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1 INTRODUCTION

1.1 Effect Size in Psychological Research

Methodological and applied researchers are becoming increasingly aware of the
importance of effect size in psychological research. Several definitions of effect size have been
offered in the methodological literature (Cohen, 1988; Kelley & Preacher 2012; Kirk, 1996), but,
fundamentally, an effect size conceptually is a quantification of some phenomenon of interest
(Kelley & Preacher, 2012). In applied research settings, effect sizes have also been defined as
communicating of the practical importance of an effect beyond statistical significance (Cohen,
1988), the translation of the effect to a meaningful scale interpretable by other researchers (Kirk,
1996), and interpretation of the effect of interest in different contexts (Greenland, Schlessman, &
Criqui, 1986). These definitions highlight the importance of effect sizes in the effective
communication of scientific findings.

Many methodologists have advocated for applied researchers to report effect sizes and
confidence intervals (CIs) for their results instead of relying on statistical significance.
Weaknesses of the null hypothesis significance test (NHST) framework for conveying scientific
results have been well-documented (Cohen, 1994; Greenland & Poole, 2013; Wilkinson, 1999).
Effect sizes and Cls not only convey the same information as a NHST, but also provide
information regarding the magnitude of the effect and precision of the estimate.

In addition to conveying important information regarding the findings of a given study,
effect sizes are necessary for sample size planning. The classic approach to sample size planning
is power analysis. Although fundamentally based on the NHST framework, power analysis
requires the specification of the population effect size(s) to compute the minimum sample size

necessary to achieve a desired level of power. More modern approaches to sample size planning



(e.g., Monte Carlo simulation, accuracy in parameter estimation) also rely on the specification of
effect sizes.

Effect sizes also have a prominent role in meta-analysis. Meta-analysis is an approach to
scientific inquiry that collects and synthesizes the results of multiple studies that fundamentally
examine the same phenomena of interest. There are many factors that may differ among studies
of the same phenomena (e.g., sample, measures, experimental design). Across study differences
in these factors are translated into discrepancies among the metrics and magnitudes of point and
interval estimates of structural parameters, variances, covariances, and residual variances. Effect
sizes translate estimates from discrepant studies into a common metric, facilitating comparisons
and synthesis of findings.

Much methodological work has been devoted to accurately defining and clarifying the
distinctions among various effect size measures that can be used to quantify the same
phenomena. For example, the effect of a binary variable representing treatment and control
groups on a continuous outcome can be quantified as either a standardized mean difference
between groups, or the strength of association between the treatment variable and the outcome.
Which effect size is chosen has implications for how the effect is interpreted and can result in
substantially different conclusions regarding the practical importance of the finding. In addition,
much work has been devoted to evaluating the properties of sample estimators of effect sizes and
Cls to a) elucidate the study design conditions (e.g., sample size, effect magnitude) under which
inferences from an estimated effect size would be questionable, and b) develop new estimators
that yield valid inferences under broader ranges of design conditions (e.g., small sample size,
small effects). Despite the long history of effect sizes in the methodological literature for

experimental and observational studies, disagreements regarding the appropriate interpretation



and use of effect sizes, as well as improvements to sample estimators and Cls for these
traditional designs continue to this day (Algina, Keselman, & Penfield, 2005; Wilcox & Tian,
2011).

Theoretical and computational advancements allow researchers to test models that are
substantially more complex than what could be modeled in traditional designs. For example,
structural equation modeling (SEM) is a framework where a complex structure of relationships
among multiple variables can be modeled simultaneously. With these advances in modeling
come new methods to conceptualize and quantify phenomena of interest (i.e., model discrepancy
in the population quantified by the root mean square error of approximation [RMSEA]; Steiger
& Lind, 1980). Given the importance of effect sizes and Cls in the interpretation of scientific
results and increasingly common requirements that they be reported for primary outcomes,
methodologists have attempted to keep pace in several ways: a) identifying those existing
parameters and estimators in complex models that can appropriately be used as measures of
effect size (e.g., Preacher & Kelley, 2011), b) proposing improved estimators for established
quantities of interest (e.g., Wilcox & Tian, 2011), and c¢) proposing effect sizes that represent
qualitatively different approaches to quantifying the phenomena of interest (e.g., Fairchild,
Mackinnon, Taborga, & Taylor, 2009). Although effect sizes have been established for
quantifying some aspects of complex models, there are some phenomena of interest for which
consensus has yet to be reached. Perhaps the most important of these phenomena is the indirect

effect in mediation analysis.



1.2 Effect Size in Mediation Analysis

Mediation analysis is an increasingly popular analytic method for social sciences
researchers. The goal of mediation analysis is to examine the mechanisms through which a
predictor variable has its effects on an outcome variable through intervening variables called
mediators (Baron & Kenny, 1986; MacKinnon, 2008). Mediation analysis can be used to
examine the effects of these intervening variables in a system of equations that simultaneously
model the effects of the predictors on mediators, and the effects of predictors and mediators on
outcomes. For a model where all variables are continuous and effects are linear, the most basic
mediation model consists of a system of two equations: a) the regression of the mediator on the
predictor, and b) the regression of the outcome on the predictor and mediator. The effect of the
predictor on the outcome (i.e., total effect) can be decomposed into a component transmitted
directly to the outcome controlling for the mediating variable (i.e., direct effect), or indirectly
through the mediating variable (i.e., indirect effect). The indirect effect is often of primary
interest for researchers using mediation analysis.

Any effect can be conceived of as a process of indirect effects through intervening
variables, whether it be scratching an itch or electing a president. Mediation analysis facilitates a
more complete understanding by not only examining if the phenomena occur, but also how they
occur. For clinicians or public policy researchers, these processes can represent points of
intervention that could substantially improve the effectiveness of a treatment or policy initiative.
It is important, therefore, that researchers using mediation analysis have the tools to effectively

communicate their findings to those who may use them in practice.



Several effect size measures have been proposed for mediation analysis to address this
gap (Alwin & Hauser, 1975; Fairchild et al., 2009; Kraemer, 2008, 2014; MacKinnon, 2008;
Preacher & Kelley, 2011; Sobel, 1982). However, many of these measures have limitations and
consensus has not been reached as to which, if any, of the existing measures is recommended.
These limitations include logical inconsistencies, and poor or unclear statistical properties of
sample estimators.

Recently, Lachowicz, Preacher, and Kelley (2018) proposed a novel measure of effect
size for mediation analysis (v ) that addressed many of the limitations of the existing measures.
v translates the indirect effect into the variance in an outcome explained by the predictor
through the mediator. In addition to this standardized and interpretable scale, v has several other
desirable properties as effect size measures for the indirect effect in three-variable mediation
models. These include independence from sample size, the provision of Cls, and sample
estimators with good statistical properties.

Although a select few of the preceding mediation effect sizes are appropriate for indirect
effects in three-variable mediation models, this model is often too simplistic to appropriately
represent complex behavioral, psychological, or societal processes. The purpose of this research
is to propose a generalizable effect size for mediation analysis that can be applied to indirect
effects in complex mediation models. This effect size will represent a framework consisting of
several extensions of the v effect size proposed in Lachowicz et al. (2018) for three-variable
mediation models. Although there are many factors that can introduce complexity into a
mediation model (i.e., non-normality of variables, etc.), for the purposes of this research

complexity will be defined as models with covariates, multiple predictors, multiple parallel



and/or serial mediators, and moderators. This definition of complexity addresses the vast

majority of mediation models currently being employed in social science research.

1.3 Developing a Generalizable Effect Size for Mediation Analysis

A strength of v as an effect size measure is that it fits into the existing explained variance
framework such that effect sizes for indirect effects in mediation analysis have clear analogs to
common effect sizes in multiple linear regression (MLR) and analysis of variance (ANOVA), a
property that facilitates the interpretation of v . However, the analogous measures of explained
variance in MLR and ANOVA for conditional indirect effects have received little attention in the
methodological literature. Because the existence of the MLR and ANOVA analogs are important
for the interpretation of v, the proposed research will develop the concept of explained variance
for conditional effects in MLR and ANOVA as a foundation for the extension of v to
conditional indirect effects.

Although it is important for the effect size parameter to have a strong conceptual
rationale and meaningful interpretation, it is equally important for the parameter to have an
accurate sample estimator. It is well known in the statistical literature that many sample analog
estimators of population standardized effect size measures are biased (Ezekiel, 1930; Fisher,
1915; Hedges, 1981). This is also true for v . Lachowicz et al. (2018) derived the bias of the
sample analog estimator of v (o), showing that, like common explained variance estimators
such as R?, the estimator had a consistent positive bias. Lachowicz et al. proposed an adjusted
version of the estimator () to correct for the sample bias of . It is expected that the estimators
of the effect sizes proposed in this research will also be positively biased. The proposed research
will include derivations of the bias of sample analog estimators of the population effect sizes,

and develop adjusted versions of the estimators to correct for sample bias. The finite sample



properties of the unadjusted and adjusted estimators as well as the associated Cls will be
investigated with Monte Carlo simulation studies.

Empirical examples will be included in each section to demonstrate the use and
interpretation of the v extensions. In addition, because standardized indirect effects are also a
viable effect size measure for the complex mediation models considered in this research, each
section will include comparisons of the relevant standardized indirect effects to the v extensions
for the empirical example.

The dissertation will consist of eight chapters. Chapter 2 will provide the necessary
background for effect size, mediation analysis, existing effect size measures in mediation
analysis, and introduction of the v effect size measure. Chapter 3 will consist of a review of the
explained variance framework of which v will be a part, including matrix expressions of
existing bias-adjusted estimators of explained variance in MLR and ANOVA, and introduction
of a general SEM approach for estimating indirect effects. Chapter 4 will develop a matrix-based
framework for extending v to complex mediation models with observed variables. Chapter 5
will extend the v framework to mediation models with latent variables. Chapter 6 will develop
the concept of explained variance for conditional effects in MLR. Chapter 7 will extend the v
framework to mediation models with conditional effects. Chapter 8 will summarize the research,

including limitations and future directions.



2 EFFECT SIZE AND MEDIATION ANALYSIS

2.1 Effectsize

Despite calls for reporting effect sizes and Cls to supplement NHSTSs, conflicting
definitions of effect size have made it unclear precisely what qualified as an appropriate effect
size measure to report. Particularly problematic was that effect size was defined by several
sources in terms of NHSTSs (e.g., Barry & Mielke, 2002; Cohen, 1988), the practice which
advocates of effect size wanted researchers to avoid. Others sources defined effect size in terms
of practical/clinical/scientific significance (e.g., Cohen, 1988). However, this definition is also
lacking because effect size and practical significance are not synonymous. Rather, effect size is
used to make judgments about practical significance (Kelley & Preacher, 2012).

Kelley and Preacher (2012) defined an effect size as the “quantitative reflection of the
magnitude of some phenomenon that is used for the purpose of addressing a question of
interest.” Because a phenomenon is quantified by population parameters or sample statistics,
Kelley and Preacher (2012) also defined an effect size as “a statistic or parameter with a purpose,
which is to quantify some phenomenon that addresses a question of interest.” This definition of
effect size is intentionally broad as any parameter and statistic can be used appropriately as an
effect size under the right circumstances.

Several of the benefits of reporting effect sizes can be illustrated by reference to the
standardized mean difference (Cohen’s d). Consider two experimental studies of an arbitrary
construct that are equivalent in all respects except in the scale of the outcome measure.
Assuming the experimental effect of the manipulation (i.e., difference in means between
experimental groups) in both studies is exactly equivalent, the unstandardized effects of the

manipulation would differ solely due to the difference in the scales of the outcomes. The



difference in scale could be due to different but equally valid measures of the construct, or
simply different within-group variances due to sampling variability (Hedges & Olkin, 1985).
Importantly, these factors would be considered irrelevant to the research question at hand,
namely “does the experimental manipulation result in a difference between the means of the
experimental groups?’

Converting the unstandardized mean difference into Cohen’s d removes the scales from
the effect of the manipulation, allowing for an appropriate comparison of the effects in the
studies. Whether or not to use a standardized or unstandardized effect size measure should
depend on whether the differences in scales are meaningful aspects of the study design. For
example, a difference in sample variances may not be simply an artifact of sampling variability,
but could reflect meaningful differences in the sampling methods (e.g., inclusion/exclusion
criteria, seasonality). In that case, standardizing would confound the effect with frequencies of
the predictor and outcome, such that two variables with equivalent unstandardized regression
coefficients would have differing standardized coefficients if the variances of the predictor
and/or outcome differ (Greenland et al., 1986). This reason is prominent among those proposed
by Greenland et al. (1986) in advocating against the use of standardized effect size measures. In
addition, it can also be shown that the magnitude of a standardized measure of partial association
(i.e., partial correlation) can be non-zero when the unstandardized partial association is zero.
Although it is important to understand the sources of variance used in standardization, it appears
unnecessarily restrictive to eschew all standardized effect sizes in favor of unstandardized
measures. First, nothing prevents the reporting of both unstandardized and standardized
measures. For example, an effect can appear substantial in a raw metric, but quite small when

considered in the context of the variability in the predictor and outcome. Second, this precludes



the comparison variables that measure the same phenomenon but have different metrics. Third,
this would limit effect sizes to bivariate relationships, and effect size measures such as multiple
R? cannot be considered.

Kelley and Preacher (2012) proposed properties of good effect size measures. The first
property is that the effect size should have an interpretable scale, the importance of which has
been the focus of the preceding section. The second property is that effect size estimates should
be reported with Cls. Cls convey the precision of point estimates, or the uncertainty with which a
point estimate can be used to make inferences about the population. Cls are constructed based on
the sampling distribution of the estimator. If the sampling distribution of the estimator is known,
Cls can be constructed analytically. If the sampling distribution is unknown, several methods can
be used to construct Cls, including semiparametric approaches that use simulation from the
known distributions of parameters that comprise an effect (i.e., Monte Carlo), and nonparametric
approaches based on resampling to construct an empirical sampling distribution (i.e.,
bootstrapping). The third property is that the effect size should be independent of sample size.
Specifically, this means that the population effect size does not change for different sample sizes.
The fourth property is that effect size estimators should have good statistical properties of
unbiasedness, consistency, and efficiency. For an estimator to be unbiased means that the
expected value of the estimator is the population value it estimates. In some circumstances,
however, a biased estimator may have smaller variance than an unbiased estimator (e.g.,
empirical Bayes predictions of random effects in multilevel modeling). A consistent estimator is
one such that, as sample size increases, estimates converge to the population value. Finally, an
efficient estimator is one with minimum variance compared to other estimators of the population

value.
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Effect sizes can be generally classified along a spectrum of ranging from fully parametric
to fully nonparametric. Parametric effect sizes rely on specific assumptions about the
distributions of parameters in the population (e.g., equality of variances, normality of residuals),
whereas nonparametric effect sizes make no such distributional assumptions. The focus of this
review of effect sizes will be on parametric effect sizes.

One of the primary purposes of the following review is to identify commonalities in the
development of the effect sizes that will aid in the evaluation of existing effect size measures for
mediation analysis, and inform the extensions of v that follow. Methodological work on effect
sizes for traditional research designs has been ongoing for over a century (e.g., Fisher, 1915),
whereas effect size measures for mediation analysis have been developed relatively recently.
Although indirect effects are more complex than effects in traditional designs, there are also
common statistical and interpretative elements shared by the effects, such that developments in

one effect size may inform the developments of another.

2.2 Types of Effect Sizes

2.2.1 Standardized mean differences

For study designs where the predictor variable is binary and the outcome is continuous,
the most frequently used effect size measure by social and educational researchers is the
standardized mean difference ¢ (Cohen, 1988; Hedges & Olkin, 1985; Lipsey & Wilson, 2001).

In the population, the standardized mean difference between two groups ¢ is defined as

s=thts 2.1)
o

where £, and g, are the group-specific population means, and o is the population standard

deviation, assumed equal across levels. The effect size o is interpreted as the difference between

11



population means in terms of standard deviation units (e.g., 6 =0.5 means that the group means
differ by on half standard deviation with dummy coding). Several sample estimators have been
proposed for ¢ and typically vary in how the population standard deviation is estimated. Glass
(1976) proposed an estimator A that estimated the population standard deviation as the within-

group standard deviation for the control group ('S

control )

A=tz , (2.2)

>

control

where Y, and Y, are the estimated group-specific sample means. Although the choice of &,

as the estimator is reasonable given the assumption of equal within-group population variances, a

more accurate estimator is the pooled within-group standard deviation (& ., ), Which is the

estimator used in Cohen’s d

d=-—_—-2, (2.3)
Gpooled
where
A2 A2
OA_pooIed = \/(nl 1)61 +(n2 1)0-2 ’ (24)
n +n,

where n, and n, are the group-specific sample sizes, and 67 and & are estimates of within-

level variances. Cohen’s d is equivalent to the maximum likelihood estimate (MLE) of & .
However, Hedges (1981) showed Cohen’s d is a biased estimator of ¢, particularly for small

samples. In practice, an adjusted estimator (Hedges’ g) is used

12



g:\ﬁ—@:d n +n, (2.5)
Spooled n +n, -2

where the denominator n, +n, —2 corrects for bias in the estimate of &, (Hedges & OlKkin,

poole
1985).

The success of & can be attributed to several factors. Primary among these factors is that
o has an intuitive interpretation. The fundamental unit of ¢ is the standard deviation, which is
often one of the first statistics taught in introductory methods courses, and also serves as the
primary unit for normed measures (e.g., intelligence tests, achievement tests). In addition, Cohen
(1988) provided benchmarks for what effect size values of ¢ should be considered small,
medium, and large. Although the mechanistic adherence to benchmarks has been rightfully
criticized in the methodological literature (Snyder & Lawson, 1993), it is difficult to understate
the importance of providing some criteria for evaluating an effect size, especially for novel
measures. As stated in Algina et al. (2005) “By itself, Cohen’s ¢, or any other [effect size] for
that matter, has little value. What is required is experience in applying the [effect size].” A
researcher using a novel measure of effect size by definition does not have experience in
applying the effect size, and, therefore, must rely on some external criteria by which to judge the
effect size obtained for their effect of interest. As use of an effect size increases, researchers can
and should rely less on these rough guidelines and instead on the norms for the measure
developed within their specific area of study, but benchmarks can be very important for
facilitating the adoption of a new measure.

Although o is a widely used effect size in the social and behavioral sciences, particularly

in meta-analysis (Lipsey & Wilson, 2001; Hedges & Olkin, 1985), there are many other ways to
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quantify the standardized mean difference in the sample and in the population. For example,

Hedges and Olkin (1985) showed the bias in the expected value of Hedges’ g as

Hw=5@+ j, (2.6)

4N -9

where N =n, +n,. Equation 2.6 means g is positively biased by the factor 35 /(4N —9).

Correcting for this bias yields a new unbiased estimator of the population standardized mean

difference

@=g@—4Ji9} 2.7)

Methods for constructing Cls for the unadjusted and adjusted estimators are available from

several sources (Bird, 2002; Hedges & Olkin, 1985; Kelley, 2007; Steiger & Fouladi, 1997).

2.2.2 Strength of association

Effect size for the effect of a binary predictor on a continuous outcome can be
conceptualized not only as a standardized difference in means, but more generally as the strength
of association between the two variables. The most commonly used standardized measure of
strength of association is the correlation coefficient, which in the special case of the relationship

between binary and continuous variables is the point-biserial correlation

Ovx

—7
> [ 2
Oy \Ox

where o, is the population covariance between the outcome and the predictor, and o7 and o

r— (2.8)

are the population variances of the outcome and predictor, respectively. The corresponding

sample estimator is
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The sample estimator expression can be re-expressed in terms similar to that of & (Cohen, 1988)

(2.9)

r= ° (2.10)

Jo2+(pp)

where p, and p, are the proportion of the population within each group. This can be further re-

expressed as

r=2-F2 foip,. (2.11)

Y

Equation 2.11 reveals an important distinction between Cohen’s d and r. It can be seen that for a
fixed difference in group means, the population point-biserial correlation can vary depending on
the relative proportions of subjects within each group, which is not true for Cohen’s d. In this
sense, the point-biserial correlation coefficient is considered sensitive to base rate, whereas
Cohen’s d is insensitive to base rate (McGrath & Meyer, 2006). When groups have similar base
rates in the population, the point-biserial correlation has a perhaps more familiar translation into

o (Cohen, 1988; Hedges & Olkin, 1985)

(2.12)

It is also important to note that the benchmarks for small, medium, and large correlations
suggested by Cohen (1988) make this assumption of equal base rates for each group.
Although not as commonly used as a measure of effect size for binary predictors as are

standardized mean differences, the point-biserial correlation is still a useful effect size. Like the
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standard deviation metric for Cohen’s d, the correlation coefficient as an indicator of the strength
of relationship between two variables is a core component of introductory statistics courses. Also
like Cohen’s d, benchmarks for small (.1), medium (.24), and large (.37) values of the point-
biserial correlation were proposed by Cohen (1988).

The correlation coefficient has several advantages over the standardized mean difference
as an effect size measure. One primary advantage is flexibility. The point-biserial correlation is a
special case of the more general Pearson product-moment correlation, a common effect size for
bivariate relationships between continuous variables. Standardized mean differences are not
generalizable to designs with continuous predictors because it would be necessary to
dichotomize the predictor in some fashion, a practice that has received much criticism in the
methodological literature (MacCallum, Zhang, Preacher, & Rucker, 2002). Although a
correlation between continuous variables and a correlation between a binary and continuous
variable are not strictly comparable (e.g., small [.1], medium [.24], and large [.37] effect sizes for
the point-biserial correlation are generally less than small [.1], medium [.3], and large [.5] effect
sizes for the correlation), the difference reflects more the difference in the nature of the
predictor/outcome association (i.e., correlation at specific levels of the population vs. across the
range of possible population levels) than a fundamental discrepancy in the effect size when
applied to different study designs. McGrath and Meyer (2006) outlined several additional
advantages of the point-biserial correlation over Cohen’s d as an effect size measure. These
include a) a more direct relationship to statistical power, b) strength of association being a more
general concept than group mean differences, and c) being an integral component of general
linear models. In addition, although effect size values tend to be of smaller magnitude, base rate

dependence can be meaningful in applied settings. For example, Meehl and Rosen (1955)
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suggest that the correlation is a more ecologically valid indicator of treatment effectiveness.
Finally, for circumstances where sensitivity to base rate is not desirable, adjustments to the point-
biserial correlation estimates (and effect size benchmarks) can be made to translate the effect into
one that is base rate independent (McGrath & Meyer, 2006). Similarly, base rate estimates from
prior research could also be used to conduct sensitivity analyses that provide bounds for the
expected effect size in the population.

Like Cohen’s d, the sample correlation coefficient is a biased estimator of the population

correlation. Fisher (1915) first derived the bias in the expected value of f as

. ra=r?
E[f]=Tr N (2.13)

and proposed as an approximately unbiased estimator 7

2
F:f(1+1 ' J (2.14)

It is interesting to note that, unlike Hedges’ g, the bias of ¢ is negative. In addition, the

relationship between bias and the standard error of ¢ (i.e., SE, =[1—Ff?]/ JN ). For example,

re-expressing f in terms of SE, yields

F= f[1+ SE, ] (2.15)

This suggests that the bias in I can also be understood as a function of imprecision of the
estimate. Methods for constructing Cls for unadjusted and adjusted estimators can be found in

several sources (Efron, 1987; Hedges & OIkin, 1985).
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2.2.3 Explained variance

An alternative class of effect sizes includes measures of explained variance, which are
commonly referred to as R® in MLR and r° in ANOVA. For study designs where the predictor
and outcome are both continuous, the proportion of variance explained is equivalent to the

squared Pearson correlation r?. For designs that include a binary predictor and continuous

outcome, much of the research and language of explained variance comes from the ANOVA
literature, where 7* is commonly interpreted as the proportion reduction in error variance (PRE)
due to an experimental manipulation (Maxwell & Delaney, 2003).

Cohen (1988) proposed 7” as an effect size measure that quantified the proportion of

variance accounted for by group membership in the population, which can be expressed as

n’=- : (2.16)

The within-group variance o can be obtained from a regression model with any number of
predictors, meaning »° can be used as an effect size for a wider class of effects than the effect
sizes previously considered. In the case of a single binary predictor and continuous outcome, 7°

is equivalent to the squared point-biserial correlation (r?). For multiple continuous predictors,

the equivalent of Equation 2.16 in multiple regression is

RZ=——7 (2.17)
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where a§ Is the variance of predicted values of the outcome y from the population regression, or
the model implied variance, and o7 is the variance of the residuals in the population. Because

n” is the proportion of variance due to group membership, it can be expressed in terms of &

2 S5

n=—=———- (2.18)
52 +(pp,) ™

It is clear from Equation 2.18 that, like the point-biserial correlation, »” is sensitive to the

population base rate. In sample data, the population analog estimator of r° (/%) is quantified as

(Maxwell & Delaney, 2003)

., (SST)N—(SSW)N"* SSB
(SST)N SST

, (2.19)

where SST is total sum of squared errors (i.e., Zi z ,— Ly; — 7,,]2), SSW is the within-group sum
of squared errors (i.e., Zi Zj[yij - 7.,-]2), and SSB is the between-group sum of squared errors

(i.e., Zizj[y_j - 7,_]2). The analogous estimator of R? (R?) in multiple regression is

. SSR

- > (2.20)
SSR + SSE

where SSR is the sum of squares due to regression (i.e., Zi[yi —yT?), and SSE is the sum of

squared errors (i.e., > [y, - %,1°).
n” for binary predictors and R? for multiple regression have the advantage of intuitive

interpretations as proportions. Cohen (1988) proposed benchmarks for both r* and R?, but, as

with correlations, these differ due to the binary vs continuous nature of the predictor. For a
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binary predictor, the proposed benchmarks were small = .01, medium = .06, and large = .14
effects for n° (pp. 285-287). For a single continuous predictor, the proposed benchmarks were
small = .01, medium = .09, and large = .25 for r* (pp. 79-81). For multiple continuous
predictors, the proposed benchmarks were small = .02, medium = .13, and large = .26 for the

multiple R* (pp. 412-414). Because of the close relationship between proportion of variance and

correlation, the advantages of correlation effect sizes over standardized mean differences also

apply to R* measures. In addition, standardized mean differences and correlations are limited to
bivariate relationships, whereas the proportion of variance measures can be used as an effect size
for relationships between an outcome and multiple variables.

Like sample estimators of the standardized effect size measures previously considered,
the sample estimators 7% and R? are biased. Although derivations of the bias and adjustments
for 72 and R? developed in parallel in the ANOVA and MLR literature, the findings and
proposed corrections shared several common features. The most widely used adjustments to 7°

are &% (Kelley, 1935), defined as

2 SSB — (k —1)MSW
SST '

(2.21)

and &° (Hayes, 1973), defined as

52 _ SSB=(k-)MSW

: (2.22)
SST + MSW

where MSW is mean square within-group error (i.e., > " [y, - y.,I* /[N —Kk]). Notably more

adjustments have been proposed to correct for the sample bias of R? in multiple linear regression

analysis (see Yin & Fan, 2001, for a comprehensive review). However, the most commonly used
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adjustment was proposed by Ezekiel (1930), which is the default adjusted estimator in several

software packages such as SPSS and Stata

2 N_l

Rezee :1_N——p—1(1_ R?). (2.23)

A noteworthy advantage of R? ., over other R? adjustments is that it can be applied to both R?

and the squared Pearson correlation £ (Wang & Thompson, 2007). In addition, Maxwell (1981)

demonstrated that R?

2 e is nearly equivalent to £, differing by one degree of freedom

N-1

N—_pa— R2). (2.24)

&2 =1-

Large sample and exact Cls can be constructed for the unadjusted and adjusted R?and 7?

estimators (Algina, 1999; Kelley, 2007; Smithson, 2001).

2.2.4 Summary of effect sizes

Several aspects of standardized effect size measures are made salient when reviewing the
methodological research on effect sizes for traditional research designs. The first is that although
interpretations may substantially differ, correlations and R®> measures are more generalizable
effect size measures than standardized mean differences. Further, because R® can quantify
effects with more than two variables, R? effect size measures are more generalizable than
correlations. It is also noteworthy that for correlations and R?, the effect size benchmarks for
small, medium, and large effects differ depending on whether the predictor is binary or
continuous, and whether the effect is between an outcome and a single variable or multiple
variables. Another aspect common to all of the traditional standardized effect size measures is

that estimators that are sample analogues of the population effect size parameters (e.g., Cohen’s
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d, #, R?) are biased. This bias can be attributed to error variance (Box, 1971), and, therefore,
bias is expected to be worse in study conditions where sampling error is relatively high (e.g.,
small samples, small population effects). In addition, bias tends to be larger for R* measures

than for correlations and standardized mean differences, suggesting that, in general, sampling

error has a greater impact on R® estimators. Corrections for sample bias have been proposed for
all of the estimators of standardized effect sizes. However, likely because of the heightened
sensitivity of R?> measures to sampling error, bias-adjusted estimators for R® are more routinely
applied in practice than, for example, bias-adjusted estimators for f. As methodological
advancements spur the creation of novel effect size measures, awareness of the common themes
in the effect size literature for traditional designs can prove highly informative for developments

in more complex models.

2.3 Mediation Analysis

Mediation analysis provides a method to examine the mechanisms through which
variables have their effects, allowing researchers to build a more complete understanding of the
causal processes underlying phenomena. More complete knowledge of the relationships among
variables can, for example, identify points of intervention in a causal chain that can be expected
to have the maximum downstream effects. In addition, mediation analysis can be used to
quantify the relative importance of competing causal processes, such as the relative downstream
effects of several treatment components.

The fundamental logic and assumptions of mediation analysis can be illustrated with a
three-variable mediation model. For this model (illustrated in a path diagram in Figure 1),
mediation analysis decomposes the total effect of a predictor x on an outcome y into a direct

effect of x on y controlling for the mediator m, and an indirect effect of x on y through m. The
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relationship between x and y for a given observation (i subscript is left off for convenience) is

expressed as

y=B,. +B,X+&,.,, (2.25)

where B is the total effect of xony, B, is the intercept, and ¢, is the error term, where
&, ~ N(0,07.,) . To examine the direct and indirect effects, it is first necessary to estimate the

effect of x on m, expressed as

m=B,., +B, X+&... (2.26)

where B, is the effect of xonm, B is the intercept, and ¢, is the error term, where

X

&,., ~N(0,52. ). Next, it is necessary to estimate the effects of x and m on'y, expressed as
y=B,,+B,.X+B,.,m+e,., (2.27)

where B, is the effect of m ony controlling for x, B, is the effect of x on'y controlling for m
(i.e., direct effect), B, is the intercept, and &, is the error term, where ¢, ~ N(o,aj.x) (xin
subscripts indicates multiple variables). In addition, ., and &, are independent across

equations, which implies that the sampling distributions of estimators of regression coefficients
are also independent for different outcomes.
The indirect effect can be obtained as either the difference between the total effect and

direct effect (B,, —B,,.,,) or as the product of the effect of x on m and the effect of mony

controlling for x (B ). These methods yield equivalent values of the indirect effect when

mx Bym-x

the models are linear in their effects. However, the product of coefficients approach is often
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preferred because it allows for the calculation of many more types of indirect effects in complex
mediation models with multiple indirect paths and/or nonlinear effects.
The population indirect effect is estimated by the product of regression coefficients

estimated in the sample. Although the distribution of the product B B, is acomplex function

of the normal distributions, the expected value of the indirect effect distribution is the population
parameter. That is, the sample indirect effect is an unbiased estimator of the population indirect
effect. Monte Carlo simulation studies have confirmed the unbiasedness of the sample indirect

effect (MacKinnon, Warsi, & Dwyer, 1995).

2.3.1 Confidence intervals

Methods of constructing Cls for indirect effects have received much attention in the
methodological literature. It is worthwhile to consider the advances in Cls for the indirect effect
because the effect size v is a function of the indirect effect, and it is likely that properties of the
indirect effect sampling distribution that pose challenges for constructing accurate Cls will also
be challenges for constructing Cls for v .

For many common estimators with sampling distributions that are asymptotically normal
(e.g., means, unstandardized regression coefficients), approximate large sample Cls are typically

constructed by inverting the z test (or t test for small sample sizes). For example, inverting a two-

sided z test yields the familiar CI for the point estimate 6
0+12, ,,[SE@)], (2.28)

where z,__,, is the z value corresponding to the 1-« /2 quantile of the standard normal

distribution. Cls for the indirect effect were constructed first using this parametric approach

based on the assumption of asymptotic normality. Specifically, Sobel (1982) used the first-order
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multivariate delta method to derive the asymptotic variance of the indirect effect (

B2 o2 +B2 o2 ), which, when substituting sample estimates for parameters, yields a Cl for

mx ymx ymex Omx

the product of point estimates, B_ B

mx —ymex

BmxBym X T Zl alz\/anwx Ajm oX + Bjm oX Anzwx ! (229)

where 67, and &7 ., are the estimated sampling variances of B_ andB respectively.

ymex
However, several simulation studies showed conditions where normal theory Cls for the indirect
effect failed to achieve the nominal coverage rate of 95% (MacKinnon et al., 1995; Stone &
Sobel, 1990). In addition, even for conditions where nominal coverage was achieved, the
proportion of cases where the true value was greater than the upper 95% CI limit or less than the
lower 95% CI limit were imbalanced. MacKinnon et al. (1995) found a similar pattern of results

for Cls based on a second-order multivariate delta method approximation

mx ymx— lo:/2\/B2 52 ‘|'B2 6' +O' O' (230)

mx ymx ymex~ mx mx~ ymex *

The putative cause of the poor performance of normal theory Cls is the non-normality of

the sampling distribution of the indirect effect (MacKinnon, Lockwood, & Williams, 2004).

Although the sampling distributions of the regressions coefficients B_ and Bym,x are normal, the

sampling distribution of the product of normally distributed variables is substantially more

complex (Aroian, 1947; Craig, 1936). This is because the mean, variance, skew, and kurtosis of

the product distribution are functions of the distributions of B_, and Iéym,x . Specifically, the

product distribution is narrower than the normal distribution (i.e., leptokurtic), has heavier tails,

and when the product of coefficients is non-zero, is skewed left or right depending on the sign of
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the product (Craig, 1936). In other words, the sampling distribution of a non-zero indirect effect
requires an asymmetric CI.

MacKinnon and colleagues (2004, 2007) proposed a method of constructing asymmetric
95% Cls for the indirect effect. The form of the proposed Cls is similar to the normal theory-
based Cls (Sobel, 1982) in Equation 2.29, but replaces the z values with the critical values based

on the distribution of the product (m,__,, ; Meeker, Cornwell, & Aroian, 1981)

A A

BBy £ M0 [BLGE,, + BE, 67 (2.31)

mx ymex =~ mx *

Although this method of constructing Cls for the indirect effect improves the coverage balance,
overall coverage does not achieve the nominal level for small sample sizes and small effects
(Mackinnon et al., 2004). A possible reason for the poor coverage in these conditions is that,

whereas z, _,, is a fixed value, m__,, varies with the magnitudes and variances of the

coefficients. Because these values of the asymptotic distribution are not known a priori, they are
replaced with their unbiased sample estimates (MacKinnon et al., 2004, 2007). Exactly what
effect using sample estimates to obtain critical values has on the performance of the Cls is
unclear, but it is reasonable to assume that using sample estimates instead of fixed parameters
adds uncertainty to the interval estimation procedure, particularly for those conditions in which
the Cls performed poorly.

Nonparametric and semiparametric Cls are viable and increasingly popular alternatives to
fully parametric Cls for the indirect effect. Nonparametric approaches do not assume a functional
form of the sampling distribution of either the estimator or the variables that compose the
estimator, but rather are used to generate an empirical sampling distribution via resampling. The

most commonly used resampling technique is called bootstrapping. In its simplest application,
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bootstrapping is used to create an empirical distribution of the estimator by resampling
observations with replacement from the original data, obtaining estimates from the resampled
data, and repeating the procedure enough times to obtain a sufficiently close approximation of
the true sampling distribution.

Several methods can be used to construct Cls from the empirical sampling distribution.
The simplest approach is the percentile method where the CI is constructed using as the lower
and upper limits the values of the empirical distribution that correspond to the 100* ¢« / 2 th and
100*(1- e« / 2)th percentiles. However, the performance of percentile Cls is expected to degrade
as the empirical sampling distribution deviates from either the normal or a transformation of the
normal distribution (e.g., excessive skew, kurtosis; Davison & Hinkley, 1997). Adjustments that
improve the performance of Cls in these circumstances include the bias-corrected (BC) and the
bias-corrected and accelerated bootstrap (BCs,; Efron, 1987).

The BC bootstrap Cl improves accuracy by adjusting the «/2 and 1—« /2 percentiles

of the bootstrap distribution. Specifically, the adjusted upper percentile is ®(2Z,+z, _,,) and
adjusted lower percentile is ®(22,+z,,,), where Z, is the z score corresponding to the
percentile of the observed indirect effect in the empirical distribution, and ®(+) represents the

cumulative normal distribution. The accuracy of the CI can be further improved by adjusting the
al2 and 1-a /2 percentiles for the skew of the empirical distribution. BCa Cls adjust for skew

by adding an acceleration constant 4 to the BC bootstrap ClI
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The acceleration constant & is an estimate of skew, which can be obtained using an
approximation (Efron, 1987) or estimated nonparametrically using bootstrapping or the jackknife
(Frangos, 1990).

Semiparametric approaches represent a middle ground between the fully parametric and
fully nonparametric approaches to constructing Cls. The term “semiparametric” is quite broad,
but for constructing Cls, the semiparametric approach typically involves specifying the sampling
distributions of specific variables (e.g., regression coefficients, variances) and using those
distributions to approximate the sampling distribution of a more complex estimator that is a
function of those variables with known distributions. Monte Carlo Cls are constructed by treating
the variables with known distributions as population parameters, simulating a sufficiency large
number of values from the parameters, computing estimates of the complex estimator for each
set of simulated values, and constructing Cls using as the lower and upper limits the values of the
simulated distribution that correspond to the /2 and 1—« /2 percentiles. Monte Carlo Cls
have been shown to have good statistical properties for indirect effect estimates (Preacher &
Selig, 2012).

The three-variable mediation model represents a relatively simple model of the
relationships among constructs. It is more often the case in the social and behavioral sciences
that theories consist of complex webs of relationships among multiple constructs, where the
effects of one construct are competing with the effects of another, or the effects of a construct
vary across levels of another. SEM has become the dominant framework for modeling and

testing these complex relationships.
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2.4 Effect Size in Mediation Analysis

The concept of effect size in mediation analysis has received comparatively little
attention in the methodological literature relative to advancements in point and interval
estimation. One possible reason is that, although the indirect effect is composed of regression
coefficients with established effect sizes, the indirect effect does not fall neatly within the
categories of effect size for traditional study designs previously discussed. For example, one

could consider the coefficients composing the indirect effect B, and B in either their raw

X

metrics or as standardized effect sizes. However, if the effect sizes of the coefficients differ (e.g.,

B, islargeand B, issmall), it would be unclear how to interpret the magnitude of the

indirect effect. Therefore, it would appear to be more practically useful to consider effect size for
the total indirect effect rather than for its constituent parts.

The intention of the following review is not to provide a complete evaluation of all
existing effect size measures for mediation analysis, but to focus on effect sizes that can be
interpreted within the effect size categories previously described for traditional research designs
(i.e., standardized mean differences, strength of association, proportion of explained variance).
The one exception will be a discussion of ratio measures of effect size because these measures
are among the most reported effect sizes for mediation analysis. Because of the similarities
between these specific effect sizes for mediation and their corresponding traditional measures, it
is useful to consider the common themes that have arisen in the methodological literature for
traditional effect sizes (i.e., generalizability, sample bias of standardized effect size estimators,

bias corrections related to sampling error).

29



2.4.1 Ratio measures
The earliest effect size measures for mediation analysis were the proportion mediated
(PM; Alwin & Hauser, 1975) and the ratio mediated (RM; Sobel, 1982) measures. For the three-

variable mediation model in Figure 1, PM is defined as

PM = —mymx (2.33)

yX

This effect size is interpreted as the proportion of the total effect of x on y (B, ) mediated by m (

B ). RM evaluates the indirect effect relative to the direct effect and is defined as

mx Bym-x

RM = —mymx. (2.34)

yxsm

This effect size is interpreted as the ratio of the indirect effect of x on'y through m (B,B,,.,) t0
the direct effect of xony (B,,.,,)-

The ratio measures of effect size for indirect effects have several significant limitations.
One important limitation regards interpretation. For example, it is not clear how one would
interpret a large value of PM or RM if the magnitude of indirect effect is significant but close to
zero. For a large value of PM or RM to be practically important, it must be assumed the total
effect is also practically important. Although this may still be a useful interpretation for the
indirect effect for some researchers, the interpretation is highly context-dependent, and would
not be recommended if the magnitude of the indirect effect is of interest. Another important
limitation is the performance of sample estimators of PM and RM. The estimators of PM and RM

have large variances across repeated samples and require very large samples for the estimators to
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stabilize (N = 500 for PM, and N = 5000 for RM; MacKinnon, 1995; Tofighi, MacKinnon, &

Yoon, 2009).

2.4.2 Standardized mean differences
Hansen and McNeal (1996) first proposed a standardized effect size for the indirect effect
of a binary predictor (e.g., group membership for intervention), and continuous mediators and

outcomes. The effect size is expressed as
ES = B Bymx = % B (2.35)

where the effect of the predictor g, is analogousto o in Equation 2.1, and 2, ., isthe

ymex
standardized effect of m ony from Equation 2.27. This means that the total effect size of an
intervention can be decomposed into a direct effect on an outcome, and an indirect effect where
the intervention causes a change on the mediator (the effect of the mediator is assumed equal

across groups). The effect size is estimated by substituting sample quantities

1 1b,b
ES¢g = |[—+—— "7
n N, o

: (2.36)

where the effect of the predictor is Cohen’s d, and & is the asymptotic standard error of the

indirect effect in Equation 2.29. In addition, because Cohen’s d is a biased estimator of &, the

authors also proposed an adjusted estimator analogous to Hedge’s ¢

ES¢ =ES« 1—4 : (2.37)
4n, +4n,+9
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More recently, Kraemer (2008) proposed a similar standardized mean difference measure for
mediation models, but more work is necessary to determine its viability as an effect size

measure.

2.4.3 Strength of association

Like unstandardized regression coefficients in MLR, indirect effects can be standardized
to remove the metrics of the predictor and the outcome from the effect (the scale of the mediator
does not factor into the standardization). The interpretation of the standardized indirect effect
also changes in a way analogous to standardized regression coefficients where the metric of the
standardized variable(s) is the standard deviation. For example, the interpretation of the indirect
effect when standardized by the standard deviations of both the predictor and outcome is that a
one standard deviation increase in the predictor is associated with some standard deviation
change in the outcome through the mediator.

When x and y are both continuous, the most common form of standardization is complete

standardization ( 4, 8,., ), which removes the scale from both x and y

ﬁmxﬁym-x = Bmx Bym-x (O-x /O-y) (238)

Complete standardization is appropriate when the scales of both x and y are arbitrary. However,
if the scale of x or y is meaningful, the indirect effect can be partially standardized by the
standard deviation of only the variable with arbitrary scaling. For example, if the scale of x is

meaningful but not that of y, the partially standardized indirect effect is

Bmxﬂym-x = Bmx Bym-x (1/ Jy)' (239)
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Partial standardization has been recommended for indirect effects where x is binary and y is
continuous (Hayes, 2013). Specifically, an unstandardized binary variable has an intuitive metric
where effects are interpreted as mean differences between groups. Standardizing a binary
variable changes the interpretation of the effect into standard deviation units, which makes
interpretation more difficult in terms of group mean differences. However, as described in

Section 2, the completely standardized effect with binary x can be interpreted in terms of strength
of association (point-biserial correlation) or explained variance (%), which as previously

described have several advantages over standardized mean differences as effect size measures.

2.4.4 Explained variance

Several methodologists have proposed explained variance effect size measures for
indirect effects (de Heus, 2012; Fairchild et al., 2009; MacKinnon, 2008). These measures
ostensibly quantify the variance in y that is accounted for jointly by both m and x. To more
clearly understand why this component of explained variance corresponds to the indirect effect,
it is helpful to consider the three potential sources of variance in y that can be explained by m
and x: a) the variance in y explained uniquely by x, b) the variance in y uniquely explained by m,
and c) the aforementioned variance in y explained jointly by m and x. The indirect effect is a
component of the total effect of x on y. It stands to reason then that variance not attributable in
some way to x is irrelevant to the variance explained by the indirect effect, which would rule out
the variance in y explained by m independent of x as irrelevant to the indirect effect variance. In
addition, the variance in y attributable to x independent of m is more consistent with the
definition of the direct effect, meaning the variance in y explained jointly by m and x is the
variance attributable to the indirect effect. Fairchild et al. (2009) proposed an effect size to

quantify this component of explained variance as
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2
Rmed

=10 — (R — 1) (2.40)

yemx

where r,; is the squared unconditional correlation between y and m, r, is the squared

unconditional correlation between y and x, and R?,__ is the squared multiple correlation of y on

yemx

both m and x. Essentially, ry2m consists of variance in y attributable to m independent of x, and

2 —
yemx

variance in y explained jointly by m and x, and R ry2X isolates the variance in y uniquely

attributable to m. Subtracting the unique component from the total ry2m leaves the joint variance

component. MacKinnon (2008) proposed two alternative measures to quantify the joint

explained variance component, one based on the partial correlation of y and m given x

RZ . =r2r? (2.41)

partiall — Tyx'ymex?

2
yemx

and a partial correlation version scaled by R

R? r2r2 IR2 (2.42)

partial 2 = yX ' ymex yemx*

de Heus (2012) proposed a measure of the joint variance explained component based on the

semipartial correlation of y and m given x

RZ =rir’ (2.43)

semipartial yx y(mex)*

Lachowicz et al. (2018) outlined several limitations of these variance explained measures
for the indirect effect. The most notable limitations concern interpretability. For RZ ., it is

possible for the measure to return nonzero values of effect size when the indirect effect is in fact

zero. Specifically, Lachowicz et al. (2018) show that when 2

ymex

=0 (i.e., no indirect effect),

R = BBy In other words, when the indirect effect is zero, RZ,, quantifies what is known

34



in the path analysis literature as “spurious” correlation (Simon, 1957). Although the variance

2
med

quantified by RZ_, may be of interest to some researchers, the variance does not correspond to

that uniquely attributable to the indirect effect, and, therefore, is not an appropriate measure for

2
partial 2 ¥

no justification is provided for scaling R by RZ_ ,soitis not

partiall yemx ?

this purpose. For R

clear what variance this effect size is quantifying. The partial and semi-partial R*> measures (

and R2

semipartial

R a1 ) appear to have more desirable interpretations. Both measures have forms
similar to the indirect effect as products of coefficients, and both are bounded by zero and one.
However, further examinations of these measures (Lachowicz et al., 2018; Wen & Fan, 2015)
demonstrated that these measures lack an important property known as monotonicity. For a
measure to lack monotonicity means that with all else held equal in the population, these
measures are not one-to-one functions of the indirect effect in either raw or absolute value. The
implication for measures that lack of monotonicity is that equivalent indirect effects from two

studies could yield different effect sizes. Until the conditions that cause these measures to lack

monotonicity are made explicit, their utility as effect size measures is limited.

2.4.5 Effectsize v
Lachowicz et al. (2018) proposed v as a measure of effect size for mediation analysis. v
is a measure of explained variance, interpretable as the variance in an outcome explained by a

predictor through a mediator that appropriately adjusts for variance due to spurious correlation

unaccounted for in the Fairchild et al. (2009) R2 , formulation in Equation 2.40, defined as

med

v=p% —(R: —ryzx). (2.44)

ymex yemx
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Lachowicz et al. (2018) also showed that for a three-variable mediation model, v is equivalent to

2
ymex

the squared standardized indirect effect ( 52 52 .. ). Because v is a measure of explained

variance, Cohen’s (1988) benchmarks for interpreting small, medium, and large effect size are
applicable®. For an indirect effect with a binary predictor, the appropriate benchmarks are for 7°
(Cohen, 1988, pp. 285-287). For an indirect effect with a continuous predictor, the appropriate
benchmarks are those for R*(Cohen, 1988, pp. 412-414)2,

Because sample analog estimators of population standardized effect sizes typically are
biased (particularly variance estimators), it was expected that the sample analog estimator of v (
0) was also biased. This was confirmed by a Monte Carlo simulation study, showing & was
upwardly biased particularly for small sample sizes and for small indirect effects. Although the
complete sampling distribution of & is not known or easily derivable, Lachowicz et al. (2018)

derived the bias in the expected value of o, and proposed an adjusted estimator that adjusted for

this bias. Because B_, and éym,x are independent and normally distributed,® the expected value

of O is

L If an effect is completely transmitted to an outcome through a mediator, the standardized indirect effect is
equivalent to the total effect, which for a single predictor is a correlation coefficient. The squared correlation
coefficient is equivalent then to v, and could theoretically be judged against Cohen’s benchmarks for explained
variance.

21t is important to note that, although Cohen’s benchmarks may be applied, U is not bounded by 0 and 1, and is not
considered a proportion. U can be greater than 1 when suppression is evident (i.e., direct and indirect effects have
opposite signs).

3 As is common practice when standardizing regression coefficients, the variable variances O'X2 and 0'5 are
assumed fixed, known quantities, and do not vary across samples. Therefore, it is assumed the variance ratio

o /0'5 does not affect the sampling distribution of B’ Byzm,X :
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E[0]= E[B2 B2 ](af/aj)

= (B +O_mx)(Bym X ym x)(o- /O- )

= ﬁmxﬁym x T PO ym X ym X +O_mxaym X"

This means that the expected value of & yields the parameter of interest 42 ;. plus bias

BT+ o’ +o’ o2 . The bias results from the fact that the effect size is comprised of

nexTmx T T g
products of normally distributed coefficients, the properties of which have been detailed in
several sources (Arnold, 1982; Bohrnstedt & Goldberger, 1969; Goodman, 1960). Because each
term is a function of the sampling variances of the regression coefficients, the magnitude of bias
is therefore a function of sample size. In addition, the finding that bias in the expected value of o
is equivalent to the asymptotic variance approximation for indirect effects (Equation 2.39) is
consistent with prior methodological work on bias reduction showing bias is generally
proportional to error variance (Box, 1971).

It follows that the bias of the expected value of o can be adjusted by subtracting a bias
term from the sample estimates. However, it is important to note that the bias in Equation 2.45 is

the asymptotic bias, and must be estimated from the sample. This is addressed by substituting an

unbiased estimator of the asymptotic bias (B2 62 . +B2 62 —&2 6

mx ymx ymex O mx mx ymx’

; Goodman, 1960). This

approach to adjusting for this bias of o is similar to Ezekiel’s (1930) adjustment for R* in

simple linear regression (£* when the predictor is binary). A Monte Carlo simulation study
showed that bias of © was negligible for the vast majority of simulation conditions. For
conditions where bias was non-negligible (> 5% relative bias; Boomsma, 2013), relative bias

was still relatively small (< 20%). Whereas the information conveyed by o is redundant with
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that of the standardized indirect effect for three-variable mediation models, the adjusted o
conveys unique information that incorporates imprecision in effect estimates.

As previously discussed with the unstandardized indirect effect, parametric Cls rely on
knowledge or a reasonable approximation of the sampling distribution of the estimator. The
sampling distribution of the unstandardized indirect effect is a complex function of normally
distributed variables, and it is unknown how the distribution changes when the indirect effect is
standardized. Therefore, it is difficult to propose even an approximation to the distribution of
squared standardized indirect effect. Lachowicz et al. (2018) used nonparametric bootstrapping
to construct 95% Cls based on the percentiles of the empirical sampling distribution. Although in
many conditions satisfactory CI coverage was achieved according Bradley’s criteria (92.5% -
97.5%; Bradley, 1978), coverage tended to be too high (> 97.5%) for conditions with small
sample sizes and small effects, suggesting the 95% Cls constructed using the percentile method
were overly wide. In addition, even when satisfactory coverage was achieved, the proportion of
true values below the lower CI limit and above the upper CI limit were imbalanced, suggesting a
small but systematic bias in the interval estimation procedure.

v has many desirable properties as an effect size measure. It is interpretable as a measure
of explained variance and can be compared to existing benchmarks for small, medium, and large
effects. It is standardized, so it is invariant under linear transformations of x, m, and y. It is not
dependent on sample size in the population. It is a monotonic function in absolute value of the
standardized indirect effect. Although more research is needed to develop an accurate interval
estimator across a wider range of study conditions, Cls for © and o can be constructed using a
nonparametric bootstrap procedure. Finally, although the sample analog estimator & is biased,

the adjusted estimator © has good statistical properties (i.e., negligible bias, consistent) in many
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conditions common in applied research. In other words, the development of v was consistent

with the development of effect sizes for traditional research designs.

2.5 Summary

In Chapter 2, the topics of effect size, mediation analysis, and effect size in mediation
analysis have been introduced. Several types of effect sizes for various common research designs
were described. It was shown how sample analog estimators of these effect sizes are biased, and
how these estimators can be adjusted, yielding new estimators with often more desirable
statistical properties. Although a review of effect sizes for indirect effects in mediation analysis
showed parallels among mediation effect sizes and traditional effect sizes, only the mediation
effect size v was developed considering the properties of the sample estimators. The sampling
properties of & will be further explored in later sections in the development of a general bias
adjustment procedure. In Chapter 3, a general explained variance framework for MLR and SEM
will be introduced, and a general matrix-based formula for the adjusted R? will be proposed. In
Chapter 4, the explained variance framework will be used to generalize the effect size v to

complex mediation models.
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3 GENERAL EXPLAINED VARIANCE FRAMEWORK FOR MLR AND SEM
3.1 Matrix Representation of MLR and Explained Variance

3.1.1 Matrix Representation of MLR

The effect sizes presented in Chapter 2 were applicable to bivariate relationships in
traditional research designs, and relationships among three variables for the mediation designs.
As designs become more complex, it is more convenient to express models in matrix notation.
This section will review the matrix representation of MLR and the computation of explained
variance (R?).

Although the MLR representation can be considered a special case of the SEM
framework that will be reviewed in later sections, there are notable advantages to considering the
MLR framework first. One is that the MLR representation will provide clearer links between the
simpler effect sizes presented in Chapter 2 and the extensions to more complex models presented
in later sections, particularly when considering the sampling properties of the estimators for
deriving bias of sample estimators. Another notable advantage is that, whereas the adjusted R? is

a well-established quantity in MLR, an analogous bias-adjusted statistic has not been studied for

R? in SEM. Expressing the MLR R? bias adjustment in matrix form will facilitate the
development of a generalizable bias-adjustment for estimators of v extensions in later sections.
For ease of presentation and without loss of generality, | assume all variables are in

standardized form. The regression equation is expressed in matrix form as

y =Xp+¢, (3.1)
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where y isa N x1 vector of responses, X isa N x p matrix of p covariates, [3 isa px1 vector

of regression coefficients, and € isa N x1 vector of errors. The model is assumed to be

correctly specified, and that the errors are homoscedastic and independent. It is well known that
when these assumptions hold, the ordinary least squares (OLS) estimator of p (B) that

minimizes the sum of squared errors is (X'X)™* X'y (Rencher, 2008; Searle, 1971). In addition,

B is an unbiased estimator of  (i.e., E[]=p), and the variance of B is o (X'X)™, where o?

is the residual variance.
Obtaining variance estimates is most conveniently performed in matrix-based MLR using
quadratic forms. The general quadratic form for computing the sums of squares of a vector nx1

y and a nxn symmetric matrix A is y'Ay, where A determines the type of squared quantity. For
example, if Aisa NxN identity matrix I, the quadratic form y'ly yields the SST, whereas
substituting 1 with the matrix X(X'X)™X' yields the SSR, and 1 —X(X'X)™*X’ yields the SSE.

Variance estimates are obtained by dividing these quantities by the sample size.
As described in Section 2.2.3, the above variances are biased estimators of their
respective population variances. To determine the degree of bias, it is helpful to know some of

the distributional properties of the quadratic form. Assuming y ~ N(u,X) and A is a matrix of

constants, the expected value of y’Ay is (Rencher, 2008)
E[y'Ay]=tr(AX) + u'Apu. (3.2)

Providing the assumptions hold, bias in the expected value of a quadratic estimator can be

determined from Equation 3.2 as deviations of the expected value from the population parameter.

For example, assuming y ~ N(XB,X) , the expected value of the above biased af estimator is
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E[N'SSE]=N"E[y'(1 - X(X'X)X")y]
= N tr{ (1 = X(X'X) " X)Z}+ p'X' (I - X(X'X) " X")XP]
= &N tr{(1 - X(X'X) ' X")}+ B'X'XB — B'X'XB] (3.3)

_o2 NPl
N

It is clear then the unbiased estimator of o2 is (N — p—1)"SSE (s?). This approach can also be
used to derive the unbiased estimators of the total variance (N —1)SST (s7) and the variance

due to regression p'SSR.

3.1.2 Explained Variance

Variance explained is defined as the ratio of the variance explained in the outcome by the
covariates to the total variance of the outcome, or the proportion reduction in error variance due
to the covariates in the model (Cohen, Cohen, West, & Aiken, 2003; Maxwell & Delaney, 2003),

commonly expressed as

2
R2=21o1-% (3.4)
O

Other sources define R? as the ratio of sums of squares regression to the sums of squares total

(Rencher, 2008), expressed as

_SSR _ yIX(X'X) " Xy 1 y'TI = X(X'X) ™ Xly
SST y'ly y'ly '

R? (3.5)

If MLEs are used to estimate variances in Equation 3.4, these definitions are equivalent. Both

Equations 3.4 and 3.5 quantify the variance explained in the sample, and are biased estimators of
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the population R?. Equation 3.4 can be adjusted for this bias by using the unbiased estimators s§

s?,and s; instead of the MLEs o7, o7, and o

i) 57 y’
2 2
~ S,
RE=2 1 3 (3.6)
2 2
Sy Sy

This is equivalent to the Ezekiel (1930) adjustment that is provided by default in many statistical

software programs

2
R =1-2%
SY
_ m_ ' =1~y
zl_NN 1yl X(),(X) X'ly 3.7)
-p-1 y'ly
:1—&(14{2).
N-p-1

This R* adjustment formula makes salient the importance of sample size and number of

parameters in R? bias. Specifically, increasing the number of parameters holding sample size
constant will increase bias, and, alternatively, increasing the sample size holding the number of
parameters constant will decrease bias.

Although a popular choice for obtaining more precise estimates of R?, R? is by no
means the only statistic designed for this purpose. Yin and Fan (2001) conducted a thorough

review of R? estimators, finding at least six different methods for R? bias adjustment.

Comparing the performance of the estimators, a method proposed by Olkin and Pratt (1958)

consistently returned the least biased estimates across a range of conditions. This is unsurprising

as the adjustment was derived from the known probability density function of R?, and therefore
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accounts for bias in higher order moments (e.g., skew, kurtosis). Although R? adjusts for bias
only in the expected value of R?, the measure returned largely accurate estimates across many

conditions, with bias becoming problematic in conditions with small ratios of small size to
number of parameters.
The approach to deriving and adjusting for bias in the expected value considered thus far

has proven particularly useful for creating estimators with improved statistical properties (i.e.,

R?, 5°). Importantly, it demonstrates that in some cases the complete distributional properties of

an estimator, although desirable, may not be necessary to obtain accurate estimates. It should be
noted, however, that models for which the estimator biases were derived are not particularly
complex and contain relatively few parameters. Of interest is a more general approach to
reduction in expected value bias, of which the adjusted estimators considered thus far are special

cases, and which can be extended to more general modeling frameworks (i.e., SEM).

3.1.3 General Bias Reduction
Many bias-adjusted estimators described in the previous section and in Chapter 2 can be
expressed in terms of sample bias subtracted from the biased MLE estimator, which are special

cases of a more general procedure for bias reduction (Box, 1971; Cox & Snell, 1968; Cox &

Hinkley, 1974). The asymptotic bias of a MLE 6 can be expressed generally as

b, (6)
N 2

b(0) = ¥+ (3.8)

where N is the sample size, b, (6) is first-order bias, b,(¢) is second-order bias, etc. It is often of

interest to correct for b, (8) because higher order biases tend to be of negligible magnitude in
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most applications (Box, 1971; Cox & Hinkley, 1974; Firth, 1993). A bias-adjusted estimator éBC

can then be created by substituting sample estimates for the MLEs
éBC :é_%’ (3.9)

Several methods have been proposed for estimating b, (6), including methods that implicitly
estimate b, () as part of the iterative estimation algorithm (Firth, 1993; Kosmidis & Firth,
2010), and methods that explicitly estimate b, (6) so it may be subtracted from the MLE. Explicit

methods include the jackknife (Quenouille, 1956; Schucany, Gray, & Owen, 1971),
bootstrapping (Davison & Hinkley, 1997; Efron, 1975; Hall & Martin, 1988), and asymptotic
expansions (Box, 1971; Cox & Snell, 1968; Cox & Hinkley, 1974).

The bias reduction approaches described in previous sections are special cases of a more
general method of asymptotic expansion. If 6 is a function of a parameter « that has an
estimator T with good statistical properties (i.e., unbiasedness, minimum variance), the
asymptotic bias of the function 6= f (T), assuming the function is continuous at s, can be

approximated with a Taylor expansion (Cox & Snell, 1968; Cox & Hinkley, 1974)
! l 14
fM)= () +(T-p)f (u)+§U—ﬂ)2f (1) (3.10)

where f’(s) and f"(e) are the first and second derivatives of f(«). It follows that functions with
no second derivative (e.g., linear functions) are asymptotically unbiased. Assuming the second

derivative exists, the asymptotic bias of the expected value of 6 is
1 14
E[f(T)]~ f(u)+5var(T)f (). (3.11)
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An adjusted estimator can then be constructed by rearranging terms and substituting T for x

G = £(T) = var(T) £°(T). (312)

For estimators consisting of multiple parameters such as R?, the multiparameter extension of

Equation 3.12 is (Box, 1971)
by = f(T)—%tr{Z(T)H}, (3.13)

where X(T) is the variance-covariance matrix of parameter estimates, and H is a matrix of
second derivatives of f(T) (i.e., Hessian matrix). It is possible that for some functions (i.e., )

the asymptotic bias term on the right-hand side of equation 3.13 contains nonlinear parameters,
which, when replaced with sample estimates, will yield biased estimates of the asymptotic bias.

The solution is to apply the asymptotic expansion to the nonlinear functions in the bias term
A 1 1
b = £(T) —E(tr (=mn} - {Z(T)Hl}j, (3.14)

Where H, is the matrix of second derivatives of tr {X(T)H} .

Although unbiasedness is a desirable property of estimators, bias-adjusted estimators
should be carefully evaluated prior to use in applied research settings. Because bias adjustments
typically use sample estimates in place of asymptotic parameters, additional sources of error
variance can be introduced into an otherwise unbiased estimator. This bias-variance tradeoff can

be evaluated analytically or through simulation if sampling distributions are complex.
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3.1.4 General Bias Reduction for R?

The adjusted R? (Equation 2.23) can also be re-expressed in a generalizable matrix form.

Although to this point the R? estimators have been expressed in terms of variance and sums of

squares ratios, re-expressing explained variance as the ratio of standardized regression

coefficients more clearly shows that R? follows the same form as the general bias reduction

described in the previous section. The biased MLE estimator of R? is
R? = B'R§, (3.15)

where B is a vector of standardized regression coefficients and R is the correlation matrix among
variables (the total variance of the outcome y is one and so it is omitted from the denominator).

The expected value of the unadjusted R? is

E[R*]=E[B'RB]
=tr{Ro?(X'X)} + p'Rp

o

52 ' i -1 i 316
S 1tr{XX(XX) }+B'Rp (3.16)

=—Np_1c;j +B'Rp

This shows that R? is upwardly biased by the factor o?p/(N —1) . In addition, when § =0,
estimates of R? are upwardly biased by p/(N —1) (Rencher, 2003). The Ezekiel (1930)
adjusted R? can be expressed in matrix form by subtracting the bias factor from the MLE

estimator. However, it is again important to note that o°p /(N —1) is an asymptotic parameter,

so the MLE residual variance estimator is upwardly biased. An unbiased estimator of the bias

factor uses the unbiased estimator s’
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i p 2
=BRp——5
pRE- s
0D 0 p 1_ﬁ’Rﬁ
=pRp——— 3.17
B'RP N_IN_p_1 (3.17)
_R2_ p 1_@2,
N—p—l( )

which is equivalent to the Ezekiel’s R? in Equation 2.23.

The bias term estimated in Equation 3.17 can also be obtained using the more general

bias reduction approach in the previous section. The bias-adjusted R?is expressed as

ﬁZ

= ﬁ’Rﬁ - %tr{var(ﬁ)H}, (3.18)

where H is the Hessian matrix of second derivatives of the function 'R with respect to the

elements of B. To show that this expression is equivalent to Equation 3.17, the right-hand side of

Equation 3.18 is expanded
1 - 1
=tr{var(B)H}==tr
S tr{var(B)H} =

=oltr

= otr

2
o

_ 2
_Gg

s, Spso || 2 2y
Spm Spy || 260 2
1 Mo
(XX) :
Mo 1
{(XX)'R} (3.19)

. {(XX) XX}

Y
N —

1
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Substituting this result into Equation 3.18 and replacing the residual variance parameter o with
the sample unbiased estimator s’ yields an equivalent formula for R%.

The two bias-correction approaches considered in this section (i.e., approximation via
expectations and asymptotic expansion) yielded identical results in these special cases, but there
are situations where using the more general asymptotic expansion approach presented in Section
3.1.3is likely to be more advantageous. The regression models considered thus far have been
linear in their coefficients, omitting nonlinear effects such as polynomials and conditional, or
moderated, effects. Although both methods would return the same or similar approximations in
many circumstances, differentiation in asymptotic expansion is a much more expedient
approach. In addition, methods based on asymptotic expansions can incorporate additional

higher-order approximations to account for different sources of bias.

3.1.5 Limitations of MLR

The primary limitation of MLR as a framework for representing mediation effect sizes is
the restriction of the models to a single outcome. Although mediation parameters can be
estimated using several MLR models as in Equations 2.26 and 2.27, this approach quickly
becomes intractable as models become more complex, in particular when accounting for the
residual relationships among multiple outcomes. In addition, this approach does not lend itself to

a generalizable solution that can be applied to mediation models of various complexities.

3.2 Structural Equation Modeling Framework

SEM is a statistical modeling framework that can be used to simultaneously investigate
complex interrelationships among variables, and estimate many substantively meaningful
parameters that are not accessible by simpler methods. The SEM framework proposed by

Joreskog (1977), and implemented in Mplus using a modified LISREL framework (LISCOMP;
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Muthén & Muthén, 1998-2018) is a particularly useful and intuitive approach for representing
the indirect effects and effect sizes for complex mediation models. The flexibility of the
LISCOMP framework also allows for effect size extensions using cutting edge techniques
available in Mplus such as mediation using multilevel SEM (MSEM), time series analysis, and
latent class analysis.

The LISCOMP model can be considered to consist of two primary components; a
measurement model and a structural model. The measurement model specifies the relationships
among the manifest, or indicator, variables and the unobserved latent variables. The

measurement model is expressed as
y=An+g, (3.20)

where Aisa pxm matrix of factor loadings, n isa mx1 vector of latent variables, and ¢ is a
px1 vector of measurement errors, where £ ~ N (0,®) (because variables are standardized, the

intercept is omitted). This specification assumes that all variables in the model are outcomes (i.e.,
“all y” specification), considerably simplifying presentation by omitting vectors and matrices
specific to exogenous variables. The structural model component of the LISCOMP SEM

specifies the relationships among the latent variables. The structural model is expressed as
n=Bn+¢{, (3.21)

where B isa mxm matrix of slopes for regressions of latent variables on other latent variables,
and ¢ is a mx1vector of residuals, where {~ N(0,¥).

Although MLR is a special case of SEM where there is a single outcome variable and no
latent variables, the methods of parameter estimation markedly differ. The OLS method is most

common for MLR, in which parameters are estimated by minimizing the sum of squared errors,
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and making no distributional assumptions about the variables (though assumptions are needed
for valid inferences). By contrast, parameters are estimated in SEM by selecting the values that
minimize the discrepancy between the sample covariance matrix S and the covariance matrix
implied by the model X . In other words, the covariance structure of the observations is modelled
in SEM, not the individual responses. Parameters are commonly estimated via an iterative
maximum likelihood algorithm assuming multivariate normality of the data (i.e., no closed form
solution). However, in the special case of a manifest variable regression model, MLESs returned

by SEM will be identical to MLEs estimated via OLS under multivariate normality.

3.2.1 Explained variance in SEM

The general definition of R in SEM is analogous to R® in MLR (i.e., the relative
amount of variance explained in an outcome by a set of predictors; Bollen, 1989; Joreskog,
2015). However, because the SEM framework can simultaneously model multiple outcome
variables, there are more ways to define R? in SEM than in MLR. For example, Bollen (1989)
outlined two types of explained variance that can be examined in latent variable models. The first

type is variance in the manifest variables explained by the model (R?)

A

0
)

RZ=1-

y

, (3.22)

where

is the determinant, or the generalized variance shared by multiple outcomes. The

second type of explained variance is the variance in the latent variables explained by other latent

variables, or the structural model R,f
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24 ¥
R? =1 ¥ o) (3.23)

where @ isa mxm matrix of latent variable variances and covariances. Although R,f is

equivalent to the MLR R?in the special case of a path model with a single outcome variable,

generalized variance is not commonly thought of as a substantively meaningful quantity. This is
likely because, outside of very simple models, shared variance is explained by the pooled effects
of other variables in the model, making it exceedingly difficult to isolate the effects of specific
variables (Bagozzi & Yi, 1988).

Given the difficulty in generating appropriate research hypotheses regarding generalized
variance, a more useful measure of R* should quantify the variance explained in each outcome
separately, such that variance explained can be attributed to specific causes. An alternative

formulation for R,f (Rfy) isa mxm matrix of explained variances (and covariances), expressed

as

R2 =D,"’[(1-B) " - I¥[1-B) ' -1]'D,"

n =

(3.24)
~[(1-B") ¥ -BY) 17,

where (I-B)™ -1 is referred to as the total effect (Bollen, 1987), B¥ is the matrix of
standardized effects, ¥* is the standardized residual covariance matrix, and D, is a diagonal

matrix of latent variable variances, estimated as (Joreskog & Sérbom, 2015)

D, ={diag[((1-B)")¥(1-B)"]}. (3.25)
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Dn can be omitted if latent or manifest variables variances are standardized. When the model is

specified to include latent variables, each diagonal element of Rf] is the variance in that latent

outcome explained by the latent predictors. When a path model is specified (i.e., A=1I and

® =0), each diagonal is the variance in that manifest variable explained by the manifest
predictors, where a model with a single outcome is equivalent to the MLR R?.

It should be noted that the ¥ matrix in the center of the quadratic form in Equations 3.24
and 3.25 is a matrix of residual variances and covariances, and not covariances or correlations as
is the case for quadratic forms in MLR (e.g., Equation 3.15). This is partially due to the adoption
of the “all y”’ notation for LISCOMP models made throughout, as exogenous variables can be
considered outcome variables with no predictors. The original LISREL notation separates
exogenous and endogenous variables (Joreskog, 1977), such that the variance/covariance matrix
of the exogenous predictors would be equivalent to the variance/covariance matrix of predictors
in MLR. However, the partitions of ¥ that correspond to outcome variables have no counterpart
in MLR, but are essential for simultaneously modeling variables as both predictors and
outcomes. The effects of variables that are modeled simultaneously with their causes to predict
other downstream variables are residual effects, so it is reasonable to assume that the residual
variance (and residual covariances) should be considered when quantifying the contributions of

those variables to the overall variance explained in a particular outcome.

3.2.2 Sample Estimator of R’
Given that Ri is a nonlinear function and parameters are estimated via maximum
likelihood, it is reasonable to assume that Iii is a biased estimator of the population Rf].

Assuming variables are standardized, the bias-adjusted estimator Iifl is expressed as

53



RZ =[(1-B*)* —1]¥*[(1-B*)* 1] -A,,, (3.26)

where A, isa mxm matrix of bias adjustment terms (1/ 2)tr{V(B*)H"} corresponding to the
jth outcome variables in FAQfI. Further expansions for nonlinear coefficients in the bias term can

be included as well if &bc contains nonlinear functions of B* (Equation 3.14).

Because the bias estimate in Equation 3.26 is asymptotic, sample estimates would replace
population parameters. In particular, because bias is proportional to error variance (Box, 1971),

many parameters, if not all in some cases, will be variances. In MLR, variances have well-known
unbiased sample estimators (e.g., s?). However, because variances and covariances of parameter
estimates in SEM (i.e., asymptotic covariance, or ACOV, matrix) are estimated via maximum
likelihood, these estimates are biased. However, given the assumption multivariate normality is
satisfied, unbiased estimates can be obtained by substituting the denominator N with N-1

(Kaplan, 2008).

3.3  Summary
In Chapter 3, a general modeling framework was presented that will provide a foundation
for the v extensions in the following chapters. Although a special case of the general framework,

MLR was discussed first to introduce matrix notation and the properties of estimators,

particularly for variance and R? estimators. It was shown how these properties affect bias in

estimation, and also how the properties can be used to construct improved estimators. A general
method for bias-adjustment was proposed, and, in the special case of R?, it was demonstrated to
return the common adjusted R?. The LISCOMP SEM framework was introduced as a more

powerful modeling framework. SEM analogs of R?( R,27) were also introduced, and an adjusted
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version of IQ,ZI (Iifl) was proposed using the general bias reduction method. In Chapter 4, the

general modeling framework is used to extend v to complex mediation models, and the general
bias reduction method is used to construct an improved estimator. The properties of the adjusted

and unadjusted estimators are evaluated and compared via Monte Carlo simulation.
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4 EXTENDING v TO COMPLEX MEDIATION MODELS

This section will provide an extension of v that allows for computation of effect sizes for
a wide variety complex mediation models, most notably models with multiple mediators (parallel
and serial), covariates, and multiple predictors (e.g., multicategorical x variable). Interpretations
of the resulting effect sizes will be provided. Because the effect size sample estimators are
expected to be positively biased, a general formula for the expected bias will be derived and used
to propose a general form for an adjusted estimator that corrects for this bias. Like bias
corrections for traditional standardized effect size measures and v, the bias will be derived for
the expected value of the estimator. This bias-adjusted v for three-variable mediation models
will be compared to the matrix version’s bias corrected effect size, demonstrating that the
adjusted estimator proposed in Lachowicz et al. (2018) is a special case of a more general bias-
adjustment formula. Finite sample properties of point and interval estimators of the unadjusted
and adjusted estimators will be evaluated in a Monte Carlo simulation study for a complex
mediation model. For the point estimators, the simulation study has three primary goals: a)
determine if the general bias adjustment formula yields adjusted estimators that have negligible
bias across a range of conditions (e.g., sample size, effect magnitudes) common in applied
research settings, b) demonstrate that accuracy of the estimators in estimating the population
parameter increases with increasing sample size (i.e., consistency), and ¢) determine if there are
certain conditions where the unadjusted estimator, although biased, may be more accurate than
the adjusted estimator (i.e., relative efficiency). For the interval estimator, the purpose of the
simulation study is to evaluate the performance of 95% Cls in terms of overall coverage and

coverage balance.
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4.1 Mediation in the LISCOMP framework

The mediation model represented in Equations 2.26 and 2.27 can be conveniently
specified as a single model in the LISCOMP framework. For further convenience, | assume
variables are standardized (i.e., =0 and v =0), only manifest variables (i.e., A=1), and no
residuals in the measurement model (@ =0). These assumptions mean that Equation 3.20

reduces to
y=In, (4.1)

Solving Equation 3.21 for n and substituting into Equation 4.1 yields

y=(1-B%)"¢ (4.2)

Bollen (1987) showed how the total, direct, and indirect effects can be computed using the
components of Equation 4.2. The matrix T% = (1-B%)™ —1 consists of the total effects of x on

m, and xand mony

0 0 O
T = B 0 of (4.3)
ﬁmxﬁym-x +ﬂyx-m ﬁym-x 0

Further, the elements of M* =T —B* consists of the indirect effects
0

00
M= 0 0 0| (4.4)
ﬂmxﬂym-x 00
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Complex mediation models can be conveniently expressed using the LISCOMP SEM

matrix notation. For recursive models (i.e., no feedback loops), the B® matrix can be expressed

in general terms as

0 0 0
B*=|BY B 0], (4.5)
BY BY 0

where the mxm coefficient matrix B* consists of four partitions: (a) a qx p partition B’ of
the effects of p predictors on q mediators, (b) a rx p partition BsytX of the effects of p predictors

on r outcomes, controlling for mediators, (c) a rxq partition Bsy‘m of the effects of g mediators

on r outcomes, controlling for the predictors, and (d) a qxq partition B of the effects of

mediators on other mediators. Because there are no regressions of predictors on other predictors

or outcomes on other outcomes (certain predictors or outcomes would then be considered

mediators), the upper left px p and lower right rxr submatrices are 0. The B’ submatrix has

zeros on its diagonal, and, whereas all elements of B? | Bsytx, and Bffm may appear only in the

lower or upper triangle, elements of B may be above and below the diagonal depending on the

direction of relationships among mediators. However, for the model to remain recursive, it must

be possible to arrange the rows and columns of B;: to yield a lower triangular matrix with zeros

on the diagonal.

A matrix of total effects T* is computed from B* as in the previous special case of
three-variable mediation (i.e., T* = (I1-B*)™" —1), which in terms of partitions of B¥ in

Equation 4.5 is
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0 0 0
T = B +((1-B%)*-1BY (1-B%)*—1) 0|, (4.6
B, +BLLBY, + B ((1-B3) ' ~NBL, B, +BL,((1-B)*~1) 0

where | isa qxq identity matrix. The matrix of indirect effects M* is then computed (i.e.,

M* = (1-B*)™" —1-B%), which in terms of partitions of B* is

0 0 0
M*=| (-B)'-DBL  (1-B)'-D-BI 0| (4.7)
B, ((1-B;)" 1B}, B, (1-B)"~1) 0

The four nonzero partitions in M* consist of generalizable expressions for computing indirect

effects. The partition in the first column, second row of M* contains the indirect effects of a set

of predictors on a set of mediators through another set of mediators. The partition in the second

row, second column of M* contains the indirect effects of a set of mediators on another set of
mediators through another set of mediators. The partition in the third row, second column
contains the indirect effects of a set of mediators on the outcomes through another set of
mediators. Finally, the partition in the third row, first column represents the indirect effects of a

set of predictors on a set of outcomes through a set of mediators.

The indirect effects contained in M* in Equation 4.7 are total indirect effects, which are
composed of specific indirect effects. To illustrate these types of indirect effects, consider a
mediation model with a single predictor x, a single outcome y, and two parallel mediators m; and
my (see Figure 2). There are three indirect effects that could be examined in this model: (a) the
specific indirect effect of x on y through my, and (b) the specific indirect effect of x on y through
my, and (c) the total indirect effect of x on y through both m1 and mz. The three MLR equations

that specify this model represent the effect of x on m;
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m, =B X+ Ew, (4.8)
the effect of x on mz
M, = B X+ Enas (4.9
and the effects of x, m;, and maony
Y = By X+ By M+ Bymp My + 8- (4.10)

The specific indirect effects are the pathways through which x affects y through m1 (5, 5,m.x)
and m2 ( 3,,,B,mz.x ) and the total indirect effect ( 5, Bm.x + BraxByma-x ) 1S the sum of the

specific indirect effects.

The model coefficients are more conveniently expressed in terms of the partitioned B*

matrix as

0 O 0

IBmlx : O O .
ﬂmZx : O 0

o T
ﬂyXox : ﬂyml-x ﬂymZ-x :

B = (4.11)

ol ol o

The matrix of total indirect effects M* is computed from B*

0
0 :
0

e e e e e e e e e e e e e e i.-
BrixPymiox T BrnaxPymaox

M* = , (4.12)

o oro

oo oo

o
oio oio

Bollen (1987) proposed a method for obtaining these specific indirect effects by

recomputing M* from a modified coefficient matrix B*". This is accomplished by omitting the
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rows and columns of B* that correspond to the mediators that are part of the specific pathway of
interest by setting these entries to zero. Recalculating M* from this modified coefficient matrix
yields a matrix of specific indirect effects (M*").

To replace specific entries of B* with zeros, B* is pre- and post-multiplied by an

elementary matrix O:
B* =0OB"0O, (4.13)

where O isa mxm diagonal matrix where the elements associated with the variables to be

omitted from B* are set to zero. For example, in order to obtain the specific indirect effect

B Bym.x from the previous multiple mediator model, in the mediation model illustrated in

Figure 2, the O that would set the rows columns and columns of B* associated with m to zero

is

[y

N
o O O -

X
m

, (4.14)
m

o O~ O
o O O o
O O O

y

which is then substituted into Equation 4.13 to compute B*™
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Bst* — OBStO

100 O“QWLEMWWMJB 1000
_|0100 Amg 0 50 0100 (4.15)
0 00 0| Boxi O 0 :0{{0 0 0O

10 0 0 1| B i Bumin Buman 10][0 0 0 1

[0 00

P | 0 010
o 0o o0

| Byex | B 010

The modified indirect effect matrix M*" calculated from B®" yields the specific indirect effect

M = (4.16)

O 1
ﬂmlxﬂyml-x :

0o o:o
oo olo
oo oio

This framework offers a general solution for obtaining indirect effects for a wide array of
mediation models. These include models with multiple parallel or serial mediators, multiple
predictors, covariates, and latent variable mediation. In addition, methods are available for

decomposing complex indirect effects.

4.2 Matrix Extension of v

Effect sizes for total and specific indirect effects can be obtaining by deriving a general
matrix-based specification of v in the LISCOMP framework. Specifically, because v is a
measure of explained variance, the quadratic forms used in previous sections for computing R?
can be applied to compute the matrix extension of v . In addition, the sampling properties of
quadratic forms will also be applicable, allowing for generalizations of the properties of v

discussed in Chapter 2.
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The quadratic form for the LISCOMP structural model in Equation 3.24 can be applied to
obtain the quadratic form of v . This is accomplished by substituting the matrix of total effects T

with the matrix of indirect effects M, yielding the v matrix Y
Y =D"*"M¥YM'D"?, (4.17)

An equivalent method of computing Y is to use the standardized indirect effect matrix M* and

the standardized residual variance matrix ¥*
Y = MIWPIM'S, (4.18)

If the unmodified B matrix is used to compute M, Y yields a matrix of v effect sizes for the

total indirect effects. If the modified matrix B” (i.e., the rows and columns associated with

certain variables are set to 0), Y yields a matrix of v for specific indirect effects.

4.2.1 Special case of a single predictor and outcome, and two parallel mediators

To demonstrate the proposed matrix method, Y is obtained from a mediation model with
a single predictor x, a single outcome y, and two parallel mediators m; and m (see Figure 2).
There are three effect sizes to consider in this model: (a) the effect size for the total indirect
effect of x on y through both m1 and my, (b) the effect size for the specific indirect effect of x ony
through my, and (c) the specific indirect effect of x on y through mz. The unstandardized
regression coefficients for this model can be expressed in the unstandardized partitioned B

matrix from Equation 4.5:

0 ! 0 0 0
g_|Bmi O 0 0 410
"B, 0 o iof (4.19)
Byx-x : Byml-x Bymz-x : 0
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Calculating M from B yields

mlx —ymlex

0 0 0!0
0 0010

M = 0 0lof (4.20)
By Bymiox + By By 10 010

m2x =ym2ex

where the fourth row, first column element represents to total indirect effect of x on y, which is

the sum of the specific indirect effects through m, (B B, ,.,) and m, (B ). Also, for

m2xBym2-x

this example, W consists of the variance x, and residual variances and covariances of m,, m,,

andy
o,
O 2
P le , , (4 21)
O é/mlmZ é,mZ

o 0 o0 ¢

y

and D is a diagonal matrix of standard deviations (Jéreskog & Sérbom, 2015)

o= . " | (4.22)

Pre- and post-multiplying ¥ by DM and M'D™? yields
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o 0 0 0{0][¢?
| 0 e " 0 0000 g )
0 0 o7 0 000000 Cumr Smo
0 0 0 0" BuBumutBuBuax [0 0;0)J0 0 0 ¢
0 0 0:0] [0
0 0010l 0 o
0 0 0:0[[ 0 0 o
BB BBy (0 010)| 0 0 0 o
00 0! 0
“loio 0: 0
00 0 (Brahmex + PraxBymas)”

(4.23)

Y quantifies the expected variance by x explained in y indirectly through m; and m, . It is also
possible to follow the matrix modification method in 4.13 — 4.17 to compute Y from M™* for
either m; (B Bimix) OF M, (Bis By )- It should be noted that when obtaining an effect size
for a specific indirect effect, for example, through m,, it is not equivalent to the effect size of x
ony through m, estimated without m, in the model. Omitting m, from B eliminates elements
corresponding to m, , but coefficients are estimated as from the full model. The implication is
that the interpretation of v for the specific indirect effect through m, is the variance explained
indirectly by x, controlling for m,, or the expected variance in y explained by x through m, that

is constant across levels or subpopulations defined by m, .

4.2.2 Properties of Y
Like v for three-variable models, Y has several desirable properties as an effect size

measure for complex mediation models. First, Y is interpretable as the variance explained in the
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outcome by a set of predictors through a set of mediators. In addition, as described in Lachowicz
et al. (2018), Cohen’s benchmarks for R? measures (i.e., .02 = small, .15 = medium, .25 = large;
Cohen, 1988) can be applied to v, providing researchers with researchers some general
heuristics to help communicate the magnitude of their effects of interest. Second, Y is
standardized, so it is not dependent on linear transformations of the variables. Third, the
population Y is not dependent on sample size, meaning it can be estimated consistently from
sample data. Third, although the sampling distribution of Y is not known, Cls can be
constructed using, for example, a bootstrap or Monte Carlo based approach. Fourth, Y isa
monotonic function of the standardized indirect effect, so there is a one-to-one mapping of effect
magnitude to effect size (in absolute value). Taken together, the properties of Y make it a
promising method for meaningfully quantifying the magnitude of indirect effects in a wide array

of mediation models.

4.3 Sample Estimator of Y

To this point | have considered the properties of Y in the population. In order for Y to
be useful as an effect size measure, it will need a sample estimator with good statistical
properties. Lachowicz et al. (2018) showed that, like many other estimators of variance
parameters, the sample analog estimator o of the population v for three-variable mediation

models is positively biased, where the magnitude of bias is larger for small samples and small
effect magnitudes. Because o is a special case of the more general Y and can be expressed as a

quadratic function of MLEs, it is expected that Y is also a biased estimator of the population Y .
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4.3.1 Bias adjusted estimator Y

The preceding derivation shows a general form for the bias of Y estimates. It is
important to note, however, that this is the asymptotic bias in the expected value. In order to
incorporate this bias into an adjusted estimator, appropriate sample estimates must be substituted
for the above parameters.

The bias-reduction approach in Chapter 3 is a general solution for obtaining the
appropriate sample estimates for the bias adjusted estimator. Although adjustment for first-order
bias is sufficient for many of the effect size estimators considered in previous chapters, the
complexity of indirect effects introduces additional sources of bias that are not appropriately

accounted for using first-order methods. To illustrate, recall the bias in the expected value of o

derived for a three-variable mediation model (82,0, + BimxOrm + Oy Timux 3 SECtION 2.4.5) s

equivalent to the second-order normal-theory approximation of the asymptotic variance for the

standardized indirect effect /?mx /?’ym (Equation 2.30; MacKinnon et al., 1995). A first-order

approximation of the bias term is f2 o

mx ymx

+ B Oy (Equation 2.29; Bollen, 1987; Sobel, 1982),

which omits the variance product o and, therefore, consistently underestimates bias and

O ymex
overestimate effect sizes.
Also recall that simple substitution of sample estimates for the parameters in the bias

term also introduces bias. This is clear by deriving the expected value of a hypothetical adjusted
estimator o* where the bias term is a simple substitution of parameters for estimates
E[6*] = ELBn B ~ ELBnS ]~ EL 56 ] ~ EL67,67.,]

= (B + Gix)(ﬂym o T Tymo) = (B + O ) O g = (ﬂym o T Oymox )y —O"mxdym "

2 2 2 2

ﬂmxﬁym X + mx ym X ﬂym xamx +Gmxo-ym X _ﬁmx ym X _O-mxo-ym X _ﬂym xYmx T ym xOmx _O-mxo-ym-x

= ﬁmxﬂym x 2Gmx(jym X"
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The additional variance product term —2¢2 o

O m.x Means that simple substitution yields an
estimator that overestimates bias and underestimates effect size.

These issues can be addressed simultaneously by modifying the sample estimated bias
approximation. Whereas in the previous example the entire sample estimated second-order
variance approximation was subtracted from the biased estimator, the modified estimate

subtracts the first-order component of the variance approximation and adds the second-order

component.
Y= MM A, (4.24)

Where A;ias iISa mxm matrix with elements (1/2)tr{):(|§)H}—(1/4)tr{>:(|§)Hl} corresponding

to outcome variables. To illustrate, | will derive the asymptotic bias for the three-variable
mediation model above, showing that it yields equivalent results. Solving for the asymptotic bias
yields the matrices

2
Z(B){ng , }

ymex

23 4
H= ﬂym-x ﬁmxﬂzym-x 1 (425)
4ﬂmxﬂym-x 2ﬂmx
H = 207 0
1o 202,
where the first bias approximation is
1 0 2 2 2 2
Etr {Z(B)H} - ﬂym.xamx +ﬂmx6ym-x7 (426)
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and the approximation to this component is

%tr (2} = 262,07 (4.27)

mx~ ymex*

Substituting these results into A;. - yields the appropriate asymptotic bias approximation

bias

AL = %tr{z(ﬁ)H}—%tr{z(ﬁ)Hl} (4.28)

= ﬂjm-xo-rflx + ﬁrflxajm-x - Grixo-jm-x'
The second bias approximation in Equation 4.28 is multiplied by %2 because the first

approximation does not include approximations of second-order terms (i.e., o2, o2 ), SO

mx O ymex
adjusting by Equation 4.27 yields an over-correction.

Although unbiasedness is a desirable property for estimators, it is possible for other
important properties of these estimators to be deficient, such that a biased estimator of the same
parameter is more useful in practice. Particularly notable for estimators are consistency (i.e., the
estimator converges to the parameter as sample size increases), and variability. For example, an
unbiased estimator with high sampling variability can be substantially less useful than a biased

estimator that is more efficient.

4.4  Simulation Study

The purpose of the present simulation study is to examine the sampling properties of the
unadjusted and bias-adjusted effect size estimators o and & in complex mediation models. Of
interest is determining whether the matrix generalization and bias-adjustment yield estimators
with good statistical properties in terms of bias, variance, and overall accuracy, and whether

common interval estimation methods return proper Cls for the estimators. It is of particular
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importance for researchers to know if there are certain conditions under which the estimators

would not be expected to yield accurate estimates.

4.4.1 Simulation Design
The generating model for this simulation was a parallel mediation model with a single

predictor X, a single outcome y, and two mediators m, and m, (Figure 2). Variables in this

simulation were considered standard normal in the population. As described in Section 4.2.1,
effect sizes can be estimated for three indirect effects: 1) the specific indirect effect of x on 'y

through m, (8., B8,m.x ), 2) the specific indirect effect of x on'y through m, (3, ,, B¢ ), and 3)

M2eX

and the total indirect effect of x on'y through m, and m, (B, B,mix + BuoxBymax )- BECAUSE OF

the symmetry in the magnitudes of the specific effects, effect sizes for this simulation will be

evaluated for the total indirect and one specific indirect effect, B, B,...-

4.4.2 Simulation Conditions

Parameter values for the paths were varied among .15, .39, and .59, magnitudes for small,
medium, and large standardized coefficients common in applied research. Because of the large
number of parameter combinations possible in this model, some generating parameters were
constrained to be equal ( 5,,,, = Bm..x) @nd some were fixed to zero, including the direct effect
and the residual correlation of the mediators. Parameter values consistent with the null
hypothesis of no indirect effect were not considered in this simulation because zero is on the
boundary of the parameter space for v . In addition, the properties of estimators typically
evaluated under the null hypothesis (i.e., Type | error rate, power) are not of interest for v

estimators because o and o were not intended to be used for null hypothesis significance
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testing. Sample size was varied among 50, 100, 250, and 500. This yields a total of 3x3x3x4 =
108 total conditions.

Because the sampling distributions of © and o are unknown and assumed to be non-
normally distributed, nonparametric bootstrapping was used to construct 95% CIs. Two
bootstrap CI methods were evaluated in this simulation: a) percentile and b) BCa (Section 2.3).
Although percentile bootstrap Cls performed satisfactorily in terms of coverage and balance for
v estimates from a three-variable mediation model (Lachowicz et al., 2018), BCa Cls are often
recommended for estimators with non-normal, heavy-tailed sampling distributions, which is
characteristic of the distributions of both © and . It is expected that BCa Cls will outperform
percentile Cls in terms of coverage and balance, particularly in conditions with small effect
magnitudes.

The simulation was conducted in R (version 3.4.1; R Core Team, 2017). 1,000
replications per condition is sufficient to obtain accurate estimates of bias for point estimates and
coverage for Cls. For each replication, 1,000 bootstrap resamples are used to construct 95% Cls
using the boot package (Canty & Ripley, 2017). The point estimators will be evaluated in terms
of bias, overall accuracy, and relative efficiency, and Cls will be evaluated in terms of coverage,

coverage balance, and CI width.

4.4.3 Evaluation criteria
Bias was evaluated using percent relative bias, defined as the difference between the

expected value of the estimator and the population value, divided by the population value

bias, , (0) = E["E‘g | (4.29)
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The metric of percent relative bias is often more interpretable than is raw bias, although it is
possible for trivially small raw bias to appear quite large in terms of percent relative bias when
the population parameter is close to zero. Researchers often use a criterion of 5% for acceptable
relative bias (Boomsma, 2013), which I will also use in this study. It was hypothesized that the
unadjusted estimator will exhibit positive bias, with the largest biases in conditions with smallest
sample sizes and smallest effects. It was hypothesized that the adjusted estimator will exhibit
acceptable bias (< 5%) in all conditions.

Accuracy was evaluated in terms of mean square error (MSE). MSE is defined as
MSE = E[bias(0)]’ + var(é). (4.30)

It follows that for an unbiased estimator, MSE is equivalent to the estimator variance, and MSE
will favor estimators with less variability. However, it possible there are circumstances where a
biased estimator can have less variance than an unbiased estimator, such that the biased estimator
returns more accurate estimates. To further examine the variability of the estimators, relative
efficiency (RE) was evaluated by the ratio of the empirical sampling variances

_var(9)

RE ==,
var(6,)

(4.31)

RE <1 corresponds to the sampling variance of éz > él, RE >1 to the sampling variance of
éz < él, and RE =1 to equal sampling variances. RE was defined as the ratio of the sampling

variance of 0 to o for this simulation. It is not clear if there are conditions where the unadjusted
0 would be more accurate or have greater sampling variability than the bias-adjusted O, so these

questions will be addressed empirically.
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Cls were evaluated using average CI width, coverage, and balance of coverage. Average
CI width was used to evaluate the precision of the estimates, where smaller widths represent
estimates with greater precision. It was unclear which estimator will have smaller average Cl
widths; this will be evaluated empirically. Coverage is defined as the proportion of Cls that
contain the true population value. It is expected that the coverage probabilities of proper Cls are
equal to one minus the nominal alpha level. The nominal alpha level for Cls in this study is .05,
and coverage will be evaluated according to Bradley’s criteria (.925 - .975; Bradley, 1978). It is
expected that 95% Cls will have coverage probabilities acceptably close to the nominal .95 level.
In addition to achieving nominal coverage, it is assumed for proper Cls that the proportion of
times the population value is greater than the upper CI limit and less than the lower CI limit are
equal (i.e., 2.5% for 95% CIs). However, it is possible for Cls to achieve the nominal alpha and
be imbalanced in the proportion of misses above and below the confidence limits, which results
in biased estimates of Type 1 error rates and power. It is expected that the proportion of misses
above and below the 95% CI limits are equal.

Finally, it is unclear how or if the sampling properties of the estimators of the effect size
for the total indirect effect would differ as compared to the specific indirect effect, so this

question will be addressed empirically.

4.5 Simulation Results
45.1 Bias

Simulation results for the relative bias of o for the total indirect effect can be found in
Table 1, where shaded cells highlight relative bias > 5%. The hypothesis that & would be
positively biased, with larger magnitudes of bias at smaller N and for smaller effect sizes, and

decreasing magnitudes as N and effect magnitude increased, was supported by the simulation
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results. The direction of bias for o was positive in all conditions, consistent with analytic results.
The largest values of percent relative bias (138.61%, 93.57%, and 97.63%) occurred at the
smallest N considered in the simulation (N = 50), and also for the smallest effects (5 =.15). In
addition, for smaller effect sizes, percent relative bias > 5% was evident even at the largest N
considered (N = 500) for the smallest effects. Increasing N was associated with decreasing bias,
supporting the hypothesis that o is a consistent estimator. Finally, bias of o was negligible for
large effect magnitudes of the total indirect effect for all sample sizes.

Simulation results for percent relative bias of o for the total indirect effect can also be
found in Table 1. The hypothesis that bias of & would be negligible across simulation conditions
was largely supported by simulation results. Overall, percent relative biases for & were of much
smaller magnitude than for o . For the conditions in which bias was greatest for the 0, the
relative biases of O were —0.23%, 2.67%, and —1.48%. In total, the largest relative bias across all N
and effect sizes considered for © was —7.29% at N = 50, and only two other simulation
conditions had relative bias > 5% (-5.03%, and —5.95%,). No parameter combination had
relative bias > 5% at N = 250 and N = 500. Although bias was mostly of negligible magnitude at
smaller sample sizes, bias tended to be in the negative direction, a tendency that also decreases
with increasing sample size. Finally, as with ¢, bias decreased as N increased, supporting the
hypothesis that O is a consistent estimator.

Results for relative bias of effect size estimators of the specific indirect effect 3, ..,

can be found in Table 2. Findings were generally similar to those for the total indirect effect. For
both estimators, hypotheses regarding the magnitude and direction for the specific indirect effect
were supported. For 0, the largest values of relative bias (265.84%, 223.31%, and 234.11%)

occurred at the smallest N and for the smallest effects. In addition, bias was non-negligible for
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the smallest effect magnitude even at the largest sample size. For 0, relative bias was also non-
negligible for the smallest sample size and smallest effects, although of substantially smaller
magnitudes than o (-9.14%, -5.35%, and 18.61%). Similarly, the remaining relative biases of o
considered non-negligible were also small magnitude (—10.59%, —5.42%, 5.48%, —6.65%, and

5.51%). Finally, increasing N was associated with decreasing bias for both estimators.

4.5.2 Accuracy and Relative Efficiency

Simulation results regarding MSE and RE for effect size estimators of the total indirect
effect can be found in Table 3, and for the specific indirect effect in Table 4. Shaded cells
highlight conditions where MSE of o was greater than 0, and where RE >1 (i.e., variance of
0>0). Increasing N was associated with decreasing MSE for both estimators of total and
specific indirect effects, supporting the hypothesis that overall accuracy of the measures would
increase with increasing N. It was also clear, for both effects, that outside of a few conditions, o
was a more accurate estimator of v than ¢. In addition, it was clear that across the vast majority
of conditions © was a more efficient estimator. Finally, the magnitudes of the accuracy and
efficiency discrepancies between the estimators were dependent on sample size and effect

magnitudes, such that differences were largest for the smallest sample sizes and smallest effects.

45.3 Confidence Intervals

Results for 95% percentile bootstrap Cls of © and & for the total indirect effect can be
found in Tables 5 and 6, respectively, and for the specific indirect effect in Tables 7 and 8,
respectively. Shaded cells highlight conditions where satisfactory coverage (92.5% — 97.5%) was
not achieved. The hypotheses that coverage would reach the nominal 95% level as N increased,
and that the proportions of misses to the left and right of the 95% CI would be balanced, were

supported by simulation results. As with bias, satisfactory coverage was achieved with larger
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effect sizes and at larger N for both estimators and effects, such that satisfactory coverage was
achieved for all parameter combinations at N = 250. In addition, misses to the left and right of
the 95% CI were approximately balanced at N = 250 for both estimators and effects. When
satisfactory coverage was not achieved, it was predominantly due to coverage > 97.5%, or Cls
being too wide.

Results for 95% BCa bootstrap Cls of estimators for the total indirect effect can be found
in Tables 9 and 10, respectively, and for the specific effect in Tables 11 and 12, respectively.
The hypotheses that that nominal coverage would converge to a satisfactory level, and that the
proportions of misses to the left and right would achieve balance, were generally supported by
the results as well. Similar to the percentile Cls, satisfactory coverage was generally achieved for
larger N and larger effect magnitudes, and achieved for all parameter combinations at N = 500
both estimators and effects. However, there are noteworthy differences between the results for
the Cl methods. In contrast to the percentile Cls, when satisfactory coverage was not achieved, it
was predominantly due to coverage < 92.5%, or Cls being too narrow. In addition, for small
sample sizes and small effect magnitudes, there tended to be larger deviations from nominal
coverage (~80-90%) for total indirect effects, and even greater deviations for specific indirect
effects (~70-80%). Another noteworthy difference between the methods is that, whereas
percentile Cls for the total and specific indirect effects achieved satisfactory coverage at the
same sample size (N = 250), a larger sample size was required for BCa Cls to achieve
satisfactory coverage for the specific indirect (N = 500) than for the total indirect effect (N =

250).
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4.6 Empirical Example

I now present an empirical example to facilitate interpretation and implementation of v
in a complex mediation model. | use the results from a study conducted by Li, Starr, and Wake
(2018) that investigated the pathways through which anxiety can have downstream effects on
depression. Specifically, the authors used the National Longitudinal Study of Adolescent to
Adult Health (ADD Health; Harris et al., 2009) dataset to examine the indirect effects of anxiety
symptoms assessed at Wave 1 (1994-1995) on depressive symptoms at Wave 4 (2008) through
insomnia and unrestful sleep assessed at Wave 2 (1996). Analyses were conducted with those
participants that had observations on these variables at each study wave (N = 3910). The
predictor variable of anxiety symptoms at Wave 1 were assessed using a composite of six items
measuring anxious physiological arousal, where higher values indicate greater symptoms of
anxiety. The mediator variables of insomnia and unrestful sleep at Wave 2 were assessed using
single items asking about difficulty falling asleep and staying asleep and feeling tired upon
waking, respectively, where higher values indicate greater sleep problems. The outcome variable
of depressive symptoms at Wave 4 was assessed using the Center for Epidemiologic Studies
Depression Scale (CES-D), where higher values indicated greater depressive symptomology.

Results presented here differ slightly form the original study results because relevant
control variables were excluded to simplify analyses. The total standardized indirect effect of
anxiety symptoms on depressive symptoms through both insomnia and unrestful sleep was 0.038
(95% percentile Cl =.027, .052), the standardized specific indirect effect through insomnia was
0.021 (95% percentile Cl =.009, .033), and the standardized specific indirect effect through

insomnia was 0.018 (95% percentile Cl = .01, .026).
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For the v estimators, the o effect size estimate for the total indirect effect was 0.0015
(95% percentile bootstrap Cl =.0007, .0027), meaning that the variance explained indirectly in
depressive symptoms by anxiety symptoms through insomnia and unrestful sleep in this sample
was 0.0015. The o effect size estimate for the total indirect effect was 0.014 (95% percentile
bootstrap Cl = 0.0007, 0.0027). 0 is interpreted as the estimated variance in depressive
symptoms by anxiety symptoms through insomnia and unrestful sleep in the population. The o
effect size estimate for the specific indirect effects through insomnia and unrestful sleep were
0.0004 (95% percentile bootstrap CI =.00008, .000106) and 0.0003 (95% percentile bootstrap ClI
=.0001, .0007). This means that the variance explained indirectly in depressive symptoms by
anxiety symptoms in this sample through insomnia was 0.0004, and through unrestful sleep was
0.0003. The & effect size estimate for the specific indirect effects through insomnia and unrestful
sleep were 0.0004 (95% percentile bootstrap CI = 0.00006, 0. 000103) and 0.0003 (95%
percentile bootstrap CI = 0.00009, 0.0006), respectively. Like the bias-adjusted effect size for the
total indirect effect, O for the specific indirect effects is interpreted as the estimated variance in
depressive symptoms explained by anxiety symptoms in the population separately by via

insomnia and unrestful sleep.

4.7 Summary
In Chapter 4, the SEM framework described in Chapter 3 was used to generalize the effect

size measure v . A general form of the bias was also derived using the general bias reduction
strategy from Chapter 3, and a bias-adjusted estimator of Y (Y ) was proposed. The sampling

properties of the unadjusted estimator Y and Y were evaluated via Monte Carlo simulation.

Chapter 5 will review moderated MLR, and apply the results of Chapter 2 to investigate
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explained variance for moderated regression models. Chapter 6 will combine the findings of

Chapters 4 and 5 to extend Y to moderated mediation models.
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5 EXPLAINED VARIANCE IN MODERATED MLR

5.1 Moderated MLR

Moderated, or conditional, indirect effects are an increasingly popular type of complex
mediation model in the social sciences. However, measures of explained variance for moderated
effects in general have received little attention in the methodological literature. This section will
review the literature for these effects in ANOVA and MLR, noting gaps in terms of the themes
of standardized effect sizes previously described (e.g., generalizability, biasedness of estimators).
The goal of this section is to establish a coherent framework for explained variance for
moderated effects in MLR that will serve as a foundation for extending v to moderated
mediation models. An empirical demonstration of the conditional effect size will be provided
using the running empirical example, and R software code will be provided.

It is a common in the social sciences to hypothesize that the effect of one variable on
another varies across identifiable populations. For example, it is possible that the effect of an
early childhood intervention designed to improve reading is different for boys than it is for girls,
or for children from lower SES neighborhoods than from higher SES neighborhoods. A more
complete understanding of how effects vary in direction and magnitude can have important
consequences for the reporting of study results.

In traditional MLR, the partial effect of a variable on an outcome is assumed to be
constant across levels of all other variables in the regression model, which precludes
investigating conditional effects. However, moderation hypotheses can be investigated in MLR
by incorporating additional variables that are products of other variables in the model, where
effects of such product terms are often referred to as interactions. The unstandardized effect of a

variable x, ony conditional on levels of a moderating variable x, is expressed as
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y =B, +BX +B,X, + B;x X, +¢&, (5.1)

where B, is the partial effect of the interaction of x, and x, ony controlling for x, and x,.

Because the effect is nonlinear (the expected value of y changes for different values of the
predictors), it is assumed the assumptions required for additive regression models (i.e., normality
of errors, linearity, homoscedasticity, existence, independence of errors) apply across all

combinations of predictor values. The significance of the interaction is determined by testing the

significance of B,, or testing the significance of the increment in R* due to including the

interaction term in the model (Cohen et al., 2003).

If the effect of x, ony is of particular interest, x, would be considered the focal
predictor, and x, the moderator variable. Equation 5.1 can be rearranged to more closely

resemble this distinction as
y =B, + (B, +B;x,)X, +B,X, +¢. (5.2)

The effect of the focal variable x, can now be said to vary across levels x,. The magnitude of the
interaction term B, is then the difference in the effect of x, ony corresponding to a one unit
increase in x,. For example, if x, is binary, B, is the difference in the effect of x, ony inone

group relative to the effect in a reference group.

If the interaction coefficient is significantly different from zero, the moderation can be
further examined by probing and plotting the effect of the focal predictor conditional on values
of the moderator (Aiken & West, 1991). The effect of a predictor at a given level of a moderator
(typically at the moderator mean, and +£1 SD) is referred to as a simple slope. The simple slope

also may be tested for significance using a conditional standard error. Interpretation of the
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moderator effects can be facilitated by plotting these simple slopes at various levels of the
moderator. An alternative to testing simple slopes at fixed values of the moderator is to construct
simultaneous Cls for the effect of the predictor across the range of moderator values (Johnson &
Neyman, 1936). Regions where the Cls do not include zero are values of the moderator where

the simple slope is significant.

5.1.1 Moderated MLR in LISCOMP

Although the moderated MLR in Equations 5.1 and 5.2 are instructive, it is desirable to
express a moderated MLR model in matrix form as in Section 3.1. Despite the long history of
methodological research on moderated MLR, the appropriate matrix representation of an
interaction in MLR has not been addressed. At issue is how to specify the interaction term not
only for notational convenience, but also to make use of the results derived in Section 3.1
regarding the properties of estimators.

An obvious approach would be to model the product term as a new predictor in the
matrix specification, as is commonly done when estimating interaction effects in MLR. This
specification would yield the correct parameter estimates for the models in Equations 5.1 and
5.2, and including the product variable in the variance/covariance matrix allows for computations
of variances, covariances, and R?. However, the specification also presents some issues.
Whereas it is typical to standardize coefficients by scaling the coefficients by the ratio of the
standard deviation of the predictor to the standard deviation of the outcome, this is not an
appropriate standardization for the product term (Champoux & Peters, 1987; Muthén &
Asparouhov, 2015; Wen, Marsh, & Hau, 2010). This could be avoided by computing the product

term from standardized variables, a straightforward solution but requiring extra data
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management. A more problematic issue is that this specification includes a non-linear effect,
which is not directly estimable in SEM software. (Kenny & Judd, 1984).

These issues can (in theory) be avoided by specifying the moderated MLR model in
reduced form (Equation 5.2) as a SEM. The LISCOMP specification for latent interactions
(Klein & Moosbrugger, 2000; Klein & Muthén, 2007), assuming variables are standardized, is

expressed as

nst — Bstnst +jnst'Qstnst +€1 (53)

where j is a mx1 vector designating the interaction outcome variable, Q* is a square matrix of

interaction coefficients

O 0)1’2 o a)]_'p
0
Q= (5.4)
0 @y 1y
0 0
Solving for n* and substituting into the measurement model yields interaction model for
manifest variables
y=(-B"-jn"Q")7¢ (5.5)

This means that the outcome is conditional on values of n*. This avoids the problem of

standardization when centered variables are used to create the product term because the
interaction term will be scaled by a product of standard deviations rather than the variance of the
product (Champoux & Peters, 1987). However, if the product term is created from uncentered

variables, the variance of the product is a complex function of variable means, variances, and

covariances. In addition, it also follows that if the elements of n* are centered at 0 and
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uncorrelated, Equation (5.5) reduces to y = (1 —B*)™'¢ (Chapter 3). The equivalent MLR

expression is

y =Xp+X'QX +e. (5.6)

For a MLR model with two predictors and an interaction, the coefficient matrix B is

0O 0 O
B'=|0 0 0, (5.7)
B B 0
and Q% is
0 B8 O
o'={0 0 0] (5.8)
0O 0 O

The placement of the 3, coefficient in Q% designates which variable is the focal predictor and
which is the moderator. In Equation 5.8 the placement of f, designates x, as the focal predictor
and x, as the moderator (i.e., the effect of x, varies across levels of x ). To designate x, the

focal predictor, the [2,1] element of Q would contain the interaction coefficient, with element
[1,2] being 0.

In summary, the LISCOMP framework provides a flexible framework for representing
moderated regression models in MLR. Like the alternative specification method where the
interaction is modeled as a separate variable, LISCOMP returns the desired parameter estimates
and is suitable for expression in quadratic form (Section 3.24). However, a clear advantage is
that the specification exists within a more general modeling framework. Although uncentered

product terms cannot be easily centered in this specification, it should be noted that it is often
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recommended by methodologists to center variables when conducting moderated regression
analysis as centering can be used to aid in the interpretation of effects and remove non-essential

multicollinearity among variables (Aiken & West., 1991).

5.2 Explained Variance in Moderated MLR

Explained variance for a moderated MLR model can be obtained using the SEM formula

for Rfy in Equation 3.21. Assuming variables are standardized, Rfy Is expressed in quadratic

form as
2 S| A styr—1 S S o /S styr—1 i
Ry =[(1-B¥ — jn" Q") " -1]¥*[1-B* - jn " Q)" 1]’ (5.9)
For the moderated MLR model with two variables and their interaction, Equation 5.9 yields

Rf] — [(I _ Bst _jnrstgst)!fl _I]Tst [(I _Bst _jnrstgst)rfl _I]!
0 o o 12 00 &

=0 0 0 é,xl,x2 1 0 0 ﬂz +ﬂ377xl .
B B+Bn, O 0 O g; 00 0

(5.10)

Before continuing with the example, it is important to note a complication that arises due to the

presence of 7,, in B¥. Because it was not assumed that 7,, was fixed to a specific value as in
- - - 2 - -
the analysis of simple slopes, the computation of R; requires taking the product of the random

variables 7,, with ¢, and &, (Muthén & Asparouhov, 2015). For clarity, I will continue the

example substituting the SEM estimates with the OLS counterparts
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0 0 O[(N-1)xx, 00 g

R =|0 0 0| (N=-D7'xx, (N-1)7"x)x, 0 0 B,+BX
B B+ px 0 0 0 2o 0 0
i 0 0 olfflo 0 &
—(N-1)* 0 0 0|0 0 B +8x,
| BXiXy + (B, + BX)XoX,  BixiX, + (B, + BX)XpX, 0] 0 0 0

0 0 0
~(N-)*lo o 0
0 BEXXy+ BBy + Xy ) XX, +
i (XX + BpXyX, + BXiXy X, ) (B, + iXy) |
00 0
=(N-1)*0 0 0
0 0 2XIX, + BIXX, + 2 BB XoX, +
2B, X X5 Xy + 2 B, BaXoXoX, + BiXiXoX,X, |

(5.11)

Distributing (N —1)™ shows the first three terms are the familiar coefficients 47, 37, and
2,1, ,, - However, the second three terms contain element-wise, or Hadamard, products of
the vectors x; and x, (Gentle, 2017; Searle, 1982). The result is that product variables are
created in order to obtain the variance of the interaction variable (xx,x,x, = (N -1)"c2,), and
covariances between the interaction variable and x, (XXX, =(N —=1)"0,,,, ,) and X, (

XXX, = (N -1)"0,,,,,,). This yields the R* formula

R;f = ﬂlz + ﬂzz + 320le2 + 28 Bl x2 + 288350 axaa 28 P50 xaxz 2 (5.12)

* Bohrnstedt and Goldberger (1969) showed that variables are mean-centered O, ,,, . = Cy1xa.x2 -
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which is the expected R? if the regression had been conducted with an interaction variable
created from standardized x, and X,. The variances and covariances of the interaction term are

estimated in the LISCOMP framework not by explicitly creating product variables, but modeling
the non-normal distribution of the product variable as a mixture of normal distributions and

estimating variances and covariances via maximum likelihood (Klein & Moosbrugger, 2000).
5.2.1 Explained variance for conditional effects
The R,f formulation in Equation 5.12 quantities the total variance explained by a model

with an interaction term. However, as described in the previous section, the moderator was not
fixed to specific values as is often done in the analysis of simple slopes (Aiken & West, 1991).

Given the importance of the plotting and probing in the interpretation of conditional effects, it

would be of interest for R,f to also be applicable to these conditional effects.
Returning to the moderated MLR in Equation 5.2 where x, is considered the focal

predictor and x, moderator, the expected value of y can be expressed in terms of x, where X, is

fixed at a specific level c as
Ely|x,X, =c]=B,+ (B, +B,c)x +B,c. (5.13)

If variables are standardized as in Section 5.2, the commonly used conditional levels of the
moderator (i.e., mean, one standard deviation above and below the mean) reduce Equation 5.13
to three simple equations

E[y" 1%, %, =0]=x,

E[Y*IXI,XZ :_1]:(ﬂ1_ﬂ3)xz_ﬂ2’ (5.14)
E[y* | XI’X; :1] = (ﬁl""ﬁs)xz +ﬂ2’
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where y”, x;, and x, denote standardized y, x , and x,. The variance of the predicted values

of the standardized simple regressions in Equation 5.14 (i.e., mean SSR) can be obtained by

application of the quadratic form in Section 3.1

varly'| ;% =0] = /&7,
varly' |, %, = ~1]= §7 + B’ . ~ 25, o, . (5.15)

* * * 2 2 2
Var[y |X1’X2 :1]:ﬂl + 3O-xfx; +2ﬂlﬁ3o-x1’x;,xf’

where o”. . is the variance of the product of standardized x;, and x;, and o... . the covariance
1 1

2 2%

of x; and the standardized product term (Section 5.2). A, drops out of the variances in Equation
5.15 because ¥, is constant and, therefore, has a variance of zero. The variance of the product

term af*x* is included in Equation 5.15 because the variance of the product is not the product of

the variances of the variables that comprise the interaction, meaning the variance of the product

of standardized variables is not one (unless the covariance of the variables that comprise the

interaction is exactly zero). This result suggests that, from the definition of R* in Section 3.1.2,
the ratio of the conditional variance due to regression to the total conditional variance of the

outcome (assumed to be one when y is standardized at the specific level of the moderator) yields

a conditional version of R,f .

It should be noted that the conditional variances in Equation 5.15 represent a subset of the

variance components of R’ in Equation 5.12. This suggests a conditional form of R? in

Equation 5.12 could be expressed as

2 2 2.2 22 2 2
R77 =B+ B5C0 + BsCoOrixa + 28858 0N v T 28.85C 00 0000 + 28 B5Ca0axaxas  (5.16)
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where ¢, corresponds to the level at which the moderator variable x, is fixed. For Equation

5.15, c,, is omitted and c,, takes the values 0, 1, and -1. Because x, is fixed, it variable has zero

variance and covariances, so the terms 2¢7,, 2/3,,CCyol x2» aNd 23, 8:C,1C5,0 1, 4, drop out,

yielding the results in Equation 5.15.

5.2.2 Bias-adjusted R? estimator
The bias-correction approach implemented thus far is also appropriate for approximating
the bias of the expected value of the moderated MLR R?, and constructing an improved

estimator. The bias can be approximated using Equation 3.26, and the resulting adjusted

estimator is

Ri — [(I _ Bst _jn!stgst)rfl _I]\Pst[(I_Bst _jnlstgst)!fl _I]V_A (517)

bias !

where the elements of A,. . corresponding to outcome variables contain (1/2) tr{var(B)H} and

bias
zero otherwise. For a moderated MLR model with two predictors x, and x, and their interaction,
the estimated bias is

6;1 2 2 rxl, X2 2lexz,xl

%tr{var(BSI)H} = %tr 0-/32,,31 GZ’Z 2rxl,x2 2 2O-><lx2,x2

2 2
Opspr Opapz O3 20,00 20505 20k

) 2 2 2
=04 104, +0430,0,,+ Zo-ﬂz,ﬂlrxl,XZ + 20—ﬂ3,ﬁlo-xlx2,x1 + 20—ﬂ3,ﬁ20-x1x2,x2'

(5.18)

A second order correction is not necessary as the parameters in the bias term are linear. Equation

5.17 may also be applied to estimates of conditional R? in Section 5.2.1.
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5.3 Summary

Chapter 5 reviewed the concept of moderation in MLR, and proposed a general method for
expressed explained variance and bias adjustment for moderated MLR models. In Chapter 6, the
general solutions for explained variance and bias adjustment are applied to extend the effect size

to moderated mediation models.
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6 EXTENDING v TO MODERATED MEDIATION MODELS

6.1 Moderated Mediation

Researchers often theorize that the effect of a construct varies across populations with
differing characteristics. In multiple regression analysis, this is commonly modeled by including
an interaction term in the regression equation so the effect of variable, called a focal predictor, on
the outcome can vary across levels of another variable, called a moderator. This modeling
approach can be extended to mediation analysis where indirect effects can vary across levels of a
moderator. This is referred to as moderated mediation analysis, or conditional process modeling
(Edwards & Lambert, 2007; Hayes, 2013; Preacher, Rucker, & Hayes, 2007). Although several
conflicting definitions of moderated mediation exist in the statistical literature (Preacher et al.,
2007), moderated mediation is defined as occurring when indirect effects vary across levels of at
least one moderator, regardless of which constituent path of the indirect effect is moderated.
Indirect effects in a moderated mediation model are termed conditional indirect effects.

Preacher et al. (2007) illustrated five prototypical examples in which mediation effects
can be moderated by a single covariate or by multiple covariates. In subsequent sections, effect
sizes will be proposed for each of the cases of moderated mediation as examples of the general
effect size framework. In the first case x is also a moderator of the relationship between m and y.
The equation representing the effect of x on m is the same as in the simple three-variable model
(Equation 2.27), and the equation for the effect of m and x on y where the effect of m is

moderated by X is

y=B,+B,, x+B, ,m+B, xm+e, (6.1)

YXMeX
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where B, is the effect of the interaction effect of x and m on'y. The effect of the moderator on

the indirect effect can be seen more clearly by re-expressing Equation 6.1 in reduced form as

Y =By + B, X+ (B + B X)M+ £, (6.2)

YXMeX

Therefore, the conditional indirect effect for Case 1is B, (B,,., + B,,..X) -

ymex
Case 2 considered in Preacher et al. (2007) is where a covariate w is a moderator of the

effect of x on m. Equation 2.26 is now expanded to include the covariate and the interaction term

m=B,+B,,., X+ B W+ B . W+ &, (6.3)

MXWeX

where B_,.. is the effect of the covariate w on m controlling for x and the interaction xw, and

B Is the effect of the interaction of x and w on y. The model for the effects of xand mon'y

remain the same as in the simple three-variable model (Equation 2.27), so the conditional

indirect effect for Case 2 is (B,,., + B.,u.xW)B

MXWe X ymex *
Case 3 is where z is a moderator of the effect of m ony. The equation relating x and m is
the same as in Equation 2.26, and the equation for the effect of m on y as moderated by z

controlling for x is

y=B,+B, X+B, ,m+B, z+B, . mz+¢, (6.4)

ymzex

where B is the interaction effect of m and z on y controlling for x, m, and z. The effect of m

ymzex
on y controlling for x in Equation 6.4 is conditional on levels of z, so the conditional indirect

effectis B, (B +Bym.x2) -

Case 4 is where a covariate w moderates the effect of x on m and a covariate z moderates

the effect of m on y. The equation relating m to x and w is the same is in Equation 6.3, and the
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equation relating y to m, x, and z is the same as in Equation 6.4. The conditional indirect effect is

(Brex T Browex W)(Byrox + Bk 2) -

mXeX MXWeX
Case 5 considered is where w moderates the effect of x on m, as well as the effect mon'y.

The effect of x and w on m is the same as in Equation 6.4, and the effects of x, m, and w on y are

y=B,+B,  X+B,. m+B, ,W+B, MW+eg, . (6.5)

ymwex

The conditional indirect effect for this model is (B, + B,,...W)(B B,....W).

MXWs X ymex + YMwex

Overall, the five cases presented in this section represent a small subset of the possible
conditional indirect effects that may be examined in moderated mediation (Hayes, 2013).
However, these cases are instructive for conveying the complexities introduced when applying

the effect size v.

6.2 v for Moderated Mediation
v can be obtained for each of the moderated mediation models previously presented by
combining the moderated MLR findings of Chapter 5 with the general matrix framework in

Chapter 4. Assuming variables are standardized, the LISCOMP expression for the total effects

for a moderated mediation model (Chapter 5) from a matrix of conditional effects B}, (
Biop = B* +jn*'0Q%) is

Tioo = (1 =Bop) " =1, (6.6)
which is modified as in Chapter 4 to obtain the matrix of conditional indirect effects M,

Mi;oo = TI\S/ItOD - Bi;oo- (6-7)
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The matrix of conditional indirect effects can then be substituted into Equation 4.17 to obtain a

matrix of conditional effect sizes Y,

Y — D—l/ZM TM, D—l/2
MOD MOD MOD (68)

!

_ st st st
- I\/IMOD‘P MMOD '

where D consists of the appropriate variances for standardizing interaction terms (Muthén &
Asparouhov, 2015; Wen et al., 2010). It should be noted that, whereas the moderated R?
formulas of Chapter 5 were presented for the total model R?, the indirect effects for moderated
mediation are conditional on specific values of the moderator, so the resulting effect sizes are

also conditional on moderator values.

6.2.1 Effect sizes for prototypical moderated mediation cases
For clarity of presentation, models for the five prototypical cases of moderated mediation

are considered to be for manifest rather than latent variables. For Case 1 (the predictor moderates

the effect of the mediator on the outcome), the matrix of conditional effects By, is expressed

as

B:;oo — Bst +jnst'gst

0 0 0] [0][#2][0 B O
=l B, 0 Oo|+O0]n*|/l0 0 0 (6.9)
By B 0] [1]|n [0 0 0
) 0 0
=| B 0 0

ﬁyx-x ﬂym-x _'_ﬂymx-xn)jt 0

The matrix of indirect effects My, from B3, is
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st st -1 st
MMOD_(I_BMOD) _I_BMOD

0 0 O
(6.10)
= 0 0 O
ﬁmx(ﬁym-x_'_ﬂymx-xnit) O 0
Y 00 is then calculated from My,
Yoo = M:;IOD‘I’StM?\;IOD'
0 0 off¢ 0 0 of
= 0 0 0|l 0 ¢ 0 0 0| (6.11)
ﬂmx (ﬂym-x + ﬂymx-xnit) 0 0 O 0 é/;tz ﬂmx (ﬂym-x + ﬂymx-x ﬂ:t) O O
0 0 0
=0 0 0

0 0 (Buu(Bymox + By 1)) &

As described in Chapter 5, the effect size (B, (B + By )’ $x - cONsists of products of 7;'
, Which are the covariance between 7;' and 7;* (o, ), and the variance of 7;* (o).

Substituting these findings into Equation 6.11 yields the v for Case 1 as
Umop = ﬂrﬁxﬂ;m-x + ﬁrﬁxﬂ;mx-xnjtzo-; + zﬂ;xﬂym-xﬁymx-xn:taxzyx’ (612)

where x is the conditional value of the predictor at which v,,., is evaluated. This means that,
because x is standardized, v,,o, atthe mean of x is equivalent in form to v for a simple three-

variable mediation model. However, when B2 =0, v, =v onlyif g2 =2 ., orwhen

ymeXx ymex ?
there is no effect of the interaction.
v has several desirable properties as an effect size measure for conditional indirect

effects in moderated mediation models illustrated in Case 1. As demonstrated in Lachowicz et al.
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(2018), v is interpretable as the variance explained indirectly in an outcome by a predictor (or
set of predictors) through a mediator (or set of mediators). In a moderated mediation model, the
variance explained indirectly is conditional on the values of the moderator. v is standardized, so
it is invariant to changes in the scales of the predictor, mediator, and outcome. v is also
monotonically related to its respective conditional indirect effect. In addition, 95% Cls can be
obtained for o using a bootstrapping procedure. Finally, the matrix-based approach allows for v
to be obtained for moderated mediation models more complex than the five cases previously
illustrated (e.g., moderated mediation with covariates, multiple mediators, multiple moderators).
The derivation of v for Case 2 (covariate w moderates the effect of x on m) is not as
straightforward as for Case 1. Specifically, following the same steps as in the derivation for v
for Case 1 results in an effect size for a quantity that is not the squared standardized conditional

indirect effect. Repeating the procedure followed in Case 1, the reduced form matrix of

standardized conditional regression coefficients B}, (x is designated the focal predictor) is

x[ 0 0 0o o] [o[»][ o 0 0 O
Bst _W 0 0 0 0 n 0 77\/Svt ﬂmxw-x 000
Mop m ﬂmxx ﬂmw-x 0 0 1 77:: 0 000
0 0| |0]ln 0 0 0O
y :ﬂyx-x ﬂym-x 77y (613)
X 0 0 0 O
w 0 0 0 O
- m ﬂmx-x + m><w-><77\i/t ﬂmw-x 0 0 .
y_ ﬂyx-x 0 lBym-x 0

The matrix of standardized conditional indirect effects M3, is calculated from B}, as
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0 0 00
M3 ° o 00 6.14
MOD — O 0 O O ’ ( ' )
(ﬂmx-x + mxw-xn\i/t)ﬁym-x ﬂmw-xﬂym-x O 0
and Y, is calculated from M7, is
0 0 0 0 ]
0 0O 0
Yoo = 000 0 : (6.15)

((ﬂmx-x + MXWe X vsvt)ﬂymox)zé/;t2 + (ﬁmw-xﬂym-x)zé/v?/tz +
2(ﬁ)mx-x + m><w-><77\i/t )ﬂym-xﬂmw-xﬂym-xé/;\tv

v in this case consists of variance explained y indirectly by x through m conditional on w (
(Brsex + B ) Bymoxx- )1 Variance explained in y indirectly by w through m ((B/Bym)’)s

and the covariance of the indirect effects of x and w on y through m (

20 + BrosuexTos ) Bymmex B BymexSran )- THis shows that straightforward application of the matrix

method results in v that quantifies the total variance explained indirectly from all of the
conditional indirect effects on a specific outcome. However, in many cases it is of interest to
report an effect size for a specific conditional indirect effect, and v obtained here consists of
variance explained indirectly from several sources.

v is derived for a specific conditional indirect effect using a modification of the matrix

method described in Chapter 4. To obtain the specific v for the conditional indirect effect

(Browx + mXW,anJ)Z,Bfm,xg“jtz, B;,op 1S modified by pre- and post- multiplication by an elementary

matrix O that replaces the regression coefficient g ., with zero, resulting in a modified matrix

of coefficients B\,
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Bi;I:JD = OB?\;ODO

1000 0 0 0 O0jf1 00O
0 00O 0 0 0 0|0 00O
= . (6.16)
O 0 1 0 ﬂmx-x + mXW-XnW ﬂmw-x O 0 0 O l 0
_O 0 01 ﬂyx.x 0 ﬁym.x 0 0001
i 0 0O 0 O
0 0O 0 O
- ﬁmx-x + I’T])(W-X77\IS\It 0 0 O .
ﬂyx-x 0 ﬂym-x O
The matrix of indirect effects M, is calculated from B}, as
0 0 0O
M 0 000 6.17
MOD — O 0 0 0 ’ ( . )
(ﬂmx-x + mxw-xn\i/t)ﬁym-x 0 0 0
and Y, is calculated from M, . as
0 00O 0
- 0 00O 0 6.18
MOD — O O O 0 ( ' )
0 0 0 (B Bl ) Bym)”
As in Case 1, v, Incorporates products of variances and covariances of product terms,
expressed as
UMOD = ﬂnixﬂyzm-x +ﬂr§xﬁ;mx-x77vsvtzo-fw + zﬂnixﬂym-xﬂymx-xn\ls\;[o-xw,x' (619)
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where o, is the variance of the product term xw, and o, is the covariance of x with the

product term. In addition, as in Case 1, the conditional variance in y explained indirectly by x
through w at the mean of w is equivalent to v from the simple three-variable mediation model.
v for Cases 1 — 5 can be found in Table 13. For models where the specific and total v
differ as in Case 2, the specific and total v are provided assuming that the indirect effect of x is
of primary interest. Derivations for v in the remaining Cases 3 — 5 follow the same procedures

as in Cases 1 and 2.

6.2.2 Bias-adjusted estimator of conditional v

The bias-correction approach used thus far is again implemented to adjust for bias in the
expected value of Y., to yield an improved estimator Y,,.,. The general form of the bias-

adjusted estimator is

YMOD = M?\;oo‘i’StM;\%D _At’nas (6-20)

where the elements of A’

bias

corresponding to outcome variables consist of
@/ 2)tr{var(B)H}—(1/ 4)tr{var(B)H,}, and zero otherwise (Equation 3.26). For the Case 1

moderated mediation model, the estimated bias correction is

' N2 02 A2 0 st A 2 st A 2 n2
Ablas y ymex O mx + mx ym X + 2ﬂym-xﬂymx «M1x O, + zﬁmxnx ym X, yMX X + ymx xx Omx +

N2 . st2 A2 st2 A 2 A2
ﬁmxnx O-ymx-x _O_ym-xo-mx - 277x ym X, ymXeX O Tk O ymxe xOmx

(6.21)

At the mean of the moderator (i.e., mean of standardized x), the bias-adjustment is equivalent to
O for the three-variable mediation model (ﬁ + ? ), and at +1 standard

ymex O mx mx ym>< ymx O mx

deviation above the mean of x is
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N2 A2 N2 A2 P 0 ~2 N2 A 02 ~2
ym-xGmx+IBm o _'_Zﬁ)ym-xﬂymwxamx_{_Zﬂmx(7 + Om t

X ymex YMeX, ymxex ymxex & mx
N2 A2 A2 A2 A A2 A2 A2
ﬂmxo-ymx-x - Gym-xamx - 2Uym-x,ymx-xo-mx B Gymx-xamx'

Bias adjustments for the five prototypical cases of moderated mediation previously described can

be found in Table 13.

6.3 Simulation Study

The purpose of the present simulation study is to examine the sampling properties of the
unadjusted and bias-adjusted effect size estimators © and o in a moderated mediation model. As
in the simulation in Chapter 4, of interest is determining whether the matrix generalization and
bias-adjustment yield estimators with good statistical properties in terms of bias, variance, and
overall accuracy, and whether common interval estimation methods return proper Cls for the

estimators.

6.3.1 Simulation Design

The generating model for this simulation was a moderated mediation model with a single
predictor x, outcome y, mediator m, and interaction between x and m (Figure 3). Variables in this
simulation were considered standard normal in the population. Because effect sizes can be
estimated for the indirect effect conditional on levels of the moderator, two levels were chosen
for the simulation: a) the conditional indirect effect of x on y through m at the mean of

standardized X ( B, 8,n.x )» and b) at +1 SD above the mean of X ( B, (Bym.x + Bymex) )-

6.3.2 Simulation Conditions
Parameter values for the paths were varied among .15, .39, and .59, magnitudes for small,
medium, and large standardized coefficients common in applied research. As in the previous

simulation, values consistent with the null hypothesis of no indirect effect were not considered in

100



this simulation because zero is on the boundary of the parameter space. Sample size was varied
among 50, 100, 250, and 500. This yields a total of 3x3x3x4 = 108 total conditions. Percentile
and BCa 95% Cls (Section 2.3) were evaluated for o and o. As in the previous simulation, it
was expected that BCa Cls will outperform percentile Cls in terms of coverage and balance,
particularly in conditions with small effect magnitudes.

1,000 replications per condition is sufficient to obtain accurate estimates of bias for point
estimates and coverage for Cls, and 1,000 bootstrap resamples are used to construct 95% Cls.
The point estimators will be evaluated in terms of bias, overall accuracy, and relative efficiency,

and Cls will be evaluated in terms of coverage and coverage balance.

6.3.3 Evaluation criteria
Evaluation criteria were those detailed in Section 4.4.3. It is unclear how or if the
sampling properties of the estimators of v would differ at the mean of x as compared to +1 SD

above the mean of X, so this question will be addressed empirically.

6.4 Simulation Results
6.4.1 Bias

Simulation results for the relative bias of o for the conditional indirect effect at the mean
of standardized x can be found in Table 14, where shaded cells highlight relative bias > 5%.
Results were generally consistent with results from the previous simulation. The hypothesis that
v would be positively biased, with larger magnitudes of bias at smaller N and for smaller effect
sizes, and decreasing magnitudes as N and effect magnitude increased, was supported by the
simulation results. The direction of bias for & was positive in all conditions, consistent with

analytic results. For the smallest effect magnitudes ( £ =.15), bias was non-negligible at all

sample sizes, and in those conditions with the smallest N (N = 50), percent relative bias
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(290.84%, 238.9%, and 206.6%) was of the largest magnitude across all conditions. Increasing N
was associated with decreasing bias, supporting the hypothesis that o is a consistent estimator.
Finally, bias of 0 was negligible for large effect magnitudes of the conditional indirect effect for
all sample sizes.

Simulation results for percent relative bias of o also can be found in Table 14. The
hypothesis that bias of © would be negligible across simulation conditions was largely supported
by simulation results. As in the previous simulation, percent relative biases for o were of much
smaller magnitude than for o. For the conditions in which bias was greatest for the 0, the
relative biases of O were —3.98%, -4.44%, and —9.88%. Overall, the largest magnitude of relative
bias across conditions for & was —24.39% at N = 50. 12 of the 27 conditions at N = 50
demonstrated non-negligible bias, 6 at N = 100, 2 at N = 250, and none at N = 500. Finally, as
with 0, bias decreased as N increased, supporting the hypothesis that O is a consistent estimator.

Results for relative bias of effect size estimators of the conditional indirect effect at +1
standard deviation above the mean of standardized x can be found in Table 15. Findings were
generally similar to those for the conditional indirect effect at the mean of x. For both estimators,
hypotheses regarding the magnitude and direction for the specific indirect effect were supported.
For 0, the largest values of relative bias (272.15%, 105.65%, and 103.89%) occurred at the
smallest N, and relative bias was non-negligible for these effects even at the largest sample size.
For 0, relative bias was non-negligible in 18 of the 27 effect magnitude conditions at N = 50, in
3 conditions at N = 100, and in no conditions at N = 250 and N = 500. Although bias tended to be
negative at smaller sample sizes, the magnitude of bias showed no clear relationship with effect

magnitude. Finally, increasing N was associated with decreasing bias for both estimators.
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6.4.2 Accuracy and Relative Efficiency

Simulation results of MSE and RE for effect size estimators of the conditional indirect
effect at the mean of x can be found in Table 16, and for the conditional indirect effect at +1
standard deviation above the mean of x in Table 17. Shaded cells highlight conditions where the
MSE of o was greater than that of o, and where RE >1 (i.e., variance of ©>0). Increasing N
was associated with decreasing MSE for both estimators of both conditional effects, supporting
the hypothesis that overall accuracy of the measures would increase with increasing N. It was
also clear that, for both effects, outside of a few conditions, © was a more accurate estimator of
v than 0. In addition, it was clear that across the vast majority of conditions & was a more
efficient estimator. Finally, the magnitudes of the accuracy and efficiency discrepancies between
the estimators were dependent on sample size and effect magnitudes, such that differences were

largest for the smallest sample sizes and smallest effects.

6.4.3 Confidence Intervals

Results for 95% percentile bootstrap Cls of © and & for the conditional indirect effect at
the mean of x can be found in Tables 18 and 19, respectively, and for the conditional indirect
effect +1 standard deviation above the mean of x in Tables 20 and 21, respectively. Shaded cells
highlight conditions where satisfactory coverage (92.5% — 97.5%) was not achieved. The
hypotheses that coverage would reach the nominal 95% level as N increased, and that the
proportions of misses to the left and right of the 95% CI would be balanced, were supported by
simulation results. As with bias, satisfactory coverage was achieved with larger effect sizes and
at larger N for both estimators and effects, such that satisfactory coverage was achieved for all

parameter combinations at N = 250. In addition, misses to the left and right of the 95% CI were
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approximately balanced at N = 250 for both estimators and effects. When satisfactory coverage
was not achieved, it was predominantly due to coverage > 97.5%, or Cls being too wide.

Results for 95% BCa bootstrap Cls of estimators for the conditional indirect effect at the
mean of x can be found in Tables 22 and 23, respectively, and for the conditional indirect effect
at +1 standard deviation above the mean of x in Tables 24 and 25, respectively. The hypotheses
that that nominal coverage would converge to a satisfactory level, and that the proportions of
misses to the left and right would achieve balance, were generally supported by the results as
well. Similar to the percentile Cls, satisfactory coverage was generally achieved for larger N and
larger effect magnitudes, and achieved for all parameter combinations at N = 500 both estimators
and effects. As with the CI methods for the multiple mediator model, there were noteworthy
differences between the results. In contrast to the percentile Cls, when satisfactory coverage was
not achieved, it was predominantly due to coverage < 92.5%, or Cls being too narrow. In
addition, whereas percentile Cls for both conditional effects achieved satisfactory coverage at the
same sample size (N = 250), BCa Cls required sample sizes of 500 for satisfactory coverage in

the majority of conditions.

6.5 Empirical Example

I now present an empirical example to facilitate interpretation and implementation of v
for a moderated mediation model. | use the results from a study conducted by Alexopolous and
Cho (in press) that investigated the conditional pathway through which risk taking has a
downstream effect on sexual behavior. Like the example in Chapter 4, the authors used ADD
Health (Harris, 2009). The authors examined the indirect effect of risk taking on sexual behavior
through alcohol use, conditional on level of parent child communication. Analyses were

conducted with those female participants that had observations on these variables at Wave 4 (N =
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1233). The predictor variable of risk taking was assessed using a single item asking whether the
participant “liked to take risks”, where higher values indicated greater propensity for risk taking.
The mediator variable of alcohol use was assessed using a single item of the number of drinking
days in the past 30 days. The outcome variable of sexual behaviors was assessed using a single
item of the participant’s total number of sexual partners. The moderating variable of parental
communication was assessed using a composite of six items, where three items measure the
frequency and quality of communication between the participant and their mother, and the
remaining three items measure the frequency and quality of communication between the
participant and their father.

Results presented here differ slightly form the original study results because relevant
control variables were excluded to simplify analyses. The standardized indirect effect of risk
taking on sexual behavior through alcohol use at the mean of parental communication (i.e., 0)
was 0.0097 (95% percentile Cl =.0032, .0181), at one standard deviation below the mean of
parental communication was 0.0029 (95% percentile Cl =—.0106, .0162), and at one standard
deviation above the mean of parental communication was 0.0164 (95% percentile Cl = .0051,
.0332).

For the v estimators, the o effect size estimate for the indirect effect at the mean of
parental communication was 0.00009 (95% percentile bootstrap Cl =.00002, .00056), meaning
that the variance explained indirectly in sexual behaviors by risk taking through alcohol use at
the mean of parental communication was 0.00009. The o effect size estimate for the indirect
effect at the mean of parental communication was 0.00008 (95% percentile bootstrap Cl =
0.00001, 0.00056). o is interpreted as the estimated variance in sexual behaviors explained by

risk taking through alcohol use at the mean of parental communication in the population. The o
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effect size estimate for the indirect effect at one standard deviation below and above the mean of
parental communication were 0.00013 (95% percentile bootstrap CI =.00001, .00033) and
0.00015 (95% percentile bootstrap CI =.00002, .00059), respectively. This means that the
variance explained indirectly in sexual behaviors by risk taking through alcohol use at one
standard deviation below the mean of parental communication was 0.00013, and at one standard
deviation above the mean of parental communication was 0.00015. The o effect size estimate for
the indirect effect at one standard deviation below and above the mean of parental
communication were 0.00011 (95% percentile bootstrap CI =.000003, .00059) and 0.00012

(95% percentile bootstrap CI =.000009, .00053), respectively.

6.6 Summary

In Chapter 6, the effect size v was extended to moderated mediation models, or models
with conditional indirect effects. Unadjusted and bias-adjusted estimators were derived for five
prototypical examples of moderated mediation effects. A Monte Carlo simulation was conducted
to investigate the sampling properties of the effect size estimators. Chapter 7 will summarize the

findings of the dissertation, and discuss limitations and future directions.
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7 CONCLUSION AND DISCUSSION

7.1 Summary

The goal of the dissertation was to develop a generalizable effect size measure for
mediation analysis. Chapter 2 reviewed effect sizes for common study designs, mediation
analysis, and effect size in mediation analysis. Introduced in Chapter 2 was the effect size
measure upsilon, which was shown to have many desirable properties for a general effect size
measure for indirect effects in mediation analysis. Chapter 3 reviewed a matrix-based framework
for MLR models and SEM that would be used as a general framework for extending the effect
size v to more complex models. Chapter 4 proposed a generalizable effect size measure and
sample estimators for complex mediation models including models with multiple mediators,
predictors, and covariates. Chapter 5 proposed a general matrix framework for explained
variance in moderated MLR. Chapter 6 further extended the mediation effect size to conditional

indirect effects.

7.2 Primary Contributions
7.2.1 General effect size measure for mediation

The primary contribution of this work is a generalizable measure of effect size for
indirect effects in mediation analysis. The effect size Y was shown to be applicable to a wide
variety of mediation models used in applied psychological research, including models with
multiple parallel and serial mediators, multiple predictors, and covariates in Chapter 4, and
conditional indirect effects in Chapter 6. The effect size v proposed in Lachowicz et al. (2018)
for simple three-variable mediation models served as basis for these extensions. In addition, the
concept of explained variance in moderated MLR was developed to extend Y to conditional

indirect effects.
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The effect size Y has several desirable properties as an effect size for mediation analysis.
First, Y is a standardized measure of effect size, which yields effect sizes for indirect effects that
are comparable within and across studies. Second, Y is interpretable as a measure of explained
variance. Although benchmarks are commonly applied for small, medium, and large proportions
of variance in traditional research designs (Cohen, 1988), it is unclear whether the effects from
traditional designs are comparable to indirect effects from complex mediation models (e.g., total
indirect effect of several mediators, conditional indirect effect). Therefore, it would desirable to
develop benchmarks for these effects from the accumulation of findings within specific research
domains. It is also important to note that Y can be greater than 1 when suppression is evident
(i.e., direct and indirect effect have opposite signs), so this measure is not strictly proportion.
Third, the matrix-based framework (i.e., LISCOMP) for Y makes the effect readily

generalizable to many types of mediation models. Fourth, two sample estimators were proposed

for Y (Y and ). Although bias of both estimators was negligible for the largest total, specific,

and conditional indirect effect magnitudes, bias for Y was negligible in many more conditions
than Y. In addition, Y was demonstrated to be a more accurate estimator in terms of MSE than

Y in the vast majority of study conditions. Fifth, 95% Cls can be constructed for Y using a
bootstrap procedure. Although percentile and BCa methods perform satisfactorily in terms of
coverage and balance at large sample sizes for the indirect effects considered in the simulations
(i.e., N >500), results show that the percentile method outperforms the BCa method for smaller
sample sizes.

The review of effect sizes in Chapter 2 showed that many sample estimators of
standardized effect sizes are biased, and bias-adjusted estimators are often recommended. With

the exception of the effect size based on the standardized mean difference (Hansen & McNeal,
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1996), Y is the only standardized effect size for mediation analysis with a bias-adjusted
estimator. However, unlike the Hansen and McNeal (1996) measure, the sampling properties of
the unadjusted and bias-adjusted Y estimators and Cls were evaluated with Monte Carlo
simulation studies.

As a measure of explained variance, v is generalizable to a larger class of mediation
models than other standardized measures. More specifically, as shown in Chapters 2 and 3,
measures of explained variance can be used to quantify not only bivariate relationships, but also
relationships between an outcome and several predictors. This means that, in addition to indirect
effects with a single predictor and outcome, Y can be used to quantify the variance explained in
an outcome indirectly by several predictors, including the overall variance explained via the

indirect effect of a multi-categorical predictor.

7.3 Limitations
7.3.1 Variable standardization

The effect size derivations in this dissertation assumed the variances of the variables used
to standardize indirect effects were fixed, known quantities. Although this is common practice in
coefficient standardization, variable variances can also be considered to vary randomly across

samples. Assuming these variances are stochastic rather than fixed means the sampling

distribution of Y would also incorporate the distributions of the variables used for

standardization, which would add further complexity to the derivation of the expected value of

Y for bias adjustment. However, simulation results show that bias for Y was negligible in the
majority of simulation conditions for both the multiple mediator and conditional mediator

models, and of relatively small magnitude in those conditions where bias was non-negligible. It

is possible that the sampling variability of the variances has a systematic effect on the bias of Y,
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perhaps responsible for the negative bias trend observed in Y for small sample sizes and small

effect magnitudes.

7.3.2 v for latent variable models

Because the Y extensions use the LISCOMP SEM framework, it is possible to obtain
effect sizes for indirect effects among latent variables. However, the results of the dissertation
are limited to mediation models with manifest variables, and caution should be taken if Y is to

be applied to models with latent variables. The primary reason for this caution is that, because
SEM separates construct relevant variance from error variance, it is questionable if R? estimates
obtained from a latent structural model are comparable to estimates from models with manifest
variables. More specifically, it would be expected that R* estimates would be larger for latent

variable models as compared to manifest variable models because the total variance of manifest
outcomes includes measurement error, a source a variance that would not be explainable by
predictors.

Also relevant is the issue of standardization in latent variable models. The standardization
in 3.24 is of the same form used when standardizing coefficients in MLR (i.e., dividing by
variable standard deviations), but in SEM there is no estimated parameter that corresponds to the
total variance for endogenous variables, only parameters for residual variances (¥). This
complicates the process of standardization, where the improper standardization (e.g., analyzing a
correlation matrix as a covariance matrix) can result in misleading measures of model fit and

standard error estimates (Cudeck, 1989; McDonald & Ho, 2002).
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7.3.3 Explained variance in non-recursive models

The interpretation of R? in SEM becomes more complicated when models are non-
recursive (Bentler & Raykov, 2000; Teel, Bearden, & Sharma, 1984). When a model contains a
feedback loop, it is unclear how to attribute variance explained to specific sources. For example,

if two variables x, and x, are considered predictors and outcomes of one another, the variance
explained in x; can partially be attributed to not only x,, but also x, because x is considered a

cause of x,. Using traditional measures of R? in these circumstances results in inflated estimates
of explained variance. Although methodologists have proposed more general computational

forms for R in SEM to account for this issue (Bentler & Raykov, 2000; Teel et al., 1986),

consensus has not yet been reached regarding how to most appropriately define and compute R?

in non-recursive models. Because of this uncertainty, and the more general issues of
interpretation for non-recursive models, the effect size extensions described in this dissertation

are limited to recursive models.

7.4 Future Directions

The results of this dissertation offer several promising directions for future research. One
is investigation of Y for indirect effects in latent variable models. Given the ease with which
latent variables are modeled with the LISCOMP framework, it is important that the desirable
properties of Y estimators translate to indirect effects in latent variable models, including
models with conditional effects among latent variables (i.e., latent interactions; Klein &
Moosbrugger, 2000). Another important extension of Y is to mediation models in clustered
data, which can be modeled in the LISCOMP framework using multilevel structural equation

modeling (MSEM; Preacher, Zyphur, & Zhang, 2010). This extension poses additional
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challenges, particularly for the derivation of bias-adjusted sample estimators, because the

assumption of independence for regression coefficients across equations can be violated

independence is a key assumption when deriving the bias in the expected value of Y in Chapters
4 and 6.

Another promising direction for future research is in evaluation and comparison of
additional CI estimators. Although the percentile Cls performed well in many of the simulation
conditions, both percentile and BCa Cls were unstable for small sample sizes and for small
indirect effect magnitudes. Additional interval estimators that could be evaluated for
performance in these conditions include bias-corrected bootstrap Cls without an acceleration
constant (MacKinnon et al., 2004), Monte Carlo Cls (Preacher & Selig, 2012), and Bayesian

credibility intervals (Yuan & MacKinnon, 2009).

7.5 Conclusion
In conclusion, the results of this dissertation show that Y is a theoretically meaningful

and useful measure of effect size for indirect effects of many types of mediation models.

Furthermore, the bias-adjusted sample estimator Y has been demonstrated to have good

statistical properties in many study design conditions common in applied research.
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Figure 1. Path diagram for a three-variable mediation model
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Figure 2. Path diagram for a multiple parallel mediation model
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Figure 3. Path diagram for a moderated mediation model with predictor X mediator interaction
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Table 1. Percent relative bias of the total indirect effect of two mediators

A

1 1

Box  Byax Bruox = Byma N=50 N=100  N=250  N=500 N=50 N=100 N=250  N=500
15 15 15 138.606  50.251  20.885  12.724 0.234  -2.845 1.616 3.465
39 19.391 9.954 3563  0.706 4777 <1292 0725 -1.391

59 6.889 2.596 0.665  0.171 2754  -1.911  -1.089  -0.698

39 15 60.960  36.110  14.047  6.756 -7.293 1.056 0.784 0.327

39 25.013 6.976 3.328  1.838 3.842  -2862  -0479  -0.053

59 5.711 2.693 0.192  1.055 2604  -1.277  -1.355 0.284

59 15 69.406  34.151  13.882  2.120 1.514 1.125 0.993  -4.237

39 17.037 8.092 3.789  1.992 3672  -1.917  -0.166 0.034

59 6.756 2.432 1.108  0.513 0991  -1.339  -0.375  -0.227

39 15 15 93566  32.291  14.668  7.484 2.665  -5949  -0.274 0.240
39 17.917 7.431 1558  1.484 4869  -3.091  -2.487  -0.513

59 4.723 3.651 1331  0.686 4196  -0.622  -0.309  -0.130

39 15 17.856 8.991 3.961  0.667 -1.007  -2.247  -0.328  -1.433

39 10.283 2.732 2404  1.798 -1.624  -2.830 0.228 0.723

59 1.576 0.281 0.056 0.862 3928 -2.930  -1.089 0.348

59 15 10.011 6.793 1134  0.272 -5.029  -0476  -1678  -1.124

39 3.529 2.564 0.198  0.427 4917  -1526  -1.403  -0.367

59 2.966 0.886 0492  0.147 2967  -1.023  -0.264  -0.523

59 15 15 97.628  46.858  19.923  13.093 -1.447 -2.894 0.883 3.678
39 25.150 8.185 6.160  4.120 2812  -4.806 1.103 1.606

59 9.034 1.142  -0.038  0.097 -0.868  -3.489  -1.858  -0.802

39 15 16.083 9.160 4248  2.164 4379  -0.500 0.547 0.335

39 7.997 1.643 1.080  0.157 2393  -3.182  -0.806  -0.775

59 0.080 -0.116 0599  0.564 4371 -2.265  -0.240 0.148

59 15 7.664 5.001 1586  0.928 -1.966 0425  -0.173 0.059

39 0.765 1.238 0530  0.223 4707  -1410  -0506  -0.736

59 0.736 0.170 0.105 0.095 3019  -1.271  -0538  -0.120

Note: Shaded cells indicate relative bias > 5%: 0 is the unadjusted effect size estimator; U is the bias-adjusted effect size estimator;
By and B, are the effects of X on m, and m, ; ,Byml and ﬂymz are the effects of m, and m, on y controlling for X,

respectively.

Table 2. Percent relative bias for a specific effect of a mediator model with two parallel mediators
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]

19

Box  Bymex  Brox = Byma N=50 N=100  N=250  N=500 N=50 N=100 N=250  N=500
15 15 15 265.837 107.800  40.819  26.050 9142  -0.092 2.194 3.290
39 223305 107.955 42.167  12.215 -5.352 5.484 5505  -4.314

59 234106  84.231 25468  15.950 18.606 0.216  -4.475 1.049

39 15 98.228 53592  20.186  11.355 -10.587 1.151 0.113 1.524

39 110225 43319  17.090  8.357 3.373  -6.648  -2362  -1.293

59 100.006  53.747 16566  7.725 -2.052 4891  -2.348  -1.668

59 15 90.469  46.002  20.088  4.300 3236  -0.212 1.805  -4.743

39 80.844  47.242  16.813  9.117 -2.191 1542  -1.265 0.140

59 82.988  42.880 17.885  7.279 2411 -2.420 0.170  -1.582

39 15 15 135606  54.912 25950  12.020 3470  -4.410 2.769 0.822
39 104253  49.085 15902  8.535 -3.536 3602  -4.035  -1.169

59 82194  41.097 17.500  3.814 -5.423 0.846 2.310  -3.544

39 15 17.762  10.322  3.777  1.039 3151 -2.299  -1.085  -1.361

39 25.106 8.754 4777 2739 1.064  -2.399 0.417 0.590

59 16.910 8.390 3.735 2562 2123 -0.721 0.196 0.812

59 15 11.266 7.583 2095  4.128 4868  -0.342  -1.010  -1.666

39 9.124 5.414 1533  1.969 -4656  -1.813  -1.306 0.555

59 6.708 5.283 2.883  2.153 -1.956  -0.926 0425  -1.068

59 15 15 142.380  68.212  27.463  18.545 -1.895 -2.893 0.040 0.902
39 131.656  56.393  26.015 17.071 0951  -3.127 2.939 1.556

59 94401 40291 15701  6.989 2718  -2.494  -1235  -1.266

39 15 17.123  10.002 5102 2771 3233 -0.688 0.969 0.726

39 15.580 5.773 3162 2871 2815  -2.819  -0.185  -0.783

59 9.720 5.884 1.996  1.561 -1.974 0.262  -0.165 0.488

59 15 7.846 5.014 1450  1.797 -2.205 0.203  -0.414  -0.126

39 1.655 2.772 0.829 1121 -1.029  -0979  -0.633  -0.848

59 1.711 0.117 0.849 0583 2896  -2.327  -0.021 0.152

Note: Shaded cells indicate relative bias > 5%; O is the unadjusted effect size estimator; O is the bias-adjusted effect size estimator;
B and fB,, are the effects of X on m, and m,; B, and S, are the effects of M, and M, on y controlling for X,

respectively.
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Table 3. MSE and relative efficiency total effect

N=50 N=100 N=250 N=500
MSE* MSE* MSE* MSE*

ﬁmlx IBme_.x ﬂmZx =ﬂym2-x 13 6 RE 13 6 RE 13 l} RE l} 6 RE
15 15 15 0.071 0.044 0.701 0.017 0.013 0.777 0.004 0.004 0.874 0.002 0.002 0.928
.39 1.065 0.895 0.868 0.433 0.390 0.919 0.154 0.148 0.966 0.075 0.073 0.982
.59 6.167 5.739 0.944 3.201 3.088  0.968 1150 1.134 0.987 0.545 0541 0.993
.39 15 0.233 0.178 0.820 0.090 0.075  0.896 0.026 0.024 0.951 0.012 0011 0.974
.39 2.133 1.843 0.917 0.734 0.689  0.952 0.292 0.284 0.980 0.130 0.128  0.990
.59 7.540 7.210 0.968 3.420 3.344  0.984 1360 1.351 0.993 0.657 0.652 0.997
.59 15 0.642 0.526 0.925 0.259  0.232 0.962 0.090 0.086 0.984 0.037 0.036 0.992
.39 2.664 2.496 0.972 1.336 1.293  0.984 0.490 0.483 0.995 0.233 0231 0.997
.59 9.056 8.904 1.001 4.320 4307  1.002 1700 1698 1.001 0.822 0.822 1.001
.39 15 15 0.383 0.286 0.828 0.097  0.082 0.886 0.033 0.030 0.944 0.013 0012 0.971
.39 1.955 1.697 0.897 0.812  0.754 0.941 0.312 0.304 0.975 0.139 0.137 0.988
.59 8.783 8.289 0.950 3.761 3.628 0.974 1437 1417  0.990 0.740 0.735 0.994
.39 15 1.065 0.894 0.860 0.455 0.413 0.921 0.154 0.147 0.966 0.069 0.068 0.982
.39 3.776 3.421 0.928 1.716 1.644 0.961 0.681 0.665 0.983 0.297 0.292 0.992
.59 10.212 9.892 0.970 4.499 4.428 0.984 1.953 1941 0.994 0.956 0.949 0.997
.59 15 2.435 2.229 0.928 1.126 1.063  0.960 0.392 0.386 0.984 0.192 0.191 0.992
.39 5.605 5.411 0.968 3.035 2974  0.984 1160 1.154  0.994 0.557 0.555 0.997
.59 11.598 11.718  1.010 5584 5609 1.006 2130 2133 1.003 1.099 1101 1.001
.59 15 15 1.237 0.978 0.895 0.427 0374 0.951 0.146  0.137 0.979 0.060 0.057 0.988
.39 4.017 3.627 0.953 1.783 1.704  0.968 0.616  0.595 0.986 0328 0320 0.993
.59 13.276 12.521 0.965 5.541 5440  0.983 2347 2329 0.992 1118 1.114  0.996
.39 15 3.341 2.940 0.906 1.602 1.502  0.958 0.561 0.545 0.983 0.291 0286 0.991
.39 7.983 7.459 0.950 3.534 3432 0972 1337 1320 0.989 0.673 0.669 0.994
.59 15.097 14.710 0.974 6.413 6.336  0.988 2506 2489 0.995 1281 1.274  0.997
.59 15 6.450 5.981 0.942 3.106 2966  0.970 1.018 1.001 0.987 0.532 0527 0.994
.39 10.077 9.839 0.971 4.451 4375 0.985 1.943 1930 0.994 0972 0970 0.997
.59 11.437 11.671 1.021 5.467 5533 1.011 2014 2022 1.004 1.043 1.045 1.002

Note: Shaded cells indicate MSE and variance 0>0; 0 is the unadjusted effect size estimator; O is the bias-adjusted effect size estimator; /3

1, and B, arethe

effects of X on m, and m, ; ,Byml and ﬂymz are the effects of m, and m, on Yy controlling for X, respectively. *MSE scaled by 1,000 for presentation.
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Table 4. MSE and relative efficiency specific effect

N=50 N=100 N=250 N=500
MSE* MSE* MSE* MSE*
ﬁmlx ﬂyml-x ﬂmZx = ﬂymz-x 13 6 RE 13 l} RE 13 15 RE l} lj RE

15 A5 A5 0.015 0.009 0.570 0.004 0.003 0.674 0.001 0.001 0.793 <0.001 0.001 0.868
.39 0.012 0.006 0.529 0.004 0.003  0.693 0.001 0.001 0.801 <0.001 <0.001 0.873

.59 0.030 0.010 0.654 0.008 0.001 0.679 0.002 0.001 0.813 0.001 <0.001 0.893

.39 A5 0.116 0.114 0.786 0.039 0.034  0.869 0.011 0.011 0.940 0.005 0.005 0.966

.39 0.120 0.098 0.809 0.031 0.027  0.885 0.010 0.010 0.944 0.005 0.005 0.972

.59 0.087 0.074 0.867 0.035 0.031  0.920 0.012 0.010 0.968 0.004 0.004 0.983

.59 15 0.328 0.298 0.910 0.141 0.135  0.955 0.054 0.054 0.980 0.022 0.025 0.991

.39 0.328 0.311 0.947 0.145 0.143 0971 0.048 0.047 0.991 0.020 0.021 0.993

.59 0.278 0.279 0.992 0.113 0.118 1.001 0.042 0.044 1.004 0.020 0.020 1.002

.39 15 15 0.194 0.154 0.792 0.049 0.044 0.856 0.016 0.015 0.933 0.006 0.005 0.965
.39 0.109 0.084 0.773 0.033 0.028  0.857 0.011 0.012 0.930 0.005 0.004 0.964

.59 0.108 0.062 0.764 0.028 0.023  0.856 0.009 0.008 0.933 0.004 0.005 0.967

.39 A5 0.733 0.641 0.838 0.285 0.258  0.906 0.100 0.096 0.959 0.047 0.046 0.979

.39 0.683 0.605 0.855 0.248 0.226  0.915 0.094 0.092 0.964 0.042 0.043 0.981

.59 0.478 0.394 0.879 0.226 0.193  0.939 0.072 0.066 0.973 0.036 0.036 0.986

.59 A5 1.962 1.802 0.917 0.890 0.853  0.955 0301 0.295 0.982 0.152 0.152 0.991

.39 1.457 1.366 0.938 0.774 0.750  0.969 0276  0.273 0.987 0.142 0.142 0.994

.59 1.143 1.145 1.001 0.584 0.583  0.999 0.242 0.242 0.999 0.113 0.114 1.000

.59 15 15 0.746 0.674 0.879 0.247 0.233  0.945 0.085 0.083 0.977 0.035 0.040 0.986
.39 0.534 0.511 0.910 0.199 0.194  0.939 0.060 0.063 0.977 0.033 0.037 0.986

.59 0.395 0.347 0.885 0.154 0.131  0.942 0.052 0.043 0.969 0.022 0.021 0.985

.39 5 2.569 2.299 0.894 1.195 1.140 0.952 0.442 0439 0.981 0.222 0.221 0.990

.39 2.349 2.153 0.916 0.935 0.891  0.952 0.340 0.334 0.981 0.166 0.165 0.990

.59 1.394 1.230 0.919 0.645 0.598 0.958 0235 0.231 0.983 0.111 0.110 0.991

.59 A5 5.158 4.824 0.935 2.584 2.501 0.966 0.870 0.861 0.986 0.450 0.447 0.993

.39 3.855 3.683 0.946 1.820 1.768 0.972 0.708 0.701 0.989 0.354 0.352 0.995

.59 2.053 2.038 0.997 0.971 0.979  0.999 0417 0415 0.999 0.176 0.176 1.000

Table 5. Percentile bootstrap CI coverage total effect
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N=50 N=100 N=250 N=500
Box  Byx  Buax =Bymax  Cov High  Low Cov High Low Cov  High  Low Cov High Low
15 15 15 99.5 5 0 98.8 8 4 95.9 17 24 95.4 18 28
.39 96.3 12 25 94.9 11 40 95.7 23 20 94.6 26 28
.59 96.0 19 21 93.7 26 37 94.5 28 27 94.8 22 30
.39 .15 98.4 15 1 96.0 28 12 95.8 20 22 94.7 22 31
.39 95.9 25 16 95.1 13 36 954 23 23 95.0 20 30
.59 94.2 16 42 95.3 19 28 94.3 28 29 94.9 25 26
.59 15 97.9 20 1 97.2 21 7 94.8 26 26 95.0 23 27
.39 96.1 19 20 93.3 29 38 95.0 25 25 95.9 25 16
.59 94.3 25 32 94.0 22 38 95.2 24 24 95.5 20 25
.39 15 15 98.4 15 1 98.3 10 7 96.0 19 21 95.3 23 24
.39 96.1 10 29 94.7 18 35 93.0 31 39 95.3 18 29
.59 96.0 17 23 95.6 21 23 95.4 24 22 94.2 32 26
.39 15 94.8 11 41 94.1 19 40 94.8 26 26 95.6 18 26
.39 95.9 18 23 94.5 20 35 94.2 30 28 96.1 19 20
.59 94.6 15 39 95.8 14 28 94.6 20 34 94.2 33 25
.59 15 95.8 18 24 93.9 20 41 95.0 22 28 95.6 13 31
.39 95.1 14 35 94.5 24 31 95.0 28 22 95.0 17 33
.59 94.3 28 29 95.6 18 26 94.4 28 28 94.7 31 22
.59 15 15 97.9 20 1 97.3 27 0 95.3 33 14 95.5 29 16
.39 97.1 19 10 93.8 26 36 95.3 23 24 95.0 34 16
.59 95.0 19 31 95.2 20 28 93.6 26 38 94.7 28 25
.39 15 96.1 13 26 95.5 27 18 95.1 29 20 94.9 29 22
.39 95.9 14 27 94.3 25 32 94.7 28 25 94.8 25 27
.59 94.3 22 35 95.7 14 29 96.0 22 18 94.1 30 29
.59 15 95.0 21 29 94.3 29 28 96.1 15 24 94.9 27 24
.39 93.8 20 42 96.0 15 25 94.8 31 21 94.0 26 34
.59 93.4 23 43 96.8 18 14 95.3 24 23 96.1 19 20
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Table 6. Percentile bootstrap Cl coverage total effect o

N=50 N=100 N=250 N=500

B ﬁyml.x Prox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
15 15 15 100.0 0 0 97.6 4 20 95.7 6 37 94.7 15 38
.39 93.7 6 57 93.9 6 55 94.8 19 33 94.0 21 39

.59 94.4 8 48 93.6 12 52 94.4 19 37 94.6 18 36

.39 15 99.5 2 3 96.3 9 28 95.0 15 35 93.8 22 40

.39 94.3 11 46 93.8 10 52 94.7 22 31 94.8 18 34

.59 93.3 9 58 94.5 14 41 95.1 18 31 94.7 22 31

.59 15 99.5 3 2 96.5 9 26 93.6 21 43 94.8 18 34

.39 94.7 13 40 93.3 16 51 94.6 18 36 95.8 21 21

.59 94.1 16 43 93.4 16 50 94.9 20 31 95.9 16 25

.39 .15 15 99.2 4 4 97.7 8 15 94.8 16 36 95.1 16 33
.39 94.7 5 48 94.2 11 47 93.3 20 47 95.3 14 33

.59 94.4 12 44 95.1 12 37 95.1 21 28 94.3 25 32

.39 15 93.3 3 64 92.8 11 61 95.1 16 33 95.0 16 34

.39 95.4 11 35 94.6 11 43 94.2 23 35 95.9 16 25

.59 94.1 8 51 94.8 10 42 94.1 17 42 93.9 32 29

.59 15 94.6 11 43 94.1 11 48 95.4 14 32 95.0 11 39

.39 94.5 8 47 94.1 18 41 94.0 26 34 94.8 15 37

.59 93.8 21 41 95.4 14 32 94.8 21 31 94.5 28 27

.59 .15 15 99.5 4 1 98.2 14 4 94.4 24 32 95.8 19 23
.39 96.0 13 27 93.2 15 53 95.3 14 33 95.6 26 18

.59 93.4 11 55 94.5 18 37 934 23 43 94.6 26 28

.39 15 94.6 5 49 95.2 17 31 95.0 22 28 94.7 26 27

.39 94.9 8 43 93.8 22 40 94.6 23 31 94.8 21 31

.59 935 13 52 95.2 13 35 95.3 20 27 93.9 29 32

.59 15 93.4 13 53 94.3 21 36 95.5 12 33 94.4 26 30

.39 93.4 13 53 95.7 12 31 95.0 26 24 94.0 24 36

.59 93.8 10 52 94.8 22 30 95.3 20 27 95.7 17 26
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Table 7. Percentile bootstrap CI coverage specific effect o

N=50 N=100 N=250 N=500

D ﬁyml.x Brox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
A5 15 15 99.2 7 1 98.6 13 1 96.7 14 19 93.3 25 42
.39 99.1 8 1 98.8 11 1 96.2 15 23 96.1 10 29

.59 99.0 10 0 98.1 10 9 95.3 13 34 94.4 17 39

.39 15 98.4 15 1 97.2 19 9 95.1 27 22 94.2 28 30

.39 97.4 22 4 97.9 18 3 95.3 27 20 95.0 18 32

.59 96.9 27 4 96.9 28 3 95.0 24 26 95.6 23 21

.59 15 97.4 25 1 96.8 28 4 94.9 25 26 95.7 22 21

.39 97.2 28 0 97.1 28 1 95.2 26 22 96.6 21 13

.59 97.3 27 0 98.0 20 0 95.0 28 22 94.8 25 27

.39 15 15 97.7 18 5 98.3 15 2 95.2 30 18 94.7 24 29
.39 98.7 12 1 97.6 15 9 94.8 19 33 95.5 21 24

.59 97.6 16 8 97.1 19 10 95.7 18 25 94.3 22 35

.39 15 93.6 17 47 94.0 13 47 95.3 21 26 95.3 16 31

.39 93.8 21 41 94.5 16 39 93.7 25 38 96.3 19 18

.59 95.4 13 33 94.3 23 34 96.6 13 21 93.7 33 30

.59 15 94.0 25 35 94.8 20 32 95.2 23 25 94.4 17 39

.39 93.9 16 45 94.5 24 31 94.6 22 32 94.9 31 20

.59 94.2 21 37 93.2 31 37 93.1 40 29 94.7 25 28

.59 .15 15 97.1 27 2 98.0 20 0 96.6 31 3 95.5 29 16
.39 97.5 25 0 96.9 31 0 96.5 24 11 94.2 36 22

.59 97.4 26 0 97.1 24 5 95.3 20 27 94.1 23 36

.39 15 96.3 14 23 94.7 29 24 95.1 30 19 94.4 32 24

.39 94.7 21 32 94.2 25 33 95.7 22 21 95.3 23 24

.59 94.3 20 37 94.7 25 28 94.3 20 37 94.0 29 31

.59 15 95.3 14 33 94.0 31 29 96.2 16 22 94.4 28 28

.39 94.0 15 45 94.8 22 30 94.1 28 31 94.5 29 26

.59 94.7 15 38 94.9 19 32 95.3 28 19 96.1 22 17
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Table 8. Percentile bootstrap CI coverage specific effect

N=50 N=100 N=250 N=500

B ﬁyml.x Prox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
15 15 15 99.8 0 2 95.7 3 40 94.4 3 53 92.8 10 69
.39 99.5 0 5 95.7 2 41 94.4 3 53 94.1 7 52

.59 98.6 2 12 95.2 0 48 93.0 4 66 93.3 10 57

.39 15 97.6 7 17 96.0 9 31 94.7 13 40 94.4 17 39

.39 98.5 5 10 97.9 8 13 95.2 14 34 93.9 10 51

.59 98.3 8 9 97.8 10 12 94.2 12 46 95.2 15 33

.59 15 99.4 5 1 98.0 9 11 93.6 18 46 95.0 18 32

.39 98.9 9 2 97.8 11 11 94.2 14 44 96.6 15 19

.59 98.8 11 1 99.1 8 1 94.0 20 40 94.7 17 36

.39 15 15 98.2 4 14 97.6 6 18 94.1 19 40 94.6 17 37
.39 98.4 3 13 98.3 2 15 93.2 15 53 94.6 14 40

.59 97.1 1 28 95.3 8 39 95.4 6 40 93.5 16 49

.39 15 90.9 9 82 92.9 10 61 95.5 15 30 94.9 11 40

.39 92.2 10 68 93.6 10 54 93.2 21 47 96.5 14 21

.59 92.9 4 67 93.9 17 44 95.6 11 33 93.7 31 32

.59 15 93.4 14 52 94.0 11 49 95.3 18 29 93.7 16 47

.39 93.2 7 61 94.0 14 46 94.5 19 36 95.7 21 22

.59 93.7 11 52 93.3 23 44 93.3 35 32 94.4 22 34

.59 .15 15 99.2 6 2 98.5 14 1 96.9 18 13 95.6 18 26
.39 98.8 10 2 98.2 13 5 95.7 12 31 94.1 26 33

.59 98.5 13 2 97.7 10 13 94.3 14 43 94.2 16 42

.39 15 95.1 7 42 94.3 19 38 94.4 25 31 94.1 29 30

.39 93.1 11 58 93.7 20 43 95.4 17 29 95.3 17 30

.59 93.0 12 58 94.7 18 35 94.1 19 40 94.0 26 34

.59 15 94.7 8 45 94.0 23 37 96.2 13 25 94.6 25 29

.39 93.3 10 57 95.3 13 34 94.4 22 34 94.8 25 27

.59 93.4 14 52 94.6 16 38 95.0 24 26 95.9 18 23

133



Table 9. BCa bootstrap Cl coverage total effect o

N=50 N=100 N=250 N=500

D ﬁyml.x Brox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
A5 15 15 81.6 15 169 84.6 16 138 95.0 23 27 96.2 21 17
.39 935 17 48 94.6 19 35 96.0 25 15 94.9 31 20

.59 95.2 23 25 93.6 34 30 94.4 32 24 94.8 23 29

.39 15 84.3 19 138 88.0 31 89 95.1 26 23 94.6 24 30

.39 93.1 31 38 95.8 18 24 95.4 26 20 95.2 22 26

.59 94.1 21 38 95.1 26 23 94.7 28 25 94.8 27 25

.59 15 85.9 28 113 87.1 31 98 93.9 27 34 95.0 24 26

.39 92.7 22 51 93.0 33 37 94.9 25 26 95.3 30 17

.59 94.0 29 31 93.7 25 38 94.9 26 25 95.9 19 22

.39 15 15 83.7 21 142 88.8 12 100 94.6 24 30 95.2 26 22
.39 92.9 16 55 95.4 18 28 93.5 33 32 95.3 21 26

.59 95.6 25 19 96.0 21 19 95.4 27 19 94.7 28 25

.39 15 92.4 16 60 94.6 25 29 95.2 30 18 95.4 23 23

.39 96.1 25 14 94.8 21 31 93.9 36 25 95.9 21 20

.59 94.4 21 35 95.8 16 26 94.6 24 30 94.2 34 24

.59 15 95.4 23 23 94.5 26 29 95.3 23 24 95.2 19 29

.39 95.1 18 31 94.9 26 25 94.9 30 21 94.5 22 33

.59 93.8 31 31 95.3 21 26 94.1 29 30 94.9 29 22

.59 .15 15 81.0 33 157 84.4 33 123 91.4 35 51 95.1 31 18
.39 89.0 30 80 92.6 30 44 95.5 23 22 94.9 35 16

.59 94.5 27 28 94.7 25 28 94.0 26 34 94.4 31 25

.39 15 94.0 17 43 95.2 32 16 94.9 29 22 94.6 32 22

.39 95.8 20 22 94.7 28 25 94.5 31 24 94.8 25 27

.59 94.8 22 30 95.5 17 28 95.6 26 18 93.9 32 29

.59 15 95.2 23 25 94.8 34 18 96.1 22 17 94.5 30 25

.39 94.2 25 33 95.9 17 24 95.0 29 21 94.2 25 33

.59 93.1 25 44 94,7 29 24 95.1 27 22 96.1 17 22
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Table 10. BCa bootstrap CI coverage total effect o

N=50 N=100 N=250 N=500

B ﬁyml.x Prox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
15 .15 15 97.2 1 27 85.9 4 137 95.8 12 30 95.5 19 26
.39 93.0 11 59 95.1 11 38 95.9 22 19 94.6 28 26

.59 95.3 19 28 93.3 28 39 945 29 26 945 23 32

.39 15 83.6 6 158 86.2 17 121 95.1 18 31 94.0 22 38

.39 94.1 17 42 95.2 13 35 95.3 24 23 94.9 19 32

.59 94.1 20 39 94.8 23 29 94.8 23 29 94.6 26 28

.59 15 82.0 10 170 86.7 10 123 92.8 22 50 94.9 17 34

.39 92.1 15 64 92.9 24 47 94.7 21 32 95.5 23 22

.59 94.3 25 32 93.5 22 43 94.6 26 28 95.9 17 24

.39 15 15 82.0 9 171 85.1 9 140 94.3 16 41 95.0 19 31
.39 93.0 8 62 95.1 14 35 93.3 29 38 95.4 16 30

.59 95.7 20 23 96.0 18 22 95.5 24 21 94.5 27 28

.39 15 92.2 8 70 94.7 17 36 95.6 20 24 94.9 21 30

.39 96.8 16 16 94.7 17 36 94.1 28 31 95.8 16 26

.59 94.0 20 40 95.3 15 32 94.1 24 35 93.8 34 28

.59 15 95.0 15 35 94.4 18 38 95.3 16 31 95.0 16 34

.39 95.1 10 39 94.5 22 33 94.4 28 28 94.7 18 35

.59 93.3 28 39 95.2 20 28 94.1 29 30 94.9 28 23

.59 .15 15 77.4 6 220 80.6 15 179 91.0 24 66 95.6 21 23
.39 88.5 18 97 93.0 20 50 95.5 17 28 95.4 30 16

.59 94.9 21 30 94.9 20 31 94.0 24 36 94.5 28 27

.39 15 93.4 9 57 95.4 20 26 95.1 23 26 94.5 28 27

.39 95.8 15 27 94.5 22 33 94.5 27 28 94.9 20 31

.59 94.6 18 36 95.6 16 28 95.6 24 20 93.9 30 31

.59 15 94.5 18 37 94.7 27 26 95.9 16 25 94.8 26 26

.39 94.0 18 42 95.6 16 28 95.0 28 22 94.1 24 35

.59 92.8 23 49 94.3 29 28 95.3 25 22 95.9 16 25
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Table 11. BCa bootstrap CI coverage specific effect o

N=50 N=100 N=250 N=500

D ﬁyml.x Brox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
15 15 15 82.0 14 166 83.2 23 145 92.0 23 57 94.0 30 30
.39 80.5 13 182 85.5 17 128 92.2 23 55 96.0 20 20

.59 80.2 19 179 84.9 17 134 93.6 21 43 94.8 26 26

.39 15 82.7 24 149 84.6 34 120 91.7 29 54 93.5 36 29

.39 83.8 32 130 86.1 28 111 93.0 30 40 94.2 24 34

.59 84.1 41 118 86.5 38 97 90.8 31 61 95.7 23 20

.59 15 84.4 30 126 84.6 32 122 915 30 55 954 25 21

.39 83.4 32 134 83.9 34 127 914 27 59 96.9 21 10

.59 82.8 30 142 87.7 24 99 91.8 31 51 94.7 26 27

.39 15 15 84.5 22 133 85.7 27 116 90.5 34 61 94.5 25 30
.39 85.2 22 126 86.3 24 113 91.6 25 59 95.5 22 23

.59 86.1 21 118 86.8 29 103 94.2 26 32 94.7 27 26

.39 15 92.1 21 58 94.7 19 34 95.6 27 17 95.5 19 26

.39 94.2 25 33 94.9 21 30 94.1 32 27 96.3 23 14

.59 94.6 23 31 94.7 29 24 96.4 19 17 94.3 35 22

.59 15 94.5 28 27 94.6 26 28 95.3 26 21 94.5 19 36

.39 93.4 23 43 94.7 28 25 95.2 25 23 94.7 33 20

.59 92.7 29 44 92.8 37 35 93.1 40 29 94.6 28 26

.59 .15 15 83.1 31 138 82.9 23 148 88.4 35 81 94.5 30 25
.39 83.4 30 136 84.4 32 124 90.6 28 66 93.3 39 28

.59 85.8 31 111 86.3 26 111 92.9 24 47 94.3 23 34

.39 15 93.2 21 47 93.9 38 23 94.5 32 23 94.9 34 17

.39 93.4 26 40 94.3 26 31 95.7 24 19 95.7 24 19

.59 94.4 27 29 94.9 30 21 94.1 25 34 94.0 31 29

.59 15 95.3 20 27 95.2 30 18 96.1 19 20 94.3 31 26

.39 94.9 18 33 95.3 24 23 95.1 27 22 94.3 32 25

.59 95.0 18 32 94.5 23 32 95.3 30 17 96.0 23 17
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Table 12. BCa bootstrap CI coverage specific effect o

N=50 N=100 N=250 N=500

B ﬁyml.x Prox = ﬂymz.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
A5 15 15 84.0 0 160 76.1 4 235 87.0 8 122 93.8 19 43
.39 85.2 0 148 77.1 8 221 87.4 8 118 96.5 9 26

.59 82.5 2 173 7.7 1 222 90.8 6 86 94.2 18 40

.39 15 69.3 10 297 7.7 13 210 91.2 20 68 93.9 18 43

.39 72.0 10 270 80.4 12 184 92.0 19 61 93.4 14 52

.59 72.9 12 259 82.1 17 162 90.5 13 82 95.0 16 34

.59 15 75.4 9 237 81.4 9 177 91.1 18 71 94.8 17 35

.39 76.0 14 226 82.7 12 161 91.3 16 71 96.7 16 17

.59 76.1 14 225 85.3 10 137 92.6 17 57 94.7 18 35

.39 15 15 70.5 9 286 76.6 8 226 88.9 22 89 94.7 16 37
.39 72.9 4 267 79.9 3 198 90.7 17 76 94.8 18 34

.59 73.5 9 256 82.3 13 164 94.3 12 45 93.5 19 46

.39 15 90.2 13 85 94.5 15 40 954 19 27 95.2 14 34

.39 93.6 14 50 94.8 14 38 94.5 22 33 96.5 18 17

.59 94.2 8 50 94.9 24 27 95.8 12 30 94.0 33 27

.59 15 93.7 22 41 94.3 19 38 95.4 21 25 93.8 17 45

.39 93.2 9 59 93.9 23 38 94.6 21 33 95.1 27 22

.59 92.6 18 56 93.8 22 40 92.9 37 34 93.9 25 36

.59 .15 15 70.0 9 291 75.9 15 226 88.1 17 102 94.1 21 38
.39 72.8 12 260 79.3 17 190 89.9 15 86 93.2 30 38

.59 4.7 14 239 82.6 11 163 92.8 15 57 93.8 18 44

.39 15 92.1 10 69 94.8 22 30 94.7 25 28 94.8 30 22

.39 92.5 17 58 94.3 21 36 95.5 22 23 95.5 20 25

.59 95.3 15 32 95.1 20 29 94.1 21 38 93.8 30 32

.59 15 95.4 10 36 94.7 26 27 95.9 16 25 94.7 26 27

.39 94.7 11 42 95.2 21 27 94.7 25 28 94.3 31 26

.59 94.3 16 41 94,7 18 35 95.5 25 20 96.0 22 18
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Table 13. Prototypical conditional indirect effects with unadjusted effect size and expected bias

Case Indirect effect ) Al
bias
1 Bmx-x (Bymox + Bymx-xnx) ﬂnixﬂyzm-x + ﬂn%lxﬂyzmx-xnfo-j2 + Zﬂrixﬂym-xﬂymx-xnx sz,x ﬁyzm RS +ﬁ2 Aim B +'6me ><773 A; +l8mx’7§ Ajmx xt zﬂAym.xﬁAymwaxGAz
Zﬂmxm&ym sy~ FymoxGime = 218 o yexC e ~ TG g G
2| (Bux * Brysuexu) By BB + BB 102+ 2B B Bon 1 . BBt B+ Bl + B8+ 2B o +

A2 A2 272 A2
2ﬁmx-xﬁmxw-x77wo- ymox =G, xU mxex 2’7w°' mxx,mawex @ ymex ™ O mawex T ymex

2 2 2 2 2_2 2 N2 2 Az
3 Bmx‘x(Bymo( + Bymz«xnz) ﬁmxﬁym-x + ﬂmxﬂymz.x’]z O-x22 + Zﬂmxﬂym.xﬂymz.xr]z O-XZ,Z ﬁym X mX + ym X + ymz xnz mx’]z ymz X + 2ﬂym x:Bymz x’]z

2 ~ A2 a2 A
+2ﬂmx771 O-ym X, yMzeX _O-ym~xo-mx - 2771 o-ym-x,ymz X mx ﬂz ymz xO

2 2 2 N2 A2 A2 n2 A
4 (Bmx-x + Bmxw-xﬂw)(Bym-x + Bymz-xnz) ﬂmx-xﬂym-x + Zﬁmx-xﬁmxw-xﬁym-xnwo- 2 + lBym o MXeX mxe. xo-ym B O-ym-xo—mx-x + 2ﬂym~x’7wo—mx-x,mxw~x +
A A A2 N2 242 N2 242
BB 140 o2 + By Bl 120 Zﬁmx.xﬂmxw.wwdym.x =217, G ex mxw.xcrym.x + BTG ymex + ym.xnwamxw.x -
2ﬁmx-xﬂym~xﬂymz-xnz o_xz z + Aﬂmx-xﬂmwx-xﬂym.xﬂymz-xnwnz O—XW Xz + UW ym x mxw x + Zﬁym xﬁymz xnz mxex + Zﬁmx xnz ymeX,ymz-x 2771 mxex ym~><.ymz~>< +

4 5 +4 5 -
Zﬂym-xﬂnzm»xﬂymz-xﬂv%nz O-xw2 X2 + zﬂmx-xﬁmwx-xﬂ;mz-xnwnzzo-xw xz? + ﬂym'Xﬂymz'xnwnz O e maex ﬂMXIXﬂmWX'onUZ e ymz-x

A A '\2 2 A - A 2 A2
B B 2 2 L/ R — xoymmﬂ mwx.xnwmaym.x,ym.x+2ﬁym.xﬁymz.xnwmomwx.x -
MwXeX ymz~x77w772 O-XWZ.XZZ ~o 2 a2 2 Az
T O Bl 126 g =11 B B o

~ 242 2 A ~2
Zﬁymz-xnwnz O mxex, mawex + 2ﬁmx~xﬁmwx-x’7wnz o-ymz-x - anﬂz Gmx-x‘mxw-xaymz-x +

+ +

231, 6 o ymex e

A2 2 242 A2 2 24
By xmmz O+ P11 e ™ T GG e
2 2 2 2 2 2_2 02 2 A2 A A
5 (Bmx'x + Bmxw.xﬂw)(Bym‘x + BymZ-XnW) ﬂmx.xﬂqux + Zﬂmx-xﬁmxwaxﬂymaxnwaxzyw + ﬁym-xﬂmxwaxnwO-XWZ + ﬁym o X MXeX + MXeX ym-x _O_ym~xo_mx->< + zﬁymtxnwo—mx-x‘mqu +
2 3 A2 A ~2 A2 2 A2
ﬂmx«xﬂymw-xnw W + Zﬂmx-xﬂym'xﬂymw-xnwalew + Zﬂmx-xﬂmxw-xnwo-ym-x quamx-x.mxw-xgym-x + ﬂmxw-xnwo-ym-x +

n2 242 242 A2 P ) A2 N2 A
252 2 3 BimesdaOmaniex ~ TG ymexOmuwex + 2Bymex Bymsox TG e + 2B TG ymes. ymurx ~
4ﬂmx-xﬂmwx-xﬁym-xﬂymw-xnwo-xw + Zﬂym-xﬂmwx-xﬂymw-xﬂwGXWZVXW + ymexTw® mxwex w& ymex® mxwex ymexZ ymwex " w® mxex mxex!Tw® ymex,ymwex
6 A A 2 A ~ 24
277w mxex ym-x,ymw-x + 4ﬂym-xﬂymw~x77wo-mx-x,mxw-x + 4ﬁrnx-xﬁmwx-xﬂwaym-><‘ymw->< -
2 A n A2 3 55 352
477wo_mx.x‘mxw-xo_ym.x,ymw~x + Zﬂmwx‘xnwo—ym-x,ymw‘x + Zﬂym-xﬂymw S} O mwxex —
3 A A2 N2 242 02 242 A
anaym-x,ymw-xo-mwx-x + ﬂymw-xﬂwgmx-x + ﬁmx-xﬂwgymw-x - Uwamx xo-ymw T

n2 34 P R 3 A2 3 A A2
Zﬂymw-xnwgmx.x‘mxw-x + 2ﬂmx~xﬂmwx~xnwo_ymw'x - znwgmx.x,mxw.xo_ymw.x +

2 3 4
2ﬂmx~xﬂmwx-xﬂymw~x77wo-xw2 w + ﬂmwx-xﬁymw-xnwo-

n2 472 n2 412 472 A2
ﬁymw-x’]wamxw~x + ﬂmxw-xnwo-ymw-x _nwamxw-xo-ymw-x
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Table 14. Percent relative bias for moderated mediation model at the mean of x

A

1% 19

B Bmx Bamex N=50  N=100 N=250 N=500 N=50 N=100 N=250 N=500
15 15 15 290.835 104918 35.019 22.106 3977 7553 -3.868  3.388
39 206.595 103.834 40712 16.492 4438  -1.116 4431  -0.488

59  238.189 95903 32.693 16.474 -0.883 0145 0279  1.281

39 15  89.855 50.198 18.018 11.840  -24.387 -4.092 -1936  1.796
39 112770 48281 17.848  8.790 3158 5210 -2.101  -0.950

59  114.832 57.859 16.687 7.617 0980 6682 2718 -1.833

59 15 91134 45689 19311 4.795 -9.055 -1.399  0.803  -4.323
39 85549 49.766 17.503  9.539 -15.052  1.608 -0.839  0.429

59  86.832 44202 20047 8512 13345 3436  2.060 -0.485

39 15 .15 133223 60926 26377 6.869 5211 -0534 2948  -4.361
39 130.009 56.188 20.757 9.124 7477 3041 0733  -0.501

59  113.888 53.806 27.190  6.379 22241 12931 11.882 -0.907

39 15 17177 9329 3649  2.363 -10.492 3579 -1.250  -0.069
39 22700 8933 2288  2.341 2939 -2735 -2124  0.141

59 17670 8373 3919  1.256 3832 -1517 0165 -0.577

59 15 12433 6941 1731 0.051 4822 -1175 -1418  -1.603
39 13461 4726 1373 2021 2942 2833 -1576  0.566

59 10680 5078 2557  0.403 4265 -1745 -0.076  -0.899

59 15 15 150394 62749 21214 14581 0495 9462 -6218  1.052
39 132700 56.855 20.755  8.297 2639 -1.846 -1.742  -2.862

59  101.967 55.838 19.823 10.886 17.721 16836 4535  3.406

39 15 20415 8402 2921  3.070 2820 2506 -1.223  1.013
39 16217 8770 0918  1.966 3189 -0.170  -2.497  0.269

59 16417 9385 1468 2.616 3.146  3.167 -0.868  1.454

59 .15 6512 4215 1579  0.867 3825 0718 -0.310 -0.067
39 2388 4198 2110 0.253 6163 0076 0530 -0.524

59 8712 2382 1488 1929 2449 0484 0381  1.382
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Table 15. Percent relative bias for moderated mediation model at +1 standard deviation above the mean of x

A

1 19

B B Bimex N=50 N=100 N=250 N=500 N=50 N=100 N=250 N=500
15 15 15 272.146 108.189 34205 24.001 0865  0.097 -3.659 4510
39 98.977 52556 25485 10554  -18.906 -3.869  3.663  -0.209

59 95.840  50.650 17.250  7.809 4284 2715  -1.738  -1597

39 15 103.887 57.916 21.373 13258  -22.184 -1.807 -0522  2.319
39 105.654  46.401 17.350  8.136 2740 -4645 2118  -1.497

59 95489 51.802 16.763  8.429 0689 5703 -1699 -0.694

59 15 95962  48.031 20074 5.302 9235 -1.186  0.845 -4.153
39 85.642 51.078 17.948  9.299 -11.943 3128 -0483  0.115

59 83.751  43.933 19.905 7.745 8893 -1.758 2128  -1.147

39 15 15 102.961 49.137 21.206  6.432 9511 -2.894  1.083 -3.319
39 26,779 12915 6730  1.428 5491 -2.137 0810 -1472

59 10.338  8.038 2392  0.944 7465  -0.718  -1.048  -0.767

39 15 25.004 12707 5403 2238 10063 -3.986 -0.993  -0.925
39 19130  7.354  1.830 2.361 2849 -3156 2215  0.327

59 5430 4259 1525  0.733 9776  -3252  -1.447  -0.738

59 15 15539 8614 2752  0.223 4880 -1.139 -1.028  -1.633
39 10111 4874 2266  2.298 6178 -2.907 -0.824  0.772

59 6.667 5202 2476 -0.207 6.654 -1249 -0064 -1471

59 .15 15 99.414 45345 15264  8.206 10046 -5234 -4106  -1.368
39 19.098 5395 0434 2923 4376 -5550 -3.827  0.800

59 1585  -0.202 0737  0.220 -7.783  -4802 -1.092  -0.685

39 15 25221 10261 4166  3.607 4352  -3.841 -1.229  0.929

39 8333 3659 0857 1163 5786 -3.035 -1.756 -0.138

59 1238 0527 -0.023  0.403 8394 -2.980 -1.400 -0.284

59 15 8539 5382 2116 1210 4677 -1.032 -0350 -0.011

39 0.682 2211 0797 -0.230 9.005 -1.884 -0.793 -1.019

59 1785  -1.053 -0.077  0.308 6.861 -3535 -1.063  -0.182
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Table 16. MSE and relative efficiency for conditional indirect effect at mean x

N=50 N=100 N=250 N=500

MSE* MSE* MSE* MSE*
B Pmx  Pumex O 0 RE 0 3 RE 0 0 RE 0 0 RE
15 15 15 0021 0012 0.630 0003 0.002 0.645 0001 <0001 0778  <0.001 <0.001 0.872
39 0011 0006 0587 0.003 0.002 0.683 0.001 0.001 0.805  <0.001 <0001 0.873
59 0015 0009 0.637 0.003 0.002 0.702 0.001 0.000 0814  <0.001 <0.001 0.889
39 15 0112 0081 0.784 0.042 0.034 0.866 0011 0010 0.938 0005  0.005 0.966
39 0149 0109 0812 0.038 0.031 0.880 0011  0.010 0.946 0005  0.005 0.969
59 0134 0101 0.850 0041 0034 0.902 0011  0.010 0.949 0005  0.004 0972
59 15 0392 0317 0.929 0161 0.140 0.948 0.054  0.050 0.980 0022 0022 0.989
39 0391 0321 0924 0171 0.149 0.957 0.050 0.048 0.985 0021 0020 0.989
59 0341 0285 0.963 0132 0119 0.990 0.048  0.045 0.988 0023  0.022 0.994
39 15 15 0181 0127 0795 0.048 0.037 0.858 0015 0.013 0.942 0005  0.005 0.968
39 0165 0112 0.771 0.045 0.036 0.872 0013 0012 0.937 0005  0.005 0.967
59 0129  0.090 0.789 0.040 0.032 0.879 0014 0012 0.941 0005  0.004 0971
39 15 0683 0569 0.844 0297 0267 0.908 0114 0109 0.958 0052  0.051 0.979
39 0661 0534 0843 0281 0253 0.910 0.100 0.096 0.963 0049  0.047 0.981
59  0.646 0548 0.870 0235 0213 0.922 0.083  0.080 0.968 0040  0.040 0.983
59 15 1990 1782 0912 0881 0.827 0.953 0289 0.283 0.981 0153  0.152  0.990
39 1793 1615 0.926 0782 0.748 0.962 0267 0.263 0.985 0150  0.147  0.992
59 1487 1396 0.956 0682 0.658 0.974 0270 0.265 0.989 0129 0129 0.995
59 15 15 1024 0809 00913 0274 0239 0.954 0.077 0073 0.978 0040  0.038 0.988
39 0796 0642 0.934 0206 0177 0.951 0.066 0.062 0.978 0032 0032 0991
59 0518 0408 0.894 0198 0171 0.948 0.064  0.060 0.980 0028  0.027 0.989
39 15 3025 2677 0.920 1253  1.179 0.955 0442 0431 0.981 0229 0225 0.990
39 2438 2170 0917 1.033 0968 0.957 0366 0.361 0.982 0185  0.183 0.991
59 1972 1760 0.926 0.887 0.833 0.963 0300 0.295 0.983 0139  0.137 0.992
59 15 5368 4965 0.932 2592 2479 0.966 0950 0932 0.985 0448  0.444  0.993
39 4105 3910 0941 2183 2.090 0.969 0.785 0.769 0.988 0381 0379 0.993
59  3.755 3506  0.960 1.650  1.605 0.977 0.630  0.620  0.989 0314 0310  0.995
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Table 17. MSE and relative efficiency for conditional effect at +1 standard deviation above the mean of x

50 100 250 500
MSE MSE MSE MSE

B Pmx  Pumex O 0 RE 0 3 RE 0 O RE 0 0 RE
15 15 15 0048 0022 0.543 0011 0.006 0.634 0002 0001 0762  0.001 0.001 0.871
39 0164 0109 0732 0055 0.042 0.828 0019 0016 0913  0.007 0.006 0.952

59 0576  0.446 0.874 0226 0191 0.917 0.067 0.063 0967  0.030 0.029 0.982

39 15 0155 0100 0.716 0057 0.043 0.827 0016 0.014 0919  0.007 0.007 0.955

39 0426 0313 0.842 0136 0.114 0.903 0.041 0038 0955  0.019 0.018 0.978

59 0948 0771 0.929 0343 0295 0.957 0113 0.107 0978  0.047 0.046 0.989

59 15 0455 0350 0.892 0190 0.160 0.922 0.062 0057 0969  0.025 0.025 0.984

39  0.800 0650 0918 0.358 0.308 0.948 0107 0101 0983  0.044 0.042 0.990

59 1267 1089 0.996 0518 0.469 0.998 0194 0.183 0996  0.089 0.087 0.998

39 15 15 0349 0223 0.763 0.109 0.079 0.829 0034 0029 0926 0013 0.012 0.958
39 1214 0948 0.822 0521 0.454 0.897 0189 0177 0955  0.083 0.081 0.977

59 2912 2610 0.902 1429  1.331 0.949 0548 0534 0979 0244 0.241 0.989

39 15 0930 0733 0821 0383 0332 0.893 0451 0141 0951  0.067 0.065 0.975

39 2174 1833 0.879 0934 0859 0.931 0372 0362 0971 0176 0.173 0.986

59 3346 3183 0.937 1.869 1.806 0.969 0715 0706 0988 0342 0.340 0.994

59 15 2366 2056 0.895 1.043 0960 0.942 0345 0334 0976 0178 0.177 0.987

39 3208 3058 0938 1728 1.666 0.969 0626 0.616 0987 0341 0.336 0.993

59 5698 5664 0.994 2.892 2.843 0.995 1223 1213 0998 0565 0.568 0.999

59 15 15 1680 1248 0.924 0536 0441 0.945 0155 0.144 0978  0.080 0.076 0.987
39 3904 3391 0.919 1.894 1.818 0.959 0653 0.650 0982  0.354 0.346 0.992

59 7568  7.374 0.952 3630 3.607 0.975 1591 1577 0990  0.667 0.665 0.995

39 15 3725 3214 0.924 1534  1.437 0.959 0547 0531 0982 0282 0.274 0.990

39 5769 5344 0935 2.846  2.751 0.969 1026 1014 0985 0550 0544 0.993

59 8481 8507 0.965 4220 4194 0.984 1.893 1.891 0994  0.893 0.890 0.997

59 15 6201 5706 0.933 2.899 2.760 0.968 1.074 1051 0985 0502 0.496 0.993

39  7.807 7.782 0.959 4108 4.010 0.977 1578 1565 0992  0.830 0.830 0.996

59  10.268  10.640 1.002 5530 5625 1.001 2167 2175 1.000  1.022 1.021 1.000

Table 18. Percentile bootstrap CI coverage for o conditional effect at the mean of x
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N=50 N=100 N=250 N=500
P ,Bym.x ,Bymx.x Cov  High Low Cov  High Low Cov High Low Cov  High Low
15 15 15 98.9 10 1 99.1 9 0 96.1 9 30 95.1 20 29
.39 99.7 3 0 99.2 8 0 95.8 14 28 95.6 14 30
.59 99.4 5 1 99.1 9 0 96.3 8 29 95.2 13 35
.39 15 98.5 13 2 97.2 21 7 95.8 20 22 94.9 24 27
.39 98.2 18 0 97.8 18 4 96.2 24 14 94.3 22 35
.59 97.2 27 1 97.5 23 2 95.7 19 24 96.0 18 22
.59 15 97.5 23 2 97.7 23 0 94.7 24 29 94.7 25 28
.39 97.3 27 0 96.0 39 1 95.8 25 17 96.6 23 11
.59 97.6 24 0 98.0 20 0 95.1 26 23 94.6 28 26
.39 15 15 98.1 17 2 97.3 22 5 96.4 21 15 95.8 17 25
.39 98.1 18 1 97.2 21 7 95.8 20 22 94.6 19 35
.59 98.2 15 3 97.9 19 2 95.2 28 20 96.0 13 27
.39 15 94.7 11 42 94.3 14 43 94.2 22 36 94.0 26 34
.39 95.6 14 30 93.7 22 41 93.9 21 40 94.7 29 24
.59 93.1 30 39 94.9 17 34 95.8 19 23 94.5 25 30
.59 .15 94.3 22 35 94.3 21 36 95.6 17 27 94.6 22 32
.39 93.9 21 40 94.4 20 36 96.1 19 20 94.9 27 24
.59 94.1 24 35 94.3 29 28 94.5 30 25 94.7 22 31
.59 .15 .15 97.7 22 1 97.1 27 2 97.4 24 2 94.3 27 30
.39 97.1 29 0 98.5 14 1 97.1 23 6 94.1 25 34
.59 97.5 25 0 97.1 29 0 96.2 26 12 95.5 31 14
.39 .15 95.7 16 27 94.6 28 26 94.8 30 22 94.4 29 27
.39 95.1 23 26 94.2 24 34 95.1 22 27 93.9 24 37
.59 94.3 23 34 93.9 32 29 95.1 18 31 96.8 19 13
.59 15 94.7 17 36 94.8 26 26 94.8 21 31 95.0 22 28
.39 94.8 14 38 94.6 27 27 95.2 21 27 95.7 15 28
.59 94.5 34 21 94.7 25 28 94.6 32 22 94.3 37 20

Table 19. Percentile bootstrap CI coverage for © conditional effect at the mean of x
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N=50 N=100 N=250 N=500
B Bumx  Bumex Cov  High Low Cov High Low Cov  High  Low Cov High Low
15 15 15 999 1 0 955 1 44 93.4 4 62 943 12 45
39 1000 O 0 9.7 2 31 93.4 6 60 940 8 52
59 999 1 0 975 2 23 94.2 2 56 935 7 58
39 15 975 4 21 971 7 22 94.1 7 52 945 18 37
39 983 5 12 977 7 16 96.0 12 28 940 11 49
5 984 5 11 974 9 17 93.7 11 52 955 13 32
5 15 991 5 4 982 11 7 940 16 44 946 16 38
39 990 7 3 982 15 3 94.7 13 40 9.9 16 15
59 994 5 1 989 10 1 94.8 14 38 948 17 35
39 15 15 978 4 18 979 5 16 94.9 15 36 945 11 44
39 990 1 9 978 4 18 94.6 14 40 946 12 42
5 982 2 16 979 9 12 94.8 17 35 954 8 38
39 15 912 7 81 935 9 56 93.3 20 47 93.8 22 40
39 933 10 57 91.9 11 70 935 16 49 944 26 30
59 920 18 62 950 7 43 95.5 15 30 949 19 32
5 15 928 12 60 93.3 16 51 95.6 14 30 944 19 37
39 930 14 56 941 12 47 95.9 15 26 951 22 27
59 930 14 56 93.8 22 40 954 17 29 944 20 36
59 15 15 992 6 2 989 11 0 96.6 16 18 932 17 51
39 991 8 1 987 9 4 97.2 11 17 940 13 47
59 99.0 10 0 984 15 1 950 21 29 955 23 22
39 15 944 5 51 93.6 20 44 949 23 28 942 25 33
39 939 12 49 942 18 40 95.3 16 31 93.8 20 42
59 939 14 47 941 26 33 944 16 40 96.7 15 18
5 15 930 11 59 940 22 38 945 20 35 948 19 33
39 935 9 56 949 18 33 94.9 19 32 953 14 33
59 944 24 32 944 20 36 947 28 25 945 34 21

144



Table 20. Percentile bootstrap CI coverage for o conditional effect at +1 standard deviation above the mean of x

N=50 N=100 N=250 N=500
B Bumx  Bumex Cov  High Low Cov High Low Cov  High  Low Cov High Low
15 15 15 975 25 0 97.3 27 0 96.4 11 25 957 25 18
39 983 16 1 974 19 7 945 29 26 95.6 16 28
59 973 25 2 97.2 25 3 96.4 21 15 941 22 37
39 15 973 25 2 971 28 1 958 23 19 951 24 25
39 974 26 0 97.3 26 1 959 25 16 91 21 38
59 956 42 2 975 23 2 943 26 31 956 20 24
5 15 973 26 1 971 29 0 947 25 28 955 24 21
39 972 28 0 9.4 36 0 956 22 22 9.7 21 12
5 971 29 0 97.8 22 0 951 29 20 95.0 24 26
39 15 15 969 28 3 9.6 26 8 948 34 18 958 22 20
39 938 19 43 93.3 19 48 944 19 37 956 19 25
5 934 11 55 924 20 56 940 22 38 954 13 33
39 15 950 21 29 950 18 32 938 33 29 942 28 30
39 942 17 4 93.8 19 43 928 26 46 950 23 27
59 942 14 44 941 22 37 94.9 18 33 95.6 16 28
5 15 940 31 29 941 27 32 96.0 18 22 942 24 34
39 90 21 39 939 26 35 950 21 29 943 31 26
59 935 22 43 939 30 31 929 35 36 949 21 30
59 15 15 948 52 0 95.9 40 1 955 33 12 945 34 21
39 945 22 33 931 23 46 94.1 13 46 946 21 33
59 927 14 59 926 8 66 94.1 19 40 9.1 12 27
39 15 960 27 13 943 33 24 955 25 20 943 34 23
39 947 15 38 941 20 39 950 21 29 940 23 37
59 922 15 63 93.6 19 45 94.6 16 38 950 18 32
5 15 951 18 31 949 28 23 945 25 30 946 27 27
39 941 15 44 940 21 39 941 27 32 93.6 19 45
59 940 16 44 934 24 42 947 22 31 948 25 27
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Table 21. Percentile bootstrap CI coverage for o conditional effect at +1 standard deviation above the mean of x

N=50 N=100 N=250 N=500
B B Bux Cov  High  Low Cov  High Low Cov  High Low Cov High Low
15 .15 .15 99.9 1 0 96.5 2 33 93.6 3 61 95.3 15 32
.39 97.9 4 17 97.5 4 21 94.3 11 46 95.2 10 38
.59 97.8 12 10 96.8 12 20 94.7 13 40 93.6 15 49
.39 15 98.2 5 13 97.7 7 16 94.0 10 50 94.4 21 35
.39 99.0 5 5 97.6 12 12 95.1 10 39 94.2 12 46
.59 98.2 13 5 98.2 9 9 93.6 10 54 95.2 14 34
.59 15 99.5 4 1 98.3 11 6 94.1 15 44 94.9 17 34
.39 99.1 8 1 98.4 14 2 94.2 16 42 97.2 14 14
.59 99.3 6 1 98.8 6 6 94.5 17 38 94.7 17 36
.39 15 15 97.3 6 21 95.5 9 36 95.0 22 28 95.0 14 36
.39 91.2 6 82 91.7 10 73 93.2 13 55 95.0 13 37
.59 90.4 5 91 92.0 11 69 93.8 15 47 95.5 9 36
.39 15 92.3 7 70 93.3 12 55 94.3 19 38 93.9 22 39
.39 92.3 10 67 91.8 12 70 91.8 19 63 94.5 20 35
.59 91.9 6 75 93.9 14 47 95.0 15 35 95.3 15 32
.59 .15 924 13 63 93.4 14 52 95.1 13 36 94.3 18 39
.39 93.0 11 59 93.2 20 48 94.9 18 33 94.8 26 26
.59 92.3 14 63 94.2 19 39 92.5 32 43 95.2 16 32
.59 .15 .15 98.4 10 6 97.5 11 14 96.0 13 27 945 21 34
.39 94.1 7 52 91.7 10 73 93.5 9 56 94.3 16 41
.59 914 4 82 92.0 4 76 93.8 15 47 95.8 10 32
.39 .15 95.2 11 37 941 19 40 94.5 18 37 94.2 27 31
.39 92.5 12 63 92.7 15 58 94.8 17 35 94.0 20 40
.59 90.5 12 83 93.3 16 51 93.9 15 46 94.6 16 38
.59 .15 93.3 13 54 94.1 19 40 94.5 20 35 94.8 23 29
.39 925 7 68 93.4 14 52 94.2 22 36 93.3 16 51
.59 92.4 14 62 93.1 19 50 94.5 18 37 94.9 21 30
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Table 22. BCa bootstrap Cl coverage for o conditional effect at the mean of x

N=50 N=100 N=250 N=500
Pox ﬁym.x ,Bymx.x Cov  High Low Cov  High Low Cov High Low Cov High Low
A5 15 15 81.5 18 167 81.9 16 165 925 14 61 94.9 26 25
.39 83.4 12 154 83.2 12 156 90.5 24 71 96.3 16 21
.59 81.3 12 175 81.7 20 163 92.4 14 62 95.9 17 24
.39 15 82.7 24 149 85.2 28 120 915 29 56 94.6 29 25
.39 83.8 27 135 86.3 26 111 93.6 28 36 94.2 25 33
.59 85.0 35 115 87.1 30 99 91.3 25 62 95.5 23 22
.59 .15 84.5 33 122 84.5 29 126 91.7 25 58 945 25 30
.39 83.2 35 133 83.5 42 123 91.7 25 58 96.4 24 12
.59 83.2 26 142 87.9 25 96 92.8 26 46 94.7 27 26
.39 .15 .15 83.8 27 135 84.9 31 120 92.9 21 50 95.5 19 26
.39 84.1 25 134 86.4 28 108 91.1 25 64 94.3 22 35
.59 85.0 20 130 83.9 29 132 91.6 30 54 95.5 17 28
.39 .15 92.8 16 56 95.4 20 26 94.7 25 28 94.3 27 30
.39 94.8 19 33 94.2 26 32 93.5 27 38 94.7 31 22
.59 92.3 31 46 95.9 20 21 96.2 20 18 94.6 27 27
.59 .15 94.5 24 31 94.8 25 27 95.6 22 22 94.5 24 31
.39 93.2 29 39 94.9 23 28 96.1 20 19 94.8 31 21
.59 93.7 27 36 95.1 26 23 94.7 30 23 94.2 24 34
.59 .15 .15 82.4 30 146 81.1 35 154 89.7 23 80 93.2 27 41
.39 81.2 35 153 85.7 17 126 89.4 26 80 93.3 22 45
.59 85.5 26 119 84.2 35 123 91.5 27 58 95.1 32 17
.39 .15 92.0 26 54 94.5 29 26 94.9 32 19 94.3 32 25
.39 93.0 25 45 94.0 28 32 95.2 23 25 94.1 24 35
.59 93.2 25 43 93.9 31 30 94.7 21 32 96.3 21 16
.59 15 94.3 23 34 94.8 27 25 945 27 28 95.1 25 24
.39 95.5 17 28 95.1 27 22 95.0 23 27 95.9 16 25
.59 94.9 30 21 93.9 29 32 94.9 29 22 94.1 37 22
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Table 23. BCa bootstrap CI coverage for o conditional effect at the mean of x

N=50 N=100 N=250 N=500
B B Bux Cov  High  Low Cov  High Low Cov  High Low Cov High Low
15 .15 .15 88.8 3 109 77.7 3 220 85.9 8 133 95.1 18 31
.39 87.5 3 122 77.6 3 221 85.6 10 134 95.5 13 32
.59 85.6 2 142 76.1 5 234 87.5 6 119 95.5 11 34
.39 15 71.7 6 277 76.9 16 215 90.3 17 80 94.2 22 36
.39 72.6 9 265 79.8 14 188 92.6 16 58 93.8 18 44
.59 73.2 9 259 80.6 12 182 90.8 12 80 95.6 15 29
.59 15 76.2 8 230 80.4 13 183 91.2 19 69 94.2 18 40
.39 75.4 13 233 81.2 19 169 91.7 15 68 96.8 15 17
.59 75.5 7 238 84.2 10 148 92.6 15 59 94.7 16 37
.39 15 15 72.9 5 266 78.1 10 209 914 16 70 94.4 11 45
.39 71.8 5 277 79.0 8 202 89.9 17 84 94.4 15 41
.59 14.7 4 249 79.6 12 192 90.4 22 74 95.5 12 33
.39 15 90.5 9 86 94.9 15 36 94.3 19 38 94.2 25 33
.39 924 10 66 94.2 16 42 93.6 22 42 94.9 25 26
.59 91.6 21 63 95.8 13 29 95.8 17 25 95.0 23 27
.59 .15 93.7 16 47 94.4 19 37 95.9 14 27 945 20 35
.39 93.1 16 53 95.2 12 36 95.6 19 25 95.1 24 25
.59 92.9 17 54 94.7 21 32 94.9 23 28 93.9 19 42
.59 .15 .15 71.4 8 278 74.1 13 246 87.9 15 106 92.6 19 55
.39 72.0 11 269 78.8 9 203 88.5 14 101 92.5 15 60
.59 75.5 13 232 81.5 17 168 91.0 20 70 95.1 23 26
.39 .15 914 11 75 941 21 38 94.9 26 25 93.8 28 34
.39 91.7 16 67 93.5 23 42 95.3 17 30 93.8 21 41
.59 93.3 17 50 94.1 27 32 94.2 18 40 96.5 16 19
.59 15 94.1 14 45 94.8 22 30 94.4 22 34 95.0 23 27
.39 95.6 12 32 95.2 20 28 95.0 21 29 95.6 14 30
.59 94.4 25 31 94.3 22 35 95.0 26 24 94.4 32 24
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Table 23. BCa bootstrap CI coverage for o conditional effect at +1 standard deviation above the mean of x

N=50 N=100 N=250 N=500
B Bumx  Bumex Cov  High Low Cov High Low Cov  High  Low Cov High Low
15 15 15 867 20 113 844 29 127 93.2 14 54 954 27 19
39 847 22 131 87.2 29 99 90.9 34 57 954 21 25

59 836 31 133 843 33 124 925 27 48 93.8 27 35

39 15 83 26 151 847 31 122 919 30 51 947 29 24
39 87 35 138 851 31 118 926 33 41 944 23 33

59 82 51 127 859 35 106 909 29 62 954 25 21

59 15 844 33 123 842 30 128 917 27 56 953 23 24
39 836 32 132 836 38 126 918 24 58 96.7 21 12

59 821 31 148 87.6 25 99 91.9 32 49 952 24 24

39 15 15 891 31 78 89.9 25 76 932 35 33 946 20 34
39 909 20 71 932 23 45 939 27 34 952 23 25

59 924 24 52 924 30 46 943 26 31 94.8 22 30

39 15 921 19 60 944 25 31 940 31 29 942 32 26
39 932 26 42 932 26 42 927 32 41 944 32 24

59 942 19 39 940 28 32 952 20 28 954 19 27

5 15 930 32 38 94.6 27 27 960 20 20 939 27 34
39 924 28 48 93.6 35 29 944 29 27 941 34 25

59 924 28 48 939 31 30 922 41 37 946 25 29

59 15 15 876 37 87 880 37 83 926 25 49 93.3 26 4
39 921 23 56 90.7 30 63 931 20 49 942 30 28

59 916 21 63 925 14 61 937 29 34 96.0 19 21

39 15 908 31 61 934 30 36 946 26 28 946 32 22
39 935 21 44 93.8 26 36 946 28 26 934 29 37

59 918 22 60 93.7 29 34 943 23 34 943 26 31

5 15 945 18 37 946 28 26 948 26 26 951 26 23
39 938 22 40 93.7 26 37 936 35 29 929 28 43

59 937 21 42 93.4 29 37 946 26 28 947 29 24
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Table 25. BCa bootstrap CI coverage for o conditional effect at +1 standard deviation above the mean of x

N=50 N=100 N=250 N=500
B B Bux Cov  High  Low Cov  High Low Cov  High Low Cov High Low
15 .15 .15 90.6 4 90 80.6 6 188 91.3 4 83 95.3 17 30
.39 74.2 6 252 79.3 9 198 90.5 19 76 95.0 14 36
.59 72.4 15 261 79.5 18 187 91.4 16 70 92.5 21 54
.39 15 75.2 7 241 79.0 9 201 91.0 14 76 94.2 21 37
.39 75.5 8 237 81.3 15 172 91.9 21 60 93.8 14 48
.59 75.2 16 232 82.8 15 157 90.1 17 82 94.9 17 34
.59 15 78.0 7 213 80.7 12 181 91.5 17 68 94.8 18 34
.39 76.3 12 225 81.3 20 167 91.2 16 12 96.8 16 16
.59 75.6 6 238 85.3 7 140 92.2 19 59 95.2 15 33
.39 15 15 75.1 6 243 82.6 8 166 91.8 20 62 93.5 14 51
.39 89.5 4 101 92.4 12 64 92.9 22 49 95.0 20 30
.59 90.9 12 79 92.0 21 59 93.9 21 40 95.3 13 34
.39 15 89.3 13 94 93.7 10 53 94.4 21 35 94.0 25 35
.39 92.6 12 62 92.2 19 59 92.3 26 51 94.0 28 32
.59 92.9 7 64 93.7 23 40 95.0 18 32 95.4 17 29
.59 .15 93.1 15 54 94.0 20 40 95.5 14 31 93.7 22 41
.39 92.6 14 60 93.3 23 44 94.2 23 35 93.9 34 27
.59 91.7 19 64 941 24 35 92.5 34 41 94.9 19 32
.59 .15 .15 77.5 8 217 85.1 10 139 90.7 12 81 92.7 19 54
.39 90.4 10 86 89.8 20 82 92.9 15 56 93.6 24 40
.59 91.0 12 78 91.9 12 69 93.8 24 38 95.9 16 25
.39 .15 89.3 12 95 92.9 20 51 93.7 20 43 93.9 27 34
.39 92.3 15 62 92.3 20 57 94.7 21 32 93.6 25 39
.59 91.3 16 71 93.2 23 45 94.2 20 38 94.3 22 35
.59 15 935 11 54 94.1 21 38 94.4 23 33 94.8 23 29
.39 92.5 15 60 93.6 19 45 93.9 29 32 93.5 21 44
.59 92.9 17 54 93.5 22 43 94.2 24 34 94.6 26 28
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