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Chapter 1. Background and Introduction 

 

The skeleton is a vital organ in vertebrates that facilitates locomotion and protection for soft 

organs. In higher terrestrial organisms such as mammals, it allows rigid posturing, protects the site of 

hematopoiesis, and serves as a reservoir for calcium and phosphate homeostasis. Due to these 

structural roles, the integrity of the skeleton needs to be maintained throughout both life and 

adaptations to the environment. At its core, this homeostatic structural maintenance is achieved 

through a process called bone remodeling, which is a balanced action between bone-forming 

osteoblasts and bone-resorbing osteoclasts. Recent advances in medicine and animal models revealed 

this organ to also be involved in additional physiological processes, including energy metabolism1–3, 

behavior4–7, reproduction8,9, and to be the source of hormones10,11. As an endocrine organ, the skeleton 

can also serve as both the target and the source of endocrine and neuronal signals that integrate its 

functions with other tissues and organs. Furthermore, paracrine interactions exist between bone cells, 

the skeletal matrix, and cells from other systems within the bone microenvironment. These 

endo/neuro/paracrine interactions have an impact on the skeleton, as well as other organ systems. In 

particular, the sympathetic nervous system (SNS), a branch of the peripheral autonomic nervous system, 

has been demonstrated to be involved in skeletal physiology and pathologies. Briefly, SNS activation 

releases the neurotransmitter norepinephrine, which acts on osteoblastic β2 adrenergic receptors and 

leads to bone loss via RANKL-mediated osteoclastogenesis. Osteoblastic β2AR signaling also inhibits pre-

osteoblast differentiation into mature osteoblasts12 (Fig. 1.1). However, the understanding of how this 

neuronal control of bone metabolism occurs is incomplete, and is the focus of this thesis. This 

introductory chapter will present the background knowledge of skeletal physiology and its known 

interactions with the SNS, and frame the unknown areas in the field. 
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Figure 1.1 – Paradigm of sympathetic nervous system action on bone 
Sympathetic nervous system (SNS) activation leads to release of the neurotransmitter 
norepinephrine (NE), which acts on osteoblastic β2 adrenergic receptors (β2AR), which lead to 
production of the pro-osteoclastogenic RANKL and inhibits osteoblast proliferation. These 
effects lead to increase bone resorption and decreased bone formation, resulting on bone loss. 
 

 

Skeletal physiology and the bone remodeling process 

 

The physiologic bone remodeling process 

The skeleton is subject to multiple environmental and physiological stresses, such as mechanical 

strain or mineral resorption, on a daily basis. Mechanical strain causes microfractures, whether through 

small sub-fracture external impacts, tension forces caused by muscles, or by passive weight bearing, and 

are repaired by a dynamic process called bone remodeling. These strains cause microfractures that are 

sensed by matrix-embedded osteocytes13, which release the chemokine RANKL into the bone 

microenvironment in response. This osteocyte-osteoclast coupling in turn stimulates pre-osteoclasts to 

differentiation mature multinucleated osteoclasts. These bone-resorbing osteoclasts adhere to the bone 

surface and resorb the bone matrix and mineral around the microfracture. Then, pre-osteoblasts are 

recruited to the resorption pit, differentiate into bone matrix-forming osteoblasts that deposit Type I 
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collagen matrix (termed osteoid), and eventually mineralize the freshly made organic matrix with 

calcium phosphate crystals (hydroxyapatite). Finally, after completing the bone formation function, the 

post-mitotic osteoblasts either undergo apoptosis, become quiescent bone lining cells, or become 

embedded inside the bone matrix they secreted to become osteocytes.  

The homeostatic balance between bone formation and resorption preserves the structural 

integrity of bone and maintains bone mass. At a steady state, there are multiple sites in the body that 

are simultaneously undergoing this process, and it is believed the adult human skeleton replaces itself 

every 10 years14. The complex process of bone remodeling is integral for skeletal homeostasis and 

integrity. In addition to the paracrine signals between osteoblast and osteoclasts, other systemic 

endocrine and neuronal factors also influence this homeostatic balance. However, unlike other 

functions under central homeostatic control such as heart rate, fat mass, or mineral balance, a central 

integrator of afferent and efferent signals to regulate bone mass has not been identified. Although, 

extensive evidence exists of the central nervous system exerting control of bone mass, and will be 

covered in further detail below. Finally, perturbations to bone metabolism may tip the formation-

resorption balance in favor towards one direction, and result in bone metabolic diseases.  

 

Osteoporosis, a disease in bone fragility 

Osteoporosis is a bone metabolic disease of skeletal fragility that affects an estimated 10 million 

Americans15. Its prevalence is highest in the aged population, affecting 25% of people over the age of 

5015, and an estimated half of all post-menopausal women16,17. It is a silent disease without any 

associated pain or other symptoms until a pathological fracture occurs. These fractures present with 

their own morbidity and mortality, with a 5-year mortality rate of a hip fracture being 20%18. The wide 

prevalence of osteoporosis combined with the consequences of an osteoporotic fracture make both the 

treatment and prevention of osteoporosis a national health issue. 
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The etiology of the disease is either decreased bone mineral density (BMD), impaired bone 

microarchitecture, or both. In the general population, accumulation of bone mass throughout 

development and puberty leads to peak bone mass, which is occurs between 25-30 years of age16, and 

steadily declines throughout age. The determinants of peak bone mass are largely genetic, although 

factor such as diet, physical activity, and medication during childhood and adolescence may impact this 

value19. The peak bone density achieved in young adulthood represents a reserve of bone mass that is 

protective of the gradual bone loss through life. Conversely, many factors can increase the rate of bone 

loss: diseases of other organs such as malabsorption, renal dysfunction, COPD, chronic rheumatologic 

diseases, and malignancy11,17,20; iatrogenic such as chronic glucocorticoid use; or skeletal unloading such 

as prolonged bedrest or space flight21. Therefore, screening of at-risk populations for low bone mass is 

an important part of osteoporosis management. 

Osteoporosis, or the less severe osteopenia, can be diagnosed based on measurements of bone 

mass via dual energy X-ray absorbitometry (DEXA) scans, or by evidence of pathological fractures not 

attributable to high-energy trauma18,22. The former is a quantitative measurement of bone density, and 

compares it to the patient population, with 2.5 standard deviations below the population mean being 

sufficient for a diagnosis for osteoporosis. On the other hand, a patient presenting with a pathologic 

fracture that would not otherwise occur in individuals with healthy skeletal structure such as at the 

distal wrist or femoral head, or vertebral compressions are diagnostic of osteoporosis18. It is thus 

important to identify at-risk individuals, reduce or treat other factors that increase bone loss, and treat 

osteoporosis before the decreased bone mass leads to a pathologic fracture. 

The treatments of osteoporosis aim to prevent further bone loss through a multi-faceted 

approach. Adequate mineral balance can be targeted through vitamin D and calcium supplementation17; 

maintaining bone density and quality can be achieved through weight-bearing exercise; underlying 

pathologies can be directly treated, such as selective estrogen receptor modulators for post-menopausal 
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estrogen deficiency23; and the bone remodeling process can be directly targeted pharmacologically. 

There are two major drug groups on the market were designed to specifically affect bone remodeling: 

anti-resorptives and bone anabolic drugs, both defined by their function. Anti-resorptives target 

osteoclasts but achieve this through several mechanisms: preventing RANKL-mediated 

osteoclastogenesis with the biologic drugs like denosumab24, inhibiting osteoclast function with the 

bisphosphonate drug class, or inhibiting the bone-catabolizing osteoclast protease Cathepsin K with 

Odanacatib25. On the other hand, bone anabolic agents aim to promote osteoblastic bone formation by 

direct stimulation of osteoblast differentiation with Teriparatide26, or blocking the osteoblasts inhibitor 

sclerostin via biologic drugs such as romosozumab27,28. However, these drugs have significant side 

effects that limit their efficacy, necessitating the development of new drugs to treat osteoporosis.  

 

Differences in human versus murine bone physiology 

Mice have been used for decades as a model organism for bone biology. However, the bone 

remodeling process differs between human and animals in the gross anatomy of the skeleton, the 

microanatomy of bone tissues, the rate of bone metabolism, and the microarchitecture of bone 

remodeling process.  

On the gross anatomical scale, the difference in posture between humans and mice leads to 

different loading of bones in these two species. This is most significant in the vertebrae, which are 

subject to compressive forces in humans. On the microscopic scale, mice bone architecture differs 

greatly from humans. A microscopic bone structure called osteons around a central Haversian canal, 

which are intracortical vessels that permeate the bone, are present in larger animals but do not exist in 

mice8,29,30. These osteons are form during the bone remodeling process, where osteoclasts resorb 

existing osteons in bone, and osteoblasts form new concentric circular osteons in the resorption pit. This 

vessel system provides nutrition to the organ beyond the capacity of simple diffusion, and is also an 



6 

ultrastructure of bone integrity based on oblique osteons31. Bone resorption is also different in humans 

compared to mice. In mice, the bone remodeling process involving osteoblasts and osteoclasts occurs in 

an open bone microenvironment. However, human bone remodeling occurs within a microscopic 

structure called the basic multicellular unit (BMU), which represents the foci of bone remodeling. Once 

the bone remodeling process is initiated by osteocytes in higher mammals such as humans, bone lining 

cells - inert cells from the osteoblast lineage – expand to form a canopy that merges with blood vessels. 

This canopy isolates the focal bone resorption and formation to the local area32, and prevents paracrine 

pro-osteoclastogenic factors from diffusing away to cause ectopic bone remodeling. 

The basal metabolic rate in mice is much higher than humans. This is evident in basal energy 

expenditure, heart rate, and also extends to skeletal homeostasis. Bone turnover in mice is much higher 

than that in humans, and conditions that elicit changes in bone mass are more rapidly evident in murine 

models than human patients29,33. Finally, the commonly used C57BL6 mouse strain has among the 

lowest natural bone mass of among laboratory mice34,35, which decreases the sensitivity of this strain to 

bone loss. However, the ubiquity of this strain in genetic and pharmacologic studies necessitates its 

continued use in order to properly compare results with previous findings. Taken together, these 

multiple differences between murine and human physiology makes translating animal model findings to 

human physiology non-trivial, and necessitates independent confirmation of many studies in humans. 

 

Bone formation in other bone physiologies 

Two additional processes exist where bone remodeling is involved, although with slight 

variation: bone growth during development until the end of puberty, and fracture healing. A full 

background of physiologic mechanisms and pathologies that influence either bone growth or fracture 

healing are beyond the scope of this thesis. However, a brief overview of the process is provided. Bone 

growth can be further subdivided into growth of long bones via a growth plate through a process called 
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endochondral ossification, and of flat bones via direct conversion of cartilage via a process called 

intramembranous ossification. However, it should be mentioned that fracture healing approximately 

recapitulates some of the processes seen though bone development36,37.  

Endochondral ossification involves chondrocytes (the resident cells of cartilage) from the resting 

zone of the epiphyseal growth plate undergoing proliferative and hypertrophic differentiation changes, 

and depositing hyaline cartilage matrix comprised of hydrated proteoglycans. These hypertrophic 

chondrocytes create a widening hypertrophic zone within the epiphyseal cartilage, which becomes the 

basis of the primary ossification center. This epiphyseal widening is the ultimate source of the 

lengthening of the long bones, as well as vertebrae. The end distal end of the growth plate, the cartilage 

matrix is calcified, and hypertrophic chondrocyte death leads to recruitment of osteoblast and 

osteoclasts, which resorb and replace the calcified cartilage with calcified bone. This process of 

osteoblast/clast restructuring of cartilage is termed bone modeling, and is distinct from the bone 

remodeling process occurring exclusively in bone. Depletion of the reservoir of resting chondrocytes 

throughout bone growth leads to the disappearance of the cartilaginous growth plate – commonly 

termed “closing” of the growth plate observed at the end of puberty – and defines the end of 

endochondral ossification and the lengthening of long bones38,39. During fracture callus healing, a 

hematoma forms from traumatic tissue damage, which triggers the inflammation cascade. Afterwards, 

stem cells from the adjacent tissues migrate into the hematoma, and differentiate into chondrocytes to 

form the cartilaginous soft callus. Afterwards, endochondral ossification occurs where 

osteoblasts/osteoclasts replace the hyaline cartilage with bone tissues37. 

Intramembranous ossification occurs in flat bones such as those of the cranium and mandible, 

and involves the deposition of bone matrix by osteoblasts without cartilage. Developmentally, 

ossification centers form at the location of future bones, and act as the nidus of bone apposition. 

Osteoblasts then deposit immature organic osteoid and mineralize the matrix. Embedded osteoblasts 
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become osteocytes, and a population of mesenchymal stem cells remain on the surface to form the 

periosteum, and can differentiate into osteoblasts for continued intramembranous bone growth38. This 

process is also responsible for appositional growth of the bone diaphysis midshaft, where periosteum 

directly deposits bone on the outside of the cortex, thereby increasing the width of the bone without 

the need for a cartilage scaffold.  

 

Bone cell physiology and function 

There are three major bone cells involved in skeletal physiology, specifically with regards to 

bone remodeling: bone forming osteoblasts, bone resorbing osteoclasts, and bone residing osteocytes. 

The term osteoblast is used as describing cells of the bone-forming lineage of mesenchymal stem cells.  

The terminology used in this thesis will be precise to avoid confusion:  

- Osteoblasts refer specifically to bone-surface cells that deposit and mineralize Type I collagen 

organic matrix and mineralized.  

- Osteocytes refer specifically to in vivo matrix-embedded terminally differentiated osteoblasts.  

- Bone marrow stromal cells (BMSCs) are in vitro multipotent cells isolated from the bone marrow 

defined by their adherence to tissue culture plastic (see Materials and Methods), and are able to 

differentiate into osteoblast-like cells. 

Terms referring to in vitro osteoblast cultures in this thesis are descriptive, e.g. 

osteoblastic/osteocytic, osteoblast/osteocyte-like, or osteoblast-lineage. While properties and markers 

of differentiated BMSCs, primary osteoblasts (e.g. calvarial osteoblasts), or osteoblastic cell lines are 

consistent with the known in vivo biology, many differences still exist. Furthermore, isolated in vitro cell 

populations are not in the multi-cell lineage bone microenvironment that exists in the whole organ. 

Thus, extrapolating in vitro findings to be equal to in vivo may not be appropriate. 
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Osteoclasts in bone metabolism  

Osteoclasts are bone resorbing cells derived from the macrophage-monocyte lineage. Similar to 

macrophages that “clean up” their resident tissue of debris, osteoclasts “clean up” damaged tissue 

(micro-fractured bone) in the bone microenvironment.  

The differentiation pathway of osteoclasts starts with macrophage-monocyte precursors, which 

differentiated into monocytes, then pre-osteoclasts. The cells are in circulation, and are drawn to a site 

of needed resorption by the chemokine RANKL and MCSF, which also trigger the differentiation and 

fusion of mononucleated osteoclasts to the functional multinucleated cell. The mature osteoclast 

basolateral surface attaches onto the underlying bon surface via integrins, forms a ruffled border that 

isolates the resorption area - termed sealing zone. These cells then acidify the sealing zone, and 

enzymes such as Cathepsin K and matrix metalloproteases are secreted to degrade the bone mineral 

and matrix32. The physiologic needs for osteoclast bone resorption are multiple. They are necessary to 

maintain skeletal integrity by absorbing bone microfractures, allowing proper repair through bone 

remodeling. Although bone resorption leads to bone loss, loss of osteoclast function may paradoxically 

lead to skeletal fragility via decreased bone quality16,40, highlighting the need for bone remodeling to 

maintain skeletal integrity. This paradoxical mechanism is partially due to osteoclast-osteoblast coupling 

(which is distinct and opposite from the classic RANKL-mediated osteoblast-osteoclast coupling), in 

which osteoclasts influence osteoblasts through by either liberating matrix-embedded growth factors or 

secreting their own pro-osteoblastic molecules41. Furthermore, bone resorption also liberates calcium 

for mineral homeostasis – a process triggered by osteoblasts/osteocytes but ultimately mediated by 

osteoclasts. However, in the context of bone loss and prevention of osteoporosis, preventing excess 

bone resorption by osteoclasts is still a priority.  
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Osteoblast lineage differentiation and development 

Osteoblasts arise from the mesenchymal lineage. Mesenchymal stem cells (MSCs) are 

multipotent cells defined by their multipotent ability to differentiate into the osteoblast, chondrocyte, 

adipocyte, myocyte, but not hematopoietic lineages42. In many tissues, resident MSCs called stromal 

cells are present in the tissue, and are capable of proliferating and differentiating into connective tissue 

cells in response to injury for tissue repair (e.g. bone remodeling or fracture repair). Mesenchymal stem 

cells begin differentiation into osteochondral progenitors under the control of the “master switch” 

Runx243, and are committed to the osteoblastic linage after expression of the transcription factor Osx in 

pre-osteoblasts44,45. These cells are capable of proliferation and differentiation into fully functional 

osteoblasts, which express the genes Col1a1 and Bsp encoding structural proteins Type I collagen and 

bone sialoprotein, respectively. These early osteoblasts also express Alp, which encodes alkaline 

phosphatase responsible for bone matrix mineralization, and are capable of further proliferation. Later 

during differentiation, these cells express the mature osteoblast marker Ocn encoding the bone matrix 

protein osteocalcin46. Finally, these post-mitotic mature osteoblasts are subject to three fates: undergo 

apoptosis, become quiescent bone lining cells on bone surfaces, or remain embedded within the bone 

matrix as osteocytes. In the terminally differentiated osteocytes, expression of the osteocytic marker 

sclerostin encoded by the Sost gene acts to inhibit osteoblast differentiation47,48 – thereby influencing 

both arms of the bone remodeling process. 

 Both perivascular smooth muscle cells42,49 and periosteal cells 50are capable of being the source 

of new osteoblasts. It is likely that both cell types are responsible for differentiating into the bone 

forming cells, but in response to different stimuli and at different locations. Perivascular smooth muscle 

cells – AKA pericytes – can by characterized by several markers such as smooth muscle actin (α-SMA), 

platelet-derived growth factor receptor β (PDGFRβ), annexin A5 (Anxa5), neural/glial antigen 2 (NG2), or 

the homeodomain transcription factor Msx1. None of these markers are defining for all MSC 
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populations, and none are restricted to purely MSCs (e.g. NG2 is also a glial marker)42. Thus, these 

pericytes are defined by their location, marker expression, and function. It is believed that 

experimentally isolated BMSCs used to study osteoblast differentiation are pericytes, and stromal stem 

cells isolated from other tissues (i.e. muscle51,52 and adipose53) are also pericytes. In addition to being 

the source of MSCs in the bone marrow, pericytes have also been demonstrated to control the 

perivascular niche by facilitating interactions between the endothelium and hematopoietic cells54,55. This 

function is particularly important for the bone marrow, where hematopoietic cell egress is critical for 

immune function as well as autoimmune diseases56–58.  

The periosteum is another source of osteo/chondrogenic cells, although they do not possess the 

multipotent potential to differentiate into adipocytes or myocytes. The periosteum is the outer 

membrane surrounding bones. It is a highly vascularized structure, is densely innervated by sensory 

neurons, and serves as the site of attachment of tendons59. The periosteum is comprised of two layers – 

the thick fibrous outer layer and an inner cambium layer capable of osteogenesis50, and its located offers 

clues into its function. It is capable of forming bone through appositional growth, as cambial cells can 

differentiation into osteoblasts. It is also critical for providing chondrocyte and osteoblast progenitors 

during fracture healing50. However, during normal bone homeostasis the periosteal side of the cortex is 

not actively undergoing bone remodeling, unlike in trabecular woven bone surfaces in the medullary 

cavity. Thus, it is believed that the periosteum contributes little to the pathogenesis of osteoporosis. 

Embryologically, the osteoblast lineage arises from the mesoderm. The axial skeleton develops 

from parallel segmented structures called somites formed on both sides of the neural tube along the 

dorsal part of the developing embryo. These structures give rise to the axial skeleton, including the 

vertebrae, ribs, and the occipital bone. The appendicular long bones are formed from the mesenchymal 

condensation, which are pre-cartilage mesenchymal cells that form in the limb bud. These cells form the 

cartilage matrix of the primitive long bone, give rise to the growth plate, and are replaced by bony 
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tissues via the process of endochondral ossification. The exception to the mesodermal origin of bone are 

the pharyngeal arches, which arise from neural crest cells of the neuroectoderm give rise to facial 

(maxillary) and jaw (mandibular) bones.  

 

Osteocyte signaling and function in bone remodeling 

Osteocytes were previously thought to be quiescent cells that held little to no role in bone 

physiology. However, the past decade of advances has shown the osteocyte to be the central cell in 

regulation bone metabolism13,60,61. These cells are terminally differentiated post-mitotic osteoblasts that 

become embedded in lacunae in compact and cancellous bone. Through this transition, cuboidal 

osteoblasts become polygonal osteocytes with a large reduction of cytoplasmic volume and organelles 

(due to the decreased synthesis requirements) within bone lacunae, and with many dendritic processes. 

The long dendrite-like processes that extend throughout the bone, connecting them with other 

osteocytes and to cells in the surface microenvironment, facilitating both a sensory and an instructive 

signaling role in bone. As previously mentioned, osteocytes sense microfractures in the bone stroma and 

release the pro-osteoclastogenic chemokine RANKL13, which then initiates the bone remodeling process. 

They also express and release the anti-osteoblastic protein sclerostin, which inhibits the Wnt pathway in 

osteoblasts and leads to overall decreased bone formation47. In addition to their now-classical role as 

the regulator for bone remodeling, osteocytes are also capable of mechanosensation. They sense 

mechanical stress on the skeleton and produce extracellular signaling molecules such as bone 

morphogenic proteins (BMPs), nitric oxide, or prostaglandin E2 (PGE2), which can also lead to bone 

remodeling11,61. Unlike transient osteoblasts and osteoclasts, the osteocytes are the resident cells of 

skeletal matrix, comprise 90% of the cellularity of the tissue61.  

In addition to their central role in bone remodeling, osteocytes also play dynamic roles in 

mineral homeostasis. They express and secrete FGF23, which acts on kidneys to increase phosphate 
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urinary elimination and alter vitamin D metabolism62,63, and can be modulated according to the body’s 

mineral needs. They also modulate systemic calcium concentrations, which are important for proper 

homeostasis and very sensitive to perturbations. Parathyroid hormone (PTH), which can act on the 

kidney to retain calcium from excretion, also acts on osteocytes to acutely replenish systemic calcium 

through stimulation osteoclast-mediated resorption64. Additionally, lactation and nursing present a large 

drain in maternal calcium, and maternal calcium homeostasis is partially mediated by osteocyte 

PTH/PTHrP hormonal signaling60,65. Finally, there is also evidence suggesting osteocytes directly resorb 

peri-lacunar bone66.  

Osteocytes are not only capable of signaling to osteoblasts and osteoclasts in the bone marrow, 

but are also capable of communication between each other via their dendritic processes. Membrane 

protein complexes called gap junctions are expressed in osteocytes67, and are able to diffuse dye to 

adjacent cells. Gap junctions connect the cytoplasm of adjacent cells, and allow the transmission of 

cytoplasmic contents such as secondary messenger molecules or electric signals between these cells68–

70. Deletion of the gene encoding the gap junction protein Connexin 43 (Gja1) in the osteoblast lineage 

in mice leads to a limited bone remodeling response to mechanical loading69,71, suggesting that 

connexin-mediated inter-osteocytic communication is important for proper bone homeostasis.  

Given the multiple known roles that osteocytes in have in mineral homeostasis and bone 

remodeling, these would be the appropriate cell in the bone microenvironment to regulate other 

skeletal homeostatic processes. 

 

Osteoblasts and osteocytes as endocrine cells 

In the previous section, osteoblasts have been presented as the bone matrix forming and 

mineralizing cell in the bone microenvironment; as the “bone formation end-point” of bone 

homeostasis. However, recent advances in bone biology also identify osteoblast lineage cells as the 
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source of endocrine signals. As mentioned before, osteocytes synthesize and secrete FGF23 into 

circulation, which acts as a systemic modulator of phosphate and vitamin D levels63. Osteoblast-lineage 

cells also secrete osteocalcin (Ocn), which was classically believed to be a bone stromal protein, though 

its role in skeletal homeostasis was not well understood. Genetic deletion of the osteocalcin gene had 

little effect on bone mass, but surprisingly had deficient glucose homeostasis metabolic syndrome-like 

phenotype, and decreased male fertility via decrease testosterone8,72,73.  

 There is significant cross-talk between osteoblasts and other connective tissues as well. It is 

classically known that muscles influence bone by exerting mechanical strain, and unloading simply from 

disuse leads to both muscle wasting and bone loss. However, myocytes also produce and secrete 

muscle-specific chemokines termed “myokines,” including IGF-1, IL-6 and LIF/SDF174, that are capable of 

acting on osteoblasts and may be endocrine mediators of bone loss during conditions such as bedrest. 

Furthermore, osteoblasts also produce pro-angiogenic factors such as VEGF that influence angiogenesis 

in vivo. While the osteoblast-endothelial interactions are largely restricted to the bone marrow, these 

findings further the concept that osteoblasts and osteocytes serve functions beyond bone remodeling.  

 

Overview: Sympathetic nervous system physiology 

The autonomic nervous system is a branch of the efferent peripheral nervous system comprised 

of the sympathetic (SNS) and the parasympathetic nervous systems (PSNS). These two divisions control 

unconscious bodily functions, are intricately involved in body homeostatic systems involving the brain, 

and are distinct from the somatic nervous system involved in “conscious” sensation and motor control. 

In general, the SNS is involved in “fight or flight” responses such as increased blood flow to muscles, 

increased cardiac output, pupil dilation; while the PSNS is involved in “rest and digest” or “feed and 

breed” responses such as salivation, digestion, and sexual arousal. While these two branches are 
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roughly considered to act in opposition to each other, their functions in multiple organ systems is 

understandably more complex. 

 

Anatomical structure of the sympathetic nervous system 

The sympathetic nervous system acts on almost all major organ systems. The cell bodies of SNS 

nerves are located in the paraspinal sympathetic ganglia, which span the entire length of the vertebral 

column. The sympathetic pre-ganglionic nerves travel superiorly and inferiorly between ganglia, making 

each individual ganglion redundant. The origin of central SNS pre-ganglionic innervation is via the spinal 

nerves, and arises from autonomic motor neuron cell bodies in the intermediolateral nucleus (IML) of 

the spine, located along the length of the lateral thoracic spinal cord (T1-L2). All pre-ganglionic fibers are 

cholinergic, and release the neurotransmitter acetylcholine to activate nicotinic acetylcholine receptor 

situated on ganglionic sympathetic cell bodies. These post-ganglionic afferent sympathetic fibers from 

these cells are mostly noradrenergic (releasing norepinephrine, NE) unmyelinated Type C nerve fibers, 

and course and synapse close to the target organ of action. The only two exceptions to this peripheral 

nerve organization are the adrenal glands, in which the pre-ganglionic cholinergic fibers synapse directly 

onto the neuroendocrine adrenal medullary cells to release epinephrine (Epi); and eccrine 

thermoregulatory sweat glands, in which post-ganglionic fibers are cholinergic75,76.  

 

Physiologic catecholamine synthesis and release 

Both Epi and NE belong to the biogenic amine molecule class called catecholamines, which also 

includes the CNS neurotransmitter dopamine. Catecholamines are synthesized by catecholaminergic 

neurons from the amino acid L-tyrosine by the cytoplasmic enzyme tyrosine hydroxylase, which 

produces the precursor molecule L-dihydroxyphenylalanine (L-DOPA). The enzyme Aromatic L-amino 
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acid decarboxylase then converts L-DOPA to dopamine. Cytoplasmic dopamine is pumped into vesicles 

via vesicular monoamine transporters (VMATs), it is converted to NE by the enzyme Dopamine β-

hydroxylase (Dbh), and remains in synaptic vesicles until release. Finally, vesicular NE can be converted 

to Epi in the adrenal medulla by Phenylethanolamine N-methyltransferase76. The hydroxylation of 

tyrosine to L-DOPA is the rate-limiting step of catecholamine biosynthesis77, and the expression of TH is 

commonly used as a marker for catecholaminergic neurons such as those in the SNS76.  

The release of NE and Epi is tightly controlled at both the neuron level and SNS terminal level. 

Upon activation of sympathetic neurons by pre-ganglionic neurons, a generated action potential 

propagates to the SNS nerve terminals, which leads to depolarization of the nerve terminal membrane. 

This causes Ca2+ influx via the voltage-gated N-type calcium channel, which activates synaptic fusion 

molecules syntaxin, synaptobrevin, and SNAP-25 to cause vesicle fusion with the plasma membrane and 

release of neurotransmitters via diffusion. In sympathetic neuron terminals located close to the target 

tissue, NE diffuses out of the vesicles into the extracellular space, and binds onto adrenergic receptors 

to mediate target cell action76.  

 

Adrenergic receptor pharmacology  

NE, Epi, and other adrenergic ligands act on adrenergic receptors to elicit their function. The 

receptor subclasses (β, α1, and α2) were historically initially named based on their secondary 

messengers: stimulating cyclic AMP (cAMP), phospholipase C (PLC), or inhibiting cAMP, respectively. 

These receptors are Class A rhodopsin-like seven transmembrane G-protein coupled receptors that act 

via heterotrimeric G-proteins. Receptor activation triggers the receptors to facilitate an exchange of Gα-

bound GDP for GTP, thereby activating the Gα-subunit, causing it to dissociate from the Gβγ complex 

trigger. The membrane-bound G-protein subunits then act on downstream effector proteins such as Gαs 

activating or Gαi inhibiting adenylate cyclase, or Gαq activating phospholipase C (PLC), leading to the 
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production of secondary messenger molecules cAMP, IP3, or DAG. These intracellular molecules then 

diffuse through the cytoplasm or along the plasma membrane onto effector molecules, and elicit a wide 

variety of cellular responses. After activation, the adrenergic receptors can be deactivated through 

ligand dissociation, or by receptor phosphorylation leading to receptor deactivation76. The physiologic 

consequence of ligand binding depends on the receptor and cell type, and a general overview of all 

adrenergic receptors and their signaling is given below (Table 1.1), however many details on adrenergic 

receptor signaling exists that are beyond the scope of this thesis. 

 

Table 1.1 Adrenergic receptors signaling 

Receptor Gene G-protein coupling; 2° messenger 
β1-AR Adrb1 Gαs; ACcAMPPKA 
β2-AR Adrb2 Gαs; ACcAMPPKA 
β3-AR Adrb3 Gαs; ACcAMPPKA 
α1a-AR Adra1a Gαq; PLCIP3+DAG 
α1b-AR Adra1b Gαq; PLCIP3+DAG 
α1d-AR Adra1d Gαq; PLCIP3+DAG 
α2a-AR Adra2a Gαi/o; ↓cAMP 
α2b-AR Adra2b Gαi/o; ↓cAMP 
α2c-AR Adra2c Gαi/o; ↓cAMP 

 

Catecholamine metabolism 

After catecholamines are released into the extracellular environment to elicit their function on 

target cells, signaling is terminated by reducing the extracellular ligand concentration either by passive 

diffusion of the ligand away from the target cell, active uptake of the ligand out of the extracellular 

environment, or pre-synaptic auto-receptors terminating vesicular ligand release. Diffusion of the 

neurotransmitter out away from the site of action decreases the concentration of the ligand on the 

tissue, and allows it to enter circulation to be cleared by either renal or hepatic elimination. Active 

uptake by transmembrane pumps located on either the neuron or target tissues can rapidly eliminate 

neurotransmitter from the extracellular environment78. Finally, pre-synaptic auto-receptors, such as the 
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α2c-AR, can bind NE and cause the sympathetic nerve terminal to stop the additional release of 

neurotransmitter. It is likely a combination of these three mechanisms, along with adrenergic receptor 

deactivation on target cells, contribute to the termination of adrenergic signaling.  

Active uptake is a dynamic process that can occur via either low- or high-affinity mechanisms. 

The organic cation transporters (OCTs) are of the solute carrier 22A (SLC22A) class of transmembrane 

proteins. OCT1, OCT2, and OCT3 are capable of transporting organic cations including catecholamines 

from extracellular to intracellular compartments. These OCTs are expressed in many tissues, are 

promiscuous to multiple targets, and also maintain the blood-brain barrier by unidirectionally 

transporter out drugs and endogenous molecules from the brain. However, their low affinity and 

specificity for catecholamines implies both slower mass clearance of neurotransmitter from tissues, but 

their more ubiquitous expression leads to a higher clearance capacity79,80. 

A high-affinity mechanism of NE/Epi clearance exists via the norepinephrine transporter (NET, 

AKA SLC6A2), a transmembrane pump that is capable of transporting even low concentrations of NE, 

Epi, and dopamine out of the extracellular environment. This transporter is of the SLC6A 

Na+/monoamine antiporter family, which includes biogenic amine transporters such as the dopamine, 

serotonin, and GABA transporters81,82. dependent on extracellular Na+ concentrations, is reversed by 

cocaine/amphetamines, and selectively blocked by reboxetine and desipramine. Due to its tissue-limited 

tissue expression, its overall tissue transport capacity is limited. Expression of NET was classically 

understood to be limited to adrenergic neuron terminals76. However, studies from the Elefteriou lab has 

found NET to surprisingly also be expressed and functional on osteoblasts, with a possible role for NET in 

bone physiology83. 

Once catecholamines are transported into the intracellular environment, they are subject to 

four possible fates: continued transporter through the basolateral membrane into the circulation or 

urine, repackaging, metabolism by methylation, or metabolism by mitochondrial oxidation. Continued 
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basolateral membrane transport is a common mechanism in cells of the blood-brain barrier and renal 

glomerulus, and facilitates clearance from sensitive compartments76. As a matter of fact, NE spillover is 

often detected in both circulation and in the urine. In cells naturally capable of releasing catecholamines 

such as sympathetic nerve terminals, vesicular uptake via VMATs can repackage these molecules for 

future re-release, and lessen the synthetic burden of these neuronal cells for continuous 

neurotransmitter synthesis. Finally, NE or Epi can be metabolized by the catabolic enzymes Catechol-O-

methyltransferase (COMT) or monoamine oxidases (MAOs). COMT is primarily expressed in the liver, 

although brain expression is limited to several regions84,85. It functions to methylate the catecholamines 

into metanephrines, which both invalidates their biochemical function as well as improve their solubility 

for excretion. Monoamine oxidase are mitochondrial proteins that exists in two isoforms, MAO-A and 

MAO-B, which are expressed differentially across the CAN and peripheral non-neuronal tissues86,87. They 

function to deaminate biogenic amine molecules such as NE and Epi via oxidation into aldehyde 

intermediates, which are further reduced via aldehyde reductase into metabolites such as 

dihydroxyphenylglycol (DHPG)76.  

 

Impact of sympathetic nervous system on bone 

Multiple experiments in mice and humans suggest that the sympathetic nervous system 

regulates skeletal homeostasis6,88,89. Sympathetic nerve fibers indeed were shown to innervate skeletal 

tissues90–93, and osteoblasts express receptors for norepinephrine (NE), the neurotransmitter released 

by these sympathetic nerves, with the β2-adrenergic receptor (β2AR) being the predominant receptor 

expressed in this lineage88. The current model of how peripheral sympathetic nerves impact bone 

remodeling includes the release of NE, which acts on osteoblastic β2AR to activate PKA to phosphorylate 

the transcription factor ATF489, which promotes Rankl expression and RANKL-mediated activation of 

osteoclasts88,89. Furthermore, β2AR stimulation has also been shown to directly inhibit osteoblast 
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proliferation via cyclin D1 and Clock genes89,94–98. This model is derived from genetic mouse models as 

well as pharmacological approaches targeting mainly post-synaptic βARs. Few studies exist that address 

pre-junctional sympathetic nerves, although one study of mice lacking Foxo1 in Dbh-positive pre-

synaptic noradrenergic neurons have low sympathetic outflow coinciding with high bone mass, 

supporting the role of endogenous NE in controlling bone remodeling99. However, there are multiple 

other adrenergic receptors, neurotransmitters, and CNS mechanisms implicated in this model that 

complicate the understanding of the mechanisms of SNS action on bone. 

 

Hypothalamic control of bone metabolism 

The study of central hypothalamic control of bone metabolism arose from studies of the ob/ob 

and db/db mice12,88,100,101. These mice were originally studied because of their hyperphagic obese 

phenotype, and were discovered to be deficient in the genes encoding leptin and the leptin receptor, 

respectively. Leptin is an adipose-derived hormone that serves as a signal to the CNS of energy status 

(e.g. fat stores). Low leptin in ob/ob mice, or inability to sense leptin via an absent receptor in db/db 

mice, led to an aberrant signal to the hypothalamus that the body energy homeostasis was low, and 

resulted in increased feeding. Surprisingly, these animals were also found to have high bone mass 

despite have gonadal dysfunction12,101. Confirmation of the central mechanism of leptin on bone mass 

was confirmed via direct intracerebroventricular (ICV) delivery of leptin to the third ventricle of the brain 

in leptin-deficient mice, which corrected the high bone mass phenotype101.  

 While the hypothalamic control of bone physiology was demonstrated, the afferent mechanism 

was still uncertain. Parabiosis experiments joining the peripheral circulation of two ob/ob animals – one 

treated with ICV leptin – demonstrated the downstream mediator of leptin causing bone loss was not 

hormonal. Furthermore, overexpression of the hormone in bone did not correct the high bone mass 

from global leptin deficiency - confirming that leptin’s effect was not peripheral12,88. Rather, it was 
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known that leptin mediates increased peripheral energy expenditure via the SNS, and that ob/ob mice 

had decreased sympathetic outflow100102. Indeed, global genetic deletion of Dbh, a key enzyme in 

catecholamine synthesis, corrected the high bone mass in ob/ob mice, suggesting that leptin-mediated 

bone loss occurs via the sympathetic nervous system12,88.  Further studies showed that leptin acts 

via its receptor on brainstem serotoninergic neurons, and that serotonin pathways into the 

ventromedial nucleus of the hypothalamus (VMH) was responsible for leptin’s actions. Deletion of the 

brain-specific serotonin synthesis enzyme tryptophan hydroxylase 2 (Tph2-/-) produced mice that had 

low bone mass, high basal metabolic rate, and high SNS outflow103, phenocopying the bone and 

sympathetic phenotype of the ob/ob mice. More recent studies have supported this serotonin-mediated 

mechanism by demonstrating that serotonin reuptake inhibitors cause bone loss in mice via the SNS104. 

Interestingly, in ob/ob and db/db mice with deficient leptin signaling, bone loss was observed in the 

appendicular long bones, but not the axial vertebrae105,106. Meanwhile, the Tph2-/- mice had low bone 

mass in all bones103. The leptin-deficient mice also had increased marrow adiposity, which is a well-

documented phenotype of energy homeostasis imbalance100. It is possible that the additional unknown 

mechanisms such as the possible action of leptin on mesenchymal stem cells106 may account for this 

differential phenotype between the axial and appendicular skeleton. 

Pituitary hormones, under the control of the hypothalamus, are also known to influence bone 

mass in pathways independent of the SNS. Hypothalamic gonadotrophin-releasing hormone (GnRH), 

which influences luteinizing hormone (LH) and follicular stimulating hormone (FSH), can also alter levels 

of testosterone or ovarian hormones like estrogen 19, which can in turn influence bone mass. Two 

hypothalamic hormones involved in lactation, have direct effects on bone turnover. Prolactin is shown 

to promote bone loss in rats independent of gonadal function107. Meanwhile, oxytocin has a direct dual 

mechanism of an anabolic effect on osteoblasts, and inhibitory effect on osteoclasts108,109. Finally, there 

is also evidence of the orexin/hypocretin system, which controls wakefulness, appetite, and reward, also 



22 

controls bone metabolism110. The orexin 1 receptor (OX1R) and its ligand orexin was found to be 

expressed in MSCs, osteoblasts, and adipocytes in mouse tibiae; whereas orexin, OX1R, and the Orexin 2 

receptor (OX2R) were expressed in the brain. Deletion of OX1R results in bone gain, while deletion of 

OX2R and both receptors leads to bone loss. The authors of the study concluded that the orexin system 

and its receptors elicit opposite roles in the central versus periphery, with a dominant central 

hypothalamic mechanism promoting bone mass gain.  

Taken together, there are many mechanisms through which the hypothalamus can control bone 

metabolism. These findings all further the understanding that bone does not purely serve as structural 

function, but is also an endocrine organ. 

 

Adrenergic receptors in bone biology 

The central mechanism of SNS action on bone via the β2AR on osteoblasts. Chronic stimulation 

of βARs with the non-selective agonist isoproterenol (ISO) or the β2-selective agonist clenbuterol leads 

to bone loss88,111,112. Similarly, pharmacologic blockade with the non-selective βAR antagonist 

propranolol protects from bone loss, but only in conditions of increased bone turnover such as estrogen 

deficiency88,113,114, further supporting the bone-catabolic effect of the β(2)AR. However, several further 

contradictory experiments on βARs confound these results. In a mouse hindlimb suspension model of 

disuse osteoporosis, treatment with the β1AR agonist dobutamine protected unloading-induced bone 

loss 115,116. Furthermore, mice lacking all three βARs (β1, β2, and β3) have increase bone mass and 

decreased resorption117, similar to the global β2AR-/- mice12. However, this triple knockout mouse was 

obese, and lost bone upon ovariectomy and during aging117, in contrast with the β2AR-/- mice which 

protected from ovariectomy-induced bone loss and gained bone mass during aging12,88. Finally, mice 

with β1AR deletion has low bone mass that did not improve with increased compression loading to 

simulate exercise, which was in contrast with mice with β2AR deletion118. These results suggest that 
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βARs have pleotropic have functions in bone. The β1AR-/-
 mice had decrease serum insulin-like growth 

factor 1 (IGF1), which is important for bone growth and may account for the differential phenotype119. 

The osteoblast-specific β2AR deletion was sufficient to protect bone from ISO-induced bone loss, 

strongly supporting the cell-specific function of this receptor89.The global constitutive nature of the 

multiple-βAR deletion experiments 113,117,118makes interpretation difficult. However, a well-known 

function of the β1AR is the positive chronotropic and inotropic effects on cardiac output. Furthermore, 

hindlimb suspension models may not emulate only the unloading – as seen in prolonged bedrest – but 

also the hemodynamic redistribution of blood – similar to spaceflight 21,120. It is thus possible that 

deletion of the β1AR added an additional mechanism of bone loss that is distinct from the direct action 

of SNS on osteoblasts.  

The presynaptic autoinhibitory αARs present a way to investigate how modulation of upstream 

SNS, as opposed to downstream osteoblast signaling, affects skeletal physiology. Global genetic deletion 

of both α2A- and α2C-ARs resulted in mice with the expected elevated serum NE, putatively due to 

defects in autoregulation of SNS terminal NE release. However, female mice of this genotype had 

increased bone mass, in direct contrast with the elevated sympathetic tone121. Deletion of the α2C-AR in 

mice showed the expected elevated SNS tone and low bone mass in the appendicular skeleton, but high 

bone mass in the axial skeleton122, similar to the differential bone phenotype seen in ob/ob mice101. 

While the βAR and αAR sets of genetic deletion studies yield valuable information on the effects of 

these genes on bone biology, the global constitutive nature of these studies makes precise 

interpretation difficult. It is necessary to pursue evidence that support mechanisms of cell- and tissue-

specific functions of SNS action in bone.  
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Bone biology during aging 

The pathophysiologic process of aging is a combination of degenerative, depleting, and 

accumulative factors that result in organ dysfunction. In the skeleton, these factors are also present and 

result in senile (age-related) osteoporosis. Once the skeleton achieved maturity at peak bone mass, 

around 25-30 years old, bone is lost at a steady 0.5% per year in both genders17, independent of other 

factors. The increased skeletal fragility leads to increased fracture risk, which predisposes the aging 

population to increased mortality associated with fractures18. Currently, the treatments for osteoporosis 

target just the bone remodeling pathways, either by anabolic agents or anti-resorptives. However, these 

do not address the underlying mechanisms of senile osteoporosis. Thus, it is important to both better 

identify, understand, and diagnose the pathophysiologic mechanisms underlying age-related bone loss. 

 

Bone cellular changes with age 

The maintenance of integrity of any organ is directly related to the regenerative capacity of the 

tissue and cells. For the skeleton, the bone-forming osteoblasts serve to rebuild bone, and bone-

resorbing osteoclasts clear structurally damaged tissue. These cells derive from a pool of mesenchymal 

or hematopoietic stem cells which are depleted with age, leading to overall decreased bone turnover 

and skeletal fragility123. Another proposed mechanism involves reactive oxygen species, which causes 

oxidative damage, accumulating in the skeleton and bone cells throughout the lifespan123. Mice deficient 

in the antioxidative gene Sod1 have decreased bone mass that exacerbates with age, and phenotypically 

resemble wild-type naturally-aged animals such as increased cortical porosity, low bone turnover, and 

age-related changes in collagen cross-linking123,124. Osteocytes, which are terminally differentiated cells 

that are critical for initiating and regulating bone remodeling, are necessary to maintain skeletal 

integrity. As the skeleton ages, osteocytes continually undergo apoptosis 125 leading to empty lacunae 
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the cortex of aged animals125. Coupled with the decreased osteoblast genesis potential, the depletion of 

the resident homeostatic cell may be etiologic to bone loss. 

 

Gaps in knowledge of SNS-bone interactions 

Despite the abundant data available on sympathetic nervous system actions on bone biology, 

there are still large gaps in understanding. A large number of key genetic and pharmacologic studies 

have demonstrated the role of certain receptors, ligands, or other proteins in skeletal homeostasis. 

However, only a small proportion of these provide the tissue- or cell-level resolution of these 

mechanisms. Thus, interpretation of results from global genetic animal models or systemic experiments 

is made difficult by possible confounding mechanisms that may be independent on bone.  

Previous results showed that osteoblasts only express the β2AR88, and stimulation of the 

receptor leads inhibition of osteoblast proliferation via cell-autonomous circadian genes Per and Cry95, 

and stimulating RANKL production to promote osteoclast differentiation88. These two actions cannot 

occur within the same cell, as the anti-proliferative action of NE relates to pre-osteoblasts, whereas 

osteocyte-derived RANKL plays a predominant role in bone remodeling13. Thus, it is not known whether 

adrenergic receptor expression changes during the osteoblast differentiation cycle, and whether this 

mechanism may account for the pleiotropic effect of adrenergic stimulation on osteoblasts during 

different stages of differentiation. Furthermore, the norepinephrine transporter has been shown to be 

important for proper bone mass in vivo83. It is proposed that osteocytes, the resident cells that 

comprised the majority of bone stroma, are important for NE regulation via NET. However, the function 

and expression of NET throughout BMSC differentiation is not known. In chapter 2, we hypothesize that 

mature osteoblasts express both the β2AR and NET, and that their acute function can be demonstrated 

in vitro (Fig. 1.2A). Furthermore, while chronic studies demonstrate gene expression in response to SNS 

signaling88,126, and extracellular NE levels are changed with NET inhibition83, it does not preclude possible 
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intermediate mechanisms that may act on the chronic scale. Thus, we hypothesize acute adrenergic 

stimulation and [3H]-NE uptake is observable in vivo (Fig. 1.2B). These results will help validate that the 

molecular mechanisms of uptake and signaling proposed using chronic studies are true for acute in vitro 

and in vivo systems. 

Age-related bone loss is a multifactorial disease with no single cause. In other organ systems, 

basal SNS tone increases with age127,128. In Chapter 3, as SNS activity can lead to bone loss, we 

hypothesize that the skeleton in older animals has increased basal levels of the NE. Furthermore, we 

also hypothesize that this increase occurs in parallel with decreased NET expression and function (Fig. 

1.3). This leads to the possibility that decreased uptake is a cause for the elevated NE, and a potential 

mechanism for age-related bone loss. 

 

 

Figure 1.2 – Gaps in knowledge: acute adrenergic pharmacology 
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(A) What is the adrenergic receptor expression, ISO/NE-mediated gene expression, and acute 
[3H]-NE uptake in differentiated BMSCs in vivo? 
(B) Does bone signal via adrenergic receptors in response to ISO/NE stimulation, and acutely 
uptake [3H]-NE in vivo? 
 

 

Figure 1.3 – Gaps in knowledge: skeletal sympathetic changes with age 
Does NET expression and function decrease, and basal SNS activity increase in mice with age? 

 

Finally, the proposed mechanism of SNS action is via sympathetic release of NE onto 

osteoblasts. The direct SNS-osteoblast interactions have yet to be visualized. As NET has been shown to 

be expressed and functional in mature differentiated osteoblast in vitro, we also hypothesize that 

osteocytes express NET in vivo (Fig. 1.4A). Furthermore, the previous genetic deletion models do not 

preclude the possibility that mature osteoblasts/osteocytes are the true target of SNS action. If this is 

true, we would also expect SNS innervation to be in close proximity of its site of action – i.e. bone lining 

osteoblasts or matrix-embedded osteocytes (Fig. 1.4B). These results will provide a better visual 

understanding of the cellular architecture of the SNS in bone. 



28 

 

Figure 1.4 – Gaps in knowledge: innervation of bone by the SNS 
(A) Do matrix-embedded osteocytes express NET in situ? 
(B) Do SNS fibers innervated the bone cortex in close approximation to osteocytes? 
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Chapter 2. Acute Function of SNS in Bone 

 

Introduction  

 

Adrenergic pharmacology of osteoblast during differentiation 

The current paradigm of sympathetic nervous system (SNS) action on skeletal metabolism 

involves activation of the β2-adrenergic receptor (β2AR) on osteoblast to cause the expression of 

osteoclastogenic genes such as Rankl and Il6, leading to bone loss89. The mechanisms of interaction 

were elucidated using genetic mouse models, chronic pharmacologic treatments, or chronic stress 

protocols, and have been instrumental in demonstrating the necessity of components in the SNS-bone 

axis. In parallel, acute cellular mechanisms of sympathetic or sympathomimetic action were elucidated 

using osteoblast-like cell lines 12,112,129and primary osteoblasts. A genetic mouse model with osteoblast-

lineage specific deletion of β2AR in vivo, with the floxed Adrb2 allele inactivated by expression of Cre 

recombinase under the ColI(2.3kb) osteoblast-specific promoter, showed that the osteoblastic b2AR was 

sufficient for increased bone mass89. However, other in vivo genetic mouse models of Rankl deletion in 

specific stages of osteoblast differentiation showed that specifically osteocytes, not osteoblasts, are 

phenotypically important for the promotion of osteoclast differentiation13. In addition to the target cell 

of SNS action in bone, uncertainty also exists of which adrenergic receptor is expressed and active in 

osteoblasts. Several observations report multiple adrenergic receptors are expressed and functional on 

osteoblast-like cell lines130. Gene expression for several adrenergic receptors was detected in whole 

mouse bones118, though this was attributed to possible other cell types in bone (e.g. adipocyte, 

endothelium, hematogenous, etc.). While the end result of SNS action on bone biology is well-described 

across these studies, the precise cellular timing and mechanisms – which adrenergic receptor are 

expressed in osteoblasts, and how this expression changes during differentiation – is not entirely clear. 
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Therefore, it is important to determine the adrenergic receptor expression profile and the adrenergic 

agonist response throughout the stages of osteoblast differentiation. 

 

Coupling rapid SNS signaling to slow action of bone biology 

Many tools are available to study adrenergic receptor physiology, such as a variety of available 

pharmacologic ligands, signaling pathways, and physiologic mechanisms to target. Similarly, when 

interpreting experiments involving sympathetic nervous system modulation in vivo, the targeted and 

potential systemic off-target mechanisms vary greatly depending on the adrenergic receptor. 

Sympathetic nervous system physiology is best understood on the order of seconds: nerve terminal 

neurotransmitter release, diffusion, binding on cognate receptors on target cells, and the resulting 

signaling cascade. Bone metabolic processes occur much slower: osteoblast-coupling, bone formation 

and resorption, and cell differentiation. The majority of previous studies on the role of SNS function in 

bone highlight the result of constitutive genetic 88,89,118,131,132or chronic pharmacologic treatments 

6,12,111,115,133–137 on bone mass. However, whether acute in vivo stimulation results in these skeletal 

responses is unknown.  

 

Identifying the neurochemical function of NET in bone 

Further elucidation of the role of SNS in normal physiology and skeletal pathologies is hindered 

by our limited understanding of both its physiology and its neurochemical function in the skeleton. We 

have previously reported that the norepinephrine transporter (NET), a pump that uptakes NE from the 

extracellular environment, plays an important role in the regulation of bone remodeling83, as global Net 

deletion results in low bone mass in mice. Although lack of NE reuptake by SNS terminals in bone would 

be expected to cause bone loss via increased NE spillover to the bone microenvironment, this low bone 

mass phenotype was unexpectedly accompanied by low skeletal NE content, which according to the 
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above model should promote bone gain. Investigating this contradictory result led us to show that NET 

is expressed not only in skeletal presynaptic neurons, but also in osteoblast-lineage cells, and to 

demonstrate specific Net expression and NE uptake in differentiated osteoblasts in vitro83. This work led 

us to hypothesize that NET has an extraneuronal role in bone to locally limit the action of NE on the 

skeleton, thereby buffering the catabolic function of the SNS on this organ. However, due to the global 

and constitutive nature of the model, it is difficult to conclude the mechanistic function of NET in bone.  

During the course of our preliminary studies, we also found that endogenous sympathetic 

activation by daily restrain stress, which releases the neurotransmitter NE, is not sufficient to lead to 

decreased bone mass. On the other hand, chronic treatment of mice with isoproterenol (ISO), a non-

selective βAR agonist insensitive to NET reuptake, does cause bone loss via increased bone resorption. 

These data suggest that the skeleton is protected by NET from the deleterious effects of NE on bone 

remodeling. This notion is further supported by the observation that mice with global genetic deletion 

of NET (Net KO) have low bone mass, despite decreased markers of sympathetic outflow (commonly 

associated with bone gain) compared to WT mice. Thus, the paradigm of NE released by sympathetic 

nerves directly acting on osteoblasts to reduce bone mass is incomplete, and our preliminary data 

suggest the existence of a homeostatic regulatory mechanism controlling the action of the SNS on bone. 

In that regard, the in vivo regulation and function of NET in the bone microenvironment and the putative 

mechanisms through which NET attenuates the deleterious effect of excess SNS activity on bone 

remodeling remain to be determined. However, the constitutive and ubiquitous nature of the global Net 

knockout animal model limits further elucidation of these mechanism(s).  

As NET is expressed in both sympathetic neurons and mature osteoblasts it is unknown in which 

cell lineage NET deletion is mechanistically responsible for the low bone mass phenotype seen in global 

Net KO mice. Classically, NET located on sympathetic synaptic terminals acts to limit the magnitude and 

duration of NE on target tissues through reuptake. However, the few reports studying noradrenergic 
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nerve terminal density in bone suggests it is relatively low compared to osteocytes. These cells indeed 

compose approximately 90% of the cellularity in the bone matrix61 and are thus postulated to account 

for the majority of NE clearance in bone. Therefore, to support claims that skeletal NET indeed serves as 

a catabolic sink for NE in bone, it is necessary to demonstrate that bone tissues are capable of specific 

NE uptake in vivo, and that this is mediated through the norepinephrine transporter. 

This chapter will present data on acute SNS signaling and regulation in vitro and in vivo. This will 

be accomplished by first identifying the putative target of SNS action in the osteoblast lineage and in 

vivo, as well as demonstrated acute NE uptake in cell cultures in vitro and in tissues in vivo. These results 

will establish the pharmacologic basic and cellular target of SNS action the osteoblast lineage. They will 

also define the acute function of specific neurotransmitter uptake in pure in vitro cell populations and in 

bone tissues in vivo, and allow future investigation into the consequences of chronic SNS action in the 

setting of bone biology.  

 

Results 

 

Primary BMSCs express the functional β2AR during differentiation  

To better understand and interpret experiments involving SNS and bone, it is important to 

identify the adrenergic receptor expression profile in osteoblasts through differentiation. To accomplish 

this, we measured by qRT-PCR the expression of all 9 adrenergic receptors in primary bone marrow 

stromal cells (BMSCs), differentiated in osteogenic medium for 2, 14, and 28 days. Either N1E-115 

murine neuroblastoma cells (N1E), or tissue lysate of brainstem (Br) or intrascapular brown adipose 

tissue (BAT) were use as positive controls. Ovary tissue lysate (Ov) was used as negative control and 

lower limits of detection (dotted gray line). Only Abrb2, encoding the β2AR, was significantly expressed 

in BMSCs throughout differentiation (Fig. 2.1A), showing expression as early as 2 days into in vitro 
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osteogenic induction, and persisting until at least 28 days. Acute 2h stimulation of differentiated BMSCs 

with the pharmacologic non-selective βAR agonists Isoproterenol (ISO), or the endogenous sympathetic 

neurotransmitter norepinephrine (NE), elicited expression of Rankl (Fig 2.1B) and Il6 (Fig. S2.1B). This 

expression response was only in 14- and 28-day, and not in 2-day differentiated cells. This gene 

expression response was also inhibited by pre-treatment with the non-selective βAR antagonist 

propranolol (PRO). These results show that primary BMSCs express the β2AR, and not other adrenergic 

receptors, throughout differentiation. Furthermore, these cells express osteoclastogenic genes in 

response to adrenergic agonism.  

 

Differentiated primary BMSCs express functional NET  

In pre-synaptic neurons, NET reuptake serves a dual role: it limits synaptic NE signaling, and recycles NE 

for subsequent repackaging and re-release. In osteoblasts, Net expression increases during 

differentiation in parallel to the osteoblastic marker Ocn and mature osteoblast/osteocyte marker Sost 

(Fig. 2.2A). NET protein expression was detectable by Western Blot as early as 7-days post-

differentiation, with the highest amount in 28-day differentiated BMSCs (Fig. 2.2B). Expression of NE 

catabolic enzymes, including catechol-O-methyltransferase (Comt) and the peripheral isoform of 

monoamine oxidase (Maoa) was also detected throughout in vitro differentiation and in bone cortical 

tissues (enriched in osteoblast/cutes) by qRT-PCR. However, osteoblasts and cortical bone tissues did 

not express genes encoding enzymes for catecholamine synthesis, tyrosine hydroxylase (Th) and 

dopamine-β-hydroxylase (Dbh); or vesicular repackaging, vesicular monoamine transporters 1 and 2 

(Vmat1/2) (Fig. 2.2C). These results suggest that mature osteoblasts/osteocytes possess the capability as 

extraneuronal sites of NE uptake and catabolism.  
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Figure 2.1 – Adrenergic receptor expression and response to acute agonist stimulation during 
BMSC differentiation 
(A) Expression of genes encoding adrenergic receptors in primary BMSCs differentiated in 
osteogenic medium for indicated number of days, normalized to reference gene Hprt. Negative 
control from ovary tissues (Ov, dotted gray line) and positive expression controls from murine 
neuroblastoma cell line N1E-115 (N1E), brown adipose tissue (BAT), or brainstem (Br) 
normalized to reference gene Hprt (n = 4 per group). 
(B) Differentiated BMSCs gene expression of Rankl, pretreated with isoproterenol (ISO, 1 uM), 
after 2h treatment with vehicle (Veh), isoproterenol (ISO, 1 uM), or norepinephrine (NE, 1 uM) 
(n = 4 per time point treatment).   
All results are shown as mean +/- SD. Statistical analysis by one-way ANOVA, post-hoc 
Dunnett’s statistical test for significance vs dH2O control (A); or by two-way ANOVA, post-hoc 
Dunnett’s statistical test for significance vs ISO Veh control of each differentiation timepoint 
(B); * p<0.05. 
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In addition to NET, other transmembrane transporters exist that are capable of monoamine 

uptake. The Organic Cation Transporters 1 and 2 (OCT1/2), and Extraneuronal Monoamine Transporter 

(EMT) are high-capacity, low-affinity transporters that are promiscuous for other molecules aside from 

monoamines such as NE79,80,138. Differentiated BMSCs express genes encoding these transporters (Fig. 

2.3A), suggesting the capacity of these cells to uptake NE via mechanisms besides NET. However, given 

the high affinity and specificity of NET to NE, we hypothesized that NET was the major uptake 

mechanism in osteoblast in vitro. To address this, we measured the acute uptake of the tritiated 

radioligand [3H]-NE in BMSCs at different stages of differentiation. To determine specificity to NET-

mediated uptake, we pre-treated cells with either reboxetine (Reb, a NET blocker) or Vehicle. 

Osteoblasts had significantly more uptake of [3H]-NE after 14 and 28 days of differentiation than 

compared to 2-day (Fig. 2.3B). These results are consistent with the RNA and protein expression data on 

NET expression increasing during differentiation. However, only BMSCs differentiated for 28-days 

showed specific uptake that was inhibited by reboxetine pretreatment, indicating that reboxetine-

insensitive mechanisms may account for the uptake in these cells. Taken together, these results suggest 

that late-stage in vitro differentiated BMSCs express NET, and are capable of specific NE uptake. 

 

Acute in vivo adrenergic signaling in bone 

Studies of in vitro differentiated BMSCs allow specific interrogation into osteoblast-lineage cell 

expression and function with relation to adrenergic signaling molecules. However, whether these in 

vitro results translate to murine bone physiology in vivo needs to be demonstrated. We therefore asked 

whether acute adrenergic stimulation in vivo can elicit gene expression response similar to BMSCs. To 

achieve this, we treated animals for 3h with either isoproterenol (ISO, 3 mg/kg body weight, i.p.), saline 

vehicle, or subject the animals to a 3h acute immobilization stress (AIS) protocol designed to elicit 

endogenous SNS release as a part of the natural “fight or flight” stress response6,139, and measured gene 
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Figure 2.2 – Gene expression of 
catecholamine metabolism proteins during 
BMSC differentiation 
(A) Expression of Net and osteoblast lineage 
markers genes in primary BMSCs 
differentiated in osteogenic medium for 
indicated number of days. Gene expression 
was normalized to reference gene Hprt (n = 4 
per time point). 

(B) Representative Western blot bands and quantification of NET protein expression in 
differentiated BMSCs and murine neuroblastoma cell line N1E-115 positive control (N1E), 
normalized to reference protein β-actin (n=3 per group).  
(C) Semi-quantitative qPCR of differentiated bone marrow stromal cells (BMSC), tibial 
cortical tissues (Ctx), and brainstem (BrSt) for genes encoding enzymes related to 
catecholamine metabolism and synthesis. 
All results are shown as mean +/- SD. Statistical analysis by one-way ANOVA, post-hoc 
Dunnett’s statistical test for significance vs dH2O control; * p<0.05. 
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Figure 2.3 – Expression and function of 
catecholamine transporters during BMSC 
differentiation 
(A) Gene expression of transporters capable 
of catecholamine uptake in primary BMSCs 
differentiated in osteogenic medium for 
indicated number of days. Negative control 
from ovary tissues (Ov, dotted gray line), and 
positive expression controls from murine 
neuroblastoma cell line N1E-115 (N1E). Gene 
expression was normalized to reference gene 
Hprt (n = 4 per group). 
(B)  Acute in vitro uptake of [

3
H]-NE 

radioligand in differentiated BMSCs 
pretreated with vehicle (Veh, white bars) or 
the NET blocker reboxetine (Reb, black bars).  
 Radioactivity of cell lysates was measured by scintillation counting (CPM) and normalized to 

lysate protein concentration (n = 5 per treatment per time point). 
All results are shown as mean +/- SD. Statistical analysis by one-way ANOVA, post-hoc 
Dunnett’s statistical test for significance vs control (A); or by two-way ANOVA, post-hoc 
Holm-Sidak statistical test for pair-wise significance (B); * p<0.05, ** p<0.01, ***p<0.001. 
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expression in the bones from these animals. Whole tibia gene expression of Il6 was significantly higher 

in both ISO and AIS-treated animals compared to controls, whereas Rankl was only higher in ISO-

treatment (Fig. 2.4A). These results show that acute endogenous NE release can be detected in bone, 

but this effect is different from pharmacologic βAR agonism. 

 To further determine the selectivity of the skeletal response to AIS, animals were pretreated 

with the non-selective βAR antagonist propranolol (Pro) prior to AIS. There was a significant increase in 

whole tibia Il6 expression after AIS, confirming our previous result, and this effect was blocked by 

propranolol pretreatment (Fig. 2.4B). Also similar to the previous result, no difference in Rankl 

expression after AIS was detected. These results suggest that AIS causes endogenous SNS release of NE, 

which acts in bone to increase Il6 expression, and that this effect is mediated through a βAR. However, 

neither the target nor source of Il6 is demonstrated through these experiments. Furthermore, although 

the AIS-influence is blocked by propranolol, it is still possible that intermediate mechanisms mediate the 

effect of AIS on Il6 expression. 

 

Acute in vivo [3H]-NE uptake in bone 

NET is well known to be expressed in presynaptic sympathetic neurons78, but was also unexpectedly 

detected in neonate osteoblasts by immunohistochemistry, and in fully differentiated bone marrow and 

calvaria osteoblasts in vitro at both RNA and protein levels83. Most importantly, our data showing this 

transporter to be active in these cells, as specific uptake of the tritiated NE ([3H]-NE) radioligand was 

detected in these differentiated osteoblast cultures in vitro, in line with the expression pattern of this 

gene in this lineage (Fig. 2.3). These in vitro data led us to hypothesize that the bone tissue is capable of 

specific NE uptake in vivo. To address this hypothesis, we adapted in vitro uptake methods to measure 

NET-mediated acute uptake of the radioligand [3H]-NE in bone tissues from 6-week old adult male mice. 

To ensure specificity of NE uptake by NET in these measurements, mice were pre-treated twice with the 
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NET blocker reboxetine (Reb, 20mg/kg body weight i.p.) or sterile saline vehicle 60 and 30 minutes prior 

to administration of [3H]-NE (10 μCi/kg body weight) via tail-vein injection to avoid excess hepatic 

metabolism. The radioligand was allowed to circulate for 10 minutes, after which the animals were 

rapidly euthanized, and tibiae and femurs were harvested. Tissues were lysed, [3H]-NE was quantified by 

scintillation counting (CPM), and normalized by tissue DNA content (as an indirect readout for cell 

number). Bone cortex tissue (Ctx) had more [3H]-NE uptake than marrow (Marr) per cellularity. This 

cortical uptake was significantly blocked by reboxetine pre-treatment, whereas marrow uptake did not 

differ (Fig. 2.4C). These results indicate that tibia and femur cortical tissues are capable of significant 

NET-mediated uptake. 

 

Discussion  

There exists some debate on the expression of adrenergic receptors in osteoblasts. Several 

groups report expression of αAR in osteoblasts, and demonstrate a function of αAR signaling in these 

cells130,131. However, many of these observations were made in osteoblast-like cells lines. In accordance 

with our findings that β2AR, and not β1-, β3-, or any αARs, was expressed in BMSCs throughout 

differentiation, several other groups have verified that the Adr2b is the only adrenergic receptor 

expressed in primary murine osteoblasts12,88,140,141. However, expression and function of both β2AR and 

α1bAR have been shown on primary human osteoblast culture130. While these contradict our findings in 

mice, many physiologic differences exist between the two species, and may explain the difference in 

results. The Adrb2 is expressed in BMSCs as early as differentiation day 2, which correspond to the 

osteoprogenitor cell pool in vivo, but do not express either Rankl in response to adrenergic signaling. 

This is consistent with the fact that pre-osteoblasts are not considered responsible for osteoclastic 

induction, and that this is the function of mature osteoblast/osteocytes13,142. However, this does not  
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Figure 2.4 – In vivo adrenergic signaling and acute [3H]-NE specific uptake in vivo 
(A) Gene expression in response to acute pharmacologic or endogenous adrenergic stimulation. Gene 
expression of Il6 and Rankl in whole tibia from mice treated with control saline (Veh i.p.), the βAR 
agonist isoproterenol (ISO, 3mg/kg i.p.), or subject to acute immobilization stress protocol (AIS). Gene 
expression was normalized to reference gene Hprt (n = 6 per treatment). 
(B) Gene expression of Il6 and Rankl in whole tibia from mice were pretreated with either vehicle or the 
β-blocker propranolol (Pro, 5mg/kg i.p.), and subject to either acute immobilization stress (AIS) or 
control protocol. Gene expression was normalized to reference gene Hprt (n= 5 per group). 
(C) In vivo uptake of [3H]-NE radioligand in the femoral cortex (Ctx) and marrow (Marr). Mice were pre-
treated with either vehicle control (Veh, white bars) or the NET blocker reboxetine (Reb, black bars) (n = 
10 animals).  
All results are shown as mean +/- SD. Statistical analysis by two-way ANOVA, post-hoc Dunnett’s 
statistical test for significance vs Veh control (A); post-hoc Bonferroni statistical test for pair-wise 
significance (B); or two-way ANOVA, post-hoc Holm-Sidak for pair-wise significance (C), * p<0.05, ** 
p<0.01. 
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preclude these BMSCs early in differentiation from responding to adrenergic signaling. In other studies, 

perivascular cells – a population of mesenchymal stem cell defined by their anatomical location and 

expression of markers are able to respond to sympathetic signals, and effect hematopoietic 

stem cell egress from the bone microenvironment56,57,142. While these pericyte cells are not necessarily 

the same as BMSCs (which are defined by their adherence during tissue culture), the expression of β2AR 

in early BMSCs may serve a role in processes besides bone formation.  

While Adrb2 and non-specific transporters (Oct1/2, Emt) are expressed throughout BMSC 

differentiation (Fig. 2.1A and 2.3A), Net gene and protein expression increases during differentiation –

increasing in parallel with mature osteoblast/osteocyte markers Ocn and Sost (Fig. 2.2). The relevance of 

NET function in late BMSCs was demonstrated by in vitro uptake assays. Both d14 and d28 BMSCs has 

significant [3H]-NE uptake, which d28 BMSCs having approximately 3-fold higher uptake compared to 

d14. However, only d28 BMSC uptake was inhibited by reboxetine pre-treatment (Fig. 2.3). These results 

suggest that NET is the major uptake transporter through which mature osteoblasts/osteocytes uptake 

NET, while d14 osteoblast-like BMSCs are capable of uptake through other mechanisms. Extrapolating 

these results into in vivo physiology, mature osteoblast/osteocytes are the  

The amount of endogenous NE released by sympathetic nerves is controlled presynaptically by 

NET, whose NE uptake function accounts for 80-90% of NE released by central and peripheral neuron78. 

NE reuptake thus constitutes an important negative feedback mechanism to limit the duration of 

sympathetic signaling and to replenish NE stores in sympathetic nerve fibers139,143. The low bone mass 

phenotype of mice globally deficient for Net indicated this transporter is important for bone remodeling 

83. However, how NET modulates bone mass remains unknown, although our previous in vitro evidence 

suggest that differentiated osteoblasts might contribute to NE uptake in bone in vivo. There could be 

two functions of NET in the bone microenvironment: by sympathetic neuron reuptake and repackaging 

for subsequent release, or by uptake and metabolism by osteoblasts (and possibly neurons). Cortical 
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bone tissues uptake of [3H-NE] is significantly higher than in marrow, suggesting that cortical tissues is a 

larger catabolic sink for NE (Fig 2.4C). There was also a significant reduction in cortical, but not marrow, 

uptake with reboxetine pre-treatment, suggesting that bone cortex uptake has a significant NET-

mediated component. The non-specific uptake, seen in reboxetine-pretreated tissues, could be either 

remaining [3H]-NE in circulation or interstitial fluid that was not cleared in the short timeframe of the 

experiment, non-specific binding of the radioligand to other tissues, or represent uptake by mechanisms 

other than NET (e.g. OCT1/2, Emt, or other transporters). Furthermore, these studies do not 

differentiate between the proposed functions of osteoblastic (catabolic) or neuronal (re-packaging) NET.  

To address the specific site and role of NET in the bone microenvironment, future experiments 

with tissue-specific genetic deletions of Net are needed. Sympathetic neuronal deletion of a floxed Net 

allele could be mediated by e.g. via Th-Cre, or a peripherally inducible pan-neuronal Cre recombinase 

such as Thy1-Cre/ERT2. The latter would allow fine temporal control of genetic sympathectomy to 

eliminate the confounding factors of development, and possibly allow final anatomical control of Cre 

induction with tamoxifen delivery in a unilateral limb. According to our studies, bone NET is primarily 

expressed and functional in mature osteoblast/cytes. Thus, a late osteoblastic/osteocytic mouse strain 

such as Dmp1-Cre, the inducible Dmp1-Cre/ERT2 and Ocn-Cre/ERT2, would address whether osteocytic 

Net deletion impacts bone metabolism in vivo.  

The acute in vivo adrenergic stimulation of bones showed that the pharmacologic agonist 

isoproterenol, but not endogenous stress released during AIS, can elicit increased gene expression (Fig 

2.4A and B). In other studies, this acute effect can be extrapolated to the chronic impact on bone mass 

by ISO88,118, but not chronic immobilization stress alone83,126,144,145. This may be due to the fact that the 

norepinephrine transporter can uptake endogenous NE released during stress, but not the synthetic 

ligand ISO146. It is also possible that differences in potency of agonisms, ligand metabolism (which is 

related to NET uptake, but also renal and hepatic clearance), or preferences in adrenergic receptor 
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affinity/activity may also account for the differential effects seen in chronic studies or our acute 

observations. A future study would be to investigate whether NET uptake of endogenous NE release 

during AIS, but not exogenous ISO, is responsible for the lack of gene expression response. This could be 

achieved by acute NET blockade by reboxetine pre-treatment, followed by AIS. According to our model, 

bone tissue from these reboxetine pre-treated AIS animals would express Il6 and Rankl similar to ISO, 

and this effect is sensitive to propranolol receptor blockade. Results from this experiment would provide 

a clear interpretation of our previous finding that reboxetine treatment alone is sufficient to cause bone 

loss in chronic immobilization stressed mice83. 
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Figure S2.1 – Expression of Net during BMSC differetiation 
(A) Expression of Net and osteoblast lineage markers genes in primary BMSCs differentiated in 
osteogenic medium for indicated number of days. Gene expression was normalized to 
reference gene Gapdh (n = 4 per time point). 
(B) Differentiated BMSCs gene expression of Rankl, pretreated with isoproterenol (ISO, 1 uM), 
after 2h treatment with vehicle (Veh), isoproterenol (ISO, 1 uM), or norepinephrine (NE, 1 uM) 
(n = 4 per time point treatment).   
All results are shown as mean +/- SD. Statistical analysis by two-way ANOVA, post-hoc 
Dunnett’s statistical test for significance vs ISO Veh control of each differentiation timepoint 
(B); * p<0.05. 
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Chapter 3. Age-Related Changes of SNS in Bone 

 

Introduction 

 

Autonomic dysfunction during aging 

A number of observations suggest sympathetic signaling may contribute to the continuous bone 

loss associated with the pathophysiology of aging. Sympathetic activity in post-menopausal women with 

osteoporosis was measured to be higher compared to post-menopausal women without 

osteoporosis147,148. In these studies, sympathetic nerve activity was inversely correlated with trabecular 

bone volume fraction, thickness and compressive bone strength. This association is further supported by 

indirect observations showing that bone resorption is increased in patients with pheochromocytoma149. 

Additionally, several retrospective studies showed that β-blockers had a beneficial effect on BMD and 

fracture risk135,150,151. In mice, deletion of SNS-related genes Dbh12, Foxo1152, or Adrb288 leads to a high 

bone mass phenotype that is not detectable until 5-9 months of age. These clinical and preclinical 

observations support a functional relationship between sympathetic tone and bone mass regulation, 

with highest relevance to age-related bone loss. To determine whether these patient studies translate 

to rodent animal models, we aimed to determine whether increased sympathetic activity exists in mice 

during aging. 

Our lab has previously reported that the norepinephrine transporter (NET), a pump that uptakes 

NE from the extracellular environment, plays an important role in the regulation of bone remodeling83, 

as global Net deletion causes low bone mass in mice. In this previous study and in Chapter 1, we 

demonstrated that NET is both expressed and function in mature osteoblasts. These observations, in 

concert with previous clinical data on increased sympathetic tone during aging, led us to ask whether 

NET expression and function is also perturbed during aging in mice. 
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Anatomical sympathetic innervation of long bones  

The current paradigm of SNS action on bone physiology arose from genetic and pharmacologic 

studies. While these investigations provided invaluable information on the ligands, receptors, and cell 

lineages involved in this interaction, they were all systemic in scope. The sympathetic nervous system 

has both local and global arms, via direct innervation of tissues for NE-releasing SNS fibers or systemic 

epinephrine (Epi) release from the adrenals, respectively.  Several models of global SNS ablation have 

been used to study SNS and bone: global chemical sympathectomy 153–156, or genetic deletion of 

catecholaminergic enzymes 152,157 or βAR receptors12,88,118. However, these models also ablated adrenal 

contributions in addition to peripheral SNS nerves innervating organs. Experiments in rodents with 

radical bilateral adrenalectomy showed that the adrenal contributions are not necessary to lead to SNS-

mediated bone loss88. However, this surgery also removed the steroidogenic adrenal medulla, and 

require supplementation of cortisol in these animals to avoid Addisonian-like symptoms. It is well known 

that the hypothalamic-pituitary-adrenal axis affects bone homeostasis via adrenal cortisol, making the 

adrenalectomy mouse model difficult to interpret. Furthermore, while this adrenalectomy model 

demonstrates that adrenal Epi is not necessary for bone loss, it is not known whether over-activation is 

sufficient to lead to skeletal changes. In vivo models of SNS activation increase both NE and Epi release 

158, and separating the effect of these two arms proves to be difficult. On the converse, the necessity of 

only the sympathetic nerves supplying individual bones to elicit SNS-mediated bone loss is not certain. 

The anatomical structure mediating the effect of SNS on bone is believed to be sympathetic 

fibers directly innervating the bone or bone marrow. Nerve fibers immunopositive for the rate-limiting 

catecholamine synthesis enzyme tyrosine hydroxylase (TH) or the sympathetic neuropeptide VIP are 

present in bone92,159–161. Retrograde nerve tracing experiments with pseudorabies virus injection into the 

rabbit femur medullary cavity has confirmed sympathetic innervation of bone by pelvic splanchnic 

ganglia162. These early findings, together with the recent findings of SNS function in bone, highlight that 
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the bone is innervated by the SNS and that these nerves serve a physiologic function. Furthermore, 

sympathetic nerves surrounding the vessels supplying bone have also been identified92,93. Previous 

studies have used global chemical sympathectomy of animals to demonstrate the impact of acute SNS 

loss in bone in neonatal155 and adult rats153. These studies focused on mandibular bone remodeling, and 

differences exist compared to long bone physiology156,163. According to Hilton’s Law, bones and joints 

are generally innervated by the same nerve as overlying muscles164. The sympathetic nerve innervation 

of long bone medullary compartment, specifically the marrow space, has been described as co-incident 

with the circulatory tree, which is consistent with other organ systems such as the kidney, muscle, and 

liver161,165,166. The tibial and femoral circulation, except the femoral head, are supplied by branches of 

the femoral artery167. Thus, we hypothesized that the femoral artery, which supplies blood to the lower 

limb including the femoral and tibia cortex and marrow (excluding the femoral head), also exclusively 

carries SNS fibers innervating these organs. To demonstrate this, we aimed to unilaterally denervate the 

nerves surrounding the femoral artery, borrowing techniques from renal artery sympathetic 

denervation168,169. This approach has three advantages: 1.) it spares the femoral and sciatic nerves, 

preserving motor and sensory functions to the bone that also independently affect bone metabolism, 2.) 

the contralateral un-denervated limb can serve as internal controls, and 3.) the femoral artery is easily 

accessible for surgical manipulation. 

 

Results 

 

Aging leads to increased basal NE content in the skeleton 

Aging is associated with an increase in basal SNS signaling in humans, a condition that might be 

partially responsible for the age-related decline in organ function, including the skeleton170,171. 

Therefore, we first asked whether NE bone content differed between young versus old mice. We also 
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subjected young mice to acute immobilization stress (AIS) to provide a physiologic baseline of SNS 

activation versus the non-stressed young animals. Using high performance liquid chromatography, we 

detected a 29% increase in NE content/mg protein in whole tibia tissue samples from 18-month versus 

3-month mice, while acute stress in 3-month animals (AIS) did not lead to increased NE (Fig. 3.1A). The 

amount of the catecholamine precursor L-dihydroxyphenylalanine (L-DOPA) in these tissues was not 

significantly altered between 3- and 18-month old animals, but was significantly increased after AIS (Fig. 

3.1B). Finally, the amount of the metabolite dihydrophenylglycine (DPHG), was not increased in 18- vs 3-

month old animals but was significantly increased with AIS (Fig. 3.1C). As levels of the L-DOPA or DHPG 

are physiologically dependent on NE, we also analyzed the ratios of the catecholamines to the 

neurotransmitter in each group. The ratio of the precursor L-DOPA/NE was increased with AIS vs young 

controls, suggesting increased NE synthesis, but was not significantly changed in older mice. The ratio of 

the metabolite DPHG/NE was not changed in AIS vs young mice, suggesting a 1:1 matching of NE release 

to metabolism, while the ratio was decreased in old mice (Fig. 3.1D). These results indicate that there is 

sympathetic dysfunction and increased basal bone NE in older animals. 

A progressive increase in cortical bone and marrow NE content in aging mice (1 to 12 months of 

age) was also detected via high sensitivity NE ELISA (Fig. 3.1E and S3.1B). Intrascapular brown adipose 

tissue (BAT) Ucp1 expression, commonly used to quantify systemic SNS activity, did not increase with 

age, and instead peaked between 2 and 3 months of age (Fig. 3.1F). These results show that there is a 

progressive increase of skeletal tissue NE with age, and that the measurement of neurochemistry does 

not directly correlate with other measurements of systemic SNS activity. 

In vivo skeletal NET activity decreases with age 

Catecholamine release and regulation in vivo is a dynamic process. It can be attributed to either 

increased release, or decreased metabolism. In Chapter 1, NET was shown to be expressed and 
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functional in both primary differentiated osteoblasts in vitro, as well as in skeletal tissues in vivo. 

Furthermore, there is increased levels of the sympathetic neurotransmitter NE in bone tissue of older 

animals. These data, along with the known catabolic action of β2AR stimulation on bone, led us to 

hypothesize that reduced NET activity upon aging may contribute to a rise in bone NE content and age-

related bone loss. To address this hypothesis, we first aimed to determine whether NE uptake was 

deficient in skeletal tissue from older animals in vivo. Previously, we established a method to measure 

NET-mediated acute uptake of the radioligand [3H]-NE in adult mice. Briefly, mice were pre-treated with 

NET blocker reboxetine (i.p. 20mg/kg BW) or sterile saline vehicle to ensure specificity by sufficient NET 

blockade, followed by administration of [3H]-NE (10 μCi/kg BW) via tail-vein injection to avoid excess 

hepatic metabolism.  

The radioligand was allowed to circulate for 10 minutes, and the animals were rapidly 

euthanized, and tibiae and femurs were harvested. Specific [3H]-NE uptake via NET (AKA reboxetine-

sensitive uptake) in cortical and marrow tissues was calculated as the difference between the vehicle-

pretreated (total tissue uptake) and reboxetine-pretreated (non-NET uptake) groups, and normalized by 

tissue DNA content (as an indirect readout for cell number). Consistent with previous in vitro data 

showing NET expression in differentiated osteoblasts, acute [3H]-NE specific uptake was significantly 

higher in the cortex (enriched in mature osteoblasts and osteocytes) than in the marrow of 3-month old 

mice (Fig. 3.2A). In addition, a significant reduction in specific [3H]-NE uptake was observed in the bone  

marrow. These results confirm that older animals have decreased NE uptake in bone, and specifically in 

the osteocyte-rich cortical envelope. 
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Figure 3.2 – Skeletal NET expression and uptake decreases in aged mice 

(A) In vivo reboxetine-sensitive acute specific uptake of [3H]-NE radioligand in the femoral 
cortex and marrow of 3- and 9-month old mice, normalized to lysate DNA content (n = 6-8 per 
group). 
(B) Representative Western blot and quantification of NET expression in flushed femoral 
cortical tissues from mice of different ages, normalized to reference gene β-actin (n=3-5 per 
group). 
(C) Expression of Net, Ocn, and Sost in flushed femur cortices from mice of different ages, 
normalized to reference gene Gapdh (n = 3-6 per group).  
All results are shown as mean +/- SD. Statistical analysis by two-way (A) or one-way (B – C) 
ANOVA, post-hoc Bonferroni statistical test for pair-wise significance, * p<0.05, ** p<0.01. 
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NET expression in cortical bone decreases with aging 

In vivo specific NE uptake by cortical bone tissues, whose cellularity is comprised of >90% 

osteocytes, and our previous detection of NET expression and uptake activity specifically in 

differentiated osteoblasts in vitro suggested that cortical osteocytes might be the main site of NET 

uptake in vivo. We therefore measured NET expression in flushed femoral cortices of WT C57BL6 mice 

from one month of age until 12 months of age, a time where bone loss is already significant in mice. NET 

protein expression peaked at two months of age, followed by a reduction significant by 3 months (Fig 

3.2B). A similar pattern of expression across ages was observed at the RNA level (Fig. 3.2C and S3.1A), 

suggesting that age impacts the transcription of Net, rather than protein content or stability, in cortical 

bone osteocytes. The osteocyte function marker Sost in these samples was not overtly affected by age, 

whereas the expression of the osteoblast function Ocn peaks at 2 months of age.  Taken together, these 

results indicate that skeletal NET expression and function decreases with age.  

Femoral artery sympathectomy (FASx) in rats 

Sympathetic activation can lead to bone loss. However, it is unclear whether local SNS fiber NE 

or systemic adrenal epinephrine plays a major role in this process. To address whether the local 

sympathetic innervation to a single limb is necessary for SNS-mediated bone loss, we aimed to ablate 

the SNS in a limb unilaterally, thereby preserving the SNS innervation and function in both the adrenals 

and the contralateral limb. In order to achieve this, we first needed demonstrate whether femoral artery 

sympathectomy (FASx) was effective in removing SNS innervation from that limb. Borrowing from 

rodent renal artery sympathetic denervation protocols168, we designed and performed FASx in Sprague-

Dawley rats (Fig. 3.3A and S3.2). To determine ablation of sympathetic innervation of the bones 

downstream of the femoral artery, we compared tissues from the phenol (Phe) sympathectomized 

animals and sham controls. We also compared the Phe/Sham surgically treated (Sx) limb the 
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contralateral (Ctrl) limb of the same animal, as well as limbs from sham controls. Protein levels of the 

sympathetic marker TH in tissues, measured by Western blot band intensity and normalized to the 

reference protein β-actin, was not significantly decreased in sympathectomized limbs compared to 

either the contralateral or sham animals (Fig. 3.4A). Quantification of NE content via HPLC in tibial 

cortex tissue, normalize to tissue protein concentration, showed no significant difference between 

Phenol Sx limbs versus either the Ctrl limb or sham controls (Fig. 3.4B). Furthermore, to determine 

whether there was intra-animal difference in NE content between Sx and Ctrl limbs, we quantified tissue 

NE in femur and tibia cortex and marrow tissues by ELISA, and subtracted Ctrl values from Sx. There was 

no difference between phenol FASx or sham animals in the marrow or cortical tissue NE content in 

either femur or tibia (Fig. 3.4C). Finally, TH-immunopositive fibers were still present in the cortex (Fig. 

3.4D) and marrow space – including periarterial nerve plexuses (Fig. 3.4E and F) – of the proximal femur 

of sympathectomized limbs. Taken together, these results indicate that the FASx procedure did not 

ablate SNS in the lower limb bones. 

 

Discussion  

High NE extracellular levels can be due to either increased synthesis and release, or decreased 

metabolism and uptake. During aging, increased cardiovascular NE spillover has been shown to be due 

to decreased NET capacity172. We show in this study a similar age-related change in the skeleton, with 

resting NE levels higher in bones from older mice. The normal levels of the catecholamine precursor L-

DOPA and higher L-DOPA/NE ratio in bone from younger mice suggested the observed increase in bone 

NE was unlikely from increased synthesis, and the reduction in acute in vivo [3H]-NE uptake in the bone 

of aged animals further supports a deficit in reuptake function. These new in vivo results, along with the 
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Figure 3.4 – Rat femoral artery sympathectomy (FASx) does not ablate tibia or femur 
SNS 
(A) Representative Western blot and quantification of TH in tibial marrow and cortex 
from surgically treated (Sx) contralateral (Ctrl) limbs in Sham or Phenol (Phe) FASx 
rats, normalized to reference gene β-actin (n=4-5 per group). 
(B) NE levels in tibial cortex from Sx or Ctrl limbs in Sham or Phenol FASx rats, 
measured by HPLC and normalized to tissue lysate protein concentration (n=4-5 per 
group).  
(C) Relative changes in NE levels, measured by ELISA in tibia and femur marrow and 
cortex of Sham or Phenol FASx rats. Normalized to tissue lysate protein concentration 
(n=4 per group).  
(D – F) Representative immunofluorescence images of femur cortex (D) and marrow 
vessel (E) from phenol-Sx rats. Tyrosine hydroxylase (TH) immunopositive fibers (red, 

 closed arrowheads) are present 
close to vascular structures in 
cortical vascular canals (D) and 
around medullary arterioles (E). 
Negative IgG primary antibody 
control (E and F, dotted open 
arrowheads) represents 
background immunofluorescence. 
Images are representative of 
sections from 3 animals for each 
treatment. 
All results are shown as mean +/- 
SD. Statistical analysis by two-way 
ANOVA, with significance taken at 
p < 0.05. 
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expression of NE catabolic enzymes in osteocyte cultures, support the hypothesis that osteocytes 

function as a catabolic sink for NE in bone, and that this capacity is diminished with age. However, at this 

whole-tissue resolution, it was not possible to determine whether the decrease in NET expression and 

function with age was caused by the natural decrease in osteocyte density with age125 or by an intrinsic 

cell-autonomous reduction in Net expression in “old” osteocytes.  

The decreased [3H]-NE uptake in the cortex of 9- vs 3-month old animals (Fig. 3.2A) could be 

attributed to the competition of NET-binding sites by the high endogenous NE in older animals (Fig. 3.1). 

However, the lower NET protein and RNA in these tissues suggests that the functional decrease stems 

from decreased expression.  Furthermore, the concentrations used in in vivo radioligand uptake 

experiments were selected from experiments in NE uptake in other tissues (e.g. heart)96,173,174, and 

represent acute high-affinity uptake that is NET sensitive (as opposed to saturating levels of radioligand). 

Controlling for these factors may theoretically be possible – either be systemically depleting NE prior to 

acute [3H]-NE uptake, or by measure uptake of isolated ex vivo washed tissues, much like in brain 

neurotransmitter uptake experiments82,175. While these two approaches would be “purer” in modeling 

tissue neurochemistry, the perturbations to the endogenous SNS regulatory system or tissue integrity 

may introduce too many variables for reliable interpretation. Additionally, it is possible that osteocytic 

NET is divided between surface functional and intracellular sequestered NET. It is also possible that 

osteoblast/osteocyte NET is sequestered away from the cell surface, and that certain physiologic, 

pathologic, or external pharmacologic stimuli may alter this surface expression without requiring gene 

expression changes. This surface vs. intracellular distinction is cannot be addressed by whole-tissue gene 

and protein quantification. However, measurement of binding of radio-labeled small molecule NET 

antagonist ligands (e.g. [3H]-nisoxetine)173,176,177 would provide a direct measurement of surface NET.  

Decreased NET protein and RNA expression during aging in vivo is consistent with the functional 

data (Fig. 3.2). To definitively demonstrate that pathophysiologic NET deficiency during aging leads to 
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decreased uptake, additional experiments over-activating NET will be necessary. This can be achieved 

either through pharmacologic upregulation of NET expression, genetic over-expression of NET in 

osteocytes, or pharmacologic potentiators of NET function (of which none are currently known). There 

are several reports of pharmacologic agents upregulating NET expression such as by corticosterone178 or 

PKC inhibitors in neuronal cell line146,179, or the HDAC inhibitor Vorinostat in in vivo models of 

pheochromocytoma149,180.  However, prior to these studies, it is necessary to demonstrate that NET in 

osteoblasts in vitro or in bone tissue in vivo is sequestered intracellularly. This could be achieved by 

either high-resolution microscopy and immunofluorescence for NET in these cells, or by indirect 

measurements such as cell-surface ELISA of NET on surface vs. permeabilized cells. 

Our results show that chemical unilateral femoral artery sympathectomy does not ablate 

sympathetic innervation from the bones of a limb (Fig. 3.3 and 3.4). Hilton’s law, which states that the 

nerve supply to a region of skin or muscle also supplies the underlying bone and joint, arose from 

surgical observations and knowledge of embryology. In general, dermatomal nerve patterns are shared 

between muscle, bone, and overlying skin164. However, this rule is used in application of afferent 

sensory nerves, and is not generally applied to autonomic nerves. It is possible there exists alternative 

routes of SNS innervation of the tibia and femur. It is also possible that the 7 days post FASx was 

sufficient for re-innervation of the tissue by the SNS. Previous global chemical sympathectomy 

experiments in rabbits demonstrated regeneration of SNS fibers within the bone after 2 weeks181 

despite complete loss of fiber immunofluorescence staining 3 days post-systemic sympathectomy. It is 

possible that these rats experienced similar regeneration, and/or auxiliary paths of innervation 

compensated for the initial FASx-mediated loss. To address these questions, several time points post 

FASx would be needed, and methods to monitor leg SNS activity in vivo – such as recurrent tibial nerve 

activity128 or skin temperature changes to local cold challenge – could be employed.  
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Although post-synaptic pharmacological βAR stimulation induced bone loss in mice88,182, neither 

short-term chronic pharmacologic blockade of NET alone (by the antagonist reboxetine), nor increased 

endogenous NE release (by a chronic immobilization stress protocol) impacted bone mass in young 

mice. However, chronic stress led to a significant loss of bone mass when combined with NET blockade 

with reboxetine 83. These results suggested that NET protects the skeleton from the catabolic action of 

NE released from activated sympathetic fibers, and that conditions associated with impaired NET 

function and increased SNS outflow might lead to bone loss. In order to demonstrate that skeletal NET 

does indeed uptake physiologic NE, in vivo experiments measuring bone tissue NE, L-DOPA, or DPHG in 

resting or AIS-stimulated aged mice are necessary – similar to experiments done in young mice 

presented in Chapter 1 (Fig. 2.4). Results from these studies would verify whether the already elevated 

basal SNS activity in bone from older animals is capable of further excitation. To further probe beyond 

the resting steady-state SNS physiology, future studies in aging animals should also include reboxetine 

pre-treatment, in order to eliminate the influence of NET. Findings from these proposed future 

experiments would provide evidence as to whether the low skeletal NET expression in aged animals is 

capable of any endogenous NE metabolism via uptake. These data support the model whereby NE 

uptake by NET in cortical osteocytes buffers endogenous NE released by sympathetic nerve fibers, and 

suggest that failure of this homeostatic system might contribute to age-related bone loss, although this 

latter point will need to be addressed by loss-of-function experiments. 
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Figure S3.1 – Skeletal Net expression 
decreases with age 
(A) Expression of Net, Ocn, and Sost in 
flushed femur cortices from mice of 
different ages, normalized to reference gene 
Hprt (n = 3-6 per group).  
(B) NE levels in femoral marrow tissues from 
mice of different ages, measured by ELISA 
and normalized to tissue lysate protein 
content (n = 3 per time point). 
All results are shown as mean +/- SD. 
Statistical analysis by two-way ANOVA, post-
hoc Bonferroni statistical test for pair-wise 
significance, * p<0.05. 
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Figure S3.2 – Rat femoral artery sympathectomy surgery procedure images 
Legend: red line – artery; blue line – vein; yellow line – nerve; white line – inguinal ligment 
(A) Right medial thigh inguinal region (inset) with labeled structures (right). Skin and underlying 
fascia were removed and reflected to expose inguinal triangle. The femoral artery and nerve 
were separated from their common sheath (not visible). 
(B - F) Stepwise procedure for femoral artery sympathectomy. A sterilized thin paraffin strip was 
passed around femoral artery to isolate it from surrounding structures (B – D). To chemically 
ablate peri-arterial nerves, a thread soaked with 50% phenol in ETOH was threaded around the 
femoral artery, on top of the paraffin strip (E), and moved around the artery to ensure sufficient 
phenol contact. The resulting bleached artery (F) indicates successful phenol treatment of the 
tissue. 
(G) Schematic diagram of FASx procedure. 
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Chapter 4. In situ NET Expression Bone Innervation  

 

Introduction 

As an endocrine organ, the skeleton can be expected to be both the target and the source of 

endocrine, paracrine, and neuronal signals that integrate its functions with other tissues and organs. 

Multiple experimental evidence in mice and humans suggest that the sympathetic nervous system 

(SNS), a branch of the autonomic nervous system responsible for maintaining the homeostasis of many 

tissues, regulates skeletal homeostasis6,88,89. Sympathetic nerve fibers indeed were shown to innervate 

skeletal tissues90–93, and osteoblasts express receptors for norepinephrine (NE), the neurotransmitter 

released by these sympathetic nerves, with the β2-adrenergic receptor (β2AR) being the predominant 

receptor expressed in this lineage88. The current model of how peripheral sympathetic nerves impact 

bone remodeling includes the release of NE, which acts on osteoblastic β2AR to promote bone loss 

through RANKL-mediated activation of osteoclasts88,89 and inhibition of osteoblast proliferation via Clock 

genes94. This model is derived from genetic mouse models as well as pharmacological approaches 

targeting mainly post-synaptic βARs.  

From these studies, significant progress has been made in elucidating the receptors, molecules, 

and cells responsible for this process. However, further understanding of the mechanisms involved are 

hampered by the limited data describing the neuroanatomy of bone innervation during development, in 

adults, or in response to skeletal pathologies. An obligate first step to progress further is thus to 

precisely map, anatomically first, the innervation of the skeleton by autonomic nerves, at both tissue 

and cell levels. At the tissue level, we need better understanding of the distribution of sympathetic 

nerve fibers near bone structures. This anatomic data will help infer the function of SNS on bone 

elements. At the cellular level, we need better understanding of where sympathetic fibers and the NE 

reuptake machinery NET are located within bone tissues. These data will help provide an anatomical 
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perspective through which we can more appropriately interpret the pharmacologic and genetic finding 

of SNS on bone. 

 

Visualizing sympathetic fibers in bone 

 Previous studies investigating sympathetic fibers in bone show that they are rare in bone 

tissues92,163,183. Traditional methods using fluorescent protein reporters and/or immunofluorescence on 

thin histological sections yield high cellular resolution, but cannot easily provide a whole-organ survey of 

innervation of bone. Numerous neurochemical and nerve retrograde tracing studies have confirmed the 

existence of anatomical sympathetic innervation of bone. However, these methods have also failed in 

providing high resolution anatomical maps of SNS nerves. In the past decade, a new technique called 

CLARITY was invented to study innervation in the brain at a high resolution184,185. This method has since 

been adapted to numerous other organ systems such as the heart, kidney, and even bone 186–188. 

Furthermore, CLARITY has been used to specifically study sympathetic innervation of adipose tissue. 

Dye-based delineation of structures (e.g. lineage-specific β-galactosidase expression) are ill-suited for 

this imaging method, since it is highly dependent on washing the tissue with detergents and solvents. 

However, mice with endogenously expressed fluorescent proteins are compatible with the CLARITY 

method186,189. Thus, transgenic mice driving Cre activity in sympathetic neurons, crossed with reporter 

mice expressing a fluorescent reporter upon Cre expression, can be used to delineate sympathetic 

neuronal structures within bone. These genetic tools can be used with CLARITY method and whole-

mount microscopy techniques to provide a high resolution 3-dimensional mapping of autonomic nerves 

in the skeleton.  
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Results 

 

NET is expressed in cortical osteocytes 

Our current paradigm involves NET expressed on mature osteoblasts/osteocytes involved in NE 

uptake in vivo. In Chapter 2, we presented results where mature in vitro differentiated BMSCs and tibial 

cortex (enriched in osteocytes) express Net and have reboxetine-sensitive uptake. We have previously 

detected NET tissue expression in post-natal day 2 tibiae83. However, osteoblast-lineage NET expression 

in the adult skeleton has yet to be demonstrated. To confirm osteocytic NET expression in situ and 

possible presence of SNS nerves in the osteocytic network, we aimed to use both genetic reporter mice 

and immunofluorescence and imaging techniques to detect NET on bone matrix-embedded osteocytes. 

Using immunofluorescence, we detected NET immunofluorescence (NET-IF) in TH-immunopositive (TH-

IF) fibers in the tibial trabecular zone of adult mice, close to bone surfaces (Fig. 4.1A), indicative of TH+ 

SNS fibers that co-stain for both NET and TH at their terminals or along the nerves. Using mice 

expressing the tdTomato fluorescent protein in sympathetic Th+ neurons (ROSA26-tdTomato; Th-Cre), 

we also detected NET immunofluorescence co-incident with TH-driven tdTomato fluorescence (TH-Tom) 

(Fig. 4.1B). However, there was also background fluorescence signal in vessel erythrocytes (open 

arrowheads), and bone surface-lining osteoblasts in sections with NET-IF and IgG primary antibody 

negative control (asterisks, Fig. 4.1C). 

We also detected NET immunostaining in matrix embedded osteocytes in the tibial cortex of 

these mice (Fig. 4.2A), but not in trabeculae (Fig. 4.2B) or in sections incubated with mouse IgG isotype 

negative control (Fig. 4.2C). NET expression was not uniform across all tibial cortical regions. Quantified 

osteocytic NET expression was the highest in the cortical region adjacent to the secondary spongiosa 

and the diaphysis, while relatively sparse around the primary spongiosa/perichondrium (Fig. 4.2D).  
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Figure 4.1 – NET immunofluorescence and 
sympathetic nerves in bone marrow 
Legend: vessel (v), trabeculae (Tb), cortex (Ctx), 
marrow (M), periosteum (PO), IF: 
immunofluorescence, DIC: Differential interference 
contrast microscopy.  
(A) Immunofluorescence images of fibers with NET 
(red) and TH (green)-immunostaining in tibial 
trabecular zone (closed arrowheads). Non-specific 
background fluorescence is visible in blood  
representative of 2 sections from 3 animals. Scale 
bar 50um.  

(B) NET immunofluorescence (green, closed arrowheads) colocalization with TH-
Tomato expression (red) in tibial diaphyseal cortex sections. Weaker signal is 
observed in cuboidal cells apposed to trabeculae (asterisks). Images are 
representative of 2 sections from 3 animals. Scale bar 50um.  
(C) IgG primary antibody negative control and TH-Tomato expression (red) in 
tibal diaphyseal cortex section. Weaker signal is observed in cuboidal cells 
apposed to trabeculae (asterisks). Images are representative of 2 sections from 
3 animals. Scale bar 50um.  
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Although background fluorescence signal was observed in vessels and bone-lining cells, several 

observations support the specificity of the NET staining. First, staining was observed in the peri-cellular 

area of TH-positive adrenal medullary chromaffin cells, which are catecholaminergic neuroendocrine 

cells known to express NET at their surface (Fig. S4.1A, positive control). Second, replacement of the 

primary antibody against NET by a non-immune IgG did not label any neuronal structure nor osteocytes 

(Fig. 4.1C and 4.2C), although some signal was observed in blood vessel erythrocytes (Fig. 4.1A, open 

arrow) and in the periosteum (Fig. 4.2A and C) in both anti-NET and mouse IgG isotype groups. This 

similar pattern of expression between the anti-NET and mouse IgG isotype groups strongly suggests that 

this erythrocyte and periosteal staining is indeed background signal. The analysis of mice deficient for 

Net will be necessary to confirm this, however, the observation that NET immunoreactivity disappeared, 

along with TH immunoreactivity, in bone marrow neurons (but not osteocytes) in tibial sections from 

animals chemically sympathectomized with 6OHDA (Fig. S4.1B – E) further supports specificity of the 

anti-NET antibody.  

 

TH+ fibers and osteocytic NET expressed in human bone biopsies 

It is assumed that murine animal models of SNS-bone interaction are an accurate model of 

human physiology. To confirm this, we performed immunofluorescence histology on a human proximal 

tibia bone biopsy. We were able to detect TH+ sympathetic fibers in the Haversian canals (Fig. 4.3A) and 

along the endosteal surfaces (Fig. 4.3B) in these sections. NET was also detected in cortical osteocytes 

(Fig. 4.3C) although it was not co-localized with in TH+ fibers. No TH+ fibers or NET+ osteocytes were 

observed in IgG isotype negative controls. These results represent preliminary evidence that the human 

skeleton is innervated by the SNS, and that human cortical osteocytes express NET, but will need 

additional samples to verify these findings. 
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Figure 4.2 – NET immunofluorescence in osteocytes 
Legend: vessel (v), trabeculae (Tb), cortex (Ctx), marrow (M), periosteum (PO), IF: immunofluorescence, 
DIC: Differential interference contrast microscopy.  
(A) Max. intensity projection of NET-immunofluorescence (red, closed arrowheads, left images) in tibial 
diaphyseal cortex sections. Non-specific background fluorescence is observable in the periosteum (open 
arrowheads). Images representative of 2 sections from 3 animals, projections from 9 confocal optical 
sections through 10um depth. Scale bar 50um. Inset: magnified osteocytes, scale bar 20um. 
(B) NET-immunofluorescence not found in max. intensity projection of tibial trabecular osteocytes. 
Images representative of 2 sections from 3 animals, projections from 9 confocal optical sections through 
10um depth. Scale bar 50um.  
(C) Max. intensity projection of IgG primary antibody negative control in tibial diaphyseal cortex 
sections. Non-specific background fluorescence is observable in the periosteum (open arrowheads). 
Images representative of 2 sections from 3 animals, projections from 9 confocal optical sections through 
10um depth. Scale bar 50um. Inset: magnified matrix-embedded osteocytes, scale bar 20um. 
(D) Density of NET+ osteocytes per total number of osteocytes or total cortex area per region in primary 
spongiosa (1Sp), secondary spongiosa (2Sp), or diaphysis (Dia). (n= 4 animals, 3 sections per animal). 
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Figure 4.3 – NET and TH immunofluorescence in human bone 
Legend: vessel (v), trabeculae (Tb), cortex (Ctx), marrow (M), periosteum (PO), IF: 
immunofluorescence 
(A - B) Immunofluorescence images of fibers TH-immunopositive fibers (green, closed 
arrowheads) and of IgG primary antibody negative controls (right) in bone biopsy samples from 
human patients. Images are representative of 3 sections from a patient biopsy. TH-fibers within 
intracortical Haversian canal (A) at endosteal surface of bone (B). Scale bar 50um (left); 
magnified (colored box inset, middle) scale bar 20um. 
(C) ) Immunofluorescence images of NET-immunopositive cells (red, closed arrowheads) and of 
IgG primary antibody negative controls (right) in bone biopsy samples from human patients. 
Images are representative of 3 sections from a patient biopsy. Scale bar 50um (left); magnified 
(colored box inset, middle) scale bar 20um. 
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Visualizing distribution of sympathetic nerves in long bones 

Previous studies have documented the presence of TH+ fibers in bone92,159,163,190, but did not 

provide a precise anatomical map of sympathetic fiber densities in bone. A question raised by the 

finding of NE uptake activity in cortical bone is whether SNS fibers were located close to osteocytes. To 

investigate the distribution of sympathetic tyrosine hydroxylase (TH+) nerve fibers in long bones, we 

generated transgenic reporter mice overexpressing a tdTomato fluorescent reporter protein in TH-Cre+ 

cells (TH-Tomato)191. In order to visualize long TH+ fibers in and around the cortical envelop volume, we 

applied the bone CLARITY optical clearing and whole-mount confocal imaging techniques186,192 to clear 

whole femurs hemi-sectioned longitudinally (see Materials and Methods and Fig. S4.2). In order to 

differentiate tissues, Hoechst stain (blue) and tissue autofluorescence (false color gray) were used to 

approximate location of the TH-Tomato signal (red). Using this approach, SNS fibers were grossly 

observed in the diaphyseal region in 3D reconstruction tissue and top-down maximum intensity 

projection (MIP) of the tissues (Fig. 4.4A – B). To determine the tissue-level location of SNS fibers, digital 

sections of the entire tissue image were generated. TH-Tomato+ signals were observed in the 

periosteum area, as previously reported92 , but also within compact cortical bone (Fig. 4.5A – B).  Digital  

coronal sections of the diaphysis at all levels of cortex studied confirmed TH-tomato signals within the 

compact bone cortical envelope (Fig. 4.5C). 

 

Quantification of sympathetic nerve fibers in bone compartments 

Using the whole-mount bone CLARITY and light sheet imaging technique allows quantification of 

nerves in discrete bone compartments (e.g. cortex vs. medullary marrow). In order to differentiate bone 

matrix from marrow and other structures, bone hemisections were optically cleared and counterstained 



69 

 

Figure 4.4 – Whole-mount imaging of TH+ sympathetic nerves in bone 
(A) Representative 3D reconstruction of femur hemisection from light sheet imaging of entire 
tissue. Diaphysis region is highlighted (red box). Image shows Hoechst fluorescent staining 
(blue) and FITC-autofluorescence (false color gray).  Scale axis bars 500um. 
(B) Boxed diaphysis region from 3D femur hemisection reconstruction, and top-down maximum 
intensity projection (MIP) of boxed region. Tissue imaged from Hoechst (blue) and FITC-
autofluorescence (false color gray), and sympathetic nerves by TH-tdTomato fibers (TH-Tom, 
red). Scale axis bars 500um.  
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Figure 4.5 – TH+ fibers in cortex sections of 3D reconstructed femurs 
(A) Top-down maximum intensity projection (MIP) of boxed diaphysis region from Fig. 3.2 showing TH-
Tomato signal (red), Hoechst fluorescent staining (blue), and FITC-autofluorescence (green).  
(B) Top-down MIP digital section of 10 Z-frames (36um) of the tissue in (A). Scale bars 400um. 
Highlighted regions (yellow and green boxes) shown in magnified panels, scale bar 100um.  
(C) Coronal digital sections, indicated by colored frames (yellow, green, and purple) on 3D reconstructed 
femur hemisection. Image constructed from Hoechst fluorescent staining (blue) and FITC 
autofluorescence (false color gray). Scale axis bars 500um. Digital tissue cross-sections 50um thick, show 
red TH-Tom fluorescent signal located within cortical/periosteal tissues (arrowheads), scale bar 100um.  
All images are representative of femurs hemisections from 3 animals. 
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with both the Hoechst nuclear stain (blue), as well as a fluorescently conjugated phalloidin actin stain 

(false color purple). Bone matrix tissue was identified as regions of HoeschtHi/phalloidinHi. Conversely, 

marrow tissues were identified as HoeschtHi/phalloidinLo based on higher marrow cell density193 (Fig. 

4.6A).  

In order to better visualize and quantify the anatomical position of TH+ fibers relative to the 

compact bone stroma within a 3D environment, a semi-automated method was established to identify 

and label nerves, bone elements and their respective positions, based on discretization of fluorescent 

intensities (see Materials and Methods). In brief, we used Imaris software to convert TH fluorescence 

intensity into fibers, resulting in a discrete filament network that follows the TH+ intensity (Fig. 4.6B). 

Compact bone stroma was visualized by converting Phalloidin-staining intensities into a solid surface 

object with discrete boundary, volume and surface (Fig. 4.6C). To identify and analyze nerve fibers that 

penetrate the cortical bone, TH+ filaments were converted into spots (Fig. 4.6D shows center spots 

only), and the overlap with Phalloidin+ cortical surface object was used to segregate the TH spots into 

internal red “cortical” or yellow “external periosteal or medullary” spots (Fig. 4.6E). Medullary and 

periosteal spots were manually differentiated by their location relative to cortex. Finally, the volume of 

each segregated spot subset and total spots were quantified by the Imaris software, indicating total TH 

innervation of tissues, and the ratio of each tissue’s innervation vs. the total innervation (Fig. 4.6F). 

Using this method, nearly 90% of the density of TH+ fibers was colocalized within the periosteum and 

cortical bone envelops at the level of the secondary spongiosa and diaphysis of the femur. 

 

Discussion 

Expression of NET in bone tissues was previously described only in trabecular osteoblasts of postnatal 
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Figure 4.6 – Semi-automated identification and quantification of SNS fibers in cortical bone 
(A) Cross-sectional view of Hoechst (blue) and Phalloidin (false-colored red) stained cortex 
around secondary spongiosa, with periosteum (PO), cortex (Ctx) and marrow (Marr) delineated. 
Scale bar 100um. 
(B) Representative image of filament approximation (cyan) of TH+ fibers (red), with highlighted 
regions (blue and green boxes) magnified. Scale bar 300um. 
(C) Phalloidin+ surface reconstruction (grey), along with TH filaments (cyan). 
(D) TH filaments (cyan) and converted spots (yellow spheres). Only centroid spot of each 
straight filament unit is shown.  
(E) Segregation of TH spots by overlap with Phalloidin surface (grey) into internal “cortical” 
spots (red spheres) and external “periosteal” spots (yellow spheres).  
(F) Quantification of TH

+
 fibers in cortex (Ctx), periosteum (PO), and medullary space (Med).  

Data are represented as mean +/- SD. Statistical analysis by one-way ANOVA, post-hoc 
Bonferroni statistical test for pair-wise significance; * p<0.05, ** p<0.01. (n = 5 bone 
hemisections) 
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day 3 mice, which do not yet have a significant density of osteocytes83. In the context of data suggesting 

a deleterious impact of sympathetic nerve signaling on bone during aging, it was necessary to assess NET 

expression and function in adult tissues. Through immunofluorescence methods, we were able to 

identify NET expression in adult bone-embedded cortical osteocytes, a result consistent with higher NET 

uptake activity in flushed femurs versus marrow. A majority of NET+ osteocytes were observed in the 

periosteal cortical envelope, consistent with the observed location of SNS fibers and the lower turnover 

of cortical versus trabecular bone. These results thus suggest that osteocytes control, via uptake of NE, 

the communication between sympathetic nerves and β2AR+ bone cells, although it remains unclear 

which effector cell in the osteoblast lineage, osteoblasts, osteocytes, or both, is the target of 

sympathetic nerves. Isoproterenol (ISO) stimulation of the β2AR affects bone through both arms of the 

bone remodeling process, inhibiting osteoblast proliferation via cell-autonomous circadian genes Per 

and Cry95, and stimulating RANKL production to promote osteoclast differentiation88. These two actions 

cannot occur within the same cell, as the anti-proliferative action of NE relates to pre-osteoblasts, 

whereas osteocyte-derived RANKL plays a predominant role in bone remodeling13. Furthermore, these 

two cell types inhabit different locations in bone: pre-osteoblasts are located near the endosteal bone 

surface and migratory194, whereas osteocytes are embedded and stationary in the calcified bone matrix. 

Localization of SNS fibers near perivascular hematopoietic57 and mesenchymal stem cell niches55,195 were 

previously reported. However, only a few reports 190,196 suggest close vicinity with osteoblast-lineage 

cells. Whether the primary target of endogenous NE among bone-forming cells is the skeletal stem cell, 

osteoblast, or the osteocyte is thus still unclear.  

Compared to previous reports using histological methods against sympathetic nerve markers 

92,93,159,163,197–199, our study provides an independent analysis of sympathetic innervation of the skeleton, 

using an alternative method based on TH-Cre-mediated fluorescent signals and 3D bone CLARITY 

imaging. Bone CLARITY has been previously applied with success to imaging rare cell populations in 
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whole mouse bones192. Here, we applied this technology for visualizing long sympathetic nerves in adult 

femurs, with a focus on intracortical distribution. We were able to confirm innervation of the 

periosteum and to detect innervation of the femoral cortices, but were not able to detect fine nerve 

terminals reaching osteocytes. Limitation associated with the cytoplasmic expression of the tdTomato 

reporter used in this study may account for the lack of detection of fine fibers within cortical bone, as 

the thin diameter of sympathetic nerve terminals may be insufficient for significant cytoplasmic 

fluorescent protein diffusion and detection. As a potential future study, a membrane-bound fluorescent 

protein reporter (i.e. the ROSA26-mTmG mice strain) in sympathetic nerves could be used in attempts to 

increase the fluorescent signal of fine nerve fibers in bone. It is also possible that other mechanisms 

aside from direct osteocyte-neuronal interactions are involved in the effect of NE on bone remodeling. 

Studies focused on the adipose tissue indicated that only approximately 4-12% of inguinal fat pad 

adipocytes are in direct contact with SNS fibers200, with inter-adipocyte gap junctions shown to 

propagate secondary messenger molecules like cAMP between adjacent cells. The inter-osteocyte 

connectivity and the connections between osteocytes and osteoblasts makes this putative signaling 

mechanism possible in bone, as inter-osteocyte communication has already been demonstrated to 

translate mechanical strain signaling to adjacent cells201. In addition, the gap junction protein 

Connexin43, encoded by Gja1, can form gap junctions between adjacent cells, and expression of a 

dominant-negative Gja1 mutant resulted in increased cortical bone69,71. It is thus plausible that inter-

osteocyte communication via gap junctions following β2AR stimulation in osteocytes could mediate 

secondary messenger diffusion, and contribute to propagating signals from single stimulated cells across 

the larger osteocyte network to eventually impact bone remodeling. In any case, the data presented 

herein provide a strong incentive to assess the in vivo functional relevance of NET-mediated NE uptake 

by osteocytes and its impact on bone remodeling during bone acquisition and aging. 
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Bone CLARITY has multiple future application for studying interaction between SNS and bone. 

One question is the anatomical pathway of SNS innervation of bones, which was approached in Chapter 

2. The femoral artery sympathetic nerve loss-of-function studies demonstrated that the periarterial 

sympathetic plexus around the femoral artery may not solely be responsible for innervation of the 

femur and tibia. It is possible that other sources, such as the obturator artery supplying the femoral 

head is another SNS innervation source. However, this candidate approach of ablating other 

sympathetic pathways may present issues, since the procedure is reliant on both the technical success 

of the chemical sympathectomy protocol, as well as the accurate biological target. A less risk non-

candidate approach would be visualization of labeled nerves in an intact limb. Whole-mount staining of 

genetic tracing of β-galactosidase-expressing tissues has long been available for studying structures 

during embryologic development. This method is relatively simple, as the tissues are smaller and easier 

for both reagent penetration, and has been applied to studying the sensory innervation of the skeleton 

during development202. However, the resolution of β-gal staining methods is limited to macroscopic 

structures due to the diffusion of the chromogenic chemical product. Also, effective staining in whole-

mount adult tissues is prevented by the size and impermeability of the adult tissues. The bone CLARITY 

technique with light sheet imaging, coupled with the use of fluorescent protein reporters, provide the 

potential for resolving smaller structures in higher resolution.  

There are multiple limitations to bone CLARITY methods, primarily arising from technical aspects 

of bone clearing. In the field, multiple tissue-clearing protocols, and refractive index matching solutions, 

and imaging techniques exist to improve speed of processing, tissue morphology, and tissue 

clarity188,189,192,203–206. However, the age and the size of the tissue are considered the greatest limiting 

factors – due to limiting volume and depth of solution penetration, the increased integrity of connective 

tissues and membrane, and the increased deposition of heme metabolic products responsible for 

autofluorescence. Many of these issues are compounded in bone, where calcified tissues are less 
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permeable, and insufficient decalcification presents addition barriers to light penetration. Thus, while it 

is easily feasibly to apply bone CLARITY to whole embryonic limbs or animals or bones from young (<3 

months old) animals, applying this to larger/older structures requires additional advances. 

Whole-mount imaging allows easy identification of rare cells and structures otherwise difficult in 

traditional thin-section histology. This is especially relevant to distances between objects at different 

depths of the object. It also allows semi-automated analysis of structures, similar to analytical software 

such as Bioquant or ImageJ for 2D images, thereby eliminating the need for manual quantification in 3-

dimensional space. In this chapter, we have demonstrated application of this technology to stratifying 

TH+ fiber innervation of bone cortex, periosteum, and medullary marrow. The Imaris program can also 

be used to measure the distance between fluorescently-labeled cells and TH+ fibers. Future studies 

could involve additional transgenic fluorescent protein reporters such as the osteocytic Ocn-GFP, or the 

vascular Tie2-GFP markers. A mouse with transgenic fluorescent reporters for both osteocytes and 

sympathetic nerves (Ocn-GFP; Th-Cre; ROSA26-tdTomato) would be used to study the distance of 

osteocytes from SNS nerves, providing quantification of a “watershed” of NET-expression osteocytes 

relative to TH+ SNS fibers.  
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Figure S4.1 – NET immunofluorescence controls 
Legend: vessel (v), trabeculae (Tb), cortex (Ctx), marrow (M), periosteum (PO).  
(A) Confocal microscope images of adrenal medullary catecholaminergic cells, used as positive 
control for NET expression. Cells are immunopositive for cytosolic TH (green), and for peri-
cellular NET (red). Images are representative of sections from 3 animals, scale bar 20um. 
(B) Weight difference in mice after 5-day treatment protocol with 6OHDA or saline vehicle 
controls (n = 7 per group). 
(C) Representative Western blot for TH and reference protein GAPDH of whole femur tissues 
from mice chemically sympathectomized with 6OHDA or saline vehicle controls (n=5 per group). 
(D) Confocal microscope images of proximal tibia from saline-vehicle treated mice. TH-
immunopositive fibers (green) are found in the marrow near NET-immunopositive fibers (red). 
Scale bar 50um.  
Images are representative of sections from 3 animals.  
(E) Confocal microscope images of proximal tibia from mice chemically sympathectomized with 
6OHDA. TH- and NET-immunofluorescence was not observable in the tissues. Images are 
representative of sections from 3 animals, scale bar 50um. 
All results are shown as mean +/- SD. Statistical analysis by two-tailed Student t-test, statistical 
significance taken at p < 0.05. 
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Figure S4.2 – Bone CLARITY clearing and imaging workflow 

Schematic representation of tissue preparation for clearing, imaging, and data analysis of bone tissue 
innervation 
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 Conclusions 

 

From the studies presented in this thesis, the model of bone-sympathetic interaction has been 

further refined (Fig. 5.1). In brief, sympathetic neurons richly innervated the periosteum and cortical 

bone, and release NE, which acts on only the β2AR expressed on mature osteoblast/osteocytes. These 

cells then respond by expression the osteoclastogenic gene Rankl, which can act on osteoclasts to 

increase bone resorption. Finally, matrix-embedded mature osteocytes can terminate NE signaling via 

uptake through NET. While these findings also raise more questions, it also allows the use of more 

precise tools such as tissue-specific gene deletions to probe individual components. This new paradigm 

offers a higher resolution model of the cells and tissues involved in NE signaling and metabolism in 

bone, both visually and mechanistically. 

 

Figure 5.1 – Updated paradigm of sympathetic nervous system action on bone 
Sympathetic nervous system (SNS), which densely innervates the bone cortex (A), releases the 
norepinephrine (NE), which acts on β2 adrenergic receptors (β2AR) on mature 
osteoblast/osteocytes (Ocy), and not immature osteoblasts (OB) or osteoblast precursors (pre-
OB) (B). This stimulation triggers expression of the pro-osteoclastogenic Rankl that is capable of 
inhibiting osteoblast proliferation (C). These cortical osteocytes also are also capable of NE 
uptake via NET (D). 
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The categorical study of adrenergic receptor expression and signaling throughout in vitro 

osteogenically differentiation in BMSCs revealed that the β2AR is the major receptor expressed in the 

osteoblastic lineage (Fig. 5.2A), and that expression persists throughout differentiation. However, only 

mature osteoblasts/osteocytes express the osteoclastogenic Rankl in response to adrenergic 

stimulation, though it is possible that the β2AR on cells earlier in the osteoblast lineage act to inhibit 

osteoblast proliferation.   

Acute studies in mice in vivo revealed that mice stimulated with either pharmacologic ISO or 

endogenous NE release via AIS express Il6 in the skeleton. However, only the pharmacologic treatment 

of ISO leads to increased Rankl expression, suggesting critical mechanistic differences exist between 

exogenous ligands and endogenous NE release (Fig. 5.2B). Furthermore, bone cortical tissue is capable 

of significant reboxetine-sensitive [3H]-NE uptake via NET (Fig. 5.2C). Since bone cortex is enriched for 

matrix-embedded osteocytes, these results suggest that osteocytes in vivo are a major catabolic sink in 

bone in vivo. 

Investigation of aged animals reveal their bone tissues have increase NE content, and decreased 

catecholamine metabolism. Further investigation confirmed that basal skeletal NE levels gradually 

increase with age, and that the aged skeleton has decreased NET expression and function (Fig. 5.3). This 

confirms that sympathetic dysfunction exists in aged bone, and sets the stage for interventions targeting 

the skeletal adrenergic system during age-related bone loss. 

Finally, using both traditional histological methods and newly adapted whole-mount bone 

clearing and imaging technology, the bone adrenergic system is able to be directly observed. Osteocytes 

express NET (Fig. 5.4A), supporting the neurochemical data. Additionally, the sympathetic innervation of 
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Figure 5.2 – Acute adrenergic pharmacology in differentiated osteoblasts and in bones 
(A) The β2AR is expressed and functional in mature osteoblasts/osteocytes. Net expression and 
uptake increases with BMSC differentiation.  
(B) Stimulation of animals with ISO or AIS increase Il6, but not Rankl expression in bone 
(C) Bone is capable of specific reboxetine-sensitive [3H]-NE uptake via NET. 
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bone was able to be visualized using tissue clearing and whole-mount light sheet imaging 

methods. Furthermore, the extent of innervation was able to be quantified with image analysis methods 

(Fig. 5.4B) 

 

 

 

Figure 5.3 – Skeletal sympathetic nervous activity changes with age 
Decreased bone NET activity and expression with age coincides with increased basal tissue NE 
Does. 
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Figure 5.4 – SNS fibers innervate the bone cortex where NET
+
 osteocytes reside 

(A) Osteocytes express NET protein in situ 
(B) Bone CLARITY allows visualization of bone periosteal and cortical SNS fibers 
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Chapter 5. Methods  

 

Animals  

Wild-type male C57BL6/J mice (JAX #000664) and Th-Cre mice (JAX #008601) on a C57BL/6J 

background were purchased from the Jackson Laboratory, and allowed to acclimate to the environment 

for at least 1 week prior to experimentation. ROSA-LSL-tdTomato reporter mice (Ai9, JAX#007905) on a 

C57BL/6J background were a generous gift from Dr. Dongsu Park. Th-Cre; ROSA-LSL-tdTomato (Th-Tom) 

mice were generated by our laboratory, and genotype was confirmed by PCR (primers Table S1.). Male 

Sprague-Dawley rats (Charles River #SD) 6-weeks of age (~250g) were purchased from Charles River 

Laboratories, and allowed to acclimate to the environment for at least 1 week prior to surgery. 

Animals were housed 2-5 per cage, kept on a 12 hour light-dark cycle in a temperature-

controlled environment (22˚C), and had ad libitum access to water and standard chow. This study used 

male mice since previous studies83  in Net-/- mice showed a bone phenotype only in males. All animal 

procedures were performed according to protocols approved by the Institutional Animal Care and Use 

Committee at Baylor College of Medicine.  

 

Unilateral femoral artery sympathectomy surgery 

Sprague Dawley rats were administered both extended release buprenorphine SR (1mg/kg), and 

meloxicam SR (4mg/kg), prior to surgery, induced under anesthesia with 3% inhaled isoflurane, and 

maintained with 2.5% isoflurane. The femoral artery sympathectomy (FASx) surgery was performed 

according to the images taken (Fig. S2.2). The final goal to isolate the femoral artery in a parafilm strip, 

and to apply a phenol-soaked thread around the artery (Fig. S2.2G). In brief, the surgical site was 

shaved, cleaned, and sterilized. A ~1.5 cm incision was made along the inguinal fold. Superficial fascia 
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(superficial to muscles) was dissected to access nerve, artery, and vein sheath. The femoral triad (nerve, 

artery, and vein), insert probe/forceps from internal/inferior direction pointing towards iliac tubercle 

("waist"), deep to the sheath. The nerve (lateral) and the artery/vein bundle were separated. The vein 

(medial, fat, blue, and thin-walled) was then separated from the artery (pale and thick walled, will drain 

of color of pinched proximally). A 0.5cm wide sterile parafilm strip was threaded to isolate the artery to 

isolate it from surrounding tissues. A 4-0 suture thread soaked in 10% phenol in ethanol was then 

passed around the artery for 10 seconds, until the tissue bleached. The thread and parafilm strip was 

removed, and the surgical site closed with sutures. Animals administered Meloxicam SR (4mg/kg 

bodyweight subcutaneously) every 24h.  

Animals were sacrificed, and tissues were harvested 7 days post-surgery. Femoral nerve, tibia, 

and femur were dissected and cleaned of connective tissues. Femur were cut at the mid-diaphysis – 

proximal femur was fixed in 4% PFA and decalcified for histology. Distal femur and tibia epiphyses were 

clipped, and centrifuged to separate marrow and cortex, and tissues were snap frozen in LiqN2. Cortical 

tissues were crushed with mortar and pestle, and tissues were separated for analysis. Femoral nerve 

and proximal femur immunofluorescence for tyrosine hydroxylase (TH, a marker for sympathetic 

nerves), and tissue WB for TH were used to verify extent of sympathectomy. 

 

In vivo catecholamine measurements 

Male mice aged 3 and 18 months were sacrificed for high pressure liquid chromatography 

(HPLC) measurements. Tibia were cleaned of connective tissues and clipped at the epiphyses. Marrow 

was separated from cortical bone via centrifugation at 5000g for 2 min, and snap frozen in liquid 

nitrogen.  Frozen tissues were crushed in a mortar and pestle, resuspended in 100ul of 0.1% reduced L-

glutathione (G4251, Sigma-Aldrich) in 0.1M Tris pH 8.0 to protect from oxidation. Norepinephrine and L-

dihydroxyphenylalanine (L-DOPA) quantification was determined by HPLC at the Neurochemistry Core 
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Lab, Vanderbilt University Center for Molecular Neuroscience Research (Nashville, TN), using methods 

previously described207. Sample protein content were measured by BCA assay (Cat#23225, 

Thermofisher) and used to normalize catecholamine levels. 

Mice aged 1, 2, 5, 9, and 12 months were sacrificed for NE ELISA measurements. Tissues were 

prepared similarly to those for HPLC measurements. Frozen bone powder was resuspended in 

glutathione tissue extraction buffer (0.01N HCl, 0.15mM EDTA, 0.1% reduced glutathione), and 

neutralized with 10% volume of 1.0M Tris pH 8.0 prior to NE ELISA. NE levels were measured by high 

sensitivity NE ELISA kit (Cat #NOU39-K01, Eagle Biosciences) according to manufacturer’s protocol. An 

aliquot of tissue suspended in extraction buffer was used to quantify protein concentration, and used to 

normalize NE measurements. 

 

Acute in vivo adrenergic stimulation 

Male mice aged 8 weeks were randomized to pre-treatment with either saline vehicle or 

propranolol HCl (5mg/kg body weight) (Cat#P0884, Sigma) via intraperitoneal injection 30 minutes prior 

to treatment. Animals were the either treated with either saline vehicle or isoproterenol (3 mg/kg 

bodyweight) (I6504, Sigma) via i.p. injection, or with i.p. saline  vehicle and subject an acute 

immobilization stress protocol208 or returned to cages. Animals were euthanized following 2.5h of 

treatment. Tibia and femur were harvested, cleaned of connective tissues, and snap frozen. Whole 

bones were then crushed with mortar and pestle, and RNA extracted with Trizol according to 

manufacturer’s protocol.  
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Specific [3H]-NE in vivo uptake 

In vivo uptake assays were conducted in 6-week old C57BL6/J male mice. Animals were 

pretreated twice at t = -1h and -0.5h with either sterile saline vehicle or Reboxetine mesylate (Cat#1982, 

Tocris) at 20mg/kg intraperitoneally. This concentration was chosen based on previous studies with 

reboxetine tissue binding139,209 and reported anti-mobility effects of the drug210,211. Then, 0.2 μCi L-[7-

3H]-NE (Cat#NET377250UC, Perkin Elmer), approximately 10nmol in 200ul warmed saline, was 

administered via tail vein injection. After 10 minutes of radioligand circulation, animals were euthanized 

by cervical dislocation, and tibia and femur were harvested.  Bones were cleaned of connective tissues 

and clipped at the epiphyses. Marrow was separated from cortical bone via centrifugation at 5000g for 2 

min, and snap frozen in liquid nitrogen. Frozen cortices were crushed with a mortar and pestle. Marrow 

and powdered cortical tissues were incubated in lysis buffer (0.15mM EDTA, 20mM Tris pH7.5, 0.05% 

Triton-X100), and radioligand was quantified by scintillation counting. An aliquot of tissue lysate 

resuspended in buffer was used to measure tissue DNA content by Picogreen dsDNA assay kit 

(Cat#P7589, Thermofisher), used to normalize radioligand tissue quantities to cell density. Specific 

uptake was calculated using the following formula: 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑢𝑝𝑡𝑎𝑘𝑒 =
஼௉ெೇ೐೓

ௗ௦஽ே஺ೇ೐೓
−

஼௉ெೃ೐್೚ೣ

ௗ௦஽ே஺ೃ೐್೚ೣ
. 

 

Cell culture 

Bone marrow was extracted from long bones of 2-4 month-old C57BL6/J mice by centrifugation, 

as previously described208, and was plated on 6-well tissue culture treated plates in α-MEM (+glutamate, 

+nucleosides), supplemented with 10% fetal bovine serum and 100 U/ml penicillin/streptomycin at 

seeding density of 2x105 cells/well for three days. At that time, non-adherent cells were washed, and 

adherent bone marrow stromal cells (BMSCs) were differentiated in osteogenic medium (α-MEM, 10% 
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FBS, pen/strep with 50ug/ml L-ascorbic acid and 5mM β-glycerophosphate), changed every 2 days, until 

harvested for assays at indicated time points.  

 

Specific [3H]-NE in vitro uptake 

The first passage of BMSCs were plated into 6-well plates at a density of 1x106 cell/well, allowed 

to adhere for 24h, and differentiated in osteogenic media until the experiment. Osteogenic medium was 

removed from differentiated BMSCs, cells were washed with warm 1xPBS, and replaced with serum-free 

α-MEM. Cells were pre-treated with 1 mM reboxetine mesylate (Cat#1982, Tocris) or vehicle 30 minutes 

prior to experimentation. Then, 1x10-7 M L-[7-3H]-NE (Cat#NET377250UC, Perkin Elmer) in α-MEM was 

added onto the cells for 30 minutes. The supernatant was then aspirated via pipette, and cells rinsed 

with ice cold PBS, into a sealed container for radioactive disposal. Cells were then incubated in 200ul 

lysis buffer (0.15mM EDTA, 20mM Tris pH7.5, 0.05% Triton-X100), and collected into an Eppendorf tube. 

Radioligand content was quantified by scintillation counting. An aliquot of tissue lysate suspended in 

lysis buffer was used to measure tissue protein concentration via BCA assay, and used to normalize 

radioligand content. 

 

Gene expression assays and RT-PCR 

Tibia and brainstem were harvested, cleaned of connective tissues, and flash frozen in liquid 

nitrogen.  Marrow and cortex tissue were separated (where applicable) via centrifugation at 5000g for 2 

min, and snap frozen in liquid nitrogen. Frozen tissues were crushed via mortar and pestle. Total RNA 

was extracted from tissue powder and differentiated BMSCs using TRIzol (Cat# 15596026, 

Thermofisher). Contaminating genomic DNA was digested with DNAse I (Cat#18068015, Thermofisher). 

cDNAs were synthesized from 1ug RNA using high capacity cDNA reverse transcription kit (Cat#4368814, 
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Thermofisher) according to the manufacturer’s instructions. Estimating 80% reverse transcription 

efficiency, 25ng cDNA was used in each reaction. Gene expression was quantified by qRT-PCR using iTaq 

Universal Probes Supermix (Cat#1725131, Bio-rad) or iQ SYBR Green Supermix (Cat#1708882, Bio-rad) 

according to manufacturer’s instruction for Taqman and SYBR probes, respectively. Target gene 

expression ratios were quantified using a standard curve of cDNA from similar tissues and normalized 

with references genes Gapdh and Hprt. RT-PCR of catecholaminergic genes were performed with 

primers designed for SYBR qRT-PCR, then separated and visualized on a 1% agarose gel. All SYBR and RT-

PCR primer sequences and thermocycler protocols are provided in the Supplementary Data (Table S1). 

SYBR primer specificity for target gene amplification was confirmed by the presence of a single peak on 

the melt curves. 

 

Western blot analysis 

Femur were dissected and cleaned of connective tissues and clipped at the epiphyses. Marrow 

was separated from cortical bone via centrifugation at 5000g for 2 min, and snap frozen in liquid 

nitrogen. Frozen femur cortices were crushed in a mortar and pestle. Protein was extracted from 

marrow and crushed cortex tissue by RIPA buffer extraction with protease inhibitor cocktail (Cat#P8340, 

Sigma-Aldrich), and concentrations quantified by BCA assay. Total of 15ug protein was denatured with 

2.5% β-mercaptoethanol, separated by SDS-PAGE on a 4-15% gel, and transferred onto a PVDF 

membrane. Membranes were blocked with 5% nonfat milk powder in TBS 0.05% Tween-20 (TBS-T) at RT 

for 30 minutes. For age-dependent NET expression experiments, Mouse anti-NET (Cat#NET05-2, Mab 

Technologies) and mouse anti-β-actin (Cat#A2228, Sigma-Aldrich) primary antibodies were incubated at 

4˚C overnight diluted 1:500 and 1:2000 in blocking buffer, respectively. For confirmation of 6OHDA 

chemical sympathectomy, Rabbit anti-TH (Cat#AB152, Millipore) and Rabbit anti-GAPDH (Cat#2118, Cell 
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Signaling Technology) primary antibodies were incubated at 4˚C overnight diluted 1:100 and 1:2000 in 

blocking buffer, respectively. Membranes were washed with TBS-T and incubated for 1h at RT with HRP-

conjugated secondary goat anti-mouse antibody (Cat#sc-2005, Santa Crus) or HRP-conjugated goat anti-

rabbit antibody (Cat#12-348, Millipore) diluted 1:10,000 in blocking buffer. Membranes were then 

washed and developed using ECL reagent (Cat#68835, Cell Signaling Technologies) on autoradiography 

film. Band intensities were quantified using ImageJ, normalized with respective β-actin loading control, 

and standardized with an identical internal positive control present on both gels. 

 

Bone tissue immunofluorescence 

Femur and tibia were dissected from 6-week old males, fixed in 4% paraformaldehyde overnight 

at 4˚C, and decalcified with daily changes of 0.5M EDTA pH 8.0 at 4˚C for 72h. Tissues were then 

dehydrated in graded series of ethanol, cleared in xylenes, embedded in paraffin, and sectioned. Tissue 

sections were deparaffinized with xylenes, and rehydrated through graded ethanol baths. Antigen 

retrieval was performed on sections by incubating slides in retrieval buffer (10mM Tris, 1mM EDTA, 

0.05% Tween-20, pH 9.0) for 30 minutes at 90˚C, and allowed to cool in buffer for 30 minutes, and 

proceeded to immunostaining.  

Kidney and adrenal glands were dissected from 6-week old males, removed of excess perirenal 

fat, and fixed in 4% paraformaldehyde overnight at 4˚C. Tissues were cryoprotected through 48h 

incubation in 30% sucrose, and embedded in OCT for cryosectioning. Tissue sections were dried at RT for 

1h, and rehydrated in PBS to remove excess OCT, and proceeded to immunostaining. 

All tissue sections to be immunostained were permeabilized with 0.1% Triton, blocked with 5% 

normal goat serum 0.05% Tween in PBS, and incubated with primary antibodies: mouse anti-NET 

(Cat#NET05-2, Mab Technologies) or rabbit anti-TH (Cat#AB152, Millipore), or mouse IgG1 isotype 
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control (Cat#MAB002, R&D Biosystems) at 1:500 dilution in blocking solution at 4˚C overnight. Slides 

were washed and incubated with secondary antibody goat anti-mouse IgG Alexafluor594 conjugate 

(Cat#115-587-003, Jackson Immuno) or anti-rabbit IgG Alexafluor488 conjugate (Cat#111-547-003, 

Jackson Immuno) at 1:1000 dilution in blocking solution at RT for 3h. Sections were washed, stained 

with nuclear stain Hoechst (Cat#H3569, Themofisher), and mounted. Fluorescent and bright-field 

Differential Interference Contrast (DIC) images were acquired using a Nikon A1R-s confocal microscope 

with a 40x Plan Fluor/0.75 NA objective. Images were acquired with identical laser intensity and camera 

exposures, and processed identically with NIS Elements Viewer 4.20 (Nikon Instruments Inc., Melville 

NY). A total of n = 4 animals, 4 tibial sections per animal, 2 frames per each were analyzed in ImageJ. The 

observer was blinded to the identity of images to eliminate bias.  

 

Human bone immunofluorescence 

Fresh human tissue samples were rinsed in sterile PBS, cut into ~0.5cm-long pieces, and fixed in 

4% paraformaldehyde overnight at 4˚C. Tissues were decalcified in 5% formic acid at RT for 48h. Samples 

were washed in PBS at RT for 12h, cryoprotected overnight in 30% sucrose solution at 4˚C, and 

embedded in OCT for cryosectioning. Tissues sections were hydrated, and antigen retrieval was 

performed by incubating slides in buffer (10mM Tris, 1mM EDTA, 0.05% Tween-20, pH 9.0) for 30 

minutes at 70˚C, and allowed to cool in buffer for 30 minutes. Sections were permeabilized with 0.1% 

Triton, blocked with 5% normal goat serum 0.05% Tween in PBS, and incubated with primary antibody 

mouse anti-hNET (Cat#NET17-1, Mab Technologies) or rabbit anti-TH (Cat#AB152, Millipore), or IgG 

isotype controls of respective species, at 1:500 dilution at RT for 6h. Slides were washed and incubated 

with secondary antibody goat anti-mouse IgG Alexafluor594 conjugate (Cat#115-587-003, Jackson 

Immuno) or goat-anti rabbit IgG Alexafluor488 conjugate (Cat#111-547-003, Jackson Immuno) at 1:1000 



92 

dilution in blocking solution at RT for 3h. Sections were washed, stained with nuclear stain Hoechst 

(Cat#H3569, Themofisher), and mounted. Images were acquired using a Nikon A1R-s confocal 

microscope with a 40x Plan Fluor/0.75 NA objective. Representative images were from at least 4 

different sections. 

 

6-OHDA Chemical sympathectomy 

The chemical sympathectomy protocol was adapted from57. A total of 18 4-week old male mice, 

9 treatment, 9 vehicle controls, were randomized and weighed. Animals were administered two doses 

of L-6-hydroxy-DOPA HCl (6OHDA, Cat#H4381, Sigma-Aldrich) in sterile saline vehicle via intraperitoneal 

injection at the following concentrations: day 0 at 100mg/kg bodyweight, and day 2 at 250mg/kg 

bodyweight. Animals were weighed and sacrificed on day 5. 

 

Bone CLARITY protocol 

The protocol for processing and clearing bone tissues for whole-mount imaging was adapted 

from 40, and summarized in Fig S3. Femur were harvested from 6-week old male mice, bluntly stripped 

of overlying muscles and connective tissues, and fixed in 4% paraformaldehyde overnight at 4˚C. Bones 

were decalcified in daily changes of 0.5M EDTA pH 8.0 at 4˚C for 72h to increase light and reagent 

penetration. Tissues were then washed with 2h RT incubation in PBS, cryoprotected in 30% sucrose at 

4˚C overnight, and cryoembedded in OCT mounting medium for hemisectioning to improve access of 

reagents and stains to the bone medulla. Hemisectioned tissues were thawed and washed of OCT in 

PBS, and incubated in A4P0 acrylamide solution containing 4% acrylamide (Cat# A4058, Sigma-Aldrich), 

0.25% VA-044 photoinitiator (Cat# 27776-21-2, Wako Chemicals) in PBS at 4˚C overnight. Tissues were 

degassed via gas exchange by bubbling N2 through the solution under a vacuum. The acrylamide 
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hydrogel was polymerized by incubation for 6h in a 37˚C water bath. The hydrogel supports the protein 

structures through the subsequent delipidation and washing steps. 

Tissue lipids, a major source of light scattering, were washed away by shaking samples in 8% SDS 

in 1x PBS at 37˚C for 3d, with daily changes of SDS solution. Heme and its porphyrin metabolites, a major 

source of tissue autofluorescence40, were removed by incubating tissues in 25% amino alcohol Quadrol 

(N,N,N’,N’-tetrakis(2-hydroxypropyl) ethylenediamine) (Cat#122262, Sigma-Aldrich) in PBS at 37˚C for 

2d. Finally, tissues were washed in PBS for 24h then stained with Hoechst (Cat#H3569, Themofisher). 

Tissues were then embedded into 1% agarose-PBS, and cleared by immersion in Refractive Index 

Matching Solution (RIMS), comprising of Histodenz (Cat#D2158, Sigma-Aldrich) solution in PBS, through 

daily stepwise incubation of RIMS with index refraction RI=1.38, 1.43, and finally 1.48 as recommended 

for bone186. 

 

Light sheet imaging 

Tissues were imaged using a Zeiss LightSheet Z.1 side plane illumination microscope with an N-

Achroplan 5x/0.13 objective. Before imaging, samples were placed in the LightSheet chamber filled with 

RIMS 1.48 for at least 1 hour, allowing equilibration between the RIMS solution and sample. To image 

the entire bone, we acquired multiple Z-stack tiles with 15% overlap. Samples were imaged with a frame 

rate of 22 frames/sec at a depth of 16 bits, with continuous motor drive through the Z-plane of the 

tissue. Tissues were excited by alternating left and right light sheets, and acquired images were merged 

using Gaussian merge function in the Zen software (Zeiss, Germany). All tissue samples were imaged 

using the same laser power and duration.  
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Image reconstruction and analysis 

The sampled voxel size for a 5x objective was 0.92 x 0.92 x 9 um3, and generated approximately 

300 GB per sample. After acquisition, the data sets were subset to voxel sizes 3.6 x 3.6 x 9 um3 for faster 

processing. Tile Z-scans of the images were stitched using the Arivis Vision4D software (arivis AG, 

Washington DC), exported into Z-stack .tiff images for each color channel. The data was reconstructed 

by TIFF import in the Imaris v8.0 software (Bitplane, Concord MA), and image dimensions were 

corrected based on the original data set. 

 

Statistical Analysis 

All statistical analyses were performed using Prism version 6 (GraphPad, La Jolla CA). Results are 

shown as mean +/- standard deviation. Unless indicated otherwise, statistical comparisons using 

unpaired two-tailed Student’s t-test for two-group comparisons, or one-way ANOVA followed by 

Bonferroni post hoc correction. For all analyses, p < 0.05 was considered statistically significant. 
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Table S1 – Genotyping, SYBR qPCR, and RT-PCR primer sequences  

Genotyping 
Primer  

Sequence Thermocycler 
protocol 

Comment 

TH-Cre fwd 5’-GCGGTCTGGCAGTAAAAACTATC-3’ 95˚C 2m; (95˚C 30s; 
62˚C 30s; 72˚C 1m) 
x30; 72˚C 5m; 

 
TH-Cre rev 5’-GTGAAACAGCATTGCTGTCACTT-3’  

ROSA-WT fwd 5’-AAGGGAGCTGCAGTGGAGTA-3’ 95˚C 2m; (95˚C 30s; 
61˚C 30s; 72˚C 30s) 
x30; 72˚C 5m; 

Primer pair for WT 
ROSA locus (196bp) 
Identifies 
heterozygotes 

ROSA WT rev 5’-CCGAAAATCTGTGGGAAGTC-3’ 

ROSA-
tdTomato fwd 

5’-CTGTTCCTGTACGGCATGG-3’ Primer pair for 
tdTomato ROSA locus 
(297bp) ROSA-

tdTomato rev 
5’-GGCATTAAAGCAGCGTATCC-3’ 

    
SYBR Primer  Sequence Thermocycler 

protocol 
Comment 

Mm Hprt Mm03024075_m1 - *Taqman 
Mm Slc6a2  Mm00436661_m1 - *Taqman, AKA Net 
mGapdh F 5’-TGT GTC CGT CGT GGA TCT GA-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mGapdh R 5’-TTG CTG TTG AAG TCG CAG GAG -3’  
mDmp1 F 5’-AGT GAG GAG GAC AGC CTG AA-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mDmp1 R 5’-GAG GCT CTC GTT GGA CTC AC-3’  
mSost F 5’-AGC CTT CAG GAA TGA TGC CAC-3’ 95˚C 3m; (95˚C 15s; 

59˚C 30s; read) x40 
 

mSost R 5’-CTT TGG CGT CAT AGG GAT GGT-3’  
mOcn F 5’-ACC CTG GCT GCG CTC TGT CTC T-3’ 95˚C 3m; (95˚C 15s; 

59˚C 30s; read) x40 
 

mOcn R 5’-TAG ATG CGT TTG TAG GCG GTC -3’  
mCol1a1 F 5’-GTCCTCCTGGCCCTGCTGGT-3’ 95˚C 3m; (95˚C 15s; 

59˚C 30s; read) x40 
 

mCol1a1 R 5’-GATGCGTTTGTAGGCGGTCTTCA-3’  
mRunx2 F 5’-CGG CCC TCC CTG AAC TCT-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mRunx2 R 5’-TGC CTG CCT GGG ATC TGT A-3’  
mAdrb1 F 5’-GGGAACGACAGCGACTTCTT-3’ 95˚C 3m; (95˚C 15s; 

61˚C 30s; read) x40 
 

mAdrb1 R 5’-ACACACAGCACATCTACCGAA-3’  
mAdrb2 F 5’-GGGAACGACAGCGACTTCTT-3’ 95˚C 3m; (95˚C 15s; 

61˚C 30s; read) x40 
 

mAdrb2 R 5’-GCCAGGACGATAACCGACAT-3’  
mAdrb3 F 5’-GGCCCTCTCTAGTTCCCAG-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mAdrb3 R 5’-TAGCCATCAAACCTGTTGAGC-3’  
mAdra1a F 5’-CAGATGGAGTCTGTGAATGGAA-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mAdra1a R 5’-AATGGTTGGAACTTGGTGATTT-3’  
mAdra1b F 5’-ATACCTGGGTCGTGGAACG-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mAdra1b R 5’-GGAGCTTGAAAGTGAAGAGTGG-3’  
mAdra1d F 5’-AGCACTACGCGCAGCCTC-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mAdra1d R 5’-TGCTACTCTGTGTCCCTGGATT-3’  
    
SYBR Primer  Sequence Thermocycler 

protocol 
Comment 

mAdra2b F 5’-ACCTTCCCTTGCTGACTGTACT-3’ 95˚C 3m; (95˚C 15s; 
60˚C 30s; read) x40 

 
mAdra2b R 5’-TGGGAGGGAGGTATTCTAATCA-3’  
mAdra2c F 5’-GGCTGTGAACTTAGGGCTTTAG-3’ 95˚C 3m; (95˚C 15s; 

60˚C 30s; read) x40 
 

mAdra2c R 5’-ATAGGAAGTCAGCCCTTGCTC-3’  
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mAdra2a F 5’-TTCTTTTTCACCTACACGCTCA-3’ 95˚C 3m; (95˚C 15s; 
60˚C 30s; read) x40 

 
mAdra2a R 5’-TGTAGATAACAGGGTTCAGCGA-3’  
RT-PCR Primer  Sequence Thermocycler 

protocol 
Comment 

mTh F 5’-GTCTCAGAGCAGGATACCAAGC-3’ 95˚C 3m; (95˚C 15s; 
60˚C 45s) x30 

 
mTh R 5’-CTCTCCTCGAATACCACAGCC-3’  
mDbh F 5’-GACTCAACTACTGCCGGCACGT-3’ 95˚C 3m; (95˚C 15s; 

60˚C 45s) x30 
 

mDbh R 5’-CTGGGTGCACTTGTCTGTGCAGT-3’  
mVmat1 F 5’-TCTCTGGCACCTATGCCCT-3’ 95˚C 3m; (95˚C 15s; 

60˚C 45s) x30 
 

mVmat1 R 5’-TGCCCACAAATTCATACATCACA-3’  
mVmat2 F 5’-ATGCTGCTCACCGTCGTAG-3’ 95˚C 3m; (95˚C 15s; 

60˚C 45s) x30 
 

mVmat2 R 5’-GGACAGTCGTGTTGGTCACAG-3’  
mComt F 5’-CTGGGGGTTGGTGGCTATTG-3’ 95˚C 3m; (95˚C 15s; 

61˚C 45s) x30 
 

mComt R 5’-CCCACTCCTTCTCTGAGCAG-3’  
mMaoa F 5’-GGAGAAGCCCAGTATCACAGG-3’ 95˚C 3m; (95˚C 15s; 

61˚C 45s) x30 
 

mMaoa R 5’-GAACCAAGACATTAATTTTGTATTCTGAC-3’  
 

*Taqman primers were used for qRT-PCR of Hprt (Mm03024075_m1, Thermofisher), Slc6a2 
(Net, Mm00436661_m1, Thermofisher), and Ucp1 (Mm01244861_m1) according to manufacturer’s 
protocol.
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