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CHAPTER I 

  

 

 

INTRODUCTION AND BACKGROUND 

 

 

 

Introduction 

 

 

 In everyday life, people must frequently make intertemporal choices, which 

involve selecting between options that lead to costs or benefits at different points in time.  

Examples of such choices range from deciding whether to eat a healthy meal or a tastier, 

unhealthy meal to deciding whether to save money for retirement or spend it on 

something sooner.  In both of these cases, an individual must decide whether they would 

prefer an option that has larger long-term benefits, but fewer short-term or immediate 

benefits than the alternative.     

Many choices also involve another element: risk.  Any option that leads to an 

outcome with less than 100% probability is risky, and it becomes more risky as the 

probability that it leads to a beneficial outcome decreases and as the probability that it 

leads to a non-beneficial or negative outcome increases.  In situations involving risk, 

people often are confronted with a choice between a risky option that could lead to a 

better outcome than a safer alternative, but that also has a higher probability of leading to 

a worse outcome.  Examples of such situations range from deciding whether or not to a 

buy a stock or a bond to deciding whether to have one of two medical procedures. 

This dissertation examines the neural mechanisms of intertemporal choice and 

choice involving risk.  In particular, it focuses on the role of the Dorsolateral Prefrontal 
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Cortex (DLPFC) in both types of choices, and on the role of the Posterior Parietal Cortex 

(PPC) in intertemporal choice.  While both Experiments 1 and 2 examine the neural 

mechanisms of economic choice, Experiment 3 has a different focus.  This third 

experiment examines the relationships between preferences on intertemporal and risky 

choice tasks, and between these preferences and impulsivity. 

 Evidence reveals that the Dorsolateral Prefrontal Cortex (DLPFC) has an 

important role in intertemporal choice.  Disruption of this region with low frequency 

repetitive Transcranial Magnetic Stimulation (rTMS) leads to greater selection of an 

option for monetary gain that has a better immediate, but a worse long-term value than 

the alternative (Figner et al., 2010).  Experiment 1 of this dissertation examines the neural 

mechanisms of intertemporal choice and addresses the following main questions:  

1. Does the Posterior Parietal Cortex (PPC) have a similar role in intertemporal choice 

as the DLPFC? 

2. Do the DLPFC and PPC have a similar role in intertemporal choices involving gains 

and in intertemporal choices involving losses? 

 The DLPFC also has an important role in choices involving risk.  Disruption of 

the DLPFC with low frequency rTMS leads to greater selection of a potentially larger 

risky option that has a lower probability of reward, and a higher probability of loss, than 

the alternative (Knoch et al., 2006).  Experiment 2 of this dissertation examines the role 

of the DLPFC in risky choice and addresses the following main questions: 

1. Does the role of the DLPFC in risky choice depend on the level of risk? 

2. Does the DLPFC have a similar role in risky choices that are limited to the gain 

domain (i.e. that do not contain the possibility of a loss)? 
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People tend to discount the value of delayed monetary incentives relative to 

immediate incentives (Frederick, Loewenstein, & O'Donoghue, 2004; Murphy, 

Vuchinich, & Simpson, 2001), and tend to discount the value of risky incentives with 

respect to certain incentives (Rachlin, Raineri, & Cross, 1991).  People, however, differ 

in these tendencies.  Experiment 3 focuses on these individual differences and addresses 

the following main questions: 

1. Are there associations between types of monetary discounting (i.e. delayed gains, 

delayed losses, risky gains) and impulsivity? 

2. Are the tendencies to discount the value of different types of incentives related? 

 This dissertation is organized into five chapters with the following content: 

 Chapter I reviews important background information for the experiments 

performed in later chapters.  The next sections of Chapter I focus on the following topics: 

o Economic theories of intertemporal and risky choice, and behavioral economics 

findings of how individuals value delayed and risky incentives 

o The brain processes involved in the prediction of positive value, in the prediction 

of negative value, and  in the components of predicted value (i.e. probability, 

magnitude, and expected value) 

o The brain processes involved in intertemporal and risky choice.  This section 

describes the key experiments that led to the research questions for Experiments 1 

and 2. 

o The functions of the DLPFC and of the lateral Prefrontal Cortex more generally 

(with a focus on specific functions relevant to economic choice) 
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o The functions of the PPC (with a focus on specific functions relevant to economic 

choice)  

o Potential Roles of the DLPFC and PPC in intertemporal and risky choice 

o Summary of the Research Plan of the experiments 

 Chapters II, III, and IV each focus on one experiment (i.e. Experiments 1, 2, and 

3, respectively).  Each of these chapters contains a full research report, including an 

introduction, methods, results, and discussion.  While the background for Experiments 2 

and 3 is presented in Chapter I, much of the background for Experiment 3 is presented in 

Chapter IV.   

Chapter V concludes the dissertation with a broad discussion of some of the key 

findings of the experiments and of other important questions related to intertemporal and 

risky choice. 

  

Economic Theory and Behavioral Economics Research 

 

Choice involving Risk 

 In standard economic theory, each good in the marketplace is said to have a 

specific utility (i.e. subjective value) for an individual (Pindyck & Rubinfeld, 2006).  A 

rational individual who is a utility maximizer makes choices in order to attain the bundle 

of goods that maximizes their own utility.  It is traditionally thought that when making 

decisions amongst monetary options, the utility of each choice option is calculated as a 

function of the probability and magnitude of each potential monetary outcome associated 

with that option.  This idea that both the probability and magnitude of reward influence 
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decisions is a central idea in economics that goes back to work done in the 17
th

 century 

by Blaise Pascal, Antoine Arnauld, and Pierre Nicole (Glimcher, 2003).  Their insights 

led to the creation of Expected Value Theory, which held that individuals should make 

choices for options that offer the highest expected value.  The expected value of a choice 

option is calculated as the sum of the product of the probability (p) and magnitude (v) of 

each possible monetary outcome of that choice option (i.e. Expected Value = ∑i pi * vi).   

  Later, Expected Value Theory was modified by Daniel Bernoulli in the 

eighteenth century (Bernoulli, 1738; 1954) who asserted that individuals choose options 

with the highest expected utility rather than with the highest expected value.  It can be 

mathematically stated: Expected Utility = ∑i pi * ui, meaning that the expected utility of 

any option is equal to the sum across outcomes of the option of the utility of each 

outcome (u) multiplied by its probability (p).  Although the utility of an option is a 

function of its magnitude (e.g. as the magnitude of a potential monetary gain increases, 

its utility increases as well) the two terms are not synonymous.  Unlike magnitude, utility 

was designed to be a function of an individual’s total level of wealth.  

The utility function designed by Bernoulli was concave, indicating that as the 

level of a person’s wealth increases, the increase in utility from obtaining the same 

magnitude of monetary gain diminishes.  The concave curvature of the utility function 

also assumes that individuals are risk averse.   A risky choice option can be defined as an 

option available with a less than certain probability that is known to the individual 

making the choice.  A risk-averse individual is someone who prefers a certain option to a 

risky option of equal expected value (http://www.econport.org/content/handbook.html).  

For example, suppose a risk-averse individual were to make a choice between $x for sure 
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and $2x with a probability of 50%.   Since their utility function of money is concave, this 

individual is presumed to get more utility from an increase from 0 to $x than from $x to 

$2x.  Because of this, the individual is more likely to choose the certain option, since the 

expected utility is greater than that of the risky option, even though they both have the 

same expected value. In contrast to this prediction of Expected Utility Theory, Expected 

Value Theory would hold that because both of the options have the same expected value, 

this individual would be indifferent between the two options. 

 Expected Utility Theory has been an extremely useful theory in economics and 

was an improvement over the older Expected Value Theory, but it still does not 

adequately describe a great deal of human behavior.  In 1979, Kahneman and Tversky 

developed an alternative to Expected Utility Theory, Prospect Theory, in an attempt to 

provide a more realistic picture of how individuals make decisions and account for 

behavioral deviations from Expected Utility Theory (Kahneman & Tversky, 1979).  

Prospect theory holds that there are two phases in the process of making choices between 

two different options for monetary gambles: an editing phase and an evaluation phase.  In 

the editing phase, individuals simplify and organize the information associated with each 

choice option, such as by cancelling out similarities between the two options and by 

rounding values.  These editing operations are a departure from the assumption of 

Expected Utility Theory that individuals consider options exactly as they are presented.  

Because of editing operations, a person’s preferences over the same choice set may 

change if they use different editing operations in different situations.  During the second 

phase, evaluation, individuals compare the value of the two options, and then choose the 

one with the highest value.  The value of a prospect (i.e. an option offering chances of 
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winning and/or losing money) is computed as a function of a value function and of a 

probability weighting function. 

 The value function in Prospect Theory is concave for gains and convex for losses 

and steeper for losses than gains.  The differential curvature of the gain and loss functions 

indicates that people tend to be risk averse in choices involving sure gains, but risk 

seeking in choices involving sure losses, while the differential steepness accounts for loss 

aversion.  Another concept in Prospect Theory is that the value of each outcome is 

multiplied by a decision weight.  These weights are a function of the probability of the 

outcome, but are not identical to it.  Decision weights represent the impact that 

probability has on the desirability of an option, and are able to capture findings that 

people tend to underweight outcomes that are merely probable in comparison to those 

that are certain, and tend to overweight outcomes of very low probability.    

  While the original formulations of Expected Utility Theory and Prospect Theory 

both assumed that individuals are risk averse when monetary gains are involved, not all 

individuals have similar risk preferences.  As stated earlier, in Expected Utility Theory, 

utility functions are concave to reflect risk-aversion.  However, those with different 

relationships to risk have utility functions with different forms of curvature (Weber & 

Johnson, 2009; http://www.econport.org/content/handbook.html).  For a risk-seeking 

individual, that is someone who prefers a risky option over a certain option of equal 

expected value, the utility curve is convex, rather than concave.  In contrast, a risk-neutral 

individual who does not strictly prefer either of the two options has a linear utility 

function that exhibits no curvature.  While there are three categorically different 

relationships to risk, the degree of risk aversion or risk seeking differs among individuals.  
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The level of a person’s risk preference can be assessed by calculating that individual’s 

certainty equivalent for a risky option (http://www.econport.org/content/handbook.html), 

which is the amount of money available for certain that a person values subjectively 

equally to a risky amount of money.  The difference between the certainty equivalent of a 

risky option and the expected value of the risky option indicates how far that individual’s 

preferences are from risk-neutrality.       

Not all risky options are risky to the same degree, and this is reflected in terms 

that measure the level of riskiness of a monetary option.  In finance, the level of risk of an 

option is taken to be a function of the spread of outcomes associated with it (Rothschild 

& Stiglitz, 1970), and is often defined specifically as the variance or standard deviation of 

the  different outcomes (Glimcher, 2008; Weber & Johnson, 2009).  By this definition, an 

option that offers $20 with 50% probability and $30 with 50% probability is riskier than 

an option of equal expected value that offers $22.50 with 50% probability and $27.50 

with 50% probability, because the variance of the outcomes of the first option is larger 

than that of the second.  

Another definition of the level of risk, however, will be used throughout the rest 

of this dissertation.  Unless stated otherwise, the level of risk will be taken as a direct 

function of the probability of a negative outcome or non-rewarding outcome on a task.  In 

choices involving monetary gains, the choice that offers a gain with a smaller probability 

(i.e. greater probability of no gain) will be termed riskier.  In choices involving monetary 

losses, the choice that offers a loss with a higher probability will be termed riskier.  Thus, 

greater risk will be taken as lesser probability of gain or greater probability of a loss.  

This definition can only easily be applied to choice options that have two possible 
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outcomes, and for which one possibility is either a monetary loss or no monetary reward.  

Although risk level is not typically defined this way, I will use this definition because it 

can be used to help make sense of much of the findings in neuroeconomics and because it 

provides a parsimonious definition of risk level for choice scenarios it applies to.  

Importantly, it can easily be applied to the two experiments of this dissertation that 

investigated risky choice, which both employed tasks that involved choices between a 

certain option and a risky option with known probability.  

 

Intertemporal Choice: Discounted Utility Theory and Anomalies 

 Expected Utility Theory and Prospect Theory apply to choices for monetary 

incentives available immediately.  However, there is another type of choice problem, 

called intertemporal choices, in which choice options lead to outcomes available at 

different points in time.  While the dominant economic model for choices involving risk 

has been Expected Utility Theory, the dominant economic model for intertemporal 

choices has been the Discounted Utility Theory articulated by Samuelson (1937).  Like 

Expected Utility Theory, Discounted Utility Theory holds that individuals make 

decisions to maximize their utility, which is a function of the magnitudes of monetary 

gains and losses. 

 According to Discounted Utility Theory, the utility associated with future 

consumption is discounted by a constant value as an exponential function of time.  It can 

be mathematically stated that the utility (U) obtained from choosing a specific 

consumption profile is: U(co,…, cT) = 
T

t 0

δ
t 
 * u(ct), where t is time, u(ct) is the utility of 

an item of consumption at time t, and δ is the person’s discount rate.  In other words, the 
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amount of utility obtained from choosing a consumption bundle is equal to a sum of the 

utilities from all the options with one caveat: future consumption is discounted as an 

exponential function of the discount rate, δ, and the delay to consumption, t.  The appeal 

of this model is in its simplicity and that it models an important observation.  Individuals 

do tend to discount the value of money that could be received in the future compared to 

money available immediately, and tend to discount the value of money more as the time 

of receiving it becomes more delayed (Frederick et al., 2004).  

Despite the appeal of Discounted Utility Theory, there is an important pattern of 

behavior that it does not adequately capture.  It has been observed that individuals’ 

preferences for monetary rewards often reverse when delays to both rewards are 

incremented by a constant amount (Loewenstein & Prelec, 1992).  For example an 

individual may prefer receiving $1 today to $2 tomorrow, but prefer receiving $2 in 8 

days to $1 in 7 days.  This behavioral pattern violates Discounted Utility Theory, which 

holds that the preference between two options is dependent only on the amount of time 

between them and thus should not switch at any time point (Koopmans, 1960).  

Preference reversals reveal that individuals do not treat all similar intervals between 

rewards equally, and that an exponential model of discounting is not the best fit to actual 

behavior.  Rather, discounting tends to be greater between the present and a future time 

point than it is between two future time points separated by the same temporal interval.  

Individuals are thus more impatient than the standard model of discounted utility 

predicts.   

 By identifying how individuals value money available at different time points, 

many studies have been able to assess individuals’ actual levels of delay discounting 
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(Kirby & Marakovic, 1995; Madden, Begotka, Raiff, & Kastern, 2003; Murphy et al., 

2001; Myerson & Green, 1995; Rachlin et al., 1991; Thaler, 1991).  One way to assess 

this is to ask individuals to make several choices between amounts of money available 

immediately and amounts available in the future, until one uncovers the specific 

immediate monetary values (i.e. immediate equivalents) that the individual values equally 

to specific delayed monetary values.  These specific delayed and immediate values that 

are subjectively valued equivalently can be used to construct indifference curves which 

map out amounts of money available at particular points in the future that are subjectively 

valued equally (i.e. have a similar level of expected utility) to specific amounts of money 

available now.  A number of studies show that intertemporal indifference curves are 

better modeled by hyperbolic or quasi-hyperbolic functions than exponential ones (Kirby 

& Marakovic, 1995; Madden et al., 2003; Murphy et al., 2001; Myerson & Green, 1995; 

Rachlin et al., 1991), which are steeper than exponential functions in short time frames, 

but shallower than exponential functions between time points far in the future (see Figure 

1).  Critically, the shape of hyperbolic and quasi-hyperbolic functions allows these 

models to account for preference reversals, which are not accounted for by the 

exponential discounting model of Discounted Utility Theory.   

Just as individuals differ in their risk preferences, individuals differ in their time 

preferences.  Since individuals tend to discount delayed rewards (i.e. are delay aversive), 

as mentioned earlier, these differences tend to be differences in levels of discounting 

rather than qualitatively different time preferences (i.e. delay averse vs. delay seeking).  

The steepness of an individual’s indifference curve is a function of that person’s delay 
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discount rate.  Steeper decreasing curves reflect a higher discount rate (i.e. greater 

preference for incentives available sooner) than do shallower decreasing curves.   

 

 

Figure 1: Intertemporal Choice Indifference Curves.  Discount functions showing the 

present value of money that is subjectively equivalent to a constant amount of money 

available at various points in the future.  Exponential discounting assumes constant 

discounting over time while hyperbolic discounting assumes faster discounting at shorter 

time scales than at longer time scales.  Here, exponential discounting is described by a 

function of this form: Present Value = Ve^(-KD).  In contrast, hyperbolic discounting is 

described by a function of this form: Present Value =  V/(1+KD).  K is the discount rate, 

and is individual specific since different people discount the value of delayed incentives 

by varying degrees.  Larger values of K indicate greater value placed on immediate 

relative to delayed incentives.  V is the objective value of money, and here V = 1.  D is 

the Delay until payment, and is usually expressed in days.  Figure modified from Berns, 

Laibson, & Loewenstein (2007).    
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Although the model of Discounted Utility Theory does not specify that there 

should be different discount rates for different types of delayed outcomes, the level of 

delay discounting is a function of both the valence and magnitude of a monetary outcome 

(Frederick et al., 2004).  As with gains, individuals tend to discount the value of losses in 

the future relative to immediate losses.  They typically prefer losing an equivalent amount 

of money in the future to losing the same amount immediately.  Additionally, like gain 

discounting, loss discounting is well modeled by hyperbolic or quasi-hyperbolic 

discounting functions  (Estle, Green, Myerson, & Holt, 2006; Murphy et al., 2001), and 

an individual’s levels of delay discounting for monetary gains and losses are positively 

correlated, suggesting common underlying mechanisms (Murphy et al., 2001).  However, 

numerous studies have reported that individuals discount delayed losses to a lesser extent 

than delayed gains (Baker, Johnson, & Bickel, 2003; Benzion, Rapoport, & Yagil, 1989; 

Estle et al., 2006; Frederick et al., 2004; Murphy et al., 2001).  Furthermore, it has been 

shown that some individuals actually prefer to suffer a monetary loss or experience other 

aversive events sooner rather than later (Frederick et al., 2004). 

 The level of delay discounting also depends on the magnitude of the outcome.  A 

large amount of data indicates that the rate of delay discounting is greater for smaller than 

larger monetary rewards (Benzion et al., 1989; Estle et al., 2006; Green, Myerson, & 

McFadden, 1997; Green, Myerson, & Ostaszewski, 1999; Kirby, 1997; Kirby, Petry, & 

Bickel, 1999; Thaler, 1991).  However, the results of several studies suggest that the 

magnitude of an outcome may have less of an effect on the level of delay discounting for 

monetary losses (Baker et al., 2003; Estle et al., 2006).   
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Similarities and Differences between Intertemporal Choice and Choice involving Risk 

While intertemporal choice and choices involving risk have typically been treated 

separately in economics, there are similarities between these two types of choices 

suggesting that both types of choices may rely on similar underlying processes.  Across 

individuals, preferences for certainty and immediacy are positively correlated (Mitchell, 

1999; Myerson, Green, Hanson, Holt, & Estle, 2003; Richards, Zhang, Mitchell, & de 

Wit, 1999).  Additionally, just as individuals tend to discount delayed rewards relative to 

immediate rewards of the same magnitude, individuals tend to discount the maximum 

value of risky rewards relative to certain rewards of the same magnitude.  Furthermore, 

like delay discounting, probability discounting (i.e. discounting of risky rewards) is well 

fit by a hyperbolic discount functions.  More specifically, when probability is converted 

to odds against reward (Odds Against Reward = (1/probability of reward) – 1), the value 

of a risky reward decreases as the odds against reward increases, and this decrement in 

value can be modeled by a hyperbolic curve (Myerson et al., 2003; Rachlin et al., 1991) 

(see Figure 1 for example of a hyperbolic indifference curve).  The steepness of this 

indifference curve reflects the level of an individual’s probability discounting: a steeper 

curve corresponds to greater probability discounting.   

These findings reveal a striking parallel.  In choices involving time, individuals 

tend to place increased value on immediate relative to delayed rewards, while in choices 

involving risk they tend to place increased value on certain relative to risky rewards.  And 

in both types of choices, preference reversals can occur.  In intertemporal choices, an 

initial preference for a small immediate monetary gain over a larger delayed monetary 

gain will change to a preference for the larger delayed gain if a common delay is added to 
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both options, (Frederick et al., 2004).  Similarly, an initial preference for a small certain 

monetary gain over a larger risky monetary gain will shift to a preference for the larger 

riskier gain if the probabilities of both options are reduced by a common ratio (Allais, 

1953; Kahneman & Tversky, 1979).   

It has in fact been theorized that individuals may discount the future precisely 

because it is risky (Keren & Roelofsma, 1995).  Delayed rewards are always somewhat 

ambiguous, an individual never knows with certainty what the future will bring, and does 

not know whether or not they will be able to receive a reward in the future.  If people 

discount rewards available in the future because they are less certain than immediate 

rewards, then the special weight given to immediacy could be due to a preference for 

certainty.   

 Despite the similarities between choices involving risk and intertemporal choices, 

there are also differences between both types of discounting, which have led others to 

argue against a single process account of probability and delay discounting (Christensen, 

Parker, Silberberg, & Hursh, 1998; Green & Myerson, 2004).  Different magnitudes of 

monetary gain have divergent effects on each type of discounting.  While levels of delay 

discounting become lower as the amount of the monetary gains increase, levels of 

probability discounting become higher (Christensen et al., 1998; Estle et al., 2006; 

Myerson et al., 2003).  Additionally, there is some evidence that impulsivity, which can 

be defined as the tendencies to give into urges and to respond quickly without planning 

(Buss & Plomin, 1975), may have divergent relationships with each type of discounting.  

Many studies have found positive correlations between impulsivity and levels of delay 

discounting of monetary gains (Kirby et al., 1999; Madden, Petry, Badger, & Bickel, 
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1997; Mitchell, Fields, D'Esposito, & Boettiger, 2005; Petry, 2001, 2002; Reynolds, 

Richards, & de Wit, 2006).  In contrast, a study that has investigated the relationship 

between impulsivity and probability discounting of monetary gains found a negative 

correlation (Mitchell, 1999).  The relationships between each type of discounting and 

impulsivity will be more fully explained in Chapter IV. 

 

Brain Regions involved in Value Prediction 

 

Discussion of Neuroeconomics 

 The interdisciplinary field of neuroeconomics, located at the crossroads of 

psychology, economics, and neuroscience, is broadly concerned with uncovering how 

individuals make value-based decisions.  The answer provided by standard economic 

theory is straightforward; people make choices that maximize their level of utility.  

According to this view, utility is not seen as something that can be directly measured, but 

is rather something that can only be inferred by the choices that someone makes.  A very 

different view taken by those studying neuroeconomics is that it should be possible to 

measure the predicted level of utility associated with different options by recording the 

activity of brain regions that respond to the subjective value of the options.  Knowing 

how the brain codes for subjective value should help predict what choices individuals 

will make, if the assumption holds that options that are valued highly will be chosen.   

 The search for the neural substrates of utility is not only concerned with how the 

brain codes for the subjective value of monetary options, but is also concerned with how 

the brain codes for the value of other types of rewards and aversive events, such as 
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receiving food and being attacked by a predator.  Humans and other animals make 

choices to approach objects that are positively valued, and make choices to avoid objects 

that are negatively valued.  Brain regions that represent subjective value probably 

developed to represent the value of rewards and aversive events broadly in order for an 

organism to make choices that increased their inclusive fitness.    

 In this section, I will discuss which brain regions have been associated with 

positive and negative valuation generally, by focusing on which regions are associated 

with coding for the prediction of rewards, such as money and food, and which are 

associated with coding for the prediction of aversive events, such as losing money or 

being exposed to an electric shock.  I will largely limit the discussion in this section to the 

neural correlates of value prediction in non choice situations; how subjective value is 

represented in the brain in choice situations will be covered in the section entitled 

“Neuroeconomics of Choice”.  

 

Predicted Positive Value 

 Research has demonstrated that midbrain dopamine neurons have an essential role 

in the prediction of positive value.  Midbrain dopamine neurons in the substantia nigra 

and ventral tegmental area in nonhuman primates phasically fire upon exposure to 

conditioned stimuli (i.e. sensory cues) that predict rewards (Schultz, 2006; Schultz, 

Dayan, & Montague, 1997).  One interesting property of these neurons is that in addition 

to coding for reward prediction, they also code for whether or not the prediction was 

accurate (i.e. prediction errors), consistent with computational models of temporal 

difference learning (Schultz et al., 1997).  Initially, before an animal has learned that a 



18 

 

particular conditioned stimulus (CS) leads to reward, midbrain dopamine neurons 

respond to the unexpected reward as it occurs.  The initial firing to delivery of an 

unexpected reward appears to reflect a large positive prediction error, since this is a 

neural response in an environmental state that has a higher value than was predicted (i.e. 

there was a reward, but no reward was predicted).  If the reward is repeatedly paired with 

a CS preceding it, over time the dopamine neurons will shift their phasic firing from the 

time of the unconditioned stimulus (US) to the time of the CS.  This neural firing at the 

time of the CS appears to represent a prediction of the reward to come, while the 

subsequent lack of phasic firing at the US appears to indicate that there is no prediction 

error; the reward was fully predicted.  There is also some evidence that dopamine 

neurons code for negative prediction errors; the activity of midbrain dopamine neurons is 

depressed if no reward is available at the predicted time (Hollerman & Schultz, 1998; 

Schultz et al., 1997).     

 Midbrain dopamine neurons not only are sensitive to whether a reward is 

predicted, they are sensitive to other important parameters of reward prediction.  

Dopamine neurons respond to the predicted magnitude of rewards; they fire more for 

predicted rewards of greater than of lesser magnitude  (Tobler, Fiorillo, & Schultz, 2005).  

They also respond to the predicted probability of rewards.  Phasic activity of midbrain 

dopamine neurons to a CS predictive of a risky reward is positively correlated with the 

probability that the reward will occur (Fiorillo, Tobler, & Schultz, 2003; Tobler et al., 

2005).  Importantly, among dopamine neurons, there is a positive correlation between the 

responsiveness to reward magnitude and the responsiveness to reward probability (Tobler 

et al., 2005).  This suggests that dopamine neurons code for the expected reward value 
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(i.e. magnitude x probability), since individual neurons show activity that positively 

scales with both parameters of expected value.   

In addition to responding to the magnitude and probability of predicted rewards, 

midbrain dopamine neurons respond to the predicted delay to rewards.  Midbrain 

dopamine neurons phasically fire more for conditioned stimuli that predict rewards which 

will occur sooner than those which will occur later (Fiorillo, Newsome, & Schultz, 2008; 

Kobayashi & Schultz, 2008).  Additionally, reductions in the firing rate of midbrain 

dopamine neurons as the predicted delay to reward increases on a reward prediction task 

are well fit by a hyperbolic discount function  (Kobayashi & Schultz, 2008).  Critically, 

these reductions may underlie hyperbolic discounting of delayed rewards, since they are 

seen in the neurons of monkeys that exhibit hyperbolic discounting during intertemporal 

choice (Kobayashi & Schultz, 2008).  However, it is unclear whether dopamine neurons 

would discount the value, or even would be involved in predicting the value of delayed 

rewards available at the types of long delays (i.e. days, weeks, or years) that are typical in 

human intertemporal choice tasks, as the paradigm used by Kobayashi & Shultz only had 

delays on the order of seconds.  

In recent years, a number of fMRI studies have looked at the neural correlates of 

predicted rewards in humans.  One paradigm that has proven useful in this regard is the 

Monetary Incentive Delay (MID) task (Knutson, Westdorp, Kaiser, & Hommer, 2000).  

On this task, individuals are presented with a cue that indicates whether they will have 

the opportunity to respond to win an amount of money, to respond to avoid losing an 

amount of money, or to respond for no monetary outcome.  Following each cue and a 

waiting period, individuals then make a response and receive feedback regarding their 
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performance; success on trials occurs only if subjects respond quickly enough.  Because 

success does not always occur, cues indicate the potential to win or lose on the trial, 

rather than indicating there will be a certain outcome.  On trials involving possibilities of 

monetary gain or loss, successful performance on a trial leads to feedback that they won 

or avoided losing the cued amount of money, respectively.  Since subjects must quickly 

respond on the MID task to receive reward, activations during reward prediction in 

studies utilizing the MID task may reflect the enhancement of preparatory motor 

responses based on value prediction, rather than a passive signal of predicted positive 

value per se.  

 Many fMRI studies utilizing the MID task have looked at activations associated 

with predicted value, which is associated with the time of waiting following cue (i.e. CS) 

presentation.   An activation likelihood estimate meta-analysis (ALE: Laird et al., 2005) 

of 20 studies using the MID or other cued-response tasks reveals that activation is greater 

for the prediction of a potential monetary gain than for prediction of a neutral outcome 

(i.e. no predicted monetary reward or loss) in various regions, including the ventral 

striatum, thalamus, and insula (Knutson & Greer, 2008).  Although not found in the meta-

analysis, there is also consistently more activation for the prediction of a potential 

monetary gain than for prediction of a neutral outcome on the MID in another region of 

the striatum, the caudate (Bjork et al., 2004; Juckel et al., 2006; Knutson, Adams, Fong, 

& Hommer, 2001; Knutson, Bhanji, Cooney, Atlas, & Gotlib, 2008; Knutson et al., 2004; 

Knutson, Fong, Adams, Varner, & Hommer, 2001; Knutson, Fong, Bennett, Adams, & 

Hommer, 2003; Samanez-Larkin et al., 2007; Wrase et al., 2007).  Together this suggests 
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that in humans, the ventral striatum, the dorsal striatum (i.e. caudate), the thalamus, and 

insula are all involved in the prediction of rewards. 

 

Predicted Negative Value 

 Understanding how the brain codes for the prediction of stimuli with positive 

value may not tell us about how the brain codes for the prediction of stimuli with 

negative value.  Positive and negative incentives might prime behavior in different 

directions, and the neural substrates of these different types of behaviors may be 

different.  Prediction of items with positive value might generate both positive feelings 

and high arousal (i.e. positive activation) which encourages one to approach them.  In 

contrast, prediction of items with negative value might generate both negative feelings 

and high arousal (i.e. negative activation) which encourages one to avoid them 

(Panksepp, Knutson, & Burgdorf, 2002).  Self-report data has shown that the emotional 

states of positive and negative activation are orthogonal (Russell, 1980), suggesting that 

each of these states has different neural substrates.  Because each type of incentive may 

be primarily linked with one of these states, the neural substrates of value prediction 

might differ depending upon on whether the predicted item is a positive or a negative 

incentive.        

 While some neural substrates of positive and negative value might be different, 

others might be the same.  Some regions of the brain could respond similarly to predicted 

value across valence, which could have a role in increasing arousal and in general 

priming of physical processes towards action.  Conversely, some brain regions could 

respond to both positive and negative value but in different directions; these regions 
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could be particularly important for economic decisions that involve comparing positive 

and negative incentives.  To have a full understanding of how the brain codes for 

predicted value, one must understand both how the brain codes for items with positive 

value and for items with negative value.          

 Although dopamine neurons play a distinct role in the prediction of rewards, their 

role in the prediction of aversive stimuli is less clear.  In contrast to the general 

responsiveness of dopamine neurons to rewards, different dopamine neurons show very 

different responses to predictions of aversive stimuli.  In an electrophysiological study, 

Matsumoto and Hikosaka (2009b) found that some midbrain dopamine neurons were 

excited by a CS predicting an aversive stimulus, while others were inhibited by it.  These 

effects depended on the probability of the prediction, becoming greater as the probability 

associated with the predicted item increased.  While there were two very different 

patterns of dopamine neurons to predictions of aversive stimuli, these neurons tended to 

show only one pattern for the prediction of positive stimuli: excitation.  This study 

suggests that some dopamine neurons code for value on a single scale; by increasing their 

firing when rewards are predicted and by decreasing it when aversive stimuli are 

predicted.  These neurons could prime behavior towards approach of rewards.  Other 

dopamine neurons, however, that are excited by predictions of both positive and negative 

stimuli may instead have a role in increasing arousal.        

 In contrast to the divergent responses of dopamine neurons to stimuli predicting 

negative value, neurons in a region of the lateral habenula have been shown to exhibit 

more homogenous responses to these stimuli.  On tasks involving reward, habenula 

neurons are excited by conditioned stimuli which predict no reward, and on tasks 
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involving aversive stimuli, habenula neurons are excited by predictions of these aversive 

stimuli (Matsumoto & Hikosaka, 2009a).  Like some dopamine neurons, habenula 

neurons appear to code for value on a single scale.  Contrary to the activity patterns of 

these dopamine neurons, however, activity in lateral habenula neurons is greater for 

predictions of more negative stimuli, raising the possibility that neurons of the lateral 

habenula may prime behavior towards avoidance of items with negative value. 

 Researchers have utilized fMRI to look for the neural correlates of predicted 

negative value just as they have to look for the neural correlates of predicted positive 

value.  In their ALE meta-analysis of activation patterns during the MID and other cued-

response tasks, Knutson and Greer (2008) found greater activation for prediction of a 

potential monetary loss than for prediction of a neutral outcome in the dorsal striatum 

(both caudate and putamen), insula, and thalamus.  Notably, activation in the caudate, 

insula, and thalamus was present in their analysis of predicted positive value as well, 

suggesting a role for all three of these regions in prediction of monetary gains and losses.  

The putamen could have a larger role in prediction of negative value than of positive 

value, given that it was only significant in the monetary loss prediction analysis.   

 One should, however, be careful in interpreting these meta-analytic results as 

regions involved in the prediction of negative value.  Many of the studies in the analysis 

used the MID.  As the goal on this task is to respond quickly enough to avoid a loss, 

activations associated with the anticipation period on loss trials might represent 

predictions of no loss rather than predictions of loss per se.  

 One region notably absent from Knutson and Greer’s (2008) meta-analysis of 

prediction of monetary loss is the ventral striatum.   In fact, in their meta-analysis there 



24 

 

was greater activation associated with the prediction of potential monetary gain than with 

the prediction of potential monetary loss in the ventral striatum, suggesting that this 

region has a larger role in the prediction of positive than of negative value.  Larger 

responses to predictions of positive value could be due to the behavior of dopamine 

neurons, as dopamine neurons project to this region (Haber, 2003).  Since more midbrain 

dopamine neurons respond to the predicted value of rewards than of aversive stimuli, this 

could lead to greater activation increases associated with the prediction of positive than 

of negative value in the ventral striatum.  This idea is consistent with the suggestion of 

Knutson and Gibbs that the fMRI BOLD response associated with the prediction of 

reward in the ventral striatum is a function of the release of dopamine in this region 

(Knutson & Gibbs, 2007). 

  

Predicted Expected Value 

 One approach for investigating which regions in the brain are involved in 

valuation of monetary incentives is to look for brain activity that scales with the expected 

value, (i.e. magnitude x probability) of a predicted reward or aversive event.  I have 

already discussed that dopamine neurons respond to both components of the expected 

value of rewards.  Here I will focus on research findings that have looked at responses in 

the human brain to expected value, or its two components (i.e. magnitude and 

probability). 

 Several fMRI studies have looked at how brain activation scales with the expected 

value of monetary rewards in humans, and have revealed a particularly important role for 

the striatum.  During passive monetary reward tasks, activation in the striatum positively 
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scales with the expected value of a predicted reward (Tobler, Christopoulos, O'Doherty, 

Dolan, & Schultz, 2009; Tobler, O'Doherty, Dolan, & Schultz, 2007).  Other evidence 

suggests that striatal activation may also bias selection of options with a high expected 

value.  In choice tasks for monetary rewards available with various probabilities, there is 

more activation in the striatum on trials in which high expected value options are chosen 

than on trials where options with lower expected value are chosen (Christopoulos, Tobler, 

Bossaerts, Dolan, & Schultz, 2009; Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; 

Tobler et al., 2009).     

 Tobler and colleagues (2009; 2007) have also shown that activation in areas of the 

lateral prefrontal cortex (LPFC) scales linearly with the expected value of a predicted 

reward on passive monetary reward tasks, but leave unclear whether a specific portion of 

the LPFC is particularly responsive to expected value.  In one of the fMRI studies by 

Tobler et al. (2007), activation that positively scaled with expected value was seen in the 

DLPFC, but not in the ventrolateral prefrontal cortex (VLPFC).  In contrast, in another 

fMRI study by Tobler and colleagues (2009), it was only seen in the VLPFC.   

 Activation in the striatum not only positively scales with the expected value of 

rewards, but positively scales with both of its components: magnitude and probability.  

Tobler and colleagues have repeatedly shown that the probability of receiving a monetary 

reward as predicted by a cue is positively correlated with activation in the striatum 

(Tobler, Christopoulos, O'Doherty, Dolan, & Schultz, 2008; Tobler et al., 2007).  

Findings from Knuston et al. (2001) reveal that activation in the striatum also responds to 

predicted reward magnitude.  On the MID, there is greater activation in both the ventral 

and dorsal striatum, and in two other regions (i.e. thalamus and dorsal MPFC), for 
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prediction of larger than of smaller rewards.  The increased activation seen in the striatum 

as the expected value of predicted rewards increase or as the components of expected 

value increase reveals that the striatum has an especially important role in predicting the 

value of rewards. 

While research shows that activation in the striatum scales linearly with the 

probability of predicted reward on passive reward tasks, activation patterns in the DLPFC 

associated with the probability of predicted reward appear to be more complex.  In an 

fMRI study, Tobler and colleagues (2008) looked for activation in the brain that showed 

increased activation as an inverse S-function of probability, to see if responses in certain 

regions of the brain responded to probability in a manner consistent with the probability 

weighting function of Prospect Theory (Kahneman & Tversky, 1979).  Compared to a 

linear function, this function overweights low probabilities and underweights high 

probabilities.  Certain options (i.e. options with a probability of 0% or 100%), however, 

are not weighted differently than they would be by a linear function.  They found that 

activation in the DLPFC responded to probability in a distorted manner, and was fit by 

the inverse S-function.  In contrast, activation in the striatum increased linearly as 

probability increased.   

No studies have investigated how activation in the human brain responds to the 

expected value of stimuli with negative values.  A few studies, however, have examined 

how activation scales with the components of expected value (i.e. magnitude and 

probability).  Activation in the striatum positively scales with the probability of a 

predicted aversive event (Bach, Seymour, & Dolan, 2009).  This suggests that the 
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striatum has a similar role in signaling the probability of positive and negative stimuli, 

responding more as predicted stimuli are more likely to occur.   

It is unresolved, however, whether regions of the brain respond to the predicted 

magnitude of positive and negative stimuli in a similar way.  Knutson et al. (2001) found 

similar responses to the predicted magnitude of potential gains and losses on the MID in 

several regions.  Activation in the dorsal striatum, thalamus, and dorsal MPFC were 

greater for both predicted gains and losses of larger magnitudes than of smaller 

magnitudes.  In contrast, on a choice task between two risky options that could both lead 

to monetary gain or loss, Tom and colleagues (2007) found regions that had increased 

activation as the magnitude of a potential gain increased, but found no regions that had 

increased activation as the predicted magnitude of a potential loss increased.  

Interestingly, activation in the ventromedial prefrontal cortex (VMPFC) and striatum (i.e. 

ventral striatum and caudate) was shown to respond divergently to the predicted 

magnitudes of each type of incentive; activation increased in these regions as the 

predicted magnitude of a gain increased, but decreased as the predicted magnitude of a 

loss increased.  This divergent response profile makes these regions good candidates for 

signaling economic value, because their patterns of response suggest they code for 

positive and negative predicted value on a single scale.  The conflicting findings across 

studies, however, leave unresolved how the brain responds to the magnitude of negative 

stimuli.  
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Section Summary 

  This section has reviewed findings of how the brain responds to predictions of 

positive and negative value.  This has revealed the importance of midbrain dopamine 

neurons, particularly in signaling positive value.  It has also shown that a key region 

responsive to value is the striatum.  This region responds to predictions of positive value, 

and has responses which directly scale with the expected value, magnitude, and 

probability of rewards.  Activation in the striatum also responds to predictions of negative 

value and directly scales with the probability of predicted aversive events.  Less is 

known, however, about how the brain responds to the magnitude and expected value of 

negatively valued stimuli. 

 There are some suggestions that the DLPFC is involved in the prediction of value 

as well, but it does not appear to have a central role in such processes.  An interesting 

possibility suggested by one of the studies reviewed in this section is that probability 

might be coded differently in the DLPFC than in other regions responsive to value, such 

as in the striatum.  It could respond differently to other components of prediction as well, 

such as delay.  In contrast, there is little evidence that the PPC is responsive to basic 

predictions of value.  The next section will focus specifically on the results of 

neuroeconomic studies of choice and will illustrate findings suggesting that the DLPFC 

and PPC do both have important roles during choice.  
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Neuroeconomics of Choice 

 

Subjective Value during Choice 

 Studying how the brain responds to predictions of rewarding or aversive stimuli in 

general can tell us much about the brain processes involved in economic decision 

making, but it has two important limitations.  First, some regions that respond to value 

during choice situations may be different from those that respond to value during non-

choice tasks.  Second, not everyone values different incentives the same; individuals have 

different preferences.  Because of this, value related responses in the brain that lead to 

choices might be better captured by looking for activity that scales with behavioral 

preferences (i.e. with subjective values) than with general properties of stimuli.  Activity 

correlated with an individual’s subjective valuations of items in risky choice or 

intertemporal choice tasks would be expected to directly lead to the risky or intertemporal 

choices they make.   

Several fMRI studies have taken this approach by looking for activity that scales 

with subjective value on intertemporal choice or risky choice tasks involving positive 

incentives.  To capture how each individual subjectively values items on these tasks, 

investigators have fit models (e.g. hyperbolic models of discounting) to each individual’s 

choices.  The results of studies using this approach have revealed a remarkable similarity 

in the regions that are responsive to the subjective value of risky monetary gains and 

delayed monetary gains.  In intertemporal choice tasks, it has been consistently shown 

that activation in the striatum, MPFC, and posterior cingulate is positively correlated with 

the subjective value of delayed rewards (Kable & Glimcher, 2007, 2010; Peters & 
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Buchel, 2009, 2010).  In risky choice tasks as well, several studies have shown that 

activation in these regions scales with the subjective value of risky rewards (Levy, Snell, 

Nelson, Rustichini, & Glimcher, 2010; Peters & Buchel, 2009).  Together with the 

findings in the last section, this reveals that the striatum is both responsive to prediction 

of rewards in general and to the subjective value of rewards on choice tasks.   

There is some evidence that the MPFC and posterior cingulate also play a role in 

signaling the subjective value of negative incentives during choice.  FitzGerald and 

colleagues (2009) found that activation in both of these regions was associated with the 

difference in subjective value between two positive incentives and between two negative 

incentives on a basic choice task that did not involve intertemporal or risk components.  

However, it is unclear whether the MPFC and posterior cingulate would respond to the 

subjective value of loss options on intertemporal or risky choice tasks, as no prior studies 

have investigated how the brain responds to the subjective value of negative incentives 

during intertemporal or risky choice.  

What about the DLPFC and PPC?  There are some clues that the DLPFC may 

play a role in valuation on intertemporal and risky choice tasks.  Research has shown that 

activation in the DLPFC scales with subjective value in a similar manner as does 

activation in the MPFC (i.e. VMPFC) in tasks that involve bidding for positive or 

negative incentives (Plassmann, O'Doherty, & Rangel, 2007; Plassmann, O'Doherty, & 

Rangel, 2010), and on a basic choice task (Hare, Camerer, & Rangel, 2009).  Furthermore 

disruption of the DLPFC with repetitive Transcranial Magnetic Stimulation (rTMS) 

affects subjective valuation as measured on a bidding task (Camus et al., 2009).  It could 

be that activation associated with subjective valuation in the DLPFC has not adequately 
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been captured by the models used to capture subjective value in past risky and 

intertemporal choice studies.  However, another possibility is that the DLPFC is not 

involved in valuation on these tasks.  Both the DLPFC and PPC could be involved in 

other functions during intertemporal and risky choice. 

   

Intertemporal Choice 

So far, I have argued how studying regions responsive to subjective value can 

inform us about what choices people make.  While it should, there are other approaches 

to studying the neural mechanisms of choice.  For example, investigators can look for 

activity that is associated with different types of choices or can see how choices are 

different when the functions of a brain region are disrupted.  Studies using these 

approaches have revealed the importance of the DLPFC and PPC in intertemporal 

choices, and the DLPFC in choices involving risk.   

The first clue that the DLPFC and PPC have an important role in intertemporal 

choice comes from an fMRI study by McClure and colleagues (McClure, Laibson, 

Loewenstein, & Cohen, 2004).  They revealed that two sets of brain regions, which the 

authors labeled Beta and Delta regions, had different patterns of activation in 

intertemporal choices between smaller sooner monetary rewards and larger more delayed 

monetary rewards.  The terms for these regions were taken from a theory of delay 

discounting that contains two components– a Beta variable that captures immediacy bias 

in choice and a Delta variable that discounts at a constant rate as a function of time 

(Phelps & Pollak, 1968).  McClure and colleagues identified Beta regions as regions that 

were preferentially activated for intertemporal choices in which one of the two choice 
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options was immediate.  These regions included the ventral striatum, MPFC, and 

posterior cingulate cortex.  Notably, these are the same regions that have consistently 

shown activation patterns that scale with the subjective value of options in intertemporal 

choice tasks.  The Delta regions, however, were similarly activated on intertemporal 

choices with and without an immediate option, and included the right DLPFC and 

bilateral PPC.  As these regions are not typically associated with subjective valuation of 

options in intertemporal choice tasks, it is unclear what the functions of these regions 

were during choice.  They did appear to be involved in the choice process itself, as they 

were preferentially activated by more difficult choices.   

Using a similar design as McClure and colleagues (2004), several studies have 

replicated the effects, both with intertemporal choice for monetary rewards and for juice 

rewards (McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007; Xu, Liang, Wang, Li, 

& Jiang, 2009).  As in the original study by McClure et al. (2004), these studies found 

that the same two sets of regions were differentially activated depending on whether a 

choice was immediate.  These consistent effects indicate that the DLPFC and PPC both 

have an important role in intertemporal choices, and suggest it is different from that of 

the regions that have typically been responsive to the subjective values of items during 

intertemporal choice. 

Importantly, fMRI data suggests that the DLPFC and PPC bias intertemporal 

choice behavior differently than do the ventral striatum, MPFC, and posterior cingulate.  

The DLPFC and PPC may bias choice towards options of better long-term value, as there 

is greater activation in these regions when individuals choose larger more delayed 

rewards in intertemporal choice tasks (Weber & Huettel, 2008; Wittmann, Leland, & 
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Paulus, 2007).  In contrast, the ventral striatum, MPFC, and posterior cingulate may bias 

choice towards options of better immediate value, as activation in this set of regions 

predicts a greater chance of choosing a small immediate over a larger delayed reward 

(McClure et al., 2007).  Similarly, there is greater activation in the striatum for choice of 

small immediate than for choice of larger delayed options (Wittmann, Lovero, Lane, & 

Paulus, 2010).  The relative activity in these two sets of regions as well, may have an 

important role in choice.  McClure et al. (2004) observed that when subjects chose the 

larger later reward rather than the smaller immediate reward, there was more activation in 

the Delta regions (including the DLPFC and PPC) than in the Beta regions (i.e. the 

ventral striatum, MPFC, and posterior cingulate). 

If the DLPFC and PPC bias intertemporal choices towards choice of the better 

long-term option, then it might be predicted that individuals with lesions to these regions 

would be more likely to choose immediate rewards in an intertemporal choice task than 

healthy controls.  Fellows & Farah (2005), however, did not find any differences between 

the intertemporal choice behavior of individuals with lesions to either the left or right 

lateral PFC and that of individuals without lesions.  There were some limitations to the 

study, however, that make it hard to assess the findings.  Lesions to different individuals 

largely did not overlap; some individuals had lesions to the left PFC while others had 

them to the right, and different individuals had lesions to different regions of the lateral 

PFC.  These differences make it possible that many of these individuals did not have 

lesions to the DLPFC regions important for intertemporal choices.  Alternatively, effects 

were not seen because of limitations of the lesion approach; following brain damage, 

intact brain areas can sometimes compensate for the functions of the damaged ones.  
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An alternative approach to see whether or not a brain region has a necessary role 

in intertemporal choice behavior is to use low frequency rTMS to temporarily suppress 

functioning in a brain region.  This method has several important advantages over the 

lesion approach.  With rTMS, one can target the same region in different individuals, and 

the transient effects of the stimulation make it unlikely that a different brain region will 

be able to compensate for the disrupted functions of the targeted region. 

Recently, using low frequency rTMS, Figner and colleagues (2010) were able to 

demonstrate that the DLPFC has an essential role in helping individuals make choices for 

better long-term, but worse immediate rewards.  Following disruption of the left DLPFC, 

but not of the right DLPFC, individuals were more likely to choose a small immediate 

reward (and less likely to choose a larger delayed reward) on an intertemporal choice task 

than were individuals who had sham stimulation.   

There were several important patterns of the rTMS effects.  First, rTMS did not 

affect intertemporal choices that involved only delayed reward options; it only affected 

choices that involved both an immediate and a delayed option.  This suggests that 

DLPFC functions may only be needed to choose larger delayed rewards when the other 

option is immediate. Second, the effects of rTMS were greatest on difficult trials (i.e. 

where there was an intermediate difference in monetary value between both options).  

Individuals were more likely to choose the immediate option following real rTMS 

administered to the left DLPFC on these trials, suggesting that the DLPFC has a greater 

role in helping individuals choose delayed rewards when the two options are close in 

subjective value.  However, as stimuli were not matched for subjective value, it is unclear 

whether the options on the “difficult trials” were closer in subjective value than the 
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options on other trials.  Third, rTMS affected choice but did not affect valuation of the 

items on the choice task, suggesting that the DLPFC does not bias choices because it 

evaluates the desirability of items differently than do other regions.  However, this last 

suggestion is only tentative, as the valuation task used by Figner et al. had few trials and 

thus may have had low power to find effects.   

The study by Figner and colleagues has revealed that the DLPFC has a critical 

function in intertemporal choices.  But it leaves several unanswered questions.  One 

question is whether only the left DLPFC is necessary for making better long-term 

choices.  As only disruption of the left DLPFC affected choice in their study, one might 

conclude that the right DLPFC does not help individuals make such choices.  However, 

other studies have found activation associated with intertemporal choices in the right 

DLPFC or in nearby regions of the right LPFC (McClure et al., 2007; McClure et al., 

2004; Xu et al., 2009), suggesting that both sides may have a role in helping individuals 

make better long-term choices.  It is possible that Figner and colleagues were not able to 

find an effect following disruption of the right DLPFC due to a lack of statistical power 

or due to specific components of the intertemporal choice task used. 

An even more critical question that has currently been unaddressed is whether 

disruption of the PPC would similarly affect choice.  As reviewed in this section, patterns 

of activation in the PPC and DLPFC are similar in intertemporal choice tasks (McClure et 

al., 2007; McClure et al., 2004; Xu et al., 2009), and findings show that activation in the 

PPC predicts choice of larger delayed rewards (Wittmann et al., 2007).  This suggests 

that disruption of the PPC would also lead to greater choice of small immediate over 

larger delayed rewards, and that both the PPC and DLPFC may perform similar functions 
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during intertemporal choice.  But as no studies have looked at how intertemporal choices 

are affected by neuromodulation or brain lesions to the PPC, this is only a prediction.  

Disruption of both regions could affect choice in a similar direction (e.g. towards greater 

choice of better long-term rewards), but for different reasons.  The findings discussed 

implicating the DLPFC, but not the PPC in valuation, suggest that the DLPFC is more 

likely than the PPC to be involved in valuation processes during intertemporal choice.    

Another critical question raised is whether disruption of the DLPFC or PPC 

would have similar effects in intertemporal choices involving losses.  Delay discounting 

of gains and losses are positively correlated (Murphy et al., 2001) and are fit by the same 

type of hyperbolic function (Baker et al., 2003; Kirby & Marakovic, 1995; Murphy et al., 

2001; Rachlin et al., 1991), suggesting that some processes in the brain might optimize 

choices of immediate vs. long-term value in both domains.  However, the discussion of 

valuation processes revealed that brain responses to predictions of positive and negative 

value are not identical; while some regions have increased activation to the prediction of 

both positive and negative incentives (e.g. dorsal striatum), others are more likely to have 

increased activation for prediction of incentives of one domain than the other (e.g. greater 

responses to gain in the ventral striatum).  This raises the possibility that the DLPFC and 

PPC might only have a critical role in choices involving gains. 

The results of an fMRI study by Xu and colleagues (2009) suggest that the 

functions of the DLPFC and PPC may be similar in both intertemporal choices involving 

gains and those involving losses.  Like McClure and colleagues (2004), Xu et al. 

analyzed their fMRI data to look for regions that preferentially responded on trials with 

an immediate option (Beta regions) and for regions that responded similarly on all trials 
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(Delta regions).  Importantly, they did this separately for intertemporal choices involving 

gains and those involving losses.  This analysis revealed similarities between patterns of 

activation for both types of choices.  Although not all regions were identical across 

analyses, for both types of intertemporal choices, the Delta regions included the DLPFC 

and PPC, and the Beta regions included the MPFC and posterior cingulate.       

The study by Xu and colleagues (2009) is only suggestive that the DLPFC and 

PPC have a similar role in intertemporal choices for gains and losses.  Currently, there 

are no findings linking the DLPFC or PPC to specific choices on intertemporal choice 

tasks involving losses.  If the functions of these regions help one select an option that has 

a better long-term value when another option has a better immediate value, one might 

expect disruption of these regions to lead to greater selection of larger delayed over 

smaller immediate losses. 

 

Choice Involving Risk 

 Investigators have also looked for activation associated with different choice 

patterns in risky choice tasks, particularly activation that is associated with choosing 

more risky options (i.e. less probable) but potentially more rewarding options and 

activation that is associated with choosing smaller less risky (i.e. more certain) options.  

Importantly, this has suggested that the DLPFC has a key role in risky choice tasks.  

 A study by Matthews and colleagues has shown that choosing less risky rewards 

is associated with activation in the DLPFC (Matthews, Simmons, Lane, & Paulus, 2004).  

They found that there is more activation in the left DLPFC before selection of a certain 

monetary reward than before selection of a larger risky monetary reward.  In contrast, 
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activation in the striatum, MPFC, and posterior cingulate has been associated with 

choosing riskier reward options (i.e. less probable) on choice tasks (Ernst et al., 2004; 

Weber & Huettel, 2008).  Notably these are the same regions that have been implicated in 

subjective valuation of risky rewards (Levy et al., 2010; Peters & Buchel, 2009).  One of 

these regions in particular, the striatum, appears to have a key role in biasing selection of 

risky options.  Activation in the striatum, particularly in the ventral striatum, is not only 

associated with making risky choices, but has repeatedly been shown to predict whether 

or not a risky choice will be made.  Matthews and colleagues (2004) found that there was 

more activation in the MPFC, ventral striatum, and caudate before selection of a risky 

option which could lead to a large gain or loss than before selection of a certain option 

for a small monetary gain.  Similarly, Kuhnen and Knutson (2005) found that activation 

in the ventral striatum increased the chances of choosing a risky monetary option after 

having chosen a safe option on a financial decision making task.  The ventral striatum 

plays a role in biasing selection of risky options in rodents as well.  Cardinal and Howes 

(2005) found that rats with lesions to part of the nucleus accumbens chose more small 

certain reward options and fewer potentially larger risky reward options than did control 

rats.     

Together these findings suggest that the DLPFC has a different role in choices 

involving risk than do the MPFC, striatum, and posterior cingulate.  Specifically, the 

latter regions appear to bias behavior towards greater risk seeking, while the DLPFC 

appears to bias behavior towards greater risk aversion.  However, the fMRI study 

reviewed implicating the DLPFC in such processes is only suggestive of such a role for 
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the DLPFC, since results from fMRI cannot be used to infer whether a brain region has 

an essential role in a behavior.   

 Studies using neuromodulation methods, however, have revealed that the DLPFC, 

particularly the right DLPFC, does have an essential role in helping individuals make 

choices for less risky options.  Knoch and colleagues (2006) found that disruption of the 

right DLPFC with low frequency rTMS led to greater selection of riskier options than did 

sham stimulation on Roger’s Risk Task (Rogers et al., 1999).  Following disruption of the 

right DLPFC, individuals were more likely to choose the less probable, but potentially 

more rewarding riskier options (and were less likely to choose the safer options).  Fecteau 

and colleagues (2007) have also shown that the right DLPFC has an important role in 

helping individuals avoid risk.  They found that increasing activity in the right relative to 

the left DLPFC with transcranial Direct Current Stimulation (tDCS) increased choice of 

the riskier options on Roger’s Risk Task.  Together, these findings suggest that the right 

DLPFC biases individuals towards choosing less risky options.  One should not, 

however, rule out a similar role for the left DLPFC, because some evidence suggests that 

both sides of the DLPFC may play a similar role in risky choice.  One tDCS study found 

similar changes in preference on Roger’s Risk Task both after increasing activity in the 

left relative to the right DLPFC and after increasing activity in the right relative to the left 

DLPFC (Boggio et al., 2010). 

 These neuromodulation studies have revealed that the DLPFC helps individuals 

avoid taking risks, but leave several critical questions unanswered.  First, it is unclear 

whether the DLPFC biases behavior towards risk aversion for all levels of risk (i.e. all 

probabilities of reward), or only for some levels of risk.  It may be that the DLPFC 
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becomes increasingly important in preventing choice of risky rewards as the probability 

of obtaining them decreases.  Or the relationship between risk level and choice could be 

more complex.  Either way, one might suppose that the DLPFC biases behavior 

differently depending on the risk level, given that activation in the DLPFC has been 

shown to scale differently with the probability of rewards than does activation in a region 

that biases behavior towards choice of risky options, the striatum (Tobler et al., 2008).  

A second important question is whether the DLPFC helps individuals avoid 

taking risks for choices that do not involve the possibility of a loss.  It could be that 

different brain regions bias behavior towards risk aversion in choices involving gains and 

in choices involving losses, and that the DLPFC is only involved in helping people avoid 

taking risks that can lead to losses.  This possibility cannot be ruled out, since prior 

neuromodulation studies of risky choice have used Roger’s Risk Task, which requires 

subjects to make a choice between two options that can both lead to a gain or a loss.   

 

Section Summary 

This section has revealed that the DLPFC has an important role in both 

intertemporal choice and choice involving risk.  Disruption of the DLPFC increases 

choice of small immediate rewards during intertemporal choice and increases choice of 

riskier rewards during risky choice.   This suggests that a similar process of the DLPFC 

might help individuals choose less risky monetary rewards and large rewards that are 

delayed.   The PPC as well, appears to have an important role in intertemporal choice, 

similar to that of the DLPFC.  An important question is what functions are performed by 

the DLPFC and PPC during economic choice.  In order to better understand what they 
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may be, the next sections of this chapter will review research on the functions of these 

two regions of the brain.    

 

Functions of the DLPFC 

 

Divisions of the Prefrontal Cortex 

  The prefrontal cortex (PFC) is the most anterior part of the frontal cortex.  In 

humans and other primates, it consists of all cortical regions anterior to the motor and 

premotor regions of the frontal lobe.  It can be divided into three large subregions: lateral 

prefrontal cortex (LPFC), orbitofrontal cortex (OFC), and medial prefrontal cortex 

(MPFC).  Based on cytoarchitectonic features, the PFC can be further divided into a 

number of smaller subregions.  The most frequently used system for humans is that of 

Korbinian Brodmann (1909), and using this terminology the human PFC consists of 

Brodmann Areas (BA) 8-13, 32, 46, and 47 (Fuster, 1997). 

 Each subregion of the PFC is broad and is involved in many diverse brain 

functions.  However, it has been generalized that while the OFC and MPFC are involved 

in emotional functions, the LPFC is involved in other, more cognitive functions (Fuster, 

2001).  Here I will focus on the role of the LPFC, with an emphasis on that of the dorsal 

section (i.e. the DLPFC).   

 The LPFC can be subdivided into two regions, the DLPFC lying along the middle 

and superior frontal gyrii, containing BA 9,46, and 8, and the VLPFC lying along the 

inferior frontal gyrus, made up of BA 45, 44, and the lateral aspect of BA 47 (Petrides, 

2005).  Rostral to both regions is BA 10, the frontopolar cortex, which contains lateral, 
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medial, and orbital aspects.  This section will predominantly focus on the role of a 

specific portion of the DLPFC, that of the mid-DLPFC which contains BA 9 and 46 (or 

alternatively areas 9, 46, and 9/46 (Petrides, 1998b), following the PFC parcellation of 

Petrides and Pandya (Petrides & Pandya, 1994).  Discussion is focused on this portion of 

the DLPFC because Experiments 1 and 2 of this dissertation both involve disruption of 

this area, given its known involvement in both intertemporal choice and choice involving 

risk (Fecteau et al., 2007; Figner et al., 2010; Knoch et al., 2006; Matthews et al., 2004; 

McClure et al., 2007; McClure et al., 2004; Xu et al., 2009) (see Figure 2 for location of 

regions). 

 

 

Figure 2:  Location of the Mid-DLPFC.   Figure shows Left Lateral view of the human 

brain with Brodmann areas (Brodmann, 1909) listed.  Areas 9 and 46 of the Mid-DLPFC 

are highlighted in white.  Figure modified from Caspers et al. (2006). 
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Theories of lateral PFC function with a focus on functions of the DLPFC 

 Even though the LPFC is involved in many functions, this section will largely 

focus on the role of this region in the functions of working memory and cognitive control, 

both which may be hypothesized to explain some of the contributions of the LPFC to 

economic decision making.    

Working Memory 

 Working memory has been defined by Knight and Stuss (2002, p. 577) as the 

“ability to maintain information over a delay and to manipulate the contents of this short-

term memory storage system.”  A large amount of research implicates the DLPFC, and 

the LPFC more broadly, in working memory processes.  Some neurons in the mid-

DLPFC of the primate fire during the delay period of spatial delayed response tasks, 

some have firing that is sensitive to the duration of delay, and some are unresponsive 

during this delay period when there is no memory load (Goldman-Rakic, 1987).  All of 

these findings suggest that activity in the DLPFC is involved in maintaining information 

online.  Additionally, findings from lesion studies more directly show that the DLPFC is 

important for working memory, since monkeys with lesions to this brain region perform 

poorly on working memory tasks (Butters & Pandya, 1969; Butters, Pandya, Sanders, & 

Dye, 1971; Goldman-Rakic, 1987).  Other regions of the LPFC, however, are also 

implicated in working memory.  Primate neurophysiological studies have demonstrated 

that neurons throughout the LPFC fire during the delay period of delayed response tasks 

(Bodner, Kroger, & Fuster, 1996; Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster & 

Alexander, 1971; Miller, Erickson, & Desimone, 1996).   
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Research with humans also indicates that the DLPFC is involved in working 

memory.  A meta-analysis of a large number of human Positron Emission Tomography 

(PET) and fMRI studies found bilateral activation in both the DLPFC ( BA 9, 46) and 

VLPFC (BA 44) associated with working memory processes (Cabeza & Nyberg, 2000).  

Additionally, disruption of the DLPFC with rTMS has repeatedly been shown to impair 

performance on working memory tasks (Mottaghy, Doring, Muller-Gartner, Topper, & 

Krause, 2002; Mottaghy, Gangitano, Sparing, Krause, & Pascual-Leone, 2002). 

 Several different theories have been proposed to account for the role of different 

parts of the LPFC in working memory.  Goldman-Rakic’s strong view of working 

memory holds that the lateral PFC is organized along a dorsal-ventral division with 

different regions of the LPFC involved in similar working memory processes, but 

involved in working memory processes for content of different domains (Goldman-

Rakic, 1987, 1998).  According to this view the mid-DLPFC is involved in spatial 

working memory, and the mid-VLPFC is involved in non-spatial object working 

memory.  Although some non-human primate lesion and electrophysiological studies 

show such regional distinctions for visuospatial working memory (Levy & Goldman-

Rakic, 2000), a meta-analysis of human functional neuroimaging imaging studies of 

working memory does not support this distinction (Wager & Smith, 2003).  Evidence that 

many prefrontal neurons show delay-period activity for both object and spatial 

information are also non-supportive (Rao, Rainer, & Miller, 1997).  

A different view is that of Petrides, whose theory holds that the DLPFC and 

VLPFC are involved in different working memory processes, rather than in different 

working memory content domains (Petrides, 1998a, 2005).  This view holds that the mid-
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DLPFC (areas 46 and 9) is involved in monitoring of stimuli in working memory (i.e. 

keeping track of the current status of stimuli in relation to other stimuli in working 

memory (Champod & Petrides, 2007)), and in working memory processes that are 

thought to require monitoring, such as manipulation (i.e. rearrangement) of stimuli in 

working memory.  In contrast, this view holds that the mid-VLPFC is involved in first-

order executive processes involved in explicit encoding and retrieval.  Several functional 

imaging studies support these claims (Champod & Petrides, 2007, 2010; Doyon, Owen, 

Petrides, Sziklas, & Evans, 1996; Petrides, Alivisatos, & Evans, 1995).   

 Some evidence suggests that the DLPFC is only necessary for working memory 

tasks when distracters are present.  Monkeys with lesions of the DLPFC perform 

normally on delayed response tasks if visual distractions are absent during the delay 

period (i.e. when the lights of the room are turned off), but perform poorly when 

distractions are present (Malmo, 1942).  This has lead to the suggestion that the DLPFC 

is involved in executive aspects (i.e. executive attention) of working memory, rather than 

in basic maintenance (Kane & Engle, 2002).  Executive attention, or keeping memory 

representations active in the presence of interference, can be considered to rely on the 

function of cognitive control, which will be discussed shortly.   

Meta-analytic findings also show a role for the DLPFC beyond the basic storage 

of information in working memory. A meta-analysis of human functional neuroimaging 

studies reveals that there is more activation in the bilateral mid-DLPFC and bilateral 

frontal pole for tasks that engage working memory storage and executive processes (i.e. 

manipulation, temporal order memory, or updating) than for those that only engage 

working memory storage (Wager, Jonides, & Reading, 2004).  Of note, these findings are 
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consistent with the view of Petrides (1998a; 2005), since working memory tasks that 

engage executive processes can be said to require monitoring of information in working 

memory.   

Cognitive Control  

 Many investigators have delineated a more executive role for the LPFC that goes 

beyond its role in working memory.  One influential theory of PFC function is that it is 

important for cognitive control, which can be defined as top-down processing used to 

guide behavior towards internal intentions or states (Miller & Cohen, 2001).  More 

specifically, according to this theory, the PFC is said to be involved in actively 

maintaining goals, attentional templates, and/or rules.  These PFC activity patterns are 

said to provide bias signals throughout much of the brain so that an individual can 

perform a task a particular way.  Cognitive control can be used to help individuals select 

weaker, task relevant responses over more frequently used ones that have more 

established neural pathways.  This control is important for many processes including 

selective attention, behavioral inhibition, working memory, rule-based behavior, and 

goal-directed behavior.   

 Evidence for the cognitive control theory of PFC functions comes from human 

and monkey lesion studies showing that those with prefrontal cortex damage have 

problems with perseveration and distractibility, and perform poorly on tasks that require 

the ability to select a weaker, task relevant response over a more habitual, prepotent 

response (Chao & Knight, 1997; Milner, 1963; Mishkin, 1964; Perret, 1974; Vendrell et 

al., 1995).  Human fMRI evidence suggests that the mid-DLPFC in particular appears to 

be involved in the implementation of cognitive control, as there is more activation in this 
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region during the instruction period of trials when subjects are told to make a less 

habitual response than when they are told to make a more habitual response (MacDonald, 

Cohen, Stenger, & Carter, 2000).  Additional evidence that the LPFC may be important 

in cognitive control comes from findings that many LPFC neurons encode the current 

behavioral context, by exhibiting response patterns that are dependent on task rules 

(Asaad, Rainer, & Miller, 2000; Hoshi, Shima, & Tanji, 1998; White & Wise, 1999).  By 

encoding task rules, these neurons may help bias brain activity to help an individual 

perform behavior consistent with those rules. 

 Several different theories hold that the LPFC is functionally organized in a 

rostral-caudal manner, with more rostral areas involved in more abstract control 

processes than more caudal areas (see Badre & D'Esposito, 2009; Fuster, 2002; O'Reilly, 

2010; Petrides, 2005).  Evidence from fMRI studies is supportive of this, revealing that 

the mid-DLPFC is involved in more abstract control than more posterior DLPFC regions 

(BA 8) and premotor regions (Badre & D'Esposito, 2007; Koechlin, Ody, & Kouneiher, 

2003).  Two theories of rostral-caudal function, the Cascade model of Koechlin and 

Summerfield (2007) and the policy abstraction model of Badre and D’Esposito (2007), 

also hold that organization in the LPFC is hierarchical, such that it is more common for 

rostral regions to influence more caudal regions, than for the reverse.  The findings of an 

fMRI study by Koechlin and colleagues (2003) do suggest that the rostral-caudal axis of 

LPFC function is hierarchically organized, with rostral frontal regions able to account for 

variance in activation in more caudal regions, but not vice versa.   

Dorsal vs. ventral divisions in cognitive control have also been postulated.  

Recently O’Reilly has proposed that the DLPFC provides cognitive control for the 
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brain’s posterior dorsal “how” pathway, and the VLPFC provides such control for the 

posterior ventral “what” (i.e. object and verbal information) pathway (Goodale & Milner, 

1992; O'Reilly, 2010).  According to this framework, the DLPFC is postulated to provide 

cognitive control for transforming perception into action.  This view builds off of 

Goldman-Rakic’s (1987) content model of working memory, but in substituting “how” 

processing for “where” (i.e. spatial information) processing in the dorsal stream, it is also 

able to account for some of the process-related differences in the model of Petrides 

(2005).  Consistent with O’Reilly’s model is evidence showing that the DLPFC is 

involved in rule based response selection (Bunge, 2004).    

 

Functions of the PPC 

 

Divisions of the Posterior Parietal Cortex 

The parietal lobe of the brain lies on the dorsal and lateral surface of the cerebral 

cortex posterior to the frontal lobe and superior to the temporal and occipital lobes.  

There are two major sections, the anterior section of the parietal lobe, which contains the 

somatosensory cortex, and the PPC.  In humans, the PPC can be divided into three major 

sections.  The superior parietal lobule (SPL) which contains BA areas 5 and 7, the 

inferior parietal lobule (IPL) made up of BA 40 (supramarginal gyrus) and 39 (angular 

gyrus), and the intraparietal sulcus (IPS) which separates the inferior and superior regions 

(Caminiti et al., 2010) (see Figure 3). 

Comparison of data from human and monkey studies investigating the functions 

of the PPC are difficult, because the inferior parietal lobule has expanded a great deal in 
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humans (Hyvärinen, 1982).  It has been suggested that the monkey inferior parietal lobule 

may actually be homologous to the human superior parietal lobule (Culham & 

Kanwisher, 2001).  In monkeys, the superior parietal lobule consists of BA 5, and the 

inferior parietal lobule consists of BA 7; as in humans the IPS separates the regions.  BA 

39 and 40, however, were not identified in the non-human primate brain.  Others, 

however, have parcellated the human and monkey parietal lobes differently, creating 

similar homologous divisions in both species: PE in the superior PPC, and areas PG and 

PF in the inferior PPC (Von Bonin & Bailey, 1947; Von Economo, 1929).  In the human, 

PE roughly corresponds to BA 5 and 7, and PG and PF roughly correspond to BA 40 and 

39, respectively (Hyvärinen, 1982).  

Given the prevalence of the listing of Brodmann areas in the human functional 

imaging literature, I will utilize the labels provided by Brodmann in this section where 

available.  Since there are discrepancies in which regions are considered homologous 

across species, this section will focus more on the functions of the human PPC than that 

of the monkey.  This discussion will largely focus on the roles of BA 7 (excluding the 

medial aspect), 40, and the IPS, since Experiment 1 of this dissertation involves 

disruption of this part of the PPC, given its involvement in intertemporal choice 

(McClure et al., 2007; McClure et al., 2004; Xu et al., 2009).  
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Figure 3:  Location of the PPC.  Figure shows Left Lateral view of the human brain 

with Brodmann areas (Brodmann, 1909) listed.  Areas 5, 7, 39, and 40 of the PPC are 

highlighted in white.  Figure modified from Caspers et al. (2006). 

 

 

Roles of the PPC 

PPC functions 

 One classic view of the PPC focuses on its role as part of the dorsal visual 

processing stream, which is involved in spatial perception (Ungerleider & Mishkin, 

1982).  The PPC is, however, neither structurally nor functionally monolithic.  Lesions to 

the SPL produce different deficits than those to the IPL (Goldenberg & Karnath, 2006; 

Mort et al., 2003; Perenin & Vighetto, 1988; Vallar & Perani, 1987). These differences 

have led to the proposal that the SPL is involved in controlling action while the IPL is 

important in understanding actions and spatial perception (Rizzolatti & Matelli, 2003).  
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As will be discussed, the PPC plays an important role in two key functions that may be 

especially relevant to economic decision making: working memory and top-down 

attention. 

   Like the DLPFC, the PPC has a role in working memory, which is impaired 

following both lesions to the SPL or IPL and following disruption of the PPC with rTMS 

(Baldo & Dronkers, 2006; Koenigs, Barbey, Postle, & Grafman, 2009; Mottaghy, Doring 

et al., 2002).  Similarly, meta-analytic findings of human functional imaging data indicate 

that regions of both the SPL and IPL (BA 7 and 40) are consistently implicated in 

working memory tasks, and that activations tend to be left-lateralized for verbal/numeric 

working memory tasks (Cabeza & Nyberg, 2000).  Other meta-analytic findings reveal 

that in the SPL (BA 7) there is a preference for activation during simple storage in 

working memory of spatial, rather than object or verbal information (Wager & Smith, 

2003).  Furthermore, IPS activity is positively correlated with working memory load 

during both manipulation and maintenance tasks (Champod & Petrides, 2010; Todd & 

Marois, 2004). 

Executive processing tasks in working memory (i.e. tasks involving updating, 

order, or manipulation in working memory) are also consistently associated with more 

activation in BA 7 and BA 40 than are simple storage tasks, and BA 7 is activated for 

executive working memory involving different storage types (Wager et al., 2004; Wager 

& Smith, 2003).  However, unlike in the DLPFC where BOLD signal is primarily 

associated with working memory monitoring, rather than with manipulation, in the IPS, 

BOLD signal is more associated with working memory manipulation than with 

monitoring itself (Champod & Petrides, 2007, 2010).    
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 A function related to working memory is attention, since information in working 

memory has also been attended to (Knudsen, 2007).  Meta-analytic findings of human 

neuroimaging data show consistent activations during attention tasks in the PPC (Cabeza 

& Nyberg, 2000).  Furthermore, identical regions of the bilateral IPS are activated in both 

attention and working memory tasks (LaBar, Gitelman, Parrish, & Mesulam, 1999).   

Attention can be segmented into different sub-processes, and one of these, 

orienting, has particularly been associated with the PPC (Raz & Buhle, 2006).  According 

to Raz and Buhle (2006, p. 372), orienting or attentional selection is the “ability to select 

specific information from among multiple sensory stimuli”.  It can be both top-down (i.e. 

goal directed) and bottom-up (i.e. driven by salient or unexpected stimuli in the 

environment).  Top down and bottom up selection have been associated with different 

parts of the parietal lobe.  The more dorsal aspects of the PPC, such as the SPL and IPS, 

are associated with top-down attention, while an inferior region of the IPL, the right 

temporoparietal cortex has a role in bottom-up attention (Corbetta, Kincade, Ollinger, 

McAvoy, & Shulman, 2000; Corbetta & Shulman, 2002; Friedrich, Egly, Rafal, & Beck, 

1998).  In humans, the left IPS in particular has an important role in top-down attention.   

Several studies have shown that disruption of activity in this region with TMS impairs 

performance on an identification task when highly salient distracters must be ignored and 

less salient items have to be selected (Mevorach, Hodsoll, Allen, Shalev, & Humphreys, 

2010; Mevorach, Humphreys, & Shalev, 2006).     

Numerical Processing and the IPS 

 The PPC is also involved in another function that is relevant to economic decision 

making: numerical processing. A meta-analysis of fMRI studies investigating number 
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processing reveals that the bilateral horizontal segment of the IPS (HIPS) is consistently 

activated during tasks involving numerical quantity manipulations, such as numerical 

comparisons, addition, and subtraction (Dehaene, Piazza, Pinel, & Cohen, 2003).  

Similarly, lesions to this region lead to deficits in performing calculations (Takayama, 

Sugishita, Akiguchi, & Kimura, 1994).  These findings have led to the proposal by 

Deheane and colleagues (2003) that the HIPS represents the brain’s core quantity system.   

TMS studies particularly implicate the left IPS in the ability to perform numerical 

comparisons. Disruption of the left IPS using TMS or rTMS leads to impaired 

performance on numerical comparison tasks as demonstrated by increased reaction times 

(Andres, Seron, & Olivier, 2005; Cappelletti, Barth, Fregni, Spelke, & Pascual-Leone, 

2007), and impairments occur both when quantities are expressed symbolically or non-

symbolically (Cappelletti et al., 2007).  Additionally, deficits following rTMS are greater 

when comparing numbers with similar magnitudes than with dissimilar magnitudes, 

consistent with findings that activity in IPS is sensitive to distances from specific 

quantities (Cappelletti et al., 2007; Nieder & Miller, 2004; Piazza, Izard, Pinel, Le Bihan, 

& Dehaene, 2004).  Reaction time deficits on numerical comparison tasks have also been 

observed following rTMS disruption of the left IPL (BA 39 or 40), but these deficits 

occur less consistently than do those following disruption of the left IPS (Cappelletti et 

al., 2007; Gobel, Walsh, & Rushworth, 2001; Sandrini, Rossini, & Miniussi, 2004).  In 

contrast to the effects seen following disruption of left PPC regions, disruption of the IPS 

or the adjacent IPL in the right hemisphere does not lead to significant impairments on 

numerical comparison tasks (Andres et al., 2005; Cappelletti et al., 2007; Gobel et al., 

2001; Sandrini et al., 2004), and has even led to increased performance in one study 
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(Cappelletti et al., 2007).  This reveals that the right PPC is less important for numerical 

comparisons than is the left PPC.   

 

Connectivity between the DLPFC and PPC 

 The parietal and frontal cortices are largely interconnected through the superior 

longitudinal fasciculus (SLF).  The connections are bidirectional; that is they contain both 

neurons projecting from the parietal to the frontal lobe, and neurons projecting from the 

frontal to the parietal lobe (Petrides & Pandya, 2002).  The SLF can be parsed into 3 

subdivisions, SLF I, II, and III, which differ on where the tracts originate.  Note that the 

classification of these regions is based on cytoarchitectonic designations of Petrides and 

colleagues in monkeys, rather than those of Brodmann in humans (Pandya & Seltzer, 

1982; Petrides & Pandya, 1994).  Through two of these tracts, the mid-DLPFC is 

interconnected to two areas of the PPC, PG and PF, which both lie in monkey IPL.    

These large interconnections may help explain why the PPC and DLPFC have 

involvement in similar functions.  Both regions are involved in working memory 

functions and cognitive control functions (i.e. PPC in top-down attention, and DLPFC in 

cognitive control more generally).  Furthermore, both the PPC and LPFC have neurons 

responsive to quantities (Nieder & Miller, 2004).  Importantly, the co-involvement of 

both regions in these functions may help explain why both the PPC and DLPFC show 

similar activation patterns on fMRI studies of intertemporal choice.  The next section of 

this chapter will offer some potential explanations of what functions these two regions of 

the brain may be engaged in during intertemporal choice and choice involving risk.    
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Potential roles of the DLPFC and PPC in Intertemporal Choice  

and Choice involving Risk 

 

Valuation 

 In choice situations, it is reasonable to assume that individuals tend to choose 

options that they subjectively value more highly than other options.  As previously 

discussed, a network of brain regions including the striatum, MPFC, and posterior 

cingulate are all associated with subjective valuation of rewards on intertemporal and 

risky choice tasks (Kable & Glimcher, 2007, 2010; Levy et al., 2010; Peters & Buchel, 

2009, 2010).  Less is known about how the brain codes for the subjective value of 

negative incentives on choice tasks, but some evidence implicates the MPFC and 

posterior cingulate in such a role (FitzGerald et al., 2009). 

 Prior fMRI research indicates that activation in two of the regions responsive to 

subjective valuation (i.e. MPFC and striatum) is associated with both choice of small 

immediate over larger delayed rewards (McClure et al., 2007; Wittmann et al., 2010) and 

with choice of potentially larger risky over smaller less risky rewards (Kuhnen & 

Knutson, 2005; Matthews et al., 2004).  An important question remains.  Why is there 

greater activation in regions that respond to subjective value only for certain types of 

choices?  If people choose what they subjectively value highly, then one would expect 

that brain activation that positively scales with subjective value would be greater for the 

chosen option, regardless of its risk level or time of receipt.   

 One possible answer to this puzzle is the proposal of McClure and colleagues 

(2004) that there are two reward evaluation systems in the brain - both an “impulsive 

system” containing the ventral striatum, MPFC, and posterior cingulate (i.e. Beta regions) 
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that places a large value on rewards that are available immediately and a more patient 

system containing both the DLPFC and PPC (i.e. Delta regions) that discounts the value 

of delayed rewards relative to immediate rewards less steeply.  Similarly, there might be 

dual evaluation systems for incentives in other types of choices, such as for losses in 

intertemporal choices and for gains in choices involving risk.  For all of these types of 

choices, the DLPFC and PPC could both be involved in one of these systems and could 

place a different value on incentives as a function of their attributes (e.g. delay or risk) 

than do other regions.  

If the DLPFC and PPC respond to subjective value, then why haven’t past 

intertemporal and risky choice studies found consistent patterns of activation related to 

subjective value in these regions?  The lack of findings may be a result of the models 

used to capture brain activity.  If activity in these regions scales to subjective value 

differently than does activity in other regions, one might not expect to find it with the 

same statistical models. 

There are several reasons one could predict a role for the DLPFC in the evaluation 

of options on intertemporal and risky choice tasks.  First, activation in the DLPFC is 

associated with the subjective value of items during basic choice (Hare et al., 2009) and 

during bidding tasks (Plassmann et al., 2007; Plassmann et al., 2010).  Second, disruption 

of the DLPFC with rTMS affects valuation of items (Camus et al., 2009).  Third, 

activation in the DLPFC scales with reward probability (Tobler et al., 2008).  In contrast, 

there is not much reason to predict a role for the PPC in valuation processes during 

choice tasks, since it does not typically respond to predicted value or its components.  
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Manipulation of Values within working memory 

 In order to choose the most highly valued option on a risky choice or 

intertemporal choice task, a person may need to hold monetary values online in working 

memory, manipulate them to account for time or risk, and then compare them.  Functions 

of brain regions directly involved in subjective valuation may automatically take into 

account the time and risk of options to determine value, but working memory could be 

used to transform the monetary value of options in a more conscious manner, such as by 

transforming values by an inflation factor or by computing expected values.  It would be 

expected that such value manipulation processes would rely on the DLPFC and PPC 

since both of these regions are engaged during working memory manipulation tasks 

(Champod & Petrides, 2007, 2010; Wager et al., 2004).   

 Evidence suggests, however, that manipulation of values within working memory 

during intertemporal choice may not be dependent on the DLPFC.  Disruption of the left 

DLPFC with low frequency rTMS leads to greater choice of smaller more immediate 

rewards on trials pitting an immediate against a delayed option, but not on trials pitting 

two delayed options against each other (Figner et al., 2010).  This pattern of findings 

suggests that disruption of the DLPFC affects choices without impairing the ability to 

manipulate values in working memory, because trials with two delayed options may be 

expected to lead to a larger working memory load than trials with a delayed option and an 

immediate option.  On trials with two delayed options, the monetary values of two 

options may both need to be manipulated to determine the present value of the options, 

whereas on trials with an immediate and a delayed option, only the monetary value of the 

delayed option should need to be manipulated to obtain the present value of the options.  
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Cognitive Control 

 The DLPFC and PPC may be involved in cognitive control operations during 

choice tasks, specifically on trials involving seductive or aversive immediate options.  In 

intertemporal choice tasks, when there are options for immediate monetary gain or loss, 

the control processes of the DLPFC and PPC may help one select a larger delayed gain 

over a smaller immediate gain or help one select a smaller immediate loss over a larger 

delayed loss.  In risky choice tasks for monetary gain, cognitive control processes of the 

DLPFC and PPC may help one select a smaller certain gain over a potentially larger risky 

gain.  In both intertemporal and risky choice tasks involving positive incentives, 

cognitive control could be used to help individuals overcome prepotent urges to choose 

rewarding options that might have better immediate values than alternatives.  Similarly, 

in tasks involving negative incentives, cognitive control could be used to help individuals 

overcome prepotent urges to avoid choosing aversive options that might have worse 

immediate values than alternatives. 

 Cognitive control could be used on choice tasks to bias behavior towards specific 

goals and rules.  People may approach intertemporal choice tasks with the goal of 

obtaining the largest long-term gain, and may have specific rules that help them compare 

the values of different options.  In intertemporal choice tasks, these goals and rules may 

be easy to follow except in situations where an option is immediate, because such options 

may lead to large activations in areas coding for subjective value that in turn influence 

choice.  In these situations, cognitive control may be needed to help one overcome a 

prepotent urge to select the option that offers the best immediate value, and to choose in 

line with one’s goals and rules.  Similarly, in risky choice tasks, cognitive control might 
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be used to help individuals follow goals to avoid choosing options with excessive risk, or 

might be used to help individuals use rules to compare the different values (e.g. 

computations of expected value).     

One might expect that the DLPFC would be particularly important in cognitive 

control on choice tasks, given the findings implicating the DLPFC (MacDonald et al., 

2000), and the PFC more generally (Miller & Cohen, 2001), in cognitive control 

functions.  However, the PPC could be involved as well.  The PPC might be expected to 

be involved in the cognitive control function of top-down attention, since this is a key 

function of the region (Corbetta & Shulman, 2002).  Top-down attention might be needed 

to focus on specific attributes of choice options (e.g. magnitude or probability) that are 

determined by goals, and might be especially needed when distracting options that offer 

immediate incentives are present. 

A cognitive control account of the DLPFC and PPC could offer an alternative to 

the suggestion that choice always follows directly from subjective valuation, and could 

explain why activation in these regions scales with choice patterns but does not appear to 

scale with subjective value on the same types of tasks.  This is because cognitive control 

might be able to affect choices without affecting subjective valuation.    

 

Numerical Comparisons 

Given its role in numerical comparison processes, the left PPC may be involved in 

comparing the numerical values of the two options and their components (i.e. magnitude, 

time, and probability of outcomes) on economic choice tasks (Andres et al., 2005; 

Cappelletti et al., 2007).  This proposed function overlaps with that of working memory, 
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since individuals may hold numerical values online and manipulate them in working 

memory when they compare them. 

 Ultimately which specific numerical values are compared will depend on how an 

individual decides to manipulate the components of the choice options.  An individual 

may not only compare the presented monetary, time, and probability values, but may 

compare transformations of them.  Since both the DLPFC and PPC are implicated in 

manipulation of items in working memory (but principally the PPC), such numerical 

value manipulation processes could also rely on the DLPFC (Champod & Petrides, 2007, 

2010; Wager et al., 2004).  

    

Research Plan 

 

 Experiment 1 was designed to see if transiently disrupting either the DLPFC or 

PPC with low frequency rTMS would bias intertemporal choices involving monetary 

gains and intertemporal choices involving monetary losses towards options with a better 

immediate value but a worse long-term value.  No prior studies have used 

neuromodulation to investigate the role of the PPC in intertemporal choices for gains or 

the role of either the DLPFC or PPC in intertemporal choices for losses.  It was predicted 

that disruption of either the DLPFC or PPC would lead to greater selection of small 

immediate monetary rewards over larger delayed monetary rewards than would sham 

stimulation to the same regions.  For choices involving losses, it was predicted that 

disruption of the DLPFC or PPC would lead to greater selection of larger delayed losses 

over smaller immediate losses than would sham stimulation.  This was predicted for 
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choices involving losses because larger delayed losses have a better immediate value than 

smaller immediate losses.  A secondary aim of this experiment was to see if greater 

choice of options with a better immediate value was associated with deficits in the ability 

to compare numerical values, since numerical comparison deficits could underlie 

difficulties in choosing options with the best long-term value.  This was tested by 

administering a numerical comparison task following disruption of the DLPFC or PPC.  

A further question that was investigated was whether right vs. left hemispheric disruption 

of the DLPFC and PPC differentially affected intertemporal choice.      

 Experiment 2 was designed to see if transiently disrupting the DLPFC with low 

frequency rTMS would bias choices towards greater risk seeking.  Subjects completed a 

risky choice task that involved choices between a certain option and a risky option that 

offered a potentially larger probabilistic reward.  It was predicted that disruption of the 

DLPFC would lead to greater choice of risky options than would sham stimulation.  

Choices were limited to the gain domain (i.e. choices could lead to reward or no reward, 

but never a loss) to see if disruption of activity in the DLPFC would lead to greater risk 

seeking in choices that did not involve the possibility of loss, which has not previously 

been investigated.  Additionally, the probability of the risky option was varied across 

trials to see if the effects of disrupting the DLPFC on risk preferences would vary with 

the risk level.  As in Experiment 1, a further question was whether right vs. left 

hemispheric disruption of the DLPFC differentially affected choice. 

 Utilizing rTMS offered several advantages over other approaches such as fMRI.  

While fMRI can help establish that a particular brain region is involved in a behavior, it 

cannot be used to tell whether a brain region plays an essential role in that behavior.  
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rTMS can be used to infer causality, since if a behavior is abnormal when a particular 

brain region is disrupted, one can infer a role for the region in that particular behavior.  

rTMS also has advantages over studies of patients with brain lesions in that one can 

target the same region with rTMS across subjects, whereas  lesions are rarely confined to 

the same specific region across individuals and following brain injury, reorganization of 

structure-function relationships occurs.  In the context of Experiments 1 and 2, using 

rTMS allowed us to examine if disruption of activity in specific brain regions affected 

choice in healthy individuals.  

 It is currently unclear whether the tendencies to discount the value of different 

types of monetary incentives are all related to a common personality trait.  Delay 

discounting of monetary gains is positively correlated with both delay discounting of 

losses and with probability discounting of gains (Mitchell, 1999; Murphy et al., 2001; 

Myerson et al., 2003; Richards et al., 1999), suggesting that these different types of 

discounting may have similar relationships with some trait.  A number of studies have 

investigated the relationship between one trait, impulsivity, and delay discounting of 

monetary gains, and have found a positive relationship (Kirby et al., 1999; Madden et al., 

1997; Mitchell et al., 2005; Petry, 2001, 2002; Reynolds, Richards et al., 2006).  

However, there has been little research on the relationship between impulsivity and other 

types of monetary discounting.  Experiment 3 was designed to investigate the 

relationships between different facets of impulsivity and the tendencies to discount 

different types of monetary incentives (i.e. delayed gains, delayed losses, risky gains).  A 

secondary aim was to examine relationships among different types of discounting in the 
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same subjects more directly, by examining whether the tendencies to discount different 

types of monetary incentives were correlated.     
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CHAPTER II 

 

 

  

EXPERIMENT 1 –  CHANGES IN INTERTEMPORAL CHOICE FOLLOWING 

DISRUPTION OF THE DLPFC AND THE PPC 

 

 

 

Introduction 

 

 

 

A wealth of intertemporal choice research shows that individuals discount the 

value of delayed monetary rewards relative to immediate monetary rewards (Frederick et 

al., 2004).  All else being equal, individuals tend to prefer immediate over delayed 

rewards, and will often choose smaller immediate options over larger delayed 

alternatives.  Individuals tend to discount the value of delayed monetary losses as well 

(Estle et al., 2006), often preferring larger delayed losses over smaller immediate ones.  

Nevertheless, people are also sometimes able to choose the option with the best long-term 

value. 

 Recently, it has been shown that functions performed by the DLPFC help 

individuals make intertemporal choices for gains with the best long-term value (Figner et 

al., 2010).  Following disruption of the left DLPFC with low frequency rTMS, 

individuals are more likely to choose smaller immediate over larger delayed monetary 

rewards than they are following sham stimulation, especially on difficult trials in which 

the two options are close in value.  Importantly, only intertemporal choices that contain 

an immediate option are affected, suggesting that DLPFC processes are only needed to 

make the better long-term choice when an enticing immediate option is present.    
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 Previous research reveals that another brain region, the PPC, has similar patterns 

of brain activity to the DLPFC during intertemporal choice (McClure et al., 2007; 

McClure et al., 2004).  Activation in both regions is greater on more difficult than on 

easy intertemporal choice trials (McClure et al., 2004).  This suggests a role for both the 

DLPFC and PPC in the choice process itself, since brain areas that are involved in task 

relevant computations generally show increased activity as difficulty increases (Assmus, 

Marshall, Noth, Zilles, & Fink, 2005; Braver et al., 1997; Gould, Brown, Owen, ffytche, 

& Howard, 2003).  Activity in both regions may help individuals make better long-term 

choices through cognitive control, as cognitive control functions have been linked to both 

the DLPFC and PPC (Cole & Schneider, 2007; Corbetta & Shulman, 2002; Mevorach et 

al., 2010; Miller & Cohen, 2001; Wager et al., 2004).  Alternatively activity in both 

regions could help individuals make better long-term choices through valuation processes 

that ascribe greater value to delayed options than do the functions of other brain regions.  

Consistent with the proposal that PPC activity helps individuals  make choices for the 

better long-term option are findings showing greater activation in the PPC when 

individuals choose larger delayed rewards over smaller immediate alternatives (Wittmann 

et al., 2007).  Also consistent with this are findings that there is more activation in a set of 

brain regions that includes the DLPFC and PPC than in a set of other regions sensitive to 

reward immediacy (i.e. ventral striatum, MPFC, Posterior Cingulate) when individuals 

choose larger delayed rewards (McClure et al., 2004).  

 However, PPC activation during intertemporal choice tasks may occur for a 

different reason – because intertemporal choices require numerical comparisons.  In order 

to choose the reward with the better long-term value, an individual must quantitatively 
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assess the value of each option, both the monetary value of the reward and the time of 

receiving it.  Both human fMRI and lesion studies indicate that one region of the PPC, the 

intraparietal sulcus (IPS), is involved in numerical manipulations (Dehaene et al., 2003).  

Furthermore, disruption of the left IPS using TMS or low frequency rTMS impairs 

performance on numerical comparison tasks as demonstrated by increased reaction times 

(Andres et al., 2005; Cappelletti et al., 2007).  Therefore, increased activation seen in the 

PPC during intertemporal choice tasks could reflect engagement of numerical comparison 

functions rather than engagement of valuation or cognitive control functions.  

 Another question of interest is whether the DLPFC and PPC have a similar role in 

intertemporal choices involving monetary losses and those involving monetary gains. The 

neural circuitry that helps individuals decide what rewards to approach may be different 

from the circuitry that helps them decide what aversive outcomes to avoid, an idea that is 

consistent with different theories of motivation (Gray, 1981; Panksepp et al., 2002).  If 

so, then the DLPFC and PPC could both play a function in intertemporal choices for 

gains, but not in intertemporal choices for losses.  fMRI research, however, reveals that 

the PPC and DLPFC are similarly activated during intertemporal choices involving only 

monetary gains and those involving only monetary losses (Xu et al., 2009).  These 

findings suggest the alternative possibility that the functions of the PPC and DLPFC cut 

across motivational lines and may perform the same functions in both intertemporal 

choices involving gains and those involving losses.  If so, then in both types of choices, 

the DLPFC and PPC could help individuals make choices for options with the better 

long-term value when another option has a better immediate value.  This would be 

supported if disruption of the same regions of the DLPFC or PPC with low frequency 
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rTMS increased choice of both monetary gain and loss options with better immediate 

values.  In choices involving losses, such an effect would be seen as a greater preference 

for larger delayed over smaller immediate losses. 

To examine whether the DLPFC and PPC are both essential for making choices 

for options with a better long-term but worse immediate value than alternatives, we 

utilized low frequency rTMS to transiently suppress functioning in the DLPFC and PPC 

while individuals performed an intertemporal choice task.  We predicted that disruption 

of both regions would lead to greater selection of options with a better immediate value, 

and that we would see this effect both with choices involving monetary gains and with 

choices involving monetary losses.  That is, individuals who received real rTMS were 

predicted to choose more immediate gains and fewer immediate losses than were 

individuals who had received sham rTMS.  Additionally, we administered a numerical 

comparison task to see whether greater selection of options with a better immediate value 

following disruption of brain regions would be associated with deficits in the ability to 

compare two numerical values. 

 

Methods 

 

Participants 

 64 right-handed individuals (43.75% female) between the ages of 18 and 30 (M 

Age = 21.06, SD = 2.79) from Vanderbilt University and the Nashville community 

participated in this study.  All of these participants reported having no history of 

neurological or psychiatric problems, no females were currently pregnant, and no 



68 

 

participants had previously received TMS.  95 additional subjects were consented but 

excluded or withdrew.  Reasons subjects were excluded included baseline time 

preferences revealed in Session 1 that did not allow us to make task stimuli (see criteria 

below), inconsistent preferences as revealed in Session 1, no loss discounting as revealed 

on the loss discounting prescreen (for approximately 20 subjects this was given following 

consent), having previously received TMS, risk factors that could increase the chances of 

having negative effects from TMS (e.g. neurological conditions), excessive movement 

during TMS, and experimenter error.  Additionally, two subjects were excluded because 

they exhibited choice preferences that were extremely unstable across sessions on the 

intertemporal choice task (mean choice of delayed gains or losses changed by more than 

75% across sessions 2 and 3).  Both of these subjects were in the sham stimulation group.  

No other participants in the sham or real stimulation groups exhibited changes in 

preference across sessions of this magnitude.  All participants completed written 

informed consent approved by the Vanderbilt IRB.   

 

Session One – Indifference Point Procedure 

 We screened subjects prior to consent with a questionnaire to ensure that we only 

recruited participants who discounted delayed monetary losses.  The screen included 4 

questions, each which required participants to write the magnitude of a hypothetical 

monetary loss to be incurred in 4 weeks that they valued equally to an immediate 

hypothetical monetary loss of a specific magnitude.  Screening was essential for the study 

of monetary losses since prior research shows that some individuals actually prefer to 
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suffer a monetary loss or experience other aversive events sooner rather than later 

(Frederick et al., 2004).  

 Following consent, we determined subject indifference points between immediate 

and delayed monetary rewards.  To do so, subjects completed a task on a computer in 

which we determined 4 immediate equivalents (i.e. dollar amount of an immediate 

monetary reward that a person values equally to a delayed monetary reward) for 4 

different delayed monetary gains: $2.50, $5.00, $7.50, and $10.00 available at 4 weeks in 

the future.  The order of determining immediate equivalents was from low to high 

magnitudes.  Subjects were told that they would receive the amount of money for one 

random choice at the time associated with that choice.  For timing of one trial of this task 

and presentation of items, see Figure 4A.      

 To determine each immediate equivalent, participants were presented with an 

initial trial in which they made a choice between a delayed monetary gain and an 

immediate gain of half the value of the delayed option.  If participants chose the delayed 

option, the value of the immediate option increased by half, and if they chose the 

immediate option it decreased by half.  On the next trial, the immediate value changed in 

a similar way as on the previous trial but only by one quarter of the original value.  Over 

six trials, the immediate value increased or decreased by progressively smaller amounts 

(i.e. by 1/(2^x) where x was trial number) depending on participant responses so that the 

subjective value of the immediate amount would iteratively approach that of the delayed 

amount.  After the sixth trial, a final catch trial was presented in which the immediate 

value was higher than the just-calculated immediate equivalent.  This provided a check to 

ensure that subjects were answering according to their preferences (i.e. were answering 
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consistently).  If they did not choose the immediate value on the catch trial, the 

immediate equivalent for that specific delayed magnitude reward was determined again 

(i.e. the six trial procedure and check was repeated).  After answering consistently, or 

after completing the indifference point procedure three times, participants then performed 

the indifference point procedure for the next delay-magnitude pair.  If participants 

answered inconsistently for three indifference point procedures in a row for a given 

delay-magnitude pair they were excluded. 

 

       

Figure 4: Trial Structure of the Intertemporal Choice task.  A. Intertemporal Choice*.  

Following 500 ms of fixation, two different money/time pairs were presented on a computer 

screen (side randomized).  The pairs always consisted of a smaller amount of money to be gained 

or lost immediately and a larger amount of money to be gained or lost, respectively, four weeks in 

the future.  These time points were chosen because prior research has shown disrupted 

intertemporal choice with these time points following rTMS (Figner et al, 2011). The words “For 

Sure” indicated that subjects were making choices for options that were certain.  Subjects decided 

which money/time pair they would prefer by pressing the “z” or “m” key and had up to 6500 ms 

to respond.  Immediately after responding, the triangle under the subject’s selected option turned 

red and the other triangle disappeared to indicate the subject’s choice; this was displayed for 250 

ms.  If subjects did not respond, the next part of the trial began after 6500 ms. B.  Numerical 

Comparison.  The same two monetary values that had been shown for the intertemporal portion 

remained on the screen.  Additionally, the words “Larger” or “Smaller” were displayed above 

both monetary values, indicating whether participants were instructed to select the larger or 

smaller monetary value.  Participants had up to 4000 ms to respond, and immediately following 

response the selected option was displayed (as was done for the intertemporal choice portion) for 

250 ms.   However, if subjects did not respond within 4000 ms, the next trial began.   (* The 

timing and display of items in the Indifference Point Task were identical to those of the 

Intertemporal Choice part of the Intertemporal Choice Task (i.e. A. above) except there was no 

time limit for response). 

A B 

 

C D 
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     Following the indifference point procedure for delayed monetary gains, 

participants performed the same indifference point procedure for delayed monetary 

losses.  For the loss procedure, the same magnitudes of delayed incentives were used as 

were used for the gains task, except now subjects chose which of the two values they 

preferred to lose.  They were told that they would have to pay the amount of money for 

one random choice at the time associated with that choice.   

 Subjects whose immediate equivalents indicated they did not discount the value 

of the future gains and losses were excluded from further sessions.  Additionally, subjects 

were excluded if any immediate equivalent was smaller than 10 cents or if the difference 

between the immediate equivalent and associated delayed value was less than 10 cents.  

This was done to ensure that there would be an adequate range of values above and below 

each subject’s immediate equivalents to create choice stimuli for further sessions.  

 At the end of session one, one random trial of intertemporal choice for gain and 

one random trial of intertemporal choice for loss were selected for payout.  Subjects then 

either received or paid (depending on trial type) the amount of money at the specified 

time associated with their choice on that trial. 

 

Sessions Two and Three 

Participants that met eligibility requirements after session one were equally 

divided into 4 groups of 16 subjects.  Group one received rTMS to the left DLPFC in one 

session and to the left PPC in a separate session (with counterbalanced ordering).  Group 

two received rTMS to the right DLPFC in one session and to the right PPC in a separate 

session (with counterbalanced ordering).  Group three received sham rTMS to the same 



72 

 

areas as group one (half DLPFC first/half PPC first), while group four received sham 

rTMS stimulation to the same areas as group two (half DLPFC first/half PPC first).  Each 

of the four groups had the same gender distribution (9 Males and 7 females).  Except for 

the different brain regions stimulated across sessions, procedures in sessions 2 and 3 were 

identical.   

Prior to receiving rTMS, participants performed shortened practice versions of the 

tasks, in order to make sure they understood the tasks.  Subjects were told that one gain 

choice and one loss choice from all the task trials performed after stimulation would be 

randomly selected for payment at the end of each session.      

 After completing the practice tasks, participants received real or sham rTMS 

stimulation for 30 minutes to either the DLPFC or PPC (details outlined under TMS 

Methods section). 

Intertemporal Choice Task 

 Immediately following completion of stimulation, participants completed a 72 

trial intertemporal choice task on a computer.  On each trial, participants completed an 

intertemporal choice for monetary gain or loss (randomly mixed) followed by a 

numerical comparison (See Figure 4).  Half of the choices involved losses and half 

involved gains. 

 The values of the delayed options were the same as in session 1 ($2.50, $5.00, 

$7.50, and $10.00).  The magnitude of each immediate option was calculated as a specific 

percentage difference from that subject’s session one immediate equivalent for the 

delayed option.  This allowed us to vary the subjective value of each immediate option 



73 

 

(as revealed in session one) relative to the associated delayed option which let us predict 

which option an individual should choose on each trial (See Table 1). 

 

Table 1: Immediate Values for Different Trials in the Intertemporal Choice Task. 

Immediate Relative Value Total Description 

1. Immediate 

Subjective Value 

Lower than Delayed 

Subjective Value* 

32 Magnitude of immediate option is below 

immediate equivalent (i.e. immediate value at 

indifference point).  There were 4 different 

percent distances below the immediate equivalent 

(-10%, -20%, -35%, and -50%).  Subjects who 

receive sham stimulation should choose the 

delayed gain if it is a choice for gains, and the 

immediate loss if is a choice for losses.      

2. Immediate 

Subjective Value 

Equal to Delayed 

Subjective Value 

8 Magnitude of immediate option is equal to 

immediate equivalent (i.e. percent distance equal 

0%).  Neither immediate nor delayed choice is 

predicted for sham group.    

3. Immediate 

Subjective Value 

Higher than Delayed 

Subjective Value 

32 Magnitude of immediate option is above 

immediate equivalent.  There were 4 different 

percent distances above the immediate equivalent 

(10%, 20%, 35%, and 50%).  Subjects who 

receive sham stimulation should choose the 

immediate gain if it is a choice for gains, and the 

delayed loss if is a choice for losses.      

Each delayed gain and each delayed loss magnitude was shown nine times.  Each delayed 

option was paired once with an immediate option located at each of the 9 percent 

distances from the immediate equivalent of the delayed value.  Values at negative 

distances were taken as a function of the percentage difference between the immediate 

equivalent and zero.  A -35% distance indicated that the immediate value was 35% less 

than the immediate equivalent.  Thus if the immediate equivalent of a $2.50 delayed 

option was $2.00, the immediate value was $1.30 (i.e. 2.00 - .35*2.00 = 1.30).  Values at 

positive distances were calculated as a function of the percentage difference between the 

immediate equivalent and the delayed value.  A 35% distance indicated that the 

immediate value was greater than the immediate equivalent by 35% of the distance 

between the immediate equivalent and the delayed value.  Thus, if the immediate 

equivalent of a $2.50 delayed option was $2.00, the immediate value was $2.18 (i.e. 2.00 

+ (.35 * (2.50 -2.00)) = 2.18). *Lower relative subjective value means less positive value 

(for monetary gains) and less negative value (for monetary losses) than the alternative.  

Conversely higher relative subjective value means more positive value (for gains) and 

more negative value (for losses) than the alternative. 
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Following each intertemporal choice, individuals were asked to make a numerical 

comparison of the two monetary values that were available on the previous intertemporal 

choice trial (See Figure 4).  This was performed to examine whether subjects had deficits 

in the ability to compare two monetary values.  On half of the trials (determined 

randomly), participants indicated which of the two values was larger and on the other half 

of trials indicated which of the two values was smaller.  

Indifference Point Task 

After completing all of the aforementioned trials, subjects were given the identical 

indifference point procedure as in session one.  However, this time the iterative procedure 

was only done to calculate the immediate equivalent for delayed values twice, first for a 

$10.00 gain available at 4 weeks and then for a $10.00 loss to be paid in 4 weeks.  

Additionally, no consistency checks were performed in order to limit the time to 

complete the task.  Collecting subject indifference points post-stimulation provided an 

added check of whether real rTMS to the DLPFC or PPC increased impulsive choices.   

 At the end of sessions two and three, one random trial of intertemporal choice for 

gain and one random trial of intertemporal choice for loss were selected for payout.  

Subjects then either received or paid (depending on trial type) the amount of money at the 

specified time associated with their choice on that trial.   

 

TMS Methods 

Low frequency (1 Hz) rTMS was delivered with a MagStim TMS double 70 mm 

(Figure 8) coil (Magstim, Wales, UK) at 54% power.  The rTMS parameters used were 

within currently recommended guidelines (Rossi, Hallett, Rossini, & Pascual-Leone, 
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2009) and stimulation with these parameters leads to suppression of excitability in the 

targeted region for a period of time following stimulation (Robertson, Theoret, & 

Pascual-Leone, 2003).  We note that 1 Hz rTMS applied to the DLPFC at 54% power has 

previously led to altered intertemporal choices following stimulation (Figner et al., 2010).  

Sham stimulation was delivered with a MagStim placebo coil, which produced clicks that 

resembled the sound of rTMS, but without a magnetic pulse. Given the potential for 

subjects to identify whether they received sham or real stimulation, it was prudent for 

subjects to receive only one of these types of stimulation.  Subjects were blind to the type 

of stimulation (e.g. sham vs. real) they received.   

Positioning of the TMS coil was accomplished by using the 10-20 EEG System, 

which has previously been used to deliver TMS to identified brain regions with 

reasonable structural accuracy (Herwig, Satrapi, & Schonfeldt-Lecuona, 2003).  This 

method was used to ensure proper positioning of the coil over the DLPFC (BA 46/9) and 

PPC (centered on the intraparietal sulcus).  Specifically, to localize the PPC, the center of 

the coil was held tangentially to the participant’s head with the handle pointing rostrally 

and placed over P3/P4 which has been shown to lie over this area (Andres et al., 2005; 

Herwig et al., 2003).  To localize the DLPFC, the center of the coil was held tangentially 

to the participant’s head with the handle pointing caudally, and placed one cm antero-

lateral to F3/F4 which has been suggested to provide better coverage over BA 9/46 than 

do the points F3/F4 (Herwig et al., 2003).  These specific points for stimulation were 

marked on a lycra swimcap that subjects wore; the position of the swimcap was placed in 

a consistent position on the head across subjects, by using the nasion, inion, and 

preauricular points as physical landmarks for placement.  During stimulation, all 
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participants wore earplugs as protection against the noise of the rTMS pulse.  Participants 

maintained their head position during rTMS administration using a chin/head rest and 

were visually monitored to ensure that no movement had occurred.  In cases where a 

participant moved their head, the coil was immediately repositioned over the target.   

 All individuals received either real or sham rTMS to the DLPFC or PPC in 

session two for 30 minutes and the same type of stimulation to the other brain region 

(PPC or DLPFC) on the ipsilateral side for 30 minutes in session three.  The order of 

stimulating these two regions was counterbalanced across subjects in each group.  We 

used an “offline” rTMS paradigm; subjects completed tasks after stimulation was 

completed.  Since impairments in behavior following low frequency rTMS have been 

shown to last for half the time of the previous stimulation (Mottaghy, Gangitano et al., 

2002), the tasks following rTMS were limited to the first 15 minutes post-stimulation.   

 

Statistical Analysis Methods 

Using PASW Statistics 18 (SPSS Inc., Chicago, IL), data were analyzed with 

Generalized Estimating equations (GEE) which allow one to model effects while 

accounting for correlations within observations of individual subjects (Liang & Zeger, 

1986).  In order to test the effects of real stimulation relative to sham, separate GEE 

models were created for responses following stimulation to each region (i.e. left DLPFC, 

left PPC, right DLPFC, right PPC).  To examine within subject differences across 

stimulation regions in subjects who received real rTMS, separate GEE models were 

created for data for subjects who received stimulation to each hemisphere (i.e. left, right).  

All models contained an intercept term.    
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 We used GEE models with a logit link function and binomial distribution to 

predict choice of an immediate option (0 = Chose Delayed, 1 = Chose Immediate) at the 

trial level on the Intertemporal Choice Task.  Separate models were created to predict 

choice on gain and loss trials   Independent variables in all models included Stimulation 

Type (0 = Sham rTMS, 1 = Real rTMS), Immediate Relative Value (i.e. percent distance 

of the immediate option from the immediate equivalent of the delayed option, which 

ranged from -50% to 50%) and Session Number (0 = Session 2, 1 = Session 3).  

Additionally, we included the interaction of Immediate Relative Value by Stimulation 

Type if it was significant (p < .05).  To examine within subject differences across region 

of stimulation in the real rTMS groups, we created similar GEE models, except the within 

subject variable Region (0 = DLPFC, 1 = PPC) was used instead of the between subject 

variable Stimulation Type; the interaction of Region by Immediate Relative Value was 

only included if significant.  

 All other GEE models we created had an identity link function and normal 

distribution.  To predict reaction time on trials of the Intertemporal Choice Task 

(measured in milliseconds (ms)), we created separate GEE models for gain and loss trials.  

Between subject models (each limited to one region) and within subjects models included 

the same independent variables as the choice models, plus up to two additional variables: 

Immediate Relative Value 
2 

(i.e. Immediate Relative
 
Value squared) and the Interaction 

between this variable and Stimulation Type (or Region, depending on analysis).  

Interactions were only included in the final models if significant. 

 We next used GEE models to predict reaction time in ms on the numerical 

comparison portion of the Intertemporal Choice Task; models contained data from all 
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trials pooled together (i.e. both gain and loss) and were limited to correct trials.  Models 

contained the same independent variables as the models predictive of choice, and an 

interaction term was only included if significant. We did not create models to examine 

numerical comparison accuracy, as both real and sham rTMS groups performed at near 

perfect accuracy on the task (Mean accuracy for real rTMS group= .976, SD = .037; 

Mean accuracy for sham rTMS group= .976, SD = .023). 

 To predict effects of real relative to sham stimulation on immediate equivalents 

measured on the Indifference Point Task, we utilized the Generalized Linear model 

function in PASW Statistics 18 (SPSS Inc., Chicago, IL) with an identity link function 

and normal distribution.  Each model examined the effects of stimulation at one of the 

four regions for either gain or loss values and contained the following predictors: 

Stimulation Type, Session Number, and Session 1 Immediate Equivalent.  This last 

variable was included as a covariate because immediate values at the indifference point 

(i.e. immediate equivalents) following stimulation should be related to subject’s initial 

pre-rTMS (i.e. Session 1) values, and thus significant effects of Stimulation Type might 

not emerge without controlling for this variable.  To predict immediate equivalents across 

region of stimulation for subjects who received real rTMS, we used GEE models that 

included Region (-1 = neither (i.e. for Session 1), 0 = DLPFC, 1 = PPC) and Session 

Number (-1 = Session 1, 0 = Session 2, 1 = Session 3) as predictors.  Separate models 

were run for gain and loss immediate equivalents.  

 For all GEE models, we used unstructured working correlation matrices.  

However, because the majority of analyses performed on numerical comparison reaction 

time failed to converge, we also constructed GEE models for this dependent variable with 
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exchangeable working correlation matrices.  In order to ease comparison of models for 

each dependent variable, all presented results for a specific dependent variable were 

based on models with a similar working correlation matrix structure.  Thus, while all 

reported results for numerical comparison reaction time were based on exchangeable 

matrices, all others were based on unstructured matrices.  

 

RESULTS 

 

Session One Indifference Points 

 Using independent sample t-tests, we first compared mean immediate equivalents 

measured in session 1 on the Indifference Point Task for individuals in each real rTMS 

group (i.e. left or right hemisphere) with individuals in the group that would receive sham 

rTMS to regions of the same hemisphere.  This was done to ensure that session 1 choice 

preferences across stimulation groups were not different.  Sixteen independent sample    

t-tests were performed in all: eight for subjects in the groups that would receive 

stimulation to left hemisphere regions and eight for subjects in the groups that would 

receive stimulation to right hemisphere regions.  Each t-test compared mean immediate 

equivalents across stimulation groups for one of the eight types of delayed incentives (i.e. 

4 magnitudes of delayed gain and 4 magnitudes of delayed loss).  There were no 

significant differences in mean session one immediate equivalents between the left 

hemisphere real and sham rTMS groups, and no significant differences between the right 

hemisphere real and sham rTMS groups.  Importantly, these results reveal that prior to 

receiving rTMS (i.e. in session 1), mean levels of delay discounting were similar across 
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real and matched sham rTMS groups.  For mean session 1 immediate equivalents, see 

Table 2. 

 

Table 2: Mean Session One Immediate Equivalents in the Indifference Point Task. 

 Left Real Left Sham  Right Real Right Sham 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Gain $2.50 1.226 (.529) 1.146 (.456) 1.424 (.598) 1.510 (.619) 

Gain $5.00 2.964 (1.096) 2.804 (1.153) 3.391 (.828) 3.234 (1.157) 

Gain $7.50 4.608 (1.767) 4.576 (1.526) 4.701 (1.683) 4.748 (1.836) 

Gain $10.00 6.836 (2.055) 6.194 (2.266) 6.523 (2.274) 6.681 (2.090) 

Loss $2.50 1.509 (.510) 1.570 (.588) 1.456 (.633) 1.389 (.555) 

Loss $5.00 3.361 (.988) 3.168 (1.109) 3.014 (1.163) 2.673 (1.306) 

Loss $7.50 5.119 (1.523) 4.640 (1.699) 4.843 (1.769) 4.916 (1.587) 

Loss $10.00 7.103 (2.130) 6.710 (2.223) 6.621 (2.282) 6.164 (2.307) 

Mean session 1 immediate equivalents for specific magnitudes of delayed gains and 

losses (listed in left column) available in 4 weeks.  Averages are constructed separately 

for subjects in each of the four rTMS groups (listed in column titles).  

 

 

Intertemporal Choices 

For descriptive statistics of overall mean proportion of choices for immediate 

gains and losses following each type of stimulation to each side of each brain region, see 

Table 3. 

 

Table 3: Mean Choice of Immediate Options in the Intertemporal Choice Task. 

 Left DLPFC Left PPC Right DLPFC Right PPC 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Real: Gain .389 (.213) .389 (.168) .511 (.190) .474 (.205) 

Sham: Gain .396 (.197) .413  (.156) .440 (.247) .379 (.200) 

Real: Loss .755 (.178) .728 (.172) .653 (.190) .644 (.194) 

Sham: Loss .749 (.183) .711 (.197) .718 (.176) .749  (.245) 

Mean proportion of choices for the immediate option across subjects computed for each 

type of stimulation (i.e. Real vs. Sham) to each side and region (listed in column titles).  

Statistics are collapsed across all gain trials and all loss trials separately.   
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Model parameters for all GEE models that predict choice of an immediate 

monetary option are presented in Table 4.  All between subject models contained 

Stimulation Type, Immediate Relative Value, Session Number, and an intercept as 

predictors.  We also included the interaction of Immediate Relative Value by Stimulation 

Type in all initial models, to assess whether effects of real rTMS on choice depended on 

the relative value of the immediate reward.  However, if this interaction term was not 

significant (p >= .05), we did not include it in the final model. 

Disruption of the right DLPFC led to greater choice of options with a better 

immediate but worse long-term value.  Importantly, this was seen in both the gain and 

loss domains.  Individuals who received real rTMS to the right DLPFC chose more 

immediate monetary gains (Odds Ratio(OR) = 1.645, p <.01) than did individuals who 

received sham stimulation to the same region (see Figure 5A).  They also chose less 

immediate monetary losses (OR = .653, p < .05) than did individuals who received sham 

stimulation to the same region (see Figure 5B).  These effects were not dependent on the 

relative value of the immediate option, as similar differences in choice behavior emerged 

across the range of gain and loss values.  In contrast to the effects seen following 

disruption of the right DLPFC, disruption of the left DLPFC did not affect choices.      

 Disruption of the right PPC also led to greater choice of options with a better 

immediate, but worse long-term value, and occurred in both the gain and loss domains.  

In contrast to the effects seen following disruption of the right DLPFC, the effects seen 

following disruption of the right PPC were dependent on the relative subjective value of 

the immediate option.  There was an interaction of Immediate Relative Value by 

Stimulation Type on choice of both immediate monetary gains (p <.01) and immediate 
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monetary losses (p <.05).  At low relative subjective values of the immediate option, 

individuals who received real stimulation chose similarly to those who received sham 

stimulation.  However, as the subjective value of the immediate option increased relative 

to that of the delayed option, individuals became increasingly more likely to choose 

immediate monetary gains (see Figure 5C) and increasingly less likely to choose 

immediate monetary losses than individuals who received sham stimulation to the same 

region (see Figure 5D).  Across both gain and loss choices, those who received real rTMS 

became increasingly more likely than subjects who received sham rTMS to choose the 

option with the better immediate, but worse long-term value, as the relative value of the 

immediate option increased.  

 Disruption of the left PPC also affected choice behavior, but only for gain trials.  

Real rTMS administered to the left PPC led to fewer choices for immediate monetary 

gains than did sham stimulation (OR = .751, p <.05) (see Figure 5E).  The effect of left 

PPC stimulation contrasted with that of right PPC stimulation for gain trials in two ways.  

First, disruption of the left PPC led to decreased rather than increased choice of monetary 

gains with the better immediate value. Second, the effect occurred across the range of 

gain trials rather than interacting with Immediate Relative Value. 

   

      

 

 

 

 



83 

 

Table 4: Between and Within Subject GEE Models for Intertemporal Choice. 

  GAIN Model  LOSS Model  

 B (SE) OR B (SE) OR 

Between: Left DLPFC        

Intercept   -.563*** (.155)      .569                        .848*** (.121)       2.335     

StimType  .138      (.149)   1.148       .162      (.161)         1.176 

Imm. Rel. Value                       .038***   (.003)   1.039                      -.027*** (.002)          .973 

Session  .194     (.153)   1.215                         .588*** (.164)       1.800 

Between: Left PPC        

Intercept   -.379*** (.102)        .685                       1.264*** (.168)     3.538          

StimType -.286* (.115)        .751          .065       (.172)     1.067 

Imm. Rel. Value                       .037*** (.003)     1.038                        -.032*** (.002)        .968 

Session -.040       (.115)        .961                        -.405*     (.170)        .667 

Between: Right DLPFC        

Intercept   -.599*** (.116)       .549                           .943*** (.109)     2.568 

StimType .498**   (.158)    1.645                         -.426*     (.167)       .653 

Imm. Rel. Value                      .039*** (.002)     1.039                         -.031*** (.002)       .969 

Session  .421**    (.159)     1.523                          .210      (.164)      1.233 

Between: Right PPC        

Intercept   -.177     (.158)        .838                         1.307*** (.180)   3.696 

StimType  .442**    (.168)     1.555                         -.719*** (.213)       .487 

Imm. Rel. Value                       .036*** (.003)     1.036                         -.022*** (.004)       .978 

Session -.757*** (.171)      .469                            .185      (.200)     1.203 

StimType X Imm. Rel. Value    .011**    (.004)    1.011                        -.011*     (.005)       .989 

Real Within: Left       

Intercept      -.646*** (.081)       .524                       1.090*** (.142)    2.974 

Region       .051         (.073) 1.053                        -.067      (.064)       .936 

Imm. Rel. Value                          .036*** (.003)    1.037                       -.030*** (.003)       .970 

Session      .070        (.077)   1.072                          .178**   (.065 1.195   

Real Within: Right       

Intercept     .148       (.077)    1.160                           .404*** (.099)      1.498 

Region     -.208*** (.050)       .812                           .052       (.067)     1.054 

Imm. Rel. Value                         .043*** (.003)    1.044                         -.032*** (.002)        .969 

Session    -.205*** (.049)       .815                           .249*** (.070)     1.283 
Models predict choice of immediate option on each gain trial (in columns listed GAIN Model) or 

on each loss trial (in columns listed LOSS Model).  In left column model predictors are listed 

below each model (name of model listed in Bold).  Models listed “Between”: contain data from 

subjects who received real rTMS and from subjects who received sham rTMS to region listed 

after word “Between”.  Models listed “Real Within” contain data from subjects who received real 

rTMS to regions of the hemisphere listed after words “Real Within”. OR = Odds Ratio (e
B
). SE = 

Standard Error of B.  Intercept = Model Intercept.  Imm. Rel. Value = Immediate Relative Value 

(percent distance of the immediate option from immediate equivalent of the delayed option). 

Region = Stimulation Region (0 = DLPFC, 1 = PPC). StimType=Stimulation Type (0 = Sham 

rTMS, 1 = Real rTMS).  Session = Session Number (0 = Session 2, 1 = Session 3).  X = Predictor 

is interaction of two terms.  Models only contained interaction if significant at p < .05.* p < .05; 

** p <.01; *** p <.001. 
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Figure 5: Intertemporal Choice Graphs.  Probability of choosing the immediate option 

as a function of the relative value of the immediate option.  Numbers on x-axis are the 

percent distance between the immediate option and the immediate equivalent of the 

delayed option (i.e. x-axis represents Immediate Relative Value).  Graphs show choice at 

average session (Session = .5). A-E. Compares choice on gain or loss trials (listed in title) 

between real vs. sham stimulation to one region (listed in title).  F.  Compares choice on 

gain trials across stimulation region for those who received real rTMS to right 

hemisphere regions. * Paired comparison significant at p < .05.  
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To determine whether there was a stronger effect of rTMS in the right PPC or 

right DLPFC, we examined whether there were significant effects of stimulation region 

within subjects who received real rTMS (see Table 4).  Individuals chose fewer 

immediate monetary gains following disruption of the right PPC than of the right DLPFC 

(OR = .812, p <.001) (see Figure 5F).  However, the magnitude of this effect was small, 

indicating that choice patterns were not very divergent following disruption of either 

region.  Because of the small size of the effect, it is not discussed further.  In contrast to 

the effect of region of disruption in the right hemisphere on choice for gains, there was no 

effect of region of disruption in the right hemisphere on choice for losses.  Additionally, 

region of disruption in the left hemisphere did not affect choice of either gains or losses.  

Additionally, there were no significant interactions of Immediate Relative Value by 

Region on choice in any within subject models.  

Both between and within subject analyses reveal that participants were sensitive 

to the relative subjective values of the two options as predicted.  In all monetary gain 

models, there was a positive effect of Immediate Relative Value such that subjects were 

more likely to chose the immediate gain as the relative value of the immediate option 

increased (all p <.001).  In contrast, in all monetary loss models, there was a negative 

effect of Immediate Relative Value, such that subjects were less likely to choose  the 

immediate loss as the relative value of the immediate loss increased (i.e. as the magnitude 

of the immediate loss increased) (all p < .001).  This reveals that while disruption of 

several regions with rTMS affected choice, disruption did not make participants 

insensitive to the relative values of the two options.     
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We found some effects of Session Number on choice of monetary gains and 

losses in between subject models, but these effects did not exhibit consistent patterns 

across models.  In between subject models, there was a positive effect of Session Number 

on choice of immediate gains following stimulation to the right DLPFC (p <.01), but a 

negative effect of Session Number following stimulation to the right PPC (p <.001).  In 

the domain of losses, there was a positive effect of Session Number on choice of 

immediate losses following stimulation to the left DLPFC (p <.001), but a negative effect 

of Session Number following stimulation to the left PPC (p <.05).  It is difficult to 

interpret how Session Number affected choice across all subjects, because there was no 

consistent effect of Session Number in either the gain or loss domain. 

 There were, however, more interpretable effects of Session Number in within 

subject models.  Amongst individuals who received real rTMS, Session Number was 

consistently positively associated with greater choice of the option with the better long-

term value.  Individuals were less likely to choose immediate gains following disruption 

of right hemisphere regions (p < .001) and more likely to choose immediate losses 

following disruption of regions of either hemisphere (both p <.01) in session 3 than in 

session 2. This suggests that individuals who received real rTMS improved in their ability 

to choose the better long-term option over time; they were more likely to choose the 

larger delayed gain and the smaller immediate loss in session 3 than in session 2.  

As a supplemental analysis, we investigated whether subjects who received real 

rTMS to right hemisphere regions were more likely to choose the option with the better 

immediate value than were subjects who received real rTMS to the same regions in the 

left hemisphere.  To assess this, we constructed between subject GEE models similar to 
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those produced across real and sham groups, except the predictor Stimulation Type was 

replaced by Hemisphere (0 = Left, 1 = Right).  Each model only included data from 

participants who received real rTMS to a brain region (PPC or DLPFC).  Consistent with 

the between subject results, disruption of either right DLPFC or right PPC was associated 

with a greater tendency to choose the option with the better immediate value.  Individuals 

who received real rTMS to the right DLPFC were more likely to choose immediate gains 

(OR = 2.137, p < .001) and less likely to choose immediate losses (OR = .461, p <.001) 

than were individuals who received real rTMS to the left DLPFC.  Similarly, those who 

received real rTMS to the right PPC were more likely to choose immediate gains (OR = 

2.064, p < .001) and less likely to choose immediate losses (OR = .636, p < .01) than 

were those who received real rTMS to the left PPC.  There was no interaction of 

Immediate Relative Value by Hemisphere in any of the models.  Thus, unlike in the 

between stimulation type analyses, in the between hemisphere analyses, the effects of 

disruption of the right PPC on choice were not dependent on the relative value of the 

immediate option.  The greater tendency to choose the better immediate, but worse   

long-term gains and losses seen following disruption of right than of left hemisphere 

regions supports the results of our analyses investigating differences in choice following 

real vs. sham rTMS to the right DLPFC and right PPC.  Together, both analyses indicate 

that disruption of the right DLPFC and the right PPC increased choice of gain and loss 

options with better immediate, but worse long-term values.  

We performed another supplemental analysis to see if changes in choice patterns 

seen following disruption of the DLPFC or PPC were dependent on how close the 

subjective values of the two options were to each other.  This was done because prior 
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research shows that disruption of the DLPFC with rTMS affects choice more on difficult 

intertemporal choices (Figner et al., 2010), and it might be more difficult to compare the 

values of the two options and make a choice as the subjective values approach each other.  

To assess this, we reran all eight of our between subject GEE models that compared 

choice between individuals in the real and sham rTMS groups, but added two terms to the 

models: a quadratic effect of Immediate Relative Value and an interaction of this term 

with Stimulation Type.  The quadratic effect, Immediate Relative Value Squared (i.e. 

Immediate Relative Value
2
), was used because the value of this term decreased as the 

subjective values of the two options approached each other.  These analyses revealed a 

significant interaction between Immediate Relative Value
2
 and Stimulation Type on loss 

trials following stimulation to the left DLPFC (p=.003).  Despite this interaction, there 

were no significant differences between groups on choice.  Because of the lack of 

significant differences, this finding is not further discussed.   In contrast to the interaction 

seen following stimulation to the left DLPFC, there were not any significant interactions 

between Immediate Relative Value
2
 and Stimulation Type following stimulation to other 

regions.  Importantly, these results indicate that the effects on choice following disruption 

of the right DLPFC and the right PPC were not dependent on how close the relative 

subjective values of the two options were to each other. 

 

Intertemporal Choice Reaction Time 

 We next tested whether reaction time was different across groups using GEE 

models (see Table 5) to see whether changes in choice patterns following disruption of 

brain regions were associated with changes in the time it took to choose between the 



89 

 

options.  We assumed that as comparisons and choices became more difficult, reaction 

time would increase.  Choices could become more difficult as the relative subjective 

values of the two options approach each other, and also as the objective monetary values 

of the two options approach each other.  To examine both of these effects, all reaction 

time models included both linear and quadratic effects of Immediate Relative Value.  As 

the linear term, Immediate Relative Value, increased, the monetary value of the 

immediate option approached that of the delayed option.  In contrast, as the quadratic 

effect, Immediate Relative Value squared (i.e. Immediate Relative Value
2 

), decreased, 

the subjective values of the two options approached each other.  As the relationship 

between Immediate Relative Value and choice could differ across groups, we also probed 

for interactions between Stimulation Type and the linear and quadratic effects of 

Immediate Relative Value.  These interactions were only included in final models if 

significant. 

Real rTMS over the right DLPFC or right PPC slowed reaction times relative to 

sham stimulation on loss trials (both p < .05).  These slowed reaction times could indicate 

that it was harder following real stimulation to choose loss options with the better long-

term value, since real stimulation to these regions decreased the tendency to choose these 

options.  However, one should not make a strong claim based on the patterns of these 

effects.  This is because changes in choice and reaction time interacted differently with 

the relative values of the two options.  There were significant negative effects of 

Immediate Relative Value
2  

on reaction time following real rTMS to the right PPC and to 

the right DLPFC but not following sham rTMS to these regions, as indicated by the 

significant interactions of Stimulation Type by Immediate Relative Value
2  

(both p <.05) 
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and the nonsignificant main effects of Immediate Relative Value
2
.  This reveals that 

reaction time slowed as the subjective values of the two options approached each other 

for the real rTMS group, but not for the sham group.  Additionally, it suggests that real 

rTMS made it more difficult for individuals to choose amongst losses as the subjective 

values of the two monetary loss options approached each other (see Figure 6A & 6B).  If 

this reaction time effect were linked to choice, one would expect that individuals who 

received real rTMS would make fewer choices for options with the better long-term 

outcome as the subjective values of the options approached each other as well.  However, 

as discussed earlier this was not the case.  There were no significant interactions between 

Immediate Relative Value
2  

and Stimulation Type on choice following stimulation to right 

hemisphere regions.   

We did not find evidence for a relationship between changes in reaction time and 

changes in choice patterns on gain trials following disruption of the right DLPFC or the 

right PPC.  There was an interaction of Immediate Relative Value by Stimulation Type 

on intertemporal choice reaction time for gain trials following stimulation to the right 

PPC (p < .05).  While individuals who received sham rTMS to this region responded 

more slowly as Immediate Relative Value increased, individuals who received real 

stimulation did not.  Despite this difference, reaction time following disruption of right 

PPC was not significantly slower than reaction time following sham stimulation (see 

Figure 6C), even though these subjects were more likely to choose immediate gains than 

those in the sham group.  Additionally, there was no effect of Stimulation Type to the 

right DLPFC on reaction time for gain trials, even though choice was affected.  The lack 

of significant differences in reaction time on gain trials across groups that had significant 
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differences in choice patterns on these trials indicates that changes in the ability to make 

good long-term choices on gain trials were not associated with changes in reaction time, 

following disruption of right hemisphere regions. 

In contrast, there did appear to be a relationship between changes in reaction time 

and choice on gain trials following disruption of the left PPC.  Relative to individuals 

who received sham stimulation, those who received real rTMS to the left PPC both had 

decreased reaction time on gain trials (p < .001; see Figure 6D) and made fewer choices 

for immediate gains.  Neither the effects on reaction time nor the effects on choice 

following disruption of this region were dependent on the relative value of the immediate 

option, showing a similarity between the two effects.  Individuals responded more 

quickly and were more likely to choose the better long-term option following disruption 

of the left PPC.   

We found some between subject effects on reaction time in the left DLPFC as 

well.  However, these effects appeared to be modest and were not linked to any changes 

in choice patterns, since disruption of the left DLPFC did not affect choice.  Following 

stimulation delivered to the left DLPFC, we saw a significant interaction between 

Immediate Relative Value
2
 and Stimulation Type (p < .05), such that reaction time on 

loss trials for the sham group slowed more as the two subjective values approached each 

other than it did for the real rTMS group (see Figure 6E).  However, as no reaction time 

differences between groups reached statistical significance, this effect is not discussed 

further.  
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Table 5: Between Subject GEE Models for Intertemporal Choice Reaction Time.  

 GAIN Model  LOSS Model  

 B (SE) B (SE) 

Between: Left DLPFC      

Intercept 3136.488***   (75.437)   3396.698***  (94.894)   

StimType  -15.041      (89.065)                  -91.084       (126.894)     

Imm. Rel. Value                       3.435***          (.522)   4.736***             (.706) 

Imm. Rel. Value
2
    -.070***       (.014)    -.153***             (.031)   

Session -414.228***   (89.483)   -375.119***        (100.187)   

StimType X Imm. Rel. Value          ---†    -1.172         (1.250)     

StimType X Imm. Rel. Value
2   

  ---      .086*            (.040)     

Between: Left PPC     

Intercept 3375.831***   (77.763)   3468.686***        (80.793)    

StimType -348.695***   (72.604)     -6.946           (84.845)      

Imm. Rel. Value                        .282      (.829)        5.102***                (.524)   

Imm. Rel. Value
2
    -.113***      (.015)        -.036*        (.015)    

Session -479.025***   (72.556)    -550.298***        (90.422)     

StimType X Imm. Rel. Value        2.451*      (1.086)     ---   

Between: Right DLPFC     

Intercept 3330.106***   (57.810)           3387.930***        (66.438)   

StimType   46.987   (76.358)      232.525*       (109.378)     

Imm. Rel. Value                       2.952***        (.771)      6.213***                 (.881) 

Imm. Rel. Value
2
    -.110***        (.019) 

  

    .017                      (.018)     

Session -452.088***    (82.957) -449.830***         (95.091)   

StimType X Imm. Rel. Value     ---    -1.633                   (1.116)       

StimType X Imm. Rel. Value
2   

  ---     -.075*                    (.035)      

Between: Right PPC     

Intercept 3599.815*** (84.868) 3433.702***      (69.620) 

StimType  -32.280   (81.097)  452.172***        (91.683) 

Imm. Rel. Value                       2.526**     (.884)       8.206***                   (.883) 

Imm. Rel. Value
2
    -.117***       (.015)      .001                      (.025)     

Session -573.447***   (82.021) -673.276***      (78.212) 

StimType X Imm. Rel. Value       -3.057*     (1.289)     -2.267                    (1.214) 

StimType X Imm. Rel. Value
2   

  ---     -.128***                    (.033)     

Models predict reaction time (ms) on gain or loss trials.  Imm. Rel. Value
2 

= Immediate 

Relative Value squared.  ---†= Interaction not included in model (models only contained 

interaction if it was significant at p < .05).  Other abbreviations same as in Table 4. * p < 

.05; ** p <.01; *** p <.001. 
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Figure 6: Between Subject Intertemporal Choice Reaction Time Graphs.  Choice 

reaction time (in ms) as a function of the relative value of the immediate option.  

Numbers on x-axis are the percent distance between the immediate option and the 

immediate equivalent of the delayed option.  Graphs show reaction time at average 

session (Session = .5). A-E. Compares reaction time on gain or loss trials (listed in title) 

between real vs. sham stimulation to one region (listed in title).  * Paired comparison 

significant at p < .05. 
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The results of our between subject reaction time analyses suggest that the 

relationship between choice patterns and reaction time is dependent on the region of 

stimulation and the type of choice (i.e. gain or loss).  Some effects on choice were 

associated with changes in reaction time, particularly on gain trials following rTMS to the 

left PPC, while others were clearly dissociable (i.e. effects following rTMS to right 

hemisphere regions on gain trials).  There was some evidence that slowed reaction time 

was associated with greater choice of better immediate but worse long-term loss options, 

and that speeded reaction time was associated with greater choice of better long-term but 

worse immediate gain options.  However, with the exception of the effects following 

rTMS to the left PPC, the relationships between choice and reaction time appeared to be 

weak.  

For subjects who received real rTMS, there were some differences in reaction 

time that depended on region of stimulation, but only following left hemisphere 

stimulation (see Table 6).  Following real rTMS to the left DLPFC and the left PPC, there 

were effects of Region on loss trials that were dependent on both Immediate Relative 

Value and Immediate Relative Value
2
 (both p < .001; see Figure 7B), and effects of 

Region on gain trials that were dependent on Immediate Relative Value
2
 (p < .001; see 

Figure 7A).  To investigate whether the divergent effects of Immediate Relative Value
2
 

across regions were coupled with changes in choice patterns, we reran our left 

hemisphere within subject GEE gain and loss intertemporal choice models for subjects in 

the real rTMS group, but this time included additional terms for Immediate Relative 

Value
2 

and the interaction of this term with Region.  Both terms were nonsignificant, 

revealing that reaction time effects were not coupled with effects on choice.  Since 
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analyses revealed there were no effects of Region on intertemporal choice following real 

rTMS to the left hemisphere, these reaction time effects are not discussed further.   

 

Table 6: Within Subject GEE Models for Intertemporal Choice Reaction Time. 

 GAIN Model  LOSS Model  

 B (SE) B (SE) 

Real Within: Left     

Intercept 3213.539***      (53.855) 3339.426***

  

(75.206) 

Region    75.152 (46.643)    8.890 (49.856) 

Imm. Rel. Value                       3.159***    (.631)    3.394***           (.866) 

Imm. Rel. Value
2
    -.065**        (.020)    -.113***           (.021) 

Session -568.657***       (31.514)                   -398.777***    (40.386)           

Region  X Imm. Rel. Value                 .508    (.629)    3.305***   (.951) 

Region  X Imm. Rel. Value
2   

         -.119***    (.036)     .084***   (.022) 

Real Within: Right     

Intercept 3374.700*** (57.030) 3624.722***

  

(71.978) 

Region    61.083    (37.630)   31.714 (44.156) 

Imm. Rel. Value                       1.267*      (.609)    5.409***   (.558) 

Imm. Rel. Value
2
    -.102***    (.017)                 -.070***   (.018) 

Session -289.310*** (38.950) -339.540*** (43.682) 

Models predict reaction time (ms) for subjects who received real rTMS on gain or loss 

trials.  Imm. Rel. Value
2 

= Immediate Relative Value squared.  Models only contained 

interaction if it was significant at p < .05. Other abbreviations same as in Tables 4. * p < 

.05; ** p <.01; *** p <.001. 
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Figure 7: Within Subject Intertemporal Choice Reaction Time Graphs.  

Intertemporal choice reaction time (in ms) as a function of the relative value of the 

immediate option.  Numbers on x-axis are the percent distance between the immediate 

option and the immediate equivalent of the delayed option.  Graphs show reaction time at 

average session (Session = .5). A-B.  Compares reaction time on gain or loss trials (listed 

in title) across region of stimulation for those who received real rTMS to left hemisphere 

regions.  * Paired comparison significant at p < .05. 

 

 

 

All intertemporal choice reaction time models revealed an effect of Session 

Number, such that subjects responded more quickly in session 3 than in session 2 (all p < 

.001); this improvement in reaction time was likely due to familiarity with the task.  

Additionally, in all models there was a significant positive linear effect of Immediate 

Relative Value (p < .05) and/or a significant negative quadratic effect of Immediate 

Relative Value (i.e. of Immediate Relative Value
2
) (p < .05), as predicted.  Reaction time 

thus increased as the monetary values of the two options approached each other (i.e. as 

Immediate Relative Value increased) and/or increased as the subjective value of the two 

options approached each other (i.e. as Immediate Relative Value
2
 decreased).  These 

reaction time effects suggest that trials did become more difficult both as the monetary 

values and as the subjective values of the two options approached each other. 

 

A B 
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Numerical Comparison Reaction Time 

 We next used GEE models to examine the effects of Stimulation Type, Immediate 

Relative Value, and Session Number on numerical comparison reaction time for correct 

trials to see if an increased tendency to choose options with the better immediate value on 

the Intertemporal Choice Task was associated with an impaired ability to perform 

numerical comparisons (see Table 7).  We included Immediate Relative Value (i.e. of the 

option that had been immediate on the preceding intertemporal choice trial) as an 

independent variable, because numerical comparisons should become more difficult and 

slower as the monetary values of the two numbers approach each other, consistent with 

past research (Moyer & Landauer, 1967).  As with other analyses, we only included an 

interaction term containing Immediate Relative Value if it was significant. 

There were no significant effects of Stimulation Type on numerical comparison 

reaction time following stimulation to the right DLPFC or right PPC.  There were also no 

significant interactions between Stimulation Type and Immediate Relative Value 

following stimulation to these regions.  Thus, there was no evidence that a greater 

tendency to choose the option with the better immediate value, following disruption of 

right hemisphere regions, was due to a disrupted ability to perform numerical 

comparisons.   
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Table 7: Between and Within Subject GEE Models for Numerical Comparison 

Reaction Time.  

 B (SE) 

Between: Left DLPFC   

Intercept 1229.931*** (60.732) 

StimType  -10.794 (53.764) 

Imm. Rel. Value                       1.791***    (.331) 

Session -146.037** (53.735) 

Between: Left PPC   

Intercept 1206.382*** (45.622) 

StimType   -6.429 (57.072) 

Imm. Rel. Value                       1.567***    (.442) 

Session -133.138* (57.058) 

StimType X Imm. Rel. Value    -1.051*    (.512) 

Between: Right DLPFC   

Intercept 1157.663*** (55.137) 

StimType  -17.158 (84.379) 

Imm. Rel. Value                       1.946***    (.352) 

Session   89.258 (84.527) 

Between: Right PPC   

Intercept 1317.983*** (60.156) 

StimType   42.651 (70.440) 

Imm. Rel. Value                        .900**    (.279) 

Session -286.806*** (70.442) 

Real Within: Left   

Intercept 1199.186*** (38.567) 

Region   -12.359 (23.388) 

Imm. Rel. Value                       1.929***    (.401) 

Session -106.250*** (23.403) 

Region  X Imm. Rel. Value                   -1.412**    (.451) 

Real Within: Right   

Intercept 1234.196*** (66.061) 

Region    33.197 (27.166) 

Imm. Rel. Value                       2.109***    (.377) 

Session -100.784*** (27.106) 

Region  X Imm. Rel. Value                   -1.291*    (.531) 

Models predict reaction time (ms) on accurate trials for subjects who received real or 

sham rTMS to listed region in bold.  Models only contained interaction if it was 

significant at p < .05. Imm. Rel. Value is the Immediate Relative Value of the option that 

was immediate on the preceding choice trial. Other abbreviations same as in Table 4. * p 

< .05; ** p <.01; *** p <.001.   

 

   



99 

 

Disruption of only one region, the left PPC, affected numerical comparison 

reaction time differently across real and sham stimulation.  Following rTMS delivered to 

this region, there was an interaction of Immediate Relative Value by Stimulation Type on 

reaction time (p < .05).  Although reaction time increased as Immediate Relative Value 

increased following both real and sham rTMS, this value dependent increase was greater 

for sham than real stimulation.  Despite this difference, however, there were no 

significant differences in reaction time across groups (see Figure 8A), revealing that this 

effect was modest. 

We next looked at the effects of stimulation region on reaction time within 

subjects who received real rTMS (see Table 7).  We found significant interactions of 

Immediate Relative Value by Region on numerical comparison reaction time among 

individuals who received real rTMS to the left hemisphere and among those who 

received it to the right hemisphere (both p < .05).  Although reaction time increased as 

Immediate Relative Value increased following disruption of all regions, this value 

dependent increase was greater for DLPFC regions than for PPC regions (see Figure 8B 

& 8C).  This suggests that while it became more difficult to compare the values of the 

numbers as they approached each other following disruption of either the DLPFC or PPC 

to either hemisphere, the level of difficulty increased more as the two values approached 

each other following disruption of the DLPFC.  

All models revealed that subjects were sensitive to the relative numerical values 

of the two options.  In every GEE model, there was a positive effect of Immediate 

Relative Value, such that as the value of the smaller option increased and the monetary 

values of the two options approached each other, reaction time increased (all p < .01).  
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This was expected as numerical comparisons should become more difficult as the 

distance between the two numbers decreases.  Additionally, almost all models revealed 

an effect of Session Number.  All significant effects of Session Number were in the 

negative direction, such that participants responded more quickly in session 3 than in 

session 2 (all p < .05), suggesting that performance improved with familiarity.   

   

 

Figure 8: Numerical Comparison Reaction Time Graphs.  Numerical comparison 

reaction time (in ms) as a function of the relative value of the immediate option on the 

preceding choice trial.  Numbers on x-axis are the percent distance between the 

immediate option and the immediate equivalent of the delayed option.  Graphs show 

reaction time at average session (Session = .5). A. Compares reaction time between real 

vs. sham stimulation to the left PPC.  B-C  Compares reaction time across region of 

stimulation for those who received real rTMS to regions in one hemisphere (listed in 

title).  * Paired comparison significant at p < .05. 

 

B C 
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 As a supplementary analysis, we reran our numerical comparison reaction time 

models by only modeling reaction time on correct trials in which the reaction time was 

>= 100 ms and that were within two standard deviations of each subject’s mean reaction 

time.  This was done to remove trials in which subjects may have hastily responded and 

trials that were outliers.  It also allowed us to better compare our results with those of 

prior studies that have investigated the effects of TMS or rTMS on numerical comparison 

abilities, since it is typical to remove outliers before analysis (Andres et al., 2005; 

Cappelletti et al., 2007; Sandrini et al., 2004).  This supplementary analysis led to similar 

results as the primary reaction time analysis, except there was now no longer any 

significant interaction of Immediate Relative Value by Stimulation Type following rTMS 

to the left PPC.  Importantly, both the supplementary and primary analyses show that 

increased choice of better immediate, but worse long-term options, following disruption 

of the right DLPFC and the right PPC, was not associated with an impairment in the 

ability to perform numerical comparisons.   

 

Indifference Points 

   As a second approach to examining changes in intertemporal choice, we 

examined whether subject’s immediate equivalents for $10 delayed gains and losses were 

affected by disruption of the DLPFC and PPC.  In order to examine the difference in 

immediate equivalents following real and sham rTMS to each hemisphere, we used the 

Generalized Linear Model, which included Stimulation Type, Session Number, and 

Session One Immediate Equivalent as predictors.  We also created within subject GEE 
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models for subjects who received real rTMS to more thoroughly investigate how real 

rTMS affected immediate equivalents. 

Contrary to the findings of the Intertemporal Choice Task, there were no effects 

of real rTMS on immediate equivalents on the indifference point procedure for monetary 

gains or losses.  There was both no effect of Stimulation Type in between subject models 

and no effect of Region in within subject models for individuals who received real rTMS.  

Thus, greater choice of options with the better immediate value on the Intertemporal 

Choice Task was not associated with altered levels of delay discounting on the 

Indifference Point Task.   

The lack of findings on the Indifference Point Task may have been partially due 

to decay of rTMS effects since this task was completed after the Intertemporal Choice 

Task.  However, this is unlikely, since all subjects completed the Indifference Point Task 

before the effects of rTMS should have completely decayed (i.e. all subjects completed 

the task within 15 minutes after the termination of stimulation).  Maximum completion 

time for the Indifference Point Task was 12.110 minutes (min) post stimulation        

(Mean = 8.242 min, SD = 1.102 min), and maximum completion time for the preceding 

Intertemporal Choice Task was 10.275 minutes post stimulation (Mean = 7.413 min,    

SD = .965 min).   

The lack of findings could also have been due to differences in the components of 

the intertemporal choice and indifference point tasks.  The smaller number of trials on the 

Indifference Point Task may have made choices insensitive to neuromodulation relative 

to choices on the Intertemporal Choice Task, which provided both a greater number of 

trials and a greater range of immediate and delayed values.   
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Discussion 

 

We found that disruption of either the right DLPFC or the right PPC with rTMS 

led to greater choice of options with a better immediate, but worse long-term value, 

supporting the hypothesis that the functions of both of these regions help individuals 

make choices that optimize long-term value relative to immediate value.  Increased 

choice of options with a better immediate value following rTMS was found in both the 

gain and loss domains.  Individuals were more likely to choose small immediate 

monetary gains and less likely to choose small immediate monetary losses than were 

sham subjects and subjects who received real rTMS to contralateral brain regions 

 Although disruption of the right DLPFC or right PPC led to increased choice of 

options with a better immediate value, the effects seen following disruption of each brain 

region were different.  Disruption of the right DLPFC led to increased choice of options 

with a better immediate value (i.e. immediate gains and delayed losses) generally.  In 

contrast, the increased tendency to make choices for options with the better immediate 

value following disruption of the PPC was dependent on the value of the immediate 

option.  Following disruption of the right PPC, individuals became increasingly more 

likely than sham subjects to choose options with a better immediate, but worse long-term 

value as the relative value of the immediate option increased (i.e. as immediate gains and 

losses increased).  This suggests that both regions are involved in different functions 

during intertemporal choice.   

Past neuroeconomic studies have outlined three major models to account for 

intertemporal choice behavior: single-valuation (Kable & Glimcher, 2007, 2009), dual-
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valuation (McClure et al., 2004), and self-control (Figner et al., 2010).  The single and 

dual valuation accounts both posit that choice directly follows from valuation, but differ 

in the number of valuation processes that influence choice.  The single-valuation model 

holds that a number of regions of the brain, including the MPFC and ventral striatum, 

respond to the value of both immediate and delayed rewards, but respond less for rewards 

as they become more delayed.  According to this model, disrupting the DLPFC or PPC 

should not lead to increased choice for either type of option because it would not change 

valuation of the choice options.  In contrast, the dual-valuation model holds that there are 

two valuation processes, an impatient system, that values immediacy, and a more patient 

system, that includes the LPFC and PPC, which discounts delayed rewards much less 

steeply than the impatient system.  Disruption of a region involved in the patient system 

should lead to decreased valuation of delayed rewards and increased choice of options 

with the better immediate value.  Self-control accounts on the other hand hold that 

activity in the DLPFC, and possibly other brain regions, can override or modulate 

valuation-related activity in other regions so that individuals can choose the better long-

term option (Figner et al., 2010; Hare et al., 2009).  The self-control processes in the 

intertemporal choice theory of Figner and colleagues (2010) are characterized as classic 

cognitive control mechanisms that are deliberate and that have the ability to override 

more prepotent responses (i.e. prepotent responses to choose the option with the best 

immediate value), in favor of goals (Miller & Cohen, 2001).   

The effects on choice seen following disruption of the right DLPFC are most 

consistent with the dual-valuation account, suggesting that functions of the DLPFC place 

more weight on the long-term value of options than do other regions.  Disruption of this 
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region led to a shift in preference for options with a better immediate value, and this shift 

did not depend on the relative values of the two options.  This is the effect one would 

expect if one disrupted activity in a brain region that does not discount the value of 

delayed rewards, relative to immediate rewards, as much as other regions do.  

Specifically, if there are parallel patient and impatient valuation systems, and the patient 

system is disrupted, the impatient system’s valuation will dominate the decision process. 

In the dual-valuation model of McClure et al. (2004), impatient systems (i.e. ventral 

striatum, MPFC) would become dominant, once regions of the patient system (i.e. 

DLPFC and PPC) are disrupted.  Our findings are consistent with the model of McClure 

and colleagues, and suggest that the DLPFC is part of a “patient valuation” system.  

The authors of a past rTMS study of intertemporal choice have argued against a 

valuation role for the DLPFC based on their finding that disruption of the DLPFC 

affected choices but not valuation of the options (Figner et al., 2010).  However, their 

lack of an effect could have been due to limited power to detect differences on the 

valuation task, as there were only 12 trials.  This is quite possible, as the findings of 

several other studies do suggest that the DLPFC has an important role in valuation.  

Activation in the DLPFC has been shown to scale with the subjective value of items on 

both bidding and choice tasks (Hare et al., 2009; Plassmann et al., 2007; Plassmann et al., 

2010).  Furthermore, disruption of the DLPFC with low frequency rTMS has led to 

altered valuation of items on a bidding task (Camus et al., 2009).  In contrast to the 

findings of Figner et al., the findings of these other studies are supportive of our 

suggestion that the DLPFC is involved in valuation of items during intertemporal choice.  
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Our effects of disruption of the right DLPFC do not support a self-control account 

for this region in intertemporal choice.  A self-control account could predict that a region 

involved in self-control would show more involvement as the motivational drive to 

choose an immediate gain (or to avoid choosing an immediate loss) becomes more 

prepotent, under the assumption that it should be harder to override this prepotent urge as 

it increases.  Since this prepotent urge should increase as the value of the immediate 

option increases, this idea holds that disruption of a region involved in self-control would 

lead to greater choice of the best immediate option as the value of the immediate option 

increases and becomes closer to the monetary value of the larger delayed option.  

Alternatively, a self-control account could predict that a region involved in self-control 

would show more involvement as intertemporal choices become more difficult, that is as 

the values of the two options approach each other, under the assumption that it should be 

harder to override a prepotent urge to choose an immediate gain or to avoid choosing an 

immediate loss when the two options are close in subjective value.  This idea holds that 

disruption of a region involved in self-control would lead to greater choice of options 

with the better immediate value as the subjective values of the two options approached 

each other.  However, disruption of the right DLPFC did not lead to either of the changes 

in choice that might be expected to occur after disruption of a self-control process.  As 

the value of the immediate option increased, individuals who received real rTMS did not 

become increasingly more likely than those who received sham stimulation to choose the 

option with the better immediate value, as demonstrated by the non-significant 

interactions between Stimulation Type and Immediate Relative Value.  Similarly, 

supplementary analyses revealed that individuals who received real rTMS to the right 
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DLPFC did not become increasingly more likely than those who received sham 

stimulation to choose the better immediate option as the subjective values of the two 

options approached each other; there were non-significant interactions between 

Stimulation Type and the quadratic effect of Immediate Relative Value (i.e. Immediate 

Relative Value
2
).  Rather, the effect of rTMS appeared consistent across the range of 

values studied.  Thus, the right DLPFC data appear most consistent with a dual-valuation 

account.  

The effects seen after disruption of the right PPC, however, are more consistent 

with a self-control account than a dual-valuation account.  Disruption of the right PPC led 

to changes in choice that were dependent on the relative values of the two options.  

Importantly, when the value of the immediate option was low, disruption of the right PPC 

did not lead to increased choice of the option with the better immediate value.  As the 

value of the immediate option increased, however, individuals who received real rTMS 

became increasingly more likely than those who received sham stimulation to choose the 

option with the better immediate value.  In other words, following disruption of the right 

PPC, individuals became increasingly less likely than those in the sham group to choose 

the option with the better long-term, but worse immediate value as the value of the 

immediate option increased.  This suggests that the right PPC helps individuals override 

or inhibit prepotent drives to select options with better immediate value so that options 

with better long-term value can be selected.  Supplementary analyses revealed that 

individuals who received real rTMS to the right PPC did not become increasingly more 

likely than those who received sham stimulation to choose the better immediate option as 

the subjective values of the two options approached each other, as demonstrated by the 
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non-significant interactions between Stimulation Type and the quadratic effect of 

Immediate Relative Value.  Together, this suggests that cognitive control functions of the 

right PPC play an increasingly important role in helping individuals choose the best long-

term option as the motivational drive to choose an immediate gain (or to avoid choosing 

an immediate loss) increases, rather than as the subjective values of the two options 

approach each other.  Thus, the data suggest that the right PPC helps individuals choose 

in line with their goals when there is a conflict between those goals and motivational 

drives.    

Although we have suggested that PPC self-control functions help a person choose 

the option with a better long-term value as the value of an immediate option increases, a 

person might not want to engage these self-control processes to choose the best long-term 

option when the value of the immediate option is sufficiently high.  It is unlikely, 

however, that the values of our immediate choice options were high enough to discourage 

a person from wanting to use self-control.  Across subjects, the average percent 

difference between immediate and delayed monetary values when the Immediate Relative 

Value was at its highest were within a range that others have shown is not associated with 

an exclusive bias for choosing either better immediate or better long-term intertemporal 

choice options (i.e. percent difference in monetary value between 4% and 34%) (McClure 

et al., 2004).   

This is the first study to show that disruption of the DLPFC or the PPC has similar 

effects on both intertemporal choices involving gains and losses.  We found that 

disruption of either of these regions in the right hemisphere led to greater choice of 

options that were associated with a better immediate value but a worse long-term value 
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than alternatives.  Disruption of the right DLPFC led to a general shift in preference 

(towards immediate gains and away from immediate losses) overall.  In contrast, 

disruption of the right PPC led to changes in preference that depended on the value of the 

immediate alternative, such that there was a greater tendency to choose immediate gains 

and to not choose immediate losses as the values of the immediate options increased (i.e. 

as gains and losses became more positive and more negative, respectively).  This has 

important implications given that past theories of motivation have postulated different 

neural circuits for motivations to approach rewards and motivations to avoid aversive 

outcomes (Gray, 1981; Panksepp et al., 2002).   Contrary to the predictions of these 

theories, our results reveal that disruption of the same brain regions leads to a greater 

tendency to both approach immediate rewards and avoid immediate losses.  Our findings 

show that the right DLPFC and PPC are involved in optimization of long-term vs. 

immediate value in general during choice, rather than being specific to one motivational 

system. 

An important question is how the right DLPFC and right PPC interact with other 

brain areas involved in the decision making process.  For instance, the DLPFC and PPC 

could exert an influence on choice by modulating activity in other regions responsive to 

value.  Evidence supports this conjecture for the DLPFC.  When individuals make 

choices for food based on attributes associated with better long-term value (i.e. health) 

rather than better immediate value (taste), activation in the DLPFC is functionally 

connected with activation in the VMPFC, an area with activation related to subjective 

valuation of food items on the task (Hare et al., 2009).  This suggests that the DLPFC 

lends more weight to the value of delayed options in the decision process by modulating 
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value signals in other brain regions. The PPC might also modulate value signals on 

choice tasks, but this has not previously been investigated.  Another possibility is that 

activity in the DLPFC and PPC more directly affect choice, by overriding activity in 

other regions that strongly favors immediate value.  There is also a third possibility, that 

the DLPFC and PPC could affect choice by affecting processes prior to valuation.  The 

PPC could engage controlled attentional processes that lead to greater focus on delayed 

alternatives, or on alternatives with the highest monetary value, and such a process might 

be engaged more as the smaller immediate options become more distracting (i.e. larger in 

value).  Previous research has linked the PPC to controlled attention, making this idea 

plausible (Corbetta et al., 2000; Corbetta & Shulman, 2002; Friedrich et al., 1998).  

Future fMRI work that examines the time courses of activation in different brain regions 

during different components of the intertemporal choice process (i.e. as a choice unfolds 

and is made) and that looks at functional connectivity between regions will help 

differentiate between these alternative accounts.   

While we have postulated a different role for the right PPC and right DLPFC 

based on our results, one finding suggests an alternative possibility that the right PPC 

may be involved in a similar valuation process as the right DLPFC during intertemporal 

choice.  A close look at the between subject loss graphs in Figure 5B and 5D reveals that 

the interaction involving losses following stimulation to the right PPC actually may have 

been due to differences in the sham group rather than in the real rTMS group, as 

demonstrated by the shallower slope of the loss line following right DLPFC sham 

stimulation than following right PPC sham stimulation. We note that if the right PPC 

between subject loss model is rerun without an interaction term, the main effect of 
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Stimulation Type is significant (p < .05), and in a similar direction as the main effect of 

Stimulation Type in the right DLPFC loss model.  In contrast, the interaction following 

stimulation to the right PPC on gain trials does not appear to have been driven by changes 

in the sham group.  This suggests that self-control rather than valuation was affected 

following disruption of the right PPC on gain trials.  Given the parallel interactions 

between Stimulation Type and Immediate Relative Value seen following stimulation to 

the right PPC on both gain and loss trials, we believe the data more strongly support a 

role for the right PPC in self-control than in valuation on loss trials as well.  However, it 

is unclear why individuals performed differently on loss trials following sham stimulation 

to the right DLPFC and right PPC. It does suggest that preferences on choice tasks may 

be somewhat unstable over time.  This is a possibility given that individuals received 

stimulation to each region on different days.   

Although disruption of right hemisphere regions led to greater choice of options 

with a better immediate value, it did not make subjects insensitive to the relative 

subjective values of the two options.  Both subjects who received real rTMS and those 

who received sham rTMS to regions of the right hemisphere were more likely to choose 

the immediate gain and less likely to choose the immediate loss as the relative subjective 

value of the immediate option increased.  Interestingly, it was the sham subjects rather 

than the real rTMS subjects who had choices that were more inconsistent with their prior 

preferences.  When the relative value of the immediate option was equal to that of the 

delayed option, sham subjects were more likely to make a choice for the option with the 

better long-term value than for the option with the better immediate value, even though 

they were predicted to choose each option with equal frequency.  In contrast, at the same 
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Immediate Relative Value, subjects who received real rTMS to right hemisphere regions 

had choice patterns closer to chance level.    

A greater tendency to make choices for the option with the better long-term value 

following sham stimulation may have occurred because of the different structures of our 

intertemporal choice task and our indifference point task.  The numerical comparison 

portion of our intertemporal choice task may have led individuals to focus more on the 

magnitude of the two monetary options rather than the available time of the two options 

on the Intertemporal Choice Task, since the numerical comparison task required 

individuals to compare the two monetary values but not the times of payment.  If subjects 

indeed focused more on magnitude, they may have exhibited less delay discounting than 

they did on the Indifference Point Task, which did not have a numerical comparison 

component.  This in turn would have led to more choices for the option with the better 

long-term value than were predicted in the sham group, as we observed.  Prior research 

has shown that how delays are framed (i.e. date vs. delay) affects delay discounting 

(Read, Frederick, Orsel, & Rahman, 2005); our results raise the possibility that whether 

an individual attends to reward magnitudes vs. delays affects delay discounting as well.   

It is important to note that we found a lack of coupling between changes in choice 

and the ability to compare numerical values following disruption of right hemisphere 

regions.  Although previous research has shown slowed reaction time on numerical 

comparison tasks following disruption of the left PPC (Andres et al., 2005; Cappelletti et 

al., 2007), we did not observe altered numerical comparison reaction time following 

disruption of either side of the PPC.  Our lack of differences may have been due to an 

inability to localize the specific region of the IPS important for numerical comparisons, 
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or may have been due to differences in our numerical comparison task from those used in 

other studies.  Unlike typical numerical comparison tasks, subjects in our study did not all 

receive the same stimuli.  This was done to ensure that individuals compared numbers in 

our task that had been in the previous intertemporal choice, but since subjects had already 

seen the numbers before the beginning of the numerical comparison, our task may have 

been easier than typical tasks.  Nevertheless, we found no support that altered 

intertemporal choice following disruption of regions of the DLPFC and PPC was due to 

an impaired ability to compare the values of the two alternatives, suggesting that neither 

of these brain regions may be necessary for numerical comparisons in intertemporal 

choice.  However, we note that this does not rule out a role for these regions in more 

complex value comparisons.  The numerical comparisons that accompanied our 

numerical comparison task may have been less demanding than the comparisons that are 

required to make an intertemporal choice.  While the numerical comparison task required 

comparison of two values (i.e. two magnitudes), the intertemporal choice task required 

comparison of 4 (i.e. two magnitudes and two time points).  

In contrast to our finding of increased choice for the better immediate option 

following disruption of the right PPC in both the gain and loss domains, we found that 

disruption of the left PPC led to decreased choice of the better immediate option, but only 

involving gains.  Also unlike the effects seen following disruption of the right PPC, 

disruption of the left PPC led to a general shift in the choice function, rather than changes 

that interacted with the relative values of the two options.  The increased tendency to 

choose delayed monetary gains following disruption of the left PPC was coupled with 

decreased reaction time, suggesting that when the left PPC was disrupted, individuals 
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were able to more efficiently choose delayed gains.  One possible explanation for the 

different pattern of results following disruption of the left vs. the right PPC is that the 

functions of the left PPC may normally inhibit self-control functions of the contralateral 

right PPC during intertemporal choice.  If so, then disrupting the left PPC could lead to 

greater activity in the right PPC and increase the likelihood and speed of choosing better 

long-term options.  Why individuals should be more likely to choose larger delayed 

monetary rewards after disruption of the left PPC, but have unaltered choices involving 

losses is unclear.  The inability to find an effect in the loss domain may have been 

because the effects of disrupting the left PPC on choice were modest.  The magnitude of 

the effect on choice following disruption of the left PPC was smaller than those seen 

following disruption of right hemisphere frontal and parietal regions.  Because of the 

small magnitude of this effect, it is not discussed further.   

Our reaction time measures revealed that individuals were sensitive to both the 

relative subjective values and the objective monetary values of the two options during 

intertemporal choice.  Reaction time slowed as both the subjective values and the 

monetary values approached each other, revealing that intertemporal choices are not only 

more difficult when the subjective values of two options are close, but also when the 

monetary values are close.  We found slower choice reaction time following disruption of 

right hemisphere regions in the loss, but not the gain domain.  This effect was greatest 

when the subjective values of the two options were close.  Given that this finding only 

emerged in the loss domain and emerged as the choices became more difficult suggests 

that intertemporal choices involving losses are more difficult than those involving gains.  

While the choice itself may be more difficult, we did not find evidence that the ability to 
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choose the better long-term option was harder when choices involved losses.  In fact, it 

appeared to be easier for individuals to make such choices for losses than for gains.  As 

demonstrated by the right hemisphere between subject choice graphs in figure 5(A-D), 

when the relative values of the two options were equal, both sham and real rTMS groups 

were more likely to make choices for the better long-term outcome in the loss domain 

(i.e. choose immediate loss) than they were in the gain domain (i.e. choose delayed gain).  

Past evidence shows that individuals are less likely to discount the value of delayed 

losses than gains (Baker et al., 2003; Benzion et al., 1989; Estle et al., 2006; Frederick et 

al., 2004; Murphy et al., 2001).  Our findings extend this by suggesting that even when 

the subjective values of delayed and immediate options are equal, it may be easier to 

choose the option with the better long-term value in the loss domain than in the gain 

domain.   

Reaction time would be expected to be slower when individuals use self-control 

processes during choice than when they do not, since it should take more time to make 

decisions when using deliberative cognitive control processes than when solely using 

more automatic valuation processes.  This is because that performance on tasks is thought 

to take longer when it relies on controlled rather than on automatic processes (Cohen, 

Dunbar, & McClelland, 1990).  If the right PPC is involved in self-control processes 

during intertemporal choice, then one might predict that disruption of it would affect both 

choice and reaction time more as the relative value of an immediate option increases.  

The reason for this is that self-control processes that are used to help one choose the best 

long-term option should be engaged more as the relative value of an immediate option 

increases.  If these self-control processes are taken offline following real rTMS to the 
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right PPC, then individuals who receive real rTMS would be expected to have 

increasingly faster reaction times than sham subjects as the relative value of the 

immediate option increases.  We, however, did not find that reaction times were faster 

following real than following sham rTMS to the right PPC.  Rather, reaction time 

increased following real rTMS, but only on loss trials.  These reaction time findings thus 

are not consistent with our suggestion that the right PPC is involved in self-control during 

choice.  However, increases in reaction time following real rTMS may have occurred 

because other processes in addition to self-control processes were disrupted.  Our 

intertemporal choice task required subjects to switch between performing different     

sub-tasks: choice amongst gains, choice amongst losses, and numerical comparisons.  

Disruption of the right PPC may have led to increased reaction time because it disrupted 

the ability to switch between different tasks, a proposal that is plausible given prior 

findings linking the right PPC to task-switching (Brass & von Cramon, 2004).  Self-

control processes may have been disrupted following real rTMS as well, but reaction time 

may have been more affected by disruption of task-switching processes than by 

disruption of self-control processes. 

While previous findings show that disruption of the left DLPFC leads to increased 

choice for small immediate over larger delayed rewards (Figner et al., 2010), we found 

that disruption of the right, but not the left DLPFC, had this effect.  Although our 

lateralized effect is inconsistent with the rTMS study by Figner and colleagues (2010), it 

is consistent with prior fMRI work.  Intertemporal choice studies often show task-related 

activation in the right DLPFC, or nearby lateral PFC regions, as well as or instead of 

activations in the left hemisphere (McClure et al., 2007; McClure et al., 2004; Xu et al., 
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2009).  PPC activations are also often seen in the right hemisphere or bilaterally on 

intertemporal choice tasks (McClure et al., 2007; McClure et al., 2004; Xu et al., 2009).  

Taken together, this reveals the possibility that neural activity in both the right and left 

DLPFC (and PPC) may increase the chances of choosing the best long-term option 

during intertemporal choice.  However, the relative importance of each hemisphere may 

depend on the characteristics of the intertemporal choice task being performed.  Our task 

was most likely more difficult than that employed by Figner and colleagues.  While their 

subjects only performed intertemporal choices for monetary gains, our subjects 

performed randomly mixed trials of choices involving monetary gains and losses.  

Furthermore, on each trial of our task there were two sub-tasks, an intertemporal choice 

and a numerical comparison, further increasing difficulty since subjects had to switch 

from doing one task to another.  This raises the possibility that the right DLPFC is more 

involved in making intertemporal choices in difficult situations.  This possibility may be 

further supported by our inability to find differences on our indifference point task 

following disruption of the right DLPFC or right PPC, which was probably easier than 

the Intertemporal Choice Task, since it did not mix gain and loss trials and did not 

contain a numerical comparison task.  Given that our results are based on a larger number 

of trials than those employed by Figner and colleagues, and the fact that we saw similar 

effects in both the gain and loss domain, our results provide strong evidence that the right 

DLPFC is more crucial than the left in the ability to choose the better long-term, but 

worse immediate, incentive.   

In conclusion, we found that disruption of either the right DLPFC or the right 

PPC with low frequency rTMS led to greater choice for monetary options with a better 
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immediate, but worse long-term value in both the gain and loss domain.  This reveals that 

activity in both regions helps individuals make choices that optimize long-term positive 

and negative value in relation to immediate value.  However, our findings also suggest 

that the specific roles of the DLPFC and PPC are different in intertemporal choice.  

Effects seen following disruption of the right DLPFC suggest it is involved in valuation 

of items, and that valuation processes of the DLPFC put less weight on the value of 

immediate options than do valuation functions in other brain regions.  In contrast, effects 

seen following disruption of the right PPC suggest that is involved in cognitive control 

functions that help individuals make better long-term choices, rather than valuation 

functions, during intertemporal choice.  Our findings help clarify the roles of the DLPFC 

and PPC during intertemporal choice, and indicate that the functions performed by these 

regions do not depend on whether choices involve positive or negative incentives.  

 

 

  



119 

 

CHAPTER III 

 

 

  

EXPERIMENT 2 – CHANGES IN RISKY CHOICE  

FOLLOWING DISRUPTION OF THE DLPFC 

 

 

 

Introduction 

 

 

 

 Many economic choices that people make are between options with varying levels 

of risk.  For instance, when deciding whether to buy a stock or a bond or when deciding 

whether to buy a lottery ticket or save one’s money, a person is confronted with options 

that have different levels of risk.   Such situations involve deciding whether or not to 

select an option that could lead to a better outcome, but that also has a higher probability 

of leading to a worse outcome than the alternative option.  Although others have defined 

risk level in different ways (Rothschild & Stiglitz, 1970; Weber & Johnson, 2009), here 

we define it as a direct function of the probability of outcomes on a choice task.  Risk 

level can be said to increase as the probability that an option leads to a rewarding 

outcome decreases, or conversely, risk level can be said to increase as the probability that 

an option leads to a negative, or non-rewarding, outcome increases.  Even though there 

are limitations to the choice scenarios this definition can be applied to, we think that this 

definition of risk is useful because it is able to directly capture the effects of different 

probabilities of gain or loss on choice.   

Several pieces of evidence suggest that in choices involving risk, the right DLPFC 

has an important role in helping individuals avoid taking risks.  In an important study, 

Knoch and colleagues (2006) demonstrated that disruption of the right DLPFC with low 
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frequency rTMS leads to greater selection of a riskier, but potentially larger reward 

option over a less risky reward option on “Roger’s Risk Task” (Rogers et al., 1999), in 

which individuals make choices between two options that differ in terms of probability 

and magnitude of reward and loss.  Evidence that increasing activity in the right relative 

to the left DLPFC with tDCS leads to fewer choices for the riskier option on Roger’s 

Risk Task is consistent with the rTMS findings (Fecteau et al., 2007).   

Several other findings suggest that the left DLPFC also has an important role in 

choice involving risk.  Matthews and colleagues found that fMRI BOLD signal in the left 

DLPFC, rather than the right DLPFC, predicted choice of a smaller certain over a larger 

risky reward (Matthews et al., 2004).  Additionally, both increasing activity in the left 

relative to the right DLPFC, or increasing activity in the right relative to the left DLPFC 

with tDCS has led to greater choices for the riskier option on Roger’s Risk Task in older 

adults (Boggio et al., 2010).  The divergent results across studies, however, leave unclear 

whether the role of the left DLPFC is different from that of the right DLPFC in choices 

involving risk. 

An important question that has not previously been adequately addressed is 

whether disruption of the DLPFC only leads to a greater preference for risk in situations 

that have specific levels of risk.  Disruption of the DLPFC could affect risk preferences in 

general, shifting preferences towards greater preference for choosing risky options.  

Alternatively, shifts in preference could interact with the level of risk.  An increased 

preference for risk might occur at different levels of risk but be greater at higher than at 

lower levels of risk.  This could occur if the processes in the DLPFC that increase risk-

aversion are engaged for different levels of risk but become engaged to a greater extent as 
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the risk level increases.  While some evidence suggests that neuromodulation of the 

DLPFC can affect the relationship between the level of risk and choice (Fecteau et al., 

2007), how the risk level of various options affects risk preference has not been reported.   

Moreover, it is unclear whether disrupting activity in the DLPFC would lead to 

greater risk taking on tasks that do not involve the possibility of a loss, as prior studies 

have utilized Roger’s Risk Task which offers the possibility of a potential loss in addition 

to the possibility of a potential gain on every trial.  This is an important question given 

that individuals’ propensities to take risks are different when losses and gains are 

involved (Kahneman & Tversky, 1979; Tversky & Kahneman, 1981, 1992).  It may be 

that different brain regions bias behavior towards risk-aversion when risky options can 

lead to losses than when they cannot.  If so, the DLPFC might only bias behavior towards 

risk-aversion when there is a possibility of a loss.  Alternatively, the DLPFC may bias 

behavior towards risk-aversion when there is a possibility of a loss and when there is not.  

This possibility would be supported if disrupting activity in the DLPFC was shown to 

lead to greater risk taking in choices that do not involve the possibility of a loss.   

To examine whether activity in the DLPFC underlies risk-aversion for choices 

involving monetary gains, but not losses, with differing levels of risk, we utilized low 

frequency rTMS to transiently suppress functioning in the left or right DLPFC while 

individuals performed a risky choice task that involved choices between a certain option 

and a risky option that offered a larger reward with one of two probabilities.  By only 

varying the probability of one option, our design allowed us to more precisely examine 

how the probability of a risky option affects choices than have prior neuromodulation 

studies.  We varied the relative subjective values of the options on the choice task 
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according to subject’s pre-stimulation preferences and predicted that individuals would 

become more risk seeking following disruption of either side of the DLPFC.  There were 

two competing hypotheses regarding how increases in risk seeking would interact with 

risk level.  If functions of the DLPFC lead to risk-aversion in general, then increased risk 

seeking following disruption of this region should be similar under different levels of 

risk.  Alternatively, if the functions of the DLPFC are more likely to lead to risk aversion 

under higher levels of risk, then there should be a greater increase in risk seeking at 

higher than at lower levels of risk, following disruption of this region.  

 

Methods 

 

Participants 

 30 right-handed individuals (46.67% female) between the ages of 18 and 29 (M 

Age = 21.17, SD = 3.10) from Vanderbilt University and the Nashville community 

participated in this study.  All of these participants reported having no history of 

neurological or psychiatric problems, and no females were currently pregnant.  55 

additional subjects were consented but excluded or withdrew.  Reasons subjects were 

excluded included baseline risk preferences as revealed in Session 1 that did not allow us 

to make task stimuli (see criteria below), having previously received TMS, risk factors 

that could increase the chances of having negative effects from TMS (e.g. neurological 

conditions), and experimenter error.  All participants completed written informed consent 

approved by the Vanderbilt IRB.       
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Session One – Indifference Point Procedure 

 We screened subjects prior to consent with a questionnaire to ensure that we only 

recruited participants who were risk averse or risk neutral.  There were 6 questions, each 

which required participants to write the magnitude of a hypothetical monetary gain 

available with 100% probability that they valued equally to a risky hypothetical monetary 

gain available with a less than certain probability.  On half of the questions the risky 

option was available with 70% probability and on the other half it was available with 

90% probability.  Any subjects who were risk seeking (i.e. if any of the certain values 

were greater than the expected value of the matched risky gain) were excluded.  This was 

done to increase power because if the DLPFC modulates risk aversion and prevents risk-

seeking behavior, disruption of this region may not have effects or may have smaller 

effects on individuals who are already risk-seeking.   

 Following consent, we determined subject indifference points between certain and 

risky monetary rewards.  The risky rewards offered a reward with a probability of 70% or 

90%, and offered no reward with the opposing probability (i.e. 100 - probability).  

Subjects completed an indifference point task on a computer in which we determined 8 

certainty equivalents (i.e. dollar amount of a certain monetary reward that the person 

values equally to a risky monetary reward) for 8 different risky monetary gains: 4 

different magnitudes (i.e. $2.50, $5.00, $7.50, and $10.00) available with one of two 

probabilities (i.e. 70% or 90%).  The order of determining certainty equivalents was from 

low to high magnitudes, and the lower probability risky option was always determined 

first (i.e. order was $2.50 with 70%, $2.50 with 90%.... $10 with 90%).  Subjects were 

told that one of their choices would randomly be selected for payment.  If the selected 
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choice was certain, they would definitely receive the money, but if it was risky, they 

would have a chance to receive it (associated with the probability of the option).  For 

timing of one trial of this task and presentation of items, see Figure 9.      

 To determine each certainty equivalent, participants were presented with an initial 

trial in which they made a choice between a risky monetary gain available with 70% or 

90% probability and a certain option of half the maximum value of the risky option.  If 

participants chose the risky option, the value of the certain option increased by half, and 

if they chose the certain option it decreased by half.  On the next trial, the certain value 

changed in a similar way as in the previous trial but only by one quarter of the original 

value.  Over six trials, the certain value increased or decreased by progressively smaller 

amounts (i.e. by 1/(2^x) where x was trial number) depending on participant responses so 

that the subjective value of the certain amount would iteratively approach that of the risky 

amount.  After the sixth trial, a final catch trial was presented in which the certain value 

was higher than the just-calculated certainty equivalent.  This provided a check to ensure 

that subjects were answering according to their preferences (i.e. were answering 

consistently).  If they did not choose the certain value on the catch trial, the certainty 

equivalent for that specific risky magnitude reward was determined again (i.e. the six trial 

procedure and check was repeated).  After answering consistently, or after completing the 

indifference point procedure three times, participants then performed the indifference 

point procedure for the next probability-magnitude pair.  If participants answered 

inconsistently for three indifference point procedures in a row for a given probability-

magnitude pair, they were excluded.   
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Figure 9: Trial Structure of the Risky Choice task
*
.  A. Decision Phase.  Following 500 ms of 

fixation, two different money/probability pairs were presented on a computer screen (side 

randomized).  The pairs always consisted of a smaller amount of money to be gained with 100% 

probability (written as “For Sure”) and a larger amount of money to be gained with either 70% or 

90% probability.  The words “Today” indicated that subjects were making choices for options to 

be paid that day.  Subjects decided which money/probability pair they would prefer by pressing 

the “z” or “m” key and had up to 6500 ms to respond.  B. Post Choice Phase.  Immediately after 

responding, the triangle under the subject’s choice turned red and the other triangle disappeared 

to indicate subjects’ choice; this was displayed for 250 ms.  If subjects did not respond, this post 

choice phase was skipped, and the next trial began after 6500 ms. (* The timing and display of 

items in the Indifference Point Task were identical to those of items in the Risky Choice Task 

except there was no time limit for response). 

 

     

Subjects whose certainty equivalents indicated they were risk-seeking were 

excluded from further sessions (i.e. they were excluded if any certainty equivalent was 

greater than the expected value of the paired risky option).  Additionally, subjects were 

excluded if any certainty equivalent was smaller than 10 cents.  This was done to ensure 

that there would be an adequate range of values below each subject’s certainty 

equivalents to create choice stimuli for further sessions.  

 At the end of session one, one random trial was selected for payout.  Subjects then 

received the amount of money associated with their choice on that trial.  However, if the 

chosen option was for a risky selection, subjects rolled a 10 sided die to determine 

whether they would be paid.  If they rolled a number less than or equal to the tens digit of 

D 

A B 
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the probability listed on that trial (i.e. less than 7 for 70%), then they were paid the 

chosen amount. 

 

Sessions Two and Three 

Participants that met eligibility requirements after session one were equally 

divided into 2 groups of 15 subjects.  Group one received rTMS to the left DLPFC in one 

session and to the right DLPFC in a separate session (with counterbalanced ordering).  

Group two received sham rTMS to the same areas as group one (half left DLPFC 

first/half right DLPFC first).  Each of the two groups had the same gender distribution (8 

Males and 7 females).  Except for the different brain regions stimulated across sessions, 

procedures in sessions 2 and 3 were identical.  

Prior to receiving rTMS, participants performed shortened practice versions of the 

tasks, in order to make sure they understood the tasks.  Subjects were told that one choice 

from the tasks performed after stimulation would be randomly selected for payment at the 

end of each session, and that they would receive that payment with the associated 

probability.      

 After completing the practice tasks, participants received real or sham rTMS 

stimulation for 30 minutes to either the left DLPFC or right DLPFC (details outlined 

under TMS Methods section).  

Risky Choice Task 

Immediately following completion of stimulation, participants completed a risky 

choice task on a computer.  On each trial, participants made a choice between a certain 

monetary gain and a risky monetary gain of potentially larger magnitude (See Figure 9).   
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 The values of the risky options were the same as in session 1 ($2.50, $5.00, $7.50, 

and $10.00).  Half of the risky options were available with 70% probability and half were 

available with 90% probability.  The magnitude of each certain option was calculated as a 

specific percentage difference from that subject’s session one certainty equivalent for the 

risky option on that trial.  This allowed us to vary the subjective value of each certain 

option (as revealed in session one) relative to the associated risky option, which let us 

predict which option an individual should choose on each trial (See Table 8).  There were 

72 of these trials on the Risky Choice Task.   

There were also 40 additional trials on the Risky Choice Task with different 

stimulus properties than those just discussed.  On 8 of the additional trials, the risky 

option had an equal expected value to that of the certain option, and on the other 32 

additional trials, the risky option had a lower expected value than did the certain option.  

On trials with two options of equal expected value, the mean proportion of choices for the 

risky option were .283 (SD = .260) for the real rTMS group and .130 (SD = .193) for the 

sham rTMS group.  On trials that contained a risky option that had a lower expected 

value than the certain option, the mean proportion of choices for the risky option were 

.138 (SD = .153) for the real rTMS group and .075 (SD = .122) for the sham rTMS 

group.  These additional trials are not discussed further, as they were not created to test 

our primary hypotheses.  

Indifference Point Task 

After completing all of the aforementioned trials, subjects were given the identical 

indifference point procedure as in session one.  However, this time the iterative procedure 

was only done to calculate the certainty equivalent for risky values twice, first for a 
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$10.00 gain available with 70% probability and then for a $10.00 gain available with 

90% probability.  Additionally, no consistency checks were performed in order to limit 

the time to complete the task.  Collecting subject indifference points post-stimulation 

provided an added check of whether real rTMS to the DLPFC increased risk seeking.   

 

Table 8: Certain Values for Different Trials in the Risky Choice Task. 

Certain Relative Value Total Description 

1. Certain Subjective 

Value Lower than 

Risky Subjective 

Value 

32 Magnitude of certain option is below certainty 

equivalent (i.e. certain value at indifference 

point).  There were 4 different percent distances 

below the certainty equivalent (-10%, -20%, -

35%, and -50%).  Subjects who receive sham 

stimulation should choose the risky option.      

2. Certain Subjective 

Value Equal to Risky 

Subjective Value 

8 Magnitude of certain option is equal to certainty 

equivalent (i.e. percent distance equal 0%).  

Neither certain nor risky choice is predicted for 

the sham group.    

3. Certain Subjective 

Value Higher than 

Risky Subjective 

Value 

32 Magnitude of certain option is above certainty 

equivalent.  There were 4 different percent 

distances above the certainty equivalent (10%, 

20%, 35%, and 50%).  Subjects who receive sham 

stimulation should choose the certain option.      

Each 70% and each 90% risky option magnitude was shown nine times.  Each risky 

option was paired once with a certain option located at each of the 9 percent distances 

from the certainty equivalent of the risky value.  Values at negative distances were taken 

as a function of the percentage difference between the certainty equivalent and zero.  A    

-35% distance indicated that the certain value was 35% less than the certainty equivalent.  

Thus if the certainty equivalent of a $2.50 risky option available with 70% probability 

was $1.50, the certain value was $.98 (i.e. 1.50 - .35*1.50 = .98).  Values at positive 

distances were calculated as a function of the percentage difference between the certainty 

equivalent and the risky value.  A 35% distance indicated that the certain value was 

greater than the certainty equivalent of the risky option by 35% of the distance between 

the certainty equivalent and the risky value.  Thus if the certainty equivalent of a $2.50 

risky option available with 70% probability was $1.50, the certain value was $1.85 (i.e. 

1.50 + (.35 * (2.50 -1.50)) = 1.85).     

 

 

At the end of sessions two and three, one random trial was selected for payout.  

Subjects then received the amount of money associated with their choice on that trial.  
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However, if the chosen option was for a risky selection, subjects rolled a 10 sided die to 

determine whether they would be paid.  If they rolled a number less than or equal to the 

tens digit of the probability listed on that trial (i.e. less than 7 for 70%), then they were 

paid the chosen amount. 

   

TMS Methods 

Low frequency (1 Hz) rTMS was delivered with a MagStim TMS double 70 mm 

(Figure 8) coil (Magstim, Wales, UK) at 54% power for 30 minutes.  The rTMS 

parameters used were within currently recommended guidelines (Rossi et al., 2009) and 

stimulation with these parameters leads to suppression of excitability in the targeted 

region for a period of time following stimulation (Robertson et al., 2003).  We note that 1 

Hz rTMS applied to the DLPFC at 54% power has previously led to altered decision 

making following stimulation (Figner et al., 2010).  Sham stimulation was delivered with 

a MagStim placebo coil, which produced clicks that resembled the sound of rTMS, but 

without a magnetic pulse.  Given the potential for subjects to identify whether they 

received sham or real stimulation, it was prudent for subjects to receive only one of these 

types of stimulation.  Subjects were blind to the type of stimulation (e.g. sham vs. real) 

they received. 

Positioning of the TMS coil was accomplished by using the 10-20 EEG System, 

which has previously been used to deliver TMS to identified brain regions with 

reasonable structural accuracy (Herwig et al., 2003).  This method was used to ensure 

proper positioning of the coil over the DLPFC (BA 46/9).  Specifically, to localize the 

DLPFC, the center of the coil was held tangentially to the participant’s head with the 
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handle pointing caudally, and placed one cm antero-lateral to F3/F4 which has been 

suggested to provide better coverage over BA 9/46 than do the points F3/F4 (Herwig et 

al., 2003).  These specific points for stimulation were marked on a lycra swimcap that 

subjects wore; the position of the swimcap was placed in a consistent position on the 

head across subjects, by using the nasion, inion, and preauricular points as physical 

landmarks for placement.  During stimulation, all participants wore earplugs as protection 

against the noise of the rTMS clicking.  Participants maintained their head position 

during rTMS administration using a chin/head rest and were visually monitored to ensure 

that no movement had occurred.  In cases where a participant moved their head, the coil 

was immediately repositioned over the target.   

 All individuals received either real or sham rTMS to the left or right DLPFC in 

session two for 30 minutes and the same type of stimulation to the DLPFC on the 

contralateral side for 30 minutes in session three.  The order of stimulating the two sides 

of the DLPFC was counterbalanced across subjects in each group.  We used an “offline” 

rTMS paradigm; subjects completed tasks after stimulation was completed.  Since 

impairments in behavior following low frequency rTMS have been shown to last for half 

the time of the previous stimulation (Mottaghy, Gangitano et al., 2002), the tasks 

following rTMS were limited to the first 15 minutes post-stimulation.   

 

Statistical Analysis Methods 

 Using PASW Statistics 18 (SPSS Inc., Chicago, IL), data were analyzed with 

Generalized Estimating equations (GEE) which allow one to model effects while 

accounting for correlations within observations of individual subjects (Liang & Zeger, 
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1986).  All models contained an intercept term and an unstructured working correlation 

matrix.   

In order to examine whether subjects chose differently under conditions of 

differing risk, separate within-subject GEE models with a logit link function and 

binomial distribution were created for subjects who received real stimulation and for 

subjects who received sham stimulation.  These models were created to predict choice of 

a risky option (0 = Chose Certain, 1 = Chose Risky) at the trial level on the Risky Choice 

Task.  Independent variables in both models were Probability of the risky option (0 = 

70%, 1 = 90%), Certain Relative Value (i.e. percent distance of the certain option from 

the certainty equivalent of the risky option, which ranged from -50% to 50%), and 

Session Number (0 = Session 2, 1 = Session 3).   

We also used GEE models with a logit link function and binomial distribution to 

see how choice of risky options that had a specific probability of reward were affected by 

stimulation type and stimulation side.  Separate models were created to predict choice of 

the risky option on 70% risky probability trials and 90% risky probability trials.  In order 

to test the effects of real stimulation relative to sham, separate GEE models were created 

for responses following stimulation to each hemisphere (i.e. left DLPFC, right DLPFC).  

Independent variables in all models included Stimulation Type (0 = Sham rTMS, 1 = 

Real rTMS), Certain Relative Value, and Session Number.  Additionally, we included the 

interaction of Certain Relative Value by Stimulation Type if it was significant (p < .05).  

To examine within subject differences in the real rTMS group, we created similar GEE 

models, except the within subject variable Side (0 = Left, 1 = Right) was used instead of 
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the between subject variable Stimulation Type; the interaction of Side by Certain Relative 

Value was only included if significant.   

 To predict reaction time on trials of the Risky Choice Task (measured in 

milliseconds (ms)), we also created separate GEE models for 70% risky probability trials 

and 90% risky probability trials.  These models contained an identity link function and 

normal distribution.  Between subject models (each limited to one hemisphere) and 

within subjects models included the same independent variables as the choice models, 

plus one additional variable: Certain Relative Value
2
 (i.e. Certain Relative Value 

squared).  No interactions were included in the models. 

 To predict effects of real relative to sham stimulation on certainty equivalents 

measured in the indifference point procedure, we utilized the Generalized Linear Model 

function in PASW Statistics 18 (SPSS Inc., Chicago, IL) with an identity link function 

and normal distribution.  Each model examined the effects of stimulation in one 

hemisphere for either 70% risky probability or 90% risky probability certainty 

equivalents and contained the following predictors: Stimulation Type, Session Number, 

and Session 1 Certainty Equivalent.  This last variable was included as a covariate 

because certain values at the indifference point (i.e. certainty equivalents) following 

stimulation should be related to subject’s initial pre-rTMS (i.e. Session 1) values, and 

thus significant effects of Stimulation Type might not emerge without controlling for this 

variable.  To predict certainty equivalents across region for subjects who received real 

rTMS, we used GEE models with an identity link function and normal distribution that 

included Side (-1 = neither (i.e. for Session 1), 0 = Left DLPFC, 1 = Right DLPFC) and 

Session Number (-1 = Session 1, 0 = Session 2, 1 = Session 3) as predictors.  Separate 
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models were created for 70% risky probability and 90% risky probability certainty 

equivalents.  

  

Results 

 

Session One Indifference Points 

 Using independent sample t-tests, we compared mean certainty equivalents 

measured in session 1 on the Indifference Point Task for individuals in the real rTMS 

group with individuals in the sham rTMS group.  This was done to ensure that session 1 

risk preferences across stimulation groups were not different.  Eight t-tests were 

performed in all; each t-test compared mean certainty equivalents across stimulation 

groups for one of the eight types of risky gains (i.e. 4 magnitudes of risky gains available 

with 70% probability and 4 magnitudes of risky gains available with 90% probability).  

There were no significant differences in mean session 1 certainty equivalents between 

real and sham rTMS groups.  Importantly, these results reveal that prior to receiving 

rTMS (i.e. in session 1), mean levels of probability discounting were similar across real 

and matched sham rTMS groups.  For mean session 1 certainty equivalents, see Table 9. 

 

Effects of Risk Level on Choice 

For descriptive statistics of overall mean proportion of choices for risky options 

following each type of stimulation to each side of the DLPFC, see Table 10.   
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Table 9: Mean Session One Certainty Equivalents in the Indifference Point Task. 

 Real rTMS Sham rTMS  

 Mean (SD) Mean (SD) 

$2.50 with 70%  1.275 (.494) 1.375 (.394) 

$5.00 with 70% 2.597 (.904) 2.715 (.992) 

$7.50 with 70% 3.892 (1.352) 3.692 (1.447) 

$10.00 with 70% 4.963 (1.792) 4.987 (2.032) 

$2.50 with 90% 1.907 (.477) 1.818 (.451) 

$5.00 with 90% 3.511 (1.190) 3.610 (.974) 

$7.50 with 90% 5.139 (1.906) 5.224 (1.513) 

$10.00 with 90% 6.686 (2.429) 7.350 (1.842) 

Mean session 1 certainty equivalents for specific magnitudes of risky gains available with 

70% or 90% probability (listed in left column).  Averages are constructed separately for 

subjects in the real and sham rTMS groups (listed in column titles).  

 

 

Table 10: Mean Choice of Risky Options in the Risky Choice Task. 

 Left DLPFC Right DLPFC 

 70% Probability 90% Probability 70% Probability 90% Probability 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Real  .665 (.284) .625 (.245) .601 (.265) .566 (.259) 

Sham .381 (.222) .563 (.217) .368 (.254) .504 (.226) 

Mean proportion of choices for the risky option across subjects computed for each type of 

stimulation (i.e. Real vs. Sham) to each side of the DLPFC (side listed in column title).  

Statistics are collapsed separately for trials with a different level of risk (i.e. risky option 

available with 70% Probability or 90% Probability). 

 

 

 

We first tested whether the tendency to choose the risky option was dependent 

upon the risk level (i.e. probability) of this option.  As this relationship could differ 

following disruption of the DLPFC, separate within subject models were created for 

subjects who received real and sham rTMS.  Each model predicted choice of a risky 

reward as a function of Probability of the risky option, Certain Relative Value, and 

Session Number.  For a list of model parameters, see Table 11. 
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Table 11: GEE Models for Risky Choice as a Function of the Probability of the 

Risky Option. 

 Real Within Sham Within 

 B (SE) OR B (SE) OR 

Intercept      1.079***    (.130)      2.941 -.922***   (.074)  .398 

Cert. Rel. Value                    -.028***  (.004)         .973                    -.036***   (.002)         .965        

Session      .156*      (.067)        1.168                      .194***   (.039)       1.214        

Prob.                                      -.109        (.093)          .897                       .801***   (.077)       2.228   

Models predict choice of risky option on each trial of the Risky Choice Task.  In the left 

column are model predictors.  Models listed “Real Within” and those listed “Sham 

Within” contain data from subjects who received real or sham stimulation, respectively.  

OR = Odds Ratio (e
B
). SE = Standard Error of B.  Intercept = Model Intercept.  Prob = 

Probability that risky option leads to reward (0 = 70%, 1 = 90%). Cert. Rel. Value = 

Certain Relative Value (percent distance of the certain option from certainty equivalent of 

the risky option). Session = Session Number (0 = Session 2, 1 = Session 3).  * p < .05; ** 

p <.01; *** p <.001.  

 

  

While the likelihood of choosing the risky option differed as a function of the risk 

level for the sham group, it did not for the real rTMS group.  Sham subjects were less 

likely to choose the risky option on trials when its probability was 70% than when it was 

90% (p < .001; see Figure 10B).  In contrast, subjects who received real rTMS chose 

similarly under different levels of risk (see Figure 10A). 

As expected, individuals in both groups were less likely to choose the risky option 

as the relative subjective value of the certain option increased.  In both GEE models, 

there was a negative effect of Certain Relative Value, such that both sham and real rTMS 

subjects were less likely to choose the risky option as the relative value of the certain 

option increased (both p <.001) (See Figure 10A & 10B).  All subsequent GEE models 

predicting choices on the Risky Choice Task showed these same effects (see Table 12).  

This demonstrates that disruption did not make participants completely insensitive to the 

relative subjective values of the two options.        
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Figure 10: Graphs for Risky Choice as a Function of the Probability of the  

Risky Option.  Probability of choosing the risky option as a function of both the relative 

value of the certain option and of the probability that the risky option led to reward (i.e. 

70% or 90%).  Numbers on x-axis are the percent distance between the certain option and 

the certainty equivalent of the risky option (i.e. x-axis represents Certain Relative Value).  

A. Compares choice for real rTMS group.  B.  Compares choice for sham group. Graphs 

show choice at average session (Session = .5).  * Paired comparison significant at p < .05. 

 

 

Additionally, there were positive effects of Session Number within both groups 

(both p <.05).  This indicates that choice of the risky option was more likely in session 3 

than in session 2 for both groups.     

Because there was a significant effect of risk level on choice in the sham group, 

all subsequent analyses limited themselves to choice on trials with a specific level of risk.  

Thus behavior on 70% risky probability trials was analyzed separately from behavior on 

90% risky probability trials. 

 

Risky Choice  

 We created separate between subject models to see how risky choice differed as a 

function of Stimulation Type, Certain Relative Value, and Session Number.  Each model 

A B 
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focused on one stimulation site (i.e. left or right DLPFC), and one probability level of the 

risky option.  For all model parameters, see Table 12. 

 

Table 12: Between and Within Subject GEE Models for Risky Choice for each 

Probability of the Risky Option.  

 70% Probability Trials 90 % Probability Trials 

 B (SE) OR B (SE) OR 

Between: Left DLPFC        

Intercept   -.596***   (.168)           .551  .025   (.128)           1.025 

StimType 1.316***   (.210)         3.729     .243   (.164)           1.275 

Cert. Rel. Value                     -.032***   (.002)            .969                   -.029*** (.002)              .971    

Session  .046   (.206)         1.047                      .500**   (.162)           1.648 

StimType X Cert. Rel. 

Value 

 .013***     (.004)         1.013  ---†   

Between: Right DLPFC        

Intercept   -.761***    (.178)            .467  .246 (.154)          1.279        

StimType  .900***   (.181)          2.459             .233       (.166)          1.262 

Cert. Rel. Value                     -.023***   (.002)             .977 -.024*** (.002)            .977 

Session      .401*       (.180)         1.493     -.408* (.165)            .665 

Real Within       

Intercept  .501***    (.123)         1.650  .367*** (.095)          1.443 

Side   -.288***   (.042)            .750    -.138*** (.040)             .871 

Cert. Rel. Value                      -.020***   (.002)            .981    -.023*** (.002)             .978 

Session    .246***   (.042)         1.278                      .152*** (.039)          1.164 

Models predict choice of risky option on each trial of Risky Choice Task.  In left column 

model predictors are listed below each model (listed in Bold).  Models listed “Between”: 

contain data from subjects who received real rTMS and from subjects who received sham 

rTMS to the side of DLPFC listed after word “Between”.  Models listed “Real Within” 

contain data from subjects who received real rTMS.  OR = Odds Ratio (e
B
). SE = 

Standard Error of B.  Intercept = Model Intercept.  StimType=Stimulation Type (0 = 

Sham rTMS, 1 = Real rTMS).  Session = Session Number (0 = Session 2, 1 = Session 3).  

Cert. Rel. Value = Certain Relative Value (percent distance of the certain option from 

certainty equivalent of the risky option).  Side = Stimulation Side (0 = Left, 1 = Right).  

X = Predictor is interaction of two terms.  ---†= Interaction not included in model 

(models only contained interaction if it was significant at p < .05).  * p < .05; ** p <.01; 

*** p <.001.  

 

 Disruption of either side of the DLPFC increased choice of risky options on the 

higher risk trials of the task.  Choice of the risky option was greater for individuals who 

received real rTMS to the right hemisphere than for individuals who received sham 
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stimulation to the same hemisphere when the probability that the risky option led to 

reward was 70% (Odds Ratio (OR) = 2.459; p < .001) (see Figure 11C).  Similarly, on 

trials with this level of risk, choice of the risky option was greater for individuals who 

received real rTMS to the left hemisphere than for matched sham subjects.  Unlike the 

effect seen in the right hemisphere, the effect of stimulation in the left hemisphere was 

dependent on the relative value of the certain option.  Although the real rTMS group was 

more likely to choose the risky option at all relative values of the certain option following 

left hemisphere stimulation, as the relative value of the certain option increased, the 

increased tendency for the real rTMS group to choose the risky option also increased (see 

Figure 11A).  When the relative value of the certain option was at its highest (i.e. Certain 

Relative Value was 50), the effect of stimulation on risky choice in the left hemisphere 

was particularly large (OR = 7.143, p <.001). 

Unlike the effects of stimulation seen on trials when the probability of the risky 

option was 70%, when the probability of the risky option was 90%, there were no 

differences in risky choice between individuals who received real rTMS and those who 

received sham rTMS (see Figure 11B & 11D).  Thus the effects of disrupting the DLPFC 

on choice were not present on the lower risk trials of the task. 
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Figure 11: Risky Choice Graphs for each Probability of the Risky Option.  

Probability of choosing the risky option as a function of the relative value of the certain 

option.   Numbers on the x-axis are the percent distance between the certain option and 

the certainty equivalent of the risky option (i.e. x-axis represents Certain Relative Value). 

A-D: Compares choice on trials with a 70% or 90% risky option probability  (listed in 

title) between real and sham stimulation to one side of DLPFC (listed in title).  E-F. 

Compares choice on trials with a 70% or 90% risky option probability (listed in title) 

across side of stimulation for those who received real rTMS.  Graphs show choice at 

average session (Session = .5).  * Paired comparison significant at p < .05. 

B 

F 

D 

E 

C 

A 
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We also investigated whether there was greater choice of risky options following 

real rTMS delivered to one side of the DLPFC than to the other.  There was a lesser 

tendency to choose the riskier option following disruption of the right than of the left 

DLPFC both on trials where the probability of the risky option was 70% (p < .001; OR = 

.750) and on trials where the probability of the risky option was 90% (p < .001; OR = 

.871) (See Table 12 and Figure 11E & 11F).  These effects were not dependent on the 

relative value of the certain option, indicating that disruption of the left DLPFC led to a 

greater overall increase in risky choice than did disruption of the right DLPFC. 

We found different effects of Session Number on choice in left hemisphere and 

right hemisphere between subject models    Following stimulation to the left DLPFC, 

there was a positive effect of Session Number on choice of the risky option when the 

risky probability was 90% (p <.01), but no effect when it was 70%.  In contrast, 

following stimulation to the right DLPFC, there was a negative effect of Session Number 

on choice of the risky option when the risky probability was 90%, but a positive effect 

when it was 70% (both p < .05).  It is difficult to interpret how Session Number affected 

choice across all subjects, because there was no consistent effect of Session Number on 

either choice of 90% or of 70% risky rewards.  

There were, however, more interpretable effects of Session Number in within 

subject models.  Amongst individuals who received real rTMS, Session Number was 

consistently positively associated with greater choice of the risky option.  In both within 

subject models for higher risk and lower risk trials, there was a positive effect of session 

(all p <.001), such that subjects who received real rTMS were more likely to choose the 
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riskier option in session 3 than in session 2.  This reveals that individuals who received 

real rTMS exhibited greater risk seeking over time.  

We performed a supplemental analysis to see if the increased tendency to choose 

risky options on the higher risk trials following disruption of the DLPFC was dependent 

on the difficulty of the choices.  Choices should become more difficult as the subjective 

values of the two items approach each other, and disruption of the DLPFC could make it 

especially hard to avoid choosing risky options when the two items are close in subjective 

value.  To assess this, we reran our two between subject GEE models that compared 

choice between individuals in the real and sham rTMS groups for choices with risky 

options available with 70% probability, but added two terms to the models: a quadratic 

effect of Certain Relative Value and an interaction of this term with Stimulation Type.  

The quadratic effect, Certain Relative Value Squared (i.e. Certain Relative Value
2
), was 

used because the value of this term decreased as the subjective values of the two options 

approached each other.  We note that trials could also have become more difficult as the 

expected values of the two options approached each other, but given that expected values 

of the certain options differed across subjects depending on their preferences, we did not 

include a variable based upon how close the expected values were to each other.  We do 

note that many subjects were close to risk-neutral in session 1, and because of this, the 

expected values of the two options were often closest in value when the two options were 

equally subjectively valued.  Thus adding a term based on expected value would have 

exhibited substantial collinearity with the Certain Relative Value
2 

predictor.  This 

supplementary analysis revealed that there were no significant interactions between 

Certain Relative Value
2
 and Stimulation Type.  This suggests that the increased risk-
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seeking on trials with a larger amount of risk following disruption of the DLPFC was not 

dependent on the difficulty of the choices. 

 

Choice Reaction Time 

 We next tested whether reaction time was different across real rTMS and sham 

groups with GEE models to see whether changes in risky choice following disruption 

were associated with specific changes in reaction time.  We assumed that as comparisons 

and choices became more difficult, reaction time would increase.  We thus included a 

quadratic effect of Certain Relative Value, Certain Relative Value Squared (i.e. Certain 

Relative Value
2
), as a predictor in all models, because trials should become more difficult 

as the subjective value of the two options approach each other (i.e. as Certain Relative 

Value
2 

decreases).  We also included the linear effect of Certain Relative Value in all 

models, since this would ease interpretation of the quadratic effect.  For model 

parameters, see Table 13. 

 Disruption of either hemisphere led to faster responding on the Risky Choice 

Task.  Individuals who received real rTMS to the left DLPFC responded more quickly 

than individuals who received sham stimulation to the same region both on trials where 

the probability of the risky option was 70% and on trials where it was 90% (both p < 

.001).  Individuals who received real rTMS to the right DLPFC also responded more 

quickly than individuals who received sham stimulation to the same region on trials 

where the probability of the risky option was 90% (p < .01).  Additionally, there was a 

trend for individuals who received real rTMS to the right DLPFC to respond more 

quickly than the matched sham group on trials with a risky option probability of 70% (p 
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< .10).  Faster reaction times on the choice task following disruption may have been 

associated with less deliberation before responding.  They do not appear, however, to 

have been associated with a greater tendency to make risky choices.  This is because 

reaction time differences between stimulation groups emerged on all trials, while 

differences in the tendency to make risky choices were only present on trials where the 

probability of the risky option was 70%. 

 In all models but one, there was a significant negative effect of Certain Relative 

Value
2
 as expected (all p <.001).  Thus, as the subjective values of the two options 

approached each other, reaction time slowed, supporting the conjecture that difficulty 

increased as well.  It is unclear, however, why there was not a significant effect of 

Certain Relative Value
2
 on 90% risky reward trials following left hemisphere stimulation.   

There was a negative effect of Certain Relative Value on trials with a 70% 

probability following left DLPFC stimulation (p < .05), indicating that reaction time 

decreased as the value of the certain option increased.  However, since no linear trends of 

Certain Relative Value were significant in other models and there was no hypothesized 

relationship between this term and reaction time, this predictor is not further discussed. 

 We found significant effects of Session Number on choice reaction time in the left 

hemisphere between subject models, but not in the right hemisphere between subject 

models.  Individuals who received stimulation to the left DLPFC responded more quickly 

in Session 3 than in Session 2 both on trials with 70% and those with 90% risky option 

probabilities (both p < .001).   These faster reaction times may have reflected increased 

familiarity with the task.  It is surprising, however, that there were no effects of  
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Session Number on reaction time following stimulation to the right hemisphere, as the 

level of familiarity of the task should have been the same regardless of the side of 

stimulation.  One possibility is that the different effects across models were driven by 

different effects of Session Number on reaction time following real rTMS to the left and 

right DLPFC, which could have occurred if disruption of the right, but not the left 

DLPFC, interfered with learning.  A divergent effect following rTMS to each side of the 

DLPFC, however, would not have been captured by our between subject models that 

included data from both sham and real rTMS subjects, because we did not include a 

predictor in our models for the interaction of Session Number with Stimulation Type.   

 

Table 13: GEE Models for Risky Choice Reaction Time. 

 70% Probability Trials 90 % Probability Trials 

 B (SE) B (SE) 

Between: Left DLPFC      

Intercept    3263.657***  (69.485) 3128.853***  (92.375) 

StimType  -388.575***  (82.483) -348.732***   (90.935) 

Cert. Rel. Value                        -1.195*            (.489)     .660               (.577) 

Cert. Rel. Value
2
     -.093***    (.016)    -.015    (.018) 

Session -1026.217***  (82.376) -978.375***  (92.057) 

Between: Right DLPFC      

Intercept    2546.824*** (118.588) 2582.488***   (88.957) 

StimType   -235.720+ (122.148) -312.514** (101.369) 

Cert. Rel. Value                          .452                  (.572)    -.341          (.541) 

Cert. Rel. Value
2
         -.062***    (.015)    -.071***         (.013) 

Session     2.591 (121.157)     .797      (105.103) 

Models predict reaction time (ms) in Risky Choice Task.  Cert. Rel. Value
2 

= Certain 

Relative Value squared.  Other abbreviations same as in Table 12. + p <.10, * p < .05; ** 

p <.01; *** p <.001. 

 

 

To see if the divergent effects of Session Number were driven by changes 

following real rTMS, we reran all four of our between subject GEE models for reaction 

time but included the interaction of Session Number with Stimulation Type.  In no cases 
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was this interaction significant, revealing that changes in reaction time across sessions 

were not driven by changes following real rTMS.  This suggests that the effects of 

Session Number on reaction time in the left hemisphere between subject models were not 

due to familiarity with the task, as familiarity should have been the same following sham 

stimulation to either hemisphere.  

 

Indifference Points 

 As a second approach to examining changes in risky choice, we examined 

whether subject’s certainty equivalents for $10 risky gains available with 70% and 90% 

probability were affected by disruption of the left or right DLPFC.  In order to examine 

the difference in certainty equivalents following real and sham rTMS to each hemisphere, 

we used the Generalized Linear Model which included Stimulation Type, Session 

Number, and Session 1 Certainty Equivalent as predictors (See Table 14).  In all between 

subject models there was a significant effect of Session 1 Certainty Equivalent (all p < 

.001), which was expected, since certainty equivalents across time should be related. 

Consistent with the results on the Risky Choice Task, real rTMS led to a greater 

preference for risk than did sham stimulation when the probability of the risky reward 

was 70%.  Following disruption of either the left or the right DLPFC, individuals had 

higher certainty equivalents for the risky reward available with 70% probability than did 

matched sham subjects (both p < .05), revealing that they became more risk-seeking.  

However, they did not have higher certainty equivalents than the matched sham group for 

the risky reward available with 90% probability (although there was a trend for them to 

have higher certainty equivalents following disruption of the left DLPFC).  This is 
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consistent with our findings on the Risky Choice Task; disruption of either the left or the 

right DLPFC led to a greater tendency to choose the risky option than did sham 

stimulation on trials of the Risky Choice Task where the risky option led to reward with 

70% probability, but not when it led to reward with 90% probability.   

 

Table 14: Between Subject GENLIN Models for Certainty Equivalents. 

 70% Probability Trials 90 % Probability Trials 

 B (SE) B (SE) 

Between: Left DLPFC      

Intercept    .951   (.963)  3.465***  (.848) 

StimType 1.427*  (.592)   .796+  (.441) 

Session -.360   (.595)   .510   (.437) 

Session1CE  .775***  (.160)  .522***  (.105) 

Between: Right DLPFC      

Intercept    .728 (1.071)  2.154+ (1.101) 

StimType 1.349*  (.677)   .300   (.560) 

Session  .448   (.681)    -.111  (.555) 

Session1CE  .781***  (.184)   .751***  (.133) 

Models Predict Certainty Equivalents for Risky Rewards on Indifference Point Task.  

Session1CE = Session 1 Certainty Equivalent.  Other abbreviations same as in Table 12.  

* p < .05; ** p <.01; *** p <.001. 

 

 

 We also created within subject GEE models for subjects who received real rTMS 

to more thoroughly investigate how real rTMS affected certainty equivalents (see Table 

15).  Consistent with the between subject findings, disruption of either side of the DLPFC 

increased preference for risk when the probability of the risky reward was 70%.  

Certainty equivalents for the risky reward available with 70% probability increased 

following disruption of the left or the right DLPFC (both p < .05).  There was also some 

evidence for increased preference for risk when the probability of the risky reward was 

90%.  Certainty equivalents for the risky reward available with 90% probability were 

significantly higher than Session 1 values following disruption of the left DLPFC (p 
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<.001), and there was a trend for them to be higher following disruption of the right 

DLPFC (p < .01). 

 As a supplementary analysis, we also created within subject GEE models for 

subjects who received sham rTMS to assess the stability of certainty equivalents across 

sessions (see Table 15).  For subjects who received sham stimulation, there were no 

significant effects of Side of stimulation or of Session Number, indicating that certainty 

equivalents for individuals who did not receive real rTMS were stable over time.  

 

Table 15: Within Subject GEE Models for Certainty Equivalents. 

 70% Probability Trials 90 % Probability Trials 

 B (SE) B (SE) 

Real Within     

Intercept   4.963*** (.447)                          6.686*** (.606)          

Right Side 1.046* (.489)            .812+ (.468) 

Left Side  .847* (.400) 1.174** (.435) 

Session  .143  (.172)   .014  (.337) 

Sham Within     

Intercept   4.987*** (.507) 7.350*** (.459) 

Right Side  .180 (.452) -.297 (.395) 

Left Side -.398 (.513) -.288 (.567) 

Session -.083 (.249)  .345 (.323) 

Models Predict Certainty Equivalents for Risky Rewards on Indifference Point Task.  

Right Side = rTMS delivered to right DLPFC (predicts stimulation to right relative to 

session one baseline value).  Left Side = rTMS delivered to Left DLPFC (predicts 

stimulation to left relative to session one baseline value).  Session = Session Number (-1 

= Session 1, 0 = Session 2, 1 = Session 3).  Real within = within subject models for 

subjects who received real rTMS. Sham within = within subject models for subjects who 

received sham rTMS.  Other abbreviations same as in Table 12.  + p <.10, * p < .05; ** p 

<.01; *** p <.001. 
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Discussion 

 

 

 

We found that disruption of either the left or right DLPFC with rTMS increased 

preferences for risk on two monetary reward tasks.  On the Risky Choice Task, 

individuals who received real rTMS had a greater tendency to choose the risky option 

than did individuals who received sham rTMS when the risky option had a 70% chance 

of leading to reward, but not when it had a 90% chance.  Similarly, certainty equivalents 

for the 70% risky option as measured on the Indifference Point Task were significantly 

higher for the real rTMS group than for the sham rTMS group, while certainty 

equivalents for the 90% risky option were not significantly different across groups.  

Importantly, while subjects who received sham rTMS exhibited risk preferences on the 

Risky Choice Task that were modified by the probability level of the risky option, those 

who received real rTMS did not. 

Our data suggest that the DLPFC is involved in devaluation of rewards that are 

risky, and that the amount of devaluation is dependent upon the level of risk.  When 

functioning of the DLPFC was disrupted, individuals responded similarly on trials with 

different levels of risk.  In contrast, individuals who received sham stimulation were 

more likely to choose the risky option on trials with a lower level of risk than on trials 

with a higher level of risk, suggesting that functions of the DLPFC devalued risky 

options with a higher level of risk.  This is further supported by the between subject 

findings on the Risky Choice Task.  Individuals who received real rTMS chose more 

risky options on trials with a higher level of risk than did sham subjects, but did not 

choose more risky options on trials with a lower level of risk, suggesting that valuation of 
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only the more risky items was greater following disruption.  Together, this suggests that 

DLPFC functions alter the subjective value of options available with risk (i.e. with less 

than certain probability), and that this effect is dependent on the risk level.     

An important question is whether the DLPFC devalues all risky rewards, but 

devalues them more as the risk level increases, or only devalues risky rewards that have a 

certain level of risk.  Our data provide some support for the first possibility.  Although 

there were no significant effects of Stimulation Type on choice on the lower risk trials of 

the Risky Choice Task, there were some indications that risk preference did increase at 

this lower level of risk following real rTMS.  Certainty equivalents for the 90% risky 

reward on the Indifference Point task were higher following disruption of the left 

DLPFC, and marginally higher following disruption of the right DLPFC, than they were 

for the same individuals prior to stimulation.  Additionally, there was a trend for certainty 

equivalents for the 90% risky reward to be higher following real rTMS than following 

sham stimulation to the left DLPFC.  Together with the findings on the Risky Choice 

Task, this suggests that the DLPFC devalues risky rewards of different risk levels, but 

devalues them more as the risk level increases.   

Although we have suggested that the DLPFC devalues all risky rewards, with the 

level of devaluation increasing as the level of risk increases, the DLPFC may only 

devalue risky rewards of a certain level.  It might even overvalue risky rewards of some 

risk levels.  There is some evidence that activation in the DLPFC responds to risk in a 

nonlinear manner (Tobler et al., 2008).  Tobler and colleagues found that activation in the 

DLPFC associated with the predicted probability of reward was fit by an inverse S-

function of probability, which overweighted low probabilities and underweighted high 
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probabilities relative to a linear function.  In contrast to the response seen in the DLPFC, 

activation in the striatum scaled with risk in a linear manner.  This different pattern raises 

the possibility that compared to other regions of the brain, the DLPFC devalues risky 

rewards available with high probabilities but overvalues risky rewards available with low 

probabilities.  Would such a pattern fit with our findings?  It could if risky rewards 

available with a sufficiently high probability were not devalued, or devalued less than 

those available with a slightly lower probability.  The findings of Tobler et al. are not 

inconsistent with this possibility since the highest non-certain reward probability in their 

study was closer to that of our higher risk level (i.e. 75% in their study) than that of our 

lower risk level.  If the DLPFC does overvalue rewards available with low probabilities 

(i.e. rewards with a high level of risk), then disruption of the DLPFC might actually lead 

to greater risk aversion at high levels of risk.  To answer this question, future rTMS 

studies should parametrically vary the level of risk over a wide range of levels.   

For intertemporal choices, it has been suggested that the brain contains multiple 

valuation systems, which are differentially sensitive to immediate rewards (McClure et 

al., 2004).  Our results suggest that the brain has multiple valuation systems for choice 

involving risk as well, and that the DLPFC is part of one of these valuation systems.  Past 

neuroimaging studies have shown that activation in several regions of the brain, including 

the striatum and MPFC, scales with the subjective value of risky rewards on choice tasks 

(Levy et al., 2010; Peters & Buchel, 2009).  Given our results, activation in the DLPFC 

would be expected to scale with subjective value as well.  However, this activation might 

not be well captured by the same models that have been used to capture activation 

associated with the subjective value of risky rewards in other brain regions.  This is 
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because the DLPFC appears to ascribe a different weight to the level of risk of rewards 

than do other regions involved in valuation.  

How does the DLPFC interact with other brain areas involved in the decision 

making process?  One possibility is that risk related responses in the DLPFC could bias 

individuals towards greater risk aversion by modulating activity associated with 

subjective value in other brain regions.  There is some evidence that activity in the 

DLPFC can modulate activity related to valuation on choice tasks that do not involve 

risk.  When individuals make choices between two rewarding items, activation in the 

DLPFC is functionally connected with activation in the VMPFC, an area with activation 

that responds to the subjective value of the items on the task (Hare et al., 2009).  

However, it has not previously been investigated whether risk related responses in the 

DLPFC are functionally connected to subjective value related responses in the VMPFC 

or other regions on risky choice tasks. 

Previously, it has been suggested that disruption of the DLPFC leads to increased 

choice of risky options because it disrupts self-control processes that are used to help one 

choose the safer option (Knoch & Fehr, 2007; Knoch et al., 2006).  Self-control accounts 

of choice hold that the DLPFC, or other frontal regions, perform a cognitive control 

function during choice by helping one override, modulate, or inhibit prepotent urges that 

favor selection of superficially seductive options (Figner et al., 2010; Hare et al., 2009; 

Knoch et al., 2006).  In choices involving risks, prepotent urges could favor selection of 

options that might lead to the highest possible reward, even if they are risky.  If so, then 

self-control might be needed to choose a safer option. 
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Our data, however, do not support the suggestion that the DLPFC is involved in a 

self-control function that is used to prevent risk seeking.  It could be argued that self-

control would be increasingly needed to choose the smaller certain option as the value of 

the certain option decreases with respect to that of the risky option.  This is because as the 

value of the certain option decreases, the motivational drive to choose the risky option 

should become more prepotent, and it should become harder to override this urge.  If so, 

then disruption of a region involved in self-control would be expected to lead to greater 

choice of the risky option as the value of the certain option decreases (i.e. as it becomes 

more prepotent).  Alternatively, a self-control account could predict that a region 

involved in self-control would show more involvement as the choice becomes more 

difficult, that is as the values of the two options approach each other, under the 

assumption that it should be harder to override a prepotent urge to choose the riskier, but 

potentially more rewarding option when the two options are close in subjective value.  

This idea holds that disruption of a region involved in self-control would lead to greater 

choice of risky options as the subjective values of the two options approached each other.  

Disruption of the DLPFC, however, did not lead to either of the changes in choice that 

might be expected to occur after disruption of a self-control process that helps prevent 

risk seeking.  Individuals who received real rTMS did not become increasingly more 

likely than individuals in the sham group to choose the risky option as the relative value 

of the certain option decreased.  They also did not become increasingly more likely than 

individuals in the sham group to choose the risky option as the relative subjective values 

of the two options approached each other.  Thus, the pattern of our results suggest that the 
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increased risk seeking that occurred following disruption of the DLPFC was not due to 

disrupted self-control processes. 

One difficulty in the neuromodulation literature is imprecision in the use of the 

terminology for risk.  Risk can be defined in various ways, such as the possibility of a 

loss, the magnitude of a possible loss, the probability of a non-positive outcome, or as a 

property of the spread of possible outcomes (e.g. variance or mean-preserving spread).  

These terms have been conflated in prior neuromodulation studies, making it unclear 

which of these variables is affected by disruption of DLPFC functioning (Boggio et al., 

2010; Fecteau et al., 2007; Knoch et al., 2006).  Our conclusions are limited as well, in 

that the item with the greater spread of possible outcomes in our task was also always the 

least probable.  This, however, does not lessen the importance of our findings, as our 

study was designed to observe how subjective valuation of risky options changed rather 

than tease apart different risk constructs.  By only varying the probability of one option, 

we were able to see how choices between certain and risky rewards that were matched for 

subjective value were affected by disruption of the DLPFC. 

An important finding of our study is that we were able to show that risk taking 

increased following disruption of the DLPFC on a task that offered no possibility of loss.  

This reveals that the DLPFC has an important role in helping people avoid choosing risky 

options, even when options cannot lead to losses.  Given our findings that disruption of 

the DLPFC increased risk seeking for choices limited to the gain domain, an important 

future question is whether it would increase risk seeking for choices limited to the loss 

domain as well.  Compared to other regions involved in valuation, the DLPFC might 

devalue risky options in both domains, or alternatively might only devalue risky options 
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that can lead to monetary gain.  The divergent risk preferences that people exhibit in the 

gain and loss domains suggest that how the brain responds to the level of risk may differ 

when risks involve gains and when risks involve losses (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992).  This raises the possibility that the DLPFC might evaluate 

the desirability of risk differently in both domains.  

Our results reveal that disruption of either the left or the right DLPFC increases 

preference for risks, suggesting that the functions of both sides of the DLPFC bias 

individuals towards risk aversion.  Although one past study has found a similar role for 

both the left and right DLPFC in risk preferences (Boggio et al., 2010), the findings of a 

larger number of studies have suggested that the roles of the two sides of the DLPFC are 

different in risk preferences, and that only the functions of the right DLPFC bias 

individuals towards risk aversion (Fecteau et al., 2007; Gianotti et al., 2009; Knoch et al., 

2006).  While the right DLPFC may have a more central role in risk-aversion, one 

possibility is that under conditions of increased task difficulty, the left DLPFC may also 

come online to help prevent risky choices.  It may even have a larger role in risk aversion 

than the right DLPFC in more difficult conditions, as demonstrated by our within subject 

findings that individuals chose more risky options on the Risky Choice Task following 

disruption of the left than of the right DLPFC.  Our task was most likely more difficult 

than the risk task (i.e. Roger’s Risk Task) employed by Knoch and others (Boggio et al., 

2010; Fecteau et al., 2007; Knoch et al., 2006; Rogers et al., 1999).  Options on the trials 

of Roger’s Risk Task that were analyzed in past neuromodulation studies had large 

differences in expected value.  While the expected value of the less risky option was 

always positive, that of the riskier option was always negative.  Because of these large 
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differences in expected value, the less risky options may have clearly dominated the 

riskier ones, making it relatively easy to make a risk-averse choice.  In contrast, on our 

risky choice task, stimulus pairs were based on participants’ pre-stimulation subjective 

valuations.  We presented two options that were often very close in previously 

established relative subjective values, and thus it may have been harder to compare the 

values of the two options and avoid choosing the risky option on our task than on Rogers’ 

Risk Task.  The hypothesis that both hemispheres of the DLPFC are necessary for risk-

aversion under more difficult situations may also help explain why Boggio and 

colleagues (2010), who focused on more elderly subjects, observed a similar role for both 

the right and left DLPFC on Roger’s Risk Task after neuromodulation.  This task may 

have been more difficult for the elderly individuals who participated in that study, than 

for the younger individuals who participated in the study by Knoch et al. (2006).  

One unanticipated finding was that sham subjects made more risk-averse choices 

on the high risk trials of the Risky Choice Task than was predicted by previously 

established subjective values.  A close look at figure 10 reveals that on trials with a lower 

amount of risk (i.e. risky probability of 90%), sham subjects chose the risky option about 

half the time when the two options had equal relative subjective values, as predicted.  

However, on trials with a higher amount of risk (i.e. risky probability of 70%), they chose 

the risky option approximately 30% of the time when the two options had equal relative 

subjective values, revealing that they were more risk-averse than predicted.  An important 

question is why sham stimulation led to greater risk-aversion than predicted by session 

one preferences, but only on trials that had a higher level of risk.  We believe this was 

likely due to the differing characteristics of our task used to elicit preferences (i.e. the 
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Indifference Point Task) and the Risky Choice Task.  This conjecture is supported by 

supplementary analyses showing that the sham group did not subjectively value risky 

rewards differently on the Indifference Point Task across sessions.   

There are several possible reasons why sham subjects were more risk averse than 

predicted on the trials of the Risky Choice Task that had a higher level of risk.  One 

possible reason preferences changed is that cross session behavior differed across tasks 

due to a framing effect.  While the Indifference Point Task presented all trials with one 

level of risk before presenting trials with the other level of risk, the Risky Choice Task 

randomly mixed trials with different levels of risk.  Individuals may have been more risk 

averse when confronted with a risky option that led to reward with a 70% probability on 

the Risky Choice Task because it seemed relatively riskier when it was mixed with less 

risky trials than when it was not mixed with them.  Another possible reason why subjects 

exhibited more risk aversion on the Risky Choice Task than on the Indifference Point 

Task is because the former task had a time limit while the latter did not.  Prior research 

has shown that individuals are more risk averse when they have less time to respond (Ben 

Zur & Breznitz, 1981).  However, this does not explain why sham subjects only exhibited 

more risk aversion on the trials with a higher level of risk, unless the effect of response 

time only occurs at certain levels of risk. Future research investigating this can help 

resolve this issue. A third possibility is that preferences are less stable when there is a 

higher level of risk than a lower level of risk.  This possibility does not seem very 

convincing, however, because preferences on the Indifference Point Task for sham 

subjects did not change across sessions.  Certainty equivalents for sham subjects were no 
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less stable for the risky reward available with 70% probability than for the one available 

with 90% probability.   

Although the preference shifts seen for the sham group on the Risky Choice Task 

make it difficult to determine how much preferences for risk shifted on the task following 

real rTMS, data from the Indifference Point Task provide direct evidence that disruption 

of the DLPFC increased risk seeking above baseline levels.  Between subject analyses on 

this task showed that individuals had a greater preference for risk, as demonstrated by 

higher certainty equivalents for the risky reward available with 70% probability 

following real than following sham rTMS.  This directly indicates that individuals 

became more risk seeking following real rTMS, because those in the sham group did not 

have different certainty equivalents across sessions.  Within subject analyses for those 

who received real rTMS provide even more direct evidence that subjects’ preferences for 

risk were greater following disruption of the DLPFC than they were prior to disruption.  

Certainty equivalents for the risky reward available with 70% probability were greater 

following disruption of the left or the right DLPFC than they were for the same subjects 

in session one (i.e. disruption led to greater preference for risk).  There was also some 

evidence that disruption led to a greater preference for risk for the risky reward available 

with 90% probability.  Certainty equivalents were significantly higher following 

disruption of the left DLPFC and there was a trend for them to be higher following 

disruption of the right DLPFC than they were for the same subjects in session one.   

 We found some evidence that following disruption of the left, but not the right 

DLPFC, subjects were less sensitive to the relative subjective values of the two items.  

The slope of the choice curve that predicted whether subjects chose the risky option on 
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the higher risk trials of the Risky Choice Task was shallower for those who had real 

rTMS to the left DLPFC than for those who had sham rTMS to this region, indicating 

that disruption led to choice patterns that were less dependent on the relative subjective 

values of the options.  Other results, however, indicate that even following disruption of 

the left DLPFC, subjects were not completely insensitive to the relative subjective values 

of the two options.  Following disruption of either side of the DLPFC, individuals were 

less likely to choose the risky reward with a 70% probability and less likely to choose the 

risky reward with a 90% probability as the relative value of the certain option increased.   

Subjects who received real rTMS had faster reaction times on the Risky Choice 

Task than did subjects who received sham stimulation.  Disruption of either the left or the 

right DLPFC may have been associated with decreased reaction time because subjects 

deliberated less prior to making a choice.  One could imagine that less deliberation might 

be associated with greater choice of potentially larger risky options if individuals spend 

less time focusing on the relative risk levels of the two options before making a decision.  

Unlike changes in choice on the Risky Choice Task following real rTMS, however, 

speeded reaction time occurred following real rTMS both for trials with a 70% risky 

reward and for trials with a 90% risky reward.  This divergent pattern of results across 

analyses reveals that differences in the amount of time spent deliberating over the options 

cannot fully account for the differences in choice between groups.   

 In conclusion, our findings extend those of prior neuromodulation studies by 

showing that the precise changes in risk taking that occur following disruption of the 

DLPFC depend on the level of risk.  We found that disruption of activity in either side of 

the DLPFC with low frequency rTMS led to significantly greater choice of risky options 
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than did sham stimulation on trials with a higher level of risk, but not on trials with a 

lower level of risk, on a task that offered no possibility of monetary loss.  This difference 

was largely due to a relative insensitivity to different levels of risk following disruption.  

Importantly, our results suggest that both sides of the DLPFC devalue some risky rewards 

more than do other regions of the brain involved in valuation.  Whether the DLPFC 

solely devalues risky rewards more than other regions, or devalues risky rewards of some 

levels of risk and values risky rewards of other levels of risk more than other regions is 

an important question for future research.  
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CHAPTER IV 

 

 

  

EXPERIMENT 3 – INDIVIDUAL DIFFERENCES IN  

DELAY AND PROBABILITY DISCOUNTING AND IN IMPULSIVITY 

 

 

 

Introduction 

 

 

 

The subjective values of delayed monetary gains and losses are discounted with 

respect to those of immediate incentives.  Intertemporal choice research has shown that 

the rate of delay discounting for both delayed gains and losses can be modeled by a 

hyperbolic or quasi-hyperbolic curve (Estle et al., 2006; Kirby & Marakovic, 1995; 

Madden et al., 2003; Murphy et al., 2001; Myerson & Green, 1995; Rachlin et al., 1991).  

Hyperbolic delay discounting is expressed with the following equation (Mazur, 1987): 

                                  V = A/(1+KD) .      (Equation 1) 

In this equation, the discounted value (V) of a delayed monetary incentive (i.e. 

gain or loss) is a function of the objective amount of the incentive (A), the delay to 

receiving (or paying) the incentive (D), and the individual’s discount rate (K).  The 

amount of discounting across individuals is variable, and is captured by the discount rate 

parameter.  Higher rates of delay discounting indicate that the individual places greater 

weight on the monetary value of immediate relative to delayed incentives.  An 

individual’s discount rate, K, may differ for monetary gains of different magnitudes, and 

for gains and losses.  In fact, individuals tend to discount delayed monetary gains more 

than delayed monetary losses (Baker et al., 2003; Benzion et al., 1989; Estle et al., 2006; 

Frederick et al., 2004; Murphy et al., 2001).  
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Empirical data reveal that individuals discount the value of risky monetary 

rewards (i.e. available with less than 100% probability) relative to certain rewards in a 

similar manner to how they discount delayed rewards relative to immediate ones.  When 

probability is converted to odds against reward, the subjective value of a risky reward 

decreases as odds against reward increases, and this decrement in value can be modeled 

by a hyperbolic or quasi-hyperbolic curve (Myerson et al., 2003; Rachlin et al., 1991).  

Hyperbolic probability discounting is expressed with the following equation (Rachlin et 

al., 1991):   

                                  V = A/(1+HO) .                            (Equation 2) 

  The discounted value of a risky monetary gain (V) is a function of the objective 

amount of the gain (A), the probability discount rate (H), and the odds against receiving 

the gain (O, where O = (1/probability of reward) – 1).  As with delay discounting, 

individuals differ in their rates of probability discounting (H), and higher rates of 

discounting reveal that a person places greater weight on the monetary value of certain 

relative to risky incentives.  

Given the individual differences seen in both forms of discounting, it is 

worthwhile to search for personality traits that may be related to discounting of different 

types of incentives.  Since delay discounting of monetary gains involves a preference for 

immediate over delayed rewards, a logical place to look for relationships are self-report 

measures of impulsivity.  Impulsive behavior can be defined as the tendencies to give 

into urges and to respond quickly without planning (Buss & Plomin, 1975).  Both of 

these traits could be related to delay discounting, since a person may choose immediate 

rewards over larger delayed alternatives either because they cannot override urges to 
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choose immediate options or because they respond without thinking of the long-term 

consequences of their choices.  Impulsivity could similarly be related to delay 

discounting of monetary losses, since individuals may prefer larger delayed losses over 

smaller immediate ones either because of a lack of planning or because of a failure to 

override urges that encourage avoidance of immediate losses.  

Although the tendency to discount risky incentives relative to certain incentives of 

the same magnitude is not commonly thought of as impulsive behavior, the positive 

correlations that have been observed between discounting of delayed and risky rewards 

suggests that a similar process may underlie both types of discounting (Mitchell, 1999; 

Myerson et al., 2003; Richards et al., 1999).  Other evidence suggesting a common 

process are fMRI findings that the subjective value of both delayed and risky rewards 

during choice tasks are positively associated with brain activation in similar brain 

regions, including the MPFC and striatum (Kable & Glimcher, 2007; Peters & Buchel, 

2009, 2010).  These similarities raise the possibility that both probability discounting and 

delay discounting have a similar relationship to an impulsivity trait.  Alternatively, these 

similarities may reflect something other than impulsivity.  In fact, both types of 

discounting might actually be expected to have divergent relationships with an 

impulsivity trait.  This is because in the domain of risk, an individual who is highly 

impulsive might have a tendency to take risks.  Such an individual could exhibit low 

levels of probability discounting   If so, then high levels of an impulsivity trait could be 

related to both low levels of probability discounting and high levels of delay discounting.  

To date, a large number of studies have examined the relationship between delay 

discounting of monetary gains and impulsivity.  Many of these studies have found 
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positive correlations between measures of impulsivity, such as the Eysenck Impulsivity 

Scale (Eysenck, Pearson, Easting, & Allsop, 1985), Eysenck Personality Questionnaire 

(Eysenck & Eysenck, 1978), or Barrett Impulsiveness Scale (BIS:  Patton, Stanford, & 

Barratt, 1995), and levels of delay discounting (Kirby et al., 1999; Madden et al., 1997; 

Mitchell et al., 2005; Petry, 2001, 2002; Reynolds, Richards et al., 2006).  In contrast, a 

study that has investigated the relationship between probability discounting of monetary 

gains and impulsivity found a negative correlation (Mitchell, 1999).  The findings from 

these studies suggest that delay discounting and probability discounting of gains may 

have divergent relationships with impulsivity.  However, support for this hypothesis is 

limited because of the pattern of findings in the Mitchell (1999) study.  First, the study 

used more than one impulsivity measure, and the two types of discounting (probability 

and delay) were not significantly correlated with the same measure.  Second, correlations 

between delay discounting and impulsivity were negative, contrary to the findings of 

other studies.  Furthermore, in one of the largest studies that investigated the relationship 

between impulsivity and delay discounting, no significant correlations were found 

(Reynolds, Ortengren, Richards, & de Wit, 2006).   

One possible reason for the inconsistencies across studies is that many of the 

studies have used relatively small sample sizes on the order of 30 to 50 people.  This is a 

hindrance because studies with small samples are more likely to have results that are 

driven by outliers, and thus may find relationships that are very different from those in 

the population. Another possible reason is that impulsivity is not a unitary construct, and 

different measures of impulsivity, such as the BIS and Eysenck Impulsivity Scale, may 

not in fact be measuring the same underlying trait.   
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In order to better understand the relationships between impulsivity and different 

types of discounting, it would be helpful to observe how different facets of impulsivity 

that are common across measures of impulsivity are related to delay and probability 

discounting.  One existing impulsivity scale that fits this description is the UPPS 

Impulsive Behavior Scale (Whiteside & Lynam, 2001).  Items on the UPPS were selected 

by performing an exploratory factor analysis on a number of existing personality scales, 

including impulsivity measures that have shown significant relationships with monetary 

discounting (e.g. BIS, Eysenck Impulsivity Scale).  Items that had high loadings on 

specific factors were used to construct subscales for different facets of impulsivity.  The 

UPPS Impulsive Behavior Scale measures four facets of impulsivity: Negative Urgency, 

Lack of Premeditation, Lack of Perseverance, and Sensation Seeking.  A revised version 

of the scale (UPPS-P) adds a fifth facet: Positive Urgency.  This fifth facet captures the 

tendency to engage in impulsive actions when in a positive mood (Cyders & Smith, 

2007).  Prior research reveals that the level of delay discounting of monetary gains is 

positively correlated with impulsivity on the Lack of Premeditation facet of the UPPS 

(Lynam & Miller, 2004), but as no studies have utilized the UPPS-P, it is unclear if delay 

discounting is related to Positive Urgency.  Additionally, no studies have looked at how 

levels of probability discounting of gains are related to scores on any of the UPPS-P 

facets.  This is a critical comparison which will help uncover whether similar impulsivity 

traits have divergent relationships with probability and delay discounting.   

As prior studies have also not investigated the relationships between delay 

discounting of losses and facets of the UPPS-P, another important question is whether 

delay discounting of gains and losses are both related to a similar facet of impulsivity on 
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this measure.  The positive correlations that have been observed between both types of 

discounting (Murphy et al., 2001) suggest that a similar process underlies delay 

discounting of gains and losses.  If so, then it might be expected that delay discounting of 

losses would be positively associated with impulsivity, since delay discounting of gains 

often shows this relationship with impulsivity.  However, there has been very little 

research on the relationship between delay discounting of losses and impulsivity.  

Ostaszewski & Karzel (2005) divided subjects up into three groups depending on their 

levels of impulsivity on the Eysenck Personality Questionnaire (Eysenck, Eysenck, & 

Barrett, 1985), and found that those who had the lowest impulsivity scores discounted the 

value of delayed losses more than those who were the most impulsive.  A limitation of 

this study is that they did not look at the relationship for the full range of individuals in 

their sample.  To date, no single study has investigated the relationships between 

impulsivity and both delay discounting of gains and of losses.  One might expect that the 

Lack of Premeditation facet on the UPPS-P would be positively correlated with levels of 

both types of delay discounting.  Individuals who discount the value of both delayed 

gains and losses more than others might do so because they spend less time thinking 

about the long-term value of options before making choices.  

 The current study was designed to investigate the relationships between different 

facets of impulsivity on the UPPS-P and different types of discounting (delay discounting 

of gains, delay discounting of losses, and probability discounting of gains) in the same 

subjects.  It was predicted that the Lack of Premeditation facet of the UPPS-P would be 

positively correlated with levels of delay discounting of gains and losses, but negatively 

correlated with levels of probability discounting of gains.  As lack of consensus seen in 
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the literature may be due to previous studies utilizing small sample sizes, we utilized a 

larger sample than is typical, with only one previous study using a sample of similar size 

(Lynam & Miller, 2004).  This gave us sufficient power to uncover relationships between 

impulsivity and discounting.  It also gave us sufficient power for our secondary aim: to 

look at relationships between all three types of discounting.  Understanding the 

relationships between the tendencies to discount incentives in different domains is 

important, because it can help reveal whether shared mechanisms underlie different types 

of discounting.   

 

Methods 

 

Participants 

 225 right-handed individuals (45.78% female) between the ages of 18 and 30 (M 

Age = 21.13, SD = 2.87) from Vanderbilt University and the Nashville community 

participated in this study.  All of these participants reported having no history of 

neurological or psychiatric problems, and no females reported being currently pregnant.  

Specifically, these individuals were consented to participate in either Experiment 1 or 

Experiment 2 of this dissertation.  For numbers consented in each study please see 

Chapters II and III.  Note that some individuals were consented in both Experiments 1 

and 2 because their session 1 data made them ineligible for one study but not ineligible 

for the other (these subjects only completed session 1 once).  The study outlined in this 

chapter is based on session 1 data from all subjects consented in Experiment 1 or 2.  All 

of the procedures in session 1, but the prescreening procedures, were identical in 
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Experiments 1 and 2.  Additional procedures not mentioned in the preceding two chapters 

are mentioned in this chapter, as they were not pertinent to the hypotheses of the other 

experiments but are pertinent to those of the experiment outlined here.  

26 additional subjects were consented but excluded or withdrew.  Reasons 

subjects were excluded included no loss discounting as revealed on the loss discounting 

prescreen (for approximately 20 subjects this was given following consent), having 

previously received Transcranial Magnetic Stimulation (TMS), risk factors that could 

increase the chances of having negative effects from TMS (e.g. neurological conditions), 

and experimenter error.  All participants completed written informed consent approved 

by the Vanderbilt IRB.       

   

Indifference Point Procedure 

 Subjects received one of two questionnaires prior to consent depending on 

whether they were initially consented in Experiment 1 or Experiment 2 (144 subjects 

were consented in Experiment 1 and 81 subjects were consented in Experiment 2).  The 

questionnaire for Experiment 1 assessed delay discounting of monetary losses, while the 

questionnaire for Experiment 2 assessed risk preferences for monetary gains. For details 

on these prescreens see methods of experiments in Chapters II and III.  Subjects 

consented in Experiment 1 were excluded if the delay discounting prescreen indicated 

they did not discount the value of delayed monetary losses, while those consented in 

Experiment 2 were excluded if the risk prescreen indicated they were risk seeking.  

 Following consent, we determined subject indifference points between immediate 

and delayed monetary rewards.  To do so, subjects completed a task on a computer in 



168 

 

which we determined 12 immediate equivalents (i.e. dollar amount of an immediate 

monetary reward that person values equally to a delayed monetary reward)) for 4 

different delayed monetary gains ($2.50, $5.00, $7.50, and $10.00) available at three 

different time points in the future (2 weeks, 4 weeks, 8 weeks).  The order of determining 

immediate equivalents was from low to high magnitudes, and from nearer to farther time 

points in the future (i.e. order was $2.00 available in 2 weeks, $2 available in 4 weeks, $2 

available in 8 weeks, … $10 available in 8 weeks).  Subjects were told that they would 

receive the amount of money for one random choice at the time associated with the 

choice.  For timing of one trial of this task and presentation of items, see Figure 12. 

 

           

Figure 12: Trial Structure of the Indifference Point Task*.  A. Decision Phase.  Following 

500 ms of fixation, two different options were presented on a computer screen (side randomized).  

Each option had an associated probability (i.e. 70%, 90% or 100%, the latter labeled “For Sure”), 

valence (i.e. Gain or Loss), amount, and time.  The figure above depicts a trial of the Indifference 

Point task for risky gains.  For this task, only the probability and amounts varied across trials.  

The word “Today” indicated that subjects were making choices for options to be paid that day.  

Subjects decided which option they would prefer by pressing the “z” or “m” key and there was no 

time limit to respond.  B. Post Choice Phase.  Immediately after responding, the triangle under the 

subject’s choice turned red and the other triangle disappeared to indicate the subject’s choice; this 

was displayed for 250 ms.  For the example given above, the value of the certain option would be 

increased on the following trial, since the risky option was just chosen. (*Example shows the 

indifference point task for risky rewards.  Trial structure of the indifference point task for delayed 

incentives was the same, except that time, rather than probability, was varied across trials.) 
 

     

A B 
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To determine each immediate equivalent, participants were presented with an 

initial trial in which they made a choice between a delayed monetary gain and an 

immediate gain of half the value of the delayed option.  If participants chose the delayed 

option, the value of the immediate option increased by half, and if they chose the 

immediate option it decreased by half.  On the next trial, the immediate value changed in 

a similar way as in the previous trial but only by one quarter of the original value.  Over 

six trials, the immediate value increased or decreased by progressively smaller amounts 

(i.e. by 1/(2^x) where x was trial number) depending on participant responses so that the 

subjective value of the immediate amount would iteratively approach that of the delayed 

amount.  After the sixth trial, a final catch trial was presented in which the immediate 

value was higher than the just-calculated immediate equivalent.  This provided a check to 

ensure that subjects were answering according to their preferences (i.e. were answering 

consistently).  If they did not choose the immediate value on the catch trial, the 

immediate equivalent for that specific delayed magnitude reward was determined again 

(i.e. the six trial procedure and check was repeated).  After answering consistently, or 

after completing the indifference point procedure three times, participants then performed 

the indifference point procedure for the next delay-magnitude pair.  

Following the indifference point procedure for delayed monetary gains, 

participants performed the same indifference point procedure for delayed monetary 

losses.  For the delayed loss procedure, the same times and magnitudes of delayed 

incentives were used as were used for the delayed gains task, except now subjects chose 

which of the two values they preferred to lose.  They were told that they would have to 

pay the amount of money for one random choice at the time associated with the choice.   
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Subjects next performed another indifference point procedure, in which they 

made choices between certain and risky monetary rewards.  The risky rewards offered a 

reward with a probability of 50%, 70%, or 90%, and offered no reward with the opposing 

probability (i.e. 100 - probability).  We determined certainty equivalents (i.e. dollar 

amount of a certain monetary reward that the person values equally to a risky monetary 

reward) for 12 different risky monetary gains: 4 different magnitudes (i.e. same as those 

used for delayed rewards) available with one of three probabilities (i.e. 50%, 70%, or 

90%).  The order of determining certainty equivalents was from low to high magnitudes, 

and from lower to higher probability (i.e. order was $2.50 with 50%, $2.50 with 70%.... 

$10 with 90%).  Subjects were told that one of their choices would randomly be selected 

for payment.  If the selected choice was certain, they would definitely receive the money, 

but if it was risky, they would have a chance to receive it (associated with the probability 

of the option).  On the first trial of this task, individuals were presented with a choice 

between a risky option and a certain option of half the maximum value of the risky 

option.  Other details of this task were the same as for the indifference point procedure 

for delayed incentives, except here the magnitude of the certain option was varied rather 

than that of the immediate option.  For all trials of the indifference point procedures, the 

side of the screen that each option appeared on was determined randomly.  

 At the end of the session, three random trials were selected for payment: one trial 

from the indifference point procedure for delayed gains, one trial from the indifference 

point procedure for delayed losses, and one trial from the indifference point procedure for 

risky gains.  Subjects then either received or paid (depending on trial type) the amount of 

money at the specified time associated with their choice on that trial.  However, if the 
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chosen option for the selected trial from the procedure for risky gains was a risky option, 

subjects rolled a 10 sided die to determine whether they would be paid.  If they rolled a 

number less than or equal to the tens digit of the probability listed on that trial (i.e. less 

than 7 for 70%), then they were paid the chosen amount. 

 

Impulsivity Questionnaire 

 Immediately after completing the indifference point procedure (and before being 

paid), individuals completed the UPPS-P Impulsive Behavior scale (Lynam, Smith, 

Whiteside, & Cyders, 2006).  This 59-item scale assesses five facets of impulsivity: 

Negative Urgency (NU), Lack of Perseverance (LPers), lack of Premeditation (LPrem), 

Sensation Seeking (SS), and Positive Urgency (PU).  Higher scores on each facet indicate 

more impulsivity within that domain.  On the UPPS-P, one rates on a 4-point scale how 

much they agree or disagree with a number of statements related to their own behavior.  

We computed scores for each facet by taking the mean score of all items within a facet 

(note that some items were reverse-coded). 

We had complete UPPS-P data for 88.4% of the subjects.  There were two reasons 

for missing data.  We had no UPPS-P data for one subject due to experimenter error; the 

subject was not given the questionnaire.  All other subjects with missing data were given 

the questionnaire and completed some of the items, but did not answer all of them.  If 

subjects had completed at least 70% of the items on a facet, we computed that facet score 

by replacing missing values with the average of the other scores for that subject on that 

facet.  This allowed us to compute all facet scores for all subjects for whom we had data, 

with one exception.  We did not compute one facet score (i.e. PU) for one subject who 
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had completed less than 70% of the items for that facet, as recommended in the UPPS-P 

scoring instructions.   

         

Statistical Analysis Methods 

We analyzed data with PASW Statistics 18 (SPSS Inc., Chicago, IL).  Delay 

discount rates (k) were computed by fitting hyperbolic discount functions (Equation 1) to 

subjects’ immediate equivalents across the range of delays (measured in days) using 

nonlinear regression. Probability discount rates (h) were computed similarly by fitting 

hyperbolic discount functions (Equation 2) to subject’s certainty equivalents; in order to 

compute these discount rates, the probability that the risky option led to reward was 

converted to the odds against receiving a reward.  We note that hyperbolic discount 

functions could only be fit to a subject’s data if their immediate or certainty equivalents 

for a specific magnitude incentive varied as the delay or probability of the incentive 

changed.  For each subject, we computed eight time discount rates, one for each gain and 

loss magnitude, and four probability discount rates, one for each gain magnitude.  Higher 

k or h values indicate a greater degree of discounting.  We assessed the model fit of each 

nonlinear regression by computing Shrunken R
2
 (i.e. R

2
 = 1 – (Sum of Squared 

Error/Corrected Total Sum of Squares)).  
  
We also computed three average discount 

rates, by averaging the four magnitude-specific discount rates for each of the three types 

of discounting (delayed gain, delayed loss, and risky gain).  Average model fit scores for 

the three types of discounting were computed by averaging the four respective shrunken 

R
2
 values.   
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 We also assessed discounting using a model-free measure of discounting, area 

under the curve (AUC) (Myerson, Green, & Warusawitharana, 2001).  For each subject, 

we calculated the area under each of their 12 indifference curves (i.e. four delayed gain 

magnitude curves, four delayed loss magnitude curves, four risky gain magnitude 

curves).  To do so, we first normalized the subjective value of delayed or risky monetary 

gain or loss (i.e. from immediate or certainty equivalents at indifference points) and 

normalized the delay to the incentive or odds against reward, such that the undiscounted 

value of the incentive was equal to one, and the maximum delay or maximum odds 

against reward was equal to one.  By normalizing the curves, it allows the area under the 

discounting curve to vary from 0 at the low end (complete discounting) to 1 at the high 

end (no discounting), and makes the measure of AUC comparable across magnitudes.  

Thus, lower AUC values indicate a greater degree of discounting.  For further details on 

how to compute AUC, see Myerson et al. (2001).  We also computed three average AUC 

values, by averaging the four magnitude-specific AUC rates for each type of discounting 

(delayed gain, delayed loss, and risky gain).  All subsequent analyses were computed 

with AUC values rather than k or h values, because data were available for more subjects, 

and because the distribution of AUC values was much closer to a normal distribution 

(there was much less skew).  However, AUC values were still significantly non-normal 

(Shapiro-Wilk p < .05). 

Relationships between discounting and impulsivity, and relationships between 

different types of discounting were assessed with Spearman correlations (2-tailed) 

between average AUC values and each facet of impulsivity.  We assessed differences 
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between delayed gain and delayed loss discounting by computing Wilcoxon signed-rank 

tests (2-tailed) for averaged AUC values.   

As a supplemental analysis, we examined the relationship between magnitude of 

incentives and discounting by using Generalized Estimating Equations (GEE), which 

model effects while accounting for correlations within observations of individual subjects 

(Liang & Zeger, 1986).  Using PASW Statistics 18 (SPSS Inc., Chicago, IL), we created 

GEE models with an unstructured correlation matrix and a normal distribution to predict 

averaged AUC values as a function of magnitude.  A separate GEE model was created for 

each of the three types of incentives.  

 Data involving delayed gains for a subject were not analyzed if we were missing 

any of that subject’s delayed gain immediate equivalents.  Similarly, data involving 

delayed losses and data involving risky gains were not analyzed if we did not have any of 

a subject’s delayed loss immediate equivalents or risky gain certainty equivalents, 

respectively.  This only occurred if subjects answered inconsistently 3 times in a row on 

the indifference point procedure for at least one item on that task.  In all, 13 subjects did 

not answer consistently on the delayed gain task, 9 subjects did not answer consistently 

on the delayed loss task, and 6 subjects did not answer consistently on the risky gain task.   

 

Results 

 

Levels of Discounting 

 For each subject, we calculated hyperbolic discount rates for four magnitudes of 

delayed gain, four magnitudes of delayed loss, and four magnitudes of risky gain.  In a 
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large number of cases, however, we were not able to calculate hyperbolic discount rates, 

because immediate or certainty equivalents for incentives of a specific magnitude were 

identical at all delays or probabilities of the incentive.  Three average discount rates (i.e. 

for delayed gain, delayed loss, and risky gain) were created by averaging the four 

magnitude specific discount rates for that type of discounting, and were only created for 

subjects who had calculable discount rates for all four magnitudes of that type.  For 

median values of discounting, number of subjects with calculable discount rates, and 

indices of fit for hyperbolic discount rates, see Table 16.  Because all discount rates were 

largely positively skewed, the median and the interquartile range (range) were used to 

describe the distribution of discount rates rather than the median and standard deviation.  

The median discount rates averaged across magnitudes for delayed gains, delayed losses, 

and risky gains were .030 (range = .013 - .056), .026 (range = .008 - .059), and 1.220 

(range = .903 - 1.792), respectively.  For a visual representation of median averaged 

hyperbolic discount rates and of median subjective valuation of the delayed or risky 

incentives (i.e. immediate or certainty equivalents) averaged across magnitudes, see 

Figure 13. 

While we were able to fit hyperbolic discount functions to most individuals’ risky 

gain data (N= 211), we were not able to fit hyperbolic discount functions to a large 

number of individuals’ delayed gain or delayed loss data.  Of the subjects who answered 

consistently on the task, we were only able to calculate hyperbolic discount rates for all 

magnitudes of delayed gains for 73.6% of subjects (N = 156) and for all magnitudes of 

delayed losses for 51.9% of subjects (N= 112).  This indicates that many subjects had 

immediate equivalents for delayed incentives that did not vary as a function of delay.  
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Furthermore, across subjects whose data was fit by hyperbolic delay discount functions, 

the fit was often quite poor.  Median R
2
 averaged across magnitudes for delayed gains 

and losses were .347 and -.024, respectively (See Table 16).  These poor model fits reveal 

that a number of subjects did not exhibit hyperbolic delay discounting.  This was 

especially common when delayed options were losses, consistent with past research 

showing that standard hyperbolic discounting equations provide poor fits to some 

individuals’ intertemporal choices involving losses (Murphy et al., 2001).  In contrast to 

the poor model fits to our delayed gain and loss data, risky gain data were well fit by 

hyperbolic discount functions (Median R
2
 averaged across magnitudes = .843). 

 

Table 16: Median Hyperbolic Discount Rates and Hyperbolic model fit. 
 Magnitude of Delayed or Risky Incentive 

 $2.50 $5.00 $7.50 $10.00 Average 

Delayed Gain      

Median k .032 .023 .019 .015 .030 

(range for k)          (.011 - .060) (.008 - .049) (.008 - .052) (.007 - .052) (.013 - .056) 

Median R
2
 .704 .687 .593 .783 .347 

(range for R
2
)        (.063-.817) (-.428 - .850) (-1.383 - 

.884) 

(-.574 - .922) (-2.084 - .764) 

N  187 179 173 173 156 

Delayed Loss      

Median k .022 .018  .018  .014 .026 

(range for k)          (.007 - .043) (.006 - .053) (.006 - .053) (.005 - .045) (.008 - .059) 

Median R
2
 .470  .459 .310 .591 -.024 

(range for R
2
)        (-.970 - .780) (-1.387 - 

.788) 

(-3.216 - 

.801) 

(-1.614 - 

.849) 

(-4.213 - .620) 

N  138 139 136 139 112 

Risky Gain      

Median k 1.112 1.181  1.129 1.050 1.220 

(range for k)          (.836 - 

1.821) 

(.933 - 1.983) (.831 - 1.692) (.811 - 

1.722) 

(.903 - 1.792) 

Median R
2
 .864 .848 .884 .894 .843 

(range for R
2
)        (.646 - .943) (.572 - .963) (.624 - .957) (.583 - .980) (.242 - .919) 

N  217 215 214 216 211 

Range = Interquartile range.  R
2
 = Shrunken R

2 
index of model fit (note this could be less 

than 0).  N = Number of subjects whose preferences were modeled by corresponding 

hyperbolic functions.   
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Figure 13: Median Hyperbolic Discounting of Incentives.  Curves show the immediate 

value of incentives of average magnitude as a function of delay (A-B) or show the certain 

value of rewards of average magnitude as a function of odds against reward (C).  

Hyperbolic curves in figure created from median values of the discount rate averaged 

across magnitudes.  Dots represent median values of the immediate equivalent averaged 

across magnitudes for delayed gains (A) or for delayed losses (B), or median values of 

the certainty equivalent averaged across magnitudes for risky gains (C). 

   

 

 

A B 

C 
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Because data for a large number of subjects were not adequately fit using 

hyperbolic equations, we also assessed discounting by calculating AUC (i.e. the 

normalized area under each individual’s indifference curve).  Calculating AUC allowed 

us to calculate values of discounting for all subjects, since it did not require any 

assumptions of how individuals discounted delayed or risky incentives.  We calculated 

separate AUC values for each magnitude of delayed gain, delayed loss, and risky gain, 

and calculated 3 average discount rates by averaging across magnitudes (i.e. one for each 

type of discounting).   

In contrast to hyperbolic discount rates for which greater discounting is associated 

with larger discount rate values (i.e. k or h), greater discounting as assessed using AUC is 

associated with lower AUC values.  While no discounting is associated with an AUC 

value of 1, complete discounting (i.e. immediate or certainty equivalents equal to 0) is 

associated with an AUC value of 0.  However, in the current study subjects could not 

have these extreme values.  Due to the design of our indifference point task, certainty and 

immediate equivalents always had to be less than the risky or delayed incentive they were 

associated with by one to seven cents and always greater than zero by one to seven cents 

(exact amounts depended on the magnitude of the risky or delayed incentive).  Because 

of this, individuals who exhibited no discounting would have had AUC values of 

approximately .99 and those who exhibited complete discounting would have had AUC 

values of approximately .13 for delayed incentives and AUC values of approximately .06 

for risky gains.  For the median AUC values and the number of subjects used to calculate 

each median, see Table 17.  The median averaged AUC values for delayed gains, delayed 

losses, and risky gains were .690 (range = .529 - .866), .827 (range = .592 - .980), and 
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.670 (range = .585 - .724), respectively.  For a visual representation of the distribution of 

AUC values, see Figure 14.   

Since we had AUC values for many more subjects than we had hyperbolic 

discount rates for, all further analyses were computed with AUC values.  This allowed us 

to look for relationships across types of discounting and impulsivity that might not have 

been captured if we had excluded subjects whose choices were not fit by a hyperbolic 

discount function.   

 

Table 17: Median AUC Values. 
 Magnitude of Delayed or Risky Incentive 

 $2.50 $5.00 $7.50 $10.00 Average 

Delayed Gain      

Median AUC  .595  .695  .725  .759   .690 

(k range) (.469 - .820) (.520 - .871) (.506 - .896) (.536 - .900) (.529 - .866) 

N 212 212 212  212  212 

Delayed Loss      

Median AUC  .829  .835   .831  .835   .827 

(k range) (.593 - .997) (.567 - .995) (.596 - .993) (.589 - .994) (.592 - .980) 

N 216  216  216 216 216 

Risky Gain      

Median AUC  .689   .670  .676   .690  .670 

(k range) (.577 - .747) (.568 - .730) (.594 - .734) (.587 - .735) (.585 - .724) 

N 219  219 219  219 219 

Range = Interquartile range.  N = Number of subjects. 
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Figure 14: Boxplots of AUC values averaged across magnitudes.  Edges of box 

indicate interquartile range of averaged AUC values.  Whiskers indicate minimum and 

maximum of averaged AUC values.  Horizontal line in middle of each box is median of 

averaged AUC.  AUC of 1 represents no discounting, while AUC of 0 represents 

complete discounting (i.e. delayed option’s immediate equivalent or risky option’s 

certainty equivalent is 0).   

 

 

 

Relationships between Discounting and Impulsivity 

 

To examine relationships between each type of discounting and impulsivity, we 

computed Spearman correlations between AUC values averaged across magnitude of 

each type of discounting and the five facets of impulsivity as measured on the UPPS-P.  

Spearman correlations were used, because averaged AUC values were non-normal (all 

Shapiro-Wilk p < .05).  Averaged AUC values for delayed losses were negatively 

correlated with the Positive Urgency factor of the UPPS-P (r = -.150, p = .029), 

indicating that individuals with higher levels of Positive Urgency discounted the value of 

delayed losses more.  However, we note that this correlation was no longer significant 
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after correcting for multiple comparisons.  No other correlations were significant.  For a 

full list of correlations, see Table 18. 

 

Table 18: Correlations between Averaged AUC values and facets of the UPPS-P. 

Impulsivity 

Facet 

Mean SD Future Gain 

AUC 

Future Loss 

AUC 

Risky 

Gain AUC 

NU 2.130 .523 -.056 -.073  .016 

LPrem 1.984 .486 -.027  .017 -.012 

LPers 1.810 .455 -.027 -.048  .058 

SS 3.022 .580  .035 -.014  .046 

PU 1.770 .573 -.123 -.150*  .115 

N for all correlations between all facets (except PU) and Future Gain AUC, Future Loss 

AUC, and Risky Gain, are 211, 215, and 218, respectively (while N is one less for all 

correlations with PU). * = p < .05.  For meanings of impulsivity abbreviations, see 

Methods.  N for descriptive statistics of all Impulsivity facets is 224, except PU (N = 

223). 

 

 

Since more than 10% of subjects were missing complete data on the UPPS-P, it 

was possible that the observed relationships with Positive Urgency on the UPPS-P were 

dependent upon the values we imputed for missing responses on the questionnaire.  To 

investigate whether this was the case, we redid all correlation analyses on the subset of 

participants who had complete UPPS-P data.  No relationships were significant.  

However, consistent with the analyses performed over the entire sample, there was a 

trend for averaged AUC values for delayed losses to be negatively correlated with 

Positive Urgency (r = -.131, p = .071).   

 

Relationships between Types of Discounting 

We looked at relationships between each type of discounting, by computing 

Spearman correlations between the three averaged AUC values.  This revealed that all 
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types of discounting were significantly positively related (all p <.01), suggesting some 

shared trait or underlying mechanism associated with discounting across domains.  The 

relationship between delayed gain and loss discounting was particularly high (r = .620, p 

<.001), while those between each type of delay discounting and probability discounting 

of gains were lower (with delayed gain: r = .298, p <.001, with delayed loss: r= .212, p = 

.002).  The greater correlation between different types of delay discounting than between 

delay and probability discounting suggests that the underlying mechanisms, or traits, of 

different types of delay discounting are partially distinct from those that underlie 

probability discounting. 

Wilcoxon Signed Rank tests comparing averaged levels of discounting revealed 

that individuals discounted delayed gains more than delayed losses (Z = -6.561, p <.001).  

We did not assess differences between probability and delay discounting, because AUC 

values across tasks were not comparable, given that the values of the different 

independent variables used to normalize the data (i.e. of odds against receiving rewards 

and the delays to incentives) were different. 

In order to examine whether there were relationships between the magnitude of 

incentives and levels of discounting, we used GEE models to predict AUC values as a 

function of the magnitude of the incentive (i.e. $2.50, $5.00, $7.50, or $10.00).  This was 

done separately for each type of discounting.  Analyses revealed that greater magnitudes 

of incentives predicted greater averaged AUC values for delayed gains (i.e. greater 

magnitudes predicted less delay discounting) (B = .007, p < .001).  In contrast, the 

magnitude of incentives did not predict levels of discounting for delayed losses or risky 

gains (p = .455 and p = .474, respectively).  
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Discussion 

 

We did not find evidence supporting our hypothesis that scores on the Lack of 

Premeditation facet of the UPPS-P would show divergent relationships between delay 

and probability discounting.  No correlations between impulsivity measures on this facet 

and levels of discounting were significant.  Only one impulsivity facet, Positive Urgency, 

was significantly correlated with any measure of discounting; higher scores on this facet 

were positively associated with greater delay discounting of losses, but were not 

associated with other types of discounting.  Although we did not find that a single facet 

of impulsivity was significantly correlated with different types of discounting, we found 

that all three types of discounting were significantly positively correlated with each other, 

with correlations between delayed gains and losses being particularly strong.  This 

reveals that a single facet of impulsivity on the UPPS-P is unable to account for the 

relationships between different types of discounting.  

We found that greater levels of delay discounting of losses as measured by AUC 

scores were associated with higher scores on the Positive Urgency factor of the UPPS-P.   

In contrast, levels of probability discounting and delay discounting of gains were not 

significantly related to scores on this facet.  At first glance, it may seem strange that 

Positive Urgency only showed a significant relationship with discounting in the loss 

domain.  The facet of Positive Urgency assesses how much someone endorses taking 

impulsive actions when they are in positive mood states (Cyders & Smith, 2007).  Given 

the relationship between this impulsivity facet and positive mood, one might expect this 

impulsivity facet to be particularly related to choices in the gain domain.  However, a 
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close look at the items that make up this scale reveals that a number of them assess the 

tendency to engage in actions while in a positive mood that may have bad consequences.  

One reason people may engage in actions that could have bad consequences is because 

they discount the value of delayed losses and other delayed aversive outcomes.  This 

potential relationship could explain why Positive Urgency was only significantly 

correlated with levels of discounting in the loss domain.  This facet may tap into 

discounting in the gain domain as well, but our nonsignificant relationships with other 

forms of discounting suggest that if it does so, then it is only to a minor extent. 

In contrast to our predictions, we did not find that any types of discounting were 

related to the Lack of Premeditation Facet on the UPPS-P.  One prior study with a similar 

sample size to ours found that higher scores on this facet were associated with greater 

levels of delay discounting (Lynam & Miller, 2004).  Given that this facet of impulsivity 

reflects “the tendency to think and reflect on the consequences of an act before engaging 

in that act” (Whiteside & Lynam, 2001, p. 685), the results of Lynam and Miller (2004) 

suggest that individuals may discount delayed monetary gains because they choose 

immediate options without considering the benefits of delayed options.  While there may 

be a relationship between Lack of Premeditation and levels of delay discounting, our 

inability to find relationships with this scale indicate that if present they are very small.   

Importantly, our findings reveal that behavior on self-report scales of impulsivity 

has little relationship with behavior on tasks that measure levels of monetary discounting.  

Neither delay discounting of gains nor probability discounting of gains was significantly 

correlated with any facet of impulsivity on the UPPS-P.  Although delay discounting of 

losses was correlated with one facet, Positive Urgency, the size of the correlation 
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coefficient was small, revealing that there was little shared variance between scores on 

the two measures. This suggests that self-report measures of impulsivity and monetary 

choice tasks measure different underlying traits, and that both the tendency to choose a 

better immediate, but worse long-term monetary option and the tendency to choose a 

potentially larger, but riskier monetary option have little or no relationship with 

psychometric measures of impulsivity.  Investigators should be careful when using the 

term impulsivity or impulsive choice to describe behavior on intertemporal or risky 

choice tasks because it may lead others to attribute relationships between psychometric 

measures of impulsivity and behavior that do not exist.   

Alternatively, our inability to find relationships between most forms of 

discounting and impulsivity could have been due to characteristics of the UPPS-P, rather 

than a limitation of self-report impulsivity measures in general.  Self-report measures of 

impulsivity might be able to tap into monetary discounting behavior if they assessed 

impulsivity in the economic domain.  Impulsivity could be domain specific, and a trait 

that leads individuals to discount the value of delayed or risky economic incentives might 

only be tapped by a measure that contains items involving economic behavior.  This is a 

possible explanation for our findings, as no items on the UPPS-P assess behavior in the 

economic domain.  Researchers should consider examining whether levels of monetary 

discounting are related to behavior on the DOSPERT (Weber, Blais, & Betz, 2002), 

which assesses risk taking across multiple domains, and should consider devising new 

self-report measures to tap into facets of impulsivity, such as lack of premeditation or 

positive urgency, with items in the economic domain.  
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We replicated past findings of positive correlations between delay discounting of 

gains and both delay discounting of losses (Murphy et al., 2001) and probability 

discounting of gains (Mitchell, 1999; Myerson et al., 2003; Richards et al., 1999).  In our 

study, the strength of the positive correlations between these forms of discounting was 

also similar to those seen in past research.  Myerson and colleagues (2003) observed 

positive correlations of .17 and of .26 between delay discounting of gains and probability 

discounting of gains in two samples of over 100 individuals; these correlations are of 

similar magnitude to our correlation of .298.   Although other studies have found higher 

positive correlations between these two types of discounting (r between .40 and .75), 

these numbers are less likely to reflect the relationship between the two types of 

discounting in the general population due to the small sample sizes of the studies (40 and 

24, respectively) (Mitchell, 1999; Richards et al., 1999).  The strength of our positive 

correlation between discounting of delayed gains and losses (i.e. r = .620) was 

remarkably similar to that seen in a previous study (i.e. r = .570) (Murphy et al., 2001).  

Together with past findings, our results suggest that there is a greater positive correlation 

between delay discounting of gains and delay discounting of losses than there is between 

delay discounting of gains and probability discounting of gains.  Importantly, we know of 

no other studies that have looked at both of these relationships in the same individuals.   

We also extend findings of past studies by showing that delay discounting of 

losses is positively correlated with probability discounting of gains.  The magnitude of 

the correlation between these two types of discounting was similar to the magnitude of 

the correlation between delay discounting of gains and probability discounting of gains.  

Thus, we found that delay discounting of gains and delay discounting of losses were 
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more strongly correlated with each other than either of them were with probability 

discounting of gains.  This suggests that there may be greater similarities between the 

traits and neural processes that lead to delay discounting of different valenced incentives, 

than there are between those that lead to discounting of delayed and risky incentives.  

However, there are also likely to be similar processes that lead to discounting of delayed 

gains, delayed losses, and risky gains.  This is because all forms of discounting were 

positively correlated with each other in our sample.  Our data indicate, however, that 

measures of impulsivity do not account for the shared processes underlying different 

types of discounting, as no impulsivity facets were significantly correlated with multiple 

types of discounting.    

 We replicated prior findings by showing that individuals discounted the value of 

delayed gains more than they discounted the value of delayed losses (Baker et al., 2003; 

Benzion et al., 1989; Estle et al., 2006; Frederick et al., 2004; Murphy et al., 2001).  

Additionally, we replicated the results of prior studies by showing that the level of delay 

discounting decreased as the magnitude of the delayed gain increased (Benzion et al., 

1989; Estle et al., 2006; Green et al., 1997; Green et al., 1999; Kirby, 1997; Kirby et al., 

1999; Thaler, 1991).   In the current study, there were, however, no effects of magnitude 

on discounting of either delayed losses or risky gains.  The relationship with delay 

discounting of losses is in line with that of other studies that have shown that the 

magnitude of an outcome has less of an effect on levels of delay discounting for losses 

than for gains (Baker et al., 2003; Estle et al., 2006).  In contrast to our findings, 

however, prior studies have shown that the level of probability discounting increases as 

the magnitude of the gain increases (Christensen et al., 1998; Estle et al., 2006; Myerson 
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et al., 2003).  One potential reason for our inability to find magnitude effects in the 

domain of risk is that we used monetary gains of small magnitude, in contrast to the large 

magnitude gains used in other studies (Estle et al., 2006; Myerson et al., 2003).  All of 

our monetary amounts were relatively small, and were never greater than $10.  We used 

such small amounts because it allowed us to have subjects make choices for real 

incentives.  However, it may have prevented us from seeing magnitude effects on levels 

of probability discounting.  Prior research has shown that the effect of magnitude on the 

level of probability discounting is smaller when different risky reward magnitudes are 

both relatively small (i.e. $1 and $10) than when one of them is large (i.e. $10 and 

$10,000) (Christensen et al., 1998).   

The intertemporal choice data of many of our subjects was not fit by hyperbolic 

discount functions.  For approximately 50% of subjects, we were not able to model their 

preferences for at least one magnitude of delayed monetary loss with a hyperbolic 

discount function.  For preferences involving delayed gains, this figure was 

approximately 25%.  Some evidence suggests that for some individuals, standard 

hyperbolic delay discount functions provide poor fits to choice data, but more so in the 

loss than in the gain domain (Murphy et al., 2001).  The reason that many preferences in 

our study could not be modeled with hyperbolic discount functions was because subjects 

often responded identically regardless of delay (i.e. immediate equivalents were the same 

across delays).  That is, many subjects either did not discount delayed incentives at all, or 

discounted all delayed incentives by the same amount regardless of the delay.  For 

subjects who did have intertemporal choice data that could be fit by hyperbolic equations, 

the fit was often extremely poor, indicating that many subjects’ intertemporal choice 
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preferences were not explained by hyperbolic discounting.  Model fit was worse for 

losses, which had a median fit index of less than zero.  In contrast to the poor fits of 

hyperbolic delay discount functions, for over 95% of subjects, all of their risky gain data 

could be modeled by hyperbolic discount functions, and hyperbolic fits were relatively 

good.   

While at first glance our data suggest the possibility that the subjective value of 

delayed incentives are modeled more poorly with hyperbolic discount functions than are 

the subjective value of risky incentives, a closer look at the details of our task reveals that 

the poor fits may have been due to the stimuli used to model discounting.  The amount of 

data points used to fit hyperbolic functions in our study was small.  While each curve was 

only constructed from preferences at three points (i.e. for three delays or probabilities), it 

is common to use five or more points (Kirby & Marakovic, 1995; Madden et al., 1997; 

Mitchell, 1999; Murphy et al., 2001; Myerson & Green, 1995; Petry, 2001, 2002).  This 

may have explained the poor fits, but still does not explain why many subjects responded 

similarly across time points.  The lack of variability in immediate equivalents across 

delays may have been partially due to our small range of delays.  We did not use any long 

delays in our study, as delays ranged from 2 weeks to only 8 weeks.  In contrast, in other 

studies it is typical to have some delays as long as 6 months, with some studies even 

including some longer delays on the order of years (Madden et al., 1997; Murphy et al., 

2001; Myerson & Green, 1995; Petry, 2001, 2002).  Perhaps if we had used longer 

delays, individuals would have shown more variability in their preferences with respect 

to time.  Although many individuals’ immediate equivalents did not vary as a function of 

time, most individuals’ certainty equivalents did vary as a function of probability.  The 
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greater variability seen in certainty equivalents may have been because we used stimuli 

whose attributes varied over a larger range.  On the indifference point task for risky 

rewards, the range of probabilities was not small, and ranged from 50% to 90%.   

Levels of delay discounting may have been fit better by a more complex equation, 

such as a quasi-hyperbolic function that contained two free parameters (Myerson et al., 

2003).  However, a more complex function still would not have fit the data of the large 

number of subjects who exhibited no variability in their responses as a function of time.  

Because of this, we believed the best way to measure levels of discounting was to 

calculate the area under the subject’s discounting curves (AUC).  This model-free 

approach allowed us to examine levels of discounting in all subjects, because it could be 

computed even for those subjects who had identical immediate equivalents for delayed 

incentives at all levels of delay.  It also revealed that subjects tended to discount the 

values of delayed gains, delayed losses, and risky gains, as expected.  

We examined relationships between impulsivity and three different types of 

monetary discounting (i.e. delayed gain, delayed loss, risky gain) with a larger sample 

than has been used in most prior studies.  Although levels of discounting were positively 

correlated across all three types of discounting measured, no facet of impulsivity had a 

similar relationship with each type of discounting.  One facet of impulsivity, Positive 

Urgency, was positively correlated with greater delay discounting of losses, but the 

magnitude of this correlation was low.  In contrast, no facets of impulsivity were 

significantly correlated with delay discounting of gains or probability discounting of 

gains.  The positive correlations seen across different types of discounting suggest that a 

common trait underlies the tendencies to discount different types of incentives, but our 
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results reveal that it is not related to impulsivity constructs as measured by the UPPS-P 

Impulsive Behavior scale.  Many of the relationships seen between behavioral measures 

of monetary discounting and self-report measures of impulsivity in past research may 

have been due to the small sample sizes of the studies.   
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Chapter V 

 

GENERAL DISCUSSION 

 

In the remaining part of this dissertation a number of broad questions related to 

intertemporal and risky choice are addressed.  The questions build off of the findings of 

the experiments that were performed.  Specific attention is drawn to the roles played by 

the DLPFC and PPC in economic choices.  Some limitations of the experiments are also 

described, including the limitations of the subject population enlisted and of the 

inferences that can be drawn from rTMS.  This chapter concludes with an overall 

summary of the key findings of this dissertation.  

 

Questions Concerning Choice 

 

What are the roles of the DLPFC and PPC in intertemporal and risky choice? 

The findings from Experiments 1 and 2 suggest that the DLPFC is involved in 

valuation of delayed and risky incentives rather than in cognitive control functions during 

economic choice tasks.  Disruption of the DLPFC with rTMS led to general shifts in 

choice preferences across the entire range of values on the Intertemporal Choice Task 

(Experiment 1) and across the entire range of values on the more risky trials of the Risky 

Choice Task (Experiment 2), suggesting that valuation of incentives changed in both 

tasks.  Compared to individuals who received sham stimulation, individuals who received 

real rTMS were more likely to choose better immediate, but worse long-term incentives 
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(Experiment 1) and were more likely to choose risky incentives (Experiment 2).  If 

cognitive control functions of the DLPFC helped individuals choose better long-term, but 

worse immediate options and less risky options, then one would expect that such control 

would be increasingly needed to select these options as the motivational drive to select 

other options became more prepotent (i.e. as the values of immediate or risky options 

increased with respect to those of delayed or certain options, respectively).  Disruption of 

the DLPFC, however, did not lead to greater changes in choice as the relative value of the 

immediate or risky options increased, suggesting that the DLPFC is not involved in 

cognitive control functions that help individuals make better long-term intertemporal 

choices and less risky choices.    

The shifts in choice seen in Experiments 1 and 2 following real rTMS suggest that 

the DLPFC evaluates the desirability of incentives on risky and intertemporal choice 

tasks differently than do other brain regions.  The results, however, do not support the 

conjecture that DLPFC functions are necessary to evaluate incentives and make 

economic decisions.  This is because following disruption of the DLPFC in both 

Experiments 1 and 2, individuals were still sensitive to differences in the previously 

established subjective values of the two options.  Like individuals who received sham 

stimulation, individuals who received real rTMS were more likely to make choices for 

options as their relative values increased, indicating that they could evaluate the 

desirability of the two options.  This pattern of results suggests that the DLPFC is only 

one brain region that evaluates incentives, and that when valuation processes of the 

DLPFC are disrupted, choice follows directly from valuations performed by other brain 

regions.   



194 

 

The results of Experiment 1 suggest that the PPC is involved in cognitive control 

functions, rather than valuation, during economic choice tasks.  In contrast to the effects 

seen following disruption of the DLPFC, disruption of the right PPC did not lead to 

general shifts in preference relative to sham stimulation.  When the value of the 

immediate option was low, disruption of the right PPC did not affect choice.  However, 

as the relative value of the immediate option increased, individuals who received real 

rTMS became increasingly more likely than individuals who received sham rTMS to 

choose options with a better immediate, but worse long-term value.  This evidence 

supports a cognitive control account of the PPC because cognitive control should be 

increasingly needed to choose the better long-term option as the value of the immediate 

option increases.  Although the data of Experiment 1 do not indicate which particular 

cognitive control function the PPC could be involved in during economic choice, one 

might expect that it would be involved in the control function of top-down attention, 

since this is a key function of the region (Corbetta & Shulman, 2002). 

 

What do the studies performed tell us about how economic choices are made? 

There are two key processes that typically come into play while making an 

economic choice.  First, an individual evaluates the desirability of each option.  Once 

choice options are ascribed values, a person compares the value of each option so that the 

more highly valued option can be selected.  The results of Experiments 1 and 2 provide 

important information about the first of these processes: valuation. 

Importantly, the results suggest that a multiple valuation model of choice is more 

tenable than a single-valuation model.  The key difference between these models is in the 
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number of different valuation systems that are involved in making a choice.  A single-

valuation model holds that one region or a set of regions in the brain computes subjective 

value of options in a similar way and that a choice is made as a result of subjective value 

coding in this system (Glimcher, 2009; Kable & Glimcher, 2009).  In contrast, a multiple 

valuation model of choice holds that different regions of the brain compute different 

subjective values for different options, by responding differently as a function of choice 

parameters, and that these divergent valuation signals are summated in some way to 

arrive at a decision (Glimcher, 2009; McClure et al., 2004).  

For intertemporal choices, an influential multiple valuation model has held that a 

“patient system” which includes the DLPFC discounts the value of delayed options 

relative to that of immediate options less steeply than does a set of other brain regions 

(McClure et al., 2004).  The data of Experiment 1 support this idea and those of 

Experiment 2 build upon it by suggesting that there are multiple valuation processes that 

ascribe value to risky choice options as well.  The results of these two experiments 

suggest that there are at least two valuation systems that respond differently to choice 

options as a function of risk level, and at least two valuation systems that respond 

differently to choice options as a function of delay.  There may also be divergent systems 

that respond to only the subjective values of choice options involving losses or gains.  

However, in the DLPFC, one system appears to evaluate the desirability of both positive 

and negative incentives during intertemporal choice.    

An important question is how information from different valuation systems 

influences choice.  Valuation signals from each valuation system might be integrated 

with each other to arrive at a decision, or conversely, each system might act in parallel 
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and compete with the other in determining a decision.  These possibilities are not 

mutually exclusive, as some signals from each system might be integrated, while others 

might compete.  Additionally, in some regions of the brain, both of these processes could 

occur. 

In Chapters II and III, I suggested that valuation signals from the DLPFC might 

be integrated with valuation signals in the MPFC, based on evidence showing functional 

connectivity between the DLPFC and this region during choice (Hare et al., 2009).  

While there may be integration of value signals here, other findings suggest that the 

striatum might have a more central role in the integration of values and ultimately 

determining what choices an individual makes.  Like the MPFC, the striatum is 

responsive to the subjective value of options on intertemporal and risky choice tasks 

(Kable & Glimcher, 2007, 2010; Levy et al., 2010; Peters & Buchel, 2009, 2010).  

However, findings suggest that the striatum is more sensitive than the MPFC to many 

other value related signals.  As discussed in Chapter I, the region that is most consistently 

activated in humans to predictions of value and its components is the striatum, not the 

MPFC.  The striatum is responsive to predictions of positive and negative value, and to 

parameters of value, including the expected value, magnitude, and probability of rewards.  

The greater tendency to respond to value related signals in the striatum make it a more 

plausible candidate than the MPFC for integration of values. 

The connectivity of the striatum with other regions makes it a good candidate for 

both integration of value and selection of options.  Other regions involved in valuation, 

including the MPFC (both dorsal and ventral), OFC, DLPFC, and the dopaminergic 

midbrain all project to the striatum (Haber & Knutson, 2010).  Although neurons from 
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the DLPFC mostly project to more dorsal regions of the striatum than neurons from 

regions of the MPFC, some neurons from both the DLPFC and MPFC project to common 

regions of the striatum (Haber, Kim, Mailly, & Calzavara, 2006).  Some neurons in these 

striatal regions could integrate valuation signals from different valuation systems.  

Alternatively, competitive interactions between signals from different valuation systems 

could occur in these common regions.  For instance, some neurons in these regions might 

only be influenced by signals from one valuation system at any time; which valuation 

system influences them could be determined by the relative strength of signals from 

different valuation systems.  

Other value signals from different regions of the striatum might be integrated with 

each other or might interact in more indirect ways, through loops of connections between 

the striatum and midbrain dopamine neurons.  Through these connections, striatal 

neurons that are located more ventrally are able to influence those that are located more 

dorsally (Haber, Fudge, & McFarland, 2000).  These connections also give a possible 

mechanism linking valuation with choice.  Value signals from more ventral striatal 

regions may be able to bias behavior towards actions to choose specific items by 

indirectly influencing activity in the dorsal striatum, a region important for motor 

behavior (Alexander, Delong, & Strick, 1986; Haber, 2003).  All of these properties make 

the striatum a good candidate for where values are compared and decisions are made.   

If future research confirms that there are multiple valuation systems that each 

differentially influence what choices are made, it will be important to examine what 

factors might change the relative weight of information from each valuation system in the 

choice process.  Cognitive control processes might have such a role, and the results of 
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Experiment 1 suggest that the PPC might be a key region in cognitive control processes 

during choice.  Given the many reciprocal connections between the PPC and DLPFC, 

control functions of the PPC would be in a good position to alter valuation functions of 

the DLPFC. 

   

Could the PPC be involved in valuation rather than cognitive control during choice? 

The significant interactions seen between Stimulation Type and Immediate 

Relative Value on choice following rTMS to the right PPC in Experiment 1 are 

supportive of the proposal that this region is involved in cognitive control functions that 

help individuals choose in line with goals to select options with the best long-term value.  

Following disruption of the right PPC, subjects were increasingly more likely than sham 

subjects to choose the better immediate option as the relative value of the immediate 

option increased.     

However, there is another way to interpret these interactions that does not rely on 

the assumption that individuals have specific goals to choose options with the best long-

term value during intertemporal choice tasks.  The right PPC could be involved in a 

valuation process during intertemporal choice that places greater relative weight on the 

value of delayed vs. immediate incentives than do other regions responsive to value, but 

only under some circumstances.  The right PPC does not appear to place more weight in 

general on the value of delayed incentives than do other regions, because if it did one 

would have expected to see a general shift in the choice curves following disruption of 

this region, similar to what was seen following disruption of the right DLPFC in 

Experiment 1.  However, the right PPC could evaluate delayed vs. immediate incentives 
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differently than do other regions as a function of the magnitudes of the incentives.  Other 

regions responsive to value might be more responsive to changes in the magnitude of 

immediate incentives than to changes in the magnitude of delayed incentives; the value 

attributed to incentives might increase at a greater rate as the magnitude of immediate 

incentives increases than as the magnitude of delayed incentives increases.  In contrast, 

the right PPC might be more similarly responsive to changes in the magnitude of both 

immediate and delayed incentives.  If so, then valuation processes of the right PPC would 

be expected to diverge more from those of other regions as the relative magnitude of an 

immediate incentive increases with respect to that of a delayed incentive; as the relative 

magnitude of an immediate incentive increases, the right PPC would be expected to place 

greater relative weight on the value of delayed vs. immediate incentives than do other 

regions of the brain.  This suggestion would be consistent with the effects on choice seen 

following disruption of the right PPC.  Individuals who had real rTMS to this region 

became increasingly more likely than sham subjects to choose the better immediate 

option as the relative value of the immediate option increased.    

Thus, the data of Experiment 1 are consistent with a suggestion that both the right 

DLPFC and right PPC are involved in more “patient” valuation processes that place 

greater relative weight on the value of delayed vs. immediate incentives than do other 

regions of the brain.  However, the different effects seen following disruption of each 

region suggest that if both regions are involved in valuation processes, then they do not 

evaluate options similarly.  Unlike the purported valuation processes of the right DLPFC, 

those of the right PPC might only ascribe more relative weight to delayed vs. immediate 

incentives than do other regions when the magnitude of an immediate incentive on an 
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intertemporal choice task reaches a certain level with respect to the magnitude of a 

delayed incentive.  Despite this conjecture, I believe it is more likely that the right PPC is 

involved in a cognitive control function than a valuation function during intertemporal 

choice.  This is because that activation in the PPC does not typically scale with the 

subjective value of items on choice tasks or bidding tasks, or to the components of value 

prediction (see Chapter I).   

 

Does the PPC perform a cognitive control function in Risky Choice? 

An important question is whether the PPC has a role in cognitive control in risky 

choice.  In Chapter I of this dissertation, I postulated that cognitive control might help an 

individual choose a certain reward instead of a potentially larger, but potentially worse 

risky reward, just as it might help an individual choose a better long-term, but worse 

immediate intertemporal choice option.  This assumes that in risky choice tasks cognitive 

control would be needed to override a prepotent urge to choose a potentially larger risky 

reward and in intertemporal choice tasks cognitive control would be needed to override a 

prepotent urge to choose the best immediate reward.   

There are, however, some reasons to suggest that prepotent urges might generally 

lead to selection of certain options, rather than of risky options, in risky choice tasks. 

Individuals tend to devalue both risky and delayed rewards with respect to certain 

immediate ones (Frederick et al., 2004; Myerson et al., 2003; Rachlin et al., 1991).  

Additionally, BOLD signal tends to decrease in many brain regions, as does firing of 

midbrain dopamine neurons, as both delay to reward increases and probability of 

receiving a reward decreases (Fiorillo et al., 2008; Kable & Glimcher, 2007, 2010; Peters 
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& Buchel, 2009; Tobler et al., 2005).  These similarities between processing immediacy 

and certainty suggest that motivational drives to choose certain and immediate options 

might often be prepotent with respect to those to choose risky and delayed ones, 

respectively.  If so, then cognitive control may help one override a prepotent urge to 

choose a better immediate option in order to select a better long-term option on an 

intertemporal choice task, yet help one override a prepotent urge to choose a less risky 

option in order to select a riskier option with a higher expected value on a risky choice 

task. 

However, this is only a conjecture.  In order to test whether the PPC has such a 

role in cognitive control during risky choice, one could administer rTMS to the PPC and 

have individuals perform a risky choice task afterwards.  If it was found that disruption of 

the PPC led to changes in choice that were dependent on the relative values of the options 

in a manner that was similar to what was found following disruption of the right PPC in 

Experiment 1 (i.e. if disruption of the PPC led to greater choice of certain options, and 

this effect increased as the certain value increased), then it would suggest that the PPC 

has a role in cognitive control during both risky and intertemporal choice.  If it did not 

lead to any changes, then it might suggest that individuals did not attempt to use 

cognitive control on the risky choice task.  Alternatively, it could indicate that there is 

something specific about intertemporal choices that engage control, or other, functions of 

the PPC. 
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Does a single valuation process in the DLPFC both devalue risky rewards more than 

other brain regions and value delayed incentives more than other brain regions? 

 

It is not intuitive that a single valuation process of the DLPFC both devalues risky 

incentives more than valuation processes of other regions, yet values delayed incentives 

more than valuation processes of other regions.  Delays are somewhat risky, and thus one 

might expect a process that devalues risky incentives more than the processes of other 

regions to devalue delayed incentives more than the processes of other regions as well.  

Yet, the perception of risk of delayed options is likely to be highly dependent upon the 

context of the decision.  The amount of risk that an individual believes is associated with 

a delayed reward may be so low that risk valuation processes of the DLPFC do not 

evaluate the risk of the reward differently than do other risk valuation processes in the 

brain.  This could be the case, given that the results of Experiment 2 suggest that the 

DLPFC might not evaluate low levels of risk differently than do other brain regions.  

One way to investigate whether the same brain processes in the DLPFC are 

involved in evaluating both the risk level of incentives and the delay to receiving them is 

to see whether the same neurons in the DLPFC are responsive to both the levels of risk 

and delay of incentives.  Importantly, one would want to search for responses to different 

levels of risk and delay that were different in the DLPFC than in other regions responsive 

to these parameters, since the results of Experiments 1 and 2 suggest that valuation 

processes of the DLPFC evaluate these parameters differently than do those of other 

regions.  One could search for neurons in the DLPFC that have a larger decrement in 

response as the risk level of rewards increases (i.e. greater devaluation of risky rewards) 

and a smaller decrement in response as delay to rewards increases (i.e. greater valuation 

of delayed rewards) than neurons in other regions of the brain responsive to valuation.   



203 

 

Are the functions of the DLPFC and PPC similar in risky choices 

involving losses and in risky choices involving gains? 

 

An important finding of Experiment 1 was that disruption of either the right 

DLPFC or the right PPC affected choices similarly in both choices involving gains and in 

choices involving losses.  In both circumstances, disruption led to a greater preference for 

options with a better immediate, but worse long-term value, highlighting a role for these 

regions in optimization of long-term vs. immediate value.  An important question is 

whether disruption of these regions with rTMS would lead to parallel effects for both 

gains and losses in choices involving risk as well. 

Because gains become more risky as they become less probable (i.e. less likely to 

lead to a positive outcome), but losses become more risky as they become more probable, 

using the term “level of risk” can lead to confusion across the gain and loss domains.  To 

simplify discussion, here I will use the term “level of probability” rather than level of 

risk.   Importantly, the construct “level of probability” leads to unique hypotheses of the 

function of the DLPFC across the gain and loss domains.   

One might expect a valuation function, such as has been proposed for the DLPFC,  

that encourages risk aversion for gains by lowering the positive value of rewards as they 

become less probable (i.e. devalues them), to encourage risk seeking for losses by 

lowering the negative value of losses as they become less probable (i.e. they would 

become less negative).  This idea assumes that the DLPFC gives options less overall 

value (i.e. they are valued as less positive or less negative) than do other regions involved 

in valuation as the probability level decreases. The appeal of this model is that it suggests 

that the DLPFC has a role in leading to the pattern of risk preferences that people 

typically have in the gain and loss domains.  Individuals tend to be risk averse with gains, 
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but risk seeking with losses (Kahneman & Tversky, 1979) (although as noted below, this 

pattern is different when options lead to losses or gains with low probability).  If the 

DLPFC ascribes losses with less overall negative value as they become less probable than 

do other brain regions, then disruption of the DLPFC would be expected to cause greater 

risk aversion, rather than greater risk seeking, in choices involving only losses.   

How disruption of the DLPFC with rTMS affects risky choices in just the loss 

domain is a critical question that should be investigated in future studies.  As with gains, 

specific changes in risk taking may be dependent upon the probability level of risky 

options.  Probability level should be modified parametrically to see how disruption of the 

DLPFC affects risk preference for losses over a large range of probabilities.  Crucially, 

this needs to be done for risky choices involving only gains as well, since it is not known 

how disruption of the DLPFC affects risk preferences for gains as the probability of the 

risky option is varied over a large range.  Effects on risk preference might be expected to 

scale in an opposite manner with the probability of gains and with the probability of 

losses.  Such a proposal is not unlikely given that individuals tend to be risk averse with 

high probability gains and risk seeking with low probability gains, yet tend to show 

opposite risk preferences with high and low probability losses (Tversky & Kahneman, 

1992); functions of the DLPFC could underlie these different patterns of risk preference.      

 

What do correlations among different types of choice preferences 

suggest about brain function? 

 

The positive correlations seen in Experiment 3 among the tendencies to discount 

the value of delayed gains, of delayed losses, and of risky gains suggest that some shared 

neural process or trait may lead to discounting these three types of incentives.  An 
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intriguing possibility is that individual differences in functions of regions of the brain 

such as the striatum and MPFC, which have activation which positively scales with the 

subjective value of risky and delayed rewards, might be related to individual differences 

in all three types of discounting (Kable & Glimcher, 2007, 2010; Levy et al., 2010; Peters 

& Buchel, 2009, 2010).  Individuals who have lower levels of probability and delay 

discounting could have value related responses in these regions that diminish less as 

probability decreases and delay increases, than do individuals with higher levels of 

discounting.  One limitation, however, to this proposal is that it is unclear how the 

subjective value of risky and delayed losses would scale with brain activity on choice 

tasks, as no prior studies have investigated this.    

It is unlikely, however, that processes of the DLPFC underlie the common 

tendencies to discount delayed gains, delayed losses, and risky gains.  If they did, one 

would expect that all three of these types of discounting would change in the same 

direction following disruption of the DLPFC (i.e. all increase or decrease).  Instead, in 

Experiments 1 and 2 there were divergent effects on discounting of incentives in the 

delayed and risky domains following real rTMS: discounting of delayed incentives 

increased, while discounting of risky incentives decreased.  This makes it unlikely that 

the neural substrates leading to the covariation of delay and probability discounting are 

related to DLPFC processes, and instead, suggests that DLPFC processes may actually 

limit the degree of correlation between delay and probability discounting. 
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What are limitations of the inferences that can be drawn from rTMS? 

 If functioning is altered following rTMS, then one can infer that the brain 

structures affected by rTMS had a role in that function.  However, one cannot necessarily 

infer that the targeted brain region is essential for that function.  This is because rTMS 

not only affects the brain region over which it is applied, but also has indirect effects on 

brain regions connected to the targeted region (Eisenegger, Treyer, Fehr, & Knoch, 

2008).  I have claimed roles for the DLPFC and PPC in economic choices based on the 

results of Experiments 1 and 2 since rTMS targeting these regions altered choice 

behavior.  However, the changes in choice patterns seen following rTMS may have been 

due to disruption of functions in regions connected to the DLPFC and PPC, rather than 

(or in addition to) disruption of functions in the DLPFC and PPC.   

Previous findings show that changes in regional cerebral blood flow following 

low frequency rTMS administered to the DLPFC occur in both the DLPFC and ipsilateral 

VLPFC (Eisenegger et al., 2008).  This raises the possibility that changes in choice 

patterns seen in Experiments 1 and 2 were due to disruption of functions of the VLPFC, 

rather than the DLPFC.  In intertemporal choice studies, it has been shown that the 

VLPFC exhibits similar activation patterns to the DLPFC, and has been claimed to be 

part of the “patient system” that helps individuals choose better long-term incentives 

(McClure et al., 2007; McClure et al., 2004).  Thus there is some reason to believe that 

disruption of this region might have led to the changes in choice patterns seen in 

Experiment 1.  In the future, it will be important to try to tease apart the roles of the 

DLPFC and VLPFC in both intertemporal and risky choice.   
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   Even though the data from Experiments 1 and 2 are not supportive of a cognitive 

control account of DLPFC functioning during choice, this does not mean that the DLPFC 

is not involved in such a function during intertemporal and risky choice tasks.  TMS does 

not disrupt all functioning in a region equally, as the effects of TMS depend on the 

orientation of neurons in the target region with respect to the orientation of the coil 

(Wagner, Rushmore, Eden, & Valero-Cabre, 2009).  Thus even though functions in a 

region are disrupted following TMS, not all functions will be disrupted equally, and some 

might not be disrupted at all.  It is thus possible that some of the key functions of the 

DLPFC and PPC that are involved in making economic choices were not disrupted by 

rTMS.  This limitation reveals the importance of using a variety of different 

neuroscientific approaches when studying the relationships between the brain and 

behavior.  

 

Do the inclusion criteria of the experiments limit the generalizability of the findings? 

 All three of the experiments limited inclusion to individuals with specific risk or 

time preferences.  Subjects were excluded from Experiment 1 if they did not discount 

delayed losses because inclusion of these subjects would not have allowed us to always 

have individuals make a choice between a small immediate loss and a larger delayed loss.  

Having this reason for exclusion was essential in testing a self-control account of 

intertemporal choice, since individuals should not be motivated to use cognitive control 

processes to choose an immediate loss that is larger than a delayed loss.  Subjects who 

were in Experiment 2 were excluded if they were risk seeking.  This was done to increase 

statistical power, under the assumption that if the DLPFC modulates risk aversion and 
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prevents risk-seeking behavior, disruption of this region might not have effects or might 

have smaller effects on individuals who were already risk seeking.  Some subjects in 

Experiment 3 were excluded for each of the reasons subjects were excluded in the other 

experiments, since individuals in Experiment 3 were consented to participate in 

Experiments 1 or 2.   Because of the inclusion criteria, the findings from all three 

experiments might not generalize to individuals with different types of preferences.   

Effects on choice following disruption of cognitive control functions might be 

expected to differ across individuals with different preferences, because cognitive control 

might be used to accomplish different choice goals across individuals.  Similarly, effects 

on choice following disruption of valuation functions might differ across individuals, 

because valuation functions might normally respond differently to different choice 

parameters (i.e. risk or time) in individuals with different preferences.   

The results of one fMRI study suggest that valuation processes in the PFC 

respond differently to risk level in those with different risk preferences.  Tobler and 

colleagues (2009) observed that the relationship between activation in the right lateral 

frontal pole and risk level (as defined as spread of reward outcomes) depended on risk 

preferences.  Individuals who were risk seeking had greater activation in this region for a 

high risk than a low risk option, while those who were risk averse had greater activation 

for the low risk option.  Even though they found activation in a different region of PFC 

than I targeted with rTMS in Experiment 2 of this dissertation, it does raise the possibility 

that the purported valuation functions that were affected with rTMS respond differently 

to the level of risk in individuals with different risk preferences.   
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How do people solve intertemporal choice or risky choice problems? 

One difficulty in determining the neural mechanisms of intertemporal and risky 

choices is that there are many different ways a person could make economic choices.  

Different people may make choices in different ways, or the same person might make 

choices in different ways at different times.   To illustrate, people may make choices 

based on subjective values that are determined automatically.  Alternatively, they could 

utilize cognitive operations to manipulate values in working memory and make a choice 

based on manipulated values.  The cognitive operations performed could differ depending 

on an individual’s goals and task rules.  For example, in risky choices some individuals 

may compute expected values, while in intertemporal choices some people may multiply 

future values by a discount rate.  People could also hold online different decision rules, 

such as criteria that if one option dominates another by a certain level of a parameter, 

they will choose it.  How much attention is given to various attributes could differ as 

well, and this could be a function of goals or task rules.  An additional factor in 

intertemporal choice is that some individuals may use prospection to imagine the 

desirability of future outcomes. 

All of these different factors reveal the complexity of determining the brain 

regions involved in making intertemporal and risky choices.  If different individuals are 

approaching these choices in different ways, then the brain functions used to make 

choices will differ as well.  Future intertemporal and risky choice studies would benefit 

by asking individuals to report how they are making their decisions.   This could reveal 

patterns between levels of delay and probability discounting and the ways individuals 

make choices.  From a clinical point of view, it could help identify methods to guide 
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individuals in decision making.  One limitation to this approach, however, is that 

individuals may not be able to accurately report how they are making decisions on 

economic choice tasks, as they might not remember or be aware of how they are making 

decisions.    

In future neuroimaging studies, investigators could ask individuals to perform 

choices in different ways, to see how the neural mechanisms of choice differ with respect 

to the different cognitive operations used.  A good example of such an approach has 

recently shown that the brain processes which respond to the subjective value of 

intertemporal choice options differ when prospection is used at the time of decision 

making (Peters & Buchel, 2010).  When performing such studies, investigators should 

keep in mind that there may be multiple valuation systems in the brain that respond 

differently to choice parameters and that the relative levels of activity in different brain 

regions responsive to valuation may vary as a function of the operations used.    

  Brain processes involved in cognitive control would be predicted to have 

different effects on choice depending on the task rules or goals that an individual has 

while performing a choice task, since individuals can use cognitive control to make 

choices in line with their intentions.  The different effects on choice might arise due to 

different effects of cognitive control functions on valuation systems.  More specifically, 

valuation signals in multiple regions of the brain may be modulated differently by control 

functions as a result of a person’s goals.  Future behavioral and neuroeconomic studies 

could benefit by trying to uncover what cognitive control is being used for.  This could be 

roughly assessed by asking individuals to report what their goals or strategies are during 

choice tasks.   
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Under what circumstances are the left vs. the right DLPFC important in choice? 

 Disruption of either side of the DLPFC affected choices involving risk, yet only 

disruption of the right DLPFC affected intertemporal choices.  Other low frequency 

rTMS studies of risky or intertemporal choices have found different patterns of effects 

across side of the DLPFC (Figner et al., 2010; Knoch et al., 2006).  An important 

question is what accounted for these different effects of side of stimulation across studies.  

The relative involvement of each side of the DLPFC in valuation processes may depend 

on the components of the tasks used, such as task difficulty.  Alternatively it might 

depend on individual differences in lateralization of brain functions. 

 Although it has been proposed that the two sides of the frontal lobe have different 

roles in approach and avoidance behavior (Davidson, 1992), the findings of Experiment 1 

suggest that the relative involvement of the left vs. right DLPFC in economic choice is 

not dependent on whether choices involve approach vs. avoidance.  Disruption of the 

right DLPFC led to similar changes for both intertemporal choices involving gains and 

losses, while disruption of the left DLPFC did not significantly affect either type of 

intertemporal choice.  This is not the pattern one would expect to see if one side of the 

DLPFC had a larger role in approach and the other side had a larger role in avoidance.  

This is because choices involving gains would be expected to engage systems involved in 

approach behavior more than do choices involving losses, while choices involving losses 

would be expected to engage systems involved in avoidance behavior more than do 

choices involving gains.  
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What are the implications regarding the relationship between  

self-report impulsivity measures and choice preferences? 

 

Although a number of scientists have labeled intertemporal choices for options 

with a better immediate, but worse long-term value than alternatives as impulsive choices 

(Cardinal, 2006; Deluty, 1978; Figner et al., 2010; Logue, 1988; Madden et al., 1997; 

Pine et al., 2009), the results of Experiment 3 reveal that the relationships between the 

tendency to make “impulsive choices” and other constructs of impulsivity are at most 

very modest.  Levels of impulsivity derived from self-report scales do not adequately tap 

into either levels of delay or probability discounting.  Because of this, scientists should be 

careful in using the term “impulsive choice” to describe behavior on choice tasks, as it 

might lead others to assume that there are relationships between choice behavior and 

measurements of impulsivity on self-report scales that do not exist.   

The lack of strong relationships between impulsivity and choice preferences 

suggest that choice preference tasks measure an important component of behavior that is 

not captured by self-report impulsivity scales.  Assessing levels of delay and probability 

discounting in the laboratory might actually provide a better indicator of the likelihood of 

engaging in unhealthy choices in everyday life than do self-report scales.  Many problem 

behaviors such as eating unhealthy foods, using substances, or deciding not to receive an 

immunization involve tradeoffs between immediate vs. long-term value.  Other problem 

behaviors such as engaging in unprotected sex or gambling involve assessments of risk.  

Levels of delay and probability discounting might tap into the tendencies to engage in 

such unhealthy behaviors better than do other types of measures, because the decision 

processes engaged during choice tasks may more closely approximate those engaged in 

outside the laboratory that lead to unhealthy behaviors.   
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Concluding Remarks 

 

The experiments of this dissertation have expanded our knowledge of the neural 

mechanisms of intertemporal choice and choice involving risk.  They have also provided 

important information on the relationships between different choice preferences, and 

between choice preferences and impulsivity.  In Experiment 1, it was shown that 

disruption of the right DLPFC led to increased choice of options for monetary gain and 

for monetary loss that had a better immediate, but worse long-term value than 

alternatives.  Disruption of the right PPC was also shown to lead to increased choice for 

these options, but this effect was dependent on the relative value of the two options, 

suggesting a role for the PPC in cognitive control.  In Experiment 2, disruption of either 

side of the DLPFC led to increased choice of options for potentially larger risky monetary 

gains, an effect that was dependent on the probability level of the risky option.  The 

pattern of results following disruption of the DLPFC in both Experiments 1 and 2 

suggests that the DLPFC has an important role in valuation during both risky and 

intertemporal choices.  In Experiment 3, there were positive correlations between levels 

of three types of monetary discounting – i.e. delayed gains, delayed losses, and risky 

gains.  However, there were no strong relationships between any forms of monetary 

discounting and impulsivity.  Together this suggests that a shared trait may be related to 

preferences across choice domains, and that this trait has little relationship with 

impulsivity as measured on self-report scales.  

Understanding the neural mechanisms of economic choices will help reveal how 

consumers make economic decisions.  But more importantly, it will help reveal how 
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humans and other animals make all kinds of choices, because the processes that make up 

an economic choice, valuation and value comparison, are important components for any 

choice between potentially rewarding or potentially aversive options.     

 

 

 

  



215 

 

REFERENCES 

 

Alexander, G. E., Delong, M. R., & Strick, P. L. (1986). Parallel Organization of 

Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annual 

Review of Neuroscience, 9, 357-381. 

Allais, M. (1953). Le Comportement de l'Homme Rationnel devant le Risque, Critique 

des Postulats et Axiomes de l'Ecole Americaine. Econometrica, 21, 503-546. 

Andres, M., Seron, X., & Olivier, E. (2005). Hemispheric lateralization of number 

comparison. Cognitive Brain Research, 25(1), 283-290. 

Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the 

primate prefrontal cortex. Journal of Neurophysiology, 84(1), 451-459. 

Assmus, A., Marshall, J. C., Noth, J., Zilles, K., & Fink, G. R. (2005). Difficulty of 

perceptual spatiotemporal integration modulates the neural activity of left inferior 

parietal cortex. Neuroscience, 132(4), 923-927. 

Bach, D. R., Seymour, B., & Dolan, R. J. (2009). Neural Activity Associated with the 

Passive Prediction of Ambiguity and Risk for Aversive Events. Journal of 

Neuroscience, 29(6), 1648-1656. 

Badre, D., & D'Esposito, M. (2007). Functional magnetic resonance imaging evidence for 

a hierarchical organization of the prefrontal cortex. Journal of Cognitive 

Neuroscience, 19(12), 2082-2099. 

Badre, D., & D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe 

hierarchical? Nature Reviews Neuroscience, 10(9), 659-669. 

Baker, F., Johnson, M. W., & Bickel, W. K. (2003). Delay discounting in current and 

never-before cigarette smokers: Similarities and differences across commodity, 

sign, and magnitude. Journal of Abnormal Psychology, 112(3), 382-392. 

Baldo, J. V., & Dronkers, N. F. (2006). The role of inferior parietal and inferior frontal 

cortex in working memory. Neuropsychology, 20(5), 529-538. 

Ben Zur, H., & Breznitz, S. J. (1981). The effect of time pressure on risky choice 

behavior. Acta Psychologica, 47, 89-104. 

Benzion, U., Rapoport, A., & Yagil, J. (1989). Discount Rates Inferred From Decisions: 

An Experimental Study. Management Science, 35(3), 270-284. 

Bernoulli, D. (1738; 1954). Exposition of a new theory on the measurement of risk. 

Econometrica, 22, 23-36. 



216 

 

Berns, G. S., Laibson, D., & Loewenstein, G. (2007). Intertemporal choice - toward an 

integrative framework. Trends in Cognitive Sciences, 11(11), 482-488. 

Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. 

W. (2004). Incentive-elicited brain activation in adolescents: Similarities and 

differences from young adults. Journal of Neuroscience, 24(8), 1793-1802. 

Bodner, M., Kroger, J., & Fuster, J. M. (1996). Auditory memory cells in dorsolateral 

prefrontal cortex. Neuroreport, 7(12), 1905-1908. 

Boggio, P. S., Campanha, C., Valasek, C. A., Fecteau, S., Pascual-Leone, A., & Fregni, 

F. (2010). Modulation of decision-making in a gambling task in older adults with 

transcranial direct current stimulation. European Journal of Neuroscience, 31(3), 

593-597. 

Brass, M., & von Cramon, D. Y. (2004). Decomposing components of task preparation 

with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 

16(4), 609-620. 

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. 

(1997). A parametric study of prefrontal cortex involvement in human working 

memory. Neuroimage, 5(1), 49-62. 

Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren 

Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth. 

Bunge, S. A. (2004). How we use rules to select actions: a review of evidence from 

cognitive neuroscience. Cognitive Affective & Behavioral Neuroscience, 4, 564-

579. 

Buss, A. H., & Plomin, R. (1975). A temperament theory of personality development. 

New York: Wiley. 

Butters, N., & Pandya, D. (1969). Retention of Delayed-Alternation - Effect of Selective 

Lesions of Sulcus Principalis. Science, 165(3899), 1271-&. 

Butters, N., Pandya, D., Sanders, K., & Dye, P. (1971). Behavioral Deficits in Monkeys 

after Selective Lesions within Middlethird of Sulcus Principalis. Journal of 

Comparative and Physiological Psychology, 76(1), 8-14. 

Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET 

and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47. 

Caminiti, R., Chafee, M. V., Battaglia-Mayer, A., Averbeck, B. B., Crowe, D. A., & 

Georgopoulos, A. P. (2010). Understanding the parietal lobe syndrome from a 

neurophysiological and evolutionary perspective. European Journal of 

Neuroscience, 31(12), 2320-2340. 



217 

 

Camus, M., Halelamien, N., Plassmann, H., Shimojo, S., O'Doherty, J., Camerer, C., et 

al. (2009). Repetitive transcranial magnetic stimulation over the right dorsolateral 

prefrontal cortex decreases valuations during food choices. European Journal of 

Neuroscience, 30(10), 1980-1988. 

Cappelletti, M., Barth, H., Fregni, F., Spelke, E. S., & Pascual-Leone, A. (2007). rTMS 

over the intraparietal sulcus disrupts numerosity processing. Experimental Brain 

Research, 179(4), 631-642. 

Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic 

reinforcement. Neural Networks, 19(8), 1277-1301. 

Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core 

on choice between small certain rewards and large uncertain rewards in rats. BMC 

Neuroscience, 6, 37. 

Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). 

The human inferior parietal cortex: Cytoarchitectonic parcellation and 

interindividual variability. Neuroimage, 33(2), 430-448. 

Champod, A. S., & Petrides, M. (2007). Dissociable roles of the posterior parietal and the 

prefrontal cortex in manipulation and monitoring processes. Proceedings of the 

National Academy of Sciences of the United States of America, 104(37), 14837-

14842. 

Champod, A. S., & Petrides, M. (2010). Dissociation within the Frontoparietal Network 

in Verbal Working Memory: A Parametric Functional Magnetic Resonance 

Imaging Study. Journal of Neuroscience, 30(10), 3849-3856. 

Chao, L. L., & Knight, R. T. (1997). Prefrontal deficits in attention and inhibitory control 

with aging. Cerebral Cortex, 7(1), 63-69. 

Christensen, J., Parker, S., Silberberg, A., & Hursh, S. (1998). Trade-offs in choice 

between risk and delay depend on monetary amounts. Journal of the Experimental 

Analysis of Behavior, 69(2), 123-139. 

Christopoulos, G. I., Tobler, P. N., Bossaerts, P., Dolan, R. J., & Schultz, W. (2009). 

Neural Correlates of Value, Risk, and Risk Aversion Contributing to Decision 

Making under Risk. Journal of Neuroscience, 29(40), 12574-12583. 

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the Control of Automatic 

Processes - a Parallel Distributed-Processing Account of the Stroop Effect. 

Psychological Review, 97(3), 332-361. 

Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical 

regions with dissociable functions. Neuroimage, 37(1), 343-360. 



218 

 

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). 

Voluntary orienting is dissociated from target detection in human posterior 

parietal cortex. Nature Neuroscience, 3(3), 292-297. 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven 

attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. 

Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in 

human parietal cortex. Current Opinion in Neurobiology, 11(2), 157-163. 

Cyders, M. A., & Smith, G. T. (2007). Mood-based rash action and its components: 

Positive and negative urgency. Personality and Individual Differences, 43(4), 

839-850. 

Davidson, R. J. (1992). Emotion and Affective Style - Hemispheric Substrates. 

Psychological Science, 3(1), 39-43. 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number 

processing. Cognitive Neuropsychology, 20(3-6), 487-506. 

Deluty, M. Z. (1978). Self-Control and Impulsiveness Involving Aversive Events. 

Journal of Experimental Psychology-Animal Behavior Processes, 4(3), 250-266. 

Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. C. (1996). Functional 

anatomy of visuomotor skill learning in human subjects examined with positron 

emission tomography. European Journal of Neuroscience, 8(4), 637-648. 

Eisenegger, C., Treyer, V., Fehr, E., & Knoch, D. (2008). Time-course of "off-line" 

prefrontal rTMS effects - a PET study. Neuroimage, 42(1), 379-384. 

Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., et al. 

(2004). Choice selection and reward anticipation: an fMRI study. 

Neuropsychologia, 42(12), 1585-1597. 

Estle, S. J., Green, L., Myerson, J., & Holt, D. D. (2006). Differential effects of amount 

on temporal and probability discounting of gains and losses. Memory & 

Cognition, 34(4), 914-928. 

Eysenck, S. B. G., & Eysenck, H. J. (1978). Impulsiveness and venturesomeness: their 

position in a dimensional system of personality description. Psychological 

Reports, 43, 1247-1255. 

Eysenck, S. B. G., Eysenck, H. J., & Barrett, P. (1985). A revised version of the 

Psychoticism scale. Personality and Individual Differences, 6, 21-29. 

Eysenck, S. B. G., Pearson, P. R., Easting, G., & Allsop, J. F. (1985). Age norms for 

impulsiveness, venturesomeness, and empathy in adults. Personality and 

Individual Differences, 6, 613-619. 



219 

 

Fecteau, S., Knoch, D., Fregni, F., Sultani, N., Boggio, P., & Pascual-Leone, A. (2007). 

Diminishing risk-taking Behavior by modulating activity in the prefrontal cortex: 

A direct current stimulation study. Journal of Neuroscience, 27(46), 12500-

12505. 

Fellows, L. K., & Farah, M. J. (2005). Dissociable elements of human foresight: a role 

for the ventromedial frontal lobes in framing the future, but not in discounting 

future rewards. Neuropsychologia, 43(8), 1214-1221. 

Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., et al. 

(2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature 

Neuroscience, 13(5), 538-539. 

Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision of reward 

prediction in dopamine neurons. Nature Neuroscience, 11(8), 966-973. 

Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward 

probability and uncertainty by dopamine neurons. Science, 299(5614), 1898-1902. 

FitzGerald, T. H. B., Seymour, B., & Dolan, R. J. (2009). The Role of Human 

Orbitofrontal Cortex in Value Comparison for Incommensurable Objects. Journal 

of Neuroscience, 29(26), 8388-8395. 

Frederick, S., Loewenstein, G., & O'Donoghue, T. (2004). Time Discounting and Time 

Preference: A Critical Review. In C. F. Camerer, G. Loewenstein & M. Rabin 

(Eds.), Advances in Behavioral Economics (pp. 162-222). Princeton: Princeton 

University Press. 

Friedrich, F. J., Egly, R., Rafal, R. D., & Beck, D. (1998). Spatial attention deficits in 

humans: A comparison of superior parietal and temporal-parietal junction lesions. 

Neuropsychology, 12(2), 193-207. 

Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic Coding of Visual 

Space in the Monkey's Dorsolateral Prefrontal Cortex. Journal of 

Neurophysiology, 61(2), 331-349. 

Fuster, J. M. (1997). The prefrontal cortex : anatomy, physiology, and neuropsychology 

of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven. 

Fuster, J. M. (2001). The prefrontal cortex - An update: time is of the essence. Neuron, 

30(2), 319-333. 

Fuster, J. M. (2002). Physiology of Executive Functions: The Perception-Action Cycle. 

In D. T. Stuss & R. T. Knight (Eds.), Principles of Frontal Lobe Function (pp. 96-

108). New York: Oxford University Press. 

Fuster, J. M., & Alexander, G. E. (1971). Neuron Activity Related to Short-Term 

Memory. Science, 173(3997), 652-654. 



220 

 

Gianotti, L. R., Knoch, D., Faber, P. L., Lehmann, D., Pascual-Marqui, R. D., Diezi, C., 

et al. (2009). Tonic Activity Level in the Right Prefrontal Cortex Predicts 

Individuals' Risk Taking. Psychological Science, 20(1), 33-38. 

Glimcher, P. W. (2003). Decisions, uncertainty, and the brain : the science of 

neuroeconomics. Cambridge, Mass.: MIT Press. 

Glimcher, P. W. (2008). Understanding risk: A guide for the perplexed. Cognitive 

Affective & Behavioral Neuroscience, 8(4), 348-354. 

Glimcher, P. W. (2009). Choice: Towards a Standard Back-pocket Model. In P. W. 

Glimcher, C. F. Camerer, E. Fehr & R. A. Poldrack (Eds.), Neuroeconomics 

Decision Making and the Brain (pp. 503-521). Amsterdam: Elsevier. 

Gobel, S., Walsh, V., & Rushworth, M. F. S. (2001). The mental number line and the 

human angular gyrus. Neuroimage, 14(6), 1278-1289. 

Goldenberg, G., & Karnath, H. O. (2006). The neural basis of imitation is body part 

specific. Journal of Neuroscience, 26(23), 6282-6287. 

Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of 

behavior by representational memory. In V. B. Mountcastle, F. Plum & S. R. 

Geiger (Eds.), Handbook of Physiology (Vol. 5, pp. 373-417). Bethesda: 

American Physiological Society. 

Goldman-Rakic, P. S. (1998). The prefrontal landscape: implications of functional 

architecture for understanding human mentation and the central executive. In A. 

C. Roberts, T. W. Robbins & L. Weiskrantz (Eds.), The Prefrontal Cortex: 

Executive and Cogntive Functions (pp. 87-101). New York: Oxford Unviersity 

Press. 

Goodale, M. A., & Milner, A. D. (1992). Separate Visual Pathways for Perception and 

Action. Trends in Neurosciences, 15(1), 20-25. 

Gould, R. L., Brown, R. G., Owen, A. M., ffytche, D. H., & Howard, R. J. (2003). fMRI 

BOLD response to increasing task difficulty during successful paired associates 

learning. Neuroimage, 20(2), 1006-1019. 

Gray, J. A. (1981). A critique of Eysenck's theory of personality. In H. J. Eysenck (Ed.), 

A model for personality (pp. 246-276). Berlin: Springer-Verlag. 

Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and 

probabilistic rewards. Psychological Bulletin, 130(5), 769-792. 

Green, L., Myerson, J., & McFadden, E. (1997). Rate of temporal discounting decreases 

with amount of reward. Memory & Cognition, 25(5), 715-723. 



221 

 

Green, L., Myerson, J., & Ostaszewski, P. (1999). Amount of reward has opposite effects 

on the discounting of delayed and probabilistic outcomes. Journal of 

Experimental Psychology-Learning Memory and Cognition, 25(2), 418-427. 

Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. 

Journal of Chemical Neuroanatomy, 26(4), 317-330. 

Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in 

primates form an ascending spiral from the shell to the dorsolateral striatum. 

Journal of Neuroscience, 20(6), 2369-2382. 

Haber, S. N., Kim, K. S., Mailly, P., & Calzavara, R. (2006). Reward-related cortical 

inputs define a large striatal region in primates that interface with associative 

cortical connections, providing a substrate for incentive-based learning. Journal 

of Neuroscience, 26(32), 8368-8376. 

Haber, S. N., & Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and 

Human Imaging. Neuropsychopharmacology, 35(1), 4-26. 

Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-Control in Decision-Making 

Involves Modulation of the vmPFC Valuation System. Science, 324(5927), 646-

648. 

Herwig, U., Satrapi, P., & Schonfeldt-Lecuona, C. (2003). Using the International 10-20 

EEG System for Positioning of Transcranial Magnetic Stimulation. Brain 

Topography, 16(2), 95-99. 

Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the 

temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304-

309. 

Hoshi, E., Shima, K., & Tanji, J. (1998). Task-dependent selectivity of movement-related 

neuronal activity in the primate prefrontal cortex. Journal of Neurophysiology, 

80(6), 3392-3397. 

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems 

responding to degrees of uncertainty in human decision-making. Science, 

310(5754), 1680-1683. 

Hyvärinen, J. (1982). The parietal cortex of monkey and man. Berlin: Springer-Verlag. 

Juckel, G., Schlagenhauf, F., Koslowski, M., Wustenberg, T., Villringer, A., Knutson, B., 

et al. (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. 

Neuroimage, 29(2), 409-416. 

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during 

intertemporal choice. Nature Neuroscience, 10(12), 1625-1633. 



222 

 

Kable, J. W., & Glimcher, P. W. (2009). The Neurobiology of Decision: Consensus and 

Controversy. Neuron, 63(6), 733-745. 

Kable, J. W., & Glimcher, P. W. (2010). An "As Soon As Possible" Effect in Human 

Intertemporal Decision Making: Behavioral Evidence and Neural Mechanisms. 

Journal of Neurophysiology, 103(5), 2513-2531. 

Kahneman, D., & Tversky, A. (1979). Prospect Theory - Analysis of Decision under 

Risk. Econometrica, 47(2), 263-291. 

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory 

capacity, executive attention, and general fluid intelligence: An individual-

differences perspective. Psychonomic Bulletin & Review, 9(4), 637-671. 

Keren, G., & Roelofsma, P. (1995). Immediacy and Certainty in Intertemporal Choice. 

Organizational Behavior and Human Decision Processes, 63(3), 287-297. 

Kirby, K. N. (1997). Bidding on the future: Evidence against normative discounting of 

delayed rewards. Journal of Experimental Psychology-General, 126(1), 54-70. 

Kirby, K. N., & Marakovic, N. N. (1995). Modeling Myopic Decisions - Evidence for 

Hyperbolic Delay-Discounting within-Subjects and Amounts. Organizational 

Behavior and Human Decision Processes, 64(1), 22-30. 

Kirby, K. N., Petry, N. M., & Bickel, W. K. (1999). Heroin addicts have higher discount 

rates for delayed rewards than non-drug-using controls. Journal of Experimental 

Psychology-General, 128(1), 78-87. 

Knight, R. T., & Stuss, D. T. (2002). Prefrontal Cortex: The Present and the Future. In D. 

T. Stuss & R. T. Knight (Eds.), Principles of Frontal Lobe Function (pp. 573-

597). New York: Oxford University Press. 

Knoch, D., & Fehr, E. (2007). Resisting the power of temptations - The right prefrontal 

cortex and self-control. Annals of the New York Academy of Sciences, 1104, 123-

134. 

Knoch, D., Gianotti, L. R. R., Pascual-Leone, A., Treyer, V., Regard, M., Hohmann, M., 

et al. (2006). Disruption of right prefrontal cortex by low-frequency repetitive 

transcranial magnetic stimulation induces risk-taking behavior. Journal of 

Neuroscience, 26(24), 6469-6472. 

Knudsen, E. I. (2007). Fundamental components of attention. Annual Review of 

Neuroscience, 30, 57-78. 

Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of 

increasing monetary reward selectively recruits nucleus accumbens. Journal of 

Neuroscience, 21(16), RC159. 



223 

 

Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural 

responses to monetary incentives in major depression. Biological Psychiatry, 

63(7), 686-692. 

Knutson, B., Bjork, J. M., Fong, G. W., Hommer, D., Mattay, V. S., & Weinberger, D. R. 

(2004). Amphetamine modulates human incentive processing. Neuron, 43(2), 

261-269. 

Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). 

Dissociation of reward anticipation and outcome with event-related fMRI. 

Neuroreport, 12(17), 3683-3687. 

Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A 

region of mesial prefrontal cortex tracks monetarily rewarding outcomes: 

characterization with rapid event-related fMRI. Neuroimage, 18(2), 263-272. 

Knutson, B., & Gibbs, S. E. B. (2007). Linking nucleus accumbens dopamine and blood 

oxygenation. Psychopharmacology, 191(3), 813-822. 

Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and 

consequences for choice. Philosophical Transactions of the Royal Society B-

Biological Sciences, 363(1511), 3771-3786. 

Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of 

brain activity during a monetary incentive delay task. Neuroimage, 12(1), 20-27. 

Kobayashi, S., & Schultz, W. (2008). Influence of Reward Delays on Responses of 

Dopamine Neurons. The Journal of Neuroscience, 28(31), 7837-7846. 

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in 

the human prefrontal cortex. Science, 302(5648), 1181-1185. 

Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to 

prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229-235. 

Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior Parietal Cortex 

Is Critical for the Manipulation of Information in Working Memory. Journal of 

Neuroscience, 29(47), 14980-14986. 

Koopmans, T. C. (1960). Stationary Ordinal Utility and Impatience. Econometrica, 28(2), 

287-309. 

Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 

47(5), 763-770. 

LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (1999). Neuroanatomic 

Overlap of Working Memory and Spatial Attention Networks: A Functional MRI 

Comparison within Subjects. NeuroImage, 10, 695-704. 



224 

 

Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. 

(2005). ALE meta-analysis: Controlling the false discovery rate and performing 

statistical contrasts. Human Brain Mapping, 25(1), 155-164. 

Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural 

Representation of Subjective Value Under Risk and Ambiguity. Journal of 

Neurophysiology, 103(2), 1036-1047. 

Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions 

within the dorsolateral prefrontal cortex. Experimental Brain Research, 133(1), 

23-32. 

Liang, K. Y., & Zeger, S. L. (1986). Longitudinal Data-Analysis Using Generalized 

Linear-Models. Biometrika, 73(1), 13-22. 

Loewenstein, G., & Prelec, D. (1992). Anomalies in Intertemporal Choice - Evidence and 

an Interpretation. Quarterly Journal of Economics, 107(2), 573-597. 

Logue, A. W. (1988). Research on Self-Control - an Integrating Framework. Behavioral 

and Brain Sciences, 11(4), 665-678. 

Lynam, D. R., & Miller, J. D. (2004). Personality pathways to impulsive behavior and 

their relations to deviance: Results from three samples. Journal of Quantitative 

Criminology, 20(4), 319-341. 

Lynam, D. R., Smith, G. T., Whiteside, S. P., & Cyders, M. A. (2006). The UPPS-P: 

Assessing five personality pathways to impulsive behavior (Technical Report). 

West Lafayette: Purdue University. 

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the 

role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive 

control. Science, 288(5472), 1835-1838. 

Madden, G. J., Begotka, A. M., Raiff, B. R., & Kastern, L. L. (2003). Delay discounting 

of real and hypothetical rewards. Experimental and Clinical 

Psychopharmacology, 11(2), 139-145. 

Madden, G. J., Petry, N. M., Badger, G. J., & Bickel, W. K. (1997). Impulsive and self-

control choices in opioid-dependent patients and non-drug-using control 

participants: Drug and monetary rewards. Experimental and Clinical 

Psychopharmacology, 5(3), 256-262. 

Malmo, R. B. (1942). Interference Factors in Delayed Response in Monkeys after 

Removal of Frontal Lobes. Journal of Neurophysiology, 5, 295-308. 

Matsumoto, M., & Hikosaka, O. (2009a). Representation of negative motivational value 

in the primate lateral habenula. Nature Neuroscience, 12(1), 77-84. 



225 

 

Matsumoto, M., & Hikosaka, O. (2009b). Two types of dopamine neuron distinctly 

convey positive and negative motivational signals. Nature, 459(7248), 837-841. 

Matthews, S. C., Simmons, A. N., Lane, S. D., & Paulus, M. P. (2004). Selective 

activation of the nucleus accumbens during risk-taking decision making. 

Neuroreport, 15(13), 2123-2127. 

Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In M. L. 

Commons, J. E. Mazur, J. A. Nevin & H. Rachlin (Eds.), Quantitative analyses of 

behavior: Vol. 5. The effect of delay and of intervening events on reinforcement 

value (pp. 55-73). Hillsdale, NJ: Erlbaum. 

McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). 

Time discounting for primary rewards. Journal of Neuroscience, 27(21), 5796-

5804. 

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural 

systems value immediate and delayed monetary rewards. Science, 306(5695), 

503-507. 

Mevorach, C., Hodsoll, J., Allen, H., Shalev, L., & Humphreys, G. (2010). Ignoring the 

Elephant in the Room: A Neural Circuit to Downregulate Salience. Journal of 

Neuroscience, 30(17), 6072-6079. 

Mevorach, C., Humphreys, G. W., & Shalev, L. (2006). Opposite biases in salience-based 

selection for the left and right posterior parietal cortex. Nature Neuroscience, 

9(6), 740-742. 

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. 

Annual Review of Neuroscience, 24, 167-202. 

Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual 

working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 

16(16), 5154-5167. 

Milner, B. (1963). Effects of Different Brain Lesions on Card Sorting. Archives 

Neurology, 9(1), 90-100. 

Mishkin, M. (1964). Perseveration of central sets after frontal lesions in monkeys. In J. 

M. Warren & K. Abert (Eds.), The Frontal Granular Cortex and Behavior (pp. 

219-241). New York: McGraw-Hill. 

Mitchell, J. M., Fields, H. L., D'Esposito, M., & Boettiger, C. A. (2005). Impulsive 

responding in alcoholics. Alcoholism-Clinical and Experimental Research, 

29(12), 2158-2169. 

Mitchell, S. H. (1999). Measures of impulsivity in cigarette smokers and non-smokers. 

Psychopharmacology, 146(4), 455-464. 



226 

 

Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., et al. 

(2003). The anatomy of visual neglect. Brain, 126, 1986-1997. 

Mottaghy, F. M., Doring, T., Muller-Gartner, H. W., Topper, R., & Krause, B. J. (2002). 

Bilateral parieto-frontal network for verbal working memory: an interference 

approach using repetitive transcranial magnetic stimulation (rTMS). European 

Journal of Neuroscience, 16(8), 1627-1632. 

Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J., & Pascual-Leone, A. (2002). 

Segregation of areas related to visual working memory in the prefrontal cortex 

revealed by rTMS. Cerebral Cortex, 12(4), 369-375. 

Moyer, R. S., & Landauer, T. K. (1967). Time Required for Judgements of Numerical 

Inequality. Nature, 215(5109), 1519-1520. 

Murphy, J. G., Vuchinich, R. E., & Simpson, C. A. (2001). Delayed reward and cost 

discounting. Psychological Record, 51(4), 571-588. 

Myerson, J., & Green, L. (1995). Discounting of Delayed Rewards - Models of 

Individual Choice. Journal of the Experimental Analysis of Behavior, 64(3), 263-

276. 

Myerson, J., Green, L., Hanson, J. S., Holt, D. D., & Estle, S. J. (2003). Discounting 

delayed and probabilistic rewards: Processes and traits. Journal of Economic 

Psychology, 24(5), 619-635. 

Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a 

measure of discounting. Journal of Experimental Analysis of Behavior, 76(2), 

235-243. 

Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical 

information in the monkey. Proceedings of the National Academy of Sciences of 

the United States of America, 101(19), 7457-7462. 

O'Reilly, R. C. (2010). The What and How of prefrontal cortical organization. Trends in 

Neurosciences, 33(8), 355-361. 

Ostaszewski, P., & Karzel, K. (2005). Temperament and discounting of delayed and 

probabilistic losses. Polish Psychological Bulletin, 36(2), 117-126. 

Pandya, D. N., & Seltzer, B. (1982). Intrinsic Connections and Architectonics of 

Posterior Parietal Cortex in the Rhesus-Monkey. Journal of Comparative 

Neurology, 204(2), 196-210. 

Panksepp, J., Knutson, B., & Burgdorf, J. (2002). The role of brain emotional systems in 

addictions: a neuro-evolutionary perspective and new 'self-report' animal model. 

Addiction, 97(4), 459-469. 



227 

 

Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt 

Impulsiveness Scale. Journal of Clinical Psychology, 51(6), 768-774. 

Perenin, M. T., & Vighetto, A. (1988). Optic Ataxia - a Specific Disruption in 

Visuomotor Mechanisms .1. Different Aspects of the Deficit in Reaching for 

Objects. Brain, 111, 643-674. 

Perret, E. (1974). Left Frontal Lobe of Man and Suppression of Habitual Responses in 

Verbal Categorical Behavior. Neuropsychologia, 12(3), 323-330. 

Peters, J., & Buchel, C. (2009). Overlapping and Distinct Neural Systems Code for 

Subjective Value during Intertemporal and Risky Decision Making. Journal of 

Neuroscience, 29(50), 15727-15734. 

Peters, J., & Buchel, C. (2010). Episodic Future Thinking Reduces Reward Delay 

Discounting through an Enhancement of Prefrontal-Mediotemporal Interactions. 

Neuron, 66(1), 138-148. 

Petrides, M. (1998a). Specialized systems for the processing of mnemonic information 

within the primate frontal cortex. In A. C. Roberts, T. W. Robbins & L. 

Weiskrantz (Eds.), The Prefrontal Cortex: Executive and Cognitive Functions 

(pp. 103-115). New York: Oxford University Press. 

Petrides, M. (1998b). Specialized systems for the processing of mnemonic information 

within the primate frontal cortex. In A. C. Roberts, T. W. Robbins & L. 

Weiskrantz (Eds.), (pp. 103-116). Oxford: Oxford University Press. 

Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional organization. 

Philosophical Transactions of the Royal Society B-Biological Sciences, 

360(1456), 781-795. 

Petrides, M., Alivisatos, B., & Evans, A. C. (1995). Functional Activation of the Human 

Ventrolateral Frontal Cortex during Mnemonic Retrieval of Verbal Information. 

Proceedings of the National Academy of Sciences of the United States of America, 

92(13), 5803-5807. 

Petrides, M., & Pandya, D. (2002). Association Pathways of the Prefrontal Cortex and 

Functional Observations. In D. T. Stuss & R. T. Knight (Eds.), Principles of 

Frontal Lobe Function (pp. 31-50). New York: Oxford University Press. 

Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human 

and the macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of 

neuropsychology (Vol. 9, pp. 17-58). Amsterdam: Elsevier. 

Petry, N. M. (2001). Delay discounting of money and alcohol in actively using 

alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology, 

154(3), 243-250. 



228 

 

Petry, N. M. (2002). Discounting of delayed rewards in substance abusers: relationship to 

antisocial personality disorder. Psychopharmacology, 162(4), 425-432. 

Phelps, E. S., & Pollak, R. (1968). On Second-Best National Saving and Game-

Equilibrium Growth. Review of Economic Studies, 35, 185-199. 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 

approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-

555. 

Pindyck, R. S., & Rubinfeld, D. L. (2006). Microeconomics (6th ed.). New Delhi: 

Prentice-Hall of India Private Ltd. 

Pine, A., Seymour, B., Roiser, J. P., Bossaerts, P., Friston, K. J., Curran, H. V., et al. 

(2009). Encoding of Marginal Utility across Time in the Human Brain. Journal of 

Neuroscience, 29(30), 9575-9581. 

Plassmann, H., O'Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes 

willingness to pay in everyday economic transactions. Journal of Neuroscience, 

27(37), 9984-9988. 

Plassmann, H., O'Doherty, J. P., & Rangel, A. (2010). Appetitive and Aversive Goal 

Values Are Encoded in the Medial Orbitofrontal Cortex at the Time of Decision 

Making. Journal of Neuroscience, 30(32), 10799-10808. 

Rachlin, H., Raineri, A., & Cross, D. (1991). Subjective Probability and Delay. Journal 

of the Experimental Analysis of Behavior, 55(2), 233-244. 

Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the 

primate prefrontal cortex. Science, 276(5313), 821-824. 

Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews 

Neuroscience, 7(5), 367-379. 

Read, D., Frederick, S., Orsel, B., & Rahman, J. (2005). Four score and seven years from 

now: The date/delay effect in temporal discounting. Management Science, 51(9), 

1326-1335. 

Reynolds, B., Ortengren, A., Richards, J. B., & de Wit, H. (2006). Dimensions of 

impulsive behavior: Personality and behavioral measures. Personality and 

Individual Differences, 40(2), 305-315. 

Reynolds, B., Richards, J. B., & de Wit, H. (2006). Acute-alcohol effects on the 

Experiential Discounting Task (EDT) and a question-based measure of delay 

discounting. Pharmacology Biochemistry and Behavior, 83(2), 194-202. 



229 

 

Richards, J. B., Zhang, L., Mitchell, S. H., & de Wit, H. (1999). Delay or probability 

discounting in a model of impulsive behavior: Effect of alcohol. Journal of the 

Experimental Analysis of Behavior, 71(2), 121-143. 

Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: 

anatomy and functions. Experimental Brain Research, 153(2), 146-157. 

Robertson, E. M., Theoret, H., & Pascual-Leone, A. (2003). Studies in cognition: The 

problems solved and created by transcranial magnetic stimulation. Journal of 

Cognitive Neuroscience, 15(7), 948-960. 

Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, 

B. J., et al. (1999). Choosing between small, likely rewards and large, unlikely 

rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 

19(20), 9029-9038. 

Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety, ethical 

considerations, and application guidelines for the use of transcranial magnetic 

stimulation in clinical practice and research. Clinical Neurophysiology, 120, 

2008-2039. 

Rothschild, M., & Stiglitz, J. (1970). Increasing risk: a definition. Journal of Economic 

Theory, 2, 225-243. 

Russell, J. A. (1980). A Circumplex Model of Affect. Journal of Personality and Social 

Psychology, 39(6), 1161-1178. 

Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L., & 

Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older 

adults. Nature Neuroscience, 10(6), 787-791. 

Samuelson, P. (1937). A Note on Measurement of Utility. Review of Economic Studies, 4, 

155-161. 

Sandrini, M., Rossini, P. M., & Miniussi, C. (2004). The differential involvement of 

inferior parietal lobule in number comparison: a rTMS study. Neuropsychologia, 

42(14), 1902-1909. 

Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual 

Review of Psychology, 57, 87-115. 

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and 

reward. Science, 275(5306), 1593-1599. 

Takayama, Y., Sugishita, M., Akiguchi, I., & Kimura, J. (1994). Isolated Acalculia Due 

to Left Parietal Lesion. Archives of Neurology, 51(3), 286-291. 



230 

 

Thaler, R. (1991). Some Empirical Evidence on Dynamic Inconsistency. In R. Thaler 

(Ed.), Quasi-rational economics (pp. 127-133). New York, N.Y.: Russell Sage 

Foundation. 

Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2008). 

Neuronal Distortions of Reward Probability without Choice. Journal of 

Neuroscience, 28(45), 11703-11711. 

Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). 

Risk-dependent reward value signal in human prefrontal cortex. Proceedings of 

the National Academy of Sciences of the United States of America, 106(17), 7185-

7190. 

Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by 

dopamine neurons. Science, 307(5715), 1642-1645. 

Tobler, P. N., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding 

distinct from risk attitude-related uncertainty coding in human reward systems. 

Journal of Neurophysiology, 97(2), 1621-1632. 

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human 

posterior parietal cortex. Nature, 428(6984), 751-754. 

Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss 

aversion in decision-making under risk. Science, 315(5811), 515-518. 

Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of 

Choice. Science, 211(4481), 453-458. 

Tversky, A., & Kahneman, D. (1992). Advances in Prospect-Theory - Cumulative 

Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323. 

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. 

A. Goodale & R. J. W. Mansfield (Eds.), Analysis of Visual Behavior (pp. 549-

586). Cambridge: MIT Press. 

Vallar, G., & Perani, D. (1987). The anatomy of spatial neglect in humans. In M. 

Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial 

neglect (pp. 235-258). Amsterdam: North-Holland Elsevier Science. 

Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., & Grafman, J. (1995). The 

Role of Prefrontal Regions in the Stroop Task. Neuropsychologia, 33(3), 341-352. 

Von Bonin, G., & Bailey, P. (1947). The Neocortex of Macaca Mulatta. Urbana: 

University of Illinois Press. 

Von Economo, C. (1929). The Cytoarchitectonics of the Human Cerebral Cortex. 

London: Oxford University Press. 



231 

 

Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting 

attention: a meta-analysis. Neuroimage, 22(4), 1679-1693. 

Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. 

Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255-274. 

Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations 

underlying TMS: Setting the stage for an effective use of neurostimulation in the 

cognitive neurosciences. Cortex, 45(9), 1025-1034. 

Weber, B. J., & Huettel, S. A. (2008). The neural substrates of probabilistic and 

intertemporal decision making. Brain Research, 1234, 104-115. 

Weber, E. U., Blais, A. R., & Betz, N. E. (2002). A domain-specific risk-attitude scale: 

Measuring risk perceptions and risk behaviors. Journal of Behavioral Decision 

Making, 15(4), 263-290. 

Weber, E. U., & Johnson, E. J. (2009). Decisions Under Uncertainty: Psychological, 

Economic, and Neuroeconomic Explanations of Risk Preference. In P. W. 

Glimcher, C. F. Camerer, E. Fehr & R. A. Poldrack (Eds.), Neuroeconomics 

Decision Making and the Brain (pp. 127-144). Amsterdam: Elsevier. 

White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal 

cortex. Experimental Brain Research, 126(3), 315-335. 

Whiteside, S. P., & Lynam, D. R. (2001). The Five Factor Model and impulsivity: using a 

structural model of personality to understand impulsivity. Personality and 

Individual Differences, 30(4), 669-689. 

Wittmann, M., Leland, D. S., & Paulus, M. P. (2007). Time and decision making: 

differential contribution of the posterior insular cortex and the striatum during a 

delay discounting task. Experimental Brain Research, 179(4), 643-653. 

Wittmann, M., Lovero, K. L., Lane, S. D., & Paulus, M. P. (2010). Now or Later? 

Striatum and Insula Activation to Immediate Versus Delayed Rewards. Journal of 

Neuroscience, Psychology, and Economics, 3(1), 15-26. 

Wrase, J., Kahnt, T., Schiagenhauf, F., Beck, A., Cohen, M. X., Knutson, B., et al. 

(2007). Different neural systems adjust motor behavior in response to reward and 

punishment. Neuroimage, 36(4), 1253-1262. 

Xu, L. J., Liang, Z. Y., Wang, K., Li, S., & Jiang, T. Z. (2009). Neural mechanism of 

intertemporal choice: From discounting future gains to future losses. Brain 

Research, 1261, 65-74. 

 

 


