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CHAPTER I 

 

INTRODUCTION 

 

Introduction to Illusory Contours 

The key question in visual neuroscience is how brain mechanisms give rise to visual 

perception.  To address this question, people design stimuli whose physical attributes are 

characterized in great detail, measure psychophysical and physiological responses of subjects to 

the stimuli and build computational models to understand the underlying neural algorithms for 

visual perception in different brain areas.  However, the brain goes beyond just mirroring the 

outside world.  Sometimes we perceive things without a direct physical counterpart. This 

phenomena are often called visual illusions.  

This thesis deals with the visual illusions occurred in contour perception, or “illusory 

contours”. Contour perception is critical in human vision in several ways. Firstly, from a 

computational perspective, contours in 2D domain can provide vital cues about the properties of 

surfaces in the 3D world, so they are critical in human stereopsis. Secondly, contour provides 

important cues about the shape of an object and thus it is a key issue for the segregation of objects 

from the background.  Most contours can be defined by luminance contrast.  In nature scenes, 

however, luminance contrast could be very low and defining contour by luminance contrast could 

be extremely noisy. And sometimes contours could be occluded by other objects, and become 

discontinuous or incomplete.  In these situations, our brain utilize a mechanism of “illusory 

contour” to deal with these problems and enable us to see object contours which are really not 

there. 

From an evolutionary point of view, the ability to perceive illusory contours is preserved as 

an adaptive feature of visual system during the process of evolution.  Detecting objects in a visual 

scene can be of vital interest. Potential preys, for example, have to recognize the predator to be 
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able to escape, or preys can try to hide with the strategy of camouflage, which is to minimize the 

number of visual cues that distinguish an object from its environment.  The predator, on the other 

hand, strives to break camouflage by exploiting multiple visual cues and interpreting a visual 

scene.  In the case of camouflage, localizing boundaries based on luminance contrast could be 

low-efficient, and a strategy of combining multiple visual cues (motion, texture, occluding, etc) 

could lead to a more precise localization (Rivest and Cavanagh 1996). The ability to perceive an 

illusory contour, therefore, may provide an “anti-camouflage device” (Ramachandran 1987), 

evolved mainly to detect partly occluded objects. 

Illusory contour was first described by Schumann in 1900 as “a percept of borders without 

physical counterpart in the visual world”.  Since then a variety of types of illusory contours and 

their inducers have been discovered and widely used in experiments.  These illusory contour 

stimuli fall into two major categories.  One utilizes line ends (e.g.,  Ehrenstein-figure and abutting 

line pattern) and the other used incomplete figure (e.g., Kanizsa triangle)(figure 1).   

 

 

Figure 1.  Examples of illusory contour. (a) Ehrenstein figure  (b) abutting line 

pattern (c) Kanizsa triangle 

 

Ehrenstein figure is composed of lines arranged in a circular pattern like rays abutting to 

the sun.  A clear outline of the central circular region is usually perceived. The central part often 

appears brighter than the outer part, probably because the brightness difference between inner and 
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outer regions in Ehrenstein figure.  Abutting line pattern, presented by Kanizsa 1976, is 

composed of two sets of lines (parallel or not)with phase displacements abutting to each other. 

The illusory differs with Ehrenstein figure in that no brightness effect is induced in this illusion.  

Kanizsa triangle, named after Gaetano Kanizsa, differs with the two illusions introduced above in 

that it does not use abutting lines as inducers of illusory contour, three partial disks are utilized 

instead.  In this illusion, a non-existing white triangle is usually perceived and it appears brighter 

than the surrounding area, but in fact it has the same brightness as the background.  While these 

two categories of illusory contour stimuli are widely used in studies of contour processing, a 

number of  other stimulus attributes might also lead to a perception of illusory contour, such as 

binocular disparity information (Julesz 1960) or dynamic coherence (Cunningham, Shipley and 

Kellman 1998).  

 

Studies of Illusory Contour Processing 

The pioneering  physiological studies of illusory contour processing in monkeys were 

carried out by von der Heydt and  Peterhans in 1980s, in which they studied the neural signals in 

early visual cortex of awake macaques that are tuned to illusory contour stimulation.  In their 

experiment in 1984, they reported that single neurons in V2 responding to illusory contour. V2 

neurons responsive to illusory contours were orientation selective and responded stronger to the 

optimally oriented real line than to the illusory contour of the same orientation.  In their following 

studies Von der Heydt and Peterhans replicated their first findings and showed that V2 neurons 

can be activated by both Kanizsa-type illusory figures and illusory contours induced by abutting 

line pattern.  They showed that, V2 neurons respond to Kanizsa figures even if the inducers did 

not touch the receptive field of that cell, which indicated that feedback from higher areas or 

complex horizontal computations might lead to the  cell‟s response profile.  

While V2 cells responding to illusory contour is widely accepted, whether V1 cells 

respond to illusory contours are more controversial.  In Peterhans and Von der Heydt studies, 
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only very few V1 cells were found to be responsive to illusory contours, while about 32 to 44% 

of the V2 neurons in their sample were selective for illusory contours. They concluded that V2 is 

the first area to „bridge gaps‟, and that V1 is primarily a contrast edge detector (Peterhans & von 

der Heydt, 1989). Grosof et al. 1993, however, reported V1 responses to illusory contours of 

abutting line pattern.  This finding of V1 responding to illusory contours has been reproduced by 

other groups.   Lee and Nguyen 2001 recorded single neuron responses in both V1 and V2 to 

squares in partial disc arrangement, either outlined, modally or amodally completed.  What they 

found was that both V1 and V2 were responsive to real and completed figures, but the earliest 

responses were found in V2 cells, followed by the V1 responses that emerged at about 100msec 

after stimulus onset, significantly later than the emergency of V2 responses.  Their finding 

suggests that the neural responses to illusory contour in V1 might be due to feedback from V2. 

The involvement of both V1 and V2 in illusory contour was also demonstrated by an 

optical imaging study (Ramsden, Chou and Roe 2001). In this study, the cortical activity to 

illusory (induced by abutting line pattern) and  real contour stimuli were measured with optical 

imaging in anaesthetized macaque monkeys.  They found that the activation pattern to illusory 

contour was similar to that of real contour stimuli.  In V1, however, the orientation domains of 

illusory contours were different from real contour orientation domains: domains activated best by 

vertical real contours were activated best by horizontal illusory contours (figure 2).  They 

proposed that this activation reversal in V1 orientation domains might be due to the feedback 

from higher areas, possibly V2, and might be a unique “signature” of illusory contour.  
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Figure 2  Ramsden et al. 2001.  Left, differential optical imaging in V2 shows 

overlapping orientation maps to illusory and real contour stimulation. Right, real 

orientation maps in V1 overlap with the activity evoked by the orthogonal illusory 

contours. 

 

Recent psychophysical study of real-illusory interaction (Dillenburger and Roe 2004) 

confirms the idea that the feedback from V2 to V1 (Lee and Nguyen 2001) which is orientation 

reversed (Ramsden, Chou and Roe 2001) might be part of the illusory contour mechanism. In the 

experiments, illusory contour stimulus was presented for 50 msec after a fixation period of 500 

msec.  Then real interacting lines were presented for 100 msec after a variable duration of blank 

screen. The interaction effects were measured by the correction rate of subjects‟ answer whether 

the illusory contour were bent out or inwards (Figure 3). In their results, an interaction of real 

lines and illusory contour dependent on orientation, time and contrast was found.  The most 

consistent effects found in this study are orthogonal low contrast summation effects at an SOA of 

50 msec, parallel low contrast interference from SOAs of 125 msec on, and a reversal of 

orthogonal line effects over all contrast ranges from summation to interference at times of 125 

msec to 150 msec. 
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Figure 3.  Dillenburger and Roe 2004.  A fixation period of 500 msec was followed 

by the stimulus (50 msec),whose right side was perceived to be either bent out or 

inwards. After a blank of variable duration (0-250 msec) and real contour presentation 

(100 msec), subjects had to decide in a 2AFC paradigm, to what side the illusory 

contour was bent. 

 

Early visual areas (V1 and V2) are ideal for representing the perceived sharp contours 

explicitly because only the early visual areas contain neurons with small receptive fields that can 

encode stimulus features with high special resolution.  Recent functional imaging experiment, 

however, found Kanizsa figures elicited significant responses in the lateral occipital (LOC) region, 

but only weak response in the human early visual areas (Mendola, et al. 1999).  Murray et al. 

2002 replicated the results by Mendola et al. and measured latencies to illusory figure response 

onset with EEG and fMRI.  They found that the earliest VEP modulation at 88 msec after 

stimulus onset, which was about 40 msec after the initial visual cortical response.  They 

concluded that illusory contour information in early visual areas might be due to feedback from 

higher areas such as LOC.  Huxlin 2000 reported an observation that the monkey‟s ability to see 

illusory contours impaired after a lesion in the inferotemporal cortex (IT) (Huxlin, et al. 2000).  

Thus, whether illusory contour is an early computation or a late process is still under debate. 

In sum, the psychophysical, physiological and functional imaging studies suggested that 

the processing of illusory contour might take place in multiple brain areas, and complex recurrent 

intracortical and intercortical connections might be involved. 



7 

Proposal of this Thesis 

As mentioned in the above section, recent physiological data showed that early visual areas 

are involved in illusory contour processing.  Evidence showed that neural responses to illusory 

contours in V1 was delayed than V2 (Lee and Nguyen 2001) and the preferred orientation seemed 

to be reversed to the real contour signal (Ramsden, Chou and Roe 2001).  These results suggest a 

feedback system from primate V2 to V1  might be part of the illusory contour processing 

mechanism (Roe 2003).  Psychophysical studies of real-illusory interactions confirms this idea 

(Dillenburger and Roe 2004) . An interaction of real and illusory contours depends both on 

orientation and interaction time was discovered. What they found is that orthogonal real lines 

tend to enhance the percept  first, and interfere later around 125-150 msec, while parallel real 

lines interfere from 125 msec on, while showing no effect or summation trends at earlier 

interaction times. 

Although physiological and psychophysical data are available to demonstrate that V1 and 

V2 are involved in illusory contour processing, and that feedback from V2 (Lee & Nguyen 2001) 

and orientation reversal in V1 (Ramsden et al. 2001) might be part of the illusory contour 

mechanism, several questions remains to be answered.  First, is there a circuitry that can account 

for the physiological data and psychological data mentioned above?  Second, what kind of 

computation is conducted by early visual cortex that elicits the perception of illusory contours? 

Computational modeling provides a powerful tool to address these questions.  

Computational modeling usually has two approaches. One is a bottom-up modeling approach, 

which relies heavily on the anatomical and physiological data. Such models can determine 

whether existing data are sufficient to explain the observed network behavior, and intend to find 

possible drawbacks and missing components in the model.  Another approach is top-down 

modeling approach, which derives a model from functionality of the neural network. Based on the 

theoretical analysis, an algorithm that performs the desired function is developed first and then 
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embedded into the simplified network while imposing known biological constrains (See also 

Amirikian 1999).  

Consider the case of illusory contour processing in early visual cortex, anatomical 

structures of V1 and V2 have been well studied, but how these structures lead to the network 

behavior ( lagged V1 response to illusory contour stimuli, V1 orientation reversal pattern in 

illusory contour context, and the orientation dependent illusory contour perceptual strength that 

varies with) is not clearly known.  So in my model, I will make hypothesis about the possible 

structure of the illusory contour processing circuit based on functionality or network behavior, 

which is the function-driven part of the model, but some parts of the model will be derived from 

known anatomical and physiological data, which can be viewed as the data-driven.  With 

computer simulation techniques, the network behavior could be further examined, other 

properties of the model circuit might be explored.  Finally, I will try to propose a possible 

computational mechanism that will give rise to the illusory contour perception.  An outline of the 

modeling procedure is illustrated in figure 4. 

 

 

Figure 4. Modeling procedure. See text for detail. 

 

Network
Behavior

Data 

Anatomical
Knowledge

Restrictions

Model
Simulation

Model
Circuit

New
Experiments

Computational
Algorithm/
Hypothesis



9 

The importance of this computational study is that a model circuit of illusory contour 

processing in V1 and V2 might point out the direction of future research. New experimental 

studies might be inspired to test the model. For example, anatomical studies could be conducted 

to examine the proposed structure of model circuit; physiological experiments could be carried 

out to test whether the responses of “real circuit” go with the model circuit; and psychophysical 

studies could be designed to measure the perceptual effects predicted by the computational model. 
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CHAPTER II 

 

MODEL DISCRIPTION 

 

Model Overview 

In this thesis, I suggest that the empirical psychophysical and physiological findings 

introduced above can be explained within a framework of basic computational mechanisms.  A 

model circuit which includes multiple brain areas with complex intercortical and intracortical 

connections is proposed here that can explain both the illusory contour inducing process and 

several accompanying effects found with illusory contour perception introduced before ---i.e., 

orientation-dependent real-illusory interaction effect that evolves with time (Dillenburger and 

Roe 2004) and V1 orientation reversal in the abutting line pattern (Ramsden et al. 2001). 

A schematic overview of the model is illustrated in Figure 5.  The first stage of the model 

illusory contour processing is the image (illusory contour inducers) feature measurement.  In 

model V1, the local contrast orientation is measured by cells of oriented receptive fields (RFs), 

such as cortical simple and complex cells and local line ends are measured by hypercomplex end-

stopping cells.  Thus, V1 serves as a stage of feature measurement and signal detection.   
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Figure 5. Model overview. Illusory contour perception is a process which contains 

multiple stages at different brain areas. The first stage of processing is image feature 

measurement in model V1. Then the resulting activities in V1 are fed into V2 cells 

with non-classical bipole property which integrate the activities from two distant cells. 

Contour integration might receive modulation from higher areas.  Integrated illusory 

contour information resides in model V2 was then delivered to model V1 through 

feedback connection. 

 

The second stage of the model illusory contour processing is contour completion.  In my 

model, V2 is the major brain area where contour completion takes place. After the resulting 

activities in V1 from local contrast orientations and line ends are fed forward to V2, cells with 

non-classical bipole property (Grossberg et al. 1997, Neumann and Sepp 1999, Domijan et al. 

2007) integrate the activities from two further apart locations and fire at a position that falls in 

between. Iteration of this process along an oriented path can bridge the gaps between two separate 

illusory contour inducers.  In the model, the non-classical bipole RF property is obtained by lat-

eral connections between V2 oriented cells with similar orientation preferences. In this thesis, a 

computational model based on activity-dependent synaptic modification was proposed to explain 

the formation of V2 bipole cell RF property. One thing deserves mentioning here is that whether 
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horizontal connections in V2 are sufficient for illusory contour induction.  Recent fMRI studies in 

humans (Mendola, et al. 1999, Murray, et al. 2002) suggested that higher areas such as lateral 

occipital complex (LOC) are involved in illusory contour processing.  In order for the neural res-

ponses in V2 which arise from lateral connections to be robust, feedback from higher areas such 

as LOC is likely to modulate the responses in V2. 

The third stage of the model involves the feedback projection from V2 illusory oriented 

cells to V1 orientation domains.   This is consistent with the finding that V1 responses are lagged 

compared to the V2 responses to illusory contours (Lee & Nguyen, 2001).  The major concern of 

this processing stage is how the connection from V2 to V1 mediate a negative feedback in illu-

sory contour context ( orientation reversal in V1 orientation domains ) and a net excitatory feed-

back in real line context (Rockland and Douglas 1993, Bullier et al. 1996).  My model addressed 

this complexity with the mechanism of asymmetric positive feedback to V1 and the competition 

between V1 orthogonal domains.  I also showed that the psychophysical data of real-illusory con-

tour interaction (Dillenburger and Roe 2004) could be explained in this framework. 

In this chapter, the focus of discussion is on the stage of contour integration in V2 and 

feedback from V2 to V1 in illusory contour processing. At first, neuron firing rate model was re-

viewed because it is the basis that the model was built on. The signal detection in V1 has been 

studied well and discussed by several other authors (Hubel and Wiesel 1968, Mclaughlin, et al. 

2000, Neumann and Sepp 1999, Grossberg et al.1997),  so it is not discussed in detail in this the-

sis. 

 

Model Neuron 

Neurons are building blocks of circuits, system and the whole brain.  And the model pro-

posed in this thesis is also built on the basis of connections between neurons. Therefore, 

understanding the mechanism of input-output relationship of the neuronal firing rate appears 
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extremely necessary. Thus, in this section, the computational model of neuronal firing rate is 

briefly reviewed (See also Dayan and Abbott 2001).   

The construction of a firing rate model proceeds in two major steps.  First, the relationship 

between the firing rate of presynaptic neurons and the total synaptic current of a postsynaptic 

neuron is determined.  Second, the firing rate of the postsynaptic neuron should be modeled from 

its total synaptic current.  The relationship between the firing rate and synaptic current is usually 

measured by injecting current to the neuron.  So it is convenient to consider the total synaptic 

current caused by the membrane conductance change as the current delivered by the presynaptic 

neurons at each spike arriving.  

Consider a neuron receiving N synaptic inputs labeled by  b=1,2,3,…, N (Figure 6).  The 

firing rate of the bth
 input is denoted by ub.  We model how the synaptic current Is depends on 

presynaptic firing rates. To do this, we first consider how Is depends on the presynaptic spikes.  If 

a spike arrives at input neuron b at time zero, we denote the synaptic current generated in the 

soma of the postsynaptic neuron at time t as wbKs(t), where wb is the synaptic weight and Ks(t) is 

called the synaptic kernel, which describes the time course of the synaptic current in response to a 

presynaptic spiking arriving at time t=0.  This time course depends on the dynamics of the 

synaptic conductance activated by the presynaptic spike and also on both the passive and active 

properties of the dendritic cables that carry the synaptic current to the soma. 

 

 

Figure 6. Feedforward inputs to a single neuron. Input rate u drive a neuron with 

an output rate v through synaptic weights given by the vector w. 
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The spike train of input neuron b is denoted  𝜌𝑏(𝜏) =   𝛿 𝜏 − 𝑡𝑖  , where ti is the arriving 

time of the ith
 action potential, and 𝛿 𝑡  is Dirac function.  Note that the total synaptic current 

occurring at input b at times ti is given by the convolution of the synaptic current that happens 

after a single spike 𝑤𝑏𝐾𝑠 𝑡  with the spike train function 𝜌𝑏 𝑡 . 

𝑤𝑏  𝐾𝑠 𝑡 − 𝑡𝑖 = 𝑤𝑏

𝑡𝑖<𝑡

𝐾𝑠 𝑡 ∗ 𝜌𝑏 𝑡 = 𝑤𝑏  𝐾𝑠 𝑡 − 𝜏 
𝑡

−∞

𝜌𝑏 𝜏 𝑑𝜏            (2.2.1) 

Thus, the total synaptic current coming from all presynaptic inputs can be obtained simply 

by summing, 

𝐼𝑠 =  𝑤𝑏  𝐾𝑠 𝑡 − 𝜏 
𝑡

−∞

𝜌𝑏 𝜏 𝑑𝜏                                              (2.2.2)

𝑁

𝑏=1

 

Firing rate u(t) is the probability density of firing and is obtained from 𝜌𝑏 𝑡  by averaging 

over trials, so, in a averaging sense, we can replace the spike train function 𝜌𝑏 𝑡  in equation 

2.2.2 by firing rate of neuron b, namely 𝑢𝑏 𝑡 , 

𝐼𝑠 =  𝑤𝑏  𝐾𝑠 𝑡 − 𝜏 
𝑡

−∞

𝑢𝑏 𝜏 𝑑𝜏                                          (2.2.3)

𝑁

𝑏=1

 

The synaptic kernel most frequently used in firing rate models is an exponential function  

𝐾𝑠 𝑡 = 𝑒 −𝑡/𝜏𝑟  /𝜏𝑟 .  With this kernel, we can describe Is by a differential equation if we take the 

derivative of equation 2.2.3 with respect to t, 

𝜏𝑠
𝑑𝐼𝑠
𝑑𝑡

= −𝐼𝑠 +  𝑤𝑏𝑢𝑏                                            (2.2.4)

𝑁

𝑏=1

 

In equation 2.2.4, τs  is the time constant that describes the decay of the synaptic 

conductance. 

Now consider the relationship between the postsynaptic firing rate and the total synaptic 

current entering the soma of a postsynaptic neuron.  The relationship can be expressed as 

𝑣 = 𝐹 𝐼𝑠 , where F is the activation function which is the steady-state firing rate as a function of 
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somatic input current.  F is usually taken to be a saturation function to avoid excessively high 

firing rates.   

The steady-state solution of equation 2.2.4 can be obtained by replacing  
𝑑𝐼𝑠

𝑑𝑡
 with zero, thus 

we have 

 𝐼𝑠 𝑡=∞ =  𝑤𝑏𝑢𝑏                                                          (2.2.5)

𝑁

𝑏=1

 

Plug equation 2.3.5 into the activation function F, and we will have the steady-state firing 

rate of the post-synaptic neuron with respect to the firing rate of presynaptic neurons, 

 𝑣 𝑡=∞ = 𝐹   𝑤𝑏𝑢𝑏  

𝑁

𝑏=1

                                                   (2.2.6) 

Using the activation function F is based on the assumption that the firing-rate changes 

instantaneously with the total synaptic current.  But more often, it is not the case.  For this reason, 

firing rate is often modeled as a low-pass filtered version of the  activation function, 

𝜏𝑟
𝑑𝑣

𝑑𝑡
= −𝑣 + 𝐹 𝐼𝑠                                                        (2.2.7) 

The constant 𝜏𝑟  in this equation determines how rapidly the firing rate approaches its 

steady-state value for constant Is. 

If  𝜏𝑟 ≪ 𝜏𝑠, we can make the approximation that equation 2.2.7 rapidly sets 𝑣 = 𝐹 𝐼𝑠 𝑡  .  

If instead 𝜏𝑠 ≪ 𝜏𝑟 , we can make the approximation that equation 2.2.4 comes to equilibrium 

quickly compared to equation 2.2.7. Then we can make the replacement 𝐼𝑠 =  𝑤𝑏𝑢𝑏
𝑁
𝑏=1  in 

equation 2.2.7 and write 

𝜏𝑟
𝑑𝑣

𝑑𝑡
= −𝑣 + 𝐹   𝑤𝑏𝑢𝑏

𝑁

𝑏=1

                                                 2.2.8  

In the computational model circuit proposed in this thesis, we use the firing rate model 

described by equation 2.2.8. 
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Lateral Connection: Filling-in the Gap 

After the neuronal activities representing the local contrast orientations signaled by V1 

neurons are fed forward to higher areas, integration of these separate signals into a representation 

of a complete contour should take place in a higher area.  In my model, I assumed that this 

proceeds in V2.  First, electrophysiological studies showed that V2 cells respond to illusory 

contours (von der Heydt et al. 1984), and that this response happens prior to the V1 responses to 

illusory contours (Lee & Nguyen 2001).  Second, although several fMRI studies (Mendola, et al. 

1999, Murray, et al. 2002) suggested the involvement of high areas in the visual hierarchy in 

illusory contour processing, the receptive field size of the cells in these areas are too large to 

make a clear-cut representation of illusory contour.  So I suggested that V2 might be a good 

candidate for the place where contour integrating take place. 

 

 

Figure 7. Bipole cell mechanism. A bipole grouping cell can fire: (a) if it receives 

enough oriented, almost collinear input from both branches of its receptive field; but 

not (b) if it receives input from only one branch. (See also Ross et al. 2000) 

 

Several computational studies have suggested a “bipole cell” mechanism for spatial 

grouping and contour integration (Grossberg et al. 1997, Neumann and Sepp 1999, Ross et al. 

2000, Domijan et al. 2007).  A bipole cell is supposed to have a receptive field with two spatially 

separate lobes, and it performs an AND-gate function of the activities from these two separate 

lobes.  Such a cell will be activated only when it receives input from both of the lobes (Figure 7).  
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The bipole cell hypothesis found strong support from anatomical studies of long range lateral 

connection in tree shrew cortex (Bosking et al. 1997).  Cells with long range connections in 

cortex were found to contact cells of similar orientational preference and the receptive field 

centers of the contact cells are aligned in the cortical map along directions that correspond to the 

orientational preference of the cell forming the axonal connection (Figure 8). 

 

 

 

 

In computational modeling of a bipole cell, we are especially interested in  (1) the dendritic 

structure of a bipole cell, that is, how the  cell interact with other cells with similar orientation 

preference through lateral connection and how the weights of these connections distribute 

spatially, and (2) the mechanism of the bipole property, that is, how the cell perform the AND-

gate function. Clearly understanding these points, contour integration can be performed simply by 

spatial-filtering the input pattern (V2 activation fed from V1) with  templates which ensembles 

the spatial weighting function of a bipole cell.  In this section, great emphasize is on developing a 

computational model for the spatial distribution of synaptic weights of horizontal connections, 

while the mechanism of bipole property proposed by other studies are briefly reviewed. 

 Existing models of a bipole cell determine the spatial weighting function mainly from the 

geometric relationship, with little emphasize on the underlying biological basis of the formation 

Figure 8. Specificity of horizontal connections 

between V1 cells of layer 2/3. Axon 

arborizations from two example cells are shown 

over a combined map of visual space and 

orientation preference (dark regions cells with 90 

deg orientation preference; light regions cells with 

0 deg preference). The cell in a dark region of the 

map projects to other areas with the same 

orientation preference (90 deg). Moreover, those 

cells that were selectively contacted lie along a 

line that is orthogonal to the 0 deg meridian. The 

other cell in a light region of the map projects to 

spatially distant cells with the same orientation 

preference (0 deg) that lie along a line parallel to 

the 0 deg meridian. (From Bosking et al. 1997) 
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of such a bipole structure, thus, the spatial weighting function is often preprogrammed.  In this 

section, the spatial weighting function of a bipole icon is obtained by modeling the synaptic 

plasticity of long-range horizontal connections that link the neurons with similar orientation 

preferences.  Other than a preprogrammed spatial weighting, such a model is self-assembled 

which requires a minimum number of pre-defined parameters. 

There are several basic assumptions about this model.  First, the modular orientation 

specificity and axis orientation specificity of the long-range horizontal connections could be 

explained in a developmental framework.  I assume that, in immature brain, no such specificities 

should exist and these properties of long-range horizontal connections are formed through visual 

experience.  Second, straight lines should be the major type of visual experience which can give 

rise to the modular orientation specificity and axis orientation specificity of long-range horizontal 

connections.  In nature scenes, we experience straight line or its approximation more frequently 

than a curve with large curvature. The latter exists mainly in visual scenes with high spatial 

frequency or in a relatively small scale, which does not match the scale of a long-range horizontal 

connection. 

 

 

Figure 9.  Spatial relationship of bipole cell and a distant input cell. A bipole cell 

p with horizontal orientation preference is positioned at the origin of the coordinate 

(dark ellipse). Another oriented cell q  (light ellipse), locates at the position of  𝒓, 𝜽 , 
and has an orientation preference of 𝛗. The model asks for the synaptic weight 

𝒘 𝒓, 𝜽,𝝋  between these two cells. 

 

(0,0)

p

q

r

θ

φ
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Consider the polar coordinate in Figure 9.  A bipole cell p is positioned at the origin of the 

coordinate  0,0 , marked by a dark ellipse, has an orientation preference of 0 degree.  Another 

oriented cell q, marked by a light ellipse, locates at the position of  𝑟, 𝜃 , and has an orientation 

preference of 𝜑.  The quantity to be assessed here is the contribution of activation of cell q to the 

activation of cell p, or the synaptic weight of the connection from q to p.  The synaptic weight 

𝑤 𝑟, 𝜃, 𝜑  is the spatial weighting function, which changes with the combination of   𝑟, 𝜃, 𝜑 .  

First, 𝑤 𝑟, 𝜃, 𝜑  is distance dependent because horizontal connection has a limited extent which 

typically is about 20 degrees of the visual world.  Second, 𝑤 𝑟, 𝜃, 𝜑  depends on the orientation 

preference 𝜑 of the input cell q and its angle position 𝜃, because too large deviation of these 

angles from zero would result in a weak relatability of cell p and q. 

For simplicity, I assume that the spatial weighting function 𝑤 𝑟, 𝜃, 𝜑  is parameter-

separatable, 

𝑤 𝑟, 𝜃, 𝜑 = 𝑤 𝑟 𝑤 𝜃, 𝜑                                                      (2.3.1) 

Thus, we can consider how each of the independent variables contribute to the spatial 

weighting function separately.   

 

Spatial weighting dependence on angles 

How this kind of spatial pattern of synaptic weight distributes as a function of axis angle 𝜃 

and φ?  As I already assumed, this kind of distribution is accomplished by the activity dependent 

synaptic strength modification.  The general law of this kind of modification is Hebb‟s rule, 

which implies that simultaneous pre- and postsynaptic firing increases synaptic strength, whereas 

uncorrelated firing eliminate synapses.  This activity-dependent progress could be described using 

the following differential equation, 

𝜏𝑤
𝑑𝑤

𝑑𝑡
=  𝑣 − 𝜀 𝑢                                                                 (2.3.2) 
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In equation 2.3.2,  w is synaptic weight that evolves with time, u and v are pre-and post 

synaptic firing rate respectively.  τw is the time constant of the synaptic weight change.  The 

complication in this equation lies in ε, a factor used to constrain the unlimited growth of synaptic 

weight growth.  The idea underlying equation 2.3.2 is that, when the presynaptic firing rate u is 

accompanied by a large enough postsynaptic firing rate v,  the strength of the synapse will 

increase, otherwise it will decrease. 

Back to the spatial weighting function problem, the inputs to a bipole cell p are the 

intercortical feedforward input from  V1 and the intracortical inputs from V2 oriented cells 

through horizontal connections.  In immature brain, the horizontal connections are assumed to 

exhibit no axis specificity.  Thus, at time 𝑡 = 0, the horizontal connections from input cells in V2 

positioned at all directions and with all possible orientation preferences contribute equally to the 

postsynaptic neuron p.(Figure 10) 

 

 

Figure 10  Horizontal connection pattern at initial time. At time 𝒕 = 𝟎 , the 

horizontal connections from input cells in V2 positioned at all directions and with all 

possible orientation preferences contribute equally to the postsynaptic neuron p, with 

the initial synaptic weight w0. Bipole cell p also receives feedforward input (grey 

arrow) from V1 with a synaptic weight wff.  

 

For simplicity, I divided the infinite number of possible directions θ and φ into a finite 

number N of angles.  Thus an integer pair (n,m) can be used to represent the pair of (θ,φ), 

p

w0

wff
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 𝜃, 𝜑 =  
2𝜋

𝑁
𝑛,

2𝜋

𝑁
𝑚                                                              (2.3.3) 

 The problem now evolves into one that asks how 𝑤 𝑛,𝑚  change with time due to the 

correlation of  activities of pre and post synaptic neurons.  Remember another assumption we 

have made previously is that straight lines should be the visual stimuli that give rise to the spatial 

pattern of weighting function in the model.  Given a straight line stimulus with a spatial 

orientation n, suppose it goes across bipole cell p, cell p will receive synaptic input from (1) the 

feedforward input from V1 orientation cell, (2) the activation sent from cells with angle position n 

and with variable preferred orientation of m.  Therefore, firing rate of cell p with a straight line of 

orientation n can be written as, 

𝑣 𝑛,𝑚 = 𝑤𝑓𝑓𝑓  𝑛
2𝜋

𝑁
 + 𝑤 𝑛,𝑚 𝑢 𝑛,𝑚                                   (2.3.4) 

In Equation 2.3.4, 𝑤𝑓𝑓  is the synaptic weight of feedforward connection from V1 to cell p;  

f is the orientation tuning function of the V1 cell with preferred orientation of zero degree; w(n) is 

the synaptic weight of a neuron at the angle position of n and with a orientation preference of m, 

and u(n,m) is the firing rate of this neuron, which can also be written using V1 orientation tuning 

function f. 

𝑢 𝑛,𝑚 = 𝑤𝑓𝑓𝑓   𝑛 −𝑚 
2𝜋

𝑁
                                          (2.3.5) 

Rewrite Equation 2.3.2 with respect to the spatial orientation of n, we have, 

𝜏𝑤
𝑑𝑤 𝑛,𝑚 

𝑑𝑡
=  𝑣 𝑛,𝑚 − 𝜀 𝑢 𝑛,𝑚                                       (2.3.6) 

To avoid unstable growth of w(n,m), we use a sliding threshold ε in Equation 2.3.6, 

𝜀 =
 𝑣(𝑛,𝑚)𝑤>0

𝑁|𝑤>0
                                                        (2.3.7) 

Note that ε has a complex relationship with the postsynaptic firing rate of cell p.  This 

relationship can be described as the average firing rate of cell p across all axis directions and 
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orientation preferences such that the synaptic weights of horizontal connections of those direction 

are non-zero.  Substitute Equation 2.3.7 into 2.3.6 and sum under the condition of w(n,m)>0, 

 𝜏𝑤
𝑑𝑤 𝑛,𝑚 

𝑑𝑡
w>0

=   𝑣 𝑛,𝑚 − 𝜀 𝑢 𝑛,𝑚 

𝑤>0

 

𝜏𝑤
𝑑 𝑤 𝑛,𝑚 𝑤>0

𝑑𝑡
=   𝑣 𝑛,𝑚 

𝑤>0

−  𝜀

𝑤>0

 𝑢 𝑛,𝑚  

=   𝑣 𝑛,𝑚 

𝑤>0

−   
 𝑣(𝑛,𝑚)𝑤>0

𝑁|𝑤>0
 

𝑤>0

 𝑢 𝑛,𝑚  

=   𝑣 𝑛,𝑚 

𝑤>0

−𝑁|𝑤>0

 𝑣(𝑛,𝑚)𝑤>0

𝑁|𝑤>0
 𝑢 𝑛,𝑚  

= 0                                                                                                             (2.3.8) 

Equation 2.3.8 implies that the total synaptic weight on cell p is time- invariant.  This 

controls the unlimited growth of  synaptic weights and is consistent with the concept of synaptic 

capacity, which implies that the total number of synapse on a neuron is a constant number, and 

the modification of synaptic weight is a process of re-allocation of synapses among input neurons. 

Obtaining the analytical solution to Equation 2.3.6 could be extremely complicated 

because the sliding threshold ε has a nonlinear and implicit relationship with the dependent 

variable w.  The approach to solve a differential equation like that is to convert the differential 

equation to a difference equation which can be solved numerically, as will be discussed in detail 

in the next chapter.  Here we can make a conceptual analysis of the form of solution of 2.3.6.  For 

simplicity, we only consider the situation when V1 distant input cells (q) were optimally oriented 

(θ=φ, or n=m). The initial state of w(n) is w(n)|t=0=w0, which implies a homogeneous distribution 

of synaptic weights across all N orientations.  Then at those directions such that v(n) is above 

average, synaptic strength will be increased and those below average will be decreased, which 

causes an spatial inhomogeneity across the N directions.  This inhomogeniety increases with time 

until at a point some synaptic weights are decreased to zero and thus synapses are eliminated.  
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The remaining directions will go through a similar process as described above, and ultimately the 

synaptic weights will be distributed around a line parallel to the preferred orientation of bipole 

cell. 

 

Spatial weighting dependence on distance 

As assumed earlier, spatial weighting function 𝑤 𝑟, 𝜃, 𝜑  is parameter-separatable, 

𝑤 𝑟, 𝜃, 𝜑 = 𝑤 𝑟 𝑤 𝜃, 𝜑 .  In last section, we proposed a computational model based on activity 

dependent synaptic modification to address the spatial weighting dependence on angle 

combination 𝜃, 𝜑 .  A system of differential equations were developed to describe the model. 

And a conceptual analysis was made to demonstrate the form of synaptic weight distribution 

across axis angles.  Now we address the question how synaptic weighting distribute as a function 

of distance 𝑟.   

In our model, the synaptic weighting dependent on distance,  𝑤 𝑟 , was modeled as a 

Gaussian function 

𝑤 𝑟 =
1

𝑟0 2𝜋
𝑒−𝑟

2/2𝑟0
2
                                                        (2.3.9) 

Synaptic weight decreases with increasing distance.  How could this be interpreted?  I 

think this could also be explained within a framework of activity-dependent synaptic modification.  

Action potentials conduct along neuron axons at the finite velocity, and evidence showed that 

signal conduction is significantly slower in lateral connections than feedforward and feedback 

connections.  With large distance r, the correlation of firing pattern will decrease, and so will the 

synaptic weights at large distance.  Why is it reasonable to model distance r and angle (𝜃, 𝜑) as 

parameter separatable? My explanation is that the synaptic weight dependence on distance 

underlie a universal process of synaptic modification, which is independent of the type of 

stimulus and visual experience.  So at each axis angle and orientation preference, a similar 
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process of synaptic modification dependent on distance takes place.  Therefore, distance r and 

angle (𝜃, 𝜑) are parameter-separatable in the model. 

In summary, I proposed a model  based on activity-dependent synaptic modification to 

explain the mechanism of lateral connection  formation in this section. With the assumption that 

straight lines are the major visual experience leading to the specific configuration of bipole cell 

receptive field, a system of non-linear differential equations that depends on internal states of 

equation solution was built to describe the model.   The concentration of discussion in this section 

was on the relationship between synaptic weight of lateral connection in V2 and spatial attributes 

(spatial location and orientation preferences). Models of AND-gate function of a bipole cell have 

been proposed by several authors.  Grossberg, Mingolla and Ross 1997 attributed the bipole 

property to the activation of smooth stellate cells. In their model,  the distant input cells target not 

only the bipole cell, but a common inhibitory stellate cell near the bipole cell as well.  The stellate 

cell is proposed to inhibit the activation of bipole cell when only one branch of the bipole 

receptive field gets stimulated and easily become saturated and fails to  neutralize the excitatory 

inputs to the bipole cell when both branches are stimulated, thus leading to the bipole property.  

Other than Grossberg‟s approach, Neumann 1999 explained the formation of bipole property with 

a model circuit of three processing stages. The signals from both branches of the bipole receptive 

field are integrated in such a circuit and finally form an output signal which is the logic-AND of 

the signals from two branches.  A recent model based on dendritic computation was proposed to 

explain bipole property in illusory contour formation (Domijan et al. 2007).  In their model, the 

bipole cell sum inputs along its dendritic branches. Outputs from dendritic branches 

multiplicatively interact before they reach the soma, and this kind of dendritic computation was 

shown to give rise to the logical AND function. 
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Feedback from V2 to V1 

The earliest neuronal response to illusory contour stimulation has been found in area V2 

(Peterhans and von der Heydt 1989, von der Heydt and Peterhans 1989, Lee and Nguyen 2001). 

An activation of V1 which was delayed relative to the V2 signal was reported by Lee & Nguyen 

2001, confirming previous reports of illusory contour related activity in the first visual cortical 

area (Grosof et al. 1993, Sheth et al. 1996, Ramsden, Chou and Roe 2001). The temporal delay of 

the V1 activation relative to V2 might suggest that feedback from V2 might lead to illusory 

contour responses in V1 (Lee and Nguyen 2001). Illusory contour activity in V1 furthermore has 

been shown to be reverse oriented to real contour activity (Sheth et al. 1996, Ramsden, Chou and 

Roe 2001) 

Psychophysical studies of real-illusory interactions confirms the feedback system from V2 

to V1 involved in contour processing (Dillenburger and Roe 2004).  An interaction of real and 

illusory contours depends both on orientation and interaction time was discovered. Orthogonal 

real lines tend to enhance the percept  first, and interfere later around 125-150 msec, which is 

consistent with the transition from V2 activation to V1 activation (Lee and Nguyen 2001) .  

Parallel real lines interfere in general from 125 msec on, while showing no effect or summation 

trends at earlier interaction times. 

How is the feedback connection from V2 to V1 configured so that  it can give rise to the 

physiological and psychophysical evidences stated above?  Although the feedback from V2 to V1 

has been studied (Bullier et al. 1996, Girard et al. 2001, Shmuel et al. 2005), the answer to this 

question is still unclear.  A computational model of the feedback circuit from V2 to V1 which fit 

the physiological and psychological data as well as known anatomical knowledge will greatly 

facilitate our understanding of illusory contour processing and possibly inspire future 

experimental studies.  So in this section, I will try to build a model circuit that fits the data 

available. 
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A schematic view of the model feedback circuitry is illustrated in Figure 11.  Four neurons 

u1 through u4 consist of the model system, in which u1 and u3 are  V1 oriented neurons with 

orientation preference of 0 deg and 90 deg respectively, while u2 and  u4 are V2 neurons 

responsive to both real and illusory oriented lines with orientation preferences of 0 deg and 90 

deg respectively.  Connections between the neurons are illustrated by the dot-head lines with a 

corresponding synaptic weight, and black dots represent synapses. For simplicity, I assume that 

the connection configuration are the same across different orientation columns, on Figure 11 this 

is illustrated by the symmetric connection configuration pattern between the 0 deg part (upper) 

and 90 deg part (lower).  An explanation of all connections between the neurons are listed in 

Table 1. 

 

 

Figure 11. Model feedback circuit involved in illusory contour processing.  Four 

neurons u1…u4 are V1 horizontal cell, V2 horizontal cell, V1 vertical cell and V2 

vertical cell respectively.h1 through h4 are the inputs to the circuit, measured by 

presynaptic cell activation.  While h1 and h3 are feedforward input from LGN to V1 

orientation domains, h2 and h4 contain mainly the activation from horizontal 

connections in V2.   

u1 u2

u3 u4

wff

wff

wfo

wfo

wfp

wfp

wlv1 wlv1 wlv2 wlv2 0 deg

90 deg

V2V1
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h2
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Table 1. Connection description in Figure 11 
Type of Conn. Connections Description 

System Input (  , h1, u1) 

(  , h3, u3) 

(  , h2, u2) 
 

 

Feedforward input to V1 horizontal domain 

Feedforward input to V1 vertical domain 

Input from lateral conn. in V2 (contour integration) 

Feedforward 

Conn. 

(u1, wff, u2) 

 
(u3, wff, u4) 

 

 

Feedforward conn. from V1 cell to V2 cel 

 (horizontal) 
Feedforward conn. from V1 cell to V2 cell  

 (vertical) 

Feedback Conn. (u2, wfp, u1) 
 

(u4, wfp, u3) 

 

(u2, wfo, u3) 
 

(u4, wfo, u1) 

 

 

Feedback conn. from V2 cell to V1 cell with same orientation preference (V2 
horizontal) 

Feedback conn. from V2 cell to V1 cell with same orientation preference (V2 

vertical) 

Feedback conn. from V2 cell to V1 cell with opposite orientation preference (V2 
horizontal) 

Feedback conn. from V2 cell to V1 cell with opposite orientation preference (V2 

vertical) 

Lateral Conn. (u1,wlv1, u3) 

(u3,wlv1, u1) 

(u2,wlv2, u4) 

(u4,wlv2, u2) 

Lateral inhibition b/t V1 orthogonal domains 

 

Lateral inhibition b/t V2 orthogonal domains 

 

 

This model has the following features.  First, activation from V2 cells that are tuned to real 

and illusory contours send feedback connections to both V1 horizontal and vertical domains.  

Both feedback connections are excitatory, which is consistent with anatomical studies (Rockland 

and Douglas 1993, Bullier, et al. 1996).  However, the synaptic weights of these two kind of 

feedback could be different.  Second, lateral inhibition between orthogonal domains in V1 and V2 

is emphasized.  With these two features, the model circuit can give rise to the  physiological and 

psychological findings that V2 feedback to V1 in an illusory contour context is orientation 

reversal (Ramsden, Chou and Roe 2001) and that real lines interact with illusory contour 

perception which depends on orientation of the real lines and interacting time (Dillenburger and 

Roe 2004). 

Let‟s first consider the effect of orientation reversal in V1.  There are several possible 

feedback connection patterns that can lead to the orientation reversal  in V1 in an illusory contour 

context.  One mechanism that can lead to orientation reversal might be direct inhibitory feedback 
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to V1 parallel domains or excitatory feedback projection which target inhibitory interneurons, as 

proposed by Ramsden et al 2001.  Another possibility is that V2 illusory cells send excitatory 

feedback to V1 orthogonal domains, and the lateral inhibition from V1 orthogonal domains to 

parallel domains leads to orientation reversal in V1, as proposed by Roe 2003.  These feedback 

patterns works well in obtaining a reversed activation pattern in V1, nevertheless, they are not 

consistent with the V2 inactivation study which shows that inactivation of V2 cells can 

significantly reduce the activities of V1 cells to real line stimulus (Bullier, et al. 1996).  This 

implies that V1 cells do receive a net excitatory feedback from V2 cells at least in processing real 

line stimulus.  If real and illusory contours share processing circuit, the two kind of feedback 

patterns mentioned above are unlikely to give rise to the enhanced activity in V1 cells in a real 

contour context.   

How could V2 feedback to V1 parallel domains exhibits a net excitatory effect in real 

contour processing and a net inhibitory effect in illusory contour processing? One possibility is 

that our brain uses two different feedback circuits in processing real and illusory contours.  

Another possibility is that a common feedback circuitry is used in real and illusory processing, 

and the net effect of the feedback (excitatory or inhibitory) is self-adaptive to the stimulus context 

(real or illusory).  The model circuit proposed in this section is a self-adaptive system. 

Let‟s start by conceptualize how this is achieved.  If this circuit is processing illusory 

contour information, cell u2 first gets activated by the contour integration signals that comes 

laterally (see previous section for detail).  This activation  feeds back to both u1 and u3 with 

synaptic weights wfp and wfo respectively. After cell u3 is activated, it inhibits u1 through lateral 

inhibition wlv1.  Roughly speaking, if the inhibition that follows a u2→u3→u1 route outweighs the 

excitatory feedback u2→u1, u1 should receive a net inhibition from u2.   

Now consider the condition when this circuit is processing real contours.  Unlike the 

illusory condition above, in real contour processing, V1 oriented cells receive direct feedforward 

input from LGN and get activated first.  Suppose the real stimulus is oriented at 0 deg, u1 gets 
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activated first.  This activation is fed forward to V2 neuron u2 which has the same orientation 

preference as u1.  Cell u2 then send excitatory feedback connections to both u1 and u3.  Note that 

u3 already receives lateral inhibition from u1, so it probably will not fire and thus no inhibition is 

sent to u1.  In this way, u1 has a net excitatory feedback from u2.  The excitatory-excitatory loop 

between u1 and u2 is positive feedback and not stable.  Inhibition from cell u3 provides a 

protection mechanism from the system being too active. If firing rate of u1 is high enough, the net 

input to u3 exceeds the cell‟s threshold and will thus drive cell u3, which in turn inhibits cell u1 

and protects u1 from unstable increasing of firing rate.   

Although the above discussion describes the mechanism of the proposed model circuit 

quite well, it is not sufficient to study the dynamics of the model circuit accurately. To that end, I 

use the following differential equations to describe the system 

𝜏𝑟
𝑑𝑣1

𝑑𝑡
= −𝑣1 + 𝐹 ℎ1 + 𝑤𝑓𝑝𝑣2 + 𝑤𝑙𝑣1𝑣3 + 𝑤𝑓𝑜𝑣4  

𝜏𝑟
𝑑𝑣2

𝑑𝑡
= −𝑣2 + 𝐹 ℎ2 + 𝑤𝑓𝑓𝑣1 + 𝑤𝑙𝑣2𝑣4  

𝜏𝑟
𝑑𝑣3

𝑑𝑡
= −𝑣3 + 𝐹 ℎ3 + 𝑤𝑙𝑣1𝑣1 + 𝑤𝑓𝑜𝑣2 + 𝑤𝑓𝑝𝑣4  

𝜏𝑟
𝑑𝑣4

𝑑𝑡
= −𝑣4 + 𝐹 ℎ4 + 𝑤𝑓𝑓𝑣3 + 𝑤𝑙𝑣2𝑣2   

(2.4.1) 

In equations 2.4.1, v1 through v4 are the firing rates of neurons u1 through u4, F is activation 

function, which is usually a saturation function that is bounded from both above and below.  Note 

that each of the equations follows the firing rate model (equation 2.3.8) introduced in section 2.2.   

The model described by equations 2.4.1 is able to account for the orientation reversal 

pattern in V1 as explained above.  However, it is not sufficient if we want to study real-illusory 

contour interaction in V1 and V2, because the interaction effects were shown to be dependent not 

only on the orientation of  real lines, but the timing of interaction as well.  Equations 2.4.1 

describes the behavior of the model circuit on the assumption that the presynaptic activation 
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arrives at postsynaptic neuron in no time. It works well in approximating the time course of firing 

rate of the postsynaptic neuron with the changing firing rate of a presynaptic neuron, but fails in a 

situation where timing of the activation are not synchronized.  Thus, a modified model should be 

established to take into account the time delay of transduction of neuronal activation, so that the 

timing effects of real-illusory contour interaction can be studied.  

The modification can be made simply by changing the ordinary differential equations 

(ODE) 2.4.1 into  delay differential equations (DDE) with constant delay, 

𝜏𝑟
𝑑𝑣1

𝑑𝑡
= −𝑣1 + 𝐹  ℎ1 𝑡 + 𝑤𝑓𝑝𝑣2 𝑡 − 𝜏𝑓𝑏𝑘  + 𝑤𝑙𝑣1𝑣3 𝑡 − 𝜏𝑙𝑣1 + 𝑤𝑓𝑜𝑣4 𝑡 − 𝜏𝑓𝑏𝑘    

𝜏𝑟
𝑑𝑣2

𝑑𝑡
= −𝑣2 + 𝐹  ℎ2 𝑡 + 𝑤𝑓𝑓𝑣1 𝑡 − 𝜏𝑓𝑓 + 𝑤𝑙𝑣2𝑣4 𝑡 − 𝜏𝑙𝑣2   

𝜏𝑟
𝑑𝑣3

𝑑𝑡
= −𝑣3 + 𝐹  ℎ3 𝑡 + 𝑤𝑙𝑣1𝑣1 𝑡 − 𝜏𝑙𝑣1 + 𝑤𝑓𝑜𝑣2 𝑡 − 𝜏𝑓𝑏𝑘 + 𝑤𝑓𝑝𝑣4 𝑡 − 𝜏𝑓𝑏𝑘    

𝜏𝑟
𝑑𝑣4

𝑑𝑡
= −𝑣4 + 𝐹  ℎ4 𝑡 + 𝑤𝑓𝑓𝑣3 𝑡 − 𝜏𝑓𝑓 + 𝑤𝑙𝑣2𝑣2 𝑡 − 𝜏𝑙𝑣2   

(2.4.2) 

,where 𝜏𝑓𝑏𝑘  is the time delay of activation conduction on a feedback projection; 𝜏𝑓𝑓 is the time 

delay on a feedforward connection; 𝜏𝑙𝑣1and 𝜏𝑙𝑣2 are the time delay of lateral inhibition in V1 and 

V2 respectively.  DDE 2.4.2 is the mathematical description of the model circuit I proposed in 

Figure 11.   

DDE 2.4.2 can be viewed as the differential equations to describe a linear system where h1 

through h4 are input to the system and v1 through v4 are the system output (Figure 12).  Note that 

h1 through h4 are also the neuronal activations input to the model circuit of V2 feedback to V1 in 

illusory contour processing, and that v1 through v4 consist of the response of this circuit. Thus, 

studying  the input-output relationship of  this system could reveal how real lines interact with 

illusory contour perception. 
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Figure 12.  Model circuit as a linear system. Studying  the input-output relationship of  this 

system could reveal how real lines interact with illusory contour perception.  

Feedback Circuit 
from V2 to V1 in 
Illusory Contour 

Processing

h1

h2

h3

h4

v1

v2

v3

v4
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CHAPTER III 

 

COMPUTER SIMULATION AND RESULTS 

 

In this chapter, I conduct computer simulation on the model of contour integration in V2 

and the model circuit of feedback from V2 to V1 in illusory contour processing.  For the model of 

contour integration in V2, I will show how the spatial weighting function of V2 lateral 

connections evolves with time and how this kind of process give rise to the receptive field 

configuration of a V2 bipole cell.  To this end, I solve the nonlinear differential equation 2.3.6 

numerically using fourth-order Runge-Kutta scheme with adaptive step size control.  For the 

model circuit of feedback from V2 to V1 in illusory contour processing,  I conducted several 

computational experiments to illustrate the different model circuit responses given different input 

patterns, which simulate the situation of real contour processing, illusory contour processing and 

interaction of real and illusory contours by solving the delayed differential equations 2.4.2 with 

second-order Runge-Kutta algorithm.  All simulations were conducted with MATLAB 6.5 

(Mathworks) software. 

 

Contour Integration in model V2 

In Section 2.3,  we derived a differential equation 2.3.6 to describe the process of activity-

dependent neuronal modification which can lead to the angle  distribution of synaptic weights of 

lateral connections.  Let‟s rewrite this equation here, 

𝜏𝑤
𝑑𝑤 𝑛,𝑚 

𝑑𝑡
=  𝑣 𝑛,𝑚 − 𝜀 𝑢 𝑛,𝑚                                           (2.3.6) 

where, 

𝑣 𝑛,𝑚 = 𝑤𝑓𝑓𝑓  𝑛
2𝜋

𝑁
 + 𝑤 𝑛,𝑚 𝑢 𝑛,𝑚       
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𝜀 =
 𝑣(𝑛,𝑚)𝑤>0

𝑁|𝑤>0
   

Here, w(n,m) is the synaptic weight of lateral connection from a neuron at the angle 

position of n and with a orientation preference of m, and u(n,m) is the firing rate of this neuron;  

𝑤𝑓𝑓 is the synaptic weight of feedforward connection from V1; f is the orientation tuning function 

of the V1 cell with preferred orientation of zero degree; N is the number of angle positions taken 

into account (larger N leads to high precision). 𝜏𝑤  is the time constant of synaptic weight change. 

In computer simulation, the parameters were chosen as follows: 𝜏𝑤 = 1, 𝑤𝑓𝑓 = 1, N=36.  f 

is chosen as a cosinusoidal function with normalized amplitude, 

𝑓 𝜗 = 0.5(𝑐𝑜𝑠 2𝜗 + 1) 

thus, when the stimulus is optimally oriented, f returns a normalized firing rate of 1.  Initial 

value of differential equation 2.3.6 is 𝑤 𝑛,𝑚 |𝑡=0 = 1, implying synaptic weights exhibits no 

angle specificity at the initial state. 

The result from solving equation 2.3.6 numerically with fourth-order Runge-Kutta 

algorithm is depicted in Figure 13. The relationship between synaptic weighting function and axis 

angle θ and orientation preference φ at t=20 was depicted.  As clearly shown on the, the synaptic 

weight peaks at 4 positions: (θ, φ)=(0,0), (0, 180), (180, 0) and (180, 180).  This is consistent with 

our expectation, because the synaptic weight are expected to cluster around horizontal orientation, 

which is the assumed preferred orientation of the bipole cell (cell p in Figure 9).  And this 

confirms the anatomical finding that lateral connections in cortex contact cells of similar 

orientation preference tend to be aligned in the cortical map along directions that correspond to 

the orientational preference (Bosking, et al. 1997).   
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Figure 13 Synaptic weights distribution as a function of axis angle and 

orientation preference.  Theta is the angle position of the distant input cell relative 

to the horizontal bipole cell located at (0,0) and phi is the orientation preference of the 

input cell (See Figure 9).  Spatial weighting function at t=20 was depicted, when 

synaptic weights starts to show peaks and valleys. Four peaks were found on the 

figure considering the periodical characteristic of theta and phi.  

 

The evolution of synaptic weight with time is illustrated in Figure 14. For a certain time t0, 

the distance from a point on the surface (wcosθ , wsinθ, t0) to the point (x,y,t)=(0,0,t0) is the 

synaptic weight of the horizontal connection when the distant input cell was located at the angle 

potion of θ. In accord with our expectation in Section 2.3, the computer simulation does show a 

gradual change from no angle preference of the synaptic weights (circle at the bottom) to a figure-

eight shaped synaptic weight distribution.  And this figure-eight shaped distribution will be 

further squashed along x-axis until it becomes something like a straight line along x-axis.  The 

extent of squashing depends on the critical period of visual system development.  If the critical 

period is relatively short, one could expect a relatively fat figure-eight distribution, whereas in a 

long critical period, this kind of distribution is more elongated along x-axis.  
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Figure 14. The evolution of synaptic weight distribution with time. Horizontal 

planes were used to describe synaptic weights as a function of angle position of the 

distant input cell (θ in Figure 9). For a certain time t0, the distance from a point on the 

surface (wcosθ , wsinθ, t0) to the point (x,y,t)=(0,0,t0) is the synaptic weight of the 

horizontal connection when the distant input cell was located at the angle potion of θ. 

A gradual change from no angle specificity of the synaptic weight(circle at the bottom) 

to a figure-eight shaped synaptic weight distribution is observed. 

 

According to Equation 2.3.1, the spatial weighting function of bipole cell w(r,θ,φ) could be 

reconstructed by multiplying the factor of  angle w(θ,φ) and the factor of distance w(r).  We have 

already solved the spatial weighting function dependent on angle in the above discussion, as 

shown in Figure 13.  Here I use a Gaussian function to model the distance factor w(r). The rebuilt 

spatial weighting function is demonstrated by Figure 15, in which both horizontal and vertical 

axis are measured in a unit of degree in visual space. So it can also be viewed as the receptive 

field of a V2 bipole cell positioned at  (0,0) and with a horizontal orientation preference. The 

Gaussian radius in w(r) was chosen as 7 deg in visual space, so that the resulting receptive field 

would be elongated horizontally about 20 deg in visual space.   In Figure 15, a figure-eight 

configuration can be easily observed, which goes along with our expectation of a bipole cell 

receptive field that contains two spatially separate lobes.  The spatial weight is maximum along 

the central horizontal line, and the fanning out part will be able to complete contours with 

curvature.  
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Figure 15.  Reconstructed receptive field of V2 bipole cell. Figure was depicted in 

visual space, and both axis are measured in a unit of degree. A 2D Gaussian function 

with Gaussian radius =7 deg was used as spatial filter to the weighting function 

dependent only on angle position and  orientation preference (as in Figure 13 and 14). 

A figure-eight shaped receptive field with two separate lobes can be observed. 

 

The resulting spatial weighting function can be used as a spatial filter in the simulation of 

contour integration process, which is not included in this paper. 

  

Feedback from V2 to V1 in Illusory Contour Processing 

In  last chapter, I proposed a model circuit for the feedback from V2 to V1 in illusory 

contour processing.  This circuit utilizes a push-pull mechanism to realize the orientation reversal 

pattern in illusory contour context and  positive feedback in real contour context.  A system of 

delay differential equations 2.4.2 were established in order to describe the model circuit behavior. 

In this section, a further examination of the circuit behavior will be made by solving equations 

2.4.2, and a possible mechanism of real and illusory contour processing in low order visual areas 

(V1 and V2) will be proposed.   
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The general method of computer simulation is as follows.  Delay differential equations 

2.4.2 were solved numerically using MATLAB (Mathworks) function dde23, which is based on 

second and third order Runge-Kutta algorithm.  The system responses were studied in different 

input patterns, which assemble the situations of real contour processing, illusory contour 

processing, and real-illusory contour interaction with different orientation, contrast and 

interacting time. 

The parameters in equations 2.4.2 were selected arbitrarily. Delay times on a feedback 

connetion 𝜏𝑓𝑏𝑘 and on a feedforward connetion 𝜏𝑓𝑓were set to 10 msec, which is consistent with 

physiological findings that feedforward and feedback connections have a similar conduction 

velocity (Girard et al. 2001) and that V1 activation to illusory contours were lagged about 10 

msec than V2 activation to illusory contour stimulus (Lee and Nguyen 2001). Delay times of 

lateral inhibition between orthogonal domains in V1 and V2 𝜏𝑙𝑣1and 𝜏𝑙𝑣2 were set to 30msec, 

because lateral connection has a significantly lower conduction velocity than feedforward and 

feedback connections.  The synaptic weights of connections in the model circuit were set as 

follows, wff=1, wfp=0.4, wfo=0.6, wlv1=-0.5, wlv2=-0.5. 

Activation function F in equations 2.4.2 used in computer simulation is defined as a linear 

threshold function F u =  u − γ +, where γ is threshold and      + is half wave rectification.  In 

simulation, γ = 30.   Here, 30 is a measure of relative strength of firing rate, rather than the 

absolute value of firing rate. 

 

Real  and Illusory Contour Representation in V1 and V2 

The model circuit behavior was first evaluated in a real line context.  When I first proposed 

the model, I made a conceptual analysis of the responses of the circuit when it receives real line 

stimulus and pointed out that the model circuit should behave as a physical circuit that V2 sends 

positive feedback to V1.  Here computational simulation further confirmed this point.   
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In order to simulate the situation of real line input, the input pattern of the model circuit 

was defined as follows: input to cell u1 in the model circuit, i.e h1, was defined as a Heaviside 

function with a onset time of 130 msec, a duration of 50 msec and an amplitude of 100, while 

other inputs to the circuit (h2,h3,h4) were left zero.  One point that requires mentioning is that the 

amplitude of the inputs and responses of the model circuit represent only the relative value of 

firing rate, not necessarily the physical value of firing rates.  The response of cell u1 in the model 

circuit was then prepared to its response when model area V2 was deactivated.  Deactivation was 

achieved by disconnecting the contacts of V1 cells and V2 cells in model circuit. To this end, 

synaptic weights wff, wfp, wfo were set to zero. 

 

 

 

The result of simulation was depicted in Figure 16. The input to the circuit h1 

corresponding to real line stimulation was represented by the transparent blue bar on the figure. 

Solid lines are cell responses when V2 feeds back to V1, while dotted lines are cells responses 

when V2 is deactivated.  As can be observed, the V2 cell response to real line (red solid line) is 

lagged to V1 cell response (blue solid line).  V1 cell response when V2 is deactivated is 

significantly smaller than V2 activated, which is consistent with previous physiological findings 

(Bullier, et al. 1996). 

Figure 16. Circuit response to real 

line stimulation. Blue transparent bar 

represents the real line input to the 

circuit (Heaviside function fed into V1 

horizontal domain). Blue solid line: cell 

activity in V1 horizontal domain with 

V2 feedback; Red solid line: cell 

activity in V2 horizontal domain; Blue 

dotted line: cell activity in V1 

horizontal domain without V2 

feedback. 
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The model circuit of feedback from V2 to V1 in illusory contour processing should be able 

to result in orientation reversal pattern in V1 when activated by illusory contour stimuli.  

Conceptually, we have analyze this point in last chapter. Could computer simulation confirm this?  

The input pattern of the model circuit to simulate illusory contour stimuli can be defined as zero 

inputs to V1 cells and non-zero inputs to V2 cells.  Suppose the model circuit is processing an 

illusory contour of 0 degree, cell u2 will be activated by lateral connections, so I make the input to 

cell u2, i.e h2, a Heaviside function with onset time at 125 msec, a duration of 50 msec and an 

amplitude of 70.  The reason why I make the onset time of h2 125 msec is that the first activation 

of V2 cell response to illusory contour is at about 125 msec. And amplitude 70 is because cell 

response to illusory contour is usually less than the response to real contour.  The input 

configuration is illustrated in Figure 17. 

 

 

 

Figure 17 shows the result of simulation. Input was represented by the transparent red bar. 

Red solid line is the time course of cell u2 (V2 cell tuned to 0 deg) response to illusory contour 

stimuli and cyan solid line is the time course of cell u3 (V1 cell tuned to 90 deg). Figure 17 

clearly shows that V1 cell response to illusory contour is  significantly delayed compared to V2 

cell.  And the V1 cell with orientation preference orthogonal to the illusory contour gets activated 

Figure 17. Circuit response to illusory 

contour stimulation. Red transparent 

bar represents the illusory line input to 

the circuit (Heaviside function fed into 

V2 horizontal domain). Red solid line: 

cell activity in V2 horizontal domain; 

Cyan solid line: cell activity in V1 

vertical domain. No other activation in 

this case. 
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while cells tuned to the orientation of illusory contour is not activated.  The simulation result is 

consistent with previous physiological findings (Lee & Nguyen 2001, Ramsden et al. 2001).  

 

Hypothesized Brain Mechanism of Contour Perception 

The different neural activation pattern in early visual cortex in real and illusory context, as 

discussed above, might suggest a mechanism how our brain differentiate real lines and illusory 

contour. I hypothesize that contour perception depends on the comparison between orthogonal 

domains in both V1 and V2. First, the type of contour perceived relies on the sign of comparison 

in V1 and V2.  If the activation pattern are equal in V1 and V2, a real line perception will be 

produced, otherwise, an illusory contour perception forms. Second, the perceptual strength of 

contours might depend on the value of difference between orthogonal domains in V1 or V2: 

larger difference leads to stronger perceptual strength, both real and illusory. For example, in the 

real line simulation above (see Figure 16), both cells with an orientation preference of 0 deg in 

V1 and V2 were activated stronger than cells with 90 deg orientation preference.  According to 

our hypothesis, this kind of activation pattern should result in a real line perception.  On the other 

hand, if cells in V2 with 0 deg orientation preference fire stronger than those with 90 deg 

preference, while in V1 a reversed pattern was found, as in the case of Figure 17, an illusory 

contour should be perceived according to our hypothesis. If the firing rate difference between 

horizontal and vertical domains in V1(or V2) is not significant, the contour perception will be 

weakened, otherwise the perception will be enhanced. This idea is summarized in Figure 18. 
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Figure 18 Hypothesized brain criteria of contour perception. Contour perception 

might rely on the comparisons between orthogonal domains in both V1 and V2. Type 

of contour perceived relies on the sign of comparison in V1 and V2. The accordance 

of comparison signs in V1 and V2 give rise to real line percept and different 

comparison signs in V1 and V2 lead to illusory contour percept. The perceptual 

strength of contours depends on the difference value of firing rates between 

orthogonal domains: larger difference leads to stronger perceptual strength, both real 

and illusory. 

 

 

Real-Illusory Interaction 

The model circuit of feedback from V2 to V1 in illusory contour processing was then 

tested for the interaction effects between real lines and illusory contours.  Resent psychophysical 

study (Dillenburger and Roe 2004) has suggested a real-interaction effect dependent on 

orientation, real line contrast and interaction time.  The most consistent effects found are 

orthogonal low contrast summation effects at an early interaction time (50 msec), parallel low 

contrast interference at later time (125 msec) on, and a reversal of orthogonal line effects over all 

contrast ranges from summation to interference at times of 125 msec to 150 msec.  Our 

simulation results confirmed these psychophysical findings. 

Exp.1 Early Interaction of Parallel Real Line.  Figure 19 is the simulation result of the 

early interaction effect of parallel real line and illusory contour.  Real and illusory inputs to the 

circuit are depicted by blue and red transparent bars on the figure respectively.  An early real line 

stimulus starting at 50 msec was simulated by a Heaviside function with onset time=50msec, 

duration=25msec and amplitude=50.  Illusory contour input to the circuit was given by the 

V1    

V2    

V1    

V2    

90deg    0deg 90deg    0deg

Real Illusory
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Heaviside function with onset time= 125msec, duration=50msec and amplitude=70.  As can be 

observed from Figure 19, the time course of cell activities after illusory input was only changed 

slightly (if not) when the early real parallel line stimulus was given.  Thus I will conclude that the 

perception of illusory contour is not affected by an early presentation of parallel real lines, which 

is consistent with psychophysical evidence that no significant effect of  parallel real lines was 

discovered on the perception of illusory contour. 

 

 

 

Exp.2 Early Interaction of Orthogonal Real Line. A similar computational experiment 

was conducted to study the interaction of early presented orthogonal real line and illusory contour.  

Fig 20 is the simulation result, on which inputs to the model circuit is indicated by transparent 

bars. The input pattern to model circuit is identical to exp.1 expect that the real line input was to 

the V1 vertical domain with a duration of 50 msec.  Similar to Exp 1, the simulation result in Fig 

20 also suggested a slightly changed time course of illusory contour representation in V1 and V2 

with the presence of early orthogonal real lines.  According to the hypothesized brain criteria of 

contour perception we proposed in last section, the perception of illusory contour should not be 

affected by orthogonal real line.  This is inconsistent with the psychophysical finding that early 

presence of orthogonal real lines will have a summation effect on the perception of illusory 

Figure 19. Circuit response of early 

interaction of parallel real line. Blue 

and red transparent bars represent the 

real and illusory horizontal line inputs 

respectively. Blue solid line: cell 

activity in V1 horizontal domain; Red 

solid line: cell activity in V2 

horizontal domain; Cyan solid line: 

cell activity in V1 vertical domain.  
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contour. How could this be explained?  Dillenburger et. al suggested in their model that this 

summation effect was because illusory contour induction phase has not ended at an early time of 

50msec, orthogonal real line abutting to the illusory contour might activate end-stopped cells in 

V1, which add information to the induction of illusory contour, thus leading to a stronger  illusory 

contour perception.  In our model circuit, the induction of illusory contour was not included, and 

that‟s the reason why it can not explain this summation effect. 

 

 

 

Exp 3.  Later Interaction of Parallel Real Line.  Later interaction effect of parallel real 

lines on the perception of illusory contour can be simulated by shifting the real line input to 130 

msec.  The response of the model circuit was first tested with a suprathreshold parallel real line. 

A Heaviside function input to horizontal domain in V1 with a onset time of 130msec, duration of 

50msec and amplitude of 50 was used to simulate the suprathreshold real line input.  Illusory 

contour input was identical to that of Exp 1 and 2.  The circuit response was depicted on Figure 

21. Dotted lines are the time course of cell responses when no real line stimulus was presented 

whereas solid lines are the time course with real line stimulus.  As can be observed on Fig 3a, the 

suprathreshold parallel real line stimulus will enhance the cell response in V1 horizontal domain 

(blue line) and V2 horizontal domain (red line), while leaving the cell response in V1 vertical 

Figure 20. Circuit response of early 

interaction of orthogonal real line. 

Blue and red transparent bars represent 

the real (vertical) and illusory 

(horizontal) line inputs respectively. 

Red solid line: cell activity in V2 

horizontal domain with interaction; 

Cyan solid line: cell activity in V1 

vertical domain with interaction; Red 

dotted line: cell activity in V2 

horizontal domain without interaction; 

Cyan dotted line: cell activity in V1 

vertical domain without interaction. 
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domain (cyan) only slightly changed.  The enhancement of firing rate in V1 horizontal domain 

resulted in a stronger activation in V1 horizontal domain than vertical domain, which is a 

reversed pattern compared to the pattern when only illusory stimulus was presented. According to 

the hypothesis I made in last section, the accordance of activation pattern in V1 and V2 should 

lead to a real parallel (horizontal) line perception, and the perception of illusory contour should be 

eliminated. 

 

 

 

What if the parallel real line was perceptually subthreshold? I used a Heaviside function 

starting at 130msec, duration of 50msec and amplitude of 20 as real parallel line input.  Figure 22 

shows the simulation result. Compared to suprathreshold real line case in Figure 21, the extent of 

cell response enhancement in V1 and V2 horizontal domains were smaller, and the activation 

pattern in V1 was not reversed (V1 vertical domains were still activated stronger than V1 

horizontal domains).  In this case,  illusory contour should still be perceived, but the perceptual 

strength should decrease due to the decrease of activity difference between V1 horizontal and 

vertical domains.  The simulation result is consistent with psychophysical evidence.    

Figure 21. Circuit response of later 

interaction of suprathreshold parallel 

real line. Blue and red transparent bars 

represent the real and illusory horizontal 

line inputs respectively. Blue solid line: 

cell activity in V1 horizontal domain; Red 

solid line: cell activity in V2 horizontal; 

Cyan solid line: cell activity in V1 

vertical domain; Red dotted line: cell 

activity in V2 horizontal domain without 

interaction; Cyan dotted line: cell activity 

in V1 vertical domain without interaction. 
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Exp 4.  Later Interaction of Orthogonal Real Line.  The last computational experiment 

conducted was to evaluate the interaction between orthogonal real line and illusory contour at a 

later interaction time (from 125msec on).  The inputs to the circuit are identical to that in Exp 3 

except that the real stimulus input was fed into V1 vertical domain.  The circuit response was 

tested in both subthreshold real line condition (Figure 23) and suprathreshold real line condition 

(Fig 24).  In the subthreshold condition, an increased firing rate in V1 vertical domain can be 

observed while V2 horizontal domain exhibited little change of cell activity (See Figure 23).  

According to the hypothesis we made earlier, an enhanced perception of illusory contour arise.   

 

 

 

Figure 22. Circuit response of later 

interaction of subthreshold parallel 

real line. Blue and red transparent bars 

represent the real and illusory horizontal 

line inputs respectively. Blue solid line: 

cell activity in V1 horizontal domain; 

Red solid line: cell activity in V2 

horizontal; Cyan solid line: cell activity 

in V1 vertical domain; Red dotted line: 

cell activity in V2 horizontal domain 

without interaction; Cyan dotted line: 

cell activity in V1 vertical domain 

without interaction. 

Figure 23. Circuit response of later 

interaction of subthreshold 

orthogonal real line. Blue and red 

transparent bars represent the real 

(vertical) and illusory (horizontal) line 

inputs respectively. Red solid line: cell 

activity in V2 horizontal domain; Cyan 

solid line: cell activity in V1 vertical 

domain; Red dotted line: cell activity in 

V2 horizontal domain without 

interaction; Cyan dotted line: cell 

activity in V1 vertical domain without 

interaction. 
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In suprathreshold condition, the orthogonal real line stimulus not only elicit an increase in 

the activity of V1 vertical domain, but the activity of V2 vertical domain as well (Figure 24).  V2 

horizontal domain hardly changed its response in the presence of orthogonal real line, and was 

still activated more strongly than the activity of V2 vertical domain. Applying the hypothesized 

criteria of contour perception again, illusory contour should still be perceived, but due to the 

decrease of activity contrast between V2 horizontal and vertical domains, the perception strength 

should decrease.  Moreover, as we can expect, if the orthogonal real line stimulus was even 

stronger, the activation in V2 vertical domain will outweigh the  activation in V2 horizontal 

domain, in which case a real orthogonal (vertical) line will be perceived.  In psychophysical study, 

an change from summation effect to interference indeed occurred when an abutting orthogonal 

real line interacted with the illusory contour at 125-150msec. 

 

 

  

Figure 24. Circuit response of later 

interaction of suprathreshold 

orthogonal real line. Blue and red 

transparent bars represent the real 

(vertical) and illusory (horizontal) line 

inputs respectively. Red solid line: cell 

activity in V2 horizontal domain; Cyan 

solid line: cell activity in V1 vertical 

domain; Purple solid line: cell activation 

in V2 vertical domain; Red dotted line: 

cell activity in V2 horizontal domain 

without interaction; Cyan dotted line: 

cell activity in V1 vertical domain 

without interaction. 
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CHAPTER IV 

 

SUMMARY AND DISCUSSION 

 

In this paper, I proposed a computational model for illusory contour processing in early 

visual areas.  In the model, illusory contour perception is a process which contains multiple stages 

at different brain areas.  The first stage of processing is image feature measurement in model V1, 

where local contrast orientation is measured by cells of oriented receptive fields  and local line 

ends are measured by hypercomplex end-stopping cells.  Then the resulting activities in V1 are 

fed into V2 cells with non-classical bipole property (Grossberg et al. 1997, Neumann and Sepp 

1999, Domijan et al. 2007), which integrate the activities from two further apart locations and fire 

at a position that falls in between.  The integrated illusory contour information resides in model 

V2 was then delivered to model V1 through feedback connection.  The feedback was able to give 

rise to orientation reversal pattern (Ramsden, Chou and Roe 2001) in V1 in the context of illusory 

contour.   

The stage of contour integration by V2 cells with bipole property and feedback from V2 to 

V1 was discussed in detail in the paper. First, I proposed a model  based on activity-dependent 

synaptic modification to explain the mechanism of lateral connection  formation. With the 

assumption that straight lines are the major visual experience leading to the specific configuration 

of bipole cell receptive field, a system of non-linear differential equations that depends on 

internal states of equation solution was built to describe the model.  This system of differential 

equations was solved numerically within a fourth-order Runge-Kutta scheme.  The resulting  

distribution of spatial weighting function across axis angle and orientation preferences goes along 

with conceptual analysis and the reconstructed  receptive field of a “contour integration” bipole 

cell in V2 is consistent with the anatomical finding that long range lateral connection in early 
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visual cortex setup between cells with similar orientation preferences and that the axis orientation 

of the lateral connection tend to be the same direction of the preferred orientation of cells. 

Second, I proposed a model circuit for the feedback from V2 to V1 in illusory contour 

processing.  This circuit can give rise to orientation reversal pattern in illusory contour context by 

using a push-pull mechanism between orthogonal orientation domains in model V1.  In real line 

context, this circuit will lead to a net positive feedback effect to parallel V1 domains, which is 

consistent with the study which suggested inactivation of V2 decreased V1 cell responses (Bullier, 

et al. 1996).  So the simple mechanism of push-pull competition in V1 orthogonal domains well 

explained the context dependent feedback from V2 to V1 in processing real (positive feedback) 

and illusory contours (negative feedback).  To explain the psychophysical finding that real line 

can interact with illusory contour perception which is dependent on real line orientation, contrast 

and interacting time (Dillenburger and Roe 2004), the time lags in activation conduction were 

introduced to the model circuit of V2 feedback, and a system of delay differential equations based 

on firing rate model were built to describe the model circuit.  The delay differential equations 

were solved numerically using MATLAB (Mathworks) function dde23, which is based on second 

and third order Runge-Kutta algorithm, and the circuit behavior in real line condition and illusory 

contour was confirmed by the differential equation solution. By managing different input patterns 

to the model circuit, the circuit responses in real-illusory interaction were simulated.  Simulation 

were conducted on the conditions of early interaction (SOA 50msec) of real parallel line and 

orthogonal line, later interaction (SOA 125msec) of real parallel line and orthogonal line with 

high and low contrasts.  The simulation results were consistent with psychophysical findings.  

Third, a brain mechanism for contour perception was proposed.  The type of contour 

perceived was hypothesized to be dependent on the comparison of activation in orthogonal 

domains in V1 and V2.  If the comparison of cell activities in horizontal and vertical domains in 

V1 and in V2 are reversed in sign, a perception of illusory contour should arise.  On the other 

hand, if the comparison of orthogonal domains are equal in sign in V1 and V2, real line should be 
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perceived.  Further more, the perceptual strength of contour was hypothesized  to be dependent 

on the activation contrast value between orthogonal domains both in V1 and V2.  Specifically, if 

the activation difference between horizontal and vertical domains increases in V1 or V2, the 

perception of contour (real or illusory) should be enhanced, otherwise, perception strength will be 

decreased.  In model simulation, this hypothesis was used as the criteria for the perceptual 

outcome of real-illusory interactions. 

Although the proposed model framework for the illusory contour processing in early visual 

cortex is consistent with a number of physiological and psychophysical findings, it leaves several 

issues to be discussed.  One issue is whether early visual cortex is sufficient to elicit an illusory 

contour percept or whether illusory contour perception is bottom-up, which depends on low level 

processing, or top-down, which involves cognitive.  Traditionally, illusory contour processing has 

been explained within the cognitive framework (Gregory 1972, Rock and Anson 1979). Illusory 

contour completion is seen as the attempt to find the most likely solution to a perceptual problem.  

This view has changed in the past years.  Evidence has been found that flavors illusory contour 

processing in low-level brain areas. In their ground-breaking experiments, von der Heydt et al. 

1984 found that a moving illusory bar could elicit V2 neurons in monkeys even when there was 

nothing inside the receptive field of the neurons.  Lee and Nguyen 2001 studies the temporal 

evolution of neuronal activities in V1 and V2 in response to the static display of Kanizsa figures.  

They found that the response to illusory contours in V1 in monkeys emerged at about 100ms, 

significantly later than the emergence of illusory contour response in V2. Other single unit and 

optical imaging studies also showed representation of illusory contour in V1 and V2 (Grosof et al. 

1993, Sheth et al. 1996, Ramsden et al. 2001). 

However, recent human fMRI studies (Mendola et al. 1999) found Kanizsa figures elicited 

significant responses in the lateral occipital region (LOC), but only weak response in the human 

early visual areas. Murray et al. 2002 replicated the results by Mendola et al. and measured 

latencies to illusory figure response onset with EEG and fMRI.  They found that the earliest VEP 
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modulation to illusory contour stimuli over LOC scalp, which implies a high order modulation of 

illusory contour perception. In a lesion study, Huxlin et al. 2000 observed on the impairment of a 

monkey‟s ability to see illusory contours as a result of lesion in the inferotemporal cortex (IT).  

These findings ignite the debate of whether illusory contour perception is an early or late process.  

Montaser-Kouhsari et al. 2007 used an fMRI adaptation paradigm to entangle this question. In a 

series of elegant experiments, they showed that fMRI adaptation detected orientation-selective 

responses to illusory contour exist in almost all visual areas. 

If illusory contour perception receives the modulation from high visual areas, what might 

be the possible model of illusory contour processing?  Lee 2002 proposed a possible scenario that 

information inducing illusory contour propagates to high visual area rapidly through direct 

feedforward computation, which generates rough hypotheses about the shape and figures in the 

scene.  These hypotheses then propagate down the visual hierarchy to guide the early visual areas 

to work out the details, constructing a precise representation of illusory contour using the intrinsic 

circuitry in V1 and V2.  As the illusory contour becomes clear and precise in the early visual 

areas, the global shape percept of the illusory figure starts to emerge in higher visual areas (Lee 

2002).  From this perspective, the computation of illusory contour involves both early and late 

processes.  

The model proposed in this paper does not contradict with the high level areas involvement 

in illusory contour processing. Although focused mainly on the illusory contour processing in 

lower-tier visual areas, my model doesn‟t exclude the possibility of high order modulation in 

illusory contour inducing process.  In fact, signals from high-order areas such as lateral occipital 

complex (LOC) could serve as a gating signal for the contour completion process in model V2.  It 

is possible that long-range horizontal connections in V2 are not able to give rise to a robust 

representation of the illusory contour “filled in”, and with the guidance of neural signal from high 

areas which carries an estimation of the illusory contour, the neural activities in V2 that fit the 

estimation will be enhanced and those do not fit will be depressed. 
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In sum, the proposed model framework for the illusory contour processing in early visual 

cortex in this thesis is consistent with a number of physiological and psychophysical findings and 

might be able to explain the mechanism of illusory contour perception in V1 and V2.  However, 

due to the lack of physiological and anatomical data concerning the interaction between early 

visual cortex and areas higher in visual hierarchy, the contribution of higher order areas to the 

perception of illusory contour was not studied by this computational work.  Additional empirical 

investigations are needed before we can address the question of how we can see things beyond 

reality. 
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APPENDIX 

 

A.  MATLAB Code for simulation of the bipole receptive field 

%-------------------------- 

% File: Equ236_Sol.m           

% Desc: Solving Equ 2.3.6      

%-------------------------- 

 

w0=ones(36*36,1); %initial value 

[t,w]=ode45(@hebb,[0 20],w0); %solve equ 2.3.6 using ode45 

%convert to 3D matrix weight(n,m,weight_val) 

for i=1:36 

    for j=1:36 

        weight(i,j,:)=w(:,36*(i-1)+j); 

    end 

end 

save weight_sim t w weight; 

 

%-------------------------- 

% equation 2.3.6 

function dw=hebb(t,w) 

N=36;wff=1;eps=0;v=0;c=0;s=0; 

dw=zeros(N*N,1); 

% put synaptic weight at position (n,m) to zero  

% if less than 0, calculate the sum of non-zero  

% weights to get the sliding threshold epsilon 

for i=1:N   % n, the index representing theta 

    for j=1:N     % m, the index representing phi 

        ind=(i-1)*N+j; 

        if (w(ind)>0)  % equation 2.3.7 

           c=c+1; 

           v=wff*(cos(2*i*2*pi/N)+1)/2+w(ind)*wff*... 

(cos(2*(i-j)*2*pi/N)+1)/2; 

           s=s+v; 

        else 

           w(ind)=0; 

        end 

    end 

end 

eps=s/c; % epsilon equals the average value of  

         % existing non-zero synaptic weights 

for n=1:N 

    for m=1:N 

        ind=(n-1)*N+m; 

      if (w(ind)>0) 

          u=wff*(cos(2*(n-m)*2*pi/N)+1)/2; 

          dw(ind)=(wff*(cos(2*n*2*pi/N)+1)/2+w(ind)*u-eps)*u; 

      else 

          dw(ind)=0; 

      end 

    end 

end 
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%-------------------------- 

% File: DrawFig13.m           

% Desc: Draw figure 13      

%-------------------------- 

%load data 

clear; 

load weight_sim; 

theta=zeros(36,36); 

phi=zeros(36,36); 

a=[-170:10:180]; 

for k=1:36 

    theta(k,:)=a; 

end 

phi=theta'; 

surf(theta,phi,weight(:,:,20)); 

axis([-170 180 -170 180]); 

axis equal; 

 

 

%-------------------------- 

% File: DrawFig14.m           

% Desc: Draw figure 14      

%-------------------------- 

%Fig 14 in the thesis used a higher resolution 

i=1:1:36; 

theta=2*pi/36*i; 

w0=zeros(36,4000); 

%pick up the weighting values where theta==phi 

for k=1:36 

    w0(k,:)=weight(k,k,:); 

end 

x=cos(theta(:)); 

y=sin(theta(:)); 

for j=1:1:20 

    wl=w0(:,j); 

    X(:,j)=wl.*x; 

    Y(:,j)=wl.*y; 

    Z(:,j)=j*ones(36,1); 

end 

save weight_sim w1; 

surf (X,Y,Z); 

 

 

%-------------------------- 

% File: DrawFig15.m           

% Desc: Draw figure 15      

%-------------------------- 

% load data 

load weight_sim; 

% use a vector map to simulate the bipole RF 

[x,y]=meshgrid(-15:1:15,-15:1:15); 

r=sqrt(x.^2+y.^2); % distance from distant input cell to bipole cell 

% 2D Gaussian function as distance factor w(r)  

gaussflt=25*normpdf(r,0,7); 

% theta value on the grid points 

the=atan(y./x)/(2*pi)*360; 

the(16,16)=0; % exclude (0,0) point to prevent "devided by zero error" 
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the_index=round(the/10)+18; % index of theta in the weighting matrix  

figure,hold on; 

% vector map display 

for phi_index=1:36 

    mod=[]; 

    angle=phi_index*10*2*pi/360-pi; 

    for i=1:31 

        % mod is the synaptic weight value 

        mod=[mod weight(the_index(:,i),phi_index,3000)]; 

    end 

% filtered by Gaussian function w(r), 

% 1/600 as a adjustment coefficient 

    % for suitable screen display 

    mod=mod/600.*gaussflt; 

    px=cos(angle)*mod; 

    py=sin(angle)*mod; 

% draw vector map 

    quiver(x,y,px,py,0,'.'); 

    axis image; 

end 

hold off  
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B. MATLAB code for simulation of V2 feedback model 

%--------------------------------- 

% File: V1V2Interaction.m          

% Desc: Simulation of              

%       Real-illusory interaction  

%       with V2 feedback model     

%--------------------------------- 

% Set parameters here 

p.wf=1; 

p.wbp=.4; 

p.wbo=.6; 

p.wlv1=-.5; 

p.wlv2=-.5; 

% Change inputs to the model circuit 

p.h1=0; 

p.h2=70; 

p.h3=0; 

p.h4=0; 

 

% solving delay-differential equation 2.4.2 

sol = dde23(@ddefun,[10 30],[0; 0; 0; 0],[0, 1000],[],p); 

% plot cell responses (u1~u4)    

hold on; 

plot(sol.x,sol.y(1,:),'b:','LineWidth',1); 

plot(sol.x,sol.y(2,:),'r:','LineWidth',1); 

plot(sol.x,sol.y(3,:),'c:','LineWidth',1); 

plot(sol.x,sol.y(4,:),'m:','LineWidth',1); 

hold off; 

axis([0 350 0 150]); 

 

%--------------------------- 

% equation 2.4.2 

function dv=ddefun(t,v,Z,p) 

ylag1=Z(:,1); 

ylag2=Z(:,2); 

dv=zeros(4,1); 

dv(1)=-v(1)+saturation(p.h1*stepf((t-130)/50)   ... 

    +p.wbp*ylag1(2)+p.wlv1*ylag2(3)+p.wbo*ylag1(4)); 

dv(2)=-v(2)+saturation(p.h2*stepf((t-125)/50)  ... 

    +p.wf*ylag1(1)+p.wlv2*ylag2(4)); 

dv(3)=-v(3)+saturation(p.h3*stepf((t-130)/50)   ... 

    +p.wlv1*ylag2(1)+p.wbo*ylag1(2)+p.wbp*ylag1(4)); 

dv(4)=-v(4)+saturation(p.h4*stepf(t/100)   ... 

    +p.wf*ylag1(3)+p.wlv2*ylag2(2)); 

dv=dv./10; % use a time variable of 10 

 

%--------------------------- 

%Heaviside function 

function y = stepf(x) 

 

if ( x<=1 & x>=0 ) 

    y=1; 

else 

    y=0; 

end  
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