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CHAPTER I 

 

Introduction 

 

EGFR-mutant lung cancer 

Lung cancer is the leading cause of cancer-related death in the United States 

and worldwide (Molina, Yang et al. 2008). Adenocarcinoma of the lung accounts for 

approximately half of all diagnosed lung cancer cases, making it the most commonly 

diagnosed histological subtype of lung cancer (Travis, Brambilla et al. 2011). Over the 

past decade, advances in genotyping technologies have enabled the identification of 

specific ‘driver mutations’ in lung adenocarcinoma. Such mutations are causally 

implicated in oncogenesis and positively selected for throughout tumor generation 

(Weinstein 2002; Stratton, Campbell et al. 2009). Since then, lung adenocarcinomas 

have been increasingly stratified based on their molecular driver, some of which encode 

druggable therapeutic targets. Currently, genes with known driver mutations in lung 

adenocarcinoma include but are not limited to EGFR, HER2, KRAS, BRAF, PIK3CA, 

AKT1, NRAS, and MAP2K1. Gene fusions implicated in lung adenocarcinoma include 

ALK (most commonly fused to EML4), ROS1 (commonly fused to SLC34A2 or CD74), 

FGFR1/2/3 (commonly fused to BAG4 or TACC3) and RET (commonly fused to KIF5B 

or CCDC6) (Pao and Hutchinson 2012), (Takeuchi, Soda et al. 2012), (Majewski, 

Mittempergher et al. 2013). While many of these identified mutations do not yet have an 
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effective targeted inhibitor identified, activating mutations in EGFR, ALK and ROS1 are 

bona fide therapeutic targets (Sakashita, Sakashita et al. 2014).  

Between 18-33% of lung adenocarcinomas harbor activating EGFR mutations, 

making this set of alterations the most commonly mutated druggable target among all 

genetic subtypes of lung adenocarcinomas. EGFR-driven lung adenocarcinoma occurs 

most frequently in specific patient groups, including patients of Asian descent, women, 

and never-smokers (Pao and Chmielecki 2010). Approximately 28% of never-smokers 

diagnosed with lung cancer in the United States have tumors harboring EGFR 

mutations (Lee, Cho et al. 2010), (Sun, Ren et al. 2010). 

Biology of the wild-type epidermal growth factor receptor 

First discovered in 1978 by Graham Carpenter and Stanley Cohen at Vanderbilt 

University and cloned in 1984 by Julian Downward, Epidermal Growth Factor Receptor 

(EGFR) is the founding member of the ErbB receptor tyrosine kinase (TK) family, which 

also includes HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4 (Carpenter, Lembach et al. 

1975) (Carpenter, King et al. 1978) (Downward, Yarden et al. 1984). All family members 

are transmembrane cell surface receptor tyrosine kinases. The architecture of EGFR, 

an 1186- amino acid/170kDa glycoprotein, includes an extracellular ligand-binding 

ectodomain, a transmembrane lipophilic domain, an intracellular kinase domain, and an 

intracellular regulatory domain (Figure 1, left panel).  The extracellular domain consists 

of four subdomains (I-IV) which can bind 11 different peptide ligands, though epidermal 

growth factor (EGF), transforming growth factor alpha (TGFα), epiregulin and   
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Figure 1. Canonical Structure and Activation of the Epidermal Growth Factor 
Receptor 
EGFR is composed of an ectodomain, a transmembrane domain, a kinase domain and 
a regulatory domain. The extracellular ectodomain consists four subdomains (I-IV). 
Subdomain III may bind to ligand, which induces a conformational change in 
subdomains I and II, allowing dimerization. Once dimerized, the intracellular kinase 
domain is enzymatically activated to phosphorylates tyrosine residues within the 
regulatory domain, which serve as docking sites for numerous downstream signaling 
cascade proteins. 
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amphiregulin are thought to be most prevalent in EGFR signaling (Piepkorn, Pittelkow et 

al. 1998) (Mitsudomi and Yatabe 2010).The kinase domain of EGFR exists in either a 

minimally active “off” state or a maximally active “on” state; the switch to an active state 

catalyzes the transfer of a γ-phosphate of ATP to the hydroxyl group of tyrosine (Huse 

and Kuriyan 2002).  

In normal, wild-type cells, EGFR is activated upon ligand to subdomain III of the 

ectocellular domain (Figure 1, right panel). This induces a conformational change in 

ectocellular subdomains I and II, which exposes the protein’s dimerization domain. 

EGFR may form homo- or heterodimers with itself or TK family members HER2, HER3 

or HER4 (Mitsudomi and Yatabe 2010). HER2 is the preferred heterodimerization 

partner for EGFR (Graus-Porta, Beerli et al. 1997). This dimerization frees the 

intracellular kinase domains to form enzymatically active dimers, resulting in regulatory 

domain tyrosine autophosphorylation at tyrosine resides Y1016, Y1069, Y1092, Y1172 

and Y1197 (Downward, Parker et al. 1984) (Ono and Kuwano 2006). The 

phosphotyrosine residues generated by autophosphorylation constitute docking sites for 

several downstream signaling proteins containing src homology 2 (SH2) and 

phosphotyrosine binding (PTB) domains (Oda, Matsuoka et al. 2005), including protein 

lipase C gamma (PLCγ) at Y1016, Cbl at Y1069, the p85 subunit of the 

phosphoinositide 3-kinase (PI3K), the PI3K regulatory subunit α (Grb1), and growth 

factor receptor bound protein 2 (Grb2) and at Y1092, Src-transforming protein (Shc) at 

Y1172, Src homology region 2 domain-containing phosphatase-1 (Shp1), Shc, and 

PLCγ at Y1197 (Ono and Kuwano 2006). Through these downstream signaling 

molecules, EGFR activates a number of signaling pathways critical to cell survival, 
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including the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT (PI3K/AKT) signaling 

cascade and the mitogen activated protein kinase (MAPK) signaling cascade. These 

pathways are responsible for apoptosis evasion, cell cycle progression, differentiation, 

development and transcription (Arkhipov, Shan et al. 2013), (Roskoski 2014), (Roskoski 

2014).  

Pathobiology of mutant EGFR 

In 2004, activating mutations in the EGFR were identified as the first targetable 

mutation in lung adenocarcinoma (Lynch, Bell et al. 2004; Pao, Miller et al. 2004) (Paez, 

Janne et al. 2004). Since then, over 60 unique EGFR mutations have been reported in 

lung adenocarcinoma patients. In the vast majority of tumors sampled, the existence of 

a specific EGFR mutation usually precludes the existence of a second TKI-sensitizing 

mutation (Pao, Miller et al. 2004; Kancha, von Bubnoff et al. 2009).  

Of note, the field of EGFR biology uses two different numbering systems to 

localize amino acid residues.  One system, most commonly used in genomic and 

translational research applications, reflects the inclusion of a 24-amino acid peptide that 

is part of the EGFR gene, but absent from the mature protein. Another system, most 

commonly used in biochemical and structural analyses, does not include this 24-amino 

acid sequence. The former numbering system is used throughout this manuscript.  

A 2014 study of 774 lung cancer samples to evaluate the use of cytologic 

samples for detection of EGFR mutation in lung cancer identified 164 mutations within 

exons 18-21 of the EGFR gene (Rossi, Gerhard et al. 2014). Of these 164 identified 

EGFR mutations, 53.7% of samples harbored various exon 19 multinucleotide in-frame 
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deletion mutations (exon19del), 34.1% of samples harbored mutations substituting an 

arginine reside for a leucine reside at position 858 (L858R) within exon 21, 3.7% of 

samples harbored mutations substituting an alanine reside for a glycine reside at 

position 719 (G719A) within exon 18, and the remaining 8.5% of samples harbored 

various other substitution, duplications and insertions within exons 18-21 (Figure 2).  

Exon19del mutations occur adjacent to K745, a site shown to be critical for ATP 

binding (Honegger, Dull et al. 1987). L858R occurs in the activation loop of the kinase 

(Huse and Kuriyan 2002D). Interestingly, recent studies have demonstrated variability of 

tyrosine kinase inhibitors efficacy in cells harboring different EGFR mutations, but the 

most common EGFR mutations in lung adenocarcinoma (L858R and exon19del) both 

showed strong sensitivity to first-generation tyrosine kinase inhibitors  (Kancha, von 

Bubnoff et al. 2009), (Yeh, Chen et al. 2013).  

First-generation EGFR tyrosine kinase inhibitors in lung cancer 

First-generation tyrosine kinase inhibitors used in lung cancer include gefitinib 

(Iressa®; AstraZeneca, London, UK) and erlotinib (Tarceva®; Genentech, San 

Francisco, USA) (Table 1). These compounds are both reversible aniline-quinazolines, 

a class of compounds built upon a fused benzene ring and pyrimidine ring core 

(Hidalgo, Siu et al. 2001) (Wakeling, Guy et al. 2002). Long before the discovery of 

EGFR-driven lung adenocarcinomas, these drugs were identified as having good 

potency against wild-type tyrosine kinases though structure-based searching without 

requiring the synthesis of new compounds (Ward, Cook et al. 1994). The potency of 

gefitinib in vitro and in vivo was evaluated in the 1990s, when it was demonstrated that 
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gefitinib had strong selectivity for EGFR over other receptor tyrosine kinases as well as 

a suitable pharmacokinetic/pharmacodynamics profile (Wakeling, Guy et al. 2002), 

(Barker, Gibson et al. 2001).  

Gefitinib was first used in lung cancer patients in 1998 prior to its approval by the 

FDA in 2003 (Lynch, Bell et al. 2004). At this time, the drug was used in an unselected 

patient population; it took nearly more than decade to produce sufficient evidence 

supporting EGFR mutation as a biomarker for response to gefitinib. The first phase II 

clinical trials of gefitinib, published in 2003 and 2004, demonstrated a 12-18% objective 

tumor response rate among an general (non-EGFR enriched) population of patients with 

non-small cell lung cancer who had received one or two chemotherapy regimens 

(Fukuoka, Yano et al. 2003), (Kris, Natale et al. 2003). Gefitinib gained FDA approval in 

May 2003 for use in patients with locally advanced or metastatic non-small-cell lung 

cancer after failure of at least one prior chemotherapy regimen. A clinical trial evaluating 

erlotinib demonstrated a 12% objective response rate among a similarly general non-

small-cell lung cancer patient population (Perez-Soler, Chachoua et al. 2004). Erlotinib 

gained FDA approval in November 2004; like gefitinib, it was also evaluated in a general 

group of non-small-cell lung cancer patients not stratified based on genotype 

(Shepherd, Rodrigues Pereira et al. 2005). It was not until 2009 that the superior 

efficacy of gefitinib and erlotinib in molecularly-stratified, EGFR-mutant subset of lung 

cancer patients became widely recognized.  A phase III open-label study (called the 

Iressa Pan Asian Study or IPASS) published in 2009 definitively showed that first-line 

treatment with gefitinib is superior to standard chemotherapy (carboplatin+paclitaxel) in  
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Figure 2. Identified TKI-sensitive and TKI-resistant mutations in EGFR kinase 
domain  
Location of kinase domain EGFR mutations in lung adenocarcinoma.  Upper panel; 
indicated sensitive mutations account for over 90% of all known; various other 
substitutions, insertions, and deletions in exon 18-21 constitute the remaining 
mutations. Lower panel; the gatekeeper residue mutation T790M is responsible for over 
50% of primary acquired resistance. 
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never- or light-former-smokers of East Asian descent, and that the presence of EGFR 

mutation is a strong predictor of gefitinib response (hazard ratio for progression or death 

upon gefitinib treatment with EGFR mutation, 0.48; without EGFR mutation, 2.85) (Mok, 

Wu et al. 2009). In 2013, the FDA formally updated the indication of use for erlotinib to 

include first-line use in patients with EGFR-mutant lung cancer.  

The effects of combination targeted therapy plus general cytotoxic chemotherapy 

in a molecularly stratified, EGFR-mutant cohort of patients has also been evaluated. A 

2012 study demonstrated that erlotinib + chemotherapy (cisplatin+paclitaxel) dual 

treatment was no better than erlotinib monotherapy in EGFR-mutant lung cancer 

patients with never- or light-former-smoker histories. Patients in the erlotinib + 

chemotherapy cohort experienced significantly higher incidence of both hematologic 

and non-hematologic toxicity than was observed in the erlotinib-only cohort (Janne, 

Wang et al. 2012).  

Acquired resistance to anti-EGFR therapies in lung cancer 

Primary acquired resistance to erlotinib/gefitinib 

All patients with metastatic disease who respond to first-line EGFR tyrosine kinase 

inhibition will eventually experience progressive disease within a median of 9-16 months 

of continuous treatment, meeting the criterion for primary acquired resistance (Mok, Wu 

et al. 2009; Jackman, Pao et al. 2010) (Rosell, Carcereny et al. 2012) (Janne, Wang et 

al. 2012) (Figure 3). Numerous studies have evaluated the mechanisms of primary 

acquired resistance by conducting tumor rebiopsy and resequencing of EGFR in  



10 
 

 

Table 1. EGFR Tyrosine Kinase Inhibitors Evaluated in Lung 
Adenocarcinoma 
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patients with progressive disease after initial response to erlotinib or gefitinib, as well as 

preclinical modeling using cell lines and animal models. The most common mechanism, 

identified in 2005, leads to the substitution of methionine for threonine at residue 790 of 

the receptor’s kinase domain (Pao, Miller et al. 2005),(Kobayashi, Boggon et al. 2005) 

(Figure 2). The crystal structure of the EGFR kinase domain identifies threonine 790 as 

located in the hydrophobic ATP-binding pocket of the catalytic region, where a critical 

hydrogen bond between receptor and drug is formed. Thus, it is predicted that 

substitution of threonine with the larger methionine at this position would sterically 

hinder drug but not ATP binding (Stamos, Sliwkowski et al. 2002), ensuring that the 

catalytic activity of EGFR remains intact while also protecting the protein from 

interference by first-generation EGFR tyrosine kinase inhibitor (Stamos, Sliwkowski et 

al. 2002). Alternatively, other groups report that the T790M mutation functions to 

increase the affinity of ATP over drug to the binding pocket (Yun, Mengwasser et al. 

2008).   

The T790M mutation in EGFR occurs in the protein’s gatekeeper residue. This residue 

is highly conserved residue within all kinase domains. First described in 1998 in the 

non-receptor tyrosine kinase Src, the “gatekeeper residue” was so named because it 

functions as a molecular “gate” to partially or fully restrict access hydrophobic region 

deep in the ATP binding pocket (Liu, Shah et al. 1998). Many small molecule inhibitors 

have exploited this conserved residue for binding specificity, but as seen with the EGFR 

gatekeeper residue mutation, substitution of the wild-type gatekeeper with a bulkier 

residue can lead to drug resistance. Analogous mutations in the gatekeeper residue that 

induce resistance to the small molecular inhibitor imatinib occur in the ABL kinase (of 
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BCR-ABL fusion protein drivers) of CML, KIT of gastrointestinal stromal tumor, and 

PDGFRA of hypereosinophilic syndrome (Shah, Nicoll et al. 2002) (Tamborini, 

Bonadiman et al. 2004) (Cools, Stover et al. 2003).  

Since the discovery of the T790M mutation, additional (albeit less frequent) 

mechanisms of acquired resistance to first-generation EGFR tyrosine kinase inhibitors 

have been identified (Oxnard, Arcila et al. 2011). Importantly, mutations conferring 

resistance to erlotinib or gefitinib appear to be mutually exclusive, supporting the 

supreme selective advantage these mutations provide to EGFR-driven tumor cells.  

Focal amplification of hepatocyte growth factor receptor (MET) was identified in both 

cell lines and patient samples as a mechanism of acquired resistance in 2007 

(Engelman, Zejnullahu et al. 2007), (Bean, Brennan et al. 2007). This mutation drives 

downstream PI3K signaling via the HER3 receptor, which is not targeted by erlotinib or 

gefitinib. Though lower in frequency than initially thought, MET amplification is thought 

to account for 4% of primary acquired resistance (Arcila, Oxnard et al. 2011), (Sequist, 

Waltman et al. 2011). A third identified mechanism of acquired resistance to erlotinib or 

gefitinib involves the histological transformation of tumor initially confirmed as 

adenocarcinoma to a small cell histologic phenotype (Arcila, Oxnard et al. 2011), 

(Sequist, Waltman et al. 2011), (Zakowski, Ladanyi et al. 2006), (Alam, Gustafson et al. 

2010). Small cell transformation accounts for approximately 6% of all cases of primary 

acquired resistance in lung adenocarcinoma. More recently, amplification of HER2 was 

identified as a mechanism primary acquired resistance in cell lines, mouse models, and 

patient samples (Takezawa, Pirazzoli et al. 2012). HER2 amplification may account for  
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Figure 3. Representative Course of Treatment for EGFR-mutant lung 
adenocarcinoma  
Many comprehensive cancer centers now routinely evaluate the tumors of lung 
adenocarcinoma patients by molecular profiling to evaluate for targetable mutations. If 
the tumor is found to harbor mutation in EGFR, first-line treatment includes a first-
generation tyrosine kinase inhibitor, erlotinib or gefitinib. Approximately 70% of patients 
may expect to experience a partial response (PR) with median duration of 8-12 months. 
However, all patients who initially respond to first-line targeted therapy will invariably 
develop primary acquired resistance and experience progressive disease (PD). To 
overcome primary acquired resistance, a patient may be treated with second-line anti-
EGFR combination therapy, afatinib+cetuximab. Approximately 29% of patients may 
expect to experience a partial response with a median duration of response of 5-6 
months. Unfortunately, all patients who show an initial response will go on to develop 
secondary acquired resistance to afatinib+cetuximab and experience progressive 
disease. 
 

  

First-Line Targeted Therapy Second-Line Targeted Therapy
Start 

gefitinib
or erlotinib

Start 
afatinib + 
cetuximab

REPRESENTATIVE 
TUMOR BURDEN

TIME

PR PRPD PD

Stop
afatinib + 
cetuximab

Stop
gefitinib

or erlotinib



14 
 

up to 12% of primary acquired resistance. A study of 195 patient tumor samples with 

primary acquired resistance to erlotinib or gefitinib identified second-site activating 

mutations in BRAF; such mutations were confirmed to induce resistance in model 

systems and may account for 1% of primary acquired resistance (Ohashi, Sequist et al. 

2012). Acquired mutations in PIK3CA have also been observed to induce resistance, 

accounting for approximately 5% of primary acquired resistance (Sequist, Waltman et 

al. 2011). Most recently, reduced expression of neurofibrin, the protein product of the 

NF1 gene, was found to induce resistance to EGFR tyrosine kinase inhibitors (de Bruin, 

Cowell et al. 2014). Rare activating mutations and amplifications in the receptor tyrosine 

kinase AXL have been identified in patients with acquired resistance to EGFR tyrosine 

kinase inhibitors; they are hypothesized to occur in the setting of epithelial-to-

mesenchymal histologic transition (EMT) (Zhang, Lee et al. 2012) Rarer still, 

amplification of CRKL gene is predicted to induce resistance to first-generation EGFR 

tyrosine kinase inhibitors (Suda, Mizuuchi et al. 2014).  In total, approximately 20% of 

primary acquired resistance in EGFR-mutant lung adenocarcinoma has no identified 

mechanism of acquired resistance, emphasizing the need for continued study in this 

area.  

Of note, primary acquired resistance and primary resistance have different 

definitions that should be used with distinction (Lovly and Shaw 2014) (Jackman, Pao et 

al. 2010). Primary acquired resistance is defined as disease progression after initial 

response to therapy; indeed, in lung adenocarcinoma, an initial radiographic response is 

required to meet the definition of primary acquired resistance. Primary resistance is 

defined as a de novo lack of treatment response despite the existence of the mutational 
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target. Approximately 30% of EGFR-mutant lung adenocarcinomas meet the definition 

for primary resistance (Mok, Wu et al. 2009), (Janne, Wang et al. 2012). Mechanisms of 

primary resistance are a worthy but separate topic of study in the era of targeted 

therapies.  

Overcoming primary acquired resistance: second-generation TKIs and drug 

combinations 

Because disease invariably progresses despite initial response to erlotinib or 

gefitinib, much research effort has been expended in attempt to devise novel 

therapeutic methods to overcome primary acquired resistance. Early studies indicated 

that second-generation irreversible EGFR tyrosine kinase inhibitors, which form an 

irreversible covalent bond with EGFR, may be successful in overcoming primary 

acquired resistance to the reversible inhibitors erlotinib and gefitinib.  Second-

generation EGFR tyrosine kinase inhibitors neratinib (HKI-272; Puma Biotechnology; 

Los Angeles, USA), canertinib (CI-1033, Pharmaprojects database), pelitinib (EKB-569, 

Pharmaprojects database), dacomitinib (PF00299804; Pfizer; New York City, USA) and 

afatinib (BIBW-2992; Boehringer Ingelheim; Ingelheim, Germany) all initially showed 

good efficacy in L858R/T790M tumor cells in vitro studies (Kwak, Sordella et al. 2005), 

(Carter, Wodicka et al. 2005),(Engelman, Zejnullahu et al. 2007), (Li, Ambrogio et al. 

2008) (Table 1). While preclinical data evaluating second-generation tyrosine kinase 

inhibitors predicted good response to primary acquired resistance in patients, it is 

thought that the concentration of drug necessary to overcome T790M in humans is not 

achievable without dose-limiting toxicity (Ohashi, Sequist et al. 2012).  
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To date, afatinib is the only second-generation tyrosine kinase inhibitor to receive 

FDA approval. In preclinical studies, afatinib was shown to have activity against wild 

type EGFR and HER2 as well as the EGFR L858R mutant isoform and the EGFR 

L858R/T790M isoform in cell line and xenograft models, and afatinib alone was effective 

in EGFR L858R/T790M transgenic mouse models (Li, Ambrogio et al. 2008). However, 

various clinical trials have evaluated afatinib in EGFR-mutant lung cancer patients, with 

mixed results. Patients lacking primary acquired resistance generally saw improved 

progression-free survival (PFS) and higher response rates when compared to standard 

chemotherapy (cisplatin/pemetrexed or cisplatin/gemcitabine). However, patients with 

EGFR-mutant lung cancer and primary acquired resistance experienced low or no 

survival benefit when treated with afatinib alone (Yu and Pao 2013). Afatinib received 

FDA approval in July 2013 with indicated use in only previously TKI-naïve patients.   

Many clinical trials have evaluated the ability of second-generation EGFR 

tyrosine kinase inhibitors and targeted combination therapy to overcome primary 

acquired resistance, but most have seen little success. Monotherapy with neratinib 

resulted in in response rates between 0-3% among patients with primary acquired 

resistance to erlotinib or gefitinib (Sequist, Besse et al. 2010). Though combination 

therapy of mTOR inhibitor everolimus plus erlotinib seemed promising, a low (<15%) 

response rate and high grade 3/4 toxicity profile did not warrant further trials in primary 

acquired resistance patients (Milton, Riely et al. 2007), (Besse, Leighl et al. 2014). 

Combination targeted therapy with EGFR tyrosine kinase inhibitors of both first-

generation, erlotinib, and second-generation, dasatinib, was shown to have no activity in 

patients with primary acquired resistance (Johnson, Riely et al. 2011). Other EGFR-
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dependent therapeutic strategies to overcome primary acquired resistance evaluated 

cetuximab (Erbitux; Bristol-MyersSquibb; New York, USA and Eli Lilly; Indianapolis, 

USA), a monoclonal anti-EGFR antibody, in cell line and mouse models, and showed 

promising preclinical results (Doody, Wang et al. 2007).  

However, when compared to monotherapy with either drug, the combination of 

second-generation EGFR tyrosine kinase inhibitor afatinib administered with the anti-

EGFR monoclonal antibody cetuximab showed a surprising response in transgenic 

mouse models of L858R/T790M driven lung adenocarcinomas (Regales, Gong et al. 

2009). Co-treatment with afatinib+cetuximab resulted in simultaneous depletion of 

phospho- and total EGFR. This study provided preclinical rationale for a phase Ib 

clinical trial of afatinib+cetuximab in patients with primary acquired resistance to erlotinib 

or gefitinib. Results from the clinical trial showed a 29% response rate among 129 

enrolled patients with primary acquired resistance, with a median progression-free 

survival of 4.7 months. A manageable toxicity profile was reported, with grade 3/4 

responses occurring in 44%/2% of patients (Janjigian et al, Can Disc 2014, in press). 

Interestingly, the response rate was comparable in primary acquired resistance tumors 

regardless of T790M status, implying that combination therapy with afatinib + cetuximab 

exploits an EGFR-dependent but T790M-independent mechanism of action.  

Secondary acquired resistance to afatinib plus cetuximab 

Unfortunately, as observed with first-line EGFR tyrosine kinase inhibition, 

acquired resistance to afatinib+cetuximab invariably develops. A representative course 

of treatment for an EGFR-mutant lung adenocarcinoma patient under current treatment 
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plans would include first-line erlotinib or gefitinib treatment with expected partial 

response but invariable primary acquired resistance. At the point of disease 

progression, such a patient may be treated with second-line anti-EGFR combination 

treatment afatinib+cetuximab, though again, all patients who show an initial response 

will go on to develop secondary acquired resistance (Figure 3).  

As targeted therapy regimens become increasingly complex in effort to overcome 

acquired resistance, strictly defined terminology is essential for expansion of this field of 

study. Secondary acquired resistance, as such, is used to define resistance to second-

line targeted therapy which occurs after treatment with first-line targeted therapy and 

subsequent primary acquired resistance (Figure 3). Evaluation of ideal treatment 

regimens will study the effectiveness of existing targeted therapies in the setting of first- 

vs. second-line (and beyond) treatment (Meador et al, manuscript in preparation). In 

addition, further study is needed to understand potentially targetable mutations that 

confer secondary acquired resistance. 

Third-generation EGFR TKIs in lung cancer 

In contrast to early tyrosine kinase inhibitors identified through structure-based 

searching of existing compound libraries, TKIs under development today are the result 

of rationally-designed structural alterations. To date, three such compounds have been 

described in the literature (Table 1). Evaluation of the first, WZ4006, showed excellent 

specificity for the T790M-containing mutant EGFR over wild-type EGFR, but has not 

gone on to clinical trials (Zhou, Ercan et al. 2009). Another third-generation EGFR 

tyrosine kinase inhibitor, CO-1686 (Clovis Oncology; Boulder, Colorado USA) is 
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currently undergoing phase II trials (Walter, Sjin et al. 2013). The third such compound 

under development is AZD9291 (AstraZeneca, London, UK). This drug is a mono-

anilino-pyrimidine that is structurally and pharmacologically distinct from other third-

generation tyrosine kinase inhibitors currently under development, which bear 

considerable structural similarity to each other (Cross, Ashton et al. 2014). AZD9291 

was rationally designed to covalently bind the cysteine-797 residue within the ATP 

binding site of EGFR while maintaining optimal drug-like properties. Impressively, 

AZD9291 exhibits close to 200 times greater potency for L858R/T790M as compared to 

L858R alone, confirming the designed purpose of the mutant-specific drug.  

Our studies also included the evaluation of pan-HER inhibitor AZD8931. Further 

studies of AZD9291 also identified a metabolite, AZ5104, which exhibited the same 

profile but greater potency against mutant and wild-type EGFR forms. Both the parent 

compound AZD8931 and the metabolite compound AZ5104 serve as important 

comparison compounds in the study of AZD9291. Additionally, future studies may 

evaluate AZD8931 as a primary compound for treatment of HER2-mutant tumors. 

Merlin and EGFR 

The work described herein explores a novel potential mechanism of acquired 

resistance to anti-EGFR targeted therapy in lung cancer involving inactivating mutation 

of the NF2 gene (Chapters III, V). Merlin, named as the moesin-ezrin-radixin-like 

protein, is the protein product of the NF2 gene. Along with closely related proteins 

moesin, ezrin, and radixin, merlin makes up part of the Band 4.1 superfamily of proteins,  
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Figure 4. Structure and conformation of merlin  
Upper Panel, Primary structure of NF2 gene product containing FERM domain with 
three subdomains, coiled-coil domain, and C-terminal domain. Phosphorylation sites 
include serine 10, threonine 230, serine 325, and serine 518. Lower Panels, 
Representative schema of merlin’s tertiary structure. Three subdomains of the FERM 
domain form globular “three-leaf clover.” In the linear inactive state (left), phospho-
serine 518 prevents the intramolecular loop formed from connection of the C-terminal 
domain to the FERM domain (right).   
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all of which share a conserved four point one, ezrin, radixin, and moesin (FERM) 

domain at their N-terminus. This superfamily was so named from its founding member’s 

identification as a specific band upon SDS electrophoresis of erythrocyte membranes). 

Band 4.1 proteins are ubiquitous membrane-associated proteins that function to 

regulate the structure and function of various domains of the cell cortex (Bretscher, 

Edwards et al. 2002). Importantly, merlin is the only protein of this family to have tumor 

suppressor activity. 

Structure and function of merlin 

Discovered in 1993, merlin is the last identified member of this protein 

superfamily (Trofatter, MacCollin et al. 1993), (Rouleau, Merel et al. 1993).  Consisting 

of 595 amino acids encoded by 17 exons, merlin undergoes a unique splicing pattern to 

result in three isoforms (Pykett, Murphy et al. 1994). Isoforms I and II are ubiquitously 

expressed and constitute the vast majority of merlin in cells, while isoform III is 

expressed only at low levels in cardiac and skeletal muscle. (Haase, Trofatter et al. 

1994), (Arakawa, Hayashi et al. 1994). Structurally, merlin consists of an N-terminal 

FERM domain (residues 19-314), a coiled-coil domain (residues 314-492), and a C-

terminal hydrophobic tail (492-595) (Laulajainen, Melikova et al. 2012) (Figure 4, upper 

panel). The FERM domain is composed of three subdomains (A, B, and C), which each 

make up a globular lobe of the domain tertiary “three-leaf clover” formation (Shimizu, 

Seto et al. 2002), (Bretscher, Edwards et al. 2002).  A 295-amino acid sequence, the 

FERM domain of merlin bears a 65% sequence identity with family members ezrin, 

radixin, and moesin (ERM proteins) (Johnson, Kissil et al. 2002). This domain is 

essential for the function and localization of merlin and the ERM proteins.  
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Merlin can exist in two states: a dormant “off” state localized to the cytoplasm or 

nucleus without tumor suppressor function, and an active “on” state localized to the cell 

membrane with tumor suppressor function (Sherman, Xu et al. 1997) (Figure 5). In the 

“on” state, merlin occupies a tertiary intramolecular autoinhibitory loop conformation in 

which the protein’s C-terminal tail interacts with its FERM domain, forming a closed loop 

and rendering the protein capable of its tumor suppressive function (Figure 4, lower 

panel) (Laulajainen, Melikova et al. 2012). The release of the autoinhibitory loop is 

catalyzed by phosphorylation of serine 315 by protein kinase A (PKA) or p21-activated 

kinase (PAK) (Alfthan, Heiska et al. 2004), (Kissil, Johnson et al. 2002), which weakens 

the protein’s self-association. In the dormant, linearized state, merlin is incapable of 

inhibiting cell proliferation (Shaw, Paez et al. 2001). Once in the dormant state, further 

phosphorylation of merlin by Akt at serine 10 targets the protein for proteasomal 

degradation. Merlin harbors two other phosphorylation sites, threonine 230 and serine 

315, though the control and impact of their phosphorylation status is not well understood 

(Laulajainen, Muranen et al. 2011). 

Merlin has an extensive list of known direct binding partners with a broad range 

of cellular functions. Membrane proteins and complexes with roles in sensing cell 

density known to directly bind merlin include paxillin, alpha-catenin, CD44, and layilin 

(Fernandez-Valle, Tang et al. 2002) (Lallemand, Curto et al. 2003), (Morrison, Sherman 

et al. 2001), (Bono, Cordero et al. 2005). Adaptor scaffolding proteins known to link 

merlin to other proteins include NHERF1, magicin, syntenin, and HRS (Rangwala, 

Banine et al. 2005), (Wiederhold, Lee et al. 2004), (Jannatipour, Dion et al. 2001), (Sun, 

Haipek et al. 2002). Filamentous actin binding proteins that also bind to merlin include  
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Figure 5. Activation states of merlin  
The tumor suppressive function of merlin makes it unique from other FERM-domain 
containing proteins. When intramolecular interactions between the C-terminal tail and N-
terminal FERM domain of merlin form a closed loop, merlin may localize the cell cortex 
and inhibit cell growth. Upon phopsphorylation at serine residue 518 by Protein Kinase 
A (PKA) or p21-Activated Kinase (PAK), merlin takes on its open, lineraized state and is 
incapable of tumor suppressive. Further phosphorylation at serine residue 10 by AKT or 
PKA targets merlin to proteasomal degradation.  
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β-II spectrin as well as fellow family members ezrin, radixin, and moesin (Scoles, Huynh 

et al. 1998), (Gronholm, Sainio et al. 1999). Merlin also directly binds a number of 

signaling molecules with diverse functions, including RalGDS, RhoGDI, Rak, MLK3, 

RIβ, PIKE-L, and N-WASP (Ryu, Kim et al. 2005), (Maeda, Matsui et al. 1999), (Kissil, 

Johnson et al. 2002), (Chadee, Xu et al. 2006), (Gronholm, Vossebein et al. 2003), 

(Rong, Tang et al. 2004), (Manchanda, Lyubimova et al. 2005). 

Merlin mutations in cancer 

Merlin was first characterized and is best studied in the nervous system tumors 

of its namesake disease, neurofibromatosis type II. Mutations in the NF2 gene are 

known to be the most common genetic cause of familial NF2 syndrome, an autosomal 

dominant disease characterized by the appearance of spontaneous meningiomas, 

ependymomas, and the pathognomonic bilateral vestibular schwannomas (tumors of 

the nerve sheath of cranial nerve VIII) (Evans 2009) (Ahronowitz, Xin et al. 2007). 

Overall, NF2 mutations occur in about 2% of all solid and liquid tumors (Yoo, Park et al. 

2012), with somatic mutation occurring most frequently sporadic schwannomas, 

meningiomas, hepatocellular carcinoma, thyroid medullary carcinomas, and renal cell 

carcinomas (Stemmer-Rachamimov, Xu et al. 1997),(Ruttledge, Sarrazin et al. 

1994),(Pineau, Marchio et al. 2003), (Sheikh, Tometsko et al. 2004), (Dalgliesh, Furge 

et al. 2010). In addition, loss of merlin at the post-translational level has been implicated 

in advanced breast cancer, and restoration of merlin expression decreased the invasive 

phenotype of breast cancer cells in xenograft models (Morrow, Das et al. 2011). 

Interestingly, inactivating somatic mutations in NF2 are found in 35-40% of all malignant 

pleural mesotheliomas (Bianchi, Mitsunaga et al. 1995), (Sekido, Pass et al. 1995), 
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though the mechanism of tumor promotion in this setting is thought to rely on mutant 

merlin’s inability to regulate cell cycle progression in the nucleus, unrelated to merlin’s 

function at the cell cortex (Ladanyi, Zauderer et al. 2012).  

Within the publically-available The Cancer Genome Atlas database (TCGA, 

NHRGI/NCI; cBio, MSKCC), only two of 129 human non-small-cell lung cancer samples 

are reported to harbor mutations in NF2. Both mutations are substitutions within the 

coiled-coil region of merlin. One mutation, A451T, occurs in a sample with squamous 

cell histology, while the other, Q470L, occurs in a sample with adenocarcinoma 

histology. Importantly, neither of these samples overlaps with the 24 samples harboring 

EGFR alterations. Similarly, the Cancer Cell Line Encyclopedia (CCLE; Broad Institute) 

identifies one human-derived lung adenocarcinoma cell line harboring NF2 mutation 

(SW1573), but this cell line harbors mutant KRAS and has wild-type copies of EGFR. 

Mutations in NF2 have not been studied in the context of the EGFR-driven cancer cell; 

indeed, the described publically available datasets show no samples or reagent in which 

this study would be possible. Of interest, a landmark study utilizing clustered regularly 

interspaced short palindromic repeat (CRISPR) technology identified NF2 loss sufficient 

to confer resistance of human melanoma cell lines to the targeted inhibitor, vemurafinib 

(Zelboraf; Daiichi Sankyo; Tokyo, Japan) (Shalem, Sanjana et al. 2014). While the 

melanoma cell line used (A375) is driven by the V600E mutation in BRAF and harbors 

wild-type EGFR, this finding is one of the first to identify NF2 loss in the setting of 
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Interaction of merlin, NHERF1, and EGFR 

The structural interaction of merlin and EGFR has been studied only in non-

cancer cell lines, including primary mouse embryonic fibroblasts, primary murine 

osteoblasts, murine liver-derived epithelial cells, and human embryonic kidney cells 

(Curto, Cole et al. 2007), (Lazar, Cresson et al. 2004). Importantly, the interaction of 

merlin and EGFR requires the adaptor protein Na+-H+ Exchange Regulatory Factor 1 

(NHERF1). NHERF1, a 50kDa and 325 amino acid protein, was first identified in 1993 

as a regulator of cAMP-mediated inhibition of the renal Na+/H+ exchanger isoform 3 

(NHE3) (Weinman, Steplock et al. 1993). It has since been identified to play important 

roles in G-protein coupled receptor trafficking and conductance regulation of the cystic 

fibrosis transmembrane receptor  (Cao, Deacon et al. 1999), (Hall, Ostedgaard et al. 

1998). NHERF1 consists of two N-terminal PDZ domains and a C-terminal ERM domain 

(Donowitz, Cha et al. 2005). 

NHERF1 was identified as a binding partner of merlin in a 1998 yeast two-hybrid 

screen, which further identified the C-terminal ERB domain of NHERF1 and the N-

terminus of merlin as required for this interaction (Murthy, Gonzalez-Agosti et al. 1998) 

(Figure 6). In 2004, NHERF1 was identified as a binding partner of EGFR. This 

interaction occurs through the PDZ1 domain of NHERF1 binding to the DSFL motif at 

residues 1040-1043 of EGFR’s regulatory domain (Figure 6). In human embryonic 

kidney cells, abrogation of NHERF1-EGFR binding enhances the rate of ligand-induced 

receptor endocytosis and downregulation of EGFR. Additional studies support the 

finding that NHERF1 functions as a stabilizer of EGFR at the cell surface. Furthermore, 

the presence of NHERF1 prolongs EGFR activation (Lazar, Cresson et al. 2004). 
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Figure 6. Interaction of merlin, NHERF1, and EGFR  
Within the regulatory domain of EGFR, residues 1064-1067 (D-T-R-L) form a docking 
site for the N-terminal PDZ1 domain of NHERF1. The C-terminal ezrin, radixin, and 
moesin (ERM) binding domain of NHERF1 binds to the N-terminal FERM domain of 
merlin when merlin it in its closed conformation. Through physical interaction with 
NHERF1, merlin is thought to inhibit EGFR and function as a tumor suppressor by 1) 
preventing downstream signaling and 2) inhibiting receptor internalization and 
subsequent recycling.  
 
 

  

PDZ1

PDZ2

ERM

merlin

NHERF1

EGFR

FERM

1064

1067



28 
 

Regulation of EGFR by merlin in non-cancer cells 

As described above, all of the few currently published studies relating merlin and 

EGFR have been conducted in wild-type cells or cells genetically engineered to be 

driven by homozygous NF2 loss(Curto, Cole et al. 2007), (Lazar, Cresson et al. 2004), 

(Morris and McClatchey 2009). Indeed, many of these studies take advantage of 

merlin’s role as a tumor suppressor to elucidate normal mechanisms of cell proliferation 

control. These published studies suggest that merlin functions as a negative regulator of 

EGFR. Both cell line and xenograft models show an increase in total and 

phosphorylated EGFR in NF2-null cells (Curto, Cole et al. 2007), (Morris and 

McClatchey 2009). Specifically, it is proposed that merlin regulates contact-dependent 

inhibitor on EGFR signaling in cells through two mechanisms. In the setting of low cell 

density, merlin exists in the cytoplasmic compartment in its “off” state incapable of tumor 

suppressive functions. In the setting of high cell density and the formation of cell-cell 

contacts by cadherin-catenin complex proteins, merlin is recruited to nascent cell 

junctions (where is binds alpha-catenin) and activated (Gladden, Hebert et al. 2010). 

Once at the membrane, merlin stabilizes cadherin-catenin complexes and is localized 

such that it may bind EGFR-associated NHERF1. The physical interaction of merlin-

NHERF1-EGFR serves to inhibit further EGFR signaling and prevent EGFR 

internalization and recycling (Curto, Cole et al. 2007). Indeed, overproliferation (defined 

in wild-type cell as the loss of contact-dependent inhibition) of NF2-/- cells both in vitro 

and in vivo is inhibited by pharmacologic inhibition of EGFR by erlotinib or gefitinib, 

providing further evidence that merlin regulates the contact-mediated inhibition of 

growth by EGFR (Curto, Cole et al. 2007), (Benhamouche, Curto et al. 2010). 
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Importantly, all existing studies evaluate merlin’s effect on EGFR in cells harboring only 

mutations in NF2; other signaling circuitry exists in its wild-type state. As such, this work 

provides a springboard for further examination of merlin’s role in cancer cells, but the 

highly perturbed signaling networks of cancer cells leave ample room for discovery. 

Purpose of this study 

While remarkable developments in genotyping technologies and drug 

development have dramatically advanced oncology treatment strategies in the current 

era of personalized cancer medicine, acquired resistance remains a major hurdle in 

improving patient outcomes. The application of drugs to highly-specific mutational 

targets has the unfortunate consequence of positively selecting out indolent clones of a 

heterogeneous tumor cell population. The studies described herein evaluate two unique 

therapeutic methods with the goal of overcoming acquired resistance: 1) identification of 

novel mutations in NF2 with druggable consequences potentially responsible for 

secondary acquired resistance to afatinib+cetuximab, and 2) characterization of a novel, 

mutant-specific, third generation compound, AZD9291 (AstraZeneca, London UK).  

First, these studies evaluate a novel potential mechanism of secondary acquired 

resistance in lung cancer. Following the identification of two mutations in the NF2 gene 

that are incurred during treatment with afatinib+cetuximab, merlin loss is interrogated in 

vitro and in vivo. Resultant increase in mTOR activation in model systems is evaluated 

as a potential treatment mechanism to overcome secondary acquired resistance to 

afatinib+cetuximab. In combination with other studies identifying mTOR activation as a 

consequence of merlin loss, this work may provide solid preclinical rationale for the 
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evaluation of combination therapy including secondary anti-EGFR therapy with mTOR 

inhibition as a therapeutic strategy to prevent or overcome acquired resistance to 

afatinib+cetuximab. In addition, merlin is evaluated as a negative regulator of EGFR in 

the setting of EGFR-mutant lung cancer cells. While merlin has been evaluated as an 

EGFR regulator, all published studies to directly interrogate this relationship have been 

conducted in wild-type cells. The aberrant signaling environment of the cancer cell 

requires additional study to best understand the molecular function of merlin as a 

potential mechanism of secondary acquired resistance in EGFR-mutant lung cancer.  

Furthermore, in collaboration with AstraZeneca (London, UK) the studies 

described herein evaluate a novel, mutant-specific, third-generation tyrosine kinase 

inhibitor, AZD9291. This drug is interrogated in numerous EGFR-mutant lung cancer 

cell lines for its potency compared to FDA-approved first- and second-line TKIs erlotinib 

and afatinib as well as parent and metabolized proprietary compounds AZD8931 and 

AZ5104. These studies test the hypothesis that AZD9291 has high potency against the 

cells harboring EGFR T790M, and will likely lead to efficacy in clinical trials as a novel 

drug with the express purpose of overcoming T790M-mediated acquired resistance to 

EGFR tyrosine kinase inhibitors. Further studies may also evaluate the potential of 

AZD9291 as a first-line treatment to prevent the development of acquired resistance, as 

well as the use of AZD9291 with other non-TKI agents as part of combination therapy 

regimens.  
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CHAPTER II 

 

Materials and Methods 

 

Adapted From: Pirazzoli V*, Nebhan C*, Song X, Wurtz A, Walther Z et al. (2014). "Acquired 
resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with 
activation of mTORC1." Cell Reports. *co-first author 

And: Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA et al (2014). “AZD9291, an 
irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung 
cancer.” Cancer Discovery. 

 

 

Cell culture 

Human lung adenocarcinoma cell lines were cultured in RPMI media (American 

Type Culture Collection) supplemented with 10% heat-inactivated fetal bovine serum 

(Gibco) and 1% penicillin/streptomycin (Corning). All described cell lines have been 

used as reagents in the Pao Lab since 2007 (Table 2). Cells were re-genotyped 

multiple times to confirm the presence of known EGFR mutations by standard Sanger 

sequencing. Cells were grown in a humidified incubator with 5% CO 2 at 37°C.  

Resistant cells derived in vitro have been previously described by our lab 

(Chmielecki, Foo et al. 2011). Briefly, parental cells were cultured with increasing 

concentrations of TKIs starting with the IC30. Doses were increased in a stepwise 

pattern when normal cell proliferation patterns resumed. Fresh drug was added every  

http://www.ncbi.nlm.nih.gov/pubmed/24893891
http://www.ncbi.nlm.nih.gov/pubmed/24893891
http://www.ncbi.nlm.nih.gov/pubmed/24893891
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Table 2. EGFR TKI-Sensitive and TKI-Resistant Cell Lines 
 

  

Parental Line 1° EGFR 
mutation

Isogenic Pair(s) 2° EGFR 
mutation 

PC9par exon 19 del PC9/ERc1 T790M

PC9/BRc1 T790M

HCC827par exon 19 del HCC827/ER1 T790M

HCC827/ER1 MET amplification

HCC2279par exon 19 del HCC2279/ER T790M

HCC2935par exon 19 del HCC2935 ?

HCC4006par exon 19 del HCC4006/ER EMT

VP-2 exon 19 del --- T790M

11-18par L858R 11/18/ER NRAS Q61K

H3255par L858R H3255/XLR T790M

HCC4011 L858R HCC4011/ER MET amplification

H1975 L858R --- T790M

SW1573 ---
(-/-NF2; mtKRAS)

--- ---
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72 to 96 hours. In some cell lines, clonal-resistant cells were isolated by limiting dilution. 

Resistant cell lines were maintained in the presence of drug as follows: erlotinib- 

resistant cells (/ER) were cultured in 1µM erlotinib, afatinib-resistant cells (/BR) were 

cultured  in 250nM afatinib, afatinib+cetuximab-resistant xenograft-derived cell lines 

were cultured in 250nM afatinib plus 10µg/mL cetuximab, and AZD9291-resistant cells 

were cultured in 100nM AZD9291.  

Immunoblotting 

Cells were washed with cold PBS any lysed for 20minutes after scraping in with 

radioimmunoprecipitation assay (RIPA) buffer  (150 mmol/L Tris-HCl, pH 7.5, 150 

mmol/L NaCl, 1% NP-40 substitute, 0.1% SDS) supplemented with protease inhibitor 

cocktail (Roche), 40 mmol/L sodium fluoride, 1 mmol/L sodium orthovanadate, and 1 

µmol/L okadaic acid. Protein levels were quantified with Bradford Reagent (Bio-Rad), 

and equal amounts were loaded for SDS-PAGE using 4% - 12% Bis-Tris precast gels 

(Invitrogen), followed by transfer by iBlot System to polyvinylidene difluoride 

membranes (Invitrogen).  

Antibodies and reagents 

Following transfer to PVDF membrane, membranes were blocked in 5% bovine 

serum albumin (Research Production International Co.) in tris buffered saline 

(Mediatech) plus 1% tween (Sigma) (5% BSA-TBST) for one hour at room temperature. 

Membranes were then blotted with antibodies diluted in 5% BSA-TBST at 4°C overnight 

at dilutions described (Table 3). Following three ten-minute washes in TBST,  
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Table 3. Antibodies used for immunoblot analysis 
 

  

Antibody Catalog #/Company Species Dilution in 5% 
BSA-TBST

pEGFR (Y1068) R&D Systems MAB3570 Mouse 1:1000

pEGFR (Y1173) Santa Cruz sc-12351 Mouse 1:1000

Total EGFR BD Transduction Labs 610017 Mouse 1:1000

merlin Abcam ab889057 mouse 1:2000

Santa Cruz sc-331 rabbit 1:1000

Pro-surfactant Protein C Abcam ab90716 rabbit 1:1000

Actin Sigma Aldrich A2066 rabbit 1:5000

phosphS6 Cell Signaling 2215 rabbit 1:2000

Total S6 Cell Signaling 2217 rabbit 1:2000

PhosphoAKT (S473) Cell Signaling 9271 rabbit 1:500

Total AKT Cell Signaling 9272 rabbit 1:1000

PhosphoERK
(T202/Y204)

Cell Signaling 9101 Rabbit 1:2000

Total ERK Cell Signaling 9102 rabbit 1:2000

α-catenin Sigma C2081 rabbit 1:2000

Invitrogen 139700 mouse 1:500

β-catenin Sigma C2206 rabbit 1:10000

Plakoglobin Novex 138500 mouse 1:1000

p120 BD Transduction Lab 610133 mouse 1:5000

E-cadherin BD Transduction Lab 610181 mouse 1:5000

EBP50 (NHERF1) Abcam ab3452 Rabbit 1:4000
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membranes were incubated in horseradish peroxidase (HRP)-conjugated secondary 

antibodies at 1:4000 dilution in 5% BSA-TBST (Cell Signaling, 7074 rabbit and 

7076mouse). Signal was detected with Western Lightning Plus detection reagent 

(Perkin Elmer) as per manufacturer’s protocol. 

RNA interference and transfection 

siRNAs specific for merlin (L-003917-00-0005), TSC1 (L-003028-00-0005) or 

scrambled control (D-001810-10-05) were obtained from Dharmacon, diluted in 

RNase/DNase-free H2O to 20uM concentration, aliquoted to ensure minimal freeze-

thaw cycles, and stored at -80°C. Transfection of RNAi was performed by the 

manufacturer’s reverse transfection protocol using Lipofectamine RNAiMAX (Life 

Technologies).  

Growth inhibition assays 

Cellular growth inhibition was measured with CellTiter Blue Reagent (Promega, 

G8081) according to the manufacturer’s instructions using cells plated in triplicate at a 

density of 2,000 cells per well. Fluorescence was measured on a SpectraMax 

fluorometer. Growth inhibition was calculated as percentage of vehicle-treated wells 

+ SD and Microsoft Excel software was use to IC50 values. Cellular Sytox proliferation 

assays were performed as described (Ward, Anderton et al. 2013) and Origin software 

used to interpolate IC50 values. 

Soft agar assays 

Colony-forming capacity of xenograft-derived cell lines was assessed using the 

CytoSelect 96-Well In Vitro Tumor Sensitivity Assay (Soft Agar Colony Formation) Kit 
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(Cell Biolabs Inc.), according to the manufacturer’s protocol. Briefly, 50 µL of base agar 

matrix layer was dispensed into each well of a 96-well tissue culture plate. Cells (5x103) 

in 75 µl of cell suspension/agar matrix layer were dispensed into each well. The cells 

were treated with 50 µl of culture medium containing various drugs. After incubation for 

8 days, 125µl of the 1x matrix solubilization buffer was added to solubilize the agar 

matrix completely, and MTT was added to each well. The absorbance was then 

recorded on a SpectraMax fluorometer at 570 nm. 

Immunoprecipitation 

When 100% confluent, cells were crosslinked with 

dithiobis(succinimidylpropionate) DSP (Pierce) by the optimized ReCLIP method (Smith, 

Friedman et al. 2011). Briefly, DSP was dissolved in DMSO to a concentration of 20mM 

immediately prior to treatment. Cells were moved to room temperature and washed 

twice in room-temperature PBS. 20mM DSP was then diluted in PBS on cells to a final 

concentration of 0.5mM. Cells were incubated for 30min at room temperature. After 

crosslinking, DSP was removed by aspiraton and the reaction was quenched by 10 

minute incubation in 20mM Tris-HCl plus 5mM L-cysteine. Cells were then lysed in 

RIPA buffer and protein concentration was measured as described in immunoblotting 

procedure. Endogenous protein immunoprecipitation was conducted with agitation 

overnight at 4°C using 3µL antibody for either total EGFR R-1 (Santa Cruz, sc-101), 

merlin (Santa Cruz; sc-331), NHERF1 (Abcam, ab3254) or HA control in 3mg total 

protein lysate per reaction. 30µL Protein A (rabbit) or protein G (mouse) magnetic 

dynabeads (Life technologies) were then added to each reaction and incubated with 
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agitation for 4hr at 4°C. Beads were washed once in RIPA buffer, then resuspended in 

2x Laemmli running buffer and boiled for 10min at 95°C before loading gel for SDS-

PAGE electrophoresis. 

Transgenic mice and xenografts 

All animals were kept in pathogen-free housing under guidelines approved by the 

Memorial Sloan Kettering Cancer Center (MSKCC) and Yale institutional animal care 

and use committees, or under guidelines approved by the Vanderbilt University Medical 

Center Institutional Animal Care and Use Committee and conducted in accordance with 

UK Home Office legislation, the Animal Scientific Procedures Act 1986 (ASPA) and with 

Astrazeneca Global Bioethics policy. All experiments conducted in Chapter IV are 

outlined in project license 40/3483 which has gone through the AstraZeneca Ethical 

Review Process.  

For studies outlined in Chapter III, TetO-EGFRL858R+T790M mice (Regales, Balak et 

al. 2007) and CCSP-rtTA mice have been previously described and used by our lab and 

others. For xenografts, 8-week-old nu/nu athymic nude mice (Harlan Labs) were 

injected subcutaneously with 103-106 PC-9/BRc1 cells together with Matrigel (BD 

Biosciences). Mice were randomized to receive either drug diluent alone (vehicle) or 

afatinib + cetuximab. Tumor size was measured twice a week using calipers. To further 

propagate afatinib+cetuximab-resistant tumors, these tumors were minced and 

immediately injected subcutaneously with Matrigen (tumor #16) or cultured for 2 weeks 

then reinjected subcutaneously into immunodeficient mice (tumor #24). Afatinib 

(produced by the Organic Synthesis Core Facility at MSKCC) was suspended in 0.5% 

(w/v) methylcellulose and administered orally (25 mg/kg/per day 5 days a week). 
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Cetuximab (Erbitux; Bristol-Myers Squibb and Eli Lilly Pharmaceuticals) was purchased 

and administered intraperitoneally (1mg twice a week). Rapamycin (LC Laboratories) 

was suspended in 0.5% carboxymethylcellulose and given orally (2mg/kg per day 5 

days a week). The generation of EGFRL858R
 (45) and EGFRL858R+T790M

 mice 

(male and female) was previously described (46). Doxycycline was administered by 

feeding mice (aprox 3 week old) with doxycycline-impregnated food pellets (625 ppm; 

Harlan-Teklad), and treated for about 3 months during which time tumors developed. 

Afatinib and AZD9291 were suspended in 1% Polysorbate 80 and administered via oral 

gavage once daily at the doses of 7.5 mg/kg and 5 mg/kg, respectively. Mice were 

imaged weekly at the Vanderbilt University Institute of Imaging Science. For immunoblot 

analysis, mice were treated for eight hours with drug as described before dissection and 

flash freezing of the lungs. Lungs were pulverized in liquid nitrogen before lysis as 

described above. 

For studies outlined in Chapter IV, 5 x 106 cells were implanted subcutaneously 

in a total volume of 0.1ml/mouse for PC-9 and H1975, and 1 x 107 cells implanted 

subcutaneously for A431. Both PC-9 and A431 cells were implanted in 50% Matrigel. 

PC-9 xenografts were established in female SCID mice and H1975 and A431 were 

established in female nude mice. All mice were greater than 6 weeks old at time of cell 

implant. Tumor growth was monitored twice weekly by bilateral caliper measurements, 

tumor volume calculated, and mice randomized into vehicle or treatment groups with 

approximate mean start size of 0.2-0.4cm3. Randomization for animal studies is based 

on initial tumor volumes to ensure equal distribution across groups. A power analysis is 

performed whereby group sizes are calculated to enable statistically robust detection of 
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tumor growth inhibition. Mice were dosed once daily by oral gavage for duration of the 

treatment period. Tumor growth inhibition from start of treatment was assessed by 

comparison of the mean change in tumor volume for the control and treated groups. 

Statistical significance was evaluated using a one-tailed Students t test. For 

pharmacodynamic studies, mice were randomized at a mean tumor volume of 

approximately 0.5-0.8cm3
 using the same randomization criteria as the tumor growth 

inhibition studies. Mice were then treated orally with a single bolus dose of either vehicle 

or AZD9291. Tumors were excised at specific time points after dosing and fixed in 10% 

buffered formalin. Immunohistochemical analysis was performed on formalin fixed, 

paraffin embedded tissue sections staining for phosphorylated EGFR (Tyr1173) and 

phosphorylated ERK (p44/42 Thr202/Tyr204).  

MRI 

 Mice were anesthetized via inhalation of 2%/98% isoflurane/oxygen and 

maintained under anesthesia throughout the course of the experiment. Animals were 

secured in a prone position in a 38-mm inner diameter radiofrequency (RF) coil and 

placed in a Varian 7T horizontal bore imaging system (Varian Inc, Palo Alto, CA) for 

data collection. A constant body temperature of 37°C was maintained using heated air 

flow. Prior to treatment, mice were scanned at least twice to confirm the presence of 

growing lung nodules and to avoid treating false-positive animals. Multi-slice T1-

weighted gradient echo images were collected in all three imaging planes (axial, 

sagittal, and coronal) for localization of the lungs (repetition time (TR) =100ms, echo 

time (TE) = 5ms, slice thickness = 1mm, 40mm x 40mm field of view (FOV), 

approximately 15-20 slices). Following the initial scout imaging, respiratory triggered, 
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segmented fast low angle shot (FLASH) images were collected in both the axial and 

coronal planes with TR/TE = 850/2.8ms, flip angle = 15 degrees, number of slices = 22, 

slice thickness = 0.7mm with a 0.2mm gap between slices, and number of acquisitions 

= 16. For the axial images, the FOV = 23.04mm x 23.04mm, with a matrix size of 

256x256, resulting in an in-plane resolution of 90 microns. For the coronal orientation, 

FOV = 30.72mm x 23.04mm, with a data matrix = 256x256, resulting in an in-plane 

resolution of 120x90 microns. 

Following image acquisition, lung tumor volume measurements were performed 

using Matlab 2012a (The MathWorks, Inc, Natick, MA). A region of interest (ROI) was 

manually drawn around the lungs for each slice, excluding the heart, and a signal 

intensity threshold of 25 times the noise level (defined as the standard deviation of 

signal intensities in a region of the image background) was used to segment voxels 

within that ROI as positive for tumor. Total lung tumor volume was then calculated by 

multiplying the tumor area within the segmented region by 0.09 cm (the distance 

between each MRI slice). 

Prior to treatment, mice were scanned at least twice to confirm the presence of 

growing lung nodules and to avoid treating false-positive animals. Multi-slice T1-

weighted gradient echo images were collected in all three imaging planes (axial, 

sagittal, and coronal) for localization of the lungs (repetition time (TR) = 100ms, echo 

time (TE) = 5ms, slice thickness = 1mm, 40mm x 40mm field of view (FOV), 

approximately 15-20 slices). Following the initial scout imaging, respiratory triggered, 

segmented fast low angle shot (FLASH) images were collected in both the axial and 

coronal planes with TR/TE = 850/2.8ms, flip angle = 15 degrees, number of slices = 22, 
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slice thickness = 0.7mm with a 0.2mm gap between slices, and number of acquisitions 

= 16. For the axial images, the FOV = 23.04mm x 23.04mm, with a matrix size of 

256x256, resulting in an in-plane resolution of 90 microns. For the coronal orientation, 

FOV = 30.72mm x 23.04mm, with a data matrix = 256x256, resulting in an in-plane 

resolution of 120x90 microns. Following image acquisition, lung tumor volume 

measurements were performed using Matlab 2012a (The MathWorks, Inc, Natick, MA). 

A region of interest (ROI) was manually drawn around the lungs for each slice, 

excluding the heart, and a signal intensity threshold of 25 times the noise level (defined 

as the standard deviation of signal intensities in a region of the image background) was 

used to segment voxels within that ROI as positive for tumor. Total lung tumor volume 

was then calculated by multiplying the tumor area within the segmented region by 0.09 

cm (the distance between each MRI slice).  

Modelling the binding mode of AZD9291 

 A published structure of the EGFR T790M mutant (pdb code 3IKA (Zhou, Ercan 

et al. 2009)) was used for the modelling of potential binding modes of AZD9291. Crystal 

structures were prepared using the protein preparation wizard in Maestro (Schrodinger 

Release 2013-1) which optimises hydrogen placements. The active site was defined by 

using the bound ligand, and the covalent docking protocol was used to model potential 

binding modes. These were ranked using the assigned scores and manually inspected 

for the retention of the key hinge interactions to the hinge region residue M793. 

In vitro EGFR phosphorylation assays 
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Cells were treated for 2 h with a dose response of each drug. Wild-type cells 

were stimulated for 10 minutes with 25 ng/ml of EGF before lysis. Level of EGFR 

phosphorylation was quantified in cell extracts using a modified R&D Systems DuoSet 

Human phospho-EGFR ELISA (Ward, Anderton et al. 2013).  

Expression vectors  

The indicated EGFR cDNAs were cloned into the pcDNA3.1(-) expression vector 

and altered using site-directed mutagenesis as described (Pao, Miller et al. 2004). All 

cDNAs were re-sequenced to verify that no additional codon-changing mutations were 

present. pCDH-puro-EGFRvIII lacking exons 2-7 in EGFR (a kind gift from Dr. Jialiang 

Wang, Vanderbilt University) was constructed by subcloning the EGFRvIII fragment 

from MSCV-XZ066-EGFRvIII (Addgene Plasmid# 20737 http://www.addgene.org/20737/) 

into the expression vector pCDH-CMV-MCS-EF1-Puro. pBabe-HER2YVMA-puro (a 

kind gift from Carlos Arteaga, Vanderbilt University) encodes HER2 with an in-frame 

YVMA insertion at residue 776 (Wang, Narasanna et al. 2006). All plasmids were 

transfected into 293 cells as described  (Pao, Miller et al. 2004). 

Immunohistochemistry 

4um sections were deparaffinized with xylene and rehydrated through graded 

alcohols into water. Antigen retrieval was carried out in a Milestone RHS microwave 

rapid histoprocessor for 10 minutes at 110oC in pH9 buffer, Dako S2367 (for phospho-

EGFR and phospho-Akt) and pH 6 citrate buffer, Dako S1699 (for phospho-Erk and 

phospho-S6). Tissues were placed on a LabVision Autostainer, endogenous peroxidase 

was blocked with 3% H2O2 for 10 minutes, followed by washing twice in TBS/0.05% 

Tween. Serum free protein block (Dako; X0909) was applied for 15 minutes. Slides 
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were then incubated with the primary antibodes at room temperature, phospho-EGFR 

Tyr1173 (Cell Signaling Technology, code 4407) at a 1:200 dilution, phospho-ERK 

(p44/42 Thr202/Tyr204) (Cell Signaling Technology, code 4376) at 1:100, phospho-S6 

(Ser 235/236) CST #4857 at 1:150, phospho-PRAS40 (pThr246) (Cell Signaling 

Technology, code #2997) at 1:200, and phospho-Akt308 CST #2965 at 1:100 dilution. 

After washing twice, sections were incubated for 30 minutes with Rabbit Envision 

polymer detection system (Dako K4003), washed twice and then developed in liquid 

3,3_-diaminobenzidine (DAB) for 10 minutes. Sections were then counter-stained with 

Mayer’s haematoxylin, dehydrated, cleared, and mounted with coverslips. 

Patients 

All patients treated on trial NCT01802632 with written informed consent 

from patients and approval appropriate Institutional Review Boards (For the two patients 

disclosed in Chapter IV the Ethics committees are as follows; Korean patient: Seoul 

National University Hospital (EC), UK patient: North West – GM Central, North West 

Centre of REC, Manchester). Consent to publish study CT scan images is included as 

part of the patient informed consent, signed by both patients. In the first into man study 

a cohort size of 6 for the starting dose is standard practice, to provide sufficient safety 

and tolerability data about a dose level without exposing too many patients to a dose 

which may not be clinically beneficial. The first two patients in the starting dose cohort 

with an objective response were selected for inclusion in the publication. The clinical 

study is ongoing and further study data will be submitted for publication at a later date.  

Patient tumor tissues were analyzed for EGFR mutations using either the Qiagen EGFR 

 RGQ PCR Kit [Cat #870111] or direct dideoxynucleotide sequencing.  
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CHAPTER III 

 

Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus 

cetuximab is associated with activation of mTORC1 

 

Adapted From: Pirazzoli V*, Nebhan C*, Song X, Wurtz A, Walther Z et al. (2014). "Acquired 
resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with 
activation of mTORC1." Cell Reports. *co-first author 

 
 
 

Introduction 

 Targeted therapies effectively treat subsets of solid cancers. However, the 

inevitable development of acquired resistance (AR) has hampered their success. A 

paradigm for this concept is the case of Epidermal Growth Factor Receptor (EGFR)-

mutant lung cancer. EGFR mutations (Exon 19 deletions or the L858R point mutation) 

are associated with sensitivity to the first-generation tyrosine kinase inhibitors (TKIs) 

gefitinib and erlotinib (Pao and Chmielecki 2010), but drug resistance emerges on 

average 1 year after TKI treatment. In ~50% of resistant tumors, the mutant EGFR 

allele has acquired a secondary mutation in exon 20 (T790M) (Pao and Chmielecki 

2010). Additional mechanisms of resistance include amplification of other receptor 

tyrosine kinases (RTKs) like MET and HER2 (ERBB2), mutations in genes encoding 

downstream signaling components or phenotypic transformations such as epithelial-to-
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mesenchymal transition (EMT) and neuroendocrine differentiation (Ohashi, Maruvka et 

al. 2013).  

In a previous study using transgenic mice with EGFRL858R+T790M-induced LUADs, 

we showed that resistance due to EGFR T790M could be overcome using a 

combination of afatinib+cetuximab (A+C) (Regales, Gong et al. 2009). Afatinib is a 

second-generation TKI that covalently binds EGFR at cysteine 797, while cetuximab is 

an anti-EGFR antibody.  This preclinical study prompted a Phase IB/II clinical trial 

testing this drug combination in patients with progressive disease after TKI treatment. 

The trial showed an overall 32% response rate with a median duration of response of 

eight months (Janjigian, Smit et al. 2012). Unfortunately, patients responding to the 

drug combination still develop progressive disease.  

We used xenografts and transgenic mice to model acquired resistance to the 

combination of A+C. Molecular analysis of resistant tumors revealed activation of the 

mTOR signaling pathway. Consistent with these findings, two separate patients with 

A+C-resistant tumors exhibited alterations in genes (NF2 and TSC1), that when 

silenced in EGFR-mutant cells led to activation of the mTOR pathway. In vitro and in 

vivo, A+C resistance can be overcome by addition of an mTOR pathway inhibitor. 

These studies are the first to demonstrate mechanisms of AR to dual inhibition of EGFR 

in EGFR-mutant lung cancer and provide new insight into the biology of this subset of 

lung cancers, with immediate therapeutic implications for patients. 

Results 

Acquired resistance to A+C combination therapy in xenografts 
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We previously modeled acquired resistance to erlotinib in tetracycline-inducible 

mouse models of EGFR-dependent lung cancer by intermittently treating mice with the 

TKI (Politi, Fan et al. 2010). We observed clinically relevant mechanisms of acquired 

resistance, such as the EGFR T790M mutation and Met amplification, validating this 

experimental approach.  We adopted the same strategy to establish models of 

resistance to A+C, first in xenograft models using the PC-9/BRc1 human LUAD cell line 

that harbors an EGFR∆E746-A750+T790M mutation (Chmielecki, Foo et al. 2011). 

Immunocompromised mice with PC-9/BRc1-induced tumors were randomized to 

receive either vehicle (n=5) or A+C (n=10). After 1 month of treatment, drug 

administration was interrupted for 1 month, and this on/off drug treatment regimen was 

repeated 3 times (Figure 8A). All tumors in control mice grew continuously. In the A+C 

treated cohort, tumors initially regressed. During the third cycle of treatment, 2 tumors 

(#16 and #24) became resistant (Figure 8A).  These were re-implanted into mice and 

treated with A+C or vehicle alone for 4 weeks (Figure 8B). Eventually, we collected 4 

A+C resistant transplants from tumor #16 (labeled 16T-7, 16T-8, 16T-9 and 16T-10) 

and two from tumor #24 (24T-6, 24T-10) (Error! Reference source not found.). Cell lines 

were established from tumors 16T-10 and 24T-10. Resistance to A+C in these cell lines 

compared to parental PC-9 and PC-9/BRc1 cells was confirmed in a 3D colony assay 

(Figure 7A).  
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Evidence for mTOR pathway activation in A+C resistant xenografts 

To identify mechanisms of resistance to A+C, we performed molecular analyses 

of the tumors collected. We first asked whether resistance to A+C could be explained by 

the acquisition of new mutations in EGFR or ERBB2, both of which are targets of A+C.  
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Figure 7. Resistance to afatinib+cetuximab in xenografts and xenograft-derived 
cell lines, related to Figure 1. 
A. Soft agar assay of PC-9, PC-9/BRc1 and the afatinib+cetuximab resistant 16T-10 
and 24T-10 cells in response to different doses of A+C. Data are presented as the 
Mean ± SE.  
B. Copy number assay for EGFR, HER2 (ERBB2), MET and IGF1R in xenograft tumors 
and cell lines as indicated. Afatinib+cetuximab treated tumors (A+C Tx) are shown with 
patterned bars. The different colors correspond to the origin of the cells used to derive 
the xenografts: Purple bars represent tumors derived from PC-9/BRc1 cells, blue bars 
represent tumors derived from afatinib+cetuximab resistant tumor 16, green bars 
represent tumors derived from afatinib+cetuximab resistant tumor 24. Values have been 
normalized to normal human gDNA. Two assays were run for each target. The mean 
and standard error (bar) is shown for each sample. 
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Sequencing of control and A+C resistant tumors did not detect any mutations in EGFR 

and ERBB2 (data not shown). Analysis of the tumors revealed increased EGFR copy 

number in both vehicle-treated and A+C-resistant tumors compared to the parental PC-

9/BRc1 cell line with tumor #16, but not #24, exhibiting high level EGFR amplification 

(Figure 7B). Minor fluctuations in ERBB2, MET and IGF1R copy number were also 

observed, the significance of which is likely limited given the magnitude of these 

changes. Together, the copy number data suggested that RTK amplification alone could 

not explain the resistance phenotype observed in our samples. These results prompted 

us to further investigate RTK levels and pathway activation in A+C-resistant samples. 

The xenograft-derived cell lines exhibited higher levels of phospho (p)-EGFR, pERK 

and pAKT compared to parental PC-9/BRc1 cells. However, the levels of activation of 

these proteins decreased in the presence of A+C, suggesting that the drugs retained 

the ability to block these pathways in A+C-resistant cells (Figure 8C). Interestingly, drug 

treatment did not affect the levels of pS6 or p4EBP1, markers of mTOR pathway 

activation, in the A+C-resistant lines in contrast to parental PC-9/BRc1 cells. This 

evidence suggests that pathway re-wiring in resistant tumor cells leads to sustained 

activation of the mTORC1 pathway. Similarly, in vivo, the mTOR pathway was 

consistently engaged in all A+C-resistant xenografts, as measured by pS6 and p4EBP1 

(Figure 8D and Figure 8E). The levels of pAKT and pERK in the xenografts did not 

reveal a consistent pattern that would support either playing a major role in resistance to 

A+C in this model (Figure 8D). Together these results suggest that whilst pAKT and 

pERK can be inhibited in A+C-resistant tumors, the tumors retain sustained activation of 

mTOR signaling that may play a role in resistance to A+C combination therapy. Whole 



50 
 

exome sequencing (WES) of the A+C-resistant #16 and #24 tumors did not detect 

mutations in 23 mTOR-pathway related genes, strongly suggesting that non-mutational 

processes account for sustained activation of this pathway in these tumors.  

Highly penetrant resistance to A+C in genetically engineered mouse models of 

EGFR-mutant lung cancer 

In parallel, we developed models of resistance to A+C using transgenic mice with 

EGFRL858R+T790M-induced LUADs. Tumors in these mice are resistant to erlotinib but 

sensitive to A+C (Regales, Gong et al. 2009). Thirty-eight CCSP-rtTA; TetO-

EGFRL858R+T790M tumor-bearing mice were cycled on and off A+C using the protocol 

used for the xenograft experiments (Figure 9A). Tumor burden before and during 

treatment was tracked using magnetic resonance imaging (MRI) at the beginning and 

end of each drug cycle. This on/off drug treatment schedule was repeated until lung 

tumors no longer responded to treatment and increased in size on MR images (Figure 

9A). All 38 mice that underwent the intermittent dosing treatment protocol developed 

resistance to the A+C combination. The majority of mice developed resistance after 

three cycles of A+C (21 out of 38); 15 mice developed resistance after 2 cycles and 2 

mice after 4 cycles of drug treatment (Table 4). The median tumor shrinkage during the 

first cycle of A+C was 80%, but this was attenuated during the second and third cycles 

of treatment (Figure 9B). Six mice that were treated without interruption with A+C also 

developed resistance to the drug combination (Table 4 and Table 5). Consistent with 

the emergence of resistance, tumors from the mice with acquired resistance displayed 

higher levels of proliferation and lower levels of apoptosis, compared to tumors from 

mice that had undergone short-term A+C treatment (Table 5). 
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Figure 8.  Activation of the mTOR pathway in afatinib+cetuximab-resistant 
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xenografts  
A. Representation of the intermittent dosing protocol used to generate acquired 
resistance to afatinib and cetuximab in xenografts. 106 PC-9/BRc1 cells were injected 
s.c. into the flanks of immunocompromised mice. When tumors reached a volume of 
~150 mm3, mice were treated with vehicle (n=5, in black) or A+C (n=10, in color). After 
one month of treatment, drug administration was stopped for one month. The 
intermittent drug cycle was repeated three times. Tumor volume measurements are 
shown. Tumors indicated by the arrows (#16 and #24) acquired resistance to A+C. 
B. Tumor growth of the transplants derived from A+C resistant tumors #16 (left panel) 
and #24 (right panel). The resistant tumors were further transplanted into 10 nude mice 
and treated continuously with vehicle (in black, n=5) or with A+C (in color, n=5). 
Transplants are labeled with the number of the original tumor they were derived from 
(#16 or 24), the letter “T” and a number. 
C. Immunoblotting analysis of extracts from PC-9/BRc1, 16T-10 and 24T-10 cells 
treated with afatinib (100 nM), cetuximab (10 µg/ml) or the A+C combination. Lysates 
were probed with the indicated antibodies; p, phospho. 
D. Immunoblotting analyses of tumor lysates from vehicle- and A+C-treated transplants 
derived from A+C-resistant tumors 16 and 24. Lysates were probed with the indicated 
antibodies; p, phospho. 
E. Hematoxylin and Eosin staining (H&E) and IHC performed on paraffin sections of 
tumors derived from vehicle- and A+C-treated mice as indicated. Sections were stained 
with antibodies to EGFR exon 19 deletion mutant (EGFRDEL) and phospho-S6 (pS6) 
as indicated. 40X magnification is shown. Bars, 20 µm. 
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Figure 9. Activation of the mTOR pathway in afatinib+cetuximab-resistant mouse 
LUADs  
A. Intermittent dosing of A+C was performed on a 1 month on drug and 1 month off 
drug cycle.  Doxycycline administration was initiated at weaning and subsequently kept 
constant throughout the life of the animal. Tumor response was evaluated by MRI at the 
beginning and at the end of every drug treatment cycle. Coronal MR images of a CCSP-
rtTA; TetOEGFR L858R+T790M mouse subjected to intermittent A+C treatment are 
shown. Tumor volume measurements are found below each image. H, heart. 
B. Tumor response in CCSP-rtTA; TetO-EGFRL858R+T790M mice subjected to the 
A+C intermittent treatment protocol. Tumor volume is plotted as the percentage of the 
tumor volume detected on the pre-cycle MRI. Median tumor volume change is -80% in 
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the first cycle, -22% in the second cycle and +29% at the third cycle of A+C.  
C. Hematoxylin and Eosin staining (H&E) and IHC performed on paraffin sections of 
LUADs derived from CCSP-rtTA; TetO-EGFRL858R+T790M untreated mice and mice 
treated with A+C for 5 days or at resistance to the drug combination (A+C Res). 
Sections were stained with antibodies to EGFRL858R, pS6, surfactant protein C (SPC) 
and thyroid transcription factor (TTF1) as indicated. 40X magnification is shown. Bars, 
20 µm.  
D. Immunoblotting analyses of tumor lysates from LUADs derived from untreated (Untr), 
A+C-treated (5dys) or resistant (A+C res) CCSP-rtTA; TetO-EGFRL858R+T790M mice. 
Lysates were probed with the indicated antibodies; p, phospho. Results representative 
of one experiment; each lane identified by four-digit number represents a unique 
mouse. 
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Table 4. List of CCSP-rtTA; TetO-EGFRL858R+T790M mice subjected to intermittent 
treatment with afatinib + cetuximab, related to Figure 9.  

 

Table 5. List of CCSP-rtTA; TetO-EGFRL858R+T790M mice subjected to 
continuous treatment with afatinib + cetuximab, related to Figure 9. 
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We explored whether A+C resistant tumors showed any phenotypic differences 

compared to untreated tumors.  CCSP-rtTA; TetO-EGFRL858R+T790M mice developed 

solid and papillary LUADs, positive for the type II pneumocyte marker surfactant 

protein-C (SP-C) and for thyroid transcription factor-1 (TTF1) (Figure 9C). While most 

untreated adenocarcinomas were papillary, A+C treated and resistant tumors almost 

invariably were solid and more poorly differentiated (Figure 9C).  

Evidence for mTOR pathway activation in the A+C-resistant mouse LUADs 

 To elucidate further the pathways that may account for resistance to A+C, we 

sequenced the EGFR transgene and Erbb2 from 23 resistant tumors. Similar to our 

observations in xenografts, we did not find mutations in these genes or in Pik3ca, 

Pik3cb and Kras (n=15, data not shown). A+C-resistant mouse LUADs did not show 

copy number alterations in the EGFR transgene or in endogenous Egfr, Erbb2, Met and 

Igf1r (Figure 10C).  

 We then examined which signaling events might promote acquired resistance to 

A+C.  As expected, we found that upon short-term (5 days) A+C treatment, 

phosphorylation of EGFR and Erbb2 were decreased. As a consequence reduced 

levels of phosphorylated Erk were observed, however Akt phosphorylation did not 

change (Figure 9D). Phosphorylation of EGFR was greatly reduced or completely 

abrogated in all of the resistant tumors, and phosphorylation of Akt was consistently 

higher than in untreated tumors, suggesting the presence of compensatory mechanisms 

of activation of the PI3K pathway in these tumors. Similarly, phosphorylation of Erbb2 

was not restored to 
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Figure 10. Resistance to A+C in CCSP-rtTA; TetO-EGFRL858R+T790M mice, 
related to Figure 9  
A. Continuous dosing of afatinib + cetuximab leads to acquired resistance in CCSP-
rtTA; TetO-EGFRL858R+T790M mice. Doxycycline administration was initiated at 
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weaning and subsequently kept constant throughout the life of the animal. Tumor 
response was evaluated by MRI every 4 weeks. Coronal MR images of a CCSP-rtTA; 
TetO-EGFRL858R+T790M mouse subjected to continuous A+C treatment are shown. 
Tumor volume measurements are below each image. 
B. Decreased mitosis and increased apoptosis upon A+C treatment. Phospho-histone 
H3 staining (pHH3, left) and cleaved caspase 3 (cl.Casp3, right) of adenocarcinoma 
sections from CCSP-rtTA; TetO-EGFRL858R+T790M mice untreated (top), treated with 
A+C for 5 days (middle) and resistant to A+C (A+C-Res, bottom). Bars, 20 µm. 
Quantification of pHH3 and cl.Casp3 is shown in the bar graph. Data are represented as 
the Mean ±SE. 
C. Copy number assay for Egfr, Her2 (Erbb2), Met and Igf1r in lung adenocarcinomas 
from CCSP-rtTA; TetO-EGFRL858R+T790M mice. Untreated tumors are shown in 
purple. A+C resistant (A+C Res) tumors are shown in blue. N, normal; LT, left tumor; 
RT, right tumor; nod, nodule. The mean and standard error (bar) is shown for each 
sample. 
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Table 6. List of mutations detected by targeted sequencing in Patient 1 and 
Patient 2 
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untreated levels in the A+C-resistant tumors. Similar to the xenografts discussed 

previously, A+C-resistant tumors consistently showed increased pS6, suggesting that 

increased activation of mTORC1 may play a role in acquired resistance to A+C (Figure 

9C and Figure 9D). 

Mutations in mTOR signaling pathway genes are associated with resistance to 

A+C in human tumors 

Consistent with the preclinical modeling, we found genetic evidence for potential 

activation of the mTOR signaling pathway in tumor samples from 2 (of 4 analyzed) 

separate patients with acquired resistance to A+C (Figure 11).  Strikingly, the mutated 

tumor genes were not shared between the two patients, but they both converged on the 

mTOR pathway. In the first patient, targeted resequencing of 182 genes using the 

FoundationOne platform (Table 7) as well as WES revealed that the resected A+C-

resistant tumor (Figure 11A and Table 7) still harbored both the L858R and T790M 

mutations (frequencies of 0.38 of 1162 reads and 0.24 of 1279 reads, respectively in 

the FoundationOne Assay) (Jeselsohn, Yelensky et al. 2014). Unexpectedly, two 

additional mutations were found in NF2 (c.592C>T_p.R198* at frequency 0.15 of 631 

reads and c.811-2A>T: splice at 0.13 frequency of 1168 reads).  These two mutations 

were not detected in the 2006 tumor specimen, as assessed by deep amplicon-based 

resequencing.   
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Figure 11. Genetic alterations associated with activation of mTORC1 in human 
lung 
tumors resistant to A+C  
A. Top, disease milestones for Patient 1. Time from diagnosis to A+C resistance is 
indicated by the black arrow. Clinical findings, procedures and drug-treatments are 
indicated above the arrow. Molecular findings are shown below the black arrow. Dx, 
diagnosis; POD, progression of disease; RUL, right upper lobe; RML, right middle lobe; 
RLL, right lower lobe; R, right; Mutns, mutations. Bottom, computed tomography scans 
of the lungs are shown prior (12.07.10), during (01.04.11) and at resistance (08.29.11) 
to A+C. Tumors areas are circled. 
B. Hematoxylin and eosin (H&E, left panel) and IHC for pS6 (right panel) of the A+C 
resistant tumor harboring the NF2 mutations. 20X magnification is shown. Bars, 50 µm.  
C. Growth inhibition of PC-9 cells after knockdown of NF2 in response to afatinib (left). 
Viable cells were measured after 72 hours of treatment and plotted relative to untreated 
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controls. Data are presented as the mean ± SE. Immunoblotting of PC-9 cells showing 
efficient knock-down of Merlin expression is shown on the right. Lysates were probed 
with the indicated antibodies.  
D. Top, disease milestones for Patient 2. Time from diagnosis to A+C resistance is 
indicated by the black arrow. Clinical findings, procedures and drug treatments are 
indicated above the arrow. Molecular findings are shown below the black arrow. Dx, 
diagnosis; POD, progression of disease; RLL, right lower lobe; Mutn, mutation; LN, 
lymph node. Bottom, computed tomography scans of the lungs are shown prior 
(01.09.12) and during treatment with A+C (02.06.12). Tumor areas are circled. 
E. Hematoxylin and eosin (H&E) staining of the excised cervical lymph node from 
Patient 2 (left) and IHC showing phosphorylation of S6 (pS6, right). Bars, 50 µm.  
F. Growth inhibition of PC-9 cells after knockdown of TSC1 in response to afatinib (left). 
Viable cells were measured after 72 hours of treatment and plotted relative to untreated 
controls. Data are presented as the mean ± SE. Immunoblotting of PC-9 cells showing 
efficient knock-down of TSC1 expression is shown on the right. Lysates were probed 
with the indicated antibodies. 
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The NF2 gene encodes merlin, a protein with putative tumor-suppressive 

function. Both mutations are predicted to cause loss of protein function. The R198* 

mutation is a truncating mutation that causes loss of two-thirds of Merlin and has 

previously been described in cancers including ependymoma (Lamszus, Lachenmayer 

et al. 2001). The c.811-2A>T alteration is a splice-site mutation that at a minimum 

affects the FERM domain, important for Merlin’s localization and activation. In support 

of a functional role of this mutation, a 69bp deletion encompassing this exon 9 splice 

site and causing NF2 exon 9 skipping has been associated with familial autosomal 

dominant intramedullary ependymoma (Zemmoura, Vourc'h et al. 2014). 

 In different cellular contexts, NF2 has been shown in independent studies to 

negatively regulate EGFR signaling and mTORC1 (Curto, Cole et al. 2007; James, Han 

et al. 2009; Lopez-Lago, Okada et al. 2009).  To determine whether the mTORC1 

pathway was activated in this sample, we used immunohistochemistry (IHC) to stain the 

biopsy collected at the time of resistance to A+C with a pS6 antibody and observed a 

strong signal (Figure 11B). In support of a role for NF2 on TKI-sensitivity, knockdown of 

NF2 led to a decrease in the sensitivity of PC-9 cells to afatinib (Figure 11C). 

Importantly, the addition of an mTOR inhibitor, everolimus (RAD001), re-sensitized PC-

9 cells with NF2 knockdown to afatinib in vitro (Figure 11C). Notably, everolimus alone 

was not able to inhibit cell proliferation in cells treated with either control (scrambled) or 

NF2 siRNAs (Figure 12C). The same effect was observed in HCC827 cells upon 

cetuximab treatment (Figure 12B). Moreover, A+C treatment in LUAD HCC827 cells 

did not decrease the levels of pS6 upon NF2 knock down (Figure 12B). Taken 

together, this patient and in vitro data suggest that the NF2 mutations were acquired 
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during treatment on A+C and that NF2 loss leads to activation of the mTORC1 signaling 

pathway to mediate drug resistance.  

 In the second patient, initial molecular analysis of the A+C-resistant tumor 

(Figure 11D) did not detect the T790M mutation, MET amplification or ERBB2 

amplification. Further analysis using a more recent FoundationOne panel (Frampton, 

Fichtenholtz et al. 2013) revealed the presence of the L858R mutation (c.2573T>G; 

frequency of 0.19 of 715 reads) plus a mutation in the Tuberous Sclerosis 1 (TSC1) 

gene (c.345_345delT_p.L116fs*; frequency 0.15 of 399 reads; this sample contained 

approximately 70% tumor cells) (, Error! Reference source not found.). The observed 

L116fs* frame-shift mutation leads to the creation of a stop codon immediately 

downstream of codon 116, truncating the protein. The somatic status and zygosity of 

the TSC1 L116fs*2 alteration (see Supplemental Experimental Procedures) were 

consistent with a somatic alteration clonally present on a single TSC1 copy in the tumor, 

indicating that LOH occurred. The TSC1 mutation status of the pleural fluid collected at 

diagnosis was not assessed due to insufficient tumor material. FoundationOne analysis 

of the erlotinib-resistant lung specimen (before A+C) identified the presence of the 

L858R mutation (c.2573T>G; frequency of 0.03 of 827 reads) and of the TSC1 mutation 

(c.345_345delT_p.L116fs*;  frequency 0.01 of 613 reads), indicating that it did pre-exist 

treatment with A+C (Error! Reference source not found., Error! Reference source not 

found.). The low allele frequency of both of the mutations is due to low tumor purity of 

this sample (10% purity). These data suggest that selection of the deleterious TSC1 

mutant may have occurred during A+C treatment.  
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Table 7. Data from targeted sequencing of A+C-resistant patient samples, related 
to Figure 11 
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 The TSC1 gene encodes for Hamartin, which together with Tuberin (TSC2) forms 

a complex that suppresses mTORC1 signaling (Laplante and Sabatini 2012). To 

determine whether this pathway was active in the sample collected after A+C treatment, 

we performed IHC for pS6 and observed strong staining (Figure 11E). The functional 

role of disruption of TSC1 on drug response was tested using siRNAs. Knockdown of 

TSC1 in PC-9 cells led to a decrease in sensitivity of the cells to afatinib, and sensitivity 

to afatinib was restored by the addition of everolimus upon TSC1 loss (Figure 11F). 

Moreover, cells treated with either scrambled or TSC1 siRNAs were not sensitive to 

everolimus treatment (Figure 12C). These results indicate that the absence of TSC1 

mediates resistance to EGFR-directed therapies by activating the mTORC1 signaling 

pathway. 

Xenografts and LUADs resistant to A+C are sensitive to concurrent EGFR and 

mTOR inhibition 

 Activation of the mTOR pathway in mouse models and patient samples led us to 

explore whether A+C resistant tumors responded to inhibition of this pathway. To test 

this, we treated 4 CCSP-rtTA; TetO-EGFRL858R+T790M mice with A+C resistant tumors 

with rapamycin as a single agent. Rapamycin treatment alone was ineffective in all 4 

cases (Figure 13A and Figure 13C). This result is in line with previous findings showing 

that inhibition of mTOR alone is not sufficient to abolish Akt signaling and that the 

combination of an mTOR inhibitor with an RTK inhibitor is more likely to have anti-tumor 

activity (Li, Ambrogio et al. 2008; Rodrik-Outmezguine, Chandarlapaty et al. 2011). To  
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Figure 12. Activation of mTORC1 upon loss of Merlin in Patient 1, related to 
Figure 11.  
A. Partial response of Patient 1 to gefitinib. (Top) Pre-gefitinib computed tomography 
images, January 2004. Tumors areas are circled. (Bottom) Post-gefitinib computed 
tomography images, April 2004. 
B. Growth inhibition of HCC827 cells after knockdown of NF2 in response to cetuximab 
(left). Viable cells were measured after 72 hours of treatment and plotted relative to 
untreated controls. Data are presented as the mean ± SE. On the right, immunoblot 
analysis of HCC827 cells showing activation of S6 upon knock-down of NF2 and 
treatment with afatinib (100 nM), cetuximab (10 μg/ml) or the A+C combination. Lysates 
were probed with the indicated antibodies; p, phospho. 
C. Growth inhibition of PC-9 cells after knockdown of NF2 (left) or TSC1 (right) in 
response to rapamycin. Viable cells were measured after 72 hours of treatment and 
plotted relative to untreated controls. Data are presented as the mean ± SE. 
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test whether combined inhibition of EGFR and mTOR could overcome resistance to 

A+C, we added rapamycin to the treatment regimen of CCSP-rtTA; TetO-

EGFRL858R+T790M mice at the time of emergence of resistance to A+C (A+C+R). All 8 

mice with LUADs resistant to A+C responded dramatically to the addition of rapamycin 

(Figure 13B and Figure 13C). In the mice with tumor burden lower than 600 mm3 (6/8), 

tumor shrinkage was greaterthan 72% after one month of treatment with A+C+R 

(Figure 13B and Table S4). We also stained paraffin-embedded sections of A+C-

resistant LUADs treated with rapamycin alone or in combination with A+C with 

antibodies against phospho-histone H3 and cleaved caspase 3 (Figure S4). Tumors 

treated with rapamycin alone were not growth inhibited whilst tumors treated with 

A+C+R exhibited both proliferation arrest and cell death. We further found that addition 

of rapamycin to A+C decreased pS6 in the LUADs (Figure 13D). All 4 of the A+C-

resistant tumors treated with rapamycin alone showed activation of EGFR and Erbb2, 

as expected by the absence of EGFR-directed therapies (Figure 13D).  

To evaluate the effect of concurrent EGFR and mTOR inhibition in xenografts, 

we injected 106 cells derived from the A+C-resistant xenografts 16T-10 and 24T-10 into 

immunodeficient mice. Upon the growth of A+C-resistant tumors, mice were divided into 

3 groups (Figure 13E). One group was maintained on A+C for 4 weeks (n=7). The 

second group was treated with rapamycin alone (R, n=2) and the third group was 

treated with rapamycin in addition to A+C (A+C+R, n=5). Tumors in the A+C 

combination and rapamycin arms grew throughout the 4 weeks. In contrast, all of the 

tumors in mice that received A+C+R shrank (Figure 13F). Together these data indicate 

that inhibition of mTORC1 can re-sensitize cells to A+C treatment.  
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Figure 13. Tumors resistant to afatinib+cetuximab are sensitive to concurrent 
EGFR and mTOR Inhibition  
A. Coronal MR images of CCSP-rtTA; TetO-EGFRL858R+T790M mouse lungs prior to 
and upon treatment with rapamycin (R) following the development of resistance to A+C 
as indicated in red. Tumor volume measurements are shown. 
B. Coronal MR images of CCSP-rtTA; TetO-EGFRL858R+T790M mouse lungs prior to 
and upon treatment with rapamycin in combination with afatinib and cetuximab (A+C+R) 
following the development of resistance to A+C as indicated in red. Tumor volume 
measurements are shown. 
C. Response of A+C-resistant LUADs from CCSP-rtTA; TetO-EGFRL858R+T790M 
mice to 4 weeks of treatment with Rapamycin alone (R) or in combination with afatinib 
and cetuximab (A+C+R). The increase in tumor volume in the presence of A+C before 
the randomization to R or A+C+R is shown on the left. Tumor volumes are plotted as 
the percentage of the tumor volume detected in the pre-cycle MRI. Median tumor 
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volume change to R is +52%; to A+C+R is -79%. 
D. Immunoblotting analysis of LUADs resistant to A+C, following 4 weeks of treatment 
with rapamycin alone or in combination with afatinib and cetuximab. Lysates were 
probed with the indicated antibodies; p, phospho. 
E. Strategy used to test the response of A+C-resistant xenograft tumors to concurrent 
EGFR and mTOR inhibition. 106 16T-10 or 24T-10 cells were injected s.c. into 
immunocompromised mice. When tumors reached a volume between 150-200 mm3, 
mice were treated with A+C (n=14). When resistance emerged, 2 mice were switched to 
rapamycin treatment (R, 2mg/Kg/day) and 5 mice received A+C+R. The rest of the mice 
were maintained on A+C. Mice were treated for 4 weeks from the randomization point.  
F. Tumor response to A+C, rapamycin alone (R) or in combination (A+C+R) in 
xenografts. Data are plotted as percentage of tumor volume change from the 
randomization point. The median response to A+C+R was -75% in xenografts derived 
from 16T-10 cells (left) and -91% in xenografts derived from 24T-10 cells (right). 
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Discussion 

We show that resistance to dual inhibition of EGFRL858R+T790M with A+C is due to 

activation of mTORC1 signaling in mouse models. Addition of drugs targeting mTOR re-

sensitizes tumors to A+C treatment. Consistent with these findings, we have identified 

mutations in genes that affect the mTOR signaling cascade in A+C-resistant biopsy 

samples from two separate patients with EGFR-mutant lung cancer.   

 Previous studies have shown that the presence of active mTORC1 in untreated 

EGFR mutant tumors is a direct consequence of mutant EGFR signaling. Effective. 

therapies that target mutant EGFR lead to a decrease in mTORC1 signaling and 

consequent tumor regression. Indeed, in cell lines harboring EGFR TKI-sensitizing 

mutations (e.g. EGFRL858R), EGFR blockade using TKIs leads to a decrease in pS6 

equivalent to that observed with rapamycin, accompanied by a decrease in cell 

viability(Li, Shimamura et al. 2007). Further supporting the critical role of mTORC1 

signaling in the maintenance of EGFR-mutant lung tumors, the combination of either 

afatinib or HKI-272  with rapamycin together was required to elicit regression of 

EGFRL858R+T790M-induced tumors (Li, Shimamura et al. 2007; Li, Ambrogio et al. 2008). 

Our study shows that in addition to playing a role in the maintenance of EGFR-mutant 

lung tumors, the mTORC1 pathway also plays a role in resistance to EGFR-directed 

therapies, specifically following A+C treatment. First, pS6 is observed in cell lines, 

xenografts and GEM models of A+C-resistant EGFR-mutant lung cancer. Second, these 

tumors regress following the addition of rapamycin to A+C. These data highlight the 

importance of mTORC1 for the survival of lung cancer cells with EGFR mutations and   
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Figure 14 Rapamycin alone does not block proliferation in A+C-resistant lung 
adenocarcinomas, related to Figure 13.  
Phospho-histone H3 (pHH3, left) and cleaved caspase 3 (cl.Casp3, right) staining of  
A+C-resistant adenocarcinoma sections from CCSP-rtTA; TetO-EGFRL858R+T790M 
mice treated with rapamycin alone (R, top) or in combination with A+C (A+C+R, 
bottom). Bars, 20 µm. Quantification of pHH3 and cl.Casp3 are shown in the bar graph 
below. Data are represented as the Mean ±SE. 
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suggest that as resistance emerges, tumors increasingly rely on mTORC1 activation to 

survive.  

            The presence of a TSC1 frameshift mutation coupled with LOH at the same 

locus in a sample from a patient biopsied upon progression with A+C provides further 

evidence for dysregulation of the mTOR pathway as a mechanism of resistance to A+C. 

Indeed, strong pS6 staining was observed in tumor cells in this sample and disruption of 

TSC1 in human EGFR-mutant lung cancer cell lines increased their viability in the 

presence ofEGFR TKIs. Unexpectedly, acquired NF2 inactivating mutations were 

observed in A+C-resistant specimens from a separate patient on the same trial. Recent 

work has found that a downstream biochemical consequence of NF2 loss is activation 

mTORC1 (Lopez-Lago, Okada et al. 2009). We show that the effects of both TSC1 and 

NF2 loss can be reversed in cells by treatment with a rapalog, suggesting that the 

presence of genomic changes in these genes indicates sensitivity to mTOR inhibition. 

Further studies to determine the prevalence of NF2 and TSC1 mutations in EGFR-

mutant lung cancer are ongoing.  

mTORC1 represents the output of several signaling pathways and external 

stimuli. In addition to genetic mechanisms like those described above that lead to its 

activation, it can be engaged through non-genetic mechanisms. Increased growth factor 

receptor signaling, through, for example, IGF1R, activates mTORC1 through the PI3K 

pathway. In this setting, one would expect to observe higher levels of phosphorylation of 

mTORC1 and AKT. Consistent with the possibility of similar mechanisms occurring in 

some of our models, we observed increased phosphorylation of AKT in the #16 

xenograft-derived tumors and in the A+C-resistant GEMM tumors (Figure 8D and 
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Figure 9D). An increase in the levels of phosphorylation of IGF1R was indeed observed 

in the #16 derived tumors (data not shown) and may explain the increased mTORC1 

signaling found in these tumors.  These results also highlight how activation of 

mTORC1 can occur both via signals upstream and downstream of AKT. Moreover, our 

data from cell lines, xenografts and patient samples suggest that mTORC1 activation 

acts cell autonomously in the tumor cells to confer resistance. Whether this pathway is 

also activated in other cells in the tumor microenvironment cannot be excluded and is 

under further investigation. 

Our findings suggest that patients with acquired resistance to A+C may benefit 

from drug combinations that include EGFR-directed therapies and mTOR inhibitors. In 

this regard, a phase IB trial of afatinib with the rapalog sirolimus in patients with EGFR-

mutant lung cancer is currently ongoing. Phase III trials of A+C in patients with TKI-

naïve and refractory EGFR-mutant lung cancer are planned. Inhibition of mTOR in this 

context may delay resistance. Due to concerns about the toxicity of this multi-drug 

combination, it will be important to use preclinical models to determine whether 

continuous or intermittent dosing of the mTOR inhibitor are equally effective at 

countering drug resistance. Moreover, rapalogs only partially block downstream 

functions of mTOR in contrast to mTORC1/2 kinase inhibitors. Investigation of these 

latter novel agents will be informative to determine their efficacy in the context of EGFR-

mutant lung cancer. Finally, the recent development of mutant specific EGFR inhibitors 

that induce reduced toxicity due to less inhibition of wild-type EGFR may open the door 

to use of drug combinations including those of EGFR inhibitors with mTOR inhibitors 

(Walter, Sjin et al. 2013).  
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In summary, resistance to targeted therapies remains the major hurdle to the 

long-term success of EGFR-directed therapies. Our data in multiple preclinical models 

and human tumor samples show increased mTORC1 signaling after long-term 

treatment with A+C, identifying this node as a critical vulnerability of drug-resistant cells.   
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CHAPTER IV 

 

AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to 

EGFR inhibitors in lung cancer 

 

Adapted From: Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA et al (2014). 
“AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR 
inhibitors in lung cancer.” Cancer Discovery. 

 

 

Introduction 

Gefitinib (Barker, Gibson et al. 2001)  and erlotinib (Moyer, Barbacci et al. 1997) 

are reversible small molecule ATP analogues originally designed to inhibit the tyrosine 

kinase (TK) activity of wild-type epidermal growth factor receptor (EGFR). During their 

clinical development, these first-generation TK inhibitors (TKIs) were serendipitously 

found to be most effective in advanced non-small-cell lung cancer (NSCLC) patients 

whose tumors harbor recurrent somatic activating mutations occurring in the exons 

encoding the kinase domain of EGFR, i.e. small multi-nucleotide in-frame deletions in 

exon 19 (ex19del) and a point mutation in exon 21 leading to substitution of leucine for 

arginine at position 858 (L858R) (Lynch, Bell et al. 2004; Paez, Janne et al. 2004; Pao, 

Miller et al. 2004). Tumors with these activating mutations account for approximately 10-

15% and 40% of NSCLC in Western and Asian populations respectively (Pao and 

Chmielecki 2010). Unfortunately, while patients with EGFR-mutant tumors typically 

http://www.ncbi.nlm.nih.gov/pubmed/24893891
http://www.ncbi.nlm.nih.gov/pubmed/24893891
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show good initial responses to first generation TKIs, most patients who respond to 

therapy ultimately develop disease progression after about 9-14 months of treatment 

(Mok, Wu et al. 2009; Maemondo, Inoue et al. 2010; Mitsudomi, Morita et al. 2010; 

Zhou, Wu et al. 2011; Rosell, Carcereny et al. 2012). Furthermore, these first 

generation TKIs are associated with side effects that include skin rash and diarrhea that 

are due to the inhibition of wild-type EGFR in skin and gastrointestinal organs 

(Burtness, Anadkat et al. 2009). 

Preclinical modeling and analysis of tumor tissue obtained from patients after the 

development of disease progression has led to the identification of a number of 

mechanisms that mediate EGFR TKI resistance. Such genetic and other signaling 

aberrations that drive resistance mechanisms include HER2 amplification (Takezawa, 

Pirazzoli et al. 2012), MET amplification (Bean, Brennan et al. 2007; Engelman, 

Zejnullahu et al. 2007), PIK3CA mutation (Sequist, Waltman et al. 2011), BRAF 

mutation (Ohashi, Sequist et al. 2012), NF1 loss (de Bruin, Cowell et al. 2014) and 

potentially FGFR signaling (Ware, Marshall et al. 2010). In addition, resistant tumors 

have also been reported to show histologic changes such as small cell lung cancer 

(SCLC) transformation or epithelial mesenchymal transition (EMT) (Sequist, Waltman et 

al. 2011). However, it is now well established that acquisition of a second mutation in 

EGFR, resulting in substitution of threonine at the “gatekeeper” amino acid 790 to 

methionine (T790M) is the most common resistance mechanism and is detected in 

tumor cells from more than 50% of patients after disease progression (Kobayashi, 

Boggon et al. 2005; Pao, Miller et al. 2005). The T790M mutation is believed to render 

the receptor refractory to inhibition by these reversible EGFR TKIs through exerting 
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effects on both steric hindrance (Sos, Rode et al. 2010) and increased ATP affinity 

(Yun, Mengwasser et al. 2008). 

Current targeted therapeutic strategies for patients with acquired resistance are 

limited. Second-generation irreversible EGFR TKIs such as afatinib (Li, Ambrogio et al. 

2008) and dacomitinib (Engelman, Zejnullahu et al. 2007) are effective in untreated 

EGFR mutant lung cancer (Ramalingam, Blackhall et al. 2012; Sequist, Yang et al. 

2013). However, as monotherapy, they have failed to overcome T790M-mediated 

resistance in patients (Miller, Hirsh et al. 2012; Katakami, Atagi et al. 2013), because 

concentrations at which these irreversible TKIs overcome T790M activity pre-clinically 

are not achievable in humans due to dose-limiting toxicity related to non-selective 

inhibition of wild-type EGFR (Eskens, Mom et al. 2008). Furthermore, these inhibitors 

can drive resistance through acquisition of T790M in vitro (Chmielecki, Foo et al. 2011) 

and in patients (Kim, Ko et al. 2012), providing supportive evidence that they have low 

potency against T790M. One regimen that showed potential activity is afatinib plus the 

anti-EGFR antibody, cetuximab, which induced a 32% unconfirmed response rate in a 

phase IB trial for patients with EGFR-mutant lung cancer and acquired resistance to 

erlotinib (Janjigian et al, Can Disc in press). However, this combination has substantial 

skin toxicity with 18% of patients reporting CTCAE grade 3 or higher rash. 

Therefore, there remains a significant unmet need for an EGFR TKI agent that 

can more effectively target T790M tumors while sparing the activity of wild-type EGFR. 

This has led to the development of “third generation” EGFR TKIs that are designed to 

target T790M and EGFR TKI-sensitizing mutations more selectively than wild-type 
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EGFR. WZ4002 was the first such agent to be published (Zhou, Ercan et al. 2009), 

although it has not progressed to clinical trials. A second agent closely related to the 

WZ4002 series, CO- 1686, has been recently reported (Walter, Sjin et al. 2013), and is 

currently in early Phase II clinical trials. HM61713 is another “third generation” agent 

that is currently in early Phase I trials. Here, we describe identification, characterization, 

and early clinical development of AZD9291, a novel, irreversible, EGFR TKI with 

selectivity against mutant versus wild-type forms of EGFR. AZD9291 is a mono-anilino-

pyrimidine compound that is structurally and pharmacologically distinct from all other 

TKIs including CO-1686 and WZ4002. 

 

Results 

AZD9291 is a mutant-selective, irreversible inhibitor of EGFR kinase activity 

AstraZeneca developed a novel series of irreversible, small-molecule inhibitors to 

target the sensitizing and T790M resistant mutant forms of the EGFR tyrosine kinase 

with selectivity over the wild-type form of the receptor. These compounds bind to the 

EGFR kinase irreversibly by targeting the cysteine-797 residue in the ATP binding site 

via covalent bond formation (Ward, Anderton et al. 2013), as depicted in the modeling 

structure for AZD9291 (Figure 15A). Further work on this chemotype allowed additional 

structure activity relationships (SAR) to be discerned that enabled target potency to be 

increased without driving increased lipophilicity, thus maintaining favorable drug-like 

properties. Continued medicinal chemistry efforts achieved further improvements  



80 
 

 

Figure 15. AZD9291 binding mode and structure  
A. Structural model showing the covalent mode of binding of AZD9291 to EGFR T790M 
via Cys-797. Shows pyrimidine core forming two hydrogen bonds to the hinge region 
(Met-793), orientation of the indole group adjacent to the gatekeeper residue, the amine 
moiety positioned in the solvent channel and the covalent bond formed to Cys-797 via 
the acrylamide group of AZD9291.  
B. Chemical structure of AZD9291.  
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including increased kinase selectivity, ultimately arriving at the mono-anilino-pyrimidine 

AZD9291 (Figure 15B). Mass spectrometry of chymotrypsin digests confirmed that 

AZD9291 can covalently modify recombinant EGFR (L858R/T790M) at the target 

cysteine 797 amino acid. 

AZD9291 has a distinct chemical structure from the other third-generation TKIs, 

WZ4002 (Zhou, Ercan et al. 2009) and CO-1686 (Walter, Sjin et al. 2013). Whilst the 

former two compounds share a number of common structural features (e.g. positioning 

of the electrophilic functionality that undergoes reaction with a conserved cysteine 

residue present in EGFR (Cys 797), heteroatom-linked pyrimidine 4-substituents, and 

presence of a pyrimidine 5- substituent), AZD9291 is architecturally unique. Amongst 

other differences, the electrophilic functionality resides on the pyrimidine C-2 substituent 

ring, the pyrimidine 4-substituent is C-linked and heterocyclic, and the pyrimidine 5-

position is devoid of substitution.  

In EGFR recombinant enzyme assays (Millipore), AZD9291 showed an apparent 

IC50 of 12 nM against L858R and 1 nM against L858R/T790M; these are called apparent 

since the amount of active enzyme changes over time and thus IC50 is time-dependent 

for irreversible agents. The drug exhibited nearly 200 times greater potency against  

L858R/T790M than wild-type EGFR, consistent with the design goal of a mutant EGFR 

selective agent in comparison to early generation TKIs. Subsequent murine in vivo 

studies revealed that AZD9291 was metabolized to produce at least two circulating 

metabolite species, AZ5104 and AZ7550. In biochemical assays, AZ7550 had a 

comparable potency and selectivity profile to the parent. In contrast, although AZ5104 

exhibited the same overall profile, it was more potent against mutant and wild-type 
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EGFR forms, thus demonstrating a smaller selectivity margin compared to parent (data 

not shown). 

To explore a broader kinome selectivity profile, we tested AZD9291 and 

metabolites at 1 μM across approximately 280 other kinases available on a commercial 

biochemical kinome panel (Millipore). AZD9291 showed minimal off-target kinase 

activity, with only a limited number of additional kinases showing greater than 60% 

inhibition at 1 μM and moderate IC50 potencies such as ErbB2/4, ACK1, ALK, BLK, 

BRK, MLK1 and MNK2. The active metabolites displayed a similar secondary target 

profile as parent. Given that AZD9291 makes a covalent bond with Cys797 in EGFR as 

described, we were specifically interested to explore potency in other kinases that have 

a cysteine residue in the analogous kinase domain position. Of the nine other kinases 

present within the human kinome with the analogous Cys797 to EGFR, AZD9291 

showed significant activity only in a biochemical assay against ErbB2, ErbB4 and BLK, 

supporting the overall high degree of selectivity that AZD9291 confers. 

 Like the T790M double-mutant EGFR receptor, the insulin-like growth factor 

receptor (IGF-1R) and insulin receptor (IR) also have a methionine gatekeeper in their 

kinase domains. We considered it important to develop selectivity against these kinases 

to minimize potential dose limiting toxicities related to hyperglycemia. Using a 

commercially available cellular IGF-1R phosphorylation assay as a surrogate, AZD9291 

and the metabolite AZ5104 did not exhibit significant activity towards this receptor 

family. Moreover, a single oral dose of 200 mg/kg of AZD9291 in rats did not cause a 

significant change in blood glucose or insulin levels over a 24 hour period, consistent 

with lack of IGF-1R activity (data not shown).  
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Finally, we evaluated cellular potency against HER2 (ErbB2), using three 

different cellular approaches: surrogate kinase assays involving expression of wild-type 

HER2 in HEK293 cells, PC-9 cells (ex19del) engineered to overexpress HER2 

(Takezawa, Pirazzoli et al. 2012) and biochemical reconstitution studies in HEK293 

cells involving intracellular domain constructs encoding L858R/T790M, wild-type EGFR, 

or wild-type HER2 (Red Brewer, Yun et al. 2013).  Consistently, treatment of cells with 

AZD9291 inhibited phosphorylation of HER2 at moderate potency levels. However, 

consistent with its greater wild-type EGFR potency, the AZ5104 metabolite showed 

more potency than AZD9291 against phospho-HER2.  

AZD9291 potently and selectively targets mutant EGFR cell lines in vitro 

We compared AZD9291 with other early generation EGFR TKIs in EGFR 

phosphorylation and cell death (Sytox) assays using a number of tumor cell lines 

harboring either wild-type or different forms of mutant EGFR. Compared with other 

EGFR inhibitors of both first (gefitinib and erlotinib) and second generation (afatinib and 

dacomitinib), AZD9291 demonstrated a unique third generation TKI profile. AZD9291 

showed similar potency to early generation TKIs in inhibiting EGFR phosphorylation in 

EGFR cells harboring sensitizing EGFR mutants including PC-9 (ex19del), H3255 

(L858R) and H1650 (ex19del) (Figure 16A), with mean IC50 values ranging from 13 to 

54nM for AZD9291. AZD9291 also potently inhibited phosphorylation of EGFR in 

T790M mutant cell lines (H1975 (L858R/T790M), PC-9VanR (ex19del/T790M) (Figure 

16A), with mean IC50 potency less than 15 nM. First generation reversible TKIs were  
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Figure 16. Effect of AZD9291 on EGFR phosphorylation in vitro 
A. In comparison to early generation TKIs, AZD9291 inhibits EGFR phosphorylation 
across cell lines 
harboring sensitising (PC-9, H3255, H1650) or T790M resistance (H1975, PC-9VanR) 
mutations, whilst having less activity against wild-type EGFR phosphorylation (LOVO, 
A431, H2073). Apparent geomean IC50 (nM) values quantified in cell extracts after 2 h 
compound treatment using a phospho-EGFR ELISA from at least two separate 
experiments (expressed with 95% confidence intervals where n>3, or individual IC50 
values where n=2).  
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B. AZD9291 inhibits EGFR phosphorylation and downstream signaling pathways across 
representative mutant EGFR lines (PC-9, H1975, H1650, H3255), whilst having less 
activity against EGFR phosphorylation in the LOVO wild-type EGFR cell line compared 
to early generation TKIs, after 6 h treatment. The data is representative of at least two 
separate experiments. 
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ineffective at inhibiting phosphorylation of T790M EGFR (Figure 16A). The second 

generation irreversible TKIs, afatinib and dacomitinib, showed activity against 

T790MEGFR in vitro, although this activity is may not be achievable at exposures that 

can be reached in the clinic. AZD9291 was less potent at inhibiting phosphorylation of 

EGFR in wild-type cell lines (A431, LOVO, NCI-H2073), with mean IC50 range of 480 to 

1865 nM (Figure 16A). This is in clear contrast to the early generation TKIs which all 

potently inhibited EGFR phosphorylation in wild-type lines with similar potency to 

sensitizing-mutant EGFR (Figure 16A). Similar results were found when 

phosphorylation of EGFR and downstream signaling was determined by immunoblot 

analysis of lysates from PC-9, H1975, LOVO, H1650 and H3255 lines (Figure 16B). 

Consistently, results showed that AZD9291 more potently inhibited phospho-EGFR and 

downstream signaling substrates (pAKT, pERK) in cells with mutant EGFR compared 

with wild-type (Figure 16B), although H1650 cells retained higher phospho-AKT levels 

due to loss of PTEN (Sos, Rode et al. 2010). 

As previously described, AZD9291 has active circulating metabolites, so we also 

profiled their activity against EGFR. Consistent with presented biochemical data, 

AZ7550 exhibited very similar potency and profile to AZD9291 against mutant and 

wildtype cell lines tested, whilst AZ5104 harbored somewhat greater potency against 

ex19del (2 nM in PC-9), T790M (2 nM in H1975) and wild-type EGFR (33 nM in LOVO) 

cell lines. Therefore, AZ5104 exhibited a reduced selectivity margin against wild-type 

EGFR when compared to AZD9291. However, taken together, this mechanistic data 

confirmed the third generation TKI properties of AZD9291 compared to earlier 
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generation agents: equivalent activity against sensitizing mutant EGFR, superior activity 

towards T790M and increased selectivity margin against wild-type EGFR. 

We then explored how the pharmacological activity against mutant and wild-type 

EGFR signaling translated into cell proliferation effects using a Sytox live/dead cell 

phenotype endpoint. In line with the phosphorylation data, AZD9291 showed high levels 

of phenotype potency in both sensitizing-mutant (mean IC50 of 8 nM in PC-9) and 

T790M (mean IC50 of 11 and 40 nM in H1975 and PC-9VanR respectively) EGFR cell 

lines, whilst having much less activity towards wild-type EGFR (mean IC50 of 650 and 

461 nM in Calu3 and H2073 respectively) (Figure 17A). Again, this contrasted to 

second generation TKIs, afatinib and dacomitinib, which showed much less activity 

against T790M lines and were associated with much greater potency towards wild-type 

EGFR (Figure 17A). To confirm these results, we determined the efficacy of AZD9291 

in an independent laboratory against a panel of isogenic pairs of drug-sensitive 

/resistant EGFR-mutant lung cancer cell lines (Chmielecki, Foo et al. 2011). Parental 

EGFR-mutant lines (PC-9, H3255, HCC827, HCC4006, 11-18) were sensitive to 

AZD9291 as well as erlotinib, afatinib, and AZD8931 (a reversible equipotent inhibitor of 

EGFR, HER2 and HER3 signaling (Mu, Klinowska et al. 2014)) (Figure 17B). However, 

only AZD9291 displayed low nanomolar activity against the lines harboring EGFR 

T790M (H1975, HCC827/ER1, PC-9/BRc1 and H3255/XLR) (Figure 17B). Interestingly, 

AZD9291 was not effective against lines harboring non-T790M resistance such as 11-

18/ER (NRAS), HCC827/ER2 (MET amplification), and HCC4006/ER (EMT) (Ohashi, 

Sequist et al. 2012) Figure 17B). In a separate large cell panel proliferation profiling 

study, AZD9291 was also poorly active in vitro (IC50 ~1 μM) against both NSCLC NCI- 
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Figure 17. Additional characteristics of AZD9291 in vitro 
A. AZD9291 demonstrates greater inhibition of viability against mutant EGFR cell lines 
compared to wild-type, as assessed using a Sytox Green live/dead assay measured 
after 3 days treatment. The data represents the geomean IC50 nM value from at least 
two separate experiments (expressed with 95% confidence intervals where n>3).  
B. Sensitivity of isogenic pairs of EGFR mutant drug-sensitive and –resistant lung 
cancer cell lines (PC-9, ex19del; PC-9/BRc1, ex19del/T790M; HCC827, ex19del; 
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HCC827/ER1, ex19del/T790M; HCC827/ER2, ex19del/METamplification; H1650, 
ex19del/PTEN loss; HCC4006, ex19del; HCC4006/ER, EMT (epithelial mesenchymal 
transition); H3255, L858R; H3255/XLR, L858R/T790M; H1975, L858R/T790M; 11-18, 
L858R; 11-18/ER, L858R/NRAS) to AZD9291, erlotinib, and afatinib. IC50s (μM) were 
based on data obtained from growth inhibition assays measured with CellTiter Blue 
(Promega) and calculated using Excel (Microsoft). Data represent n=3 replicates for 
each cell line/drug condition. 
C. T790M mutation was detected in multiple independent populations of PC-9 cells with 
acquired resistance to gefitinib or afatinib, but not in populations resistant to AZD9291. 
 

  



90 
 

H820 and EBC-1 cell lines that harbor MET amplification and mutant EGFR (data not 

shown). Consistent with phospho-EGFR data, the metabolite AZ5104 again 

demonstrated much greater potency across cell lines in a phenotypic assay, whereas 

AZ7550 was broadly similar, with the same overall profile maintained. 

Due to their low activity against T790M EGFR, it has been suggested that 

treatment with early generation TKIs can induce the growth selection of tumor cells 

harboring EGFRm+/T790M leading to TKI resistant populations both pre-clinically and 

clinically (Chmielecki, Foo et al. 2011). We therefore hypothesized that such resistance 

would not occur upon treatment with AZD9291, given its superior potency against 

T790M. Indeed, whilst chronic treatment with gefitinib or afatinib commonly caused 

acquired resistance in PC-9 cells in vitro through gain of T790M, acquired resistance to 

AZD9291 through T790M was not observed (Figure 17C). Studies are ongoing to 

characterize the T790M independent mechanisms of acquired resistance to AZD9291 

(Eberlein et al.,manuscript in preparation). 

Activity of AZD9291 against rare EGFR and HER2 mutants in vitro 

In addition to activity against the common activating/sensitizing EGFR mutants, 

we assessed the potency of AZD9291 against other rarer EGFR mutants associated 

with sensitivity or resistance to first-generation EGFR TKIs. 293 cells were transfected 

with cDNAs encoding EGFR G719S, L861Q, an exon 20 insertion (H773-V774HVdup), 

exon 19 insertion (I744-K745insKIPVAI) or an EGFR variant III (EGFRvIII; found in 

brain glioblastomas (Wong, Ruppert et al. 1992)), and treated with increasing 

concentrations of either erlotinib, afatinib, AZD9291, the metabolite AZ5104, or 

AZD8931 for 6 hours. Immunoblotting was performed on corresponding lysates using 
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antibodies against phospho-EGFR (Y1173) and total EGFR. All EGFR TKIs were 

effective against EGFR L861Q, G719S, and the exon 19 insertion, although AZD9291 

was somewhat less potent compared with the AZ5104 metabolite against these mutant 

EGFR forms. None of the TKIs was effective against the exon 20 insertion mutation. For 

the EGFRvIII mutant, AZD9291 demonstrated lower potency compared to afatinib and 

AZD8931. AZ5104, however displayed a higher level of activity. These data are 

consistent with the kinase activity of the vIII mutant being similar to that of their wild-type 

EGFR. 

We similarly explored activity against HER2 mutations found in NSCLC. 

Compared to afatinib and AZ5104, AZD9291 exhibited moderate potency against 

H1781 cells, which harbor a VC insertion at G776 in exon 20 of HER2 (Shigematsu, 

Takahashi et al. 2005), with an IC50 of 80 nM. However, AZD9291 was more effective at 

inhibiting growth of these cells than erlotinib. The effect of various TKIs on HER2-

associated signaling in H1781 cells was consistent with these results. Similar activity 

was observed in 293 cell transfectants harboring the most common HER2 mutant in 

NSCLC (exon20 YVMA 776-779ins) (Wang, Narasanna et al. 2006) (data not shown). 

Thus, in patients, AZD9291 and its metabolite AZ5104, may also be able to target 

HER2 in tumors, depending on the clinical exposures that are achieved. 

AZD9291 causes profound and sustained regression in mutant EGFR in vivo 

xenograft models 

AZD9291 demonstrated good bioavailability, was widely distributed in tissues, 

and had moderate clearance resulting in a half-life of around 3 hours after oral dosing in 

the mouse. The circulating active metabolites in plasma each had a similar half-life, and 
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the total exposure levels (AUC) were approximately 68 and 33% compared to the 

parent compound for AZ7550 and AZ5104, respectively.  

To explore in vivo activity of AZD9291, we administered the drug as 

monotherapy against various mutant EGFR xenografts representing clinical NSCLC 

settings. Once daily dosing of AZD9291 induced significant dose-dependent regression 

in both PC-9 (ex19del) and H1975 (L858R/T790M) tumor xenograft models, with tumor 

shrinkage observed at doses as low as 2.5mg/kg/day in both models after 14 days 

(Figure 18A, B). Similar tumor shrinkage was seen after administration of 5 mg/kg/day 

AZD9291 in H3255 (L858R) and PC-9VanR (ex19 del/ T790M) xenografts after 14 

days. These studies showed that AZD9291 can induce profound shrinkage at low doses 

against both EGFR drug-sensitizing and T790M-resistant EGFR mutant disease 

models. 

We next explored the durability of tumor shrinkage. Chronic long term daily oral 

dosing of AZD9291 resulted in complete and durable macroscopic responses of both 

PC-9 (Figure 18C) and H1975 xenografts (Figure 18D). For PC-9 cells, no visible 

tumors were evident following 40 daily doses with 5 mg/kg of AZD9291 in 8 of 8 tumors, 

and this complete response was sustained out to 200 days when the study was 

terminated (data not shown). As a comparison, gefitinib at 6.25 mg/kg/day, a clinically 

representative dose, induced less tumor regression, and tumors began to re-grow after 

approximately 90 days. In H1975 xenografts, 5 mg/kg/day AZD9291 resulted in  
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Figure 18. In vivo anti-tumor efficacy of AZD9291 in subcutaneous xenograft 
models of EGFR-TKI sensitising and T790M resistant lung cancer 
A., PC-9 (ex19del) xenograft following 14 days of daily treatment (n=6 or 8 animals 
depending on treatment group). 
B. H1975 (L858R/T790M) xenograft following 14 days of daily treatment (n=6 or 8 
animals depending on treatment group).  
C. PC-9 following chronic daily oral dosing of 5mg/kg AZD9291 (n=8) or 6.25 mg/kg 
gefitinib (n=11)  
D. H1975 following chronic daily oral dosing of 1, 5 or 25 mg/kg AZD9291 (n=10 or 12 
animals depending on dose group). Data are plotted as mean standard error. 
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complete responses in 10 of 12 tumors. Re-growth was observed after approximately 

50 days treatment with 1 mg/kg/day, but an increased dose of 25 mg/kg/day AZD9291 

re-induced tumor regression possibly suggesting re-growth was still driven by T790M 

EGFR. No visible 

tumors were evident after 20 days dosing of 25 mg/kg/day AZD9291 in the H1975 

xenograft model. Moreover, the complete responses were maintained for the duration 

of the study period with no evidence of tumor progression during 200 days of treatment. 

No growth was observed for an additional 30 days after treatment was stopped. 

AZD9291 daily dosing was well tolerated in the animals with minimal body weight loss, 

(less than 5% of starting body weight) even after dosing for 200 days Similar long term 

dosing studies were performed in the H3255 model, with 5 mg/kg/day AZD9291 causing 

non-measurable tumors in all 8 dosed mice by day 53. By contrast, only one mouse 

treated with 6.25 mg/kg gefitinib achieved non-measurable tumor status (data not 

shown). 

To explore comparative efficacy against wild-type EGFR, AZD9291 was tested in 

A431 xenografts. These cells are used as a model for wild-type EGFR activity, but they 

are highly dependent on amplified wild-type EGFR and therefore are unlikely to reflect 

normal tissue EGFR pharmacology/physiology (Merlino, Xu et al. 1984). AZD9291 did 

induce some moderate tumor growth inhibition at 5 mg/kg/day, suggesting AZD9291 or 

associated metabolites are not entirely inactive against wildtype EGFR in this model. By 

contrast, this same 5 mg/kg/day dose level was sufficient to induce profound and 

sustained tumor shrinkage in both H1975 and PC-9 mutant EGFR tumor xenograft 
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models (Figure 18A-B), consistent with AZD9291 having a significant selectivity margin 

over wild-type EGFR. 

AZD9291 causes profound and sustained regression in mutant EGFR in vivo 

transgenic tumor models 

We further examined tumor responses in previously generated mouse tumor 

models that develop lung adenocarcinomas driven by EGFRL858R
 (Politi, Zakowski et al. 

2006) or EGFRL858R +T790M (Regales, Balak et al. 2007). These models employ a 

tetracycline–inducible (tet-inducible) system, involving bitransgenic animals. One 

transgene carries a tet transactivator in lung epithelia (i.e., Clara cell secretory protein – 

reverse tetracycline transactivator [CCSPrtTA], herein referred to as “C” mice). The 2 

relevant strains are referred to as C/L858R and C/L+T, respectively. As expected, 

tumors harboring EGFRL858R  were sensitive to erlotinib, while tumors expressing 

EGFRL858R + T790M
 were resistant (Regales, Balak et al. 2007). Here, we treated tumor-

bearing mice with AZD9291 (5 mg/kg/day), afatinib (7.5 mg/kg/day), or vehicle control 

for one to two weeks. Within days of treatment, 5 of 5 C/L858R mice displayed nearly 

80% reduction in tumor volume by magnetic resonance imaging MRI (see Methods and 

(Regales, Gong et al. 2009)) after therapy with both afatinib or AZD9291, while 5 of 5 

mice treated with vehicle showed tumor growth (Figure 19A (top) and Figure 19B). 

Upon histological examination, only vehicle-treated mice showed viable tumor (Figure 

19B). By contrast, in C/L+T animals, only AZD9291 treatment induced significant tumor 

shrinkage (Figure 19A (middle & bottom) and Figure 19C), while both vehicle- and 

afatinib-treated mice showed viable tumor (Figure 19C). The difference in tumor 

responses was more pronounced after 2 weeks of treatment (Figure 19A (bottom)). 
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Furthermore, preliminary data in a single mouse with tumor driven by an ex19del mutant 

alone (Politi, Zakowski et al. 2006)  also responded rapidly to AZD9291 The metabolite, 

AZ5104 (5 mg/kg/day), was also effective in shrinking tumors in both C/L858R and 

C/L+T mice (data not shown). 

Pharmacodynamic confirmation of target inhibition by AZD9291 

To confirm on-target and pathway activity of AZD9291, we examined tumor 

tissues from the H1975 xenograft and L858R/T790M transgenic model after drug 

treatment. Mice bearing H1975 xenografts were given a single dose of AZD9291 (5 

mg/kg) and tumors were harvested 1, 6, 16, 24, and 30 hours later. Sections from 

formalin-fixed paraffin-embedded tumors were then stained for the phosphorylated 

forms of-EGFR (Tyr1173), ERK (Thr202/Tyr204), S6 (Ser235/236), and PRAS40 

(Thr246). In the H1975 model, AZD9291 treatment strongly inhibited both phospho- 

EGFR and downstream signaling pathways after 6 hours (Figure 20A). Although in 

mice, the pharmacokinetic half-life of AZD9291 is only ~3 hours, phospho-EGFR 

staining remained significantly diminished even after the 30 hour time point, consistent 

with its expected irreversible mode of action. Interestingly, although downstream 

signaling molecules similarly showed maximal inhibition after 6 hours, in contrast to 

phospho-EGFR, they displayed more transient inhibition (Figure 20A). 

In the transgenic model, we similarly observed target inhibition after 5mg/kg 

dosing of AZD9291 via immunohistochemical staining of sections for phospho-EGFR 

and downstream markers (Figure 20B) or immunoblotting of lysates (Figure 20C) from 

treated tumors. 
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Figure 19. AZD9291 induces significant and sustained tumor regression in 
transgenic models of EGFR-TKI sensitizing (C/L858R) and T790M resistant 
(C/L+T) lung cancer 
A. Percent change in radiographic tumor volume from baseline by treatment for 
individual lung tumor-bearing C/L858R (top) and C/L+T (middle, bottom) animals with 
vehicle, afatinib (7.5 mg/kg/day), or AZD9291 (5 mg/kg/day). 
B and C. Representative MRI images and H&E staining (original magnification, ×40) of 
lungs from tumor-bearing animals (B. C/L858R and C. C/L+T) pre and post treatment 
with vehicle, afatinib, or AZD9291 for 1 week. H – heart; L – liver; arrow denotes tumor. 
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Figure 20. AZD9291 inhibits EGFR phosphorylation and downstream signallng in 
murine models of EGFR T790M resistant lung cancer 
A. Subcutaneous H1975 (L858R/T790M) xenografts, treated with a single 5 mg/kg dose 
of AZD9291 for the indicated times, were examined for phospho-EGFR, -ERK, -S6, and 
-PRAS40 status by immunohistochemistry. Representative images were taken from 
scans at 20x magnification and then size adjusted to fill the screen.  
B. Lungs from representative transgenic mice treated with control, AZD9291, or afatinib 
were harvested 6 hours after dose administration. Formalin-fixed paraffin-embedded 
sections were stained with the indicated antibodies. Representative images were taken 
from Aperio scans at 100x magnification.  
C. Lungs were harvested from either untreated tumor-bearing transgenic mice (as 
confirmed by MRI) (control) or from tumor-bearing mice 8 hours after a single treatment 
with AZD9291 5 mg/kg. Corresponding lysates from individual animals were 
immunoblotted with the indicated antibodies. Anti-SP-C (surfactant protein C) antibody 
was used as a surrogate marker for tumor burden, as tumors express the protein. 
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Proof of principle clinical activity of AZD9291 in patients with acquired resistance 

to EGFR TKIs 

The mesylate salt of AZD9291 is currently in a first-in-human phase I dose 

escalation clinical trial (AURA; NCT01802632; AstraZeneca) in patients with advanced 

EGFR-mutant NSCLC who had disease progression following treatment with any EGFR 

TKI (including gefitinib or erlotinib). As proof-of-principle, here we present preliminary 

results of the first two patients in the study with confirmed radiographic responses (as 

per RECIST 1.1 (Eisenhauer, Therasse et al. 2009) treated at the lowest dose cohort 

(20 mg once daily) (Figure 21). Both patients’ tumors harbored drug sensitive EGFR 

mutations in addition to documented T790M mutations (according to local testing 

results). Consistent with AZD9291 being less active against wild-type EGFR, in these 

two cases there were no rash events and only one reported CTCAE Grade 1 diarrhea. 

Preliminary clinical pharmacokinetic analysis indicates that AZD9291, AZ5104 and 

AZ7550 have a half-life of at least 50 hours, longer than would be predicted from the 

preclinical data, which results in a desirable flat PK profile after multiple once daily 

dosing (Figure 21A). Further Phase 1 clinical data for this study will be submitted for 

publication at a later date.  

The first patient was a 57-year old East Asian female patient from South Korea 

diagnosed with Stage IV EGFR mutant (ex 19 del) NSCLC in May 2011. The patient 

had disease progression following 2 cycles of gemcitabine plus carboplatin combination 

chemotherapy. The patient next had a partial response on gefitinib before developing 

disease progression after 10 months. She then had stable disease with 4 cycles of 

pemetrexed followed by 4 cycles of paclitaxel plus carboplatin with a best response of 
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Figure 21. Proof of concept clinical studies validating AZD9291 as a mutant-
selective EGFR kinase T790M inhibitor 
A. Preliminary pharmacokinetic profile showing mean (+SD) total plasma levels of 
AZD9291, AZ5104 and AZ7550 versus time from cohort of 6 advanced NSCLC 
patients. After a single dose of AZD9291 mesylate salt, followed by a 7 day washout 
and then 8 days of once daily 20 mg oral dosing in AURA Phase 1 study 
(NCT01802632). 
B and C. Serial computed tomography scans of the chest from patients before and after 
treatment with AZD9291 in a phase I trial. B, Images from a 57-year old Korean female 
patient diagnosed with Stage IV non-small cell lung cancer in May 2011. See main text 
for details. C, Images from a 57-year old British female  never smoker diagnosed with 
Stage IV lung adenocarcinoma in December 2010. The patient was previously treated 
with first-line gefitinib for 14 months, achieving a partial response before eventually 
developing progressive disease. See main text for details. 
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partial response before progressing immediately before study. Analysis of tumor tissue, 

from a biopsy taken immediately before AZD9291 study entry, using direct 

dideoxynucleotide-based sequencing, revealed presence of a T790M mutation (data not 

shown). Tumor shrinkage on AZD9291 was 39.7% at scan 1, 48.3% by scan 2 (Figure 

21B), remained at 48.3% at both scan 3 and scan 4, and was 51.7% at scan 5 (data not 

shown). 

The second patient was a 57-year old white female never smoker from England 

diagnosed with Stage IV lung adenocarcinoma in December 2010. Analysis of tumor 

tissue obtained at diagnosis in a local molecular pathology lab using the Qiagen EGFR 

RGQ PCR test revealed evidence of exon 19 deletion and T790M mutations (data not 

shown). The patient was treated with first-line gefitinib, achieving a partial response 

before eventual progressive disease 14 months later, suggesting that the T790M 

mutation was present at only a low allele frequency. Re-biopsy prior to starting 

AZD9291 was not performed. At the cycle 1 day 15 assessments on AZD9291, the 

patient reported full resolution of pre-existing persistent nocturnal cough. Tumor 

shrinkage was 38% at scan 1, 39.3% at scan 2, 56.7% by scan 3 (Figure 21C), 62% by 

scan 4, and 59.3% by scan 5 (data not shown). By Cycle 7 Day 1, the patient reported 

significant improvement in pre-existing hair and eyelash abnormalities which had 

developed during the immediately prior gefitinib therapy. Since this patient received 

AZD9291 after developing acquired resistance whilst on continuous gefitinib (after initial 

> 6 months duration of partial response) with no intervening treatment, strict Jackman 

clinical criteria for acquired resistance were fulfilled (Jackman, Pao et al. 2010). No 

significant aberration of blood glucose levels were noted in either patient during the 
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study. Both patients had duration of response of approximately 9 months and were 

progression-free on 20 mg/day AZD9291 for approximately 11 months, until disease 

progression by RECIST 1.1. Both patients continue to receive AZD9291 treatment on 

study as per protocol, as they continue to derive clinical benefit according to their 

treating physicians. 

Discussion 

Mutations in EGFR occur in 10-35% of NSCLCs and confer sensitivity to the 

EGFR TKIs erlotinib, gefitinib, and afatinib (Pao and Chmielecki 2010). In randomized 

studies, the median overall survival of patients with EGFR mutant lung cancer receiving 

first-line EGFR TKIs is ~19-36 months, while median progression free survival is about 

a year. In more than half of patients, tumor cells at the time of progression harbor a 

second-site T790M mutation, which confers resistance to these EGFR TKIs (Yun, 

Mengwasser et al. 2008). No specific treatments for patients with acquired resistance to 

current EGFR TKIs have yet been approved. 

We describe here the identification, characterization and early clinical 

development of AZD9291, a novel oral, irreversible, third generation TKI with a distinct 

profile from gefitinib, erlotinib, afatinib, and dacomitinib. Notably, AZD9291 has a distinct 

chemical structure from the other third-generation TKIs, WZ4002 (Zhou, Ercan et al. 

2009) and CO-1686 (Walter, Sjin et al. 2013). Biochemical profiling together with in vitro 

cellular phosphorylation and phenotype studies have collectively shown that AZD9291 

is highly potent against EGFR-mutant and T790M resistant EGFR mutants with a wide 

margin of selectivity against wild type EGFR activity and exhibits a high degree of 

selectivity against other kinases outside the EGFR family. Moreover, the profound anti-
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tumor activity of AZD9291 across xenograft and transgenic mutant T790M EGFR 

disease models in vivo suggests the potential to target T790M tumors following 

progression on early generation TKIs. 

Prior to identification of “third generation” EGFR TKIs, the most promising 

targeted regimen in patients with acquired resistance had been the combination of 

afatinib plus cetuximab, which induced a 32% response rate and median progression-

free survival of 4.7 months in a heavily pre-treated cohort (Janjigian et al) with a 

significant degree of skin and gastrointestinal (diarrhea) toxicity. In the phase I trial of 

AZD9291 in EGFR-mutant NSCLC patients that had progressed on earlier generation 

TKIs, evidence of efficacy has been seen at all doses studied so far, with AZD9291 

induced partial radiographic responses in patients whose tumors were known to harbor 

T790M, from the first dose cohort onwards (Burtness, Anadkat et al. 2009). Rash and 

diarrhea were mostly mild and reported in only a minority of patients, consistent with low 

activity against wild-type EGFR. Out of the two confirmed partial responses described in 

this paper, in addition to both patients’ tumors harboring the T790M mutations 

(according to local tests), one patient’s disease fits strict Jackman criteria for acquired 

resistance (Jackman, Pao et al. 2010), receiving the drug directly after prolonged 

response and progression on gefitinib. Thus, based on the above, AZD9291 has 

already demonstrated proof-of-principle clinical activity in patients with acquired 

resistance for whom there are no approved targeted therapies. Similarly, results from a 

phase I trial with CO-1686 have also shown evidence of efficacy in TKI-resistant tumors 

harboring T790M, providing further proof of principle for potential use of “third 

generation” TKIs in this setting. A surprising finding in the afatinib plus cetuximab study 
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was that tumors with undetectable levels of T790M also displayed tumor shrinkage, 

suggesting that a T790M-independent but EGFR-dependent pathway of resistance 

exists. The current phase I study of AZD9291 will test whether the drug is effective in 

both T790M-positive and –negative cohorts, through planned dose expansion cohorts. 

Full Phase I data will be presented at completion of study. 

The existence of cell populations harboring T790M within a proportion of TKI-

naive EGFR-mutant tumors has been reported, although the prevalence depends on the 

diagnostic assay being used. Studies using more conventional diagnostic assays have 

reported detection in about 2% of TKI-naive tumors (Sequist, Martins et al. 2008). 

Recently, groups using more sensitive technologies have reported higher detection 

rates ranging from 40% to 60% (Costa, Molina et al. 2014), although it remains unclear 

whether all these observations are real or analytical artifacts (Ye, Zhu et al. 2013). 

However, overall the data supports the hypothesis that T790M clones pre-exist in a 

proportion of EGFR-mutant tumors prior to TKI treatment. In addition to T790M, 

AZD9291 also potently inhibits sensitizing mutant EGFR across in vitro and in vivo 

disease models at similar potencies to T790M-mutant EGFR. Therefore, taken together, 

this supports the hypothesis that AZD9291 could also offer an attractive treatment 

option in EGFR-mutant TKI-naive patients, through targeting both sensitizing and 

T790M tumor cell populations that co-exist in a proportion of tumors, which may then 

lead to delayed disease progression and ultimately increased survival benefit. However, 

it remains to be determined what the optimal sequencing of EGFR TKIs will be and 

whether maximum benefit to most patients will be achieved through using AZD9291 

after TKI progression or earlier in the treatment pathway. 
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Patients harboring EGFR-mutant tumors often progress during TKI treatment due 

to growth of secondary brain metastases (Porta, Sanchez-Torres et al. 2011). Although 

there are reports of TKIs providing benefit in treatment of EGFR-mutant brain 

metastases, current TKIs are believed to have generally poor properties for penetrating 

across the blood brain barrier (BBB), and thus their activity will be variable and 

influenced by such factors as dose, level of BBB disruption and efflux transporter 

expression across individuals. Therefore, there is also a need for EGFR TKIs with 

improved brain penetrance. Quantitative whole body autoradiography (QWBA) studies 

in rat brain with [14C]AZD9291 have indicated AZD9291 had a brain-to-blood ratio of up 

to 2 over the first 24 hours, suggesting the potential of AZD9291 to penetrate the brain 

(data not shown). This is in contrast to [14C]gefitinib which had a maximum brain-to-

blood ratio of only 0.2 (McKillop, Hutchison et al. 2004). Although further pre-clinical 

studies are required to explore the translatable potential of AZD9291 to target brain 

metastases, together with future clinical studies, the preliminary data look promising in 

this area.  

Despite the potential of AZD9291 to prevent resistance via T790M, tumors are 

likely to engage alternative escape mechanisms. If TKIs such as AZD9291 become a 

prominent feature in the treatment of EGFR-mutant disease across multiple lines of 

therapy, it will be critical for future pre-clinical and clinical research to identify the most 

prevalent future resistance mechanisms. Consistent with its pharmacological profile, we 

have not observed acquired resistance to AZD9291 in vitro due to emergence of 

T790M. It is also interesting to note that we have not yet seen resistance to AZD9291 

due to direct mutation of cysteine 797 (data not shown), which would render the 
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receptor refractory to irreversible agents, in an analogous manner T790M prevents 

inhibition by early generation drugs. Therefore, non-EGFR related resistance 

mechanisms may become more dominant for agents such as AZD9291. Indeed, pre-

clinical reports have suggested that “third generation” agents can induce switching to 

multiple signaling mechanisms that bypass EGFR dependency such as ERK and AKT 

pathways (Ercan, Xu et al. 2012; Cortot, Repellin et al. 2013; Walter, Sjin et al. 2013). 

Since AZD9291 is structurally distinct, it will be critical to understand which resistance 

mechanisms are induced through treatment with AZD9291 and whether different “third 

generation” TKIs engage common escape mechanisms. Furthermore, identification of 

molecular mechanisms of resistance will support the investigation of strategies to 

combine additional novel targeted therapies with AZD9291 as a foundation EGFR TKI 

partner, to achieve potentially greater clinical benefit. 

AZD9291 and its active circulating metabolite AZ5104 display similar and 

minimal off-target activity against other non-HER family kinases, but in vitro data 

suggests the potential to target both HER2 and HER4 kinase activity. This property may 

be important as HER2 amplification may mediate acquired resistance to EGFR TKI in 

some cases (Takezawa, Pirazzoli et al. 2012). AZD9291 and AZ5104 also appear to be 

effective against other rare drug-sensitive EGFR mutants and potentially lung cancer-

associated HER2 mutants, but like other EGFR TKIs are not potent against an EGFR 

exon 20 insertion. Further pre-clinical and clinical studies are required to understand the 

potential utility of AZD9291 in these additional molecular phenotypes. 

Earlier generation EGFR TKIs have revolutionized the treatment of EGFR-mutant 
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NSCLC and have demonstrated the power of precision medicine in genetically-defined 

tumors. However, toxicities related to wild-type EGFR and the emergence of resistance 

mechanisms have limited the effectiveness of these drugs. Third-generation EGFR TKI 

agents such as AZD9291 have the potential to overcome these limitations and improve 

markedly the treatment options to patients who have progressed on TKI treatment due 

to T790M. Evaluation of AZD9291 in the 1st line setting in patients with EGFR-mutant 

tumors should also be considered based on AZD9291’s third generation EGFR TKI 

profile. Moreover, if AZD9291 is confirmed to have a mild side effect profile together 

with its clinical efficacy and mechanistic hypothesis, this raises the option for 

investigation as a foundation EGFR TKI for combinations with other therapies to provide 

further treatment options for patients. 
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CHAPTER V 

 

Merlin regulates EGFR expression in some, but not all, EGFR-mutant lung cancer 

cell lines 

 

Introduction 

Lung cancer is the leading cause of cancer-related deaths in the US and 

worldwide (Molina, Yang et al. 2008). Historically, lung cancers have been treated with 

cytotoxic chemotherapies, with mixed results. Over the past decade, tremendous 

advances in genomic technologies have enabled the identification of specific mutations 

that drive lung tumors. Such mutations are causally implicated in oncogenesis and 

positively selected for throughout tumor generation (Weinstein 2002; Stratton, Campbell 

et al. 2009). Importantly, some of these mutations can be targeted by drugs, matching 

the specific driver mutation of patient’s tumor to a specific drug. This personalized 

approach to cancer medicine often results in far better outcomes for patients, including 

both reduced tumor burden and decreased toxicity profile.  

In 2004, mutations in the epidermal growth factor receptor (EGFR) were 

identified as an essential biomarker for sensitivity to first-generation anti-EGFR tyrosine 

kinase inhibitors (TKIs), erlotinib and gefitinib (Lynch, Bell et al. 2004) (Pao, Miller et al. 

2004) (Paez, Janne et al. 2004). Patients whose tumors harbor activating mutations in 

EGFR now routinely receive erlotinib or gefitinib as first-line therapy; most patients will 
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respond and experience decreased tumor burden. However, within a median of 9-16 

months, all patients will invariably experience disease progression, defined as primary 

acquired resistance. Much work has focused on mechanisms of and treatment methods 

to overcome primary acquired resistance. One such therapy combines a second-

generation EGFR TKI, afatinib, plus monoclonal anti-EGFR antibody, cetuximab 

(Regales, Gong et al. 2009). A phase Ib trial within patients with primary acquired 

resistance observed a 29% response rate to afatinib + cetuximab. Unfortunately, all 

responders will eventually fail second-line anti-EGFR targeted therapy and experience 

secondary acquired resistance.  

We previously identified two of the first patients to experience secondary 

acquired resistance (Pirazzoli, Nebhan et al. 2014).In one patient, we identified two 

mutations in NF2 that were present at the point of disease progression, but not prior to 

starting afatinib+cetuximab. Mutations in merlin, the protein product of the NF2 gene, 

had not previously been reported in the context of acquired resistance. The first 

mutation, c.592C>T_p.R198* at frequency 0.15 of 631 reads, is a truncating mutation, 

while the second, c.811-2A>T: splice at 0.13 frequency of 1168 reads, is a splice site 

mutation expected to cause a deletion of eight amino acids.  Both mutations are 

predicted to cause loss-of-function due to their location in the protein’s FERM domain, 

essential for merlin’s function and localization (Figures 3, 4). Mutations in NF2 piqued 

our interest as a potential mechanism of acquired resistance to afatinib+cetuximab 

because loss of merlin has been shown to activate EGFR signaling, at least in non-

cancerous cells with wild-type EGFR (Curto, Cole et al. 2007). After we established that 

knockdown of merlin induces resistance to anti-EGFR agents in EGFR-mutant lung 
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cancer cell lines, which may be abrogated by concurrent treatment with mTOR inhibitor 

(see Chapter III), we sought to understand the mechanism by which merlin regulates 

EGFR in EGFR-mutant cells. 

Results 

Merlin is expressed in EGFR-mutant lung cancer cell lines 

Because the function of merlin is dependent on cell density, all experiments 

described herein were conducted at 100% total cell confluence at the time of cell lysis.  

To begin evaluating the mechanism of merlin in EGFR-mutant lung cancer cells, we first 

evaluated a panel of EGFR-mutant cell lines for the presence of full-length merlin. As a 

control, we acquired the only commercially-available NF2-/-  lung adenocarcinoma cell 

line, SW1573. This cell line does not harbor any EGFR mutation but does contain a 

KRAS G12C mutation.  EGFR-mutant lung cancer cell lines evaluated included those 

harboring both exon 19 deletions and L858R mutations in EGFR. All cell lines harbored 

full-length merlin by immunoblot analysis; though protein levels were not totally 

consistent among cell lines, no patterns were identified (Figure 22, upper panels).  

Because the NF2 mutations discovered in a patient were found in the context of 

acquired resistance to anti-EGFR agents, we next evaluated isogenic pairs of TKI-

sensitive and -resistant EGFR-mutant cell lines for merlin loss. Resistant cell lines were 

developed in our lab by prolonged drug exposure of parental cells as previously 

described (Chmielecki, Foo et al. 2011). No evidence of merlin loss upon resistance to  
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Figure 22. Merlin is expressed in EGFR-mutant lung cancer cell lines 
Immunoblot ananalysis of endogenous merlin expression in EGFR-mutant TKI sensitive 
cell lines (top) and isogenic pairs (bottom) of TKI-sensitive (par, parental) and –resistant 
(/ER, erlotinib-resistant; /BR, afatinib-resistant; XLR, XL647-resistant). SW1573 is an 
wtEGFR, mtKRAS, NF2-/- lung adenocarcinoma cell line used as a control. Results are 
representative of at least three experiments per cell line. 
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drug was seen by immunoblot analysis within various isogenic pairs (Figure 22, lower 

panels). 

Merlin expression is not affected by treatment with anti-EGFR targeted therapies 

Next, we evaluated whether treatment with anti-EGFR agents affected levels of 

merlin in EGFR-mutant cell lines. PC9par and HCC827par cells were exposed to 

erlotinib (data not shown), afatinib or cetuximab over a 4-day time period (Figure 23). In 

all cases, drug was effective at reducing or eliminating phosphorylated EGFR. When 

treated with cetuximab, prolonged exposure resulted in the expected downregulation of 

total EGFR. However, in all cases, merlin levels remained stable, suggesting that merlin 

expression is not affected by short-term treatment with anti-EGFR tyrosine kinase 

inhibitors or an anti-EGFR antibody.   

Merlin expression regulates EGFR expression in some EGFR-mutant cell lines 

To explore further the mechanism of merlin regulation of EGFR in the context of 

EGFR-mutant cells, we transiently transfected an siNF2 construct into PC9par and 

HCC827par cell lines. In both cell lines, we observed efficient merlin knockdown. 

However, we saw an unexpected decrease in total EGFR upon merlin knockdown in 

PC9par cells. This decrease in total EGFR was not observed in HCC827par cells, 

suggesting that the observation was not due to off-target effects against EGFR by the 

siNF2 construct. To further investigate, we conducted a time course analysis in which 

either a scrambled, siEGFR, or siNF2 construct was transfected into cells. We saw that 

knockdown of EGFR resulted in no change in merlin expression in both cell lines, 

suggesting that merlin expression is not dependent on EGFR expression. However, we  
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Figure 23.  Merlin expression is not decreased by treatment with anti-EGFR 
targeted therapies 
Time course treatment of PC9par cells (top panels) and HCC827par cells (bottom 
panels) with 100nM afatinib (left panels) or 10µg/mL cetuximab (right panels). Results 
are representative of at least three experiments. 
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Figure 24. Merlin expression regulates EGFR expression in some EGFR-mutant 
cell lines 
Time course transfection of PC9par cells (top panel) or HCC827par cells (bottom 
panels) with scrambled siRNA construct, siEGFR, or siNF2 for 12-72hr timecourse of 
treatment. For all treatments, reverse transfection protocol was used to ensure cell 
confluence at the time of lysis.  Results are representative of at least three experiments 
for each cell line/transfection condition. 
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again observed that loss of merlin in PC9par cells resulted in a simultaneous loss of 

total EGFR (Figure 24, upper panels). This phenomenon was absent in HCC827par 

cells (Figure 24, lower panels). Two unique non-pooled siNF2 constructs were also 

evaluated individually to ensure further that results were not due to off-target effect of 

the RNAi constructs (data not shown).  

Next, we used an expanded panel of EGFR-mutant cell lines to evaluate the 

effect of NF2 knockdown on EGFR. Surprisingly, we discovered that EGFR-mutant cell 

lines can be stratified into two groups based on total EGFR expression upon NF2 

knockdown (Figure 25). To quantify change in EGFR expression, we conducted 

densitometry analysis to compare total EGFR expression after 72 hours of siNF2 

transfection to total EGFR expression after 72 hours of scrambled construct 

transfection. The experiment was repeated at least three times in all cell lines. For 

purposes of further study, we designated those cell lines with total EGFR expression 

(siNF2/siSCR) < 80% to have a ‘decreased EGFR’ phenotype, while those  cell lines 

with total EGFR expression (siNF2/siSCR) > 80%  to have an ‘unchanged EGFR’ 

phenotype. Parental EGFR-mutant cell lines in the decreased EGFR phenotype group 

include PC9, H1975, H1650, VP-2, HCC4011, and HCC2279; parental EGFR-mutant 

cell lines in the unchanged EGFR phenotype group include H3255, HCC2935, 

HCC4006, and HCC827.  

Interestingly, with the exception of HCC4011, both members of an isogenic pair 

of cell lines stratified to the same group, indicating that in most cases, the effect of 

merlin on EGFR is not altered by the sensitivity or resistance of that cell line to tyrosine 

kinase inhibitor. In addition, there was no discernable pattern of specific EGFR mutation  
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Figure 25. Quantified change in total EGFR expression upon NF2 knockdown in 
an expanded panel of EGFR-mutant cell lines 
Densitometry analysis comparing total EGFR expression after 72 hours of siNF2 
transfection to total EGFR expression after 72 hours of scrambled construct 
transfection; % change in EGFR expression quantified as (siNF2/siSCR). Cell lines 
above the yellow line (left side) indicate the ‘unchanged EGFR phenotype’ group; cell 
lines below the yellow line indicate the ‘decreased EGFR phenotype’ group. The 
experiment was repeated at least three times in all cell lines. 
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among the two phenotype groups; cell lines harboring L858R, exon19del, and T790M 

belong to both the decreased EGFR and unchanged EGFR groups. 

To further explore the regulation of total EGFR expression by merlin in some, but 

not all, EGFR-mutant cell lines, we conducted cell proliferation assays. We 

hypothesized that upon NF2 knockdown, cell lines in the decreased EGFR phenotype 

group would show a decreased proliferation rate compared to cell lines in the 

unchanged EGFR phenotype group. Analysis of growth rate supported this hypothesis. 

PC9par cells transfected with siNF2 showed a significant decrease in growth rate as 

compared to untransfected or scrambled-transfected cells (Figure 26, left panel). The 

decrease in proliferation rate upon knockdown of NF2 was not as dramatic as observed 

upon knockdown of EGFR. Among HCC827par cells, there was no significant difference 

in growth rate among untransfected, scrambled-transfected, and siNF2-transfected cells 

(Figure 26, right panel). The differences in proliferation rate further supports the 

existence of two distinct phenotypes among EGFR-mutant lung cancer cells upon 

merlin knockdown.  

Decreased EGFR expression upon merlin knockdown does not correlate with 

cadherin-catenin or NHERF1 expression 

In attempt to identify any underlying mechanism responsible for the disparate 

EGFR regulation of merlin in EGFR-mutant lung cancer cell lines, we recalled that PC9 

cells are known to lack α-catenin (Shimoyama, Nagafuchi et al. 1992). This was 

particularly interesting because merlin is known to directly bind α-catenin. Additionally, 

α-catenin is a required member of the cadherin-catenin complex, an essential regulator  
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Figure 26. Proliferation rate of EGFR-mutant cells upon knockdown of NF2 
PC9par cells (left) and HCC827par cells (right) were transfected with scrambled siRNA 
construct, siEGFR, or siNF2 and plated in triplicate by reverse transfection. Each 
sample was counted in triplicate on successive days. Concurrent immunoblot analysis 
was conducted to verify appropriate protein knockdown (data not shown). 
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of cell-to-cell and cell-to-matrix interaction. The cadherin-catenin complex is composed 

of p120, α-catenin, β-catenin (which may be compensated for by plakoglobin/γ-catenin), 

and E-cadherin (Reynolds, Daniel et al. 1994), (Shibamoto, Hayakawa et al. 1995). All 

members of the cadherin-catenin complex are required for complex function. 

BecausePC9 cells are known to lack α-catenin, we hypothesized that the decreased 

EGFR phenotype group and the unchanged phenotype group may be stratified by the 

presence of a complete cadherin-catenin complex.  

To evaluate the cadherin-catenin complex, we conducted immunoblot analysis 

for all complex members in a panel of EGFR-mutant cell lines (Figure 27). As expected, 

all isogenic PC9 cell lines lacked α-catenin, but full-length α-catenin was present in the 

remaining EGFR-mutant lines. All cell lines expressed full-length β-catenin. While 

plakoglobin expression was more varied, the presence of β-catenin negates the 

requirement of plakoglobin to form functioning cadherin-catenin complexes. All EGFR-

mutant cell lines expressed full length p120. With two exceptions, full-length E-cadherin 

was expressed in all cell lines. The two lines in which E-cadherin was absent, 

HCC2279/ER and HCC4006/ER, undergo epithelial-mesenchymal transition (EMT) as 

part of their erlotinib-resistance phenotype; as such, resultant decrease or loss of E-

cadherin is expected. In total, only PC9 cells lack an essential component of the 

cadherin-catenin complex, so alterations in the expression of this complex cannot fully 

explain the dichotomy of the decreased EGFR and unchanged EGFR phenotype 

groups.  

Next, we checked for expression of NHERF1 in our panel of EGFR-mutant cell 

lines. Current literature suggests that NHERF1 is a necessary adaptor protein that links  
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Figure 27. Decreased EGFR expression upon merlin knockdown does not 
correlate with cadherin-catenin or NHERF1 complex expression 
Immunoblot analysis of control and EGFR-mutant cell lines for cadherin-catenin 
complex proteins. Of note, HCC2935/ER and HCC4006/ER are known to develop 
acquired primary acquired resistance through epithelial-mesenchymal transition (EMT), 
as indicated by the loss of E-cadherin in these resistant lines compared to their 
respective TKI-sensitive parent line. 
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merlin to EGFR (Curto, Cole et al. 2007). As such, we hypothesized that the presence 

or absence of NHERF1 may stratify the EGFR phenotype groups we observed. If 

NHERF1 links merlin to EGFR, loss of NHERF1 may disrupt the ability of merlin to 

regulate EGFR and define the unchanged EGFR expression group. To explore this, we 

conducted immunoblotting for NHERF1 but saw expression of full-length NHERF1 in all 

EGFR-mutant cell lines (Figure 27). Taken together, neither expression of cadherin-

catenin proteins nor expression of NHERF1 can explain the merlin-regulated EGFR 

phenotype we observe in some EGFR-mutant cell lines.  

Treatment with TKI does not disrupt merlin-NHERF1-EGFR binding in EGFR-

mutant cells 

After observing full-length NHERF1 in all EGFR-mutant lung cancer cell lines 

evaluated, we investigated whether canonical merlin-NHERF1-EGFR binding occurs in 

the context of mutant EGFR by co-immunoprecipitation of endogenous protein. Using a 

representative cell line from both EGFR phenotype groups, cells were cultured to 

confluence before subjected to pulldown of EGFR, merlin, or NHERF1 and immunoblot 

analysis to determine the status of the remain two complex members. In both H1975, a 

member of the decreased EGFR phenotype, and HCC827par, a member of the 

unchanged EGFR phenotype group, the three proteins precipitate together (Figure 28, 

left panels). Next, we evaluated the effect of treatment with anti-EGFR TKI on the 

stability of the merlin-NHERF1-EGFR interaction. Cells were treated for six hours with 

100nM AZD9291, a third-generation, mutant-specific TKI. Drug treatment did not alter 

the interaction of merlin, NHERF1 and EGFR, suggesting that wild-type merlin is  
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Figure 28. Treatment with TKI does not disrupt merlin-NHERF1-EGFR binding in    
EGFR-mutant cells 
Co-immunoprecipitation of EGFR, merlin, and NHERF1 in untreated (left panels) or TKI-
treated (right panels) cell lines (H1975, top panels; HCC827par, bottom panels). WCL, 
whole cell  lysate. For treatment, cells were drugged with 100nM AZD9291 for 6hr 
immediately prior to crosslinking and lysis.  Blots were cut in thirds as indicated to 
visualize all three proteins in the same lane. EGFR runs at 190kDa; merlin runs at 
69kDa, and NHERF1 runs at 48kDa. To eliminate contamination by heavy-chain 
IgG/IgA signal, a light-chain specific secondary antibody was used to probe for NHERF1 
by immunoblot.  
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capable of interacting with and potentially regulating EGFR in a manner that is 

independent of the kinase activity of EGFR (Figure 28, right panels). 

Discussion 

The interaction and regulation of merlin and EGFR is poorly understood in wild-

type epithelial cells and has never been examined in the aberrant signaling context of 

mutant EGFR. We recently identified two mutations in NF2 predicted to cause loss-of-

function of merlin in a lung adenocarcinoma patient with secondary acquired resistance 

to anti-EGFR targeted therapy. Our previous studies demonstrated that merlin loss was 

sufficient to induce resistance to anti-EGFR therapy in EGFR-mutant lung cancer cell 

lines, and that re-sensitization occurs upon con-treatment with mTOR pathway inhibitor 

everolimus. Because NF2 mutation has been identified in a patient and shown to have 

targetable consequences in vitro and in vivo, the mechanism of merlin in the context of 

aberrant EGFR-driven cell signaling merits further investigation.  

The experiments described here show that full-length merlin is expressed in a 

panel of EGFR-mutant cell lines and their TKI-resistant isogenic pairs. Merlin 

expression is unaffected by short-term treatment with either EGFR TKI or anti-EGFR 

antibody. While tyrosine kinase inhibitor and antibody have different mechanisms of 

action, neither affects merlin status. This indicates that inhibition of EGFR does not alter 

merlin biology. Furthermore, using co-immunoprecipitation assays, we show that merlin 

binds to EGFR via adaptor protein NHERF1, and this interaction is similarly unperturbed 

by treatment with TKI.  
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When conducting transient transfections to knockdown merlin expression in 

EGFR-mutant cells, we were surprised to see the emergence of two distinct EGFR 

phenotypes upon merlin knockdown. In four of ten parental cell lines, including 

HCC827, HCC4006, HCC2935, and H3255, knockdown of merlin results in no 

significant change in total EGFR (defined by the authors as decrease of < 20%). We 

therefore defined this group as the ‘unchanged EGFR phenotype’ group. In six of ten 

parental cell lines, including PC9, H1975, VP-2, H1650, HCC2279, and HCC4011, 

knockdown of merlin results in a decrease in total EGFR of > 20% or more, earning the 

designation of the ‘decreased EGFR phenotype’ group.  Consistent with the definition of 

two distinct phenotype groups, we observe that upon knockdown of merlin, cell 

proliferation rate among one cell line in the decreased EGFR phenotype group is 

significantly slower than scrambled-transfected cells, but there is no difference in cell 

proliferation rate upon merlin knockdown in a cell line in the unchanged EGFR 

phenotype group.  

We next sought to elucidate an underlying mechanism to explain the stratification 

of lung cancer cell lines driven by the same activating mutation in EGFR. Because PC9 

cells lack α-catenin but HCC827 cells do not, we hypothesized that expression of full-

length α-catenin and all other members of the cadherin-catenin complex may separate 

HCC827 cells and it other unchanged EGFR phenotype group members from the 

decreased EGFR phenotype group. This hypothesis was unproven, as all cell lines 

evaluated expressed full-length copies of all cadherin-catenin complex protein (with the 

expected exceptions of the PC9 family and those resistance cell lines known to have 
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undergone EMT). The presence of full-length NHERF1 in all cell lines also eliminated 

the possibility of phenotype stratification due to lack of merlin-EGFR adaptor protein.  

Thus, we cannot yet completely explain the mechanism by which merlin 

regulates EGFR in the context of some EGFR-mutant tumor cells. Our data suggests 

possibly that the decreased EGFR phenotype we observe in some cells after merlin 

knockdown is due to indirect effects (e.g. transcriptional) rather than direct effects 

mediated by protein-protein interactions. Future studies will need to address such 

considerations. Nevertheless, very recent data published by another group shows that 

merlin biology is certainly deserving of further investigation. For example, a genome-

scale CRISPR-Cas9 knockout screen in human melanoma cells identified hits in the 

NF2 gene as involved in resistance to BRAF inhibitor vemurafenib (Shalem, Sanjana et 

al. 2014). To our knowledge, this is the only report besides our own suggesting NF2 

mutation may contribute to acquired resistance to targeted therapy. As acquired 

resistance is arguably the greatest obstacle to effective targeted therapy in cancer, it is 

not insignificant that NF2 has now been identified as a potential mechanism of acquired 

resistance in cancers of two unique origins (lung and melanoma).  

In addition to the potential role for merlin in acquired resistance to targeted 

therapy, two recent studies have elucidated potential drug targets for tumors associated 

with merlin deficiency. As a relatively small cytoplasmic protein that also localizes to the 

cell cortex and nucleus, merlin is difficult to directly target, but proteins whose 

expression is elevated upon merlin loss may provide better targets. Work by Shapiro et 

al suggests that merlin-negative tumors may benefit from treatment with a focal 

adhesion kinase (FAK) inhibitor. Studies using mesothelioma cell lines as well as other 
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merlin-positive and merlin-negative cell lines show that merlin-negative status is an 

excellent biomarker for FAK inhibitor sensitivity (Shapiro, Kolev et al. 2014). Work by 

Petrilli et al similarly identifies the LIM domain kinases 1 and 2 (LIMK1/2) as potential 

targets in tumors with merlin deficiency (Petrilli, Copik et al. 2014). Development and 

eventual clinical trials of drugs targeting merlin-deficient cells may result in much-

needed advancements not only for patients with neurofibromatosis type 2, but also for a 

new subset of patients with acquired resistance to targeted therapeutics.  
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CHAPTER VI 

 

Future Directions 

 

Introduction 

The objective of this research was to identify potential mechanisms of secondary 

acquired resistance to targeted anti-EGFR therapy in EGFR-mutant lung 

adenocarcinoma and evaluate novel drugs or drug combinations designed to overcome 

acquired resistance. First, using patient-generated data, we showed that knockdown of 

merlin in EGFR-mutant lung cancer cell lines can induce resistance to anti-EGFR 

therapy. We then hypothesized that combination therapy with mTOR pathway inhibitor 

everolimus could re-sensitize cells to anti-EGFR therapy. This hypothesis was validated 

in both cell line and mouse models. Second, we have worked with AstraZeneca to 

characterize AZD9291, a novel, mutant-specific inhibitor of EGFR. Data generated in 

EGFR-mutant cell lines supports the use of AZD9291 in patients with T790M-driven 

primary acquired resistance to anti-EGFR agents, and a phase 2 clinical trial is currently 

underway (NCT02094261). These findings have expanded our understanding of 

acquired resistance in EGFR-mutant lung cancer and provided preclinical rationale for 

the application of new drugs and drug combinations to be evaluated in translational 

studies.  Additionally, insights into the potential role of merlin in secondary acquired 

resistance have provided impetus for continued study of the mechanism of interaction 
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and regulation of EGFR and merlin in the context of the aberrant signaling networks that 

dominate a cancer cell. 

AZD9291 clinical trial 

Clinical trials of AZD9291 are underway. As part of the ongoing phase 1 trial of 

the drug in a cohort of lung cancer patients with acquired resistance to first- or second-

generation TKI has shown, AZD9291 has been administered to 232 patients. No dose-

limiting toxicity has been observed. Impressively, a partial response rate of 64% has 

been observed in a cohort of patients with central confirmed EGFR T790M-positive 

tumors. In May 2014, the phase 2 clinical trial of AZD9291 began in a stratified cohort of 

patients whose EGFR-mutant lung tumors have met the criteria for acquired resistance 

to first- or second-generation TKI and are T790M-positive.  

As AZD9291 and other third-generation EGFR TKIs currently under development 

enter clinical trials, it is also worth considering the best strategy for use of our anti-

EGFR drug arsenal in combatting disease in patients. Studies to evaluate the optimal 

sequence of anti-EGFR therapy in EGFR-mutant lung cancer will allow clinicians to treat 

patients in a highly rational manner while also informing the direction of research in this 

ever-expanding field of targeted therapies. While large-scale pharmaceutical industry-

sponsored trials seem unlikely at the moment, researchers can use available tools to 

generate data within cell line and animal models to understand which course of 

treatment will lead to greatest progression-free survival. The generation of cancer cell 

lines with acquired resistance to various first-, second-, and third-generation TKIs and 

anti-EGFR drug combinations will be valuable tools in this endeavor. In addition, 

transgenic mouse models may be treated with various lines of anti-EGFR therapy to 
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determine a drug sequence which maximizes PFS, using animal models to imitate 

clinical trials of human subjects and potentially produce sufficient data to become the 

biological rationale for a clinical trial in human patients. 

Clinical application of concurrent EGFR and mTOR inhibition in A+C-resistant 

patients 

Data discussed in Chapter III show in both cell line and mouse models that 

combination therapy of second-line anti-EGFR therapy plus mTOR inhibition may be an 

effective strategy to overcome secondary acquired resistance in patients. These 

findings, along with supporting evidence generated by other groups, may provide 

preclinical rationale to establish a clinical trial of this drug combination. Indeed, results 

reported by Kawabata and colleagues demonstrate that concurrent second-line anti-

EGFR therapy and mTOR inhibition can prevent the development and progression of 

T790M-positive EGFR-mutant tumors in mouse models (Kawabata, Mercado-Matos et 

al. 2014). 

A clinical trial (NCT00456833) of erlotinib monotherapy versus RAD001 plus 

erlotinib combination therapy in a population of TKI-naive non-small cell lung cancer 

patients treated with one or two previous rounds of chemotherapy was reported in 2011. 

This trial demonstrated only a modest progression-free survival benefit of combination 

therapy over monotherapy (2.9 and 2.0 months, respectively), and combination therapy 

recipients experience more than twice the frequency of grade 3/4 toxicity events than 

monotherapy recipient (Besse, Leighl et al. 2014).  Importantly, this trial was conducted 

in a non-stratified lung cancer patient population. At the trial’s initiation in 2006, routine 

evaluation for EGFR and other mutations in lung cancer patients was not widely 
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performed. Furthermore, the field of acquired resistance in this disease was still in its 

infancy at the time of the study’s design in 2005; the T790M resistance mutation was 

first reported in 2005. As such, the only clinical trial evaluating EGFR TKI plus mTOR 

inhibition may have been executed “before its time;” our data suggest that such a trial 

certainly bears repeating today in a highly-selected cohort of patients whose tumors 

harbor confirmed EGFR mutations and/or have developed acquired resistance to 

secondary anti-EGFR therapy.   

A trial conduced today should evaluate afatinib+cetuximab+rapamycin or 

AZD9291+rapamycin versus salvage chemotherapy in a patient cohort whose EGFR-

mutant tumors have demonstrated secondary acquired resistance to afatinib+cetuximab 

dual therapy. Interestingly, a phase 1 trial of afatinib + rapamycin was announced in 

July 2014 (NCT00993499). The trial, currently enrolling patients in eight locations in 

Spain, is recruiting only highly stratified patients with EGFR-mutant non-small-cell lung 

cancer who have experienced disease progression after treatment with erlotinib or 

gefitinib. Our data support these efforts to evaluate highly stratified patient groups, using 

evidence-based rationale for treatment regimens in specific instances of acquired 

resistance to targeted therapy.  

In addition to providing evidence for future clinical trials, our data also suggest 

new areas for preclinical research. As clinical pharmacology progresses, new and 

potentially better drugs are continually produced. While much of the work presented 

here focuses on first-, second-, and third-generation EGFR TKIs, novel compounds for 

the inhibition of mTOR are also being developed and are worth evaluating for both drug 

synergy and toxicity effects. Drugs targeting mTOR may be broadly classified as 
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allosteric or catalytic inhibitors (Garcia-Echeverria 2010). Both everolimus, the drug 

used throughout experiments detailed in Chapter 3, and its close analog discussed 

above, rapamycin (sirolimus), are allosteric inhibitors of mTORC1 (Rolfo, Giovannetti et 

al. 2014). Other such drugs in this group include timsirolimus and ridaforolimus (Porta, 

Paglino et al. 2014). Allosteric mTOR inhibitors function by complexing with the 

immunophilin FK506-binding protein of 12kDA (FKDP12), which binds to a region of the 

mTOR carboxy-terminus that is adjacent to the catalytic site (Choi, Chen et al. 1996). 

This binding interferes exclusively with the kinase activity of the mTORC1 complex, 

leaving mTORC2 activity intact. More recently, ATP-competitive kinase inhibitors of 

mTOR have been developed; these catalytic mTOR inhibitors are also known to block 

the activity of PI3K. Inhibitors in development include NVP-BEZ235, NVP-BGT226, 

XL765, SF1126, and GSK1059615 (Dienstmann, Rodon et al. 2014). Importantly, 

mTOR inhibition with catalytic inhibitors targets mTORC1, mTORC2, and PI3K. Thus, 

not only do catalytic inhibitors have greater anti-tumor effect by targeting the entire 

mTOR complex, but negative feedback of mTORC1 leading to Akt phosphorylation and 

tumor progression is abrogated with the concomitant PI3K inhibitory properties of these 

drugs (O'Reilly, Rojo et al. 2006). Favorable pharmacokinetic/pharmacodynamics 

properties of catalytic mTOR inhibitors have led to numerous clinical trials of these 

agents, particularly BEZ235. Future studies will need to determine the best inhibitor in 

the mTORC pathway to combine with anti-EGFR agents for patients. 

Targeting merlin in acquired resistance 

We present the identification of two novel mutations in NF2  that may directly 

induce secondary acquired resistance in EGFR-mutant lung adenocarcinomas. 
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Mutations in merlin, the protein product of NF2, has also been identified in a variety of 

other solid and liquid tumors, including but not limited to mesothelioma, squamous cell 

carcinoma, hepatocellular carcinoma, renal cell carcinoma, and acute myeloid leukemia 

(Yoo, Park et al. 2012). Patients suffering from neurofibromatosis type 2, the namesake 

tumor syndrome of the NF2 gene, also stand to benefit from an increased 

understanding of merlin pathobiology and its translational application.  

Merlin is thought to be a poor candidate for direct drug targeting due to its lack of 

enzymatic activity. To date, no agents directly targeting merlin have been reported. 

However, recent interest in the role of merlin in cancer has increased interest in 

identifying druggable targets that are hyperactivated when NF2 is mutated. Results 

generated by Shapiro and colleagues identify merlin mutation as a biomarker of 

sensitivity to focal adhesion kinase (FAK) inhibition by VS-4718 (Shapiro, Kolev et al. 

2014). Encouragingly, a phase 1 clinical trial of this drug in metastatic solid tumors is 

currently underway (NCT01849744). Should phase 1 results demonstrate good 

tolerability, a phase 2 trial should specifically evaluate VS-4718 in patients with NF2-

mutant tumors. Furthermore, results shown by our group and others provide support for 

the inclusion of EGFR-mutant lung adenocarcinoma patients with acquired resistance to 

secondary acquired resistance to anti-EGFR therapy. As this work was published 

following our studies, we did not determine if FAK inhibition could overcome acquired 

resistance in EGFR mutant lung cancers in the setting of NF2 loss. If FAK inhibitors do 

prove useful in this regard, then patients with EGFR-mutant tumors and NF2 mutations 

could potentially benefit from addition of FAK inhibitors to anti-EGFR therapy as well.  
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The goal of the research described herein was to evaluate potential mechanism 

of acquired resistance to afatinib + cetuximab therapy in EGFR-mutant lung cancer, as 

well as assess the efficacy of a novel mutant-specific EGFR inhibitor, AZD9291. We 

have shown that loss of NF2 may induce resistance to anti-EGFR therapy in EGFR-

mutant lung cancer cells, and that this resistance may be overcome with the addition of 

an mTORC1 inhibitor. We also demonstrate with in vitro and in vivo studies that 

AZD9291 may have potential to overcome limitations of previous TKIs in EGFR-mutant 

lung cancer, and provide some of the preclinical rationale for this compound’s use in 

human trials.  Understanding mechanisms of acquired resistance and developing novel 

therapeutic strategies to overcome acquired resistance are major challenges in the field 

of targeted cancer therapy; the research described here may aid our understanding to 

ultimately benefit the survival time of our patients.  
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