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1 INTRODUCTION 

1.1 Effect Size in Psychological Research 

Methodological and applied researchers are becoming increasingly aware of the 

importance of effect size in psychological research. Several definitions of effect size have been 

offered in the methodological literature (Cohen, 1988; Kelley & Preacher 2012; Kirk, 1996), but, 

fundamentally, an effect size conceptually is a quantification of some phenomenon of interest 

(Kelley & Preacher, 2012). In applied research settings, effect sizes have also been defined as 

communicating of the practical importance of an effect beyond statistical significance (Cohen, 

1988), the translation of the effect to a meaningful scale interpretable by other researchers (Kirk, 

1996), and interpretation of the effect of interest in different contexts (Greenland, Schlessman, & 

Criqui, 1986). These definitions highlight the importance of effect sizes in the effective 

communication of scientific findings.  

Many methodologists have advocated for applied researchers to report effect sizes and 

confidence intervals (CIs) for their results instead of relying on statistical significance. 

Weaknesses of the null hypothesis significance test (NHST) framework for conveying scientific 

results have been well-documented (Cohen, 1994; Greenland & Poole, 2013; Wilkinson, 1999). 

Effect sizes and CIs not only convey the same information as a NHST, but also provide 

information regarding the magnitude of the effect and precision of the estimate. 

In addition to conveying important information regarding the findings of a given study, 

effect sizes are necessary for sample size planning. The classic approach to sample size planning 

is power analysis. Although fundamentally based on the NHST framework, power analysis 

requires the specification of the population effect size(s) to compute the minimum sample size 

necessary to achieve a desired level of power. More modern approaches to sample size planning 
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(e.g., Monte Carlo simulation, accuracy in parameter estimation) also rely on the specification of 

effect sizes.  

Effect sizes also have a prominent role in meta-analysis. Meta-analysis is an approach to 

scientific inquiry that collects and synthesizes the results of multiple studies that fundamentally 

examine the same phenomena of interest. There are many factors that may differ among studies 

of the same phenomena (e.g., sample, measures, experimental design). Across study differences 

in these factors are translated into discrepancies among the metrics and magnitudes of point and 

interval estimates of structural parameters, variances, covariances, and residual variances. Effect 

sizes translate estimates from discrepant studies into a common metric, facilitating comparisons 

and synthesis of findings. 

Much methodological work has been devoted to accurately defining and clarifying the 

distinctions among various effect size measures that can be used to quantify the same 

phenomena. For example, the effect of a binary variable representing treatment and control 

groups on a continuous outcome can be quantified as either a standardized mean difference 

between groups, or the strength of association between the treatment variable and the outcome. 

Which effect size is chosen has implications for how the effect is interpreted and can result in 

substantially different conclusions regarding the practical importance of the finding. In addition, 

much work has been devoted to evaluating the properties of sample estimators of effect sizes and 

CIs to a) elucidate the study design conditions (e.g., sample size, effect magnitude) under which 

inferences from an estimated effect size would be questionable, and b) develop new estimators 

that yield valid inferences under broader ranges of design conditions (e.g., small sample size, 

small effects). Despite the long history of effect sizes in the methodological literature for 

experimental and observational studies, disagreements regarding the appropriate interpretation 
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and use of effect sizes, as well as improvements to sample estimators and CIs for these 

traditional designs continue to this day (Algina, Keselman, & Penfield, 2005; Wilcox & Tian, 

2011). 

Theoretical and computational advancements allow researchers to test models that are 

substantially more complex than what could be modeled in traditional designs. For example, 

structural equation modeling (SEM) is a framework where a complex structure of relationships 

among multiple variables can be modeled simultaneously. With these advances in modeling 

come new methods to conceptualize and quantify phenomena of interest (i.e., model discrepancy 

in the population quantified by the root mean square error of approximation [RMSEA]; Steiger 

& Lind, 1980). Given the importance of effect sizes and CIs in the interpretation of scientific 

results and increasingly common requirements that they be reported for primary outcomes, 

methodologists have attempted to keep pace in several ways: a) identifying those existing 

parameters and estimators in complex models that can appropriately be used as measures of 

effect size (e.g., Preacher & Kelley, 2011), b) proposing improved estimators for established 

quantities of interest (e.g., Wilcox & Tian, 2011), and c) proposing effect sizes that represent 

qualitatively different approaches to quantifying the phenomena of interest (e.g., Fairchild, 

Mackinnon, Taborga, & Taylor, 2009). Although effect sizes have been established for 

quantifying some aspects of complex models, there are some phenomena of interest for which 

consensus has yet to be reached. Perhaps the most important of these phenomena is the indirect 

effect in mediation analysis. 
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1.2 Effect Size in Mediation Analysis 

Mediation analysis is an increasingly popular analytic method for social sciences 

researchers. The goal of mediation analysis is to examine the mechanisms through which a 

predictor variable has its effects on an outcome variable through intervening variables called 

mediators (Baron & Kenny, 1986; MacKinnon, 2008). Mediation analysis can be used to 

examine the effects of these intervening variables in a system of equations that simultaneously 

model the effects of the predictors on mediators, and the effects of predictors and mediators on 

outcomes. For a model where all variables are continuous and effects are linear, the most basic 

mediation model consists of a system of two equations: a) the regression of the mediator on the 

predictor, and b) the regression of the outcome on the predictor and mediator. The effect of the 

predictor on the outcome (i.e., total effect) can be decomposed into a component transmitted 

directly to the outcome controlling for the mediating variable (i.e., direct effect), or indirectly 

through the mediating variable (i.e., indirect effect). The indirect effect is often of primary 

interest for researchers using mediation analysis. 

Any effect can be conceived of as a process of indirect effects through intervening 

variables, whether it be scratching an itch or electing a president. Mediation analysis facilitates a 

more complete understanding by not only examining if the phenomena occur, but also how they 

occur. For clinicians or public policy researchers, these processes can represent points of 

intervention that could substantially improve the effectiveness of a treatment or policy initiative. 

It is important, therefore, that researchers using mediation analysis have the tools to effectively 

communicate their findings to those who may use them in practice. 
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Several effect size measures have been proposed for mediation analysis to address this 

gap (Alwin & Hauser, 1975; Fairchild et al., 2009; Kraemer, 2008, 2014; MacKinnon, 2008; 

Preacher & Kelley, 2011; Sobel, 1982). However, many of these measures have limitations and 

consensus has not been reached as to which, if any, of the existing measures is recommended. 

These limitations include logical inconsistencies, and poor or unclear statistical properties of 

sample estimators.  

Recently, Lachowicz, Preacher, and Kelley (2018) proposed a novel measure of effect 

size for mediation analysis ( ) that addressed many of the limitations of the existing measures. 

  translates the indirect effect into the variance in an outcome explained by the predictor 

through the mediator. In addition to this standardized and interpretable scale,   has several other 

desirable properties as effect size measures for the indirect effect in three-variable mediation 

models. These include independence from sample size, the provision of CIs, and sample 

estimators with good statistical properties. 

Although a select few of the preceding mediation effect sizes are appropriate for indirect 

effects in three-variable mediation models, this model is often too simplistic to appropriately 

represent complex behavioral, psychological, or societal processes. The purpose of this research 

is to propose a generalizable effect size for mediation analysis that can be applied to indirect 

effects in complex mediation models. This effect size will represent a framework consisting of 

several extensions of the   effect size proposed in Lachowicz et al. (2018) for three-variable 

mediation models. Although there are many factors that can introduce complexity into a 

mediation model (i.e., non-normality of variables, etc.), for the purposes of this research 

complexity will be defined as models with covariates, multiple predictors, multiple parallel 
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and/or serial mediators, and moderators. This definition of complexity addresses the vast 

majority of mediation models currently being employed in social science research. 

1.3 Developing a Generalizable Effect Size for Mediation Analysis 

A strength of   as an effect size measure is that it fits into the existing explained variance 

framework such that effect sizes for indirect effects in mediation analysis have clear analogs to 

common effect sizes in multiple linear regression (MLR) and analysis of variance (ANOVA), a 

property that facilitates the interpretation of  . However, the analogous measures of explained 

variance in MLR and ANOVA for conditional indirect effects have received little attention in the 

methodological literature. Because the existence of the MLR and ANOVA analogs are important 

for the interpretation of  , the proposed research will develop the concept of explained variance 

for conditional effects in MLR and ANOVA as a foundation for the extension of   to 

conditional indirect effects. 

Although it is important for the effect size parameter to have a strong conceptual 

rationale and meaningful interpretation, it is equally important for the parameter to have an 

accurate sample estimator. It is well known in the statistical literature that many sample analog 

estimators of population standardized effect size measures are biased (Ezekiel, 1930; Fisher, 

1915; Hedges, 1981). This is also true for  . Lachowicz et al. (2018) derived the bias of the 

sample analog estimator of   (̂ ), showing that, like common explained variance estimators 

such as R2, the estimator had a consistent positive bias. Lachowicz et al. proposed an adjusted 

version of the estimator ( ) to correct for the sample bias of ̂ . It is expected that the estimators 

of the effect sizes proposed in this research will also be positively biased. The proposed research 

will include derivations of the bias of sample analog estimators of the population effect sizes, 

and develop adjusted versions of the estimators to correct for sample bias. The finite sample 
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properties of the unadjusted and adjusted estimators as well as the associated CIs will be 

investigated with Monte Carlo simulation studies. 

Empirical examples will be included in each section to demonstrate the use and 

interpretation of the   extensions. In addition, because standardized indirect effects are also a 

viable effect size measure for the complex mediation models considered in this research, each 

section will include comparisons of the relevant standardized indirect effects to the   extensions 

for the empirical example. 

The dissertation will consist of eight chapters. Chapter 2 will provide the necessary 

background for effect size, mediation analysis, existing effect size measures in mediation 

analysis, and introduction of the   effect size measure. Chapter 3 will consist of a review of the 

explained variance framework of which   will be a part, including matrix expressions of 

existing bias-adjusted estimators of explained variance in MLR and ANOVA, and introduction 

of a general SEM approach for estimating indirect effects. Chapter 4 will develop a matrix-based 

framework for extending   to complex mediation models with observed variables. Chapter 5 

will extend the   framework to mediation models with latent variables. Chapter 6 will develop 

the concept of explained variance for conditional effects in MLR. Chapter 7 will extend the   

framework to mediation models with conditional effects. Chapter 8 will summarize the research, 

including limitations and future directions.  
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2 EFFECT SIZE AND MEDIATION ANALYSIS 

2.1 Effect size 

Despite calls for reporting effect sizes and CIs to supplement NHSTs, conflicting 

definitions of effect size have made it unclear precisely what qualified as an appropriate effect 

size measure to report. Particularly problematic was that effect size was defined by several 

sources in terms of NHSTs (e.g., Barry & Mielke, 2002; Cohen, 1988), the practice which 

advocates of effect size wanted researchers to avoid. Others sources defined effect size in terms 

of practical/clinical/scientific significance (e.g., Cohen, 1988). However, this definition is also 

lacking because effect size and practical significance are not synonymous. Rather, effect size is 

used to make judgments about practical significance (Kelley & Preacher, 2012). 

Kelley and Preacher (2012) defined an effect size as the “quantitative reflection of the 

magnitude of some phenomenon that is used for the purpose of addressing a question of 

interest.” Because a phenomenon is quantified by population parameters or sample statistics, 

Kelley and Preacher (2012) also defined an effect size as “a statistic or parameter with a purpose, 

which is to quantify some phenomenon that addresses a question of interest.” This definition of 

effect size is intentionally broad as any parameter and statistic can be used appropriately as an 

effect size under the right circumstances. 

Several of the benefits of reporting effect sizes can be illustrated by reference to the 

standardized mean difference (Cohen’s d). Consider two experimental studies of an arbitrary 

construct that are equivalent in all respects except in the scale of the outcome measure. 

Assuming the experimental effect of the manipulation (i.e., difference in means between 

experimental groups) in both studies is exactly equivalent, the unstandardized effects of the 

manipulation would differ solely due to the difference in the scales of the outcomes. The 
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difference in scale could be due to different but equally valid measures of the construct, or 

simply different within-group variances due to sampling variability (Hedges & Olkin, 1985). 

Importantly, these factors would be considered irrelevant to the research question at hand, 

namely “does the experimental manipulation result in a difference between the means of the 

experimental groups?’ 

Converting the unstandardized mean difference into Cohen’s d removes the scales from 

the effect of the manipulation, allowing for an appropriate comparison of the effects in the 

studies. Whether or not to use a standardized or unstandardized effect size measure should 

depend on whether the differences in scales are meaningful aspects of the study design. For 

example, a difference in sample variances may not be simply an artifact of sampling variability, 

but could reflect meaningful differences in the sampling methods (e.g., inclusion/exclusion 

criteria, seasonality). In that case, standardizing would confound the effect with frequencies of 

the predictor and outcome, such that two variables with equivalent unstandardized regression 

coefficients would have differing standardized coefficients if the variances of the predictor 

and/or outcome differ (Greenland et al., 1986). This reason is prominent among those proposed 

by Greenland et al. (1986) in advocating against the use of standardized effect size measures. In 

addition, it can also be shown that the magnitude of a standardized measure of partial association 

(i.e., partial correlation) can be non-zero when the unstandardized partial association is zero. 

Although it is important to understand the sources of variance used in standardization, it appears 

unnecessarily restrictive to eschew all standardized effect sizes in favor of unstandardized 

measures. First, nothing prevents the reporting of both unstandardized and standardized 

measures. For example, an effect can appear substantial in a raw metric, but quite small when 

considered in the context of the variability in the predictor and outcome. Second, this precludes 
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the comparison variables that measure the same phenomenon but have different metrics. Third, 

this would limit effect sizes to bivariate relationships, and effect size measures such as multiple 

2R  cannot be considered. 

Kelley and Preacher (2012) proposed properties of good effect size measures. The first 

property is that the effect size should have an interpretable scale, the importance of which has 

been the focus of the preceding section. The second property is that effect size estimates should 

be reported with CIs. CIs convey the precision of point estimates, or the uncertainty with which a 

point estimate can be used to make inferences about the population. CIs are constructed based on 

the sampling distribution of the estimator. If the sampling distribution of the estimator is known, 

CIs can be constructed analytically. If the sampling distribution is unknown, several methods can 

be used to construct CIs, including semiparametric approaches that use simulation from the 

known distributions of parameters that comprise an effect (i.e., Monte Carlo), and nonparametric 

approaches based on resampling to construct an empirical sampling distribution (i.e., 

bootstrapping). The third property is that the effect size should be independent of sample size. 

Specifically, this means that the population effect size does not change for different sample sizes. 

The fourth property is that effect size estimators should have good statistical properties of 

unbiasedness, consistency, and efficiency. For an estimator to be unbiased means that the 

expected value of the estimator is the population value it estimates. In some circumstances, 

however, a biased estimator may have smaller variance than an unbiased estimator (e.g., 

empirical Bayes predictions of random effects in multilevel modeling). A consistent estimator is 

one such that, as sample size increases, estimates converge to the population value. Finally, an 

efficient estimator is one with minimum variance compared to other estimators of the population 

value.  
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Effect sizes can be generally classified along a spectrum of ranging from fully parametric 

to fully nonparametric. Parametric effect sizes rely on specific assumptions about the 

distributions of parameters in the population (e.g., equality of variances, normality of residuals), 

whereas nonparametric effect sizes make no such distributional assumptions. The focus of this 

review of effect sizes will be on parametric effect sizes. 

One of the primary purposes of the following review is to identify commonalities in the 

development of the effect sizes that will aid in the evaluation of existing effect size measures for 

mediation analysis, and inform the extensions of   that follow. Methodological work on effect 

sizes for traditional research designs has been ongoing for over a century (e.g., Fisher, 1915), 

whereas effect size measures for mediation analysis have been developed relatively recently. 

Although indirect effects are more complex than effects in traditional designs, there are also 

common statistical and interpretative elements shared by the effects, such that developments in 

one effect size may inform the developments of another. 

2.2 Types of Effect Sizes 

2.2.1 Standardized mean differences 

For study designs where the predictor variable is binary and the outcome is continuous, 

the most frequently used effect size measure by social and educational researchers is the 

standardized mean difference   (Cohen, 1988; Hedges & Olkin, 1985; Lipsey & Wilson, 2001). 

In the population, the standardized mean difference between two groups   is defined as  

 1 2 ,
 




−
=   (2.1) 

where 1  and 2  are the group-specific population means, and   is the population standard 

deviation, assumed equal across levels. The effect size   is interpreted as the difference between 



12 

 

population means in terms of standard deviation units (e.g., 0.5 =  means that the group means 

differ by on half standard deviation with dummy coding). Several sample estimators have been 

proposed for   and typically vary in how the population standard deviation is estimated. Glass 

(1976) proposed an estimator   that estimated the population standard deviation as the within-

group standard deviation for the control group (
controlS )  

 1 2 ,
ˆ

control

Y Y



−
 =   (2.2) 

where 
1Y  and 

2Y  are the estimated group-specific sample means. Although the choice of ˆ
control  

as the estimator is reasonable given the assumption of equal within-group population variances, a 

more accurate estimator is the pooled within-group standard deviation ( ˆ
pooled ), which is the 

estimator used in Cohen’s d 

 1 2 ,
ˆ

pooled

Y Y
d



−
=   (2.3) 

where 

 
2 2

1 1 2 2

1 2

ˆ ˆ( 1) ( 1)
ˆ ,pooled

n n

n n

 


− + −
=

+
  (2.4) 

where 
1n  and 

2n  are the group-specific sample sizes, and 2

1̂  and 2

2̂  are estimates of within-

level variances. Cohen’s d is equivalent to the maximum likelihood estimate (MLE) of  . 

However, Hedges (1981) showed Cohen’s d is a biased estimator of  , particularly for small 

samples. In practice, an adjusted estimator (Hedges’ g) is used  
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 1 2 1 2

1 2 2pooled

Y Y n n
g d

s n n

− +
= =

+ −
  (2.5) 

where the denominator 1 2 2n n+ −  corrects for bias in the estimate of ˆ
pooled  (Hedges & Olkin, 

1985).  

The success of   can be attributed to several factors. Primary among these factors is that 

  has an intuitive interpretation. The fundamental unit of   is the standard deviation, which is 

often one of the first statistics taught in introductory methods courses, and also serves as the 

primary unit for normed measures (e.g., intelligence tests, achievement tests). In addition, Cohen 

(1988) provided benchmarks for what effect size values of   should be considered small, 

medium, and large. Although the mechanistic adherence to benchmarks has been rightfully 

criticized in the methodological literature (Snyder & Lawson, 1993), it is difficult to understate 

the importance of providing some criteria for evaluating an effect size, especially for novel 

measures. As stated in Algina et al. (2005) “By itself, Cohen’s  , or any other [effect size] for 

that matter, has little value. What is required is experience in applying the [effect size].” A 

researcher using a novel measure of effect size by definition does not have experience in 

applying the effect size, and, therefore, must rely on some external criteria by which to judge the 

effect size obtained for their effect of interest. As use of an effect size increases, researchers can 

and should rely less on these rough guidelines and instead on the norms for the measure 

developed within their specific area of study, but benchmarks can be very important for 

facilitating the adoption of a new measure.  

 Although   is a widely used effect size in the social and behavioral sciences, particularly 

in meta-analysis (Lipsey & Wilson, 2001; Hedges & Olkin, 1985), there are many other ways to 
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quantify the standardized mean difference in the sample and in the population. For example, 

Hedges and Olkin (1985) showed the bias in the expected value of Hedges’ g as 

 
3

[ ] 1 ,
4 9

E g
N


 

= + 
− 

  (2.6) 

where 
1 2N n n= + . Equation 2.6 means g is positively biased by the factor 3 / (4 9).N −  

Correcting for this bias yields a new unbiased estimator of the population standardized mean 

difference 
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N
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Methods for constructing CIs for the unadjusted and adjusted estimators are available from 

several sources (Bird, 2002; Hedges & Olkin, 1985; Kelley, 2007; Steiger & Fouladi, 1997). 

2.2.2 Strength of association 

Effect size for the effect of a binary predictor on a continuous outcome can be 

conceptualized not only as a standardized difference in means, but more generally as the strength 

of association between the two variables. The most commonly used standardized measure of 

strength of association is the correlation coefficient, which in the special case of the relationship 

between binary and continuous variables is the point-biserial correlation 

 
2 2

,YX

Y X

r


 
=   (2.8) 

where YX  is the population covariance between the outcome and the predictor, and 2

Y  and 2

X  

are the population variances of the outcome and predictor, respectively. The corresponding 

sample estimator is 
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The sample estimator expression can be re-expressed in terms similar to that of   (Cohen, 1988) 
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where 
1p  and 2p  are the proportion of the population within each group. This can be further re-

expressed as  

 1 2
1 2 .

Y

r p p
 



−
=   (2.11) 

Equation 2.11 reveals an important distinction between Cohen’s d and r. It can be seen that for a 

fixed difference in group means, the population point-biserial correlation can vary depending on 

the relative proportions of subjects within each group, which is not true for Cohen’s d. In this 

sense, the point-biserial correlation coefficient is considered sensitive to base rate, whereas 

Cohen’s d is insensitive to base rate (McGrath & Meyer, 2006). When groups have similar base 

rates in the population, the point-biserial correlation has a perhaps more familiar translation into 

 (Cohen, 1988; Hedges & Olkin, 1985) 
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


=

+
  (2.12) 

It is also important to note that the benchmarks for small, medium, and large correlations 

suggested by Cohen (1988) make this assumption of equal base rates for each group.  

Although not as commonly used as a measure of effect size for binary predictors as are 

standardized mean differences, the point-biserial correlation is still a useful effect size. Like the 
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standard deviation metric for Cohen’s d, the correlation coefficient as an indicator of the strength 

of relationship between two variables is a core component of introductory statistics courses. Also 

like Cohen’s d, benchmarks for small (.1), medium (.24), and large (.37) values of the point-

biserial correlation were proposed by Cohen (1988).  

The correlation coefficient has several advantages over the standardized mean difference 

as an effect size measure. One primary advantage is flexibility. The point-biserial correlation is a 

special case of the more general Pearson product-moment correlation, a common effect size for 

bivariate relationships between continuous variables. Standardized mean differences are not 

generalizable to designs with continuous predictors because it would be necessary to 

dichotomize the predictor in some fashion, a practice that has received much criticism in the 

methodological literature (MacCallum, Zhang, Preacher, & Rucker, 2002). Although a 

correlation between continuous variables and a correlation between a binary and continuous 

variable are not strictly comparable (e.g., small [.1], medium [.24], and large [.37] effect sizes for 

the point-biserial correlation are generally less than small [.1], medium [.3], and large [.5] effect 

sizes for the correlation), the difference reflects more the difference in the nature of the 

predictor/outcome association (i.e., correlation at specific levels of the population vs. across the 

range of possible population levels) than a fundamental discrepancy in the effect size when 

applied to different study designs. McGrath and Meyer (2006) outlined several additional 

advantages of the point-biserial correlation over Cohen’s d as an effect size measure. These 

include a) a more direct relationship to statistical power, b) strength of association being a more 

general concept than group mean differences, and c) being an integral component of general 

linear models. In addition, although effect size values tend to be of smaller magnitude, base rate 

dependence can be meaningful in applied settings. For example, Meehl and Rosen (1955) 
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suggest that the correlation is a more ecologically valid indicator of treatment effectiveness. 

Finally, for circumstances where sensitivity to base rate is not desirable, adjustments to the point-

biserial correlation estimates (and effect size benchmarks) can be made to translate the effect into 

one that is base rate independent (McGrath & Meyer, 2006). Similarly, base rate estimates from 

prior research could also be used to conduct sensitivity analyses that provide bounds for the 

expected effect size in the population. 

Like Cohen’s d, the sample correlation coefficient is a biased estimator of the population 

correlation. Fisher (1915) first derived the bias in the expected value of r̂  as 
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and proposed as an approximately unbiased estimator r  
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It is interesting to note that, unlike Hedges’ g, the bias of r̂  is negative. In addition, the 

relationship between bias and the standard error of r̂  (i.e., 2

ˆ
ˆ[1 ] /rSE r N= −  ). For example, 

re-expressing r  in terms of r̂SE  yields 

 ˆˆ 1 .
2

rSE
r r

N

 
= + 

 
  (2.15) 

This suggests that the bias in r  can also be understood as a function of imprecision of the 

estimate. Methods for constructing CIs for unadjusted and adjusted estimators can be found in 

several sources (Efron, 1987; Hedges & Olkin, 1985).  
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2.2.3 Explained variance 

An alternative class of effect sizes includes measures of explained variance, which are 

commonly referred to as 2R  in MLR and 2  in ANOVA. For study designs where the predictor 

and outcome are both continuous, the proportion of variance explained is equivalent to the 

squared Pearson correlation 2r . For designs that include a binary predictor and continuous 

outcome, much of the research and language of explained variance comes from the ANOVA 

literature, where 2  is commonly interpreted as the proportion reduction in error variance (PRE) 

due to an experimental manipulation (Maxwell & Delaney, 2003).  

Cohen (1988) proposed 2  as an effect size measure that quantified the proportion of 

variance accounted for by group membership in the population, which can be expressed as 
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The within-group variance 2  can be obtained from a regression model with any number of 

predictors, meaning 2  can be used as an effect size for a wider class of effects than the effect 

sizes previously considered. In the case of a single binary predictor and continuous outcome, 2  

is equivalent to the squared point-biserial correlation ( 2r ). For multiple continuous predictors, 

the equivalent of Equation 2.16 in multiple regression is 
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where 2

ŷ  is the variance of predicted values of the outcome y from the population regression, or 

the model implied variance, and 2

e  is the variance of the residuals in the population. Because 

2  is the proportion of variance due to group membership, it can be expressed in terms of   
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It is clear from Equation 2.18 that, like the point-biserial correlation, 2  is sensitive to the 

population base rate. In sample data, the population analog estimator of 2  ( 2̂ ) is quantified as 

(Maxwell & Delaney, 2003) 
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where SST is total sum of squared errors (i.e., 
2

[ ]iji j
y y−  ), SSW is the within-group sum 

of squared errors (i.e., 
2

[ ]ij ji j
y y−  ), and SSB is the between-group sum of squared errors 

(i.e., 
2

[ ]ji j
y y−  ). The analogous estimator of 2R  ( 2R̂ ) in multiple regression is 

 2ˆ ,
SSR

R
SSR SSE

=
+

  (2.20) 

where SSR is the sum of squares due to regression (i.e., 2ˆ[ ]ii
y y− ), and SSE is the sum of 

squared errors (i.e., 2ˆ[ ]i ii
y y− ).  

2  for binary predictors and 2R  for multiple regression have the advantage of intuitive 

interpretations as proportions. Cohen (1988) proposed benchmarks for both 2  and 2R , but, as 

with correlations, these differ due to the binary vs continuous nature of the predictor. For a 
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binary predictor, the proposed benchmarks were small = .01, medium = .06, and large = .14 

effects for 2  (pp. 285-287). For a single continuous predictor, the proposed benchmarks were 

small = .01, medium = .09, and large = .25 for 2r  (pp. 79-81). For multiple continuous 

predictors, the proposed benchmarks were small = .02, medium = .13, and large = .26 for the 

multiple 2R  (pp. 412-414). Because of the close relationship between proportion of variance and 

correlation, the advantages of correlation effect sizes over standardized mean differences also 

apply to 2R  measures. In addition, standardized mean differences and correlations are limited to 

bivariate relationships, whereas the proportion of variance measures can be used as an effect size 

for relationships between an outcome and multiple variables. 

Like sample estimators of the standardized effect size measures previously considered, 

the sample estimators 2̂  and 2R̂  are biased. Although derivations of the bias and adjustments 

for 2̂  and 2R̂  developed in parallel in the ANOVA and MLR literature, the findings and 

proposed corrections shared several common features. The most widely used adjustments to 2̂  

are 2̂  (Kelley, 1935), defined as 

 2 ( 1)
ˆ ,

SSB k MSW

SST


− −
=   (2.21) 

and 2̂  (Hayes, 1973), defined as 

 2 ( 1)
ˆ ,
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SST MSW

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+
  (2.22) 

where MSW is mean square within-group error (i.e., 
2

[ ] / [ ]ij ji j
y y N k− −  ). Notably more 

adjustments have been proposed to correct for the sample bias of 2R̂  in multiple linear regression 

analysis (see Yin & Fan, 2001, for a comprehensive review). However, the most commonly used 



21 

 

adjustment was proposed by Ezekiel (1930), which is the default adjusted estimator in several 

software packages such as SPSS and Stata 

 2 21 ˆ1 (1 ).
1

Ezekiel

N
R R

N p

−
= − −

− −
  (2.23) 

A noteworthy advantage of 2

EzekielR  over other 2R̂  adjustments is that it can be applied to both 2R̂  

and the squared Pearson correlation 2r̂  (Wang & Thompson, 2007). In addition, Maxwell (1981) 

demonstrated that 2

EzekielR  is nearly equivalent to 2̂ , differing by one degree of freedom 

 2 21 ˆˆ 1 (1 ).
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N p


−

= − −
−

  (2.24) 

Large sample and exact CIs can be constructed for the unadjusted and adjusted 2R and 2  

estimators (Algina, 1999; Kelley, 2007; Smithson, 2001). 

2.2.4 Summary of effect sizes 

Several aspects of standardized effect size measures are made salient when reviewing the 

methodological research on effect sizes for traditional research designs. The first is that although 

interpretations may substantially differ, correlations and 2R  measures are more generalizable 

effect size measures than standardized mean differences. Further, because 2R  can quantify 

effects with more than two variables, 2R  effect size measures are more generalizable than 

correlations. It is also noteworthy that for correlations and 2R , the effect size benchmarks for 

small, medium, and large effects differ depending on whether the predictor is binary or 

continuous, and whether the effect is between an outcome and a single variable or multiple 

variables. Another aspect common to all of the traditional standardized effect size measures is 

that estimators that are sample analogues of the population effect size parameters (e.g., Cohen’s 
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d, r̂ , 2R̂ ) are biased. This bias can be attributed to error variance (Box, 1971), and, therefore, 

bias is expected to be worse in study conditions where sampling error is relatively high (e.g., 

small samples, small population effects). In addition, bias tends to be larger for 2R  measures 

than for correlations and standardized mean differences, suggesting that, in general, sampling 

error has a greater impact on 2R  estimators. Corrections for sample bias have been proposed for 

all of the estimators of standardized effect sizes. However, likely because of the heightened 

sensitivity of 2R  measures to sampling error, bias-adjusted estimators for 2R  are more routinely 

applied in practice than, for example, bias-adjusted estimators for r̂ . As methodological 

advancements spur the creation of novel effect size measures, awareness of the common themes 

in the effect size literature for traditional designs can prove highly informative for developments 

in more complex models. 

2.3 Mediation Analysis 

Mediation analysis provides a method to examine the mechanisms through which 

variables have their effects, allowing researchers to build a more complete understanding of the 

causal processes underlying phenomena. More complete knowledge of the relationships among 

variables can, for example, identify points of intervention in a causal chain that can be expected 

to have the maximum downstream effects. In addition, mediation analysis can be used to 

quantify the relative importance of competing causal processes, such as the relative downstream 

effects of several treatment components.  

The fundamental logic and assumptions of mediation analysis can be illustrated with a 

three-variable mediation model. For this model (illustrated in a path diagram in Figure 1), 

mediation analysis decomposes the total effect of a predictor x on an outcome y into a direct 

effect of x on y controlling for the mediator m, and an indirect effect of x on y through m. The 
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relationship between x and y for a given observation (i subscript is left off for convenience) is 

expressed as 

 ,y x yx y xy B B x = + +   (2.25) 

where 
yxB  is the total effect of x on y, 

y xB  is the intercept, and 
y x  is the error term, where 

2~ (0, )y x y xN  . To examine the direct and indirect effects, it is first necessary to estimate the 

effect of x on m, expressed as 

 ,m x mx m xm B B x = + +   (2.26) 

where mxB  is the effect of x on m, 
m xB  is the intercept, and 

m x  is the error term, where

2~ (0, )m x m xN  . Next, it is necessary to estimate the effects of x and m on y, expressed as 

 ,y yx m ym x yy B B x B m = + + +x x
  (2.27) 

where 
ym xB  is the effect of m on y controlling for x, 

yx mB  is the effect of x on y controlling for m 

(i.e., direct effect), 
yB

x
 is the intercept, and 

y x
 is the error term, where 2~ (0, )y yN x x (x in 

subscripts indicates multiple variables). In addition, m x  and 
y x

 are independent across 

equations, which implies that the sampling distributions of estimators of regression coefficients 

are also independent for different outcomes.  

The indirect effect can be obtained as either the difference between the total effect and 

direct effect (
yx yx mB B− ) or as the product of the effect of x on m and the effect of m on y 

controlling for x (
mx ym xB B ). These methods yield equivalent values of the indirect effect when 

the models are linear in their effects. However, the product of coefficients approach is often 
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preferred because it allows for the calculation of many more types of indirect effects in complex 

mediation models with multiple indirect paths and/or nonlinear effects. 

The population indirect effect is estimated by the product of regression coefficients 

estimated in the sample. Although the distribution of the product 
mx ym xB B  is a complex function 

of the normal distributions, the expected value of the indirect effect distribution is the population 

parameter. That is, the sample indirect effect is an unbiased estimator of the population indirect 

effect. Monte Carlo simulation studies have confirmed the unbiasedness of the sample indirect 

effect (MacKinnon, Warsi, & Dwyer, 1995). 

2.3.1 Confidence intervals 

 Methods of constructing CIs for indirect effects have received much attention in the 

methodological literature. It is worthwhile to consider the advances in CIs for the indirect effect 

because the effect size   is a function of the indirect effect, and it is likely that properties of the 

indirect effect sampling distribution that pose challenges for constructing accurate CIs will also 

be challenges for constructing CIs for  . 

For many common estimators with sampling distributions that are asymptotically normal 

(e.g., means, unstandardized regression coefficients), approximate large sample CIs are typically 

constructed by inverting the z test (or t test for small sample sizes). For example, inverting a two-

sided z test yields the familiar CI for the point estimate ̂   

 1 /2
ˆ ˆ[ ( )],z SE −   (2.28) 

where 1 /2z −  is the z value corresponding to the 1 / 2−  quantile of the standard normal 

distribution. CIs for the indirect effect were constructed first using this parametric approach 

based on the assumption of asymptotic normality. Specifically, Sobel (1982) used the first-order 
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multivariate delta method to derive the asymptotic variance of the indirect effect (

2 2 2 2

mx ym x ym x mxB B + ), which, when substituting sample estimates for parameters, yields a CI for 

the product of point estimates, ˆ ˆ
mx ym xB B   

 2 2 2 2

1 /2
ˆ ˆ ˆ ˆˆ ˆ ,mx ym x mx ym x ym x mxB B z B B  − +   (2.29) 

where 2ˆ
mx  and 2ˆ

ym x  are the estimated sampling variances of ˆ
mxB  and ˆ

ym xB , respectively. 

However, several simulation studies showed conditions where normal theory CIs for the indirect 

effect failed to achieve the nominal coverage rate of 95% (MacKinnon et al., 1995; Stone & 

Sobel, 1990). In addition, even for conditions where nominal coverage was achieved, the 

proportion of cases where the true value was greater than the upper 95% CI limit or less than the 

lower 95% CI limit were imbalanced. MacKinnon et al. (1995) found a similar pattern of results 

for CIs based on a second-order multivariate delta method approximation 

 2 2 2 2 2 2

1 /2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ .mx ym x mx ym x ym x mx mx ym xB B z B B    − + +   (2.30) 

 The putative cause of the poor performance of normal theory CIs is the non-normality of 

the sampling distribution of the indirect effect (MacKinnon, Lockwood, & Williams, 2004). 

Although the sampling distributions of the regressions coefficients ˆ
mxB  and ˆ

ym xB  are normal, the 

sampling distribution of the product of normally distributed variables is substantially more 

complex (Aroian, 1947; Craig, 1936). This is because the mean, variance, skew, and kurtosis of 

the product distribution are functions of the distributions of ˆ
mxB  and ˆ

ym xB . Specifically, the 

product distribution is narrower than the normal distribution (i.e., leptokurtic), has heavier tails, 

and when the product of coefficients is non-zero, is skewed left or right depending on the sign of 



26 

 

the product (Craig, 1936). In other words, the sampling distribution of a non-zero indirect effect 

requires an asymmetric CI.  

 MacKinnon and colleagues (2004, 2007) proposed a method of constructing asymmetric 

95% CIs for the indirect effect. The form of the proposed CIs is similar to the normal theory-

based CIs (Sobel, 1982) in Equation 2.29, but replaces the z values with the critical values based 

on the distribution of the product (
1 /2m − ; Meeker, Cornwell, & Aroian, 1981) 

 2 2 2 2

1 /2
ˆ ˆ ˆ ˆˆ ˆ .mx ym x mx ym x ym x mxB B m B B  − +   (2.31) 

Although this method of constructing CIs for the indirect effect improves the coverage balance, 

overall coverage does not achieve the nominal level for small sample sizes and small effects 

(Mackinnon et al., 2004). A possible reason for the poor coverage in these conditions is that, 

whereas 
1 /2z −  is a fixed value, 

1 /2m −  varies with the magnitudes and variances of the 

coefficients. Because these values of the asymptotic distribution are not known a priori, they are 

replaced with their unbiased sample estimates (MacKinnon et al., 2004, 2007). Exactly what 

effect using sample estimates to obtain critical values has on the performance of the CIs is 

unclear, but it is reasonable to assume that using sample estimates instead of fixed parameters 

adds uncertainty to the interval estimation procedure, particularly for those conditions in which 

the CIs performed poorly. 

 Nonparametric and semiparametric CIs are viable and increasingly popular alternatives to 

fully parametric CIs for the indirect effect. Nonparametric approaches do not assume a functional 

form of the sampling distribution of either the estimator or the variables that compose the 

estimator, but rather are used to generate an empirical sampling distribution via resampling. The 

most commonly used resampling technique is called bootstrapping. In its simplest application, 
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bootstrapping is used to create an empirical distribution of the estimator by resampling 

observations with replacement from the original data, obtaining estimates from the resampled 

data, and repeating the procedure enough times to obtain a sufficiently close approximation of 

the true sampling distribution. 

Several methods can be used to construct CIs from the empirical sampling distribution. 

The simplest approach is the percentile method where the CI is constructed using as the lower 

and upper limits the values of the empirical distribution that correspond to the 100* / 2 th and 

100*(1 / 2− )th percentiles. However, the performance of percentile CIs is expected to degrade 

as the empirical sampling distribution deviates from either the normal or a transformation of the 

normal distribution (e.g., excessive skew, kurtosis; Davison & Hinkley, 1997). Adjustments that 

improve the performance of CIs in these circumstances include the bias-corrected (BC) and the 

bias-corrected and accelerated bootstrap (BCa; Efron, 1987). 

The BC bootstrap CI improves accuracy by adjusting the / 2  and 1 / 2−  percentiles 

of the bootstrap distribution. Specifically, the adjusted upper percentile is 0 1 /2
ˆ(2 )z z − +  and 

adjusted lower percentile is 0 /2
ˆ(2 )z z + , where 0ẑ  is the z score corresponding to the 

percentile of the observed indirect effect in the empirical distribution, and ( )  represents the 

cumulative normal distribution. The accuracy of the CI can be further improved by adjusting the 

/ 2  and 1 / 2−  percentiles for the skew of the empirical distribution. BCa CIs adjust for skew 

by adding an acceleration constant â  to the BC bootstrap CI 
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  (2.32) 
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The acceleration constant â  is an estimate of skew, which can be obtained using an 

approximation (Efron, 1987) or estimated nonparametrically using bootstrapping or the jackknife 

(Frangos, 1990). 

Semiparametric approaches represent a middle ground between the fully parametric and 

fully nonparametric approaches to constructing CIs. The term “semiparametric” is quite broad, 

but for constructing CIs, the semiparametric approach typically involves specifying the sampling 

distributions of specific variables (e.g., regression coefficients, variances) and using those 

distributions to approximate the sampling distribution of a more complex estimator that is a 

function of those variables with known distributions. Monte Carlo CIs are constructed by treating 

the variables with known distributions as population parameters, simulating a sufficiency large 

number of values from the parameters, computing estimates of the complex estimator for each 

set of simulated values, and constructing CIs using as the lower and upper limits the values of the 

simulated distribution that correspond to the / 2  and 1 / 2−  percentiles. Monte Carlo CIs 

have been shown to have good statistical properties for indirect effect estimates (Preacher & 

Selig, 2012). 

The three-variable mediation model represents a relatively simple model of the 

relationships among constructs. It is more often the case in the social and behavioral sciences 

that theories consist of complex webs of relationships among multiple constructs, where the 

effects of one construct are competing with the effects of another, or the effects of a construct 

vary across levels of another. SEM has become the dominant framework for modeling and 

testing these complex relationships. 
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2.4 Effect Size in Mediation Analysis 

The concept of effect size in mediation analysis has received comparatively little 

attention in the methodological literature relative to advancements in point and interval 

estimation. One possible reason is that, although the indirect effect is composed of regression 

coefficients with established effect sizes, the indirect effect does not fall neatly within the 

categories of effect size for traditional study designs previously discussed. For example, one 

could consider the coefficients composing the indirect effect 
mxB  and 

ym xB  in either their raw 

metrics or as standardized effect sizes. However, if the effect sizes of the coefficients differ (e.g., 

mxB  is large and 
ym xB  is small), it would be unclear how to interpret the magnitude of the 

indirect effect. Therefore, it would appear to be more practically useful to consider effect size for 

the total indirect effect rather than for its constituent parts.  

The intention of the following review is not to provide a complete evaluation of all 

existing effect size measures for mediation analysis, but to focus on effect sizes that can be 

interpreted within the effect size categories previously described for traditional research designs 

(i.e., standardized mean differences, strength of association, proportion of explained variance). 

The one exception will be a discussion of ratio measures of effect size because these measures 

are among the most reported effect sizes for mediation analysis. Because of the similarities 

between these specific effect sizes for mediation and their corresponding traditional measures, it 

is useful to consider the common themes that have arisen in the methodological literature for 

traditional effect sizes (i.e., generalizability, sample bias of standardized effect size estimators, 

bias corrections related to sampling error).  
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2.4.1 Ratio measures 

The earliest effect size measures for mediation analysis were the proportion mediated 

(PM; Alwin & Hauser, 1975) and the ratio mediated (RM; Sobel, 1982) measures. For the three-

variable mediation model in Figure 1, PM is defined as 

 .
mx ym x

yx

B B
PM

B
=   (2.33) 

This effect size is interpreted as the proportion of the total effect of x on y (
yxB ) mediated by m (

mx ym xB B ). RM evaluates the indirect effect relative to the direct effect and is defined as 

 .
mx ym x

yx m

B B
RM

B
=   (2.34) 

This effect size is interpreted as the ratio of the indirect effect of x on y through m (
mx ym xB B )  to 

the direct effect of x on y (
yx mB ).   

 The ratio measures of effect size for indirect effects have several significant limitations. 

One important limitation regards interpretation. For example, it is not clear how one would 

interpret a large value of PM or RM if the magnitude of indirect effect is significant but close to 

zero. For a large value of PM or RM to be practically important, it must be assumed the total 

effect is also practically important. Although this may still be a useful interpretation for the 

indirect effect for some researchers, the interpretation is highly context-dependent, and would 

not be recommended if the magnitude of the indirect effect is of interest. Another important 

limitation is the performance of sample estimators of PM and RM. The estimators of PM and RM 

have large variances across repeated samples and require very large samples for the estimators to 
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stabilize (N = 500 for PM, and N = 5000 for RM; MacKinnon, 1995; Tofighi, MacKinnon, & 

Yoon, 2009).  

2.4.2 Standardized mean differences 

Hansen and McNeal (1996) first proposed a standardized effect size for the indirect effect 

of a binary predictor (e.g., group membership for intervention), and continuous mediators and 

outcomes. The effect size is expressed as 

 1 2 ,m m
mx ym x ym xES

 
  



−
= =   (2.35) 

where the effect of the predictor mx  is analogous to   in Equation 2.1, and 
ym x  is the 

standardized effect of  m on y from Equation 2.27. This means that the total effect size of an 

intervention can be decomposed into a direct effect on an outcome, and an indirect effect where 

the intervention causes a change on the mediator (the effect of the mediator is assumed equal 

across groups). The effect size is estimated by substituting sample quantities  

 
1 2

ˆ ˆ1 1
,

ˆ

mx ym
d

IE

b b
ES

n n 
= +   (2.36) 

where the effect  of the predictor is Cohen’s d, and ˆ
IE  is the asymptotic standard error of the 

indirect effect in Equation 2.29. In addition, because Cohen’s d is a biased estimator of  , the 

authors also proposed an adjusted estimator analogous to Hedge’s g 

 
1 2

3
1 .

4 4 9
g dES ES

n n

 
= − 

+ + 
  (2.37) 
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More recently, Kraemer (2008) proposed a similar standardized mean difference measure for 

mediation models, but more work is necessary to determine its viability as an effect size 

measure.  

2.4.3 Strength of association 

Like unstandardized regression coefficients in MLR, indirect effects can be standardized 

to remove the metrics of the predictor and the outcome from the effect (the scale of the mediator 

does not factor into the standardization). The interpretation of the standardized indirect effect 

also changes in a way analogous to standardized regression coefficients where the metric of the 

standardized variable(s) is the standard deviation. For example, the interpretation of the indirect 

effect when standardized by the standard deviations of both the predictor and outcome is that a 

one standard deviation increase in the predictor is associated with some standard deviation 

change in the outcome through the mediator. 

When x and y are both continuous, the most common form of standardization is complete 

standardization (
mx ym x  ), which removes the scale from both x and y 

 ( / ).mx ym x mx ym x x yB B   =   (2.38) 

Complete standardization is appropriate when the scales of both x and y are arbitrary. However, 

if the scale of x or y is meaningful, the indirect effect can be partially standardized by the 

standard deviation of only the variable with arbitrary scaling. For example, if the scale of x is 

meaningful but not that of y, the partially standardized indirect effect is 

 (1/ ).mx ym x mx ym x yB B B =   (2.39) 
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Partial standardization has been recommended for indirect effects where x is binary and y is 

continuous (Hayes, 2013). Specifically, an unstandardized binary variable has an intuitive metric 

where effects are interpreted as mean differences between groups. Standardizing a binary 

variable changes the interpretation of the effect into standard deviation units, which makes 

interpretation more difficult in terms of group mean differences. However, as described in 

Section 2, the completely standardized effect with binary x can be interpreted in terms of strength 

of association (point-biserial correlation) or explained variance ( 2 ), which as previously 

described have several advantages over standardized mean differences as effect size measures. 

2.4.4 Explained variance 

Several methodologists have proposed explained variance effect size measures for 

indirect effects (de Heus, 2012; Fairchild et al., 2009; MacKinnon, 2008). These measures 

ostensibly quantify the variance in y that is accounted for jointly by both m and x. To more 

clearly understand why this component of explained variance corresponds to the indirect effect, 

it is helpful to consider the three potential sources of variance in y that can be explained by m 

and x: a) the variance in y explained uniquely by x, b) the variance in y uniquely explained by m, 

and c) the aforementioned variance in y explained jointly by m and x. The indirect effect is a 

component of the total effect of x on y. It stands to reason then that variance not attributable in 

some way to x is irrelevant to the variance explained by the indirect effect, which would rule out 

the variance in y explained by m independent of x as irrelevant to the indirect effect variance. In 

addition, the variance in y attributable to x independent of m is more consistent with the 

definition of the direct effect, meaning the variance in y explained jointly by m and x is the 

variance attributable to the indirect effect. Fairchild et al. (2009) proposed an effect size to 

quantify this component of explained variance as 
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 2 2 2 2( ),med ym y mx yxR r R r= − −   (2.40) 

where 2

ymr  is the squared unconditional correlation between y and m, 2

yxr  is the squared 

unconditional correlation between y and x, and 2

y mxR  is the squared multiple correlation of y on 

both m and x. Essentially, 2

ymr  consists of variance in y attributable to m independent of x, and 

variance in y explained jointly by m and x, and 2 2

y mx yxR r−  isolates the variance in y uniquely 

attributable to m. Subtracting the unique component from the total 2

ymr  leaves the joint variance 

component. MacKinnon (2008) proposed two alternative measures to quantify the joint 

explained variance component, one based on the partial correlation of y and m given x  

 2 2 2

1 ,partial yx ym xR r r=   (2.41) 

and a partial correlation version scaled by 2

y mxR  

 2 2 2 2

2 / .partial yx ym x y mxR r r R=   (2.42) 

de Heus (2012) proposed a measure of the joint variance explained component based on the 

semipartial correlation of y and m given x 

 2 2 2

( ).semipartial yx y m xR r r=   (2.43) 

Lachowicz et al. (2018) outlined several limitations of these variance explained measures 

for the indirect effect. The most notable limitations concern interpretability. For 2

medR , it is 

possible for the measure to return nonzero values of effect size when the indirect effect is in fact 

zero. Specifically, Lachowicz et al. (2018) show that when 0ym x =  (i.e., no indirect effect), 

2 2 2

med mx yx mR  = . In other words, when the indirect effect is zero, 2

medR  quantifies what is known 
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in the path analysis literature as “spurious” correlation (Simon, 1957). Although the variance 

quantified by 2

medR  may be of interest to some researchers, the variance does not correspond to 

that uniquely attributable to the indirect effect, and, therefore, is not an appropriate measure for 

this purpose. For 2

2partialR , no justification is provided for scaling 2

1partialR  by 2

y mxR , so it is not 

clear what variance this effect size is quantifying. The partial and semi-partial 2R  measures (

2

1partialR  and 2

semipartialR ) appear to have more desirable interpretations. Both measures have forms 

similar to the indirect effect as products of coefficients, and both are bounded by zero and one. 

However, further examinations of these measures (Lachowicz et al., 2018; Wen & Fan, 2015) 

demonstrated that these measures lack an important property known as monotonicity. For a 

measure to lack monotonicity means that with all else held equal in the population, these 

measures are not one-to-one functions of the indirect effect in either raw or absolute value. The 

implication for measures that lack of monotonicity is that equivalent indirect effects from two 

studies could yield different effect sizes. Until the conditions that cause these measures to lack 

monotonicity are made explicit, their utility as effect size measures is limited. 

2.4.5 Effect size    

Lachowicz et al. (2018) proposed   as a measure of effect size for mediation analysis.    

is a measure of explained variance, interpretable as the variance in an outcome explained by a 

predictor through a mediator that appropriately adjusts for variance due to spurious correlation 

unaccounted for in the Fairchild et al. (2009) 2

medR  formulation in Equation 2.40, defined as 

 2 2 2( ).ym x y mx yxR r = − −   (2.44) 
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Lachowicz et al. (2018) also showed that for a three-variable mediation model,   is equivalent to 

the squared standardized indirect effect ( 2 2

mx ym x  ). Because   is a measure of explained 

variance, Cohen’s (1988) benchmarks for interpreting small, medium, and large effect size are 

applicable1. For an indirect effect with a binary predictor, the appropriate benchmarks are for 2  

(Cohen, 1988, pp. 285-287). For an indirect effect with a continuous predictor, the appropriate 

benchmarks are those for 2R (Cohen, 1988, pp. 412-414)2. 

Because sample analog estimators of population standardized effect sizes typically are 

biased (particularly variance estimators), it was expected that the sample analog estimator of   (

̂ ) was also biased. This was confirmed by a Monte Carlo simulation study, showing ̂  was 

upwardly biased particularly for small sample sizes and for small indirect effects. Although the 

complete sampling distribution of ̂  is not known or easily derivable, Lachowicz et al. (2018) 

derived the bias in the expected value of ̂ , and proposed an adjusted estimator that adjusted for 

this bias. Because ˆ
mxB  and ˆ

ym xB  are independent and normally distributed,3 the expected value 

of ̂  is 

                                                 
1 If an effect is completely transmitted to an outcome through a mediator, the standardized indirect effect is 

equivalent to the total effect, which for a single predictor is a correlation coefficient. The squared correlation 

coefficient is equivalent then to  , and could theoretically be judged against Cohen’s benchmarks for explained 

variance. 
2 It is important to note that, although Cohen’s benchmarks may be applied,   is not bounded by 0 and 1, and is not 

considered a proportion.   can be greater than 1 when suppression is evident (i.e., direct and indirect effects have 

opposite signs). 

3 As is common practice when standardizing regression coefficients, the variable variances 
2

x   and 
2

y  are 

assumed fixed, known quantities, and do not vary across samples. Therefore, it is assumed the variance ratio 
2 2/x y   does not affect the sampling distribution of 

2 2ˆ ˆ
mx ym xB B .   
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=
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  (2.45) 

This means that the expected value of ̂  yields the parameter of interest 2 2

mx ym x   plus bias 

2 2 2 2 2 2

mx ym x ym x mx mx ym x     + + . The bias results from the fact that the effect size is comprised of 

products of normally distributed coefficients, the properties of which have been detailed in 

several sources (Arnold, 1982; Bohrnstedt & Goldberger, 1969; Goodman, 1960). Because each 

term is a function of the sampling variances of the regression coefficients, the magnitude of bias 

is therefore a function of sample size. In addition, the finding that bias in the expected value of ̂  

is equivalent to the asymptotic variance approximation for indirect effects (Equation 2.39) is 

consistent with prior methodological work on bias reduction showing bias is generally 

proportional to error variance (Box, 1971).  

It follows that the bias of the expected value of ̂  can be adjusted by subtracting a bias 

term from the sample estimates. However, it is important to note that the bias in Equation 2.45 is 

the asymptotic bias, and must be estimated from the sample. This is addressed by substituting an 

unbiased estimator of the asymptotic bias (
2 2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆ
mx ym x ym x mx mx ym xB B   + − ; Goodman, 1960). This 

approach to adjusting for this bias of ̂  is similar to Ezekiel’s (1930) adjustment for 2R  in 

simple linear regression ( 2̂  when the predictor is binary). A Monte Carlo simulation study 

showed that bias of   was negligible for the vast majority of simulation conditions. For 

conditions where bias was non-negligible (> 5% relative bias; Boomsma, 2013), relative bias 

was still relatively small (< 20%). Whereas the information conveyed by ̂  is redundant with 
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that of the standardized indirect effect for three-variable mediation models, the adjusted   

conveys unique information that incorporates imprecision in effect estimates. 

As previously discussed with the unstandardized indirect effect, parametric CIs rely on 

knowledge or a reasonable approximation of the sampling distribution of the estimator. The 

sampling distribution of the unstandardized indirect effect is a complex function of normally 

distributed variables, and it is unknown how the distribution changes when the indirect effect is 

standardized. Therefore, it is difficult to propose even an approximation to the distribution of 

squared standardized indirect effect. Lachowicz et al. (2018) used nonparametric bootstrapping 

to construct 95% CIs based on the percentiles of the empirical sampling distribution. Although in 

many conditions satisfactory CI coverage was achieved according Bradley’s criteria (92.5% - 

97.5%; Bradley, 1978), coverage tended to be too high (> 97.5%) for conditions with small 

sample sizes and small effects, suggesting the 95% CIs constructed using the percentile method 

were overly wide. In addition, even when satisfactory coverage was achieved, the proportion of 

true values below the lower CI limit and above the upper CI limit were imbalanced, suggesting a 

small but systematic bias in the interval estimation procedure. 

  has many desirable properties as an effect size measure. It is interpretable as a measure 

of explained variance and can be compared to existing benchmarks for small, medium, and large 

effects. It is standardized, so it is invariant under linear transformations of x, m, and y. It is not 

dependent on sample size in the population. It is a monotonic function in absolute value of the 

standardized indirect effect. Although more research is needed to develop an accurate interval 

estimator across a wider range of study conditions, CIs for ̂  and   can be constructed using a 

nonparametric bootstrap procedure. Finally, although the sample analog estimator ̂  is biased, 

the adjusted estimator   has good statistical properties (i.e., negligible bias, consistent) in many 
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conditions common in applied research. In other words, the development of   was consistent 

with the development of effect sizes for traditional research designs. 

2.5 Summary 

In Chapter 2, the topics of effect size, mediation analysis, and effect size in mediation 

analysis have been introduced. Several types of effect sizes for various common research designs 

were described. It was shown how sample analog estimators of these effect sizes are biased, and 

how these estimators can be adjusted, yielding new estimators with often more desirable 

statistical properties. Although a review of effect sizes for indirect effects in mediation analysis 

showed parallels among mediation effect sizes and traditional effect sizes, only the mediation 

effect size   was developed considering the properties of the sample estimators. The sampling 

properties of ̂  will be further explored in later sections in the development of a general bias 

adjustment procedure. In Chapter 3, a general explained variance framework for MLR and SEM 

will be introduced, and a general matrix-based formula for the adjusted R2 will be proposed. In 

Chapter 4, the explained variance framework will be used to generalize the effect size   to 

complex mediation models. 
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3 GENERAL EXPLAINED VARIANCE FRAMEWORK FOR MLR AND SEM 

3.1 Matrix Representation of MLR and Explained Variance 

3.1.1 Matrix Representation of MLR 

The effect sizes presented in Chapter 2 were applicable to bivariate relationships in 

traditional research designs, and relationships among three variables for the mediation designs. 

As designs become more complex, it is more convenient to express models in matrix notation. 

This section will review the matrix representation of MLR and the computation of explained 

variance ( 2R ).  

Although the MLR representation can be considered a special case of the SEM 

framework that will be reviewed in later sections, there are notable advantages to considering the 

MLR framework first. One is that the MLR representation will provide clearer links between the 

simpler effect sizes presented in Chapter 2 and the extensions to more complex models presented 

in later sections, particularly when considering the sampling properties of the estimators for 

deriving bias of sample estimators. Another notable advantage is that, whereas the adjusted 2R  is 

a well-established quantity in MLR, an analogous bias-adjusted statistic has not been studied for 

2R  in SEM. Expressing the MLR 2R  bias adjustment in matrix form will facilitate the 

development of a generalizable bias-adjustment for estimators of   extensions in later sections. 

For ease of presentation and without loss of generality, I assume all variables are in 

standardized form. The regression equation is expressed in matrix form as 

 ,= +y Xβ ε   (3.1) 
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where y  is a 1N   vector of responses, X is a N p matrix of p covariates, β̂  is a 1p  vector 

of regression coefficients, and ε  is a 1N   vector of errors. The model is assumed to be 

correctly specified, and that the errors are homoscedastic and independent. It is well known that 

when these assumptions hold, the ordinary least squares (OLS) estimator of β  ( β̂ )  that 

minimizes the sum of squared errors is 1( )− X X X y  (Rencher, 2008; Searle, 1971). In addition, 

β̂  is an unbiased estimator of β  (i.e., ˆ[ ] =E β β ), and the variance of β̂  is 
2 1( )

−X X , where 2

  

is the residual variance.  

Obtaining variance estimates is most conveniently performed in matrix-based MLR using 

quadratic forms. The general quadratic form for computing the sums of squares of a vector 1n  

y and a n n  symmetric matrix A is y Ay , where A determines the type of squared quantity. For 

example, if A is a N N  identity matrix I, the quadratic form y Iy  yields the SST, whereas 

substituting I with the matrix 1( )− X X X X  yields the SSR, and 1( )− −I X X X X  yields the SSE. 

Variance estimates are obtained by dividing these quantities by the sample size. 

As described in Section 2.2.3, the above variances are biased estimators of their 

respective population variances. To determine the degree of bias, it is helpful to know some of 

the distributional properties of the quadratic form. Assuming ~ ( , )Ny Σμ  and A is a matrix of 

constants, the expected value of y Ay is (Rencher, 2008) 

 [ ] ( )E tr = +y Ay AΣ A    (3.2) 

Providing the assumptions hold, bias in the expected value of a quadratic estimator can be 

determined from Equation 3.2 as deviations of the expected value from the population parameter. 

For example, assuming ~ ( , )Ny Xβ Σ , the expected value of the above biased 
2

  estimator is  
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2 1 1

2
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1
.

E N SSE N E
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


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  = −

     = − + −

     = − + −

− −
=

y I X X X X y

I X X X X Σ β X I X XX X Xβ

I X X X X β XXβ β XXβ   (3.3) 

It is clear then the unbiased estimator of 
2

  is 1( 1)N p SSE−− −  (
2s ). This approach can also be 

used to derive the unbiased estimators of the total variance 1( 1)N SST−−  ( 2

ys ) and the variance 

due to regression 1p SSR− .  

3.1.2 Explained Variance 

Variance explained is defined as the ratio of the variance explained in the outcome by the 

covariates to the total variance of the outcome, or the proportion reduction in error variance due 

to the covariates in the model (Cohen, Cohen, West, & Aiken, 2003; Maxwell & Delaney, 2003), 

commonly expressed as 

 

2 2
ˆ2

2 2
1 .

y

y y

R 
 

 
= = −   (3.4) 

Other sources define 2R  as the ratio of sums of squares regression to the sums of squares total 

(Rencher, 2008), expressed as  

 
1 1

2 [ ( ) ] [ ( ) ]
1 .

SSR
R

SST

− −     −
= = = −

 

y X X X X y y I X X X X y

y Iy y Iy
  (3.5) 

If MLEs are used to estimate variances in Equation 3.4, these definitions are equivalent. Both 

Equations 3.4 and 3.5 quantify the variance explained in the sample, and are biased estimators of 
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the population 2R . Equation 3.4 can be adjusted for this bias by using the unbiased estimators 2

ŷs

, 2s , and 2

ys  instead of the MLEs 2

ŷ , 2

 , and 2

y   

 

2 2
ˆ2

2 2
1 .

y

y y

s s
R

s s

= = −   (3.6) 

This is equivalent to the Ezekiel (1930) adjustment that is provided by default in many statistical 

software programs 

 

( )

2
2

2

1

2

1

1 [ ( ) ]
1

1

1
1 1 .

1

y

s
R

s

N

N p

N
R

N p



−

= −
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−
= − −

− −

y I X X X X y

y Iy
  (3.7) 

This 2R  adjustment formula makes salient the importance of sample size and number of 

parameters in 2R  bias. Specifically, increasing the number of parameters holding sample size 

constant will increase bias, and, alternatively, increasing the sample size holding the number of 

parameters constant will decrease bias.   

Although a popular choice for obtaining more precise estimates of 2R , 2R  is by no 

means the only statistic designed for this purpose. Yin and Fan (2001) conducted a thorough 

review of 2R  estimators, finding at least six different methods for 2R  bias adjustment. 

Comparing the performance of the estimators, a method proposed by Olkin and Pratt (1958) 

consistently returned the least biased estimates across a range of conditions. This is unsurprising 

as the adjustment was derived from the known probability density function of 2R , and therefore 
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accounts for bias in higher order moments (e.g., skew, kurtosis). Although 2R  adjusts for bias 

only in the expected value of 2R , the measure returned largely accurate estimates across many 

conditions, with bias becoming problematic in conditions with small ratios of small size to 

number of parameters.  

The approach to deriving and adjusting for bias in the expected value considered thus far 

has proven particularly useful for creating estimators with improved statistical properties (i.e., 

2R , 2 ). Importantly, it demonstrates that in some cases the complete distributional properties of 

an estimator, although desirable, may not be necessary to obtain accurate estimates. It should be 

noted, however, that models for which the estimator biases were derived are not particularly 

complex and contain relatively few parameters. Of interest is a more general approach to 

reduction in expected value bias, of which the adjusted estimators considered thus far are special 

cases, and which can be extended to more general modeling frameworks (i.e., SEM). 

3.1.3 General Bias Reduction 

Many bias-adjusted estimators described in the previous section and in Chapter 2 can be 

expressed in terms of sample bias subtracted from the biased MLE estimator, which are special 

cases of a more general procedure for bias reduction (Box, 1971; Cox & Snell, 1968; Cox & 

Hinkley, 1974). The asymptotic bias of a MLE ̂  can be expressed generally as 

 1 2

2

( ) ( )
( ) ...,

b b
b

N N

 
 = +   (3.8) 

where N is the sample size, 1( )b   is first-order bias, 2 ( )b   is second-order bias, etc. It is often of 

interest to correct for 1( )b   because higher order biases tend to be of negligible magnitude in 
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most applications (Box, 1971; Cox & Hinkley, 1974; Firth, 1993). A bias-adjusted estimator ˆ
BC  

can then be created by substituting sample estimates for the MLEs 

 1
ˆ( )ˆ ˆ ,BC

b

N


 = −   (3.9) 

Several methods have been proposed for estimating 
1( )b  , including methods that implicitly 

estimate 
1( )b   as part of the iterative estimation algorithm (Firth, 1993; Kosmidis & Firth, 

2010), and methods that explicitly estimate 
1( )b   so it may be subtracted from the MLE. Explicit 

methods include the jackknife (Quenouille, 1956; Schucany, Gray, & Owen, 1971), 

bootstrapping (Davison & Hinkley, 1997; Efron, 1975; Hall & Martin, 1988), and asymptotic 

expansions (Box, 1971; Cox & Snell, 1968; Cox & Hinkley, 1974). 

The bias reduction approaches described in previous sections are special cases of a more 

general method of asymptotic expansion. If ̂  is a function of a parameter   that has an 

estimator T with good statistical properties (i.e., unbiasedness, minimum variance), the 

asymptotic bias of the function ˆ ( )f T = , assuming the function is continuous at  , can be 

approximated with a Taylor expansion (Cox & Snell, 1968; Cox & Hinkley, 1974) 

 21
( ) ( ) ( ) ( ) ( ) ( ).

2
f T f T f T f      + − + −   (3.10) 

where ( )f   and ( )f   are the first and second derivatives of ( )f . It follows that functions with 

no second derivative (e.g., linear functions) are asymptotically unbiased. Assuming the second 

derivative exists, the asymptotic bias of the expected value of ̂  is 

 
1

[ ( )] ( ) var( ) ( ).
2

E f T f T f  +   (3.11) 
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An adjusted estimator can then be constructed by rearranging terms and substituting T for   

 
1ˆ ( ) var( ) ( ).
2

BC f T T f T = −   (3.12) 

For estimators consisting of multiple parameters such as 2R , the multiparameter extension of 

Equation 3.12 is (Box, 1971) 

  
1ˆ ( ) ( ) ,
2

BC f tr = −T Σ T H   (3.13) 

where ( )Σ T  is the variance-covariance matrix of parameter estimates, and H is a matrix of 

second derivatives of ( )f T  (i.e., Hessian matrix). It is possible that for some functions (i.e., ̂ ) 

the asymptotic bias term on the right-hand side of equation 3.13 contains nonlinear parameters, 

which, when replaced with sample estimates, will yield biased estimates of the asymptotic bias. 

The solution is to apply the asymptotic expansion to the nonlinear functions in the bias term  

    1
1 1ˆ ( ) ( ) ( ) ,
2 2

BC f tr tr
 

= − − 
 

T Σ T H Σ T H   (3.14) 

Where  1H  is the matrix of second derivatives of  ( )tr Σ T H .  

 Although unbiasedness is a desirable property of estimators, bias-adjusted estimators 

should be carefully evaluated prior to use in applied research settings. Because bias adjustments 

typically use sample estimates in place of asymptotic parameters, additional sources of error 

variance can be introduced into an otherwise unbiased estimator. This bias-variance tradeoff can 

be evaluated analytically or through simulation if sampling distributions are complex. 
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3.1.4 General Bias Reduction for R2 

The adjusted 2R  (Equation 2.23) can also be re-expressed in a generalizable matrix form. 

Although to this point the R2 estimators have been expressed in terms of variance and sums of 

squares ratios, re-expressing explained variance as the ratio of standardized regression 

coefficients more clearly shows that 2R  follows the same form as the general bias reduction 

described in the previous section. The biased MLE estimator of R2 is 

 2 ˆ ˆˆ ,R = β Rβ   (3.15) 

where β̂  is a vector of standardized regression coefficients and R is the correlation matrix among 

variables (the total variance of the outcome y is one and so it is omitted from the denominator). 

The expected value of the unadjusted 2R̂  is 

 

 

 

2

2 1

2
1

2

ˆ ˆˆ[ ] [ ]

( )

( )
1

1

E R E

tr

tr
N

p

N













−

−

=

 = +

  = +
−

= +
−

β Rβ

R X X β Rβ

X X X X β Rβ

β Rβ

  (3.16) 

This shows that 2R̂  is upwardly biased by the factor 2 / ( 1)p N − . In addition, when 0=β , 

estimates of 2R̂  are upwardly biased by / ( 1)p N −  (Rencher, 2003). The Ezekiel (1930) 

adjusted 2R  can be expressed in matrix form by subtracting the bias factor from the MLE 

estimator. However, it is again important to note that 2 / ( 1)p N −  is an asymptotic parameter, 

so the MLE residual variance estimator is upwardly biased. An unbiased estimator of the bias 

factor uses the unbiased estimator 2s   
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2 2

2 2

ˆ ˆ
1

ˆ ˆ1ˆ ˆ
1 1

ˆ ˆ(1 ),
1

p
R s

N

p

N N p

p
R R

N p


= −

−

−
= −

− − −

= − −
− −

β Rβ

β Rβ
β Rβ   (3.17) 

which is equivalent to the Ezekiel’s 2R  in Equation 2.23. 

The bias term estimated in Equation 3.17 can also be obtained using the more general 

bias reduction approach in the previous section. The bias-adjusted 2R is expressed as 

 2 1ˆ ˆ ˆ{var( ) },
2

R tr= −β Rβ β H   (3.18) 

where H is the Hessian matrix of second derivatives of the function ˆ ˆβ Rβ  with respect to the 

elements of β̂ . To show that this expression is equivalent to Equation 3.17, the right-hand side of 

Equation 3.18 is expanded 

  

 
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1 1, 1,
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2 2

2 2

1

( )

1

( )
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  

















−

−

−

    
    

=     
    
    

  
  

=   
  

  

=

 =
−

=
−

β H

X X

X X R

X X X X

  (3.19) 
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Substituting this result into Equation 3.18 and replacing the residual variance parameter 2

  with 

the sample unbiased estimator 2s  yields an equivalent formula for 2R . 

The two bias-correction approaches considered in this section (i.e., approximation via 

expectations and asymptotic expansion) yielded identical results in these special cases, but there 

are situations where using the more general asymptotic expansion approach presented in Section 

3.1.3 is likely to be more advantageous. The regression models considered thus far have been 

linear in their coefficients, omitting nonlinear effects such as polynomials and conditional, or 

moderated, effects. Although both methods would return the same or similar approximations in 

many circumstances, differentiation in asymptotic expansion is a much more expedient 

approach. In addition, methods based on asymptotic expansions can incorporate additional 

higher-order approximations to account for different sources of bias. 

3.1.5 Limitations of MLR 

The primary limitation of MLR as a framework for representing mediation effect sizes is 

the restriction of the models to a single outcome. Although mediation parameters can be 

estimated using several MLR models as in Equations 2.26 and 2.27, this approach quickly 

becomes intractable as models become more complex, in particular when accounting for the 

residual relationships among multiple outcomes. In addition, this approach does not lend itself to 

a generalizable solution that can be applied to mediation models of various complexities. 

3.2 Structural Equation Modeling Framework 

SEM is a statistical modeling framework that can be used to simultaneously investigate 

complex interrelationships among variables, and estimate many substantively meaningful 

parameters that are not accessible by simpler methods. The SEM framework proposed by 

Jöreskog (1977), and implemented in Mplus using a modified LISREL framework (LISCOMP; 
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Muthén & Muthén, 1998-2018) is a particularly useful and intuitive approach for representing 

the indirect effects and effect sizes for complex mediation models. The flexibility of the 

LISCOMP framework also allows for effect size extensions using cutting edge techniques 

available in Mplus such as mediation using multilevel SEM (MSEM), time series analysis, and 

latent class analysis.  

 The LISCOMP model can be considered to consist of two primary components; a 

measurement model and a structural model. The measurement model specifies the relationships 

among the manifest, or indicator, variables and the unobserved latent variables. The 

measurement model is expressed as 

 ,= +y Λη ε   (3.20) 

where Λ is a p m  matrix of factor loadings, η  is a 1m  vector of latent variables, and ε  is a 

1p  vector of measurement errors, where ~ (0, )Nε Θ (because variables are standardized, the 

intercept is omitted). This specification assumes that all variables in the model are outcomes (i.e., 

“all y” specification), considerably simplifying presentation by omitting vectors and matrices 

specific to exogenous variables. The structural model component of the LISCOMP SEM 

specifies the relationships among the latent variables. The structural model is expressed as 

 ,= +η Bη ζ   (3.21) 

where B is a m m  matrix of slopes for regressions of latent variables on other latent variables, 

and ζ  is a 1m vector of residuals, where ~ (0, )Nζ Ψ .  

Although MLR is a special case of SEM where there is a single outcome variable and no 

latent variables, the methods of parameter estimation markedly differ. The OLS method is most 

common for MLR, in which parameters are estimated by minimizing the sum of squared errors, 
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and making no distributional assumptions about the variables (though assumptions are needed 

for valid inferences). By contrast, parameters are estimated in SEM by selecting the values that 

minimize the discrepancy between the sample covariance matrix S and the covariance matrix 

implied by the model Σ̂ . In other words, the covariance structure of the observations is modelled 

in SEM, not the individual responses. Parameters are commonly estimated via an iterative 

maximum likelihood algorithm assuming multivariate normality of the data (i.e., no closed form 

solution). However, in the special case of a manifest variable regression model, MLEs returned 

by SEM will be identical to MLEs estimated via OLS under multivariate normality. 

3.2.1 Explained variance in SEM 

The general definition of 
2R  in SEM is analogous to 

2R  in MLR (i.e., the relative 

amount of variance explained in an outcome by a set of predictors; Bollen, 1989; Jöreskog, 

2015). However, because the SEM framework can simultaneously model multiple outcome 

variables, there are more ways to define 
2R  in SEM than in MLR. For example, Bollen (1989) 

outlined two types of explained variance that can be examined in latent variable models. The first 

type is variance in the manifest variables explained by the model ( 2

yR ) 

 2

ˆ

1 ,
ˆyR = −
Θ

Σ
  (3.22) 

where  is the determinant, or the generalized variance shared by multiple outcomes. The 

second type of explained variance is the variance in the latent variables explained by other latent 

variables, or the structural model 2R  
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 2 1 ,R = −
+

Ψ

Ψ Φ
  (3.23) 

where Φ  is a m m  matrix of latent variable variances and covariances. Although 
2R  is 

equivalent to the MLR 2R in the special case of a path model with a single outcome variable, 

generalized variance is not commonly thought of as a substantively meaningful quantity. This is 

likely because, outside of very simple models, shared variance is explained by the pooled effects 

of other variables in the model, making it exceedingly difficult to isolate the effects of specific 

variables (Bagozzi & Yi, 1988). 

Given the difficulty in generating appropriate research hypotheses regarding generalized 

variance, a more useful measure of 2R  should quantify the variance explained in each outcome 

separately, such that variance explained can be attributed to specific causes. An alternative 

formulation for 2R  ( 2

R ) is a m m  matrix of explained variances (and covariances), expressed 

as 

 

2 1/2 1 1 1/2

1 1

[( ) ] [( ) ]

[( ) ] [( ) ] ,st st st

  

− − − −

− −

= − − − −

= − − − −

R D I B I Ψ I B I D

I B I Ψ I B I
  (3.24) 

where 1( )−− −I B I  is referred to as the total effect (Bollen, 1987), st
B  is the matrix of 

standardized effects, st
Ψ  is the standardized residual covariance matrix, and D  is a diagonal 

matrix of latent variable variances, estimated as (Jöreskog & Sörbom, 2015) 

  1 1[(( ) ) ( ) ] .diag

− −= − −D I B Ψ I B   (3.25) 
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D  can be omitted if latent or manifest variables variances are standardized. When the model is 

specified to include latent variables, each diagonal element of 
2

R  is the variance in that latent 

outcome explained by the latent predictors. When a path model is specified (i.e., =Λ I  and 

=Θ 0 ), each diagonal is the variance in that manifest variable explained by the manifest 

predictors, where a model with a single outcome is equivalent to the MLR 
2R . 

It should be noted that the Ψ  matrix in the center of the quadratic form in Equations 3.24 

and 3.25 is a matrix of residual variances and covariances, and not covariances or correlations as 

is the case for quadratic forms in MLR (e.g., Equation 3.15). This is partially due to the adoption 

of the “all y” notation for LISCOMP models made throughout, as exogenous variables can be 

considered outcome variables with no predictors. The original LISREL notation separates 

exogenous and endogenous variables (Jöreskog, 1977), such that the variance/covariance matrix 

of the exogenous predictors would be equivalent to the variance/covariance matrix of predictors 

in MLR. However, the partitions of Ψ  that correspond to outcome variables have no counterpart 

in MLR, but are essential for simultaneously modeling variables as both predictors and 

outcomes. The effects of variables that are modeled simultaneously with their causes to predict 

other downstream variables are residual effects, so it is reasonable to assume that the residual 

variance (and residual covariances) should be considered when quantifying the contributions of 

those variables to the overall variance explained in a particular outcome. 

3.2.2 Sample Estimator of 2

R  

Given that 2

R  is a nonlinear function and parameters are estimated via maximum 

likelihood, it is reasonable to assume that 
2ˆ
R  is a biased estimator of the population 2

R . 

Assuming variables are standardized, the bias-adjusted estimator 
2

R  is expressed as 
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 2 1 1ˆ ˆˆ ˆ[( ) ] [( ) ] ,st st st

bc

− − = − − − − −R I B I Ψ I B I Δ   (3.26) 

where ˆ
bcΔ  is a m m  matrix of bias adjustment terms (1/ 2) { ( ) }st sttr V B H  corresponding to the 

jth outcome variables in 2ˆ
R . Further expansions for nonlinear coefficients in the bias term can 

be included as well if ˆ
bcΔ  contains nonlinear functions of ˆ st

B  (Equation 3.14). 

 Because the bias estimate in Equation 3.26 is asymptotic, sample estimates would replace 

population parameters. In particular, because bias is proportional to error variance (Box, 1971), 

many parameters, if not all in some cases, will be variances. In MLR, variances have well-known 

unbiased sample estimators (e.g., 2s ). However, because variances and covariances of parameter 

estimates in SEM (i.e., asymptotic covariance, or ACOV, matrix) are estimated via maximum 

likelihood, these estimates are biased. However, given the assumption multivariate normality is 

satisfied, unbiased estimates can be obtained by substituting the denominator N with N-1 

(Kaplan, 2008). 

3.3 Summary 

In Chapter 3, a general modeling framework was presented that will provide a foundation 

for the   extensions in the following chapters. Although a special case of the general framework, 

MLR was discussed first to introduce matrix notation and the properties of estimators, 

particularly for variance and 2R  estimators. It was shown how these properties affect bias in 

estimation, and also how the properties can be used to construct improved estimators. A general 

method for bias-adjustment was proposed, and, in the special case of 2R , it was demonstrated to 

return the common adjusted 2R . The LISCOMP SEM framework was introduced as a more 

powerful modeling framework. SEM analogs of 2R (
2

R ) were also introduced, and an adjusted 
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version of 2ˆ
R  (

2

R ) was proposed using the general bias reduction method. In Chapter 4, the 

general modeling framework is used to extend   to complex mediation models, and the general 

bias reduction method is used to construct an improved estimator. The properties of the adjusted 

and unadjusted estimators are evaluated and compared via Monte Carlo simulation.  
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4 EXTENDING   TO COMPLEX MEDIATION MODELS 

This section will provide an extension of   that allows for computation of effect sizes for 

a wide variety complex mediation models, most notably models with multiple mediators (parallel 

and serial), covariates, and multiple predictors (e.g., multicategorical x variable). Interpretations 

of the resulting effect sizes will be provided. Because the effect size sample estimators are 

expected to be positively biased, a general formula for the expected bias will be derived and used 

to propose a general form for an adjusted estimator that corrects for this bias. Like bias 

corrections for traditional standardized effect size measures and  , the bias will be derived for 

the expected value of the estimator. This bias-adjusted   for three-variable mediation models 

will be compared to the matrix version’s bias corrected effect size, demonstrating that the 

adjusted estimator proposed in Lachowicz et al. (2018) is a special case of a more general bias-

adjustment formula. Finite sample properties of point and interval estimators of the unadjusted 

and adjusted estimators will be evaluated in a Monte Carlo simulation study for a complex 

mediation model. For the point estimators, the simulation study has three primary goals: a) 

determine if the general bias adjustment formula yields adjusted estimators that have negligible 

bias across a range of conditions (e.g., sample size, effect magnitudes) common in applied 

research settings, b) demonstrate that accuracy of the estimators in estimating the population 

parameter increases with increasing sample size (i.e., consistency), and c) determine if there are 

certain conditions where the unadjusted estimator, although biased, may be more accurate than 

the adjusted estimator (i.e., relative efficiency). For the interval estimator, the purpose of the 

simulation study is to evaluate the performance of 95% CIs in terms of overall coverage and 

coverage balance.  
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4.1 Mediation in the LISCOMP framework 

The mediation model represented in Equations 2.26 and 2.27 can be conveniently 

specified as a single model in the LISCOMP framework. For further convenience, I assume 

variables are standardized (i.e., 0=α   and 0=ν ), only manifest variables (i.e., =Λ I ), and no 

residuals in the measurement model ( 0=Θ ). These assumptions mean that Equation 3.20 

reduces to 

 ,=y Iη   (4.1) 

Solving Equation 3.21 for η  and substituting into Equation 4.1 yields 

 1( ) .st −= −y I B ζ   (4.2) 

Bollen (1987) showed how the total, direct, and indirect effects can be computed using the 

components of Equation 4.2. The matrix 1( )st st −= − −T I B I  consists of the total effects of x on 

m, and x and m on y 

 

0 0 0

0 0 .

0

st

mx

mx ym x yx m ym x



   

 
 

=  
 + 

T   (4.3) 

Further, the elements of st st st= −M T B  consists of the indirect effects 

 

0 0 0

0 0 0 .

0 0

st

mx ym x 

 
 

=  
 
 

M   (4.4) 
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Complex mediation models can be conveniently expressed using the LISCOMP SEM 

matrix notation. For recursive models (i.e., no feedback loops), the st
B  matrix can be expressed 

in general terms as 

 ,st st st

mx m

st st

yx ym

 
 

=  
 
 

0 0 0

B B B 0

B B 0

  (4.5) 

where the m m  coefficient matrix st
B  consists of four partitions: (a) a q p  partition st

mxB  of 

the effects of p predictors on q mediators, (b) a r p  partition 
st

yxB  of the effects of  p predictors 

on r outcomes, controlling for mediators, (c) a r q  partition 
st

ymB  of the effects of q mediators 

on r outcomes, controlling for the predictors, and (d) a q q  partition st

mB  of the effects of 

mediators on other mediators. Because there are no regressions of predictors on other predictors 

or outcomes on other outcomes (certain predictors or outcomes would then be considered 

mediators), the upper left p p  and lower right r r  submatrices are 0. The st

mB  submatrix has 

zeros on its diagonal, and, whereas all elements of st

mxB , 
st

yxB , and 
st

ymB  may appear only in the 

lower or upper triangle, elements of st

mB  may be above and below the diagonal depending on the 

direction of relationships among mediators. However, for the model to remain recursive, it must 

be possible to arrange the rows and columns of st

mB  to yield a lower triangular matrix with zeros 

on the diagonal. 

A matrix of total effects st
T  is computed from st

B  as in the previous special case of 

three-variable mediation (i.e., 1( )st st −= − −T I B I ), which in terms of partitions of st
B  in 

Equation 4.5 is 
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1 1

1 1

(( ) ) ( ) ) ,

(( ) ) (( ) )

st st st st st

mx m mx m

st st st st st st st st st

yx mx ym ym m mx ym ym m

− −

− −

 
 

= + − − − − 
 + + − − + − − 

0 0 0

T B I B I B I B I 0

B B B B I B I B B B I B I 0

  (4.6) 

where I is a q q  identity matrix. The matrix of indirect effects 
st

M  is then computed (i.e., 

1( )st st st−= − − −M I B I B ), which in terms of partitions of st
B  is 

 
1 1

1 1

(( ) ) ( ) ) .

(( ) ) (( ) )

st st st st st

m mx m m

st st st st st

ym m mx ym m

− −

− −

 
 

= − − − − − 
 − − − − 

0 0 0

M I B I B I B I B 0

B I B I B B I B I 0

  (4.7) 

The four nonzero partitions in 
st

M  consist of generalizable expressions for computing indirect 

effects. The partition in the first column, second row of 
st

M  contains the indirect effects of a set 

of predictors on a set of mediators through another set of mediators. The partition in the second 

row, second column of 
st

M  contains the indirect effects of a set of mediators on another set of 

mediators through another set of mediators. The partition in the third row, second column 

contains the indirect effects of a set of mediators on the outcomes through another set of 

mediators. Finally, the partition in the third row, first column represents the indirect effects of a 

set of predictors on a set of outcomes through a set of mediators.  

The indirect effects contained in 
st

M  in Equation 4.7 are total indirect effects, which are 

composed of specific indirect effects. To illustrate these types of indirect effects, consider a 

mediation model with a single predictor x, a single outcome y, and two parallel mediators m1 and 

m2 (see Figure 2). There are three indirect effects that could be examined in this model: (a) the 

specific indirect effect of x on y through m1, and (b) the specific indirect effect of x on y through 

m2, and (c) the total indirect effect of x on y through both m1 and m2. The three MLR equations 

that specify this model represent the effect of x on m1 
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1 1 1,m x mm x = +   (4.8) 

the effect of x on m2 

 
2 2 2 ,m x mm x = +   (4.9) 

and the effects of x, m1, and m2 on y 

 
1 1 2 2 .yx ym ym yy x m m   = + + +x x x

  (4.10) 

The specific indirect effects are the pathways through which x affects y through m1 ( 1 1m x ym 
x
) 

and m2 ( 2 2m x ym 
x

), and the total indirect effect (
1 1 2 2m x ym m x ym   +x x

) is the sum of the 

specific indirect effects. 

The model coefficients are more conveniently expressed in terms of the partitioned st
B  

matrix as 

 
1

2

1 2

0 0 0 0

0 0 0
.

0 0 0

0

m xst

m x

yx ym ym





  

 
 
 =
 
 
  x x x

B   (4.11)  

The matrix of total indirect effects 
st

M  is computed from st
B   

 

1 1 2 2

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0

st

m x ym m x ym   

 
 
 =
 
 

+  x x

M   (4.12)  

Bollen (1987) proposed a method for obtaining these specific indirect effects by 

recomputing st
M  from a modified coefficient matrix *st

B . This is accomplished by omitting the 
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rows and columns of st
B  that correspond to the mediators that are part of the specific pathway of 

interest by setting these entries to zero. Recalculating st
M  from this modified coefficient matrix 

yields a matrix of specific indirect effects ( *st
M ). 

To replace specific entries of st
B  with zeros, st

B  is pre- and post-multiplied by an 

elementary matrix O :  

 * ,st st=B OB O   (4.13) 

where O  is a m m  diagonal matrix where the elements associated with the variables to be 

omitted from st
B  are set to zero. For example, in order to obtain the specific indirect effect 

1 1m x ym 
x
 from the previous multiple mediator model, in the mediation model illustrated in 

Figure 2, the O  that would set the rows columns and columns of st
B  associated with m2 to zero 

is 

 
1

2

1 0 0 0

0 1 0 0
,

0 0 0 0

0 0 0 1

x

m

m

y

 
 
 =
 
 
 

O   (4.14)  

which is then substituted into Equation 4.13 to compute *st
B  
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*

1

2

1 2

1

1

0 0 0 01 0 0 0 1 0 0 0

0 0 00 1 0 0 0 1 0 0

0 0 00 0 0 0 0 0 0 0

00 0 0 1 0 0 0 1

0 0 0 0

0 0 0
.

0 0 0 0

0 0

st st

m x

m x

yx ym ym

m x

yx ym





  



 

=

    
    
    =
    
    
     

 
 
 =
 
 
  

x x x

x x

B OB O

 (4.15) 

The modified indirect effect matrix *st
M  calculated from *st

B  yields the specific indirect effect 

 *

1 1

0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0

st

m x ym 

 
 
 =
 
 
  x

M  (4.16) 

This framework offers a general solution for obtaining indirect effects for a wide array of 

mediation models. These include models with multiple parallel or serial mediators, multiple 

predictors, covariates, and latent variable mediation. In addition, methods are available for 

decomposing complex indirect effects. 

4.2 Matrix Extension of   

Effect sizes for total and specific indirect effects can be obtaining by deriving a general 

matrix-based specification of   in the LISCOMP framework. Specifically, because   is a 

measure of explained variance, the quadratic forms used in previous sections for computing 2R  

can be applied to compute the matrix extension of  . In addition, the sampling properties of 

quadratic forms will also be applicable, allowing for generalizations of the properties of   

discussed in Chapter 2. 
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The quadratic form for the LISCOMP structural model in Equation 3.24 can be applied to 

obtain the quadratic form of  . This is accomplished by substituting the matrix of total effects T 

with the matrix of indirect effects M , yielding the   matrix   

 -1/2 -1/2 ,D MΨMD =   (4.17) 

An equivalent method of computing   is to use the standardized indirect effect matrix st
M  and 

the standardized residual variance matrix st
Ψ  

 .st st stM Ψ M =  (4.18) 

If the unmodified B matrix is used to compute M ,   yields a matrix of   effect sizes for the 

total indirect effects. If the modified matrix *
B  (i.e., the rows and columns associated with 

certain variables are set to 0),   yields a matrix of   for specific indirect effects.  

4.2.1 Special case of a single predictor and outcome, and two parallel mediators 

 To demonstrate the proposed matrix method, ̂  is obtained from a mediation model with 

a single predictor x, a single outcome y, and two parallel mediators m1 and m2 (see Figure 2). 

There are three effect sizes to consider in this model: (a) the effect size for the total indirect 

effect of x on y through both m1 and m2, (b) the effect size for the specific indirect effect of x on y 

through m1, and (c) the specific indirect effect of x on y through m2. The unstandardized 

regression coefficients for this model can be expressed in the unstandardized partitioned B 

matrix from Equation 4.5: 
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 
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Calculating M  from B yields 

 

1 1 2 2

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0m x ym m x ymB B B B

 
 
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 
 

+  x x

M   (4.20)  

where the fourth row, first column element represents to total indirect effect of x on y, which is 

the sum of the specific indirect effects through 
1m  (

1 1m x ymB B
x
) and 

2m  (
2 2m x ymB B

x
). Also, for 

this example, Ψ  consists of the variance x, and residual variances and covariances of 1m , 
2m , 

and y 
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 
  

Ψ  (4.21) 

and D is a diagonal matrix of standard deviations (Jöreskog & Sörbom, 2015) 
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 =
 
 
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D  (4.22) 

Pre- and post-multiplying Ψ  by 
1/2−

D M  and 
1/2−M D   yields 
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 (4.23) 

  quantifies the expected variance by x explained in y indirectly through 1m  and 
2m . It is also 

possible to follow the matrix modification method in 4.13 – 4.17 to compute   from *M  for 

either 1m  (
2 2

1 1m x ym  x ) or 
2m  (

2 2

2 2m x ym  x ). It should be noted that when obtaining an effect size 

for a specific indirect effect, for example, through 1m , it is not equivalent to the effect size of x 

on y through 1m  estimated without 
2m  in the model. Omitting 

2m  from B eliminates elements 

corresponding to 
2m , but coefficients are estimated as from the full model. The implication is 

that the interpretation of   for the specific indirect effect through 1m  is the variance explained 

indirectly by x, controlling for 
2m , or the expected variance in y explained by x through 1m  that 

is constant across levels or subpopulations defined by 2m . 

4.2.2 Properties of   

Like   for three-variable models,   has several desirable properties as an effect size 

measure for complex mediation models. First,   is interpretable as the variance explained in the 
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outcome by a set of predictors through a set of mediators. In addition, as described in Lachowicz 

et al. (2018), Cohen’s benchmarks for 2R  measures (i.e., .02 = small, .15 = medium, .25 = large; 

Cohen, 1988) can be applied to  , providing researchers with  researchers some general  

heuristics to help communicate the magnitude of their effects of interest. Second,   is 

standardized, so it is not dependent on linear transformations of the variables. Third, the 

population   is not dependent on sample size, meaning it can be estimated consistently from 

sample data. Third, although the sampling distribution of   is not known, CIs can be 

constructed using, for example, a bootstrap or Monte Carlo based approach. Fourth,   is a 

monotonic function of the standardized indirect effect, so there is a one-to-one mapping of effect 

magnitude to effect size (in absolute value). Taken together, the properties of   make it a 

promising method for meaningfully quantifying the magnitude of indirect effects in a wide array 

of mediation models. 

4.3 Sample Estimator of   

 To this point I have considered the properties of   in the population. In order for   to 

be useful as an effect size measure, it will need a sample estimator with good statistical 

properties. Lachowicz et al. (2018) showed that, like many other estimators of variance 

parameters, the sample analog estimator ̂  of the population   for three-variable mediation 

models is positively biased, where the magnitude of bias is larger for small samples and small 

effect magnitudes. Because ̂  is a special case of the more general ̂  and can be expressed as a 

quadratic function of MLEs, it is expected that ̂  is also a biased estimator of the population  . 
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4.3.1 Bias adjusted estimator   

The preceding derivation shows a general form for the bias of   estimates. It is 

important to note, however, that this is the asymptotic bias in the expected value. In order to 

incorporate this bias into an adjusted estimator, appropriate sample estimates must be substituted 

for the above parameters. 

The bias-reduction approach in Chapter 3 is a general solution for obtaining the 

appropriate sample estimates for the bias adjusted estimator. Although adjustment for first-order 

bias is sufficient for many of the effect size estimators considered in previous chapters, the 

complexity of indirect effects introduces additional sources of bias that are not appropriately 

accounted for using first-order methods. To illustrate, recall the bias in the expected value of ̂  

derived for a three-variable mediation model ( 2 2 2 2 2 2

mx ym x ym x mx mx ym x     + + ; Section 2.4.5) is 

equivalent to the second-order normal-theory approximation of the asymptotic variance for the 

standardized indirect effect ˆ ˆ
mx ym   (Equation 2.30; MacKinnon et al., 1995). A first-order 

approximation of the bias term is 2 2 2 2

mx ym x ym x mx   + (Equation 2.29; Bollen, 1987; Sobel, 1982), 

which omits the variance product 2 2

mx ym x   and, therefore, consistently underestimates bias and 

overestimate effect sizes. 

Also recall that simple substitution of sample estimates for the parameters in the bias 

term also introduces bias. This is clear by deriving the expected value of a hypothetical adjusted 

estimator *  where the bias term is a simple substitution of parameters for estimates 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ *] [ ] [ ] [ ] [ ]

( )( ) ( ) ( )

mx ym x mx ym x ym x mx mx ym x
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E E E E E        

           

         

= − − −
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       

   

− − − −

= −
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The additional variance product term 2 22 mx ym x −  means that simple substitution yields an 

estimator that overestimates bias and underestimates effect size. 

 These issues can be addressed simultaneously by modifying the sample estimated bias 

approximation. Whereas in the previous example the entire sample estimated second-order 

variance approximation was subtracted from the biased estimator, the modified estimate 

subtracts the first-order component of the variance approximation and adds the second-order 

component.  

 ˆ ˆˆ ˆ ,st st st

bias
 −M Ψ M Δ =   (4.24) 

Where ˆ
bias
Δ  is a m m  matrix with elements    1

ˆ ˆ(1/ 2) ( ) (1/ 4) ( )tr tr−Σ β H Σ β H  corresponding 

to outcome variables. To illustrate, I will derive the asymptotic bias for the three-variable 

mediation model above, showing that it yields equivalent results. Solving for the asymptotic bias 

yields the matrices 
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  (4.25) 

where the first bias approximation is 

  

   2 2 2 21 ˆ( ) ,
2

ym x mx mx ym xtr    = +Σ β H   (4.26) 
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and the approximation to this component is 

   2 2

1

1 ˆ( ) 2 .
2

mx ym xtr  =Σ β H   (4.27) 

Substituting these results into 
bias
Δ  yields the appropriate asymptotic bias approximation 

 
   1

2 2 2 2 2 2

1 1ˆ ˆ( ) ( )
2 4

.

yy

ym x mx mx ym x mx ym x

tr tr

     

 = −

= + −

Σ β H Σ β H
  (4.28) 

The second bias approximation in Equation 4.28 is multiplied by ½ because the first 

approximation does not include approximations of second-order terms (i.e., 2 2

mx ym x  ), so 

adjusting by Equation 4.27 yields an over-correction. 

 Although unbiasedness is a desirable property for estimators, it is possible for other 

important properties of these estimators to be deficient, such that a biased estimator of the same 

parameter is more useful in practice. Particularly notable for estimators are consistency (i.e., the 

estimator converges to the parameter as sample size increases), and variability. For example, an 

unbiased estimator with high sampling variability can be substantially less useful than a biased 

estimator that is more efficient. 

4.4 Simulation Study 

The purpose of the present simulation study is to examine the sampling properties of the 

unadjusted and bias-adjusted effect size estimators ̂  and   in complex mediation models. Of 

interest is determining whether the matrix generalization and bias-adjustment yield estimators 

with good statistical properties in terms of bias, variance, and overall accuracy, and whether 

common interval estimation methods return proper CIs for the estimators. It is of particular 
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importance for researchers to know if there are certain conditions under which the estimators 

would not be expected to yield accurate estimates. 

4.4.1 Simulation Design 

The generating model for this simulation was a parallel mediation model with a single 

predictor x, a single outcome y, and two mediators 
1m  and 

2m  (Figure 2). Variables in this 

simulation were considered standard normal in the population. As described in Section 4.2.1, 

effect sizes can be estimated for three indirect effects: 1) the specific indirect effect of x on y 

through 1m  (
1 1m x ym 

x
), 2) the specific indirect effect of x on y through 

2m  (
2 2m x ym 

x
), and 3) 

and the total indirect effect of  x on y through 1m  and 
2m  (

1 1 2 2m x ym m x ym   +x x
). Because of 

the symmetry in the magnitudes of the specific effects, effect sizes for this simulation will be 

evaluated for the total indirect and one specific indirect effect, 
1 1m x ym 

x
.  

4.4.2 Simulation Conditions 

Parameter values for the paths were varied among .15, .39, and .59, magnitudes for small, 

medium, and large standardized coefficients common in applied research. Because of the large 

number of parameter combinations possible in this model, some generating parameters were 

constrained to be equal (
2 2m x ym =

x
) and some were fixed to zero, including the direct effect 

and the residual correlation of the mediators. Parameter values consistent with the null 

hypothesis of no indirect effect were not considered in this simulation because zero is on the 

boundary of the parameter space for  . In addition, the properties of estimators typically 

evaluated under the null hypothesis (i.e., Type I error rate, power) are not of interest for   

estimators because ̂  and   were not intended to be used for null hypothesis significance 
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testing. Sample size was varied among 50, 100, 250, and 500. This yields a total of 3x3x3x4 = 

108 total conditions. 

Because the sampling distributions of ̂  and   are unknown and assumed to be non-

normally distributed, nonparametric bootstrapping was used to construct 95% CIs. Two 

bootstrap CI methods were evaluated in this simulation: a) percentile and b) BCa (Section 2.3). 

Although percentile bootstrap CIs performed satisfactorily in terms of coverage and balance for 

  estimates from a three-variable mediation model (Lachowicz et al., 2018), BCa CIs are often 

recommended for estimators with non-normal, heavy-tailed sampling distributions, which is 

characteristic of the distributions of both ̂  and  . It is expected that BCa CIs will outperform 

percentile CIs in terms of coverage and balance, particularly in conditions with small effect 

magnitudes. 

The simulation was conducted in R (version 3.4.1; R Core Team, 2017). 1,000 

replications per condition is sufficient to obtain accurate estimates of bias for point estimates and 

coverage for CIs. For each replication, 1,000 bootstrap resamples are used to construct 95% CIs 

using the boot package (Canty & Ripley, 2017). The point estimators will be evaluated in terms 

of bias, overall accuracy, and relative efficiency, and CIs will be evaluated in terms of coverage, 

coverage balance, and CI width. 

4.4.3 Evaluation criteria 

Bias was evaluated using percent relative bias, defined as the difference between the 

expected value of the estimator and the population value, divided by the population value 

 
ˆ[ ]ˆ( ) .rel

E
bias

 




−
=  (4.29) 
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The metric of percent relative bias is often more interpretable than is raw bias, although it is 

possible for trivially small raw bias to appear quite large in terms of percent relative bias when 

the population parameter is close to zero. Researchers often use a criterion of 5% for acceptable 

relative bias (Boomsma, 2013), which I will also use in this study. It was hypothesized that the 

unadjusted estimator will exhibit positive bias, with the largest biases in conditions with smallest 

sample sizes and smallest effects. It was hypothesized that the adjusted estimator will exhibit 

acceptable bias (< 5%) in all conditions. 

 Accuracy was evaluated in terms of mean square error (MSE). MSE is defined as 

 2ˆ ˆMSE [ ( )] var( ).E bias  = +  (4.30) 

It follows that for an unbiased estimator, MSE is equivalent to the estimator variance, and MSE 

will favor estimators with less variability. However, it possible there are circumstances where a 

biased estimator can have less variance than an unbiased estimator, such that the biased estimator 

returns more accurate estimates. To further examine the variability of the estimators, relative 

efficiency (RE) was evaluated by the ratio of the empirical sampling variances 

 1

2

ˆvar( )
.

ˆvar( )
RE




=  (4.31) 

1RE   corresponds to the sampling variance of 2 1
ˆ ˆ  , 1RE   to the sampling variance of 

2 1
ˆ ˆ  , and 1RE =  to equal sampling variances. RE was defined as the ratio of the sampling 

variance of   to ̂  for this simulation. It is not clear if there are conditions where the unadjusted 

̂  would be more accurate or have greater sampling variability than the bias-adjusted  , so these 

questions will be addressed empirically. 
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CIs were evaluated using average CI width, coverage, and balance of coverage. Average 

CI width was used to evaluate the precision of the estimates, where smaller widths represent 

estimates with greater precision. It was unclear which estimator will have smaller average CI 

widths; this will be evaluated empirically. Coverage is defined as the proportion of CIs that 

contain the true population value. It is expected that the coverage probabilities of proper CIs are 

equal to one minus the nominal alpha level. The nominal alpha level for CIs in this study is .05, 

and coverage will be evaluated according to Bradley’s criteria (.925 - .975; Bradley, 1978). It is 

expected that 95% CIs will have coverage probabilities acceptably close to the nominal .95 level. 

In addition to achieving nominal coverage, it is assumed for proper CIs that the proportion of 

times the population value is greater than the upper CI limit and less than the lower CI limit are 

equal (i.e., 2.5% for 95% CIs). However, it is possible for CIs to achieve the nominal alpha and 

be imbalanced in the proportion of misses above and below the confidence limits, which results 

in biased estimates of Type 1 error rates and power. It is expected that the proportion of misses 

above and below the 95% CI limits are equal. 

Finally, it is unclear how or if the sampling properties of the estimators of the effect size 

for the total indirect effect would differ as compared to the specific indirect effect, so this 

question will be addressed empirically. 

4.5 Simulation Results 

4.5.1 Bias 

Simulation results for the relative bias of ̂  for the total indirect effect can be found in 

Table 1, where shaded cells highlight relative bias > 5%. The hypothesis that ̂  would be 

positively biased, with larger magnitudes of bias at smaller N and for smaller effect sizes, and 

decreasing magnitudes as N and effect magnitude increased, was supported by the simulation 
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results. The direction of bias for ̂  was positive in all conditions, consistent with analytic results. 

The largest values of percent relative bias (138.61%, 93.57%, and 97.63%) occurred at the 

smallest N considered in the simulation (N = 50), and also for the smallest effects ( .15 = ). In 

addition, for smaller effect sizes, percent relative bias > 5% was evident even at the largest N 

considered (N = 500) for the smallest effects. Increasing N was associated with decreasing bias, 

supporting the hypothesis that ̂  is a consistent estimator. Finally, bias of ̂  was negligible for 

large effect magnitudes of the total indirect effect for all sample sizes. 

Simulation results for percent relative bias of   for the total indirect effect can also be 

found in Table 1. The hypothesis that bias of   would be negligible across simulation conditions 

was largely supported by simulation results. Overall, percent relative biases for   were of much 

smaller magnitude than for ̂ . For the conditions in which bias was greatest for the ̂ , the 

relative biases of   were –0.23%, 2.67%, and –1.48%. In total, the largest relative bias across all N 

and effect sizes considered for   was –7.29% at N = 50, and only two other simulation 

conditions had relative bias > 5% (–5.03%, and –5.95%,). No parameter combination had 

relative bias > 5% at N = 250 and N = 500. Although bias was mostly of negligible magnitude at 

smaller sample sizes, bias tended to be in the negative direction, a tendency that also decreases 

with increasing sample size. Finally, as with ̂ , bias decreased as N increased, supporting the 

hypothesis that   is a consistent estimator. 

Results for relative bias of effect size estimators of the specific indirect effect 
1 1m x ym 

x
 

can be found in Table 2. Findings were generally similar to those for the total indirect effect. For 

both estimators, hypotheses regarding the magnitude and direction for the specific indirect effect 

were supported. For ̂ , the largest values of relative bias (265.84%, 223.31%, and 234.11%) 

occurred at the smallest N and for the smallest effects. In addition, bias was non-negligible for 
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the smallest effect magnitude even at the largest sample size. For  , relative bias was also non-

negligible for the smallest sample size and smallest effects, although of substantially smaller 

magnitudes than ̂   (-9.14%, -5.35%, and 18.61%). Similarly, the remaining relative biases of   

considered non-negligible were also small magnitude (–10.59%, –5.42%, 5.48%, –6.65%, and 

5.51%). Finally, increasing N was associated with decreasing bias for both estimators. 

4.5.2 Accuracy and Relative Efficiency 

Simulation results regarding MSE and RE for effect size estimators of the total indirect 

effect can be found in Table 3, and for the specific indirect effect in Table 4. Shaded cells 

highlight conditions where MSE of   was greater than ̂ , and where 1RE   (i.e., variance of 

ˆ  ). Increasing N was associated with decreasing MSE for both estimators of total and 

specific indirect effects, supporting the hypothesis that overall accuracy of the measures would 

increase with increasing N. It was also clear, for both effects, that outside of a few conditions,   

was a more accurate estimator of   than ̂ . In addition, it was clear that across the vast majority 

of conditions   was a more efficient estimator. Finally, the magnitudes of the accuracy and 

efficiency discrepancies between the estimators were dependent on sample size and effect 

magnitudes, such that differences were largest for the smallest sample sizes and smallest effects. 

4.5.3 Confidence Intervals 

Results for 95% percentile bootstrap CIs of ̂  and   for the total indirect effect can be 

found in Tables 5 and 6, respectively, and for the specific indirect effect in Tables 7 and 8, 

respectively. Shaded cells highlight conditions where satisfactory coverage (92.5% – 97.5%) was 

not achieved. The hypotheses that coverage would reach the nominal 95% level as N increased, 

and that the proportions of misses to the left and right of the 95% CI would be balanced, were 

supported by simulation results. As with bias, satisfactory coverage was achieved with larger 
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effect sizes and at larger N for both estimators and effects, such that satisfactory coverage was 

achieved for all parameter combinations at N = 250. In addition, misses to the left and right of 

the 95% CI were approximately balanced at N = 250 for both estimators and effects. When 

satisfactory coverage was not achieved, it was predominantly due to coverage > 97.5%, or CIs 

being too wide. 

Results for 95% BCa bootstrap CIs of estimators for the total indirect effect can be found 

in Tables 9 and 10, respectively, and for the specific effect in Tables 11 and 12, respectively.  

The hypotheses that that nominal coverage would converge to a satisfactory level, and that the 

proportions of misses to the left and right would achieve balance, were generally supported by 

the results as well. Similar to the percentile CIs, satisfactory coverage was generally achieved for 

larger N and larger effect magnitudes, and achieved for all parameter combinations at N = 500 

both estimators and effects. However, there are noteworthy differences between the results for 

the CI methods. In contrast to the percentile CIs, when satisfactory coverage was not achieved, it 

was predominantly due to coverage < 92.5%, or CIs being too narrow. In addition, for small 

sample sizes and small effect magnitudes, there tended to be larger deviations from nominal 

coverage (~80-90%) for total indirect effects, and even greater deviations for specific indirect 

effects (~70-80%). Another noteworthy difference between the methods is that, whereas 

percentile CIs for the total and specific indirect effects achieved satisfactory coverage at the 

same sample size (N = 250), a larger sample size was required for BCa CIs to achieve 

satisfactory coverage for the specific indirect (N = 500) than for the total indirect effect (N = 

250).  
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4.6 Empirical Example 

I now present an empirical example to facilitate interpretation and implementation of   

in a complex mediation model. I use the results from a study conducted by Li, Starr, and Wake 

(2018) that investigated the pathways through which anxiety can have downstream effects on 

depression. Specifically, the authors used the National Longitudinal Study of Adolescent to 

Adult Health (ADD Health; Harris et al., 2009) dataset to examine the indirect effects of anxiety 

symptoms assessed at Wave 1 (1994-1995) on depressive symptoms at Wave 4 (2008) through 

insomnia and unrestful sleep assessed at Wave 2 (1996). Analyses were conducted with those 

participants that had observations on these variables at each study wave (N = 3910). The 

predictor variable of anxiety symptoms at Wave 1 were assessed using a composite of six items 

measuring anxious physiological arousal, where higher values indicate greater symptoms of 

anxiety. The mediator variables of insomnia and unrestful sleep at Wave 2 were assessed using 

single items asking about difficulty falling asleep and staying asleep and feeling tired upon 

waking, respectively, where higher values indicate greater sleep problems. The outcome variable 

of depressive symptoms at Wave 4 was assessed using the Center for Epidemiologic Studies 

Depression Scale (CES-D), where higher values indicated greater depressive symptomology.  

Results presented here differ slightly form the original study results because relevant 

control variables were excluded to simplify analyses. The total standardized indirect effect of 

anxiety symptoms on depressive symptoms through both insomnia and unrestful sleep was 0.038 

(95% percentile CI = .027, .052), the standardized specific indirect effect through insomnia was 

0.021 (95% percentile CI = .009, .033), and the standardized specific indirect effect through 

insomnia was 0.018 (95% percentile CI = .01, .026).  
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For the   estimators, the ̂  effect size estimate for the total indirect effect was 0.0015 

(95% percentile bootstrap CI = .0007, .0027), meaning that the variance explained indirectly in 

depressive symptoms by anxiety symptoms through insomnia and unrestful sleep in this sample 

was 0.0015. The   effect size estimate for the total indirect effect was 0.014 (95% percentile 

bootstrap CI = 0.0007, 0.0027).   is interpreted as the estimated variance in depressive 

symptoms by anxiety symptoms through insomnia and unrestful sleep in the population. The ̂  

effect size estimate for the specific indirect effects through insomnia and unrestful sleep were 

0.0004 (95% percentile bootstrap CI = .00008, .000106) and 0.0003 (95% percentile bootstrap CI 

= .0001, .0007). This means that the variance explained indirectly in depressive symptoms by 

anxiety symptoms in this sample through insomnia was 0.0004, and through unrestful sleep was 

0.0003. The   effect size estimate for the specific indirect effects through insomnia and unrestful 

sleep were 0.0004 (95% percentile bootstrap CI = 0.00006, 0. 000103) and 0.0003 (95% 

percentile bootstrap CI = 0.00009, 0.0006), respectively. Like the bias-adjusted effect size for the 

total indirect effect,   for the specific indirect effects is interpreted as the estimated variance in 

depressive symptoms explained by anxiety symptoms in the population separately by via 

insomnia and unrestful sleep. 

4.7 Summary 

In Chapter 4, the SEM framework described in Chapter 3 was used to generalize the effect 

size measure  . A general form of the bias was also derived using the general bias reduction 

strategy from Chapter 3, and a bias-adjusted estimator of   ( ) was proposed. The sampling 

properties of the unadjusted estimator ̂  and   were evaluated via Monte Carlo simulation. 

Chapter 5 will review moderated MLR, and apply the results of Chapter 2 to investigate 
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explained variance for moderated regression models. Chapter 6 will combine the findings of 

Chapters 4 and 5 to extend   to moderated mediation models.  
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5 EXPLAINED VARIANCE IN MODERATED MLR 

5.1 Moderated MLR 

Moderated, or conditional, indirect effects are an increasingly popular type of complex 

mediation model in the social sciences. However, measures of explained variance for moderated 

effects in general have received little attention in the methodological literature. This section will 

review the literature for these effects in ANOVA and MLR, noting gaps in terms of the themes 

of standardized effect sizes previously described (e.g., generalizability, biasedness of estimators). 

The goal of this section is to establish a coherent framework for explained variance for 

moderated effects in MLR that will serve as a foundation for extending   to moderated 

mediation models. An empirical demonstration of the conditional effect size will be provided 

using the running empirical example, and R software code will be provided. 

It is a common in the social sciences to hypothesize that the effect of one variable on 

another varies across identifiable populations. For example, it is possible that the effect of an 

early childhood intervention designed to improve reading is different for boys than it is for girls, 

or for children from lower SES neighborhoods than from higher SES neighborhoods. A more 

complete understanding of how effects vary in direction and magnitude can have important 

consequences for the reporting of study results. 

In traditional MLR, the partial effect of a variable on an outcome is assumed to be 

constant across levels of all other variables in the regression model, which precludes 

investigating conditional effects. However, moderation hypotheses can be investigated in MLR 

by incorporating additional variables that are products of other variables in the model, where 

effects of such product terms are often referred to as interactions. The unstandardized effect of a 

variable 1x  on y conditional on levels of a moderating variable 2x  is expressed as  
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0 1 1 2 2 3 1 2 ,y B B x B x B x x = + + + +   (5.1) 

where 
3B  is the partial effect of the interaction of 

1x  and 
2x  on y controlling for 

1x  and 
2x . 

Because the effect is nonlinear (the expected value of y changes for different values of the 

predictors), it is assumed the assumptions required for additive regression models (i.e., normality 

of errors, linearity, homoscedasticity, existence, independence of errors) apply across all 

combinations of predictor values. The significance of the interaction is determined by testing the 

significance of 
3B , or testing the significance of the increment in 2R  due to including the 

interaction term in the model (Cohen et al., 2003). 

If the effect of 
1x  on y is of particular interest, 

1x  would be considered the focal 

predictor, and 
2x  the moderator variable. Equation 5.1 can be rearranged to more closely 

resemble this distinction as 

 0 1 3 2 1 2 2( ) .y B B B x x B x = + + + +  (5.2) 

The effect of the focal variable 1x  can now be said to vary across levels 2x . The magnitude of the 

interaction term 3B  is then the difference in the effect of 1x  on y corresponding to a one unit 

increase in 2x . For example, if 2x  is binary, 3B  is the difference in the effect of 1x  on y in one 

group relative to the effect in a reference group. 

If the interaction coefficient is significantly different from zero, the moderation can be 

further examined by probing and plotting the effect of the focal predictor conditional on values 

of the moderator (Aiken & West, 1991). The effect of a predictor at a given level of a moderator 

(typically at the moderator mean, and 1  SD) is referred to as a simple slope. The simple slope 

also may be tested for significance using a conditional standard error. Interpretation of the 



82 

 

moderator effects can be facilitated by plotting these simple slopes at various levels of the 

moderator. An alternative to testing simple slopes at fixed values of the moderator is to construct 

simultaneous CIs for the effect of the predictor across the range of moderator values (Johnson & 

Neyman, 1936). Regions where the CIs do not include zero are values of the moderator where 

the simple slope is significant.  

5.1.1 Moderated MLR in LISCOMP 

Although the moderated MLR in Equations 5.1 and 5.2 are instructive, it is desirable to 

express a moderated MLR model in matrix form as in Section 3.1. Despite the long history of 

methodological research on moderated MLR, the appropriate matrix representation of an 

interaction in MLR has not been addressed. At issue is how to specify the interaction term not 

only for notational convenience, but also to make use of the results derived in Section 3.1 

regarding the properties of estimators.  

An obvious approach would be to model the product term as a new predictor in the 

matrix specification, as is commonly done when estimating interaction effects in MLR. This 

specification would yield the correct parameter estimates for the models in Equations 5.1 and 

5.2, and including the product variable in the variance/covariance matrix allows for computations 

of variances, covariances, and 2R . However, the specification also presents some issues. 

Whereas it is typical to standardize coefficients by scaling the coefficients by the ratio of the 

standard deviation of the predictor to the standard deviation of the outcome, this is not an 

appropriate standardization for the product term (Champoux & Peters, 1987; Muthén & 

Asparouhov, 2015; Wen, Marsh, & Hau, 2010). This could be avoided by computing the product 

term from standardized variables, a straightforward solution but requiring extra data 
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management. A more problematic issue is that this specification includes a non-linear effect, 

which is not directly estimable in SEM software. (Kenny & Judd, 1984). 

These issues can (in theory) be avoided by specifying the moderated MLR model in 

reduced form (Equation 5.2) as a SEM. The LISCOMP specification for latent interactions 

(Klein & Moosbrugger, 2000; Klein & Muthén, 2007), assuming variables are standardized, is 

expressed as 

 ,st st st st st st= + +η B η jη Ω η ζ   (5.3) 

where j is a 1m  vector designating the interaction outcome variable, st
Ω  is a square matrix of 

interaction coefficients  

 

1,2 1,

1,

0

0
.

0

0 0

p

st

p p

 

 −

 
 
 =
 
 
 

Ω   (5.4) 

Solving for st
η  and substituting into the measurement model yields interaction model for 

manifest variables 

 1( ) .st st st −= − −y I B jη Ω ζ   (5.5) 

This means that the outcome is conditional on values of st
η . This avoids the problem of 

standardization when centered variables are used to create the product term because the 

interaction term will be scaled by a product of standard deviations rather than the variance of the 

product (Champoux & Peters, 1987). However, if the product term is created from uncentered 

variables, the variance of the product is a complex function of variable means, variances, and 

covariances. In addition, it also follows that if the elements of st
η  are centered at 0 and 
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uncorrelated, Equation (5.5) reduces to 1( )st −= −y I B ζ  (Chapter 3). The equivalent MLR 

expression is 

 .= + +y Xβ XΩX ε   (5.6) 

For a MLR model with two predictors and an interaction, the coefficient matrix st
B  is  

 

1 2

0 0 0

0 0 0 ,

0

st

 

 
 

=
 
  

B   (5.7) 

and st
Ω  is  

 

30 0

0 0 0 .

0 0 0

st

 
 

=
 
  

Ω   (5.8) 

The placement of the 
3  coefficient in st

Ω  designates which variable is the focal predictor and 

which is the moderator. In Equation 5.8 the placement of 
3  designates 

2x  as the focal predictor 

and 
1x  as the moderator (i.e., the effect of 

2x  varies across levels of 
1x ). To designate 

1x  the 

focal predictor, the [2,1] element of st
Ω  would contain the interaction coefficient, with element 

[1,2] being 0.  

 In summary, the LISCOMP framework provides a flexible framework for representing 

moderated regression models in MLR. Like the alternative specification method where the 

interaction is modeled as a separate variable, LISCOMP returns the desired parameter estimates 

and is suitable for expression in quadratic form (Section 3.24). However, a clear advantage is 

that the specification exists within a more general modeling framework. Although uncentered 

product terms cannot be easily centered in this specification, it should be noted that it is often 
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recommended by methodologists to center variables when conducting moderated regression 

analysis as centering can be used to aid in the interpretation of effects and remove non-essential 

multicollinearity among variables (Aiken & West., 1991). 

5.2 Explained Variance in Moderated MLR 

Explained variance for a moderated MLR model can be obtained using the SEM formula 

for 
2

R  in Equation 3.21. Assuming variables are standardized, 
2

R  is expressed in quadratic 

form as  

 
2 1 1[( ) ] [( ) ] .st st st st st st st



− −    = − − − − − −R I B jη Ω I Ψ I B jη Ω I   (5.9) 

For the moderated MLR model with two variables and their interaction, Equation 5.9 yields 

 

2 1 1

1

1, 2 2 3 1

2

1 2 3 1

[( ) ] [( ) ]

0 0 0 1 0 0

0 0 0 1 0 0 .

0 0 0 0 0 0

st st st st st st st

x x x

x y





   

    

− −    = − − − − − −

    
    

= +    
    +    

R I B jη Ω I Ψ I B jη Ω I

  (5.10) 

Before continuing with the example, it is important to note a complication that arises due to the 

presence of 
1x  in st

B . Because it was not assumed that 
1x  was fixed to a specific value as in 

the analysis of simple slopes, the computation of 
2

R  requires taking the product of the random 

variables 1x  with  
1x  and 

2x  (Muthén & Asparouhov, 2015). For clarity, I will continue the 

example substituting the SEM estimates with the OLS counterparts 

  



86 

 

 

1

1 1 1

2 1 1

1 2 2 2 2 3 1

2

1 2 3 1

1

1

2 3 1

1 1 1 2 3 1 2 1 1 1 2 2 3 1 2 2

0 0 0 ( 1) 0 0

0 0 0 ( 1) ( 1) 0 0

0 0 0 0 0 0

0 0 0 0 0

( 1) 0 0 0 0 0

( ) ( ) 0 0 0 0

N

N N

N







 

   



 

     

−

− −

−

 −   
     = − − +    
    +    

  
  

= − +
  

       + + + +  

x x

R x x x x x

x

x

x x x x x x x x x x

1

2

1 1 1 1 2 3 1 2 1

1 1 2 2 2 2 3 1 2 2 2 3 1

1

2 2

1 1 1 2 2 2 1 2 2 1

2

1 3 1 2 1 2 3 2 2 1 3 1 2 2 1

0 0 0

( 1) 0 0 0 .

( )
0 0

( )( )

0 0 0

( 1) 0 0 0

2
0 0

2 2

N

N

   

    

   

    

−

−






 
 
 
 = −
 

  + + + 
    + + + 

 
 

= −


   + + +


     + + 

x x x x x

x x x x x x x x

x x x x x x

x x x x x x x x x x

.








 

 (5.11) 

Distributing 1( 1)N −−  shows the first three terms are the familiar coefficients 2

1 , 2

2 , and 

1 2 1, 22 x xr  . However, the second three terms contain element-wise, or Hadamard, products of 

the vectors 
1x  and 

2x  (Gentle, 2017; Searle, 1982). The result is that product variables are 

created in order to obtain the variance of the interaction variable ( 1 2

1 2 2 1 1 2( 1) x xN −  = −x x x x ), and 

covariances between the interaction variable and 
1x  (

1

1 2 1 1 2, 1( 1) x x xN −  = −x x x ) and 
2x  (

1

2 2 1 2 2, 1( 1) x x xN −  = −x x x ).4 This yields the 2R  formula  

 2 2 2 2 2

1 2 3 1 2 1 2 1, 2 1 3 1 2, 1 2 3 1 2, 22 2 2 ,x x x x x x x x x xR r            = + + + + +   (5.12) 

                                                 
4 Bohrnstedt and Goldberger (1969) showed that variables are mean-centered 

2 2, 1 1 2, 2x x x x x x = . 
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which is the expected 2R  if the regression had been conducted with an interaction variable 

created from standardized 
1x  and 

2x . The variances and covariances of the interaction term are 

estimated in the LISCOMP framework not by explicitly creating product variables, but modeling 

the non-normal distribution of the product variable as a mixture of normal distributions and 

estimating variances and covariances via maximum likelihood (Klein & Moosbrugger, 2000). 

5.2.1 Explained variance for conditional effects 

 The 
2R  formulation in Equation 5.12 quantities the total variance explained by a model 

with an interaction term. However, as described in the previous section, the moderator was not 

fixed to specific values as is often done in the analysis of simple slopes (Aiken & West, 1991). 

Given the importance of the plotting and probing in the interpretation of conditional effects, it 

would be of interest for 
2R  to also be applicable to these conditional effects.  

 Returning to the moderated MLR in Equation 5.2 where 
1x  is considered the focal 

predictor and 
2x  moderator, the expected value of y can be expressed in terms of 

1x  where 
2x  is 

fixed at a specific level c as 

 1 2 0 1 3 1 2[ | , ] ( ) .E y x x c B B B c x B c= = + + +   (5.13) 

If variables are standardized as in Section 5.2, the commonly used conditional levels of the 

moderator (i.e., mean, one standard deviation above and below the mean) reduce Equation 5.13 

to three simple equations 

 

* * * *

1 2 1 1

* * * *

1 2 1 3 1 2

* * * *

1 2 1 3 1 2

[ | , 0] ,

[ | , 1] ( ) ,

[ | , 1] ( ) ,

E y x x x

E y x x x

E y x x x



  

  

= =

= − = − −

= = + +

  (5.14) 
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where *y , *

1x , and *

2x  denote standardized y , 
1x , and 

2x . The variance of the predicted values 

of the standardized simple regressions in Equation 5.14 (i.e., mean SSR) can be obtained by 

application of the quadratic form in Section 3.1 

 * * * * *
1 2 1 2 1

* * * * *
1 2 1 2 1

* * * 2

1 2 1

* * * 2 2 2

1 2 1 3 1 3 ,

* * * 2 2 2

1 2 1 3 1 3 ,

var[ | , 0] ,

var[ | , 1] 2 ,

var[ | , 1] 2 ,

x x x x x

x x x x x

y x x

y x x

y x x



     

     

= =

= − = + −

= = + +

  (5.15) 

where * *
1 2

2

x x
  is the variance of the product of standardized *

1x , and *

2x , and * * *
1 2 1,x x x

  the covariance 

of *

1x  and the standardized product term (Section 5.2). 2  drops out of the variances in Equation 

5.15 because *

2x  is constant and, therefore, has a variance of zero. The variance of the product 

term * *
1 2

2

x x
  is included in Equation 5.15 because the variance of the product is not the product of 

the variances of the variables that comprise the interaction, meaning the variance of the product 

of standardized variables is not one (unless the covariance of the variables that comprise the 

interaction is exactly zero). This result suggests that, from the definition of 2R  in Section 3.1.2, 

the ratio of the conditional variance due to regression to the total conditional variance of the 

outcome (assumed to be one when y is standardized at the specific level of the moderator) yields 

a conditional version of 
2R . 

 It should be noted that the conditional variances in Equation 5.15 represent a subset of the 

variance components of 
2R  in Equation 5.12. This suggests a conditional form of 

2R  in 

Equation 5.12 could be expressed as  

 
2 2 2 2 2 2 2 2

1 2 2 3 2 1 2 1 2 2 1, 2 1 3 2 1 2, 1 2 3 2 1 2, 22 2 2 ,x x x x x x x x x x x x x x xR c c c r c c            = + + + + +   (5.16) 
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where 
2xc  corresponds to the level at which the moderator variable 

2x  is fixed. For Equation 

5.15, 
1xc  is omitted and 

2xc  takes the values 0, 1, and -1. Because 
2x  is fixed, it variable has zero 

variance and covariances, so the terms 2 2

2 2xc , 1 2 1 2 1, 22 x x x xc c r  , and 
2

2 3 1 2 1 2, 22 x x x x xc c    drop out, 

yielding the results in Equation 5.15. 

5.2.2 Bias-adjusted 2R  estimator 

The bias-correction approach implemented thus far is also appropriate for approximating 

the bias of the expected value of the moderated MLR 2R̂ , and constructing an improved 

estimator. The bias can be approximated using Equation 3.26, and the resulting adjusted 

estimator is  

 
2 1 1[( ) ] [( ) ] ,st st st st st st st

bias

− −    = − − − − − − −R I B jη Ω I Ψ I B jη Ω I Δ   (5.17) 

where the elements of biasΔ  corresponding to outcome variables contain (1/2) {var( ) }tr B H  and 

zero otherwise. For a moderated MLR model with two predictors 1x  and 2x  and their interaction, 

the estimated bias is  
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  
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 

  

     

        

    
    

=     
    

   

= + + + + +

B H

1 2, 2.x x

 

 (5.18) 

 A second order correction is not necessary as the parameters in the bias term are linear. Equation 

5.17 may also be applied to estimates of conditional 2R  in Section 5.2.1. 
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5.3 Summary 

Chapter 5 reviewed the concept of moderation in MLR, and proposed a general method for 

expressed explained variance and bias adjustment for moderated MLR models. In Chapter 6, the 

general solutions for explained variance and bias adjustment are applied to extend the effect size 

to moderated mediation models. 
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6 EXTENDING   TO MODERATED MEDIATION MODELS 

6.1 Moderated Mediation 

Researchers often theorize that the effect of a construct varies across populations with 

differing characteristics. In multiple regression analysis, this is commonly modeled by including 

an interaction term in the regression equation so the effect of variable, called a focal predictor, on 

the outcome can vary across levels of another variable, called a moderator. This modeling 

approach can be extended to mediation analysis where indirect effects can vary across levels of a 

moderator. This is referred to as moderated mediation analysis, or conditional process modeling 

(Edwards & Lambert, 2007; Hayes, 2013; Preacher, Rucker, & Hayes, 2007). Although several 

conflicting definitions of moderated mediation exist in the statistical literature (Preacher et al., 

2007), moderated mediation is defined as occurring when indirect effects vary across levels of at 

least one moderator, regardless of which constituent path of the indirect effect is moderated. 

Indirect effects in a moderated mediation model are termed conditional indirect effects. 

Preacher et al. (2007) illustrated five prototypical examples in which mediation effects 

can be moderated by a single covariate or by multiple covariates. In subsequent sections, effect 

sizes will be proposed for each of the cases of moderated mediation as examples of the general 

effect size framework. In the first case x is also a moderator of the relationship between m and y. 

The equation representing the effect of x on m is the same as in the simple three-variable model 

(Equation 2.27), and the equation for the effect of m and x on y where the effect of m is 

moderated by x is 

 
0 ,yx ym yxm yy B B x B m B xm = + + + +x x x

  (6.1) 
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where 
yxmB

x
 is the effect of the interaction effect of x and m on y. The effect of the moderator on 

the indirect effect can be seen more clearly by re-expressing Equation 6.1 in reduced form as 

 
0 ( ) ,yx ym yxm yy B B x B B x m = + + + +x x x

  (6.2) 

Therefore, the conditional indirect effect for Case 1 is ( )mx ym yxmB B B x+
x x

.  

Case 2 considered in Preacher et al. (2007) is where a covariate w is a moderator of the 

effect of x on m. Equation 2.26 is now expanded to include the covariate and the interaction term 

 
0 ,mx mw mxw mm B B x B w B xw = + + + +x x x

  (6.3)  

where 
mwB

x
 is the effect of the covariate w on m controlling for x and the interaction xw, and 

mxwB x
 is the effect of the interaction of x and w on y. The model for the effects of x and m on y 

remain the same as in the simple three-variable model (Equation 2.27), so the conditional 

indirect effect for Case 2 is ( )mx mxw ym xB B w B+
x x

. 

Case 3 is where z is a moderator of the effect of m on y. The equation relating x and m is 

the same as in Equation 2.26, and the equation for the effect of m on y as moderated by z 

controlling for x is 

 
0 ,yx ym yz ymz yy B B x B m B z B mz = + + + + +x x x x

  (6.4) 

where 
ymzB

x
 is the interaction effect of m and z on y controlling for x, m, and z. The effect of m 

on y controlling for x in Equation 6.4 is conditional on levels of z, so the conditional indirect 

effect is ( )mx ym ymzB B B z+
x x

. 

 Case 4 is where a covariate w moderates the effect of x on m and a covariate z moderates 

the effect of m on y. The equation relating m to x and w is the same is in Equation 6.3, and the 
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equation relating y to m, x, and z is the same as in Equation 6.4. The conditional indirect effect is 

( )( )mx mxw ym ymzB B w B B z+ +x x x x
. 

Case 5 considered is where w moderates the effect of x on m, as well as the effect m on y. 

The effect of x and w on m is the same as in Equation 6.4, and the effects of x, m, and w on y are 

 .y yx ym yw ymw yy B B x B m B w B mw = + + + + +x x x x
 (6.5) 

The conditional indirect effect for this model is ( )( )mx mxw ym ymwB B w B B w+ +x x x x
. 

 Overall, the five cases presented in this section represent a small subset of the possible 

conditional indirect effects that may be examined in moderated mediation (Hayes, 2013). 

However, these cases are instructive for conveying the complexities introduced when applying 

the effect size  .  

6.2   for Moderated Mediation 

  can be obtained for each of the moderated mediation models previously presented by 

combining the moderated MLR findings of Chapter 5 with the general matrix framework in 

Chapter 4. Assuming variables are standardized, the LISCOMP expression for the total effects 

for a moderated mediation model (Chapter 5) from a matrix of conditional effects st

MODB  (

st st st st

MOD
= +B B jη Ω ) is 

 1( ) ,st st

MOD MOD

−= − −T I B I   (6.6) 

which is modified as in Chapter 4 to obtain the matrix of conditional indirect effects st

MODM   

 .st st st

MOD MOD MOD= −M T B   (6.7) 
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The matrix of conditional indirect effects can then be substituted into Equation 4.17 to obtain a 

matrix of conditional effect sizes 
MOD   

 

1/2 1/2

,

MOD MOD MOD

st st st

MOD MOD

− −=

=

D M ΨM D

M Ψ M


  (6.8) 

where D consists of the appropriate variances for standardizing interaction terms (Muthén & 

Asparouhov, 2015; Wen et al., 2010). It should be noted that, whereas the moderated 2R  

formulas of Chapter 5 were presented for the total model 2R , the indirect effects for moderated 

mediation are conditional on specific values of the moderator, so the resulting effect sizes are 

also conditional on moderator values. 

6.2.1 Effect sizes for prototypical moderated mediation cases 

For clarity of presentation, models for the five prototypical cases of moderated mediation 

are considered to be for manifest rather than latent variables. For Case 1 (the predictor moderates 

the effect of the mediator on the outcome), the matrix of conditional effects st

MODB  is expressed 

as 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0

0 0 0

0 0 .

0

st st st st

MOD

st

x ymx

st

mx m

st

yx ym y

mx

st

yx ym ymx x

 

 

  



   

= +

      
      

= +       
            

 
 

=  
 + 

x

x x

x x x

B B jη Ω

  (6.9) 

The matrix of indirect effects st

MODM  from st

MODB  is 
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1( )

0 0 0

0 0 0 .

( ) 0 0

st st st

MOD MOD MOD

st

mx ym ymx x   

−= − − −

 
 

=  
 + x x

M I B I B

  (6.10) 

MOD  is then calculated from st

MODM  

 

2

2

2

2 2

0 0 0 0 0 0

0 0 0 0 0 0 0

( ) 0 0 0 0 ( ) 0 0

0 0 0

0 0 0 .

0 0 ( ( ))

st st st

MOD MOD MOD

st

x

st

m

st st st

mx ym ymx x y mx ym ymx x

st st

mx ym ymx x x





        

    

=

    
    

=     
    + +    

 
 

=  
 + 

x x x x

x x

M Ψ M

  (6.11)  

As described in Chapter 5, the effect size 2 2( ( ))st st

mx ym ymx x x    +x x  consists of products of st

x

, which are the covariance between st

x  and 2st

x  ( 2,x x
 ), and the variance of 2st

x  ( 2

2

x
 ). 

Substituting these findings into Equation 6.11 yields the   for Case 1 as  

 2 2

2 2 2 2 2 2 2

,
2 ,st st

MOD mx ym mx ymx x mx ym ymx xx x x
           = + +x x x x   (6.12) 

where x is the conditional value of the predictor at which MOD  is evaluated. This means that, 

because x is standardized, MOD  at the mean of x is equivalent in form to   for a simple three-

variable mediation model. However, when 2 0mx  , MOD =  only if 2 2

ym ym x =x , or when 

there is no effect of the interaction.  

  has several desirable properties as an effect size measure for conditional indirect 

effects in moderated mediation models illustrated in Case 1. As demonstrated in Lachowicz et al. 
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(2018),   is interpretable as the variance explained indirectly in an outcome by a predictor (or 

set of predictors) through a mediator (or set of mediators). In a moderated mediation model, the 

variance explained indirectly is conditional on the values of the moderator.   is standardized, so 

it is invariant to changes in the scales of the predictor, mediator, and outcome.   is also 

monotonically related to its respective conditional indirect effect. In addition, 95% CIs can be 

obtained for   using a bootstrapping procedure. Finally, the matrix-based approach allows for   

to be obtained for moderated mediation models more complex than the five cases previously 

illustrated (e.g., moderated mediation with covariates, multiple mediators, multiple moderators). 

The derivation of   for Case 2 (covariate w moderates the effect of x on m) is not as 

straightforward as for Case 1. Specifically, following the same steps as in the derivation for   

for Case 1 results in an effect size for a quantity that is not the squared standardized conditional 

indirect effect. Repeating the procedure followed in Case 1, the reduced form matrix of 

standardized conditional regression coefficients st

MODB  (x is designated the focal predictor) is 

 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

st

x

st

w mxwst

MOD st
mx mw m

st
yx ym y

st

mx mxw w mw

yx ym

x

w

m

y

x

w

m

y



 

  

  

   

 

      
      
      = +
      
      

         

 
 
 =
 +
 
  

x

x x

x x

x x x

x x

B

.

  (6.13) 

The matrix of standardized conditional indirect effects st

MODM  is calculated from st

MODB  as 
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0 0 0 0

0 0 0 0
,

0 0 0 0

( ) 0 0

st

MOD

st

mx mxw w ym mw ym     

 
 
 =
 
 

+  x x x x x

M   (6.14) 

and 
MOD  is calculated from st

MODM  is 

 
2 2 2 2

0 0 0 0

0 0 0 0

0 0 0 0 .

(( ) ) ( )
0 0 0

2( )

MOD

st st st

mx mxw w ym x mw ym w

st st

mx mxw w ym mw ym xw

       

      

 
 
 
 =
 

+ + + 
 

+ 

x x x x x

x x x x x

   (6.15) 

  in this case consists of variance explained y indirectly by x through m conditional on w (

2 2 2( )st st

mx mxw w ym x    +x x x ), variance explained in y indirectly by w through m ( 2( )mw ym x x ), 

and the covariance of the indirect effects of x and w on y through m (

2( )st st

mx mxw w ym mw ym xw      +x x x x x ). This shows that straightforward application of the matrix 

method results in   that quantifies the total variance explained indirectly from all of the 

conditional indirect effects on a specific outcome. However, in many cases it is of interest to 

report an effect size for a specific conditional indirect effect, and   obtained here consists of 

variance explained indirectly from several sources. 

   is derived for a specific conditional indirect effect using a modification of the matrix 

method described in Chapter 4. To obtain the specific   for the conditional indirect effect

2 2 2( )st st

mx mxw w ym x    +x x x , st

MODB  is modified by pre- and post- multiplication by an elementary 

matrix O that replaces the regression coefficient mx x  with zero, resulting in a modified matrix 

of coefficients *st

MODB  
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*

0 0 0 01 0 0 0 1 0 0 0

0 0 0 00 0 0 0 0 0 0 0

0 00 0 1 0 0 0 1 0

0 00 0 0 1 0 0 0 1

0 0 0 0

0 0 0 0
.

0 0 0

0 0

st st

MOD MOD

st

mx mxw w mw

yx ym

st

mx mxw w

yx ym

   

 

  

 

=

    
    
    =
 +   
    
     

 
 
 =
 +
 
  

x x x

x x

x x

x x

B OB O

  (6.16) 

The matrix of indirect effects *st

MODM  is calculated from *st

MODB  as 

 
*

0 0 0 0

0 0 0 0
,

0 0 0 0

( ) 0 0 0

st

MOD

st

mx mxw w ym   

 
 
 =
 
 

+  x x x

M   (6.17) 

and *

MOD  is calculated from *st

MODM  as 

 
*

2

0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0 (( ) )

MOD

st

mx mxw w ym   

 
 
 =
 
 

+  x x x

   (6.18) 

As in Case 1, MOD  incorporates products of variances and covariances of product terms, 

expressed as 

 2 2 2 2 2 2 2

,2 ,st st

MOD mx ym mx ymx w xw mx ym ymx w xw x           = + +x x x x   (6.19) 
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where 2

xw  is the variance of the product term xw, and ,xw x  is the covariance of x with the 

product term. In addition, as in Case 1, the conditional variance in y explained indirectly by x 

through w at the mean of w is equivalent to   from the simple three-variable mediation model. 

  for Cases 1 – 5 can be found in Table 13. For models where the specific and total   

differ as in Case 2, the specific and total   are provided assuming that the indirect effect of x is 

of primary interest. Derivations for   in the remaining Cases 3 – 5 follow the same procedures 

as in Cases 1 and 2. 

6.2.2 Bias-adjusted estimator of conditional   

The bias-correction approach used thus far is again implemented to adjust for bias in the 

expected value of ˆ
MOD  to yield an improved estimator 

MOD . The general form of the bias-

adjusted estimator is 

 ˆ ˆˆ ˆ .st st st

MOD MOD MOD bias
 = −M Ψ M Δ  (6.20) 

where the elements of ˆ
bias
Δ  corresponding to outcome variables consist of

1(1/ 2) {var( ) } (1/ 4) {var( ) }tr tr−B H B H , and zero otherwise (Equation 3.26). For the Case 1 

moderated mediation model, the estimated bias correction is  

 

2 2 2 2 2 2 2 2 2

, ,

2 2 2 2 2 2 2 2 2

,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 .

st st

bias y ym mx mx ym ym ymx x mx mx x ym ymx ymx x mx

st st st

mx x ymx ym mx x ym ymx mx x ymx mx

             

          

 = + + + + +

− − −

x x x x x x x

x x x x x

  (6.21) 

 At the mean of the moderator (i.e., mean of standardized x), the bias-adjustment is equivalent to 

  for the three-variable mediation model (
2 2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆ
ym mx mx ym ym mx     + −x x x ), and at +1 standard 

deviation above the mean of x is 
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2 2 2 2 2 2 2 2

,

2 2 2 2 2 2 2

,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 .

ym mx mx ym ym ymx mx mx ym ymx ymx mx

mx ymx ym mx ym ymx mx ymx mx

          

       

+ + + + +

− − −

x x x x x x x

x x x x x

 

Bias adjustments for the five prototypical cases of moderated mediation previously described can 

be found in Table 13. 

6.3 Simulation Study 

The purpose of the present simulation study is to examine the sampling properties of the 

unadjusted and bias-adjusted effect size estimators ̂  and   in a moderated mediation model. As 

in the simulation in Chapter 4, of interest is determining whether the matrix generalization and 

bias-adjustment yield estimators with good statistical properties in terms of bias, variance, and 

overall accuracy, and whether common interval estimation methods return proper CIs for the 

estimators. 

6.3.1 Simulation Design 

The generating model for this simulation was a moderated mediation model with a single 

predictor x, outcome y, mediator m, and interaction between x and m (Figure 3). Variables in this 

simulation were considered standard normal in the population. Because effect sizes can be 

estimated for the indirect effect conditional on levels of the moderator, two levels were chosen 

for the simulation: a) the conditional indirect effect of x on y through m  at the mean of 

standardized x (
mx ym 

x
), and b) at +1 SD above the mean of x ( ( )mx ym ymx  +x x

).  

6.3.2 Simulation Conditions 

Parameter values for the paths were varied among .15, .39, and .59, magnitudes for small, 

medium, and large standardized coefficients common in applied research. As in the previous 

simulation, values consistent with the null hypothesis of no indirect effect were not considered in 
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this simulation because zero is on the boundary of the parameter space. Sample size was varied 

among 50, 100, 250, and 500. This yields a total of 3x3x3x4 = 108 total conditions. Percentile 

and BCa 95% CIs (Section 2.3) were evaluated for ̂  and  . As in the previous simulation, it 

was expected that BCa CIs will outperform percentile CIs in terms of coverage and balance, 

particularly in conditions with small effect magnitudes. 

1,000 replications per condition is sufficient to obtain accurate estimates of bias for point 

estimates and coverage for CIs, and 1,000 bootstrap resamples are used to construct 95% CIs. 

The point estimators will be evaluated in terms of bias, overall accuracy, and relative efficiency, 

and CIs will be evaluated in terms of coverage and coverage balance. 

6.3.3 Evaluation criteria 

Evaluation criteria were those detailed in Section 4.4.3. It is unclear how or if the 

sampling properties of the estimators of   would differ at the mean of x as compared to +1 SD 

above the mean of x, so this question will be addressed empirically. 

6.4 Simulation Results 

6.4.1 Bias 

Simulation results for the relative bias of ̂  for the conditional indirect effect at the mean 

of standardized x can be found in Table 14, where shaded cells highlight relative bias > 5%. 

Results were generally consistent with results from the previous simulation. The hypothesis that 

̂  would be positively biased, with larger magnitudes of bias at smaller N and for smaller effect 

sizes, and decreasing magnitudes as N and effect magnitude increased, was supported by the 

simulation results. The direction of bias for ̂  was positive in all conditions, consistent with 

analytic results. For the smallest effect magnitudes ( .15 = ), bias was non-negligible at all 

sample sizes, and in those conditions with the smallest N (N = 50), percent relative bias 
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(290.84%, 238.9%, and 206.6%) was of the largest magnitude across all conditions. Increasing N 

was associated with decreasing bias, supporting the hypothesis that ̂  is a consistent estimator. 

Finally, bias of ̂  was negligible for large effect magnitudes of the conditional indirect effect for 

all sample sizes. 

Simulation results for percent relative bias of   also can be found in Table 14. The 

hypothesis that bias of   would be negligible across simulation conditions was largely supported 

by simulation results. As in the previous simulation, percent relative biases for   were of much 

smaller magnitude than for ̂ . For the conditions in which bias was greatest for the ̂ , the 

relative biases of   were –3.98%, -4.44%, and –9.88%. Overall, the largest magnitude of relative 

bias across conditions for   was –24.39% at N = 50. 12 of the 27 conditions at N = 50 

demonstrated non-negligible bias, 6 at N = 100, 2 at N = 250, and none at N = 500. Finally, as 

with ̂ , bias decreased as N increased, supporting the hypothesis that   is a consistent estimator. 

Results for relative bias of effect size estimators of the conditional indirect effect at +1 

standard deviation above the mean of standardized x can be found in Table 15. Findings were 

generally similar to those for the conditional indirect effect at the mean of x. For both estimators, 

hypotheses regarding the magnitude and direction for the specific indirect effect were supported. 

For ̂ , the largest values of relative bias (272.15%, 105.65%, and 103.89%) occurred at the 

smallest N, and relative bias was non-negligible for these effects even at the largest sample size. 

For  , relative bias was non-negligible in 18 of the 27 effect magnitude conditions at N = 50, in 

3 conditions at N = 100, and in no conditions at N = 250 and N = 500. Although bias tended to be 

negative at smaller sample sizes, the magnitude of bias showed no clear relationship with effect 

magnitude. Finally, increasing N was associated with decreasing bias for both estimators. 
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6.4.2 Accuracy and Relative Efficiency 

Simulation results of MSE and RE for effect size estimators of the conditional indirect 

effect at the mean of x can be found in Table 16, and for the conditional indirect effect at +1 

standard deviation above the mean of x in Table 17. Shaded cells highlight conditions where the 

MSE of   was greater than that of ̂ , and where 1RE   (i.e., variance of ˆ  ). Increasing N 

was associated with decreasing MSE for both estimators of both conditional effects, supporting 

the hypothesis that overall accuracy of the measures would increase with increasing N. It was 

also clear that, for both effects, outside of a few conditions,   was a more accurate estimator of 

  than ̂ . In addition, it was clear that across the vast majority of conditions   was a more 

efficient estimator. Finally, the magnitudes of the accuracy and efficiency discrepancies between 

the estimators were dependent on sample size and effect magnitudes, such that differences were 

largest for the smallest sample sizes and smallest effects. 

6.4.3 Confidence Intervals 

Results for 95% percentile bootstrap CIs of ̂  and   for the conditional indirect effect at 

the mean of x can be found in Tables 18 and 19, respectively, and for the conditional indirect 

effect +1 standard deviation above the mean of x in Tables 20 and 21, respectively. Shaded cells 

highlight conditions where satisfactory coverage (92.5% – 97.5%) was not achieved. The 

hypotheses that coverage would reach the nominal 95% level as N increased, and that the 

proportions of misses to the left and right of the 95% CI would be balanced, were supported by 

simulation results. As with bias, satisfactory coverage was achieved with larger effect sizes and 

at larger N for both estimators and effects, such that satisfactory coverage was achieved for all 

parameter combinations at N = 250. In addition, misses to the left and right of the 95% CI were 
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approximately balanced at N = 250 for both estimators and effects. When satisfactory coverage 

was not achieved, it was predominantly due to coverage > 97.5%, or CIs being too wide. 

Results for 95% BCa bootstrap CIs of estimators for the conditional indirect effect at the 

mean of x can be found in Tables 22 and 23, respectively, and for the conditional indirect effect 

at +1 standard deviation above the mean of x in Tables 24 and 25, respectively. The hypotheses 

that that nominal coverage would converge to a satisfactory level, and that the proportions of 

misses to the left and right would achieve balance, were generally supported by the results as 

well. Similar to the percentile CIs, satisfactory coverage was generally achieved for larger N and 

larger effect magnitudes, and achieved for all parameter combinations at N = 500 both estimators 

and effects. As with the CI methods for the multiple mediator model, there were noteworthy 

differences between the results. In contrast to the percentile CIs, when satisfactory coverage was 

not achieved, it was predominantly due to coverage < 92.5%, or CIs being too narrow. In 

addition, whereas percentile CIs for both conditional effects achieved satisfactory coverage at the 

same sample size (N = 250), BCa CIs required sample sizes of 500 for satisfactory coverage in 

the majority of conditions. 

6.5 Empirical Example 

I now present an empirical example to facilitate interpretation and implementation of   

for a moderated mediation model. I use the results from a study conducted by Alexopolous and 

Cho (in press) that investigated the conditional pathway through which risk taking has a 

downstream effect on sexual behavior. Like the example in Chapter 4, the authors used ADD 

Health (Harris, 2009). The authors examined the indirect effect of risk taking on sexual behavior 

through alcohol use, conditional on level of parent child communication. Analyses were 

conducted with those female participants that had observations on these variables at Wave 4 (N = 
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1233). The predictor variable of risk taking was assessed using a single item asking whether the 

participant “liked to take risks”, where higher values indicated greater propensity for risk taking. 

The mediator variable of alcohol use was assessed using a single item of the number of drinking 

days in the past 30 days. The outcome variable of sexual behaviors was assessed using a single 

item of the participant’s total number of sexual partners. The moderating variable of parental 

communication was assessed using a composite of six items, where three items measure the 

frequency and quality of communication between the participant and their mother, and the 

remaining three items measure the frequency and quality of communication between the 

participant and their father. 

Results presented here differ slightly form the original study results because relevant 

control variables were excluded to simplify analyses. The standardized indirect effect of risk 

taking on sexual behavior through alcohol use at the mean of parental communication (i.e., 0) 

was 0.0097 (95% percentile CI = .0032, .0181), at one standard deviation below the mean of 

parental communication was 0.0029 (95% percentile CI = –.0106, .0162), and at one standard 

deviation above the mean of parental communication was 0.0164 (95% percentile CI = .0051, 

.0332). 

For the   estimators, the ̂  effect size estimate for the indirect effect at the mean of 

parental communication was 0.00009 (95% percentile bootstrap CI = .00002, .00056), meaning 

that the variance explained indirectly in sexual behaviors by risk taking through alcohol use at 

the mean of parental communication was 0.00009. The   effect size estimate for the indirect 

effect at the mean of parental communication was 0.00008 (95% percentile bootstrap CI = 

0.00001, 0.00056).   is interpreted as the estimated variance in sexual behaviors explained by 

risk taking through alcohol use at the mean of parental communication in the population. The ̂  
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effect size estimate for the indirect effect at one standard deviation below and above the mean of 

parental communication were 0.00013 (95% percentile bootstrap CI = .00001, .00033) and 

0.00015 (95% percentile bootstrap CI = .00002, .00059), respectively. This means that the 

variance explained indirectly in sexual behaviors by risk taking through alcohol use at one 

standard deviation below the mean of parental communication was 0.00013, and at one standard 

deviation above the mean of parental communication was 0.00015. The   effect size estimate for 

the indirect effect at one standard deviation below and above the mean of parental 

communication were 0.00011 (95% percentile bootstrap CI = .000003, .00059) and 0.00012 

(95% percentile bootstrap CI = .000009, .00053), respectively. 

6.6 Summary 

In Chapter 6, the effect size   was extended to moderated mediation models, or models 

with conditional indirect effects. Unadjusted and bias-adjusted estimators were derived for five 

prototypical examples of moderated mediation effects. A Monte Carlo simulation was conducted 

to investigate the sampling properties of the effect size estimators. Chapter 7 will summarize the 

findings of the dissertation, and discuss limitations and future directions.  
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7 CONCLUSION AND DISCUSSION 

7.1 Summary 

The goal of the dissertation was to develop a generalizable effect size measure for 

mediation analysis. Chapter 2 reviewed effect sizes for common study designs, mediation 

analysis, and effect size in mediation analysis. Introduced in Chapter 2 was the effect size 

measure upsilon, which was shown to have many desirable properties for a general effect size 

measure for indirect effects in mediation analysis. Chapter 3 reviewed a matrix-based framework 

for MLR models and SEM that would be used as a general framework for extending the effect 

size   to more complex models. Chapter 4 proposed a generalizable effect size measure and 

sample estimators for complex mediation models including models with multiple mediators, 

predictors, and covariates. Chapter 5 proposed a general matrix framework for explained 

variance in moderated MLR. Chapter 6 further extended the mediation effect size to conditional 

indirect effects.  

7.2 Primary Contributions 

7.2.1 General effect size measure for mediation 

The primary contribution of this work is a generalizable measure of effect size for 

indirect effects in mediation analysis. The effect size   was shown to be applicable to a wide 

variety of mediation models used in applied psychological research, including models with 

multiple parallel and serial mediators, multiple predictors, and covariates in Chapter 4, and 

conditional indirect effects in Chapter 6. The effect size   proposed in Lachowicz et al. (2018) 

for simple three-variable mediation models served as basis for these extensions. In addition, the 

concept of explained variance in moderated MLR was developed to extend   to conditional 

indirect effects. 
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The effect size   has several desirable properties as an effect size for mediation analysis. 

First,   is a standardized measure of effect size, which yields effect sizes for indirect effects that 

are comparable within and across studies. Second,   is interpretable as a measure of explained 

variance. Although benchmarks are commonly applied for small, medium, and large proportions 

of variance in traditional research designs (Cohen, 1988), it is unclear whether the effects from 

traditional designs are comparable to indirect effects from complex mediation models (e.g., total 

indirect effect of several mediators, conditional indirect effect). Therefore, it would desirable to 

develop benchmarks for these effects from the accumulation of findings within specific research 

domains. It is also important to note that   can be greater than 1 when suppression is evident 

(i.e., direct and indirect effect have opposite signs), so this measure is not strictly proportion. 

Third, the matrix-based framework (i.e., LISCOMP) for   makes the effect readily 

generalizable to many types of mediation models. Fourth, two sample estimators were proposed 

for   ( ̂  and  ). Although bias of both estimators was negligible for the largest total, specific, 

and conditional indirect effect magnitudes, bias for   was negligible in many more conditions 

than ̂ . In addition,   was demonstrated to be a more accurate estimator in terms of MSE than 

̂  in the vast majority of study conditions. Fifth, 95% CIs can be constructed for   using a 

bootstrap procedure. Although percentile and BCa methods perform satisfactorily in terms of 

coverage and balance at large sample sizes for the indirect effects considered in the simulations 

(i.e., N > 500), results show that the percentile method outperforms the BCa method for smaller 

sample sizes. 

The review of effect sizes in Chapter 2 showed that many sample estimators of 

standardized effect sizes are biased, and bias-adjusted estimators are often recommended. With 

the exception of the effect size based on the standardized mean difference (Hansen & McNeal, 
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1996),   is the only standardized effect size for mediation analysis with a bias-adjusted 

estimator. However, unlike the Hansen and McNeal (1996) measure, the sampling properties of 

the unadjusted and bias-adjusted   estimators and CIs were evaluated with Monte Carlo 

simulation studies. 

As a measure of explained variance,   is generalizable to a larger class of mediation 

models than other standardized measures. More specifically, as shown in Chapters 2 and 3, 

measures of explained variance can be used to quantify not only bivariate relationships, but also 

relationships between an outcome and several predictors. This means that, in addition to indirect 

effects with a single predictor and outcome,   can be used to quantify the variance explained in 

an outcome indirectly by several predictors, including the overall variance explained via the 

indirect effect of a multi-categorical predictor. 

7.3 Limitations 

7.3.1 Variable standardization 

The effect size derivations in this dissertation assumed the variances of the variables used 

to standardize indirect effects were fixed, known quantities. Although this is common practice in 

coefficient standardization, variable variances can also be considered to vary randomly across 

samples. Assuming these variances are stochastic rather than fixed means the sampling 

distribution of ̂  would also incorporate the distributions of the variables used for 

standardization, which would add further complexity to the derivation of the expected value of 

̂  for bias adjustment. However, simulation results show that bias for   was negligible in the 

majority of simulation conditions for both the multiple mediator and conditional mediator 

models, and of relatively small magnitude in those conditions where bias was non-negligible. It 

is possible that the sampling variability of the variances has a systematic effect on the bias of  , 
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perhaps responsible for the negative bias trend observed in   for small sample sizes and small 

effect magnitudes. 

7.3.2   for latent variable models 

Because the   extensions use the LISCOMP SEM framework, it is possible to obtain 

effect sizes for indirect effects among latent variables. However, the results of the dissertation 

are limited to mediation models with manifest variables, and caution should be taken if   is to 

be applied to models with latent variables. The primary reason for this caution is that, because 

SEM separates construct relevant variance from error variance, it is questionable if 
2R estimates 

obtained from a latent structural model are comparable to estimates from models with manifest 

variables. More specifically, it would be expected that 
2R  estimates would be larger for latent 

variable models as compared to manifest variable models because the total variance of manifest 

outcomes includes measurement error, a source a variance that would not be explainable by 

predictors.  

Also relevant is the issue of standardization in latent variable models. The standardization 

in 3.24 is of the same form used when standardizing coefficients in MLR (i.e., dividing by 

variable standard deviations), but in SEM there is no estimated parameter that corresponds to the 

total variance for endogenous variables, only parameters for residual variances (Ψ ). This 

complicates the process of standardization, where the improper standardization (e.g., analyzing a 

correlation matrix as a covariance matrix) can result in misleading measures of model fit and 

standard error estimates (Cudeck, 1989; McDonald & Ho, 2002). 
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7.3.3 Explained variance in non-recursive models 

 The interpretation of  
2R  in SEM becomes more complicated when models are non-

recursive (Bentler & Raykov, 2000; Teel, Bearden, & Sharma, 1984). When a model contains a 

feedback loop, it is unclear how to attribute variance explained to specific sources. For example, 

if two variables 
1x  and 

2x  are considered predictors and outcomes of one another, the variance 

explained in 
1x  can partially be attributed to not only 

2x , but also 
1x  because 

1x  is considered a 

cause of 
2x . Using traditional measures of 

2R  in these circumstances results in inflated estimates 

of explained variance. Although methodologists have proposed more general computational 

forms for 
2R  in SEM to account for this issue (Bentler & Raykov, 2000; Teel et al., 1986), 

consensus has not yet been reached regarding how to most appropriately define and compute 
2R  

in non-recursive models. Because of this uncertainty, and the more general issues of 

interpretation for non-recursive models, the effect size extensions described in this dissertation 

are limited to recursive models. 

7.4 Future Directions 

The results of this dissertation offer several promising directions for future research. One 

is investigation of   for indirect effects in latent variable models. Given the ease with which 

latent variables are modeled with the LISCOMP framework, it is important that the desirable 

properties of   estimators translate to indirect effects in latent variable models, including 

models with conditional effects among latent variables (i.e., latent interactions; Klein & 

Moosbrugger, 2000). Another important extension of   is to mediation models in clustered 

data, which can be modeled in the LISCOMP framework using multilevel structural equation 

modeling (MSEM; Preacher, Zyphur, & Zhang, 2010). This extension poses additional 
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challenges, particularly for the derivation of bias-adjusted sample estimators, because the 

assumption of independence for regression coefficients across equations can be violated 

independence is a key assumption when deriving the bias in the expected value of ̂  in Chapters 

4 and 6. 

Another promising direction for future research is in evaluation and comparison of 

additional CI estimators. Although the percentile CIs performed well in many of the simulation 

conditions, both percentile and BCa CIs were unstable for small sample sizes and for small 

indirect effect magnitudes. Additional interval estimators that could be evaluated for 

performance in these conditions include bias-corrected bootstrap CIs without an acceleration 

constant (MacKinnon et al., 2004), Monte Carlo CIs (Preacher & Selig, 2012), and Bayesian 

credibility intervals (Yuan & MacKinnon, 2009).  

7.5 Conclusion 

In conclusion, the results of this dissertation show that   is a theoretically meaningful 

and useful measure of effect size for indirect effects of many types of mediation models. 

Furthermore, the bias-adjusted sample estimator   has been demonstrated to have good 

statistical properties in many study design conditions common in applied research.  

  



113 

 

References 

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. 

Thousand Oaks, CA: SAGE. 

Alexopoulos, C., & Cho, J. (in press). A moderated mediation model of parent–child 

communication, risk taking, alcohol consumption, and sexual experience in early 

adulthood. Archives of Sexual Behavior.  

Algina, J. (1999). A comparison of methods for constructing confidence intervals for the squared 

multiple correlation coefficient. Multivariate Behavioral Research, 34(4), 493-504. 

Algina, J., Keselman, H. J., & Penfield, R. D. (2005). An alternative to Cohen’s standardized 

mean difference effect size: A robust parameter and confidence interval in the two 

independent groups case. Psychological Methods, 10(3), 317-328. 

Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American 

Sociological Review, 40, 37-47. 

Arnold, H. J. (1982). Moderator variables: A clarification of conceptual, analytic, and 

psychometric issues. Organizational Behavior and Human Performance, 29(2), 143–174. 

Aroian, L. A. (1947). The probability function of the product of two normally distributed 

variables. Annals of Mathematical Statistics,18, 265-271. 

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the 

Academy of Marketing Science, 16(1), 74–94. 

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social 

psychological research: Conceptual, strategic, and statistical considerations. Journal of 

Personality and Social Psychology, 51(6), 1173-1182. 

Bird, K. D. (2002). Confidence intervals for effect sizes in analysis of variance. Educational and 

Psychological Measurement, 62(2), 197-226. 



114 

 

Bohrnstedt, G. W., & Goldberger, A. S. (1969). On the exact covariance of products of random 

variables. Journal of the American Statistical Association, 64(328), 1439-1442. 

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. 

Sociological Methodology, 17, 37-69. 

Bollen, K. A. (1989). Structural equations with latent variables. Oxford, England: John Wiley & 

Sons. 

Boomsma, A. (2013). Reporting Monte Carlo Studies in Structural Equation Modeling. 

Structural Equation Modeling, 20(3), 518–540. 

Box, M. J. (1971). Bias in nonlinear estimation. Journal of the Royal Statistical Society. Series B 

(Methodological), 171-201. 

Bradley, J. V. (1978) Robustness? The British Journal of Mathematical and Statistical 

Psychology, 31, 144-152. 

Canty, A. & Ripley, B. (2017). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-19. 

Champoux, J. E., & Peters, W. S. (1987). Form, effect size and power in moderated regression 

analysis. Journal of Occupational Psychology, 60(3), 243–255. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence 

Erlbaum. 

Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997-1003. 

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation 

analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum. 

Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal 

Statistical Society, 30(2), 248–275. 

Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. London: Chapman and Hall/CRC. 



115 

 

Craig, C. C. (1936). On the frequency function of xy. Annals of Mathematical Statistics, 7, 1-15. 

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. 

Psychological Bulletin, 105(2), 317. 

Davison, A., & Hinkley, D. (1997). Bootstrap methods and their application (Cambridge Series 

in Statistical and Probabilistic Mathematics). Cambridge: Cambridge University Press. 

de Heus, P. (2012). R squared effect-size measures and overlap between direct and indirect effect 

in mediation analysis. Behavior Research Methods, 44, 213-221. 

Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: a 

general analytical framework using moderated path analysis. Psychological Methods, 

12(1), 1–22. 

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second 

order efficiency). Annals of Statistics, 3(6), 1189–1242. 

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical 

Association, 82(397), 171-185. 

Ezekiel, M. (1930). Methods of correlational analysis. New York: John Wiley & Sons. 

Fairchild, A. J., Mackinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). R2 effect-size 

measures for mediation analysis. Behavior Research Methods, 41, 486-498. 

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1), 27–38. 

Fisher, R. A., (1915). Frequency distribution of the values of the correlation coefficient in 

samples from an indefinitely large population. Biometrika, 10(4), 507-521. 

Frangos, C. C., & Schucany, W. R. (1990). Jackknife estimation of the bootstrap acceleration 

constant. Computational Statistics & Data Analysis, 9(3), 271-281. 



116 

 

Gentle, J. E. (2017). Matrix algebra: Theory, computations and applications in statistics. New 

York: Springer. 

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 

5(10), 3-8.  

Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical 

Association, 55(292), 708-713. 

Greenland, S., Schlesselman, J. J., & Criqui, M. H. (1986). The fallacy of employing 

standardized regression coefficients and correlations as measures of effect. Journal of 

Epidemiology, 123(2), 203-208. 

Greenland, S., & Poole, C. (2013). Living with p values: Resurrecting a Bayesian perspective on 

frequentist statistics. Epidemiology, 24, 62-68. 

Hall, P., & Martin, M. A. (1988). Exact convergence rate of bootstrap quantile variance 

estimator. Probability Theory and Related Fields, 80(2), 261–268. 

Hansen, W. B., & McNeal, R. B. (1996). The law of maximum expected potential effect: 

constraints placed on program effectiveness by mediator relationships, 11(4), 501–507. 

Harris, K. M., Halpern, C. T., Whitsel, E., Hussey, J., Tabor, J., Entzel, P. & Udry, J. R. (2009). 

The National Longitudinal Study of Adolescent to Adult Health: Research Design 

[WWW document]. URL: http://www.cpc.unc.edu/projects/addhealth/design. 

Hayes, W. L. (1973). Statistics for the social sciences. New York: Holt, Rinehart and Winston.  

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A 

regression-based approach. New York: Guilford Publications. 

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related 

estimators. Journal of Educational Statistics, 6(2), 107-128. 



117 

 

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic 

Press. 

Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to 

some educational problems. Statistical Research Memoirs, 1, 72-93. 

Jöreskog, & G, K. (1977). Structural equation models in the social sciences: Specification 

estimation and testing. Applications of Statistics, 265–287. 

Jöreskog, K.G. & Sörbom, D. (2015). LISREL 9.20 for Windows [Computer software]. Skokie, 

IL: Scientific Software International, Inc. 

Kaplan, D. (2008). Structural equation modeling: Foundations and extensions. Sage 

Publications. 

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and 

implementation. Journal of Statistical Software, 20, 1-24. 

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17, 137-152. 

Kelley, T. L. (1935). An unbiased correlation ratio measure. Proceedings of the National 

Academy of Sciences, 21(9), 554-559. 

Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent 

variables. Psychological Bulletin, 96(1), 201–210. 

Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and 

Psychological Measurement, 56(5), 746-759. 

Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction 

effects with the LMS method. Psychometrika, 65(4), 457-474. 



118 

 

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural 

equation models with multiple interaction and quadratic effects. Multivariate Behavioral 

Research, 42(4), 647-673. 

Kosmidis, I., & Firth, D. (2010). A generic algorithm for reducing bias in parametric estimation. 

Electronic Journal of Statistics, 4, 1097–1112. 

Kraemer, H. C. (2008). How and why criteria defining moderators and mediators differ between 

the Baron & Kenny and MacArthur approaches. Health Psychology, 27(2), S101-S108. 

Kraemer, H. C. (2014). A mediator effect size in randomized clinical trials. International Journal 

of Methods in Psychiatric Research, 23, 401-410. 

Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for 

mediation analysis. Psychological Methods, 23(2), 244–261. 

Li, Y. I., Starr, L. R., & Wray-Lake, L. (2018). Insomnia mediates the longitudinal relationship 

between anxiety and depressive symptoms in a nationally representative sample of 

adolescents. Depression and Anxiety, 35(6), 583–591. 

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage 

Publications. 

MacCallum, R.C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of 

dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40. 

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York: Taylor & 

Francis Group. 

MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect 

measures. Multivariate Behavioral Research, 30, 37-41. 



119 

 

MacKinnon, D. P., Lockwood, C. M., & Williams, J. C. (2004). Confidence limits for the 

indirect effect: Distribution of the product and resampling methods. Multivariate 

Behavioral Research, 39, 99-128. 

MacKinnon, D. P., Fritz, M. S., Williams, J. C., & Lockwood, C. M. (2007). Distribution of the 

product confidence limits for the indirect effect: Program PRODCLIN. Behavior 

Research Methods, 39, 384-389. 

Maxwell, S. E., Camp, C. J., & Arvey, R. D. (1981). Measure of strength of association: A 

comparative examination. Journal of Applied Psychology, 66(5), 525-534. 

Maxwell, S. E., & Delaney, H. D. (2003). Designing experiments and analyzing data: A model 

comparison perspective. Mahwah, N.J: Lawrence Erlbaum. 

McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation 

analyses. Psychological Methods, 7(1), 64–82. 

McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. 

Psychological Methods, 11(4), 386-401. 

Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the efficiency of psychometric 

signs, patterns, or cutting scores. Psychological Bulletin, 52(3), 194-216. 

Meeker, W. Q., Jr., Cornwell, L. W., & Aroian, L. A. (1981). Selected tables in mathematical 

statistics, volume VII: The product of two normally distributed random variables. 

Providence, RI: American Mathematical Society. 

Muthén, L. K. & Muthén, B. O. (1998-2018).  Mplus user’s guide (8th ed.). Los Angeles, CA: 

Muthén & Muthén. 

Muthén, B. O., & Asparouhov, T. (2015). Latent variable interactions. Version 1, November 2, 

2015. 



120 

 

Olkin, I., & Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. Annals of 

Mathematical Statistics, 29(1), 201–211. 

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation 

hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 

42(1), 185–227. 

Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for 

assessing multilevel mediation. Psychological Methods, 15(3), 209–233. 

Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative 

strategies for communicating indirect effects. Psychological Methods, 16, 93-115. 

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for 

indirect effects. Communication Methods and Measures, 6(2), 77-98. 

Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for 

assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 

189-205. 

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43(3/4), 353–360. 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. Hoboken, NJ: John Wiley 

& Sons. 

Schucany, W. R., Gray, H. L., & Owen, D. B. (1971). On bias reduction in estimation. Journal of 

the American Statistical Association, 66(335), 524–533. 

Searle, S. R. (1971). Linear models. New York: J. Wiley & Sons. 

Searle, S. R. (1982). Matrix algebra useful for statistics. New York: John Wiley & Sons. 



121 

 

Simon, H. (1957). Spurious correlation: A causal interpretation. Journal of the American 

Statistical Association, 49, 467-479. 

Smithson, M. (2001). Correct confidence intervals for various regression effect sizes and 

parameters: The importance of noncentral distributions in computing intervals. 

Educational and Psychological Measurement, 61, 605-632. 

Sobel, E. (1982). Asymptotic confidence intervals for indirect effects in structural equation 

models. Sociological Methodology, 13, 290-312. 

Steiger, J. H., & Lind, J. C., (1980, May). Statistically-based tests for the number of common 

factors. Paper presented at the annual Spring meeting of the Psychometric Society, Iowa 

City, IA. 

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of 

statistical models. In L. Harlow, S. Mulaik, & J. H. Steiger (Eds.), What if there were no 

significance tests? (pp. 221-257). Hillsdale, NJ: Erlbaum. 

Stone, C. A., & Sobel, M. E. (1990). The robustness of estimates of total indirect effects in 

covariance structure models estimated by maximum. Psychometrika, 55(2), 337-352. 

Teel, J. E., Bearden, W. O., & Sharma, S. (1986). Interpreting LISREL estimates of explained 

variance in nonrecursive structural equation models. Journal of Marketing Research, 

23(2), 164–168. 

Tofighi, D., MacKinnon, D. P., & Yoon, M. (2009). Covariances between regression coefficient 

estimates in a single mediator model. British Journal of Mathematical and Statistical 

Psychology, 62, 457-484. 

Wang, Z., & Thompson, B. (2007). Is the Pearson r2 biased, and if so, what is the best correction 

formula? The Journal of Experimental Education, 75, 109-125. 



122 

 

Wen, Z., Marsh, H. W., & Hau, K.-T. (2010). Structural equation models of latent interactions: 

An sppropriate standardized solution and its scale-free properties. Structural Equation 

Modeling, 17(1), 1–22. 

Wen, Z., & Fan, X. (2015). Monotonicity of effect sizes: Questioning kappa-squared as 

mediation effect size measure. Psychological Methods, 20, 193-203.  

Wilkinson, L., & the American Psychological Association Task Force on Statistical Inference. 

(1999). Statistical methods in psychology journals: Guidelines and explanations. 

American Psychologist, 54, 594-604. 

Wilcox, R. R., & Tian, T. S. (2011). Measuring effect size: A robust heteroscedastic approach 

for two or more groups. Journal of Applied Statistics, 38(7-8), 1359-1368. 

Yin, P., & Fan, X. (2001). Estimating R2 shrinkage in multiple regression: A comparison of 

different analytic methods. Journal of Experimental Education, 69, 203-224. 

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 

14(4), 301–322. 

  



123 

 

Figure 1. Path diagram for a three-variable mediation model 
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Figure 2. Path diagram for a multiple parallel mediation model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x y 

1m   

y   

1m xB   1ymB x   

yxB
x   

2m xB   
2ymB

x   

2m   

m2 

m1 



125 

 

Figure 3. Path diagram for a moderated mediation model with predictor X mediator interaction 
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Table 1. Percent relative bias of the total indirect effect of two mediators 
   ̂     

1m x  1ym x
 

2 2m x ym =
x

 N=50 N=100 N=250 N=500  N=50 N=100 N=250 N=500 

.15 .15 .15 138.606 50.251 20.885 12.724    0.234 -2.845  1.616  3.465 

  .39 19.391  9.954  3.563  0.706   -4.777 -1.292 -0.725 -1.391 

  .59 6.889  2.596  0.665  0.171   -2.754 -1.911 -1.089 -0.698 

 .39 .15 60.960 36.110 14.047  6.756  -7.293  1.056  0.784  0.327 

  .39 25.013  6.976  3.328  1.838    3.842 -2.862 -0.479 -0.053 

  .59 5.711  2.693  0.192  1.055   -2.604 -1.277 -1.355  0.284 

 .59 .15 69.406 34.151 13.882  2.120    1.514  1.125  0.993 -4.237 

  .39 17.037  8.092  3.789  1.992   -3.672 -1.917 -0.166  0.034 

  .59 6.756  2.432  1.108  0.513   -0.991 -1.339 -0.375 -0.227 

.39 .15 .15 93.566 32.291 14.668  7.484    2.665 -5.949 -0.274  0.240 

  .39 17.917  7.431  1.558  1.484   -4.869 -3.091 -2.487 -0.513 

  .59 4.723  3.651  1.331  0.686   -4.196 -0.622 -0.309 -0.130 

 .39 .15 17.856  8.991  3.961  0.667   -1.007 -2.247 -0.328 -1.433 

  .39 10.283  2.732  2.404  1.798   -1.624 -2.830  0.228  0.723 

  .59 1.576 0.281 0.056  0.862   -3.928 -2.930 -1.089  0.348 

 .59 .15 10.011  6.793  1.134  0.272   -5.029 -0.476 -1.678 -1.124 

  .39 3.529  2.564  0.198  0.427   -4.917 -1.526 -1.403 -0.367 

  .59 2.966  0.886  0.492 0.147   -2.967 -1.023 -0.264 -0.523 

.59 .15 .15 97.628 46.858 19.923 13.093  -1.447 -2.894  0.883  3.678 

  .39 25.150  8.185  6.160  4.120   -2.812 -4.806  1.103  1.606 

  .59 9.034  1.142 -0.038  0.097   -0.868 -3.489 -1.858 -0.802 

 .39 .15 16.083  9.160  4.248  2.164   -4.379 -0.500  0.547  0.335 

  .39 7.997  1.643  1.080  0.157   -2.393 -3.182 -0.806 -0.775 

  .59 0.080 -0.116  0.599  0.564   -4.371 -2.265 -0.240  0.148 

 .59 .15 7.664  5.001  1.586  0.928   -1.966  0.425 -0.173  0.059 

  .39 0.765  1.238  0.530 0.223   -4.707 -1.410 -0.506 -0.736 

  .59 0.736 0.170 0.105  0.095   -3.019 -1.271 -0.538 -0.120 

Note: Shaded cells indicate relative bias > 5%; ̂  is the unadjusted effect size estimator;   is the bias-adjusted effect size estimator; 

1m x  and 2m x  are the effects of x  on 1m  and 2m ; 
1ym  and 

2ym  are the effects of  1m  and 2m  on y  controlling for x , 

respectively. 

 

 

 

Table 2. Percent relative bias for a specific effect of a mediator model with two parallel mediators 
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   ̂     

1m x  1ym x
 

2 2m x ym =
x

 N=50 N=100 N=250 N=500  N=50 N=100 N=250 N=500 

.15 .15 .15 265.837 107.800 40.819 26.050   -9.142 -0.092  2.194  3.290 

  .39 223.305 107.955 42.167 12.215   -5.352  5.484  5.505 -4.314 

  .59 234.106  84.231 25.468 15.950   18.606  0.216 -4.475  1.049 

 .39 .15  98.228  53.592 20.186 11.355  -10.587  1.151  0.113  1.524 

  .39 110.225  43.319 17.090  8.357    3.373 -6.648 -2.362 -1.293 

  .59 100.006  53.747 16.566  7.725   -2.052  4.891 -2.348 -1.668 

 .59 .15  90.469  46.002 20.088  4.300   -3.236 -0.212  1.805 -4.743 

  .39  80.844  47.242 16.813  9.117  -2.191  1.542 -1.265  0.140 

  .59  82.988  42.880 17.885  7.279   -2.411 -2.420  0.170 -1.582 

.39 .15 .15 135.606  54.912 25.950 12.020    3.470 -4.410  2.769  0.822 

  .39 104.253  49.085 15.902  8.535  -3.536 -3.602 -4.035 -1.169 

  .59  82.194  41.097 17.500  3.814   -5.423  0.846  2.310 -3.544 

 .39 .15  17.762  10.322  3.777  1.039   -3.151 -2.299 -1.085 -1.361 

  .39  25.106   8.754  4.777  2.739    1.064 -2.399  0.417  0.590 

  .59  16.910   8.390  3.735  2.562   -2.123 -0.721  0.196  0.812 

 .59 .15  11.266   7.583  2.095 4.128   -4.868 -0.342 -1.010 -1.666 

  .39   9.124   5.414  1.533  1.969   -4.656 -1.813 -1.306  0.555 

  .59   6.708   5.283  2.883  2.153   -1.956 -0.926  0.425 -1.068 

.59 .15 .15 142.380  68.212 27.463 18.545  -1.895 -2.893  0.040  0.902 

  .39 131.656  56.393 26.015 17.071    0.951 -3.127  2.939  1.556 

  .59  94.401  40.291 15.701  6.989    2.718 -2.494 -1.235 -1.266 

 .39 .15  17.123  10.002  5.102  2.771   -3.233 -0.688  0.969  0.726 

  .39  15.580   5.773  3.162  2.871   -2.815 -2.819 -0.185 -0.783 

  .59   9.720   5.884  1.996  1.561   -1.974  0.262 -0.165  0.488 

 .59 .15   7.846   5.014  1.450  1.797   -2.205  0.203 -0.414 -0.126 

  .39   1.655   2.772  0.829 1.121   -1.029 -0.979 -0.633 -0.848 

  .59   1.711  0.117  0.849  0.583   -2.896 -2.327 -0.021  0.152 

Note: Shaded cells indicate relative bias > 5%; ̂  is the unadjusted effect size estimator;   is the bias-adjusted effect size estimator; 

1m x  and 2m x  are the effects of x  on 1m  and 2m ; 
1ym  and 

2ym  are the effects of  1m  and 2m  on y  controlling for x , 

respectively. 
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Table 3. MSE and relative efficiency total effect  
   N=50  N=100  N=250  N=500 

   MSE*   MSE*   MSE*   MSE*  

1m x  1ym x
 

2 2m x ym =
x

 ̂    RE  ̂    RE  ̂    RE  ̂    RE 

.15 .15 .15  0.071  0.044 0.701  0.017 0.013 0.777  0.004 0.004 0.874  0.002 0.002 0.928 

  .39  1.065  0.895 0.868  0.433 0.390 0.919  0.154 0.148 0.966  0.075 0.073 0.982 

  .59  6.167  5.739 0.944  3.201 3.088 0.968  1.150 1.134 0.987  0.545 0.541 0.993 

 .39 .15  0.233  0.178 0.820  0.090 0.075 0.896  0.026 0.024 0.951  0.012 0.011 0.974 

  .39  2.133  1.843 0.917  0.734 0.689 0.952  0.292 0.284 0.980  0.130 0.128 0.990 

  .59  7.540  7.210 0.968  3.420 3.344 0.984  1.360 1.351 0.993  0.657 0.652 0.997 

 .59 .15  0.642  0.526 0.925  0.259 0.232 0.962  0.090 0.086 0.984  0.037 0.036 0.992 

  .39  2.664  2.496 0.972  1.336 1.293 0.984  0.490 0.483 0.995  0.233 0.231 0.997 

  .59  9.056  8.904 1.001  4.320 4.307 1.002  1.700 1.698 1.001  0.822 0.822 1.001 

.39 .15 .15  0.383  0.286 0.828  0.097 0.082 0.886  0.033 0.030 0.944  0.013 0.012 0.971 

  .39  1.955  1.697 0.897  0.812 0.754 0.941  0.312 0.304 0.975  0.139 0.137 0.988 

  .59  8.783  8.289 0.950  3.761 3.628 0.974  1.437 1.417 0.990  0.740 0.735 0.994 

 .39 .15  1.065  0.894 0.860  0.455 0.413 0.921  0.154 0.147 0.966  0.069 0.068 0.982 

  .39  3.776  3.421 0.928  1.716 1.644 0.961  0.681 0.665 0.983  0.297 0.292 0.992 

  .59 10.212  9.892 0.970  4.499 4.428 0.984  1.953 1.941 0.994  0.956 0.949 0.997 

 .59 .15  2.435  2.229 0.928  1.126 1.063 0.960  0.392 0.386 0.984  0.192 0.191 0.992 

  .39  5.605  5.411 0.968  3.035 2.974 0.984  1.160 1.154 0.994  0.557 0.555 0.997 

  .59 11.598 11.718 1.010  5.584 5.609 1.006  2.130 2.133 1.003  1.099 1.101 1.001 

.59 .15 .15  1.237  0.978 0.895  0.427 0.374 0.951  0.146 0.137 0.979  0.060 0.057 0.988 

  .39  4.017  3.627 0.953  1.783 1.704 0.968  0.616 0.595 0.986  0.328 0.320 0.993 

  .59 13.276 12.521 0.965  5.541 5.440 0.983  2.347 2.329 0.992  1.118 1.114 0.996 

 .39 .15  3.341  2.940 0.906  1.602 1.502 0.958  0.561 0.545 0.983  0.291 0.286 0.991 

  .39  7.983  7.459 0.950  3.534 3.432 0.972  1.337 1.320 0.989  0.673 0.669 0.994 

  .59 15.097 14.710 0.974  6.413 6.336 0.988  2.506 2.489 0.995  1.281 1.274 0.997 

 .59 .15  6.450  5.981 0.942  3.106 2.966 0.970  1.018 1.001 0.987  0.532 0.527 0.994 

  .39 10.077  9.839 0.971  4.451 4.375 0.985  1.943 1.930 0.994  0.972 0.970 0.997 

  .59 11.437 11.671 1.021  5.467 5.533 1.011  2.014 2.022 1.004  1.043 1.045 1.002 

Note: Shaded cells indicate MSE and variance  >̂ ; ̂  is the unadjusted effect size estimator;   is the bias-adjusted effect size estimator; 1m x  and 2m x  are the 

effects of x  on 1m  and 2m ; 
1ym  and 

2ym  are the effects of  1m  and 2m  on y  controlling for x , respectively. *MSE scaled by 1,000 for presentation. 
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Table 4. MSE and relative efficiency specific effect 
   N=50  N=100  N=250  N=500 

   MSE*   MSE*   MSE*   MSE*  

1m x  1ym x
 

2 2m x ym =
x

 ̂    RE  ̂    RE  ̂    RE  ̂    RE 

.15 .15 .15 0.015 0.009 0.570  0.004 0.003 0.674  0.001 0.001 0.793  < 0.001 0.001 0.868 

  .39 0.012 0.006 0.529  0.004 0.003 0.693  0.001 0.001 0.801  < 0.001 < 0.001 0.873 

  .59 0.030 0.010 0.654  0.008 0.001 0.679  0.002 0.001 0.813  0.001 < 0.001 0.893 

 .39 .15 0.116 0.114 0.786  0.039 0.034 0.869  0.011 0.011 0.940  0.005 0.005 0.966 

  .39 0.120 0.098 0.809  0.031 0.027 0.885  0.010 0.010 0.944  0.005 0.005 0.972 

  .59 0.087 0.074 0.867  0.035 0.031 0.920  0.012 0.010 0.968  0.004 0.004 0.983 

 .59 .15 0.328 0.298 0.910  0.141 0.135 0.955  0.054 0.054 0.980  0.022 0.025 0.991 

  .39 0.328 0.311 0.947  0.145 0.143 0.971  0.048 0.047 0.991  0.020 0.021 0.993 

  .59 0.278 0.279 0.992  0.113 0.118 1.001  0.042 0.044 1.004  0.020 0.020 1.002 

.39 .15 .15 0.194 0.154 0.792  0.049 0.044 0.856  0.016 0.015 0.933  0.006 0.005 0.965 

  .39 0.109 0.084 0.773  0.033 0.028 0.857  0.011 0.012 0.930  0.005 0.004 0.964 

  .59 0.108 0.062 0.764  0.028 0.023 0.856  0.009 0.008 0.933  0.004 0.005 0.967 

 .39 .15 0.733 0.641 0.838  0.285 0.258 0.906  0.100 0.096 0.959  0.047 0.046 0.979 

  .39 0.683 0.605 0.855  0.248 0.226 0.915  0.094 0.092 0.964  0.042 0.043 0.981 

  .59 0.478 0.394 0.879  0.226 0.193 0.939  0.072 0.066 0.973  0.036 0.036 0.986 

 .59 .15 1.962 1.802 0.917  0.890 0.853 0.955  0.301 0.295 0.982  0.152 0.152 0.991 

  .39 1.457 1.366 0.938  0.774 0.750 0.969  0.276 0.273 0.987  0.142 0.142 0.994 

  .59 1.143 1.145 1.001  0.584 0.583 0.999  0.242 0.242 0.999  0.113 0.114 1.000 

.59 .15 .15 0.746 0.674 0.879  0.247 0.233 0.945  0.085 0.083 0.977  0.035 0.040 0.986 

  .39 0.534 0.511 0.910  0.199 0.194 0.939  0.060 0.063 0.977  0.033 0.037 0.986 

  .59 0.395 0.347 0.885  0.154 0.131 0.942  0.052 0.043 0.969  0.022 0.021 0.985 

 .39 .15 2.569 2.299 0.894  1.195 1.140 0.952  0.442 0.439 0.981  0.222 0.221 0.990 

  .39 2.349 2.153 0.916  0.935 0.891 0.952  0.340 0.334 0.981  0.166 0.165 0.990 

  .59 1.394 1.230 0.919  0.645 0.598 0.958  0.235 0.231 0.983  0.111 0.110 0.991 

 .59 .15 5.158 4.824 0.935  2.584 2.501 0.966  0.870 0.861 0.986  0.450 0.447 0.993 

  .39 3.855 3.683 0.946  1.820 1.768 0.972  0.708 0.701 0.989  0.354 0.352 0.995 

  .59 2.053 2.038 0.997  0.971 0.979 0.999  0.417 0.415 0.999  0.176 0.176 1.000 

 

 

 

 

 

 

Table 5. Percentile bootstrap CI coverage total effect ̂   
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   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 99.5  5  0  98.8  8  4  95.9 17 24  95.4 18 28 

  .39 96.3 12 25  94.9 11 40  95.7 23 20  94.6 26 28 

  .59 96.0 19 21  93.7 26 37  94.5 28 27  94.8 22 30 

 .39 .15 98.4 15  1  96.0 28 12  95.8 20 22  94.7 22 31 

  .39 95.9 25 16  95.1 13 36  95.4 23 23  95.0 20 30 

  .59 94.2 16 42  95.3 19 28  94.3 28 29  94.9 25 26 

 .59 .15 97.9 20  1  97.2 21  7  94.8 26 26  95.0 23 27 

  .39 96.1 19 20  93.3 29 38  95.0 25 25  95.9 25 16 

  .59 94.3 25 32  94.0 22 38  95.2 24 24  95.5 20 25 

.39 .15 .15 98.4 15  1  98.3 10  7  96.0 19 21  95.3 23 24 

  .39 96.1 10 29  94.7 18 35  93.0 31 39  95.3 18 29 

  .59 96.0 17 23  95.6 21 23  95.4 24 22  94.2 32 26 

 .39 .15 94.8 11 41  94.1 19 40  94.8 26 26  95.6 18 26 

  .39 95.9 18 23  94.5 20 35  94.2 30 28  96.1 19 20 

  .59 94.6 15 39  95.8 14 28  94.6 20 34  94.2 33 25 

 .59 .15 95.8 18 24  93.9 20 41  95.0 22 28  95.6 13 31 

  .39 95.1 14 35  94.5 24 31  95.0 28 22  95.0 17 33 

  .59 94.3 28 29  95.6 18 26  94.4 28 28  94.7 31 22 

.59 .15 .15 97.9 20  1  97.3 27  0  95.3 33 14  95.5 29 16 

  .39 97.1 19 10  93.8 26 36  95.3 23 24  95.0 34 16 

  .59 95.0 19 31  95.2 20 28  93.6 26 38  94.7 28 25 

 .39 .15 96.1 13 26  95.5 27 18  95.1 29 20  94.9 29 22 

  .39 95.9 14 27  94.3 25 32  94.7 28 25  94.8 25 27 

  .59 94.3 22 35  95.7 14 29  96.0 22 18  94.1 30 29 

 .59 .15 95.0 21 29  94.3 29 28  96.1 15 24  94.9 27 24 

  .39 93.8 20 42  96.0 15 25  94.8 31 21  94.0 26 34 

  .59 93.4 23 43  96.8  18 1 4  95.3 24 23  96.1 19 20 
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Table 6. Percentile bootstrap CI coverage total effect    

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 100.0  0  0  97.6  4 20  95.7  6 37  94.7 15 38 

  .39  93.7  6 57  93.9  6 55  94.8 19 33  94.0 21 39 

  .59  94.4  8 48  93.6 12 52  94.4 19 37  94.6 18 36 

 .39 .15  99.5  2  3  96.3  9 28  95.0 15 35  93.8 22 40 

  .39  94.3 11 46  93.8 10 52  94.7 22 31  94.8 18 34 

  .59  93.3  9 58  94.5 14 41  95.1 18 31  94.7 22 31 

 .59 .15  99.5  3  2  96.5  9 26  93.6 21 43  94.8 18 34 

  .39  94.7 13 40  93.3 16 51  94.6 18 36  95.8 21 21 

  .59  94.1 16 43  93.4 16 50  94.9 20 31  95.9 16 25 

.39 .15 .15  99.2  4  4  97.7  8 15  94.8 16 36  95.1 16 33 

  .39  94.7  5 48  94.2 11 47  93.3 20 47  95.3 14 33 

  .59  94.4 12 44  95.1 12 37  95.1 21 28  94.3 25 32 

 .39 .15  93.3  3 64  92.8 11 61  95.1 16 33  95.0 16 34 

  .39  95.4 11 35  94.6 11 43  94.2 23 35  95.9 16 25 

  .59  94.1  8 51  94.8 10 42  94.1 17 42  93.9 32 29 

 .59 .15  94.6 11 43  94.1 11 48  95.4 14 32  95.0 11 39 

  .39  94.5  8 47  94.1 18 41  94.0 26 34  94.8 15 37 

  .59  93.8 21 41  95.4 14 32  94.8 21 31  94.5 28 27 

.59 .15 .15  99.5  4  1  98.2 14  4  94.4 24 32  95.8 19 23 

  .39  96.0 13 27  93.2 15 53  95.3 14 33  95.6 26 18 

  .59  93.4 11 55  94.5 18 37  93.4 23 43  94.6 26 28 

 .39 .15  94.6  5 49  95.2 17 31  95.0 22 28  94.7 26 27 

  .39  94.9  8 43  93.8 22 40  94.6 23 31  94.8 21 31 

  .59  93.5 13 52  95.2 13 35  95.3 20 27  93.9 29 32 

 .59 .15  93.4 13 53  94.3 21 36  95.5 12 33  94.4 26 30 

  .39  93.4 13 53  95.7 12 31  95.0 26 24  94.0 24 36 

  .59  93.8 10 52  94.8 22 30  95.3 20 27  95.7 17 26 
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Table 7. Percentile bootstrap CI coverage specific effect ̂   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 99.2  7  1  98.6 13  1  96.7 14 19  93.3 25 42 

  .39 99.1  8  1  98.8 11  1  96.2 15 23  96.1 10 29 

  .59 99.0 10  0  98.1 10  9  95.3 13 34  94.4 17 39 

 .39 .15 98.4 15  1  97.2 19  9  95.1 27 22  94.2 28 30 

  .39 97.4 22  4  97.9 18  3  95.3 27 20  95.0 18 32 

  .59 96.9 27  4  96.9 28  3  95.0 24 26  95.6 23 21 

 .59 .15 97.4 25  1  96.8 28  4  94.9 25 26  95.7 22 21 

  .39 97.2 28  0  97.1 28  1  95.2 26 22  96.6 21 13 

  .59 97.3 27  0  98.0 20  0  95.0 28 22  94.8 25 27 

.39 .15 .15 97.7 18  5  98.3 15  2  95.2 30 18  94.7 24 29 

  .39 98.7 12  1  97.6 15  9  94.8 19 33  95.5 21 24 

  .59 97.6 16  8  97.1 19 10  95.7 18 25  94.3 22 35 

 .39 .15 93.6 17 47  94.0 13 47  95.3 21 26  95.3 16 31 

  .39 93.8 21 41  94.5 16 39  93.7 25 38  96.3 19 18 

  .59 95.4 13 33  94.3 23 34  96.6 13 21  93.7 33 30 

 .59 .15 94.0 25 35  94.8 20 32  95.2 23 25  94.4 17 39 

  .39 93.9 16 45  94.5 24 31  94.6 22 32  94.9 31 20 

  .59 94.2 21 37  93.2 31 37  93.1 40 29  94.7 25 28 

.59 .15 .15 97.1 27  2  98.0 20  0  96.6 31  3  95.5 29 16 

  .39 97.5 25  0  96.9 31  0  96.5 24 11  94.2 36 22 

  .59 97.4 26  0  97.1 24  5  95.3 20 27  94.1 23 36 

 .39 .15 96.3 14 23  94.7 29 24  95.1 30 19  94.4 32 24 

  .39 94.7 21 32  94.2 25 33  95.7 22 21  95.3 23 24 

  .59 94.3 20 37  94.7 25 28  94.3 20 37  94.0 29 31 

 .59 .15 95.3 14 33  94.0 31 29  96.2 16 22  94.4 28 28 

  .39 94.0 15 45  94.8 22 30  94.1 28 31  94.5 29 26 

  .59 94.7 15 38  94.9 19 32  95.3 28 19  96.1 22 17 
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Table 8. Percentile bootstrap CI coverage specific effect   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 99.8  0  2  95.7  3 40  94.4  3 53  92.8 10 69 

  .39 99.5  0  5  95.7  2 41  94.4  3 53  94.1  7 52 

  .59 98.6  2 12  95.2  0 48  93.0  4 66  93.3 10 57 

 .39 .15 97.6  7 17  96.0  9 31  94.7 13 40  94.4 17 39 

  .39 98.5  5 10  97.9  8 13  95.2 14 34  93.9 10 51 

  .59 98.3  8  9  97.8 10 12  94.2 12 46  95.2 15 33 

 .59 .15 99.4  5  1  98.0  9 11  93.6 18 46  95.0 18 32 

  .39 98.9  9  2  97.8 11 11  94.2 14 44  96.6 15 19 

  .59 98.8 11  1  99.1  8  1  94.0 20 40  94.7 17 36 

.39 .15 .15 98.2  4 14  97.6  6 18  94.1 19 40  94.6 17 37 

  .39 98.4  3 13  98.3  2 15  93.2 15 53  94.6 14 40 

  .59 97.1  1 28  95.3  8 39  95.4  6 40  93.5 16 49 

 .39 .15 90.9  9 82  92.9 10 61  95.5 15 30  94.9 11 40 

  .39 92.2 10 68  93.6 10 54  93.2 21 47  96.5 14 21 

  .59 92.9  4 67  93.9 17 44  95.6 11 33  93.7 31 32 

 .59 .15 93.4 14 52  94.0 11 49  95.3 18 29  93.7 16 47 

  .39 93.2  7 61  94.0 14 46  94.5 19 36  95.7 21 22 

  .59 93.7 11 52  93.3 23 44  93.3 35 32  94.4 22 34 

.59 .15 .15 99.2  6  2  98.5 14  1  96.9 18 13  95.6 18 26 

  .39 98.8 10  2  98.2 13  5  95.7 12 31  94.1 26 33 

  .59 98.5 13  2  97.7 10 13  94.3 14 43  94.2 16 42 

 .39 .15 95.1  7 42  94.3 19 38  94.4 25 31  94.1 29 30 

  .39 93.1 11 58  93.7 20 43  95.4 17 29  95.3 17 30 

  .59 93.0 12 58  94.7 18 35  94.1 19 40  94.0 26 34 

 .59 .15 94.7  8 45  94.0 23 37  96.2 13 25  94.6 25 29 

  .39 93.3 10 57  95.3 13 34  94.4 22 34  94.8 25 27 

  .59 93.4 14 52  94.6 16 38  95.0 24 26  95.9 18 23 
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Table 9. BCa bootstrap CI coverage total effect ̂   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 81.6 15 169  84.6 16 138  95.0 23 27  96.2 21 17 

  .39 93.5 17  48  94.6 19  35  96.0 25 15  94.9 31 20 

  .59 95.2 23  25  93.6 34  30  94.4 32 24  94.8 23 29 

 .39 .15 84.3 19 138  88.0 31  89  95.1 26 23  94.6 24 30 

  .39 93.1 31  38  95.8 18  24  95.4 26 20  95.2 22 26 

  .59 94.1 21  38  95.1 26  23  94.7 28 25  94.8 27 25 

 .59 .15 85.9 28 113  87.1 31  98  93.9 27 34  95.0 24 26 

  .39 92.7 22  51  93.0 33  37  94.9 25 26  95.3 30 17 

  .59 94.0 29  31  93.7 25  38  94.9 26 25  95.9 19 22 

.39 .15 .15 83.7 21 142  88.8 12 100  94.6 24 30  95.2 26 22 

  .39 92.9 16  55  95.4 18  28  93.5 33 32  95.3 21 26 

  .59 95.6 25  19  96.0 21  19  95.4 27 19  94.7 28 25 

 .39 .15 92.4 16  60  94.6 25  29  95.2 30 18  95.4 23 23 

  .39 96.1 25  14  94.8 21  31  93.9 36 25  95.9 21 20 

  .59 94.4 21  35  95.8 16  26  94.6 24 30  94.2 34 24 

 .59 .15 95.4 23  23  94.5 26  29  95.3 23 24  95.2 19 29 

  .39 95.1 18  31  94.9 26  25  94.9 30 21  94.5 22 33 

  .59 93.8 31  31  95.3 21  26  94.1 29 30  94.9 29 22 

.59 .15 .15 81.0 33 157  84.4 33 123  91.4 35 51  95.1 31 18 

  .39 89.0 30  80  92.6 30  44  95.5 23 22  94.9 35 16 

  .59 94.5 27  28  94.7 25  28  94.0 26 34  94.4 31 25 

 .39 .15 94.0 17  43  95.2 32  16  94.9 29 22  94.6 32 22 

  .39 95.8 20  22  94.7 28  25  94.5 31 24  94.8 25 27 

  .59 94.8 22  30  95.5 17  28  95.6 26 18  93.9 32 29 

 .59 .15 95.2 23  25  94.8 34  18  96.1 22 17  94.5 30 25 

  .39 94.2 25  33  95.9 17  24  95.0 29 21  94.2 25 33 

  .59 93.1 25  44  94.7 29  24  95.1 27 22  96.1 17 22 
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Table 10. BCa bootstrap CI coverage total effect   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 97.2  1  27  85.9  4 137  95.8 12 30  95.5 19 26 

  .39 93.0 11  59  95.1 11  38  95.9 22 19  94.6 28 26 

  .59 95.3 19  28  93.3 28  39  94.5 29 26  94.5 23 32 

 .39 .15 83.6  6 158  86.2 17 121  95.1 18 31  94.0 22 38 

  .39 94.1 17  42  95.2 13  35  95.3 24 23  94.9 19 32 

  .59 94.1 20  39  94.8 23  29  94.8 23 29  94.6 26 28 

 .59 .15 82.0 10 170  86.7 10 123  92.8 22 50  94.9 17 34 

  .39 92.1 15  64  92.9 24  47  94.7 21 32  95.5 23 22 

  .59 94.3 25  32  93.5 22  43  94.6 26 28  95.9 17 24 

.39 .15 .15 82.0  9 171  85.1  9 140  94.3 16 41  95.0 19 31 

  .39 93.0  8  62  95.1 14  35  93.3 29 38  95.4 16 30 

  .59 95.7 20  23  96.0 18  22  95.5 24 21  94.5 27 28 

 .39 .15 92.2  8  70  94.7 17  36  95.6 20 24  94.9 21 30 

  .39 96.8 16  16  94.7 17  36  94.1 28 31  95.8 16 26 

  .59 94.0 20  40  95.3 15  32  94.1 24 35  93.8 34 28 

 .59 .15 95.0 15  35  94.4 18  38  95.3 16 31  95.0 16 34 

  .39 95.1 10  39  94.5 22  33  94.4 28 28  94.7 18 35 

  .59 93.3 28  39  95.2 20  28  94.1 29 30  94.9 28 23 

.59 .15 .15 77.4  6 220  80.6 15 179  91.0 24 66  95.6 21 23 

  .39 88.5 18  97  93.0 20  50  95.5 17 28  95.4 30 16 

  .59 94.9 21  30  94.9 20  31  94.0 24 36  94.5 28 27 

 .39 .15 93.4  9  57  95.4 20  26  95.1 23 26  94.5 28 27 

  .39 95.8 15  27  94.5 22  33  94.5 27 28  94.9 20 31 

  .59 94.6 18  36  95.6 16  28  95.6 24 20  93.9 30 31 

 .59 .15 94.5 18  37  94.7 27  26  95.9 16 25  94.8 26 26 

  .39 94.0 18  42  95.6 16  28  95.0 28 22  94.1 24 35 

  .59 92.8 23  49  94.3 29  28  95.3 25 22  95.9 16 25 
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Table 11. BCa bootstrap CI coverage specific effect ̂   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 82.0 14 166  83.2 23 145  92.0 23 57  94.0 30 30 

  .39 80.5 13 182  85.5 17 128  92.2 23 55  96.0 20 20 

  .59 80.2 19 179  84.9 17 134  93.6 21 43  94.8 26 26 

 .39 .15 82.7 24 149  84.6 34 120  91.7 29 54  93.5 36 29 

  .39 83.8 32 130  86.1 28 111  93.0 30 40  94.2 24 34 

  .59 84.1 41 118  86.5 38  97  90.8 31 61  95.7 23 20 

 .59 .15 84.4 30 126  84.6 32 122  91.5 30 55  95.4 25 21 

  .39 83.4 32 134  83.9 34 127  91.4 27 59  96.9 21 10 

  .59 82.8 30 142  87.7 24  99  91.8 31 51  94.7 26 27 

.39 .15 .15 84.5 22 133  85.7 27 116  90.5 34 61  94.5 25 30 

  .39 85.2 22 126  86.3 24 113  91.6 25 59  95.5 22 23 

  .59 86.1 21 118  86.8 29 103  94.2 26 32  94.7 27 26 

 .39 .15 92.1 21  58  94.7 19  34  95.6 27 17  95.5 19 26 

  .39 94.2 25  33  94.9 21  30  94.1 32 27  96.3 23 14 

  .59 94.6 23  31  94.7 29  24  96.4 19 17  94.3 35 22 

 .59 .15 94.5 28  27  94.6 26  28  95.3 26 21  94.5 19 36 

  .39 93.4 23  43  94.7 28  25  95.2 25 23  94.7 33 20 

  .59 92.7 29  44  92.8 37  35  93.1 40 29  94.6 28 26 

.59 .15 .15 83.1 31 138  82.9 23 148  88.4 35 81  94.5 30 25 

  .39 83.4 30 136  84.4 32 124  90.6 28 66  93.3 39 28 

  .59 85.8 31 111  86.3 26 111  92.9 24 47  94.3 23 34 

 .39 .15 93.2 21  47  93.9 38  23  94.5 32 23  94.9 34 17 

  .39 93.4 26  40  94.3 26  31  95.7 24 19  95.7 24 19 

  .59 94.4 27  29  94.9 30  21  94.1 25 34  94.0 31 29 

 .59 .15 95.3 20  27  95.2 30  18  96.1 19 20  94.3 31 26 

  .39 94.9 18  33  95.3 24  23  95.1 27 22  94.3 32 25 

  .59 95.0 18  32  94.5 23  32  95.3 30 17  96.0 23 17 
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Table 12. BCa bootstrap CI coverage specific effect   

   N=50  N=100  N=250  N=500 

1m x  1ym x
 

2 2m x ym =
x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 84.0  0 160  76.1  4 235  87.0  8 122  93.8 19 43 

  .39 85.2  0 148  77.1  8 221  87.4  8 118  96.5  9 26 

  .59 82.5  2 173  77.7  1 222  90.8  6  86  94.2 18 40 

 .39 .15 69.3 10 297  77.7 13 210  91.2 20  68  93.9 18 43 

  .39 72.0 10 270  80.4 12 184  92.0 19  61  93.4 14 52 

  .59 72.9 12 259  82.1 17 162  90.5 13  82  95.0 16 34 

 .59 .15 75.4  9 237  81.4  9 177  91.1 18  71  94.8 17 35 

  .39 76.0 14 226  82.7 12 161  91.3 16  71  96.7 16 17 

  .59 76.1 14 225  85.3 10 137  92.6 17  57  94.7 18 35 

.39 .15 .15 70.5  9 286  76.6  8 226  88.9 22  89  94.7 16 37 

  .39 72.9  4 267  79.9  3 198  90.7 17  76  94.8 18 34 

  .59 73.5  9 256  82.3 13 164  94.3 12  45  93.5 19 46 

 .39 .15 90.2 13  85  94.5 15  40  95.4 19  27  95.2 14 34 

  .39 93.6 14  50  94.8 14  38  94.5 22  33  96.5 18 17 

  .59 94.2  8  50  94.9 24  27  95.8 12  30  94.0 33 27 

 .59 .15 93.7 22  41  94.3 19  38  95.4 21  25  93.8 17 45 

  .39 93.2  9  59  93.9 23  38  94.6 21  33  95.1 27 22 

  .59 92.6 18  56  93.8 22  40  92.9 37  34  93.9 25 36 

.59 .15 .15 70.0  9 291  75.9 15 226  88.1 17 102  94.1 21 38 

  .39 72.8 12 260  79.3 17 190  89.9 15  86  93.2 30 38 

  .59 74.7 14 239  82.6 11 163  92.8 15  57  93.8 18 44 

 .39 .15 92.1 10  69  94.8 22  30  94.7 25  28  94.8 30 22 

  .39 92.5 17  58  94.3 21  36  95.5 22  23  95.5 20 25 

  .59 95.3 15  32  95.1 20  29  94.1 21  38  93.8 30 32 

 .59 .15 95.4 10  36  94.7 26  27  95.9 16  25  94.7 26 27 

  .39 94.7 11  42  95.2 21  27  94.7 25  28  94.3 31 26 

  .59 94.3 16  41  94.7 18  35  95.5 25  20  96.0 22 18 
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Table 13. Prototypical conditional indirect effects with unadjusted effect size and expected bias   

 
Case Indirect effect   ˆ

bias
  

1 ( )mx ym ymx xB B B +x x x
 2 2

2 2 2 2 2 2 2

,
2mx ym mx ymx x mx ym ymx xx x x

          + +x x x x
  2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ym mx mx ym ymx x mx mx x ymx ym ymx x mx

mx x ym ymx ym mx x ym ymx mx x ymx mx

             

          

+ + + + +

− − −

x x x x x x

x x x x x x

  

2 ( )mx mxw w ymB B B+x x x
 2 2

2 2 2 2 2 2 2

,
2mx ym x ym x mxw w mx mxw ym x wxw x w

          + +x x x x
  2 2 2 2 2 2 2 2 2 2 2

,

2 2 2 2 2 2 2

,

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ym x mx mx ym x mxw w ym x ym x w mxw ym x w mx mxw

mx mxw w ym x ym x mx w mx mxw ym x w mxw ym x

            

           

+ + + + +

− − −

x x x x x x

x x x x x x

 

3 ( )mx ym ymz zB B B +x x x
 

2 2

2 2 2 2 2 2 2

,
2mx ym mx ymz z mx ym ymz zxz x z

          + +x x x x
  2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ym mx mx ym ymz z mx mx z ymz ym ymz z mx

mx z ym ymz ym mx z ym ymz mx z ymz mx

             

          

+ + + +

+ − − −

x x x x x x

x x x x x x

 

4 ( )( )mx mxw w ym ymz zB B B B + +x x x x
 

2

2 2

2

2

2 2 2

,

2 2 2 2 2 2 2 2

2

, ,

2 2 2 2

,

2

2 4

2 2

mx ym mx mxw ym x w x w

ym mxw w mx ymz zxw xz

mx ym ymz z mx mwx ym ymz w zx z xw xz

ym mwx ymz w z mx mwx ymz w zxw xz

      

       

           

           

+ +

+ +

+ +

+

x x x x

x x x x

x x x x x x x

x x x x x x 2

2 2

,

2 2

,

xw xz

mwx ymz w z xw xz
    

+

x x

  

2 2 2 2 2 2 2

,

2 2 2 2 2 2 2 2

,

2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆˆ ˆ ˆ2 2

ym mx mx ym ym x mx ym x w mx mxw

mx mxw w ym w mx mxw ym mxw w ym ym w mxw

w ym mxw ym ymz z mx m

        

            

       

+ − + +

− + + −

+ +

x x x x x x x

x x x x x x x x x x

x x x x x

2 2

, ,

, ,

2 2 2 2

, , ,

2

ˆ ˆ ˆ2

ˆ ˆ ˆ ˆˆ ˆ4 4

ˆ ˆ ˆˆ ˆ ˆ ˆ4 2 2

ˆ2

x z ym ymz z mx ym ymz

ym ymz w z mx mxw mx mwx w z ym ymz

w z mx mxw ym ymz mwx w z ym ymz ym ymz w z mwx

w z ym

    

         

            

  

− +

+ −

+ + −

x x x x x x

x x x x x x x x

x x x x x x x x x x

2 2 2 2 2 2 2 2 2 2

,

2 2 2 2 2 2

, ,

2 2 2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ2 2 2

ˆ ˆˆ ˆ

ymz mwx ymz z mx mx z ymz z mx ymz

ymz w z mx mxw mx mwx w z ymz w z mx mxw ymz

ymz w z mxw mxw w z ymz

         

            

       

+ + − +

+ − +

+

x x x x x x x x x

x x x x x x x x x

x x x x

2 2 2 2ˆ ˆ
w z mxw ymz   −

x x

  

5 ( )( )mx mxw w ym ymz wB B B B + +x x x x
 

2 2

2 2

2

2

2 2 2 2 2 2 2

,

2 2 2 2 2

,

2 2 2 3

,

2 3

,

2

2

4 2

2

mx ym mx mxw ym x w ym mxw wx w xw

mx ymw w mx ym ymw wxw x w

mx mwx ym ymw w ym mwx ymw wxw xw xw

mx mwx ymw w xw xw

          

        

          

    

+ + +

+ +

+ +

+

x x x x x x

x x x x x

x x x x x x x

x x x 2

4 2

mwx ymw w xw
   x x

  

2 2 2 2 2 2 2

,

2 2 2 2 2

,

2 2 2 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 2

ym mx mx ym ym x mx ym x w mx mxw

mx mxw w ym w mx mxw ym mxw w ym

ym w mxw w ym mxw ym ymw w mx m

        

         

          

+ − + +

− + +

− + +

x x x x x x x

x x x x x x x x

x x x x x x x

2

,

2 2 2

, , ,

2 2 3 3 2

, , ,

3

,

ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 4 4

ˆ ˆ ˆˆ ˆ ˆ ˆ4 2 2

ˆ ˆ2

x w ym ymw

w mx ym ymw ym ymw w mx mxw mx mwx w ym ymw

w mx mxw ym ymw mwx w ym ymw ym ymw w mwx

w ym ymw

 

          

         

  

−

+ + −

+ + −

x x x

x x x x x x x x x x x

x x x x x x x x x x

x x

2 2 2 2 2 2 2 2 2 2

2 3 3 2 3 2

, ,

2 4 2 2 4 2 4 2 2

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ2 2 2

ˆ ˆˆ ˆ ˆ ˆ

mwx ymw w mx mx w ymw w mx ymw

ymw w mx mxw mx mwx w ymw w mx mxw ymw

ymw w mxw mxw w ymw w mxw ymw

        

         

        

+ + − +

+ − +

+ −

x x x x x x x

x x x x x x x x x

x x x x x x

  

  



139 

 

Table 14. Percent relative bias for moderated mediation model at the mean of x 
   ̂     

mx  ym
x
 

ymx
x
 N=50 N=100 N=250 N=500  N=50 N=100 N=250 N=500 

.15 .15 .15 290.835 104.918 35.019 22.106   -3.977 -7.553 -3.868  3.388 
  .39 206.595 103.834 40.712 16.492  -4.438 -1.116  4.431 -0.488 
  .59 238.189  95.903 32.693 16.474   -9.883 -0.145  0.279  1.281 
 .39 .15  89.855  50.198 18.018 11.840  -24.387 -4.092 -1.936  1.796 
  .39 112.770  48.281 17.848  8.790   -3.158 -5.210 -2.101 -0.950 
  .59 114.832  57.859 16.687  7.617    0.980  6.682 -2.718 -1.833 
 .59 .15  91.134  45.689 19.311  4.795   -9.055 -1.399  0.803 -4.323 
  .39  85.549  49.766 17.503  9.539  -15.052  1.608 -0.839  0.429 
  .59  86.832  44.202 20.047  8.512  -13.345 -3.436  2.060 -0.485 

.39 .15 .15 133.223  60.926 26.377  6.869   -5.211 -0.534  2.948 -4.361 
  .39 130.009  56.188 20.757  9.124    7.477  3.041  0.733 -0.591 
  .59 113.888  53.806 27.190  6.379   22.241 12.931 11.882 -0.907 
 .39 .15  17.177   9.329  3.649  2.363  -10.492 -3.579 -1.250 -0.069 
  .39  22.700   8.933  2.288  2.341   -2.939 -2.735 -2.124  0.141 
  .59  17.670   8.373  3.919  1.256   -3.832 -1.517  0.165 -0.577 
 .59 .15  12.433   6.941  1.731 0.051   -4.822 -1.175 -1.418 -1.603 
  .39  13.461   4.726  1.373  2.021   -2.942 -2.833 -1.576  0.566 
  .59  10.680   5.078  2.557  0.403   -4.265 -1.745 -0.076 -0.899 

.59 .15 .15 150.394  62.749 21.214 14.581   -9.495 -9.462 -6.218  1.052 
  .39 132.700  56.855 20.755  8.297    2.639 -1.846 -1.742 -2.862 
  .59 101.967  55.838 19.823 10.886   17.721 16.836  4.535  3.406 
 .39 .15  20.415   8.402  2.921  3.070   -2.820 -2.506 -1.223  1.013 
  .39  16.217   8.770  0.918  1.966   -3.189 -0.170 -2.497  0.269 
  .59  16.417   9.385  1.468  2.616    3.146  3.167 -0.868  1.454 
 .59 .15   6.512   4.215  1.579  0.867   -3.825 -0.718 -0.310 -0.067 
  .39   2.388   4.198  2.110  0.253   -6.163  0.076  0.530 -0.524 
  .59   8.712   2.382  1.488  1.929    2.449 -0.484  0.381  1.382 
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Table 15. Percent relative bias for moderated mediation model at +1 standard deviation above the mean of x 
   ̂     

mx  ym
x
 

ymx
x
 N=50 N=100 N=250 N=500  N=50 N=100 N=250 N=500 

.15 .15 .15 272.146 108.189 34.205 24.001    0.865  0.097 -3.659  4.510 
  .39  98.977  52.556 25.485 10.554  -18.906 -3.869  3.663 -0.209 
  .59  95.840  50.650 17.250  7.809   -4.284  2.715 -1.738 -1.597 
 .39 .15 103.887  57.916 21.373 13.258  -22.184 -1.807 -0.522  2.319 
  .39 105.654  46.401 17.350  8.136   -2.740 -4.645 -2.118 -1.497 
  .59  95.489  51.802 16.763  8.429    0.689  5.703 -1.699 -0.694 
 .59 .15  95.962  48.031 20.074  5.302   -9.235 -1.186  0.845 -4.153 
  .39  85.642  51.078 17.948  9.299  -11.943  3.128 -0.483  0.115 
  .59  83.751  43.933 19.905  7.745   -8.893 -1.758  2.128 -1.147 

.39 .15 .15 102.961  49.137 21.206  6.432   -9.511 -2.894  1.083 -3.319 
  .39  26.779  12.915  6.730  1.428   -5.491 -2.137  0.810 -1.472 
  .59  10.338   8.038  2.392  0.944   -7.465 -0.718 -1.048 -0.767 
 .39 .15  25.004  12.707  5.403  2.238  -10.063 -3.986 -0.993 -0.925 
  .39  19.130   7.354  1.830  2.361   -2.849 -3.156 -2.215  0.327 
  .59   5.430   4.259  1.525  0.733   -9.776 -3.252 -1.447 -0.738 
 .59 .15  15.539   8.614  2.752  0.223   -4.880 -1.139 -1.028 -1.633 
  .39  10.111   4.874  2.266  2.298   -6.178 -2.907 -0.824  0.772 
  .59   6.667   5.202  2.476 -0.207   -6.654 -1.249 -0.064 -1.471 

.59 .15 .15  99.414  45.345 15.264  8.206  -10.046 -5.234 -4.106 -1.368 
  .39  19.098   5.395  0.434  2.923   -4.376 -5.550 -3.827  0.800 
  .59   1.585  -0.202  0.737  0.220   -7.783 -4.802 -1.092 -0.685 
 .39 .15  25.221  10.261  4.166  3.607   -4.352 -3.841 -1.229  0.929 
  .39   8.333   3.659  0.857  1.163   -5.786 -3.035 -1.756 -0.138 
  .59  -1.238   0.527 -0.023  0.403   -8.394 -2.989 -1.400 -0.284 
 .59 .15   8.539   5.382  2.116  1.210   -4.677 -1.032 -0.350 -0.011 
  .39  -0.682   2.211  0.797 -0.230   -9.005 -1.884 -0.793 -1.019 
  .59  -1.785  -1.053 -0.077  0.308   -6.861 -3.535 -1.063 -0.182 
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Table 16. MSE and relative efficiency for conditional indirect effect at mean x 

 

   N=50  N=100  N=250  N=500 

   MSE*   MSE*   MSE*   MSE*  

mx  ym
x

 
ymx

x
 ̂    RE  ̂    RE  ̂    RE  ̂    RE 

.15 .15 .15 0.021 0.012 0.630  0.003 0.002 0.645  0.001 <0.001 0.778  <0.001 <0.001 0.872 

  .39 0.011 0.006 0.587  0.003 0.002 0.683  0.001 0.001 0.805  <0.001 <0.001 0.873 

  .59 0.015 0.009 0.637  0.003 0.002 0.702  0.001 0.000 0.814  <0.001 <0.001 0.889 

 .39 .15 0.112 0.081 0.784  0.042 0.034 0.866  0.011 0.010 0.938  0.005 0.005 0.966 

  .39 0.149 0.109 0.812  0.038 0.031 0.880  0.011 0.010 0.946  0.005 0.005 0.969 

  .59 0.134 0.101 0.850  0.041 0.034 0.902  0.011 0.010 0.949  0.005 0.004 0.972 

 .59 .15 0.392 0.317 0.929  0.161 0.140 0.948  0.054 0.050 0.980  0.022 0.022 0.989 

  .39 0.391 0.321 0.924  0.171 0.149 0.957  0.050 0.048 0.985  0.021 0.020 0.989 

  .59 0.341 0.285 0.963  0.132 0.119 0.990  0.048 0.045 0.988  0.023 0.022 0.994 

.39 .15 .15 0.181 0.127 0.795  0.048 0.037 0.858  0.015 0.013 0.942  0.005 0.005 0.968 

  .39 0.165 0.112 0.771  0.045 0.036 0.872  0.013 0.012 0.937  0.005 0.005 0.967 

  .59 0.129 0.090 0.789  0.040 0.032 0.879  0.014 0.012 0.941  0.005 0.004 0.971 

 .39 .15 0.683 0.569 0.844  0.297 0.267 0.908  0.114 0.109 0.958  0.052 0.051 0.979 

  .39 0.661 0.534 0.843  0.281 0.253 0.910  0.100 0.096 0.963  0.049 0.047 0.981 

  .59 0.646 0.548 0.870  0.235 0.213 0.922  0.083 0.080 0.968  0.040 0.040 0.983 

 .59 .15 1.990 1.782 0.912  0.881 0.827 0.953  0.289 0.283 0.981  0.153 0.152 0.990 

  .39 1.793 1.615 0.926  0.782 0.748 0.962  0.267 0.263 0.985  0.150 0.147 0.992 

  .59 1.487 1.396 0.956  0.682 0.658 0.974  0.270 0.265 0.989  0.129 0.129 0.995 

.59 .15 .15 1.024 0.809 0.913  0.274 0.239 0.954  0.077 0.073 0.978  0.040 0.038 0.988 

  .39 0.796 0.642 0.934  0.206 0.177 0.951  0.066 0.062 0.978  0.032 0.032 0.991 

  .59 0.518 0.408 0.894  0.198 0.171 0.948  0.064 0.060 0.980  0.028 0.027 0.989 

 .39 .15 3.025 2.677 0.920  1.253 1.179 0.955  0.442 0.431 0.981  0.229 0.225 0.990 

  .39 2.438 2.170 0.917  1.033 0.968 0.957  0.366 0.361 0.982  0.185 0.183 0.991 

  .59 1.972 1.760 0.926  0.887 0.833 0.963  0.300 0.295 0.983  0.139 0.137 0.992 

 .59 .15 5.368 4.965 0.932  2.592 2.479 0.966  0.950 0.932 0.985  0.448 0.444 0.993 

  .39 4.105 3.910 0.941  2.183 2.090 0.969  0.785 0.769 0.988  0.381 0.379 0.993 

  .59 3.755 3.506 0.960  1.650 1.605 0.977  0.630 0.620 0.989  0.314 0.310 0.995 
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Table 17. MSE and relative efficiency for conditional effect at +1 standard deviation above the mean of x 

 

   50  100  250  500 

   MSE   MSE   MSE   MSE  

mx  ym
x

 
ymx

x
 ̂    RE  ̂    RE  ̂    RE  ̂    RE 

.15 .15 .15  0.048  0.022 0.543  0.011 0.006 0.634  0.002 0.001 0.762  0.001 0.001 0.871 

  .39  0.164  0.109 0.732  0.055 0.042 0.828  0.019 0.016 0.913  0.007 0.006 0.952 

  .59  0.576  0.446 0.874  0.226 0.191 0.917  0.067 0.063 0.967  0.030 0.029 0.982 

 .39 .15  0.155  0.100 0.716  0.057 0.043 0.827  0.016 0.014 0.919  0.007 0.007 0.955 

  .39  0.426  0.313 0.842  0.136 0.114 0.903  0.041 0.038 0.955  0.019 0.018 0.978 

  .59  0.948  0.771 0.929  0.343 0.295 0.957  0.113 0.107 0.978  0.047 0.046 0.989 

 .59 .15  0.455  0.350 0.892  0.190 0.160 0.922  0.062 0.057 0.969  0.025 0.025 0.984 

  .39  0.800  0.650 0.918  0.358 0.308 0.948  0.107 0.101 0.983  0.044 0.042 0.990 

  .59  1.267  1.089 0.996  0.518 0.469 0.998  0.194 0.183 0.996  0.089 0.087 0.998 

.39 .15 .15  0.349  0.223 0.763  0.109 0.079 0.829  0.034 0.029 0.926  0.013 0.012 0.958 

  .39  1.214  0.948 0.822  0.521 0.454 0.897  0.189 0.177 0.955  0.083 0.081 0.977 

  .59  2.912  2.610 0.902  1.429 1.331 0.949  0.548 0.534 0.979  0.244 0.241 0.989 

 .39 .15  0.930  0.733 0.821  0.383 0.332 0.893  0.151 0.141 0.951  0.067 0.065 0.975 

  .39  2.174  1.833 0.879  0.934 0.859 0.931  0.372 0.362 0.971  0.176 0.173 0.986 

  .59  3.346  3.183 0.937  1.869 1.806 0.969  0.715 0.706 0.988  0.342 0.340 0.994 

 .59 .15  2.366  2.056 0.895  1.043 0.960 0.942  0.345 0.334 0.976  0.178 0.177 0.987 

  .39  3.298  3.058 0.938  1.728 1.666 0.969  0.626 0.616 0.987  0.341 0.336 0.993 

  .59  5.698  5.664 0.994  2.892 2.843 0.995  1.223 1.213 0.998  0.565 0.568 0.999 

.59 .15 .15  1.680  1.248 0.924  0.536 0.441 0.945  0.155 0.144 0.978  0.080 0.076 0.987 

  .39  3.904  3.391 0.919  1.894 1.818 0.959  0.653 0.650 0.982  0.354 0.346 0.992 

  .59  7.568  7.374 0.952  3.630 3.607 0.975  1.591 1.577 0.990  0.667 0.665 0.995 

 .39 .15  3.725  3.214 0.924  1.534 1.437 0.959  0.547 0.531 0.982  0.282 0.274 0.990 

  .39  5.769  5.344 0.935  2.846 2.751 0.969  1.026 1.014 0.985  0.550 0.544 0.993 

  .59  8.481  8.507 0.965  4.220 4.194 0.984  1.893 1.891 0.994  0.893 0.890 0.997 

 .59 .15  6.201  5.706 0.933  2.899 2.760 0.968  1.074 1.051 0.985  0.502 0.496 0.993 

  .39  7.807  7.782 0.959  4.108 4.010 0.977  1.578 1.565 0.992  0.830 0.830 0.996 

  .59 10.268 10.640 1.002  5.530 5.625 1.001  2.167 2.175 1.000  1.022 1.021 1.000 

 

 

Table 18. Percentile bootstrap CI coverage for ̂  conditional effect at the mean of x 
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   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 98.9 10  1  99.1  9  0  96.1  9 30  95.1 20 29 

  .39 99.7  3  0  99.2  8  0  95.8 14 28  95.6 14 30 

  .59 99.4  5  1  99.1  9  0  96.3  8 29  95.2 13 35 

 .39 .15 98.5 13  2  97.2 21  7  95.8 20 22  94.9 24 27 

  .39 98.2 18  0  97.8 18  4  96.2 24 14  94.3 22 35 

  .59 97.2 27  1  97.5 23  2  95.7 19 24  96.0 18 22 

 .59 .15 97.5 23  2  97.7 23  0  94.7 24 29  94.7 25 28 

  .39 97.3 27  0  96.0 39  1  95.8 25 17  96.6 23 11 

  .59 97.6 24  0  98.0 20  0  95.1 26 23  94.6 28 26 

.39 .15 .15 98.1 17  2  97.3 22  5  96.4 21 15  95.8 17 25 

  .39 98.1 18  1  97.2 21  7  95.8 20 22  94.6 19 35 

  .59 98.2 15  3  97.9 19  2  95.2 28 20  96.0 13 27 

 .39 .15 94.7 11 42  94.3 14 43  94.2 22 36  94.0 26 34 

  .39 95.6 14 30  93.7 22 41  93.9 21 40  94.7 29 24 

  .59 93.1 30 39  94.9 17 34  95.8 19 23  94.5 25 30 

 .59 .15 94.3 22 35  94.3 21 36  95.6 17 27  94.6 22 32 

  .39 93.9 21 40  94.4 20 36  96.1 19 20  94.9 27 24 

  .59 94.1 24 35  94.3 29 28  94.5 30 25  94.7 22 31 

.59 .15 .15 97.7 22  1  97.1 27  2  97.4 24  2  94.3 27 30 

  .39 97.1 29  0  98.5 14  1  97.1 23  6  94.1 25 34 

  .59 97.5 25  0  97.1 29  0  96.2 26 12  95.5 31 14 

 .39 .15 95.7 16 27  94.6 28 26  94.8 30 22  94.4 29 27 

  .39 95.1 23 26  94.2 24 34  95.1 22 27  93.9 24 37 

  .59 94.3 23 34  93.9 32 29  95.1 18 31  96.8 19 13 

 .59 .15 94.7 17 36  94.8 26 26  94.8 21 31  95.0 22 28 

  .39 94.8 14 38  94.6 27 27  95.2 21 27  95.7 15 28 

  .59 94.5 34 21  94.7 25 28  94.6 32 22  94.3 37 20 

 

 

 

Table 19. Percentile bootstrap CI coverage for   conditional effect at the mean of x  
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   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15  99.9  1  0  95.5  1 44  93.4  4 62  94.3 12 45 

  .39 100.0  0  0  96.7  2 31  93.4  6 60  94.0  8 52 

  .59  99.9  1  0  97.5  2 23  94.2  2 56  93.5  7 58 

 .39 .15  97.5  4 21  97.1  7 22  94.1  7 52  94.5 18 37 

  .39  98.3  5 12  97.7  7 16  96.0 12 28  94.0 11 49 

  .59  98.4  5 11  97.4  9 17  93.7 11 52  95.5 13 32 

 .59 .15  99.1  5  4  98.2 11  7  94.0 16 44  94.6 16 38 

  .39  99.0  7  3  98.2 15  3  94.7 13 40  96.9 16 15 

  .59  99.4  5  1  98.9 10  1  94.8 14 38  94.8 17 35 

.39 .15 .15  97.8  4 18  97.9  5 16  94.9 15 36  94.5 11 44 

  .39  99.0  1  9  97.8  4 18  94.6 14 40  94.6 12 42 

  .59  98.2  2 16  97.9  9 12  94.8 17 35  95.4  8 38 

 .39 .15  91.2  7 81  93.5  9 56  93.3 20 47  93.8 22 40 

  .39  93.3 10 57  91.9 11 70  93.5 16 49  94.4 26 30 

  .59  92.0 18 62  95.0  7 43  95.5 15 30  94.9 19 32 

 .59 .15  92.8 12 60  93.3 16 51  95.6 14 30  94.4 19 37 

  .39  93.0 14 56  94.1 12 47  95.9 15 26  95.1 22 27 

  .59  93.0 14 56  93.8 22 40  95.4 17 29  94.4 20 36 

.59 .15 .15  99.2  6  2  98.9 11  0  96.6 16 18  93.2 17 51 

  .39  99.1  8  1  98.7  9  4  97.2 11 17  94.0 13 47 

  .59  99.0 10  0  98.4 15  1  95.0 21 29  95.5 23 22 

 .39 .15  94.4  5 51  93.6 20 44  94.9 23 28  94.2 25 33 

  .39  93.9 12 49  94.2 18 40  95.3 16 31  93.8 20 42 

  .59  93.9 14 47  94.1 26 33  94.4 16 40  96.7 15 18 

 .59 .15  93.0 11 59  94.0 22 38  94.5 20 35  94.8 19 33 

  .39  93.5  9 56  94.9 18 33  94.9 19 32  95.3 14 33 

  .59  94.4 24 32  94.4 20 36  94.7 28 25  94.5 34 21 
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Table 20. Percentile bootstrap CI coverage for ̂  conditional effect at +1 standard deviation above the mean of x  

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 97.5 25  0  97.3 27  0  96.4 11 25  95.7 25 18 

  .39 98.3 16  1  97.4 19  7  94.5 29 26  95.6 16 28 

  .59 97.3 25  2  97.2 25  3  96.4 21 15  94.1 22 37 

 .39 .15 97.3 25  2  97.1 28  1  95.8 23 19  95.1 24 25 

  .39 97.4 26  0  97.3 26  1  95.9 25 16  94.1 21 38 

  .59 95.6 42  2  97.5 23  2  94.3 26 31  95.6 20 24 

 .59 .15 97.3 26  1  97.1 29  0  94.7 25 28  95.5 24 21 

  .39 97.2 28  0  96.4 36  0  95.6 22 22  96.7 21 12 

  .59 97.1 29  0  97.8 22  0  95.1 29 20  95.0 24 26 

.39 .15 .15 96.9 28  3  96.6 26  8  94.8 34 18  95.8 22 20 

  .39 93.8 19 43  93.3 19 48  94.4 19 37  95.6 19 25 

  .59 93.4 11 55  92.4 20 56  94.0 22 38  95.4 13 33 

 .39 .15 95.0 21 29  95.0 18 32  93.8 33 29  94.2 28 30 

  .39 94.2 17 41  93.8 19 43  92.8 26 46  95.0 23 27 

  .59 94.2 14 44  94.1 22 37  94.9 18 33  95.6 16 28 

 .59 .15 94.0 31 29  94.1 27 32  96.0 18 22  94.2 24 34 

  .39 94.0 21 39  93.9 26 35  95.0 21 29  94.3 31 26 

  .59 93.5 22 43  93.9 30 31  92.9 35 36  94.9 21 30 

.59 .15 .15 94.8 52  0  95.9 40  1  95.5 33 12  94.5 34 21 

  .39 94.5 22 33  93.1 23 46  94.1 13 46  94.6 21 33 

  .59 92.7 14 59  92.6  8 66  94.1 19 40  96.1 12 27 

 .39 .15 96.0 27 13  94.3 33 24  95.5 25 20  94.3 34 23 

  .39 94.7 15 38  94.1 20 39  95.0 21 29  94.0 23 37 

  .59 92.2 15 63  93.6 19 45  94.6 16 38  95.0 18 32 

 .59 .15 95.1 18 31  94.9 28 23  94.5 25 30  94.6 27 27 

  .39 94.1 15 44  94.0 21 39  94.1 27 32  93.6 19 45 

  .59 94.0 16 44  93.4 24 42  94.7 22 31  94.8 25 27 
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Table 21. Percentile bootstrap CI coverage for   conditional effect at +1 standard deviation above the mean of x  

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 99.9  1  0  96.5  2 33  93.6  3 61  95.3 15 32 

  .39 97.9  4 17  97.5  4 21  94.3 11 46  95.2 10 38 

  .59 97.8 12 10  96.8 12 20  94.7 13 40  93.6 15 49 

 .39 .15 98.2  5 13  97.7  7 16  94.0 10 50  94.4 21 35 

  .39 99.0  5  5  97.6 12 12  95.1 10 39  94.2 12 46 

  .59 98.2 13  5  98.2  9  9  93.6 10 54  95.2 14 34 

 .59 .15 99.5  4  1  98.3 11  6  94.1 15 44  94.9 17 34 

  .39 99.1  8  1  98.4 14  2  94.2 16 42  97.2 14 14 

  .59 99.3  6  1  98.8  6  6  94.5 17 38  94.7 17 36 

.39 .15 .15 97.3  6 21  95.5  9 36  95.0 22 28  95.0 14 36 

  .39 91.2  6 82  91.7 10 73  93.2 13 55  95.0 13 37 

  .59 90.4  5 91  92.0 11 69  93.8 15 47  95.5  9 36 

 .39 .15 92.3  7 70  93.3 12 55  94.3 19 38  93.9 22 39 

  .39 92.3 10 67  91.8 12 70  91.8 19 63  94.5 20 35 

  .59 91.9  6 75  93.9 14 47  95.0 15 35  95.3 15 32 

 .59 .15 92.4 13 63  93.4 14 52  95.1 13 36  94.3 18 39 

  .39 93.0 11 59  93.2 20 48  94.9 18 33  94.8 26 26 

  .59 92.3 14 63  94.2 19 39  92.5 32 43  95.2 16 32 

.59 .15 .15 98.4 10  6  97.5 11 14  96.0 13 27  94.5 21 34 

  .39 94.1  7 52  91.7 10 73  93.5  9 56  94.3 16 41 

  .59 91.4  4 82  92.0  4 76  93.8 15 47  95.8 10 32 

 .39 .15 95.2 11 37  94.1 19 40  94.5 18 37  94.2 27 31 

  .39 92.5 12 63  92.7 15 58  94.8 17 35  94.0 20 40 

  .59 90.5 12 83  93.3 16 51  93.9 15 46  94.6 16 38 

 .59 .15 93.3 13 54  94.1 19 40  94.5 20 35  94.8 23 29 

  .39 92.5  7 68  93.4 14 52  94.2 22 36  93.3 16 51 

  .59 92.4 14 62  93.1 19 50  94.5 18 37  94.9 21 30 
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Table 22. BCa bootstrap CI coverage for ̂  conditional effect at the mean of x 

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 81.5 18 167  81.9 16 165  92.5 14 61  94.9 26 25 

  .39 83.4 12 154  83.2 12 156  90.5 24 71  96.3 16 21 

  .59 81.3 12 175  81.7 20 163  92.4 14 62  95.9 17 24 

 .39 .15 82.7 24 149  85.2 28 120  91.5 29 56  94.6 29 25 

  .39 83.8 27 135  86.3 26 111  93.6 28 36  94.2 25 33 

  .59 85.0 35 115  87.1 30  99  91.3 25 62  95.5 23 22 

 .59 .15 84.5 33 122  84.5 29 126  91.7 25 58  94.5 25 30 

  .39 83.2 35 133  83.5 42 123  91.7 25 58  96.4 24 12 

  .59 83.2 26 142  87.9 25  96  92.8 26 46  94.7 27 26 

.39 .15 .15 83.8 27 135  84.9 31 120  92.9 21 50  95.5 19 26 

  .39 84.1 25 134  86.4 28 108  91.1 25 64  94.3 22 35 

  .59 85.0 20 130  83.9 29 132  91.6 30 54  95.5 17 28 

 .39 .15 92.8 16  56  95.4 20  26  94.7 25 28  94.3 27 30 

  .39 94.8 19  33  94.2 26  32  93.5 27 38  94.7 31 22 

  .59 92.3 31  46  95.9 20  21  96.2 20 18  94.6 27 27 

 .59 .15 94.5 24  31  94.8 25  27  95.6 22 22  94.5 24 31 

  .39 93.2 29  39  94.9 23  28  96.1 20 19  94.8 31 21 

  .59 93.7 27  36  95.1 26  23  94.7 30 23  94.2 24 34 

.59 .15 .15 82.4 30 146  81.1 35 154  89.7 23 80  93.2 27 41 

  .39 81.2 35 153  85.7 17 126  89.4 26 80  93.3 22 45 

  .59 85.5 26 119  84.2 35 123  91.5 27 58  95.1 32 17 

 .39 .15 92.0 26  54  94.5 29  26  94.9 32 19  94.3 32 25 

  .39 93.0 25  45  94.0 28  32  95.2 23 25  94.1 24 35 

  .59 93.2 25  43  93.9 31  30  94.7 21 32  96.3 21 16 

 .59 .15 94.3 23  34  94.8 27  25  94.5 27 28  95.1 25 24 

  .39 95.5 17  28  95.1 27  22  95.0 23 27  95.9 16 25 

  .59 94.9 30  21  93.9 29  32  94.9 29 22  94.1 37 22 
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Table 23. BCa bootstrap CI coverage for   conditional effect at the mean of x 

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 88.8  3 109  77.7  3 220  85.9  8 133  95.1 18 31 

  .39 87.5  3 122  77.6  3 221  85.6 10 134  95.5 13 32 

  .59 85.6  2 142  76.1  5 234  87.5  6 119  95.5 11 34 

 .39 .15 71.7  6 277  76.9 16 215  90.3 17  80  94.2 22 36 

  .39 72.6  9 265  79.8 14 188  92.6 16  58  93.8 18 44 

  .59 73.2  9 259  80.6 12 182  90.8 12  80  95.6 15 29 

 .59 .15 76.2  8 230  80.4 13 183  91.2 19  69  94.2 18 40 

  .39 75.4 13 233  81.2 19 169  91.7 15  68  96.8 15 17 

  .59 75.5  7 238  84.2 10 148  92.6 15  59  94.7 16 37 

.39 .15 .15 72.9  5 266  78.1 10 209  91.4 16  70  94.4 11 45 

  .39 71.8  5 277  79.0  8 202  89.9 17  84  94.4 15 41 

  .59 74.7  4 249  79.6 12 192  90.4 22  74  95.5 12 33 

 .39 .15 90.5  9  86  94.9 15  36  94.3 19  38  94.2 25 33 

  .39 92.4 10  66  94.2 16  42  93.6 22  42  94.9 25 26 

  .59 91.6 21  63  95.8 13  29  95.8 17  25  95.0 23 27 

 .59 .15 93.7 16  47  94.4 19  37  95.9 14  27  94.5 20 35 

  .39 93.1 16  53  95.2 12  36  95.6 19  25  95.1 24 25 

  .59 92.9 17  54  94.7 21  32  94.9 23  28  93.9 19 42 

.59 .15 .15 71.4  8 278  74.1 13 246  87.9 15 106  92.6 19 55 

  .39 72.0 11 269  78.8  9 203  88.5 14 101  92.5 15 60 

  .59 75.5 13 232  81.5 17 168  91.0 20  70  95.1 23 26 

 .39 .15 91.4 11  75  94.1 21  38  94.9 26  25  93.8 28 34 

  .39 91.7 16  67  93.5 23  42  95.3 17  30  93.8 21 41 

  .59 93.3 17  50  94.1 27  32  94.2 18  40  96.5 16 19 

 .59 .15 94.1 14  45  94.8 22  30  94.4 22  34  95.0 23 27 

  .39 95.6 12  32  95.2 20  28  95.0 21  29  95.6 14 30 

  .59 94.4 25  31  94.3 22  35  95.0 26  24  94.4 32 24 
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Table 23. BCa bootstrap CI coverage for ̂  conditional effect at +1 standard deviation above the mean of x 

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 86.7 20 113  84.4 29 127  93.2 14 54  95.4 27 19 

  .39 84.7 22 131  87.2 29  99  90.9 34 57  95.4 21 25 

  .59 83.6 31 133  84.3 33 124  92.5 27 48  93.8 27 35 

 .39 .15 82.3 26 151  84.7 31 122  91.9 30 51  94.7 29 24 

  .39 82.7 35 138  85.1 31 118  92.6 33 41  94.4 23 33 

  .59 82.2 51 127  85.9 35 106  90.9 29 62  95.4 25 21 

 .59 .15 84.4 33 123  84.2 30 128  91.7 27 56  95.3 23 24 

  .39 83.6 32 132  83.6 38 126  91.8 24 58  96.7 21 12 

  .59 82.1 31 148  87.6 25  99  91.9 32 49  95.2 24 24 

.39 .15 .15 89.1 31  78  89.9 25  76  93.2 35 33  94.6 20 34 

  .39 90.9 20  71  93.2 23  45  93.9 27 34  95.2 23 25 

  .59 92.4 24  52  92.4 30  46  94.3 26 31  94.8 22 30 

 .39 .15 92.1 19  60  94.4 25  31  94.0 31 29  94.2 32 26 

  .39 93.2 26  42  93.2 26  42  92.7 32 41  94.4 32 24 

  .59 94.2 19  39  94.0 28  32  95.2 20 28  95.4 19 27 

 .59 .15 93.0 32  38  94.6 27  27  96.0 20 20  93.9 27 34 

  .39 92.4 28  48  93.6 35  29  94.4 29 27  94.1 34 25 

  .59 92.4 28  48  93.9 31  30  92.2 41 37  94.6 25 29 

.59 .15 .15 87.6 37  87  88.0 37  83  92.6 25 49  93.3 26 41 

  .39 92.1 23  56  90.7 30  63  93.1 20 49  94.2 30 28 

  .59 91.6 21  63  92.5 14  61  93.7 29 34  96.0 19 21 

 .39 .15 90.8 31  61  93.4 30  36  94.6 26 28  94.6 32 22 

  .39 93.5 21  44  93.8 26  36  94.6 28 26  93.4 29 37 

  .59 91.8 22  60  93.7 29  34  94.3 23 34  94.3 26 31 

 .59 .15 94.5 18  37  94.6 28  26  94.8 26 26  95.1 26 23 

  .39 93.8 22  40  93.7 26  37  93.6 35 29  92.9 28 43 

  .59 93.7 21  42  93.4 29  37  94.6 26 28  94.7 29 24 
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Table 25. BCa bootstrap CI coverage for   conditional effect at +1 standard deviation above the mean of x 

 

   N=50  N=100  N=250  N=500 

mx  ym
x

 
ymx

x
 Cov High Low  Cov High Low  Cov High Low  Cov High Low 

.15 .15 .15 90.6  4  90  80.6  6 188  91.3  4 83  95.3 17 30 

  .39 74.2  6 252  79.3  9 198  90.5 19 76  95.0 14 36 

  .59 72.4 15 261  79.5 18 187  91.4 16 70  92.5 21 54 

 .39 .15 75.2  7 241  79.0  9 201  91.0 14 76  94.2 21 37 

  .39 75.5  8 237  81.3 15 172  91.9 21 60  93.8 14 48 

  .59 75.2 16 232  82.8 15 157  90.1 17 82  94.9 17 34 

 .59 .15 78.0  7 213  80.7 12 181  91.5 17 68  94.8 18 34 

  .39 76.3 12 225  81.3 20 167  91.2 16 72  96.8 16 16 

  .59 75.6  6 238  85.3  7 140  92.2 19 59  95.2 15 33 

.39 .15 .15 75.1  6 243  82.6  8 166  91.8 20 62  93.5 14 51 

  .39 89.5  4 101  92.4 12  64  92.9 22 49  95.0 20 30 

  .59 90.9 12  79  92.0 21  59  93.9 21 40  95.3 13 34 

 .39 .15 89.3 13  94  93.7 10  53  94.4 21 35  94.0 25 35 

  .39 92.6 12  62  92.2 19  59  92.3 26 51  94.0 28 32 

  .59 92.9  7  64  93.7 23  40  95.0 18 32  95.4 17 29 

 .59 .15 93.1 15  54  94.0 20  40  95.5 14 31  93.7 22 41 

  .39 92.6 14  60  93.3 23  44  94.2 23 35  93.9 34 27 

  .59 91.7 19  64  94.1 24  35  92.5 34 41  94.9 19 32 

.59 .15 .15 77.5  8 217  85.1 10 139  90.7 12 81  92.7 19 54 

  .39 90.4 10  86  89.8 20  82  92.9 15 56  93.6 24 40 

  .59 91.0 12  78  91.9 12  69  93.8 24 38  95.9 16 25 

 .39 .15 89.3 12  95  92.9 20  51  93.7 20 43  93.9 27 34 

  .39 92.3 15  62  92.3 20  57  94.7 21 32  93.6 25 39 

  .59 91.3 16  71  93.2 23  45  94.2 20 38  94.3 22 35 

 .59 .15 93.5 11  54  94.1 21  38  94.4 23 33  94.8 23 29 

  .39 92.5 15  60  93.6 19  45  93.9 29 32  93.5 21 44 

  .59 92.9 17  54  93.5 22  43  94.2 24 34  94.6 26 28 

 

 


