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CHAPTER I 

INTRODUCTION 

Electronic health record (EHR) adoption has rapidly increased in the United States with the 

incentives and future penalties of the Health Information Technology for Economic and Clinical Health Act 

(HITECH) in 2009.1 As of 2013, 59.4% of hospitals have adopted certified EHR.2 Family physicians have 

adopted EHR in 68% of their practices as of 2011.3 EHRs have long been touted as a boon for healthcare 

– offering improved care quality, reduced cost, and greater insights into human health. However, 

advances must be made in a semantic understanding of the EHR data, interoperability between EHR 

systems, usability, and expected functionality to fully realize EHR benefits.4–8 To use the wealth of EHR 

data for discovery and ultimately application, one must be able to extract higher level information to 

address many of these challenges. The observable characteristics of each patient in the EHR are their 

phenotypes, including their diseases, symptoms, and outcomes. Extensive phenotypic data for millions of 

individuals currently covered within an EHR holds much promise for better understanding individual 

disease pathways, population health, and discovering novel phenotype-genotype associations.9–11 

However, identifying phenotypes is not trivial in EHR data. To do so, investigators have used phenotyping 

algorithms to identify individuals for clinical trials and generate large case control sets for genome-

phenome association studies. Automated phenotyping is critical for creating a computational 

understanding of patients from the raw documented interactions included within the EHR. Looking ahead, 

large sets of longitudinal EHR data and phenotyping algorithms are essential to understanding disease and 

discovering disease subphenotypes.12,13 
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This work broadly explores computational approaches to phenotyping in EHRs. Chapter II presents 

background information on the EHR data used, natural language processing (NLP) methods, clinical 

rationale for the phenotype we studied in Chapter III (hypertension), and the phenome-wide association 

study (PheWAS) method. Chapters III and IV present two different experiments applying automated 

phenotyping approaches to EHR data. Both leverage a de-identified copy of the Vanderbilt EHR known as 

the Synthetic Derivative (SD). The work presented in Chapter IV uses BioVU, a DNA biobank linked to the 

SD with over 200,000 individuals.14 

Chapter III presents an evaluation of different data sources and algorithms to identify patients 

with and without hypertension from EHR data. My algorithms range in complexity from individual counts 

of hypertension-related data elements to application of a machine learning method, random forests, 

trained on the full set of 67 descriptors across four categories of data. 

We showed that combinations of categories, even using simple algorithms, significantly increased 

phenotyping performance. One of the most beneficial input categories was narrative text. Vital signs alone 

performed the most poorly of all categories. Medications and billing codes achieved middling 

performance individually. The normalized count of hypertension concepts was the best single descriptor. 

Random forests trained on all billing code, medication, vitals, and concept based descriptors performed 

best. 

In addition, we validated the portability of the best performing algorithms, both random forest-

based and simple-to-implement algorithms, at the Marshfield Clinic. All random forest and summing 

models that used at least three categories performed well. 

Chapter IV presents a novel method that extends the existing billing code-based phenome-wide 

association studies (ICD-PheWAS) by using natural language processing to identify diverse biomedical 

concepts from narrative text to perform PheWAS (NLP-PheWAS). ICD-PheWAS uses billing codes as the 
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basis for many phenotypes that one can quickly search for association with a given genotype. We 

leveraged a natural language processing tool – the KnowledgeMap Concept Identifier (KMCI) – to extract 

concepts from problem lists and clinic notes within the SD and used the subsequent set of filtered 

concepts individually as our phenotypes. An NLP-based approach results in a scalable phenotyping 

algorithm that generates nearly 100,000 potential phenotypes before filtering and enables the creation 

of a deep phenotypic profile for millions of individuals. Genetic association studies require large numbers 

of accurately identified cases and controls to achieve adequate statistical power.15–17  

We validated the effectiveness of our method by evaluating whether NLP-based phenotypes 

replicated the known associations within the National Human Genome Research Institute’s (NHGRI) 

GWAS catalog (“NHGRI Catalog”).18 The NLP-based approach resulted in 11,553 phenotypes as opposed 

to the 1,627 phenotypes included in ICD-PheWAS. The increased granularity of NLP-PheWAS exactly 

matches 87% more NHGRI Catalog phenotypes than ICD-PheWAS, resulting in 16% more total powered 

associations. However, replication rate of known findings for NLP-PheWAS was lower than for ICD-

PheWAS. We also searched for novel associations across all mappable NHGRI Catalog SNPs. This resulted 

in two potentially novel genome-phenome associations, which require further evaluation. 

Chapter V reviews the overall work presented as well as the limitations of each method. It also 

includes a discussion of the future challenges and directions for automated phenotype extraction 

methods. 
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CHAPTER II 

BACKGROUND 

I have developed and tested phenotyping algorithms for hypertension and extracted simple NLP-

based phenotypes from the EHR. Hypertension is an important disease and contributor to many other 

diseases of high morbidity and mortality. NLP-based phenotyping is a scalable method designed to create 

deep phenotype sets for populations large enough for novel genome-phenome discovery. We present 

background for the source of data used – the EHR – and phenotyping algorithms themselves. We also 

review EHR data source quality analysis and algorithm development for hypertension, as the phenotype 

focus for Chapter III. Finally, we review PheWAS methods published to date. 

Electronic Health Record Data for Phenotyping 

The proliferation of electronic health records (EHRs) has resulted in vast, diverse sets of digital 

health information produced as a byproduct of patient care. Many sites have combined the raw 

phenotypic data from EHRs with genetic information for large cohorts.14 Such efforts include the eMERGE 

Network,19 the Million Veterans Program,20 Kaiser Permanente,21 as well as international efforts such as 

the UK Biobank22 and the China Kadoorie Biobank.23 President Obama’s Precision Medicine Initiative, 

announced during the State of the Union on January 1, 2015, proposed $215 million in the 2016 US Federal 

budget for the development of a one million volunteer national cohort.24 It is anticipated the EHR data 

will be a major component of this effort.25 Such large cohorts may provide a valuable opportunity for rapid 

progress in modern biomedical informatics, especially genome-phenome association studies. One type of 

genetic analysis is genome-wide association studies (GWAS), which is designed to identify novel 

phenotype-genotype associations by testing hundreds of thousands to millions of genotypes against a 
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single phenotype.26 GWAS require large populations with accurate phenotypes for sufficient statistical 

power.15–17 GWAS have replicated many known associations and made many novel discoveries, which 

have contributed to our understanding of genetic influence on disease.27–30 One conventional approach 

to aggregate pre-defined phenotypes for GWAS is to utilize questionnaires and specially trained research 

staff. Such approaches are more standardized than secondary use EHR-based research. Using 

questionnaires and specially trained research staff results in clean consistent data but can be expensive 

and may take a long time to accrue sufficient cases of rare diseases to be adequately powered. 

EHR systems may include longitudinal documentation of patient care, laboratory values, imaging 

data, billing codes, and other data to support administrative functions.31 Using EHR data for research has 

many advantages. EHR-based studies may be less expensive because the data are already collected 

through the course of clinical care, and can be reused for many different studies.8,31 EHR data can include 

a more representative and diverse patient population, as well as capturing the longitudinal course of 

treatment. EHR datasets are also more conducive to hypothesis generation, as the collected data does 

not have to be carefully pre-specified. Prior work has shown that phenotype-genotype association studies 

with EHR data can also replicate known associations and make novel discoveries.9,10,31–33  

Many biases exist in EHR data. The primary purpose for EHRs is to support clinical care, billing, 

and administrative functions. Billing codes may not capture data that do not influence reimbursement. 

Patients may be lost to follow-up or enter into a system in the midst of a long course of treatment. Data 

entered during the diagnostic process may be inaccurate and even internally contradictory. Providers 

often enter information idiosyncratically. EHR data can also be biased toward a more sickly subset of the 

general population by the very nature of hospital system visits.31 Copy and paste functionality encourages 

carry-forward of information over time, sometimes propagating errors, diseases, and medications that 

are no longer active.34 Narrative text can be very difficult to process due to ambiguous text and 
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misspellings.35–37 Modalities used for data acquisition, such as lab methods, may change over time without 

clear documentation. Data use agreements and consent forms may not cover desired future uses. Data 

may not be available for a given hypothesis. Lastly, aggregating among systems to create larger datasets 

can be difficult due to the variability among them. 

Much work has been done to address the EHR data challenges listed above. Phenotyping 

algorithms have been developed that leverage multiple sources of information to more accurately and 

sensitively determine phenotypes with high positive predictive value.38–40 Such algorithms, including some 

machine learning approaches, leverage the variety of data to identify phenotypes despite the challenges 

outlined above. Finally, several groups have developed NLP tools to extract concepts, negation, contextual 

information41, document section42, and concept interrelations from narrative text.43–46 

Natural Language Processing 

Narrative clinical text contains significant value and has been previously leveraged for 

phenotyping algorithms applied across multiple institutions.33,47,48 Natural language processing (NLP) 

systems process and parse narrative text to extract concepts. Terminologies provide concepts as sets of 

terms. For example, “hepatolenticular degeneration” and “Wilson’s disease”, are two synonymous 

medical terms of the same concept. Significant pre-processing is done to maximize accuracy including: 

spell checking, section tagging, splitting sentences, tokenizing words/phrases, and part of speech 

tagging.49–51 Subsequent methods attempt to match tokens to concepts, employing various strategies for 

permuting the input and scoring each until they identify an acceptable match. Scoring functions integrate 

current section, concept co-occurrence, and other contextual information to enable term disambiguation 

and maximize performance.36,37,49,51–54 NLP systems also often include negation detection, which identifies 
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concepts that are explicitly mentioned as not present. 55 One can apply the resulting outputs for semantic 

indexing, search, clinical decision support, quality improvement, and other research efforts.56,57 

Clinical NLP can be especially challenging due to a number of issues including non-standard 

“shorthand, abbreviations, acronyms, local dialectal shorthand phrases”58, as well as short telegraphic 

phrases in a largely ungrammatical context with frequent spelling errors. In clinical documents, about 10% 

of words are misspelled, which is much higher than other types of text such as newspaper corpora.49 An 

estimated 33% of acronyms are have multiple meanings.37 Document structure is highly variable and many 

individuals create their own templates. Users regularly delineate or create ad hoc tables using characters 

and whitespace. Document structure and organization also vary significantly across institutions. Further 

complicating these issues is the limited set of available notes for method development and refinement 

due to privacy concerns, which raise barriers to data sharing. Many methods have sought to address these 

challenges with specially developed tools and algorithms – clinically oriented spell checking, machine-

learning-based document sectioning, disambiguation algorithms, and preprocessing steps custom 

developed per institution.31,36,59 

Methods for general clinical NLP include the KnowledgeMap Concept Indentifier54,60, MedLEE35, 

cTAKES61, and MetaMap52,53, among many others. All four tools described can identify terms that are 

negated in the document (e.g., “no chest pain”) using variants of the NegEx algorithm.55 KMCI was used 

for this study. The methods underlying each system, strengths, limitations, and comparisons to KMCI are 

included below. 

KMCI was originally designed to index concepts within medical school curriculum content. KMCI 

uses the SPECIALIST lexicon and Metathesaurus in concert with heuristic language-processing methods, 

and applies an empirical scoring algorithm to identify concept matches within customized UMLS-based 

vocabularies. KMCI includes options to remove XML and HTML before concept indexing. KMCI can also 
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identify commonly occurring medical document sections using SecTag.50 The KMCI lexicon is based on 

SPECIALIST with additional terms added by the creators using an analysis of prefixes, roots, and terminals. 

This lexicon also utilizes a series of linguistic rules to enable conversion of terms to related terms with a 

different ending, such as “pancreas” to “pancreatic”. The authors also compiled a list of stopwords to 

ignore that include common non-medical words (e.g., “the”, “her”). Once tagged, KMCI identifies 

concepts within noun phrases, dynamically generating word variants using rules and lexical variants within 

its pre-constructed databases. KMCI uses partial matches when exact matches are not found. KMCI can 

also distribute over conjunctions or prepositional phrases. Finally, the list of potential matches is ranked 

and final choice selected using an empirical scoring algorithm that evaluates matches on three levels – 

phrase, context, and document. 

Friedman and Hripcsak developed MedLEE at Columbia. Like KMCI, its pipeline includes 

components that handle preprocessing, parsing, error recovery, phrase regularization, and concept 

encoding. The preprocessor segments the input document into sections, paragraphs, sentences, and 

words. It then uses a lexicon to classify tokens into words or common phrases with their associated type, 

e.g. finding or number. The preprocessor expands abbreviations using a provided abbreviation-to-

expansion table and contextual information. The parser determines sentence structure via a grammar 

with both syntactic and semantic rules. The final output includes the information type, value, and any 

modifiers. The error recovery component will attempt to skip words or subdivide the initial input sentence 

if parsing fails. Phrase regularization normalizes word ordering via a compositional table to a similar 

contiguous phrase form. Regularization includes explicitly adding specific domain knowledge when 

appropriate, e.g. “infarction” would be specified as a “cerebral infarction” in a neurology note. MedLEE 

then matches terms to an encoded form using an extensively customized UMLS-based table. In 

comparison to KMCI, MedLEE has finer grain temporal and certainty information included in its output 
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such as including the date of event when mentioned, while KMCI has more detailed section identification 

methods and perhaps more development for ad hoc defined abbreviations and acronyms. 

Savova and Chute developed cTAKES as a modular open source NLP system for narrative clinical 

text. The main modules perform sentence boundary detection, tokenization, normalization, part of 

speech tagging, shallow parsing, named entity recognition, and annotation. This final annotation step 

includes status and negation. The tokenizer splits based on white space and then uses context to merge 

tokens to form compound tokens such as dates, fractions, measurements, titles, ranges, Roman numerals, 

and time tokens. The normalizer is based on SPECIALIST’s “norm” tool and normalizes input text based on 

several attributes – capitalization, inflection, spelling variations, punctuation, stopwords, and other 

symbols. The named entity recognition and annotation module is a windowed UMLS-based dictionary 

look-up. 

The open source nature and modular design make cTAKES simple to access and modify by 

adapting or changing modules to suit one’s particular use case. Limitations include not resolving ambiguity 

within the named entity recognition module and not including section tagging, both of which are included 

in KMCI and MedLEE. Results are highly dependent on the richness of the lexical variant dictionary. The 

cTAKES system performs poorly with complex levels of synonymy.62 Finally, cTAKES has coarser grain 

certainty determination and temporal resolution than MedLEE. 

MetaMap is a highly configurable NLP system developed by Aronson at the Natural Library of 

Medicine. One can dynamically select vocabulary, data model, output formats, and whether to employ 

various internal algorithmic components. Output usually includes lists of possible matches for the input 

terms. MetaMap begins by identifying sentence boundaries, tokenizing, and expanding acronyms. It tags 

parts of speech and performs a lexical lookup using the SPECIALIST lexicon. MetaMap then performs a 

shallow parse using the SPECIALIST minimal commitment parser. MetaMap expands phrases to their 
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potential variants via table lookup and evaluates candidates for match quality. This evaluation process 

uses distance to the phrase’s head, the variant’s distance from the original, original text coverage, and 

match fragmentation where non-matching strings separate matching strings. Lastly, a simple word sense 

disambiguation algorithm is included in MetaMap (but not the Java version, MMTX) that favors concepts 

with semantic types consistent with the “clues” in the surrounding text (e.g., a ambiguous concept 

followed by a number is more likely to be a lab). MetaMap also includes a “browsing” mode uncommon 

to other methods that enables determinations of how well a set of terms is represented in the 

Metathesaurus. 

Limitations include unincorporated chemical name recognition, section tagging, and limited 

disambiguation. Unlike KMCI, overmatches such as matching the original text “QT” to the concept string 

“QT segment” are usually not allowed unless explicitly specified. MetaMap more strictly limits matches 

based on its starting vocabulary. 

Phenotyping Algorithms 

Throughout this work, we use phenotyping algorithms of varying complexity to extract a 

conceptual understanding, such as diseases and outcomes, for the individuals within the EHR.63 One can 

construct an algorithm using sets of nested Boolean logic statements, negation, and temporal 

relationships applied to EHR data elements to identify individuals of interest. One can simultaneously 

exclude similar but undesired cases from the corresponding control group. Inputs often include billing 

codes (most commonly the International Classification of Diseases, version 9-CM, or ICD9), medication 

orders, laboratory values, and narrative text. Researchers often document these phenotyping algorithms 

within narrative documents describing the sets of nested conditions, semi-structured elements, and 

regular expressions or strings used to identify relevant concepts within narrative text.64 Recently, studies 
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have explored ways of enhancing the portability and computability of phenotyping algorithms. These 

include the development of the Quality Data Model,65 which was designed for representing EHR-based 

quality measures. Recently, Mo et al. published a desiderata for a phenotype representation model, which 

included 10 recommendations.66 The recommendations include support for machine and human-readable 

formats, structuring clinical information into queryable forms, and the ability to represent phenotypes 

with structured rules. We have designed our methods with these goals in mind, using common 

terminologies and providing a computable module that takes commonly available data types. 

A limitation with current phenotyping algorithms is the significant effort required to develop and 

refine each to achieve a sufficiently high positive predictive value. Typically algorithm creation typically 

follows an iterative process involving clinical experts interfacing with informaticians though multiple 

algorithm proposals and manual chart reviews.63 Recent methods that transform discrete points into 

continuous intensity functions can infer irregularly entered or missing data.67 This simplifies comparisons 

and the usage of other methods, such as machine learning, that require continuous input data. These 

tools also enable new unsupervised methods of phenotyping that do not require iterative refinement by 

domain experts. Such methods do not require curation of EHR data or pre-specified features and can 

search for new phenotypes via machine learning techniques such as deep learning.68  

Hypertension 

In Chapter III, we describe an algorithm developed to identify hypertension in the EHR. Of the top 

ten leading causes of morbidity and mortality in the United States that are not accidents or intentional 

self-harm, hypertension is an important contributor in four of the remaining eight.69 Current clinical 

guidelines define hypertension as a consistent blood pressure greater than or equal to 140 mmHg systolic 

and/or 90 mmHg diastolic70. Its age-standardized prevalence across the United States is 28.9%, and is 
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greater than 50% for non-Hispanic black individuals.71 Hypertension is a key modifiable risk factor for 

cardiovascular disease, stroke,72 and end stage renal disease.73 Treatment goals are to reduce and 

maintain blood pressure within the normal range. Interventions include lifestyle modifications and 

pharmacologic interventions.70 Current guidelines recommend the use of thiazide-type diuretics, calcium 

channel blockers, and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for first-

line and later-line hypertension treatment.70 These classes have other indications in addition to 

hypertension. Treatment is partially effective with 35.1% of diagnosed individuals maintaining an average 

blood pressure below threshold.71 Due to treatment lowering blood pressure into the normal range and 

the many other temporary conditions, such as trauma and stress, that can elevate blood pressure, 

designing a phenotyping algorithm may be more complicated than just using vital sign cutoffs. 

Hypertension is a prototypic modifiable chronic disease with significant longitudinal morbidity 

when ineffectively treated. Hypertension is an important covariate for many analyses and necessitates an 

automated and portable phenotyping algorithm. 

Phenome-wide Association Studies 

The PheWAS quickly searches for associations between thousands of phenotypes and a 

genotype.9,74 PheWAS is complementary to genome-wide association studies (GWAS), which are a 

traditional method of searching for an association between phenotypes and genotypes.9 GWAS searches 

for associations between many genotypes and a single phenotype. The original implementation derives 

phenotypes from ICD9 billing codes. ICD9 based PheWAS, herein called ICD-PheWAS, uses a custom 

mapping from ICD9 codes to aggregate sets of phenotype codes or “phecodes” that are more 

representative of phenotypes, collapsing similar items into single elements, and adding per-phenotype 
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exclusion codes.32 The most up-to-date mapping includes 1,970 unique phecodes. More recently 

researchers have used other sources including n-grams10 and ICD10 codes.75  

Prior work has shown that PheWAS can replicate known and novel phenotype-genotype 

associations from electronic medical record data.10–12 The original PheWAS paper showed that the method 

could replicate known associations with multiple sclerosis, ischemic heart disease, rheumatoid arthritis, 

and Crohn’s disease in a population of 6,005.32 More recently PheWAS was systematically evaluated for 

its ability to replicate known NHGRI Catalog associations for which it was powered in a population of 

13,835 individuals, and also found novel associations.76 Hebbring et al. have shown that the text of the 

EHR, as represented by n-grams, where n ≤ 4, can also replicate known associations in five SNPs 

equivalently to ICD-PheWAS.10 PheWAS has also been applied to pediatric populations,77 and to search for 

related phenotypes with a newly discovered susceptibility to herpes zoster association.78 

ICD-PheWAS has several limitations. Since ICD9 codes are the basis for the phenotypes searched 

in our current implementation, the method is also subject to their variable sensitivity and positive 

predictive value for phenotyping. ICD9 codes’ primary functions as tools for reimbursement and other 

administrative functions likely bias ICD9 codes. They are also limited to coarser granularity and thus do 

not accurately represent many potential phenotypes. EHR data itself is often inaccurate and incomplete, 

which hinders PheWAS performance.31 However, the mapping of phenotypically similar ICD9 codes to 

single phenotype codes – phecodes – with matched exclusion phenotypes improves case aggregation and 

isolation from control populations for a given phenotype.79 

The ICD-PheWAS has demonstrated the potential for PheWAS to make novel discoveries using 

billing codes from the EHR. Nevertheless, large amounts of information and potentially many discoveries 

are only available outside of EHR billing codes.79 An NLP-based method can make it possible to find novel 

phenotype-genotype associations within the narrative text of the EHR. 
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CHAPTER III 

EVALUATING ELECTRONIC HEALTH RECORD DATA SOURCES AND ALGORITHMIC 

APPROACHES TO IDENTIFY HYPERTENSIVE INDIVIDUALS 

Background and Significance 

Hypertension is a prototypic intervenable chronic disease with significant longitudinal morbidity 

when ineffectively treated. Thus it is an important covariate in many clinical and genetic studies making 

an automated and portable phenotyping algorithm desirable. Current clinical guidelines define 

hypertension as a consistent blood pressure greater than or equal to 140 mmHg systolic and/or 90 mmHg 

diastolic.70 Hypertension affects one third of Americans72,80 and contributes to one in six adult deaths in 

the US.71,72,81,82 Of the top ten leading causes of morbidity and mortality in the United States, two are 

accidents or intentional self-harm, and hypertension is an important factor in four of the remaining 

eight.69 In this work, we evaluated the performance of different algorithms across the International 

Classification of Diseases, version 9-CM (ICD9) codes, medications, blood pressure, and narrative clinical 

data from the EHR to identify hypertensive individuals. 

EHRs contain a diverse set of data types – structured lab values, vital signs, billing codes, narrative 

clinical documentation, visual data such as x-rays, and semi-structured questionnaires, among many 

others. The primary purpose of clinical data entry is supporting clinical care, billing, and administrative 

functions with research as a secondary use. However, dense longitudinal EHR data also enable clinical and 

genomic research, potentially with reduced cost compared to typical approaches.83  Using automated 

phenotyping algorithms, which classify individuals and make subsequent large-scale genetic analyses 
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possible,8,28,39,64,84–87 investigators have replicated known phenotype-genotype associations and made 

novel discoveries.10,76,78,83,88,89 

Phenotyping algorithms can be constructed from sets of nested Boolean logic statements, 

negation, and temporal relationships applied to EHR data elements designed to identify individuals with 

a given phenotype.64,66 Each data source poses unique challenges.79 For example, EHR blood pressure 

measurements alone do not correlate well with hypertension status: many conditions can temporarily 

elevate blood pressure,90 and patients with well-controlled hypertension may display consistently normal 

values.  Use of other data sources, such as ICD9 codes or narrative text may improve performance. 

ICD9-based phenotyping methods have variable performance with estimates for cardiovascular 

and stroke risk factors ranging from 0.55-0.95 PPV.91 Similarly, various phenotyping studies have used 

NLP-based concepts alone – with sensitivities ranging from 72%-99.6% and PPV between 63%-100%.92–95 

However, due to hypertension’s high prevalence it is a very common entry within the family history 

section of clinical notes and may result in many false positives. Combining data from various imperfect 

sources may improve performance of a hypertension phenotyping algorithm. 

Prior studies have not rigorously evaluated a general-purpose hypertension algorithm.  Studies 

have leveraged simple thresholds based on a minimum number of hypertension billing code counts9 to 

classify hypertension for use as covariates in studies of other diseases such as abdominal aortic aneurysm, 

stroke, chronic kidney disease, heart failure, and atrial fibrillation.70,72 Algorithms have been developed 

for subtypes of hypertension, such as resistant hypertension.87 Most phenotype algorithm evaluations 

have typically focused on precision.63 Given that hypertension is both a primary phenotype of interest and 

an important covariate for other diseases, a phenotyping algorithm that minimizes both false negatives 

and false positives is desirable.  
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Here we show that algorithms that combine multiple EHR data sources achieved the best overall 

results.  We found that a machine learning performed the best, but that deterministic algorithms also 

performed well. Both approaches performed similarly at a replication site. 

Methods 

Patient Selection and Review at Vanderbilt University Medical Center 

Our starting population consisted of all individuals in the Synthetic Derivative, which is a de-

identified mirror of the Vanderbilt University Medical Center EHR.11 The Vanderbilt EHR includes data on 

over 2 million individuals. We randomly selected 643 adults with regular outpatient care, defined as at 

least two outpatient visits and two vital signs readings between 1/1/07-1/1/09. Authors with a clinical 

background (RMC, WQW, HM, PLT) reviewed an initial cohort (n=303) with 20% overlap for cases, 

controls, and unknowns using de-identified notes, billing codes, and vital signs. After determining 

sufficient interrater agreement (Cohen’s kappa=0.93), the remaining 340 individuals were reviewed 

without overlap. A senior physician (JD) adjudicated any conflicting or undetermined reviews. 

Input Feature Development 

The final dataset contained 67 different inputs or “features” (Supplemental Table 1 includes the 

full feature list and description and Supplemental Table 2 lists median and IQR between cases and 

controls). We hypothesized that billing codes, medications, vital readings, and clinic note content provide 

broad coverage, thus enabling accurate identification of hypertension cases and controls despite 

problems within each data source. For each we aggregated general information (document counts, 

maximum age, total ICD9 code counts, etc.) and hypertension-specific elements (hypertensive ICD9 code 
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count, hypertensive medication count, hypertensive blood pressure reading count, hypertensive note-

item count, etc.). We curated a set of hypertension-related billing codes (Supplemental Table 8). 

Medications were available from structured electronic prescribing records and also extracted from 

narrative documents using MedEx.33,96 Hypertension medications were determined using medication 

strings with indications determined as part of MEDI-HPS, which lists both on- and off-label indications of 

medications in computable formats (Supplemental Table 6).97–100 We determined hypertensive and non-

hypertensive blood pressure readings using the guideline thresholds of 90 mmHg diastolic and 140 mmHg 

systolic. We collapsed multiple readings on the same day to the median systolic and diastolic. We also 

separated vital readings into outpatient and inpatient only. We restricted narrative documents to problem 

lists, clinic notes, discharge summaries, and admission history and physical notes. We identified sections 

within notes using SecTag101 and restricted to high-yield sections less likely to cause NLP false positives 

including but not limited to the ‘history of present illness’, ‘past medical history’, and ‘assessment and 

plan’. We extracted concepts from this subset of sections using the KnowledgeMap Concept Identifier 

(KMCI) with a SNOMED-CT focused subset as the vocabulary.95,102 From the set of KMCI-identified UMLS 

concepts, we identified 12 hypertension concepts (Supplemental Table 7). We also extracted 

hypertension-related counts from the full notes using regular expression text-searches. Regular 

expression matches targeted “hypertension” not preceded by “pulmonary” or the acronym “HTN” with 

word boundaries on either side (to avoid matching to strings such as “tightness”, regular expression 

included in Supplemental Information). Figure 1 depicts the full processing pipeline. The full protocol is 

available in the algorithm description on PheKB (http://phekb.org). 
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Figure 1: Algorithm Dataset Generation Flowchart.  

We randomly sampled 631 adults for the initial population. We limited to concepts that were in high yield sections, 

which included the ‘history of present illness’, ‘past medical history’, and ‘assessment and plan’. Billing codes were 

available as structured data and hypertension-related codes were physician curated. We also separated inpatient 

and outpatient vitals using CPT codes.  

We assembled the final inputs for each category by taking the following individually and in 

combination: total counts of each item, all hypertensive elements (blood pressures above the threshold, 

medications with hypertension as an indication), counts of unique items, and normalized versions of each. 

We normalized by dividing the hypertension-related counts by total category counts or total unique item 
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counts. We added normalized inputs to account for the variable number of observations in individual 

records. In addition, we added unique elements for ICD9 and medication data to attempt to compensate 

for high frequency concepts found in clinical notes due to copy and paste.34 Specifically, several different 

but similar medications or billing codes seemed more likely to correctly identify a case. One such feature 

is the unique hypertension related ICD9 codes normalized by all unique ICD9 codes. 

Simple Algorithm Development 

We developed several simple algorithms as easier to implement intermediates. There were two 

categories of simple algorithms. The first summed features, one per category. The second category 

summed the number of categories with a non-zero feature, where each category contained a single 

representative feature. The sum of category counts included an integer threshold (n=1-4) to predict case 

vs. control. We also used permutations that included the normalized versions– normalizing by total 

occurrences, unique items, documents, or total concepts as appropriate. 

Bootstrap Analysis 

To compare random forest models, individual features, and several simple algorithms we used a 

version of the .632+ bootstrap103,104 method and then applied each model, feature, or simple algorithm to 

the same test set (200 individuals). Briefly, this method samples N elements with replacement from a 

population of size N, which results in mean coverage of 0.632N of the population. Sampling with 

replacement exposes the model to more varied and potentially representative weightings of the different 

possible populations that could have been sampled. We repeated this sampling 1,000 times and use the 

2.5th percentile and the 97.5th percentile based on the sorted results from the entire bootstrap to 

empirically establish the 95% confidence interval (CI). Bootstraps were run for random forest models 

trained across each category of features individually (e.g., ICD9 codes, medications, vitals) as well as with 
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increasingly complex combinations (e.g., Boolean or count combinations of different features). We ran 

bootstraps for each set across training set sizes of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 

and 600 to test the effect of training set size on algorithm performance. Categories, feature column 

identifiers, and descriptions are included in Supplemental Table 1. For each iteration, the validation set 

was a random subset of 200 individuals not sampled for the training set. We calculated the area under 

the receiver operating characteristic curve (AUC), sensitivity, and positive predictive value (PPV) for each 

test set. We used the randomForest package in R to train the models and the ROCR package to calculate 

performance metrics and ROC curves.105,106 

Best Random Forest Model Performance Evaluation 

To evaluate the random forest predictions per individual, we used the 1,000 models generated in 

the bootstrap run along with the 1,000 accompanying validation sets. For the best performing random 

forest model by AUC – using ICD9, medications, all vitals, and NLP-derived concept – we aggregated all 

independent test set predictions across all 1,000 runs and calculated the mean prediction for each 

individual. We then plotted a histogram of the mean predictions to determine the counts of individuals 

with different prediction ranges and identified misclassified individuals using a threshold of 0.5. We then 

reviewed a subset of these sets of false positives and false negatives as part of an error analysis.  

KNIME Module Development 

We developed a Konstanz Information Miner (KNIME) module to improve portability. KNIME’s 

graphical user interface enables easy interpretability for a wider audience. The package takes raw inputs 

with dates and encapsulates data processing, normalization, and analysis – outputting per individual 

results. The module can also take subsets of available inputs such as coded data only. Given labeled cases 

and controls, the module outputs aggregate performance statistics (counts, prevalence, sensitivity, 
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specificity, and PPV). The module includes some of the best performing simple algorithms and random 

forest models trained with our entire reviewed dataset using the following category combinations: 1) 

ICD9s, medications, and all vitals; 2) ICD9s, medications, and all vitals including separate outpatient and 

inpatient vitals; 3) all elements from the second set plus regular expression matches; 4) all elements from 

the second set plus NLP-derived concepts); and 5) all data including regular expression matches and 

concepts. 

Replication at Marshfield Clinic 

The Marshfield Personalized Medicine Research Project is a population-based research study in 

which participants consented and provided DNA, plasma and serum samples and access to their medical 

records for genetic research.  The cohort consists of approximately 20,000 participants living in central 

Wisconsin with primarily northern European ancestry.  Marshfield Clinic provides most of the primary, 

secondary and tertiary care for this cohort and the medical information is stored electronically in an in-

house developed electronic health record that contains medical information dating back to the early 

1960’s.107 

Participants (n=15,183) with two or more blood pressure measurements between January 1, 2007 

and December 31, 2008, were selected from the PMRP for this study. One hundred patients were 

randomly selected from this sampling frame and manually classified (RAD, AMN) as cases (having 

hypertension) or controls (absence of hypertension) and then used to test the KNIME workflow 

hypertension prediction module.  ICD9 codes, medications, pulse, outpatient CPTs, blood pressure 

measurements, and hypertension concepts indexed using MetaMap with negation were provided as input 

to the module. Regular expression matches for hypertension mentions within the clinical notes were not 

included. 
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Results 

Table 1: Study Population Demographics and Clinical Information 

 Vanderbilt (n=631) Replication (Marshfield, n=100) 

 Hypertensive Control All Hypertensive Control All 

Total 369 262 631 59 41 100 

Median age (IQR) 
65  

(56-75) 

47  

(37-59.75) 

59  

(46-70) 

70.9  

(56.9-80.2) 

53.8  

(44.4-58.9) 

61  

(50.8-75.4) 

Male 171 85 256 27 13 40 

Female 198 177 375 32 28 60 

Race             

White 306 227 533 55 40 95 

Black 49 16 65 0 0 0 

Asian 2 3 5 0 0 0 

Indian American 0 2 2 0 0 0 

Unknown 12 14 26 4 1 5 

Medication (counts per individual and IQR)          

Median 
462  

(207-1015) 

135  

(61.25-346) 

301  

(113.5-690) 

1161  

(867-2291) 

408  

(214-829) 

901  

(406.5-1635) 

Median (HTN) 
61  

(22-173) 

0  

(0-5) 

18  

(0-83.5) 

221  

(72-538) 

2  

(1-7) 

71.5  

(2-312.5) 

Median unique 
84  

(44-147) 

41.5  

(20-76) 

62  

(30.5-117.5) 

135  

(110-204) 

86  

(58-121) 

122.5  

(82-162) 

Median unique 

(HTN) 

7  

(3-13) 

0  

(0-2) 

3  

(0-9) 

16  

(9-32) 

1  

(1-3) 

9  

(1.5-21.5) 

Billing codes             

Any HTN ICD9 Code 4951 101 5052 1650 19 1669 

Essential HTN 401.* 4936 101 5037 1579 19 1598 

Secondary HTN 

405.* 
15 0 15 71 0 71 

EHR Follow-up* and IQR         

Median follow-up 
6.6  

(5.0-8.8) 

5.7  

(3.3-7.7) 

6.1  

(4.4-8.3) 

19.1  

(15.5-19.8) 

18.2  

(17.0-19.6) 

18.6  

(15.8-19.8) 

Number of visits with 

vitals 

30  

(16-52) 

17  

(9-30) 

24  

(12-43) 

86  

(66-120) 

52  

(35-61) 

68.5  

(44.5-106) 

*Median with (IQR = interquartile range) in years, calculated as first vitals reading to last 

Gold standard review classified 369 as hypertensive, 262 as non-hypertensive, and 12 as 

undetermined. Reviewers demonstrated high interrater agreement (Cohen’s kappa=0.93).  Table 1 

includes the summary information for the populations studied at Vanderbilt and Marshfield Clinic. Both 

sites had a prevalence of hypertension of almost 60%. Median age was lower for controls (47, IQR=37-
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59.75) compared to hypertensive individuals (65, IQR=56-75) (p<0.00001). Median age across the entire 

population was 59 with an interquartile range of 46-70. Both sites have 1.5 fold more females. The 

majority of individuals were white – 84% at Vanderbilt and 95% at Marshfield Clinic. There were non-zero 

counts of hypertension-related ICD9 codes and medications for controls at both sites. We found 101 

hypertension ICD9 codes (401.*) for 19 controls; thus, 7.3% of Vanderbilt controls had hypertension ICD9 

codes but were judged to be controls. Similarly, 104 or 39.7% of Vanderbilt controls had at least one 

medication with hypertension as a potential indication. Median follow-up was similar between both cases 

and controls at Vanderbilt – 6.6 years or 30 visits for hypertensive individuals and 5.7 years or 17 visits for 

controls. Median follow-up at Marshfield Clinic was longer at 18.6 years as compared to 6.1 years at 

Vanderbilt. 
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Figure 2: Random Forests Trained On Combinations of Categories Perform Best. 

We did 1,000-iteration bootstrap runs for each category of features as well as increasingly comprehensive 

combinations of categories for successively larger training set sizes from 25 to 600. Labels indicate the set of 

categories use for each learning curve. Other combinations were tested but were similar to the included examples. 

The graph below includes the median AUC (blue line) for each learning curve in addition to the upper and lower 

(light blue) bounds of the 95% confidence interval. For reference, lines representing the median AUC for two 

simple methods are included – hypertension (HTN) ICD9 counts and the sum of unique normalized ICD9 codes, 

medications, blood pressure (BP) readings, and regular expression (RegEx) matches normalized by document 

counts. 

 

Bootstrap performance for random forest models trended upwards as training set size increased 

and CI narrowed (Figure 2). The best performing model was the random forest trained on all features for 

ICD9 codes, medications, vitals, and NLP-based concepts (AUC 0.976). Of the individual category random 

forests, vitals performed the most poorly (0.865) and models trained on the NLP-based concept features 
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performed best (0.928). However, the difference between them was comparable to their confidence 

intervals. 

 

Figure 3: Algorithm Performance.  

Median AUC and 95% confidence intervals (CI) for the 1,000-iteration bootstrap are depicted across all random 

forests, representative simple algorithms, and representative individual features. Blue diamonds indicate the AUC 

and the light blue dashes indicate the upper and lower bounds of the 95% CI respectively. The top six by median 

AUC are statistically significantly better than the lower 41 of the 56 total included – comparing 95% CI. 

 



   
26 

Random forests using combinations of feature categories generally performed better than simple 

algorithms (Figure 3). The simple algorithms performed well both with and without normalization 

although there was a trend towards better performance for simple algorithms that sum the individual 

normalized counts of each category. After the top three random forests, the fourth highest median AUC 

was 0.959, which was achieved by summing the unique normalized values of hypertension-related ICD9s, 

medications, blood pressure readings, and regular expression matches normalized by the number of 

documents. The top six algorithms, which were all random forest-based except one, were statistically 

better than all individual features except the hypertension concept counts across all notes that were 

normalized by either the total number of concepts or documents. Thus, methods that combined 

categories outperformed ICD9s, medications, and vitals individually – with only NLP-derived hypertension 

concepts approaching the combined methods’ performance. The worst performing algorithms used pulse 

or diastolic blood pressure alone (AUCs of 0.435-0.591) where performance below 0.5 is worse than a 

random classifier. Systolic blood pressure algorithms were better but still underperformed other 

categories of data (AUCs of 0.775-0.854). Full results, including sensitivities and PPVs at various thresholds 

are included in Supplemental Table 3. The normalized sum and random forest using all categories 

outperformed all other approaches with AUCs of 0.959 and 0.976. Hypertension ICD9 code, concept, and 

medication counts performed similarly at AUCs of 0.908, 0.908, and 0.907 (Figure 4). 
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Figure 4: Combination Methods Achieve the Highest AUC.  

We include the ROC representative of the 50th percentile 1,000 iteration bootstrap run below. Numbers in 

parentheses represent the median AUCs from the bootstrap model. The random forest model represented here is 

the best performing RF model from Figure 2. The best simple algorithm is the sum of unique normalized 

hypertension ICD9, medications, blood pressures, and regular expression matches normalized by the number of 

documents. 
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The best random forest model’s per-individual predictions effectively separated cases from 

controls (Figure 5). In the upper >0.9 and ≤1.0 scores (264 total), the random forests correctly classified 

97.7% of cases. Similarly, the random forests correctly classified 96.8% of the controls with median 

predictions between 0.0-0.1 (156 total). Performance degraded as predictions approached 0.5 from either 

extreme. Assuming a threshold of 0.5, the random forests only correctly classified 33.3% of the 0.5-0.6 

bin as cases and 52% of the controls for the 0.4-0.5 bin. Overall, the random forests correctly classified 

88.9% of the individuals with 36 false negatives and 34 false positives by median bootstrap prediction. 
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Figure 5: Histogram Showing Prediction Separation Between Cases and Controls.  

The red columns, biased towards the right (1.0) are the counts of hypertensive individuals with a mean random 

forest prediction (each taken from a test set not used for training) within the bin range listed along the x-axis. The 

light blue columns represent the counts of controls in each bin range. 

 

Comparing the true positives and negatives with false positives and negatives across all features 

revealed many that were systematically different (Supplemental Table 5). For example, the number of 
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hypertension (HTN) concepts across all notes was 840 times higher for true positives than for false 

negatives. When one normalizes for the document count, this increased to a 2335-fold difference. 

  
Table 2: Portability Evaluation Across Various Algorithms at Vanderbilt and Marshfield Clinic.  

 
Vanderbilt (n=631) 

Replication 

Marshfield (n=100)  

Model with expected features AUC (CI) Sens. PPV AUC Sens. PPV 

ICD9, meds, all BP (random forest) 0.955 (0.934-0.975) 0.844 0.954 0.922 0.966 0.919 

ICD9, meds, all vitals (random forest) 0.961 (0.938-0.980) 0.858 0.954 0.910 0.966 0.905 

ICD9, meds, all vitals, RegEx (random forest)* 0.967 (0.948-0.985) 0.866 0.954 0.934 0.966 0.934 

ICD9, meds, all vitals, concept (random forest) 0.976 (0.95-0.984) 0.902 0.952 0.873 0.966 0.864 

ICD9, meds, all vitals, RegEx, concepts  

(random forest)* 
0.968 (0.951-0.985) 0.877 0.954 0.898 0.966 0.891 

Positive category count ICD9, med, and BP  

2 of 3 
0.833 (0.788-0.868) 0.952 0.822 0.646 1.000 0.670 

Positive category count ICD9, med, and BP  

3 of 3 
0.877 (0.849-0.914) 0.798 0.967 0.914 0.949 0.918 

Positive category count ICD9, med, BP, and 

concept 3 of 4 
0.910 (0.868-0.936) 0.925 0.924 0.711 0.983 0.716 

Sum of normalized HTN ICD9, meds, and BP 0.915 (0.888-0.942) 1.000 0.673 0.949 1.000 0.702 

Sum of normalized HTN ICD9, meds, BP, and 

concept 
0.929 (0.897-0.955) 1.000 0.663 0.949 1.000 0.702 

*Marshfield Clinic inputs to random forest models did not include regular expression (RegEx) information. The best 

AUC and model for each site-category combination are bolded. 

Finally, we examined the portability of the best random forest models trained on Vanderbilt data 

as well as the simple algorithms at the Marshfield Clinic. Table 2 includes the AUC, sensitivities, and PPVs 

for the five random forests trained, three simple category count algorithms with integer thresholds, as 

well as two summing algorithms. 

Discussion 

In this work, we evaluated ICD9 codes, medications, vitals, and narrative documents as data 

sources for hypertension phenotyping algorithms. We also showed that combinations of multiple 

categories of information result in the best performance with AUC rising in tandem with the number of 
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categories used. Blood pressure measurements, despite being the basis for determining hypertension 

clinically, performed worst of all categories for the identification of hypertensive individuals from EHR 

data, even when restricted to outpatient measurements. This is likely due to issues such as treatment 

reducing blood pressure to within the normal range, treatment often starting outside of our EHR dataset, 

and the many non-hypertension causes of high blood pressure readings within the EHR. Medications and 

ICD9 codes alone achieved reasonable performance. Individually, concepts perform best of all four 

categories. The best-performing algorithm used random forest-based models and identified hypertensive 

individuals with a median AUC of 0.976. Multi-category random forest models also performed well at 

Marshfield, with AUCs 0.873-0.934. Thus, using more than just vitals and ICD9 codes individually improved 

EHR-based hypertension phenotyping. 

Combining multiple information sources yielded a large increase in performance regardless of 

method. Confidence intervals overlapped substantially between “count” and “sum” simple algorithm 

types. Random forests trended higher than these simple approaches but implementation may be more 

difficult than a simple algorithm that combines hypertension ICD9 codes, medications, blood pressures, 

and regular expression matches, which has performance within the CI (AUC of 0.976 vs. 0.959). Easing 

implementation issues, random forest models did require relatively few training cases. As few as 25 to 50 

cases resulted in near peak performance for most random forest models. 

Random forests are not necessarily the best possible method but we have used them because 

they are an easy way to include nonlinear interactions. If one desires an algorithm that does not require 

regular expression or NLP-based concepts then the sum of unique normalized hypertension ICD9, meds, 

and blood pressures is the best algorithm that does not leverage narrative text (AUC 0.948). In general, 

algorithms that leverage more categories of information outperform those that utilize fewer. One of the 

rare exceptions, is a random forests trained with all features except regular expression information, 
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though the difference is negligible and does not reach statistical significance. This is likely due to the 

superior performance of NLP-derived concepts and content overlap between regular expression matches 

and concepts. 

Information for negated concepts was briefly included as a separate feature for random forest 

model training but provided little benefit. Additionally, negation results are especially variable and 

significant improvement and inclusion of temporal relationships are likely necessary to maximize their 

benefit (since a control individual can later develop hypertension). 

Interestingly, preliminary work using readings from both inpatient and outpatient readings 

consistently outperformed approaches limited to readings taken in the outpatient setting. This may be 

due to improved coverage, as outpatient only counts provide far less data accounting for only 56% of the 

21,537 total per-day median vitals readings. Thus, including inpatient data and leveraging the median to 

reduce the influence of outliers and multiple daily blood pressure readings favors the more inclusive 

approach. 

Many conditions and circumstances result in abnormal blood pressure readings in non-

hypertensive individuals and the impetus for medical encounters biases towards such stressful conditions. 

In addition, successfully managed individuals have normal blood pressure readings. For controls, 55.7% 

had at least one blood pressure reading above the hypertension threshold and 3.8% have a median 

systolic or diastolic above threshold. For cases, 4.3% had no blood pressures above the threshold and 

1.6% had a median diastolic and systolic below the threshold. Our set was initially selected to have dense 

records and thus a population with sparser EHR data is likely to have worse vitals-only performance. 

There were several trends with respect to random forest misclassifications. Random forest 

models were more likely to miss recently diagnosed hypertensive patients, patients without a 

hypertension ICD9 code, or individuals with very few notes and only a few hypertension concepts. 
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Controls predicted to be hypertensive by the random forest models were most likely to have been missed 

during review. These individuals often had well-controlled blood pressures, few if any ICD9 codes, and 

relatively few notes with complex or severe diagnoses (e.g. cancer and severe Crohn’s disease). 

Most algorithms trained on Vanderbilt data successfully replicated on data from the Marshfield 

Clinic. All random forest based models achieved AUCs in the range of 0.873-0.934. Algorithms that 

included NLP-derived concepts did not perform as well at Marshfield. Marshfield data included concepts 

extracted by MetaMap and a different pipeline, which may have had worse performance. Finally, regular 

expression matches were not included at Marshfield. Although performance may have been improved by 

its inclusion, the performance achieved without such data on models trained with regular expression 

information highlighted the robustness of the random forest models. 

For sites that wish to optimize their hypertension phenotyping performance, we provide a KNIME 

module that will automate many of the normalization and feature creation steps. The module includes a 

number of the better performing deterministic algorithms and random forest models trained on the full 

Vanderbilt dataset. We generated the inputs in our database with nine relatively simple queries after 

concept indexing was complete. However, obstacles may arise such that one is unable to provide the full 

set of inputs (such as NLP-based inputs). We have included algorithms that do not require narrative 

information. In addition, our results showed that some algorithms are relatively robust to missing data 

elements. We have provided a complete description and protocol as well as example data files on PheKB 

and in the Appendix A. 

Several limitations caution the interpretation of these results. We only evaluated the portability 

at a single additional site. Other institutions may differ substantially from both Vanderbilt and Marshfield 

Clinic such that our algorithms may not perform as well. While we attempted to standardize the gold 

standard review between Marshfield and Vanderbilt, there may be systematic differences between the 
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hypertensive and normotensive populations at each site. We limited to ICD9 codes, medications, vitals, 

and narrative text to achieve broad coverage with simple but readily available information. We focused 

on the total counts of elements in each category and hypertension-specific counts of each. However, other 

concepts or lab values for comorbid conditions may prove useful for hypertension classification. More 

complex NLP – perhaps taking into account temporal patterns – would likely be valuable but would also 

increase implementation difficulty. While there are significant differences in hypertension prevalence 

between different demographic groups we have not included features for sex or ethnicity. Many of our 

features and relevant codes were expert curated, and thus development of similar phenotyping 

algorithms is not easily scalable.  Our algorithm also did not detect the date of onset of hypertension, 

which could be clinically interesting in a number of circumstances.  Anecdotally, we found this challenging 

to accurately determine for many of the records as diagnosis could precede EHR observation time or 

present with elevated blood pressures during emergency or non-routine clinic visits before a clinical 

diagnosis.  Finally, in this population, we found secondary causes of hypertension were rare.  Pediatric 

populations and other subspecialty clinics with higher secondary causes may see different performance. 

Conclusion 

Our results demonstrated that we could identify hypertensive individuals with high recall and 

precision by combining EHR data sources. Even simple combinations of elements from different categories 

are statistically significantly better than current simple ICD9 code count thresholds and within the 

confidence intervals of the best – random forest – methods. Random forests required relatively few 

training cases to near peak performance. The best phenotyping algorithms have broad potential 

applicability. Efforts such as Electronic Medical Records and Genomics (eMERGE) Network and the Million 

Veterans Program (MVP)20 are well positioned to leverage such algorithms for improved accuracy in the 

search for novel associations. 
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CHAPTER IV 

NATURAL LANGUAGE PROCESSING-BASED PHENOME-WIDE ASSOCIATION SCANS 

IN ELECTRONIC HEALTH RECORDS 

Introduction 

Prior work has shown that the Phenome-wide Association Study (PheWAS) can extract known and 

novel phenotype-genotype associations from electronic medical record data – specifically using 

International Classification of Diseases, version 9-CM, or ICD9 billing codes mapped to a set of phenotype 

codes.10–12 PheWAS is complementary to genome-wide association studies (GWAS), which are a more 

common method of searching for an association between phenotypes and genotypes. The National 

Human Genome Research Institute’s (NHGRI) GWAS catalog (“NHGRI Catalog”) contains the results of 

more than 1,751 publications that have identified, and in many cases replicated, phenotypes associated 

with 11,912 SNPs.18,108 The majority of GWAS investigate a single disease or trait; PheWAS, in combination 

with the large set of electronic health record (EHR) data, examines many phenotypes and outcomes for 

association with a genotype (or in other applications not addressed here, other input variables such as 

groups of genotypes or lab values). Most EHR-based PheWAS leverage International Classification of 

Diseases billing codes (ICD-PheWAS), which researchers can easily aggregate and compare between 

sites.9,74,77 However, billing codes are limited in expressivity and are subject to certain biases.31 In contrast, 

narrative clinical notes, which contain a wealth of information of much higher expressivity and less tightly 

coupled to reimbursement, have not been deeply explored for PheWAS.109 Narrative clinical notes often 

contain more accurate, granular, and comprehensive data than that available within billing codes 

alone.31,110 Furthermore, EHR adoption has increased significantly in recent years generating ever larger 

quantities of data – both structured and unstructured.6,111 Developing a novel PheWAS method that 
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explores phenotypes derived from EHR notes have the potential to discover phenotype-genotype 

associations not represented optimally by billing codes.  

Some recent work has explored the value of EHR narrative text for discovering genome-phenome 

associations. Hebbring et al. performed a PheWAS using contiguous sets of n-words (n ≤ 4) in five SNPs.10 

Their analyses showed that all five SNPs were able to replicate expected associations with p-values < 0.02 

and without using per-phenotype exclusions. Natural language processing (NLP) extracts higher-level 

concepts from text. NLP identifies terms that are negated, experienced by individuals other than the 

patient, such as family history, and also handles synonymy. The combination of synonymous but different 

text prevents reducing one’s statistical power with an artificially small set of cases. Similarly, the mapping 

of phenotypically similar ICD9 codes to single phenotype codes – phecodes – with matched exclusion 

phenotypes is important to isolating case and control populations for a given phenotype such that one is 

able to identify true associations amidst variable quality EHR data.79  

Here we show the potential of natural language processing-based PheWAS (NLP-PheWAS) to 

replicate known associations using text-based concepts extracted from clinical notes for a population of 

29,722 individuals with exome array data. We report a replication study with 1,022 single nucleotide 

polymorphisms (SNPs) in the NHGRI catalog and included in our genotyping platform. We show that NLP-

PheWAS replicates associations from the NHGRI catalog using only narrative clinical notes with higher 

granularity and broader coverage than ICD-PheWAS. We also discovered two potentially novel 

associations with NLP-PheWAS. These results illustrate the value of NLP applied to clinical narratives to 

identify phenotype-genotype associations. 
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Materials and Methods 

Summary 

This study was performed using Exome data from individuals within Vanderbilt’s BioVU – a 

biorepository linked to deidentified EHR information.14,112 The EHR data includes billing code information 

– leveraged for ICD-PheWAS – and narrative clinical notes – the initial input for NLP-PheWAS. We 

restricted clinical note content to high-yield sections within a subset of notes that included problem lists, 

discharge summaries, and history and physical as well as general clinic visit notes. All studies were 

approved by the Institutional Review Board. 

We used SNPs in the NHGRI GWAS Catalog (http://www.genome.gov/gwastudies/), updated first 

to April 17, 2012 and then merged with a set of unique concept identifiers from the UMLS 2013AA release 

to then combine with the subset of NLP-PheWAS results with a direct SNP mapping. We consider results 

that map exactly and have p-values < 0.05 as successful replications. We also included continuous 

measures such as total cholesterol by mapping to the related disease ‘hyperlipidemia’ and noting the 

match type as ‘disease related to trait’. We report a primary outcome of the replication rates of known 

genome-phenome associations for all SNPs and phenotypes mappable to our set of concepts and Exome 

SNPs in the NHGRI Catalog mapping previously described via both our novel NLP-PheWAS method as well 

as the previously described billing-code based PheWAS method.76,88 Our secondary outcome was the 

discovery of new associations in the set of 799 concept to NHGRI Catalog SNP associations above a 

Bonferroni threshold.  
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Genotyping 

Data were derived from the Illumina Infinium Exome BeadChip v1.1. VANGARD (Vanderbilt 

Technologies for Advanced Genomics Analysis and Research Design) performed quality control on the 

Exome BeadChip data with Genome Studio and PLINK, as previously described.113,114 In brief, VANGARD 

clustered SNPs with Genome Studio, and ensured correctness by manually reclustering based on several 

quality control measurements including GenTrain, Cluster Separation, and Call Freq scores. They also 

evaluated heterozygous consistency rates between duplicate samples, the heterozygous consistency rate 

between HAPMAP samples and their 1000 Genome genotyping calls, as well as sex mismatches and 

genotype consistency between duplicated SNPs. After quality control, there were 59,105 SNPs with a 

minor allele frequency (MAF)>0.1% and a Hardy-Weinberg p > 0.001. The population of individuals was 

filtered down to those of European ancestry via STRUCTURE.115 For GWAS catalog replication analyses, 

we filtered SNPs down to those with direct mappings within the catalog as previously reviewed with 

genome-wide significant p-values for a total of 1,629 SNPs before power or demographic filtering.9 

Natural Language Processing Pipeline 

We extracted all problem lists, clinic notes, discharge summaries, and admission history and 

physical notes from Synthetic Derivative, Vanderbilt University Medical Center’s de-identified copy of the 

EHR. In addition to filtering down to the aforementioned note types, we also used SecTag to determine 

subsections within each note and restricted to high value sections with limited boilerplate text, which 

includes sections such as the ‘history of present illness’, ‘chief complaint’, ‘past medical history’, and 

‘assessment and plan’.  

 We used the KnowledgeMap Concept Indexer (KMCI)95,102 to index all text. We enabled negation 

and used a customized SNOMED-CT vocabulary from the 2013AA UMLS. The vocabulary includes all strings 
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matching a SNOMED-CT concept unique identifier (CUI) from a physician-curated subset of the UMLS, 

which totaled 5,274,161 unique strings. Manual curation of the SNOMED-CT-based vocabulary (PLT, JCD) 

removed non-English and no longer maintained vocabularies as well as those outside of the scope of 

medical documentation. We filtered outputs to minimize false positives. We removed indexed concepts 

that were negated, possible, and entries predicted to be associated with individuals other than the patient 

(family or otherwise). We excluded concepts outside of high-yield sections such as the ‘history of present 

illness’, ‘assessment and plan’, and ‘past medical history’. In addition, we restricted indexed concepts to 

the following semantic types: findings, diseases or syndromes, therapeutic or preventive procedures, 

signs or symptoms, neoplastic processes, pathologic functions, and congenital abnormalities, clinical 

attributes, cell or molecular dysfunctions, mental or behavioral dysfunctions, mental processes, acquired 

abnormalities, anatomical abnormalities, injuries or poisonings, phenomena or processes, physiologic 

functions, organs or tissue functions laboratory or test results, laboratory procedures, diagnostic 

procedures, cells, bacteria, viruses, eukaryotes, fungi, enzymes, hormones, and health care related 

organizations. Finally, we only included concepts as phenotypes in our analysis if 25 or more individuals 

each had at least one occurrence of that concept. This remaining set of unique CUIs is the basis of our 

phenotypes in subsequent analyses with each unique CUI treated as a phenotype. The entire pipeline for 

narrative text processing is included in Figure 6. 
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Figure 6: Natural language processing pipeline for NLP-PheWAS.  

We used narrative text documents (problem lists, clinic notes, discharge summaries, and admission history and 

physical notes), as our initial input (n=1,417,825) from the Synthetic Derivative. We processed notes using SecTag 

to identify sections and the KnowledgeMap Concept Identifier to extract concepts. This resulted in a total of 

258,281,668 concepts or 94,190 unique CUIs. We ignored concepts that were outside of high yield sections such as 

the ‘history of present illness’, ‘past medical history’, and ‘assessment and plan’. We matched phenotypes from 

NLP-PheWAS and ICD-PheWAS to NHGRI phenotypes, focusing on the best concept to NHGRI match, and included 

match type. NLP-PheWAS has more exact matches than ICD-PheWAS. 
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Evaluation of NLP and Phecode Phenotyping Sensitivity and PPV 

We previously reviewed 1,744 individuals for case or control status across ten diseases – atrial 

fibrillation, Alzheimer’s, breast cancer, gout, HIV, multiple sclerosis, Parkinson’s, rheumatoid arthritis, 

type 1 diabetes, and type 2 diabetes. We applied concept indexing to their EHR notes as described above 

and aggregated the respective concept counts for each. We then translated all ICD9 codes for each 

individual to their respective phecodes and aggregated the appropriate counts for each disease. We 

determined matching concepts for each disease based on the most frequently detected representative 

element. We matched the most representative phecodes to each disease. 

Mapping Unique Concept Identifiers to GWAS Catalog Phenotypes 

We manually combined the results from several methods to map between the initial 611 NHGRI 

GWAS Catalog’s unique disease strings (after normalization) and the 11,553 CUIs seen in our analysis. 

First, the National Library of Medicine provides both a one-to-one and one-to-many mapping between 

ICD9-CM and SNOMED-CT. We used both to maximize coverage. We mapped from CUIs, to SNOMED IDs, 

to ICD9 codes, to phecodes.76,88 These were matched to the appropriate GWAS catalog phenotypes in 

prior work which included study details such as ethnicity, adult or pediatric, and any gender biases in the 

cohorts used.76 Second, we used KMCI to concept index each normalized disease string and combined this 

NLP-derived mapping with the results from the first method. We ran KMCI without negation and each 

input was provided as a separate document to avoid biasing contextual scores with the other unrelated 

NHGRI Catalog phenotypes. Two authors (PLT, JCD) then manually verified and merged the results in 

addition to identifying quantitative traits with related disease or phenotypes that lacked an exact match 

despite the multiple mapping methods used. 
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We normalized NHGRI phenotype strings to combine very similar phenotypes e.g. “Chronic kidney 

disease - (CKD)” and “Chronic kidney disease and serum creatinine levels - (CKD)” were both collapsed to 

“Chronic kidney disease”. We removed compound phenotypes – concepts where a phenotype included a 

context such as an ongoing treatment e.g. ‘Suicidal ideation and SSRI class antidepressant Escitalopram’, 

which were not captured by our UMLS concept as phenotype approach. Finally, we classified each ‘match 

type’ that described their relationships to the original GWAS phenotypes – exact, broader, narrower, 

related, and disease related to trait. Reviewers aimed to provide a single exact match for as many of the 

GWAS catalog strings as possible without deviating from the meaning implied by the preferred UMLS term 

and the formatted GWAS catalog phenotype. 

Replication of NHGRI GWAS Catalog Associations with NLP-PheWAS 

We began with the curated NHGRI GWAS Catalog from prior work showing replication of these 

associations via ICD-PheWAS. This set included all genome-phenome associations where SNPs were 

present and passed QC on our platform as well as mapped to an appropriate unique concept identifier in 

our filtered vocabulary. In addition, the set only includes associations with p-values that achieve genome-

wide significance. We did not perform imputation before mapping SNPs to our set. We used previous 

categorization of the NHGRI Catalog phenotypes including whether the billing code based phenotype 

codes are listed as “broader” or “narrower” than the catalog phenotype and whether phenotypes were 

“continuous” or “binary.” We matched continuous phenotypes with CUIs that represented corresponding 

binary traits (e.g. total cholesterol was matched to the concept for “hyperlipidemia”). We excluded 

concepts that could not be replicated using narrative EHR data, such as structured lab values or non-

testable given our concept indexing method. For example, we excluded the NHGRI catalog phenotype 

“sweet tooth”, several phenotypes associated with organ or organ sub-region volumes, drug response, 

and phenotypes comparing severity of a given disease or outcome. We removed compound items and 
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phenotypes in an environmental, therapeutic, or genetic context such as “bipolar disorder and major 

depressive disorder” and “multiple sclerosis adjusted for DRB1*15:01”. The full mapping between NHGRI 

Catalog phenotypes, phecodes, and concept-based phenotypes are available by contacting the authors. 

We then matched our concept-based phenotype results using this mapping. We excluded associations 

without a matching observed concept-based phenotype from this analysis. We then determined the 

number of cases needed for each association to achieve statistical power based on the reported OR and 

used this to categorize whether each ICD-PheWAS and NLP-PheWAS result was powered using an alpha 

of 0.05 and beta of 80%. 

We calculated each SNP-phenotype association independently using PLINK116 and a logistic 

regression adjusted for age, sex, and study on a population filtered down to European ancestry using 

STRUCTURE.115 We removed entries with a null a p-value. Null p-values often occurred due to either too 

few case counts or if there was multicollinearity – which is excluded by PLINK as estimates from such 

inputs can become unstable. Finally, we defined replications as matching SNP-phenotype associations 

with both a p-value < 0.05 as well as a consistent direction of effect. Due to the latter criteria, we excluded 

NHGRI Catalog associations without a reported OR or allele. The original papers for associations were 

examined for OR information in cases where they were not immediately available within the catalog. 

Finally, we aggregated data using Perl and Python scripts and created visualizations using the R statistical 

package.117 

NLP-PheWAS Analysis to Detect Novel Associations 

Our initial population for NLP-PheWAS replication and discovery included individuals with 

European ancestry by STRUCTURE (n=29,722) (Figure 6). We defined cases as all individuals with at least 

a single occurrence of a given CUI. However, we excluded all CUIs that did not occur in at least 25 

individuals and filtered by semantic type – leaving 11,553 unique phenotypes (listed in Supplemental 
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Table 1). Of the remaining phenotypes, the semantic types of 60% are ‘diseases or syndromes’, ‘findings’, 

or ‘therapeutic or preventive procedures’ (6,983 of 11,553). We did not have any exclusion criteria. 

Controls were all individuals without any occurrence of a given concept.  

Comparison of Odds Ratios Between NLP, Billing Code Methods, and GWAS Catalog 

We first filtered to NHGRI catalog associations in populations of European ancestry or unknown, 

non-pediatric, and sex such that studies of non-sex specific phenotypes in a specific sex were removed 

(e.g. Alzheimer’s studies performed solely in women). We also excluded associations without allele 

information in the GWAS catalog. Finally, we also removed all associations where we did not have an exact 

match for both NLP-PheWAS and ICD-PheWAS. We then adjusted all odds ratios such that they were in 

reference to the same allele. We excluded continuous traits for odds ratio comparisons and those with 

catalog p-values below the genome-wide significance threshold of 5x10-8.  

Categorization of NLP-PheWAS Results Across All NHGRI Catalog SNPs 

We reviewed all associations surpassing the commonly used genome-wide significance threshold 

(p < 5x10-8) between the tested SNPs and all 11,553 concept-based phenotypes for possible novel 

associations. Three authors (PLT, LB, JCD) reviewed each and categorized them as known, related to 

known (either by linkage disequilibrium or a related phenotype), or novel. Associations that did not appear 

within the catalog information were reviewed in PubMed for relevant gene or SNP associations. 

Manhattan Plot Comparison Between NLP-PheWAS and ICD-PheWAS 

To visually compare the relative granularity of each method we selected five NHGRI GWAS Catalog 

SNPs with minor allele frequency > 1% known to be strongly associated with diseases that have significant 

pleiotropy. This set included hemochromatosis (rs1800562), thyroid cancer and hypothyroidism 
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(rs965513), multiple sclerosis and type 1 diabetes mellitus (rs3135388), rheumatoid arthritis (rs7764856), 

and cystic fibrosis (rs213950). For each we visualized the results from NLP-PheWAS and ICD-PheWAS with 

groups included for each phenotype to place potentially related phenotypes adjacent to one another in 

sets. All ICD-PheWAS groups have been previously categorized.9,32 NLP-PheWAS concepts, while based on 

a SNOMED-CT subset of the UMLS, did not have easily definable and directly comparable group 

classifications to the ICD-PheWAS set. For the 11,553 phenotypes, it was desirable to develop an 

automated method to quickly assign groupings to each concept-based phenotype. We trained a 

word2vec118 model on 2.5 million history and physical notes from a separate population. We then used 

the average of the max and group mean similarity scores between each concept and a seed set of 

representative concepts for the possible groups to classify all remaining concepts.119–121 We calculated the 

Bonferroni thresholds for both methods based on the total number of mappable SNPs (2,430) and the 

number of phenotypes for NLP-PheWAS (11,553) and ICD-PheWAS (1,627). The resulting thresholds were 

1.4x10-9 and 1.36x10-8, respectively. 

Statistical Analysis 

Our primary outcome was the replication rate and total count for known associations as 

documented in the NHGRI Catalog, which had p-values more significant than the genome-wide 

significance threshold of 5x10-8 for phenotypes where NLP-PheWAS and ICD-PheWAS were powered to 

detect an association. Replications were counted if they both had a consistent direction of effect and a p-

value < 0.05. We calculated power for all binary traits based on the minor allele frequency and used the 

largest odds ratio from the NHGRI Catalog and the number of cases based on the total number found with 

each respective method for the given phenotype. We used a threshold of 80% power and set the alpha at 

0.05 as each tested replication was previously documented as genome-wide significant as per the NHGRI 

Catalog. 
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We calculated the probability of replicating X of Y associations within the NHGRI Catalog using an 

alpha of 0.05 by determining the probability of randomly sampling X p-values from a normal distribution 

with at least X of the total Y associations having a p-value ≤ 0.05. In this case, X is our number of 

successfully replicated associations. More formally, we can represent the probability of X replications as: 

 P(X) = C(Y, X) * pX * (1-p)Y-X  

Here p = 0.05 and C(Y,X) is the total number of combinations of Y choose X. We calculated the 

above using the R pbinom function.76 

Results 

As of February 20, 2015, the NHGRI GWAS Catalog has 15,396 SNPs having 18,950 variant-

phenotype associations, including many similar phenotypes and below genome-wide significance. Of 

these, 1,629 SNPs had at least one association above a genome-wide significance threshold and passed 

quality control on the Illumina Human Exome array. Our study population included 29,722 individuals of 

European descent with EMR-linked DNA biobanks. Demographics are in Table 3. The median age was 60.5 

years, 53.4% were female, and 51.7% had at least one hypertension ICD9 code. The median time between 

the first and last note in our set was 6.9 years. Initial SNOMED-CT based vocabulary used for concept 

indexing included 327,110 unique concept IDs that we filtered to 217,546 based on the semantic type (list 

of included semantic types and their relative prevalence is included in Supplemental Table 1). We 

extracted 62,711 unique and semantic-type filtered concepts from our set of problem lists (PL), discharge 

summaries (DS), and history and physical as well as clinic notes (HPC). The final set of phenotypes 

consisted of 11,553 unique concepts that passed both the semantic type and case count filters 

(encompassing 98,893,948 total concept occurrences). 
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Table 3: Population demographic and statistical information.  

  Total Male Female 

Number of individuals 29722 13830 15892 

Median age and IQR (years) 60.5 (42.5-73.6) 61.7 (43.9-73.8) 59.5 (41.7-73.6) 

Max age (years) 107 101 107 

Min age (days) 6 25 6 

Max note span (years) 26.7 23.9 26.7 

Median note span and IQR (years) 6.9 (3.1-11.6) 6.3 (2.7-11.1) 7.4 (3.5-12.1) 

Below are the median age with accompanying interquartile range, note counts, span of time between first and last 

note examined, and general demographics information for the 29,722 individuals of European ancestry used in 

both the replication as well as general PheWAS analyses. 

Natural Language Processing of Narrative Clinical Text 

We extracted the following numbers of concepts: 33,258,331 (in 655,041 problem lists), 

18,298,843 (in 66,093 discharge summaries), and 201,802,771 (in 696,691 history and physical or clinic 

notes) concepts for our population of 29,722 individuals. The total number of extracted concepts for all 

note types was 253 million. Limiting to semantic types more likely to have genetic associations reduced 

the number of concepts by 61.7% to 98 million. Individuals had a maximum of 906 notes and 815 

(IQR=500-1240) unique concepts for all note types combined. Individuals had a median of 33 notes of any 

type (14 PL, 2 DS, 16 HPC) with a median of 30 semantic type filtered concepts per note (18 PL, 37 DS, 52 

HPC) (Table 4). Of the 28 semantic types included in our filtered set, 60.4% of the unique CUIs were 

captured by only three types: ‘Finding’ (2,745), ‘Disease or Syndrome’ (2,329), and ‘Therapeutic or 

Preventive Procedure’ (1,909). The semantic types with the fewest unique CUIs in our final phenotype set 

included several microbiologic entities: ‘Eukaryote’ (0), ‘Enzyme’ (1), ‘Hormone’ (1), and ‘Fungus’ (12) 

(Supplemental Table 9). 
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Table 4: Natural Language Processing Results Across All Note Types.  

 
All Note Types Problem Lists 

History & Physicals 
& Clinic Notes 

Discharge 
Summaries 

Note counts 1,417,825 655,041 696,691 66,093 

Max note count (per individual) 906 770 385 87 

Min note count (per individual) 0 0 0 0 

Median note count and IQR (per 
individual) 

33 (16-60) 14 (7-28) 16 (8-31) 2 (1-4) 

Concept counts 253,359,945 33,258,331 201,802,771 18,298,843 

Max concept count (per individual) 100,998 87,429 67,566 9,569 

Min concept count (per individual) 0 0 0 0 

Median concept count and IQR (per 
individual) 

2,703 (1,206-5,728) 350 (101-1,032) 2,159 (982-4,441) 236 (121-501) 

Max concept count (per note) 962 354 962 788 

Median concept count and IQR (per 
note) 

71 (34-143) 35 (18-59) 136(80-196) 110 (74-158) 

Filtered concept counts 98,893,948 15,912,183 77,097,157 5,884,608 

Max concept count (per individual) 44,416 39,215 28,599 3,465 

Min concept count (per individual) 0 0 0 0 

Median concept count and IQR (per 
individual) 

1108 (483-2408) 170 (50-504) 854 (384-1801) 80 (38-173) 

Max concept count (per note) 392 160 392 307 

Median concept count and IQR (per 
note) 

30 (15-58) 18 (9-29) 52 (28-83) 37 (23-56) 

Table includes all concept and note total counts, median with IQR, and maximums across note types, individual 

notes, and by individual. Counts are per individual or note as specified. Maximum values across note subtypes are 

bolded. 

Phenotyping Performance Comparison Between Natural Language Processing and Phecodes 

We examined the reliability of NLP-based phenotypes by calculating the sensitivity and specificity 

of concepts and ICD9-based phecodes in a population of 1,774 individuals successfully reviewed 

previously for ten diseases. The number of individuals reviewed for each disease ranged from 172 for type 



   
50 

1 diabetes to 215 for gout. Prevalence in each set ranged from 47% for type 1 diabetes mellitus to 84% 

for gout. NLP-based phenotyping yielded a minimum sensitivity of 0.49 for HIV and a maximum sensitivity 

of 0.82 for type 1 diabetes mellitus. Phecodes trended toward higher sensitivity than NLP with an average 

sensitivity of 0.72 as compared to 0.64 (p=0.129). However, NLP-based phenotypes had better specificity 

and PPV with mean a specificity of 0.88 compared to 0.63 (p=0.002) and PPV of 0.86 as compared to 0.70 

(p=0.003). Supplemental Table 10 lists the counts and performance for all ten diseases. Figure 7 shows an 

improved receiver operating characteristics curve for NLP-based concepts with an AUC of 0.758 as 

opposed to 0.703 with phecodes. 
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Figure 7: Natural language processing yields favorable phenotyping performance (ROC).  

We manually reviewed ten sets of individuals for a disease. We also identified a matching concept and individual 

phecode for each disease and determined the count of each for all individuals. Above the concept-based (red) and 

phecode-based (black) curves show the performance of counts to discriminate between cases and controls. 

Performance is similar but specificity and PPV are better for NLP-based phenotypes across these ten diseases. 

Replication of NHGRI Catalog Genome-phenome Associations in EHR Data 

To test whether NLP-PheWAS is able to replicate known associations using narrative text from the 

EHR, we evaluated a set of known associations within the NHGRI Catalog that achieved genome-wide 
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significance. The resulting mapping had 207 concept mappings that best matched the NHGRI Catalog 

phenotypes. The mappings included 179 concept and 88 phecode exact mappings, 15 concept and 49 

phecode broader mappings, 5 concept and 12 phecode mappings that were narrower, and 8 concept and 

10 phecodes that were diseases related to a continuous trait mappings (Figure 6). There were also 48 best 

match concept mappings without a corresponding phecodes match. These counts were before filtering 

based on demographics or statistical power. Unique phenotypes decreased by approximately 76% and 

85% for concepts and phecodes when filtered for both. Replication rates were consistently higher for ICD-

PheWAS across all conditions (Table 5). However, the much larger number of concept-based phenotype 

matched to the NHGRI catalog results in nearly the same number of replications (72 vs. 74) when filtered 

for power and demographics. When filtered for associations for which a given method was adequately 

powered, ICD-PheWAS replicated 73.3% and NLP-PheWAS replicates 43.7% of their respective exact 

matches. 

Table 5: Replication count and rates for NLP-PheWAS vs. ICD-PheWAS for exact NHGRI Catalog matches.  

 

 

The table lists total possible replications for unique billing code based phenotype code-SNP associations as well as 

CUI-SNP associations with the replication counts and rates for phenotypes with an ‘exact’ match with either both 

phecode and CUI based phenotypes or CUI alone (all phecode ‘exact’ matches had an ‘exact’ CUI match). The 

highest value per column is bolded.  

Trends were similar when we considered only concepts with exact matches for both NLP-PheWAS 

and ICD-PheWAS or individually. NLP-PheWAS exactly matched all NHGRI Catalog phenotypes with exactly 

total rep. rate total rep. rate total rep. rate total rep. rate

unique phecode-SNP ('exact') 690 172 24.9% 388 126 32.5% 191 98 51.3% 101 74 73.3%

unique CUI-SNP  (CUI and phecode 

'exact') 690 158 22.9% 388 118 30.4% 302 104 34.4% 165 72 43.6%

unique CUI-SNP  (only CUI 'exact') 19 1 5.3% 7 1 14.3% 0 0 0.0% 0 0 0.0%

unique CUI-SNP  ('exact') 709 159 22.4% 395 119 30.1% 302 104 34.4% 165 72 43.6%

Filtering status
All

Demographics 

filtered
Power filtered

Demographics & 

power filtered
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matched phecodes – 68 unique phecodes and concepts each. In addition, NLP-PheWAS had an additional 

19 unique concepts that exactly matched NHGRI Catalog phenotypes. All replication rates and counts for 

associations with both NLP-PheWAS and ICD-PheWAS exact matches or the remaining set of NLP-

PheWAS-only exact matches are included in Table 5. Across all associations, NLP-PheWAS replicated 

22.9% (158/690) and ICD-PheWAS replicated 24.9% (172/690) of associations where both were exact. For 

the remaining associations where only NLP-PheWAS provided an exact match, only one out of 19 (5.3%) 

possible SNP-phenotype associations were replicated. 

Figure 8 visualizes the full set of replications for both ‘exact’ and ‘disease related to trait’ 

associations across binary and continuous traits. Here we included ‘disease related to trait’ to obtain 

better coverage of continuous phenotypes. We included associations for which we were underpowered 

although we also provided replication rates for powered associations in Table 5. Across this set of 

associations, NLP-PheWAS replicated 30.5% (139/455) of binary traits and 18.7% (25/134) of continuous 

traits. ICD-PheWAS achieved a higher replication rate – 35.7% (127/356) and 25.3% (23/91) for binary 

traits and continuous traits, respectively. When limited to powered binary associations, replication rates 

increased to 45.5% (86/189) and 72.5% (74/102) for NLP-PheWAS and ICD-PheWAS, respectively. NLP-

PheWAS again replicated more associations when compared to ICD-PheWAS – 86 as opposed to only 74 

replications. In all cases, the larger number of NLP-PheWAS mappings also resulted in more associations 

despite its lower replication rate. The statistical likelihood for achieving this number of replications by 

chance under the null distribution for NLP-PheWAS and ICD-PheWAS was 1.5x10-59 and 1.2x10-72, 

respectively. 
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Figure 8: NLP-PheWAS and ICD-PheWAS p-value replication of NHGRI Catalog SNP-Phenotype associations.  

Each point represents a unique SNP-phenotype association for either NLP-PheWAS or ICD-PheWAS-based 

phenotypes, left and right respectively. Associations have been filtered based on demographics but include 

associations that neither method was powered to replicate for completeness. Phenotypes are grouped vertically 

by category and with binary traits on top and continuous traits and their related diseases on bottom. Replication 

for NLP-PheWAS rates are 30.5% 139/455 for binary traits and 18.7% 25/134 for continuous traits. Replication 

rates for ICD-PheWAS are 35.7% 127/356 for binary traits and 25.3% 23/91 for continuous traits. 

NLP PheWAS Identified More Specific Concepts  

We used Manhattan plots to visualize five example SNPs with known associations where NLP-

PheWAS identified more granular associations (Figure 9). Both NLP-PheWAS and ICD-PheWAS detected 

7/7 disease-related associations above a Bonferroni threshold of significance for these SNPs (two SNPs 
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had more than one independent disease association). Phenotypes exactly matched by only concepts 

included conduct disorder, freckles and freckling, dental caries, coronary artery calcification, freckling, 

interstitial lung disease, bipolar I disorder, corneal astigmatism, glioma, and endometrial cancer. The most 

significant association for NLP-PheWAS was ‘multiple sclerosis, relapsing-remitting’ (rs3135388) 4.1x10-19 

within this set. ICD-PheWAS achieved a more significant p-value between rs7764856 and rheumatoid 

arthritis (N=1,112, OR=1.73, p=8.5x10-35) compared to NLP-PheWAS (N=2,894, OR=1.24, p=2.1x10-13). 

Analysis of the NLP concept indexing results revealed that there were many false positives included for 

elements such as ‘room air’ and ‘right atrium’, which often appeared as the overloaded acronym ‘RA’. (For 

comparison, a simple string search for ‘RA’ resulted in 11,377 cases, the vast majority of which are not 

rheumatoid arthritis, suggesting the KMCI did correctly disambiguate most ‘RA’ instances.) The most 

significant association of the five diseases tested with ICD-PheWAS was for cystic fibrosis (rs7764856) 

3.9x10-44. The concept-based phenotype of ‘hemochromatosis’ was both more true to its clinical 

phenotype and achieved a higher statistical significance than its closest phecodes counterpart – ‘disorders 

of iron metabolism’ (1.4x10-30 vs. 8.3x10-27). NLP-PheWAS also revealed several related procedures 

including ‘venesection’ and ‘bleeding time procedure’. For the SNP associated with thyroid cancer both 

methods identified relevant phenotypes above the Bonferroni threshold and protective associations for 

hypothyroidism. However, NLP-PheWAS identified more specific cancers: ‘papillary thyroid carcinoma’, 

‘malignant epithelial neoplasm of the thyroid’, and ‘malignant neoplasm of thyroid’ (instead of only 

‘thyroid cancer’ in the ICD9-PheWAS). Both methods detected many highly significant phenotype 

associations for multiple sclerosis. NLP-PheWAS identified subtypes of multiple sclerosis such as relapsing 

remitting and secondary progressive. It also found a strong association with ‘muscle spasticity’, a known 

symptom of multiple sclerosis. We saw similar results for rheumatoid arthritis where NLP-PheWAS 

detected symptoms such as stiffness’, ‘synovitis’, ‘finger ulcer’, ‘foot pain’, ‘flare of rheumatoid arthritis’, 

and ‘morning stiffness – (joint)’. For the cystic fibrosis association, NLP-PheWAS detected many expected 
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pancreatic sequelae such as ‘exocrine pancreas insufficiency’ and ‘pancreatic cyst’. There were also many 

common concepts related to pulmonary and infectious complications seen in cystic fibrosis such as 

‘pseudomonas’, ‘acid-fast bacillus’, ‘microbial culture of sputum’, ‘throat culture’, ‘bronchopneumonia’, 

and ‘aspergillosis, allergic bronchopulmonary’. All cystic fibrosis associations listed were p <= 1.9x10-12 

and were not all inclusive of relevant phenotypes detected by NLP-PheWAS. 
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Figure 9: Manhattan plots showing increased NLP-PheWAS granularity.  

Manhattan plots of SNPs with known associations with hemochromatosis (A), thyroid cancer (B), multiple sclerosis 

(C), rheumatoid arthritis (D), and cystic fibrosis (E). Each pair includes NLP-PheWAS (top) and ICD-PheWAS 

(bottom) results. The y-axis values are all –log(p-value). The blue line in each figure corresponds to the 0.05 p-value 

significance threshold. The red line is the Bonferroni correction for NLP-PheWAS and ICD-PheWAS (1.364x10-9 and 

1.265x10-8) respectively. Annotation thresholds are set at the Bonferroni correction except for panel E which 

resulted in too many associations above that threshold to include, representative examples are shown. Triangles 

point upwards for OR greater than 1.0 and vice versa. Points are not included for NLP-PheWAS associations with p-

values < 0.05. 
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Novel Associations Identified Using NLP-PheWAS 

We tested for new associations within the 2,430 NHGRI Catalog SNPs that mapped to our Exome 

dataset with NLP-PheWAS. This number included SNPs with only associations below genome-wide 

significance. We tested 11,553 phenotypes per SNP. Using a genome-wide significance level of 5x10-8 

resulted in 80 associations outside the HLA-region with MAF > 0.01. Of these, 78 (97.5%) were previously 

known or related to known associations via SNP or were within linkage disequilibrium. Phenotypes related 

to known associations included examples such as ‘deep vein thrombosis of lower limb’ for Factor V Leiden 

(rs16861990), ‘cholecystectomy procedure’ for gallstones (rs4299376), and ‘venesection’ for hereditary 

hemochromatosis (rs1800562). The remaining two associations were between ‘optic disc 

neovascularization’ (rs1497546) and ‘Langerhans-Cell Histiocytosis’ (rs7193343 – gene ZFHX3). 

Supplemental Figure 2 includes NLP-PheWAS as well as ICD-PheWAS Manhattan plots for the SNPs 

associated with the two potentially novel associations. Other associations with the SNP associated with 

the potentially novel finding of optic disc neovascularization were two ophthalmologic concepts: 

‘presbyopia’ and ‘subconjunctival hemorrhage’. In addition, ICD-PheWAS included an association with 

‘thrombotic microangiopathy’. The potentially novel association for Langerhans-Cell Histiocytosis was 

joined by three coagulation-related phenotypes: ‘deep vein thrombosis of bilateral lower extremities’, 

‘acute infarct’, and ‘subchondral hematoma’, as well as ‘neuropathy’ and ‘pseudocyst’. ICD-PheWAS had 

few associations and the strongest was ‘premature beats’. We include the full set of associations with p-

values below 5x10-8 in Supplemental Table 12. 

Discussion  

Prior work increasingly supports the use of EHR data in combination with genetic information to 

perform genetic association studies.9,10,12,19,74,77,109 One such method, PheWAS, has been adopted as an 
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efficient, high throughput method to scan for phenomic associations. To date, PheWAS methods have 

been largely focused on billing codes which can be used across many institutions, and are much easier to 

share and aggregate due to their standardized and abstracted nature. Here, we present a novel method 

– NLP-PheWAS – that identifies biomedical concepts from within narrative EHR text to identify phenotype-

genotype associations. This method replicated almost as many SNP-phenotype pairs compared to ICD-

PheWAS despite a lower replication rate – 72 of 165 (43.6%) vs. 74 of 101 (73.3%). NLP-PheWAS also had 

more phenotypic granularity. It mapped to all ICD-PheWAS phenotypes with exact NHGRI Catalog 

phenotype matches as well as many more. In addition, NLP-PheWAS identified two potentially novel 

associations on a background of 78 of 80 (97.5%) known or related-to-known associations (‘optic disc 

neovascularization’ and ‘Langerhans cell histiocytosis’). The especially high number of known replications 

was expected given how much prior work has focused on the NHGRI Catalog SNPs. These results suggest 

the value of narrative text in the EHR for genetic association studies to discover novel associations with 

phenotypes not captured by ICD-PheWAS. Simultaneously, these results also demonstrate the continue 

value of ICD-PheWAS. We believe that application of NLP-PheWAS to larger populations and across less-

studied SNPs will yield even more discoveries and enhance our understanding of genetic influences on 

disease and treatment outcomes. 

The primary benefit of NLP-PheWAS was its increased granularity. The SNOMED-CT-based 

vocabulary used for NLP-PheWAS exactly mapped to more GWAS catalog phenotypes. Some of these are 

due to over-grouping, where ICD-based phenotypes were combined under an overly general concept such 

as ‘bipolar’ without subtypes for types I and II. Such granularity should enable the discovery of more 

nuanced phenotypes that would be obscured by inclusion within unrelated but externally similar 

phenotypes. Oncology is of special interest, as the billing code-based phenotypes often combined various 

histologic cancer subtypes together based on organ. Such examples include the many subtypes of cancer 

‘adenocarcinoma lung, ‘secondary malignant neoplasm of lung’, ‘small cell carcinoma of lung’, ‘large cell 
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carcinoma of the lung’, ‘squamous cell carcinoma of the lung’, and ‘non small cell lung carcinoma’ (among 

others) (NLP) compared to simply ‘lung cancer’ in ICD-PheWAS. In each case, NLP-PheWAS ‘exactly’ 

matched the GWAS catalog phenotype, while the billing code phenotypes only approximated them. In 

addition, many concepts from the GWAS catalog were only exactly matched by concept-based 

phenotypes. These included ‘dilated cardiomyopathy’, ‘freckles’, and ‘hemochromatosis’ (recently added 

to ICD9 in 2011 but still uncommonly billed), among many others – all with at least one replicated SNP in 

our analysis. Previous work using ICD-PheWAS found several novel associations including one between 

variants near NME7 and ‘hypercoagulable states’. However, the poor granularity of the method 

necessitated manual effort to review the affected individuals and determine that the association was due 

to Factor V Leiden. NLP-PheWAS included more granular phenotype information initially, thereby 

minimizing such additional effort, as its association with this SNP was “Factor V Leiden.” 

NLP-PheWAS achieved lower p-values than ICD-PheWAS for some phenotypes including 

hemochromatosis, gout, and vitiligo. Such phenotypes seemed more likely to be documented within 

clinical notes and may not be as frequently billed.79 

However, ICD-PheWAS generated lower p-values than NLP-PheWAS for some diseases such as 

rheumatoid arthritis, cancer of prostate, multiple sclerosis, and rheumatoid arthritis. The former 

aggregated more cases due to the broader categories and used exclusions to remove individuals that had 

an ambiguous case or control status to improve performance. Due to the volume of NLP-PheWAS 

phenotypes and the lack of a systematic and complete hierarchical connection of all concepts, we were 

unable to include exclusions for NLP-PheWAS. 

Odds ratios were more similar between ICD-PheWAS and the NHGRI Catalog results than between 

NLP-PheWAS and the NHGRI Catalog (Supplemental Figure 1). This may have been due to the mean 

sensitivity of ICD-PheWAS, which trended higher in our performance comparison. However, the 
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granularity and diversity of concepts may be useful as inputs to higher order phenotyping algorithms, the 

results of which may outperform billing-code based aggregation. Enhancing future versions of NLP-

PheWAS with ICD-PheWAS exclusions or automated methods of aggregating, and excluding individuals 

with similar concepts may further improve performance. 

NLP’s ability to accurately index ambiguous text and overloaded acronyms was still limited, which 

resulted in poor performance for a subset of phenotypes. “Abdominal aortic aneurysm” was one example 

for which NLP-PheWAS appeared to be powered while ICD-PheWAS was not. However, KMCI’s incorrect 

classification of “AAA” acronyms as “Abdominal aortic aneurysm” falsely inflated the case count for NLP-

PheWAS. Many such occurrences were filler tags for the deidentification process, which replaced names 

with letter triplets (e.g., “John Doe” is replaced with “AAA BBB”). Other entries incorrectly included were 

in reference to “AAA screening”. Similarly, NLP-PheWAS performance for rheumatoid arthritis and 

multiple sclerosis was reduced by ambiguous acronyms such as ‘RA’ (which can mean ‘room air’ and ‘right 

atrium’ in addition to ‘rheumatoid arthritis’) and ‘MS’ (which can mean ‘mental status’, “Ms.”, and ‘mitral 

stenosis’ in addition to ‘multiple sclerosis’). The NLP system employed in this evaluation did employ 

statistical disambiguation approaches to attempt to correctly map each of these ambiguous phrases, but 

the method is imperfect.110,122,123 Moreover, some of the non-target matches (e.g., ‘RA’ as ‘room air’ or 

“MS’ as ‘Miss’) occurred much more frequently than the diseases of interest, making even high accuracy 

rates prone to generating false positives. Future approaches that leverage multiple related concepts or 

other contextual-per-patient information may reduce such NLP errors. 

NLP-PheWAS identified two potentially novel associations for ‘optic disc neovascularization’ with 

rs1497546 and ‘Langerhans-Cell Histiocytosis’ with rs7193343. Drug-induced liver injury in the context of 

flucloxacillin treatment was known to be associated with rs1497546 on chromosome 3, but little else was 

known about this SNP.124 Review of the NLP concept results for optic disc neovascularization confirmed 
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that matches were largely to text such as ‘occult new vessels’, ‘NVD OS’ and ‘NVD OD, and ‘1/3 of the disc 

NVD’ in ophthalmology notes. There were some matches (7 of 20) where ‘NVD’ was an abbreviation for 

‘nausea/vomiting/diarrhea’ but others were correct. The second association was with rs7193343 in Zinc 

finger homeobox 3 (ZFHX3), also known as AT motif-binding factor (ATBF1), which was previously shown 

to inhibit estrogen receptor mediated gene transcription, growth, and proliferation in estrogen receptor 

positive breast cancer.125 This seems to support a role in a neoplastic phenotype. All reviewed NLP results 

(20/20) for ‘Langerhans-Cell Histiocytosis’ were accurate. 

Many additions to NLP-PheWAS are likely to reduce false positives and increase sensitivity. The 

mapping of CUIs to ICD-based phenotype codes provides a ready means to combine narrative clinical text 

and billing code data to achieve higher coverage and improve phenotyping sensitivity. While such a 

method would forfeit the increased granularity of NLP-PheWAS, increasing case counts is vital for rare 

phenotypes. Future automated and machine-learning based phenotyping methods will likely benefit from 

the inclusion of both diverse sets of information as inputs (among others such as structured vitals and 

laboratory information captured within the EHR). Custom combinations of the many granular phenotypes 

extracted in the course of NLP-PheWAS may yield especially accurate and still more granular results than 

traditional ICD-PheWAS. 

Several limitations suggest caution in the interpretation of this study. NLP accuracy has improved 

in recent years but still has many issues with ambiguity and overloaded acronyms. We observed some 

misclassifications, such as an especially significant p-value for ‘Fabry’s disease’ due to one of the synonyms 

partially overlapping with an ‘alpha-1 antitrypsin deficiency’ synonym. Thus, the association seen with 

Fabry’s was actually just the association with alpha-1 antitrypsin deficiency and an NLP error. 

This analysis was performed in a population of 29,722 individuals, which, while larger than 

previous PheWAS study populations, is still underpowered for many novel discoveries. As larger 
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populations with genetic and longitudinal data are compiled via collaborations such as the eMERGE 

Network19, the Million Veterans Program20, and the UK Biobank22 our method should be able to unearth 

novel phenotype-genotype associations. 

The NHGRI Catalog is comprised of reported and thoroughly studied genome-phenome 

associations including those from traditional observational cohorts and controlled trials. Such approaches 

benefit from more accurate but narrowly defined phenotyping. It is not surprising that data extracted as 

part of the secondary use of de-identified electronic health records did not comprehensively replicate 

associations compiled in such a different fashion. 

Our NLP SNOMED-CT-based vocabulary was biased towards clinical phenotypes. We were not 

able to map and subsequently test more general phenotypes from the NHGRI catalog such as ‘sweet tooth’ 

or the myriad findings related to the volumes of different anatomical structures. Also, while we included 

some continuous variables and diseases related to continuous traits, the narrative text used as input for 

NLP-PheWAS was not optimized to extract continuous information such as laboratory results. 

Similar to GWAS, PheWAS identified correlation and not causation between phenotypes and 

genotypes. PheWAS was also limited in its ability to accurately detect associations for rare SNPs and 

phenotypes. We did not include SNPs that would have required imputation to avoid a potential additional 

source of error.  

We believe that our results show that NLP-PheWAS is a promising method for enabling the use of 

the large volume of narrative text generated within the EHR. It is well adapted to discover more nuanced 

genome-phenome associations than the current structured billing codes. Our method is well positioned 

to enable rapid discovery and interpretation of novel associations, including subphenotypes, as EHR usage 

continues to expand and interoperability increases, thus adding to our growing understanding of genetic 

influences. 
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CHAPTER V 

SUMMARY 

Summary of Findings 

The two projects included leverage phenotyping at different levels of complexity. The first focused 

on evaluating the many possible EHR data sources and developing highly sensitive and specific phenotype 

algorithms for hypertension. We showed that ICD9 codes and blood pressure readings alone are not 

sufficient, and that even simple combinations of multiple categories result in better performance. We also 

validated the portability of the best algorithms at the Marshfield Clinic via a readily available KNIME 

module that encapsulates several potential algorithms and much of the data processing and 

normalization. 

The second described our novel method, NLP-PheWAS, which replicated many known 

associations, identifies potentially novel associations, and achieved detailed phenotypic granularity at 

scale. While the replication rate is lower for NLP-PheWAS when compared to ICD-PheWAS, its increased 

granularity results in almost as many total replicated associations. More importantly, this also enables 

NLP-PheWAS to examine associations not mappable by ICD-PheWAS, or which are mappable only within 

a much broader category.  

Limitations 

Limitations caution the interpretation of the studies herein. First, dataset size was limiting for 

both studies. The models and algorithms developed for phenotyping hypertension individuals would 

almost certainly benefit from larger training sets. Similarly, NLP-PheWAS was underpowered to detect 
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many associations due to the population size, MAF, and phenotype frequencies. Application across larger 

sets will likely reveal more novel findings as well as improved replication rates. NLP accuracy also limits 

both methods. As seen with the hypertension replication site, different NLP pipelines may result in 

variable performance. Improvement and standardization of clinical NLP will greatly benefit the portability 

of phenotyping algorithms. Lastly, the potentially novel associations discovered by NLP-PheWAS require 

further analysis and may prove to be false positives. 

Future Directions 

As longitudinal EHR data and associated genetic information generate larger cohorts, one will 

require scalable methods to phenotype and then apply that phenotypic information for discovery. The 

hypertension phenotyping algorithm described enables easier identification of individuals for use as a 

covariate for large genome-phenome association studies. In addition, it may also inform population 

monitoring algorithms within clinical systems. NLP-PheWAS is poised to identify novel associations in large 

cohorts but also has several potential areas for improvement. 

Future methods may apply unsupervised algorithms to automatically identify phenotypes based 

on aggregated NLP-PheWAS results. For example, such methods could detect that a NLP-based phenotype 

of ‘multiple sclerosis’ is correct if it co-occurs with several other related symptoms, treatments, or 

procedures. Such methods could also detect likely false positives by examining how related they are to 

other highly significant associations. Furthermore, some unsupervised methods may eventually be able 

to identify “phenotypic clusters” at varying levels of granularity automatically that may both overlap with 

known phenotypes or even highlight new phenotypic groupings. These could be diseases with certain 

subsets of symptoms. NLP-PheWAS may then be able to identify associations between SNPs and novel 

higher-level phenotypes. 



   
70 

References 

1. Stimulating the Adoption of Health Information Technology — NEJM. [accessed 2015 Jul 
11]. http://www.nejm.org/doi/full/10.1056/nejmp0901592 
2. Charles D, Gabriel M, Furukawa MF. Adoption of Electronic Health Record Systems 
among U.S. Non-federal Acute Care Hospitals: 2008-2013. 
https://www.healthit.gov/sites/default/files/oncdatabrief16.pdf 
3. Xierali IM, Hsiao CJ, Puffer JC, Green LA, Rinaldo JCB, Bazemore AW, Burke MT, Phillips 
RL. The rise of electronic health record adoption among family physicians. Annals of Family 
Medicine. 2013;11(1):14–19. 
4. Krist AH, Beasley JW, Crosson JC, Kibbe DC, Klinkman MS, Lehmann CU, Fox CH, Mitchell 
JM, Mold JW, Pace WD, et al. Electronic health record functionality needed to better support 
primary care. Journal of the American Medical Informatics Association : JAMIA. 2014 
[accessed 2014 Oct 18];21(5):764–71. http://www.ncbi.nlm.nih.gov/pubmed/24431335 
5. Kuhn T, Basch P, Barr M, Yackel T. Clinical Documentation in the 21st Century: Executive 
Summary of a Policy Position Paper From the American College of Physicians. Annals of 
internal medicine. 2015 Jan 13 [accessed 2015 Jan 13]. 
http://www.ncbi.nlm.nih.gov/pubmed/25581028 
6. Payne TH, Corley S, Cullen TA, Gandhi TK, Harrington L, Kuperman GJ, Mattison JE, 
McCallie DP, McDonald CJ, Tang PC, et al. Report of the AMIA EHR 2020 Task Force on the 
Status and Future Direction of EHRs. Journal of the American Medical Informatics 
Association : JAMIA. 2015 May 28 [accessed 2015 Jun 1]:ocv066. 
http://jamia.oxfordjournals.org/content/early/2015/05/22/jamia.ocv066.abstract 
7. US Physician Survey: Health Information Technology | Deloitte US | Center for Health 
Solutions. [accessed 2015 Jul 12]. http://www2.deloitte.com/us/en/pages/life-sciences-
and-health-care/articles/center-for-health-solutions-us-physicians-survey-health-
information-technology.html?id=us:2sm:3tw:bio2015:eng:lshc:061515:deloittehealth 
8. Kohane IS. Using electronic health records to drive discovery in disease genomics. Nature 
reviews. Genetics. 2011 [accessed 2014 Sep 8];12(6):417–28. 
http://www.ncbi.nlm.nih.gov/pubmed/21587298 
9. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, Field JR, Pulley JM, 
Ramirez AH, Bowton E, et al. Systematic comparison of phenome-wide association study of 
electronic medical record data and genome-wide association study data. Nature 
biotechnology. 2013 [accessed 2014 Oct 6];31(12):1102–10. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3969265&tool=pmcentrez&r
endertype=abstract 
10. Hebbring SJ, Rastegar-mojarad M, Ye Z, Mayer J, Jacobson C, Lin S. Application of Clinical 
Text Data for Phenome-Wide Association Studies ( PheWASs ). 2015:1–7. 
11. Roden DM, Pulley JM, Basford M a, Bernard GR, Clayton EW, Balser JR, Masys DR. 
Development of a large-scale de-identified DNA biobank to enable personalized medicine. 
Clinical pharmacology and therapeutics. 2008 [accessed 2014 Feb 20];84(3):362–9. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3763939&tool=pmcentrez&r
endertype=abstract 



   
71 

12. Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an 
electronic health record time-series analysis. Pediatrics. 2014 [accessed 2014 Sep 
8];133(1):e54–63. http://www.ncbi.nlm.nih.gov/pubmed/24323995 
13. Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T, Søeby K, 
Bredkjær S, Juul A, Werge T, et al. Using electronic patient records to discover disease 
correlations and stratify patient cohorts. PLoS computational biology. 2011 [accessed 2014 
Oct 17];7(8):e1002141. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3161904&tool=pmcentrez&r
endertype=abstract 
14. Roden DM, Pulley JM, Basford M a, Bernard GR, Clayton EW, Balser JR, Masys DR. 
Development of a large-scale de-identified DNA biobank to enable personalized medicine. 
Clinical pharmacology and therapeutics. 2008 [accessed 2014 Oct 26];84(3):362–9. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3763939&tool=pmcentrez&r
endertype=abstract 
15. Edwards BJ, Haynes C, Levenstien MA, Finch SJ, Gordon D. Power and sample size 
calculations in the presence of phenotype errors for case/control genetic association 
studies. BMC genetics. 2005;6:18. 
16. Rice JP, Saccone NL, Rasmussen E. Definition of the phenotype. Advances in genetics. 
2001;42:69–76. 
17. Burton PR, Hansell AL, Fortier I, Manolio TA, Khoury MJ, Little J, Elliott P. Size matters: 
Just how big is BIG?: Quantifying realistic sample size requirements for human genome 
epidemiology. International Journal of Epidemiology. 2009;38(1):263–273. 
18. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, 
Manolio T, Hindorff L, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic acids research. 2014 [accessed 2014 Jul 16];42(Database 
issue):D1001–6. http://nar.oxfordjournals.org/content/42/D1/D1001.full 
19. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, Li R, Masys DR, 
Ritchie MD, Roden DM, et al. The eMERGE Network: a consortium of biorepositories linked 
to electronic medical records data for conducting genomic studies. BMC medical genomics. 
2011 [accessed 2015 May 4];4(1):13. http://www.biomedcentral.com/1755-8794/4/13 
20. Bhat N, Rastogi P, Reeves R. Million Veteran Program. Research Appreciation Day. 2015 
[accessed 2015 Jul 10]. 
http://digitalcommons.hsc.unt.edu/rad/RAD15/GeneralMedicine/8 
21. Kaiser Permanente, UCSF Scientists Complete NIH-Funded Genomics Project Involving 
100,000 People. [accessed 2014 Aug 18]. 
http://www.dor.kaiser.org/external/news/press_releases/Kaiser_Permanente,_UCSF_Scie
ntists_Complete_NIH-Funded_Genomics_Project_Involving_100,000_People/ 
22. Science B, Faces NOW, Daunting THE, Of C, The D, Resources H. UK Biobank Data : Come 
and Get It. 2014:3–5. 
23. Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F, Li L, Lancaster G, Yang X, Williams A, et al. 
China Kadoorie Biobank of 0.5 million people: Survey methods, baseline characteristics and 
long-term follow-up. International Journal of Epidemiology. 2011;40(6):1652–1666. 
24. FACT SHEET: President Obama’s Precision Medicine Initiative | whitehouse.gov. 
[accessed 2015 Jul 18]. https://www.whitehouse.gov/the-press-office/2015/01/30/fact-
sheet-president-obama-s-precision-medicine-initiative 



   
72 

25. Precision Medicine Initiative: Building a Large U.S. Research Cohort NIH Workshop. 
[accessed 2015 Aug 27]. http://www.nih.gov/precisionmedicine/workshop-summary.pdf 
26. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D. Genome-wide 
association with bone mass and geometry in the Framingham Heart Study. BMC medical 
genetics. 2007 [accessed 2014 Sep 8];8 Suppl 1:S14. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1995606&tool=pmcentrez&r
endertype=abstract 
27. Martinelli-Boneschi F, Esposito F, Brambilla P, Lindström E, Lavorgna G, Stankovich J, 
Rodegher M, Capra R, Ghezzi A, Coniglio G, et al. A genome-wide association study in 
progressive multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England). 2012 
[accessed 2015 Mar 25];18(10):1384–94. 
http://msj.sagepub.com/content/18/10/1384.full 
28. Kurreeman F, Liao K, Chibnik L, Hickey B, Stahl E, Gainer V, Li G, Bry L, Mahan S, Ardlie 
K, et al. Genetic basis of autoantibody positive and negative rheumatoid arthritis risk in a 
multi-ethnic cohort derived from electronic health records. American Journal of Human 
Genetics. 2011;88(1):57–69. 
29. Fang S, Fang X, Xiong M. Psoriasis prediction from genome-wide SNP profiles. BMC 
dermatology. 2011 [accessed 2012 Aug 13];11(1):1. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3022824&tool=pmcentrez&r
endertype=abstract 
30. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS computational 
biology. 2012 [accessed 2014 Jul 11];8(12):e1002822. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531285&tool=pmcentrez&r
endertype=abstract 
31. Denny JC. Chapter 13: Mining electronic health records in the genomics era. PLoS 
computational biology. 2012 [accessed 2014 Sep 8];8(12):e1002823. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531280&tool=pmcentrez&r
endertype=abstract 
32. Denny JC, Ritchie MD, Basford M a, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, 
Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-
wide scan to discover gene-disease associations. Bioinformatics (Oxford, England). 2010 
[accessed 2014 Jul 31];26(9):1205–10. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2859132&tool=pmcentrez&r
endertype=abstract 
33. Xu H, Jiang M, Oetjens M, Bowton E a, Ramirez AH, Jeff JM, Basford M a, Pulley JM, 
Cowan JD, Wang X, et al. Facilitating pharmacogenetic studies using electronic health 
records and natural-language processing: a case study of warfarin. Journal of the American 
Medical Informatics Association : JAMIA. 2011 [accessed 2013 Aug 23];18(4):387–91. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3128409&tool=pmcentrez&r
endertype=abstract 
34. Wrenn JO, Stein DM, Bakken S, Stetson PD. Quantifying clinical narrative redundancy in 
an electronic health record. Journal of the American Medical Informatics Association : 
JAMIA. 2010 [accessed 2015 Jun 4];17(1):49–53. 
http://jamia.oxfordjournals.org/content/17/1/49.abstract 



   
73 

35. Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents 
based on natural language processing. Journal of the American Medical Informatics 
Association : JAMIA. 11(5):392–402. 
36. Friedman C, Rindflesch TC, Corn M. Natural language processing: state of the art and 
prospects for significant progress, a workshop sponsored by the National Library of 
Medicine. Journal of biomedical informatics. 2013 [accessed 2014 Jan 20];46(5):765–73. 
http://www.ncbi.nlm.nih.gov/pubmed/23810857 
37. Liu H, Lussier YA, Friedman C. Disambiguating ambiguous biomedical terms in 
biomedical narrative text: an unsupervised method. Journal of biomedical informatics. 
2001 [accessed 2014 Nov 2];34(4):249–61. 
http://www.sciencedirect.com/science/article/pii/S1532046401910238 
38. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute 
CG, Kullo IJ, Li R, et al. Validation of electronic medical record-based phenotyping 
algorithms: results and lessons learned from the eMERGE network. Journal of the American 
Medical Informatics Association : JAMIA. 2013 [accessed 2014 Aug 19];20(e1):e147–54. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3715338&tool=pmcentrez&r
endertype=abstract 
39. Overby CL, Pathak J, Gottesman O, Haerian K, Perotte A, Murphy S, Bruce K, Johnson S, 
Talwalkar J, Shen Y, et al. A collaborative approach to developing an electronic health 
record phenotyping algorithm for drug-induced liver injury. Journal of the American 
Medical Informatics Association : JAMIA. 2013:1–10. 
40. Carroll RJ, Eyler AE, Denny JC. Naïve Electronic Health Record phenotype identification 
for Rheumatoid arthritis. AMIA ... Annual Symposium proceedings / AMIA Symposium. 
AMIA Symposium. 2011;2011:189–96. 
41. Ashley E a, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, 
Pavlovic A, Morgan A a, et al. Clinical assessment incorporating a personal genome. Lancet. 
2010 [accessed 2014 Jul 11];375(9725):1525–35. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2937184&tool=pmcentrez&r
endertype=abstract 
42. Denny JC, Spickard A, Johnson KB, Peterson NB, Peterson JF, Miller R a. Evaluation of a 
method to identify and categorize section headers in clinical documents. Journal of the 
American Medical Informatics Association : JAMIA. [accessed 2013 Aug 22];16(6):806–15. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3002123&tool=pmcentrez&r
endertype=abstract 
43. Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 
Challenge. Journal of the American Medical Informatics Association : JAMIA. 20(5):806–13. 
44. Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, 
and relations in clinical text. Journal of the American Medical Informatics Association : 
JAMIA. 2011 [accessed 2014 Mar 4];18(5):552–6. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3168320&tool=pmcentrez&r
endertype=abstract 
45. Rink B, Harabagiu S, Roberts K. Automatic extraction of relations between medical 
concepts in clinical texts. Journal of the American Medical Informatics Association : JAMIA. 
2011 [accessed 2014 Nov 3];18(5):594–600. 



   
74 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3168312&tool=pmcentrez&r
endertype=abstract 
46. Albright D, Lanfranchi A, Fredriksen A, Styler WF, Warner C, Hwang JD, Choi JD, Dligach 
D, Nielsen RD, Martin J, et al. Towards comprehensive syntactic and semantic annotations 
of the clinical narrative. Journal of the American Medical Informatics Association : JAMIA. 
2013 Jan 25 [accessed 2013 Jul 16]:1–9. http://www.ncbi.nlm.nih.gov/pubmed/23355458 
47. Liao KP, Cai T, Savova GK, Murphy SN, Karlson EW, Ananthakrishnan AN, Gainer VS, 
Shaw SY, Xia Z, Szolovits P, et al. Development of phenotype algorithms using electronic 
medical records and incorporating natural language processing. BMJ. 2015 [accessed 2015 
Apr 29];350(apr24 11):h1885–h1885. http://www.bmj.com/content/350/bmj.h1885 
48. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal 
diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural 
language processing system. BMC medical informatics and decision making. 2006;6:30. 
49. Ruch P, Baud R, Geissbühler A. Using lexical disambiguation and named-entity 
recognition to improve spelling correction in the electronic patient record. Artificial 
Intelligence in Medicine. 2003 [accessed 2014 Nov 2];29(1-2):169–184. 
http://www.sciencedirect.com/science/article/pii/S0933365703000526 
50. Denny JC, Spickard A, Johnson KB, Peterson NB, Peterson JF, Miller R a. Evaluation of a 
method to identify and categorize section headers in clinical documents. Journal of the 
American Medical Informatics Association : JAMIA. [accessed 2014 Nov 3];16(6):806–15. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3002123&tool=pmcentrez&r
endertype=abstract 
51. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an 
introduction. Journal of the American Medical Informatics Association : JAMIA. 2011 
[accessed 2014 Aug 8];18(5):544–51. 
http://jamia.oxfordjournals.org/content/18/5/544.abstract 
52. Aronson a R. Effective mapping of biomedical text to the UMLS Metathesaurus: the 
MetaMap program. Proceedings / AMIA ... Annual Symposium. AMIA Symposium. 2001 
Jan:17–21. 
53. Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent 
advances. Journal of the American Medical Informatics Association : JAMIA. 2010 [accessed 
2014 Aug 5];17(3):229–36. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995713&tool=pmcentrez&r
endertype=abstract 
54. Denny JC, Smithers JD, Miller R a, Spickard A. “Understanding” medical school 
curriculum content using KnowledgeMap. Journal of the American Medical Informatics 
Association : JAMIA. 2003;10(4):351–62. 
55. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm 
for identifying negated findings and diseases in discharge summaries. Journal of biomedical 
informatics. 2001 [accessed 2014 Feb 10];34(5):301–10. 
http://www.ncbi.nlm.nih.gov/pubmed/12123149 
56. Mutalik P. Use of general-purpose negation detection to augment concept indexing of 
medical documents a quantitative study using the umls. Journal of the American Medical 
Informatics Association. 2001 [accessed 2014 Sep 8]:598–609. 
http://jamia.bmj.com/content/8/6/598.short 



   
75 

57. Zou Q, Chu WW, Morioka C, Leazer GH, Kangarloo H. IndexFinder: a method of 
extracting key concepts from clinical texts for indexing. AMIA ... Annual Symposium 
proceedings / AMIA Symposium. AMIA Symposium. 2003 Jan:763–7. 
58. Meystre S, Savova G. Extracting information from textual documents in the electronic 
health record: a review of recent research. Yearb Med …. 2008 [accessed 2014 Sep 8]:128–
144. http://www.eecis.udel.edu/~shatkay/Course/papers/UEHROverview2008.pdf 
59. Sager N, Lyman M, Bucknall C. Natural language processing and the representation of 
clinical data. Journal of the American …. 1994 [accessed 2014 Sep 8]. 
http://jamia.bmj.com/content/1/2/142.short 
60. Denny JC, Peterson JF, Choma NN, Xu H, Miller R a, Bastarache L, Peterson NB. 
Extracting timing and status descriptors for colonoscopy testing from electronic medical 
records. Journal of the American Medical Informatics Association : JAMIA. 2010 [accessed 
2013 Aug 22];17(4):383–8. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995656&tool=pmcentrez&r
endertype=abstract 
61. Savova GK, Masanz JJ, Ogren P V, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo 
clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, 
component evaluation and applications. Journal of the American Medical Informatics 
Association : JAMIA. 2010 [accessed 2013 Aug 10];17(5):507–13. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995668&tool=pmcentrez&r
endertype=abstract 
62. Savova GK, Masanz JJ, Ogren P V, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo 
clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, 
component evaluation and applications. Journal of the American Medical Informatics 
Association : JAMIA. 2010 [accessed 2014 Aug 6];17(5):507–13. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995668&tool=pmcentrez&r
endertype=abstract 
63. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute 
CG, Kullo IJ, Li R, et al. Validation of electronic medical record-based phenotyping 
algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 
2013;20(e1):e147–54. 
64. Conway M, Berg RL, Carrell D, Denny JC, Kho AN, Kullo IJ, Linneman JG, Pacheco J a, 
Peissig P, Rasmussen L, et al. Analyzing the heterogeneity and complexity of Electronic 
Health Record oriented phenotyping algorithms. AMIA ... Annual Symposium proceedings / 
AMIA Symposium. AMIA Symposium. 2011;2011:274–83. 
65. Thompson WK, Rasmussen L V, Pacheco J a, Peissig PL, Denny JC, Kho AN, Miller A, 
Pathak J. An evaluation of the NQF Quality Data Model for representing Electronic Health 
Record driven phenotyping algorithms. AMIA ... Annual Symposium proceedings / AMIA 
Symposium. AMIA Symposium. 2012;2012:911–20. 
66. Mo H, Thompson WK, Rasmussen L V, Pacheco JA, Jiang G, Kiefer Ri, Zhu Q, Xu J, 
Montague E, Carrell DS, et al. Desiderata for computable representations of Electronic 
Health Records-Driven Phenotype Algorithms. JAMIA. 2015. 
67. Lasko T a. Efficient Inference of Gaussian Process Modulated Renewal Processes with 
Application to Medical Event Data. 2014 Feb 19 [accessed 2014 Nov 3]:8. 
http://arxiv.org/abs/1402.4732 



   
76 

68. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised 
feature learning over noisy, sparse, and irregular clinical data. PloS one. 2013 [accessed 
2015 Jun 16];8(6):e66341. 
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066341 
69. CDC National Health Report: Leading Causes of Morbidity and Mortality and Associated 
Behavioral Risk and Protective Factors—United States, 2005–2013. [accessed 2015 Jul 9]. 
http://origin.glb.cdc.gov/mmwr/preview/mmwrhtml/su6304a2.htm#tab2 
70. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, 
Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, et al. 2014 evidence-based guideline 
for the management of high blood pressure in adults: report from the panel members 
appointed to the Eighth Joint National Committee (JNC 8). JAMA : the journal of the 
American Medical Association. 2014 [accessed 2014 Jul 9];311(5):507–20. 
http://jama.jamanetwork.com/article.aspx?articleid=1791497 
71. Cutler J a, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension 
prevalence, awareness, treatment, and control rates in United States adults between 1988-
1994 and 1999-2004. Hypertension. 2008 [accessed 2013 Oct 1];52(5):818–27. 
http://www.ncbi.nlm.nih.gov/pubmed/18852389 
72. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, 
Després J-P, Fullerton HJ, Howard VJ, et al. Heart Disease and Stroke Statistics-2015 
Update: A Report From the American Heart Association. Circulation. 2014 [accessed 2014 
Dec 19];131(4):e29–322. http://www.ncbi.nlm.nih.gov/pubmed/25520374 
73. Szczech LA, Lazar IL. Projecting the United States ESRD population: issues regarding 
treatment of patients with ESRD. Kidney international. Supplement. 2004;(90):S3–S7. 
74. Denny JC, Ritchie MD, Basford M a, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, 
Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-
wide scan to discover gene-disease associations. Bioinformatics (Oxford, England). 2010 
[accessed 2012 Jul 25];26(9):1205–10. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2859132&tool=pmcentrez&r
endertype=abstract 
75. Neuraz A, Chouchana L, Malamut G, Le Beller C, Roche D, Beaune P, Degoulet P, Burgun 
A, Loriot M-A, Avillach P. Phenome-wide association studies on a quantitative trait: 
application to TPMT enzyme activity and thiopurine therapy in pharmacogenomics. PLoS 
computational biology. 2013 [accessed 2015 Jul 18];9(12):e1003405. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3873228&tool=pmcentrez&r
endertype=abstract 
76. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, Field JR, Pulley JM, 
Ramirez AH, Bowton E, et al. Systematic comparison of phenome-wide association study of 
electronic medical record data and genome-wide association study data. Nature 
biotechnology. 2013 [accessed 2014 May 28];31(12):1102–10. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3969265&tool=pmcentrez&r
endertype=abstract 
77. Namjou B, Marsolo K, Carroll R, Denny J, Ritchie MD, Lingren T. Phenome-wide 
association study ( PheWAS ) in EMR-linked pediatric cohorts. 2014. 
78. Crosslin DR, Carrell DS, Burt A, Kim DS, Underwood JG, Hanna DS, Comstock BA, 
Baldwin E, de Andrade M, Kullo IJ, et al. Genetic variation in the HLA region is associated 



   
77 

with susceptibility to herpes zoster. Genes and immunity. 2015 [accessed 2015 Jul 
10];16(1):1–7. http://dx.doi.org/10.1038/gene.2014.51 
79. Wei W-Q, Denny JC. Extracting research-quality phenotypes from electronic health 
records to support precision medicine. Genome medicine. 2015 [accessed 2015 May 
10];7(1):41. http://genomemedicine.com/content/7/1/41 
80. Yoon SS, Gu Q, Nwankwo T, Wright JD, Hong Y, Burt V. Trends in blood pressure among 
adults with hypertension: United States, 2003 to 2012. Hypertension. 2015 [accessed 2015 
Jul 8];65(1):54–61. 
http://hyper.ahajournals.org.proxy.library.vanderbilt.edu/content/65/1/54 
81. WHO ISH Writing Group. 2003 World Health Organization (WHO) and Internal Society 
of Hypertension (ISH) statemnt on management of hypertension - WHO, ISH Writing Group 
2003.pdf. 2003. 
82. Myers MG. A proposed algorithm for diagnosing hypertension using automated office 
blood pressure measurement. Journal of hypertension. 2010;28(4):703–708. 
83. Bowton E, Field JR, Wang S, Schildcrout JS, Van Driest SL, Delaney JT, Cowan J, Weeke P, 
Mosley JD, Wells QS, et al. Biobanks and electronic medical records: enabling cost-effective 
research. Science translational medicine. 2014 [accessed 2015 Apr 23];6(234):234cm3. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4226414&tool=pmcentrez&r
endertype=abstract 
84. Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, Pulley JM, Basford M a, 
Brown-Gentry K, Balser JR, Masys DR, et al. Robust replication of genotype-phenotype 
associations across multiple diseases in an electronic medical record. American journal of 
human genetics. 2010 [accessed 2012 Mar 21];86(4):560–72. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2850440&tool=pmcentrez&r
endertype=abstract 
85. Pacheco J a, Avila PC, Thompson J a, Law M, Quraishi JA, Greiman AK, Just EM, Kho A. A 
highly specific algorithm for identifying asthma cases and controls for genome-wide 
association studies. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA 
Symposium. 2009;2009:497–501. 
86. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. 
Journal of the American Medical Informatics Association : JAMIA. 2013 [accessed 2014 Nov 
10];20(1):117–21. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3555337&tool=pmcentrez&r
endertype=abstract 
87. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute 
CG, Kullo IJ, Li R, et al. Validation of electronic medical record-based phenotyping 
algorithms: results and lessons learned from the eMERGE network. Journal of the American 
Medical Informatics Association : JAMIA. 2013 [accessed 2013 Oct 1];20(e1):e147–54. 
http://www.ncbi.nlm.nih.gov/pubmed/23531748 
88. Denny JC, Ritchie MD, Basford M a, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, 
Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-
wide scan to discover gene-disease associations. Bioinformatics (Oxford, England). 2010 
[accessed 2014 Oct 29];26(9):1205–10. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2859132&tool=pmcentrez&r
endertype=abstract 



   
78 

89. Crawford DC, Crosslin DR, Tromp G, Kullo IJ, Kuivaniemi H, Hayes MG, Denny JC, Bush 
WS, Haines JL, Roden DM, et al. eMERGEing progress in genomics-the first seven years. 
Frontiers in genetics. 2014 [accessed 2015 May 31];5:184. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4060012&tool=pmcentrez&r
endertype=abstract 
90. Klabunde RE. Cardiovascular Physiology Concepts. Heart Failure. 2005:235. 
91. Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of 
ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Medical care. 
2005;43(5):480–485. 
92. Savova GK, Fan J, Ye Z, Murphy SP, Zheng J, Chute CG, Kullo IJ. Discovering peripheral 
arterial disease cases from radiology notes using natural language processing. AMIA ... 
Annual Symposium proceedings / AMIA Symposium. AMIA Symposium. 2010;2010:722–
726. 
93. Penz JFE, Wilcox AB, Hurdle JF. Automated identification of adverse events related to 
central venous catheters. Journal of Biomedical Informatics. 2007;40(2):174–182. 
94. Friedlin J, Overhage M, Al-Haddad MA, Waters JA, Aguilar-Saavedra JJR, Kesterson J, 
Schmidt M. Comparing methods for identifying pancreatic cancer patients using electronic 
data sources. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA 
Symposium. 2010;2010:237–241. 
95. Denny JC, Miller R a, Waitman LR, Arrieta M a, Peterson JF. Identifying QT prolongation 
from ECG impressions using a general-purpose Natural Language Processor. International 
journal of medical informatics. 2009 [accessed 2013 Aug 22];78 Suppl 1:S34–42. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2728459&tool=pmcentrez&r
endertype=abstract 
96. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication 
information extraction system for clinical narratives. Journal of the American Medical 
Informatics Association : JAMIA. 2010 [accessed 2014 Jan 26];17(1):19–24. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995636&tool=pmcentrez&r
endertype=abstract 
97. Wei W-Q, Cronin RM, Xu H, Lasko T a, Bastarache L, Denny JC. Development and 
evaluation of an ensemble resource linking medications to their indications. Journal of the 
American Medical Informatics Association : JAMIA. 2013 [accessed 2014 Mar 
12];20(5):954–61. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3756263&tool=pmcentrez&r
endertype=abstract 
98. Bejan CA, Wei W-Q, Denny JC. Assessing the role of a medication-indication resource in 
the treatment relation extraction from clinical text. Journal of the American Medical 
Informatics Association : JAMIA. 2015 [accessed 2015 Jul 7];22(e1):e162–76. 
http://jamia.oxfordjournals.org/content/early/2014/11/07/amiajnl-2014-
002954.abstract 
99. Shang N, Xu H, Rindflesch TC, Cohen T. Identifying plausible adverse drug reactions 
using knowledge extracted from the literature. Journal of biomedical informatics. 2014 
[accessed 2015 Jul 30];52:293–310. 
http://www.sciencedirect.com/science/article/pii/S1532046414001580 



   
79 

100. Khare R, Li J, Lu Z. LabeledIn: cataloging labeled indications for human drugs. Journal 
of biomedical informatics. 2014 [accessed 2015 Jul 30];52:448–56. 
http://www.sciencedirect.com/science/article/pii/S1532046414001853 
101. Denny JC, Spickard A, Johnson KB, Peterson NB, Peterson JF, Miller R a. Evaluation of a 
method to identify and categorize section headers in clinical documents. Journal of the 
American Medical Informatics Association : JAMIA. [accessed 2014 Sep 8];16(6):806–15. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3002123&tool=pmcentrez&r
endertype=abstract 
102. Denny J, Smithers J. “Understanding” medical school curriculum content using 
KnowledgeMap. … the American Medical …. 2003 [accessed 2013 Aug 6];10(4):351–363. 
http://jamia.bmjjournals.com/content/10/4/351.short 
103. Efron B, Tibshirani R. Improvements on Cross-Validation: The 632+ Bootstrap 
Method. Journal of the American Statistical Association. 1997 [accessed 2014 Oct 
31];92(438):548–560. 
http://www.tandfonline.com/doi/abs/10.1080/01621459.1997.10474007 
104. Ohno-machado L. Cross-validation and Bootstrap Ensembles, Bagging, Boosting. 2005. 
105. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: Visualizing classifier 
performance in R. Bioinformatics. 2005;21(20):3940–3941. 
106. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models 
via Coordinate Descent. Journal of statistical software. 2010;33:1–22. 
107. McCarty CA, Peissig P, Caldwell MD, Wilke RA. The Marshfield Clinic Personalized 
Medicine Research Project: 2008 scientific update and lessons learned in the first 6 years. 
Personalized Medicine. 2008;5(5):529–542. 
108. Hindorff L a, Sethupathy P, Junkins H a, Ramos EM, Mehta JP, Collins FS, Manolio T a. 
Potential etiologic and functional implications of genome-wide association loci for human 
diseases and traits. Proceedings of the National Academy of Sciences of the United States of 
America. 2009;106(23):9362–7. 
109. Kohane IS. Using electronic health records to drive discovery in disease genomics. 
Nature reviews. Genetics. 2011 [accessed 2014 Oct 8];12(6):417–28. 
http://www.ncbi.nlm.nih.gov/pubmed/21587298 
110. Denny JC, Peterson JF, Choma NN, Xu H, Miller R a, Bastarache L, Peterson NB. 
Extracting timing and status descriptors for colonoscopy testing from electronic medical 
records. Journal of the American Medical Informatics Association : JAMIA. 2010 [accessed 
2014 Nov 3];17(4):383–8. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995656&tool=pmcentrez&r
endertype=abstract 
111. Jones SS, Rudin RS, Perry T, Shekelle PG. Health information technology: An updated 
systematic review with a focus on meaningful use. Annals of Internal Medicine. 
2014;160(1):48–54. 
112. McGregor TL, Van Driest SL, Brothers KB, Bowton EA, Muglia LJ, Roden DM. Inclusion 
of pediatric samples in an opt-out biorepository linking DNA to de-identified medical 
records: pediatric BioVU. Clinical pharmacology and therapeutics. 2013 [accessed 2015 Jun 
8];93(2):204–11. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3686097&tool=pmcentrez&r
endertype=abstract 



   
80 

113. Guo Y, He J, Zhao S, Wu H, Zhong X, Sheng Q, Samuels DC, Shyr Y, Long J. Illumina 
human exome genotyping array clustering and quality control. Nature protocols. 2014 
[accessed 2015 Jun 8];9(11):2643–62. http://dx.doi.org/10.1038/nprot.2014.174 
114. Mosley JD, Van Driest SL, Larkin EK, Weeke PE, Witte JS, Wells QS, Karnes JH, Guo Y, 
Bastarache L, Olson LM, et al. Mechanistic phenotypes: an aggregative phenotyping strategy 
to identify disease mechanisms using GWAS data. PloS one. 2013 [accessed 2015 Jun 
8];8(12):e81503. 
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081503 
115. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using 
Multilocus Genotype Data. Genetics. 2000 [accessed 2015 Jun 8];155(2):945–959. 
http://www.genetics.org/content/155/2/945.short 
116. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, 
de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. American journal of human genetics. 2007 [accessed 
2014 Jul 10];81(3):559–75. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950838&tool=pmcentrez&r
endertype=abstract 
117. Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for 
phenome-wide association studies in the R environment. Bioinformatics (Oxford, England). 
2014;30(16):2375–2376. 
118. Wolf L, Hanani Y, Bar K, Dershowitz N. Joint word2vec Networks for Bilingual 
Semantic Representations. 
119. Mikolov T, Chen K, Corrado G, Dean J. Distributed Representations of Words and 
Phrases and their Compositionality. In: NIPS. ; 2013. p. 1–9. 
120. Goldberg Y, Levy O. word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling 
Word-Embedding Method. arXiv preprint arXiv:1402.3722. 2014;(2):1–5. 
121. Mikolov T, Corrado G, Chen K, Dean J. Efficient Estimation of Word Representations in 
Vector Space. In: Proceedings of the International Conference on Learning Representations 
(ICLR 2013). ; 2013. p. 1–12. 
122. Denny J, Smithers J. “Understanding” medical school curriculum content using 
KnowledgeMap. Journal of the American …. 2003 [accessed 2014 Nov 11];10(4):351–363. 
http://jamia.bmj.com/content/10/4/351.short 
123. Denny JC, Miller R a, Waitman LR, Arrieta M a, Peterson JF. Identifying QT 
prolongation from ECG impressions using a general-purpose Natural Language Processor. 
International journal of medical informatics. 2009 [accessed 2014 Nov 3];78 Suppl 1:S34–
42. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2728459&tool=pmcentrez&r
endertype=abstract 
124. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, Daly MJ, Goldstein DB, 
John S, Nelson MR, et al. HLA-B*5701 genotype is a major determinant of drug-induced 
liver injury due to flucloxacillin. Nature genetics. 2009;41(7):816–819. 
125. Dong XY, Sun X, Guo P, Li Q, Sasahara M, Ishii Y, Dong JT. ATBF1 inhibits estrogen 
receptor (ER) function by selectively competing with AIB1 for binding to the ER in ER-
positive breast cancer cells. Journal of Biological Chemistry. 2010;285(43):32801–32809.  



   
81 

APPENDIX A 

SUPPLEMENTAL INFORMATION:  

Below are the raw elemental inputs necessary to generate the full  descriptor set. This entire set, 

or if necessary a subset of inputs are then used via a KNIME workflow to normalize, aggregate, and run 

various included algorithms. The included algorithms are either deterministic simple counts and sums or 

random forest models (of varying complexity). The output is an Excel spreadsheet with the predictions 

from the various methods as well as performance estimates if labels are included (setting labels s optional, 

set to -1 for all inputs otherwise). 

 

BEFORE loading the workflow Prepare KNIME: 

● Install KNIME and include R-Project nodes (it should appear as a top level item in the node 

repository, there is another R scripting node set that does not work) 

○ Extension required: KNIME Interactive R Statistics Integration 

■ Check extensions via Help>About KNIME> Installation details (button) 

○ Must be loaded prior to workflow to prevent incorrect conversion to R scripting modules 

 

Output file explanations: 

 

● out_performance_summary_statistics.csv 

○ Resulting cases predicted, controls predicted, prevalence, sensitivity, specificity, and 

PPV across methods 

■ sensitivity, specificity, and PPV are only calculated if labels were provided for at 

least a subset of inputs 

● out_unlabeled_predictions_* 

○ ID and final prediction for all unlabeled cases 

● out_dataset_* 

○ Full set of descriptors (including normalized results) used by the models to predict 

across the 5 dataset 

■ ICD9, meds, all blood pressure readings 
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■ ICD9, meds, all/outpatient/inpatient vitals (blood pressure and pulse) 

■ ICD9, meds, all/outpatient/inpatient vitals (blood pressure and pulse), with 

regular-expression based hypertension mentions 

■ ICD9, meds, all/outpatient/inpatient vitals (blood pressure and pulse), with 

natural language processing based hypertension concept occurrences 

■ ICD9, meds, all/outpatient/inpatient vitals (blood pressure and pulse), with 

regular-expression based hypertension mentions, also with natural language 

processing based hypertension concept occurrences 

● log_labeled_dataset_and_predictions_* 

○ Full set of inputs and outputs for all labeled examples including the provided labels and 

the output prediction/intermediates for the given method 

● log_unlabeled_dataset_and_predictions_* 

○ Full set of inputs and outputs for all unlabeled examples including the provided labels 

and the output prediction/intermediates for the given method (see 

out_unlabeled_predictions for the simplified ID and prediction only output) 

 

Provided example file explanations: 

 

● example_input_* 

○ Example input files showing the format expected for each of the input files, see the 

category bulleted list below for the overview of each and the expected columns 

 

Provided data file explanations: 

 

● rf_model_data_* 

○ The random forest models generated for the given descriptor categories 

● htn_drug_names.csv 

○ Drug names with hypertension as an indication to which inputs are matched 

○ Data already included within KNIME workflow 

● htn_ICD9_codes.csv 

○ Hypertension ICD9 codes to which inputs are matched 

○ Data already included within KNIME workflow 

● htn_concepts_with_CUI.csv 

○ Hypertension CUIs with preferred name for all concepts included in determination of 

hypertension case 

○ This data should be used externally to determine ID to HTN concept counts 
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Lists for the codes used to filter down e.g. outpatient clinic visit CPT codes, hypertension CUIs, and 
medications with hypertension as an indication are all listed at the end. These are also included as .csv 
files in the workflow package. 

Important notes: 

1. All items that can occur multiple times per day identically are collapsed down such that they 

one item/day. For example, several 401.9 ICD9 codes that occur on the same day are counted as 

one HTN ICD9 code. Several BP readings of exactly 149 mmHg systolic on the same day are 

counted as one. However, a read of 149 mmHg and one of 150 mmHg on the same day are two 

hypertensive blood pressure counts. (This does not apply to regular expression counts or NLP 

concept counts. Multiple counts per note are appropriate for these two item types.) 

2. Filtering for hypertension-related items is not necessary for any input type except regular 

expressions and NLP concepts. All other types (e.g. all ICD9, medications, and vitals readings) 

can be provided for each individual as raw inputs and will be filtered internally in the KNIME 

workfow. 

 

Notes: 

Algorithm normalizes ICD9 codes, medications, and vitals to per day readings e.g. multiple mentions on 
same calendar day is one, multiple vitals readings are normalized to the median, etc. Prior effort is not 
needed to normalize this aspect of the data. 

 

For NULL values, convert to zero before providing as input. 

 

If one wishes to skip an input type provide the headings and one row with a default ID value and zeros 
for each column. 

 

Make sure to ignore model results that incorporate data you have not included (performance can not be 
guaranteed)! 

 

Example files are provided with the correct headings and data format (all prefix “example_input_*” files) 

 

● Category (filename) 

○ Column label 

● Demographics (example_input_ID_DOB.csv) 

○ ID 

○ DOB 
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● ID Labels (example_input_ID_LABELS.csv) 

○ ID 

○ LABELS must be included but can just be set to -1 for all inputs, but then you will not 

receive any initial performance estimates 

● ICD9 codes (example_input_ID_ICD9_CODE_DATE.csv) 

○ ID 

○ ICD9_CODE 

○ DATE 

● Medications (example_input_DRUG_NAME_BRAND_NAME_DATE.csv) 

○ ID 

○ DRUG_NAME 

○ BRAND_NAME 

○ DATE 

● Blood pressure readings 

(example_input_ID_SYSTOLIC_DAY_MEDIAN_DIASTOLIC_DAY_MEDIAN_DATE.csv) 

○ ID 

○ SYSTOLIC_DAY_MEDIAN 

○ DIASTOLIC_DAY_MEDIAN 

○ DATE 

● Pulse measurements (example_input_ID_PULSE_DAY_MEDIAN_DATE.csv) 

○ ID 

○ PULSE_DAY_MEDIAN 

○ DATE 

● Outpatient visit dates (example_input_ID_DATES_WITH_OUTPATIENT_VISIT.csv) 

○ ID 

○ DATES_WITH_OUTPATIENT_CPT_CODE 

● Number of documents of type PL, DS, and H&P (example_input_DOC_TYPE_COUNTS.csv) 

○ ID 

○ PLX_DOC_COUNT 

○ DS_DOC_COUNT 

○ HP_DOC_COUNT 

● Regular expression and note counts by type (problem list, discharge summary, history and 

physical notes) - REGEX_DOC_COUNT is number of documents with a regex match 

(example_input_ID_REGEX_DATA.csv) 

○ ID 

○ PLX_HTN_REGEX_DOC_COUNT 

○ DS_HTN_REGEX_DOC_COUNT 

○ HP_HTN_REGEX_DOC_COUNT 

● Natural language processing concepts - *HTN_CONCEPT_COUNT columns include total counts 

for all concepts found within the “HTN ICD9 Codes” table below, *ALL_CONCEPT_COUNT 

includes counts for any concept(example_input_ID_NLP_CONCEPT_DATA.csv) 

○ ID 
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○ PLX_ALL_CONCEPT_COUNT 

○ PLX_HTN_CONCEPT_COUNT 

○ DS_ALL_CONCEPT_COUNT 

○ DS_HTN_CONCEPT_COUNT 

○ HP_ALL_CONCEPT_COUNT 

○ HP_HTN_CONCEPT_COUNT 

Hypertension regular expression 

Regular expression 1: .*(?!pulm\w*\W*\w+\W+)hypertension.*  (case insensitive) 

OR 

Regular expression 2: .*(?!pulm\w*\W*\w+\W+)HTN.*    (case insensitive) 

 

 

 

 

Supplemental Table 1: Full Set of Features by Category with Descriptions 

Category Descriptor 
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 a
ll
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P

 

date-ICD9 count 

unique ICD9 count 

HTN ICD9 count 

unique HTN ICD9 count 

HTN ICD9 count normalized 

HTN ICD9 count unique normalized 

unique HTN ICD9 count normalized 

unique HTN ICD9 count unique normalized 

meds count 

unique meds count 

HTN meds count 

unique HTN meds count 

HTN meds count normalized 

HTN meds count unique normalized 

unique HTN meds count normalized 

unique HTN meds count unique normalized 

max age 

vital reading time span (days) 

visits with vitals count (days) 

hypertensive BP count (days) 
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median systolic (all) 

median diastolic (all) 

hypertensive BP count normalized 

vitals density 

A
ll
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 w
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ep
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 o
u

tp
a

ti
en
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n
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p
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outpatient visits with vitals count (days) 

outpatient hypertensive BP count (days) 

median systolic (outpatient) 

median diastolic (outpatient) 

outpatient hypertensive BP count normalized 

outpatient vitals density 

inpatient visits with vitals count (days) 

inpatient hypertensive BP count (days) 

median systolic (inpatient) 

median diastolic (inpatient) 

inpatient hypertensive BP count normalized 

inpatient vitals density 

median pulse (all) 

median pulse (outpatient) 

median pulse (inpatient) 

 

D
o
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m

en
t 
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n
ts

 

PL count 

DS count 

HPC count 

All document count 

R
eg
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re

ss
io

n
 c

o
u

n
ts

 a
n
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n
o
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a
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ze
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s 

PL HTN regular expression document matches 

DS HTN regular expression document matches 

HPC HTN regular expression document matches 

All doc HTN regular expression document matches 

PL HTN regular expression document matches document normalized 

DS HTN regular expression document matches document normalized 

HPC HTN regular expression document matches document normalized 

All doc HTN regular expression document matches document normalized 

N
L

P
-b

a
se

d
 c

o
n

ce
p

ts
 a

n
d

 n
o
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a
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ze
d

 f
ea

tu
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PL concept count 

DS concept count 

HPC concept count 

All document concept count 

PL HTN concept count 

DS HTN concept count 

HPC HTN concept count 

All document HTN concept count 

PL HTN concept count document normalized 

DS HTN concept count document normalized 

HPC HTN concept count document normalized 

All doc HTN concept count document normalized 
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PL HTN concept count concept normalized 

DS HTN concept count concept normalized 

HPC HTN concept count concept normalized 

All doc HTN concept count concept normalized 

The table separates all features into key groups used to train random forests. Document counts were separately 

included with the regular expression (RegEx) category, NLP-based concepts, or only once when we used both note-

based categories. Lines divide the three subcategories of “ICD9, medications, all BP” features which we also used 

to train random forests individually. The explanation for each feature is given alongside its column identifier as 

used in the accompanying KNIME module example input. 

 

Supplemental Table 2: Median Feature Comparison Between Cases and Controls 

 Cases Controls 

Feature Median IQR Median IQR 

date-ICD9 count 136.00 (75.00-271.50) 65.00 (33.75-139.00) 

unique ICD9 count 51.00 (29.00-82.00) 32.50 (16.00-54.25) 

HTN ICD9 count 7.00 (1.00-18.00) 0.00 (0.00-0.00) 

unique HTN ICD9 count 2.00 (1.00-2.00) 0.00 (0.00-0.00) 

HTN ICD9 count normalized 0.05 (0.01-0.10) 0.00 (0.00-0.00) 

HTN ICD9 count unique normalized 0.13 (0.04-0.29) 0.00 (0.00-0.00) 

unique HTN ICD9 count normalized 0.01 (0.00-0.02) 0.00 (0.00-0.00) 

unique HTN ICD9 count unique 

normalized 
0.02 

(0.01-0.04) 
0.00 

(0.00-0.00) 

meds count 462.00 (206.50-1,017.00) 135.00 (60.75-346.25) 

unique meds count 84.00 (43.50-147.00) 41.50 (20.00-76.00) 

HTN meds count 61.00 (21.50-174.00) 0.00 (0.00-5.00) 

unique HTN meds count 7.00 (3.00-13.00) 0.00 (0.00-2.00) 

HTN meds count normalized 0.15 (0.08-0.22) 0.00 (0.00-0.02) 

HTN meds count unique normalized 0.84 (0.35-1.66) 0.00 (0.00-0.06) 

unique HTN meds count normalized 0.01 (0.01-0.03) 0.00 (0.00-0.01) 

unique HTN meds count unique 

normalized 
0.09 

(0.05-0.14) 
0.00 

(0.00-0.03) 

max age 65.00 (56.00-75.00) 47.00 (37.00-60.00) 

vital reading time span (days) 2412.00 (1,808.50-3,227.00) 2081.00 (1,209.75-2,824.25) 

visits with vitals count (days) 30.00 (16.00-52.00) 17.00 (9.00-30.00) 

hypertensive BP count (days) 9.00 (4.00-18.00) 1.00 (0.00-3.00) 

median systolic (all) 131.00 (124.00-138.00) 120.00 (110.00-125.00) 

median diastolic (all) 76.00 (70.00-80.00) 72.00 (68.00-78.00) 

hypertensive BP count normalized 0.34 (0.19-0.51) 0.04 (0.00-0.20) 

vitals density 0.01 (0.01-0.02) 0.01 (0.01-0.02) 

outpatient visits with vitals count (days) 19.00 (9.00-29.50) 10.00 (5.00-18.00) 

outpatient hypertensive BP count (days) 6.00 (2.00-10.50) 0.00 (0.00-2.00) 

median systolic (outpatient) 131.00 (124.00-140.00) 120.00 (111.75-126.00) 

median diastolic (outpatient) 76.00 (70.00-81.50) 72.25 (69.38-79.50) 
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outpatient hypertensive BP count 

normalized 
0.34 

(0.17-0.56) 
0.00 

(0.00-0.18) 

outpatient vitals density 0.01 (0.00-0.01) 0.01 (0.00-0.01) 

inpatient visits with vitals count (days) 11.00 (4.00-21.50) 6.00 (2.00-13.25) 

inpatient hypertensive BP count (days) 3.00 (1.00-7.00) 0.00 (0.00-1.00) 

median systolic (inpatient) 130.00 (121.00-138.00) 118.00 (108.00-125.00) 

median diastolic (inpatient) 74.00 (67.00-80.00) 70.00 (65.38-76.00) 

inpatient hypertensive BP count 

normalized 
0.28 

(0.06-0.50) 
0.00 

(0.00-0.14) 

inpatient vitals density 0.004 (0.002-0.010) 0.003 (0.001-0.007) 

median pulse (all) 75.00 (70.00-83.00) 76.50 (72.00-83.00) 

median pulse (outpatient) 75.00 (69.00-82.50) 76.00 (71.00-81.13) 

median pulse (inpatient) 76.00 (68.38-84.00) 76.00 (68.00-84.00) 

PL count 41.00 (20.00-72.50) 22.00 (11.00-41.25) 

DS count 1.00 (0.00-2.00) 0.00 (0.00-1.00) 

HPC count 21.00 (11.00-34.00) 11.50 (6.00-18.00) 

All doc count 62.00 (32.00-108.00) 35.00 (18.00-64.75) 

PL HTN RegEx doc matches 18.00 (1.00-42.50) 0.00 (0.00-0.00) 

DS HTN RegEx doc matches 0.00 (0.00-1.00) 0.00 (0.00-0.00) 

HPC HTN RegEx doc matches 9.00 (3.00-18.00) 0.00 (0.00-2.00) 

All doc HTN RegEx doc matches 29.00 (7.00-63.00) 0.00 (0.00-2.00) 

PL HTN RegEx doc matches doc 

normalized 
0.67 

(0.07-0.85) 
0.00 

(0.00-0.00) 

DS HTN RegEx doc matches doc 

normalized 
0.00 

(0.00-0.50) 
0.00 

(0.00-0.00) 

HPC HTN RegEx doc matches doc 

normalized 
0.55 

(0.20-0.78) 
0.00 

(0.00-0.16) 

All doc HTN RegEx doc matches doc 

normalized 
0.62 

(0.20-0.78) 
0.00 

(0.00-0.06) 

PL concept count 
7346.00 

(2,099.00-

23,406.00) 
1526.50 

(381.75-6,951.75) 

DS concept count 4.00 (0.00-35.00) 0.00 (0.00-12.00) 

HPC concept count 298.00 (156.00-591.00) 137.50 (61.75-273.75) 

All doc concept count 
7650.00 

(2,459.00-

24,003.50) 
1709.50 

(499.75-7,162.25) 

PL HTN concept count 325.00 (34.00-999.00) 0.00 (0.00-0.00) 

DS HTN concept count 0.00 (0.00-1.00) 0.00 (0.00-0.00) 

HPC HTN concept count 11.00 (2.00-25.50) 0.00 (0.00-0.00) 

All doc HTN concept count 335.00 (39.50-1,019.50) 0.00 (0.00-0.00) 

PL HTN concept count doc normalized 11.14 (1.78-18.44) 0.00 (0.00-0.00) 

DS HTN concept count doc normalized 0.00 (0.00-0.50) 0.00 (0.00-0.00) 

HPC HTN concept count doc normalized 0.60 (0.16-1.00) 0.00 (0.00-0.00) 

All doc HTN concept count doc 

normalized 
7.10 

(1.38-12.37) 
0.00 

(0.00-0.00) 

PL HTN concept count concept 

normalized 
0.05 

(0.01-0.09) 
0.00 

(0.00-0.00) 

DS HTN concept count concept 

normalized 
0.00 

(0.00-0.03) 
0.00 

(0.00-0.00) 

HPC HTN concept count concept 

normalized 
0.04 

(0.01-0.06) 
0.00 

(0.00-0.00) 

All doc HTN concept count concept 

normalized 
0.05 

(0.02-0.08) 
0.00 

(0.00-0.00) 



   
89 

 

 

 

Supplemental Table 3: Full Result Table Including AUC, Sensitivity, and PPV Across Individual Inputs, Simple 

Algorithms, and Random Forests 

   Binary Threshold (Present/Absent) 

Inputs AuROC  Sensitivity  PPV  

Feature Median (CI) Median (CI) Median (CI) 

date-ICD9 count 
0.686 

(0.656-

0.766) 
1.000 

(0.991-

1) 
0.566 

(0.535-

0.638) 

unique ICD9 count 
0.643 

(0.624-

0.71) 
0.991 

(0.973-

1) 
0.570 

(0.533-

0.638) 

HTN ICD9 count 
0.908 

(0.902-

0.911) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

unique HTN ICD9 count 
0.898 

(0.894-

0.906) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

HTN ICD9 count normalized 
0.907 

(0.901-

0.911) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

HTN ICD9 count unique normalized 
0.909 

(0.903-

0.913) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

unique HTN ICD9 count normalized 
0.890 

(0.884-

0.904) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

unique HTN ICD9 count unique normalized 
0.894 

(0.891-

0.907) 
0.841 

(0.823-

0.85) 
0.947 

(0.918-

0.979) 

meds count 
0.745 

(0.725-

0.799) 
0.992 

(0.991-

1) 
0.566 

(0.535-

0.636) 

unique meds count 
0.699 

(0.673-

0.754) 
0.992 

(0.991-

1) 
0.566 

(0.535-

0.633) 

HTN meds count 
0.907 

(0.881-

0.916) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

unique HTN meds count 
0.887 

(0.85-

0.909) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

HTN meds count normalized 
0.900 

(0.876-

0.918) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

HTN meds count unique normalized 
0.910 

(0.883-

0.922) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

unique HTN meds count normalized 
0.838 

(0.783-

0.853) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

unique HTN meds count unique normalized 
0.890 

(0.844-

0.902) 
0.944 

(0.92-

0.961) 
0.759 

(0.727-

0.813) 

max age 
0.785 

(0.761-

0.811) 
1.000 (1-1) 0.568 

(0.538-

0.638) 

vital reading time span (days) 
0.600 

(0.567-

0.648) 
0.992 

(0.991-

1) 
0.563 

(0.533-

0.633) 

visits with vitals count (days) 
0.666 

(0.661-

0.733) 
1.000 

(0.984-

1) 
0.568 

(0.538-

0.638) 

hypertensive BP count (days) 
0.854 

(0.847-

0.874) 
0.953 

(0.944-

0.964) 
0.701 

(0.662-

0.742) 

median systolic (all) 
0.802 

(0.774-

0.814) 
1.000 (1-1) 0.571 

(0.538-

0.638) 

median diastolic (all) 
0.591 

(0.544-

0.62) 
0.992 

(0.981-

1) 
0.568 

(0.53-

0.633) 

hypertensive BP count normalized 
0.825 

(0.809-

0.85) 
0.953 

(0.944-

0.964) 
0.701 

(0.662-

0.742) 

vitals density 
0.621 

(0.566-

0.642) 
1.000 

(0.991-

1) 
0.563 

(0.538-

0.638) 
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outpatient visits with vitals count (days) 
0.685 

(0.665-

0.744) 
0.981 

(0.965-

0.991) 
0.565 

(0.536-

0.629) 

outpatient hypertensive BP count (days) 
0.841 

(0.823-

0.859) 
0.897 

(0.89-

0.909) 
0.713 

(0.691-

0.748) 

median systolic (outpatient) 
0.775 

(0.748-

0.787) 
0.981 

(0.965-

0.991) 
0.565 

(0.536-

0.629) 

median diastolic (outpatient) 
0.578 

(0.507-

0.615) 
0.981 

(0.965-

0.991) 
0.565 

(0.536-

0.629) 

outpatient hypertensive BP count normalized 
0.798 

(0.758-

0.829) 
0.897 

(0.89-

0.909) 
0.713 

(0.691-

0.748) 

outpatient vitals density 
0.629 

(0.6-

0.66) 
0.981 

(0.965-

0.991) 
0.565 

(0.536-

0.629) 

inpatient visits with vitals count (days) 
0.624 

(0.608-

0.691) 
0.953 

(0.935-

0.964) 
0.563 

(0.548-

0.637) 

inpatient hypertensive BP count (days) 
0.763 

(0.749-

0.819) 
0.752 

(0.738-

0.832) 
0.759 

(0.712-

0.798) 

median systolic (inpatient) 
0.736 

(0.721-

0.764) 
0.953 

(0.935-

0.964) 
0.563 

(0.548-

0.637) 

median diastolic (inpatient) 
0.591 

(0.561-

0.597) 
0.953 

(0.935-

0.964) 
0.563 

(0.548-

0.637) 

inpatient hypertensive BP count normalized 
0.741 

(0.734-

0.799) 
0.752 

(0.738-

0.832) 
0.759 

(0.712-

0.798) 

inpatient vitals density 
0.593 

(0.582-

0.649) 
0.953 

(0.935-

0.964) 
0.563 

(0.548-

0.637) 

median pulse (all) 
0.435 

(0.393-

0.473) 
0.992 

(0.991-

1) 
0.563 

(0.533-

0.633) 

median pulse (outpatient) 
0.450 

(0.439-

0.498) 
0.981 

(0.965-

0.991) 
0.568 

(0.538-

0.633) 

median pulse (inpatient) 
0.486 

(0.439-

0.498) 
0.944 

(0.921-

0.956) 
0.571 

(0.54-

0.626) 

PL count 
0.670 

(0.628-

0.732) 
0.992 

(0.991-

1) 
0.566 

(0.533-

0.633) 

DS count 
0.611 

(0.567-

0.677) 
0.558 

(0.449-

0.591) 
0.697 

(0.615-

0.743) 

HPC count 
0.670 

(0.616-

0.728) 
0.981 

(0.965-

0.984) 
0.556 

(0.533-

0.635) 

All doc count 
0.674 

(0.63-

0.739) 
0.992 

(0.984-

1) 
0.571 

(0.538-

0.631) 

PL HTN RegEx doc matches 
0.855 

(0.842-

0.868) 
0.757 

(0.72-

0.787) 
0.943 

(0.92-

0.952) 

DS HTN RegEx doc matches 
0.676 

(0.627-

0.696) 
0.389 

(0.299-

0.394) 
0.952 

(0.889-

1) 

HPC HTN RegEx doc matches 
0.844 

(0.812-

0.879) 
0.900 

(0.879-

0.916) 
0.731 

(0.676-

0.793) 

All doc HTN RegEx doc matches 
0.896 

(0.875-

0.921) 
0.950 

(0.935-

0.963) 
0.725 

(0.685-

0.796) 

PL HTN RegEx doc matches doc normalized 
0.852 

(0.837-

0.87) 
0.757 

(0.72-

0.787) 
0.943 

(0.92-

0.952) 

DS HTN RegEx doc matches doc normalized 
0.677 

(0.63-

0.696) 
0.389 

(0.299-

0.394) 
0.952 

(0.889-

1) 

HPC HTN RegEx doc matches doc normalized 
0.840 

(0.8-

0.861) 
0.900 

(0.879-

0.916) 
0.731 

(0.676-

0.793) 

All doc HTN RegEx doc matches doc normalized 
0.903 

(0.877-

0.92) 
0.950 

(0.935-

0.963) 
0.725 

(0.685-

0.796) 

PL concept count 
0.710 

(0.687-

0.751) 
1.000 

(0.984-

1) 
0.568 

(0.538-

0.631) 

DS concept count 
0.611 

(0.577-

0.681) 
0.527 

(0.439-

0.567) 
0.697 

(0.618-

0.742) 

HPC concept count 
0.690 

(0.665-

0.763) 
0.976 

(0.965-

1) 
0.556 

(0.531-

0.633) 

All doc concept count 
0.709 

(0.692-

0.755) 
1.000 

(0.992-

1) 
0.568 

(0.538-

0.633) 
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PL HTN concept count 
0.856 

(0.851-

0.868) 
0.782 

(0.752-

0.795) 
0.931 

(0.919-

0.944) 

DS HTN concept count 
0.661 

(0.614-

0.682) 
0.346 

(0.271-

0.364) 
0.948 

(0.879-

1) 

HPC HTN concept count 
0.883 

(0.877-

0.911) 
0.841 

(0.823-

0.879) 
0.891 

(0.849-

0.894) 

All doc HTN concept count 
0.908 

(0.89-

0.933) 
0.906 

(0.897-

0.944) 
0.863 

(0.828-

0.885) 

PL HTN concept count doc normalized 
0.860 

(0.855-

0.871) 
0.782 

(0.752-

0.795) 
0.931 

(0.919-

0.944) 

DS HTN concept count doc normalized 
0.663 

(0.617-

0.682) 
0.346 

(0.271-

0.364) 
0.948 

(0.879-

1) 

HPC HTN concept count doc normalized 
0.886 

(0.881-

0.914) 
0.841 

(0.823-

0.879) 
0.891 

(0.849-

0.894) 

All doc HTN concept count doc normalized 
0.914 

(0.901-

0.938) 
0.906 

(0.897-

0.944) 
0.863 

(0.828-

0.885) 

PL HTN concept count concept normalized 
0.869 

(0.851-

0.877) 
0.782 

(0.752-

0.795) 
0.931 

(0.919-

0.944) 

DS HTN concept count concept normalized 
0.661 

(0.617-

0.682) 
0.346 

(0.271-

0.364) 
0.948 

(0.879-

1) 

HPC HTN concept count concept normalized 
0.887 

(0.879-

0.914) 
0.841 

(0.823-

0.879) 
0.891 

(0.849-

0.894) 

All doc HTN concept count concept normalized 
0.914 

(0.909-

0.942) 
0.906 

(0.897-

0.944) 
0.863 

(0.828-

0.885) 

Sum of HTN ICD9 and meds 0.92358 

(0.894-

0.95) 0.96748 

(0.945-

1) 0.77397 

(0.718-

0.83) 

Sum of normalized HTN ICD9 and meds 0.92961 

(0.901-

0.954) 0.96748 

(0.945-

1) 0.77397 

(0.718-

0.83) 

Sum of unique normalized HTN ICD9 and meds 0.92808 

(0.901-

0.951) 0.96748 

(0.945-

1) 0.77397 

(0.718-

0.83) 

Sum of HTN ICD9 and BP 0.9202 

(0.885-

0.947) 0.98214 

(0.959-

1) 0.70988 

(0.644-

0.767) 

Sum of normalized HTN ICD9 and BP 0.86057 

(0.827-

0.903) 0.98214 

(0.959-

1) 0.70988 

(0.644-

0.767) 

Sum of unique normalized HTN ICD9 and BP 0.8961 

(0.867-

0.93) 0.98214 

(0.959-

1) 0.70988 

(0.644-

0.767) 

Sum of HTN meds and BP 0.92954 

(0.895-

0.956) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of normalized HTN meds and BP 0.89672 

(0.866-

0.929) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of unique normalized HTN meds and BP 0.93979 

(0.913-

0.967) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of HTN ICD9, meds, and BP 0.93547 

(0.903-

0.961) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of normalized HTN ICD9, meds, and BP 0.91513 

(0.888-

0.942) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of unique normalized HTN ICD9, meds, and BP 0.94757 

(0.923-

0.971) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Sum of HTN ICD9, meds, BP, and RegEx 0.940 

(0.906-

0.961) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Sum of HTN ICD9, meds, BP, and RegEx normalized 0.940 

(0.912-

0.96) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Sum of normalized HTN ICD9, meds, BP, and RegEx doc 

normalized 0.953 

(0.932-

0.969) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Sum of unique normalized HTN ICD9, meds, BP, and 

RegEx doc normalized 0.959 

(0.935-

0.977) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Sum of HTN ICD9, meds, BP, and concepts 0.936 

(0.91-

0.961) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Sum of HTN ICD9, meds, BP, and concepts normalized 0.941 

(0.912-

0.964) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Sum of HTN ICD9, meds, BP, and concepts doc normalized 0.940 

(0.911-

0.965) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 
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Sum of normalized HTN ICD9, meds, BP, and concepts 

concept normalized 0.929 

(0.897-

0.955) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Sum of unique normalized HTN ICD9, meds, BP, and 

concepts doc normalized 0.949 

(0.92-

0.971) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Sum of unique normalized HTN ICD9, meds, BP, and 

concepts concept normalized 0.953 

(0.925-

0.977) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Count of hypertensive ICD9 and med 0.92323 

(0.893-

0.951) 0.96748 

(0.945-

1) 0.77397 

(0.718-

0.83) 

Count of hypertensive ICD9 and med 1 of 2 0.78711 

(0.742-

0.821) 0.96748 

(0.945-

1) 0.77397 

(0.718-

0.83) 

Count of hypertensive ICD9 and med 2 of 2 0.88169 

(0.85-

0.921) 0.82143 

(0.761-

0.882) 0.95699 

(0.923-

0.989) 

Count of hypertensive ICD9 and BP 0.90879 

(0.881-

0.939) 0.98214 

(0.959-

1) 0.70988 

(0.644-

0.767) 

Count of hypertensive ICD9 and BP 1 of 2 0.70373 

(0.659-

0.74) 0.98214 

(0.959-

1) 0.70988 

(0.644-

0.767) 

Count of hypertensive ICD9 and BP 2 of 2 0.87786 

(0.851-

0.912) 0.81452 

(0.764-

0.871) 0.95745 

(0.915-

0.981) 

Count of hypertensive med and BP 0.83929 

(0.805-

0.878) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Count of hypertensive med and BP 1 of 2 0.65789 

(0.62-

0.69) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Count of hypertensive med and BP 2 of 2 0.82473 

(0.785-

0.87) 0.91228 

(0.867-

0.948) 0.83206 

(0.779-

0.879) 

Count of hypertensive ICD9, med, and BP 0.93462 

(0.913-

0.962) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Count of hypertensive ICD9, med, and BP 1 of 3 0.65789 

(0.62-

0.69) 1 
(1-1) 

0.67251 

(0.608-

0.731) 

Count of hypertensive ICD9, med, and BP 2 of 3 0.83275 

(0.788-

0.868) 0.95161 

(0.918-

0.983) 0.82222 

(0.77-

0.872) 

Count of hypertensive ICD9, med, and BP 3 of 3 0.87691 

(0.849-

0.914) 0.79832 

(0.741-

0.86) 0.96739 

(0.937-

0.99) 

Count of hypertensive ICD9, med, BP, and RegEx 0.944 

(0.905-

0.965) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Count of hypertensive ICD9, med, BP, and RegEx 1 of 4 0.588 

(0.557-

0.613) 1.000 
(1-1) 

0.631 

(0.574-

0.699) 

Count of hypertensive ICD9, med, BP, and RegEx 2 of 4 0.764 

(0.723-

0.81) 0.983 

(0.965-

1) 0.750 

(0.703-

0.819) 

Count of hypertensive ICD9, med, BP, and RegEx 3 of 4 0.874 

(0.824-

0.908) 0.927 

(0.882-

0.958) 0.878 

(0.828-

0.925) 

Count of hypertensive ICD9, med, BP, and RegEx 4 of 4 0.879 

(0.836-

0.914) 0.795 

(0.72-

0.856) 0.969 

(0.938-

1) 

Count of hypertensive ICD9, med, BP, and concept 0.951 

(0.911-

0.971) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Count of hypertensive ICD9, med, BP, and concept 1 of 4 0.640 

(0.602-

0.686) 1.000 
(1-1) 

0.663 

(0.609-

0.734) 

Count of hypertensive ICD9, med, BP, and concept 2 of 4 0.802 

(0.751-

0.854) 0.974 

(0.949-

0.992) 0.784 

(0.732-

0.862) 

Count of hypertensive ICD9, med, BP, and concept 3 of 4 0.910 

(0.868-

0.936) 0.925 

(0.88-

0.958) 0.924 

(0.882-

0.966) 

Count of hypertensive ICD9, med, BP, and concept 4 of 4 0.875 

(0.832-

0.906) 0.785 

(0.71-

0.846) 0.969 

(0.937-

1) 

ICD9 category (random forest) 0.899 

(0.864-

0.927) 0.984 

(0.953-

1) 0.615 

(0.553-

0.683) 

meds category (random forest) 0.888 

(0.848-

0.924) 0.982 

(0.951-

1) 0.627 

(0.553-

0.693) 

vitals category (random forest) 0.865 

(0.823-

0.917) 1.000 
(1-1) 

0.588 

(0.538-

0.638) 

RegEx category (random forest) 0.900 

(0.861-

0.933) 1.000 

(0.982-

1) 0.622 

(0.558-

0.689) 

concept category (random forest) 0.928 

(0.895-

0.953) 1.000 

(0.983-

1) 0.594 

(0.536-

0.653) 
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ICD9, meds, all BP (random forest) 
0.955 

(0.934-

0.975) 
1.000 

(0.992-

1) 
0.624 

(0.55-

0.692) 

ICD9, meds, vitals (all, outpatient, inpatient) (random forest) 
0.961 

(0.938-

0.98) 
1.000 (1-1) 0.603 

(0.54-

0.667) 

ICD9, meds, vitals (all, outpatient, inpatient), RegEx 

(random forest) 
0.967 

(0.948-

0.985) 
1.000 (1-1) 0.601 

(0.543-

0.655) 

ICD9, meds, vitals (all, outpatient, inpatient), concept 

(random forest) 
0.976 

(0.95-

0.984) 
1.000 (1-1) 0.579 

(0.523-

0.649) 

ICD9, meds, vitals (all, outpatient, inpatient), RegEx, 

concepts (random forest) 
0.968 

(0.951-

0.985) 
1.000 (1-1) 0.596 

(0.544-

0.67) 
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Supplemental Table 4: Clinical Note Counts and Extracted Hypertension Regular Expression Matches and 

Concepts.  

 

 

All Document 

Types 
Problem Lists 

History & 

Physicals/Clinic 

Notes 

Discharge 

Summaries 

Note counts 43262 28264 14072 926 

Max per individual 356 264 142 29 

Min per individual 2 0 0 0 

Median per individual 

(IQR) 
47 (25-92) 31 (14-60.5) 15 (8-29) 0 (0-2) 

HTN RegEx match note 

counts 
17392 11557 5489 346 

Max per individual 265 203 88 10 

Min per individual 0 0 0 0 

Median per individual 

(IQR) 
5 (1-38) 0 (0-24) 3 (0-12) 0 (0-0) 

Concept counts 11695623 11441802 240452 13369 

Max per individual 598893 594178 4585 412 

Min per individual 5 0 0 0 

Median per individual 

(IQR) 

4356 (1086-

16741) 

4055 (947.5-

16040) 
230 (102-431.5) 0 (0-24.5) 

Hypertension concept 

counts 
401147 393363 7332 452 

Max per individual 43056 42787 256 17 

Min per individual 0 0 0 0 

Median per individual 

(IQR) 
17 (0-523.5) 3 (0-495.5) 1 (0-15) 0 (0-0) 

IQR  = Interquartile range; RegEx = Regular expression; HTN = Hypertension 

Our population had 43,262 notes with 28,264 PL, 14,072 HPC, and 926 DS. Problem lists were both the most 

numerous and the source resulting in the largest number of regular expression matches and concepts.  

 

 

Supplemental Table 5: Full Set of Comparisons Between Mean and Median of Correctly and Incorrectly Classified 

Individuals.  

Category TN-FN FP-TP FN-TP TN-FP 

Measures 

Avg. 

Diff 

Med. 

Diff. 

Avg. 

Diff 

Med. 

Diff. 

Avg. 

Diff 

Med. 

Diff. 

Avg. 

Diff 

Med. 

Diff. 
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date-ICD9 count 1.6 1.8 415.5 1.0 29.6 1.0 22.6 3.7 

unique ICD9 count 1.6 1.3 149.9 1.0 8.6 1.0 11.0 4.6 

HTN ICD9 count N/A N/A 2.9 1.0 N/A N/A N/A N/A 

unique HTN ICD9 count N/A N/A 15.9 1.0 N/A N/A N/A N/A 

HTN ICD9 count normalized N/A N/A 695.9 1.0 N/A N/A N/A N/A 

HTN ICD9 count unique normalized N/A N/A 230.6 1.0 N/A N/A N/A N/A 

unique HTN ICD9 count normalized N/A N/A 7694.8 1.0 N/A N/A N/A N/A 

unique HTN ICD9 count unique 

normalized 
N/A N/A 2307.3 1.0 N/A N/A N/A N/A 

meds count 1.3 11.9 1460.3 1.0 33.0 1.0 57.8 1.8 

unique meds count 1.9 2.5 182.1 1.0 8.4 1.0 11.6 2.2 

HTN meds count 4.7 N/A 44.7 1.0 2.0 1.0 102.2 N/A 

unique HTN meds count 4.0 N/A 5.5 1.0 1.0 1.0 22.0 N/A 

HTN meds count normalized 3.6 N/A 45.0 1.0 22.2 1.0 1.8 N/A 

HTN meds count unique normalized 8.7 N/A 4.1 1.0 4.2 1.0 8.8 N/A 

unique HTN meds count normalized 3.1 N/A 744.5 1.0 92.5 1.0 2.6 N/A 

unique HTN meds count unique 

normalized 
7.4 N/A 65.0 1.0 16.6 1.0 1.9 N/A 

max age (by last vital) 1.3 1.0 43.5 1.0 59.4 1.0 1.0 1.3 

vital reading time span (days) 1.4 1.4 4015.4 1.0 2861.7 1.0 2.0 1.1 

visits with vitals count (days) 1.8 1.3 69.0 1.0 8.4 1.0 14.4 4.8 

hypertensive BP count (days) 3.0 5.0 5.1 1.0 5.1 1.0 8.7 1.5 

median systolic (all) 1.0 1.1 113.3 1.0 120.2 1.0 1.1 1.1 

median diastolic (all) 1.2 1.0 70.1 1.0 65.3 1.0 1.1 1.0 

hypertensive BP count normalized 5.3 4.0 14.6 1.0 46.2 1.0 1.7 3.2 

vitals density 1.2 1.1 68.5 1.0 401.2 1.0 7.2 5.5 

outpatient visits with vitals count (days) 2.0 1.2 50.1 1.0 7.7 1.0 13.0 3.8 

outpatient hypertensive BP count (days) 2.0 3.6 4.0 1.0 4.5 1.0 9.0 1.3 

median systolic (outpatient) 1.0 1.1 115.2 1.0 121.8 1.0 1.1 1.1 

median diastolic (outpatient) 1.1 1.0 71.5 1.0 67.6 1.0 1.1 1.0 

outpatient hypertensive BP count 

normalized 
4.0 3.0 12.3 1.0 34.0 1.0 1.4 3.0 

outpatient vitals density 1.4 1.2 55.2 1.0 255.9 1.0 6.5 4.3 

inpatient visits with vitals count (days) 1.0 1.4 20.5 1.0 1.1 1.0 18.5 14.0 

inpatient hypertensive BP count (days) N/A 12.0 1.3 N/A N/A 1.0 8.0 N/A 

median systolic (inpatient) 1.3 1.1 106.4 1.0 107.7 1.0 1.3 1.1 

median diastolic (inpatient) 1.5 1.0 66.4 1.0 58.4 1.0 1.3 1.0 

inpatient hypertensive BP count 

normalized 
N/A 8.8 16.2 N/A N/A 1.0 2.3 N/A 

inpatient vitals density 1.4 1.0 314.1 1.0 4141.0 1.0 9.3 16.0 

median pulse (all) 1.0 1.1 69.1 1.0 72.1 1.0 1.1 1.1 

median pulse (outpatient) 1.0 1.1 67.7 1.0 72.7 1.0 1.1 1.1 

median pulse (inpatient) 1.0 1.0 67.8 N/A 73.7 1.0 1.1 N/A 

PL count 1.8 2.0 139.5 1.0 15.7 1.0 15.5 2.8 

DS count N/A 2.0 3.7 N/A N/A 1.0 N/A N/A 
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HPC count 4.7 1.8 42.3 1.0 9.4 1.0 21.0 1.9 

PL HTN RegEx document matches N/A N/A 5.4 N/A N/A 1.0 25.1 N/A 

DS HTN RegEx document matches N/A N/A N/A N/A N/A N/A N/A N/A 

HPC HTN RegEx document matches N/A N/A 8.9 1.0 N/A 1.0 18.0 N/A 

PL HTN regular expression document 

matches document normalized 
N/A N/A 10.9 N/A N/A 1.0 1.6 N/A 

DS HTN regular expression document 

matches document normalized 
N/A N/A N/A N/A N/A N/A N/A N/A 

HPC HTN regular expression document 

matches document normalized 
N/A N/A 3.5 1.0 N/A 1.0 1.2 N/A 

All document count 2.3 1.9 183.7 1.0 25.1 1.0 17.1 2.6 

All doc HTN regular expression doc 

matches document normalized 
N/A N/A 4.1 1.0 N/A 1.0 1.4 N/A 

All doc HTN regular expression document 

matches 
N/A N/A 23.0 1.0 N/A 1.0 23.6 N/A 

PL concept count 4.8 1.4 26185.6 1.0 274.4 1.0 456.1 9.6 

PL HTN concept count N/A N/A 97.7 1.0 N/A N/A 105.6 N/A 

DS concept count N/A N/A 16.3 N/A N/A N/A N/A N/A 

DS HTN concept count N/A N/A N/A N/A N/A N/A N/A N/A 

HP concept count 5.1 1.4 580.7 1.0 112.1 1.0 26.4 3.5 

HP HTN concept count 1.0 N/A 1.3 1.0 14.4 1.0 19.0 N/A 

All document concept count 4.8 1.4 26937.0 1.0 331.7 1.0 392.0 9.2 

All document HTN concept count 24.0 N/A 99.0 1.0 24.7 1.0 102.0 N/A 

PL HTN concept count document 

normalized 
N/A N/A 1.7 1.0 N/A N/A 6.8 N/A 

DS HTN concept count document 

normalized 
N/A N/A N/A N/A N/A N/A N/A N/A 

HPC HTN concept count document 

normalized 
4.7 N/A 10.3 1.0 43.3 1.0 1.1 N/A 

All doc HTN concept count document 

normalized 
56.0 N/A 1.3 1.0 254.5 1.0 6.0 N/A 

PL HTN concept count concept 

normalized 
N/A N/A 84.2 1.0 N/A N/A 4.3 N/A 

DS HTN concept count concept 

normalized 
N/A N/A N/A N/A N/A N/A N/A N/A 

HPC HTN concept count concept 

normalized 
5.1 N/A 100.2 1.0 367.4 1.0 1.4 N/A 

All doc HTN concept count concept 

normalized 
115.9 N/A 82.1 1.0 2474.0 1.0 3.8 N/A 

 

This table contains the absolute average difference (Avg. Diff) and median difference (Med. Diff.) between true 

negatives and false negatives (TN-FN), false positives and true positives (FP-TP), false negatives and true positives 

(FN-TP), and true negatives and false positives (TN-FP). The feature identifiers are along the left side and large 

difference values highlight features that are very different between the sets compared. All cells where at least one 

of the items was zero are listed as ‘N/A’. 
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Supplemental Table 6: Full Set of Hypertension-related ICD9 Billing Codes Used 

CODE CODE_DESC 

405.99 SECOND HYPERTENSION NEC 

405 SECONDARY HYPERTENSION 

405.9 SECOND HYPERTENSION NOS 

401 ESSENTIAL HYPERTENSION 

401.1 BENIGN HYPERTENSION 

401.0 MALIGNANT HYPERTENSION 

405.91 RENOVASC HYPERTENSION 

405.0 MAL SECOND HYPERTENSION 

401.9 HYPERTENSION NOS 



   
98 

Supplemental Table 7: Full Set of UMLS Hypertension Concepts 

CUI CUI_PN 

1303117 Moderate hypertension control (finding) 

20540 Hypertension, Malignant [Disease/Finding] 

421190 Poor hypertension control (finding) 

235222 Diastolic hypertension (disorder) 

155583 Benign essential hypertension (disorder) 

421189 Good hypertension control (finding) 

85580 Hypertension, Essential 

20538 Hypertensive disorder, systemic arterial (disorder) 

264637 Benign hypertension (disorder) 

221155 systolic hypertension 

1541808 Hypertension (& [essential]) 

455527 History of - hypertension (situation) 

 

Supplemental Table 8: Full Set of Hypertension-related Medication Strings Used (Based on MEDI-HPS) 

RXCUI DRUG_DESC 
 RXCUI (cont. 

1) 

DRUG_DESC 

  (cont. 1) 

RXCUI (cont. 

2) 

DRUG_DESC 

  (cont. 2) 

217597 hydralazine 5036 guanethidine 865575 metoprolol 

71515 prazosin 262242 eprosartan 6860 
methyclothiazi

de 

5033 guanabenz 35296 ramipril 3827 enalapril 

151890 propranolol 203344 metoprolol 831221 diltiazem 

1009015 
amlodipine 

  / olmesartan 
136411 sildenafil 202463 hydralazine 

754809 prazosin 5487 
hydrochlorothi

azide 
226918 orlistat 
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225030 fosinopril 202509 nitroglycerin 744629 amlodipine 

745969 
hydrochlorothi

azide 
218710 potassium 153668 irbesartan 

10602 timolol 9260 reserpine 745974 
hydrochlorothi

azide 

19484 bisoprolol 220669 
hydrochlorothi

azide 
151155 diltiazem 

202510 nitroglycerin 216778 clonidine 724892 valsartan 

151300 nifedipine 750200 amlodipine 215917 clonidine 

203489 verapamil 169050 chlorthalidone 225959 nitroglycerin 

224934 
methyclothiazi

de 
219878 hydralazine 218744 nitroglycerin 

216252 nadolol 151882 terazosin 31555 nebivolol 

856468 propranolol 724876 amlodipine 750204 amlodipine 

219881 hydralazine 214354 candesartan 142146 
bisoprolol 

  fumarate 

225752 verapamil 219878 reserpine 744887 amlodipine 

6918 metoprolol 491231 
hydrochlorothi

azide 
724884 amlodipine 

225191 reserpine 758540 aliskiren 196460 betaxolol 

202369 betaxolol 542847 
hydrochlorothi

azide 
203798 metolazone 

215673 betaxolol 8565 polythiazide 151482 captopril 

196500 perindopril 823939 
hydrochlorothi

azide 
196472 lisinopril 

328141 

Angelica 

  sinensis 

preparation 

175128 
hydrochlorothi

azide 
744633 amlodipine 

7973 penbutolol 29046 lisinopril 540618 diltiazem 
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217642 reserpine 6876 methyldopa 216253 timolol 

203644 lisinopril 218102 indapamide 151549 nadolol 

644 amiloride 215905 
hydrochlorothi

azide 
217597 

hydrochlorothi

azide 

151294 captopril 284747 reserpine 5495 
hydroflumethia

zide 

6916 metolazone 323502 bosentan 219797 reserpine 

744621 olmesartan 154991 enalapril 9997 spironolactone 

83367 atorvastatin 581642 sildenafil 744891 benazepril 

750200 atorvastatin 216909 
methyclothiazi

de 
203123 

enalapril 

  maleate 

705130 nitroglycerin 203477 chlorthalidone 321064 olmesartan 

591568 Iloprost 17767 amlodipine 216675 
trichlormethiaz

ide 

49276 doxazosin 214621 

hydrochlorothi

azide 

  / metoprolol 

203275 
hydrochlorothi

azide 

5470 hydralazine 809019 valsartan 215910 carteolol 

203211 
diltiazem 

  hydrochloride 
202941 clonidine 220391 hydralazine 

2396 chlorothiazide 7417 nifedipine 750236 amlodipine 

20352 carvedilol 214618 

hydrochlorothi

azide 

  / lisinopril 

10828 trimethaphan 

196468 doxazosin 6673 mecamylamine 9259 rescinnamine 

175128 enalapril 219882 hydralazine 217653 guanadrel 

151486 lisinopril 324042 

hydrochlorothi

azide 

  / 

spironolactone 

750196 atorvastatin 
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214866 
trandolapril 

  / verapamil 
708361 orlistat 8332 pindolol 

218936 deserpidine 218353 telmisartan 135481 
candesartan 

  cilexetil 

155091 fenoldopam 1627 timolol 203273 
hydrochlorothi

azide 

220391 reserpine 151723 carvedilol 218369 
hydrochlorothi

azide 

491095 diltiazem 215919 clonidine 215918 clonidine 

758540 
hydrochlorothi

azide 
750228 amlodipine 8629 prazosin 

202525 nitroglycerin 33910 isradipine 78678 
Rauwolfia 

  preparation 

744871 amlodipine 1202 atenolol 809027 valsartan 

54635 phentolamine 11170 verapamil 4109 
ethacrynic 

  acid 

3327 diazoxide 749838 telmisartan 541854 nitroglycerin 

202530 nitroglycerin 219882 reserpine 38454 trandolapril 

8787 propranolol 2409 chlorthalidone 218747 nitroglycerin 

599 alseroxylon 4316 felodipine 8149 
phenoxybenza

mine 

744625 amlodipine 50166 fosinopril 202523 nitroglycerin 

190465 sildenafil 744871 benazepril 750232 amlodipine 

758548 aliskiren 750224 atorvastatin 40114 guanfacine 

491231 timolol 202508 nitroglycerin 266604 metyrosine 

541103 bumetanide 215871 
hydrochlorothi

azide 
750224 amlodipine 

1808 bumetanide 805852 candesartan 203238 triamterene 
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6877 methyldopate 72210 quinapril 744891 amlodipine 

152434 torsemide 214357 

captopril 

  / 

hydrochlorothi

azide 

66977 bepridil 

750236 atorvastatin 142432 
clonidine 

  hydrochloride 
1369 

bendroflumethi

azide 

62349 ethacrynate 10600 timolol 724884 valsartan 

169050 reserpine 202507 nitroglycerin 744875 amlodipine 

151177 nitroglycerin 215870 
hydrochlorothi

azide 
203494 diltiazem 

214317 

bisoprolol 

  / 

hydrochlorothi

azide 

151172 nitroglycerin 656315 atenolol 

216251 nadolol 220004 spironolactone 10763 triamterene 

219881 
hydrochlorothi

azide 
2116 carteolol 218748 nitroglycerin 

83818 irbesartan 724892 amlodipine 358263 tadalafil 

151594 metyrosine 750228 atorvastatin 152413 atenolol 

542720 nifedipine 218749 nitroglycerin 218750 nitroglycerin 

71512 

phenoxybenza

mine 

  hydrochloride 

23742 
hydrochlorothi

azide 
219412 

hydrochlorothi

azide 

217643 
hydrochlorothi

azide 
151490 nicardipine 23742 triamterene 

155033 labetalol 6958 amiloride 750208 atorvastatin 

235230 
nicardipine 

  hydrochloride 
218754 nitroglycerin 545347 nitroglycerin 

629300 diltiazem 5034 guanabenz 217749 mecamylamine 
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215869 captopril 220669 reserpine 217643 reserpine 

831206 diltiazem 754803 polythiazide 142130 
acebutolol 

  hydrochloride 

583143 terazosin 218245 trandolapril 202595 diazoxide 

152098 indapamide 823960 
hydrochlorothi

azide 
215672 timolol 

342280 eplerenone 541600 nifedipine 225702 minoxidil 

809851 quinapril 151689 ethacrynate 219798 
hydroflumethia

zide 

202991 furosemide 298869 eplerenone 151558 losartan 

202594 diazoxide 7226 nadolol 8588 potassium 

52440 
hydrochlorothi

azide 
258337 

hydrochlorothi

azide 

  / triamterene 

202521 nitroglycerin 

216221 carvedilol 219798 reserpine 7008 
sotalol 

  hydrochloride 

142424 
amiloride 

  hydrochloride 
38413 torsemide 754803 prazosin 

724876 valsartan 37798 terazosin 258346 isradipine 

214619 

hydrochlorothi

azide 

  / losartan 

203160 
losartan 

potassium 
202516 nitroglycerin 

215458 candesartan 227278 
fosinopril 

  sodium 
744887 benazepril 

203423 nifedipine 220669 hydralazine 216677 chlorothiazide 

93113 penbutolol 215869 
hydrochlorothi

azide 
203490 verapamil 

4917 nitroglycerin 214620 

hydrochlorothi

azide 

  / methyldopa 

118463 
olmesartan 

  medoxomil 
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202512 nitroglycerin 218416 amiloride 4603 furosemide 

202978 pindolol 3829 enalaprilat 37925 orlistat 

203138 
verapamil 

  hydrochloride 
151195 

atenolol 

  / 

chlorthalidone 

284747 hydralazine 

7396 nicardipine 284747 
hydrochlorothi

azide 
218936 

hydrochlorothi

azide 

327503 olmesartan 688640 methyldopa 149 acebutolol 

745974 bisoprolol 142132 
carteolol 

  hydrochloride 
219878 

hydrochlorothi

azide 

69749 valsartan 219734 minoxidil 227549 ethacrynate 

153165 atorvastatin 214223 
amlodipine 

  / benazepril 
21406 

coenzyme 

  Q10 

7435 nisoldipine 203673 guanethidine 54552 perindopril 

216251 
bendroflumethi

azide 
214287 

benazepril 

  / 

hydrochlorothi

azide 

758548 
hydrochlorothi

azide 

82027 
hydralazine 

  hydrochloride 
203794 metolazone 542509 timolol 

823960 losartan 220005 spironolactone 83515 eprosartan 

823968 lisinopril 746962 timolol 54980 mibefradil 

700402 aliskiren 215868 captopril 325646 aliskiren 

217642 
hydrochlorothi

azide 
10601 timolol 805852 

hydrochlorothi

azide 

745969 bisoprolol 215871 captopril 220675 moexipril 

224931 polythiazide 9631 acebutolol 724888 valsartan 

49737 esmolol 203191 
metoprolol 

  tartrate 
744621 amlodipine 
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6984 minoxidil 823939 irbesartan 6185 labetalol 

405349 diltiazem 216252 
bendroflumethi

azide 
40138 iloprost 

809019 
hydrochlorothi

azide 
218753 nitroprusside 744875 benazepril 

219797 
hydroflumethia

zide 
220212 atenolol 75207 bosentan 

82084 
propranolol 

  hydrochloride 
688640 

hydrochlorothi

azide 
219881 reserpine 

7476 nitroprusside 220081 nisoldipine 214536 

enalapril 

  / 

hydrochlorothi

azide 

220212 chlorthalidone 5764 indapamide 744625 olmesartan 

218856 carteolol 151448 esmolol 215870 captopril 

744629 olmesartan 353022 eprosartan 152440 labetalol 

227749 
trichlormethiaz

ide 
220778 verapamil 809851 

hydrochlorothi

azide 

203778 
phenoxybenza

mine 
218088 benazepril 1520 betaxolol 

216652 valsartan 151131 nifedipine 754809 polythiazide 

151318 methyldopa 750204 atorvastatin 751613 nebivolol 

656315 chlorthalidone 750232 atorvastatin 221002 bisoprolol 

220005 
hydrochlorothi

azide 
17276 

hydrochlorothi

azide 
73494 telmisartan 

262418 ramipril 220309 diltiazem 26296 guanadrel 

214622 

hydrochlorothi

azide 

  / moexipril 

541019 captopril 71974 torsemide 
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750208 amlodipine 215868 
hydrochlorothi

azide 
71556 guanfacine 

24853 fenoldopam 151435 metoprolol 823968 
hydrochlorothi

azide 

744883 benazepril 214212 

amiloride 

  / 

hydrochlorothi

azide 

353022 
hydrochlorothi

azide 

52440 triamterene 219868 atenolol 668310 
carvedilol 

  phosphate 

750196 amlodipine 491311 nifedipine 151133 nifedipine 

17276 spironolactone 224921 enalapril 30131 moexipril 

402957 metolazone 261438 perindopril 303263 tadalafil 

749838 
hydrochlorothi

azide 
151317 spironolactone 151174 nitroglycerin 

724888 amlodipine 744883 amlodipine 216909 deserpidine 

303838 hydralazine 202693 
labetalol 

  hydrochloride 
58927 amlodipine 

152380 spironolactone 1998 captopril 18867 benazepril 

1436 bepridil 235758 
benazepril 

  hydrochloride 
8153 phentolamine 

35208 quinapril 218416 
hydrochlorothi

azide 
285061 enalaprilat 

203016 felodipine 203276 
hydrochlorothi

azide 
7442 

nitric 

  oxide 

202706 minoxidil 151877 chlorthalidone 991208 
bendroflumethi

azide 

219882 
hydrochlorothi

azide 
83213 mibefradil 52175 losartan 

151178 nitroglycerin 72260 
perindopril 

  erbumine 
203538 bumetanide 
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744633 olmesartan 2599 clonidine 3443 diltiazem 

261415 

fosinopril 

  / 

hydrochlorothi

azide 

809027 
hydrochlorothi

azide 
801793 

coenzyme 

  Q10 

  

404773 
amlodipine 

  / atorvastatin 
219412 lisinopril   

220391 
hydrochlorothi

azide 
10772 

trichlormethiaz

ide 
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APPENDIX B 

SUPPLEMENTAL TABLE 9 

 

Supplemental Table 9: Concept counts extracted from all notes combined divided by semantic type.  

 

 

Unique 
concepts 
filtered 

Total 
concept 
occurrence 
counts 

Total 
concept-
SNP counts 

Unique concept-SNP pairings 
tested Total concept-SNP pairings tested 

    p<0.05 
p<5*10-

8 
p<7.3*10-

11 p<0.05 
p<5*10-

8 p<7.32*10-11 

Filtered concept 
set 11,553 99,914,863 513,834,453 10,891 4,374 373    

          

Sign or Symptom 674 13,236,738 32,354,456 657 207 15 1,750,506 312 17 

Finding 2,745 21,218,267 121,271,735 2,598 1,073 74 6,855,756 1,707 87 

Clinical Attribute 148 880,388 6,620,896 139 57 6 365,927 93 6 

Pathologic 
Function 522 4,277,607 23,194,686 485 191 25 1,273,075 355 31 

Disease or 
Syndrome 2,329 18,634,765 103,719,768 2,209 912 103 5,832,858 2,244 474 

Cell or Molecular 
Dysfunction 20 32,052 899,414 20 10 0 50,829 13 0 

Mental or 
Behavioral 
Dysfunction 206 1,451,443 9,412,511 199 70 7 528,769 123 9 

Mental Process 111 1,832,576 5,521,976 110 25 2 294,175 36 2 

Neoplastic 
Process 521 3,027,193 22,002,936 461 206 24 1,198,315 339 25 

Acquired 
Abnormality 114 590,380 4,835,446 104 41 3 273,711 56 3 

Anatomical 
Abnormality 126 928,503 5,415,699 117 51 4 313,221 76 5 

Congenital 
Abnormality 99 835,535 4,160,337 87 34 2 225,357 49 2 
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Injury or 
Poisoning 334 1,121,460 14,180,780 322 143 6 842,306 232 8 

Phenomenon or 
Process 24 275,822 1,212,314 24 6 1 64,211 12 1 

Physiologic 
Function 38 354,446 1,826,542 37 9 1 90,073 11 1 

Organ or Tissue 
Function 116 1,015,395 5,320,074 111 40 4 296,325 71 4 

Laboratory or 
Test Result 168 626,042 7,284,615 161 69 4 416,154 112 4 

Laboratory 
Procedure 475 5,931,809 21,725,094 461 201 17 1,235,610 317 24 

Diagnostic 
Procedure 616 6,035,970 27,649,745 575 220 12 1,516,124 335 12 

Cell 63 609,269 2,846,061 61 32 3 161,893 53 3 

Bacterium 82 236,807 3,610,956 80 37 4 210,816 62 4 

Virus 33 143,958 1,490,621 30 6 0 80,232 13 0 

Eukaryote 0 38,699 0 0 0 0 0 0 0 

Fungus 15 54,939 659,658 13 5 1 34,462 14 1 

Enzyme 1 946,554 47,591 1 1 0 2,635 1 0 

Hormone 1 1,176,622 58,769 1 0 0 2,517 0 0 

Therapeutic or 
Preventive 
Procedure 1,909 13,117,694 83,747,744 1,770 705 54 4,668,544 1,169 77 

Health Care 
Related 
Organization 63 1,283,930 2,764,029 58 23 1 151,721 31 1 

Table includes the total counts across semantic types as well as the counts that surpass p-value thresholds – both 

as unique CUIs and total CUI-SNP pairings tested. Total pairings exclude NULL results in counts. P-value thresholds 

are set for 0.05, 5*10-8 (genome wide significance), and 7.32*10-11 (conservative Bonferroni correction). 
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SUPPLEMENTAL TABLE 10 

Supplemental Table 10: Concepts have better specificity and PPV than phecodes.  

      NLP ICD 

Disease All Cases Controls Unkn. Cases Sens. Spec. PPV Cases Sens. Spec. PPV 

Atrial fibrillation 178 130 47 1 67 0.51 0.98 0.99 122 0.71 0.36 0.75 

Alzheimer's 208 111 63 34 67 0.53 0.87 0.76 92 0.64 0.67 0.58 

Breat Cancer 173 116 31 26 77 0.66 0.97 0.97 91 0.74 0.84 0.75 

Gout 215 173 34 8 134 0.75 0.85 0.95 136 0.73 0.74 0.89 

HIV 201 125 64 12 74 0.49 0.80 0.81 121 0.81 0.69 0.77 

Multiple sclerosis 199 121 66 12 88 0.67 0.89 0.86 98 0.63 0.67 0.72 

Parkinson's 192 123 55 14 76 0.60 0.96 0.95 87 0.64 0.85 0.81 

Rheumatoid Arthritis 209 114 61 34 89 0.75 0.93 0.80 83 0.60 0.75 0.60 

Type 1 Diabetes Mellitus 172 74 82 16 89 0.82 0.66 0.66 119 0.95 0.40 0.54 

Type 2 Diabetes Mellitus 179 112 42 25 74 0.63 0.90 0.89 109 0.71 0.31 0.60 

Average 192.6 119.9 54.5 18.2 83.5 0.64 0.88 0.86 105.8 0.72 0.63 0.70 

SD 15.3 22.9 15.1 10.5 18.6 0.11 0.09 0.10 17.1 0.10 0.19 0.11 

Below are the case and control counts as well as sensitivity (Sens.), specificity (Spec.), and positive predictive value 

(PPV) for NLP and phecode (ICD) based phenotypes. Individuals were treated as a case if they had ≥ 1 instance of 

the appropriate concept or phecodes. 
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SUPPLEMENTAL TABLE 11 

Supplemental Table 11: Replication counts and rates for all exact and disease-related-to-trait associations for 

NLP-PheWAS and ICD-PheWAS (Filtered).  

   

Total Rep. 
Rep. 
Rate 

Unique 
Catalog 

Phenotypes 

Unique 
SNPs 

Unique 
Phenotype 

Codes 

N
LP

-P
h

eW
A

S 

all 
binary 455 139 30.5% 79 391 74 

continuous 134 25 18.7% 21 76 17 

powered binary 189 86 45.5% 47 175 44 

IC
D

-P
h

eW
A

S 

all 
binary 356 127 35.7% 54 324 52 

continuous 91 23 25.3% 12 61 5 

powered binary 102 74 72.5% 34 96 34 

 

The table contains the replications counts and rates as well as the total number of unique NHGRI Catalog 

phenotypes, SNPs, and phenotype codes (CUI-based or phecode as appropriate) for p-value replications depicted 

in Figure 8. This set only includes associations where the respective method was an ‘exact’ or ‘disease related to 

trait’ match. The maximum for each column is bolded. 
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SUPPLEMENTAL TABLE 12 

Supplemental Table 12: Potentially novel and finer granularity associations discovered by NLP-PheWAS.  

 

SNP CUI Description P OR GENE CHR CASES CONTROLS 

rs2476601 542499 
Measurement of basal 
metabolic rate 

2.48E-08 2.44 PTPN22 1 118 29537 

rs2476601 11880 Diabetic Ketoacidosis 4.57E-10 2.182 PTPN22 1 211 29444 

rs2476601 11854 
Diabetes Mellitus, Insulin-
Dependent 

7.69E-10 1.442 PTPN22 1 1329 28326 

rs2476601 20676 Hypothyroidism 7.17E-10 1.248 PTPN22 1 5012 24643 

rs16861990 459853 H/O: Deep vein thrombosis 1.00E-09 1.883 NME7 1 489 29166 

rs16861990 584960 Factor V Leiden mutation 3.54E-35 6.721 NME7 1 107 29548 

rs16861990 340708 
Deep vein thrombosis of lower 
limb 

1.65E-10 1.491 NME7 1 1765 27890 

rs16861990 584619 
Factor V Leiden genotype 
determination 

1.67E-20 12.42 NME7 1 29 29626 

rs16861990 1319557 Factor V Leiden test 1.31E-13 5.439 NME7 1 51 29604 

rs6677604 242383 
Age related macular 
degeneration 

9.09E-09 0.6344 CFH 1 723 28932 

rs1329428 24437 Macular degeneration 1.67E-08 0.4454 CFH 1 139 29516 

rs1329428 242383 
Age related macular 
degeneration 

4.73E-21 0.5647 CFH 1 723 28932 

rs6756629 8320 Cholecystectomy procedure 8.78E-26 1.574 ABCG5 2 4650 25005 

rs4299376 8320 Cholecystectomy procedure 1.89E-15 0.8157 ABCG8 2 4650 25005 

rs6544713 8320 Cholecystectomy procedure 1.41E-14 0.821 ABCG8 2 4650 25005 

rs887829 17551 Gilbert Disease (disorder) 2.37E-22 8.097 
UGT1A8, 
etc. 

2 66 29589 

rs887829 311468 
Increased bilirubin level 
(finding) 

1.07E-14 1.866 
UGT1A8, 
etc. 

2 309 29346 

rs6742078 17551 Gilbert Disease (disorder) 2.17E-22 8.105 
UGT1A8, 
etc. 

2 66 29589 

rs6742078 311468 
Increased bilirubin level 
(finding) 

7.92E-15 1.872 
UGT1A8, 
etc. 

2 309 29346 
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rs4148325 311468 
Increased bilirubin level 
(finding) 

8.72E-15 1.87 
UGT1A8, 
etc. 

2 309 29346 

rs4148325 17551 Gilbert Disease (disorder) 2.30E-22 8.094 
UGT1A8, 
etc. 

2 66 29589 

rs2361502 17551 Gilbert Disease (disorder) 1.16E-15 4.244  2 66 29589 

rs1497546 474354 Optic disc neovascularization 3.15E-09 7.007  3 34 29621 

rs16890979 18099 Gout 7.86E-14 0.7082 SLC2A9 4 1832 27823 

rs13129697 18099 Gout 1.75E-13 0.7338 SLC2A9 4 1832 27823 

rs3775948 18099 Gout 2.26E-15 0.7039 SLC2A9 4 1832 27823 

rs2200733 4239 Atrial Flutter 5.07E-09 1.507  4 828 28827 

rs2200733 428978 Slow ventricular response 4.75E-08 1.679  4 406 29249 

rs2200733 4238 Atrial Fibrillation 1.70E-22 1.493  4 3272 26383 

rs2200733 729790 H/O: atrial fibrillation 7.14E-11 1.616  4 736 28919 

rs2200733 694539 Chronic atrial fibrillation 4.08E-09 1.611  4 601 29054 

rs2200733 232197 Fibrillation 1.20E-16 1.586  4 1421 28234 

rs2200733 235480 Paroxysmal atrial fibrillation 4.09E-16 1.592  4 1329 28326 

rs12203592 7114 Malignant neoplasm of skin 5.22E-17 1.418 IRF4 6 1801 27854 

rs12203592 22602 Actinic keratosis 1.09E-13 1.373 IRF4 6 1746 27909 

rs12203592 79850 Mohs Surgery 3.31E-09 1.377 IRF4 6 1033 28622 

rs12203592 7137 Squamous cell carcinoma 2.95E-10 1.27 IRF4 6 2366 27289 

rs2274089 392514 Hereditary hemochromatosis 3.06E-11 6.04 LRRC16A 6 29 29626 

rs2274089 18995 Hemochromatosis 5.72E-15 2.908 LRRC16A 6 157 29498 

rs17270561 18995 Hemochromatosis 3.85E-10 2.076 SLC17A1 6 157 29498 

rs17270561 392514 Hereditary hemochromatosis 2.63E-10 5.564 SLC17A1 6 29 29626 

rs17342717 684257 Venesection 4.42E-11 2.192 SLC17A1 6 237 29418 

rs17342717 18995 Hemochromatosis 5.99E-22 3.453 SLC17A1 6 157 29498 

rs17342717 392514 Hereditary hemochromatosis 4.62E-18 10.13 SLC17A1 6 29 29626 

rs12216125 392514 Hereditary hemochromatosis 9.40E-09 6.114  6 29 29626 

rs12216125 18995 Hemochromatosis 1.06E-08 1.912  6 157 29498 

rs1800562 392514 Hereditary hemochromatosis 1.42E-19 11.14 HFE 6 29 29626 

rs1800562 282193 Iron Overload 3.21E-09 3.14 HFE 6 85 29570 
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rs1800562 18995 Hemochromatosis 1.42E-30 4.499 HFE 6 157 29498 

rs1800562 684257 Venesection 5.83E-14 2.569 HFE 6 237 29418 

rs13194984 18995 Hemochromatosis 3.60E-08 2.048  6 157 29498 

rs13194491 18995 Hemochromatosis 4.07E-14 2.87  6 157 29498 

rs13194491 392514 Hereditary hemochromatosis 5.37E-10 5.693  6 29 29626 

rs1046089 11854 
Diabetes Mellitus, Insulin-
Dependent 

4.70E-15 1.375 PRRC2A 6 1329 28326 

rs1046089 11880 Diabetic Ketoacidosis 1.09E-09 1.823 PRRC2A 6 211 29444 

rs1016343 33573 Prostatectomy 2.01E-09 1.4  8 978 28677 

rs1016343 376358 
Malignant neoplasm of 
prostate 

6.20E-10 1.301  8 2020 27635 

rs4977574 10055 
Coronary Artery Bypass 
Surgery 

5.45E-09 1.206 
CDKN2B-
AS1 

9 2345 27310 

rs965513 238463 Papillary thyroid carcinoma 4.07E-10 1.508  9 506 29149 

rs965513 20676 Hypothyroidism 3.32E-09 0.8652  9 5012 24643 

rs965513 7115 
Malignant neoplasm of 
thyroid 

7.77E-11 1.495  9 575 29080 

rs965513 3163939 
Malignant epithelial neoplasm 
of thyroid 

1.17E-08 1.678  9 258 29397 

rs657152 427625 Blood group O (finding) 4.03E-08 0.3522 ABO 9 104 29551 

rs505922 427625 Blood group O (finding) 1.95E-08 0.3135 ABO 9 104 29551 

rs10993994 194810 Radical prostatectomy 2.55E-08 1.306  10 1079 28576 

rs10993994 376358 
Malignant neoplasm of 
prostate 

1.49E-09 1.246  10 2020 27635 

rs7901695 11849 Diabetes Mellitus 7.37E-13 1.167 TCF7L2 10 6995 22660 

rs7901695 11860 
Diabetes Mellitus, Non-Insulin-
Dependent 

2.98E-13 1.214 TCF7L2 10 3933 25722 

rs7903146 11849 Diabetes Mellitus 3.07E-14 1.18 TCF7L2 10 6995 22660 

rs7903146 11860 
Diabetes Mellitus, Non-Insulin-
Dependent 

7.10E-15 1.234 TCF7L2 10 3933 25722 

rs2981579 678222 Breast Carcinoma 5.50E-10 1.245 FGFR2 10 1987 27668 

rs1219648 678222 Breast Carcinoma 1.47E-09 1.239 FGFR2 10 1987 27668 

rs964184 20557 Hypertriglyceridemia 7.66E-15 1.585  11 947 28708 

rs8050136 28756 Obesity, Morbid 3.05E-08 1.304 FTO 16 917 28738 
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rs9941349 28756 Obesity, Morbid 3.43E-08 1.302 FTO 16 917 28738 

rs7193343 19621 Histiocytosis, Langerhans-Cell 3.49E-08 2.723 ZFHX3 16 66 29589 

rs9923451 1531589 Anticoagulation declined 2.29E-08 5.493 WWOX 16 123 29532 

rs4430796 376358 
Malignant neoplasm of 
prostate 

2.42E-08 0.8157 HNF1B 17 2020 27635 

rs613872 16781 Fuchs Endothelial Dystrophy 3.69E-09 3.541 TCF4 18 45 29610 

rs2075650 497327 Dementia 6.87E-12 1.51 TOMM40 19 1210 28445 

The table contains 80 genome-phenome associations outside of the HLA-region and above the genome-wide 

significance threshold of 5x10-8 from all SNPs available on the Exome array used. Of these, 78 are replications or 

related to know associations. The remaining two, ‘optic disc neovascularization’ and ‘Langerhans-Cell Histiocytosis’ 

are potentially novel associations. 
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SUPPLEMENTAL FIGURE 1 

 

Supplemental Figure 1: Odds ratio comparison between NLP-PheWAS, ICD-PheWAS, and NHGRI Catalog 

associations (powered associations only).  

Scatter plots show relatively similar odds ratios between NHGRI Catalog phenotypes and the corresponding NLP 

and ICD PheWAS results for which both had an ‘exact’ match. The points trend towards higher odds ratios for 

NHGRI Catalog and ICD-PheWAS associations – panels A and C – as the points that deviate are largely below the 

x=y equality line. All points included have been filtered by demographics (ancestry, age, sex), with catalog p-values 

above a genome-wide significance threshold, reported odds ratio, allele, and that NLP-PheWAS and ICD-PheWAS 

were powered to replicate. Panels B and D show the –log(p) (max=21.8 for B and max=28.2 for D) for associations 

as point size illustrating that points that unexpectedly deviate from the x=y equality line are overwhelmingly cases 

with a lower statistical significance. 
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SUPPLEMENTAL FIGURE 2 
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Supplemental Figure 2: Manhattan plots for novel associations. 

Above are Manhattan plots for rs1497546 and rs7193343 which were found to have potentially novel associations 

by NLP-PheWAS. Below each are the corresponding ICD-PheWAS results. Red lines indicate the Bonferroni 

correction for the given method and blue lines represent the traditional 0.05 significance threshold. Annotation 

thresholds are included per graph and were adjusted to maximize visibility. Points are not included for NLP-

PheWAS associations with p-values < 0.05. 


