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 CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Clinical Features of Age-related Macular Degeneration 
 
     Age-related macular degeneration (AMD) is a late-onset disorder characterized by 

central field vision loss, which may eventually lead to legal blindness. Three clinical 

hallmarks of AMD are the presence of large soft drusen, geographic atrophy (GA), and/or 

choroidal neovascularization (CNV). Other features associated with the disease include: 

pigmentary abnormalities, pigment epithelial detachment (PED), and disciform scarring.  

      Early in the disease process, soft drusen greater than 63 µm in diameter form between 

Bruch’s membrane and the retinal pigment epithelium (RPE). Drusen represent 

undigested cellular debris, and often contain lipids and proteins such as vitronectin, 

TIMP3, crystallin, ubiquitin, integrins, factor X, APOE, and components of the 

complement system (Hageman et al. 2001). They vary from eye to eye in terms of shape, 

size, number, color, and distinctness of borders. The precise biological mechanism by 

which drusen form remains unknown, though several theories exist. One theory proposes 

that drusen are formed following injury to the retinal pigment epithelium as material from 

damaged cells leaks into the space between Bruch’s membrane and the RPE (Hageman et 

al. 2001). Monocytes migrate to the site of this injury and mature into dendritic cells. The 

dendritic cells amplify the inflammatory response, producing a state of chronic 

inflammation. RPE cell debris and proteins secreted in response to the presence of the 

dendritic cells accumulate in drusen. After maturation, the dendritic cells leave the druse, 
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which continues to grow and soften. Alternatively, the hemodynamic model suggests that 

drusen in patients with wet AMD and higher capillary pressure are created due to a 

decreased ability of the RPE to transport waste against a higher hydrostatic gradient 

(Friedman 1997).  

     Whatever the mechanism, presence of large, soft drusen is an early warning sign that 

more severe features of AMD may develop. In the Beaver Dam Eye Study, late AMD 

was more likely to develop by the 5 year follow-up exam in individuals who had soft 

drusen at the baseline exam (6.5% vs. 0.1%) (Klein et al. 1997). In the Blue Mountain 

Eye Study, individuals with drusen >63 µm at the baseline exam had an 11-fold increase 

in odds of CNV or GA at follow-up(Wang et al. 2003)  However, many patients with 

early AMD are unaware of any visual deficits(Berger, Fine, and Maguire 1999), 

underscoring the need for detailed eye exams for controls, as well as cases, in genetic 

studies.    

     Geographic atrophy occurs when RPE cells die and their associated photoreceptors 

atrophy. GA may begin as a focal atrophy formed due to the regression of drusen near the 

fovea, out of an area of pigmentary abnormality, or from an RPE detachment. As the 

disease progresses, a horseshoe-shaped pattern of atrophy commonly surrounds the fovea, 

through which the choroidal vasculature is more easily observed. Finally, the fovea itself 

may begin to atrophy. It may take several years for this progression to occur, and patients 

often slowly notice a decrease in visual acuity(Berger, Fine, and Maguire 1999). 

Geographic atrophy has been termed the “dry” form of late AMD, and occurs less 

frequently than the “wet” neovascular form.                                                                                                 
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     “Wet” or exudative AMD is characterized by the presence of choroidal 

neovascularization, the growth of new blood vessels from the choroid through Bruch’s 

membrane into the subretinal space. Frequent hemorrhaging leads to the development of 

a disciform scar and severe vision loss. Unlike dry AMD, severe vision loss may occur 

suddenly after hemorrhaging. 

     Much debate exists in the field over how to define each subtype of AMD. One 

commonly used set of diagnostic criteria was developed by the Age-Related Eye Disease 

Study(AREDS 1999). Fundus photographs of our study participants have been graded by 

trained clinicians according to a modified version of this protocol, which is presented in 

Table 1-1. 

 

Table 1-1. Diagnostic AMD Grading. Figure from Spencer et al 2007 in press. 

 
 

 

     Individuals with grade 3 AMD are at much higher risk to progress to geographic 

atrophy or choroidal neovascularization(Klein et al. 1997). Patients with GA may or may 
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not progress to CNV. Data from the Beaver Dam Eye Study and the Rotterdam Study 

have shown that choroidal neovascularization (grade 5 AMD) is about twice as common 

as geographic atrophy (grade 4 AMD) (Vingerling et al. 1995; Klein, Klein, and Linton 

1992). This phenotypic heterogeneity has led some to suggest that perhaps "AMD" is a 

catchall term that covers several distinct disorders which share clinical features in 

common(Yanoff 2004). 

 

Epidemiology 

     Based on a meta-analysis of population-based data from seven studies, the Eye 

Diseases Prevalence Research Group estimated that approximately 7.3 million people in 

the United States have large drusen characteristic of early AMD and that 1.75 million 

individuals suffer from advanced forms of this disorder(Friedman et al. 2004). The 

number of cases with geographic atrophy or choroidal neovascularization is expected to 

nearly double by the year 2020 as the population ages(Friedman et al. 2004). A meta-

analysis of data from 3 large population-based studies of Caucasians in the United States, 

The Netherlands, and Australia estimated an overall prevalence of AMD of 0.2% in the 

55-64 age group, which increased to 13% in those over 85(Smith et al. 2001). The 

prevalence of late AMD in those of African or Hispanic descent seems to be lower than 

for Caucasians, and not much is known about the prevalence of AMD in other ethnic 

groups(Klein et al. 2004). A bias towards an increased number of affected Caucasian 

women vs. Caucasian men has been reported by some groups, but was not seen by others 

(Seddon and Chen 2004). Confounding due to the longer average life expectancy of 

women has made this gender bias difficult to confirm. 
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     Age is the number one risk factor for developing AMD, followed by family history, 

smoking, and obesity. The connection between smoking and AMD has been particularly 

well-documented with 13 of 17 studies finding evidence of the association(Thornton et 

al. 2005). Meta-analysis of four prospective cohort studies estimated the odds ratio for 

current vs. never smokers at 2.35 (95% confidence interval 1.30 to 4.27) (Thornton et al. 

2005). Obesity, defined as body mass index greater than 30, has been associated with 

both increased odds of central geographic atrophy (OR=1.93, 95% confidence interval 

1.25 to 2.65)  and progression to advanced AMD (RR=2.35, 95% confidence interval 

1.27 to 4.34) (Clemons et al. 2005; Seddon et al. 2003a). Links between hypertension, iris 

color, and early menopause have been suggested, but were not associated with AMD in a 

meta-analysis of the Rotterdam, Beaver Dam, and Blue Mountain studies(Smith et al. 

2001). The AREDS study also found no association between hypertension, iris color, or 

sun exposure(Clemons et al. 2005). Links between diabetes, alcohol consumption, 

cardiovascular disease, cataract surgery, and light exposure and AMD have also been 

suggested, though the results of these studies are inconclusive (Figure 1-1) (Klein et al. 

2004). 
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Figure 1-1. Association of Risk Factors with Age-Related Macular Degeneration From Population-based Studies. Figure from 
Klein et al. 2004. 
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Genetic Epidemiology 

     AMD is a complex, multifactorial late-onset disease. A strong genetic component in 

the etiology of AMD has long been suspected based on evidence from familial 

aggregation studies, twin studies, and segregation analysis.  

     Familial aggregation of the AMD phenotype has been well-documented in Caucasian 

populations. The prevalence of AMD in first degree relatives of AMD cases is higher 

than the prevalence in relatives of controls (23.7% vs 11.6%, respectively), with an age- 

and sex-adjusted odds ratio of 2.4 (95% confidence interval 1.2 to 4.7) (Seddon, Ajani, 

and Mitchell 1997). The Rotterdam Study also demonstrated familial aggregation of 

AMD and further showed that early manifestations of AMD may develop at a younger 

age in relatives of patients vs. relatives of controls (Klaver et al. 1998b). They estimated 

that the population-attributable risk related to genetic factors was at least 23%.  

Furthermore, the Beaver Dam Eye Study examined younger siblings of AMD patients 5 

years after the baseline exam in the probands to see if younger siblings had developed 

similar signs of AMD (Klein et al. 2001a). They found that the younger siblings were 

significantly more likely to develop soft drusen and RPE depigmentation within 5 years, 

if the older sibling had these lesions at the baseline exam. Recently, AMD was shown to 

cluster in Japanese families as well(Yoshida et al. 2000). 

     Numerous twin studies have suggested a substantial genetic component in risk for 

developing AMD(Seddon et al. 2005; Grizzard, Arnett, and Haag 2003; Hammond et al. 

2002; Gottfredsdottir et al. 1999; Meyers, Greene, and Gutman 1995; Klein, Mauldin, 

and Stoumbos 1994; Meyers 1994). In the largest twin study to date of 840 male twins 

born between 1917 and 1927, the overall heritability of AMD was estimated at 46% 
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(Seddon et al. 2005). Heritability for intermediate AMD and late AMD was found to be 

67% and 71%, respectively. This agrees remarkably well with the heritability estimate of 

45% for overall AMD determined by Hammond et al. in their study of 516 female twin 

pairs with a mean age of 62(Hammond et al. 2002).   

     Finally, using segregation analysis, evidence for the presence of a major gene effect 

was obtained, and this study recommended a linkage screen as the next logical step for 

unraveling the genetics of AMD(Heiba et al. 1994). 

 

Linkage Screens 

     As the name suggests, a genome-wide linkage screen takes an unbiased approach for 

localizing disease genes by testing a panel of markers spaced across the genome for 

linkage to the disease in pedigrees segregating the phenotype. One of the first genome-

wide linkage screens analyzed one large family that appeared to be segregating an 

autosomal dominant form of AMD and implicated chromosome 1q25-q31(Klein et al. 

1998). This region has turned out to be the most consistent finding of all the results of 

several genome scans(Weeks et al. 2001; Seddon et al. 2003b; Majewski et al. 2003; 

Weeks et al. 2004; Iyengar et al. 2004; Abecasis et al. 2004). Besides chromosome 1q25-

q31, regions of linkage reported in 2 or more studies include 9q31, 10q26, 12q23, 15q21, 

16p12, 17q25, and 22q13. Meta-analysis of the six largest genome screens strongly 

implicated 10q26, and supported linkage at 1q, 2p, 3p, 16p13-q12.2, and 16q12.2-

q23.1(Fisher et al. 2005). Only the minimum candidate regions on 1q25-q31 and 10q26 

have been sufficiently narrowed to associate specific genes with AMD, these being the 
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complement factor H and CFH-like genes on chromosome 1 and LOC387715/HTRA1 on 

chromosome 10. 

 

CFH and the CFH-like Genes on Chromosome 1 

     To date the complement factor H gene remains the most widely accepted 

susceptibility locus for AMD. Our group reported odds ratios of 2.45 (1.41-4.25) for an 

individual carrying one risk allele and 3.33 (1.79-6.20) for carriers of two risk alleles. 

These increased to 3.45 (1.72-6.92) and 5.57 (2.52-12.27) when only neovascular AMD 

was examined(Haines et al. 2005). These odds ratios are very similar to what was 

reported by other groups, and to combined estimates from the largest meta-analysis of 

this polymorphism (Figure 1-2) (Schaumberg et al. 2007).  

     The population attributable risk (PAR) is a measure of the burden of disease placed on 

the population by a particular risk factor. We reported a PAR of 0.43(Haines et al. 2005), 

slightly lower than the range of 0.46-0.61 reported by other groups(Edwards et al. 2005; 

Klein et al. 2005; Zareparsi et al. 2005a).  
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Figure 1-2. Odds Ratio Estimates for CFH Y402H. Figure from Schaumberg et al. 
2007. NHS=Nurses Health Study, HPFS=Health Professionals Follow-up Study. 
 
 
 
     Interestingly, the minor allele frequency of CFH Y402H and the risk it carries for 

AMD vary across ethnic groups (Figure 1-3) (Hageman et al. 2006). Strong associations 

between CFH Y402H and AMD have been replicated in U.S. (Hageman et al. 2005; 

Conley et al. 2005; Zareparsi et al. 2005a; Magnusson et al. 2006; Schaumberg et al. 

2006; Seddon et al. 2006), U.K. (Sepp et al. 2006), French (Souied et al. 2005), German 

(Rivera et al. 2005), Icelandic(Magnusson et al. 2006), and Russian populations (Fisher et 

al. 2006). Haplotypes in CFH, but not the CFH Y402H polymorphism itself were 

associated with AMD in some Chinese study populations (Chen et al. 2006) and CFH 

Y402H was associated in others (Lau et al. 2006). This polymorphism was not associated 
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with early AMD in Latinos from Los Angeles, CA, though there was modest evidence of 

association with soft bilateral drusen (Tedeschi-Blok et al. 2007). Finally, no association 

with CFH Y402H was found in the Japanese, though risk and protective haplotypes 

within the gene were observed (Fuse et al. 2006; Gotoh et al. 2006; Okamoto et al. 2006; 

Tanimoto et al. 2006; Uka et al. 2006). Lack of statistical power could explain these 

negative results. However, the low overall frequency of CFH Y402H in the Japanese 

(~4%, Okamoto et al. 2006) coupled with consistent negative data across five studies, 

suggest that risk factors other than CFH Y402H are the major underlying contributors to 

AMD in this population.  

 

 

 
Figure 1-3. Frequency of CFH Y402H in Various Ethnic Groups. Figure adapted 
from Hageman et al. 2006. HGDP=Human Genome Diversity Panel. 
      

      

     The precise role of CFH in the AMD process is still being elucidated, but clues have 

been uncovered. It is known that CFH regulates the C3 component of the complement 

cascade, which left unchecked, may attack not only pathogens, but also host cells. CFH 

inhibits both initiation (by preventing assembly of active C3 convertase) and 
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amplification (by inactivating surface deposited C3b and destroying C3bBb convertase) 

of the complement cascade (Figure 1-4) (Zipfel et al. 2006). CFH also binds to anionic 

molecules on endothelial cells, marking them as self-tissues and preventing attack from 

the immune system (Alexander and Quigg 2007).  

     Using immunohistochemistry CFH protein has been observed in drusen, the subRPE 

space, and around the choroidal vasculature (Hageman et al. 2005). This staining is much 

more robust in AMD donor eyes than in age-matched controls. Mandal et al. confirmed 

localization of CFH in the retina and RPE-choroid, and further demonstrated that CFH 

expression in the eye increases with age in mice (Mandal and Ayyagari 2006).  

     There are many theories as to how CFH may be related to the pathophysiology of 

AMD. First, plasma levels of CFH are decreased in smokers (Esparza-Gordilla and Soria 

2004), suggesting that smokers may be more susceptible to chronic inflammation of the 

retina and AMD. However, no statistical interaction between smoking and CFH Y402H 

genotype has been found (Scott et al. 2007; Seddon et al. 2006). 
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Figure 1-4. The Alternative Complement Cascade. CFH prevents activation of 
complement on host cells by inactivating surface deposited C3b (bottom left, top panel) 
and by acting as a cofactor for factor I so that C3b is cleaved to yield inactive C3b 
(bottom left, bottom panel). Figure from (Janeway, Jr. et al. 2001). 
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     Second, the CFH Y402H polymorphism lies within the binding sites for C reactive 

protein (CRP) and heparin. When CFH binds to either CRP or heparin, its affinity for 

C3b is increased, and a stronger inhibition of the complement cascade results. Thus, this 

polymorphism may play a functional role by altering binding activity of the protein. 

Based on this evidence, it has been speculated that individuals with the high-risk CFH 

genotype have decreased ability to inhibit the complement system, and thus risk 

destruction of self-tissues. Recent functional data support decreased binding of CRP by 

the H402 version of the protein (Yu et al. 2007; Skerka et al. 2007; Laine et al. 2007). 

Additionally, histidine homozygotes have ~2.5 fold increase in CRP in the RPE-choroid 

compared to tyrosine homozygotes (Johnson et al. 2006). 

     Third, in addition to the risk imparted by the CFH Y402H allele, protective haplotypes 

spanning CFH exist (Hageman et al. 2005; Hageman et al. 2006)(Spencer et al. 2007, in 

press). An 84 Kb deletion of the CFH-like genes CFHL1 and CFHL3 segregates with one 

of these protective haplotypes (Hughes et al. 2006; Hageman et al. 2006), and CFHL1 

and CFHL3 proteins were absent from the sera of deletion homozygotes. This led to the 

hypothesis that only the full-length transcript for CFH properly coordinates immune 

response and that the CFH-like proteins interfere with this regulation. Interestingly, the 

frequency of the deletion was highest in African Americans (Figure 1-5), possibly 

explaining the lower frequency of AMD in this population compared to Caucasians 

(7.4% of blacks vs. 15.8% of whites aged 75-84 years in the U.S.) (Hageman et al. 2006; 

Klein et al. 2006). 
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Figure 1-5. Frequency of the CFHL1/CFHL3 Deletion in Various Ethnic Groups. 
Figure adapted from Hageman et al. 2006. HGDP=Human Genome Diversity Panel. 
 

     Besides AMD, polymorphisms in CFH are also associated with atypical hemolytic 

uremic syndrome (aHUS) and membranoproliferative glomerulonephritis type II (MPGN 

II). Symptoms of aHUS include hemolytic anemia, thrombocytopenia, and renal failure. 

CFH variants were found in ~24% of patients (Caprioli et al. 2003), and these individuals 

had a higher rate of kidney transplant failure and a higher mortality rate. Non-

synonymous polymorphisms in the C-terminus of the CFH protein in aHUS patients have 

been associated with defective binding to anionic molecules on endothelial cells, leaving 

these cells open to attack from the immune system (Manuelian et al. 2003). Perhaps 

impaired binding of CFH to endothelial cells in the eye leads to the inflammation and 

tissue damage that is associated with AMD. 

     In MPGN II, dense deposits form in the glomerular capillary wall of the kidney, 

leading to defects in plasma filtration. Interestingly, many components of these dense 

deposits in the kidneys, such as vitronectin, immunoglobin, and complement component 

C5, overlap with the constituents of drusen in AMD patients (Mullins et al. 2000). 

Furthermore, MPGN II patients may develop deposits in Bruch’s membrane resembling 
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drusen in their teen years, much younger than the typical AMD patient (Duvall-Young, 

MacDonald, and McKechnie 1989). 

     Diseases like aHUS, MPGN II, and AMD provide an excellent illustration of 

phenotypic heterogeneity, in which more than one phenotype is derived from variation in 

a single gene. That all 3 diseases are associated with polymorphisms in CFH explains 

their similarities, but what accounts for the differences? Most obviously, the different 

diseases are related to different variations in CFH. For example, MPGNII is most often 

associated with mutations that cause decreased CFH plasma levels, whereas aHUS is 

usually related to mis-sense coding changes in the C-terminus of the protein, though there 

are exceptions (Alexander and Quigg 2007). Also, other genes are known to contribute 

independently of CFH to each of these phenotypes, and there may be other genetic 

modifiers that have not yet been discovered.  

     Finally, if CFH is such an important regulator of the complement system, then why 

don’t changes in the gene cause systemic effects, rather than being concentrated mainly 

in the kidney and eye? Though no one knows for certain, it has been proposed that the 

great redundancy of complement regulatory proteins provides some protection when a 

single regulator is impaired and may limit defects to select tissues (Zipfel et al. 2006). If 

true, this redundancy could also help explain why it takes around 70 years for enough 

damage to accumulate in the macula to result in visual disturbances. 

     To summarize, CFH Y402H and other variation within CFH and the CFH-like genes 

has been strongly associated with AMD in a variety of populations. This discovery has 

provided insight not only into the pathophysiology underlying AMD, but also into related 

disorders, like aHUS and MPGN II. However, while CFH Y402H is highly correlated 
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with increased AMD risk, it is neither necessary nor sufficient to cause disease in all 

cases, hinting at the presence of other genetic and environmental susceptibility factors. 

 

LOC387715 on Chromosome 10 

     Chromosome 10 showed the strongest evidence for linkage in a meta-analysis of the 

six largest genomic screens (Fisher et al. 2005), and the minimum candidate region was 

subsequently narrowed to just five genes: PLEKHA1, LOC387715, PRSS11 (aka 

HTRA1), GRK5, and RGS10 (Jakobsdottir et al. 2005). Several studies agree that the 

nonsynonymous LOC387715 A69S variant is associated with disease (Rivera et al. 2005; 

Schmidt et al. 2006; Schaumberg et al. 2007). The risk appears to translate across ethnic 

groups, with associations being reported not only in US, but also in Russian (Fisher et al. 

2006) and Japanese populations (Tanimoto et al. 2006). In a meta-analysis of 3 studies, 

odds ratios were estimated at 2.18 for those carrying one risk allele and 7.14 in 

individuals homozygous for the risk allele (Figure 1-6). Cigarette smoking interacts with 

LOC387715 A69S genotype so that homozygous risk allele carriers who also smoke have 

an 8-22 fold increased risk of AMD (Schmidt et al. 2006; Schaumberg et al. 2007). Very 

little is known about the biological function of this gene, though expression has been 

observed in the retina (Rivera et al. 2005). 
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Figure 1-6. Odds Ratio Estimates for LOC387715 A69S. Figure from Schaumberg et 
al. 2007. NHS=Nurses Health Study, HPFS=Health Professionals Follow-up Study. 
 
 

     Conflicting reports suggest that LOC387715 A69S is not the functional variant in this 

region, but rather that it is a promoter SNP in HTRA1 that influences AMD 

susceptibility. This association was reported in Caucasian, Chinese, and Japanese 

populations (Dewan et al. 2006; Yang et al. 2006; Cameron et al. 2007; Yoshida et al. 

2007; Mori et al. 2007). HTRA1 encodes a serine protease which regulates degradation 

of extracellular matrix proteoglycans. It has been conjectured that overexpression of 

HTRA1 may compromise Bruch’s membrane, allowing blood vessels from the choroid to 

grow into the subretinal space (Yang et al. 2006). However, as LOC387715 A69S and the 

promoter SNP of HTRA1 are in very strong linkage disequilibrium, LOC387715 A69S 

can serve as a proxy for the risk variant in this region until the debate can be resolved. 
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Candidate Gene Studies 

     In contrast to genome scans, candidate gene studies involve scrutinization of a 

possible disease gene based on its known biology and test markers within the gene for 

association with disease. Association methods for both family-based and case-control 

data have been developed. Candidate gene studies to search for AMD susceptibility loci 

have focused mainly on genes that are involved in other macular disorders, extracellular 

matrix remodeling, oxidative stress, cardiovascular disease, cholesterol metabolism, or 

inflammation. To date these studies have remained largely unsuccessful, with initial 

association results either failing to be replicated at all or being replicated in some studies 

but not others. Of the genes identified using this type of approach, CFB, CC2, and APOE 

are the most consistently associated with AMD, and C3 is the most recently identified.  

 

CFB and CC2 on Chromosome 6 

     After identification of CFH as a major AMD susceptibility locus, other genes in the 

complement pathways were explored. A strong association of the R32Q variant in CFB 

was observed in 3 independent Caucasian populations (Gold et al. 2006; Maller et al. 

2006), and weaker association of the E318D variant in the adjacent CC2 gene was also 

reported (Gold et al. 2006).  

     CFB activates the alternative complement component pathway. CC2 is paralogous to 

CFB and activates the classical immune pathway. The CFB 32Q variant has reduced 

hemolytic activity compared to the CFB 32R variant, and it has been hypothesized that 

reduced CFB activity would prevent the chronic complement response that is thought to 

cause formation of drusen and progression to AMD (Gold et al. 2006). However, it is 
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unclear whether CC2 E318D, or another variant in linkage disequilibrium with this SNP, 

represents a second protective locus in this region. 

 

C3 and APOE on Chromosome 19 

     Very recently, a non-synonymous polymorphism in complement component 3 (C3) 

was associated with increased risk of AMD in 2 populations from the United Kingdom 

(risk allele homozygotes OR=2.6, 95% confidence interval=1.6 to 4.1, PAR=22%), but to 

date replication of these results by independent groups has not been reported (Yates et al. 

2007). 

     It has been hypothesized that altered lipoprotein metabolism may contribute to drusen 

formation (Anderson et al. 2001) and APOE has been found in drusen (Hageman et al. 

2001). Five studies have shown that the APOE e4 allele has a protective effect (Zareparsi 

et al. 2004; Van et al. 2004; Schmidt et al. 2002; Klaver et al. 1998a; Souied et al. 1998), 

and others have also seen suggestive evidence for a deleterious effect of the e2 allele 

(Zareparsi et al. 2005b; Schmidt et al. 2002; Simonelli et al. 2001; Klaver et al. 1998a) or 

a lower age-at-onset in e2 carriers (Baird et al. 2004). Meta-analysis of four Caucasian 

datasets showed that APOE e4 was protective for both atrophic and neovascular AMD, 

regardless of gender (OR=0.54, 95% confidence interval=0.41 to 0.70). APOE e2 was 

only weakly associated with AMD, and only in men (OR for males =1.54, 95% 

confidence interval=0.97 to 2.45).  

     However, not all studies have seen a significant effect of APOE genotype with AMD 

(Nowak et al. 2004; Gotoh et al. 2004; Schultz et al. 2003; Schmidt et al. 2000; Pang et 

al. 2000). Possible reasons for this include: 1) lack of statistical power in small sample 
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sizes, 2) the APOE effect may be specific to a particular subgroup of AMD patients, 

which was not accounted for in these studies, or 3) this could be a true negative result. 

Because of the conflicting reports and the absence of association in our current dataset 

(p>0.14 for both e2 and e4 alleles, after adjusting for age, smoking, CFH Y402H, 

LOC387715 A69S, and CFB R32Q), we have chosen not to include APOE as a covariate 

in our analyses. 

 

Conclusion 

     To summarize, age, smoking, CFH Y402H, LOC387715 A69S, and CFB R32Q are 

confirmed AMD susceptibility factors. Though there are no published estimates of how 

many AMD cases can be attributed to these factors, variation in CFH, LOC387715, and 

cigarette smoking together explain approximately 61% of the population- attributable risk 

for AMD (Schmidt et al. 2006). While this is a significant portion, it implies that we still 

have not fully described how genetic and environmental variation contribute to this 

disease.  

     More work is needed to characterize the relationship between AMD and the 

CFHL1/CFHL3 deletion (explored in Chapter III) and to determine whether CC2 

polymorphisms are independently associated with AMD (Chapter IV). To identify novel 

AMD loci, we should fine map linkage signals that replicate across studies, like 

chromosome 16p12 (Chapters V and VI). Finally, once data from all known AMD 

susceptibility factors is integrated, we can begin to see how well our hypothesized model 

of AMD applies to the general population (Chapter VII). Through these efforts, we hope 

to clarify the complex interplay of factors that contribute to AMD. 



 22

CHAPTER II 

 
 

HYPOTHESES AND SPECIFIC AIMS 
 
 
 

     Age-related macular degeneration (AMD) is a complex, multifactorial late-onset 

disease that is the leading cause of blindness in the elderly. Large, soft drusen 

representing undigested cellular debris manifest early in the course of the disease. Later, 

central field vision loss occurs as geographic atrophy and/or choroidal neovascularization 

develop.  Nongenetic or environmental risk factors suggested to play a role in AMD 

pathogenesis include increased age, smoking, and body mass index. A strong genetic 

component has long been suspected in the etiology of AMD based on the results of 

familial aggregation studies, segregation analyses, and numerous twin studies. Though 

several candidate gene studies have searched for a link between genes involved in 

oxidative stress, inflammation, and cardiovascular disease, associations between AMD 

susceptibility and variants in the complement factor H, LOC387715, complement factor 

B, and complement component 2 genes have been the most widely replicated. 

     Complement factor H  inhibits activation of the alternative complement cascade, and 

thereby avoids injury to self tissues by preventing an excessive immune response. 

Inflammatory processes play a central role in AMD by contributing to the formation of 

drusen (Anderson et al. 2002), a clinical hallmark of AMD. Both risk and protective 

haplotypes in the CFH gene are known to modify susceptibility to AMD (Edwards et al. 

2005; Haines et al. 2005; Klein et al. 2005; Hageman et al. 2005). Along with CFH, five 

“CFH-like” genes reside within the regulator of complement activation (RCA) gene 
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cluster on chromosome 1. While the function of the CFH-like genes is largely unknown, 

the high degree of sequence similarity between these genes, and the suggestion that CFH 

and the CFH-like genes arose by duplication of a common ancestral sequence, point to an 

overlapping function of the CFH-like genes in innate immune system function and/or 

regulation. Hughes et al. proposed that deletion of the CFH-like genes CFHL1 and 

CFHL3 confers significant protection from AMD (Hughes et al. 2006). The putative 

deletion segregates completely with a particular haplotype of sequence variants in CFH. 

If replicated, this finding would yield substantial insight into how regulation of the 

complement system modulates susceptibility to AMD.    

    As variants in CFH are known to modify AMD susceptibility, it is only logical to ask 

whether polymorphisms in other genes within the alternative complement cascade also 

impart either risk or protection for AMD. CFB on chromosome 6 helps initiate activation 

of the alternative complement cascade. CC2 is paralogous to CFB and activates the 

classical component pathway. Variation in both CFB and CC2 has been associated with 

decreased risk for AMD (Gold et al. 2006), but it is unclear if the effect of CC2 E318D is 

independent of polymorphisms in CFB or caused by linkage disequilibrium between 

them (Maller et al. 2006). Dissection of this region will be essential for synthesizing a 

complete picture of AMD genetic susceptibility. 

     In addition to investigating how the complement system modulates AMD 

susceptibility, the search for novel AMD loci continues. Several genomic screens have 

been published, and a meta-analysis of the 6 largest genome screens has shown evidence 

of linkage on chromosome 16p12. In our own initial analysis a multipoint LOD score of 

1.35 was obtained using a parametric dominant model in this region. Using Ordered 
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Subset Analysis (OSA) in our dataset, LOD scores between 2.0 and 2.9 were obtained 

after taking into account clinically meaningful covariates, such as systolic blood pressure, 

intraocular pressure (IOP), and body mass index (BMI). By using OSA to subset our 

families based on CFH Y402H LOD score, the LOD score on chromosome 16 increased 

to greater than 3. Association analysis in our family dataset and our independent case-

control dataset also yielded encouraging results with several markers in this area 

producing p-values less than 0.01.  

     Therefore, my hypotheses are: 1) variation in the CFH-like, CFB, and CC2 genes is 

associated with AMD and 2) a susceptibility gene for AMD resides on chromosome 

16p12. I propose the following specific aims: 

Specific Aim 1: Investigate whether variation in the CFH-like genes, CFB, and CC2 

contributes to AMD susceptibility. Replication of the putative deletion of CFHL1 and 

CFHL3 and the association of SNPs in CFB and CC2 in an independent dataset is 

essential. To that end, 3 tagging SNPs from the CFH haplotype will be genotyped in our 

full case-control dataset, and individuals homozygous for the CFHL1/CFHL3 deletion 

will be identified. PCR amplicons from CFH and CFHL1 visualized by agaraose gel 

electrophoresis will confirm that individuals with the CFH haplotype also have the 

deletion. Fisher’s exact test and logistic regression will be used to study the relationship 

between this deletion and AMD. Furthermore, 2 SNPs in CC2 and 4 SNPs in CFB will be 

genotyped and tested for association in both the family-based (PDT and APL) and case-

control datasets (χ2 test and logistic regression). 

Specific Aim 2: Narrow the minimum candidate region for the AMD susceptibility 

gene on chromosome 16 using both linkage and association analysis. Approximately 
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200 SNPs will be genotyped in our family and case-control datasets on chromosome 

16p12. SNPs will be selected based on informativeness, available assays, even spacing, 

and potential function. In our families 2pt and multipoint, parametric and nonparametric 

LOD scores will be calculated using Merlin to test for linkage in this region. Association 

analyses will be carried out using standard single marker chi-square tests of association in 

our case-control dataset. The Pedigree Disequilibrium Test (PDT), geno-PDT, and the 

“association in the presence of linkage” test  (APL) will be used to study association in 

our families. Haploview will be used to determine the underlying linkage disequilibrium 

(LD) patterns in our datasets, and Haplo.stats and 2-SNP sliding windows in APL will be 

used to investigate association of particular haplotypes with AMD risk. 

Specific Aim 3: Test candidate genes in the minimum candidate region on 

chromosome 16 for association with AMD. At least 5 additional SNPs in each of the 

locational/functional candidate genes identified in specific aim 2 will be genotyped. 

Association and LD analyses will be carried out in a similar fashion. Logistic regression 

and multifactor dimensionality reduction may be used to model gene-gene and gene-

environment interactions, if a strong candidate locus is identified.  

     To summarize, the main goals of this proposal are to confirm the association of the 

CFHL1/CFHL3 deletion and CFB/CC2 polymorphisms with AMD and to identify a 

novel AMD susceptibility locus on chromosome 16p12. 
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CHAPTER III 

 

DELETION OF CFHL3 AND CFHL1 GENES 
IN AGE-RELATED MACULAR DEGENERATION 

 

Introduction 

     The genetic etiology of AMD, the leading cause of blindness in the elderly, is 

beginning to be unraveled with the discovery of the associations with Y402H in CFH on 

chromosome 1 and LOC387715 A69S on chromosome 10 (Edwards et al. 2005; Haines 

et al. 2005; Klein et al. 2005; Jakobsdottir et al. 2005; Rivera et al. 2005). Taking into 

account known environmental/lifestyle risk factors for AMD has aided the search for pre-

disposing genetic variants, as was the case when cigarette smoking was shown to act 

synergistically with the LOC387715 variant to further increase susceptibility(Schmidt et 

al. 2006). Furthermore, polymorphisms that reduce the risk of AMD are now being 

identified, including variants in factor B and complement component 2 on chromosome 6 

(Gold et al. 2006; Spencer et al. 2007). 

     The CFH gene resides within the region of complement activation (RCA) gene cluster, 

which also includes 5 “CFH-like” or “CFH-related” genes (Figure 3-1). While the 

function of the CFHL genes is largely unknown, the high degree of sequence similarity 

between these genes and the suggestion that they arose out of duplication events with 

CFH point to an overlapping function of the CFHL genes in immune system function 

and/or regulation.  

     Haplotype analysis of CFH has revealed 2 common protective haplotypes and a 

neutral haplotype, in addition to the common risk haplotype carrying the C allele of CFH 
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Y402H (Figure 3-2) (Hageman et al. 2005; Hageman et al. 2006; Hughes et al. 2006; 

Spencer et al. 2007). However, synthesis of these results has been complicated since not 

every study used the same variants to define the haplotypes in the region. Nevertheless, 

from the frequencies of each haplotype and from the SNPs that do overlap between 

studies, it appears that P1, P2, and the neutral haplotype are the same across the 4 studies 

(Figures 3-2 and 3-5). Furthermore, if rs419137 is excluded from Hughes et al., then the 

risk 1 and risk 2 haplotypes merge into a single risk haplotype with a frequency of 61% 

in cases and 41% in controls, somewhat similar to the frequency of the risk haplotype in 

the other 2 Caucasian populations.  

     Interestingly, in the Japanese population the frequency of the risk haplotype is much 

lower than in Caucasians and is equal in cases and controls, suggesting that the C allele 

of CFH Y402H is not a major risk factor for AMD in the Japanese (Okamoto et al. 2006). 

This lack of association with CFH Y402H was later confirmed in other Japanese 

populations (Fuse et al. 2006; Gotoh et al. 2006; Tanimoto et al. 2006; Uka et al. 2006). 

Despite this, two haplotypes unique to the Japanese and not carrying the C allele at CFH 

Y402H, did significantly increase risk for AMD in this population, implying that while 

the risk associated with CFH Y402H does not translate across ethnic groups, variation in 

the CFH gene universally modulates susceptibility to AMD. 
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Figure 3-1. The Region of Complement Activation Gene Cluster. Exons are represented by solid vertical lines under each gene. 
The deletion of the CFHL3 and CFHL1 genes is indicated by the solid blue box. SNP positions and the deletion position are 
approximate. Adapted from Hughes et al. 2006.
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Figure 3-2. Frequencies of Protective, Risk, and Neutral Haplotypes in Various Studies. Okamoto et al. studied a Japanese 
population; all others are Caucasian. We assumed based on the frequencies and the SNPs that overlap, that the P1, P2, Risk, and 
Neutral haplotypes are equivalent across the studies, but that is not certain. The alleles at rs2019724 and rs2274700 from Hughes et al. 
were switched to the opposite strand, so that they match the strand genotyped in this study. CFH Y402H=rs1061170. 
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      It has been suggested that a deletion of ~84,000 basepairs covering the CFHL1 and 

CFHL3  genes which segregates with one of the protective CFH haplotypes is the source 

of the protective effect on chromosome 1(Hughes et al. 2006; Hageman et al. 2006). We 

screened our dataset for deletion homozygotes and tested for association with decreased 

AMD susceptibility.  

 

Materials and Methods 

 

Study Populations 

     Our study population of 780 cases and 265 unrelated controls, all of Caucasian, non-

Hispanic descent, was ascertained at Vanderbilt University Medical Center (VUMC) and 

Duke University Medical Center (DUMC) (Table 3-1). All patients and controls received 

an eye exam and had stereoscopic fundus photographs graded according to a modified 

version of the Age-Related Eye Disease Study (AREDS) grading system as described 

elsewhere (AREDS 1999; Schmidt et al. 2000). Grade 1 controls have no evidence of 

drusen or small non-extensive drusen without pigmentary abnormalities, while grade 2 

controls may show signs of either extensive small drusen or non-extensive intermediate 

drusen and/or pigmentary abnormalities. Grade 3 AMD cases have extensive 

intermediate drusen or large, soft drusen with or without drusenoid retinal pigment 

epithelial detachment. Grade 4 AMD cases exhibit geographic atrophy and grade 5 

individuals have exudative AMD, which includes nondrusenoid retinal pigment epithelial 

detachment, choroidal neovascularization, and subretinal hemorrhage or disciform 

scarring. Individuals were classified according to status in the more severely affected eye. 
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Approval for the study was obtained from the appropriate institutional review boards at 

VUMC and DUMC, all study participants gave informed consent, and this research 

adhered to the tenets of the Declaration of Helsinki. 

 

Table 3-1. Characteristics of the Deletion Screening Dataset 

  Deletion Screening Dataset 

Total Individuals 
780  

cases 
265  

controls 
 (grades 3,4,5) (grades 1,2) 

Grade 3: 25.9% 1: 73.2% 
 4: 14.0% 2: 26.8% 
 5: 60.1%  

Mean Age(sd) 76.3(7.8) 67.1(9.3) 
% female 64.2 57.7 

% ever smoked 60.3 51.4 
 

 

SNP Genotyping 

     Five SNPs used to define the deletion haplotype from Hughes et al. 2006 (rs2019724, 

rs1831281, rs2274700, rs6677604 and rs3753396) and 7 additional SNPs that make up 

the protective haplotypes identified by Hageman et al. 2005 (rs3753394, rs529825, 

rs800292, rs3766404, rs1061170, rs203674, and rs1065489) were genotyped according to 

the manufacturer’s instructions using Taqman Assays on Demand from Applied 

Biosystems. Assays by Design were used when no pre-designed assay was available. 

Probe and primer sequences for the designed assays are available upon request.  

 

Deletion Screening by PCR and Agarose Gel Electrophoresis. 

     We genotyped the deletion by PCR amplification with primers that amplify both a 325 

bp product of CFH and a 381 bp product of CFHL1. Individuals with visible bands for 
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both amplicons by agarose gel electrophoresis were scored as not homozygous for the 

deletion. Individuals with the 325 bp band for CFH, but lacking the 381 bp band for 

CFHL1, were scored as being homozygous for the deletion (Figure 3-3). 

 

 

Figure 3-3. Genotyping the Deletion 

 

The primer sequences were 5’-CTCTTCTTTTTCTGCATCTGC-3’ and 5’-

ATTGCTGCTTATGGTAGATCAGG-3’. For each 10 ul reaction, 9.15 ul of Platinum 

PCR Supermix and 0.5 ul of each primer diluted with Puregene DNA Hydration Solution 

to a concentration of 0.1 ug/ul was added to 20 ng of genomic DNA. The PCR conditions 

were as follows: 1 cycle 96° C 15 min; 10 cycles 95° C 1 min, 55° C 1.5 min, 71° C 1 

min; 30 cycles 95° C 1 min, 53° C 1.5 min, 71° C 1 min; 4° C hold. Agarose gel 

electrophoresis was used to visualize the resulting product(s) on a 2% agarose gel with 

ethidium bromide. A mix of all PCR reagents without a DNA sample added served as a 

negative control. 

 

Statistical Analysis 

     Haploview software (Barrett et al. 2005) was used to examine linkage disequilibrium 

patterns in the complete dataset. Haplo.stats was used to estimate haplotype frequencies 

and generate score statistics for tests of association for the 12-SNP haplotype composed 

100 bp ladder 

325 bp 

381 bp 

deletion homozygotes 
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of a blend of SNPs genotyped from the previous studies. Fisher’s exact test was used to 

test for a significant difference in deletion homozygosity between  all 780 cases and 265 

controls and in  a smaller group of 188 CFH Y402H TT homozygotes (Intercooled Stata 

9.1 software, StataCorp LP, College Station, TX). Logistic regression was used to 

examine the effect of the deletion in the context of known AMD risk factors (SAS v9.1 

software, SAS Institute, Cary, NC). The sample size for this analysis was reduced to 469 

cases and 190 controls with complete age, CFH Y402H, LOC387715 A69S, deletion, and 

smoking data. Age was included in the model as a continuous covariate measured in 

years. CFH Y402H and LOC387715 A69S genotypes were coded as “1” for 

heterozygotes or homozygotes of the risk allele (CFH Y402H risk allele=C, LOC387715 

A69S risk allele=T) and “0” for the non-risk allele homozygotes. Deletion homozygotes 

were coded as “1” and all others were coded as “0”. Smokers (those who had smoked at 

least 100 cigarettes) were coded as “1” and non-smokers (those who had smoked fewer 

than 100 cigarettes over their lifetime) were coded as “0”.  

 

Results 

 
Linkage Disequilibrium and Haplotype Association of the Pre-defined P1, P2, Risk, 
and Neutral Haplotypes 
 
     The 12 SNPs from the pre-defined haplotypes were in strong linkage disequilibrium 

with many r2 values exceeding 0.20 (Figure 3-4). There are no strict rules for defining 

haplotype blocks, and though Haploview depicts two separate blocks of LD, we chose to 

include all 12 SNPs in one large haplotype across the region for ease of comparison with 

previous reports. 
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Figure 3-5. Linkage Disequilibrium in the Complete Dataset.  

 
 

     When testing the combined 12-SNP haplotypes for association, the P1 and risk 

haplotypes were very strongly associated with AMD, as expected from prior studies. 

(p<0.001, Table 3-2). However, this set of SNPs did not capture the protective effect 

previously ascribed to P2 (p=0.10, Table 3-2). 
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Table 3-2. Haplotype Association Analysis 

  
Cases 

(%) 
Controls 

(%) Hap-Score Empirical p-value 
P1 0.12 0.21 -4.58 <0.001 
P2 0.05 0.07 -1.62 0.10 

Neutral 0.13 0.13 -0.38 0.70 
Risk 0.55 0.40 5.34 <0.001 

 

 

Segregation of the Deletion with CFH Haplotypes 

     After screening 1,045 samples, we identified 13 individuals who were homozygous 

for the deletion, 6 cases and 7 controls. Though the deletion segregated perfectly with the 

A allele of rs6677604 in previous studies (Hughes et al. 2006), this was not true in our 

dataset. While all of the deletion homozygotes were also homozygous for the A allele of 

rs6677604, three individuals who were not homozygous for the deletion were 

homozygous for the A allele of rs6677604.  

     The deletion seemed to segregate completely with alleles “GCGAAG” at SNPs 

rs529825, rs2019724, rs1831281, rs677604, rs3753396, and rs1065489 (red boxes, 

Figure 3-5), though with only 13 total deletion homozygotes observed, this could be an 

artifact of sample size. If we do use this haplotype as a marker for the deletion, then the 

overall estimated frequency of the deletion is ~10% (14% in controls, 8% in cases), and it 

follows Hardy-Weinberg Equilibrium (p=0.42). CFH protective haplotype 2 (P2) was the 

most frequent pre-defined haplotype found in these individuals with a frequency of ~47% 

(Figure 3-5), and the risk, neutral, and P1 haplotypes of CFH were not observed in this 

group. Co-segregation of the deletion with the risk allele of CFH Y402H was very rare (1 

CT CFH Y402H heterozygote of 13 total deletion homozygotes), consistent with 
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previous reports (3 CT CFH Y402H heterozygotes and 3 CC homozygotes of 56 total 

deletion homozygotes, Hageman et al. 2006).   
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Figure 3-5. Haplotype Frequencies in the Deletion Homozygotes Compared to the 
Complete Dataset. Alleles shared between all haplotypes and alleles shared between 
most haplotypes in the deletion homozygotes are marked in red and blue boxes, 
respectively. Notice, the overall frequency of P2 is 6%, but this increases to 47% in 
deletion homozygotes. The P1, risk, and neutral haplotypes are not found in the deletion 
homozygotes. 
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Deletion Association Analyses 

     Overall, deletion homozygosity was significantly more frequent in controls than cases 

(2.6% controls, 0.8% cases, Fisher’s exact p=0.025, Table 3-3). Most of the deletion 

homozygotes were grade 1 controls (Table 3-4). Using the “GCGAAG” haplotype that all 

deletion homozygotes share as a surrogate for the deletion, this marker was strongly 

associated with AMD (p<0.0001, age-adjusted OR=0.40, 95% confidence interval=0.28 

to 0.58). 

 

Table 3-3. Univariate Association Analysis of the Deletion 

a. 2x2 Contingency Table 

  AMD Controls 
Deletion Homozygotes 6 7 

All Others 774 258 
 

b. Association Results 

Fisher's exact  
p-value 

Odds 
Ratio 95% Confidence Interval 

0.025 0.29 0.10 0.86 
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Table 3-4. Features of Deletion Homozygotes. ID=study participant identification 
number, M=male, F=female, Y=smoker, N=non-smoker, BMI=body mass index, 
“.”=missing data. 
 
ID Gender Affection 

Status Grade Age of 
Exam Smoking BMI CFH 

Y402H 
LOC387715 

A69S 
1 F Control 1 58 Y . TT GT 
2 M Control 1 68 . 25.1 TT . 
3 F Control 1 61 N 44.1 TT GT 
4 F Control 1 77 Y 24.4 TT GG 
5 M Control 1 78 N 20.7 TT GG 
6 F Control 1 61 Y 27.8 TT GT 
7 F Control 2 64 Y 22.9 TT GT 
8 F Case 3 69 Y 27.0 TT GG 
9 M Case 3 78 N 25.7 TT GT 

10 F Case 5 77 N 33.3 CT GG 
11 F Case 5 90 N . TT GT 
12 F Case 5 88 . 32.2 TT GG 
13 F Case 5 71 Y 24.8 TT TT 
 

 

     Because most of the deletion carriers are also homozygous for the non-risk allele of 

CFH Y402H, one may ask whether the deletion itself is truly protective or if the 

decreased risk is caused by absence of the CFH Y402H risk allele. To test this 

statistically, we stratified our dataset into CFH Y402H TT homozygotes and re-tested the 

deletion for association. Though the deletion was more than twice as frequent in controls 

compared to cases (9.9% controls, 4.3% cases), this difference was not statistically 

significant in the reduced sample of 188 CFH Y402H TT homozygotes (Fisher’s exact 

p=0.22, Table 3-5). 
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Table 3-5. Association Analysis of the Deletion in CFH Y402H TT Homozygotes 

a. 2x2 Contingency Table 

  AMD Controls 
Deletion Homozygotes 5 7 

All Others 112 64 
 

b. Association Results 

Fisher's exact  
p-value 

Odds 
Ratio 95% Confidence Interval 

0.22 0.41 0.12 1.34 
 

 

     After controlling for age, CFH Y402H, LOC387715 A69S, and smoking, the 

protective effect of the deletion was no longer statistically significant (OR=0.45, 95% CI 

0.11 to 1.83, p=0.27), though this is unsurprising given the low frequency of the deletion 

and the reduced sample size of 469 cases and 190 controls with complete covariate data 

(Table 3-6). 

 

Table 3-6. Logistic Regression Analysis of the Deletion with Known AMD Risk 
Factors 
 

Effect p-value Odds Ratio 95% Confidence Interval 
Age <0.001 1.16 1.13 1.19 

Deletion 0.27 0.45 0.11 1.83 
CFH Y402H 0.03 1.72 1.07 2.79 

LOC387715 A69S <0.001 2.83 1.88 4.26 
Smoking 0.06 1.47 0.98 2.20 
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Discussion 

     Homozygosity for deletion of the CFHL3 and CFHL1 genes was inversely associated 

with AMD risk. Because of its low frequency, much larger sample sizes will be needed to 

test whether the deletion is protective in individuals without the CFH Y402H risk allele 

and in the context of other known AMD susceptibility factors. However, absence of the 

CFHL1 and CFHL3 proteins in the serum of deletion homozygotes and the hypothesis 

that CFHL1 and CFHL3 protein may compete with CFH for C3 binding and therefore 

interfere with normal regulation of the complement system by CFH argue against a 

purely statistical association (Hughes et al. 2006).  

     P2 was the most commonly observed pre-defined haplotype in deletion homozygotes. 

The frequency for P2 of 47% was slightly less than the 63% reported by Hageman et al., 

and much less than the 100% correspondence observed by Hughes et al., assuming that 

P2 is equivalent to their “Haplotype 5”. Without genotyping the other three SNPs used in 

that study, it is not possible to say the haplotypes are the same with certainty, but the 

alleles do match at the five SNPs that overlap between the two studies. Perhaps the 

perfect correspondence in the Hughes et al. study was caused by a founder effect in their 

Irish study population. 

    All deletion homozygotes were also homozygous for alleles “GCGAAG” at rs529825, 

rs2019724 rs1831281, rs6677604, rs3753396, and rs1065489 (red boxes, Figure 3-5). 

However, this combination of alleles should not be considered a complete surrogate for 

the deletion until a much larger screening of the population has confirmed that this is the 

case. Additionally, the risk, P1, and neutral haplotypes were not found in any of the 

deletion homozygotes. 
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     Unfortunately, due to the nature of our genotyping assay, we were unable to 

distinguish between individuals with two copies of the CFHL1 and CFHL3 genes and 

deletion heterozygotes. We can overcome this limitation to some extent by using the 

“GCGAAG” haplotype as a marker for the deletion, though we do not know for certain 

that this haplotype marks the deletion in the population at large. Nevertheless, under this 

assumption, the deletion allele frequency can be estimated at ~14% in controls and 8% in 

cases, and it was strongly associated with decreased risk for AMD (p<0.0001). In the 

future, we may be able to use more sophisticated methods, such as multiplex ligation-

dependent probe amplification, to genotype deletion heterozygotes directly. It will be 

interesting to learn whether the deletion is completely tagged by the marker haplotype 

and also whether it is  protective in the heterozygous state. 

    We have assumed that the breakpoints of the deletion we observed match those 

reported by Hughes et al. 2006, but this has yet to be confirmed in our dataset. Because of 

the high homology throughout this region, there are many opportunities for non-allelic 

homologous recombination to occur. In fact, a new fusion protein made from a 

CFH/CFHL1 hybrid gene has recently been discovered (exons 1-21 are derived from 

CFH and exons 22 and 23 from CFHL1) (Venables et al. 2006). Therefore, it is possible 

that other deletions, duplications, or hybrids may still be found.  

     In conclusion, deletion of CFHL1 and CFHL3 may account for a small portion of the 

protection from AMD associated with particular haplotypes in CFH. The presence of 

another protective haplotype that does not carry the deletion (P1, Table 3-2), suggests 

that other protective variants in this region have yet to be discovered. 
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CHAPTER IV* 

 

PROTECTIVE EFFECT OF COMPLEMENT FACTOR B AND COMPLEMENT 
COMPONENT 2 VARIANTS IN AGE-RELATED MACULAR DEGENERATION 
 

Introduction 

     Significant advances have been made in the field of age-related macular degeneration 

genetics with the identification of risk and protective haplotypes in the complement factor 

H (CFH) gene on chromosome 1 (Haines et al. 2005; Edwards et al. 2005; Klein et al. 

2005) and the refined localization of the AMD risk gene on chromosome 10q26. 

Polymorphisms in both the poorly characterized LOC387715 gene and the serine 

protease HTRA1 have been strongly associated with AMD and replicated in multiple 

populations (Jakobsdottir et al. 2005; Rivera et al. 2005; Dewan et al. 2006; Yang et al. 

2006; Yoshida et al. 2007). As these genes are adjacent on chromosome 10 and extensive 

linkage disequilibrium exists between them, identification of one or more “functional” 

variants will be difficult, but in the meantime the tagging SNP LOC387715 A69S in 

LOC387715 can be used as a proxy for the risk contributed by this genomic region. 

These associations continue to be refined as our knowledge of the interplay between 

genetic and lifestyle risk factors, such as cigarette smoking and increased body mass 

index, continues to grow (Schmidt et al. 2006; Schaumberg et al. 2007; Scott et al. 2007). 

     CFH inhibits activation of the alternative complement cascade, and thereby avoids 

injury to self tissues by preventing an excessive immune response. Inflammatory 

processes play a central role in AMD by contributing to the formation of drusen 

(Anderson et al. 2002), a hallmark feature of AMD in which deposits of extracellular 

                                                 
* This chapter adapted from Spencer et al. (2007) Hum. Mol. Genet. In press.  
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debris form between Bruch’s membrane and the retinal pigment epithelium. Both risk 

and protective haplotypes in the CFH gene modify susceptibility to AMD (Edwards et al. 

2005; Haines et al. 2005; Klein et al. 2005; Hageman et al. 2005). Therefore, it is only 

logical to ask whether polymorphisms in other genes within the alternative complement 

pathway also impart either risk or protection for AMD.  

     Complement factor B (CFB) aids initiation of the alternative complement cascade, and 

complement component 2 (CC2) activates the classical component and lectin-binding 

pathways (Figure 4-1). CC2 is paralogous to CFB and resides adjacent to CFB on 

chromosome 6. Gold et al. demonstrated that variation in both CFB and CC2 is 

associated with decreased risk for AMD in two independent cohorts with a total of 

approximately 900 cases and 400 matched controls (Gold et al. 2006). Because of the 

strong linkage disequilibrium (LD) within the CFB/CC2 region, they were unable to 

completely determine which SNP(s) in these genes are the functional variant(s). 

Specifically, L9H in CFB, which is in strong LD with CC2 E318D, and CFB R32Q, 

which is in strong LD with an intronic SNP of CC2, were all highly protective for AMD 

in their study. Using stepwise logistic regression, Maller et al. (Maller et al. 2006) have 

excluded the intronic SNP of CC2 in favor of CFB R32Q. This agrees well with 

functional data showing that the CFB 32Q variant has reduced hemolytic activity 

compared to the CFB 32R variant and the hypothesis that reduced CFB activity would 

prevent the chronic complement response that is thought to cause formation of drusen 

and progression to AMD. However, ambiguity remains as to whether CFB L9H, CC2 

E318D, or another variant in LD with these SNPs represents a second protective locus in 

this region. Further dissection of the CFB/CC2 region on chromosome 6 will be essential 
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for synthesizing a complete picture of the contribution of these loci to AMD genetic 

susceptibility. 

 

 

Figure 4-1. Classic, Lectin-binding, and Alternative Immune Pathways. Adapted 
from (Janeway, Jr. et al. 2001). Arrows highlight complement component 2 and 
complement factor B. 
 

Materials and Methods 
 
 
Study Populations 

     Multiplex and singleton families and an independent dataset of unrelated cases and 

controls, all of Caucasian, non-Hispanic descent, were ascertained at Vanderbilt 
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University Medical Center (VUMC) and Duke University Medical Center (DUMC). All 

patients and controls received an eye exam and had stereoscopic fundus photographs 

graded according to a modified version of the Age-Related Eye Disease Study (AREDS) 

grading system as described elsewhere (AREDS 1999; Schmidt et al. 2000). Briefly, 

grades 1 and 2 represent controls. Grade 1 controls have no evidence of drusen or small 

non-extensive drusen without pigmentary abnormalities, while grade 2 controls may 

show signs of either extensive small drusen or non-extensive intermediate drusen and/or 

pigmentary abnormalities. Grade 3 AMD cases have extensive intermediate drusen or 

large, soft drusen with or without drusenoid retinal pigment epithelial detachment. Grade 

4 AMD cases exhibit geographic atrophy and grade 5 individuals have exudative AMD, 

which includes nondrusenoid retinal pigment epithelial detachment, choroidal 

neovascularization, and subretinal hemorrhage or disciform scarring. Individuals were 

classified according to status in the more severely affected eye. Table 4-1 describes 

additional features of the datasets, including age of exam, gender, and a brief description 

of family structure for the family-based dataset. Approval for the study was obtained 

from the appropriate institutional review boards at VUMC and DUMC, all study 

participants gave informed consent, and this research adhered to the tenets of the 

Declaration of Helsinki. 
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Table 4-1. Characteristics of the Study Populations. Mx=multiplex, SD=standard deviation. 

 
 Family Dataset Independent Case-Control Dataset 

Total Individuals 559 phenotyped 698 cases 282 controls 
 (144 Mx, 79 Singleton families) (grades 3,4,5) (grades 1,2) 

Grade 1: 60.6%   3: 29.0% 3: 27.4% 1: 74.1% 
 2: 39.4%   4: 14.4% 4: 12.6% 2: 25.9% 
                  5: 56.6% 5: 60.0%  

Mean Age, SD 67.3, 9.9 (unaffected) 76.5 (7.6) 66.7 (8.3) 
 74.7, 9.2 (affected)   

% female 66.5 63.6 55.3 
% ever smoked 47.4 (unaffected) 60.9 49.6 

 56.2 (affected)    
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Genotyping 

     Two SNPs in CC2 and four SNPs in CFB were selected for genotyping to validate the 

previously described association (Gold et al. 2006; Maller et al. 2006). SNPs rs9332739 

(CC2 E318D), rs547154 (CC2 IVS10), rs1048709 (CFB R150R), and rs2072633 (CFB 

IVS17) were genotyped using Taqman Assays on Demand from Applied Biosystems (see 

Figure 4-2 for a diagram of this region). rs12614 (CFB R32W) and rs641153 (CFB 

R32Q) posed a more difficult problem for genotyping, as these SNPs are adjacent to each 

other on chromosome 6 (basepairs 32,022,158 and 32,022,159, respectively, NCBI Build 

36). Taqman probes were designed to bind the 4 possible haplotypes for these two SNPs 

(CG, TG, CA, and TA). Each individual was then assayed with all possible combinations 

of the four probes (CA vic-labelled probe, TA fam-labelled probe; CG vic-labelled probe, 

CA fam-labelled probe; CG vic-labelled probe, TA fam-labelled probe; CG vic-labelled 

probe, TG fam-labelled probe; TG vic-labelled probe, CA fam-labelled probe; TG vic-

labelled probe TA fam-labelled probe), and the genotype determined by noting which 

combination of probes bound the DNA for each individual. Quality control samples were 

duplicated within and between plates, and we required that 95% of individuals assayed 

received a genotype for SNPs to be used in further analyses. 

 

Statistical Analyses 

     We verified that all SNPs were in Hardy-Weinberg equilibrium (HWE) and examined 

the linkage disequilibrium between SNPs in both the family-based and case-control 

datasets using Haploview software (Barrett et al. 2005). HWE and LD in the case-control 

dataset were examined both in the overall dataset and separately in cases and controls. 
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The results were similar in each analysis (data not shown). We used only founders to 

estimate allele frequencies in the family-based dataset, except when a family did not have 

any founders genotyped. For those families, one individual was selected at random to 

contribute the allele frequency calculation. We tested SNPs for association in the family-

based dataset using the “Association in the Presence of Linkage” (APL) method (Martin 

et al. 2003; Chung, Hauser, and Martin 2006). In the case-control dataset we assessed 

association of each SNP with AMD using a χ2 test for allelic association and a 2x3 

contingency table likelihood ratio test for genotypic association. We also used logistic 

regression in the case-control dataset to estimate the effects of CC2 E318D and CFB 

R32Q after controlling for age, smoking status, the CFH Y402H variant in complement 

factor H, and the LOC387715 A69S variant in LOC387715. Smokers (those who had 

smoked at least 100 cigarettes) were coded as “1” and non-smokers (those who had 

smoked fewer than 100 cigarettes over their lifetime) were coded as “0”. CFH Y402H 

and LOC387715 A69S genotypes were coded as “1” for heterozygotes or homozygotes 

of the risk allele (CFH Y402H risk allele=C, LOC387715 A69S risk allele=T) and “0” 

for the non-risk allele homozygotes. To conduct the conditional analyses, the case-control 

dataset was simply divided by minor allele carrier status for CC2 E318D or CFB R32Q, 

and the difference in allele frequency between cases and controls was tested by a χ2 test, 

or Fisher’s exact test when the observed count in any cell was less than 5. We compared 

logistic regression models by calculating a likelihood ratio statistic (LRT, twice the 

difference in the deviance of the full compared to reduced logistic regression models) and 

determined significance by comparing the LRT to a χ2 distribution with 1 degree of 
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freedom. All case-control analyses were performed using either SAS v9.1 software (SAS 

Institute, Cary, NC) or Intercooled Stata 9.1 (StataCorp LP, College Station, TX). 

 

Results 

     To characterize the contribution of CC2 and/or CFB to AMD susceptibility we 

genotyped 6 SNPs in these genes in a family-based dataset with 559 individuals from 223 

families, and a completely independent dataset of 698 cases and 282 unrelated controls 

(Table 4-1). All SNPs were in Hardy-Weinberg Equilibrium in the family dataset and in 

controls from the case-control dataset. 

     We observed weak evidence of association of the CFB R32Q SNP with decreased 

susceptibility to AMD in the family-based dataset, both in the overall analysis and when 

examining only neovascular AMD cases (APL p=0.025 overall, APL p=0.014 

neovascular only, Table 4-2). In contrast, we saw strong association of SNPs in both CC2 

and CFB in the case-control dataset in both the overall and neovascular AMD only 

analyses (Tables 4-3 and 4-4). As CC2 IVS10 and CFB R32Q are in strong linkage 

disequilibrium (r2=0.92, Figure 4-2), we believe that these two SNPs are capturing the 

same protective effect. After controlling for age, CFH Y402H, and LOC387715 A69S, 

the minor alleles at both CC2 E318D and CFB R32Q were protective for AMD (Model 1, 

Table 4-5), though the association was much stronger for CFB R32Q than CC2 E318D 

(R32Q p<0.0001, odds ratio=0.29, 95% confidence interval 0.17 to 0.48; E318D 

p=0.048, odds ratio=0.48, 95% confidence interval 0.24 to 0.99).  
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Table 4-2. APL Association Results in the Family-based Dataset. MAF=minor allele frequency in founders. If a family did not 
contain any genotyped founders, one individual was selected at random to contribute to the allele frequency estimation. 

 
 

SNP Gene Location bp MAF 

All AMD 
Grades 3,4, & 5 

vs. 
Grades 1&2 

p-value 

Neovascular AMD 
Grade 5 

vs. 
Grade 1 
p-value 

RS9332739 CC2 E318D 32011783 0.03 0.221 0.447 
RS547154 CC2 IVS 10 32018917 0.07 0.241 0.208 
RS12614 CFB R32W 32022158 0.09 0.988 0.633 
RS641153 CFB R32Q 32022159 0.07 0.025 0.014 
RS1048709 CFB R150R 32022914 0.18 0.134 0.638 
RS2072633 CFB IVS 17 32027557 0.42 0.123 0.419 
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Table 4-3. Allelic and Genotypic Association Results in the Case-control Dataset Comparing All AMD Cases  
(Grades 3,4, and 5) to All Controls (Grades 1 and 2) 
 
 
 
 
 
 
 
 
 

 

 

SNP Gene Location Minor 
Allele 

Overall 
MAF 

All 
AMD 
MAF 

All 
Controls

MAF 

All AMD 
Allelic 
p-value 

All AMD 
Genotypic 

p-value 
RS9332739 CC2 E318D C 0.03 0.03 0.05 0.022 0.037 
RS547154 CC2 IVS 10 T 0.07 0.05 0.11 9.2E-06 5.9E-05 
RS12614 CFB R32W T 0.09 0.09 0.09 0.746 0.730 
RS641153 CFB R32Q A 0.06 0.05 0.10 2.3E-05 4.6E-04 
RS1048709 CFB R150R A 0.21 0.21 0.20 0.755 0.813 
RS2072633 CFB IVS 17 A 0.45 0.45 0.46 0.592 0.554 
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Table 4-4. Allelic and Genotypic Association Results in the Case-control Dataset Comparing Neovascular AMD Cases  
(Grade 5) to Controls (Grade 1).  MAF=minor allele frequency 
 
 

SNP Gene Location Minor 
Allele 

Neovascular 
AMD 
MAF 

Grade 1 
Controls 

MAF 
Neovascular AMD 

Allelic p-value 
Neovascular AMD 
Genotypic p-value 

RS9332739 CC2 E318D C 0.03 0.062 0.007 0.008 
RS547154 CC2 IVS 10 T 0.048 0.116 1.2E-05 1.7E-04 
RS12614 CFB R32W T 0.083 0.097 0.413 0.713 
RS641153 CFB R32Q A 0.044 0.114 3.6E-06 7.7E-05 
RS1048709 CFB R150R A 0.204 0.194 0.665 0.911 
RS2072633 CFB IVS 17 A 0.445 0.457 0.698 0.575 
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Table 4-5. Logistic Regression Analyses. The purpose of these analyses is two-fold: 1) to estimate the effect sizes of CC2 E318D 
and CFB R32Q in the context of accepted AMD risk factors, and 2) to provide a framework for likelihood ratio tests of model fit.  
 

Model Cases Controls Effect p-value OR 95% CI 
1 612 242 age <0.0001 1.17 1.14 1.19 
   rs1061170 CFH Y402H 0.001 2.08 1.37 3.15 
   rs9332739 CC2 E318D 0.048 0.48 0.24 0.99 
   rs641153 CFB R32Q <0.0001 0.29 0.17 0.48 
   rs10490924 LOC387715 A69S <0.0001 2.16 1.49 3.12 

2 612 242 age <0.0001 1.17 1.14 1.19 
   rs1061170 CFH Y402H 0.001 2.08 1.37 3.15 
   rs641153 CFB R32Q <0.001 0.29 0.17 0.49 
   rs10490924 LOC387715 A69S <0.001 2.21 1.53 3.19 

3 612 242 age <0.001 1.16 1.13 1.19 
   rs1061170 CFH Y402H <0.001 2.16 1.44 3.25 
   rs10490924 LOC387715 A69S <0.001 2.23 1.55 3.19 

4 400 204 age <0.0001 1.17 1.14 1.20 
   smoking 0.057 1.51 0.99 2.32 
   rs1061170 CFH Y402H 0.007 1.95 1.21 3.16 
   rs9332739 CC2 E318D 0.263 0.60 0.25 1.47 
   rs641153 CFB R32Q <0.0001 0.21 0.11 0.39 
   rs10490924 LOC387715 A69S 3.0E-04 2.21 1.44 3.38 

5 400 204 age <0.0001 1.17 1.14 1.20 
   smoking 0.064 1.49 0.98 2.29 
   rs1061170 CFH Y402H 0.006 1.96 1.21 3.17 
   rs641153 CFB R32Q <0.0001 0.21 0.11 0.39 
      rs10490924 LOC387715 A69S 2.0E-04 2.27 1.48 3.46 
6 400 204 age <0.0001 1.16 1.13 1.19 
   smoking 0.047 1.52 1.01 2.30 
   rs1061170 CFH Y402H 0.002 2.07 1.30 3.30 
   rs10490924 LOC387715 A69S <0.001 2.22 1.47 3.35 
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E318D IVS10 R32W R32Q R150R IVS17E318D IVS10 R32W R32Q R150R IVS17

 

 
 

Figure 4-2. Linkage Disequilibrium for SNPs in CC2 and CFB on Chromosome 6 in 
the Case-control Dataset. Darker shading represents stronger linkage disequilibrium, 
and the r2 values are shown inside each square. Results in the family-based dataset are 
quite similar (data not shown). 
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     CFB R32Q and CC2 E318D do not exhibit strong linkage disequilibrium (r2=0.002, 

Figure 4-2), and it’s possible that both SNPs contribute independently to AMD 

susceptibility. Conditional analyses were used to further tease this apart. Conditioning on 

the C allele of CC2 E318D, the A allele of CFB R32Q is more frequent in controls than 

would be expected by chance, and vice versa (Table 4-6). For example, in carriers of the 

C allele of CC2 E318D, the frequency of the A allele of CFB R32Q is much higher in 

controls than cases (8% vs. 0%, p=0.032). In individuals that don’t carry the C allele of 

CC2 E318D, the A allele of CFB R32Q is more frequent in controls than cases (11% vs. 

5%, p=2.3x10-5). Therefore, CFB R32Q is associated with AMD regardless of genotype 

at CC2 E318D. In carriers of the A allele of CFB R32Q, the frequency of the C allele of 

CC2 E318D is higher in controls than cases (4% vs. 0%, p=0.039), and in individuals that 

don’t carry the A allele of CFB R32Q, the C allele of CC2 E318D is again more frequent 

in controls than cases (5% vs. 3%, p=0.034). Therefore, CC2 E318D is associated with 

AMD regardless of genotype at CFB R32Q and vice versa, suggesting independent 

effects of both loci. 
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Table 4-6. Conditional Analyses for CC2 E318D and CFB R32Q. Freq=frequency, 
*p-value from Fisher’s exact test. 
 
 

 

Freq of A allele  
of CFB R32Q 

 in cases 

Freq of A allele  
of CFB R32Q  

in controls p-value 
Individuals carrying 

the C allele  
of CC2 E318D  

 

0.00 0.08 0.032* 

Non-carriers  
of the C allele  
of CC2 E318D  

0.05 0.11 2.3E-05 

 

Freq of C allele 
of CC2 E318D  

in  cases 

Freq of C allele 
of CC2 E318D 

in controls p-value 
Individuals carrying 

the A allele  
of CFB R32Q 

0.00 0.04 0.039* 

Non-carriers  
of the A allele  
of CFB R32Q 

0.03 0.05 0.034 

 

 

     To further test the independent protective effects of CC2 E318D and CFB R32Q, we 

compared the fit of logistic regression models with and without these variables with a 

likelihood ratio test. Specifically, after adjusting for age, CFH Y402H, and LOC387715 

A69S, a model including CFB R32Q fit the data significantly better than the model 

without CFB R32Q (p<0.001, Model 2 vs. Model 3, Table 4-7). Furthermore, after 

adjusting for age, CFH Y402H, LOC387715 A69S, and CFB R32Q, a model including 

CC2 E318D fit the data significantly better than the model without CC2 E318D 

(p=0.049, Model 1 vs. Model 2, Table 4-7). 
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Table 4-7. Comparison of Logistic Regression Models.  LRT=likelihood ratio test, 
Models 1, 2, and 3 do not include smoking and have 612 cases and 242 controls. Models 
4, 5, and 6 include smoking, and due to incomplete participant response to our lifestyle  
survey, the sample size is reduced to 400 cases and 204 controls. 
 
 

Comparison Effect Removed from Reduced Model LRT  χ2 p-value 
Model 1 vs. Model 2 CC2 E318D 3.88 0.049 
Model 2 vs. Model 3 CFB R32Q 21.5 <0.001 
Model 4 vs. Model 5 CC2 E318D 1.25 0.26 
Model 5 vs. Model 6 CFB R32Q 25.2 <0.001 

 
 

     Lastly, we examined the effect of these two SNPs in the context of smoking, in 

addition to controlling for age, CFH Y402H, and LOC387715 A69S. Due to incomplete 

participant response to the smoking questions on our lifestyle questionnaire, the sample 

size of this analysis was reduced from 612 cases and 242 controls with complete age and 

genotype data to 400 cases and 204 controls with complete data for age, genotypes, and 

smoking history. The effect of CFB R32Q remained strong in this analysis, but the 

evidence for association of CC2 E318D was much diminished (CFB R32Q p<0.0001, 

odds ratio=0.21, 95% confidence interval 0.11 to 0.39; CC2 E318D p=0.26, odds 

ratio=0.60, 95% confidence interval 0.25 to 1.47, Table 4-5 Model 4). Estimating the 

odds ratio for CFB R32Q controlling for age, CFH Y402H, LOC387715 A69S, and 

smoking without including CC2 E318D did not substantially alter the magnitude of this 

effect (CFB R32Q p<0.0001, odds ratio=0.21, 95% confidence interval 0.11 to 0.39, 

Model 4, Table 4-5). When we compared models with and without CC2 E318D and CFB 

R32Q in our reduced sample with complete smoking data after adjusting for age, CFH 

Y402H, and LOC387715 A69S, the addition of CFB R32Q significantly improved model 

fit (p<0.001, Model 5 vs. Model 6, Table 4-7), but the effect of CC2 E318D was no 
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longer statistically significant in the smaller sample (p=0.26, Model 4 vs. Model 5, Table 

4-7). 

 

Discussion 

     We have replicated the association of CFB R32Q and CC2 E318D in our case-control 

dataset. The conditional analyses and results of likelihood ratio testing suggest that these 

two polymorphisms exert independent, protective effects. However, after controlling for 

age, CFH Y402H, LOC387715 A69S, and smoking in logistic regression model 2, the 

effect of CC2 E318D was no longer statistically significant. This may be caused by 

reduced power to detect an effect in the smaller dataset with complete smoking covariate 

data. Reassuringly, CFB R32Q, which showed much stronger evidence for association in 

the allelic and genotypic association tests and in the conditional analysis, was still 

strongly associated with reduced AMD susceptibility after controlling for age, CFH 

Y402H, LOC387715 A69S, and smoking. The magnitude of this effect was not altered by 

including or excluding CC2 E318D variant from the model, which further suggests an 

independent effect of these two loci. However, statistical analyses can only shed so much 

light on genetic associations, and functional studies will be needed to unravel the 

mechanism behind these results. 

     To our knowledge, we are the first to study association of CFB and CC2 

polymorphisms with AMD in a family-based dataset. We observed weak evidence for 

association of CFB R32Q in the families, but did not see an association of CC2 E318D. 

Lack of replication of CC2 E318D in the families could be a true negative result, but it is 

most likely due to reduced power, since this variant has a frequency of only 2.6% in our 
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families. One concern with any positive association result is the possibility that it derives 

from population substructure. One of the motivations for family-based studies is their 

insensitivity to population substructure, and our positive result for CFB R32Q in the 

family dataset provides further support that population stratification is not the cause of 

the observed association.  

    Finally, we have referred to the association of these variants with AMD as “protective” 

because the minor alleles of these polymorphisms are more frequent in controls than 

cases and to be consistent with previously published reports. However, since the actual 

biological mechanism by which these variants are acting to influence AMD susceptibility 

has not yet been described, and it is possible that the major allele may be acting as a risk 

allele, it may be more correct to term these results “inverse associations”, rather than 

“protective effects” until more is known about the underlying pathophysiology. 

     In summary, polymorphisms in CC2 and CFB are associated with protection from 

AMD, but future functional studies will be needed to confirm that these variants are the 

source of the decreased AMD susceptibility. 
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CHAPTER V 

 

NARROWING THE MINIMUM CANDIDATE REGION FOR THE 
AMD SUSCEPTIBILITY GENE ON CHR16P12 

 

Introduction 

     Much progress has been made in uncovering genetic modifiers of AMD, the leading 

cause of blindness in the elderly in developed countries. Even with the identification of 

CFH Y402H, LOC387715 A69S, CFB R32Q, CC2 E318D, and the CFHL1/CFHL3 

deletion, other AMD susceptibility loci are hypothesized to exist. Fine mapping under 

strong linkage peaks from genome-wide screens is one strategy being applied to narrow 

this search. 

     Chromosome 16p12 was first proposed to harbor an AMD susceptibility locus based 

on the results of a genome-wide linkage screen in 263 sib pairs from 102 pedigrees in the 

Beaver Dam Eye Study (BDES) (Schick et al. 2003). Strong linkage was observed across 

a 6 cM region centered at ~18cM (26 Mb) (D16S679 p=0.0086). 

     Interestingly, in this analysis AMD was treated as a quantitative trait by using the 15-

level Revised Wisconsin Age-Related Maculopathy Coding Protocol (Schick et al. 2003). 

This system considers: 1) drusen size, type, and area, 2) pigmentary abnormalities, 3) 

geographic atrophy, and 4) signs of exudative AMD to assign a severity score to each 

individual. While the scales are not directly comparable, roughly speaking, levels 4-11 

correspond to grade 3 AMD in our study, level 12 is most similar to our grade 4, and 

levels 13-15 are roughly equivalent to our grade 5. The obvious drawback of this system 

is the cost of achieving high inter-rater reliability (usually by having pictures graded at a 
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specialized reading center), but this is offset by a gain in power from not “falsely 

dichotomizing” a trait with an inherent range of severity.      

     Using this same quantitative trait definition of AMD, linkage to D16S679 was 

replicated in the Family ARM Study (FARMS) of 349 sib pairs from 34 extended 

families (p=0.0046) (Iyengar et al. 2004). In contrast to the BDES, a community-based 

study with the full range of AMD severity scores represented, FARMS probands were 

ascertained from a retinal clinic and typically had severe AMD. Since linkage to the same 

marker appeared in two independent populations using different ascertainment schemes, 

we have increased confidence that chromosome 16p12 harbors a true susceptibility locus. 

     Furthermore, meta-analysis of the six largest AMD screens confirmed this locus 

(p=0.0195 for the 30 cM bin ranging from 17-52 Mb) (Fisher et al. 2005). Interestingly, 

there was some evidence of heterogeneity between studies at this locus (heterogeneity 

p=0.012), suggesting that only a subset of families may be linked to this region.  

     The heterogeneity hypothesis agrees very well with our own initial analysis, in which 

a multipoint LOD score less than 1.0 rose to between 2.0-3.0, after using ordered subset 

analysis to consider important clinical covariates(Figure 5-1) (Schmidt et al. 2004). 

Linked families on average tended to have higher systolic blood pressure, higher 

intraocular pressure (IOP), higher body mass index (BMI), and a lower proportion of 

affected individuals carrying the CFH Y402H risk allele. Association analyses in both the 

family-based and case-control datasets were also encouraging (several markers achieving 

nominal significance, p-values less than 0.05, Figure 5-2). There were 2 main clusters 

with interesting results in both the case-control and family datasets, centered at ~24 Mb 

and ~28-30 Mb. 
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Figure 5-1. Preliminary Linkage and Ordered Subset Analysis on Chromosome 16. 
Figure from Schmidt et al. 2004. Build 36 D16S748=12Mb, D16S3253=53Mb. 
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Figure 5-2. Preliminary Association Analyses on Chromosome 16. All analyses were 
performed in grades 345vs12. 
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    By using a genome-wide linkage screen in the families and searching for areas of 

association that overlapped in both the family-based and case-control datasets, these 

preliminary analyses narrowed the search to a particular chromosomal segment. 

However, the interval of interest still spanned from 10-31 Mb and contained hundreds of 

genes. Our goal was to further narrow the minimum candidate region, and then to select 

candidate genes to test for association. To do this we increased SNP density across the 

region and tested for linkage and association. 

 

Materials and Methods 

 

Ascertainment, Genotyping, and Quality Control 

     Multiplex and singleton families, cases, and controls were ascertained as described 

previously (Chapters III and IV). Table 5-1. describes the two independent study 

populations. 

 

Table 5-1. Characteristics of the Study Populations for the Screening Analyses. 
Mx=multiplex, Fams=families, SD=standard deviation. 
 

  
Family  
Dataset Independent Case-Control Dataset 

Total Individuals 
541  

phenotyped 
591  

cases 
256  

controls 

 (125 Mx, 84 Singleton Fams) (grades 3,4,5) (grades 1,2) 
Grade 3: 27.9% 3: 22.5% 1: 74.6% 

 4: 15.3% 4: 12.7% 2: 25.4% 
 5: 56.8% 5: 64.8%  

Mean Age, SD 67.0, 10.3 (unaffected) 76.5(7.7) 66.4(8.2) 
 74.7, 9.1 (affected)   

% female 66 64 55.9 
% ever smoked 57.1(affected) 59.8 49.3 

 49.5(unaffected)   
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     In the family-based dataset 330 SNPs were genotyped across the length of 

chromosome 16 as part of a genome-wide screen using Illumina genotyping technology. 

Of these 330 SNPs, 194 were within our broad region of interest from 10-31 Mb 

(Appendix Table A-1). In the independent case-control dataset, 149 SNPs in the region of 

interest were genotyped using Taqman assays from Applied Biosystems. The SNPs in the 

case-control dataset overlapped with those in the family-based dataset, with an average 

spacing of approximately 1 SNP every 66 Kb.  

     We verified that all SNPs were in Hardy-Weinberg equilibrium (HWE) in both the 

family-based and case-control datasets. HWE in the case-control dataset was examined 

both in the overall dataset and separately in cases and controls. We used only founders to 

estimate allele frequencies in the family-based dataset, except when a family did not have 

any founders genotyped. For those families, one individual was selected at random to 

contribute to the allele frequency calculation.  For each SNP, 95% of the samples tested 

had to produce a genotype for the marker to be used in subsequent analyses. 

 

Linkage Disequilibrium 

     We examined the patterns of linkage disequilibrium in the family-based and case-

control datasets using Haploview. We studied the overall case-control dataset, in addition 

to cases and controls separately. This analysis allowed us to: 1) select a subset of markers 

for the multipoint linkage analysis that had pair-wise r-squared values no greater than 

0.16, as markers in strong LD may bias LOD scores when parental genotypes are missing 

(Boyles et al. 2005) 2) study the pattern of linkage disequilibrium in the overall dataset 

and also separately in cases and controls, as differing patterns may indicate a region of 
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association and 3) determine whether those markers showing interesting results 

(LOD>2.0 or p<0.01) in subsequent analyses were independent or coming from a block 

of LD.  

  

Statistical Analysis in the Family-based Dataset 

     Two-point dominant and recessive LOD scores were calculated with Fastlink 

(Cottingham, Idury, and Schaffer 1993; Schaffer et al. 1994), two-point nonparametric 

LOD scores were calculated with Allegro (Gudbjartsson et al. 2000; Gudbjartsson et al. 

2005), and Merlin (Abecasis et al. 2002) was used for estimating multipoint 

nonparametric, dominant, and recessive LOD scores. We specified the following 

parameters for the parametric models: dominant model disease allele frequency = 0.01,  

f0=0.0000,  f1=0.0001,  f2=0.0001, where fi is the penetrance of an individual with i 

susceptibility alleles; recessive model disease allele frequency = 0.14, f0=0.0000,  

f1=0.0000,  f2=0.0001. We used OSA (Hauser et al. 2004) to consider linkage after 

accounting for CFH Y402H, LOC387715 A69S, smoking, blood pressure, IOP, and BMI 

separately as covariates. Families were ranked either from low to high or high to low 

based on their average score for the covariates (for example, the average BMI for a 

family), and then OSA chose the subset of families that would maximally increase the 

evidence for linkage in the region and calculated a new LOD score in the subset. 

Empirical p-values were used to assess whether the difference in the unconditional LOD 

score and the LOD score in a covariate-based subset was statistically significant. Single-

marker association was tested in the families with APL and PDT, and two-SNP sliding 

window haplotypes were tested in APL. We also stratified the family dataset by 
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LOC387715 A69S and smoking and tested for association with APL. In these analyses, 

only families in which all affecteds had the same status (for example, all were smokers) 

were used. Individuals in a family that were missing LOC387715 A69S or smoking data 

were classified as having unknown AMD status. We did not stratify by CFH Y402H 

because there were fewer than 15 CFH Y402H non-risk families. 

  

Statistical Analysis in the Case-control Dataset 

     Tests of allelic and genotypic association in the case-control dataset were performed 

using 2x2 and 2x3 contingency table analyses, and Haploview was used to test 

haplotypes in blocks defined by the Gabriel et al. method for association (Gabriel et al. 

2002). Because age may be a confounder, we also tested for allelic association in an age-

matched case-control dataset of 137 pairs over age 70. Stratified analyses were performed 

using CFH Y402H, LOC387715 A69S, a combination of CFH Y402H and LOC387715 

A69S, and smoking as covariates. For the CFH Y402H/LOC387715 A69S combinations, 

the C allele of CFH Y402H and the T allele of LOC387715 A69S were considered risk 

alleles. Individuals that did not carry risk alleles at either locus were classified as low 

risk, individuals that carried risk alleles at one locus but not the other were classified as 

medium risk, and individuals that carried risk alleles at both loci were classified as high 

risk. 

 

Analysis by Grade of AMD 

     All analyses were performed in the group of all AMD cases (grades 3, 4, and 5) 

compared to all AMD controls (grades 1 and 2). We also carried out a subset of these 
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analyses in the neovascular AMD cases only (grade 5 at least one eye or grade 5 both 

eyes compared to grade 1 controls), to consider the possibility that this susceptibility 

locus predisposes specifically to the neovascular form of AMD. These analyses included 

2pt LOD score calculations and single-marker tests of association, but due to the reduced 

sample size,  not the multipoint linkage analysis, OSA, stratified associations, or 

haplotype analysis. 

 

Results 

 

Linkage Disequilibrium 

     The pattern of linkage disequilibrium in the family-based dataset was similar to the 

pattern in the case-control dataset (Figures 5-3 and 5-4). Only a few small LD blocks 

were present between 10-27 Mb. Larger blocks of strong LD occurred between 27-31 

Mb. 

  

Linkage 

     The peak multipoint LOD score of 2.2 occurred at 22.8 Mb using a dominant model. 

Nonparametric and recessive LOD scores peaked at the same location (LOD=1.6 and 1.4, 

respectively, Figure 5-5). Several two-point LOD scores in this region exceeded 1.0, the 

largest being 3.1 at 24.2 Mb in the CACNG3 gene. 

     Using Ordered Subset Analysis (OSA) to examine the evidence for linkage after 

taking into account CFH Y402H, LOC387715 A69S, pack-years of cigarette smoking, 

blood pressure, IOP, and BMI as covariates, did not significantly change the LOD score 
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(p>0.10 for all). This implies that the evidence for linkage to this region of chromosome 

16 did not increase after considering these covariates, not that there is no linkage to the 

region. The largest change was an increase of 1.56 LOD score units at 17.8 Mb to a max 

LOD of 2.56 in the “CFH Y402H low” families (Figure 5-6). Consistent with previous 

reports, the LOD score in the BMI high subset rose to ~2.3 at 22 Mb.  
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    Figure 5-3. Linkage Disequilibrium in the Family-based Dataset Chr. 16p12 Grades 345vs12 
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Figure 5-4. Linkage Disequilibrium in the Case-control Dataset Chr. 16p12 Grades 345vs12. Black triangles indicate haplotype 
blocks, as defined by the Gabriel et al. method implemented in Haploview software (Gabriel et al. 2002). 
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Figure 5-5. Linkage Analysis in the Region of Interest on Chr. 16p12 
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 A. OSA on Chromosome 16p12 Low to High Covariate Rankings 
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 B. OSA on Chromosome 16p12 High to Low Covariate Rankings 
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Figure 5-6. Ordered Subset Analysis on Chromosome 16p12. CFH Y402H and 
LOC387715 A69S covariates were weighted as the proportion of affecteds in the family 
carrying the risk allele. Smoking was measured in pack-years; non-smokers were coded 
as 0 pack-years. The total number of families used was 125. DBP=diastolic blood 
pressure, SBP=systolic blood pressure, IOP=intraocular pressure, BMI=body mass index. 
Note, none of the changes in LOD score were statistically significant (p>0.10 for all).
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Association 

     We used both the Pedigree Disequilibrium Test (PDT) and the Association in the 

Presence of Linkage (APL) methods to test for single-marker association in the family-

based dataset. APL is more powerful than PDT in many circumstances (Martin et al. 

2003), but APL is not valid in the 20 extended families that comprise nearly 10% of our 

dataset. Overall, PDT and APL gave similar results, with the most significant results 

(p<0.01) clustering between 27.5 and 29 Mb (APL results, Figure 5-7, panel A). Tests of 

allelic and genotypic association in the case-control dataset also produced a cluster of 

interesting results in this area, the strongest being a SNP in IL4R in the age-matched pairs 

(allelic association p<0.001, Figure 5-7, panel A). 

     We used a two-SNP sliding window in APL to test haplotypes for association in the 

family-based dataset. Haplotypes in the ILR4 gene at 27.2 Mb and the Q7Z6F8 gene at 

27.7 Mb were strongly associated with disease risk (p<0.001 and p=0.006, respectively, 

Figure 5-7, panel B). In the case-control dataset we tested haplotype blocks defined by 

Haploview for association. We also “forced” Haploview to test any 2-SNP haplotype 

with p<0.01 in the family-based dataset. A 4-SNP haplotype spanning the ATXN2L, 

SH2B, and CD19 genes at 28.7 Mb was associated with AMD (p=0.005, Figure 5-7, 

panel B). Unfortunately, one of the two SNPs that produced the strongest haplotype 

results in the IL4R gene in the family-based dataset had not been genotyped in the case-

control dataset. Using the next closest SNP available in the case-control dataset, this 

haplotype trended towards significance (p=0.06). The haplotype in the Q7Z6F8 gene was 

not replicated in the case-control dataset (p=0.35). 
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     Several SNPs clustering between 23-30Mb produced interesting results in the 

neovascular AMD analyses in both the family-based and case-control datasets (Figure 5-

7, panels C and D). These results agreed well with the analyses comparing all cases to all 

controls (grades 345vs12), and suggest that the chromosome 16 AMD locus contributes 

to overall AMD rather than a particular subtype of the disease. 

     Finally, we also tested for association after stratifying with regards to LOC387715 

A69S and smoking in the families and on CFH Y402H, LOC387715 A69S, the 

combination of CFH Y402H and LOC387715 A69S risk genotypes, and smoking in the 

case-control dataset. Overall, the stratification did not substantially change the 

association results (Figure 5-8). Though there were a few strongly associated SNPs in 

various subsets (for example, a SNP in CACNG3 in the CFH Y402H/LOC387715 A69S 

combination low risk group and a SNP in CLN3 in smokers, p<0.001 for both), there was 

no clear pattern of several nearby markers being associated in the same subset. 

     For completeness, Table 5-2 lists each SNP that produced a LOD>2.0 or p<0.01, 

along with its associated Build 36 Mb position, gene, and analysis method. 
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A. Single-marker Association Grades 345vs12   B. Haplotype Association Grades 345vs12 
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Figure 5-7. Association on Chromosome 16p12. For APL haplotypes the -log of the global p-value is plotted at the Mb location for 
the first SNP in the 2-SNP window. The case-control haplotypes were generated using the blocks defined by Haploview and may 
contain several markers. The -log of the p-value corresponding to the most strongly associated haplotype in each block is plotted. 
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C. Single-marker Association Grade 5vs1 at least one eye D. Single-marker Association Grade 5vs1 both eyes 
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Figure 5-8. Stratified Association Analysis Grades 345vs12 
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Table 5-2. Interesting Results from the Screening of the Broad Region of Interest on Chr16p12. To be “interesting” a SNP had to 
produce a LOD>2.0 or p<0.01. 
 
 

SNP Mb Gene Analysis p-value or LOD 
RS330150 21.0 DNAH3 APL LOC387715 A69S risk 345 0.003 

RS2733910 21.2 CRYM APL LOC387715 
A69S NON risk 345 0.002 

RS1055740 21.6 IGSF6 Merlin Dom HLOD 345 2.0 
RS6497580 22.1 EF2K Merlin Dom HLOD 345 2.1 
RS2239331 22.7 HS3ST2 Merlin Dom HLOD 345 2.2 
RS169660 22.7 HS3ST2 Merlin Dom HLOD 345 2.2 
RS7198577 22.8 HS3ST2 Merlin Dom HLOD 345 2.2 
RS208965 22.8 HS3ST2 Merlin Dom HLOD 345 2.2 
RS208626 22.8 HS3ST2 Merlin Dom HLOD 345 2.2 
RS1011463 23.0  Merlin Dom HLOD 345 2.1 
RS2238500 24.2 CACNG3 caco CFH Y402H non C 345 0.002 
RS2238500 24.2 CACNG3 caco strat both low 345 4.0E-04 
RS757200 24.2 CACNG3 2pt NPLall 345 3.1 

RS2345122 25.2 ZNF694 APL LOC387715 
A69S NON risk 345 0.005 

RS4520838 25.7 HS3ST4 APL smokers 345 0.008 
RS7190163 25.9 HS3ST4 caco smokers 345 0.007 
HCV504442 26.1 HS3ST4 caco LOC387715 A69S T 345 0.005 
HCV504442 26.1 HS3ST4 caco strat both high 345 0.004 
HCV504442 26.1 HS3ST4 APL NON-smokers 345 0.009 
RS3024548 27.3 IL4R APL Haplo 345 0.001 
RS3024548 27.3 IL4R caco allelic age-matched 345 4.0E-04 

RS8832 27.3 IL4R APL Haplo 345 0.001 
RS232073 27.4 GTF3C1 PDTgeno 345 0.010 
RS772859 27.7 NP_056017.1 PDTsum 345 0.007 
RS772859 27.7 NP_056017.1 APL 345 0.003 

RS755297 27.7 Q7Z6F8 APL LOC387715 A69S 
NON risk 345 0.006 

RS1644609 27.7 Q7Z6F8 caco allelic age-matched 345 0.004 
RS1644609 27.7 Q7Z6F8 APL Haplo 345 0.002 
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SNP Mb Gene Analysis p-value or LOD 
RS713547 27.7 Q7Z6F8 APL Haplo 345 0.002 
RS713547 27.7 Q7Z6F8 caco geno 345 0.009 
RS1644618 27.8 Q7Z6F8 APL 345 0.003 
RS2726040 28.2 NP_001019572.1 APL 345 0.010 
RS151233 28.4 CLN3 caco smokers 345 3.0E-04 

APOB48R-9270 28.4 NP_061160.1 caco smokers 345 0.009 
RS12443881 28.7 ATXN2L caco smokers 345 0.005 
RS12443881 28.7 ATXN2L caco Haplo 345 0.005 
HCV105407 28.8 ATXN2L caco Haplo 345 0.005 
RS7193733 28.8 SH2B caco Haplo 345 0.005 
RS2904880 28.9 CD19 caco Haplo 345 0.005 

RS11859842 29.6  caco LOC387715 
A69S non T 345 0.010 

RS1050881 29.6 SPN caco geno 345 0.006 
RS648559 29.6  APL LOC387715 A69S risk 345 2.8E-04 

RS4548895 29.8 NP_859069.2 caco LOC387715 A69S 
non T 345 0.009 

RS11901 29.9 NP_919256.1 caco smokers 345 0.008 
RS11150581 29.9 Q96LL3 caco geno 345 0.007 
RS8060511 30.0 PPP4C caco smokers 345 0.006 
RS8060511 30.0 PPP4C caco strat both med 345 0.009 
RS1046276 30.8 CTF1 caco CFH Y402H non C 345 0.008 
RS4968008 23.4 GGA2 caco geno 5vs1x 0.005 
RS916677 23.9 PRKCB1 caco allelic all 5vs1x 0.002 
RS916677 23.9 PRKCB1 caco geno 5vs1x 0.005 
RS252313 29.1  PDTsum 5vs1x 0.002 

RS11150581 29.9 Q96LL3 caco geno 5vs1x 0.006 
RS2230433 30.4 ITGAL PDTsum 5vs1x 0.005 
RS4968008 23.4 GGA2 caco geno 5vs1both 0.002 
RS4787929 27.1  PDTsum 5vs1both 0.008 
RS151233 28.4 CLN3 caco allelic all 5vs1both 0.001 
RS151233 28.4 CLN3 caco geno 5vs1both 0.005 

RS12443881 28.7 Q8WWM7-7 caco allelic all 5vs1both 0.010 
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Discussion 

     After increasing the SNP coverage on chromosome 16, the evidence for linkage 

increased with peak LOD scores exceeding 2.0 at ~22 Mb. Though the OSA analysis did 

not show any significant difference in the LOD scores, families with a lower frequency of 

the CFH Y402H risk allele and higher BMI tended to be more strongly linked to 

chromosome 16, in keeping with the results from our initial analyses (CFH Y402H max 

LOD 2.56 at ~18 Mb, p=0.11, BMI max LOD 2.3 at 22 Mb, p=0.21). It is important to 

remember that OSA p-values are based on testing for a significant difference between the 

unconditional LOD score and the LOD score in a subset of the families determined by 

ranking on a covariate score and not on the value of the conditional LOD score vs. 

absence of linkage. Therefore, even though there was no “significant difference” in the 

LOD scores, the fact that the scores were greater than 2.0 overall and in subsets of the 

families is suggestive of linkage to this region. 

     Interestingly, many of the most significant associations in both datasets were clustered 

at ~24-30 Mb, farther downstream of the multipoint linkage peak but still within a region 

with many 2pt LOD scores exceeding 1.0. In agreement with the OSA results in the CFH 

Y402H low subset, CACNG3, the gene with the highest 2pt LOD score, also contained a 

SNP that was associated in the CFH Y402H non-risk allele carriers and the CFH 

Y402H/LOC387715 A69S low risk combination (p<0.002 for both groups). SNPs in both 

IL4R and Q7Z6F8 were also associated with AMD in both datasets (IL4R rs3024548-

rs8832 APL haplotype p=0.001, rs3024548 age-matched pairs allelic association 

p<0.0001; Q7Z6F8 rs1644609 APL p=0.003, age-matched pairs allelic association 

p=0.004). In agreement with the overall analyses, the most significant associations in the 
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neovascular AMD analyses also clustered between 27-30 Mb, indicating that the 

chromosome 16p12 locus may predispose to the broad AMD phenotype. 

     A major strength of our study, compared to others focused on the genetics of AMD, is 

the wealth of clinical and lifestyle data we have ascertained for each of our participants. 

Since AMD exhibits both phenotypic variability and locus heterogeneity, we can use 

information on smoking history, BMI, IOP, and genotypes at CFH Y402H, LOC387715 

A69S, and R32Q to create more homogeneous subsets, as was done in the OSA and 

stratified association analyses. Unfortunately, testing for linkage and association in many 

subgroups also increases the multiple testing problem. To balance this tradeoff, when 

selecting candidate genes for follow-up analyses, we will give special weight to genes 

with positive results in both the family-based and case-control datasets. 

     In summary, based on both the linkage and association analyses, we more than halved 

the size of  the minimum candidate region from 21 million basepairs down to 

approximately 9 Mb at chr16:21-30 Mb. Because the marker density is higher from 21-30 

Mb compared to 10-20 Mb, it is possible that higher number of interesting findings in this 

region includes spurious results caused by multiple testing. Therefore, the convergence of 

analytical methods, gene expression data, and known biology of the genes within this 

interval will be necessary for selecting candidate genes for further study. 
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CHAPTER VI 

 

SELECTION AND TESTING CANDIDATE GENES ON CHROMOSOME 16P12  
FOR LINKAGE AND ASSOCIATION WITH AMD 

 
 
 

Introduction 

     AMD is the leading cause of vision loss in the elderly. CFH Y402H, LOC387715 

A69S, and CFB R32Q are confirmed AMD susceptibility loci, and environmental factors 

like cigarette smoking and increased body mass index also increase risk for AMD 

(Chapter I).  

     Chromosome 16p12 has been consistently linked with an AMD susceptibility locus 

(Chapter V).We fine-mapped this region by increasing SNP density and testing for 

linkage and association. To further localize this AMD susceptibility gene, we used the 

process of genomic convergence (Hauser et al. 2003), whereby gene expression data and 

screening analysis results are collated and genes with interesting results from both 

methods are selected as candidates. 

  

Materials and Methods 

 

Selection of Candidate Genes 

     To aid in prioritization of candidate genes, we combined the available information on 

each gene from multiple databases with results from our own analysis (Chapter V). For 

each of the genes that reside between 21-30 Mb we noted the location of the gene, 
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potential function, number and type of SNPs, serial analysis of gene expression (SAGE) 

data, and analysis results.        

     Of the 29 genes with at least one interesting genetic result (according to the arbitrarily 

chosen cut-offs of LOD>2.0 or p<0.01), 12 were classified as interesting using multiple 

(2 or more) methods (Figure 6-1). All of these genes were expressed in the eye (based on 

a SAGE tag count>5) or lacked SAGE data, so expression information was not useful for 

narrowing this list. Of these 12 genes, only 4 had interesting results in both the family-

based and case-control datasets. These were CACNG3 (24.1 Mb), HS3ST4 (25.6-26.0 

Mb),  IL4R (27.2 Mb) and Q7Z6F8 (27.7-28.0 Mb). 

     CACNG3 codes for the gamma subunit of L-type voltage-dependent calcium 

channels. This gene is highly expressed in the retina and neural tissues, compared to the 

rest of the body (National Eye Institute Serial Analysis of Gene Expression data). It was 

recently shown that retinal pigment epithelial cells require L-type Ca2+ channels to 

properly generate a light peak and that mutations in the gene responsible for Best’s 

disease, another macular degenerative disorder, affect L-type channel activation kinetics 

and voltage dependence (Rosenthal et al. 2006). Furthermore, use of calcium channel 

blockers was weakly associated with AMD in the Beaver Dam Eye Study and the 

Women’s Health Initiative Sight Exam Ancillary Study (Klein et al. 2001b; Klein et al. 

2007). In the screening analyses for chromosome 16 (Chapter V, Table 5-2), CACNG3 

was both linked to disease in the family-based dataset and associated in the case-control 

dataset (2pt LOD 3.1, allelic association p-value 0.0004 in individuals who do not carry 

the risk alleles at either CFH Y402H or LOC387715).  
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Figure 6-1. Selection of Candidate Genes. Interesting results were defined as a 
LOD>2.0 or p<0.01. “Both Datasets” refers to the family-based and case-control datasets. 
      

     HS3ST4 encodes the enzyme that generates 3-O-sulfated glucosaminyl residues on 

heparan sulfate. CFH binds both heparin and heparan sulfate on endothelial cell surfaces, 

thereby preventing attack of self-tissues by the immune system (Pangburn, Atkinson, and 

Meri 1991; Jokiranta et al. 2005). Since polymorphisms in CFH are associated with 

AMD, it is possible that variants in HS3ST4 may interfere with proper production of 

heparan sulfate, leading to absence of binding by CFH and increased risk of AMD. SNPs 
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in this gene were associated with AMD in both the family-based and case-control 

datasets (p<0.01), but only when stratifying by smoking, LOC387715 A69S, and the 

CFH Y402H/LOC387715 A69S high risk combination. 

     IL4R is expressed in the RPE and regulates IgE production. Large amounts of IgE 

were found in the connective stroma of the subretinal membrane and in the new blood 

vessel walls of AMD patients (Baudouin et al. 1992). A 2-SNP haplotype in IL4R was 

strongly associated with AMD in the family-based dataset (p<0.001), and one of the 

SNPs from this haplotype was associated in the age-matched case-control dataset of 137 

pairs (p<0.001). 

     Very little is known about the function of Q7Z6F8, also known as GSG1L for “germ 

cell associated 1-like”. However, due to the screening nature of our approach, we were 

able to identify novel candidates without relying on known biology. Both single SNPs 

and 2-SNP haplotypes in this gene were associated with AMD in the families, and a 

genotype at one of these SNPs was related to disease status in the case-control dataset.     

     Therefore, after compiling the screening results of this region, gene expression 

information, and known biology of the genes, we selected 4 candidates for AMD: 

CACNG3, HS3ST4, IL4R, and Q7Z6F8 (Table 6-1).  
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Table 6-1. Characteristics of the 4 Candidate Genes. All genes, except Q7Z6F8, are known to be expressed in the eye (NEI SAGE 
Data). None of the genes are known to be specifically rod-, cone-, or RPE-associated. CACNG3 and HS3ST4 have one known 
transcript, and IL4R and Q7Z6F8 each have 3 transcripts. Biotype, Status, and SNP counts from Ensembl. Start position and size from 
NCBI Build 36. 

 

 

Gene Description 
Start 

Position 
(bp) 

Size 
(bp) Biotype Status

Total 
# 

SNPs 
Non-

synonymous Synonymous
# 

Genotyped 
in Screen 

CACNG3 
Voltage-dependent 

calcium channel 
gamma-3 subunit 

24174382 106856 protein 
coding Known 344 0 1 5 

HS3ST4 
Heparan sulfate 

glucosamine 
3-O-sulfotransferase 4 

25611240 443830 protein 
coding Known 1523 2 0 3 

IL4R Interleukin-4 receptor 
alpha chain precursor 27259005 24594 protein 

coding Known 258 17 13 2 

Q7Z6F8  27706357 275966 protein 
coding Known 1045 0 0 14 
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Study Populations 

     The family-based and case-control samples for these analyses overlap with the 

samples used previously (Chapters V). Approximately 19 multiplex families, 110 cases, 

and 30 controls were added to the datasets (Table 6-2). Ascertainment, grading, DNA 

extraction, and quality control measures for the new samples were performed according 

to the same protocols used previously. Minor allele frequency, HWE p-value, and 

genotyping efficiency for each SNP are reported in Table 6-3.    
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Table 6-2. Characteristics of the Study Populations. Mx=multiplex 

  Family Dataset Independent Case-Control Dataset 
Total Individuals 559 phenotyped 701 cases 286 controls 

 (144 Mx, 79 Singleton families (grades 3,4,5) (grades 1,2) 
Grade 3: 29.3% 3: 26.7% 1: 72.0% 

 4: 14.4% 4: 12.6% 2: 28.0% 
 5: 56.3% 5: 60.7%  

Mean Age (sd) 72.8(9.9) 76.5(7.7) 66.9(8.4) 
% female 66.5 63.6 55.6 

% ever smoked 56.3(affected) 60.9 48.7 
 46.9(unaffected)   
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Table 6-3. Description of the SNPs Analyzed. Chr=chromosome, Geno Eff= genotyping efficiency, HWE= Hardy-Weinberg 
Equilibrium, MAF=minor allele frequency 
 

            Family 345vs12 Case-Control 345vs12 

SNP Gene Chr Position 
Minor 
Allele 

Geno 
Eff (%) 

HWE  
All MAF 

HWE 
All 

HWE 
Cases 

HWE 
Controls 

RS1061170 CFH 1 194925860 T 99 0.68 0.41 0.98 0.90 0.12 
RS9332739 CC2 6 32011783 C 97 0.08 0.03 1.00 0.76 1.00 
RS641153 CFB 6 32022159 A 99 1.00 0.06 0.52 1.00 0.48 

RS10490924 LOC387715 10 124204438 T 99 1.00 0.43 5E-04 2.5E-03 0.80 
RS2238498 CACNG3 16 24178560 A 98 0.75 0.22 0.59 0.19 0.33 
RS2238500 CACNG3 16 24192709 G 100 0.24 0.44 0.73 0.59 0.88 
RS991911 CACNG3 16 24198554 A 99 0.20 0.38 0.77 0.65 0.96 
RS2283551 CACNG3 16 24200786 C 98 0.17 0.21 0.43 0.46 0.95 
RS9921732 CACNG3 16 24204971 G 98 1.00 0.02 0.80 0.53 1.00 
RS739747 CACNG3 16 24207067 T 98 0.71 0.33 0.97 1.00 0.82 

RS11640935 CACNG3 16 24211075 T 98 0.97 0.27 0.99 0.50 0.34 
RS9926669 CACNG3 16 24225803 A 96 0.72 0.20 0.06 0.17 0.26 
RS757200 CACNG3 16 24227195 T 98 0.43 0.30 0.06 0.06 0.68 
RS1859200 CACNG3 16 24228292 G 98 0.40 0.45 1.00 0.56 0.38 
RS7187560 CACNG3 16 24229868 T 95 0.77 0.46 0.74 0.53 0.07 
RS4787433 CACNG3 16 24230933 C 98 0.77 0.38 0.60 0.95 0.20 
RS8051597 CACNG3 16 24241029 C 99 0.60 0.24 0.72 0.74 1.00 
RS11640437 CACNG3 16 24245904 G 99 0.21 0.26 0.22 0.32 0.54 
RS2238518 CACNG3 16 24247639 C 97 0.91 0.43 0.51 0.19 0.48 
RS2238521 CACNG3 16 24256092 A 98 0.85 0.25 0.51 0.92 0.35 
RS2189290 CACNG3 16 24264034 C 100 0.13 0.36 0.24 1.00 0.02 
RS8048828 CACNG3 16 24266934 G 98 0.05 0.45 0.39 0.59 0.01 
RS9925471 CACNG3 16 24267711 G 99 0.98 0.04 1.00 1.00 1.00 
RS12928078 CACNG3 16 24280658 A 98 0.80 0.05 0.04 0.03 0.90 
RS8049719 HS3ST4 16 25680705 A 98 1.00 0.10 0.91 1.00 0.96 
RS7197707 HS3ST4 16 25682282 A 98 0.04 0.45 0.80 0.56 0.12 
RS11074721 HS3ST4 16 25692399 T 98 0.09 0.29 1.00 0.72 0.61 
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Table 6-3. cont. 
 

            Family 345vs12 Case-Control 345vs12 

SNP Gene Chr Position 
Minor 
Allele 

Geno 
Eff (%) 

HWE  
All MAF 

HWE  
All 

HWE 
Cases 

HWE 
Controls 

RS8047773 HS3ST4 16 25735159 G 99 0.31 0.24 1.00 1.00 1.00 
RS4523929 HS3ST4 16 25772018 T 98 1.00 0.34 0.97 1.00 1.00 
RS6497896 HS3ST4 16 25781487 G 98 0.51 0.12 0.02 0.03 0.62 
RS34215460 HS3ST4 16 25795966 C 100 0.87 0.33 1.00 0.66 0.42 
RS11862736 HS3ST4 16 25811211 C 99 1.00 0.00 1.00 1.00 1.00 
RS8063351 HS3ST4 16 25897491 T 99 0.60 0.05 0.84 0.96 0.34 
RS7190163 HS3ST4 16 25907847 C 100 0.32 0.30 0.84 0.93 0.51 
RS7190703 HS3ST4 16 25935944 C 98 0.75 0.42 0.24 0.78 0.09 
RS7188016 HS3ST4 16 26007978 T 98 1.8E-05 0.50 0.02 0.04 0.37 
RS4390598 HS3ST4 16 26010569 C 98 0.50 0.46 0.03 0.08 0.24 
RS6498012 IL4R 16 27239475 C 97 0.41 0.40 0.07 0.01 0.74 
RS3024547 IL4R 16 27261862 T 98 0.40 0.15 0.33 0.49 0.59 
RS3024548 IL4R 16 27262032 G 96 0.82 0.44 0.94 0.45 0.13 
RS2239349 IL4R 16 27266389 A 97 1.00 0.11 0.79 0.25 0.28 
RS2239347 IL4R 16 27266522 C 97 0.84 0.45 0.49 0.06 0.10 
RS3024585 IL4R 16 27267345 A 98 0.65 0.47 0.82 0.55 0.72 
RS3024623 IL4R 16 27272969 T 99 0.02 0.09 0.86 1.00 0.98 
RS2234897 IL4R 16 27281113 C 95 0.33 0.02 0.41 1.00 0.13 
RS1805011 IL4R 16 27281373 C 98 0.83 0.10 1.00 0.88 0.91 
RS2234898 IL4R 16 27281416 T 95 0.08 0.11 0.90 1.00 0.58 
RS1805013 IL4R 16 27281481 T 99 0.69 0.05 0.21 0.11 1.00 
RS1805015 IL4R 16 27281681 C 95 0.42 0.16 0.23 0.71 0.14 

RS8832 IL4R 16 27283288 A 98 1.00 0.46 0.02 0.25 0.01 
RS772859 Q7Z6F8 16 27701027 G 99 0.26 0.38 0.81 0.98 0.54 
RS755297 Q7Z6F8 16 27713895 C 97 0.82 0.18 0.71 0.75 1.00 
RS1559167 Q7Z6F8 16 27726752 T 97 0.08 0.43 0.35 0.35 0.85 
RS1644609 Q7Z6F8 16 27734413 A 100 0.37 0.40 0.51 0.69 0.64 
RS713547 Q7Z6F8 16 27739590 C 99 0.45 0.15 0.78 0.66 0.17 
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Table 6-3. cont. 
 

            Family 345vs12 Case-Control 345vs12 

SNP Gene Chr Position 
Minor 
Allele 

Geno 
Eff (%) 

HWE  
All MAF 

HWE 
All 

HWE 
Cases 

HWE 
Controls 

RS772858 Q7Z6F8 16 27741798 G 95 1.00 0.46 0.41 0.76 0.37 
RS11645119 Q7Z6F8 16 27742183 T 98 0.05 0.08 0.43 0.49 0.89 
RS705928 Q7Z6F8 16 27749116 G 98 0.58 0.36 0.81 1.00 0.76 
RS1644618 Q7Z6F8 16 27757739 T 97 1.00 0.28 0.29 0.28 0.94 
RS9933050 Q7Z6F8 16 27759775 A 99 0.40 0.34 1.00 1.00 0.91 
RS8046590 Q7Z6F8 16 27762807 A 98 0.77 0.31 0.63 0.42 0.82 
RS10438534 Q7Z6F8 16 27772260 A 99 0.35 0.09 0.81 0.68 1.00 
RS6498040 Q7Z6F8 16 27776664 T 98 0.89 0.40 0.24 0.25 0.81 
RS734432 Q7Z6F8 16 27794674 A 98 0.40 0.35 0.37 0.56 0.54 
RS1644582 Q7Z6F8 16 27800656 A 98 0.24 0.42 0.37 0.74 0.29 
RS12926773 Q7Z6F8 16 27804621 T 99 0.16 0.09 0.07 0.04 1.00 
RS4788003 Q7Z6F8 16 27806901 T 98 0.83 0.35 0.45 0.50 0.85 
RS2385008 Q7Z6F8 16 27841534 A 100 0.74 0.34 0.34 0.21 0.94 
RS7194904 Q7Z6F8 16 27874886 A 98 0.51 0.47 0.55 0.37 0.87 
RS4788017 Q7Z6F8 16 27884330 G 100 0.02 0.24 0.78 0.91 0.38 
RS9941112 Q7Z6F8 16 27885980 A 100 0.65 0.37 0.25 0.38 0.51 
RS1008409 Q7Z6F8 16 27901325 C 98 0.90 0.33 0.82 0.99 0.57 
RS11074888 Q7Z6F8 16 27930557 C 98 0.42 0.40 0.49 0.31 0.86 
RS1476507 Q7Z6F8 16 27932571 C 100 0.24 0.39 0.37 0.30 1.00 
RS205418 Q7Z6F8 16 27980171 G 100 0.59 0.24 0.01 0.03 0.32 
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SNP Selection and Genotyping 

     Using the Tagger algorithm in Haploview software and genotypes for SNPs in the 

HapMap Project, we selected ~10 additional SNPs per gene designed to capture the 

largest percentage of common variation in each gene. This gave us excellent coverage of 

IL4R, moderate coverage of CACNG3 and Q7Z6F8, and some coverage of HS3ST4. 

(Table 6-4). Because the SNPs were chosen based on LD patterns to be the most 

informative (implying a high minor allele frequency), many of the SNPs were intronic. 

Of the 73 total SNPs genotyped in the candidate genes, 41 were intronic, 3 were non-

synonymous coding changes, 3 were synonymous coding changes, and 3 were changes in 

either the 5’ or 3’ UTR. The remaining polymorphisms were not classified. All SNPs 

were genotyped using Taqman Assays on Demand or Assays by Design from Applied 

Biosystems. 

 

Statistical Analyses in the Family-based Dataset 

     We calculated multipoint nonparametric, dominant, and recessive LOD scores in the 

multiplex families using Merlin software. To avoid false inflation of the LOD score, we 

used only SNPs that were not in strong LD in this analysis (r2<0.16 between all SNPs). 

Allegro was used to calculate two-point nonparametric LOD scores and Fastlink was 

used to calculate two-point dominant and recessive LOD scores. As before, we used OSA 

to examine the evidence for linkage to chromosome 16 after considering CFH Y402H, 

LOC387715 A69S, smoking, blood pressure, IOP, and BMI as covariates. Additionally, 

we included CFB R32Q. 
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Table 6-4. Estimated Percentage of Alleles Captured Using SNPs Previously Genotyped Compared to Percentage of Alleles 
Captured by Adding 10 SNPs. 
 

    0 Additional SNPs 10 Additional SNPs 

Gene  
# Previously 
Genotyped 

% 
captured 

mean r2  
of captured 

% 
captured 

mean r2  
of captured 

CACNG3 5 0.11 0.871 0.60 0.883 

IL4R 2 0.17 0.882 0.95 0.877 

HS3ST4 3 
(only 2 in Hapmap) 0.01 0.928 0.24 0.861 

Q7Z6F8 14 
(only 4 in Hapmap) 0.13 0.854 0.76 0.878 

 



 95

     We tested for single-SNP association using both APL and PDT. Rather than stratify 

the family dataset by LOC387715 A69S and smoking, as was done previously, we 

instead selected the families included in the most interesting OSA subsets and tested for 

association only in this group with APL. There were 92 total families included in this 

analysis from the DBP low, BMI high, and IOP high subsets. Haplotype association tests 

for each gene were performed using a 2-SNP sliding window in APL. 

 

Statistical Analyses in the Case-control Dataset 

     Single-marker association was determined by chi-square analysis of 2x2 (allelic) or 

2x3 (genotypic) contingency tables. In addition, we tested association in 99 age-matched 

pairs with complete genotype data at all SNPs in the candidate genes and in subsets of the 

dataset stratified by CFH Y402H, LOC387715 A69S, a combination of CFH Y402H and 

LOC387715 A69S risk alleles, CFB R32Q, and BMI. We also used Haplo.stats to test 2-

SNP sliding windows of haplotypes across each gene for association, and the haplo.glm 

module of haplo.stats to follow-up interesting haplotype results by weighted logistic 

regression, controlling for age, CFH Y402H, LOC387715 A69S, CFB R32Q, and 

smoking. Because phase was uncertain for some individuals, the posterior probability of a 

given haplotype for an individual served as a weight in the logistic regression.  

     All analyses were performed in grades 345vs12, but due to reduced sample size only 

two-point LOD scores and allelic and genotypic tests of association were carried out in 

the 5vs1 at least one eye and 5vs1 both eye subgroups. 

 

 



 96

Results 

  

Linkage Disequilibrium 

     The linkage disequilibrium patterns across each gene for the case-control dataset 

grades 345vs12 are presented in Figures 6-2 to 6-5. Results in the cases and control 

separately, in the family-based dataset, and for the neovascular AMD analysis were 

similar (data not shown). In these figures, the darker the shading, the stronger the linkage 

disequilibrium among SNPs. The high amount of shading spanning nearly the full length 

of CACNG3, IL4R, and Q7Z6F8 suggests that we captured a substantial portion of the 

common variation in each gene. The LD between SNPs in HS3ST4 was weaker, as 

expected, since this gene is much larger than the others, covering more than 440 Kb. 
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Figure 6-2. Linkage Disequilibrium in CACNG3 Case-control Grades 345vs12
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Figure 6-3. Linkage Disequilibrium in HS3ST4 Case-control Grades 345vs12
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Figure 6-4. Linkage Disequilibrium in IL4R Case-control Grades 345vs12. 
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Figure 6-5. Linkage Disequilibrium in Q7Z6F8 Case-control Grades 345vs12. 
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Linkage 

     With additional multiplex families, the peak multipoint LOD score in the region 

decreased to 1.6 at 22.8 Mb under the dominant model (Figure 6-6). The nonparametric 

and recessive multipoint linkage curves followed the same shape as the dominant model, 

but were weaker in magnitude. However, CACNG3 showed even stronger 2pt linkage to 

AMD (peak 2pt NPL LOD = 3.34 at rs757200 grades 345vs12 compared to LOD=3.06 in 

screening analyses). This same SNP produced LOD scores near 1.0 in the recessive 

linkage analysis comparing grade 5 at least one eye vs grade 1, and another SNP in 

CACNG produced LOD scores greater than 2.0 in the grade 5 both eyes vs. grade 1 

analysis. None of the other candidate genes yielded LOD scores greater than 2.0 in any 

analysis.  

     Because several genetic and environmental factors are either known or hypothesized 

to influence AMD susceptibility, we examined the evidence for linkage to chromosome 

16 in various subsets of the families after ranking them from low to high or high to low 

on these factors. None of the covariates (CFH Y402H, LOC387715 A69S, CFB R32Q, 

smoking, blood pressure, IOP, and BMI) significantly increased the LOD score (Table 6-

5). The greatest change was an increase of 1.30 LOD score units to a max LOD score of 

1.54 at 26.0 Mb in the families with high IOP (p=0.10). Families with higher average 

BMI also appeared more strongly linked to this region, though there was not a significant 

difference in the LOD scores (max LOD 1.34 at 25.7 Mb, p=0.19). Encouragingly, these 

results show the same trend as previously reported by our group for this region (Schmidt 

et al. 2004), even though we have more than doubled the number of families in the 

sample from 62 to 131 multiplex families. 
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Figure 6-6. Linkage Analysis for the Candidate Genes on Chr. 16p12 
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Table 6-5. Ordered Subset Analysis on Chromosome 16p12. CFH Y402H and LOC387715 A69S covariates were weighted as the 
proportion of affected individuals in the family who carry the risk allele. Smoking was measured in pack-years and non-smokers were 
coded as having 0 pack-years. DBP=diastolic blood pressure, SBP=systolic blood pressure, IOP=intraocular pressure, BMI=body 
mass index, Ranking L=low to high, Ranking H=high to low. Note that even though we have 144 Mx families in the dataset, not all of 
them can be used in OSA due to missing covariate information. 
 
 

Variable Ranking Mb 
Max 
LOD 

Unconditional 
LOD 

Delta 
LOD Permutations

Empirical 
p-value 

Families 
Used 

Total 
Families

Proportion 
of 

Families 
CFH Y402H L 24.2 1.04 0.41 0.63 100 0.26 73 131 0.56 
CFH Y402H H 24.2 0.54 0.41 0.12 100 0.69 111 131 0.85 

LOC387715 A69S L 24.2 0.57 0.41 0.16 100 0.62 114 131 0.87 
LOC387715 A69S H 24.2 0.41 0.41 0.00 100 0.90 131 131 1.00 

CFB R32Q L 24.2 0.92 0.41 0.51 220 0.08 114 131 0.87 
CFB R32Q H 24.2 0.41 0.41 0.00 100 0.87 131 131 1.00 
Smoking  L 24.2 0.80 0.41 0.39 100 0.44 114 131 0.87 
Smoking  H 24.2 0.52 0.41 0.11 100 0.78 54 131 0.41 

DBP L 24.2 1.30 0.41 0.89 130 0.13 26 131 0.20 
DBP H 24.2 0.80 0.41 0.39 100 0.38 13 131 0.10 
SBP L 24.2 0.52 0.41 0.11 100 0.80 16 131 0.12 
SBP H 24.2 0.69 0.41 0.28 100 0.57 67 131 0.51 
IOP L 24.2 0.54 0.41 0.12 100 0.76 91 131 0.69 
IOP H 26.0 1.54 0.25 1.30 180 0.10 67 131 0.51 
BMI L 26.0 1.06 0.25 0.81 100 0.33 25 131 0.19 
BMI H 25.7 1.34 0.19 1.15 100 0.19 20 131 0.15 

 

 

 



 104

Association Analysis for CACNG3 

     SNPs in CACNG3 were most consistently associated with AMD (Figures 6-7, 6-8, 

and 6-9). Two-SNP haplotypes in both the family-based and case-control datasets were 

nominally statistically significant (APL rs4787433-rs8051597, case-control rs739747-

rs11640935 and rs11640935-rs9926669, all p<0.01, Figure 6-11). Consistent with an 

independent effect of this locus from CFH, 4 SNPs in CACNG3 were associated at the 

p<0.01 level in either the non-CFH Y402H subset or the CFH Y402H/LOC387715 A69S 

combination low risk subset (Figure 6-10). This data is in agreement with OSA results 

from the original screening analyses in which linkage to chromosome 16 tended to be 

strongest in the subset of families with low rankings for CFH Y402H (LOD=2.56, p=0.11 

Chapter V). Contrary to this hypothesis, rs1859200 was associated in the combination 

high subset (p=0.003). One SNP was also associated in the CFB R32Q protective allele 

carriers (rs11640935 p=0.0001). Examining the neovascular AMD cases, only genotype 

at rs7187560 was associated with AMD (p=0.005, Figure 7-8). 

     To more thoroughly investigate a potential haplotype effect in the CACNG3 gene, we 

selected the 3 SNPs that were nominally significant in the case-control sliding window 

haplotype analysis and tested those haplotypes for association. The ATA haplotype at 

SNPs rs739747, rs11640935, and rs9926669 was associated with decreased AMD risk, 

both in the complete case-control dataset and in the reduced sample with complete 

covariate data (p=0.001 for both). This haplotype was nearly twice as frequent in controls 

compared to cases (10.3% controls vs. 6.1% cases). After including the ATA haplotype 

in the context of known AMD susceptibility modifiers (age, CFH Y402H, LOC387715 
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A69S, CFB R32Q, and smoking), the haplotype was still strongly associated (p=0.004, 

OR=0.38, 95% confidence interval = 0.19 to 0.73). 

 

Association Analysis for Q7Z6F8, HS3ST4, and IL4R 

     Three SNPs in Q7Z6F8 produced interesting results, though only in the case-control 

dataset and only when subsetting (rs755297 BMI<30 subset p<0.01, rs10438534 CFH 

Y402H risk allele carriers p<0.01, Figure 6-10, and rs734432 allelic association p=0.006 

in 99 age-matched pairs, Figure 6-7). None of the other SNPs in Q7Z6F8 and no SNPs in 

IL4R or HS3ST4 produced a LOD>2.0 or association p<0.01, regardless of AMD 

subtype tested, age-matching, or stratification by CFH Y402H, LOC387715 A69S, CFB 

R32Q, smoking, or BMI.
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Figure 6-7. Family-based and Case-control Association Analysis  
in the Candidate Genes Grades 345vs12. 

 



 107

  C.        

0
.5

1
1.

5
-lo

g(
p-

va
lu

e)

27.24 27.25 27.26 27.27 27.28
mb

APL 345vs12 APL in OSA fams 345vs12
PDT 345vs12 PDTgeno 345vs12
caco allelic 345vs12 caco age-matched 345vs12
caco geno 345vs12

IL4R

 

  D.  

0
.5

1
1.

5
2

-lo
g(

p-
va

lu
e)

27.7 27.8 27.9 28
mb

APL 345vs12 APL in OSA fams 345vs12
PDT 345vs12 PDTgeno 345vs12
caco allelic 345vs12 caco age-matched 345vs12
caco geno 345vs12

Q7Z6F8

 

 

Figure 6-7cont. 
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Figure 6-8. Family-based and Case-control Association Analysis  
in the Candidate Genes Grades 5vs1 at Least One Eye 
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Figure 6-8 cont. 
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Figure 6-9. Family-based and Case-control Association  
in the Candidate Genes Grades 5vs1 Both Eyes 
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Figure 6-9 cont. 
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Figure 6-10. Stratified Case-control Association Analysis   
in the Candidate Genes Grades 345vs12 
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Figure 6-10 cont. 
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 A.  
 

 
  
Figure 6-11. Family-based and Case-control Haplotype Analysis in the Candidate 
Genes Grades 345v12. Blue lines are for the case-control dataset, red lines are for the 
families.
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Discussion 
 
 
     SNPs in CACNG3 were strongly linked to AMD. Furthermore, the CACNG3 ATA 

haplotype was significantly more frequent in controls than cases, suggesting a protective 

effect against AMD or a risk effect of the major allele. Of the 3 SNPs composing the 

haplotype, only rs11640935 was associated with AMD by itself (allelic p=0.01, 

genotypic p=0.02). However, rs11640935 alone was not significant after including age, 

CFH Y402H, LOC387715 A69S, CFB R32Q, and smoking in the logistic model 

(p=0.26). Of the 4 SNPs showing association in CACNG3 in the CFH Y402H non-risk 

group or the CFH Y402H/LOC387715 A69S low combination, the minor alleles at 3 

SNPs were more common in controls than cases, supporting the inverse association. 

These data argue that the association at CACNG3 is derived either from a true haplotypic 

effect or from a variant carried on this haplotype that has not yet been identified.  

     Intriguingly, a duplication spanning nearly 181 Kb and covering the 5’ end  and first 

exon of CACNG3 was recently discovered (Figure 6-12) (Wong et al. 2007). This 

duplication was present in 13 of 95 samples obtained from blood donors, the British 

Columbia Cancer Agency, and Coriell Cell Repository. The screening set was chosen to 

maximize ethnic diversity in the sample, and contains individuals from more than 17 

distinct populations. The first SNP in the strongly associated ATA haplotype is only 29 

Kb away from the proposed 3’ end of the duplication. In the future, we plan to screen our 

AMD datasets for this duplication both to estimate its frequency in a Caucasian 

population and also to test it for association with AMD. 
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Figure 6-12. Duplication of PRKCB1 and CACNG3. This duplication covers the 5’ 
upstream sequence and first exon of CACNG3, as well as the latter half of the PRKCB1 
gene. PRKCB1 is expressed in the retina (NEI SAGE data) and involved in such diverse 
cellular processes as B cell activation, apoptosis induction, endothelial cell proliferation, 
and intestinal sugar absorption (NCBI Entrez Gene). One SNP in this gene was 
associated with neovascular AMD in the case-control dataset (rs916677 allelic p=0.002, 
genotypic p=0.005), but there were no interesting results for this gene in the family-based 
dataset. If this duplication is later associated with AMD, we will also consider PRKCB1 
as a potential candidate gene. 
 
 
 
     Even though we did not see strong evidence of association for HS3ST4, IL4R, and 

Q7Z6F8, we cannot completely rule out these genes, especially since we estimated only 

moderate coverage of HS3ST4 and Q7Z6F8 given the current SNP density. We also did 

not screen these genes for multiple rare variants or copy number variants, which may be 

associated with AMD. 

    Interpretation of association results in light of multiple testing can be difficult, and 

statisticians disagree on the optimal way to correct for multiple comparisons. The most 

common method, the Bonferroni correction, and its modified form the step-down 

Bonferroni, both assume that each test is independent of all others. Clearly, this 

assumption is violated when SNPs in linkage disequilibrium are tested, leading to an 

overly conservative correction. Rather than apply too stringent a “correction” and miss 
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true positive results, we have chosen to report the nominal p-values, emphasizing that 

care be taken with their interpretation. We have called any LOD score>2.0 or p-

value<0.01 “interesting” or “nominally significant”, but all of these associations should 

be considered tentative, pending replication in independent datasets. 

     In conclusion, CACNG3 is a candidate for the AMD locus on chromosome 16p12 

based on its strong linkage and association results and a plausible biological function 

related to AMD. We plan to extensively follow-up these results by screening the AMD 

dataset for the duplication and genotyping additional SNPs near the 5’ end of the gene. 
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CHAPTER VII 

 

PREDICTIVE ACCURACY OF LOGISTIC REGRESSION AND IF-THEN 
DECISION TREE MODELS OF AMD 

 

 Introduction 

     The recent success in identifying both genetic and environmental modifiers of AMD 

susceptibility, which accounts for the largest number of cases of vision loss in the elderly, 

has prompted quantification of the percentage of AMD cases that can be explained by 

known risk factors. CFH Y402H, LOC387715 A69S, and cigarette smoking are now 

well-accepted risk factors for AMD, and CFB R32Q is associated with decreased AMD 

risk (Chapter I).  

     We have estimated that variation in CFH, LOC387715, and cigarette smoking together 

explain approximately 61% of the population- attributable risk (PAR) for AMD (Schmidt 

et al. 2006). This agrees well with the PAR of 63% estimated by Schaumberg et al., 

though they did not include smoking in their model (Schaumberg et al. 2007). 

Furthermore, SNPs in CFH and CFB combined result in a sibling recurrence risk (λs) of 

~2.0, a substantial portion of the overall AMD λs of ~3-6 (Maller et al. 2006).  

     Given these data, it is reasonable to ask whether knowledge of an individual’s risk 

factor data can be used to make a prediction about his or her chance of developing AMD. 

Using genotype information at CFH, LOC387715, and CFB/CC2, AMD status was 

predicted correctly 74% of the time in cases and 56% of the time in controls (Gold et al. 

2006). However, the predictive accuracy of a single model containing all well-replicated 
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AMD susceptibility factors (age, smoking, CFH Y402H, LOC387715 A69S, and CFB 

R32Q) has yet to be tested.  

     We chose to model these factors in both logistic regression and an if-then decision 

trees in two distinct datasets. First, we constructed these models in half the 

Vanderbilt/Duke case-control study population and then tested the models on the other 

half of this dataset. For a more rigorous test of how the model would apply to population-

based data we then built the model in the complete Vanderbilt/Duke population and 

applied it to the prospective AMD cohort in the Memphis Health ABC Study. Sensitivity, 

specificity, and overall correct classification rate were used to evaluate the success of the 

models.  

 

Materials and Methods 

 

Study Populations 

     It is essential to construct a predictive model in one dataset and then apply the model 

in a separate dataset to avoid bias in model evaluation. Additionally, large variation in the 

demographic characteristics of the training and testing datasets may reduce the number of 

individuals correctly classified in the testing dataset. Therefore, we carefully compared 

the testing and training datasets to determine if they differed substantially for any 

important demographic traits (Tables 7-1 and 7-2). It is important to note that the 

Vanderbilt/Duke dataset was ascertained as a clinic-based AMD population, whereas the 

Memphis samples were part of a prospective cohort group of over 3,000 individuals aged 

70-79 years randomly selected from Medicare rolls in Memphis, TN or Pittsburgh, PA 
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who did not have difficulty walking a quarter of a mile or climbing a flight of stairs at the 

time of study enrollment (Iannaccone et al. 2007; Gallaher et al. 2007). The African 

American samples were removed from the Memphis analysis since there were no African 

Americans in the Vanderbilt/Duke dataset. 
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Table 7-1. Comparison of the Two Halves of the Vanderbilt/Duke Study Population 

Characteristic Training Testing 
Cases (#) 165 168 

Controls (#) 93 91 
Ascertainment Center (% Duke) 56.2 57.5 

Age (mean) 72.5 72.5 
Gender (% Female) 62.4 57.1 

CFH Y402H (% Risk Allele Carriers) 73.3 80.3 
LOC387715 A69S (% Risk Allele Carriers) 45.3 45.6 
CFB R32Q (% Protective Allele Carriers) 13.6 9.3 

Smokers (%) 41.1 43.6 
 

 

Table 7-2. Comparison of the Vanderbilt/Duke and Memphis Study Populations 

Characteristic 
Vanderbilt/Duke 

(Training) 
Memphis 
(Testing) 

Cases (#) 430 111 
Controls (#) 222 214 
Age (mean) 72.6 79.2 

Gender (% Female) 59.2 51.4 
Race (% African American) 0.0 19.7 

CFH Y402H (% Risk Allele Carriers) 77.5 60.3 
LOC387715 A69S (% Risk Allele Carriers) 55.2 42.2 
CFB R32Q (% Protective Allele Carriers) 11.7 24.0 

Smokers (%) 57.5 48.0 
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Building the Models 

Logistic regression and if-then decision tree rules were used to build models of AMD 

(Figure 7-1).  

 

An individual’s risk factor data

A prediction about AMD status

Logistic Regression If-Then Decision Tree Rules

g=β0+β1*Risk1+β2*Risk2 etc.
probability of AMD = eg/(1+eg)

If Risk1=0 and Risk2=0 then affection = N.
If Risk1=1 and Risk2=0 then affection = A.

. . . etc.

An individual’s risk factor data

A prediction about AMD status

Logistic Regression If-Then Decision Tree Rules

g=β0+β1*Risk1+β2*Risk2 etc.
probability of AMD = eg/(1+eg)

If Risk1=0 and Risk2=0 then affection = N.
If Risk1=1 and Risk2=0 then affection = A.

. . . etc.

 

Figure 7-1. Two Approaches for Building the AMD Models. 

 

     For the logistic regression analyses, we included age (in years), ever/never smoking 

(coded “1” for smokers, “0” for non-smokers), CFH Y402H (coded “1” for CC and CT 

genotypes, “0” for TT genotype), LOC387715 A69S (coded “1” for TT and GT 

genotypes, “0” for GG genotype) and CFB R32Q (coded “1” for AA and AG genotypes 

and “0” for GG genotype) in the model. Therefore, the logistic regression equation was: 

g=β0+β1*Age+β2*Y402H+β3*A69S+β4*CFB+β5*Smoking 

and the probability of AMD for an individual was: 

probability of AMD = eg/(1+eg) 
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We did not include interactions terms in the model so that excess stratification of the 

dataset could be avoided.      

     Once the probability of AMD was determined for each individual in the testing 

dataset, individuals with a probability greater than a particular threshold were classified 

as affected, and those below the threshold were classified as normal. These “model calls” 

can then be compared to the affection status assigned by a clinician and the sensitivity, 

specificity, and overall correct classification rate of the model can be determined. 

Changing the threshold for the probability of AMD will change the number of false 

positives and false negatives called by the model. Because there is no a priori reason to 

select a particular threshold value, we chose to use 0.5 as a cut-off for our analyses. After 

examining the histogram of AMD probabilities by true affection status, we raised the 

threshold to 0.75 in the Memphis testing dataset in an attempt to increase accuracy. 

Finally, we used ROC curves (plots of sensitivity vs. 1-specificity) to determine the 

threshold which would have correctly classified the greatest number of individuals. 

     For the if-then decision tree rules, the number of cases and controls with each 

particular susceptibility factor combination was calculated. If the ratio of cases to 

controls having this combination in the training dataset exceeded the total ratio of cases 

and controls, then individuals with the same combination in the testing dataset were 

called affected and vice versa. For example, there were 165 cases and 93 controls in the 

Vanderbilt/Duke training dataset for a total ratio of 1.77. There were 12 cases and 7 

controls that were non-smokers and had CC, GG, and GG genotypes at CFH Y402H, 

LOC387715 A69S, and CFB R32Q, respectively, for a ratio of 1.71. Therefore, all 

individuals with this combination in the testing dataset were classified as controls.  
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     One advantage of this type of modeling compared to logistic regression is that there is 

no need to specify an arbitrary threshold value for classifying affection status. The major 

drawbacks with if-then decision tree rules are: 1) age cannot be included in the model 

without overly stratifying the datasets and 2) large sample sizes are needed for each 

susceptibility combination to ensure stability of the model.  

 

Evaluating the Models 

Sensitivity, specificity, and overall correct classification rate were calculated according to 

the following equations: 

Sensitivity = Probability(Affectedmodel|Affectedreality) 

Specificity = Probability(Normalmodel|Normalreality) 

Overall Classification Rate = (# Cases Correct + # Controls Correct)/ 

(Total # of Individuals in the Testing Dataset) 

 

Results 

 

Vanderbilt/Duke Study Population 

     We first constructed a logistic model of AMD in half the Vanderbilt/Duke study 

population (Table 7-3) and then applied it to the other half of the dataset. Several factors 

that are usually strongly associated with AMD were not impressive in this analysis (CFH 

Y402H, LOC387715 A69S, and smoking), but this is probably caused by the small 

sample size of the training dataset. 
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Table 7-3. Logistic Regression Model in Half the Vanderbilt/Duke Training Dataset 

Parameter Estimate Std. Error χ2 p-value 
Odds 
Ratio 

95% Confidence 
Interval  

Intercept -9.52 1.45 42.93 <.0001    
Age 0.13 0.02 44.78 <.0001 1.14 1.10 1.19 

CFH Y402H 0.04 0.17 0.07 0.79 1.09 0.56 2.13 
LOC387715 A69S 0.24 0.15 2.41 0.12 1.61 0.88 2.94 

CFB R32Q -0.72 0.23 10.11 <.0001 0.24 0.10 0.58 
Smoking 0.21 0.16 1.77 0.18 1.52 0.82 2.80 
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     Using a probability threshold of 0.5, this model of AMD was accurate 82% of the time 

(Table 7-4). Plotting the probabilities by true affection status revealed that most cases had 

probabilities closer to 1 and most controls had probabilities closer to 0, as expected 

(Figure 7-2). 

 

Table 7-4. Evaluation of the Logistic Regression Model in the Vanderbilt/Duke 
Testing Dataset. 
 

Sensitivity Specificity

Overall 
Correctly 
Classified 

145/168 
(86%) 

66/91 
(73%) 

211/259 
(82%) 
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Figure 7-2. Histogram of Probabilities of AMD by Affection Status in the 
Duke/Vanderbilt Testing Dataset 
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     According to the ROC curve, a threshold of 0.48 would have provided the maximum 

possible classification rate of 82.6% with 88.1% sensitivity and 72.5% specificity (Figure 

7-3). The area under the ROC curve was 0.86 (95% confidence interval 0.81 to 0.91), 

suggesting that this model is significantly better than chance at predicting AMD status. 

 

 

Figure 7-3. ROC Curve in the Vanderbilt/Duke Testing Dataset 

 

     Next, we used if-then decision tree rules to build a model of AMD. Several 

combinations of susceptibility factors were not observed in the training dataset (Figure 7-

4). However, no one in the testing dataset carried these combinations, so the overall 

classification rate of the model was unaffected. The ratio of cases to controls in each cell 
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had to exceed 1.77 (the ratio of cases to controls in the training dataset) for a combination 

to be classified as affected. The if-then rules are depicted in Table 7-5. 
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Figure 7-4. Counts of Cases and Controls for Each Susceptibility Combination in 
the Vanderbilt/Duke Training Dataset. Cases are plotted on the left, controls on the 
right of each square. Combinations leading to a model call of "affected" are shaded dark 
gray, and those resulting in a model call of "normal" are shaded light gray. White cells 
occurred when no one in the training dataset had that particular combination of 
susceptibility factors. 
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Table 7-5 If-Then Decision Tree Rules Developed in Half the Vanderbilt/Duke 
Training Dataset.  
 
IF smoker = N AND Y402H = CC AND R32Q = AA AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CC AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CC AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CT AND R32Q = AA AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AA AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CC AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
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     The overall correct classification rate for the if-then decision tree rules was 63%, 

much lower than for the logistic regression (Table 7-6). This may be caused by instability 

of the decision tree model resulting from small numbers of observations for each 

susceptibility combination. 

 

Table 7-6. Evaluation of the If-Then Decision Tree Rules in the Vanderbilt/Duke 
Testing Dataset. 
 

Sensitivity Specificity

Overall 
Correctly 
Classified 

92/168  
(55%) 

72/91 
(79%) 

164/259 
(63%) 

 

 

Memphis Study Population 

     Next, we built the logistic regression model in the Vanderbilt/Duke dataset and 

applied it to the Memphis dataset. Reassuringly, all the variables in the model were 

highly significant in the complete Vanderbilt/Duke Training Dataset (Table 7-7). 
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Table 7-7. Logistic Regression Model in the Full Vanderbilt/Duke Training Dataset 

Parameter Estimate Std. Error χ2 p-value Odds Ratio 95% Confidence Interval  
Intercept -10.78 0.97 122.87 <.0001    

Age 0.15 0.01 128.60 <.0001 1.16 1.13 1.19 
CFH Y402H 0.38 0.12 10.62 0.001 2.14 1.36 3.39 

LOC387715 A69S 0.39 0.10 14.42 0.0001 2.17 1.45 3.24 
CFB R32Q -0.67 0.15 19.38 <.0001 0.26 0.14 0.47 
Smoking 0.27 0.10 6.82 0.009 1.71 1.14 2.56 
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     Unfortunately, the logistic model did not accurately predict affection status regardless 

of the probability threshold used (Table 7-4). The probabilities of AMD did not separate 

cleanly into two distinct groups (Figure 7-5). Using the ROC curve to determine the best 

possible threshold, we could have correctly classified 67% of the Memphis samples with 

31% sensitivity and 89% specificity, had we used a threshold of 0.895 (Figure 7-6). The 

area under the ROC curve was only 0.62 (95% confidence interval 0.54 to 0.69), 

confirming the poor predictive ability of this model in the Memphis population. 

 

Table 7-8. Evaluation of the Logistic Regression Model in the Memphis Testing 
Dataset. 
 

Threshold Sensitivity Specificity 
Overall 

Correctly 
Classified 

0.50 84/85 
(99%) 

2/148 
(1%) 

86/233 
(37%) 

0.75 67/85 
(79%) 

42/148 
(28%) 

109/233 
(47%) 
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Figure 7-5. Histogram of Probabilities of AMD by Affection Status in the Complete 
Vanderbilt/Duke Training Dataset 
 
 
 

 

Figure 7-6. ROC Curve in the Memphis Testing Dataset 
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     Next, we used if-then decision tree rules to build a model of AMD. Several 

combinations of susceptibility factors were not observed in the training dataset (Figure 7-

7), and the 3 individuals in the testing dataset who carried these combinations could not 

be classified. The ratio of cases to controls in each cell had to exceed 1.94 (the ratio of 

cases to controls in the training dataset) for a combination to be classified as affected. 

Table 7-9 shows the if-then rules. 
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Figure 7-7. Counts of Cases and Controls for Each Susceptibility Combination in 
the Complete Vanderbilt/Duke Training Dataset. Cases are plotted on the left, 
controls on the right of each square. Combinations leading to a model call of "affected" 
are shaded dark gray, and those resulting in a model call of "normal" are shaded light 
gray. White cells occured when no one in the training dataset had that particular 
combination of susceptibility factors. 



 140

Table 7-9. If-Then Decision Tree Rules Developed in the Full Vanderbilt/Duke 
Training Dataset. *If-then rules that were different when the full Vanderbilt/Duke 
Dataset was used as the training dataset, compared to the rules in Table 7-5, when only 
half the dataset was used. 
 
IF smoker = N AND Y402H = CC AND R32Q = AA AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CC AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CC AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Affected.* 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CC AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CT AND R32Q = AA AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = CT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AA AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Affected.* 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = N AND Y402H = TT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CC AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Normal.* 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CC AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = CT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = GT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = AG AND A69S = TT THEN CLASSIFY AS Affected. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = GG THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = GT THEN CLASSIFY AS Normal. 
IF smoker = Y AND Y402H = TT AND R32Q = GG AND A69S = TT THEN CLASSIFY AS Normal.* 
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     In this instance, the if-then decision tree rules outperformed the logistic regression 

model by correctly classifying 62% of the Memphis dataset (Table 7-10). However, this 

was still a poor model, as cases were correctly identified less than half the time.  

 
 
Table 7-10. Evaluation of the If-Then Decision Tree Rules in the Memphis Testing 
Dataset. 
 

Sensitivity Specificity 

Overall 
Correctly 
Classified 

39/85  
(46%) 

106/148 
(72%) 

145/233 
(62%) 

 
 
 

Discussion 
 
     Even though several AMD susceptibility factors that replicate in numerous 

independent populations have been identified, we were still unable to develop a model of 

AMD that achieves accuracy rates high enough to have clinical utility. Several factors are 

likely contributing to the low accuracy of the models. 

 

Sample size 

     In the analysis using half the Vanderbilt/Duke dataset to create the logistic model and 

then the other half of the dataset to make predictions, the sample size was probably too 

small to accurately estimate the true population value of the coefficient estimates, as 

evidenced by the unimpressive p-values for CFH Y402H, LOC387715 A69S, and 

smoking. Even when we used the complete Vanderbilt/Duke dataset to build the model 

and then predicted in the Memphis samples, there were 16 empty cells and only 17 of 54 

cells had at least 10 observations in the complete Vanderbilt/Duke training dataset. 
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Addition or subtraction of even one individual in the training dataset could therefore 

change the decision rule, leading to an unstable model with decreased accuracy.  

 

Ascertainment Scheme 

     The Vanderbilt/Duke dataset was ascertained in retina clinics and consists mostly of 

individuals with severe grade 5 AMD and the cleanest grade 1 controls. In contrast, the 

Memphis dataset represents the general population. Therefore, we were building the 

model on the extremes of the “AMD distribution”, and then asking the model to classify 

everyone along the continuum. This likely explains why the predictive accuracy in the 

Vanderbilt/Duke testing population was higher than the accuracy in the Memphis cohort, 

and suggests that if we intend to apply a model of AMD to the general population we 

should build that model in a population-based cohort.  

 

Missing Variables 

     While there is some evidence that increased body mass index (BMI) raises the risk for 

AMD, BMI was not included in either the logistic regression or if-then decision tree 

models because it shows the weakest association with AMD and we did not want to 

further stratify the datasets. For similar reasons, we excluded APOE, the CFHL1/CFHL3 

deletion, and an interaction term for LOC387715 A69S and cigarette smoking. Variants 

in complement component 3 were not included, because this association was only very 

recently discovered. Finally, there may be risk or protective factors for AMD that have 

yet to be identified and including these in the models could greatly raise their accuracy. 
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     In conclusion, at present there is no predictive test for AMD that can be accurately 

applied to the general population. Large cohorts representative of the population will be 

needed to create such a test, assuming that all factors that strongly influence AMD 

susceptibility can be identified.
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CHAPTER VIII 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

      
 
     Despite its underlying complexity, great strides have been made in unraveling the 

genetic causes of AMD. With different polymorphisms in the same gene acting either to 

increase or decrease risk, genetic associations varying by ethnicity, and gene-

environment interactions, AMD certainly fits the model for a complex disease.  

     For example, not only do polymorphisms in CFH elevate risk, certain haplotypes in 

CFH are protective for AMD. Deletion of the CFH-like genes CFHL1 and CFHL3 

segregating with one of these haplotypes seems to be at the root of this protective effect, 

in some, but not all cases. In the present study, we confirmed the presence of a deletion 

and its inverse association with AMD in homozygotes, but did not determine whether the 

deletion is protective in the heterozygous state. Also, we have yet to map the breakpoints 

of the deletion in our sample to ensure that all individuals carry the same deletion and 

that it matches the endpoints first described by Hughes et al. Variants on protective 

haplotypes that don’t carry the deletion still need to be pinpointed. 

     The function of the 5 CFH-like genes is unknown, but they are strongly suspected to 

have similar roles to CFH in immune response given the high sequence identity between 

the genes. Though it was beyond the scope of this project, a thorough screening of these 

genes might unearth new AMD susceptibility variants.  

     Most gene mapping studies focus on polymorphisms that raise disease susceptibility, 

but risk is only one side of the story. Using a candidate gene approach focused on the 
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complement pathways, a protective variant R32Q in CFB was identified, and the 

possibility of a second protective variant in the adjacent CC2 gene was raised, though 

subsequent reports could not distinguish between a causal effect of CC2 E318D or an 

association due to linkage disequilibrium with nearby CFB polymorphisms. Hoping to 

clarify the issue, in the present study we dissected this region of chromosome 6, and 

using conditional analyses and likelihood ratio testing, we observed strong association of 

CFB R32Q and modest association of E318D CC2. Given the modest association 

observed in our study, replication of the CC2 association is still needed to clinch the 

argument that it as an independent AMD modulator. 

     To further complicate matters, genetic risk factors must be placed in the context of the 

environment. Smoking has long been known to raise the odds of AMD, but it was 

recently discovered that smoking and LOC387715 A69S in LOC387715 act 

synergistically to produce higher odds of AMD together than would be expected from the 

odds of each factor alone. However, some controversy surrounds whether the 

LOC387715 A69S change in LOC387715 is the “causal” AMD variant on chromosome 

10, or if a promoter SNP in the nearby HTRA1 gene has that distinction. As the SNPs are 

in very strong linkage disequilibrium, teasing this apart remains an ongoing struggle. 

Furthermore, the serine protease function of HTRA1 has been fairly well characterized, 

but the biological role of LOC387715 has yet to be elucidated. While these questions 

were beyond the scope of the current proposal, definitive answers will be needed to 

advance the field. 

     Lastly, the search for novel AMD loci continues. On chromosome 16, we have 

identified strong linkage to CACNG3 and association of polymorphisms in both the 
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family-based and case-control datasets. We have postulated that duplication of the 5’ 

upstream sequence and exon 1 of CACNG3 may be the source of these results, but this 

has not been confirmed. Efforts to increase SNP density across the 5’ end of the gene and 

to genotype the duplication are ongoing. 

     Putting all we have learned about AMD together, can we now predict who is likely to 

be affected? Based on the poor predictive accuracy of the AMD models developed in the 

present study when applied to prospective cohorts, the answer seems to be “not yet”. 

Rather than be discouraged, this should prompt us to gather larger sample sizes so that 

regression coefficient estimates and decision tree rules will be more stable and to 

continue refining our knowledge of the biological mechanisms underlying the 

pathophysiology of AMD so that more accurate models can be developed. 

     In conclusion, while some of the secrets of the genetic etiology of AMD have been 

revealed, much of the puzzle remains to be solved. Future work will focus on confirming 

recently proposed risk variants, identifying the remaining AMD susceptibility factors, 

and determining how these genes and the environment act biologically to promote 

disease. Perhaps someday this knowledge will be translated into new therapies that 

improve the quality of life for AMD patients or preventative measures that benefit the 

general population. 
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APPENDIX 
 

 
Table A-1 Description of SNPs in the Initial Chr. 16p12 Screening Analyses. A “.” for SNPs in the case-control dataset indicates 
that the SNP was only genotyped in the family-based dataset as part of the Illumina Genome Screen. This table contains a column for 
% of sample genotyped, rather than genotyping efficiency, because additional samples were added to the dataset while the screening 
was occurring and not all SNPs were genotyped on the most current dataset. 

 
 

   Family 345vs12 Case-Control 345vs12 

SNP Position 
Minor 
Allele 

% of  
Sample 

Genotyped 
HWE  
All MAF 

% of  
Sample 

Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS2024495 10317112 C 97 0.01 0.38 . . . . . 

RS10221 10484796 A 99 0.42 0.49 . . . . . 
RS2251984 10695607 A 90 0.76 0.48 91 0.65 1.00 0.48 0.50 
RS887864 11066386 C 98 0.58 0.36 . . . . . 
RS741175 11067186 C 98 0.53 0.42 . . . . . 
RS918738 11347180 C 100 0.26 0.48 . . . . . 
RS3743582 11557826 A 91 0.50 0.50 89 0.41 0.39 0.97 0.47 
RS1035579 12438660 T 100 0.03 0.49 . . . . . 
RS1002970 13339834 G 99 0.41 0.31 . . . . . 
RS734826 13397881 T 100 0.36 0.41 . . . . . 
RS1001937 13439013 G 100 0.06 0.41 . . . . . 
RS928963 13523732 A 90 0.16 0.37 89 0.58 0.44 0.92 0.41 
RS1158123 13616366 G 99 0.76 0.47 . . . . . 
RS11649492 13916919 C 92 0.33 0.37 91 0.59 0.54 1.00 0.36 
RS7200272 14572980 T 93 0.45 0.31 93 0.18 0.06 0.74 0.29 
RS2384933 15723647 T 100 0.00 0.34 . . . . . 
RS212090 16143505 T 99 0.79 0.42 . . . . . 
RS1597987 16791812 G 90 0.38 0.48 94 0.79 0.80 0.31 0.50 
RS1472426 17099935 T 98 0.01 0.45 . . . . . 
RS936347 17178296 A 100 0.67 0.49 . . . . . 
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   Family 345vs12 Case-Control 345vs12 

SNP Position 
Minor 
Allele 

% of  
Sample 

Genotyped 
HWE  
All MAF 

% of  
Sample 

Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS1457907 17253737 T 99 0.61 0.43 . . . . . 
RS1379652 17304099 G 100 0.35 0.49 . . . . . 
RS7195703 17383146 C 92 0.74 0.43 92 0.45 0.47 0.87 0.46 
RS1389504 17841806 A 99 0.80 0.40 . . . . . 
RS757189 17895804 A 98 0.02 0.46 . . . . . 
RS904821 18747173 A 100 0.01 0.45 . . . . . 
RS1544357 19117111 A 100 0.60 0.33 . . . . . 
RS724307 19173482 G 97 0.36 0.42 . . . . . 
RS2023762 19184098 G 99 0.97 0.43 . . . . . 
RS179209 19214631 A 100 0.17 0.50 . . . . . 
RS179219 19220873 T 99 0.09 0.47 . . . . . 
RS875648 19570770 C 99 0.09 0.41 . . . . . 
RS227761 19768806 G 99 0.15 0.49 . . . . . 
RS727590 19953169 G 97 0.64 0.24 . . . . . 
RS151328 20556203 A 88 0.31 0.23 70 0.41 0.72 0.43 0.19 
RS3785080 20659737 A 88 0.78 0.26 71 0.75 1.00 0.48 0.30 
RS2107232 20731822 A 87 0.73 0.26 70 0.84 0.96 0.49 0.30 
RS1978091 20794271 G 87 0.81 0.26 70 0.79 1.00 0.49 0.30 
RS8059938 20853437 C 87 0.34 0.26 54 0.79 1.00 0.56 0.29 
RS330150 20958710 C 86 0.50 0.10 55 0.30 0.22 1.00 0.08 
RS861424 20986194 G 88 0.94 0.42 70 1.00 0.45 0.29 0.40 
RS2031077 21145237 T 100 0.01 0.32 . . . . . 
RS741720 21147979 T 99 1.00 0.43 . . . . . 
RS2733910 21192782 T 88 1.00 0.31 70 0.23 0.48 0.35 0.27 
RS1055740 21560221 A 88 0.86 0.15 71 0.10 0.72 0.02 0.15 
RS215901 21637950 C 88 0.45 0.30 70 0.18 0.30 0.49 0.31 
RS2968403 21855288 A 93 1.00 0.14 87 1.00 1.00 1.00 0.09 

HCV1395277 21993631 A 88 0.29 0.13 71 1.00 0.69 0.70 0.12 
RS6497580 22139927 T 87 0.82 0.35 70 0.27 0.15 0.98 0.32 
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SNP Position 
Minor 
Allele 

% of  
Sample 

Genotyped 
HWE  
All MAF 

% of  
Sample 

Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS2926362 22237539 T 88 0.16 0.35 70 0.99 0.64 0.36 0.35 
RS2239331 22731955 A 86 0.92 0.49 55 0.18 0.21 0.72 0.39 
RS169660 22748205 A 86 0.38 0.34 54 0.88 0.70 0.89 0.38 
RS7198577 22766504 A 87 1.00 0.32 55 0.59 0.99 0.40 0.36 
RS208965 22769836 C 100 1.00 0.50 . . . . . 
RS208626 22835388 G 86 0.41 0.44 53 0.96 1.00 0.90 0.46 
RS1011463 22957621 T 88 0.76 0.39 70 0.02 0.01 0.89 0.32 
RS1858799 23022885 C 100 0.90 0.37 . . . . . 
RS715368 23048647 C 88 1.00 0.38 71 0.04 0.01 0.84 0.32 

RS5723 23134288 G 87 0.18 0.21 71 0.85 0.67 0.98 0.20 
RS886113 23238208 A 88 0.71 0.36 70 0.81 0.75 1.00 0.36 
RS238547 23267700 T 92 0.02 0.38 90 0.95 0.22 0.03 0.44 
RS2303153 23297702 C 86 0.89 0.49 71 0.47 1.00 0.14 0.49 
RS4968008 23397854 T 87 0.59 0.21 70 0.91 0.62 0.16 0.19 
RS3809682 23632254 G 86 0.78 0.33 55 0.53 0.33 0.83 0.35 
RS194790 23699658 G 100 0.85 0.49 . . . . . 
RS2023671 23757340 G 88 0.46 0.25 70 0.57 0.88 0.56 0.25 
RS2188356 23839214 C 83 0.58 0.44 69 1.00 0.32 0.09 0.40 
RS916677 23910339 T 88 0.79 0.42 70 0.11 0.10 0.73 0.43 
RS1490754 23922567 C 94 0.82 0.38 93 0.98 0.93 0.77 0.41 
RS405322 24022987 T 86 0.61 0.49 70 0.55 0.82 0.44 0.47 

RS12448206 24096007 A 86 0.59 0.22 71 1.00 1.00 1.00 0.23 
RS411103 24137704 A 99 0.92 0.45 . . . . . 
RS2238500 24192709 G 97 0.01 0.43 97 0.72 0.70 1.00 0.44 
RS991911 24198554 A 100 0.03 0.38 . . . . . 
RS757200 24227195 T 93 0.00 0.29 91 0.04 0.03 0.63 0.30 
RS2238518 24247639 C 92 1.00 0.44 91 0.19 0.03 0.42 0.44 
RS2189290 24264034 C 87 0.39 0.39 71 0.54 0.60 0.04 0.32 
RS12596694 24455938 C 86 0.66 0.13 70 0.40 1.00 0.25 0.13 
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SNP Position 
Minor 
Allele 

% of  
Sample 

Genotyped 
HWE  
All MAF 

% of  
Sample 

Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS2033214 24485021 G 86 0.30 0.13 70 0.97 1.00 0.94 0.12 
RS11641483 24500126 G 88 0.12 0.18 92 0.73 0.44 0.70 0.16 
RS1549239 24732986 T 86 0.49 0.30 54 0.68 0.70 1.00 0.27 
RS1011078 24801178 G 99 1.00 0.48 . . . . . 
RS12927084 24806905 A 86 0.81 0.46 70 0.41 0.47 0.83 0.49 
RS6497763 24831156 C 92 0.17 0.49 89 0.96 0.37 0.11 0.48 
RS1035946 24881927 G 86 0.67 0.20 70 0.97 0.92 0.61 0.19 
RS4787690 25005001 G 88 0.80 0.47 70 0.74 0.49 0.73 0.49 
RS874562 25010021 A 99 0.81 0.44 . . . . . 

RS12925518 25098344 A 86 0.66 0.25 70 1.00 0.24 0.04 0.23 
RS2345122 25156195 A 90 0.44 0.48 86 1.00 0.29 0.08 0.50 
RS8049535 25179171 G 87 0.53 0.37 69 0.84 0.69 0.99 0.33 
RS2157857 25420748 C 100 0.87 0.45 70 0.11 0.56 0.08 0.45 
RS1022455 25436891 T 99 0.94 0.47 . . . . . 
RS205162 25504138 T 99 0.32 0.18 . . . . . 
RS2966220 25595211 A 86 1.00 0.40 54 0.20 0.45 0.27 0.44 
RS4520838 25701169 T 86 0.51 0.35 70 0.22 0.25 0.73 0.38 
HCV365765 25795966 C 84 0.43 0.35 69 0.37 0.52 0.66 0.34 
RS7190163 25907847 C 87 0.83 0.29 71 0.96 0.72 0.38 0.28 
RS7188016 26007978 T 87 0.02 0.47 70 0.06 0.06 0.85 0.47 
HCV504442 26057566 T 88 0.02 0.29 71 0.42 0.32 1.00 0.26 
RS730015 26260645 G 86 0.07 0.44 70 0.79 0.63 0.90 0.41 
RS2078274 26508367 A 100 0.72 0.32 . . . . . 
RS739480 26524186 C 100 0.32 0.20 . . . . . 
RS237131 26547907 A 99 0.85 0.36 . . . . . 
RS2042347 26636056 G 86 0.90 0.45 55 0.17 0.01 0.14 0.41 
RS723876 26793588 C 86 0.26 0.35 69 0.36 0.92 0.16 0.37 
RS11823 26987807 G 88 0.61 0.28 71 0.62 0.94 0.23 0.26 

RS4787929 27063535 G 86 0.58 0.26 69 0.38 0.39 0.93 0.24 
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SNP Position 
Minor 
Allele 

% of  
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Genotyped 
HWE  
All MAF 

% of  
Sample 

Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS4499236 27161632 T 87 0.00 0.44 70 0.69 0.82 0.80 0.48 
RS2057768 27229596 T 100 1.00 0.28 . . . . . 
RS3024548 27262032 G 91 0.12 0.45 86 0.30 0.97 0.04 0.47 

RS8832 27283288 A 100 0.22 0.44 . . . . . 
RS3093291 27346984 C 98 0.60 0.33 . . . . . 
RS232073 27421360 G 88 0.19 0.16 70 0.13 0.31 0.39 0.14 
RS4787976 27513198 C 88 0.44 0.19 71 0.32 0.96 0.12 0.17 
RS1017575 27597669 G 88 0.40 0.16 71 0.05 0.19 0.27 0.14 
RS8054700 27694169 T 92 0.29 0.15 89 0.68 0.76 0.10 0.15 
RS772859 27701027 G 83 0.65 0.38 53 0.88 0.62 0.78 0.38 
RS755297 27713895 C 90 0.03 0.16 92 0.81 0.68 0.22 0.18 
RS1559167 27726752 T 94 0.14 0.43 91 0.77 0.76 1.00 0.44 
RS1644609 27734413 A 86 1.00 0.41 88 0.95 0.87 1.00 0.40 
RS713547 27739590 C 87 0.08 0.13 70 0.74 0.20 0.02 0.14 
RS1644618 27757739 T 92 0.89 0.29 93 0.68 0.60 1.00 0.27 
RS6498040 27776664 T 89 0.31 0.41 72 0.09 0.33 0.13 0.40 
RS4788003 27806901 T 93 1.00 0.34 92 0.32 0.68 0.30 0.36 
RS2385008 27841534 A 87 0.68 0.37 70 0.73 0.78 0.95 0.34 
RS7194904 27874886 A 92 0.81 0.45 93 0.47 0.32 0.94 0.44 
RS4788017 27884330 G 88 0.39 0.23 70 0.76 0.96 0.43 0.24 
RS9941112 27885980 A 86 0.64 0.35 70 0.10 0.11 0.65 0.37 
RS1008409 27901325 C 93 0.14 0.32 93 0.95 0.72 0.80 0.33 
RS11074888 27930557 C 92 0.51 0.39 93 0.36 0.19 0.86 0.41 
RS1476507 27932571 C 88 0.15 0.39 70 0.75 0.91 0.78 0.41 
RS205418 27980171 G 89 0.83 0.26 71 0.02 0.01 0.84 0.26 

RS12919673 28072410 T 87 0.34 0.31 71 0.22 0.09 0.94 0.28 
RS3922800 28107380 C 88 0.26 0.31 68 0.14 0.08 1.00 0.28 
RS4453501 28167502 A 89 0.35 0.31 71 0.19 0.08 1.00 0.27 
RS2726040 28238291 G 93 1.00 0.40 92 0.88 0.99 0.88 0.40 
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SNP Position 
Minor 
Allele 

% of  
Sample 

Genotyped 
HWE  
All MAF 

% of  
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Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS151233 28413929 T 91 1.00 0.14 82 0.02 0.03 0.37 0.13 

APOB48R-9270 28415145 G 88 0.21 0.45 85 1.00 0.58 0.36 0.39 
RS40834 28417894 G 90 0.10 0.49 80 0.75 0.68 0.16 0.45 
RS40835 28417956 G 93 0.18 0.09 86 0.60 0.17 0.65 0.07 

RS181207 28421031 A 95 1.00 0.37 95 0.46 0.29 0.84 0.32 
RS151228 28470527 T 88 0.07 0.41 71 0.40 0.06 0.28 0.46 

RS12443881 28749278 T 89 0.01 0.42 87 0.88 0.40 0.25 0.38 
HCV105407 28753086 T 87 0.00 0.22 70 0.44 0.80 0.37 0.25 
RS7193733 28782983 G 91 0.02 0.42 85 0.36 0.19 0.72 0.39 
RS2904880 28851897 C 95 0.02 0.37 88 1.00 0.74 0.64 0.32 
RS2070962 28857933 T 92 0.00 0.36 91 0.99 0.67 0.41 0.37 
RS11150675 28888032 A 93 0.00 0.36 91 0.77 0.31 0.41 0.38 
RS4077347 28944416 G 91 0.30 0.50 85 0.17 0.31 0.39 0.50 
RS1646129 29048189 A 99 0.34 0.34 . . . . . 
RS1642026 29056066 C 92 0.02 0.37 85 0.16 0.93 0.02 0.36 
RS252342 29094079 A 92 0.93 0.49 86 0.22 0.34 0.63 0.50 
RS252313 29121627 A 93 0.77 0.39 87 0.99 0.21 0.08 0.34 

RS10871481 29191613 T 90 0.22 0.37 85 0.57 0.91 0.48 0.37 
RS1531974 29224597 A 88 0.64 0.33 70 0.45 0.99 0.25 0.31 
RS871887 29226120 A 92 0.71 0.30 84 0.00 0.02 0.05 0.27 
RS2171223 29234054 G 90 0.14 0.34 85 0.03 0.06 0.26 0.32 
RS8054172 29563365 C 91 0.26 0.34 92 0.59 0.91 0.49 0.40 
RS1364184 29563711 T 92 1.00 0.07 86 0.49 0.42 1.00 0.07 
RS11859842 29568718 A 92 0.12 0.43 85 0.09 0.03 0.97 0.47 
RS11150564 29574237 A 91 0.16 0.40 86 0.53 0.81 0.53 0.46 
RS4788172 29575754 A 93 1.00 0.07 92 0.92 1.00 1.00 0.06 
RS3764276 29580704 C 91 0.10 0.09 85 0.65 0.47 1.00 0.08 
RS2071420 29582324 C 96 0.29 0.10 96 1.00 1.00 1.00 0.09 
RS1050881 29583429 T 88 1.00 0.07 57 0.94 0.26 0.03 0.07 
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SNP Position 
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Allele 
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All MAF 

% of  
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Genotyped HWE All 
HWE 

Cases 
HWE 

Controls MAF 
RS6565169 29600193 C 90 0.01 0.44 93 0.22 0.78 0.09 0.37 
RS648559 29648146 C 93 0.14 0.19 86 0.48 0.37 1.00 0.20 
RS235659 29696420 C 92 0.66 0.31 86 0.65 0.39 0.80 0.33 

HCV2851897 29727984 A 88 0.97 0.14 71 1.00 0.95 1.00 0.16 
RS1057451 29740989 A 92 0.97 0.15 86 1.00 0.93 1.00 0.17 
RS4788186 29748726 T 92 0.41 0.34 85 0.15 0.21 0.54 0.38 
RS3815822 29779862 C 86 0.58 0.40 54 1.00 1.00 1.00 0.44 
RS4548895 29831011 A 91 0.38 0.37 85 0.91 0.79 1.00 0.38 
RS12716972 29844155 A 91 0.93 0.43 86 0.64 0.93 0.54 0.44 
RS6565173 29881668 T 95 0.40 0.45 87 0.97 0.74 0.75 0.46 

RS11901 29891571 C 100 0.47 0.45 92 0.56 0.71 0.75 0.47 
RS11150581 29938200 G 87 0.57 0.41 70 0.81 0.36 0.03 0.41 
RS11642740 29968156 C 88 0.41 0.42 71 0.98 0.31 0.06 0.42 
RS11860935 29988281 T 92 0.81 0.08 91 1.00 0.33 0.19 0.08 
RS8060511 30009097 G 88 0.98 0.49 86 0.30 0.39 0.69 0.50 
RS3809624 30010303 G 89 0.37 0.30 71 1.00 1.00 1.00 0.29 
RS9924308 30062241 G 91 0.39 0.50 85 0.45 0.55 0.71 0.49 
RS7202714 30085308 A 90 0.91 0.32 85 0.04 0.10 0.23 0.31 
RS1132812 30105652 T 86 0.03 0.47 90 0.84 0.96 0.55 0.47 
RS11862806 30271572 C 88 1.00 0.35 71 0.27 0.44 0.49 0.37 
RS12921440 30316266 G 86 0.76 0.38 88 0.10 0.46 0.09 0.37 

RS3574 30318883 G 100 0.69 0.38 69 0.09 0.33 0.14 0.39 
RS4787645 30364851 A 87 0.20 0.41 70 0.45 1.00 0.12 0.37 
RS2230433 30425542 G 95 0.94 0.28 88 0.08 0.05 1.00 0.29 
RS12918327 30534117 A 88 0.11 0.23 70 0.61 0.72 0.91 0.24 
RS885107 30580220 G 87 0.10 0.26 69 0.51 0.85 0.49 0.28 

HCV1115064 30699890 G 88 0.83 0.15 71 0.52 0.98 0.35 0.18 
RS1046276 30822127 A 88 0.93 0.35 71 0.08 0.72 0.02 0.34 
RS3751855 30998710 G 87 0.43 0.39 70 0.55 0.63 0.81 0.37 
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RS14235 31029294 T 86 0.52 0.37 54 0.53 0.74 0.67 0.35 

RS889551 31167923 T 98 0.36 0.34 . . . . . 
RS13143 31396534 A 99 0.20 0.24 . . . . . 

RS1534507 31567928 G 99 0.10 0.23 . . . . . 
RS9929259 31718287 C 86 0.19 0.28 53 0.15 0.20 0.70 0.30 
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