(’m.’,names(tmp.dat),sep="")
tmp.dat

#Function to combine two data frames and match them up by column names
rbind.match.columns <- function(inputl, input2) {
n.inputl <- ncol(input1)
n.input2 <- ncol(input2)
if (n.input2 < n.inputl) {
TF.names <- which(names(input2) %inJ, names(input1))
column.names <- names(input2[, TF.names])
} else {
TF.names <- which(names(input1) %inj, names(input2))
column.names <- names(inputl[, TF.names])
}

return(rbind(inputi[, column.names], input2[, column.names]))

#predict an out of sample individual where you have a single model created
#by mice, takes the mice model object and the newdata from a new individual
predict.oos.mice <- function(FIT, NEWDATA){

mod.call <- as.character (FIT$calll) [3]

mod.call <- strsplit(mod.call, *\\(’)[[1]1][2]

mod.call <- strsplit(mod.call, ’,”)[[11][1]

1p <- NA

bb <- FIT$gbar

mm <- model.matrix(as.formula(mod.call), NEWDATA)

if (length(bb) != ncol(mm)) {

stop(’issue with mm’)

} else {

1p <- mm %*% matrix(bb, ncol=1)
}

1p

}

#AUC function
auc=function(score,status){
B
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## auc version 1.0

## Compute Area under Rmpirical ROC curve by Trapezoidal Rule
## Author: J. Blume

## Date: July 2014

B

J
0]

pos=score[statu

neg=score [status

cti=sum(outer(pos,neg,">"))
ct2=sum(outer (pos,neg,"=="))
den=length(pos)*length(neg)
auc=(ct1+0.5%ct2) /den
auc=max (auc, 1-auc)

auc

#Function to calculate the brier score
brier.score <- function(pred, outcome){
mean((pred - outcome)~2)

}

#Function to calculate the logarithmic scoring rule

logarithmic.scoring.rule <- function(pred, outcome){

mean (outcome*log(pred) + (1-outcome)+*log(i-pred))

HERBHHHHHRAH

#1) Find all the patterns of missingness

#2) For patterns of missingness with membership >= 2p + 2, fit a submodel with all the

# observed covariates, ussing only the people in that pattern.

#3) For patterns of missingness with mempership < 2p + 2 fit the complete case submodel, which
# only includes the observed covariates in that patter, but <f fitted with ALL the

#  individuals in the data set

#4) Allow function to handle both linear and logistic models.

#5) Output prediction models in a way that would be usable with a wvalidation

# dataset or new person

pmks <- function(DATA, model, logistic=TRUE){

mod.DATA <- get_all_vars(as.formula(model), data=DATA)
SDATA <- mod.DATA[,-1] #remove the outcome
tmp.dat <- as.data.frame(is.na(SDATA)*1)

tmp.pattern <- factor(apply(tmp.dat,1,function(z) paste(z,collapse="")))
all.patterns <- factor(apply(expand.grid(rep(list(0:1),ncol(SDATA))),1,function(z) paste(z,collapse="")))
obs.patterns <- unique(tmp.pattern)
tmp.info <- split(seq(nrow(SDATA)), tmp.pattern)
mp.levels <- levels(tmp.pattern)
mp.pattern  <- do.call(rbind, lapply(as.list(mp.levels),function(ZZ) strsplit(zz,’’)[[1]11))
mp.info <- data.frame(cbind(names(tmp.info), unlist(lapply(tmp.info, length))),
stringsAsFactors= FALSE)
rownames (mp.info) <- seq(nrow(mp.info))
colnames (mp.info) <- c(’mp’,’n’)
if (length(setdiff (all.patterns,obs.patterns)) == 0){
empty.patterns = NULL
} else {
empty.patterns <- data.frame(mp = factor(setdiff(all.patterns,obs.patterns)), n=0)
}

mp.info <- rbind(mp.info,empty.patterns)

mod.rhs <- strsplit(model, ’~’)[[1]1][1]

mod.lhs <- strsplit(model, ’~’)[[1]1][2]

mod.lhs <- strsplit(mod.lhs,’ ’)[[1]]

mod.lhs mod.lhs[! (mod.1lhs%in%c(’?,’+’,%~?))]

A
1

cc <- ncol(model.matrix(as.formula(model) ,mod.DATA))

threshold <- cc*2
mp.info$use.ptmx <- (as.numeric(mp.info$n)>=threshold)*1
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reg.out <- vector(’list’, length(all.patterns))

names(reg.out) <- mp.info$mp.info

for(ixx in seq(nrow(mp.info))) {

col.keep <- which(strsplit(mp.info$mp[ixx],’’)[[1]1]1=="0")

if (length(col.keep)==0){

new.mod <- as.formula(paste(mod.rhs,1,sep=’~"))

} else {new.mod <- as.formula(paste(mod.rhs,paste(mod.lhs[col.keep],collapse=’+’),
sep="~’))}

if (mp.info$use.ptmx [ixx]==1) {
if (logistic == TRUE){
reg.out [[ixx]] <- list(pattern = mod.lhs[col.keep],
mod = glm(new.mod,data=mod.DATA[tmp.info[[ixx]],],family = ’binomial’))
} else {
reg.out[[ixx]] <- list(pattern = mod.lhs[col.keep],
mod = glm(new.mod,data=mod.DATA[tmp.info[[ixx]],],family = ’gaussian’))

-

else {
if (logistic == TRUE){
reg.out[[ixx]] <- list(pattern = mod.lhs[col.keep],
mod = glm(new.mod,data=mod.DATA, family=’binomial’))
} else {
reg.out[[ixx]] <- list(pattern = mod.lhs[col.keep],
mod = glm(new.mod,data=mod.DATA, family=’gaussian’))

¥
¥
reg.out

¥

#Fit all the complete case submodels
ccsm <- function(DATA, model, logistic=TRUE){

mod.DATA <- get_all_vars(as.formula(model), data=DATA)
SDATA  <- mod.DATA[,-1] #remove the outcome
tmp.dat <- as.data.frame(is.na(SDATA)*1)

tmp.pattern <- factor(apply(tmp.dat,1,function(z) paste(z,collapse="")))
all.patterns <- factor(apply(expand.grid(rep(1list(0:1),ncol(SDATA))),1,function(z) paste(z,collapse="")))
obs.patterns <- unique(tmp.pattern)

tmp.info <- split(seq(nrow(SDATA)), tmp.pattern)

mp.levels <- levels(tmp.pattern)

mp.pattern  <- do.call(rbind, lapply(as.list(mp.levels),function(ZZ) strsplit(2Z,’’)[[1]11))
mp.info <- data.frame(cbind(names(tmp.info), unlist(lapply(tmp.info, length))),

stringsAsFactors= FALSE)
rownames (mp.info) <- seq(nrow(mp.info))
colnames (mp.info) <- c¢(’mp’,’n’)
empty.patterns <- data.frame(mp = factor(setdiff(all.patterns,obs.patterns)), n=0)
mp.info <- rbind(mp.info,empty.patterns)

mod.rhs <- strsplit(model, ’~’)[[1]1][1]

mod.lhs <- strsplit(model, ’~’)[[1]][2]

mod.lhs <- strsplit(mod.lhs,’ ’)[[1]]

mod.lhs <- mod.lhs[!(mod.lhs%in%c(’?,’+’,?~*))]

reg.out <- vector(’list’, length(all.patterns))
names(reg.out) <- mp.info$mp.info

for(ixx in seq(nrow(mp.info))) {
col.keep <- which(strsplit(mp.info$mp[ixx],’’)[[11]1=="07)
if (length(col.keep)==0){
new.mod <- as.formula(paste(mod.rhs,1,sep=’~’))
} else {new.mod <- as.formula(paste(mod.rhs,paste(mod.lhs[col.keep],collapse=’+’),
sep="~’))}

if (logistic == TRUE){

# Use complete case submodel

reg.out[[ixx]] <- list(pattern = mod.lhs[col.keep],

mod = glm(new.mod, data=mod.DATA, family = ’binomial’))

} else {reg.out[[ixx]] <- list(pattern = mod.lhs[col.keep],
mod = glm(new.mod, data=mod.DATA, family = ’gaussian’))}

¥

reg.out
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#Predict for a new individual using a PMKS or CCSM object
predict.sm <- function(prediction.data, model, pmks.object, logistic = TRUE){

mod.DATA <- get_all_vars(as.formula(model), data=prediction.data)
PDATA  <- mod.DATA[,-1] #remove the outcome
tmp.dat <- as.data.frame(is.na(PDATA)*1)
tmp.pattern <- factor(apply(tmp.dat,1,function(z) paste(z,collapse="")))
tmp.info <- split(seq(nrow(PDATA)), tmp.pattern)
mp.levels <- levels(tmp.pattern)
mp.pattern  <- do.call(rbind, lapply(as.list(mp.levels),function(ZZ) strsplit(2Zz,’’)[[111))
mp.info <- data.frame(cbind(names(tmp.info), unlist(lapply(tmp.info, length))),

stringsAsFactors= FALSE)
rownames (mp.info) <- seq(nrow(mp.info))
colnames (mp.info) <- c(’mp’,’n’)
mod.rhs <- strsplit(model, ’~’)[[1]1][1]
mod.rhs <- strsplit(mod.rhs,’ ’)[[1]]

mod.lhs <- strsplit(model, ’~’)[[1]][2]
mod.lhs <- strsplit(mod.lhs,’ ’)[[1]]
mod.lhs <- mod.lhs[!(mod.lhs%in%c(’’,’+’,?~"))]

pred.out <- vector(’list’, nrow(mp.info))
#For the different patterns
for(ixx in seq(length(tmp.info))){
col.keep <- which(strsplit(mp.info$mp[ixx],’’)[[1]1]1=="07)
pattern  <- mod.lhs[col.keep]
which.mod <- which(lapply(pmks.object, function(z) identical(z$pattern, pattern))==TRUE)

if (logistic == TRUE){

pred.out[[ixx]] <- list(

numeric.pattern = mp.info$mp[ixx],
pattern = pattern,
mod = pmks.object[[which.mod]]$mod,

lin.pred = predict(pmks.object[[which.mod]]$mod,
prediction.dataltmp.info[[ixx1],1),

truth = prediction.data[tmp.info[[ixx]],mod.rhs],

strat.auc = auc(expit(predict(pmks.object[[which.mod]]$mod,
prediction.dataltmp.info[[ixx]],1)),
prediction.datal[tmp.info[[ixx]],mod.rhs]),

strat.brier = brier.score(expit(predict(pmks.object[[which.mod]]$mod,
prediction.data[tmp.info[[ixx]],1)),
prediction.datal[tmp.info[[ixx]],mod.rhs]),

strat.logscore = logarithmic.scoring.rule(expit(predict(pmks.object[[which.mod]]$mod,

prediction.dataltmp.info[[ixx]],1)),
prediction.dataltmp.info[[ixx]],mod.rhs]))
} else {
pred.out[[ixx]] <- list(

numeric.pattern = mp.info$mp[ixx],
pattern = pattern,
mod = pmks.object[[which.mod]]$mod,

lin.pred = predict(pmks.object[[which.mod]]$mod,
prediction.dataltmp.info[[ixx]],]),
truth = prediction.data[tmp.info[[ixx]],mod.rhs],

strat.brier = brier.score(predict(pmks.object[[which.mod]]$mod,
prediction.data(tmp.info[[ixx]],1),
prediction.data[tmp.info[[ixx]],mod.rhs]))
}
¥
pred.out
}

#Function to find all the observed missing data patterns

which.pattern <- function(DATA, model){
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mod.DATA <- get_all_vars(as.formula(model), data=DATA)

SDATA <- mod.DATA[,-1] #remove the outcome
tmp.dat <- as.data.frame(is.na(SDATA)*1)
tmp.pattern <- factor(apply(tmp.dat,1,function(z) paste(z,collapse="")))

pattern <- tmp.pattern
pattern

#Get metrics by pattern for a logistic model
get_metric <- function(DATA) {
colnames(DATA) <- c(’pred’,’true’,’pattern’)
do.call(rbind, by(DATA, pattern,function(xx) {
data.frame(’log’=logarithmic.scoring.rule(xx$pred,xx$true),
’auc’=auc (xx$pred, xx$true),

’brier’=brier.score(xx$pred,xx$true))}))

#Get metrics by pattern for a linear model
get_metric_linear <- function(DATA) {
colnames(DATA) <- c(’pred’,’true’,’pattern’)
do.call(rbind, lapply( split(DATA, DATA$pattern),
function(xx) data.frame(’brier’=brier.score(xx$pred,xx$true),
’prop.pattern’ = (length(xx$true)/nrow(DATA))) ))

#MSE from a fitted model
mse <- function(sm) {
mse <- mean(sm$residuals”2)

return(mse)

#logit function
logit <- function(p) log(p/(1-p))

#Empirically calculate the intercept for the missing data
#mechanism
miss.int <- function(miss.mech, betaM=1,p.miss){
if (ncol(miss.mech)!=2){
logit(p.miss) - betaM*mean(miss.mech[,1])
} else {
logit(p.miss) - betaM*mean((((miss.mech[,2]/sd(miss.mech[,2]))

+ miss.mech[,1])/as.numeric(sqrt(2*(1+cor(miss.mech[,2] ,miss.mech[,1]))))))

#Function to create a data frame for simulation
dat.frame <- function(n.tr,
mu.z,
mu.w,
mu.q,
s.z,
s.w,
s.q,
s.wz,
s.zq,
s.wq,
p.miss,
missing.type,
b.x,
b.z,
b.w,
b.m,
mu.e,
s.e,
betaM=1){
x = rep(1,n.tr)
mu = c(mu.z,mu.w,mu.q)
Sigma = matrix(c(1,s.wz,s.zq,
s.wz,1,s.wq,
s.zq,s.wq,1), byrow=TRUE, ncol=3)
dat = as.data.frame(mvrnorm(n=n.tr, mu=mu, Sigma=Sigma, empirical=TRUE))

32



colnames(dat) = c(’z’,’w’,’q’)
coef.tru = rbind( b.x , b.z , b.w)
dat$y=cbind(x,dat[,’z’], dat[,’w’])%

coef.tru + rnorm(n.tr,mean=mu.e,sd=s.e)

if (missing.type=="MCAR’){
m = rbinom(n.tr,1,p.miss)
y.pmm = b.x*x + b.zxdat[,’z’] + b.wxdat[,’w’] + b.m*m + rnorm(n.tr,mean=mu.e,sd=s.e)
data.frame(x=x, z=dat[,’z’], w=dat[,’w’], g=dat[,’q’],m=m, y=dat[,’y’], y.pmm = y.pmm)
else if (missing.type=="MAR’){
m = rbinom(n.tr, 1, expit(miss.int(miss.mech=cbind(dat[,’w’]),

betaM=betaM,p.miss) + betaM*dat[,’w’]))

y.pmm = b.x*x + b.zxdat[,’z’] + b.wxdat[,’w’] + b.m*m + rnorm(n.tr,mean=mu.e,sd=s.e)

)

data.frame(x=x, z=dat[,’z’], w=datl[,’w’], g=dat[,’q’], m=m, y=dat[,’y’], y.pmm = y.pmm)
else if (missing.type==’MNAR’){

&2

m = rbinom(n.tr, 1, expit(miss.int(miss.mech=cbind(datl[,’z’1),

betaM=betaM,p.miss) + betaMxdatl[,’z’]))
y.pmm = b.x*x + b.zxdat[,’z’] + b.wxdat[,’w’] + b.m*m + rnorm(n.tr,mean=mu.e,sd=s.e)
data.frame(x=x, z=dat[,’z’], w=dat[,’w’], g=dat[,’q’], m=m, y=dat[,’y’], y.pmm = y.pmm)
else if (missing.type==’MARY’){

-

m = rbinom(n.tr, 1,
expit(miss.int (miss.mech=dat[,c(’w’,’y’)], betaM=betaM,p.miss)
+ betaM*(((dat[,’y’]/sd(dat[,’y’]1)) + dat[,’w’])/as.numeric(sqrt(2*(1+cor(dat[,’y’],dat[,’w’1)))))))
data.frame(x=x, z=datl[,’z’], w=dat[,’w’], g=dat[,’q’], m=m, y=datl[,’y’])
else if (missing.type==’MNARY’){

[

m = rbinom(n.tr, 1,
expit(miss.int(miss.mech=dat[,c(’z’,’y’)], betaM=betaM,p.miss)
+ betaM* (((dat[,’y’]/sd(dat[,’y’]1)) + dat[,’z’])/as.numeric(sqrt(2*(1+cor(datl,’y’],dat[,’z’1)))))))
data.frame(x=x, z=datl[,’z’], w=dat[,’w’], q=datl,’q’], m=m, y=dat[,’y’])

#Create an out of sample data frame, returns a list
# with different kinds of imputations done on the
# out of sample individuals
oos.data <- function(n.tr.new,

mu.z.new,

mu.w.new,

mu.q.new,

s.z.new,

S.w.new,

s.q.new,

w

.WZ.new,

w

.zq.new,

©»

.Wq.new,
p.miss.new,
missing.type.new,
b.x.new,
b.z.new,
b.w.new,
mu.e.new,
s.e.new,
betaM.new=1,
n.imp = 5,
original.dat.miss,
Y.PM

) {

dat.new <- dat.frame(n.tr=n.tr.new,
mu.z = mu.z.new,
mi.¥ = mu.w.new,

mu.q = mu.q.new,

s.z = s.z.new,
S.Ww = s.w.new,

s.q = s.q.new,

S.WzZ = s.wz.new,
s.zq = s.zq.new,
s.wq = s.wq.new,
p.miss = p.miss.new,

missing.type = missing.type.new,
b.x = b.x.new,

b.z = b.z.new,
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b.w = b.w.new,
b.m = betaM.new,
mu.e = mu.e.new,
s.e = s.e.new,
betaM = betaM.new)
if (Y.PM == TRUE) {dat.new$y <- dat.new$y.pmm}

dat.miss.new <- dat.new
dat.miss.new$z <- ifelse(dat.new$m==1,NA,dat.new$z)

imputed.dat.cm.mipack <- imputed.dat.cm.Hmisc <- dat.miss.new
imputed.dat.mi <- imputed.dat.miq <- imputed.dat.miy <- rep(list(dat.miss.new),n.imp)

dat.cc.mean <- dat.miss.new

dat.cc.mean[which(is.na(dat.cc.mean$z)==TRUE),’z’] <- mean(original.dat.miss$z, na.rm=TRUE)

dat.cond.mean <- dat.miss.new
mod.predict.z <- Im(z ~ w, data = original.dat.miss)

dat.cond.mean[dat.cond.mean$m==1,’z’] <- predict(mod.predict.z, dat.miss.new[dat.miss.new$m==1,])

for(i in which(dat.new$m==1)){
newperson <- dat.miss.new[i,]
newperson$y <- NA
addNewPatient <- rbind.match.columns(original.dat.miss, newperson)

#Single Conditional Mean Imputation Using MI
mdf <- suppressMessages(suppressWarnings(missing_data.frame(addNewPatient[,c(’x’,’z’,’w’)1)))

#the expectation argument is conditional mean expectation
mdf <- suppressMessages(change(mdf, y=c(’x’,’z’,’w’),what = "imputation_method", to = "expectation"))
imputations <- mi(mdf,n.iter=1,n.chains=1,verbose=FALSE,parallel=FALSE)

imputed.dat.cm.mipack[i,c(’x’,’z’,’w’)] <- complete(imputations,1) [nrow(addNewPatient),c(’x’,’z’,’w’)]
f <- aregImpute( ~ w + z, data=addNewPatient, n.impute=1,type=’regression’,pr=FALSE)
imputed.dat.cm.Hmisc[i,c(’z’,’w’)] <- as.data.frame(impute.transcan(f,

imputation=1, data=addNewPatient, list.out=TRUE,

pr=FALSE, check=FALSE)) [nrow(addNewPatient),c(’z’,’w’)]

# imp.pmm <- aregImpute(~ w + z, n.impute=n.imp, w=TRUE,

# nk=3, tlinear=F, data=addNewPatient, pr=FALSE)
# imp.pmm.q <- aregImpute(~ w + z + g, n.impute=n.imp, ©=TRUE

# nk=3, tlinear=F, data=addNewPatient, pr=FALSE)
# imp.pmm.y <- a'r‘egImpute(~ w+ z +y, n.impute=n.imp, z=TRUE,

# nk=3, tlinear=F, data=addNewPatient, pr=FALSE)

imp.pmm <- aregImpute(~ w + z, n.impute=n.imp, x=TRUE,
nk=0, tlinear=TRUE, data=addNewPatient, pr=FALSE)
imp.pmm.q <- aregImpute(~ w + z + ¢, n.impute=n.imp, x=TRUE,
nk=0, tlinear=TRUE, data=addNewPatient, pr=FALSE)
imp.pmm.y <- aregImpute(~ w + z + y, n.impute=n.imp, x=TRUE,
nk=0, tlinear=TRUE, data=addNewPatient, pr=FALSE)

for(j in 1:n.imp) {
imputed.dat.mi[[j1][i,c(’2’)] <- as.data.frame(impute.transcan(imp.pmm, imputation=j,
data=addNewPatient, list.out=TRUE,
pr=FALSE, check=FALSE)) [nrow(addNewPatient),c(’z’)]

imputed.dat.miq[[j]][i,c(’z’)] <- as.data.frame(impute.transcan(imp.pmm.q, imputation=j,
data=addNewPatient, list.out=TRUE,
pr=FALSE, check=FALSE)) [nrow(addNewPatient),c(’z’)]

imputed.dat.miy[[j1]1[i,c(’z’)] <- as.data.frame(impute.transcan(imp.pmm.y, imputation=j,
data=addNewPatient, list.out=TRUE,
pr=FALSE, check=FALSE)) [nrow(addNewPatient),c(’z’)]

list(
dat.miss.new = dat.miss.new,
imputed.dat.cm.mipack = imputed.dat.cm.mipack,
imputed.dat.cm.Hmisc = imputed.dat.cm.Hmisc,
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imputed.dat.mi.avg = Reduce("+",imputed.dat.mi)/length(imputed.dat.mi),
imputed.dat.miq.avg = Reduce("+",imputed.dat.miq)/length(imputed.dat.miq),
imputed.dat.miy.avg = Reduce("+",imputed.dat.miy)/length(imputed.dat.miy),
dat.new = dat.new,

dat.mean = dat.cc.mean,

dat.cond.mean = dat.cond.mean

#Simulation

simulation <- function(n.tr,
mu.z,
mu.w,
mu.q,

BoF

s.W,

Boly

s.wz,

829,

8.wq,

p.miss,

missing.type,

b.x,

b.z,

b.w,

mu.e,

s.e,

betaM,

n.tr.new,

mu.z.new,

mu.w.new,

mu.q.new,

.Z.new,
.W.new,

.q.new,

s
s
s
s.wz.new,
s.zq.new,
s.wq.new,
p.miss.new,
missing.type.new,
b.x.new,
b.z.new,
b.w.new,
mu.e.new,
s.e.new,
betaM.new,
n.imp,
n.sim,
Y.PM
){
results = list(is.mse = data.frame(mse.truth = rep(NA,n.sim), mse.truth.int = rep(NA,n.sim),
mse.cc = rep(NA,n.sim), mse.full.cm.mipack = rep(NA,n.sim),
mse.full.cm.Hmisc = rep(NA, n.sim), mse.marg.cm.mipack = rep(NA, n.sim),
mse.marg.cm.Hmisc = rep(NA, n.sim), mse.full.mi.Hmisc = rep(NA,n.sim),
mse.marg.mi.Hmisc = rep(NA, n.sim), mse.full.miy.Hmisc = rep(NA, n.sim),
mse.marg.miy.Hmisc = rep(NA, n.sim), mse.full.miq.Hmisc = rep(NA, n.sim),
mse.marg.miq.Hmisc = rep(NA, n.sim), mse.full.miyq.Hmisc = rep(NA, n.sim),
mse.marg.miyq.Hmisc = rep(NA, n.sim),
mse.full.cond.mean = rep(NA, n.sim), mse.marg.cond.mean = rep(NA, n.sim)),
is.pattern.00 = data.frame(oracle.marg.mse = rep(NA, n.sim), oracle.marg.prop = rep(NA, n.sim),
oracle.full.mse = rep(NA, n.sim), oracle.full.prop = rep(NA, n.sim),
cc.mean.mse = rep(NA, n.sim),cc.mean.prop = rep(NA, n.sim),
full.cm.mipack.mse = rep(NA, n.sim),full.cm.mipack.prop = rep(NA, n.sim),
marg.cm.mipack.mse = rep(NA, n.sim),marg.cm.mipack.prop = rep(NA, n.sim),
full.cm.Hmisc.mse = rep(NA, n.sim), full.cm.Hmisc.prop = rep(NA, n.sim),
marg.cm.Hmisc.mse = rep(NA, n.sim),marg.cm.Hmisc.prop = rep(NA, n.sim),
full.mi.Hmisc.mse = rep(NA, n.sim),full.mi.Hmisc.prop = rep(NA, n.sim),
marg.mi.Hmisc.mse = rep(NA, n.sim),marg.mi.Hmisc.prop = rep(NA, n.sim),
full.miq.Hmisc.mse = rep(NA, n.sim),full.miq.Hmisc.prop = rep(NA, n.sim),

full.miy.Hmisc.mse = rep(NA,

n
marg.miq.Hmisc.mse = rep(NA, n.sim),marg.miq.Hmisc.prop = rep(NA, n.sim),
n.sim),full.miy.Hmisc.prop = rep(NA, n.sim),
n

marg.miy.Hmisc.mse = rep(NA, n.sim) ,marg.miy.Hmisc.prop = rep(NA, n.sim)
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metric.pmks.mse
metric.ccsm.mse
full.cond.mean
marg.cond.mean
is.pattern.10 = data.frame(oracle.marg.mse
oracle.full.mse

cc.mean.mse

rep(NA, n.sim),metric.pmks.prop = rep(NA, n.sim),

rep(NA, n.sim),metric.ccsm.prop = rep(NA, n.sim),

rep(NA, n.sim), full.cond.mean.prop = rep(NA, n.sim),

rep(NA,n.sim), marg.cond.mean = rep(NA, n.sim)),

rep(NA, n.sim), oracle.marg.prop = rep(NA, n.sim),

rep(NA, n.sim), oracle.full.prop = rep(NA, n.sim),

rep(NA, n.sim),cc.mean.prop = rep(NA, n.sim),

full.cm.mipack.mse = rep(NA, n.sim),full.cm.mipack.prop = rep(NA, n.sim),
marg.cm.mipack.mse = rep(NA, n.sim),marg.cm.mipack.prop = rep(NA, n.sim),
full.cm.Hmisc.mse = rep(NA, n.sim), full.cm.Hmisc.prop = rep(NA, n.sim),
marg.cm.Hmisc.mse = rep(NA, n.sim),marg.cm.Hmisc.prop = rep(NA, n.sim),
full.mi.Hmisc.mse = rep(NA, n.sim),full.mi.Hmisc.prop = rep(NA, n.sim),
marg.mi.Hmisc.mse = rep(NA, n.sim),marg.mi.Hmisc.prop = rep(NA, n.sim),
full.miq.Hmisc.mse = rep(NA, n.sim),full.miq.Hmisc.prop = rep(NA, n.sim),
marg.miq.Hmisc.mse = rep(NA, n.sim),marg.miq.Hmisc.prop = rep(NA, n.sim),
full.miy.Hmisc.mse = rep(NA, n.sim),full.miy.Hmisc.prop = rep(NA, n.sim),
marg.miy.Hmisc.mse = rep(NA, n.sim), marg.miy.Hmisc.prop = rep(NA, n.sim),

metric.pmks.mse
metric.ccsm.mse
full.cond.mean

marg.cond.mean

oos.mse = data.frame(mse.

rep(NA, n.sim),metric.pmks.prop = rep(NA, n.sim),

rep(NA, n.sim),metric.ccsm.prop = rep(NA, n.sim),

rep(NA, n.sim), full.cond.mean.prop = rep(NA, n.sim),

rep(NA,n.sim), marg.cond.mean.prop = rep(NA, n.sim)),

cc.mean.new= rep(NA,n.sim),

.cc.cm.Hmisc.new= rep(NA,n.sim),

mse.full.cm.mipack.new= rep(NA,n.sim),
mse.marg.cm.mipack.new= rep(NA,n.sim),
mse.full.cm.Hmisc.new= rep(NA,n.sim),
mse.marg.cm.Hmisc.new= rep(NA,n.sim),
mse.full.mi.Hmisc.new= rep(NA,n.sim),
mse.marg.mi.Hmisc.new= rep(NA,n.sim),
mse.full.miq.Hmisc.new= rep(NA,n.sim),
mse.marg.miq.Hmisc.new= rep(NA,n.sim),
mse.full.miy.Hmisc.new= rep(NA,n.sim),
mse.marg.miy.Hmisc.new= rep(NA,n.sim),

oracle.marg=
oracle.full=
mse.full.

mse.marg.

),

oos.pattern.00 = data.frame(oracle.marg.mse
oracle.full.mse
cc.mean.mse
cc.cm.mipack.mse
cc.cm.Hmisc.mse

full.cm.mipack.mse

rep(NA,n.sim),
rep(NA,n.sim),

cond.mean = rep(NA,n.sim),

cond.mean = rep(NA, n.sim)

rep(NA, n.sim), oracle.marg.prop = rep(NA, n.sim),

rep(NA, n.sim), oracle.full.prop = rep(NA, n.sim),

rep(NA, n.sim),cc.mean.prop = rep(NA, n.sim),

rep(NA, n.sim),cc.cm.mipack.prop = rep(NA, n.sim),

rep(NA, n.sim),cc.cm.Hmisc.prop = rep(NA, n.sim),

rep(NA, n.sim),full.cm.mipack.prop = rep(NA, n.sim),

marg.cm.mipack.mse = rep(NA, n.sim),marg.cm.mipack.prop = rep(NA, n.sim),
full.cm.Hmisc.mse = rep(NA, n.sim), full.cm.Hmisc.prop = rep(NA, n.sim),
marg.cm.Hmisc.mse = rep(NA, n.sim),marg.cm.Hmisc.prop = rep(NA, n.sim),
full.mi.Hmisc.mse = rep(NA, n.sim),full.mi.Hmisc.prop = rep(NA, n.sim),
marg.mi.Hmisc.mse = rep(NA, n.sim),marg.mi.Hmisc.prop = rep(NA, n.sim),
full.miq.Hmisc.mse = rep(NA, n.sim),full.miq.Hmisc.prop = rep(NA, n.sim),
marg.miq.Hmisc.mse = rep(NA, n.sim),marg.miq.Hmisc.prop = rep(NA, n.sim),
full.miy.Hmisc.mse = rep(NA, n.sim),full.miy.Hmisc.prop = rep(NA, n.sim),
marg.miy.Hmisc.mse = rep(NA, n.sim) ,marg.miy.Hmisc.prop = rep(NA, n.sim)

metric.pmks.mse
metric.ccsm.mse

full.cond.mean

marg.cond.mean

oos.pattern.10 = data.frame(oracle.marg.mse

rep(NA, n.sim),metric.pmks.prop = rep(NA, n.sim),

rep(NA, n.sim),metric.ccsm.prop = rep(NA, n.sim),

rep(NA, n.sim), full.cond.mean.prop = rep(NA, n.sim),

rep(NA,n.sim), marg.cond.mean.prop = rep(NA, n.sim)),

= rep(NA, n.sim), oracle.marg.prop = rep(NA, n.sim),

oracle.full.mse = rep(NA, n.sim), oracle.full.prop = rep(NA, n.sim),
cc.mean.mse = rep(NA, n.sim),cc.mean.prop = rep(NA, n.sim),
cc.cm.mipack.mse = rep(NA, n.sim),cc.cm.mipack.prop = rep(NA, n.sim),
cc.cm.Hmisc.mse = rep(NA, n.sim),cc.cm.Hmisc.prop = rep(NA, n.sim),

full.cm.mipack.mse = rep(NA, n.sim),full.cm.mipack.prop = rep(NA, n.sim),

marg.cm.mipack.mse = rep(NA, n.sim),marg.cm.mipack.prop = rep(NA, n.sim),
full.cm.Hmisc.mse = rep(NA, n.sim), full.cm.Hmisc.prop = rep(NA, n.sim),
marg.cm.Hmisc.mse = rep(NA, n.sim),marg.cm.Hmisc.prop = rep(NA, n.sim),
full.mi.Hmisc.mse = rep(NA, n.sim),full.mi.Hmisc.prop = rep(NA, n.sim),
marg.mi.Hmisc.mse = rep(NA, n.sim),marg.mi.Hmisc.prop = rep(NA, n.sim),
full.miq.Hmisc.mse = rep(NA, n.sim),full.miq.Hmisc.prop = rep(NA, n.sim),
marg.miq.Hmisc.mse = rep(NA, n.sim),marg.miq.Hmisc.prop = rep(NA, n.sim),
full.miy.Hmisc.mse = rep(NA, n.sim),full.miy.Hmisc.prop = rep(NA, n.sim),
marg.miy.Hmisc.mse = rep(NA, n.sim), marg.miy.Hmisc.prop = rep(NA, n.sim),

metric.pmks.mse

metric.ccsm.mse

rep(NA, n.sim),metric.pmks.prop = rep(NA, n.sim),

rep(NA, n.sim),metric.ccsm.prop = rep(NA, n.sim),
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full.cond.mean = rep(NA, n.sim), full.cond.mean.prop = rep(NA, n.sim),
marg.cond.mean = rep(NA,n.sim), marg.cond.mean.prop = rep(NA, n.sim)),
oos.z.mse = data.frame(dat.miss.new= rep(NA, n.sim),
imputed.dat.cm.mipack = rep(NA, n.sim),
imputed.dat.cm.Hmisc = rep(NA, n.sim),
imputed.dat.mi.avg = rep(NA, n.sim),
imputed.dat.miq.avg = rep(NA, n.sim),
imputed.dat.miy.avg = rep(NA, n.sim),
dat.new = rep(NA, n.sim),
dat.mean = rep(NA, n.sim),
dat.cond.mean = rep(NA, n.sim) )
)
#Replicate Simulation
for(RS in 1:n.sim){
dat = dat.frame(n.tr=n.tr,
mu.z = mu.z,
mu.w = mu.w,
mu.q = mu.q,
s.z = s.z,
s.w = s.w,
s.q = s.q,
s.wz = s.vz,
s.zq = s.zq,
s.wq = s.vq,
p.miss = p.miss,

missing.type = missing.type,

b.x = b.x,
b.z = b.z,
b.w = b.w,
b.m = betaM,

mu.e = mu.e,
s.e = s.e,
betaM = betal)

if (Y.PM == TRUE) {dat$y <- dat[,’y.pmm’] }

#Full Model that we could use if we had all the data-we will use this model to get the ’truth’
mod.truth <- 1lm(y ~ z + w, data=dat)
mod.truth.int <- Im(y ~ (z + w)*m, data=dat)

#From those people make some of their information missing
dat.miss <- dat
dat.miss$z <- ifelse(dat$m==1,NA,dat$z)

datdis <<- datadist(dat.miss)
options(datadist=’datdis’)

#complete case model
mod.cc <- lm(y ~ z + w, data=dat.miss)

mod.ccsm.w <- lm(y ~ w, data=dat.miss)

#Conditional Mean Imputations and Results Using both the MI package and Hmisc

#mi package

mdf <- suppressMessages(suppressWarnings(missing_data.frame(dat.miss[,c(’x’,’z’,’w’)])))

#the ezpectation argument is conditional mean ezxpectation but the underlying model is Bayesian

mdf <- suppressMessages(change(mdf, y=c(’x’,’z’,’w’),what = "imputation_method", to = "expectation"))
imputations <- mi(mdf,n.iter=1,n.chains=1,verbose=FALSE,parallel=FALSE)

dat.miss.cm.mipack <- dat.miss

dat.miss.cm.mipack[,c(’x’,’z’,’w’)] <- complete(imputations,1)[,c(’°x’,’z’,’w’)]

#regression imputation from Hmisc
f <- aregImpute( ~ w + z, data=dat.miss, n.impute=1,type=’regression’,pr=FALSE)
dat.miss.cm.Hmisc <- dat.miss
dat.miss.cm.Hmisc[,c(’z’)] <- as.data.frame(impute.transcan(
f, imputation=1, data=dat.miss,
list.out=TRUE, pr=FALSE,
check=FALSE)) [,c(’z’)]

##My conditional mean imputation with no error

dat.miss.cond.mean <- dat.miss
mod.pred.z <- lm(z ~ w, data = dat.miss)
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dat.miss.cond.mean[ dat.miss.cond.mean$m==1,’z’] <- predict(mod.pred.z, dat.miss.cond.mean[ dat.miss.cond.mean$m==1,])
mod.full.cond.mean <- lm(y ~ (z + w)*m, data=dat.miss.cond.mean)

mod.marg.cond.mean <- lm(y ~ z + w, data=dat.miss.cond.mean)

#Fit model with the imputed conditional means indicator for missingness
mod.full.cm.mipack <- lm(y ~ (z + w)*m, data=dat.miss.cm.mipack)
mod.full.cm.Hmisc <- 1m(y ~ (z + w)*m, data=dat.miss.cm.Hmisc)
mod.marg.cm.mipack <- lm(y ~ z + w, data=dat.miss.cm.mipack)
mod.marg.cm.Hmisc <- lm(y ~ z + w, data=dat.miss.cm.Hmisc)

### PMKS

mod.zmiss <- lm(y ~ w, data=dat.miss[dat.miss$m==1,])

pmks.mod <- pmks(DATA = dat.miss, model = "y ~ z + w", logistic = FALSE)
ccsm.mod <- ccsm(DATA = dat.miss, model = "y ~ z + w", logistic = FALSE)

#Missing data pattern percentages
mpp <- (table(mdf@patterns)/n.tr)

#Mulitple Imputation Using a Congenial Model with pmm

imp.congenial <- aregImpute( ~ w + z, data=dat.miss, n.impute=10,pr=FALSE)

mod.full.mi.Hmisc <- fit.mult.impute(y ~ (z + w)#*m, ols,imp.congenial,data=dat.miss,
pr=FALSE)

mod.marg.mi.Hmisc <- fit.mult.impute(y ~ (z + w), ols,imp.congenial,data=dat.miss,pr=FALSE)

#Mulitple Imputation Using a Congenial Model with Y

imp.y <- aregImpute( ~ w + z + y, data=dat.miss, n.impute=10,pr=FALSE)
mod.full.miy.Hmisc <- fit.mult.impute(y ~ (z + w)*m, ols,imp.y,data=dat.miss,pr=FALSE)
mod.marg.miy.Hmisc <- fit.mult.impute(y ~ (z + w), ols,imp.y,data=dat.miss,pr=FALSE)

#Mulitple Imputation Using an Imputation Model with exztra information gq

imp.q <- aregImpute( ~ w + z + q, data=dat.miss, n.impute=10,pr=FALSE)
mod.full.miq.Hmisc <- fit.mult.impute(y ~ (z + w)*m, ols,imp.q,data=dat.miss,pr=FALSE)
mod.marg.miq.Hmisc <- fit.mult.impute(y ~ (z + w), ols,imp.q,data=dat.miss,pr=FALSE)

#Mulitple Imputation Using an Imputation Model with extra information y and g

imp.yq <- aregImpute( ~ w + z + q + y, data=dat.miss, n.impute=10,pr=FALSE)
mod.full.miyq.Hmisc <- fit.mult.impute(y ~ (z + w)*m, ols,imp.yq,data=dat.miss,pr=FALSE)
mod.marg.miyq.Hmisc <- fit.mult.impute(y ~ (z + w), ols,imp.yq,data=dat.miss,pr=FALSE)

# In Sample Pattern Metrics

pattern.is <- which.pattern(dat.miss, model = ’y ~ z + w’)

oracle.marg.pattern.is <- get_metric_linear(data.frame(predict(mod.truth, dat),
dat[,’y’],
pattern.is))

oracle.full.pattern.is <- get_metric_linear(data.frame(predict(mod.truth.int, dat),
dat[,’y’1,

pattern.is))

dat.cc.pred <- dat.miss
dat.cc.pred[which(is.na(dat.cc.pred$z)==TRUE),’z’] <- mean(dat.miss$z, na.rm=TRUE)

cc.mean.pattern.is <- get_metric_linear(data.frame( predict(mod.cc, dat.cc.pred),
dat.miss[,’y’],

pattern.is))

full.cond.mean.pattern.is <- get_metric_linear(data.frame(predict(mod.full.cond.mean),
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dat.miss[,’y’],
pattern.is))

marg.cond.mean.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.cond.mean),
dat.miss[,’y’],
pattern.is))

full.cm.mipack.pattern.is <- get_metric_linear(data.frame(predict(mod.full.cm.mipack),
dat.miss[,’y’],
pattern.is))

marg.cm.mipack.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.cm.mipack),

g P b get_l = P: g P
dat.miss[,’y’],
pattern.is))

#CM with Hmisc

full.cm.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.full.cm.Hmisc),
dat.miss[,’y’]1,
pattern.is))

marg.cm.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.cm.Hmisc),
dat.miss[,’y’],
pattern.is))

#MI predictions
HHH

full.mi.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.full.mi.Hmisc),
dat.miss[,’y’],
pattern.is))

marg.mi.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.mi.Hmisc),
dat.miss[,’y’],
pattern.is))

#MI q predictions

full.miq.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.full.miq.Hmisc),
dat.miss[,’y’],
pattern.is))

marg.miq.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.miq.Hmisc),
dat.miss[,’y’],
pattern.is))

#MI y predictions

full.miy.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.full.miy.Hmisc),
dat.miss[,’y’],
pattern.is))

marg.miy.Hmisc.pattern.is <- get_metric_linear(data.frame(predict(mod.marg.miy.Hmisc),
dat.miss[,’y’],
pattern.is))

#Submodel predictions
is.pmks <- predict.sm(dat.miss, ’y ~ z + w’, pmks.object = pmks.mod, logistic = FALSE)
is.ccsm <- predict.sm(dat.miss, ’y ~ z + w’, pmks.object = ccsm.mod, logistic = FALSE)
metric.pmks.is <- data.frame(mse = c(is.pmks[[1]]$strat.brier, is.pmks[[2]]$strat.brier),
proportion = c(length(is.pmks[[1]]$truth)/n.tr, length(is.pmks[[2]]$truth)/n.tr))
rownames (metric.pmks.is) <- c(is.pmks[[1]]1[1], is.pmks[[2]][1])
metric.ccsm.is <- data.frame(mse = c(is.ccsm[[1]]$strat.brier, is.ccsm[[2]]$strat.brier),
proportion = c(length(is.ccsm[[1]]1$truth)/n.tr, length(is.ccsm[[2]]1$truth)/n.tr))

rownames (metric.ccsm.is) <- c(is.cesm[[1]11[1], is.ccsm[[2]11[1])

#Get new sample, make people missing, imput their missing data, and then get model predictions

# - Assume 1 by 1 predictions

39



new.sample <- oos.data(n.tr.new,
mu.z.new,
mu.w.new,
mu.q.new,
s.z.new,
s.w.new,

s.q.new,

S.wz.new,

s.zq.new,

s.wq.new,

p.miss.new,

missing.type.new,

b.x.new,

b.z.new,

b.w.new,

mu.e.new,

s.e.new,

betaM.new=betaM.new,

n.imp = n.imp,

original.dat.miss = dat.miss,

Y.PM = Y.PM
)
pattern <- which.pattern(new.sample[["dat.miss.new"]], model = ’y ~ z + w’)

#The oracle model
oracle.marg <- mean((new.sample[["dat.new"]][,’y’] -
predict (mod.truth, new.sample[["dat.new"11))"2)

oracle.full <- mean((new.sample[[’dat.new’]]1[,’y’] -

predict (mod.truth.int, new.sample[["dat.new"]]))"2)

oracle.marg.pattern <- get_metric_linear(data.frame(predict(mod.truth, new.sample[["dat.new"]]),
new.sample[["dat.new"]1[,’y’],
pattern))

oracle.full.pattern <- get_metric_linear(data.frame(predict(mod.truth.int, new.sample[["dat.new"]1]),
new.sample[["dat.new"]11[,’y’],
pattern))

#CM with MI pack on the complete case model
mse.cc.mean.new <- mean((new.sample[["dat.mean"]]1[,’y’] -

predict (mod.cc,new.sample[["dat.mean"]11))"2)

mse.cc.mean.new.pattern <- get_metric_linear(data.frame( predict(mod.cc,new.sample[["dat.mean"]]),
new.sample[["dat.mean"]11[,’y’],

pattern))

mse.cc.cm.Hmisc.new <- mean((new.sample[["imputed.dat.cm.Hmisc"]11[,’y’] -

predict (mod.cc,new.sample[["imputed.dat.cm.Hnisc"]]))"2)

cc.cm.mipack.pattern <- get_metric_linear(data.frame( predict(mod.cc,new.sample[["imputed.dat.cm.mipack"]]),
new.sample[["imputed.dat.cm.mipack"]][,’y’],
pattern))

cc.cm.Hmisc.pattern <- get_metric_linear(data.frame( predict(mod.cc,new.sample[["imputed.dat.cm.Hmisc"1]),
new.sample[["imputed.dat.cm.Hmisc"]1[,’y’],
pattern))

#Strict Conditional Mean

mse.full.cond.mean.new <- mean((new.sample[["dat.cond.mean"]]1[,’y’] -
predict(mod.full.cond.mean,new.sample[["dat.cond.mean"]]))"2)
mse.marg.cond.mean.new <- mean((new.sample[["dat.cond.mean"]]1[,’y’] -
predict (mod.marg.cond.mean,new.sample[["dat.cond.mean"]]))"2)
full.cond.mean.pattern <- get_metric_linear(data.frame(predict(mod.full.cond.mean,new.sample[["dat.cond.mean"]1]),

new.sample[["dat.cond.mean"1][,’y’],

pattern))
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marg.cond.mean.pattern

#CM with MI pack

mse.full.cm.mipack.new

mse.marg.cm.mipack.new

full.cm.mipack.pattern

marg.cm.mipack.pattern

#CM with Hmisc

@

&

G

Z=

@

get_metric_linear(data.frame(predict(mod.marg.cond.mean,new.sample[["dat.cond.mean"]]),
new.sample[["dat.cond.mean"11[,’y’],

pattern))

mean((new.sample[["imputed.dat.cm.mipack"]]1[,’y’] -
predict (mod.full.cm.mipack,new.sample[["imputed.dat.cm.mipack"]]))~2)

mean ((new.sample[["imputed.dat.cm.mipack"]]1[,’y’] -
predict (mod.marg.cm.mipack,new.sample[["imputed.dat.cm.mipack"]]))"2)

get_metric_linear(data.frame(predict(mod.full.cm.mipack,new.sample[["imputed.dat.cm.mipack"]]),
new.sample [["imputed.dat.cm.mipack"]11[,’y’],
pattern))

get_metric_linear(data.frame(predict(mod.marg.cm.mipack,new.sample[["imputed.dat.cm.mipack"]11),
new.sample[["imputed.dat.cm.mipack"]]1[,’y’],
pattern))

mse.full.cm.Hmisc.new <- mean((new.sample[["imputed.dat.cm.Hmisc"]1]1[,’y’] -

predict (mod.full.cm.Hmisc,new.sample[["imputed.dat.cm.Hmisc"]]1))"2)

mse.marg.cm.Hmisc.new <- mean((new.sample[["imputed.dat.cm.Hmisc"]1[,’y’] -

predict (mod.marg.cm.Hmisc,new.sample[["imputed.dat.cm.Hnisc"]1]))"2)

full.cm.Hmisc.pattern <- get_metric_linear(data.frame(predict(mod.full.cm.Hmisc,new.sample[["imputed.dat.cm.Hmisc"]1]),

new.sample[["imputed.dat.cm.Hmisc"]1][,’y’],

pattern))

marg.cm.Hmisc.pattern <- get_metric_linear(data.frame(predict(mod.marg.cm.Hnisc,new.sample[["imputed.dat.cm.Hmisc"1]),

#MI predictions

#H##

mse.full.mi.Hmisc.new

mse.marg.mi.Hmisc.new

full.mi.Hmisc.pattern

marg.mi.Hmisc.pattern

#MI q predictions

mse.full.miq.Hmisc.new

mse.marg.miq.Hmisc.new

full.miq.Hmisc.pattern

marg.miq.Hmisc.pattern

#MI y predictions
mse.full.miy.Hmisc.new

mse.marg.miy.Hmisc.new

@

&=

new.sample[["imputed.dat.cm.Hmisc"]1[,’y’],

pattern))

mean((new.sample[["imputed.dat.mi.avg"]]1[,’y’] -
predict (mod.full.mi.Hmisc,new.sample[["imputed.dat.mi.avg"]]1))"2)

mean((new.sample[["imputed.dat.mi.avg"11[,’y’] -
predict (mod.marg.mi.Hmisc,new.sample[["imputed.dat.mi.avg"]]))"2)

<- get_metric_linear(data.frame(predict(mod.full.mi.Hmisc,new.sample[["imputed.dat.mi.avg"]]),

new.sample[["imputed.dat.mi.avg"]11[,’y’],
pattern))

<- get_metric_linear(data.frame(predict(mod.marg.mi.Hmisc,new.sample[["imputed.dat.mi.avg"1]),

new.sample[["imputed.dat.mi.avg"]11[,’y’],
pattern))

mean((new.sample[["imputed.dat.miq.avg"]1[,’y’] -
predict (mod.full.miq.Hmisc,new.sample[["imputed.dat.miq.avg"]1]))"2)

mean((new.sample[["imputed.dat.miq.avg"]]1[,’y’] -
predict (mod.marg.miq.Hmisc,new.sample[["imputed.dat.miq.avg"]]))"2)

get_metric_linear(data.frame(predict(mod.full.miq.Hmisc,new.sample[["imputed.dat.miq.avg"]]),
new.sample[["imputed.dat.miq.avg"]1[,’y’],
pattern))
get_metric_linear(data.frame(predict(mod.marg.miq.Hmisc,new.sample[["imputed.dat.miq.avg"1]1),

new.sample[["imputed.dat.miq.avg"11[,’y’]1,
pattern))

mean((new.sample[["imputed.dat.miy.avg"]1[,’y’] -
predict(mod.full.miy.Hmisc,new.sample[["imputed.dat.miy.avg"]1]1))~2)

mean ((new.sample[["imputed.dat.miy.avg"]]1[,’y’] -
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predict (mod.marg.miy.Hmisc,new.sample[["imputed.dat.miy.avg"]]))"2)

full.miy.Hmisc.pattern <- get_metric_linear(data.frame(predict(mod.full.miy.Hmisc,new.sample[["imputed.dat.miy.avg"]]),
new.sample[["imputed.dat.miy.avg"]11[,’y’],
pattern))

marg.miy.Hmisc.pattern <- get_metric_linear(data.frame(predict(mod.marg.miy.Hmisc,new.sample[["imputed.dat.miy.avg"]]),
new.sample[["imputed.dat.miy.avg"1][,’y’],
pattern))

#Submodel predictions
oos.pmks <- predict.sm(new.sample[["dat.miss.new"]], ’y ~ z + w’, pmks.object = pmks.mod, logistic = FALSE)
oos.ccsm <- predict.sm(new.sample[["dat.miss.new"]], ’y ~ z + w’, pmks.object = ccsm.mod, logistic = FALSE)
metric.pmks <- data.frame(mse = c(oos.pmks[[1]]$strat.brier, oos.pmks[[2]]$strat.brier),

proportion = c(length(oos.pmks[[1]1]1$truth)/n.tr.new, length(oos.pmks[[2]]1$truth)/n.tr.new))
rownames (metric.pmks) <- c(oos.pmks[[1]1]1[1], oos.pmks[[2]]1[1])
metric.ccsm <- data.frame(mse = c(oos.ccsm[[1]]$strat.brier, oos.ccsm[[2]]$strat.brier),

proportion = c(length(oos.ccsm[[1]]1$truth)/n.tr.new, length(oos.ccsm[[2]]$truth)/n.tr.new))

rownames (metric.ccsm) <- c(oos.ccsm[[1]1]1[1], oos.ccsm[[2]][1])

# Storing all the results

results[[’is.mse’]][RS,] <- c(
#In sample MSE
mse (mod.truth),
mse(mod.truth.int),
mse (mod.cc),
mse (mod.full.cm.mipack),
mse(mod.full.cm.Hmisc),
mse (mod.marg.cm.mipack),
mse (mod.marg.cm.Hmisc) ,
mse (mod.full.mi.Hmisc),
mse (mod.marg.mi.Hmisc),
mse (mod.full.miy.Hmisc),
mse (mod.marg.miy.Hmisc),
mse (mod.full.miq.Hmisc),
mse (mod.marg.miq.Hmisc),
mse (mod.full.miyq.Hmisc),
mse (mod.marg.miyq.Hmisc) ,
mse(mod.full.cond.mean),
mse (mod.marg.cond.mean)

)

results[[’is.pattern.00’]][RS,] <- c(
oracle.marg.pattern.is[1,] ,
oracle.full.pattern.is[1,],
cc.mean.pattern.is[1,],
full.cm.mipack.pattern.is[1,],
marg.cm.mipack.pattern.is[1,],
full.cm.Hmisc.pattern.is[1,],
marg.cm.Hmisc.pattern.is[1,],
full.mi.Hmisc.pattern.is[1,],
marg.mi.Hmisc.pattern.is[1,],
full.miq.Hmisc.pattern.is[1,],
marg.miq.Hmisc.pattern.is[1,],
full.miy.Hmisc.pattern.is[1,],
marg.miy.Hmisc.pattern.is[1,],
metric.pmks.is[1,],
metric.ccsm.is[1,],
full.cond.mean.pattern.is[1,],

marg.cond.mean.pattern.is[1,]

results[[’is.pattern.10°11[RS,] = c(
oracle.marg.pattern.is[2,] ,
oracle.full.pattern.is[2,],
cc.mean.pattern.is[2,],
full.cm.mipack.pattern.is[2,],
marg.cm.mipack.pattern.is[2,],
full.cm.Hmisc.pattern.is[2,],
marg.cm.Hmisc.pattern.is[2,],
full.mi.Hmisc.pattern.is[2,],
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marg.mi.Hmisc.pattern.is[2,],

full.miq.Hmisc.pattern.
marg.miq.Hmisc.pattern.
full.miy.Hmisc.pattern
marg.miy.Hmisc.pattern.
metric.pmks.
metric.ccsm.
full.cond.mean.pattern.

marg.cond.mean.pattern.

is[2,],
is[2,1,

#0ut of sample MSE
results[[’oos.mse’]]1[RS,] <-

mse.cc.mean.new,

mse.cc.cm.Hmisc.new,

mse.full.cm.mipack.new,

mse.marg

mse.full.
mse.marg.
mse.full.
mse.marg.
mse.full.
mse.marg.
mse.full.

mse.marg.

.cm.mipack

cm.Hmisc.
cm.Hmisc.
mi.Hmisc.
mi.Hmisc.
miq.Hmisc
miq.Hmisc
miy.Hmisc
miy.Hmisc

oracle.marg,

oracle.full,

mse.full.

mse.marg.

cond.mean

cond.mean.

.new,
new,
new,
new,
new,
.new,
.new,
.new,

.new,

.new,

is[2,],
is[2,],
.is[2,],
is[2,],

is[2,],
is[2,1)

c(

results[[’oos.pattern.00°]][RS,] <- c(

oracle.marg.pattern[1,] ,

oracle.full.pattern[1,],

mse.cc.mean.new.pattern[1,],

cc.cm.mipack.pattern[1,],

cc.cm.Hmisc.pattern([1,],

full.cm.mipack.pattern[1,],

marg.cm.mipack.pattern[1,],

full.cm.Hmisc.pattern[1,],

marg.cm.Hmisc.pattern[1,],

full.mi.Hmisc.pattern[1,],

marg.mi.Hmisc.pattern[1,],

full.miq.Hmisc.pattern[1,],

marg.miq.Hmisc.pattern(1,],

full.miy.Hmisc.pattern[1,],

marg.miy.Hmisc.pattern[1,],

metric.pmks[1,],

metric.cesml1,],

full.cond.mean.pattern([1,],

marg.cond.mean.pattern[1,]

)

results[[’oos.pattern.10’]][RS,] = c(

oracle.marg.pattern[2,]

oracle.full.pattern[2,],

mse.cc.mean.new.pattern[2,],

cc.cm.mipack.pattern([2,],
cc.cm.Hmisc.pattern[2,],

full.cm.mipack.pattern[2,],

marg.cm.mipack.pattern([2,],
full.cm.Hmisc.pattern[2,],
marg.cm.Hmisc.pattern[2,],
full.mi.Hmisc.pattern[2,],

marg.mi.Hmisc.pattern[2,],

full.miq.Hmisc.pattern[2,],

marg.miq.Hmisc.pattern[2,],

full.miy.Hmisc.pattern[2,],

marg.miy.Hmisc.pattern[2,],

metric.pmks[2,],

metric.ccsm[2,],

full.cond.mean.pattern[2,],

marg.cond.mean.pattern[2,])

new.sample.z <- data.frame(do

.call(cbind,lapply(new.sample, function(z) cbind(z$z))))
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names (new.sample.z) <- names(new.sample)

results[[’oos.z.mse’]]1[RS,] = c(apply(new.sample.z, 2,function(z) mean((z - new.sample.z$dat.new)"2)))

}
results

¥

HURHHABHRRHARRH
#EPE Function
HUHARAHHHHHRHAY

#This function simulates the data for Figure 1 comparing the Ezpected prediction error for the large and small model

Install Libraries
library(MASS)
library(DMwR)
library(mice)
library (doSNOW)

library(rms)

#### Training data & prediction interval functions

expit <- function(x) exp(x)/(1 + exp(x))
logit <- function(p) log(p/(1-p))

miss.int <- function(miss.mech, betaM=1,p.miss){
if (ncol(miss.mech) !=2){
logit(p.miss) - betaM*mean(miss.mech[,1])
} else {
logit(p.miss) - betaM*mean((((miss.mech[,2]/sd(miss.mech[,2]))

+ miss.mech[,1])/as.numeric(sqrt(2*(1+cor(miss.mech[,2] ,miss.mech[,1]))))))

dat.frame <- function(n.tr,mu.z,mu.w,s.z,s.w,s.wz,p.miss,
missing.type,
b.x,b.z,b.w,
mu.e,s.e,betaM=1){
x = rep(1,n.tr)
mu = c(mu.z,mu.w)
Sigma = matrix(c(l,s.wz,s.wz,1), byrow=TRUE, ncol=2)
dat = as.data.frame(mvrnorm(n=n.tr, mu=mu, Sigma=Sigma, empirical=TRUE))
colnames(dat) = c(’z’,’w’)
coef.tru = rbind( b.x , b.z , b.w)
dat$y=cbind(x,dat[,’z’], dat[,’w’])%xlcoef.tru

+ rnorm(n.tr,mean=mu.e,sd=s.e)

if (missing.type=="MCAR’){
m = rbinom(n.tr,1,p.miss)
y.pmm = cbind(x,dat[,’z’], dat[,’w’])%*%coef.tru + betaM*m + betaMdat[,’z’]*m + betaMxdat[,’w’]*m
+ rnorm(n.tr,mean=mu.e,sd=s.e)

data.frame(x=x, z=dat[,’z’], w=dat[,’w’], m=m, y=dat[,’y’], y.pmm = y.pmm)

} else if(missing.type==’MAR’){
m = rbinom(n.tr, 1, expit(miss.int(miss.mech=cbind(datl[,’w’]),
betaM=betaM,p.miss) + betaMxdat[,’w’]))
y.pmm = cbind(x,dat[,’z’], dat[,’w’])%*%coef.tru + betaM*m + betaM*dat[,’z’]*m + betaM*dat[,’w’]*m
+ rnorm(n.tr,mean=mu.e,sd=(s.e + 2%m))
data.frame(x=x, z=dat[,1], w=dat[,2], m=m, y=dat[,’y’], y.pmm = y.pmm)
} else if(missing.type==’MNAR’){
m = rbinom(n.tr, 1, expit(miss.int(miss.mech=cbind(datl[,’z’1),
betaM=betaM,p.miss) + betaM+dat[,’z’]))
y.pmm = cbind(x,dat[,’z’], dat[,’w’])%*%coef.tru + betaM*m + betaM*dat[,’z’]*m + betaMxdat[,’w’]*m
+ rnorm(n.tr,mean=mu.e,sd=(s.e + 2%m))
data.frame(x=x, z=dat[,’z’], w=dat[,’w’], m=m, y=dat[,’y’], y.pmm = y.pmm)
} else if(missing.type==’MARY’){
m = rbinom(n.tr, 1,
expit(miss.int (miss.mech=dat[,c(’w’,’y’)], betaM=betaM,p.miss)
+ betaM*(((dat[,’y’]/sd(dat[,’y’]1)) + dat[,’w’])/as.numeric(sqrt(2x(1+cor(dat[,’y’],dat[,’w’1)))))))
data.frame(x=x, z=dat[,’z’], w=dat[,’w’], m=m, y=dat[,’y’])
} else if(missing.type==’MNARY’){

m = rbinom(n.tr, 1,
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expit(miss.int(miss.mech=dat[,c(’z’,’y’)], betaM=betaM,p.miss)
+ betaM*(((dat[,’y’]/sd(dat[,’y’1)) + datl[,’z’])/as.numeric(sqrt(2*(1+cor(dat[,’y’],dat[,’z’1)))))))
data.frame(x=x, z=dat[,’z’], w=dat[,’w’], m=m, y=datl[,’y’])

sims=1000;

n.y.tr = 100;
n.tr=10000;

b.x=0.5; b.z = 3; b.w = 3;
mu.z=3;

mu.w=3;

s.z=1;

s.w=1;

s.wz=0.5;

p.miss=0.5;
missing.type="MCAR’;
lo.z=-1; hi.z=7;
acc=0.001;

mu.e=0;

s.e=1;

mu.cond.imp=0;
s.cond.imp=1;
imputed=’conditional’;
orig.imp=’includey’;
y.1lo=7; y.hi=15;

b.m=1
missing.type.orig="MCAR’;
PMMY = FALSE

EPE.T = function(sims=10000,
n.y.tr = 10,
n.tr=50,
b.x=bx, b.z = bz, b.w = bw,
mu.z=mean.z,
mu.w=mean.w,
s.z=sd.z,
s.w=sd.w,
s.wz=sd.wz,
p.miss,
missing.type.orig,
missing.type,
lo.z=-1, hi.z=7,
acc=0.01,
mu.e=mean.e,
s.e=sd.e,
mu.cond.imp,
s.cond.imp,
imputed,
orig.imp,
y.lo=7, y.hi=15,
b.m = b.m,

PMMY = FALSE) {

coef.tru = rbind( b.x , b.z , b.w)

## Predictors (Intercept in X)
xz.dat = replicate(n.y.tr,
dat.frame(n.tr = n.tr,

mu.z = mu.z,
mu.v = mu.w,
s.z = s.z,
s.vz = s.wz,
p.miss = p.miss,

missing.type = missing.type.orig,

b.x = b.x,
b.z = b.z,
b.w = b.w,

mu.e = mu.e,
s.e = s.e,

betaM=b.m
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simplify=FALSE)

data.tr.list = lapply(xz.dat, function(q) {data.frame(x=q$x, z=q$z,
w=q$w, m=q$m,
y = a$y,
y-pmn = q$y.pmm)})

epes = lapply(data.tr.list, function(q) {

if (PMMY==FALSE){
y.tr = q$y
else {

y.tr= q$y.pmm}

-

X.tr = g$x

z.tr.truth = q$z

w.tr = q$w

m.z.tr = g$m

z.tr = ifelse(q$m==1,NA,q$z)

observed.miss = sun(m.z.tr)/n.tr

#Complete Case Design Matriz
Z.cc = cbind(x.tr[m.z.tr==0],z.tr[m.z.tr==0] ,w.tr[m.z.tr==0],y.tr[m.z.tr==0])
Z.orig.withMiss = cbind(x.tr,z.tr,w.tr,y.tr)

#Design Matriz Imputation Model
7] = cbind(x.tr[m.z.tr==0] ,w.tr[m.z.tr==0])
bhat.z = chol2inv(chol(t(Z.s)%*%Z.s))%*%t (Z.8)%*%z.tr[m.z.tr==0]

#Get beta for a imputation model that includes y
Z.y = cbind(x.tr[m.z.tr==0],w.tr[m.z.tr==01, y.tr[m.z.tr==0]1)
bhat.zy = chol2inv(chol(t(Z.y)%*%Z.y))%*%t(Z.y)%*%z.tr[m.z.tr==0]

#Impute E[z ~ © + w] for those individuals missing
if (orig.imp=="noy’){
z.tr[is.na(z.tr)] = cbind(x.tr[m.z.tr==1],w.tr[m.z.tr==1])%+/bhat.z
} else if(orig.imp==’includey’){
z.trl[is.na(z.tr)] = cbind(x.trlm.z.tr==1],w.trm.z.tr==1],y.tr[m.z.tr==1])%#*%bhat .zy

## Design Matriz

if (PMMY==FALSE){

X.truth = cbind(x.tr,z.tr.truth, w.tr)
else {

X.truth = cbind(x.tr,z.tr.truth,w.tr,m.z.tr,z.tr.truth*m.z.tr,w.tr*m.z.tr)

)

.1 = cbind(x.tr,z.tr,w.tr)
.s = cbind(x.tr,w.tr)

.l.cc = cbind(x.tr[m.z.tr==0],z.tr[m.z.tr==0],w.tr[m.z.tr==0])

B4 < b4 >

.s.cc = cbind(x.tr[m.z.tr==1], w.tr[m.z.tr==1])
## Least Squares estimates

bhat.truth = chol2inv(chol(t(X.truth)%*%X.truth))%*%t (X.truth)%*%y.tr

bhat.l = chol2inv(chol (t(X.1)%*%X.1))%*%t (X.1) %*%y.tr

bhat.s = chol2inv(chol (t(X.s)%*%X.s)) %*Ut (X.s) %*ly . tr

bhat.l.cc = chol2inv(chol(t(X.1l.cc)%*%X.1.cc))%*%t(X.1.cc)%*%y.trm.z.tr==0]
bhat.s.cc = chol2inv(chol(t(X.s.cc)%*%X.s.cc))h*lt (X.s.cc)l*%y.trm.z.tr==1]

#NOTE: bhat.s != bhat.s.cc because the lengths are different!

# This Section Starts the Part of the Simulation
# code that includes the OUT OF SAMPLE population

## Create Prediction Set

z.pred = seq(lo.z, hi.z, acc)
#should I predict w based on z.pred
w.pred = rnorm(length(z.pred),
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mean=(mu.w + s.wz*(s.w/s.z)*(z.pred - mu.z)), sd = (1-s.wz"2)*s.w"2)

x.pred = rep(1,length(z.pred))
n.pred = length(z.pred)
z.pred.sim = rep(z.pred, each = sims)

x.pred.sim = rep(x.pred, each = sims)
w.pred.sim = rep(w.pred, each = sims)

## Make new true responses (y) at x.new (sim replicates)

m.pred = if (missing.type=="MCAR’){
rbinom(length(z.pred),1,p.miss)

-

else if (missing.type==’MAR’){
rbinom(length(z.pred), 1,
expit (miss.int(

miss.mech=cbind(w.pred) ,betaM=b.m,p.miss=p.miss) + b.m*w.pred))

“w

else if(missing.type==’MNAR’){
rbinom(length(z.pred), 1,
expit(miss.int(miss.mech=cbind(z.pred),

betaM=b.m,p.miss=p.miss) + b.m*z.pred))

w

else if (missing.type==’MARY’){
rbinom(length(z.pred.sim), 1,
expit(miss.int(miss.mech=cbind(w.pred.sim,y.new),
betaM=b.m,p.miss=p.miss)
+ b.m*(((y.new/sd(y.new))

+ w.pred.sim)/as.numeric(sqrt(2*(1+cor(y.new,w.pred.sim)))))))
else if (missing.type==’MNARY’){
rbinom(length(z.pred.sim), 1,

)

expit(miss.int(miss.mech=cbind(z.pred.sim,y.new),
betaM=b.m,p.miss=p.miss)
+ b.m*(((y.new/sd(y.new))

+ z.pred.sim)/as.numeric(sqrt(2*(1+cor(y.new,z.pred.sim)))))))

if (PMMY==FALSE){
y.new = cbind(x.pred.sim,z.pred.sim,w.pred.sim)%
else {

y.new = cbind(x.pred.sim,z.pred.sim,w.pred.sim)%*%coef.tru

coef.tru + rnorm(n.pred*sims,mean=mu.e,sd=s.e)

W

+ b.m*rep(m.pred,each=sims) + b.m*z.pred.sim*rep(m.pred,each=sims)
+ b.m*rep(m.pred,each=sims)*w.pred.sim

+ rnorm(n.pred*sims,mean=mu.e,sd=(s.e + 2*rep(m.pred,each=sims)))

Z.pred.miss = cbind(x.pred[m.pred==1],NA,w.pred[m.pred==1],NA)

prop.pred.miss = sum(m.pred)/length(z.pred)

n.pred.miss = length(z.pred) - sum(m.pred)
n.pred.notmiss = length(z.pred) - sum(abs(m.pred-1))
n.pred.sim = length(z.pred.sim)

n.pred = length(z.pred)

z.pred.sim.miss = rep(z.pred[m.pred==1], each = sims)
z.pred.sim.notmiss = rep(z.pred[m.pred==0], each = sims)
x.pred.sim.miss = rep(x.pred[m.pred==1], each = sims)

I

.pred.sim.notmiss = rep(x.pred[m.pred==0], each = sims)

=

.pred.sim.miss = rep(w.pred[m.pred==1], each = sims)

=

.pred.sim.notmiss = rep(w.pred[m.pred==0], each = sims)

.new.miss = y.new[rep(m.pred,each=sims)==1]

<

.new.notmiss = y.new[rep(m.pred,each=sims)==0]

<

#Impute for the missing z’s
z.pred.imputed = z.pred

z.pred.imputed.sim = z.pred.sim
z.pred.imputed[m.pred==1] = cbind(x.pred[m.pred==1],w.pred[m.pred==1])%x*%bhat.z +
rnorm(sum(m.pred==1) ,mean=mu.cond. imp,sd=s.cond.imp)

z.pred.sim.imputed = rep(z.pred.imputed, each = sims)

## Model predictions fhat(z.pred,z.pred) ; out-of-sample
yhat.new.truth = cbind(x.pred.sim,z.pred.sim,w.pred.sim)%*%bhat.truth
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yhat
yhat

#The

yhat.
yhat.
yhat.
yhat.
yhat.

.new.1l = cbind(x.pred.sim,z.pred.sim,w.pred.sim)%*%bhat .1

.nev.s = cbind(x.pred.sim,w.pred.sim)¥%*%bhat.s

se take into account missing data

new.l.pmks = cbind(x.pred.sim.notmiss,z.pred.sim.notmiss,w.pred.sim.notmiss)¥%*%bhat.1.cc
newv.s.pmks = cbind(x.pred.sim.miss,w.pred.sim.miss)%*%bhat.s.cc

new.l.imputed = cbind(x.pred.sim,z.pred.sim.imputed,w.pred.sim)%*/bhat.l

new.l.cc = cbind(x.pred.sim.notmiss,z.pred.sim.notmiss,w.pred.sim.notmiss)%*%bhat.1.cc
new.s.cc = cbind(x.pred.sim.miss,w.pred.sim.miss)%#*%bhat.s

## Prediction Errors ( (y.new-fhat) 2 ) ; out-of-sample

err.truth = matrix(((y.new-yhat.new.truth) "2),ncol=n.pred,nrow=sims,byrow=FALSE)
err.l = matrix(((y.new-yhat.new.1)"2),ncol=n.pred,nrow=sims,byrow=FALSE)
err = matrix(((y.new-yhat.new.s)”2),ncol=n.pred,nrow=sims,byrow=FALSE)
err.l.imputed = matrix(((y.new-yhat.new.l.imputed)"2),ncol=n.pred,nrow=sims,byrow=FALSE)
err.l.pmks = matrix(((y.new.notmiss-yhat.new.l.pmks)"2),
ncol=n.pred-sum(m.pred) ,nrow=sims,byrow=FALSE)

err.s.pmks = matrix(((y.new.miss-yhat.new.s.pmks)"2),

ncol=sum(m.pred) ,nrow=sims,byrow=FALSE)
err.l.cc = matrix(((y.new.notmiss-yhat.new.l.cc)"2),

ncol=n.pred-sum(m.pred) ,nrow=sims,byrow=FALSE)
err.s.cc = matrix(((y.new.miss - yhat.new.s.cc)"2),

ncol=sum(m.pred) ,nrow=sims,byrow=FALSE)
# Mean prediction error (over sims) out-of-sample & overall
avg.pe.truth = colMeans(err.truth) # square matriz only
avg.pe.l = colMeans(err.l) # square matriz only
avg.pe.s = colMeans(err.s) # square matriz only
avg.pe.l.pmks = colMeans(err.l.pmks) # square matriz only
avg.pe.s.pmks = colMeans(err.s.pmks) # square matriz only
avg.pe.l.imputed = colMeans(err.l.imputed) # square matriz only
avg.pe.l.cc = colMeans(err.l.cc) # square matriz only
avg.pe.s.cc = colMeans(err.s.cc) # square matriz only
merged.ls.sm = cbind(c(z.pred[m.pred==0],z.pred[m.pred==1]),c(avg.pe.l.pmks,avg.pe.s.pmks))
merged.ls = cbind(c(z.pred[m.pred==0],z.pred[m.pred==1]),c(avg.pe.l.cc,avg.pe.s.cc))
avg.pe.pmks = merged.ls.sm[sort(merged.ls.sm[,1],index.return=TRUE)$ix,2]
avg.pe.cc = merged.ls[sort(merged.1s[,1],index.return=TRUE)$ix,2]
HAHHHHAHHAH
# Ezact Equations
HHRBHRHHIRS
X.p = cbind(x.pred,z.pred, w.pred)
X.p.imputed = cbind(x.pred, z.pred.imputed, w.pred)
X.p.small = cbind(x.pred, w.pred)

## Hat Matricies for prediction

hat.
hat.
hat.
hat.
hat.
hat.

bias

bias

bias

bias

epe.

epe.

truth = diag(X.p%+*/%chol2inv(chol (t(X.truth)%*%X.truth))%*%t(X.p))

1 = diag(X.p%*Jchol2inv(chol (t (X.1)%*%X.1))%*%t (X.p))

s = diag(X.p.small¥*Ychol2inv(chol(t(X.s)%*%X.s))%*%t (X.p.small))

l.cc = diag(X.p[m.pred==0,]%*%chol2inv(chol (t(X.1.cc)%*%X.1.cc)) %%t (X.plm.pred==0,1))

s.cc = diag(X.p.small[m.pred==1,]%%Jchol2inv(chol(t(X.s.cc)%*%X.s.cc))%*%t(X.p.small [m.pred==1,1))
1.imputed = diag(X.p.imputed’*%chol2inv(chol (t(X.1)%*%X.1))%*)t(X.p.imputed))

.truth.tr = s.e”2
.l.tr = s.e"2

l.x = s.e"2

.truth.tr = cbind(x.pred,z.pred,w.pred)’%*} (bhat.truth-coef.tru)
ol oGP = cbind(x.pred,z.pred,w.pred)’*J,(bhat.1-coef.tru)

.truth.x = 0 # Function assumes large model is true
0dbofR =0 # ONLY TRUE WITH MCAR/MAR

truth.tr = var.truth.tr * (1) + bias.truth.tr 2
truth.x = var.l.x * (1+hat.truth) + bias.l.x72
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epe.l.tr = var.l.tr * (1) + bias.l.tr"2

epe.l.x = var.l.x * (1+hat.l) + bias.l.x"2

# Verify var and bias of small model for generalized matriz z
var.s.tr = s.e"2

bias.s.tr = cbind(x.pred,z.pred,w.pred)%*J%(rbind(bhat.s,0)-coef.tru)

var.s.x = s.e"2+diag(cbind(x.pred,w.pred)*jchol2inv(chol(t(X.s)%*%X.s))%*)t (cbind(x.pred,w.pred)))
bias.s.x = (cbind(x.pred,w.pred)’%*/%chol2inv(chol (t(X.s)%*%X.s))%*%t (X.s)%*/y.tr)- cbind(x.pred,z.pred,w.pred)%*jcoef.tru

epe.s.tr = as.numeric(var.s.tr) * (1) + bias.s.tr"2

epe.s.x = bias.s.x”2 + var.s.x + s.e”2

HARAHBHARAAH
# End Ezact Equations
e I ar

data.frame(avg.pe.truth,
avg.pe.l,
avg.pe.s,
avg.pe.pmks,
avg.pe.cc,
avg.pe.l.imputed,
weighted = avg.pe.lx(1-prop.pred.miss) +
avg.pe.s*(prop.pred.miss),
z.pred,
epe.truth.tr,
epe.truth.x,
epe.l.tr,
epe.l.x,
epe.s.tr,
epe.s.x,
weighted.epe = epe.truth.x*(1-prop.pred.miss) +

epe.s.x*(prop.pred.miss)

)
b

mean.epes = Reduce("+", epes) / length(epes)
save(mean.epes, ’/Users/SFM/Desktop/SimulatedMCAR.Rda’)
}
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CHAPTER 3

BAGGED EMPIRICAL NULL P-VALUES: A METHOD TO ACCOUNT FOR
MODEL UNCERTAINTY IN LARGE SCALE INFERENCE

3.1 Abstract

When conducting large scale inference, such as genome-wide association studies
or image analysis, nominal p-values are often adjusted to improve control over the
family-wise error rate (FWER). When the majority of tests are null, procedures con-
trolling the False discovery rate (Fdr) can be improved by replacing the theoretical
global null with its empirical estimate. However, these other adjustment procedures
remain sensitive to the working model assumption. Here we propose two key ideas to
improve inference in this space. First, we propose p-values that are standardized to
the empirical null distribution (instead of the theoretical null). Second, we propose
model averaging p-values by bootstrap aggregation (Bagging) to account for model
uncertainty and selection procedures. The combination of these two key ideas yields
bagged empirical null p-values (BEN p-values) that often dramatically alter the rank
ordering of significant findings. Moreover, we find that a multidimensional selection
criteria based on BEN p-values and bagged model fit statistics is more likely to yield
reproducible findings. A re-analysis of the famous Golub Leukemia data is presented
to illustrate these ideas. We uncovered new findings in these data, not detected pre-
viously, that are backed by published bench work pre-dating the Gloub experiment.
A pseudo-simulation using the leukemia data is also presented to explore the stability
of this approach under broader conditions, and illustrates the superiority of the BEN

p-values compared to the other approaches.

3.2 Introduction

Modern day technology like microarrays, RNA-sequencing, and fMRI Imaging,
has given rise to a new era of statistical methods for high-throughput science. These
methods are commonly referred to as large-scale inference, and can produce data
corresponding to millions of statistical hypotheses for simultaneous testing. However,
the repeated application of classical hypothesis testing methods can lead to concerns
regarding control over the inflated Family-wise Error Rate (FWER), global Type I
Error rate, and reduced statistical power (Efron, 2012a).

Bonferroni adjustments, which provides strict control of the FWER, are highly
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conservative in the large-scale context and they are often avoided because of the
dramatic loss of power that is associated with their use (Sham and Purcell, 2014). The
literature is turning to other p-values adjustments, such as the Benjamini-Hochberg
(B-H) False discovery rate (Fdr) procedure (Benjamini and Hochberg, 1995), which
improves power by relaxing control of the FWER. The FWER can remain inflated,
so long as the Fdr remains below a pre-specified threshold. This yields increased
power because the FWER inflation is reduced, but not eliminated. Note that it is
not possible to control both the FWER and Fdr simultaneously. Both quantities are
functions of the per comparison Type I Error rate, so a compromise between must be
made.

When the majority of tests are null and Fdr adjustments are warranted, Efron
(2012a) advocated for replacing the theoretical null with its empirical estimate to
improve the operating characteristics of Fdr procedures. This empirical Fdr procedure
is an empirical Bayes procedure where the empirical null distribution is estimated
from the mixture distribution of null and non-null test statistics. A more desirable
error-rate tradeoff results because the mixture distribution of test statistics does not
necessarily follow the theoretical null distribution in large-scale data, often because
of a complex correlation structure (Efron, 2012a).

While the use of the empirical null distribution has so far been limited to Fdr com-
putations, this idea is readily propagated to the computation of p-values in large-scale
data. Specifically, we propose standardizing p-value or test statistics of interest to
the empirical null distribution. Despite the well documented problems with p-values,
inference based on them is still more intuitive to applied scientists than inference
based on false discovery rates. This approach has the added advantage of limiting
the confusion between the inferential roles of Fdr and the p-value. The Fdr measures
the tendency of the observed results to be misleading, while the p-value measures the
degree to which the data are compatible with the null hypothesis (Blume, 2011). The
former measures the uncertainly of the observed findings, while the latter is the met-
ric of the strength of statistical evidence. We found through our investigations that
empirically standardized p-values result in a desirable error-rate compromise between
Bonferroni and Fdr methods.

We also observed extreme dependence of p-value and Fdr inference on working
model assumptions. A common example is the assumption of a simple or trivially
adjusted regression model in Genome wide association studies (GWAS) studies. In
many cases, the sensitivity of the findings to this assumption was much higher than it

was to the choice of the significance cutoff. To address this issue, we propose account-
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ing for model uncertainty by model averaging via bootstrap aggregation (Bagging)
when computing p-values or Fdrs. The resulting bagged empirical null (BEN) p-
values almost always dramatically altered the rank ordering of significant findings.
We also examined simple procedures that selecting findings on the basis of both BEN
p-values and bagged model fit statistics. The idea is to favor significant findings from
the model that fits the data better. Not surprisingly, this tended to yield reproducible
findings more often because the stability of the inferential model is accounted for.

A potential downside to this approach is the additional computation time and
knowledge base needed to bag models and compute the empirical null distribution.
However, the changes in the p-value ranking were so dramatic in our examples and
simulations, that we suggest this step never be skipped. An analysis of the Golub
Leukemia data, using our proposed BEN p-value approach to rank potential genes of
interest, leads us to new discoveries that were confirmed in animal models that had
been published before the Golub et al. (1999) study was implemented. This provides

some external biological confirmation for the adequacy of our new methods.

3.2.1 Background

Large-scale data is often characterized by the simultaneous acquisition of data on
many variables or endpoints, in such a manner that the number of observations n
is often a magnitude or more than the number of endpoints N. GWAS, functional
magnetic resonance imaging (fMRI), and Tandem mass spectrometry (MS/MS) are
some examples of scientific processes that may yield such large data sets. While
the science and relevance of these large-scale endeavors has evolved over the last
decade, the popular statistical approaches for handling simultaneous testing of many
hypothesis - massive multiple comparison adjustments - has not seen similar growth.

The Bonferroni procedure, popularized in the statistical literature by Dunn (1959),
remains the popular choice in many genetic sub-specialties largely due to its simplicity.
For example, the commonly used Bonferroni threshold of 5 x 10~® will control the
FWER to 0.05 if 1 million gene hypotheses are tested simultaneously (Pe’er et al.,
2008). However, this adjustment is associated with a massive loss in statistical power.
The Bonferroni procedure was never intended for these large-scale scenarios where
individual hypotheses are of interest (Perneger, 1998; Miller, 2012).

Competitors to the Bonferroni procedure have been considered, with some yield-
ing substantial power gains in small-scale settings (Wright, 1992). As an alternative,

Benjamini and Hochberg (1995) and separately Shaffer (1995) proposed relaxing con-

52



trol of the FWER and instead controlling the two-tailed Global False discovery rate
(Section 3.7.1 elaborates). Of course, the ranking and selection of top p-values for
the purpose of identifying findings as scientifically significant and worthy of further
study has seen much debate, e.g. see Sham and Purcell (2014).

Storey (2002) proposed a Bayesian interpretation of the Fdr, and Efron (2012a)
extended this work by proposing an empirical Bayes generalization of the Benjamini
and Hochberg procedure: the Empirical Fdr and empirical local Fdr (fdr). The empir-
ical Bayes approach relies on the assumption that a large majority of the individual
null hypotheses are in fact null. As a result, the mixture distribution of observed
test statistics can be well estimated using a classic empirical Bayes argument. An
advantageous property of the Fdr is that the procedure is scalable as a function of
the number of tests. Unlike other multiple-testing adjustments the Fdr procedure is
not a test of a composite null hypothesis against a single alternative, and therefore
can identify individual tests as significant (Mark E Glickman et al., 2015).

Importantly, nearly all adjustment procedures including B-H control of the Fdr or
control of the two-tailed Global Fdr under the theoretical null, do not alter the p-value
ranks; instead they simply adjusts the level at which a given p-value is considered
“significant”. The lone exception is the local false discovery rate, and this is due to the
lack of smoothness of the empirical density estimator. The failure of these methods
to change the rankings of signifiant endpoints raises the question of whether these
procedures have different discrimination capability or are simply re-calibrations of
each other. As we will see, the bagging and use of empirical null p-values does alter

the rankings while maintaining error-rate control, which is an exciting advance.

3.2.2  Organization of Paper

The main idea is to use bagged empirical null p-values and bagged model fit crite-
ria to identify interesting and statistically significant findings in large-scale contexts.
We compare this new approach to the popular approaches in use today. The pro-
posed methods are applied to a Leukemia microarray data set (Golub et al., 1999),
studied to select genes which are differentially expressed in Acute Myeloid Leukemia
(AML) versus Acute Lymphoblastic Leukemia (ALL), and BEN p-values combined
with bagged model fit statistics are compared to current methods. Section 3.3 de-
scribes the leukemia gene expression data, gives an overview of the proposed Bagged
Empirical Null (BEN) p-values and Fdr comparators, and provides a detailed algo-

rithm for calculation of BEN p-values. Section 3.4 describes an innovative pseudo-
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simulation used to assess the proposed methods, and applies the BEN algorithm to
the leukemia data. Section 3.5 presents the results and compares the performance
of commonly used large-scale inference analysis techniques. Section 3.6 discusses our

findings from the case study and provides some concluding remarks.

3.3 Materials and Methods

Here we define and describe the computational algorithm for our novel Bagged
Empirical Null (BEN) p-values, establish simulations to examine its performance and
apply it to the famous Gloub leukemia data set (Golub et al., 1999).

3.3.1 Leukemia data

The publicly available leukemia data consists of gene expression data for classifi-
cation of leukemia into two types, Acute Lymphoblastic Leukemia (ALL) and Acute
Myeloid Leukemia (AML), the latter of which has the poorer prognosis. Each type of
leukemia responds to different chemotherapies, so correct classification is important
to a patients’ treatment success. The leukemia data consist of 72 patients, 47 ALL
cases and 25 AML cases all genotyped using Affymetrix Hgu6800 chips, resulting in
7129 gene expressions. The most extreme value was excluded, resulting in 7128 gene
expressions used to identify interesting genes whose expression levels differ between
ALL and AML subjects. Additional covariate information for patients, such as di-
chotomized age (children vs. adults), drawn sample location (peripheral blood vs.
bone marrow), and gender (males vs. females) are available for analyses. The raw
data are publicly available online via the ‘golubEsets’ package in Bioconductor. Gen-
der was missing for 23 patients, and for each simulation missing covariate information
was imputed using single imputation and predictive mean matching. As described by
Efron (2012a), data were normalized in order to eliminate response disparities among

microarrays and reduce the impact of outlying values.

3.3.2 The Empirical Null

P-values and Fdr computations rely on the assumption that the theoretical null
density is known. However, when conducting genome-wide studies, this is a strong
assumption that is likely false for a significant number of genes or SNPs. Neverthe-
less, it is highly believable that a very large proportion are null, leading to a situation

where the null mixing distribution can be well estimated from the data at hand. As
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described by Efron (2012a), there are several reasons the theoretical null distribution
may fail. (1) Failed mathematical assumptions: It is possible that the test statistics
are identically distributed as N(0,1) but not independent, which means the mixing
distribution is no longer N(0,1). (2) Correlation across sampling units: Minor ex-
perimental defects can manifest themselves as correlation across sampling units. (3)
Correlation across cases: Independence among the genes is not needed for valid false
discovery rate inference only if we are using the correct null distribution. (4) Un-
observed covariates: Additional confounding variables, not accounted for using naive
approaches, are perhaps the most common reason why the theoretical null may fail,
making it critical to account for model uncertainty.

For an individual gene 7, the usual null hypothesis is Hy;: gene ¢ is null. The
corresponding z-statistic, under normal assumptions, follows a standard normal dis-
tribution such that Hy;: z; ~ N(0,1). However, by examining the empirical mixing
distribution of z;’s, we can assess if the typical theoretical null is supported by the
data. We differentiate the individual null densities, fyo(z;), and non-null densities,
fi(zi), for i = 1... N genes. We denote the mixture null comprised of all the z-
values, f(z) = mofo(z) + m1fi(z) where my and m; are the null and non-null prior
probabilities (Efron, 2012a).

The empirical null can be estimated by central matching or maximum likelihood
estimation, both of which rely on the assumption that some central region of the em-
pirical distribution exists where all genes are not differentially expressed (details pro-
vided in Section 3.7.2). Empirical null methods essentially accommodate a “blurry”
null hypotheses, in which the uninteresting cases can deviate in minor ways from the
theoretical null formulation.

Note that variations of the empirical null are possible depending on the desired
modeling assumptions. For example, one can assume normality and estimate both
the mean and the variance. Or, alternatively, one could fix the mean at zero and
estimate the variance. The latter is intriguing, as it seems natural that empirical
null should also be zero centered because the correlation would not affect centering.
However, we explored variations like these and found little difference when compared

to the classic empirical null algorithms, so the results are not included here.

3.3.3 Model Selection and Bootstrap Aggregation
Misspecification of the underlying model can be a real problem for reliable infer-

ence. For example, when testing for differentially expressed genes, a common practice
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is to perform N t-tests, where NNV is equal to the number of genes. This is equivalent to
N univariate linear models, each regressing gene expression on disease status. Often,
a logistic regression model is more appropriate, since the goal is to use gene expres-
sion to predict leukemia status. In addition, the set of models considered ought to be
adjusted for potentially confounding effects, allow for nonlinear effects, and possibly
include robust standard errors. All of these things will significantly impact the final
inference, but they are often ignored in routine applications.

A way to address many of these concerns is to use bootstrap aggregation (bag-
ging) (Breiman, 1996; Efron, 2012b). This method averages estimands of interest
from a set of bootstrapped models. Bagging is often applied to situations where the
estimator heavily depends on the sample, and perturbations of the sample may lead
to significant changes in the statistical measure. Bagging has been shown to improve
biological inference on gene sets (Jaffe et al., 2013), however the usefulness of this
method has only been investigated for estimating the probability that a significant

gene finding will replicate, so our application here is novel.

3.3.4  Algorithm
The algorithm for computing BEN p-values consists of the following steps:

1. Choose the set of generalized linear models appropriate for the statistical ques-
tion; including potential covariate adjustments, interactions, non-linear effects,

and robust standard errors.

2. Resample the data B times, and fit the entire set of models from Step 1 in each
of the B bootstrap resamples, for each of the N genes being tested.

3. Obtain the model fit statistic (e.g., AUC or R?), and the z-statistic correspond-
ing to the hypothesis test of interest (i.e., z-value corresponding to, say, gene

expression in the model).

4. Use the N z-values from each model to estimate the Empirical Null distribution,
N(p,0).

5. Standardize the test statistics to the empirical null distribution. Compute p-

values and Fdrs under the empirical null as usual.

6. For each of the N endpoints, select the model with the ‘best’” model fit (e.g.,
best AIC) and save all statistics of interest for that model.
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7. Repeat B times.
8. Take the average of the B statistics for each of the N genes.

9. Report the average empirical null p-value and averaged model fit statistic (e.g.,
AUC). These are the bagged statistics.

10. Flag genes as significant if they meet a multi-dimensional threshold on the BEN
p-value and bagged fit statistic.

3.8.4.1 Step 3: Calculating z-values for each variable of interest from the p-values
associated with the gene covariate in each model
Calculate the p-value in the usual way associated with the gene covariate of interest
from each model. From the p-value , calculate z-values such that z; = ®(p) for
i = 1,...,N genes. If genes are allowed to have nonlinear associations, and/or
interactions, use the p-value from the chunk test, and then transform back to z-scale

in the same manner.

3.8.4.2  Details on Step 4: Estimating the Empirical Null

There are several ways to ‘bag’ the empirical null distribution. The most principled
approach is described in the algorithm above, where each model is fit, and an empirical
null distribution is estimated from the z values obtained from a single model. If
there are m models to choose from, m empirical nulls will be estimated, and m*N
statistics, will be calculated in total. We call this the ‘principled’” approach because
the underling working model is held fixed across the genes. Then, for each of the
N genes, the set of desired statistics is chosen from the model with the ‘best fit’
(e.g., lowest AIC). An alternative is this: after the m models are fit, the z-values are
selected from the ‘best fit’ model, and then a single empirical null is estimated from
the N z-values. Here the working model is allowed to vary across the genes. Lastly,
one could estimate a single empirical null distribution from the combined m*N 2z-
values across all models. This approach adds a layer of correlation to the mixture
distribution but is not favoring the ‘best’ fit model. These last two approaches to
computing the empirical null distribution have the advantage of only one computation
cycle, speeding up the algorithm. There was little difference between the empirical
null procedures in practice, and we found that other approaches did not significantly
alter the BEN p-value rankings. For this paper, we used the ‘principled’ approach,
and the two alternative methods are explored in Section 3.7.3 of the Supplementary

Material since they appear to be viable shortcuts that merit further exploration.
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3.4 Simulation and Implementation
3.4.1 Pseudo-Simulation

Large-scale data is often defined by its rich and complex correlation structure,
which often extends non-uniformly over columns, rows, and clusters. As such, it is
very hard to simulate realistic large-scale data from scratch. Because of this, we took
a “Pseudo-Simulation” approach. Our idea is to take the subset of Gloub null genes
and remove any mean effects via a highly parameterized regression including several
covariates and interactions. The matrix of residuals retains the complex correlation
structure, upon which we add back fixed effects via an assumed regression model (this
is our simulation engine). We refer to this simulation as ‘Pseudo’ because we are not
generating new error structures. In effect, we get a simulation using a real-world error
structure and thus retain the complexity of these large-scale data that is often critical
to the evaluation of novel methods.

Specifically, we did the following: In the original unchanged leukemia data, fit
univariate linear models for each gene expression, and then took the subset of genes
whose p-value associated with the AML/ALL coefficient was greater than 0.3. This
resulted in 3172 genes whose gene expressions we assumed have little to no association
with leukemia type. We then randomly selected 30 genes within this subset, computed
the residuals after regressing over as many effects as we could, and induced 10 genes
to have a strong association, 10 genes to have a moderate association, and 10 genes
to have a weak association between leukemia type and gene expression.

To selectively adjust certain gene expression levels and leukemia relationships,

new expression data was estimated by adding new fitted values,

{Gene Expression®}; = {X 3"},
= Bo; + ij{Leukemia Type} + Bg‘j{Gender} + ﬁgj{Sample}
+ fBj;{Leukemia Type x Gender}
+ fB5;{Leukemia Type x Sample}
+ f35;{Gender x Sample}

to the original residuals, ¢; = {Gene Expression}; —{X 3}, for each of the induced

genes j = 1...30. This results in

NEW,_
J

{Gene Expression = {Gene Expression®}; + ¢,

This allows us to specify any level of complexity in the model, while preserving
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the original error structure from the data. Each set of 10 strong, moderate, and weak
genes comprised of 2 genes induced to be associated with just leukemia type (57), 2
genes induced to have a gender and a leukemia type by gender interaction (55,5;),
2 genes induced to have a leukemia type and a leukemia type by gender interaction
(87,8%), 2 genes induced to have a leukemia type and a leukemia type by sample
interaction (f;,0:), and 2 genes induced to have a leukemia type, leukemia type by
gender, and a leukemia type by sample interaction (57,0;,0%). Strong gene associa-
tions, moderate gene associations, and weak gene associations were induced to have
B* values 7, 4, and 2 times the original leukemia type coefficients respectively. These
values were chosen such that the multiplicative effect of the coefficient outweighed
their corresponding empirical standard errors.

The pseudo-simulated data was then normalized, and the BEN algorithm was im-
plemented. The pseudo-simulations were conducted under linear regression models
because (1) they provide a direction comparison to methods based on single univari-
ate t-statistics, common in the literature and (2) their residuals are well defined when
compared to logistic regression. We expect the results would extend to logistic regres-
sion, and our primary example uses logistic regression. The following linear models

were considered for the BEN algorithm:

Expression| = fy + 1 {Leukenia
Expression| = ) + [1{Leukenia
Expression| = fy + 1 {Leukenia
Expression| = ) + [1{Leukenia
Expression| = fy + 1 {Leukenia
+ B4{Leukemia
Expression| = fy + 1 {Leukenia
+ p4{Leukemia
Expression| = fy + 1 {Leukenia
+ [4{Sample x
Expression| = fy + (1 {Leukemia
+ p4{Leukenmia

29

Type}

Type} + [2{Sample}
Type} + B2{Gender}

Type} + [2{Sample} + f3{Gender}
Type} + f2{Sample} + B3{Gender}
Type x Sample}

Type} + f2{Sample} + B3{Gender}
Type x Gender}

Type} + f2{Sample} + B3{Gender}
Gender}

Type} + [o{Sample} + B3{Gender}

Type x Gender} + [5{Leukemia Type x Sample}



3.4.2 Logistic Regression Models Applied to the Leukemia Data

Two separate implementations of the BEN algorithm were performed for the leukemia
data using both linear regression and logistic regression. Since the set of logistic models
are more appropriate for answering the scientific question at hand, these are the models
discussed here. The linear regression results are included in Section 3.7.4 of the Supplement.

7128 regression models were fit, and the models included all combinations of the covari-
ates gene expression (continuous), site of sample (peripheral blood vs. bone marrow), and
gender (male vs. female). In two of the regression models, gene expression was modeled
flexibly using restricted cubic splines, as gene expression does not necessarily have a linear
relationship with leukemia type.

The following models were considered for each of the 500 bootstrap aggregations:

E[Leukemia Type|) = fy + [$1{Gene Expression}

~

Bo + B1{Gene Expression} + (2{Sample}

Bo + B1{Gene Expression} + (2{Gender}

Bo + P1{Gene Expression} + (2{Sample} + O3{Gender}

Bo + B1,2{rcs({Gene Expression},3)}

Bo + B12{rcs({Gene Expression},3)} + B3{Sample} + 34{Gender}

ogit(E|Leukemia Type

~

ogit(E|Leukemia Type

~

ogit(E|Leukemia Type

—_— — — — — —

(B ]
(B ]
(B ]
ogit(E[Leukemia Type]
(B ]
(Bl ]

~—~~ Y~ I~
~— ~— ~— ~— ~—
~

For models (1) through (4) the test of 51 provides N = 7128 Wald z-statistics used in
the BEN algorithm. For models (5) and (6) the p-value from the chunk test of 51 = 2 = 0,
the terms associated with the non-linear effect of gene expression, is transformed back to
the z-statistic as described in 3.3.4.1. In order to compare results to more traditional
methods, univariate logistic regression models were fit, and the N = 7128 z-values were
used to calculate p-values and empirical null p-values. All p-values were adjusted using the

Bonferroni and Benjamini-Hochberg procedures for comparison.

3.5 Results

3.5.1 Pseudo-Simulation

Univariate linear regression models were fit for every gene expression using the manip-
ulated data: E{Gene Expression}; = fy; + f1;{Leukemia Type} for i = 1...3172. The
unadjusted, Bonferroni, and Benjamini-Hochberg p-values, along with each model R? was
computed. Table 3.1 presents the results of the pseudo-simulation after performing 250
simulations of 250 bootstrap aggregations.

Investigating all subsets of p-values < 0.05, the BEN p-values found more truly as-
sociated genes than the Bonferroni corrected p-values from the univariate models. This

increase in power comes with the cost of a slight increase in empirical False Discovery Rate
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(FDR) for the BEN p-values compared to the Bonferroni corrected p-values. Interestingly,
we estimated 115 genes from the univariate model to have p-values < 0.05, and only 16
of those had true disease status/gene expression relationships. Bagging p-values reduces
the total number genes with p-values < 0.05 to approximately 105, with about 20 of those
being true relationships. Our results indicate that bagging alone yields a desirable increase
in power and decrease in FDR apart from the empirical null methodology. BEN p-values
have a comparable power to unadjusted and empirical null p-values, but they result in a
significantly reduced FDR.

When using the multi-dimensional metric, p-values < 0.05 and R? > 0.5 (from either
the univariate models or the bagged models), the BEN p-values and Bagged p-values have
the largest power and have similar FDR control. When selecting genes based on p-value
alone, EN, unadjusted, and Bagged p-values have similar properties (with Bagged p-values
having the greatest power), however when selecting genes sets based on this dual metric the
usefulness of bagging and empirical null procedures is apparent.

It may be tempting to find the traditional Bonferroni p-values still favorable since the
empirical FDR is low (especially when using both the p-value and model fit statistic),
however the Bonferroni p-values mostly select the genes whose true model is univariate (i.e.
4 of the 6 models where Leukemia Type and Gene expression, 87, was induced to have a
relationship). So the Bonferroni adjustment might be considered ultra-conservative if the
underling model is correctly specified, but if not the adjustment appears to overly penalize.
All other models were not selected by the Bonferroni p-values. Bagging allows for the results
to favor the 'best fit’ model, which is more likely to be close to the correct but unknown
model, and this results in more true discoveries.

Note that in the pseudo-simulation the Empirical Null (EN) p-values tended to have
more false discoveries than the unadjusted p-values. We expect this to be true if we assume
3142 genes are truly null, then we would expect 157 false discoveries by chance alone, a result
in line with the EN p-values. The combination of bagging and empirical null procedures
is more likely to select the truly differentially expressed genes (Table 3.1). It also has a
more desirable FDR/Power tradeoff, and therefore should be preferred over other p-value

adjustment techniques.

3.5.2 Application to Leukemia Data
8.5.2.1 Naive Approaches to Analysis of Leukemia Data

For comparison, the usual analyses were performed using the leukemia data. Simple Lo-
gistic regression models were fit, logit(E[Leukemia Type;|) = By + $1{Gene Expression;}
for 4 = 1...7128 genes. The conventional analysis is shown in Figure 3.1, where the un-
adjusted p-values, Bonferroni corrected p-values, and global two-tailed B-H (Fdr) p-values

are presented, sorted from smallest to largest. The black dashed line represents the same
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True Discoveries False Discoveries Power FDR

Strong  Moderate  Weak All Ordered | Type I Error* #True Dis./#Induced Genes #False Dis./#Total Dis.

p-value < 0.05

EN 8(7.8) 6(57)  3(24) 17 (16,19) 138 (136,139) I (.57 (0.53,0.63) I 39 (0.83,0.9)

Unadjusted 7(68) 6(57)  3(24) 16 (15,18) 99 (99,100) I 053 (0.5,0.6) I ) 56 (0.85,0.87)

Bagged 9(8,10) 8(7.9)  4(3.5) 21(19,22) 85 (74,101) I 067 (0.63,0.73) I 51 (0.78.0.84)

BEN 8(7,9) 6(57)  2(1,2) 16 (14,17) 12 (11,13) I (53 (0.47,0.57) I .43 (0.4,0.46)

Bagged B-H 8(79) 6(57)  2(12) 16 (14,17) 11 (10,13) I 53 (0.47,0.57) I .12 (0.39,0.46)

EN B-H 5(47) 3(24)  0(0,1) 8(8,11) 8 (8.8) Il 03 (0.27,0.37) I .47 (0.42,0.5)

B-H 5(46) 3(24)  0(0,1) 8(7,10) 8 (8,8) 03 (0.23,0.33) I .47 (0.44,0.53)

EN Bonferroni 5(46) 2(24)  0(0,1) 7(69) 5(5,5) Ml 023 (0.2,0.3) I (.42 (0.36,0.45)

Bonferroni 4(35) 2(13)  0(0,0) 6(58) 3(3,3) .23 (0.17,0.27) 03 (0.27,0.38)

Bagged Bonferroni 7(68) 4(35)  0(0,0) 11(9,12) 2(1,2) I .37 (0.3,04) M 0.14 (0.09,0.17)

BEN B-H 6(57) 2(1,3)  0(00) 8(7,10) 0 (0,0) Il (.27 (0.23,0.33) 0(0,0)

BEN Bonferroni 5(4,6) 1(02) 0 (0,00 6(5,7) 0 (0,0) 0.2 (0.17,0.23) 0 (0,0)
p-value < 0.05 & R? > 0.5

Bagged 7(68) 4(35)  0(0,1) 11(9,12) 2(1,2) .37 (0.3,04) W 0.12 (0.08,0.15)

BEN 7(68) 4(35)  0(0,1) 11(9,12) 1 (1,1) I 037 (0.3,04) 00.08 (0.08,0.1)

Bagged B-H 7(68) 4(35)  0(0,1) 11(9,12) 1(1,1) .37 (0.3,04) 00.09 (0.08,0.11)

Bagged Bonferroni 7(68  3(24)  0(0,0) 10 (9,11) 1(1,1) I 033 (0.3,0.37) 00.09 (0.08,0.1)

BEN B-H 6(57) 2(1,3)  0(00) 8(7,10) 0 (0,0) I (.27 (0.23,0.33) 0(0,0)

BEN Bonferroni 5(46) 1(02)  0(0,0) 6(57) 0(0,0) o2 (0.17,023) 0(0,0)

EN 2(1,3) 0(0,1)  0(00) 2(1,3) 0 (0,0) 10.07 (0.03,0.1) 0 (0,0)

Unadjusted 2(1,3)  0(0,1)  0(0,0) 2(1,3) 0 (0,0) 00.07 (0.03,0.1) 0(0,0)

EN B-H 2(1,3) 0(0,1)  0(00) 2(1,3) 0 (0,0) 10.07 (0.03,0.1) 0 (0,0)

B-H 2(1,3)  0(0,1)  0(0,0) 2(1,3) 0 (0,0) 00.07 (0.03,0.1) 0 (0,0)

EN Bonferroni 2(1,3) 0(0,1) 0(0,0) 2(1,3) 0 (0,0) Boo7 (0.03,0.1) 0 (0,0)

Bonferroni 2(1,3) 0(01)  0(0,0) 2(1,3) 0 (0,0) 10.07 (0.03,0.1) 0 (0,0)

Table 3.1: Results of the Pseudo-simulation with 250 replications and 250 bootstrap aggregations.
The Median and (IQR) are presented here. There are 3172 genes tested in total, with 10 genes
induced to have a strong, 10 genes induced to have a moderate, and 10 genes induced to have a
weak association between Gene Expression and Leukemia Type. True Discoveries are those genes
found which had a true induced relationship between Gene Expression and Leukemia type. False
Discoveries are those genes which had no induced relationship between gene expression and leukemia
type. The FDR is the number of false discoveries out of all discovered genes. The Power is the number
of true differentially expressed genes out of the 30 genes induced to have a true relationship between
gene expression and leukemia type. *p-value type is ordered by descending Type I Error (Number of
False discoveries/Truly Null Genes). BEN: Bagged Empirical Null, B-H: Benjamini-Hochberg, EN:
Empirical Null.
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p-values calculated under the empirical N(0.13,1.70) null using the maximum likelihood
method (slight mean shift with large variance inflation). The solid blue line is the B-H
p-values (the two-tailed global Fdrs) calculated under the theoretical null, and the solid
red line is the Bonferroni corrected p-values. The EN p-values are an interesting compro-
mise between the strict Bonferroni and more relaxed B-H p-value adjustments. For these
data, there are 391 EN p-values < 0.05, compared to 7 Bonferroni p-values and 971 B-H
p-values. EN p-values appear to self-adjust, providing a more desirable error-rate tradeoff

than Bonferroni or B-H p-values, without having to do post-hoc adjustments.
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1.0

1.0

0.6
0.6

Probability

Probability

0.4
0.4

0.2
|
0.2
|

—— Theoretical
— Fdr

= = Empirical Null
—— Bonferroni

T T T T T T T T T T T T T T

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

* ‘Bagged
* Bagged Fdr
BEN
* Bagged Bonferroni
T

0.0
|

p-value ranking p-value ranking

Figure 3.1: Left Figure: The black solid line represents the unadjusted p-values associated with
the gene expression coefficient from each of the 7128 univariate logistic regression models. The p-
values are sorted from smallest to largest. The black dashed line represents the p-values recalibrated
using the empirical N(0.13,1.70) null derived from the maximum likelihood method. The solid
blue line represents The Benjamini-Hochberg (B-H) p-values, equivalent to the two-tailed global
false discovery rate (Fdr) calculated under the theoretical null. The solid red line represents the
Bonferroni corrected p-values under the theoretical null. Right Figure: The black dots are the
bagged p-values calculated under the theoretical null. The gray triangles are the bagged empirical
null (BEN) p-values. The blue dots are the bagged B-H p-values calculated under the theoretical
null. The red dots are the bagged Bonferroni p-values calculated under the theoretical null. All
points are sorted based on the original unadjusted p-values.

The bagged theoretical null p-values, and bagged theoretical null B-H p-values are shrunk
towards 0.5, compared to the non-bagged counterparts (Figure 3.1: right plot). Since p-
values follow a Uniform(0,1) distribution under the null hypothesis, the mean of the null
p-values is approximately 0.5 (Section 3.7.5 of the Supplement), so this behavior is expected.
The display of bagged results is ordered by the original unadjusted p-value magnitude.

63



3.5.2.2  Previous reports on differentially expressed genes for leukemia

There is no known list or compilation of differentially expressed genes related to the
leukemia. A literature search yielded 5 independent and highly cited papers that present
gene findings, specific to leukemia, based on their analyses. We reviewed and compared their
findings and compared these results to the genes the BEN algorithm ultimately selected.
Golub et al. (1999); Lee et al. (2003); Bg and Jonassen (2002); Zhou et al. (2004); Tong and
Schierz (2011) use a variety of statistical methods to classify or predict gene expressions
associated with leukemia type. Note there is a lot of variability in the reported genes
between studies.

Golub et al. (1999) reports 50 top genes (25 genes most differentially expressed in
AML patients, and 25 genes most differentially expressed ALL patients). Lee et al. (2003)
reports the 27 genes which are the best classifiers of ALL vs. AML using a Bayesian variable
selection approach. Bg and Jonassen (2002) report the top 50 genes for ALL/AML class
separation using their all pairs subset selection procedure. Zhou et al. (2004) report the top
20 important genes selected using their proposed Bayesian gene selection algorithm. Tong
and Schierz (2011) report the 22 genes selected by their genetic algorithm-neural network.
For comparison, we also compare the top 20 smallest univariate logistic regression p-value
and the 7 Bonferroni adjusted p-values < 0.05 associated with leukemia type.

The BEN algorithm resulted in 22 genes who met the dual criterion of BEN p-value
< 0.1 and bagged AUC > 0.90 (Table 3.2). Of this set, the gene with the smallest p-value is
M83667 a known transcription factor of the NF-IL6-beta protein. A study by Natsuka et al.
(1992), that predates the leukemia study, found there was a drastic increase in expression
of NF-IL6 messenger RNA (mRNA) during the differentiation to a macrophage lineage in
mouse myeloid leukemia cells using mouse models. The original Golub et al. (1999) paper
does not report this gene as one of top 50 genes differentially expressed in AML/ALL
patients. Lee et al. (2003) and Zhou et al. (2004) also fail to identify this gene. Given the

prior prominence of M83667, which appears to be a major omission.

3.5.2.83 Comparison of p-values

We can visualize the singular effects of just bagging p-values, of just recalibrating the p-
values to the empirical null distribution, and the additive effect of bagging and empirical null
procedures in Figure 3.2. Compared to the original univariate p-values from the univariate
logistic regression models, the bagged p-values are shrunk towards 0.5. Those p-values which
were most likely null had corresponding bagged p-values that were shrunk towards 0.5, and
the original p-values which were closer to 0 had larger bagged p-values. Notice that the
empirical null p-values are a one-to-one function of the original p-values, and incorporating
the empirical null amounts to shifting the original p-values away from 0. The BEN p-values

in Figure 3.2 show a left horizontal and vertical shift of the p-values compared to the original
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Gene BEN p-value AUC Golub Bo Lee Tong Zhou Univariate p Bonferroni p

M83667 0.057 0.922 X X X X
M33195 0.064 0.912 X
U22376 0.066 0.904 X X X X
X97267 0.069 0.908 X
M62762 0.073 0.927 X

X52056 0.075 0.913 X X

X78669 0.076 0.902
Ma31211 0.076 0.927 X X X X
M22960 0.077 0.922 X X
M19507 0.078 0.932 X X X

715115 0.080 0.954 X X X X
U41635 0.082 0.902

D14664 0.082 0.910

Lo9717 0.082 0.909

X17042 0.084 0.910 X X

U16954 0.084 0.922 X

J03801 0.088 0.901
M32304 0.090 0.906
M93056 0.092 0.907

U77948 0.095 0.911 X

Us7721 0.097 0.913

X07743 0.098 0.917 X

Table 3.2: The 22 leukemia data genes with bagged empirical null (BEN) p-values < 0.1 and bagged
AUC > 0.9. Genes are sorted by (BEN) p-values from smallest to largest. We reviewed Golub et al.
(1999); Lee et al. (2003); Bp and Jonassen (2002); Zhou et al. (2004); Tong and Schierz (2011),
and an X is placed where the authors reported a gene we also selected. The univariate p-values are
derived from the univariate logistic regressions of the original data, and the resulting top 20 p-values
are compared to the BEN results. The Bonferroni correction was applied to the univariate model
p-values, and all Bonferroni p-values < 0.05 are compared to the BEN results.

p-values. We investigated the effects of just bootstrapping the p-values and include those
results in Section 3.7.6 of the Supplement. We compared the top 50 p-values reported by
Golub et al. (1999), the 7 p-values with a Bonferroni adjustment < 0.05, and NF-IL6 beta
protein mRNA, the top gene selected by the BEN algorithm 2-dimensional criterion in Table
3.2.

65



1.0
0.8 §

) 5
3 T
g o
& E
- Z
o =
S 8
g 5

£

]

I ‘ I I I I I
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Original p-values Original p-values

)
2 O  Top 50 genes in Golub Paper
Z O Original Bonferroni p—values <= 0.05
> O NF-IL6-beta protein mMRNA
L
m

0.0 0.2 0.4 0.6 0.8 1.0
Original p-values

Figure 3.2: The original p-values from the univariate logistic regressions are plotted against the
Bagged p-values, Empirical N(0.13,1.70) Null recalibrated p-values, and the Bagged Empirical Null
(BEN) p-values. The open red circles are the 50 p-values Golub et al. (1999) reported as differentially
expressed, and the open blue circles are the Bonferroni adjusted p-values < 0.05 from the original
univariate logistic regressions. The bold black open circle is the top gene selected by the two-
dimensional p-value and AUC criterion of the BEN algorithm, which corresponds the NF-IL6-beta
protein mRNA gene.

8.5.2.4 Visualizing the 2-dimensional criteria

We propose using a dual criterion of p-values and model fit statistics (AUC) for selecting
a subset of genes for further investigation. In Figure 3.3 we visualize the relationship
between p-values and AUC from the leukemia data, and it is clear that even small p-values
can have a low corresponding AUC. The AUC cutoff criterion (horizontal dashed lines)

could be adjusted up or down to further restrict or increase the set of genes for study.
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We have chosen 0.9, but this threshold (or the similar R? threshold in Table 3.1) could be

selected specifically to choose a subset whose size is feasible for further study.
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Figure 3.3: The original p-values from the univariate logistic regressions and Empirical N(0.13,1.70)
Null recalibrated p-values, are plotted against the corresponding model AUC. The Bagged p-values,
and the Bagged Empirical Null (BEN) p-values are plotted against the Bagged AUC. The open red
circles are the 50 p-values Golub et al. (1999) reported as differentially expressed, and the open blue
circles are the Bonferroni adjusted p-values < 0.05 from the original univariate logistic regressions.
The bold black open circle is the top gene selected by the two-dimensional p-value and AUC criterion
of the BEN algorithm, which corresponds the NF-IL6-beta protein mRNA gene.

3.6 Discussion

We have developed a Bagged Empirical Null strategy for obtaining p-values that do

not need to be adjusted post-hoc when performing large scale inference. Based on our
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simulations and examples, combining these p-values with bagged model fit statistics appears
to be advantageous as it tends to select truly differentially expressed genes more often than
traditional p-value corrections. This direct approach to p-value calculations may be more
useful when the goal is to identify the maximum number of truly significant genes, while
controlling the FDR and maximizing the power.

Our motivation comes from gene expression microarray data analysis, where the same
set of genes does not seem to be reproducible across different experiments of statistical
methodologies. In this unique setting, it is highly impractical to pre-specify a different model
for every gene, and so for situations where a large number of tests are to be evaluated (as in
genetic and other high-dimensional data), current methodology can benefit from bootstrap
aggregating procedures.

We have applied our method to pseudo-simulated gene expression data and the original
leukemia data, and have demonstrated that our method is superior by having the most
desirable Type I/Type IT error tradeoff. A strength of our approach is the ability to consider
any set of models (parameters, link function, non-parametric model) during bagging, as
well as not being confined to the conventional theoretical null as the testing distribution.
By incorporating bootstrapping, model selection, and empirical null procedures, the BEN
algorithm has the advantage of using multi-dimensional gene selection metrics, beyond the
single adjusted p-value traditionally used. Consequently, the BEN algorithm will lead to

more robust and reproducible biological findings.
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3.7 Appendix A. Description of Supplementary Materials
The reader is referred to the following supplementary materials for technical appendices,
additional results of the BEN algorithm using linear models when applied to the leukemia
data.

3.7.1 Remark A: Evidential quantities

After observing data, instead of worrying about proper control the pre-test probability
of collecting misleading data, one should instead worry about the probability that the
observed data are misleading. The analogue is a shift from a focus on sensitivity /specificity
to positive/negative predictive value (Blume, 2011). Along these lines, Blume (2011) notes
that the measure of the strength of evidence (the evidence metric), the probability that a
study design will generate misleading evidence (the error probabilities), and the probability
that observed data are misleading (false discovery rates) are three inferential concepts that
should not be confused. Efron argues that once the data are collected, say when analyzing
genetic microarray data, it is more relevant to control the number of forthcoming false
positive results (i.e., control the Fdr at the expense of the Type I error rate), and that the
general null hypothesis (that all the null hypotheses are true) is rarely of interest (Efron,
2012a).

3.7.2 Remark B: Estimating the Empirical Null Distribution

Central matching fits a normal distribution to central percentage of the z-values associ-
ated with each individual hypothesis test, and estimates a mean, variance, and proportion
of null hypotheses. Note that slight irregularities in the central histogram can derail this
method. Maximum likelihood estimation fits a truncated normal distribution to a region
assumed to contain only null results, and multiples this distribution by the probability that
those genes are null. The product of two exponential families can be maximized, and val-
ues for the mean, standard deviation and proportion of nulls can be estimated. The MLE
method is less susceptible to central irregularities but comes at the cost of possible increased
bias. (Efron, 2012a).

3.7.3 Remark C: Alternative ways to Bag the Empirical Null Distribution

There are several ways to ‘bag’ the empirical null distribution. The most principled
approach is described in the BEN algorithm, where each model is fit, and an empirical null
distribution is estimated from the z values obtained from a single model. If there are m
models to choose from, m empirical nulls will be estimated, and m*N statistics, will be

calculated in total. We call this the ‘principled approach’ because the underlying working

69



model is held fixed across the genes. Then, for each of the N genes, the set of statistics
is chosen from the model with the ‘best fit’ (e.g., lowest AIC). In the figures below this
will be referred to as the ‘Principled Empirical Null’. An alternative is this: after the m
models are fit, the z-values are selected from the ‘Best fit’ model, and then a single empirical
null is estimated from the N z-values. Here the working model is allowed to vary across
the genes. In the below figures, this is referred to as the ‘Mixed Empirical Null’. Lastly,
one would estimate a single empirical null distribution from the combined m*N z-values
across all models. This approach adds a layer of correlation to the mixture distribution
but is not favoring the ‘Best’ fit model. In the below figures this method will be referred
to as the ‘Large Correlated Empirical Null. These last two approaches to computing the
empirical null distribution have the advantaged of need to only one computation cycle,
greatly speeding the algorithm at the cost of inducing some additional correlation.

The Principled Empirical Null and the Large Correlated Empirical Null behave very
similarly. However, the Mixed Empirical Null has BEN p-values shifted towards one com-
pared to the original univariate p-values. There was little difference between the empirical
null procedures in practice, and we found the other approaches did not significantly alter
the BEN p-value rankings. The properties of the Large Correlated Empirical Null should

be explored as a way to save computation time of m empirical nulls in the BEN algorithm.
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Figure 3.4: The original p-values from the univariate logistic regressions are plotted against the
Bagged p-values, Empirical N(0.13,1.60) Null recalibrated p-values, and the Bagged Empirical Null
(BEN) p-values. The open red circles are the 50 p-values Golub et al. (1999) reported as differentially
expressed, and the open blue circles are the Bonferroni adjusted p-values < 0.05 from the original
univariate logistic regressions. The bold black open circle is the top gene selected by the two-
dimensional p-value and AUC criterion of the BEN algorithm, which corresponds the NF-IL6-beta

protein mRNA gene.
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Figure 3.5: The original p-values from the univariate logistic regressions and Empirical N(0.13,1.60)
Null recalibrated p-values, are plotted against the corresponding model AUC. The Bagged p-values,
and the Bagged Empirical Null (BEN) p-values are plotted against the Bagged AUC. The open red
circles are the 50 p-values Golub et al. (1999) reported as differentially expressed, and the open blue
circles are the Bonferroni adjusted p-values < 0.05 from the original univariate logistic regressions.
The bold black open circle is the top gene selected by the two-dimensional p-value and AUC criterion
of the BEN algorithm, which corresponds the NF-IL6-beta protein mRNA gene.
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3.7.4 Remark D:Bagged Linear Regression of Leukemia Data

For the first example, two-sample t-statistics and corresponding and p-values were com-
puted from the leukemia data assuming unequal variances for all 7128 genes. From the
p-values, z-values were calculated such that z; = ®(p) for ¢ = 1,..,7128. This is the most
simplistic method, and is presented to compare results with Efron (2012a).

The following models were considered for this analysis:

E(Gene Expression) = fy + 1{Leukemia Type}

E = Bo + fi1{Leukemia Type} + [2{Sample}

E = fBo + B1{Leukemia Type} + [2{Gender}

E(Gene Expression) = f§y + 1{Leukemia Type} + [2{Sample} + B3{Gender}

Gene Expression

( )
( )
(Gene Expression)
( )

For models (1) through (4) the test of 3; provides N Wald-Z statistic used to generate
the empirical null, unadjusted p-values, and Fdrs. For comparison, p-values will be ad-
justed using the Bonferroni and Benjamini-Hochberg procedures, and all measures will be

computed under both the theoretical and empirical null.
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Figure 3.6: Left Figure: The black solid line represents the unadjusted p-values associated with
the gene expression coefficient from each of the 7128 univariate linear regression models. The p-
values are sorted from smallest to largest. The black dashed line represents the p-values recalibrated
using the empirical N(0.13,1.60) null derived from the maximum likelihood method. The solid
blue line represents The Benjamini-Hochberg (B-H) p-values, equivalent to the two-tailed global
false discovery rate (Fdr) calculated under the theoretical null. The solid red line represents the
Bonferroni corrected p-values under the theoretical null. Right Figure: The black dots are the
bagged p-values calculated under the theoretical null. The gray triangles are the bagged empirical
null (BEN) p-values. The blue dots are the bagged B-H p-values calculated under the theoretical
null. The red dots are the bagged Bonferroni p-values calculated under the theoretical null. All
points are sorted based on the original unadjusted p-values.
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Figure 3.8: The original p-values from the univariate linear regressions and Empirical N(0.13,1.60)
Null recalibrated p-values, are plotted against the corresponding model R2. The Bagged p-values,
and the Bagged Empirical Null (BEN) p-values are plotted against the Bagged R2. The open red
circles are the 50 p-values Golub et al. (1999) reported as differentially expressed, and the open blue
circles are the Bonferroni adjusted p-values < 0.05 from the original univariate linear regressions.
The bold black open circle is the NF-IL6-beta protein mRNA gene.
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Gene BEN p-value  R? Golub Bo Lee Tong Zhou Univariate p Bonferroni p
M23197 0.000 0.743 X X X X X X
U46499 0.000 0.734 X X X X
M31523 0.000 0.708 X X X X X X
M8&4526 0.000 0.728 X X X X X
D88422 0.000 0.650 X X X X X
M27891 0.000 0.655 X X X X X X

HG1612-HT'1612 0.000 0.633 X X X X X
M92287 0.000 0.613 X X X X X X
M63138 0.000 0.580 X X X X
J05243 0.000 0.581 X X X
715115 0.001 0.585 X X X X X
X59417 0.001 0.556 X X X
X95735 0.001 0.564 X X X X
M16038 0.001 0.592 X X X X X
L09209 0.001 0.560 X X X X X
X51521 0.001 0.559 X X X X X
M31211 0.001 0.533 X X X X
M11722 0.001 0.591 X X X X X
M63379 0.001 0.509 X
L47738 0.002 0.533 X X X
X62320 0.002 0.532 X X X
Mb55150 0.002 0.504 X X X
M31303 0.002 0.589 X X X
X62654 0.002 0.530 X X X
X56468 0.002 0.556
U05259 0.002 0.561 X X
M83667 0.003 0.526 X X X
M29696 0.004 0.508 X X
723064 0.004 0.502
D88270 0.004 0.526 X
U22376 0.004 0.510 X X X
S50223 0.004 0.511 X X
M33195 0.004 0.500
Us7721 0.005 0.504
M84371 0.005 0.529 X

HG1322-HT5143 0.040 0.509

Table 3.3: The 36 leukemia data genes with bagged empirical null (BEN) p-values < 0.1 and bagged
R? > 0.5. Genes are sorted by (BEN) p-values from smallest to largest. We reviewed Golub et al.
(1999); Lee et al. (2003); Bg and Jonassen (2002); Zhou et al. (2004); Tong and Schierz (2011),
and an X is placed where the authors reported a gene we also selected. The univariate p-values are
derived from the univariate linear regressions of the original data, and the resulting top 20 p-values
are compared to the BEN results. The Bonferroni correction was applied to the univariate model
p-values, and all Bonferroni p-values < 0.05 are compared to the BEN results.
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3.7.5 Remark E: Shrinkage of Bagged p-values

The bagged theoretical null p-values, and bagged theoretical null B-H p-values are at-

tenuated towards 0.5, compared to the non-bagged counterparts. Since p-values follow a

Uniform(0,1) distribution under the null hypothesis, the mean of the null p-values is ap-

proximately 0.5.
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Figure 3.9: Histograms of 3 different genes of their bagged p-values and BEN p-values. The p-values

from the
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3.7.6 Remark F: Bootstrapping p-values

Even if model misspecification is not a concern, we recommend that p-values are boot-
strapped. We have bootstrapped the p-values of the leukemia data assuming the univariate
model is true, and include the results below. For this specific example, the bootstrapped

p-value results are similar to the bagged B-H p-value results.
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Figure 3.10: Left Figure: The black solid line represents the unadjusted p-values associated with
the gene expression coefficient from each of the 7128 univariate logistic regression models. The p-
values are sorted from smallest to largest. The black dashed line represents the p-values recalibrated
using the empirical N(0.13,1.70) null derived from the maximum likelihood method. The solid
blue line represents The Benjamini-Hochberg (B-H) p-values, equivalent to the two-tailed global
false discovery rate (Fdr) calculated under the theoretical null. The solid red line represents the
Bonferroni corrected p-values under the theoretical null. Right Figure: The black dots are the
bagged p-values calculated under the theoretical null. The gray triangles are the bagged empirical
null (BEN) p-values. The blue dots are the bagged B-H p-values calculated under the theoretical
null. The purple dots are the bootstrapped p-values. The red dots are the bagged Bonferroni p-
values calculated under the theoretical null. All points are sorted based on the original unadjusted
p-values.
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3.8 Appendix B. Code for Psuedo-Simulation and Application to Leukemia Data

#Install the packages
library(Hmisc)
library(rms)
library(mice)
library(locfdr)

#Intall the Golub leukemia Tesults
#source("http://bioconductor.org/biocLite.R")
#biocLite("golubEsets")

library(golubEsets)

HURHRAHRBHARARBHHA

# Functions Used

# 1) AUC Function

# 2) Ezpit

# 3) Global FDR/BH p-value correction code
# 4) Bonferroni p-value correction code
#5)

HHBHAHARHAARAAIA

#AUC function
auc=function(score,status){
B
## auc version 1.0
## Compute Area under Rmpirical ROC curve by Trapezoidal Rule
## Author: J. Blume
## Date: July 2014
HARHHHBRUABHRBHABHHRHIH

pos=score[status==1]

neg=score [status==0]

cti=sum(outer(pos,neg,">"))
ct2=sum(outer(pos,neg,"=="))
den=length(pos)*length(neg)
auc=(ct1+0.5%ct2) /den
auc=max (auc, 1-auc)

auc

#Inverse Logit function

expit <- function(z){
exp(z)/(1+exp(z))

¥

#Logit function
logit <- function(z){
(z)/(1-2)

#Two tailed Global Fdr
Global.fdr <- function(z, na.rm = FALSE){
rawp <- z
m<-length(rawp)
if (na.rm){
mgood<-sum(!is.na(rawp))
Yelse{
mgood<-m
}
index<-order (rawp)
spval<-rawp [index]
tmp<-spval
for(i in (m-1):1){
tmp [i]<-min (tmp[i+1],min((mgood/i)*spvallil,1,na.rm=TRUE) ,na.rm=TRUE)
#if(is.na(spval[i])) tmp[i]<-NA
s
FDR <-tmp [order (index)]
FDR
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#Bonferroni Correction
Bonferroni <- function(z, na.rm = FALSE){
rawp <- z
m<-length(rawp)
if (na.rm){
mgood<-sum(!is.na(rawp))
Yelse{
mgood<-m
}
index<-order (rawp)
spval<-rawp [index]
tmp<-mgood*spval
tmp [tmp>1]<-1
Bonferroni <-tmp[order(index)]

Bonferroni

# Start Analysis of the Original Leukemia Data

#Read in Leukemia data

data(Golub_Merge)
exprsDat <- exprs(Golub_Merge)
N.tmp <- nrow(exprsDat)

#Normalizing the genme exzpression data as described by efron

NormalizedGeneDat <- apply(exprsDat, 2, function(z) gnorm((rank(z)-0.5)/N.tmp))

#Efron dropped the most exztreme value so we will too
NormalizedGeneDat <- NormalizedGeneDat[-6777,]

NormalizedGeneDat_t <- t(NormalizedGeneDat)

N <- nrow(NormalizedGeneDat)

set.seed(sample(1:100000000,size=1))

#Impute Covariate Data

imputations <- mice(pData(Golub_Merge) [,c(’ALL.AML’,’BM.PB’,’T.B.cell’,’Gender’,’PS’,’Source’)], m=1)

imp.dat <- complete(imputations)

#Combining the normalized gene expression with the covariate information
LeukDat <- cbind(NormalizedGeneDat_t,imp.dat)

# BEN Algorithm

#

# 1) Bootstrap individuals,

# 2) Fit different models, save z values for every gene

# 3) Fit Empirical Null for each model

# 4) Calculate all statistics

# 5) Choose set of statistics based on model with lowest AIC
# 6) Average Results

# The following function takes in a seed and the number

# of simulations you with to Tun and returns a list of

# length N (where N is the number of genmes being evaluated)

BEN.logistic <- function(SEED,NUMSIM){
set.seed (SEED)

n.sim = NUMSIM

bagged.res <- lapply(1:N, function(i) data.frame(z.gene = rep(NA,n.sim),
aic = rep(NA,n.sim),

auc = rep(NA,n.sim),
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emp.loc.fdr = rep(NA,n.sim),
emp.p = rep(NA,n.sim),
emp.var.p = rep(NA, n.sim),
null.loc.fdr = rep(NA,n.sim),
null.p = rep(NA,n.sim),
emp.Fdr = rep(NA,n.sim),
null.Fdr = rep(NA,n.sim),
emp.Bon = rep(NA,n.sim),
null.Bon = rep(NA,n.sim),
emp.mean = rep(NA, n.sim),
emp.sd = rep(NA,n.sim),

which.mod = rep(NA,n.sim)))

for(i in 1:n.sim){

#data frame of statistics

all.stats <- lapply(1:6,function(i) data.frame(z.gene = rep(NA,N),
aic = rep(NA,N),
auc = rep(NA,N),
emp.loc.fdr = rep(NA,N),
emp.p = rep(NA,N),
emp.var.p = rep(NA,N),
null.loc.fdr = rep(NA,N),
null.p = rep(NA,N),
emp.Fdr = rep(NA,N),
null.Fdr = rep(NA,N),
emp.Bon = rep(NA,N),
null.Bon = rep(NA,N),
emp.mean = rep(NA, N),
emp.sd = rep(NA,N)))

#Bootstrap the same proportion of people with ALL and AML as is in the original sample

boot.samp.ALL <- sample(which(LeukDat[,’ALL.AML’]==’ALL’),replace = TRUE)
boot.samp.AML <- sample(which(LeukDat[,’ALL.AML’]=="AML’),replace = TRUE)
tmp.dat <- rbind(LeukDat [boot.samp.ALL,],LeukDat [boot.samp.AML,])

for(xx in 1:N){

#Univariate Model
m.1 <- tryCatch(glm( (as.numeric(ALL.AML) - 1) ~ tmp.datl[,xx],
data = tmp.dat, family = binomial), error=function(e) {NA})

#Single Covariates

m.2 <-tryCatch( glm( (as.numeric(ALL.AML) - 1) ~ tmp.dat[,xx] + BM.PB ,
data = tmp.dat, family = binomial), error=function(e) {NA})

m.3 <- tryCatch(glm( (as.numeric(ALL.AML) - 1) ~ tmp.dat[,xx] + Gender,
data = tmp.dat, family = binomial), error=function(e) {NA})

#Two Covariates
m.4 <- tryCatch(glm( (as.numeric(ALL.AML) - 1) ~ tmp.dat[,xx] + BM.PB + Gender,
data = tmp.dat, family = binomial), error=function(e) {NA})

#Splined Gene Expression
m.5 <- tryCatch(lrm( (as.numeric(ALL.AML) - 1) ~ rcs(tmp.dat[,xx],3),
data = tmp.dat), error=function(e) {NA})
m.5.glm <- tryCatch(glm( (as.numeric(ALL.AML) - 1) ~ rcs(tmp.dat[,xx],3),
data = tmp.dat, family = ’binomial’), error=function(e) {NA})

#Splined Gene Expression with covariates
m.6 <- tryCatch(lrm( (as.numeric(ALL.AML) - 1) ~ rcs(tmp.dat[,xx],3) + BM.PB + Gender,
data = tmp.dat), error=function(e) {NA})
m.6.glm <- tryCatch(glm( (as.numeric(ALL.AML) - 1) ~ rcs(tmp.dat[,xx],3) + BM.PB + Gender,
data = tmp.dat, family = ’binomial’), error=function(e) {NA})

for(j in 1:4){
m.tmp <- get(paste(’m.’,j,sep = ""))
if (is.na(m.tmp[[11]1[11)){
all.stats[[j]] [xx,c(’z.gene’)] <-NA
all.stats[[j]][xx,c(’aic’)] <- NA

all.stats[[j1][xx,c(Cauc’)] <- NA

if(!is.na(m.tmp[[111[11)){
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all.stats[[j]][xx,c(’z.gene’)] <- summary(m.tmp)$coefficients[’tmp.dat[, xx]’,’z value’]
all.stats[[j1] [xx,c(’aic’)] <- AIC(m.tmp)
all.stats[[j]] [xx,c(Cauc’)] <-auc(m.tmp$fitted,as.numeric(tmp.dat$ALL.AML)-1)

if('is.na(m.5[[111[11)){

#Chunk test of all coefficients associated with gene expression

all.stats[[5]] [xx,c(’z.gene’)] <- gnorm(pchisq(anova(m.5)[1,1],anova(m.5)[1,2],

lower.tail = FALSE),lower.tail = FALSE)

all.stats[[5]] [xx,c(’aic’)] <- m.5.glm$aic

all.stats[[5]] [xx,c(Cauc’)] <- auc(m.5.glm$fitted,as.numeric(tmp.dat$ALL.AML)-1)
}
if (is.na(m.5[[1]11[11)){

all.stats[[5]][xx,c(’z.gene’)] <- NA

all.stats[[5]][xx,c(’aic’)] <- NA

all.stats[[5]]1 [xx,c(’auc’)] <- NA

if (lis.na(m.6[[11]1[11)){

#Chunk test of all coefficients associated with gene expression

all.stats[[6]] [xx,c(’z.gene’)] <- gnorm(pchisq(anova(m.6)[1,1],anova(m.6)[1,2],

lower.tail = FALSE),lower.tail = FALSE)

all.stats[[6]] [xx,c(’aic’)] <- m.6.glm$aic

all.stats[[6]] [xx,c(’auc’)] <- auc(m.6.glm$fitted,as.numeric(tmp.dat$ALL.AML)-1)
}
if(is.na(m.6[[1]1][1]1)){

all.stats[[6]] [xx,c(’z.gene’)] <- NA

all.stats[[6]1] [xx,c(’aic’)] <- NA

all.stats[[6]1] [xx,c(’auc’)] <- NA

#For each model find the p-value, and local fdr under the empirical null
BEN.fdr.p <- for(qq in 1:6) {

tmp.mod <- all.stats[[qql]

tmp.dat <- tmp.mod[complete.cases(tmp.mod[,’z.gene’]), ’z.gene’]

#Empirical Null estimation using mazimum likelihood methods
tmp.fdr.emp <- tryCatch(locfdr(tmp.dat,nulltype=1,plot=0),
error=function(e) {NA})
tmp.fdr.null <- tryCatch(locfdr(tmp.dat,nulltype=0,plot=0),
error=function(e) {NA})
if (length (tmp.fdr.emp)>1){
emp.loc.fdr <- tmp.fdr.emp$fdr

#recalibration of p-values under the empirical null

if{qq == 5lqq == 6H{

emp.p <- min(2*(1- pnorm(tmp.dat,
mean=tmp.fdr.emp$fpO[’mlest’,’delta’],
sd=tmp.fdr.emp$fp0O[’mlest’,’sigma’])),1)

#recalibration of p-values fizing the mean at O and taking the variance from the empirical null
emp.var.p <- min(2*(1- pnorm(tmp.dat,
mean=0,
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)
}
else{emp.p <- min(2*(1- pnorm(abs(tmp.dat),
mean=tmp.fdr.emp$fpO[’mlest’,’delta’],
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)

#recalibration of p-values fizing the mean at O and taking the variance from the empirical null
emp.var.p <- min(2*(1- pnorm(abs(tmp.dat),
mean=0,
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)
¥
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]),’emp.loc.fdr’] <- emp.loc.fdr

all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’emp.p’] <- emp.p
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all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.var.p’] <- emp.var.p

all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.Fdr’] <- Global.fdr(emp.p)

all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.Bon’] <- Bonferroni(emp.p)
all.stats[[qql] [complete.cases(all.stats[[qqll[,’z.gene’]), emp.mean’] <- tmp.fdr.emp$fpO[’mlest’,’delta’]

all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.sd’] <- tmp.fdr.emp$fpO[’mlest’,’sigma’]

}

if (is.na(tmp.fdr.emp)){
all.stats[[qql] [complete.cases( all.stats[[qql]l[,’z.gene’]),’emp.loc.fdr’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qql][,’z.gene’]), ’emp.p’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qqll[,’z.gene’]), ’emp.var.p’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.Fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]),’emp.Bon’] <- NA

all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.mean’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.sd’] <- NA
}
if (length(tmp.fdr.null)>1){
null.loc.fdr <- tmp.fdr.null$fdr
null.p <- min(2*(1- pnorm(abs(tmp.dat), mean=0,sd=1)),1)
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]),’null.loc.fdr’] <- null.loc.fdr
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), null.p’] <- null.p
all.stats[[qql] [complete.cases(all.stats[[qql]1[,’z.gene’]), ’null.Fdr’] <- Global.fdr(null.p)
all.stats[[qql] [complete.cases(all.stats[[qql]1[,’z.gene’]), ’null.Bon’] <- Bonferroni(null.p)
}
if (is.na(tmp.fdr.null)){
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’null.loc.fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.p’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.Fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.Bon’] <- NA

[

tmp.dat <- do.call(rbind, all.stats) # dim(X2) = 7128*17 z= ncol
grp <- rep(1:N, 6)
split.by.genes <- split(tmp.dat, grp)

#Now store the BEN p-values, Bagged p-values, and AUC for the selected Model
#For gene 1, find the model
for(j in 1:N){

# Choose the model with the lowest AIC
best.mod <- which(split.by.genes[[j11[,’aic’]==min(split.by.genes[[j1]1[,’aic’], na.rm = TRUE))
bagged.res[[j]1][i,c(’z.gene’,

Yealg?

’auc’,
’emp.loc.fdr’,
’emp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
’null.Bon’,
’emp.mean’,
’emp.sd’,
’which.mod’)] <- unlist(c(split.by.genes[[j]1][best.mod,c(’z.gene’,
Yeulg?

’auc’,
’emp.loc.fdr’,
’emp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
’null.Bon’,

’emp.mean’,
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’emp.sd’)] ,best.mod))

}
bagged.res
¥

#Bagged Emp Null from the linear models

BEN.linear <- function(SEED,NUMSIM){

set.seed (SEED)
n.sim = NUMSIM

bagged.res.linear <- lapply(1:N, function(i) data.frame(z.gene = rep(NA,n.sim),
aic = rep(NA,n.sim),
r2 = rep(NA,n.sim),
r2.adjusted = rep(NA,n.sim),
emp.loc.fdr = rep(NA,n.sim),
emp.p = rep(NA,n.sim),
emp.var.p = rep(NA, n.sim),
null.loc.fdr = rep(NA,n.sim),
null.p = rep(NA,n.sim),
emp.Fdr = rep(NA,n.sim),
null.Fdr = rep(NA,n.sim),
emp.Bon = rep(NA,n.sim),
null.Bon = rep(NA,n.sim),
emp.mean = rep(NA, n.sim),
emp.sd = rep(NA,n.sim),

which.mod = rep(NA,n.sim)))

for(i in 1:n.sim){

#data frame of statistics

all.stats <- lapply(1:4,function(i) data.frame(z.gene = rep(NA,N),
aic = rep(NA,N),
r2 = rep(NA,N),
r2.adjusted = rep(NA,N),
emp.loc.fdr = rep(NA,N),
emp.p = rep(NA,N),
emp.var.p = rep(NA,N),
null.loc.fdr = rep(NA,N),
null.p = rep(NA,N),
emp.Fdr = rep(NA,N),
null.Fdr = rep(NA,N),
emp.Bon = rep(NA,N),
null.Bon = rep(NA,N),
emp.mean = rep(NA, N),
emp.sd = rep(NA,N)))

#Bootstrap the same proportion of people with ALL and AML as is in the original sample
boot.samp.ALL <- sample(which(LeukDat[,’ALL.AML’]=="ALL’),replace = TRUE)
boot.samp.AML <- sample(which(LeukDat[,’ALL.AML’]=="AML’),replace = TRUE)
tmp.dat <- rbind(LeukDat [boot.samp.ALL,],LeukDat [boot.samp.AML,])

for(xx in 1:N){

#Univariate Model
m.1 <- tryCatch(lm(tmp.dat[,xx] ~ ALL.AML, data = tmp.dat), error=function(e) {NA})

#Single Covariates

m.2 <-tryCatch( 1m( tmp.dat[,xx] ~ ALL.AML + BM.PB , data = tmp.dat), error=function(e) {NA})

m.3 <- tryCatch(lm( tmp.dat[,xx] ~ ALL.AML + Gender, data = tmp.dat), error=function(e) {NA})

#Two Covariates

m.4 <- tryCatch(lm( tmp.dat[,xx] ~ ALL.AML + BM.PB + Gender, data = tmp.dat), error=function(e) {NA})
for(j in 1:4){

m.tmp <- get(paste(’m.’,j,sep = ""))

if (is.na(m.tmp)){
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all.stats[[j]][xx,c(’z.gene’)] <-NA
all.stats[[j]1][xx,c(’aic’)] <- NA
all.stats[[j]] [xx,c(’r2’)] <- NA
all.stats[[j]] [xx,c(’r2.adjusted’)] <- NA

}

if (tis.na(m.tmp)){
z.sign <- ifelse(summary(m.tmp)$coefficients[’ALL.AMLAML’,’t value’]>=0,1,-1)
all.stats[[j]][xx,c(’z.gene’)] <- abs(gqnorm(summary(m.tmp)$coefficients[’ALL.AMLAML’,’Pr(>|t|)’1/2))*z.sign
all.stats[[j]] [xx,c(’aic’)] <- AIC(m.tmp)
all.stats[[j1][xx,c(°r2’)] <-summary(m.tmp)$r.squared
all.stats[[j]][xx,c(*r2.adjusted’)] <-summary(m.tmp)$adj.r.squared

#For each model find the p-value, and local fdr under the empirical null
BEN.fdr.p <- for(qq in 1:4) {
tmp.mod <- all.stats[[qql]
tmp.dat <- tmp.mod[complete.cases(tmp.mod[,’z.gene’]), z.gene’]
tmp.fdr.emp <- tryCatch(locfdr(tmp.dat,nulltype=1,plot=0),
error=function(e) {NA})
tmp.fdr.null <- tryCatch(locfdr(tmp.dat,nulltype=0,plot=0),
error=function(e) {NA})
if (length(tmp.fdr.emp)>1){
#Empirical Null calculated using the mazimum likelihood method

emp.loc.fdr <- tmp.fdr.emp$fdr

#recalibration of p-values under the empirical null (BEN pvals)

emp.p <- min(2*(1- pnorm(abs(tmp.dat),
mean=tmp.fdr.emp$fpO[’mlest’,’delta’],
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)

#BEN pvalues fizing mean at 0, and using variance from empirical null
emp.var.p <- min(2*(1- pnorm(abs(tmp.dat),
mean=0,

sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)

al
al

=

.stats[[qql] [complete.cases(all.stats[[qqll[,’z.gene’]), ’emp.loc.fdr’] <- emp.loc.fdr

-

.stats[[qql] [complete.cases(all.stats[[qqll[,’z.gene’]), ’emp.p’] <- emp.p

all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.var.p’] <- emp.var.p
all.stats[[qql] [complete.cases(all.stats[[qql]1[,’z.gene’]),’emp.Fdr’] <- Global.fdr(emp.p)
all.stats[[qql] [complete.cases(all.stats[[qq]]1[,’z.gene’]), ’emp.Bon’] <- Bonferroni(emp.p)

al
al

-

.stats[[qq]] [complete.cases(all.stats[[qqll[,’z.gene’]), emp.mean’] <- tmp.fdr.emp$fpO[’mlest’,’delta’]

-

.stats[[qq]] [complete.cases(all.stats[[qql][,’z.gene’]), emp.sd’] <- tmp.fdr.emp$fpO[’mlest’,’sigma’]

if (is.na(tmp.fdr.emp)){
all.stats[[qql] [complete.cases( all.stats[[qqll[,’z.gene’]),’emp.loc.fdr’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qql][,’z.gene’]), ’emp.p’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qqll[,’z.gene’]),’emp.var.p’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.Fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]),’emp.Bon’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), emp.mean’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.sd’] <- NA

}

if (length(tmp.fdr.null)>1){
null.loc.fdr <- tmp.fdr.null$fdr
null.p <- 2%(1- pnorm(abs(tmp.dat), mean=0,sd=1))
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), null.loc.fdr’] <- null.loc.fdr
all.stats[[qql] [complete.cases(all.stats[[qql]1[,’z.gene’]), ’null.p’] <- null.p
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), null.Fdr’] <- Global.fdr(null.p)
all.stats[[qql] [complete.cases(all.stats[[qq]l][,’z.gene’]), null.Bon’] <- Bonferroni(null.p)

if (is.na(tmp.fdr.null)){
al
al
al

=

.stats[[qql] [complete.cases(all.stats[[qq]]1[,’z.gene’]), ’null.loc.fdr’] <- NA

=

.stats[[qq]] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’null.p’] <- NA
.stats[[qq]] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’null.Fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.Bon’] <- NA

=
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tmp.dat <- do.call(rbind, all.stats) # dim(X2) = 7128*17 z ncol
grp <- rep(1:N, 4)
split.by.genes <- split(tmp.dat, grp)

#Now store the BEN statistics and bagged AUC for the selected Model

#For gene 1, find the model

for(j in 1:N){
#Choose model with the smalled AIC
best.mod <- which(split.by.genes[[j11[,’aic’]
bagged.res.linear[[j1][i,c(z.gene’,

aHIGENN
0520
’r2.adjusted’,
’emp.loc.fdr’,
Jemp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
’null.Bon’,
which.mod’,

’emp.mean’,

min(split.by.genes[[j1]1[,’aic’], na.rm

TRUE))

’emp.sd’)] <- unlist(c(split.by.genes[[j]l][best.mod,c(’z.gene’,

’aic’,
’r2’,
’r2.adjusted’,
’emp.loc.fdr’,
’emp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
’null.Bon’,
’emp.mean’,
’emp.sd’)],best.mod))

bagged.res.linear

#Adjustments to Original leukemia data

# load("/Users/SFM/Dropboz/GraduateSchool/LSIGroup/Chapter 6/leukz.Rda")

LeukStats <- data.frame(logistic.z = rep(NA, 7128),
logistic.p = rep(NA, 7128),
logistic.auc = rep(NA,7128),
logistic.aic = rep(NA,7128),
linear.p = rep(NA, 7128),
linear.p.z = rep(NA, 7128),
linear.aic = rep(NA,7128),
linear.r2 = rep(NA,7128),
linear.r2.adjusted = rep(NA,7128))
for(xx in 1:7128){
#LOGISTIC UNIVARIATE MODELS
logistic.mod <- glm( (as.numeric(ALL.AML) - 1) ~ LeukDat[,xx],
data = LeukDat,
family = binomial)
tmp.auc <- auc(logistic.mod$fitted,as.numeric(LeukDat$ALL.AML)-1)
LeukStats[xx,’logistic.auc’] <- ifelse(tmp.auc>1,1,tmp.auc)
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LeukStats[xx, ’logistic.aic’] <- logistic.mod$aic
LeukStats[xx,’logistic.z’] <- summary(logistic.mod)$coefficients[’LeukDat[, xx]’,’z value’]

LeukStats [xx, ’logistic.p’] <- summary(logistic.mod)$coefficients[’LeukDat[, xx]’,’Pr(>lz|)’]

#LINEAR UNIVARIATE MODELS

linear.mod <- 1lm(LeukDat[,xx] ~ ALL.AML, data = LeukDat)
z.sign <- ifelse(summary.lm(linear.mod)$coefficients[’ALL.AML2’,’t value’]>=0,1,-1)
z.tmp <- abs(qnorm(summary.lm(linear.mod)$coefficients[’ALL.AML2’,’Pr(>It|)’]1/2))*z.sign
LeukStats[xx,c(’linear.z’)] <- z.tmp
LeukStats [xx,’linear.p’] <- summary(linear.mod)$coefficients[’ALL.AML2’,°Pr(>|t|)’]
LeukStats[xx,’linear.p.z’] <- min(2*(1- pnorm(abs(z.tmp), mean=0,sd=1)),1)
LeukStats[xx,’linear.aic’] <- AIC(linear.mod)

LeukStats[xx,’linear.r2’] <- summary(linear.mod)$r.squared

LeukStats [xx,’linear.r2.adjusted’] <-summary(linear.mod)$adj.r.squared

}

# Empirical Null with Linear z

tmp.fdr.empirical.null <- locfdr(LeukStats[,c(’linear.z’)],nulltype=1,plot=0)

null.p <- min(2*(1- pnorm(abs(LeukStats[,c(’linear.z’)]),
mean=0,
sd=1)),1)

#Calculate p value from the empirical mean and variance

emp.p <- min(2*(1- pnorm(abs(LeukStats[,c(’linear.z’)]),
mean=tmp.fdr.emp$fpO[’mlest’,’delta’],
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)

emp.p <- ifelse(emp.p >1,1,emp.p)

LeukStats[,’null.p.linear.bonf’] <- Bonferroni(null.p)
LeukStats[,’null.p.linear.fdr’] <- Global.fdr(null.p)
LeukStats[,’emp.p.linear.bonf’] <- Bonferroni(emp.p)
LeukStats[,’emp.p.linear.fdr’] <- Global.fdr(emp.p)

# Empirical Null with Logistic z

leukz.logistic <- LeukStatsl[,’logistic.z’]
tmp.fdr.emp.logistic <- locfdr(leukz.logistic,nulltype=1,plot=0)

null.p.logistic <- min(2*(1- pnorm(abs(leukz.logistic),
mean=0,
sd=1)),1)
#Calculate p value from the empirical mean and variance
emp.p.logistic <- 2*(1- pnorm(abs(leukz.logistic),
mean=tmp.fdr.emp.logistic$fp0[’mlest’,’delta’],
sd=tmp.fdr.emp.logistic$fpO[’mlest’,’sigma’]))
emp.p.logistic <- ifelse(emp.p.logistic >1,1,emp.p.logistic)

LeukStats[, ’null.p.logistic.bonf’] <- Bonferroni(null.p.logistic)
LeukStats[,’null.p.logistic.fdr’] <- Global.fdr(null.p.logistic)
LeukStats[, ’emp.p.logistic.bonf’] <- Bonferroni(emp.p.logistic)
LeukStats[,’emp.p.logistic.fdr’] <- Global.fdr(emp.p.logistic)

#Genes from 5 papers we reviewed

#Golub Paper: top 25 overezpressed in ALL

U22376 <- grep("U22376",rownames(NormalizedGeneDat),ignore‘case=TRUE)
X59417 <- grep("X59417",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
U05259 <- grep("U05259",ro (NormalizedGeneDat) ,ignore.case=TRUE)
M92287 <- grep("M92287",rownames (NormalizedGeneDat),ignore.case=TRUE)

M31211 <- grep("M31211",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
X74262 <- grep("X74262",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
D26156 <- grep("D26156",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
550223 <- grep("S50223",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M31523 <- grep("M31523",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
L47738 <- grep("L47738",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
U32944 <- grep("U32944",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
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7215115
X15949
X63469
M91432
029175
7269881
020998
D38073
026266
M31303
Y08612
U35451
M29696
M13792

#Golub
M55150
X95735
U50136
M16038
U82759
M23197
M84526
Y12670
M27891
X17042
Y00787
M96326
U46751
M80254
108246
M62762
M28130
M63138
M57710
M69043
M81695
X85116
M19045
M83652
X04085

grep("Z15115" ,rownames (NormalizedGeneDat) ,ignore.
grep("X15949" ,rownames (NormalizedGeneDat) ,ignore.
grep("X63469" ,rownames (NormalizedGeneDat) ,ignore.

grep("M91432",rownames (NormalizedGeneDat) ,ignore.

Lo

grep("U29175",ro
grep("Z69881" 0
grep("U20998" 1o

(Normali

e

(Normali

(NormalizedG

grep("D38073" ,rownames (NormalizedGeneDat) ,ignore.
grep("U26266" ,rownames (NormalizedGeneDat) ,ignore.
grep("M31303" ,rownames (NormalizedGeneDat) ,ignore.
grep("Y08612" ,rownames (NormalizedGeneDat) ,ignore.
grep("U35451" ,rownames (NormalizedGeneDat) ,ignore.
grep("M29696" ,rownames (NormalizedGeneDat) ,ignore.

grep("M13792",rownames (NormalizedGeneDat) ,ignore.

paper: top 25 overexzpressed in AML

<-

grep("M55150" ,rownames (NormalizedGeneDat) ,ignore.
grep("X95735" ,rownames (NormalizedGeneDat) ,ignore.
grep("U50136" ,rownames (NormalizedGeneDat) ,ignore.
grep("M16038" ,rownames (NormalizedGeneDat) ,ignore.
grep("U82759" ,rownames (NormalizedGeneDat) ,ignore.
grep("M23197",rownames (NormalizedGeneDat) ,ignore.
grep("M84526" ,rownames (NormalizedGeneDat) ,ignore.
grep("Y12670" ,rownames (NormalizedGeneDat) ,ignore.
grep("M27891" ,rownames (NormalizedGeneDat) ,ignore.
grep("X17042",rownames (NormalizedGeneDat) ,ignore.
grep("Y00787" ,rownames (NormalizedGeneDat) ,ignore.
grep("M96326" ,rownames (NormalizedGeneDat) ,ignore.
grep("U46751" ,rownames (NormalizedGeneDat) ,ignore.
grep("M80254" ,rownames (NormalizedGeneDat) ,ignore.
grep("L08246" ,rownames (NormalizedGeneDat) ,ignore.
. case=TRUE)
. case=TRUE)

grep("M62762",ro
grep("M28130",ro

(NormalizedGeneDat) ,ignore

(NormalizedGeneDat) ,ignore

grep("M63138" ,rownames (NormalizedGeneDat) ,ignore.
grep("M57710" ,rownames (NormalizedGeneDat) ,ignore.
grep("M69043" ,rownames (NormalizedGeneDat) ,ignore.
grep("M81695" ,rownames (NormalizedGeneDat) ,ignore.
grep("X85116" ,rownames (NormalizedGeneDat) ,ignore.
grep("M19045" ,rownames (NormalizedGeneDat) ,ignore.
grep("M83652" ,rownames (NormalizedGeneDat) ,ignore.
grep("X04085" ,rownames (NormalizedGeneDat) ,ignore.

GolubPaper <- c(U22376,X59417,U052569,M92287,M31211,

X74262,D26156,550223 ,M31523,L47738,
U32944,Z15115,X15949,X63469,M91432,
U29175,269881,U20998,D38073,U26266,
M31303,Y08612,U35451,M29696 ,M13792,
M55150,X95735,U50136,M16038,U82759,
M23197,M84526,Y12670,M27891,X17042,
Y00787,M96326 ,U46751,M80254,1.08246,
M62762,M28130,M63138,M57710,M69043,
M81695,X85116,M19045,M83652,X04085)

Dat) ,ignore.
Dat) ,ignore.

Dat) ,ignore.

case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)

case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)

case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)

#From Gene Selection - A Bayesian Variable Selection Approach
LeePaper <- c(1882,760,2288,4847,1144,1120,4535,6218,6200,1834,1630,5772,1745,
804,2354,32562,6201,1685,6041,1779,6856-1,173,2642,1829,4107,697,229)

#Bo Paper

M84526
M92287
M23197
M31523
V46499
M31303
M63138
HG1612
X62320
7214982
M31211
X62654
M27891
089922
X59417

<-

<-

grep("M84526" ,rownames (NormalizedGeneDat) ,ignore.
grep("M92287" ,rownames (NormalizedGeneDat) ,ignore.
grep("M23197",rownames (NormalizedGeneDat) ,ignore.
grep("M31523" ,rownames (NormalizedGeneDat) ,ignore.

grep("U46499" ,rownames (NormalizedGeneDat) ,ignore.

grep("M31303",ro
grep("M63138",ro

grep("HG1612" ,rownames (NormalizedGeneDat) ,ignore.
grep("X62320",rownames (NormalizedGeneDat) ,ignore.
grep("Z14982",rownames (NormalizedGeneDat) ,ignore.
grep("M31211",rownames (NormalizedGeneDat) ,ignore.
grep("X62654" ,rownames (NormalizedGeneDat) ,ignore.
grep("M27891",rownames (NormalizedGeneDat) ,ignore.
grep("U89922" ,rownames (NormalizedGeneDat) ,ignore.
grep("X59417" ,rownames (NormalizedGeneDat) ,ignore.

(NormalizedGeneDat) ,ignore.

(NormalizedGeneDat) ,ignore.

case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
case=TRUE)
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X52056 <- grep("X52056",rownames (NormalizedGeneDat),ignore.case=TRUE)
M19507 <- grep("M19507",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
M89957 <- grep("M89957",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M84371 <- grep("M84371",rownames(NormalizedGeneDat),ignore.case=TRUE)

U16954 <- grep("U16954",ro (NormalizedGeneDat) ,ignore.case=TRUE)
M63379 <- grep("M63379",ro (NormalizedGeneDat) ,ignore.case=TRUE)
M83667 <- grep("M83667",ro (NormalizedGeneDat) ,ignore.case=TRUE)

M16038 <- grep("M16038",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
Y08612 <- grep("Y08612",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
D88422 <- grep("D88422",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M11722 <- grep("M11722",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
X66401 <- grep("X66401",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
Y00433 <- grep("Y00433",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M63959 <- grep("M63959",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
X51521 <- grep("X51521",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
Z15115 <- grep("Z15115",ro (NormalizedGeneDat) ,ignore.case=TRUE)
U10868 <- grep("U10868",rownames(NormalizedGeneDat),ignore.case=TRUE)
Y12670 <- grep("Y12670",rownames(NormalizedGeneDat),ignore.case=TRUE)
U77948 <- grep("U77948",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
U46751 <- grep("U46751",rownames(NormalizedGeneDat) ,ignore.case=TRUE)
L06797 <- grep("L0O6797",rownames (NormalizedGeneDat) ,ignore.case=TRUE)

M95678 <- grep("M95678",ro (NormalizedGeneDat) ,ignore.case=TRUE)
U72936 <- grep("U72936",ro (NormalizedGeneDat) ,ignore.case=TRUE)
S76617 <- grep("S76617",ro (NormalizedGeneDat) ,ignore.case=TRUE)

L09209 <- grep("L09209",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M55150 <- grep("M55150",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
M96803 <- grep("M96803",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
X17042 <- grep("X17042",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
X99920 <- grep("X99920",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
$50223 <- grep("S50223",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
U82759 <- grep("U82759",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
J03589 <- grep("J03589",ro (NormalizedGeneDat) ,ignore.case=TRUE)
X12447 <- grep("X12447",ro (NormalizedGeneDat) ,ignore.case=TRUE)
X74262 <- grep("X74262",rownames (NormalizedGeneDat) ,ignore.case=TRUE)
119437 <- grep("L19437",rownames (NormalizedGeneDat) ,ignore.case=TRUE)

BoPaper <- c(M84526,M92287,M23197,
M31523,U46499,M31303,M63138,HG1612,
X62320,214982,M31211,X62654,M27891,
U89922,X59417,X52056 ,M19507 ,M89957 ,M84371,U16954,M63379,
M83667,M16038,Y08612,D88422,M11722,X66401,

Y00433,M63959,X51521,Z15115,U10868,Y12670,
U77948,U46751,L06797 ,M95678,U72936,576617,1.09209,
M55150,M96803,X17042,X99920,550223,U82759,
J03589,X12447,X74262,1.19437)

ZhouPaper <- c(4211, 5772, 2354, 1144, 1928, 4167, 804, 6281, 4398, 1630,
1882, 1834, 5501, 2348, 1120, 5039, 6855-1, 6279, 3258, 1704)

TabusPaper <- c(1882, 2642, 3252, 758, 4847, 1834, 2288, 2335, 1685, 760, 6376,
6855-1, 2354, 6041, 4680, 4377, 3469, 6510, 6225, 4328)

S
# Pseudo-Simulation
L e e

#Read in Leukemia data

## Replicating the nmormalized expression levels from the raw data
data(Golub_Merge)
exprsDat <- exprs(Golub_Merge)

#I’m going to take all the p-values > 0.3 from the univariate linear model,
#and call those genes that are probably not differentially expressed
non.sig <- which(LeukStats$linear.p>0.3)

exprsDat <- exprsDat[non.sig,]
N.tmp <- nrow(exprsDat)
#This allows the imputed data to vary with the simulations, so a weird imputed data set doesn’t make weird results

set.seed (MYSEED)
#Impute Covariate Data

90



imputations <- mice(pData(Golub_Merge) [,c(’ALL.AML’,’BM.PB’,’T.B.cell’,’Gender’,’PS’,’Source’)], m=1)

imp.dat <- complete(imputations)

exprsDat2 <- exprsDat

#Function to make chosen genes significant

makeSignificant <- function(gene,beta.int,
beta.leuk,
beta.gender,
beta.sample,
beta.leukxgender,
beta.leukxsample,

beta.genderxsample){

#Fit full linear model

m.gene <- glm(exprsDat2[gene,] ~ imp.dat$ALL.AML*imp.dat$Gender
+ imp.dat$ALL.AML*imp.dat$BM.PB
+ imp.dat$Gender*imp.dat$BM.PB)

X = cbind(1,as.numeric(imp.dat$ALL.AML)-1,
as.numeric(imp.dat$Gender)-1,
as.numeric(imp.dat$BM.PB)-1,
(as.numeric(imp.dat$ALL.AML)-1)*(as.numeric(imp.dat$Gender)-1),
(as.numeric(imp.dat$ALL.AML)-1)*(as.numeric (imp.dat$BM.PB)-1),
(as.numeric(imp.dat$BM.PB)-1)*(as.numeric (imp.dat$Gender)-1))

#Update Beta so that the new genme has a specified relationship

Beta = c(beta.int*m.gene$coefficients[1],
beta.leuk#*m.gene$coefficients[2],
beta.gender*m.gene$coefficients[3],
beta.sample*m.gene$coefficients[4],
beta.leukxgender*m.gene$coefficients[5],
beta.leukxsample*m.gene$coefficients[6],

beta.genderxsample*m.gene$coefficients[7])

#new fitted values
new.fitted <- X%x%t(t(Beta))

#Add the new fitted wvalue to the original residuals
gene.new <- new.fitted + m.gene$residuals

gene.new

strongaffect = 7
modaffect = 4
weakaffect = 2

#Begin Strong

exprsDat2[gene.sample[1],] <- makeSignificant(gene.sample[1], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[2],] <- makeSignificant(gene.sample[2], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[3],] <- makeSignificant(gene.sample[3], beta.int = 1,
beta.leuk = 1,

beta.gender=strongaffect,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=1,

beta.genderxsample=1)

91



exprsDat2[gene.sample[4],] <- makeSignificant(gene.sample[4], beta.int = 1,
beta.leuk = 1,

beta.gender=strongaffect,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[5],] <- makeSignificant(gene.sample[5], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=strongaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[6],] <- makeSignificant(gene.sample[6], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=strongaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[7],] <- makeSignificant(gene.sample[7], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[8],] <- makeSignificant(gene.sample[8], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[9],] <- makeSignificant(gene.sample[9], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=strongaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[10],] <- makeSignificant(gene.sample[10], beta.int = 1,
beta.leuk = strongaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=strongaffect,

beta.leukxsample=strongaffect,

beta.genderxsample=1)

#Begin Moderate

exprsDat2[gene.sample[11],] <- makeSignificant(gene.sample[11], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[12],] <- makeSignificant(gene.sample[12], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,
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beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[13],] <- makeSignificant(gene.sample[13], beta.int = 1,
beta.leuk = 1,

beta.gender=modaffect,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[14],] <- makeSignificant(gene.sample[14], beta.int = 1,
beta.leuk = 1,

beta.gender=modaffect,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[15],] <- makeSignificant(gene.sample[15], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[16],] <- makeSignificant(gene.sample[16], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[17],] <- makeSignificant(gene.sample[17], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=modaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[18],] <- makeSignificant(gene.sample[18], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=modaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[19],] <- makeSignificant(gene.sample[19], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=modaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[20],] <- makeSignificant(gene.sample[20], beta.int = 1,
beta.leuk = modaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=modaffect,

beta.leukxsample=modaffect,

beta.genderxsample=1)

#Begin Weak Associations

exprsDat2[gene.sample[21],] <- makeSignificant(gene.sample[21], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,
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beta.leukxgender=1,
beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[22],] <- makeSignificant(gene.sample[22], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[23],] <- makeSignificant(gene.sample[23], beta.int = 1,
beta.leuk = 1,

beta.gender=weakaffect,

beta.sample=1,

beta.leukxgender=weakaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[24],] <- makeSignificant(gene.sample[24], beta.int = 1,
beta.leuk = 1,

beta.gender=weakaffect,

beta.sample=1,

beta.leukxgender=weakaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[25],] <- makeSignificant(gene.sample[25], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=weakaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[26],] <- makeSignificant(gene.sample[26], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=weakaffect,

beta.leukxsample=1,

beta.genderxsample=1)

exprsDat2[gene.sample[27],] <- makeSignificant(gene.sample[27], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=weakaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[28],] <- makeSignificant(gene.sample[28], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=1,

beta.leukxsample=weakaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[29],] <- makeSignificant(gene.sample[29], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=weakaffect,

beta.leukxsample=weakaffect,

beta.genderxsample=1)

exprsDat2[gene.sample[30],] <- makeSignificant(gene.sample[30], beta.int = 1,
beta.leuk = weakaffect,

beta.gender=1,

beta.sample=1,

beta.leukxgender=weakaffect,
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beta.leukxsample=weakaffect,

beta.genderxsample=1)

#Normalizing the genme expression data as described by efron

NormalizedGeneDat <- apply(exprsDat2, 2, function(z) qnorm((rank(z)-0.5)/nrow(exprsDat2)))

NormalizedGeneDat <- exprsDat2

#Efron dropped the most extreme wvalue so we will too
#which (which(LeukStats$linear.p > 0.3)==6777))

#[1] 4781

#NormalizedGeneDat <- NormalizedGeneDat[-4781,]

NormalizedGeneDat_t <- t(NormalizedGeneDat)

N <- nrow(NormalizedGeneDat)

#Combining the normalized gene expression with the covariate information
LeukDat <- cbind(NormalizedGeneDat_t,imp.dat)

#Save Statistics from traditional method

LeukStats.ps <- data.frame(

linear.p = rep(NA, nrow(NormalizedGeneDat)),
linear.bonf = rep(NA, nrow(NormalizedGeneDat)),
linear.fdr = rep(NA, nrow(NormalizedGeneDat)),
linear.z = rep(NA, nrow(NormalizedGeneDat)),
linear.aic = rep(NA,nrow(NormalizedGeneDat)),
linear.r2 = rep(NA,nrow(NormalizedGeneDat)),
linear.r2.adjusted = rep(NA,nrow(NormalizedGeneDat)),
linear.emp.p = rep(NA, nrow(NormalizedGeneDat)),
linear.emp.bonf = rep(NA, nrow(NormalizedGeneDat)),

linear.emp.fdr = rep(NA, nrow(NormalizedGeneDat)))

for(xx in 1:nrow(NormalizedGeneDat)){
linear.mod <- 1lm(LeukDat[,xx] ~ ALL.AML, data = LeukDat)
z.sign <- ifelse(summary.lm(linear.mod)$coefficients[’ALL.AML2’,’t value’]>=0,1,-1)
z.tmp <- abs(qnorm(summary.lm(linear.mod)$coefficients[’ALL.AML2’,’Pr(>|t|)’]1/2))*z.sign
z.tmp <- ifelse(z.tmp == ’Inf’, 10, z.tmp)
z.tmp <- ifelse(z.tmp == ’-Inf’, -10, z.tmp)
LeukStats.ps[xx,c(’linear.z’)] <- z.tmp
LeukStats.ps[xx,’linear.p’] <- summary(linear.mod)$coefficients[’ALL.AML2’,’Pr(>|t])’]
#LeukStats.ps[zz, ’linear.p’] <- 2*(1- pnorm(abs(z.tmp), mean=0,sd=1))
LeukStats.ps[xx,’linear.aic’] <- AIC(linear.mod)
LeukStats.ps[xx,’linear.r2’] <- summary(linear.mod)$r.squared
LeukStats.ps[xx,’linear.r2.adjusted’] <-summary(linear.mod)$adj.r.squared
s
LeukStats.ps[,’linear.bonf’] <- Bonferroni(LeukStats.ps[,’linear.p’])
LeukStats.ps[,’linear.fdr’] <- Global.fdr(LeukStats.ps[,’linear.p’])

#Calculate p value from the empirical mean and variance
tmp.fdr.emp <- locfdr(LeukStats.ps[,c(’linear.z’)],nulltype=1,plot=0)
emp.p <- 2*(1- pnorm(abs(LeukStats.ps[,c(’linear.z’)]),
mean=tmp.fdr.emp$fpO[’mlest’, ’delta’],
sd=tmp.fdr.emp$£fpO[’mlest’,’sigma’])
)
emp.p <- ifelse(emp.p >1,1,emp.p)

LeukStats.ps[,’linear.emp.p’] <- emp.p
LeukStats.ps[,’linear.emp.bonf’] <- Bonferroni(LeukStats.ps[,’linear.emp.p’])
LeukStats.ps[,’linear.emp.fdr’] <- Global.fdr(LeukStats.ps[,’linear.emp.p’])

set.seed (MYSEED)
n.sim = 20

bagged.res.linear <- lapply(1:N, function(i) data.frame(z.gene = rep(NA,n.sim),

aic = rep(NA,n.sim),

r2 = rep(NA,n.sim),
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r2.adjusted = rep(NA,n.sim),
emp.loc.fdr = rep(NA,n.sim),
emp.p = rep(NA,n.sim),
emp.var.p = rep(NA, n.sim),
null.loc.fdr = rep(NA,n.sim),
null.p = rep(NA,n.sim),
emp.Fdr = rep(NA,n.sim),
null.Fdr = rep(NA,n.sim),
emp.Bon = rep(NA,n.sim),
null.Bon = rep(NA,n.sim),
emp.mean = rep(NA, n.sim),
emp.sd = rep(NA,n.sim),

which.mod = rep(NA,n.sim)))

for(i in 1:n.sim){

#data frame of z statistics to get a single local fdr

all.stats <- lapply(1:8,function(i) data.frame(z.gene = rep(NA,N),
aic = rep(NA,N),
r2 = rep(NA,N),
r2.adjusted = rep(NA,N),
emp.loc.fdr = rep(NA,N),
emp.p = rep(NA,N),
emp.var.p = rep(NA,N),
null.loc.fdr = rep(NA,N),
null.p = rep(NA,N),
emp.Fdr = rep(NA,N),
null.Fdr = rep(NA,N),
emp.Bon = rep(NA,N),
null.Bon = rep(NA,N),
emp.mean = rep(NA, N),
emp.sd = rep(NA,N)))

boot.samp.ALL <- sample(which(LeukDat[,’ALL.AML’]=="ALL’),replace = TRUE)
boot.samp.AML <- sample(which(LeukDat[,’ALL.AML’]=="AML’),replace = TRUE)
tmp.dat <- rbind(LeukDat [boot.samp.ALL,],LeukDat [boot.samp.AML,])

d <- datadist(tmp.dat)
options(datadist="d")

for(xx in 1:N){
m.1 <- tryCatch(ols(tmp.dat[,xx] ~ ALL.AML, data = tmp.dat), error=function(e) {NA})
#Single Covariates
m.2 <-tryCatch( ols( tmp.dat[,xx] ~ ALL.AML + BM.PB , data = tmp.dat), error=function(e) {NA})

m.3 <- tryCatch(ols( tmp.dat[,xx] ~ ALL.AML + Gender, data = tmp.dat), error=function(e) {NA})

#Two Covariates
m.4 <- tryCatch(ols( tmp.dat[,xx] ~ ALL.AML + BM.PB + Gender, data = tmp.dat), error=function(e) {NA})

#Interactions
m.5 <- tryCatch(ols( tmp.dat[,xx] ~ AL
m.6 <- tryCatch(ols( tmp.dat[,xx] ~ AL

=

.AML*BM.PB + Gender, data = tmp.dat), error=function(e) {NA})
.AML*Gender + BM.PB, data = tmp.dat), error=function(e) {NA})

=

m.7 <- tryCatch(ols( tmp.dat[,xx] ~ ALL.AML + Gender*BM.PB, data = tmp.dat), error=function(e) {NA})

B

m.8 <- tryCatch(ols( tmp.dat[,xx] ~ ALL.AML*Gender + ALL.AML*BM.PB, data = tmp.dat), error=function(e) {NA})

for(j in 1:4){

#m.tmp <- get(paste(’m.’,j,sep = ""))

m.tmp <- eval(parse(text=paste(’m.’,j,sep = "")))

if(all(is.na(m.tmp))) {
all.stats[[j1][xx,c(’z.gene’)] <- NA
all.stats[[j]1][xx,c(’aic’)] <- NA
all.stats[[j]][xx,c(’r2’)] <- NA
all.stats[[j]] [xx,c(’r2.adjusted’)] <- NA

-

else {

z.sign <- ifelse(summary.lm(m.tmp)$coefficients[’ALL.AML=AML’,’t value’]>=0,1,-1)
z.tmp <- abs(qnorm(summary.lm(m.tmp)$coefficients[’ALL.AML=AML’,’Pr(>|t|)’1/2))*z.sign
z.tmp <- ifelse(z.tmp == ’Inf’, 10, z.tmp)
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z.tmp <- ifelse(z.tmp == ’-Inf’, -10, z.tmp)

all.stats[[j]][xx,c(’z.gene’)] <- z.tmp

all.stats[[j]1] [xx,c(’aic’)] <- AIC(m.tmp)

all.stats[[j]][xx,c(’r2’)] <- m.tmp$stats[’R2’]

all.stats[[j]] [xx,c(’r2.adjusted’)] <- summary.lm(m.tmp) [[’adj.r.squared’]]

¥
3}
for(k in 5:8) {
m.tmp <- get(paste(’m.’,k,sep = ""))

if(all(is.na(m.tmp))) {
all.stats[[k]] [xx,c(’z.gene’)] <-NA
all.stats[[k]][xx,c(’aic’)] <- NA
all.stats[[k]][xx,c(’r2’)] <- NA
all.stats[[k]][xx,c(’r2.adjusted’)] <- NA
else {
all.stats[[k]] [xx,c(’z.gene’)] <- tryCatch(gnorm(anova(m.tmp)[1,’P’],lower.tail = FALSE), error=function(e) {NA})
all.stats[[k]] [xx,c(’z.gene’)] <- ifelse(all.stats[[k]][xx,c(’z.gene’)]=="Inf’,10,

ifelse(all.stats[[k]] [xx,c(’z.gene’)]=="-Inf’,-10,

all.stats[[k]] [xx,c(’z.gene’)]))

&

all.stats[[k]][xx,c(’aic’)] <- AIC(m.tmp)
all.stats[[k]] [xx,c(’r2’)] <- m.tmp$stats[’R2’]
all.stats[[k]] [xx,c(’r2.adjusted’)] <- summary.lm(m.tmp)[[’adj.r.squared’]]

BEN.fdr.p <- for(qq in 1:8) {
tmp.mod <- all.stats[[qql]
tmp.dat.cc <- tmp.mod[complete.cases(tmp.mod[,’z.gene’]),’z.gene’]

tmp.fdr.emp <- tryCatch(locfdr(tmp.dat.cc,nulltype=1,plot=0),

error=function(e) {NA})

tmp.fdr.null <- tryCatch(locfdr(tmp.dat.cc,nulltype=0,plot=0),

error=function(e) {NA})

if (length(tmp.fdr.emp)>1){
emp.loc.fdr <- tmp.fdr.emp$fdr

emp.p <- min(2*(1- pnorm(abs(tmp.dat.cc),
mean=tmp.fdr.emp$fpO[’mlest’,’delta’],
sd=tmp.fdr.emp$fpO[’mlest’,’sigma’])),1)

emp.var.p <- min(2*(1- pnorm(abs(tmp.dat.cc),
mean=0,

sd=tmp.fdr.emp$fpO[’mlest’, ’sigma’])),1)

all.stats[[qql] [complete.cases(all.stats[[qql]1[,’z.gene’]), emp.loc.fdr’] <- emp.loc.fdr
all.stats[[qq]] [complete.cases(all.stats[[qql][,’z.gene’]),’emp.p’] <- emp.p
all.stats[[qq]] [complete.cases(all.stats[[qql][,’z.gene’]), emp.var.p’] <- emp.var.p
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.Fdr’] <- Global.fdr(emp.p)
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.Bon’] <- Bonferroni(emp.p)
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.mean’] <- tmp.fdr.emp$fpO[’mlest’,’delta’]
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’emp.sd’] <- tmp.fdr.emp$fpO[’mlest’,’sigma’]
}
if (all(is.na(tmp.fdr.emp))){
all.stats[[qql] [complete.cases( all.stats[[qql][,’z.gene’]), emp.loc.fdr’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qql][,’z.gene’]),’emp.p’] <- NA
all.stats[[qql] [complete.cases( all.stats[[qql]l[,’z.gene’]),’emp.var.p’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.Fdr’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql]l[,’z.gene’]), ’emp.Bon’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’emp.mean’] <- NA
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), emp.sd’] <- NA
s
if (length(tmp.fdr.null)>1){
null.loc.fdr <- tmp.fdr.null$fdr
null.p <- 2*(1- pnorm(abs(tmp.dat.cc), mean=0,sd=1))
all.stats[[qql] [complete.cases(all.stats[[qqll[,’z.gene’]), null.loc.fdr’] <- null.loc.fdr
all.stats[[qq]] [complete.cases(all.stats[[qql]1[,’z.gene’]),’null.p’] <- null.p
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.Fdr’] <- Global.fdr(null.p)
all.stats[[qql] [complete.cases(all.stats[[qql][,’z.gene’]), ’null.Bon’] <- Bonferroni(null.p)
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if (is.na(tmp.fdr.null)){
al
al
al
al

P i

.stats[[qq]] [complete.
.stats[[qq]] [complete.
.stats[[qql] [complete.
.stats[[qq]] [complete.

cases(all.stats[[qqll[,’z
cases(all.stats[[qqll[,’z
cases(all.stats[[qqll[,’z
cases(all.stats[[qqll[,’z

.gene’]),’null.loc.fdr’] <- NA
.gene’]),’null.p’] <- NA
.gene’]),’null.Fdr’] <- NA
.gene’]),’null.Bon’] <- NA

tmp.all.data <- do.call(rbind, all.stats) # dim(X2) = 7000%17 z ncol

grp <- rep(1:N, 8)

split.by.genes <- split(tmp.all.data, grp)

#Now store the BEN statistics

for(j in 1:N){

best.mod <- which(split.by.genes[[j1]1[,’aic’]==min(split.by.genes[[j1]1[,’aic’], na.rm

if (length(best.mod)>1){best.mod <- sample(best.mod, 1)}
stats <- unlist(c(split.by.genes[[j]][best.mod,c(’z.gene’,

bagged.res.linear[[j1]1[i,c(°z.gene’,

’aic’,

r20,
’r2.adjusted’,
’emp.loc.fdr’,
’emp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
null.Bon’,
’emp.mean’,
’emp.sd’,
’which.mod’)] <- stats

’aic’,

’r2’,
’r2.adjusted’,
’emp.loc.fdr’,
’emp.p’,
’emp.var.p’,
’null.loc.fdr’,
’null.p’,
’emp.Fdr’,
’null.Fdr’,
’emp.Bon’,
’null.Bon’,
’emp.mean’,
’emp.sd’)],best.mod))
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CHAPTER 4

AN EMPIRICAL STUDY OF MODEL PREDICTION WHEN USING THE RESPONSE
FOR IMPUTATION OF MISSING COVARIATES: RECOMMENDATIONS FOR
INFERENCE AND VALIDATION

4.1 Abstract

Missing data are a common problem for the construction, validation, and implemen-
tation of a prediction model. Multiple Imputation (MI) is the standard algorithm used
to fill in missing covariate information for inference of a regression model. Inclusion of the
outcome (V) in the imputation model is known to produce unbiased and efficient parameter
estimates during the model construction. Here we show that using the outcome in the impu-
tation model when data are missing in the out-of-sample validation set, leads to imputations
whose corresponding risk predictions will result in artificially increased model discrimina-
tion statistics. Specifically, we show that for a logistic prediction model, the validated
AUC, Brier and Logarithmic scores are optimistically biased when the outcome is assumed
to be known during imputation of covariates. The outcome would not be available during
model application, and the imputation algorithm used during model validation should take
this into consideration. Simulations and an analysis of the TREAT lung cancer prediction
model, confirm the need to more carefully consider how the outcome is used for imputa-
tion during each stage of model development. Model fit statistics are validated within each
missingness pattern, so that we can more clearly see how a prediction model marginalized
over missing data pattern would perform for a new out-of-sample individual missing specific
model covariates. We find that the biased model fit statistics in the validation and imple-
mentation phases of model development are impervious to missing data mechanism. We
provide practical recommendations for the circumstances where it is appropriate to include

or exclude the outcome in the multiple imputation algorithm.

4.2 Introduction

Statistical prediction models are often used in clinical practice to evaluate a patient’s
unknown probability of risk of having a particular disease or outcome. We will discuss three
main stages in the development of a prediction model: (1) The construction of a prediction
model using in-sample data (covariates known or missing, and outcome known), (2) the
validation of a prediction model using a different out-of-sample population from which the
model was initially constructed (covariates known or missing, and outcomes known), and
(3) the application of a risk prediction model to a new person in the clinic (covariates

known or missing, and outcome unknown). It is often the case in biomedical data that
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model covariates are missing, and these missing values need to be dealt with uniquely for
each of these three stages of model development.

Imputation is the practice of filling in missing values with a ‘best guess’ Imputation
has been widely discussed in the prediction model literature, with the consensus advocating
that multiple imputation is necessary for accurate effect estimates during the first model
building stage (Little and Rubin, 2014; Little, 1992; Rubin, 1996; Harrell, 2013; Janssen
et al., 2010; Schafer, 1997; Meyer and Windeler, 2009; Vergouwe et al., 2010; Schafer and
Graham, 2002; Clark and Altman, 2003; Vach, 2012; Vach and Blettner, 1991; Greenland
and Finkle, 1995; Schafer, 1999; Ibrahim, 2012; Barnard and Meng, 2016; Bartlett et al.,
2012; Rubin and Schenker, 1991).

Specifically, Moons et al. (2006) detail the advantages of including the outcome, Y, in
the imputation model. Using Y in the imputation model during model construction leads to
unbiased estimates of regression coefficients (Moons et al., 2006). Whereas this may be a fine
approach during the model building (in-sample) population, if Y is assumed to be known
and then is included in the multiple imputation model for the validation (out-of-sample)
population, model fit statistics (AUC, Brier Score, R?, MSE) will be artificially inflated.
Furthermore, including the outcome in an imputation model when applying a prediction
model to a new patient in the clinic where their outcome is unknown, is not practical. The
focus of this paper is on imputation with relation to performance of a prediction model,
and best practice for inclusion and exclusion of model parameters is not explored. We will
show through simulation and example that careful consideration of the imputation model

with regards to the outcome needs not to be overlooked.

4.2.1 Missing Data and Multiple Imputation

Missing data can occur according to three mechanisms. If missing data is ignorable,
i.e. Missing Completely at Random (MCAR), then imputation is not necessary. However
non-ignorable missingness such as Missing at Random (MAR) and Missing Not at Ran-
dom (MNAR) requires more thoughtful consideration during the data imputation process.
MCAR implies that the missing data pattern is completely random and is not conditional
on the observed data. MAR assumes that the missing data mechanism is conditional on
another observed variable but not on the missing variable itself. MNAR random implies
that the missing value is dependent on the missing observation itself. For example- if a
patient is missing the variable weight it could be because (1) The scale happened to be
broken the day she arrived for her appointment (MCAR), (2) the patient is a child and
the scale is for adults (MAR), or (3) the scale often fails when a weight is above or below
some threshold (MNAR). The missing data mechanism may also be conditional on the ob-
served response. If the missing covariate information is not missing in connection with the

outcome, either directly or indirectly, complete case analysis or mean imputation may still
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yield valid results (Little and Rubin, 2014; Vach, 2012; Vach and Blettner, 1991). However,
it is often the case in biomedical data that missing covariate information is missing related
to the outcome, and these scenarios will be discussed in Section 4.4.3.

When data are MAR or MNAR simple techniques to impute missing values often result
in biased estimates of model parameters and an underestimate of standard errors (Rubin,
1996). Therefore, more sophisticated methods of imputations are required to fill-in missing
covariates. Conditional Imputation (CI), based on available patient characteristics has be
promoted to fill in missing values. Multiple Imputation (MI), although more computation-
ally intensive, has the added benefit of incorporating the uncertainty of the imputed values
(Schafer and Graham, 2002). MI is an imputation method that uses conditional distribu-
tions to draw multiple replacement values that are most likely given the observed data (van
Buuren, 2012; Harrell, 2013; Janssen et al., 2010). To do this, a missing observation is
iteratively imputed m times (there are several available algorithms) based on the observed
values for a given individual, and then m complete data sets are produced. Each complete
dataset is subjected to the same statistical analysis, and results are pooled using Rubin’s
rules (Rubin, 1976). MI procedures, particularly Multivariate Imputation by Chained Equa-
tions (MICE), are highly flexible and can be used in a wide range of settings. The MICE
algorithm calculates a series of regression models where each variable with missing data is
modeled conditional upon the other variables in the data (Azur et al., 2011).

The MICE method can use several methods of imputation, however, predictive mean
matching (PMM) is the imputation method we use in our examples and simulations. PMM
is a semi-parametric imputation approach, that fills in a value randomly from among ob-
served donor values from an observation whose regression-predicted values are closest to the
regression-predicted value for the missing value from the simulated regression model (Heit-
jan and Little, 1991; Schenker and Taylor, 1996). The advantage of PMM, compared to
other regression based imputation strategies (which assumes a joint multivariate normal dis-
tribution), is that PMM ensures the missing values are filled in with plausible observations
(Horton and Lipsitz, 2012).

4.2.2 Imputation During Model Development, Validation, and Application

These MI methods are advocated for prediction model derivation and application (Har-
rell, 2013; Janssen et al., 2009). MI is currently the gold standard for imputation methods
because it is more efficient than other methods by using all the information in the incom-
plete cases. Moons et al. (2006) suggests using the outcome for the imputation of missing
predictor values, showing regression coefficients based on MI including the outcome were
close to the true parameter values, and MI excluding the outcome resulted in underesti-
mated model coefficients. Using the outcome in the imputation algorithm is considered the

best imputation practice during model construction, and we similarly use this imputation
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procedure for the construction of all prediction models considered in this paper.

When validating a risk prediction model, either by using cross-validation or a new out-
of-sample population, missing data is also likely to occur. Since many prediction models
are developed for use in the clinic on a new patient, model validation is an important step
in order to assess how a statistical model will generalize to an independent set (Geisser,
1993; Kohavi, 1995). Since a risk model is predicting future events or outcomes, using the
outcome for imputation of missing covariates is circular. For example, a person’s blood
pressure may be a predictor in a model which estimates the risk of cardiovascular disease.
If blood pressure is missing, and cardiovascular disease is used in the imputation model
of blood pressure, the resulting fill-in value for blood pressure will not be independent
of the outcome. This imputed blood pressure will then in turn be used to predict the
probability of cardiovascular disease, thus creating a 'too perfect’ prediction and will lead
to bias in the validation metrics of the prediction model. Although this seems obvious, in
a validation sample where the outcome is collected and known, it is tempting to want to
include it in the imputation algorithm without considering the effects on the ‘Pragmatic
Model Performance’, what Wood et al. (2015) defines as a model’s performance in a future
clinical setting where some individuals may have partly missing predictors.

Janssen et al. (2009) and Wood et al. (2015) have previously explored missing data
during model application. In this setting for MI to be an option, the model user to have
access to the original data, a similar conditional distribution to make multiple draws, and
a computer program to combine prediction results. To obtain the best predictions from a
model that was derived using multiple imputation,Vergouwe et al. (2010) and Wood et al.
(2015) recommend obtaining predictions from every model fitted to each imputed dataset,
and then combining those predictions using Rubin’s Rules. This may be unfeasible when
using a prediction model in the clinic, where the only thing known are the pooled model
covariates and standard errors.

The computational burden of MI, coupled with the required imputation algorithm to
obtain accurate imputations or previously saved imputed data sets, often make this ex-
act procedure impossible to perform in the clinic. Therefore, after model construction we
consider our pooled prediction model final and fixed for both the validation set and the
application stage. We also assume both our validation sample would have one-by-one en-
rollment, that is to say, an entire new cohort would not be available for a new out-of-sample
imputation algorithm. This is not an important assumption if the validation set comes from
the same population as the in-sample population.

The occurrence of missing data must be carefully considered in every phase of the
development, testing, and application of a prediction model, and the imputation strategy
may need to be adjusted to most accurately reflect the model’s true performance. Through

simulations and a re-analysis of empirical lung cancer study data, we quantified the effect
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on discrimination and validation metrics, when the outcome was included and excluded as

part of the imputation model and validation sample.

4.3 Methods
4.4 Motivating Clinical Example

The TREAT model for predicting lung cancer was developed in 492 individuals who
were evaluated for surgery with known or suspected lung cancer (Deppen et al., 2014).
The TREAT model depends on a physician having access to the following predictors: age
(age), BMI (bmi), gender (gender), smoking pack years (pack_years), pre-operative lesion
maximum diameter (ct_size), spiculation (spicul), lesion growth (growthcat), previous
cancer (prev_cancer), any symptoms (anysympt), FEV1 predicted (fevl_pred), and FDG-
PET avidity (petpos34). The model was developed using a pre-specified set of candidate
variables derived from previously published and validated models, as well as other covariates
chosen by thoracic surgeons commonly encountered in the at-risk population.

In this cohort, only 264 individuals had complete data. BMI was missing for 2 individ-
uals, pack years was missing for 8 individuals, spiculation was missing for 19 individuals,
lesion growth was missing for 65 individuals, any symptoms was missing for 33 individ-
uals, FEV1 predicted was missing for 50 individuals, and FDG-PET avidity was missing
for 109 individuals. The most significant predictor of lung cancer observed in the TREAT
model was FDG-PET avidity, the variable with the highest amount of missing data in this
population. Using the original data, we applied MI and PMM (10 multiple imputations),
fit a multivariable logistic regression model with the same set of variables as the published
TREAT model, and performed 5-fold cross validation to calculate prediction model metrics.

This process was bootstrapped 500 times and statistics were averaged.

4.4.1 Imputation scenarios in model validation

To evaluate the impact the imputation strategy has on the prediction metrics, we con-
sider four scenarios that are possible when missing data occurs in the out-of-sample valida-
tion population, or during model application in the clinic. In every case we assume that the
imputation model used for developing the clinical prediction model includes the outcome

(Y) in order to obtain unbiased parameter estimates.

1. The imputation model includes the outcome (Y'), and the validation sample assumes

that the outcome is available to be used for missing covariate imputation.

2. The imputation model includes the outcome (Y'), and although outcome is available
in the validation sample, the outcome is excluded to mimic how the model will be

used out-of-sample.
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3. The imputation model excludes the outcome (Y), and the validation sample assumes
that the outcome is available to be used for missing covariate imputation. Here,
since the imputation model does not include the outcome, assuming the outcome is

available does not affect imputation of missing covariates.

4. The imputation model excludes the outcome (Y), and although outcome is available
in the validation sample, the outcome is excluded to mimic how the model will be

used out-of-sample.

Note that scenarios (3) and (4) should produce the similar estimates for the missing
covariate values, and both are included for completeness. We estimate a logistic risk pre-
diction model, and investigate the prediction model performance for each of these four
scenarios comparing the resulting AUCs, Brier Scores, and Logarithmic Scoring Rules by

missing data pattern and overall.

4.4.2 AUC, Brier Score, and Logarithmic scoring rule

The loss function for a logistic regression model requires more thoughtful consideration.
The Area Under the Receiver Operating Curve (AUC), is a measure of the models dis-
crimination, however it cannot be collapsed or averaged over each pattern. Therefore, the
AUCSs need to be compared to the other methods of interest within a missing data pattern.
Furthermore, the AUC is a desirable measure because it is not influenced by the number of
people within a pattern, however it cannot be calculated for a pattern where all members
of the pattern exhibit the same outcome.

Both the Brier score and Logarithmic scoring rules are proper scoring rules used to
estimate the accuracy of a risk prediction models, and both scores define arbitrary la-
bels of 0 and 1 for the outcome. The predicted probability is a continuous density for
the distribution of possible outcomes, and it is compared to a discrete label. The Brier
score is the average squared difference between the labeled outcome and the predicted
probability of risk BS = % Zfil(yi — p;)?, and the Logarithmic score is defined as LS =
% SN (i In(ps) + (1 — ;) In(1 — p;)), where y; and p; are the true outcome and predicted
probability respectively, for individual ¢. It is known that the Brier score does not penalize
predictions that give very small probabilities when they should be giving larger probabili-
ties, and therefore the Brier score does not necessarily make the right decision about which
method of two forecasts is better (Jewson, 2004). The Logarithmic scoring rule (Log score)
rewards more extreme predictions that are in the right direction. This score can be grossly
inflated by a single prediction of probability of 0 or 1 that is in the wrong direction, and
heavily penalizes classifiers that are confident about an incorrect classification. The log-
arithmic scoring rule is a rescaling of the gold standard optimization criteria and so in a

sense it is the best accuracy score to use for binary outcome.
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Figure 4.1 depicts the three stages of model development and highlights the places where

missing data can occur.

Figure 4.1: Construction, Validation and Application of a Clinical Risk Prediction Model

(1) Model Construction (2) Validation of Prediction Model
In-Sample Model Out-of-Sample Model
Development Cohort Validation Cohort
i = 1...N j = 1...M
Imputation Algorithm: Assume One-by-One
(1) Include outcome (Y') Enrollment

(2) Include model covariates (X)
(3) Include other variables that
will help meet MAR

assumption

Original Imputation Algorithm
Including and Excluding Y:

(1) New sample outcome Y* set to

missing or new sample outcome

Calculate Prediction Model:
F(X) = logit(E[Y;]| X;]) = BX;

assumed known

(2) Impute missing model
covariates (X*)

(3) Application of Prediction Model Calculate Predicted probabilities:

F(X}) = BX}

Fixed prediction model F(X) ap-

plied to new individual, with goal l
Estimate AUC, Brier Score, and

of estimating risk of disease or out-

come Logarithmic Score using predicted

probabilities and outcome from

entire validation sample

Original Imputation Algorithm

Including and Excluding Y":

(1) New person outcome is not
known

(2) Impute any missing model
covariates (X™**)

1

Calculate Predicted probability:
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4.4.3 Simulations

We generated n multivariate normal predictor vectors according to (zi) ~ N(u,X%),
where p = (0,0) and ¥ = (5 %2%), for example, are set to provide certain predictor
profiles in terms of their correlation. Simulated outcomes Y are generated from various
combinations of z; and z2. Outcome probabilities are simulated such that {Probability of
Outcome} = p = 1/(1 + exp(X3)) using the marginal model X3 = 5y + 1 X1 + f2Xo.
The outcome Y is drawn from the distribution Y ~ Bernoulli(p). Missing data indictors
are then induced according to the desired mechanism. A more complex model can always
be reduced to a linear combination of non-missing variables, and missing variables, and so
this simple example is representative of more complicated situations.

We simulated the following three missing data mechanisms:
1. MCAR: P(M) = expit(vp)

2. MAR: P(M) = expit(vy + r2X2)

3. MNAR: P(M) = expit(vy + v1X1)

We forced the missingness data mechanism to be consistent between the in-sample
and out-of-sample populations, and vy is empirically calculated to maintain the desired

probability of missingness.

4.4.4 Parameters

Parameter profiles explored were 51 = 1, 3,5, p = 0,0.25,0.5, P(M; = 1) = 0.20,0.50, 0.75,
and n = 50,200, 500, 1000. We present here only one case that was largely representative
of our findings: 1 = 3, p = 0.25, P(M; = 1) = 0.50, and n = 200. For the validation and
application populations we assumed one-by-one enrollment. Missing data was imputed by
multiple imputation (predictive mean matching, 5 imputations). We did not necessarily fix
the imputation engine based on the in-sample population. For scenarios (3) and (4) the

imputation model was refit from the original in-sample population excluding the outcome
Y.

4.4.5 Simulation procedure

The prediction model was always fit using ‘best’ methods described by Moons et al.
(2006), that is, the imputation engine included the outcome Y in order to obtain unbiased
regression coefficients. The full simulation procedure was as follows: (1) data are generated
and missing data indicators are generated according to the desired missing data mechanism,
as described in Section 4.4.3; (2) missing data are multiply imputed using an imputation

algorithm that includes the outcome; (3) the risk prediction model is fit; (4) step 1 is
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repeated to obtain a new validation out-of-sample population; (5) individuals are imputed
one by one, using one of the four imputation procedures described in Section 4.4.1; (6)
individual predictions and performance measures are computed; (7) steps 1 through 6 are
repeated 1000 times.

AUCs, Brier scores, and Logarithmic scores were compared for the four imputation
scenarios. Validation statistics were compared within a missingness pattern as well as

overall missingness patterns.

4.5 Results

4.5.1 Simulations

Results are presented for the following set of parameters: Sy = 0,81 = 3,82 = 0.5, P(M; =
1) = 05,11 = 0.75,10 = 0.75,v1y = 0.75,10y = 0.75. Figure 4.2, 4.3 and 4.4, show the
1000 simulation estimates for the simulation procedure. For pattern 2 (green points) where
X1 was missing, we considered the ‘Best’ metric the prediction from the model only includ-
ing Xo: logit(Y) = Bo + /3’2X2. The average prediction metric for all plots, is the statistic
for each pattern weighted by the observed probability of missingness for that pattern.

Including the outcome in the imputation model and assuming the outcome known in the
validation sample resulted in severely biased (overestimated) model fit statistics (inflated
AUC, and underestimated brier and log scores). In fact, each prediction model metric for
this scenario (1), had almost near perfect predictions in the pattern with missing data,
and always had better results than the pattern with complete data.The bias was present
regardless of missingness type, as well as severity of missingness, correlation between X3
and Xy, and proportion of missingness (not shown). Dropping the outcome from the im-
putation model used in the validation sample produced realistic estimates of the pragmatic
prediction model performance. For the Brier and Logarithmic scores the MNAR missing
data mechanism has slightly worse prediction model metrics, compared to MCAR and MAR
mechanisms. This trend is not seen in the AUC plot results where all missing data mecha-
nisms perform almost identically. As both the strength of the missingness mechanism and
the beta coefficient associated with the missing variable increase, the magnitude of the dif-

ferences in imputation scenarios become more apparent.
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Comparison of Pattern Log Score

Red: Average Log Score
Green: Pattern 2 - Missing X4
Blue: Pattern 1 - No Missing Data
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Figure 4.2: Simulation Results set of parameters: 1000 simulations, 5y = 0,81 = 3, 82 = 0.5, P(M; =
1) =0.5,11 = 0.75,vp = 0.75,v1y = 0.75,v2y = 0.75. The Logarithmic (Log) score is defined as
LS =+ sz\; (yi In(p;) + (1 — ;) In(1 — p;)). The missing data mechanisms Missing Completely at
Random (MCAR, square points), Missing at Random (MAR, triangular points), and Missing Not at
Random (MNAR, circular points) were generated according to section 4.4.3. Red points represent
the Total Logarithmic (Log) Score, averaged over all missing data patterns. Blue points represent
the Log Score for Pattern 1 where there is no missing data. Green points represent the Log Score for
Pattern 2 in which X; is missing. The black bars represent the bootstrapped 95 percentile interval
for each point.
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Comparison of Pattern Brier Score

Red: Average Brier Score
Green: Pattern 2 - Missing X

Blue: Pattern 1 - No Missing Data
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Figure 4.3: Simulation Results set of parameters: 1000 simulations, 5y = 0,81 = 3, 82 = 0.5, P(M; =
1) = 05,11 = 075,12, = 0.75,11y = 0.75,v5y = 0.75. The Brier score is defined as BS =
% Zfil(yz — p;)%. The missing data mechanisms Missing Completely at Random (MCAR, square
points), Missing at Random (MAR, triangular points), and Missing Not at Random (MNAR, circular
points) were generated according to section 4.4.3. Red points represent the Total Brier Score,
averaged over all missing data patterns. Blue points represent the Brier Score for Pattern 1 where
there is no missing data. Green points represent the Brier Score for Pattern 2 in which X; is missing.
The black bars represent the bootstrapped 95 percentile interval for each point.
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Comparison of Pattern AUC
Red: Average AUC
Green: Pattern 2 - Missing X4
Blue: Pattern 1 - No Missing Data
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Figure 4.4: Simulation Results set of parameters: 1000 simulations, 5y = 0,81 = 3, 82 = 0.5, P(M; =
1) = 05,11 = 0.75,v2 = 0.75,11,y = 0.75,v9y = 0.75. The AUC is defined as the Area Under the
Receiver Operating Characteristic Curve. The missing data mechanisms Missing Completely at
Random (MCAR, square points), Missing at Random (MAR, triangular points), and Missing Not at
Random (MNAR, circular points) were generated according to section 4.4.3. Red points represent
the Total AUC, averaged over all missing data patterns. Blue points represent the AUC for Pattern
1 where there is no missing data. Green points represent the AUC for Pattern 2 in which X; is
missing. The black bars represent the bootstrapped 95 percentile interval for each point.

4.5.2 Imputation Error of X7 in the Validation Sample

In our simulations, using the outcome in the imputation model during model construc-
tion leads to unbiased estimates of regression coefficients. However, when the outcome
remained in the imputation model, and the outcome was assumed to be missing in the
validation sample (scenario 2), the chained equations imputation model can lead to biased
imputations for the next missing covariates of the chain (in these simulations X1). In this
scenario, since the outcome is missing its imputed value, is also used to help impute the

missing value of X1, and therefore adds additional variability to the imputed value of X;.
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Table 4.1: Squared Imputation Error of the true out-of-sample X; compared to the imputed X; under
different imputation methods and missing data mechanisms: Imputation Error of X; = % > (Xui—
X 11)?. Multiple Imputation was done the usual way using predictive mean matching and chained
equations, where the variable with the least amount of missing data is the first variable imputed

(Y), and the variable with the next least amount of missing data is imputed second (in this case
X1).

MCAR MAR MNAR
MI (y), Validation Sample (y) 0.33 (0.04) 0.34 (0.05) 0.35 (0.06)
MI (y), Validation Sample (no y) 0.68 (0.07) 0.67 (0.08) 0.70 (0.10)
MI (no y), Validation Sample (y)  0.58 (0.05) 0.59 (0.08) 0.70 (0.08)
MI (no y), Validation Sample (no y) 0.58 (0.05) 0.57 (0.08) 0.70 (0.08)

This is why we recommend the scenario in which the outcome is used in the in-sample
imputation model to produce unbiased regression estimates, but not included in the out-of-
sample imputation model - a combination which would as the most appropriate pragmatic
model performance statistics.

Table 4.1 of out-of-sample imputations of X; provides insight into how X; is imputed
for each of the four imputation scenarios. For scenario 1, when Y is included in the impu-
tation model during model construction and validation, the predictions of X; are the most
accurate. For all other imputation scenarios the prediction of X are similar. Although
the apparent bias in imputations for missing covariates may seem small, their total con-
tribution over all individuals can be quite significant. These results show that downward
‘bias’ in using the outcome to improve imputations of missing predictors, leads to superior

downstream predictions and overly optimistic AUC, Brier, and Log scores.

4.5.3 TREAT Model Results
The results from 500 bootstrapped samples, are presented in Figures 4.5, 4.6, and 4.7.

For each figure, the subplot showing the observed missing data pattern is presented with an
‘X’ denoting a variable that is missing, and the number of individuals within that pattern
from the original sample is given. Note in Figure 4.7, we could not estimate the AUC in
every pattern of missing data because some patterns had only individuals with one outcome.

For each imputation method, five-fold cross validation of the prediction models was
implemented. For the TREAT data, all imputation strategies performed similarly, and
there was no statistical difference. However, both within patterns and overall, the first
imputation strategy where the imputation model includes the outcome (Lung Cancer), and
the validation sample assumes that the outcome is available to be used for missing covariate

imputation, resulted in inflated AUC, Brier and Logarithmic scores in every case.
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In the TREAT model, FDG-PET avidity (petpos34) was the most significant predictor
of Lung Cancer. FDG-PET avidity is a dichotomous variable, and we know it’s value was
often not collected for individuals who were FDG-PET avid, a probable case of MNAR or
MNARY. Since this variable, when imputed, could be perfectly accurate, the magnitude
of inflation of the prediction metrics is not as exaggerated as in the simulated data. For
every pattern where FDG-PET avidity was missing, we saw the most extreme difference
between imputation scenario 1 and the other 3 imputation scenarios, and had this variable
been continuous these dissimilarities would probably be even more apparent. We induced
selective missingness in FDG-PET and the variable lesion diameter size (results not shown),
following the same process as described above, and found the same trends as in the simulated

data.
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TREAT Model: Log Score by Pattern

N Missing Pattern
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Figure 4.5: The covariates included in the TREAT prediction model include age (age), BMI (bmi),
gender (gender), pack years (pack_years), pre-operative lesion maximum diameter (ct_size),
spiculation (spicul), lesion growth (growthcat), previous cancer (prev_cancer), any symptoms
(anysympt), FEV1 predicted (fevi_pred), and FDG-PET avidity (petpos34). There are 30 pat-
terns present in the TREAT data, and missing covariates are denoted with X’ N is the total
number of subjects in each missing data pattern. The Logarithmic (Log) score is defined as
LS = % SN (iln(p) + (1 — ;) In(1 —p;)). MIY, Val. Y is scenario 1 where the imputation
model includes the outcome (Y'), and the validation sample assumes that the outcome is available
to be used for missing covariate imputation. MI Y, Val No Y is scenario 2 where the imputation
model includes the outcome (Y), and although outcome is available in the validation sample, the
outcome is excluded to mimic how the model will be used out-of-sample. MI No Y, Val.Y is scenario
3 where the imputation model excludes the outcome (Y'), and the validation sample assumes that
the outcome is available to be used for missing covariate imputation. MI No Y, Val No Y is scenario
4 where the imputation model does not include the outcome, and although outcome is available in
the validation sample, the outcome is excluded to mimic how the model will be used out-of-sample.
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TREAT Model: Brier Score by Pattern

N Missing Pattern
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Figure 4.6: The covariates included in the TREAT prediction model include age (age), BMI (bmi),
gender (gender), pack years (pack_years), pre-operative lesion maximum diameter (ct_size),
spiculation (spicul), lesion growth (growthcat), previous cancer (prev_cancer), any symptoms
(anysympt), FEV1 predicted (fevi_pred), and FDG-PET avidity (petpos34). There are 30 pat-
terns present in the TREAT data, and missing covariates are denoted with *X’. IV is the total number
of subjects in each missing data pattern. The Brier score is defined as BS = Eﬁil(yi —pi)% MI
Y, Val Y is scenario 1 where the imputation model includes the outcome (Y'), and the validation
sample assumes that the outcome is available to be used for missing covariate imputation. MI'Y, Val
No Y is scenario 2 where the imputation model includes the outcome (Y'), and although outcome
is available in the validation sample, the outcome is excluded to mimic how the model will be used
out-of-sample. MI No Y, Val.Y is scenario 3 where the imputation model excludes the outcome (Y),
and the validation sample assumes that the outcome is available to be used for missing covariate
imputation. MI No Y, Val No Y is scenario 4 where the imputation model does not include the
outcome, and although outcome is available in the validation sample, the outcome is excluded to
mimic how the model will be used out-of-sample.
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TREAT Model: AUC by Pattern

N Missing Pattern
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Figure 4.7: The covariates included in the TREAT prediction model include age (age), BMI (bmi),
gender (gender), pack years (pack_years), pre-operative lesion maximum diameter (ct_size),
spiculation (spicul), lesion growth (growthcat), previous cancer (prev_cancer), any symptoms
(anysympt), FEV1 predicted (fevi_pred), and FDG-PET avidity (petpos34). There are 30 pat-
terns present in the TREAT data, and missing covariates are denoted with 'X’. IV is the total number
of subjects in each missing data pattern. The AUC is defined as the Area Under the Receiver Op-
erating Characteristic Curve. MI Y, Val. Y is scenario 1 where the imputation model includes the
outcome (Y'), and the validation sample assumes that the outcome is available to be used for missing
covariate imputation. MI Y, Val No Y is scenario 2 where the imputation model includes the out-
come (Y), and although outcome is available in the validation sample, the outcome is excluded to
mimic how the model will be used out-of-sample. MI No Y, Val.Y is scenario 3 where the imputation
model excludes the outcome (Y'), and the validation sample assumes that the outcome is available
to be used for missing covariate imputation. MI No Y, Val No Y is scenario 4 where the imputation
model does not include the outcome, and although outcome is available in the validation sample,
the outcome is excluded to mimic how the model will be used out-of-sample.

4.6 Discussion

We have evaluated four imputation strategies both including and excluding the outcome
when imputing missing covariate values in the validation set. Based on our simulations and

examples, assuming the outcome is known, and including this information in the imputation
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model gives overly optimistic prediction model AUCs, Brier scores, and Logarithmic scores.
Instead, the imputation techniques used during model validation, should be reflective of the
information that would be available during model application. Since the outcome is not
known for the model application stage, it should not be considered as a useful variable in
the imputation model during model validation.

Furthermore, prediction model metrics should be evaluated both within a missing data
pattern and overall. This gives a better representation of the future prediction model
performance for an out-of-sample individual with specific missing covariates.

Our motivation comes from the TREAT lung cancer prediction model, where a large
amount of missing data was present, and inclusion of the outcome during the validation
set imputation gave overly accurate risk predictions that would not have been reflective of
data imputation during use of this model in the clinic. We have applied our investigation
to simulated data, and have demonstrated that the AUC, Brier score, and Log scores are
all optimistic when the outcome is used assumed to be known for the imputation model
during validation.

In this setting, where the prediction model will be used on patients with a high proba-
bility of missing data, it is highly recommended that the outcome only be in the imputation
of missing predictor values during model construction to provide unbiased model param-
eters. Another imputation algorithm should be in place excluding the outcome, for the
imputation of missing covariates in the validation sample. These recommendations extend

beyond logistic risk models to other types of prediction models.
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4.7 Appendix A: Code for TREAT Model Case Study

library (rms)

# Functions to use

createFolds <- function (y, k = 10, list = TRUE, returnTrain = FALSE)

{
if (class(y)[1] == "Surv")
y <= y[, "time"]
if (is.numeric(y)) {
cuts <- floor(length(y)/k)
if (cuts < 2)
cuts <- 2
if (cuts > 5)
cuts <- 5
breaks <- unique(quantile(y, probs = seq(0, 1, length = cuts)))
y <- cut(y, breaks, include.lowest = TRUE)
}
if (k < length(y)) {
y <- factor(as.character(y))
numInClass <- table(y)
foldVector <- vector(mode = "integer", length(y))
for (i in 1:length(numInClass)) {
min_reps <- numInClass[il%/%k
if (min_reps > 0) {
spares <- numInClass[i]%’k
seqVector <- rep(l:k, min_reps)
if (spares > 0)
seqVector <- c(seqVector, sample(i:k, spares))
foldVector [which(y == names(numInClass)[i])] <- sample(seqVector)
&
else {
foldVector [which(y == names(numInClass)[i])] <- sample(1:k,
size = numInClass[i])
}
}
}
else foldVector <- seq(along = y)
if (list) {
out <- split(seq(along = y), foldVector)
names(out) <- paste("Fold", gsub(" ", "0", format(seq(along = out))),
sep = "")
if (returnTrain)
out <- lapply(out, function(data, y) y[-datal, y = seq(along = y))
s
else out <- foldVector
out
&

#This function adds a missing data indicator to every wariable
#1 if the wvariable is missing, and 0 if it is present
create.miss.ind <- function(DATA){
tmp.dat <- as.data.frame(is.na(DATA)*1)
names (tmp.dat) <- paste(’m.’,names(tmp.dat),sep="")
cbind (DATA, tmp.dat)

#This function is the inverse logit function for
#obtaining predited values from linear predictors from a logistic regression
expit <- function(z){
exp(z)/(1+exp(z))
}

#This function takes two data frames and binds them together based on their column names
rbind.match.columns <- function(inputi, input2) {

n.inputil <- ncol(inputil)

n.input2 <- ncol(input2)

if (n.input2 < n.inputl) {

TF.names <- which(names(input2) %inJ, names(input1))
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column.names <- names(input2[, TF.names])

} else {
TF.names <- which(names(input1) %in), names(input2))
column.names <- names(inputi[, TF.names])

}

return(rbind(inputi[, column.names], input2[, column.names]))

auc=function(score,status){

HARARABHARHARRHAARHAAS

## auc version 1.0

## Compute Area under Rmpirical ROC curve by Trapezoidal Rule
## Author: J. Blume

## Date: July 2014

e L L

pos=score[status==1]

neg=score [status==0]

cti=sum(outer(pos,neg,">"))
ct2=sum(outer (pos,neg,"=="))
den=length(pos)*length(neg)
auc=(ct1+0.5%ct2) /den
auc=max(auc, 1-auc)

auc

brier.score <- function(pred, outcome){

mean((pred - outcome)~2)

logarithmic.scoring.rule <- function(pred, outcome){

mean (outcome*log(pred) + (1-outcome)*log(i-pred))

#Function to find all the observed missing data patterns
which.pattern <- function(DATA, model){

mod.DATA <- get_all_vars(as.formula(model), data=DATA)

SDATA <- mod.DATA[,-1] #remove the outcome

tmp.dat <- as.data.frame(is.na(SDATA)*1)

tmp.pattern <- factor(apply(tmp.dat,1,function(z) paste(z,collapse="")))

pattern <- tmp.pattern

pattern

#Get metrics by pattern for a logistic model
get_metric <- function(DATA) {
colnames (DATA) <- c(’pred’,’true’,’pattern’)
do.call(rbind, by(DATA, DATA[,’pattern’],function(xx) {
data.frame(’auc’=auc(xx$pred, xx$true),
’brier’=brier.score(xx$pred,xx$true),
’log’=logarithmic.scoring.rule (xx$pred,xx$true),
’prop.pattern’ = (length(xx$true)/nrow(DATA)))}))

logistic_metrics <- function(DATA) {
colnames (DATA) <- c(’pred’,’true’)
data.frame(’auc’=auc(DATA$pred,DATA$true),
’brier’=brier.score(DATA$pred,DATA$true),
’log’=logarithmic.scoring.rule (DATA$pred,DATA$true))}
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#MSE from a fitted model
mse <- function(sm) {
mse <- mean(sm$residuals”2)

return(mse)

#logit function
logit <- function(p) log(p/(1-p))

# #Application to TREAT data
#

# ## get data from shared directory 496 observations and 30 variables

treatdat.orig <- read.delim("~/ImputationWithY/TREATEx/predict out 10162012.txt")

treat.fit = ’cancer ~ age + bmi + gender +
rcs(pack_years,3) + ct_size + spicul +
upperlobe + prev_cancer + fevl_pred + anysympt +
petpos34 + growthcat’

#treatdat.orig$pattern <- which.pattern(DATA=treatdat.orig, model=treat.fit, logistic=TRUE)

treatdat.I <- create.miss.ind(treatdat.orig)
dd <- datadist(treatdat.I)
options(datadist="dd’)

#Bootstrap entire process

simulation <- function(){

n.boot <- 1

all.results <- vector(’list’,5)

boot.res <- data.frame(auc.MI.y = rep(NA, n.boot),
auc.MI.noy

auc.MI.y.testnoy

auc.MI.noy.testnoy = rep(NA, n.boot),
brier.MI.y = rep(NA, n.boot),
brier.MI.noy = rep(NA, n.boot),
brier.MI.y.testnoy = rep(NA, n.boot),
brier.MI.noy.testnoy = rep(NA, n.boot),
log.MI.y = rep(NA, n.boot),
log.MI.noy = rep(NA, n.boot),
log.MI.y.testnoy = rep(NA, n.boot),
log.MI.noy.testnoy = rep(NA, n.boot)
)
boot.res.MIy <- vector(’list’,n.boot)
boot.res.MInoy <- vector(’list’,n.boot)
boot.res.MIy.testnoy <- vector(’list’,n.boot)
boot.res.MInoy.testnoy <- vector(’list’,n.boot)
for(boot.samp in seq(n.boot)){
boot.nocancer <- sample(which(treatdat.orig$cancer == 0), sum(treatdat.orig$cancer == 0), replace
boot.cancer <- sample(which(treatdat.orig$cancer 1), sum(treatdat.orig$cancer == 1), replace

= rep(NA,

n.boot),

rep(NA, n.boot),

treatdat.boot <- rbind(treatdat.origlboot.nocancer,],treatdat.origlboot.cancer,])

treatdat.boot.I <- create.miss.ind(treatdat.boot)
dd <- datadist(treatdat.boot.I)
options(datadist=’dd’)

# Cross Validate the MI and the MIMI models

set.seed (boot . samp)
k=5

flds <- createFolds(treatdat.boot$cancer, k=k, 1list=TRUE, returnTrain=FALSE)

nimp = 10 #number of imputations

results <- data.frame(auc.MI.y = rep(NA, k),
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auc.MI.noy = rep(NA, k),

auc.MI.y.testnoy = rep(NA, k),
auc.MI.noy.testnoy = rep(NA, k),
brier.MI.y = rep(NA, k),

brier.MI.noy = rep(NA, k),
brier.MI.y.testnoy = rep(NA, k),
brier.MI.noy.testnoy = rep(NA, k),
log.MI.y = rep(NA, k),
log.MI.noy = rep(NA, k),
log.MI.y.testnoy = rep(NA, k),

log.MI.noy.testnoy
)

rep(NA, k)

#Creating a progress bar to know the status of CV
#progress.bar <- create_progress_bar("text")

#progress. bar$init (k)

results.MIy <- NULL
results.MInoy <- NULL
results.MIy.testnoy <- NULL
results.MInoy.testnoy <- NULL

for( i in 1:k){
# remove Tows with id i from dataframe to create training set

# select rows with id i to create test set

trainingset <- treatdat.boot.I[-flds[[il],]
testset <- treatdat.boot.I[flds[[il],]

#Imputation engine including outcome
TREATimps <- aregImpute(~ cancer + age + wandw + bmi + gender +
smokeyn + pack_years + ct_size + spicul + upperlobe + petpos34 + prev_cancer +
fevl_pred + anysympt + growthcat + weight, n.impute=nimp, x=TRUE, nk=0,
tlinear=F, data=trainingset, pr=FALSE)

TREAT <- fit.mult.impute(cancer~ age + bmi + gender + rcs(pack_years,3)
+ ct_size + spicul + growthcat + upperlobe + prev_cancer +

fevl_pred + anysympt + petpos34, lrm, TREATimps,

data=trainingset, pr=FALSE)

# Start Using the test data

imputed.datasets.withy <- replicate(nimp, testset, simplify=FALSE)
imputed.datasets.noy <- replicate(nimp, testset, simplify=FALSE)
imputed.datasets.withy.testsetnoy <- replicate(nimp, testset, simplify=FALSE)
imputed.datasets.noy.testsetnoy <- replicate(nimp, testset, simplify=FALSE)

testset.noy <- testset
testset.noyl[,’cancer’] <- NA

for(cc in which(!complete.cases(testset))){
addNewPatient <- rbind.match.columns(trainingset, testset([cc,])

addNewPatient.noy <- rbind.match.columns(trainingset, testset.noy[cc,])

Validateimps_y <- aregImpute(~ cancer + age + bmi +
gender + pack_years + ct_size
+ spicul + upperlobe + petpos34 +
prev_cancer + fevl_pred + anysympt
+ growthcat, n.impute=nimp,
x=TRUE, nk=3,
tlinear=F, data=addNewPatient, pr=FALSE)

#Impute Validation Set without Y
Validateimps_noy <- aregImpute(~ age + bmi + gender + pack_years +
ct_size + spicul + upperlobe + petpos34 +
prev_cancer + fevl_pred + anysympt +

120



growthcat, n.impute=nimp, x=TRUE, nk=3,
tlinear=F, data=addNewPatient, pr=FALSE)

Validateimps_y.testnoy <- aregImpute(~ cancer + age + bmi +
gender + pack_years + ct_size
+ spicul + upperlobe + petpos34 +
prev_cancer + fevl_pred + anysympt
+ growthcat, n.impute=nimp,
x=TRUE, nk=3,
tlinear=F, data=addNewPatient.noy, pr=FALSE)

#Impute Validation Set without Y
Validateimps_noy.testnoy <- aregImpute(~ age + bmi + gender + pack_years +
ct_size + spicul + upperlobe + petpos34 +
prev_cancer + fevl_pred + anysympt +
growthcat, n.impute=nimp, x=TRUE, nk=3,
tlinear=F, data=addNewPatient.noy, pr=FALSE)

for (j in 1:nimp){

tmp.imp.y <- as.data.frame(impute.transcan(Validateimps_y, imputation=j, data=addNewPatient,
list.out=TRUE,pr=FALSE, check=TRUE),stringsAsFactors=FALSE) [nrow(addNewPatient),]

imputed.datasets.withy[[j]] [cc,names(tmp.imp.y) ] <- tmp.imp.y
tmp.imp.noy <- as.data.frame(impute.transcan(Validateimps_noy, imputation=j, data=addNewPatient,
list.out=TRUE,pr=FALSE, check=TRUE),

stringsAsFactos=FALSE) [nrow(addNewPatient),]

imputed.datasets.noy[[j]] [cc,names(tmp.imp.noy)] <-  tmp.imp.noy

#Test Set Does Not Include Y

tmp.imp.y.testnoy <- as.data.frame(impute.transcan(Validateimps_y.testnoy,
imputation=j,
data=addNewPatient.noy,
list.out=TRUE,pr=FALSE,
check=TRUE) ,stringsAsFactors=FALSE) [nrow(addNewPatient.noy) ,]

imputed.datasets.withy.testsetnoy[[j]1] [cc,names(tmp.imp.y.testnoy) ] <- tmp.imp.y.testnoy

tmp.imp.noy.testnoy <- as.data.frame(impute.transcan(Validateimps_noy.testnoy,
imputation=j,
data=addNewPatient.noy,
list.out=TRUE, pr=FALSE,
check=TRUE), stringsAsFactos=FALSE) [nrow(addNewPatient.noy),]

imputed.datasets.noy.testsetnoy[[j]1] [cc,names (tmp.imp.noy.testnoy)] <-  tmp.imp.noy.testnoy

¥
}
pred.TREAT.withy <- lapply(imputed.datasets.withy, function(z) predict(TREAT, newdata=z))
pred.TREAT.noy <- lapply(imputed.datasets.noy,function(z) predict(TREAT, newdata=z))
pred.TREAT.withy.testnoy <- lapply(imputed.datasets.withy.testsetnoy, function(z) predict(TREAT, newdata=z))
pred.TREAT.noy . testnoy <- lapply(imputed.datasets.noy.testsetnoy, function(z) predict(TREAT, newdata=z))

#Combine prediction estimates

pred.TREAT.withy.avg <- expit(Reduce("+", pred.TREAT.withy) / length(pred.TREAT.withy))
pred.TREAT.noy.avg <- expit(Reduce("+", pred.TREAT.noy) / length(pred.TREAT.noy))
pred.TREAT.withy.testnoy.avg <- expit(Reduce("+", pred.TREAT.withy.testnoy) / length(pred.TREAT.withy.testnoy))
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pred.TREAT.noy.testnoy.avg <- expit(Reduce("+", pred.TREAT.noy.testnoy) / length(pred.TREAT.noy.testnoy))

# Metrics by Pattern

ex.fit <- "cancer ~ age + bmi + gender + rcs(pack_years,3) + ct_size + spicul + growthcat +

upperlobe + prev_cancer + fevl_pred + anysympt + petpos34"
pattern <- which.pattern(testset, model=ex.fit)

imputed.datasets.withy.pattern = data.frame(Reduce("+",lapply(imputed.datasets.withy, function(z)
{get_metric(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’],pattern))}))/length(imputed.datasets.withy),
pattern = levels(pattern))

imputed.datasets.noy.pattern = data.frame(Reduce("+",lapply(imputed.datasets.noy,function(z)
{get_metric(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’],pattern))}))/length(imputed.datasets.noy),
pattern = levels(pattern))

imputed.datasets.withy.testsetnoy.pattern = data.frame(Reduce("+", lapply(imputed.datasets.withy.testsetnoy,function(z)
{get_metric(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’],
pattern))}))/length(imputed.datasets.withy.testsetnoy),
pattern = levels(pattern))

imputed.datasets.noy.testsetnoy.pattern = data.frame(Reduce("+",lapply(imputed.datasets.noy.testsetnoy,
function(z)

{get_metric(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’],pattern))}))/length(imputed.datasets.noy.testsetnoy),
pattern = levels(pattern))

results.MIy <- rbind(results.MIy, imputed.datasets.withy.pattern)
results.MInoy <- rbind(results.MInoy, imputed.datasets.noy.pattern)
results.MIy.testnoy <- rbind(results.MIy.testnoy, imputed.datasets.withy.testsetnoy.pattern)

results.MInoy.testnoy <- rbind(results.MInoy.testnoy, imputed.datasets.noy.testsetnoy.pattern)

results.MIy[results.MIy == ’NalN’] <- NA
results.MIy.avg <- do.call(rbind,lapply(split(results.MIy,results.MIy$pattern),function(z)
data.frame(mean(z$auc,na.rm = TRUE) ,mean(z$brier) ,mean(z$log)) ))

results.MInoy[results.MInoy == ’NaN’] <- NA
results.MInoy.avg <- do.call(rbind,lapply(split(results.MInoy,results.MInoy$pattern),function(z)
data.frame(mean(z$auc,na.rm = TRUE) ,mean(z$brier) ,mean(z$log)) ))

results.MIy.testnoy[results.MIy.testnoy == ’NaN’] <- NA
results.MIy.testnoy.avg <- do.call(rbind,lapply(split(results.MIy.testnoy,results.MIy.testnoy$pattern),function(z)
data.frame(mean(z$auc,na.rm = TRUE) ,mean(z$brier) ,mean(z$log)) ))

results.MInoy.testnoy[results.MInoy.testnoy == ’NaN’] <- NA

results.MInoy.testnoy.avg <- do.call(rbind,lapply(split(results.MInoy.testnoy,results.MInoy.testnoy$pattern),function(z)
data.frame(mean(z$auc,na.rm = TRUE) ,mean(z$brier) ,mean(z$log)) ))

imputed.datasets.withy.avg = colMeans(do.call(rbind,lapply(imputed.datasets.withy,function(z)
{logistic_metrics(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’]))})))

imputed.datasets.noy.avg = colMeans(do.call(rbind,lapply(imputed.datasets.noy,function(z)
{logistic_metrics(data.frame(predict (TREAT, z, type = "fitted"),testsetl[,’cancer’1))})))

imputed.datasets.withy.testsetnoy.avg = colMeans(do.call(rbind,lapply(imputed.datasets.withy.testsetnoy, function(z)
{logistic_metrics(data.frame(predict (TREAT, z, type = "fitted"),testsetl[,’cancer’]))})))

imputed.datasets.noy.testsetnoy.avg = colMeans(do.call(rbind,lapply(imputed.datasets.noy.testsetnoy,function(z)
{logistic_metrics(data.frame(predict (TREAT, z, type = "fitted"),testset[,’cancer’]))})))
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results[i,c(’auc.MI.y’, ’brier.MI.y’, ’log.MI.y’,

#pr

boo
boo
boo
boo

boo

al
al
al
al
al

B BB

’auc.MI.noy’, ‘’brier.MI.noy’, ’log.MI.noy’,

’auc.MI.y.testnoy’,’brier.MI.y.testnoy’,’log.MI.y.testnoy’,
’auc.MI.noy.testnoy’,’brier.MI.noy.testnoy’,’log.MI.noy.testnoy’)] <-

c(imputed.datasets.withy.avglc(’auc’,’brier’,’log’)],

imputed.datasets.noy.avglc(’auc’,’brier’,’log’)],

imputed.datasets.withy.testsetnoy.avglc(’auc’, ’brier’,’log’)], imputed.datasets.noy.testsetnoy.avg [c(’auc’,’brier’,’log’)]

ogress.bar$step ()

t.res[boot.samp,] <-

t.res.MIy[[boot.samp]] <-

colMeans(results)

results.MIy.avg

t.res.MInoy[[boot.samp]] <- results.MInoy.avg

t.res.MIy.testnoy[[boot.samp]] <- results.MIy.testnoy.avg

t.res.MInoy.testnoy[[boot.samp]] <- results.MInoy.testnoy.avg

.results[[1]] <- boot.
.results[[2]] <- boot.
.results[[3]] <- boot.
.results[[4]] <- boot.
.results[[5]] <- boot.
all.

results

.MIy

.MInoy
.MIy.testnoy
.MInoy.testnoy

#save(boot.res, file = "/Users/SFM/Desktop/BootResults.Rda")
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CHAPTER 5

CONCLUSION

This dissertation has examined several topics related to the application of prediction
models in the presence of missing covariate estimation, bagged empirical null methods for
large scale data, and best imputation practices for model construction and validation. Chap-
ter 2 defined the problem of obtaining predictions from an existing clinical risk prediction
model when covariates are missing, summarized existing imputation techniques are cur-
rently used to fill-in data, introduced the Pattern Mixture Kernel Submodel (PMKS), and
illustrated the use of these techniques in a simulation and case study. Chapter 3 presents the
Bagged Empirical Null (BEN) p-value, a new algorithm that combines existing methodology
of bagging and empirical null techniques, and applied this procedure to pseudo-simulated
data and a famous leukemia gene study. Chapter 4 discusses imputation of model covariates
during model construction, validation, and prediction, and gives recommendations for when
and when not to use the outcome in each of these developmental stages.

Chapter 2 highlights the common fallacy that imputation for an out-of-sample indi-
vidual add information that make better predictions. Instead, imputation simply allows
use of the fixed risk prediction model, and the best predictions for any missing data type
(MCAR, MAR, MNAR) come from submodels fit within each missing data pattern (PMKS).
While Chapter 2 provides a method to obtain instantaneous prediction for a new individual
with missing data, its connection with the Multiple Imputation with Missingness Indicators
Model (MIMI Model), reaches beyond the scope of risk prediction. Furthermore, the PMKS
could implement any machine learning algorithm within a missing data pattern, and could
extend beyond generalized linear models.

Chapter 3 introduces BEN p-values, which implements both bootstrap aggregation and
empirical null techniques, producing p-values which significantly alter the ranking of results.
We applied these ideas to a famous leukemia example, and uncovered findings that had
previously been backed by published benchwork. Although empirical null methodology has
roots in false discovery rate inference, applying these ideas to p-value calculations provides
a more intuitive metric for selecting genes (in our example) for future research.

Chapter 4 gives recommendations for including the outcome in the imputation model,
and suggests including the outcome for imputation of missing covariate values during model
construction to obtain unbiased parameter estimates. When the outcome is used in the
imputation algorithm during the validation step, we show through simulation, the model
prediction metrics are artificially inflated. When used in the clinic on an individual with
missing covariate values, the actual pragmatic model performance would be inferior to the

validated results.
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While the three papers presented here provide foundations for missing data and large

scale inferential techniques, these ideas are applicable to a wide range of biomedical settings.
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