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Chapter 1

Introduction

This thesis includes four different projects. The first two are projects in classical anal-

ysis. First a necessary and sufficient condition for the continuity at a point of minima for

parabolic variational integrals with linear growth is obtained. Second a topology of conver-

gence through which solutions of the parabolic p-Laplacian (P-LAP) ut = div
[
|Du|p−2 Du

]
converge to the parabolic 1-Laplacian (1-Lap) is quantified. In the (1-Lap) case solutions

are naturally taken in the class of bounded variation rather than Sobolev spaces. The equa-

tions are recast as parabolic variational integrals and the convergence is accomplished in

the variational setting rather than the customary weak formulation.

The final two projects are in computational mathematics applied to math biology. The

third project numerically models surface, Laplace-Beltrami driven diffusion of proteins

along tube-shaped cell membranes. This Finite Element code was built using B-splines

whose general advantages over the standard linear, nodal interpolant splines extend to rates

of convergence, shape control, and degree of smoothness. In the fourth project, a pro-

gram of homogenization and concentrating capacity has been applied to a PDE system for

diffusing, biological 2nd messengers, Ca2+ and cGMP, in the rod and cone visual photore-

ceptors of vertebrate retina with a nonlinear couple in the Neumann data. This model is

numerically implemented through Finite Element code after having formally determined

the homogenized limit. Convergence of the nonhomogenized model towards the homoge-

nized one is investigated numerically by successively increasing the number of discs in the

nonhomogenized model and comparing the current response across models. Findings and

time cost of the models are reported. Both these latter projects are interdisciplinary and

have been conducted alongside mathematicians and biologists.
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1 The Parabolic 1-Laplacian: Solutions’ Regularity and Their Approximation by

p-Laplacian Solutions

The origins of the p-Laplacian and its limiting cases, e.g. 1-Laplacian, are rooted in

the heat equation. The p-Laplacian describes diffusion phenomena when the conductivity,

|∇u|p−2, is a function of the space-gradient of the diffusing quantity u. It occurs in geom-

etry and with quasi-conformal mappings for p=N ([1],[2]) and elsewhere in the study of

non-newtonian fluids [3]. There the distinctions between regimes [p > 2] and [p < 2] are

physical and correspond to super-fluidity and super-viscosity (e.g. jelly or rheologic fluids

[4]) respectively. The fine regularity of this operator has been extensively studied. This

paves the way for a study of its limiting cases. The interest herein concerns the p→ 1

case. In fact, the 1-Lap itself has strong motivations: In image processing ([5],[6]), 1-Lap

flows are advantageous for BV’s ability to exhibit jump discontinuities. There boundaries

of image curves may be sharpened rather than blurred. In geometry, where u is a parabolic

1-Lap solution, the evolution is a mean curvature geometric flow for the level sets [u = k]

([7]).

For convenience the main result of [8] is surveyed here while developed in its own

chapter. Let E be an open set of RN for T > 0 and ET denote the space-time cylinder

E× (0,T ]. Consider formally the quasi-linear parabolic differential equation

ut−div
[
|Du|−1 Du

]
= 0 weakly in ET (1.1)

Solutions of (1.1) can be made precise by requiring that they be parabolic variational solu-

tions in the sense of Wieser ([9],[10]). A function u ∈ L1
loc (0,T ;BVloc(E)) is a variational

solution of (1.1) and a local parabolic minimizer of the total variation flow in ET if for all

nonnegative ϕ ∈C∞
0 (ET )

∫ T

0

[∫
E
−uϕtdx+‖Du(t)‖(E)

]
dt ≤

∫ T

0
‖D(u−ϕ)‖(E)dt (1.2)

2



Formally applying the Euler-Lagrange procedure to (1.2) returns (1.1). Letting p→ 1+,

(1.1) may be regarded as a formal limit of the family of p-Laplacian equations.

ut−div
[
|Du|p−2 Du

]
= 0 weakly in ET

In the case of the p-Laplacian, it is known that a Hölder modulus of continuity can be quan-

tified in terms of an a priori bound for the solution and the equation itself. Because of their

BV nature, 1-Laplacian solutions are not expected to be continuous and an a priori modulus

of continuity cannot be quantified from boundedness and the equation alone. In Theorem

1.1 below, we give a necessary and sufficient condition for solutions to be continuous at a

point. In the above sense our result of [8] optimally gives a criterion for continuity

Theorem 1.1 Let u ∈ L1
loc (0,T ;BVloc(E)) be a local parabolic minimizer of the total vari-

ation flow (1.2) in ET which satisfies in addition

u ∈ L∞
loc(ET ) and ut ∈ L1

loc (ET )

Then u is continuous at some (x0, t0) ∈ ET if and only if

limsup
ρ→0

ρ∣∣Qρ

∣∣ ∫ t0

t0−ρ

‖Du(·; t)‖
(
Bρ (x0)

)
dt = 0

Turning to the task of quantifying a topology of convergence where solutions of the

p-Laplacian tend to those of the 1-Laplacian, this work is driven by two main theorems

found in Chapter 3:

Theorem 1.2 Under the assumptions given in Chapter 3, when p→ 1, we have that for

any T > 0, the p-Laplacian variational solutions up → u1 in Lq(Ω∗T ) for any 1 ≤ q <

N
N−1 , and ∂tup→ ∂tu1 in L2

w(Ω
∗
T ), where u1 ∈ L1

w (0,T ;BVuo(Ω))∩C0 ([0,T ] ;L2 (Ω∗)
)

is a

variational solution to the Cauchy-Dirichlet Problem for the total variation flow.

The latter theorem depends on a density result:

3



Theorem 1.3
{

L∞

(
0,T ;uo +C∞

o,γ,p(Ω)
)}

γ>0
∩L∞

(
0,T ;L2(Ω)

)
is dense in the space

L1 (0,T ;BVuo(Ω)).

In proving the convergence of these Cauchy-Dirichlet problems, a chief obstacle is the

loss of weak∗ convergence of traces in BV (Ω). This difficulty is overcome by suitably

extending the solutions into a larger domain through a single extension of their common

trace.

2 Finite Element Approximations of Laplace-Beltrami Diffusions of Proteins

Lateral diffusion of proteins in highly regulated, curved cell membranes is common-

place and plays important roles in processes such as neuronal signaling, immunological re-

actions, receptor endocytosis, protein recruitment, and many signaling pathways. Classical

cell diffusion models assume the membrane to be planar ([11]). However, geometry affects

concentration gradients. This has been demonstrated for tubular geometries ([12],[13]). To

study geometric influence, we implemented a numerical Finite Element, Laplace-Beltrami

driven diffusion for geometrically complex surfaces using membrane tubules as a biologi-

cally relevant example. Tubular membrane geometries are typical of numerous structures

found in cells including dendritic spines, the endoplasmic reticulum, membrane nanotubes,

primary cilia, clathrin-independent carriers and sorting tubules emanating from endosomes

and the trans-Golgi network [14]

The results here are presented in detail in our paper [15]. From first principles, a

Laplace-Beltrami driven diffusion model was justified and applied to tubular surfaces. A

finite element methods (FEM) solver was built for both symmetric and bivariate, nonsym-

metric cases. The numerical, symmetric solution is computed by Galerkin, semi-discrete

methods applied to normalized B-splines [16]. B-splines can lead to faster convergence

rates and avoid artifacts like negativity in contrast to nodal basis splines. B-splines fur-

ther allow the user to work in conforming spaces of arbitrary smoothness and polynomial

degree.

4



A tubule may be modeled as a cylinder with length h and radius r attached to a hemi-

spherical cap of radius r. We compared our simulations with experimental work measuring

Fig 2: Simulated Fit to Aimon

Figure 1.1: Simulated Fit to Aimon

protein diffusion in curved membrane tethers ([12]).

The simulated FEM data (closed circles Fig. 2)

closely agree with the experimental (open circle,

Figure 2). We next performed numerical experi-

ments over biophysically relevant ranges of radii and

lengths. We found changing the radius does not

substantially impact the concentration profile in the

tubule. We observed concentration gradients to be

different for different tubule lengths with identical

radii.

It was illuminating to compare diffusion on a tubule to diffusion on a corresponding flat

surface. We design curved and flat surface pairs that are comparable by enforcing that they

share a common amount of total material (global area). In one it is curved like a tube where

the other it is a planar disc laid flat. Due to Gaussian curvature, we cannot expect a local,

isometric correspondence between these two model spaces. However, nor would we want

the two surfaces to be equivalent. That would erase curvature differences. Varying every

parameter of interest, we found that compared to the flat geometry, the material diffusion

from the hemisphere was slowed in the tubular geometry. In some cases, the magnitude of

this effect was nearly 20 percent.

3 Homogenization and Concentrated Capacity in Cone Photoreceptors

Sight is produced by visual transduction in the rod and cone outer segments. Here

the second messengers, Ca2+ and cGMP, diffuse within the slight outer membrane and

many, thin layers of the cytosol [17]. Though thin, incised domains and similar biochem-

ically, these outer segments differ in their global architecture. These geometries (cylin-

5



der vs cone) inform rods’ and cones’ main biochemical and biophysical functions. Their

biochemstry acts at three disparate scales across three orders of magnitude (global 10µm,

membrane/layers 10nm, molecular 100Å). This discrepancy renders mathematical model-

ing and its numerical implementations challenging. To mediate between scales, the tech-

niques of homogenization and concentrating capacity have been applied to messenger dif-

fusion in domains that model the cone outer segment of human eyes and vertebrate animals.

The technique of homogenization may be traced back to DeGiorgi who conceived it while

studying fine-scale and periodically scattered impurities in media [18]. Concentrating ca-

pacity goes back to Tychonov who was interested in limiting cases of heat diffusion in thin

slabs [19].

An outer segment may be modeled as a cone in which one makes discal, volume cuts

along the cross sections with width and vertical spacing of ε-order. These incisions mimic

the layered cytosol. An angular portion of lateral surface is replaced with an ε-sliver of

extended, conical volume, resembling the “residual” outer membrane. Though O(ε) in

size, the discs carry messenger fluxes that regulate diffusion, and the membrane conducts a

current modulating vision [17]. These necessitate tracking the small order structures.

Initially, the diffusion is modeled pointwise for each layered, ε-domain. One enforces

the heat equation, aε
∂

∂ t uε − div{aε(x)∇uε} = 0, weakly and extracts the solutions {uε}.

Variational data is taken at the discs and properly balanced over the boundaries to reflect

the underlying biochemistry. This method encodes the biophysics at its own scales and

locations. The aε express concentrating capacity. They are of unity everywhere but the

membrane, where their ε-growth is of the inverse order that the sliver shrinks. These bal-

ances are to preserve the cytosol’s biophysics. As ε → 0, the interdiscal regions narrow,

growing in number. The sliver retracts onto the cone’s surface. A PDE process for the weak

limit of the solutions uε is then extracted formally.

For clarity, I here describe the salient features of the formal, homogenized and concen-

trated capacity limit in the single prototype cGMP messenger context. The limit contains

6



three novel components:

• A principle diffusion term ∆x̄u =
∂ 2u
∂x2 +

∂ 2u
∂y2 in the horizontal variables x̄ = (x,y).

Homogenization reveals that the discs are barriers to z−dimensional diffusion along

the axis of the cone. As the number of interposing discs grows over the uε problems,

the z−dimensional height of interconical chambers diminishes, so that in the limit it

is vanishing.

• A volume source term of −(u− f (u)) type not present in the uε problems.

At their interface with the cytosolic interior, the discs site Neumann terms in the uε

problems. These are recast into the interior per integration by parts and their limit

taken. This produces the above. The resultant −u encodes cGMP hydrolysis by the

effector Phosphodiesterase. The resultant and nonlinear f (u) encodes the synthesis

of cGMP by GCAP stimulated Guanylate Cyclase.

• A Laplace-Beltrami diffusion for the trace of u at the boundary of the retracted sliver.

In the family of uε problems and within the sliver only, the coefficient of diffusivity

contains a 1/ε term to balance the sliver’s volume diminishing like O(ε). In the

energy estimates, this method of Tychonov then generates the Steklov average of

uε , taken obliquely to the surface, in the surface measure of the boundary interface

between cone and sliver. Testing by an appropriate class of function determined

by that oblique direction, the diffusion PDE formally tends to the surface Laplace-

Beltrami.

The homogenized, concentrated capacity limit couples an interior 3d volume diffusion

with a 2d surface diffusion. We have a system of coupled PDE’s in dimensionally different

domains. A Matlab based finite element code has been written for cGMP diffusion and its

companion second messenger Ca2+ both in the homogenized and nonhomogenized cases.

Both codes have been included. Tables are given that report the relative errors between

these two models as well as the difference in time cost to simulate. A table of param-

7



eters used in the model has also been gathered from the existing biochemical literature.

How those values were derived and the meaning of those parameters within the model is

discussed. A small collection of numerical experiments is also included.
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Chapter 2

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic

Variational Integrals with Linear Growth

This chapter was published under this title in The Journal of Advances in Calculus of

Variations in July 2017 and online January 2016, [8].

1 Introduction

For proper minimizers of parabolic variational integrals with linear growth with respect

to |Du|, we establish a necessary and sufficient condition for u to be continuous at a point

(xo, to), in terms of a sufficient fast decay of the total variation of u about (xo, to) (see

(1.4) below). These minimizers arise also as proper solutions to the parabolic 1-laplacian

equation. Hence, the continuity condition continues to hold for such solutions.

Let E be an open subset of RN , and denote by BV (E) the space of functions v ∈ L1(E)

with finite total variation [20]

‖Dv‖(E) := sup
ϕ∈[C1o (E)]N
|ϕ|≤1

{
〈Dv,ϕ〉=−

∫
E

vdivϕ dx
}
< ∞.

Here Dv = (D1v, . . . ,DNv) is the vector valued Radon measure, representing the distri-

butional gradient of v. A function v ∈ BVloc(E) if v ∈ BV (E ′) for all open sets E ′ ( E.

For T > 0, let ET = E× (0,T ), and denote by L1(0,T ;BV (E)) the collection of all maps

v : [0,T ]→ BV (E) such that

v ∈ L1(ET ), ‖Dv(t)‖(E) ∈ L1(0,T ),

9



and the maps

(0,T ) 3 t→ 〈Dv(t),ϕ〉

are measurable with respect to the Lebesgue measure in R, for all ϕ ∈ [C1
o(E)]

N .

A function u ∈ L1
loc
(
0,T ;BVloc(E)

)
is a local parabolic minimizer of the total variation

flow in ET , if

∫ T

0

[∫
E
−uϕtdx+‖Du(t)‖(E)

]
dt ≤

∫ T

0
‖D(u−ϕ)(t)‖(E)dt (1.1)

for all non-negative ϕ ∈ C∞
o (ET ). The notion has been introduced in [9] and modeled

in [10]. It is a parabolic version of the elliptic local minima of total variation flow as

introduced in [21].

2 The Main Result

Let Bρ(xo) denote the ball of radius ρ about xo. If xo = 0, write Bρ(xo) = Bρ . Introduce

the cylinders Qρ(θ) = Bρ × (−θρ,0], where θ is a positive parameter to be chosen as

needed. If θ = 1 we write Qρ(1) = Qρ . For a point (xo, to)∈RN+1 we let [(xo, to)+Qρ(θ)]

be the cylinder of “vertex” at (xo, to) and congruent to Qρ(θ), i.e.,

[(xo, to)+Qρ(θ)] = Bρ(xo)× (to−θρ, to],

and we let ρ > 0 be so small that [(xo, to)+Qρ(θ)]⊂ ET .

Theorem 2.1 Let u ∈ L1
loc
(
0,T ;BVloc(E)

)
be a local parabolic minimizer of the total vari-

ation flow in ET , satisfying in addition

u ∈ L∞
loc(ET ) and ut ∈ L1

loc(ET ). (2.1)

10



Then, u is continuous at some (xo, to) ∈ ET , if and only if

limsup
ρ↘0

ρ

|Qρ |

∫ to

to−ρ

‖Du(·, t)‖(Bρ(xo))dt = 0. (2.2)

For stationary, elliptic minimizers, condition (2.2) has been introduced in [21]. The sta-

tionary version of (2.2) implies that u is quasi-continuous at xo. For time-dependent mini-

mizers, however, (2.2) gives no information on the possible quasi-continuity of u at (xo, to).

Condition (2.2), is only a measure-theoretical restriction on the speed at which a possible

discontinuity may develop at (xo, to). For this reason our proof is entirely different than

[21], being based instead on a DeGiorgi-type iteration technique that exploits precisely

such a measure-theoretical information.

3 Comments on Boundedness and Continuity

The theorem requires that u is locally bounded and that ut ∈ L1
loc(ET ). In the elliptic

case, local minimizers of the total gradient flow in E, are locally bounded ([21, § 2]). This

is not the case, in general, for parabolic minimizers in ET , even if ut ∈C∞
loc
(
0,T ;L1

loc(E)
)
.

Consider the function

B1× (−∞,1) 3 (x, t)→ F(|x|, t) = (1− t)
N−1
|x|

, for N ≥ 3.

Denote by DaF that component of the measure DF which is absolutely continuous with

respect to the Lebesgue measure in RN . One verifies that DF = DaF and ‖DF(t)‖(B1) =

‖DaF(t)‖1,B1 . By direct computation

∫ T

0

∫
B1

(
−Fϕt +

DaF
|DaF |

·Dϕ

)
dxdt = 0,

11



for all ϕ ∈C∞
o
(
B1× (0,T )

)
, 0 < T < 1. From this

∫ T

0

∫
B1

(
−Fϕt +

DaF
|DaF |

·DaF
)

dxdt =
∫ T

0

∫
B1

DaF
|DaF |

·Da(F−ϕ)dxdt,

which yields

∫ T

0

∫
B1

(
−Fϕt + |DaF |

)
dxdt ≤

∫ T

0

∫
B1

|Da(F−ϕ)|dxdt.

Thus F is a local, unbounded, parabolic minimizer of the total variation flow. The re-

quirement u ∈ L∞
loc(ET ) could be replaced by asking that u ∈ Lr

loc(ET ) for some r > N. A

discussion on this issue is provided in Section 13.

4 On the Modulus of Continuity

While Theorem 2.1 gives a necessary and sufficient condition for continuity at a given

point, it provides no information on the modulus of continuity of u at (xo, to). Consider the

two time-independent functions in Bρ × (0,∞), for some ρ < 1:

u1(x1,x2) =



1
lnx1

for x1 > 0;

0 for x1 = 0;

− 1
ln(−x1)

for x1 < 0.

u2(x1,x2) =


√

x1 for x1 > 0;

−
√
−x1 for x1 ≤ 0.

12



Both are stationary parabolic minimizers of the total variation flow in the sense of (1.1)–

(2.1), over B 1
2
×(0,∞). We establish this for u1, the analogous statement for u2 follows sim-

ilarly. Since u1 ∈W 1,1(Bρ), and is time-independent, one also has u ∈ L1(0,T ;BV (Bρ)
)
.

To verify (1.1), one needs to show that

‖Du1‖(Bρ)≤
1
T

∫ T

0
‖D(u1 +ϕ)(·, t)‖(Bρ)dt (*)

for all T > 0, and all ϕ ∈C∞
o (Bρ×(0,T )). Let H k(A) denote the k-dimensional Hausdorff

measure of a Borel set A ⊂ RN . One checks that H N([Du1 = 0]) = 0 and there exists a

closed set K ⊂ Bρ , such that H N−1(K) = 0 and

∫
Bρ−K

Du1

|Du1|
·Dϕ dx = 0, for all ϕ ∈C∞

o (Bρ −K).

From this, by Lemma 4 of [22, § 8], for all ψ ∈C∞
o (Bρ), one has

‖Du1‖(Bρ)≤ ‖D(u1 +ψ)‖(Bρ),

which, in turn, yields (*). The two functions u1 and u2 can be regarded as equibounded

near the origin. They both satisfy (2.2), and exhibit quite different moduli of continuity at

the origin. This occurrence is in line with a remark of Evans ([23]). A sufficiently smooth

minimizer of the elliptic functional ‖Du‖(E) is a function whose level sets are surfaces of

zero mean curvature. Thus, if u is a minimizer, so is ϕ(u) for all continuous monotone

functions ϕ(·). This implies that a modulus of continuity cannot be identified solely in

terms of an upper bound of u.
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5 Singular Parabolic DeGiorgi Classes

Let C
(
Qρ(θ)

)
denote the class of all non-negative, piecewise smooth, cutoff functions

ζ defined in Qρ(θ), vanishing outside Bρ , such that ζt ≥ 0 and satisfying

|Dζ |+ζt ∈ L∞
(
Qρ(θ)

)
.

For a measurable function u : ET → R and k ∈ R set

(u− k)± = {±(u− k)∧0}.

The singular, parabolic DeGiorgi class [DG]±(ET ;γ) is the collection of all measurable

maps

u ∈Cloc
(
(0,T );L2

loc(E)
)
∩L1

loc
(
0,T ;BVloc(E)

)
, (5.1)

satisfying

sup
to−θρ≤t≤to

∫
Bρ (xo)

(u− k)2
±ζ (x, t)dx

+
∫ to

to−θρ

‖D((u− k)±ζ )(τ)‖(Bρ(xo))dt

≤ γ

∫∫
[(xo,to)+Qρ (θ)]

[
(u− k)±|Dζ |+(u− k)2

±|ζt |
]
dxdt+

+
∫

Bρ (xo)
(u− k)2

±ζ (x, to−θρ)dx

(5.2)

for all [(xo, to)+Qρ(θ)]⊂ ET , all k ∈R, and all ζ ∈ C ([(xo, to)+Qρ(θ)]), for a given pos-

itive constant γ . The singular DeGiorgi classes [DG](ET ;γ) are defined as [DG](ET ;γ) =

[DG]+(ET ;γ)∩ [DG]−(ET ;γ).

6 The Main Result

The main result of this note is that the necessary and sufficient condition of Theorem 2.1

holds for functions u ∈ DG(ET ;γ)∩L∞
loc(ET ). Indeed, the proof of Theorem 2.1, only uses
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the local integral inequalities (5.2). In particular, the second of (2.1) is not needed.

Proposition 6.1 Let u in the functional classes (5.1), be a parabolic minimizer of the total

variation flow in ET , in the sense of (1.1), satisfying in addition (2.1). Then u ∈DG(ET ;2).

The proof will be given in Section 12.

Remark 6.1 Note that in the context of DG(ET ) classes, the characteristic condition (2.2),

holds with no further requirement that ut ∈ L1
loc(ET ). The latter however is needed to

cast a parabolic minimizer of the total variation flow into a DG(ET )-class as stated by

Proposition 6.1.

7 A Singular Diffusion Equation

Consider formally, the parabolic 1-Laplacian equation

ut−div
( Du
|Du|

)
= 0 formally in ET . (7.1)

Let P be the class of all Lipschitz continuous, non-decreasing functions p(·) defined in R,

with p′ compactly supported. Denote by C (ET ) the class of all non-negative functions ζ

defined in ET , such that ζ (·, t) ∈C1
o(E) for all t ∈ (0,T ), and 0≤ ζt < ∞ in ET . A function

u ∈Cloc
(
0,T ;L1(E)

)
is a local solution to (7.1) if

a. p(u) ∈ L1
loc
(
0,T ;BV (E)

)
, for all p ∈P;

b. there exists a vector valued function z∈ [L∞(ET )]
N with ‖z‖∞,E ≤ 1, such that ut = divz

in D ′(ET );
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c. denoting by d(‖Dp(u−`)‖) the measure in E generated by the total variation ‖Dp(u−

`)‖(E)

∫
E

(∫ u−`

0
p(s)ds

)
ζ (x, t2)dx+

∫ t2

t1

∫
E

ζ d(‖D(p(u− `)‖)dt

≤
∫

E

(∫ u−`

0
p(s)ds

)
ζ (x, t1)dx+

∫ t2

t1

∫
E

(∫ u−`

0
p(s)ds

)
ζtdxdt

−
∫ t2

t1

∫
E

z ·Dζ p(u− `)dxdt

(7.2)

for all `∈R, all p ∈P , all ζ ∈C (ET ) and all [t1, t2]⊂ (0,T ). The notion is a local version

of a global one introduced in [24, Chapter 3]. Similar notions are in [24, 25, 26, 27],

associated with issues of existence for the Cauchy problem and boundary value problems

associated with (7.1). The notion of solution in [25], called variational, is different and

closely related to the variational integrals (1.1).

Our results are local in nature and disengaged from any initial or boundary conditions.

Let u be a local solution to (7.1) in the indicated sense, which in addition is locally bounded

in ET . In (7.2) take ` = 0, and p±(u) = ±(u− k)±. Since u ∈ L∞
loc(ET ) one verifies that

p± ∈P . Standard calculations then yield that u is in the DeGiorgi classes [DG]±(E;γ),

for some fixed γ > 0. As a consequence, we have the following:

Corollary 7.1 Let u ∈ L∞
loc(ET ) be a local solution to (7.1), in ET , in the sense (a)-(c)

above. Then, u is continuous at some (xo, to) ∈ ET , if and only if (2.2) holds true.

8 Proof of the Necessary Condition

Let u ∈ [DG](ET ;γ) be continuous at (xo, to) ∈ ET , which we may take as the origin of

RN+1, and may assume u(0,0) = 0. In (5.2)+ for (u− k)+, take θ = 1 and k = 0. Let also

ζ ∈ C (Q2ρ) be such that ζ (·,−2ρ) = 0, such that ζ = 1 on Q 3
2 ρ

, and

|Dζ |+ζt ≤
3
ρ
.
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Repeat the same choices in (5.2)− for (u− k)−. Adding the resulting inequalities gives

ρ

|Qρ |

∫ 0

−2ρ

‖D(uζ )(·, t)‖(B2ρ)dt ≤ 2N+1
γ−
∫
−
∫

Q2ρ

(
u+u2)dxdt. (8.1)

Since the total variation ‖Dw‖ of a function w ∈ BV can be seen as a measure (see, for

example, [28, Chapter 1, § 1]), we have

ρ

|Qρ |

∫ 0

−ρ

‖D(uζ )(·, t)‖(Bρ)dt ≤ ρ

|Qρ |

∫ 0

−2ρ

‖D(uζ )(·, t)‖(B2ρ)dt;

on the other hand, uζ ≡ u in Q 3
2 ρ
⊃ Qρ , and therefore we conclude

ρ

|Qρ |

∫ 0

−ρ

‖Du(·, t)‖(Bρ)dt ≤ 2N+1
γ−
∫
−
∫

Q2ρ

(
u+u2)dxdt.

The right-hand side tends to zero as ρ → 0, thereby implying the necessary condition of

Theorem 2.1.

9 A DeGiorgi Type Lemma

For a fixed cylinder [(y,s)+Q2ρ(θ)]⊂ ET , denote by µ± and ω , non-negative numbers

such that

µ+ ≥ esssup
[(y,s)+Q2ρ (θ)]

u, µ− ≤ ess inf
[(y,s)+Q2ρ (θ)]

u, ω ≥ µ+−µ−. (9.1)

Let ξ ∈ (0, 1
2 ] be fixed and let θ = 2ξ ω . This is an intrinsic cylinder in that its length θρ

depends on the oscillation of u within it. We assume momentarily that the indicated choice

of parameters can be effected.

Lemma 9.1 Let u belong to [DG]−(ET ,γ). There exists a number ν− depending on N, and

γ only, such that if

∣∣[u≤ µ−+ξ ω]∩ [(y,s)+Q2ρ(θ)]
∣∣≤ ν−|Q2ρ(θ)|, (9.2)
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then

u≥ µ−+
1
2ξ ω a.e. in

[
(y,s)+Qρ(θ)

]
. (9.3)

Likewise, if u belongs to [DG]+(ET ,γ), there exists a number ν+ depending on N, and γ

only, such that if

∣∣[u≥ µ+−ξ ω]∩ [(y,s)+Q2ρ(θ)]
∣∣≤ ν+|Q2ρ(θ)|, (9.4)

then

u≤ µ+− 1
2ξ ω a.e. in

[
(y,s)+Qρ(θ)

]
. (9.5)

Proof: We prove (9.2)–(9.3), the proof for (9.4)–(9.5) being similar. We may assume

(y,s) = (0,0) and for n = 0,1, . . . , set

ρn = ρ +
ρ

2n , Bn = Bρn, Qn = Bn× (−θρn,0].

Apply (5.2)− over Bn and Qn to (u− kn)−, for the levels

kn = µ−+ξnω where ξn =
1
2

ξ +
1

2n+1 ξ .

The cutoff function ζ is taken of the form ζ (x, t) = ζ1(x)ζ2(t), where

ζ1 =


1 in Bn+1

0 in RN−Bn

|Dζ1| ≤
1

ρn−ρn+1
=

2n+1

ρ

ζ2 =


0 for t <−θρn

1 for t ≥−θρn+1

0≤ ζ2,t ≤
1

θ(ρn−ρn+1)
=

2(n+1)

θρ
.
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Inequality (5.2)− with these stipulations yields

esssup
−θρn<t<0

∫
Bn

(u− kn)
2
−ζ (x, t)dx+

∫ 0

−θρn

‖D(u− kn)−ζ‖(Bn)dt

≤ γ
2n

ρ

(∫∫
Qn

(u− kn)−dxdt +
1
θ

∫∫
Qn

(u− kn)
2
−dxdt

)
≤ γ

2n(ξ ω)

ρ
|[u < kn]∩Qn|.

By the embedding Proposition 4.1 of [29, Preliminaries]

∫∫
Qn

[(u− kn)−ζ ]
N+2

N dxdt ≤
∫ 0

−θρn

‖D[(u− kn)−ζ ]‖(Bn)dt

×

(
esssup
−θρn<t<0

∫
Bn

[(u− kn)−ζ (x, t)]2dx

) 1
N

≤ γ

(
2n

ρ
ξ ω

)N+1
N

|[u < kn]∩Qn|
N+1

N .

Estimate below

∫∫
Qn

[(u− kn)−ζ ]
N+2

N dxdt ≥
(

ξ ω

2n+2

)N+2
N

|[u < kn+1]∩Qn+1|

and set

Yn =
|[u < kn]∩Qn|

|Qn|
.

Then

Yn+1 ≤ γbnY
1+ 1

N
n

where

b = 2
1
N [3N+4].

By Lemma 5.1 of [29, Preliminaries], {Yn}→ 0 as n→ ∞, provided

Yo ≤ γ
−Nb−N2 def

= ν−.
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The proof of (9.4)–(9.5) is almost identical. One starts from inequalities (5.2)+ written for

the truncated functions

(u− kn)+ with kn = µ+−ξnω

for the same choice of ξn.

10 A Time Expansion of Positivity

For a fixed cylinder

[(y,s)+Q+
2ρ
(θ)] = B2ρ(y)× (s,s+θρ)⊂ ET ,

denote by µ± and ω , non-negative numbers satisfying the analog of (9.1). Let also ξ ∈

(0,1) be a fixed parameter. The value of θ will be determined by the proof; we momentarily

assume that such a choice can be done.

Lemma 10.1 Let u ∈ [DG]−(ET ,γ) and assume that for some (y,s) ∈ ET and some ρ > 0

∣∣[u(·,s)≥ µ−+ξ ω]∩Bρ(y)
∣∣≥ 1

2

∣∣Bρ(y)
∣∣.

Then, there exist δ and ε in (0,1), depending only on N, γ , and independent of ξ , such that

∣∣[u(·, t)> µ−+ εξ ω]∩Bρ(y)
∣∣≥ 1

4 |Bρ | for all t ∈
(
s,s+δ (ξ ω)ρ

]
.

Proof: Assume (y,s) = (0,0) and for k > 0 and t > 0 set

Ak,ρ(t) = [u(·, t)< k]∩Bρ .
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The assumption implies

|Aµ−+ξ ω,ρ(0)| ≤ 1
2 |Bρ |. (10.1)

Write down inequalities (5.2)− for the truncated functions (u− (µ−+ ξ ω))−, over the

cylinder Bρ× (0,θρ], where θ > 0 is to be chosen. The cutoff function ζ is taken indepen-

dent of t, non-negative, and such that

ζ = 1 on B(1−σ)ρ , and |Dζ | ≤ 1
σρ

,

where σ ∈ (0,1) is to be chosen. Discarding the non-negative term containing D(u−(µ−+

ξ ω))− on the left-hand side, these inequalities yield

∫
B(1−σ)ρ

(u− (µ−+ξ ω))2
−(x, t)dx≤

∫
Bρ

(u− (µ−+ξ ω))2
−(x,0)dx

+
γ

σρ

∫
θρ

0

∫
Bρ

(u− (µ−+ξ ω))−dxdt

≤ (ξ ω)2
[1

2
+ γ

θ

σ(ξ ω)

]
|Bρ |

for all t ∈ (0,θρ], where we have enforced (10.1). The left-hand side is estimated below

by

∫
B(1−σ)ρ

(u− (µ−+ξ ω))2
−(x, t)dx

≥
∫

B(1−σ)ρ∩[u<µ−+εξ ω]
(u− (µ−+ξ ω))2

−(x, t)dx

≥ (ξ ω)2(1− ε)2|Aµ−+εξ ω,(1−σ)ρ(t)|
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where ε ∈ (0,1) is to be chosen. Next, estimate

|Aµ−+εξ ω,ρ(t)|= |Aµ−+εξ ω,(1−σ)ρ(t)∪ (Aµ−+εξ ω,ρ(t)−Aµ−+εξ ω,(1−σ)ρ(t))|

≤ |Aµ−+εξ ω,(1−σ)ρ(t)|+ |Bρ −B(1−σ)ρ |

≤ |Aµ−+εξ ω,(1−σ)ρ(t)|+Nσ |Bρ |.

Combining these estimates gives

|Aµ−+εξ ω,ρ(t)| ≤
1

(ξ ω)2(1− ε)2

∫
B(1−σ)ρ

(u− (µ−+ξ ω))2
−(x, t)dx+Nσ |Bρ |

≤ 1
(1− ε)2

[1
2
+

γθ

σ(ξ ω)
+Nσ

]
|Bρ |.

Choose θ = δ (ξ ω) and then set

σ =
1

16N
, ε ≤ 1

32
, δ =

1
28γN

. (10.2)

This proves the lemma.

11 Proof of the Sufficient Part of the Theorem

Having fixed (xo, to) ∈ ET assume it coincides with the origin of RN+1 and let ρ > 0 be

so small that Qρ ⊂ ET . Set

µ+ = esssup
Qρ

u, µ− = ess inf
Qρ

u, ω = µ+−µ− = essosc
Qρ

u.

Without loss of generality, we may assume that ω ≤ 1 so that

Qρ(ω) = Bρ × (−ωρ,0]⊂ Qρ ⊂ ET
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and

essosc
Qρ (ω)

u≤ ω.

If u were not continuous at (xo, to), there would exist ρo > 0 and ωo > 0, such that

ωρ = essosc
Qρ

u≥ ωo > 0 for all ρ ≤ ρo. (11.1)

Let δ be determined from the last of (10.2). At the time level t =−δωρ , either

∣∣[u(·,−δωρ)≥ µ−+
1
2ω
]
∩Bρ

∣∣≥ 1
2 |Bρ |, or∣∣[u(·,−δωρ)≤ µ+− 1

2ω
]
∩Bρ

∣∣≥ 1
2 |Bρ |.

Assuming the former holds, by Lemma 10.1

∣∣[u(·, t)> µ−+
1

64ω
]
∩Bρ

∣∣≥ 1
4 |Bρ | for all t ∈ (−δωρ,0].

Let 2ξ = 1
64δ . Then

|[u(·, t)> µ−+2ξ ω]∩Bρ | ≥ 1
4 |Bρ | for all t ∈ (−ξ ωρ,0]. (11.2)

Next, apply the discrete isoperimetric inequality of Lemma 2.2 of [29, Preliminaries] to the

function u(·, t), for t in the range (−ξ ωρ,0], over the ball Bρ , for the levels

k = µ−+ξ ω and `= µ−+2ξ ω so that `− k = ξ ω.

This inequality is stated and proved in [29] for functions in W 1,1
loc (E). It continues to hold

for u ∈ BVloc(E), by virtue of the approximation procedure of [20, Theorem 1.17]. Taking

also into account (11.2) this gives

ξ ω|[u(·, t)< µ−+ξ ω]∩Bρ | ≤ γρ‖Du‖([u(·, t)> k]∩Bρ).
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Integrating in dt over the time interval (−ξ ωρ,0], gives

∣∣∣[u < µ−+ξ ω
]
∩Qρ(ξ ω)

∣∣∣∣Qρ(ξ ω)
∣∣ ≤ γ

(ξ ωo)2
ρ

|Qρ |

∫ 0

−ρ

‖Du(·, t)‖(Bρ)dt.

By the assumption, the right-hand side tends to zero as ρ ↘ 0. Hence, there exists ρ so

small that ∣∣∣[u < µ−+ξ ω
]
∩Qρ(ξ ω)

∣∣∣∣Qρ(ξ ω)
∣∣ ≤ ν−

where ν− is the number claimed by Lemma 9.1 for such choice of parameters. The Lemma

then implies

ess inf
Q 1

2 ρ
(ξ ω)

u≥ µ−+
1
2ξ ω,

and hence

essosc
Q 1

2 ρ
(ξ ω)

u≤ ηω where η = 1− 1
2ξ ∈ (0,1).

Setting ρ1 =
1
2ξ ωρ gives

ωρ1 = essosc
Qρ1

u≤ ηω.

Repeat now the same argument starting from the cylinder Qρ1 , and proceed recursively to

generate a decreasing sequence of radii {ρn}→ 0 such that

ωo ≤ essosc
Qρn

u≤ η
n
ω for all n ∈ N.

12 Proof of Proposition 6.1

The proof uses an approximation procedure of [25]. Observe first that the assumption

ut ∈ L1
loc(ET ) permits to cast (1.1) in the form

‖Du(t)‖(E)≤ ‖D(u+ϕ)(t)‖(E)+
∫

E
utϕdx (12.1)
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for a.e. t ∈ (0,T ) for all

ϕ ∈ BVloc(E)∩L∞
loc(E) with supp{ϕ} ⊂ E. (12.2)

We only prove the estimate for (u− k)+, the one for (u− k)− being similar. Fix a cylinder

[
(xo, to)+Qρ(θ)

]
⊂ ET .

Up to a translation, assume that (xo, to) = (0,0) and fix a time t ∈ (−θρ,0) for which

∫
Bρ

|ut(x, t)|dx < ∞, and u(·, t) ∈ BV (E)∩L∞(Bρ).

The next approximation procedure is carried out for such t fixed and we write u(·, t) = u.

By [20, Theorem 1.17], there exists {u j} ⊂C∞(Bρ) such that

lim
j→∞

∫
Bρ

|u j−u|dx = 0 and ‖Du‖(E) = lim
j→∞

∫
E
|Du j|dx. (12.3)

Test (12.1) with ϕ = −ζ (u− k)+, where ζ ∈ C
(
Qρ(θ)

)
. This is an admissible choice,

since u ∈ BV (E)∩L∞(Bρ). Set ϕ j =−ζ (u j−k)+ for j ∈N. For a given ε > 0 there exists

jo ∈ N such that

∫
E
|Du j|dx < ‖Du(·, t)‖(E)+ 1

2
ε for all j ≥ jo.

Here we have used the second of (12.3). By the first, {(u j +ϕ j)} → (u+ϕ) in L1(E).

Therefore, for any ψ ∈ [C1
o(E)]

N with ‖ψ‖ ≤ 1,

∫
E
(u+ϕ)divψdx = lim

j→∞

∫
E
(u j +ϕ j)divψdx

≤ liminf
j→∞

∫
E
|D(u j +ϕ j)|dx.
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Taking the supremum over all such ψ gives

‖D(u+ϕ)(t)‖(E)≤ liminf
j→∞

∫
E
|D(u j +ϕ j)|dx.

Therefore, up to redefining jo we may also assume that

∫
E
|D(u j +ϕ j)|dx≥ ‖D(u+ϕ)‖(E)− 1

2
ε for all j ≥ jo.

Combining the preceding inequalities gives that

∫
E
|Du j|dx < ‖Du(·, t)‖(E)+ 1

2
ε

≤ ‖D(u+ϕ)(·, t)‖(E)+
∫

E
ut(·, t)ϕdx+

1
2

ε (12.4)

≤
∫

E
|D(u j +ϕ j)|dx+

∫
E

ut(·, t)ϕdx+ ε

for all j ≥ jo. Next, estimate the first integral on the right-hand side as,

∫
E
|D(u j +ϕ j)|dx =

∫
E
|D(u j−ζ (u j− k)+)|dx

≤
∫

E
|Du j−ζ D(u j− k)+|dx+

∫
E
|Dζ |(u j− k)+dx

≤
∫

E
(1−ζ )|Du j|+ζ |Du j−D(u j− k)+|dx+

∫
E
|Dζ |(u j− k)+dx.

Put this in (12.4), and absorb the first integral on the right-hand side into the left-hand side,

to obtain

∫
E

ζ |D(u j− k)+|dx =
∫

E
ζ
[
|Du j|− |Du j−D(u j− k)+|

]
dx

≤
∫

E
|Dζ |(u j− k)+dx+

∫
E

ut(·, t)ϕdx+ ε.
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From this

∫
E
|D(ζ (u j− k)+)|dx≤ 2

∫
E
|Dζ |(u j− k)+dx+

∫
E

ut(·, t)ϕdx+ ε.

Next let j→ ∞, using the lower semicontinuity of the total variation with respect to L1-

convergence. This gives

‖D(ζ (u− k)+)‖(Bρ)≤ liminf
j→∞

∫
E
|D(ζ (u j− k)+)|dx

≤ lim
j→∞

2
∫

E
|Dζ |(u j− k)+dx+

∫
E

utϕdx+ ε

= 2
∫

E
|Dζ |(u− k)+dx+

∫
E

utϕdx+ ε.

Finally let ε → 0 and use the definition of ϕ to get

‖D(ζ (u− k)+)‖(Bρ)≤ 2
∫

Bρ

|Dζ |(u− k)+dx−
∫

Bρ

ζ ut(u− k)+dx.

To conclude the proof, integrate in dt over (−θρ,0).

13 Boundedness of Minimizers

Proposition 13.1 Let u : ET →R be a parabolic minimizer of the total variation flow in the

sense of (1.1). Furthermore, assume that u ∈ Lr
loc(ET ) for some r > N, and that it can be

constructed as the limit in Lr
loc(ET ) of a sequence of parabolic minimizers satisfying (2.1).

Then, there exists a positive constant γ depending only upon N,γ,r, such that

sup
Bρ (y)×[s,t]

u± ≤ γ

(
ρ

t− s

) N
r−N
( 1

ρN(t− s)

∫ t

2s−t

∫
B4ρ (y)

ur
± dxdτ

) 1
r−N

+ γ
t− s

ρ

(13.1)
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for all cylinders

B4ρ(y)× [s− (t− s),s+(t− s)]⊂ ET .

The constant γ(N,γ,r)→ ∞ as either r→ N, or r→ ∞.

Remark 13.1 It is not required that the approximations to u satisfy (2.1) uniformly. The

latter is only needed to cast a function satisfying (1.1) into a DeGiorgi class. The proof

of the proposition only uses such a membership, and turns such a qualitative, non-uniform

information into the quantitative information (13.1).

Proof (of Proposition 13.1). Let {u j} be a sequence of approximating functions to u.

Since u j satisfy (2.1), they belong to the classes [DG](ET ;2), by Proposition 6.1. It will

suffice to establish (13.1) for such u j for a constant γ independent of j. Thus in the cal-

culations below we drop the suffix j from u j. The proof will be given for non-negative

u ∈ [DG]+(ET ;2), the proof for the remaining case being identical; it is very similar to

the proof of Proposition A.2.1 given in [29, § A.2]. Assume (y,s) = (0,0) and for fixed

σ ∈ (0,1) and n = 0,1,2, . . . set

ρn = σρ +
1−σ

2n ρ, tn =−σt− 1−σ

2n t,

Bn = Bρn, Qn = Bn× (tn, t).

This is a family of nested and shrinking cylinders with common “vertex” at (0, t), and by

construction

Qo = Bρ × (−t, t) and Q∞ = Bσρ × (−σt, t).

We have assumed that u can be constructed as the limit in Lr
loc(ET ) of a sequence of

bounded parabolic minimizers. By working with such approximations, we may assume

that u is qualitatively locally bounded. Therefore, set

M = esssup
Qo

max{u,0}, Mσ = esssup
Q∞

max{u,0}.
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We first find a relationship between M and Mσ . Denote by ζ a non-negative, piecewise

smooth cutoff function in Qn that equals one on Qn+1, and has the form ζ (x, t)= ζ1(x)ζ2(t),

where

ζ1 =

 1 in Bn+1

0 in RN−Bn

|Dζ1| ≤
2n+1

(1−σ)ρ

ζ2 =

 0 for t ≤ tn

1 for t ≥ tn+1

0≤ ζ2,t ≤
2n+1

(1−σ)t
;

introduce the increasing sequence of levels kn = k−2−nk, where k > 0 is to be chosen, and

in (5.2)+, take such a test function, to get

sup
tn≤τ≤t

∫
Bn

[(u− kn+1)+ζ ]2(x,τ)dx+
∫ t

tn
‖D[(u− kn+1)+ζ ](·,τ)‖(Bn)dτ

≤ γ2n

(1−σ)ρ

∫∫
Qn

(u− kn+1)+ dxdτ (13.2)

+
γ2n

(1−σ)t

∫∫
Qn

(u− kn+1)
2
+dxdτ.

Estimate

∫∫
Qn

(u− kn+1)+dxdτ ≤ γ
2n(r−1)

kr−1

∫∫
Qn

(u− kn)
r
+dxdτ,∫∫

Qn

(u− kn+1)
2
+dxdτ ≤ γ

2n(r−2)

kr−2

∫∫
Qn

(u− kn)
r
+dxdτ.

Taking these estimates into account yields

sup
tn<τ≤t

∫
Bn

[(u− kn+1)+ζ ]2(x,τ)dx+
∫ t

tn
‖D[(u− kn+1)+ζ ](·,τ)‖(Bn)dτ

≤ γ
2nr

(1−σ)t

[( t
ρ

)
k1−r +

1
kr−2

]∫∫
Qn

(u− kn)
r
+dxdτ.
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Assuming that k >
t
ρ

, this implies

sup
tn<τ≤t

∫
Bn

[(u− kn+1)+ζ ]2(x,τ)dx+
∫ t

tn
‖D[(u− kn+1)+ζ ](·,τ)‖(Bn)dτ

≤ γ2nr

(1−σ)t
1

kr−2

∫∫
Qn

(u− kn)
r
+dxdτ.

Set

Yn =
1
|Qn|

∫∫
Qn

(u− kn)
r
+dxdτ

and estimate

Yn+1 ≤ ‖u‖r−q
∞,Qo

( 1
|Qn|

∫∫
Qn

(u− kn+1)
q
+dxdτ

)
,

where q def
= N+2

N . Applying the embedding Proposition 4.1 of [29, Preliminaries], the pre-

vious inequality can be rewritten as

Yn+1 ≤ γ‖u‖r−q
∞,Qo

(
ρ

t

) bn

(1−σ)
1
N (N+1)

1

k(r−2)N+1
N

Y
1+ 1

N
n ,

where b = 2r N+1
N . Apply Lemma 5.1 of [29, Preliminaries], and conclude that Yn → 0 as

n→+∞, provided k is chosen to satisfy

Yo =
∫∫

Qo

urdxdτ = γ(1−σ)N+1‖u‖−(r−q)N
∞,Qo

( t
ρ

)N
k(r−2)(N+1),

which yields

Mσ ≤ γ̃
M

N(r−q)
(N+1)(r−2)

(1−σ)
1

r−2

(
ρ

t

) N
(N+1)(r−2)

(∫∫
Qo

ur dxdτ

) 1
(r−2)(N+1)

.

The proof is concluded by the interpolation Lemma 5.2 of [29, Preliminaries].
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Chapter 3

p-Parabolic Approximation of Total Variation Flow Solutions

This chapter is presently under review at Indiana University Mathematics Journal.

We show that variational solutions to the Cauchy-Dirichlet problem for the total vari-

ation flow can be built as the limit of variational solutions to the same problem for the

parabolic p–Laplacian.

1 Introduction

Consider a bounded, Lipschitz domain Ω⊂RN and f : ∂Ω→R a continuous function.

The problem of minimizing the total variation of the vector-valued measure Du on Ω in the

set {
u : u ∈ BV (Ω)∩C(Ω̄), u = f on ∂Ω

}
has been studied in detail in [30]. Minimizers of the above problem are called functions of

least gradient.

In [31] Juutinen proves that the unique function of least gradient u built in [30] is the

uniform limit as p↘ 1 of up, the unique p-harmonic function in Ω with Dirichlet datum f ,

that is, up is the solution to 
∆pup = 0 in Ω,

up = f on ∂Ω.

As a consequence, he obtains that functions of least gradient satisfy

∆1u = 0

in the viscosity sense. Hence, functions of least gradient are viscosity solutions to the 1-

laplacian equation. However, as pointed out in [31], the converse is not true: viscosity
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solutions to the 1-laplacian are not necessarily least gradient functions. The connection

between least gradient functions and proper solutions to the 1-laplacian is studied, for ex-

ample, in [32].

The approximation of proper solutions to the 1-laplacian in terms of solutions to the p-

Laplacian as p→ 1 has been widely studied in the last years: without pretending to collect

all the relevant contributions to this issue, the interested reader can refer, for example, to

[33, 34, 35, 36, 37] and the references therein. More recently, anisotropic least gradient

problems, as in [38], have been dealt with too.

Motivated by the previous result, it is therefore natural to consider the following prob-

lem, which at this stage we state in a purely formal way.

Problem 1 Let T > 0 and up be a solution to the Cauchy-Dirichlet Problem for the parabolic

p-laplacian 
∂tu−div

(
|Du|p−2Du

)
= 0 in Ω× (0,T ),

u = uo on ∂P(Ω× (0,T )),

and let p↘ 1. One would like to obtain in this way a solution u1 to the Cauchy-Dirichlet

Problem for the total variation flow


∂tu−div

(
Du
|Du|

)
= 0 in Ω× (0,T ),

u = uo on ∂P(Ω× (0,T )).

Is this indeed the case?

A first important issue in the problem stated above concerns the topology. In [31] both

up and u1 are continuous and therefore the topology used is the one of the local uniform

convergence. Here, we cannot assume in general continuity for solutions (a necessary and

sufficient condition for continuity at a point is considered in [8]), and therefore, a different

topology is needed, with the further requirement that it must also be shared both by up and

u1.
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Another question, which is closely connected and somehow contributes to define the

right topology, is a precise definition of solutions, both for the parabolic p-laplacian and for

the total variation flow. There is a huge amount of literature that is concerned with the total

variation flow, and contributions have been given by different authors. The interested reader

can refer, for example, to [39, 24] and the list of references therein. Directly connected to

the Cauchy-Dirichlet Problem we address here, is [40]. As for the elliptic framework,

the anisotropic total variation flow has been considered too, both in RN and in a bounded

domain with proper boundary conditions (see, for example, [41]).

However, an important remark is due here: the notions of solution considered in [24],

and the corresponding existence and uniqueness results, are based on the so-called Anzellotti-

pairing (see [42], and also [43]). Moreover, one of the common features of the before-

mentioned existence and uniqueness contributions, lies in the strategy of proof, based on

nonlinear semi-group theory, in particular on techniques of completely accretive operators

and the Crandall–Liggett semigroup generation theorem.

Recently a different approach has been developed by Bögelein, Duzaar and Marcellini

in [44]–[25] (see also [26] for time-dependent boundary data), in turn based on previous

results of [27]. In these works

1. The Anzellotti-pairing plays no role;

2. The approach is purely variational, and avoids the use of semi-group theory. Under

this point of view, it is closer in spirit to the notion of parabolic minimizers of integral

functionals with linear growth (parabolic minimizers were originally defined in [10]).

It turns out that the notion of solution given in [44]–[25] gives a natural framework to

deal with Problem 1, and that is precisely what we will rely on in these notes.

In the following, by Br(x) we denote the euclidean ball of radius r centered at x; un-

less otherwise stated, Ω ⊂ RN will always be a bounded, convex domain with a compact

boundary, which satisfies two further requirements:
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(B1) It is of class C1, that is, there exist a positive ρ and an open, locally finite covering

{Bρ(x j)} of ∂Ω such that for all x j ∈ ∂Ω the portion of ∂Ω within the ball Bρ(x j) can

be represented, in a local system of coordinates with the origin at x j, as the graph of

function f j of class C1 in a neighborhood of the origin of the new local coordinates

and such that f j(0) = 0 and D f j(0) = 0. Denote by K j the (N − 1)-dimensional

domain where f j is defined and set

‖∂Ω‖1 = sup
j

max
K j
|D f j|.

This quantity depends upon the choice of the covering {Bρ(x j)}. However, hav-

ing fixed one such covering, it is invariant under homothetic transformations of the

coordinates. In particular it does not depend upon the size of Ω.

(B2) It has the segment property, namely there exist a locally finite, open covering of

∂Ω with balls {Bt(x j)}, a corresponding sequence of unit vectors n j and a number

t∗ ∈ (0,1), such that

x ∈ Ω̄∩Bt(x j) ⇒ x+ tn j ∈Ω for all t ∈ (0, t∗).

These properties are widely used in the literature, but sometimes the same definition refers

to slightly different notions. That is why we have given here the full statement.

By [45, Chapter 8, Proposition 18.1], these assumptions on ∂Ω ensure that Ω is an

extension domain. This fact is going to play a central role for the datum uo: indeed, uo is

originally given in Ω, but is then extended to Ω∗ ) Ω whenever necessary. Moreover, it is

straightforward to check that ∂Ω is uniformly Lipschitz as defined in [46, Definition 12.10].

For any T > 0, we let ΩT = Ω× (0,T ], and Ω∞ = Ω× (0,∞). For any measurable set

E ⊂ RN , |E| denotes the Lebesgue measure of such a set. Finally, we take 1 < p < 2.
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1.1 Variational Solutions to the Parabolic p-Laplacian

For a given uo ∈W 1,p(Ω), we define

W 1,p
uo

(Ω) =
{

uo + v |v ∈ W̊ 1,p(Ω)
}

Definition 1.1 Let 1 < p < 2. Given a Cauchy-Dirichlet datum uo ∈W 1,p(Ω)∩L2(Ω), we

say a measurable map u : Ω∞→ RN in the class

u ∈ Lp (0,T ;W 1,p
uo

(Ω)
)
∩C0 ([0,T ] ;L2(Ω)

)
for any T > 0 (1.1)

is a variational solution associated to the Cauchy-Dirichlet Problem


∂tu−div

(
|Du|p−2Du

)
= 0 in Ω∞

u = uo on ∂PΩ∞

(1.2)

if and only if the variational inequality

1
p

∫ T

0

∫
Ω

|Du|p dxdt ≤
∫ T

0

∫
Ω

[
∂tv(v−u)+

1
p
|Dv|p

]
dxdt (1.3)

+
1
2
‖v(·;0)−uo‖2

L2(Ω)−
1
2
‖(v−u)(·;T )‖2

L2(Ω)

holds true, when T > 0, and v∈ Lp
(

0,T ;W 1,p
uo (Ω)

)
with ∂tv∈ L2(ΩT ), and v(·,0)∈ L2(Ω).

The chief result of [44] is the following.

Proposition 1.1 There exists a unique variational solution u in the sense of Definition 1.1.

Moreover, this solution satisfies

∂tu ∈ L2 (Ω∞) and u ∈C0,1/2 ([0,T ] ;L2(Ω)
)
∀T > 0
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with the quantitative bounds

∫
∞

0

∫
Ω

|∂tu|2 dxdt ≤ 1
p

∫
Ω

|Duo|p dxdt. (1.4)

For any 0≤ t1 < t2 < ∞, we also have

1
t2− t1

∫ t2

t1

∫
Ω

|Du|p dxdt ≤ 2e
∫

Ω

|Duo|p dxdt. (1.5)

With the a priori observation that ∂tu ∈ L2(ΩT ), we have the following equivalent formu-

lation of (1.3).

Corollary 1.1 Subject to the class restriction given in (1.1), u is a variational solution for

the parabolic p-Laplacian if and only if we have

1
p

∫ T

0

∫
Ω

|Du|p dxdt ≤
∫

ΩT

∂tu(v−u) dxdt +
1
p

∫
ΩT

|Dv|p dxdt (1.6)

for v ∈ Lp
(

0,T ;W 1,p
uo (Ω)

)
∩L2(ΩT )

Proof - In (1.3) let v ∈ Lp
(

0,T ;W 1,p
uo (Ω)

)
with ∂tv ∈ L2(ΩT ), and v(·,0) ∈ L2(Ω). After

adding and subtracting the time derivative ∂tu, write

1
p

∫ T

0

∫
Ω

|Du|p dxdt ≤
∫

ΩT

∂tu(v−u) dxdt +
∫

ΩT

∂t (v−u)(v−u) dxdt

+
1
p

∫ T

0

∫
Ω

|Dv|p dxdt

+
1
2
‖v(·,0)−uo‖2

L2(Ω)−
1
2
‖(v−u)(·,T )‖2

L2(Ω) .

Integrating the total time derivative cancels with the boundary data and returns the desired

inequality

1
p

∫ T

0

∫
Ω

|Du|p dxdt ≤
∫

ΩT

∂tu(v−u) dxdt +
1
p

∫
ΩT

|Dv|p dxdt.
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In order to conclude, we need to enlarge the test class: given an arbitrary function v ∈

Lp
(

0,T ;W 1,p
uo (Ω)

)
, we proceed with a smooth mollification in time over ΩT and approx-

imate it in the norm of Lp
(

0,T ;W 1,p
uo (Ω)

)
. This is all that is needed in order to give (1.6)

for the larger test class.

For the reverse equivalence, now restrict to those v which satisfy ∂tv∈ L2 (ΩT ), v(·,0)∈

L2(Ω), and run a similar add and subtract program.

As mentioned before, Ω is an extension domain. Therefore, given uo ∈W 1,p(Ω) for

any 1≤ p≤ ∞, there exists E (uo) ∈W 1,p(RN) such that

E (uo)(x) = uo(x) for a.e. x ∈Ω,

‖E (uo)‖Lp(RN) ≤ γ(1+‖∂Ω‖1)‖uo‖Lp(Ω,

‖DE (uo)‖Lp(RN) ≤ γ(1+‖∂Ω‖1)

(
‖Duo‖Lp(Ω)+

1
t
‖uo‖Lp(Ω)

)
,

where t ∈ (0,1) depends on the covering required by (B1)–(B2), and γ depends on N,

po, and the covering. The extension of uo from Ω to RN is obviously not unique: in the

following, we assume that we build one such extension, and then we work with it: in this

sense, we will talk of the extension; moreover, for simplicity, we denote E (uo) with uo.

Consider

u ∈ Lp (0,T ;W 1,p
uo

(Ω)
)
∩C0 ([0,T ] ;L2(Ω)

)
and the extension of uo from W 1,p(Ω) to W 1,p(RN). It is obvious that uo ∈W 1,p(Ω∗ \ Ω̄)

for a bounded open set Ω∗ ) Ω. We define the extension ũ(x, t) of u(x, t) as

ũ(x, t) def
=


u(x, t) if (x, t) ∈ΩT ,

uo(x) if (x, t) ∈ (Ω∗ \ Ω̄)× (0,T ].
(1.7)

Since

tr
∣∣∣
∂Ω

u(·, t) = tr
∣∣∣
∂Ω

uo,
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it is straightforward to check that ũ ∈ Lp (0,T ;W 1,p(Ω∗)
)

(see also [46, Exercise 15.26]).

We now re-define the space W 1,p
uo (Ω).

Definition 1.2 Given a function uo ∈W 1,p(Ω), consider the extension of uo from W 1,p(Ω)

to W 1,p(RN), which we continue to denote by uo. For a bounded open set Ω∗ ) Ω, we let

W 1,p
uo

(Ω) =
{

v ∈W 1,p (Ω∗) |v = uo in Ω
∗ \Ω

}
.

Remark 1.1 We restrict from RN to Ω∗, mainly because it is easier to work in a bounded

domain.

Remark 1.2 Since Ω is an extension domain, the restriction of functions in W 1,p
uo (Ω) to Ω

is precisely the set of functions in W 1,p(Ω), whose trace on ∂Ω matches that of uo.

Proposition 1.2 Fix a bounded open set Ω∗ ) Ω. Subject to the class restriction given in

Definition 1.1, and further assuming that ∂tu ∈ L2(ΩT ), u is a solution to the parabolic

variational problem (1.6) if and only if its extension ũ satisfies

1
p

∫
Ω∗T

|Dũ|p dxdt ≤
∫

Ω∗T

∂t ũ(v− ũ)dxdt +
1
p

∫
Ω∗T

|Dv|p dxdt (1.8)

for all v ∈ Lp
(

0,T ;W 1,p
uo (Ω)

)
∩L2 (Ω∗T ).

Proof - In Ω∗ \Ω we have ũ = v = uo which itself is a function independent of time.

Accordingly, to pass from (1.6) to (1.8), one need only add the common term

1
p

∫
Ω∗T \ΩT

|Duo|p dxdt

to both sides. To go in the reverse direction, one need only subtract it.

Remark 1.3 It goes without saying, that in the previous result it is of fundamental impor-

tance the fact that the boundary datum uo is time-independent.
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1.2 Variational Solutions to the Total Variation Flow

When dealing with parabolic variational inequalities with linear growth, i.e. with p = 1

in (1.2), the natural framework is given by functions in BV (Ω), not in W 1,1(Ω). However,

there is an extra difficulty: boundary values of BV -functions are a delicate issue, since the

trace operator is not continuous with respect to the weak∗ convergence in BV (Ω). We refer

to [47, 20] as standard references for functions of bounded variation.

For a given uo ∈W 1,p(Ω), we follow the method used in [44, 25]: consider its extension

to W 1,p(RN), let Ω∗ ) Ω be a bounded open set, and define

BVuo(Ω) = {v ∈ BV (Ω∗) |v = uo in Ω
∗ \Ω} .

It is through membership in this class that solutions will be said to take the Dirichlet da-

tum uo. In fact, the exterior trace on ∂Ω of these BV -functions is precisely uo, see [20,

Chapter 2].

It would be preferable to enforce the Dirichlet data using the interior trace on ∂Ω,

rather than the exterior one. However, due to the failure of the trace operator to be weak∗

continuous, working with the interior trace leads to a space which lacks the weak sequential

compactness properties needed to pass to the limit.

Consider the following illustrative example. Let fn ∈ BV (−1,1) be given by

fn(x) =


n |x| | for |x| ≤ 1

n

1 | for |x|> 1
n

This family is equibounded in the norm of BV (−1,1), and its strong limit is 1. However, the

trace of lim fn does not coincide with the lim trace fn on x= 0. Therefore, one cannot expect

that a family of norm-equibounded BV -functions with merely a constant trace preserves

that trace in the limit. In our definition of BVuo(Ω), this difficulty is bypassed because the
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functions are held constant on a full region of space exterior to the domain, rather than just

the trace.

It remains to show in which way the total variation ‖Dv‖(Ω∗) for v∈BVuo(Ω), is related

to the original ‖Dv‖(Ω) for v ∈ BV (Ω). As observed in [20, Chapter 14], where this same

approach is used in the nonparametric theory of minimal surfaces, for v ∈ BVuo(Ω) and Ω

a compact domain with Lipschitz boundary,

∫
Ω∗
|Dv|=

∫
Ω

|Dv|+
∫

∂Ω

∣∣uo− tr−v
∣∣dHN−1 +

∫
Ω∗\Ω

|Duo| dx, (1.9)

where tr−v refers to the interior BV trace of v on ∂Ω. Accordingly, the total variation term

in BVuo(Ω) is equivalent to the original total variation, with a penalty term measuring the

difference between the obtained trace and the intended Dirichlet datum, plus a third term

which is the total variation of uo in Ω∗\Ω. In our parabolic framework, this final term is a

time-independent contribution on both sides of the variational inequality: thus, the arbitrary

choice of extension domain Ω∗ does not influence the variational problem.

Given f ∈ BV (Ω), by ‖D f‖(Ω) we denote the total variation of D f on Ω. Moreover,

if we let for simplicity | f |BV (Ω)
def
= ‖D f‖(Ω), as it is well-known, ‖ f‖BV (Ω)

def
= ‖ f‖L1(Ω)+

| f |BV (Ω). Finally, in this case the concept of variational solutions makes use of the space

L1
w(0,T ;BVuo(Ω)). It consists of those functions v : [0,T ]→ BVuo(Ω) such that

• v ∈ L1(]0,T [×Ω);

• the maps t ∈ [0,T ] → 〈Dv(t),ϕ〉 are measurable for every ϕ ∈C1
o(Ω);

•
∫ T

0 ‖Dv(·, t)‖(Ω)dt < ∞.

Definition 1.3 Let 2N
N+1 ≤ po < 2. Given a Cauchy-Dirichlet datum

uo ∈W 1,po(Ω∗),
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we say a measurable map u : Ω∗∞→ RN in the class

u ∈ L1
w (0,T ;BVuo(Ω))∩C0 ([0,T ] ;L2 (Ω∗)

)
for any T > 0

is a variational solution associated to the Cauchy-Dirichlet Problem for the total variation

flow 
∂tu−div

(
Du
|Du|

)
= 0 in Ω∞

u = uo on ∂PΩ∞

(1.10)

if and only if the variational inequality

∫ T

0
‖Du(·, t)‖(Ω∗)dt ≤

∫ T

0

∫
Ω∗

∂tv(v−u)dxdt +
∫ T

0
‖Dv(·, t)‖(Ω∗)dt (1.11)

+
1
2
‖v(·,0)−uo‖2

L2
2(Ω

∗)−
1
2
‖(v−u)(·,T )‖2

L2
2(Ω

∗)

holds true, when T > 0, and v ∈ L1 (0,T ;BVuo (Ω)) with ∂tv ∈ L2(Ω∗T ), v(·,0) ∈ L2(Ω∗).

Since uo ∈W 1,po(Ω∗) with 2N
N+1 ≤ po < 2, the Sobolev Embedding Theorem ensures

that uo ∈ L2(Ω∗).

In [25, Theorem 1.2], Boegelein, Duzaar and Marcellini prove that there exists a unique

variational solution u associated to the Cauchy-Dirichlet Problem (1.10).

However, their definition is slightly different with respect to Definition 1.3. Indeed,

they take the test function v in the larger set L1
w (0,T ;BVuo(Ω)).

Remark 1.4 Just as with the p–Laplacian case, when ∂tu exists in L2 (Ω∗T ), the above

formulation is equivalent to

∫ T

0
‖Du(·, t)‖(Ω∗)dt ≤

∫ T

0
‖Dv(·, t)‖(Ω∗) dt +

∫
Ω∗T

∂tu(v−u) dxdt (1.12)

for any test function v such that v ∈ L1 (0,T ;BVuo(Ω))∩L2(Ω∗T ).
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Remark 1.5 Even though Definition 1.3 does not require anything on ∂tu, nevertheless for

the function u1, which we will build in Theorem 1.1, the time derivative is well-defined,

and turns out to be a function in L2(Ω∗T ).

In the following, we will also consider the following space.

Definition 1.4 The set C∞
o,γ,p(Ω) is the collection of all smooth functions, compactly sup-

ported in Ω, whose support is separated from ∂Ω by distance no less than γ > 0, endowed

with the W 1,p(Ω) norm.

1.3 The Main Result

As already discussed before, we assume that Ω⊂RN is a bounded, convex domain with

a compact boundary, which satisfies conditions (B1)–(B2).

We let po ∈ [ 2N
N+1 ,2), consider uo ∈ W 1,po(Ω) and its extension from W 1,po(Ω) to

W 1,po(RN), which we continue to denote by uo.

Given a bounded open set Ω∗ ) Ω, by the Sobolev Embedding Theorem we have that

uo ∈W 1,p(Ω∗)∩L2(Ω∗) for any p ∈ (1, po].

Let {up} be the sequence of the unique variational solutions to the Cauchy-Dirichlet

Problem for the parabolic p-laplacian with p ∈ (1, po]. We define the extension ũp(x, t) of

up(x, t) as

ũp(x, t)
def
=


up(x, t) if (x, t) ∈ΩT ,

uo(x) if (x, t) ∈ (Ω∗ \ Ω̄)× (0,T ].

If we consider the trace on ∂Ω in the sense of functions in W 1,p for 1 < p ≤ po, it is

straightforward to verify that

tr
∣∣∣
∂Ω

up(·, t) = tr
∣∣∣
∂Ω

uo.

This yields that ũp ∈ Lp
(

0,T ;W 1,p
uo (Ω)

)
∩C0([0,T ];L2(Ω∗). In the following, for simplic-

ity we continue to denote the extension ũp with up.

42



Theorem 1.1 Under all the previous assumptions, when p→ 1, we have that for any T >

0, up → u1 in Lq(Ω∗T ) for any 1 ≤ q < N
N−1 , and ∂tup → ∂tu1 in L2

w(Ω
∗
T ), where u1 ∈

L1
w (0,T ;BVuo(Ω))∩C0 ([0,T ] ;L2 (Ω∗)

)
is a variational solution to the Cauchy-Dirichlet

Problem for the total variation flow.

As already mentioned before, in [48] solutions are unique. This is an issue we will not

deal with here.

1.4 Novelty and Significance

Theorem 1.1 shows that solutions to the Cauchy-Dirichlet problem for the parabolic

p-Laplacian tend to a solution to the corresponding problem for the total variation flow.

However, given its nature there is also a complementary way of looking at our result; in-

deed, we are showing that variational solutions to the 1–Laplacian can be built as the limit

of solutions to the p–Laplacian, therefore providing an alternative construction, with re-

spect to the one studied in [25, 26].

In [31, Section 4], Juutinen investigates also local convergence properties of p-harmonic

functions as p→ 1. This is not the case here: local results corresponding to the global state-

ment of Theorem 1.1, are not dealt with here.

Theorem 1.1 represents the main contribution of this work. Its proof relies on a density

result, which we are going to present next.

Let uo ∈ L2(Ω)∩W 1,p(Ω), and define

uo +C∞
o,γ,p(Ω)

def
=
{

uo + v |v ∈C∞
o,γ,p(Ω)

}
{

uo +C∞
o,γ,p(Ω)

}
γ>0

def
=
⋃
γ>0

(uo +C∞
o,γ,p(Ω))

{
L∞

(
0,T ;uo +C∞

o,γ,p(Ω)
)}

γ>0

def
=
⋃
γ>0

L∞

(
0,T ;uo +C∞

o,γ,p(Ω)
)
.

In the sequel, whenever necessary, functions will be extended from Ω to Ω∗, relying on the
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corresponding extension of uo. Then

Theorem 1.2
{

L∞

(
0,T ;uo +C∞

o,γ,po
(Ω)
)}

γ>0
∩L∞

(
0,T ;L2(Ω)

)
is dense in the space

L1 (0,T ;BVuo(Ω)).

The chief technical difficulty of these notes is precisely the proof of Theorem 1.2, which

requires a delicate approximation procedure, performed in multiple steps. Although here it

is instrumental in the proof of the main result, nevertheless, we think that Theorem 1.2 can

be of independent interest.

2 Proof of Theorem 1.1 Assuming Theorem 1.2

The compactness estimates that we need in order to pass to the limit in the approx-

imating sequence, basically all follow from estimates (1.4)–(1.5). We work with the p-

parametrized family of variational solutions associated to (1.2) for 1 < p ≤ po. For the

moment, we strictly work inside the domain Ω; a corollary concerning how to pass to the

larger domain Ω∗ ) Ω will be considered at the end of the section.

Lemma 2.1 If uo is such that ‖Duo‖po
< ∞ for some po > 1, then for p ∈ [1, po],

1
p

∫
Ω

|Duo|p dx < Γ, (2.1)

where Γ > 0 is a constant that depends on po, |Ω|, ‖Duo‖po
.

Proof - It is a matter of straightforward computations to show that

1
p

∫
Ω

|Duo|p dx≤ 1
p
‖Duo‖p

po
|Ω|

po−p
po . (2.2)

Clearly for p ∈ [1, po], the right-hand side may be upper bounded independently of p.

As a consequence of the previous result, we have:
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Corollary 2.1 Let po ∈ (1,2], and uo ∈ L2(Ω) ∩W 1,po(Ω). The variational solutions{
up
}

p<po
corresponding to the initial datum uo, and their time derivatives {∂tup}p<po are

uniformly bounded in L2(ΩT ) by a positive constant Γ that depends on po, |Ω|, ‖Duo‖po,Ω
,

‖uo‖2,Ω, T .

Proof - From (1.4) and (2.1), we conclude
∥∥∂tup

∥∥
2 ≤ Γ is a uniform bound. Now we use

that the initial datum is bounded in L2(Ω) and proceed with an argument justified up to

mollification; for any t ∈ (0,T ]

∫
Ω

∣∣up(·, t)−uo
∣∣2 dx =

∫
Ω

∣∣∣∣∫ t

0
∂τupdτ

∣∣∣∣2 dx = t2
∫

Ω

∣∣∣∣1t
∫ t

0
∂τup dτ

∣∣∣∣2 dx

≤ t
∫

Ω

∫ t

0
|∂τup|2 dxdτ ≤ T

∫
ΩT

|∂τup|2 dxdτ ≤ T Γ.

Conclude using the initial data

∫
ΩT

u2
p dxdτ =

∫
ΩT

(
uo +up(·, t)−uo

)2

dxdτ

≤ 2
∫

ΩT

[|uo|2 +
∣∣up (·, t)−uo

∣∣2]dxdτ

≤ 2T
∫

Ω

|uo|2 dxdτ +2T 2
Γ.

Remark 2.1 The above remarks hold merely for a family of initial datum uo with a com-

mon ‖uo‖2 and ‖Duo‖po
bound.

Remark 2.2 Proceeding in a completely analogous way yields a uniform time continuity

estimate ∫
Ω

∣∣up(·, t2)−up(·, t1)
∣∣2 dx≤ (t2− t1)Γ. (2.3)

As for the space weak differentiability on time traces, we have the following.
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Corollary 2.2 For the above family
{

up
}

p<po
, the time trace of the gradient satisfies

∥∥Dup (·, t)
∥∥

1,Ω ≤ Γ. (2.4)

Proof - From Jensen’s inequality and (1.5), we may write

∫
Ω

(
1
h

∫ t+h

t
|Dup|dτ

)p

dx≤ 1
h

∫
Ω

∫ t+h

t

∣∣Dup
∣∣p dτdx≤ 2e

∫
Ω

|Duo|p dx≤ Γ.

As the limit of Steklov averages gives a possible definition of time trace, we see that the

trace of Dup exists in Lp which, due to Hölder inequality, means that the L1 norm is also

bounded. By enforcing the definition of weak space derivative against a test function inde-

pendent of time, dividing by h as in Steklov averages, we may conclude that

trDup = D [trup] .

We summarize the result of the previous corollaries, and collect our starting compactness

estimates.

Lemma 2.2 Let po ∈ (1,2], and uo ∈W 1,po(Ω)∩L2(Ω). The family of variational solu-

tions
{

up
}

p<po
to the initial datum uo are uniformly bounded, and satisfy the following

uniform estimates:

∥∥up
∥∥

2,ΩT
≤ Γ, (2.5)∥∥∂tup

∥∥
2,ΩT
≤ Γ, (2.6)∥∥Dup

∥∥
1,ΩT
≤ Γ, (2.7)∥∥Dup (·, t)

∥∥
1,Ω ≤ Γ. (2.8)
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2.1 Extracting a Convergent Subsequence

Relying on Lemma 2.2 we can now extract a convergent subsequence, whose limit has

several additional regularity features.

Proposition 2.1 Under the same assumptions of Lemma 2.2 on uo, for the family
{

up
}

p<po
,

there is a subsequence, which we still denote with {up}, such that

up(·, t)→L1(Ω) u1(·, t) ∈ BV (Ω) as p→ 1,

and the rate of L1(Ω) convergence is uniform for all t ∈ [0,T ].

Proof - Using the first two estimates of Lemma 2.2 and a standard trace inequality, we have

that up (·, t) ∈ L2(Ω) ⊆ L1(Ω) and the norms are uniformly bounded by Γ. Coupling this

with (2.8), we have ∥∥up (·, t)
∥∥

BV(Ω)
≤ Γ ∀t ∈ [0,T ] .

Moreover, from (2.3) we have that the family of the time traces
{

up (·, t)
}

is equicon-

tinuous in L2(Ω), uniformly with respect to p. We can then proceed by the Ascoli-Arzelà

Theorem.

Take an enumeration {ti} of all rational times in [0,T ]. By the Rellich Compactness

Theorem, we may take
{

up1(·, t1)
}

p1
to be a subsequence converging strongly in L1(Ω) to

a BV (Ω)-function denoted u1 (·, t1), then
{

up2(·, t2)
}

p2
to be a subsequence within up1 con-

verging also at t2. Continuing . . . ,
{

upk(·, tk)
}

pk
, . . . where the {pk}-sequence strongly con-

verges for t1, . . . , tk. Note that we may pick the sequences so that
∥∥u1 (·, tk)−upk, j (·, tk)

∥∥
L1(Ω)

<

1
j .

By the usual diagonalization procedure, we have a subsequence
{

up
}

p such that

up(·, ti)→L1(Ω) u1(·, ti) ∈ BV (Ω) ∀ti ∈Q.
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We claim that this sequence actually converges strongly at any time, and that the rate of

convergence is uniform for all t. To show this, we build an ε-net out of the equi-continuity

estimate (2.3). For ε > 0 fixed, there exists a finite collection of ti ∈ Q, such that for any

time t fixed, there is a rational number ti satisfying

∥∥up(·, ti)−up (·, t)
∥∥

L1(Ω)
< ε ∀ p ∈ [1, po].

Now let p1, p2 ∈ [1, po] be given and observe

∥∥up1(·, t)−up2(·, t)
∥∥

L1(Ω)
≤
∥∥up1(·, t)−up1(·, ti)

∥∥
L1(Ω)

+
∥∥up1(·, ti)−up2(·, ti)

∥∥
L1(Ω)

+
∥∥up2(·, ti)−up2(·, t)

∥∥
L1(Ω)

≤2ε +
∥∥up1(·, ti)−up2(·, ti)

∥∥
L1(Ω)

.

As our ε-net is finite, we have that the second term may be made uniformly smaller than ε .

Remark 2.3 Note that u1 (·, t) ∈ BV (Ω) because of lower semicontinuity and in particular

∀ t ∈ (0,T ), all the BV norms of u1(·, t) share the same bound Γ.

Remark 2.4 The proof stated all results in the context of L1(Ω), but the Rellich Compact-

ness Theorem guarantees strong convergence in Lq(Ω) for 1 ≤ q < N
N−1 . Since the time

trace continuity is in L2(Ω), the corresponding uniform continuity is inherited for Lq(Ω)

with q in the range [1, N
N−1). Thus, the theorem also holds with respect to the Lq(Ω) strong

convergence for q < 1∗ in lieu of L1(Ω), where 1∗ = N
N−1 .
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Proposition 2.2 By passing to a further subsequence, as p→ 1, we also have

(up;∂tup)→L2
w(ΩT )

(u1;∂tu1) ,

up→Lq(ΩT ) u1 for all 1≤ q <
N

N−1
,

up (·, t)→Lq(Ω) u1 (·, t) for all 1≤ q <
N

N−1
and for all t ∈ (0,T ],

up (·,0)≡ uo→Lq(Ω) u1 (·,0) for all 1≤ q <
N

N−1
.

Moreover, u1 ∈C0([0,T ];L2(Ω)), as the notion of variational solution requires.

Proof - The weak convergence of (up;∂tup) follows from the boundedness estimates given

by Lemma 2.2. Also the strong convergence in Lq(ΩT ) is a standard consequence of the

boundedness estimates given by Lemma 2.2 and the observations concerning the Rellich

Compactness Theorem given in Remark 2.4.

The time trace convergence follows from a standard trace inequality taken for q < 1∗,

using that the Lq(ΩT ) space-time convergence is strong, and that
∥∥∂tup

∥∥
2,ΩT

is bounded.

From the previous convergence results, it follows that ∂tup
Lq

w(ΩT )→ ∂tu1. This suffices

to conclude that the limit of the [t = 0] traces converge to the [t = 0] trace of the limit:

up (·,0)
Lq(Ω)→ u1 (·,0). Indeed, for any smooth cut-off function ζ = ζ (t), which equals 1 at

t = 0 and vanishes for t = T , the traces satisfy

∫
Ω

∣∣u1 (·,0)−up (·,0)
∣∣q dx =

∫
ΩT

∂

∂ t

[
−
∣∣u1−up

∣∣q ζ (t)
]

dxdt

=
∫

ΩT

−q
∣∣u1−up

∣∣q−1
(∂tu1−∂tup)ζ (t)dxdt−

∫
ΩT

∣∣u1−up
∣∣q ζ
′(t)dxdt

≤ q
∥∥u1−up

∥∥q−1
q,ΩT

∥∥∂tu1−∂tup
∥∥

q,ΩT
+

1
T

∥∥u1−up
∥∥q

q,ΩT
.

The above estimates are made rigorous by a regularized approximation in time. Be-

cause the sequence ∂tup converges weakly in Lq(Ω), the sequence
∥∥∂tu1−∂tup

∥∥
q,ΩT

is

uniformly bounded by some absolute constant. It is now clear that the right-hand side

can be made arbitrarily small by a sufficient choice of p. This shows that the traces must
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strongly converge in Lq(Ω).

In particular, as the functions up have all the same initial time trace uo ∈ L2(Ω), we

conclude that the limit must also have uo as its initial time trace.

That u1 ∈C0([0,T ];L2(Ω)) follows from all the previous estimates, in a rather straight-

forward way using the square-integrable time derivatives.

Remark 2.5 From the above we have that, as long as for the original family
{

up
}

p<po
it

holds up (·, t) = trup (·, t), then the same is true for the limit function u1.

Corollary 2.3 The compactness results of Proposition 2.1 and Proposition 2.2 hold ver-

batim when membership and limits are taken using the W 1,p
uo (Ω) and BVuo(Ω) spaces, and

u1 ∈ L1
w(0,T ;BVuo(Ω)).

Proof - It is straightforward to check that the functions do not change along the sequence,

and are independent of time over the set Ω∗\Ω. Moreover, by the definition of the sequence

{up}, Remark 2.3, and Proposition 2.2, all the assumptions of [25, Lemma 2.1] are satisfied,

and therefore we can conclude that the limit function u1 ∈ L1
w(0,T ;BVuo(Ω)).

Since we have proved that

u1 ∈ L1
w(0,T ;BVuo(Ω))∩C0([0,T ];L2(Ω∗)),

we can now show that our compactness arguments suffice to pass from (1.8) to (1.12) along

a subsequence of solutions
{

up
}

to (1.2). The convergence in L1 yields the lower semi-
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continuity. Using formulation (1.6)

∫ T

0
‖Du1 (·, t)‖(Ω∗)dt ≤ liminf

p→1

1
p

∫ T

0

∫
Ω∗

∣∣Dup
∣∣ dxdt

≤ liminf
p→1

|Ω∗T |
1− 1

p

p

[∫
Ω∗T

|Dup|p dxdt
] 1

p

≤ liminf
p→1

|Ω∗T |
1− 1

p

p

{∫
Ω∗T

|Dv|p dxdt

+
∫

Ω∗T

∂tup (v−up) dxdt
} 1

p

,

where the above holds for all v ∈ L1+ε

(
0,T ;W 1,1+ε

uo (Ω)
)
∩L2 (Ω∗T ) and ε > 0.

Now consider the restricted case where v∈L∞

(
0,T ;uo +C∞

o,γ,po
(Ω)
)
∩L∞

(
0,T ;L2 (Ω∗)

)
for any γ > 0. Here uo is directly regarded as defined on Ω∗.

∫
Ω∗T

∂tup (v−up) dxdt =
∫

Ω∗T

∂tup vdxdt− 1
2

∫
Ω∗T

∂t
[
u2

p
]

dxdt

=
∫

Ω∗T

∂tup vdxdt +
1
2

∫
Ω∗

u2
o dx− 1

2

∫
Ω∗

u2
p (·,T )dx.

Take the limit inferior. In the first term, we have that ∂tup → ∂tu1 weakly in L2 (Ω∗T ).

Observe that v is also in L2 (Ω∗T ). We get, using freely that the limit inferior of negative

numbers is the negative of the limit superior of their magnitudes,

liminf
p→1

∫
Ω∗T

∂tup (v−up) dxdt ≤
∫

Ω∗T

∂tu1 vdxdt

+
1
2

∫
Ω∗

u2
o dx− 1

2
limsup

p→1

∫
Ω∗

u2
p (·,T )dx.

(2.9)

From our a priori estimates, and particularly from the fact that

(up,∂tup)→ (u1,∂tu1) weakly in L2 (Ω∗T ) ,

we have that up (·,T )→ u1 (·,T ) weakly in L2 (Ω∗). For all the details we refer to Lemma 4.2
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of Section 4.

By the weak lower semicontinuity of the L2 norm, we have

∫
Ω∗

u2
1 (·,T )dx≤ liminf

p→1

∫
Ω∗

u2
p (·,T )dx≤ limsup

p→1

∫
Ω∗

u2
p (·,T )dx.

Substituting all this into (2.9), and a straightforward argument based on the Dominated

Convergence Theorem showing that limq→p ‖ f‖q = ‖ f‖p provided Ω∗ is a finite-measure

domain and f ∈ Lp+δ (Ω∗), yields

∫ T

0
‖Du1 (·, t)‖(Ω∗) dt ≤

∫
Ω∗T

|Dv| dxdt +
∫

Ω∗T

∂tu1 vdxdt +
1
2

∫
Ω∗

u2
o dx

− 1
2

∫
Ω∗

u2
1 (·,T )dx

=
∫

Ω∗T

|Dv| dxdt +
∫

Ω∗T

∂tu1 (v−u1) dxdt

for all v ∈ L∞

(
0,T ;uo +C∞

o,γ,po
(Ω)
)
∩L∞

(
0,T ;L2 (Ω∗)

)
with any γ > 0. The final point

in the argument is now to show that taking the union over all γ > 0 of these spaces suitably

approximates L1 (0,T ;BVuo(Ω)): this is exactly the content of Theorem 1.2.

As a consequence, the above test class recovers the full desired test class corresponding

to the 1-Laplacian, and this concludes the proof.

3 Proof of Theorem 1.2

3.1 Elliptic Case: The Set
{

uo +C∞
o,γ,p(Ω)

}
γ>0

is Dense in BVuo(Ω)

Before getting to the actual details of the proof, let us first give a heuristic sketch of

what we will be doing in the following.

Let f ∈ L1 (0,T ;BVuo(Ω)). By a parabolic extension of the original elliptic Giusti’s

approximation (see below what exactly we mean by that), we may approximate f within Ω
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in the appropriate sense of BV (Ω) by a function

ϕ ∈ L1 (Eη ;W 1,1(Ω)∩C∞(Ω)
)
,

where trϕ (·, t) = tr f (·, t) at the interior side of the boundary, and Eη ⊂ (0,T ) is a proper

set to be explained below. Still within Ω, now take

uo +(ϕ−uo)ζn,

where ζn is a cut-off function properly decaying, and such as to separate the perturbation

strictly away from the boundary. Extend this function to Ω∗ through the uo extension. This

approximate now has both exterior and interior traces equal to uo, as required by the p-

Laplacian test classes. The necessary improvement in terms of integrability is not an easy

task, but it is eventually obtained. We verify that

uo +(ϕ−uo)ζn
L1(Ω∗)→ uo +(ϕ−uo)χΩ,

and that

∫
Ω∗
|D [uo +(ϕ−uo)ζn]| →

∫
Ω∗\Ω

|Duo|+
∫

Ω

|Dϕ|+
∫

∂Ω

∣∣uo− tr− f
∣∣dHN−1.

This would indeed suffice, because Dϕ approximates the original quantities in the sense

of the total variation on Ω. The other two remaining terms are the total variations of the

original terms, when they are regarded as extended by uo into Ω∗ \Ω. Thus, we capture all

the term for the total variation in Ω∗.

So far for the sketch of the argument: we can now come to its technical implementation,

which turns out to be quite delicate.

First, we work strictly within Ω and recall the construction Giusti uses to approximate a
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given function f ∈ BV (Ω) with a sequence { fε} ⊂C∞(Ω)∩BV (Ω) whose elements share

the same interior trace as f (see [20, Theorem 1.17]). We will need this later on, and for

that reason we include it here with all its details. For simplicity, we will refer to it in the

sequel as Giusti’s approximation, but it is actually due to Anzellotti and Giaquinta (see

[49]).

Definition 3.1 (Giusti’s approximation) Let Ω be a bounded domain. Fix ε > 0 and let

m ∈ N be so that ∫
Ω∩[dist(·,∂Ω)≤ 1

m ]
|D f |< ε.

Then let

A1 = Ω∩
[

1
m+2

< dist(·,∂Ω)

]
and for i = 2,3, . . . define the sets

Ai = Ω∩
[

1
m+(i+1)

< dist(·,∂Ω)<
1

m+(i−1)

]
.

Let P =
{

ψi j
}

be a partition of unity subordinate to the Ai and define ψi = ∑ j ψi j. As

long as the domain is bounded, the set Ai will be compactly contained in Ω, and hence the

sum that defines ψi consists of only finitely many terms. The approximation is defined as

fε =
∞

∑
i=1

Jεi ∗ ( f ψi) ,

where J = J(x) is a standard, positive, symmetric mollifier, and the mollification parameter

εi is chosen to satisfy

1. suppJεi ∗ ( f ψi)⊆Ω∩
[

1
m+(i+2) < dist(·,∂Ω)< 1

m+(i−2)

]
,

2.
∫

Ω
|Jεi ∗ ( f ψi)− f ψi|dx < ε2−i,

3.
∫

Ω
|Jεi ∗ ( f Dψi)− f Dψi|dx < ε2−i.
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Then one concludes that

‖ fε − f‖1,Ω < ε,∫
Ω

|D fε | dx≤ ‖D f‖(Ω)+4ε,

lim
ε→0

∫
Ω

|D fε | dx = ‖D f‖(Ω).

The next issue is to generalize this result to the time dependent setting. This is precisely

the content of the following proposition, which can be seen as a uniform approximation in

W 1,po
uo (Ω)∩L2(Ω).

Proposition 3.1 Let Ω be a bounded, convex domain, with a compact boundary, which

satisfies conditions (B1)–(B2). Suppose that there exist M > 0 and a function

f ∈ L1 (0,T ;BV (Ω))

such that, uniformly over some measurable set E ⊆ [0,T ], we have

‖ f (·, t)‖BV (Ω) ≤M whenever t ∈ E.

Then for any η > 0, we may find a measurable set Eη ⊆ E such that |E \Eη |< η , and the

m-indexed functions

{
E 3 t→

[
‖D f (·, t)‖

(
Ω∩

[
d(·,∂Ω)<

1
m

])]}
m

converge uniformly to 0 over Eη as m→ ∞. As a consequence, the Giusti approximation

may be applied at once for a uniform choice of parameters εi, and for all t ∈ Eη there exists
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a sequence { fε (·, t)} ⊂C∞(Ω)∩BV (Ω) with ε → 0 such that

‖ fε (·, t)− f (·, t)‖1,Ω < ε for all t ∈ Eη , (3.1)∫
Ω

|D fε (·, t)| dx≤ ‖D f (·, t)‖(Ω)+4ε for all t ∈ Eη , (3.2)

lim
ε→0

∫
Ω

|D fε (·, t)| dx = ‖D f (·, t)‖(Ω) for all t ∈ Eη , (3.3)

tr∂Ω fε(·, t) = tr∂Ω f (·, t) for all t ∈ Eη . (3.4)

In turn, the integrability of Giusti’s family can be further improved, selecting a second

family of approximating functions g1/ j (·, t) ∈W 1,po
uo

(Ω)∩L2(Ω), indexed by t ∈ E2η ⊆ Eη ,

which are as regular as is permitted by the given uo ∈W 1,po(Ω)∩L2 (Ω), and satisfy

∥∥g1/ j (·, t)− f (·, t)
∥∥

1,Ω <
2
j

for all t ∈ E2η , (3.5)∫
Ω

∣∣Dg1/ j (·, t)
∣∣ dx≤ L < ∞ for all t ∈ E2η , (3.6)

lim
j→∞

∫
Ω

∣∣Dg1/ j (·, t)
∣∣dx

= ‖D f (·, t)‖(Ω)+‖uo− f (·, t)‖1,∂Ω
for all t ∈ E2η ,

(3.7)

tr∂Ω g1/ j(·, t) = tr∂Ω uo for all t ∈ E2η , (3.8)

g1/ j ∈
{

L∞

(
E2η ;uo +C∞

0,γ,po
(Ω)
)}

γ>0
∩L∞(E2η ;L2(Ω)), (3.9)

for some L > 0, which depends only on M,uo and Ω.

Remark 3.1 By [20, Theorem 2.11], the previous constructions are such as to ensure the

convergence of the corresponding traces in the topology of L1(∂Ω).
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Proof - Consider the family of functions

{
E 3 t→

[
‖D f (·, t)‖

(
Ω∩

[
d(·,∂Ω)<

1
m

])]}
m
.

Since f ∈ L1 (0,T ;BV (Ω)), for each m fixed the corresponding function above is mea-

surable in t. Moreover, the total variation is a measure and over E they are in fact finite

measures as shown by the uniform BV estimates; therefore, we have from the Dominated

Convergence Theorem that the sequence tends to 0 as m→ ∞, pointwise for each t.

However, E is itself a finite measure space. The above family of measurable functions

now pointwise tends to 0. A direct application of the Egorov Theorem shows the existence

of the desired Eη .

By showing that for all t ∈ Eη a single choice of m can attain the desired fundamental

condition of Giusti’s approximation, namely that

∫
Ω∩[dist(·,∂Ω)≤ 1

m ]
|D f (·, t)|< ε,

we may now fix a common geometric decomposition Ai for all times t ∈ Eη . The partition-

of-unity functions ψi are now fixed and common for all these time levels.

As the function ψi are fixed for the time levels t ∈ Eη , and the functions f (·, t) satisfy

a uniform BV estimate here, we argue that Conditions 1.–3. of Construction 3.1 may be

achieved by a uniform choice of εi.

Condition 1. altogether depends only on the supports of the functions ψi, which again

are the same for all these time levels.

As for Conditions 2.–3., in Lemma 4.1 of Section 4 we show that uniform BV estimates

imply uniform translation continuity. Assuming this fact, f (·, t)ψi and f (·, t)Dψi will be

uniformly translation continuous for all t, being the product of two such terms. This ensures

that the approximation by mollification may be done uniformly.

By satisfying Conditions 1.–3., we now have from Giusti’s approximation that (3.1)–
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(3.4) are satisfied for a family contained in C∞(Ω)∩BV (Ω).

It remains to improve the integrability of such a family beyond BV (Ω). We now work

with the particular sequence { f1/ j} j∈N.

Keeping in mind that obviously

f1/ j (·, t) = uo +
[

f1/ j (·, t)−uo
]
,

let

g1/ j,n (·, t) = uo +
[

f1/ j(·, t)−uo
]

ζn(x), (3.10)

where ζn is a proper cut-off function, which we are going to build next.

First consider a local coordinate setting in which the boundary is flat at [xN = 0] and

Ω⊆ {xN ≥ 0}. Define the piecewise linear functions χn ∈W 1,∞ (RN) by

χn(x) =


0 | xN ∈ [0,1/n]

n
(
xN− 1

n

)
| xN ∈ (1/n,2/n]

1 | xN ∈ (2/n,∞)

These now given, let {Ui}k
i=1 be an open covering of ∂Ω equipped with C1, local chart

maps Li : Ω̄∩Ui→ [xN ≥ 0] with local inverse of the form

L−1
i (x̄,xN) = Φi (x̄)+ xN~νx̄, (3.11)

where x̄ = (x1, . . . ,xN−1), Φi(x̄) locally charts the boundary of Ω, and ~νx̄ is the surface

interior normal at Φi (x̄). The existence of such maps is guaranteed by the compactness and

C1 nature of Ω, together with an application of the inverse function theorem.

Up to inclusion of at most one more open set Uo, we may consider this a finite open

cover of Ω̄. Notice that
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• for the index i of the finite open cover, we have 0≤ i≤ k;

• for the index n of the piecewise linear functions χn, we have n≥ 1.

Now let {Ψi}k
i=0 be initially constructed as a partition of unity subordinate to {Ui}k

i=0,

and then where all partition functions which are nonzero on Ω̄, whose supports have been

designated as belonging to a fixed open set Ui, have been summed. Since Ω̄ is compact and

is covered by the open sets Ui, all but finitely many partition functions vanish on it. Thus,

these sums are classical and themselves sum to unity, while each of them is also compactly

supported in its own respective Ui.

The function ζn : RN → [0,1] may now be defined as

ζn(x) = Ψo(x)+
k

∑
i=1

Ψi(x) [χn ◦Li] (x).

We can now go back to the functions g1/ j,n defined in (3.10). Since f1/ j (·, t) ∈ C∞(Ω),

and ζn ∈W 1,∞(Ω) is supported at a fixed distance from ∂Ω, we conclude that g1/ j,n (·, t)

belongs to the same Sobolev class as uo. Moreover, g1/ j,n (·, t) is identically uo in some

small neighborhood of ∂Ω. Altogether, we conclude that g1/ j,n (·, t) ∈W 1,po
uo (Ω).

The argument is concluded, once we show (3.5)–(3.9). For (3.5), we have

∥∥ f1/ j (·, t)−g1/ j,n (·, t)
∥∥

1,Ω ≤
∫

Ω

∣∣ f1/ j (·, t)−uo
∣∣(1−ζn)dx

≤
∫

Ω

∣∣ f1/ j (·, t)− f
∣∣(1−ζn)dx

+
∫

Ω

| f (·, t)−uo|(1−ζn)dx.

The right-hand side can be made arbitrarily close to 1/ j, independently of t, by majorizing

the first term with the L1 norm. The second term may be controlled as like the prior use of

Egorov’s theorem by taking the support of (1−ζn) sufficiently near the boundary. Recall

that lim
∫ ∣∣ f1/ j− f

∣∣dx < 1/ j is the lower limit to approximation power which is why the

Proposition was given with a 2/ j estimate.. Altogether this shows that n = n( j) may be
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picked to uniformly approximate the f1/ j across all t ∈ Eη .

For (3.6), by direct computation we have

∫
Ω

∣∣D[g1/ j,n (·, t)
]∣∣dx =

∫
Ω

∣∣Duo +D
[

f1/ j (·, t)−uo
]

ζn

+
[

f1/ j (·, t)−uo
]

Dζn
∣∣dx.

It follows from (3.2) and a priori estimates of uo, that the first two terms are bounded

uniformly for all t by a quantity that depends only on M and uo. The third term is similarly

handled, namely

∣∣∣∣∫
Ω

[
f1/ j(·, t)−uo

]
Dζn dx

∣∣∣∣
=

∣∣∣∣−∫
Ω

D
[

f1/ j(·, t)−uo
]

ζndx+
∫

∂Ω

[
f1/ j(·, t)−uo

]
ζn~ndHN−1

∣∣∣∣
≤
∫

Ω

∣∣D[ f1/ j(·, t)−uo
]∣∣ dx+N

∫
∂Ω

∣∣ f1/ j(·, t)−uo
∣∣dHN−1.

The first term above is controlled just as before. The second term, the trace on the boundary,

is bounded by its BV norm, up to a constant depending only on Ω (see [47, page 180]). This

establishes (3.6).

As for (3.7), we have

∫
Ω

∣∣D[g1/ j,n (·, t)
]∣∣dx =

∫
Ω∩[suppDζn]c

∣∣Duo +D
[

f1/ j (·, t)−uo
]

ζn
∣∣dx

+
∫

Ω∩[suppDζn]

∣∣Duo +D
[

f1/ j (·, t)−uo
]

ζn (3.12)

+
[

f1/ j (·, t)−uo
]

Dζn
∣∣dx

We apply Egorov’s Theorem a second time to the family of functions

{
Eη 3 t→

∫
Ω∩[d(·;∂Ω)< 1

m ]

(
|Duo|+

∣∣D[ f1/ j (·, t)−uo
]∣∣)dx

}
m

.
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By absolute continuity, they tend to zero pointwise. From Egorov’s Theorem, it now holds

that the limit in m is uniform for all t, up to the exclusion of an arbitrary small set. Next, n

may be picked so that

Ω∩ [suppDζn]⊆Ω∩
[

d (·;∂Ω)<
1
m

]
.

These remarks show that the second term on the right-hand side of (3.12) reduces to

∫
Ω∩[suppDζn]

∣∣[ f1/ j (·, t)−uo
]

Dζn
∣∣dx,

up to negligible terms, by choosing n > n( j) for all t ∈ E 3
2 η

. (Note initially the Egorov

sets would also depend on j, but by having the measure of their complements diminish

geometrically in j, the intersection of those sets can have a complement with measure no

greater than 3
2η in [0,T ]. Thus while achieving the desired estimate requires n = n( j), the

time levels over which the estimate holds may be taken as independent of j. )

Recall that Ψo is fixed by the geometry of Ω. Accordingly, n may be picked so large,

that its contribution to Dζn vanishes.

The final term is thus

∫
Ω

∣∣∣∣∣ k

∑
i=1

[
f1/ j (·, t)−uo

](
DΨi(x) [χn ◦Li] (x)+Ψ(x)D [χn ◦Li] (x)

)∣∣∣∣∣dx (3.13)

In the region where Ψo ≡ 0, it holds that ∑
k
i=1 DΨi(x) ≡ 0 by the partition of unity prop-

erties. Thus, the first quantity identically vanishes in ∩i [χn ◦Li = 1]. The complement of

this region by suitable choice of n( j) can be made sufficiently close to the boundary for a

modestly expanded use of Egorov to make this first integral quantity arbitrarily small over

the common E 3
2 η

set as well. We have used that the DΨi are fixed by Ω and are a priori

bounded accordingly. Hence, the first quantity in (3.13) is negligible by a choice n = n( j).

The second quantity is handled by exploiting the structure inherent in (3.11).
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We claim that

D [χn ◦Li]◦L−1
j (x̄;xN) = nχ[1/n≤xN≤2/n]~ν

tr
x̄ . (3.14)

where~νx̄ is the surface normal at Φ j(x̄). In order to show that (3.14) indeed holds true, first

compute from the chain rule

D [χn ◦Li]◦L−1
j =

(
D [χn ◦Li]◦L−1

i
)
◦
(

Li ◦L−1
j

)
=

(
D [χn]

(
D [Li]◦L−1

i
))
◦
(

Li ◦L−1
j

)
=

[(
0 . . . 0 nχ[1/n≤xN≤2/n]

)(
DL−1

i

)−1
]
◦
(

Li ◦L−1
j

)

The chain rule can surely be applied, since the functions χn are piecewise linear, and the

maps Li and their inverses are of class C1. Exploiting the orthogonality between~νx̄ and the

vectors of Dx̄Φ as well as Dx̄~νx̄, we have

D
[
L−1

i
]
=

(
Dx̄Φx̄ + xNDx̄~νx̄ ~νx̄

)
and

[
DL−1

i
]−1

=

F−1
Φ

(x̄) 0

0 1

[DL−1
i
]tr

where we let FΦ (x̄) = [DΦ]tr [DΦ].

Notice that there is a slight abuse of notation here, as, strictly speaking, FΦ is not the

first fundamental form, but only a term that tends to it, as xN → 0. However, this is not

crucial for the argument.
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Combining the last result with the previous chain rule computation, yields

D [χn ◦Li]◦L−1
i =

(
0 . . . 0 nχ[1/n≤xN≤2/n]

)F−1
Φ

(x̄) 0

0 1

[DL−1
i
]tr

=

(
0 . . . 0 nχ[1/n≤xN≤2/n]

)[
DL−1

i
]tr

=

(
0 . . . 0 nχ[1/n≤xN≤2/n]

)


0
...

0

~ν tr
x̄


,

and simplifying the product we obtain

D [χn ◦Li]◦L−1
j =

(
nχ[1/n≤xN≤2/n]~ν

tr
x̄

)
◦
(

Li ◦L−1
j

)

One checks from their explicit construction that Li ◦L−1
j =

(
Φ
−1
i ◦Φ j(x̄);xN

)
; ~νx̄ is

the surface normal at Φi(x̄). Consequently~νx̄ ◦
(

Li ◦L−1
j

)
is the surface normal at

Φi ◦Φ
−1
i ◦Φ j(x̄) = Φ j(x̄). This verifies (3.14).

We may also verify from the expression above that

lim
xN→0

∣∣detD
[
L−1

i
]∣∣= lim

xN→0

√∣∣∣det
(

D
[
L−1

i
]tr

D
[
L−1

i
])∣∣∣

=
√
|det(FΦ)|.

(3.15)

The right hand-side is well known to be the surface area Jacobian under the parameteriza-

tion Φ.
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Altogether, we have

∫
Ω

∣∣∣∣∣ k

∑
i=1

(
f1/ j−uo

)
ΨiD [χn ◦Li]

∣∣∣∣∣dx

=
k

∑
r=1

∫
Chartr

∣∣∣∣∣ k

∑
i=1

((
f1/ j−uo

)
◦L−1

r

)(
Ψi ◦L−1

r
)(

D [χn ◦Li]◦L−1
r
)∣∣∣∣∣(Ψr ◦L−1

r
)

JL−1
r

dx

=
k

∑
r=1

∫
Chartr

∣∣∣∣∣ k

∑
i=1

((
f1/ j−uo

)
◦L−1

r

)(
Ψi ◦L−1

r

)
nχ[1/n≤xN≤2/n]~νx̄

∣∣∣∣∣(Ψr ◦L−1
r
)

JL−1
r

dx.

Since~νx̄ is in all terms the surface normal at Φr(x̄), the only terms participating in the sum

over i are the partition of unity terms indexed by i which must then sum to 1. Letting n→∞,

the term with nχ averages all terms to their [xN = 0] values. In particular, JL−1
r

becomes

precisely the surface area Jacobian. We conclude

lim
n→∞

∫
Ω

∣∣∣∣∣ k

∑
i=1

(
f1/ j−uo

)
ΨiD [χn ◦Li]

∣∣∣∣∣dx=
k

∑
r=1

∫
∂Ω

| f −uo|Ψr dHN−1 =
∫

∂Ω

| f −uo|dHN−1.

We have used that

tr f1/ j = tr f ,

due to Giusti’s approximation. The terms of (3.12) now become

lim
n→∞

∫
Ω

∣∣D[g1/ j,n (·, t)
]∣∣dx

=
∫

Ω

∣∣D[ f1/ j (·, t)
]∣∣dx+

∫
∂Ω

| f −uo|dHN−1.

(3.16)

Recall that the total variations of f1/ j do approximate the total variation of the f . Further,

because the family g1/ j,n(·; t) was constructed from the original family f (·; t) by applying

a common, measurable construction across all time levels uniformly, all the members of

the family and their norms inherit measurablility in t. From (3.16) and Egorov’s theorem,

it holds that for j fixed, the limit in n is uniform up to the exclusion of a subset of (0,T )

of arbitrarily small measure. Though initially each j leads to its own subset, by again
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diminishing the measures of the complements of the jth Egorov set geometrically, we may

take a common set. This may be taken as saying the limit is uniform in n( j) over a set

E 5
3 η
⊆ (0,T ) where the latter set is independent of j.

Now, after suitably choosing n( j) in order to sufficiently approximate (3.16) indepen-

dent of t, define the function

g1/ j(·, t) = uo + Jα ∗
[(

f1/ j (·, t)−uo
)

ζn( j)(x)
]
.

At each t an α may be picked so that Jα ∗ (·) sufficiently approximates the W 1,1 norm of

its argument because that argument is compactly supported in the interior of Ω. Clearly

too, that mollified function does not perturb the uo trace. These are achieved, because ζn

vanishes at some fixed distance away from the boundary. Since the W 1,1 norm of g1/ j,n(·; t)

was shown to satisfy (3.16), the α limit can be chosen to maintain that approximation.

Thus, the mollification can attain that limit as well when j→ ∞ for a suitable choice of

α( j,n( j), t).

The parameter α = α( j,n( j)) may be chosen independent of t and still respect the limit

by a final appeal to Egorov over a suitable set t ∈ E2η by considering the functions (with

n( j) and j fixed)

{
E 5

3 η
3 t→

∥∥Jα ∗
[(

f1/ j(·, t)−uo
)

ζn
]
−
(

f1/ j(·, t)−uo
)

ζn
∥∥

W 1,1(Ω)

}
α= 1

m

.

By the same geometric series device as before, the Egorov set E2η ⊆ [0,T ] of times for

which the limit is uniform may be taken independent of j while the rate of convergence

will depend on j. Further g1/ j(·; t) ∈ uo +C∞
0 (Ω), and its support from the boundary may

be quantified solely by n( j) through ζn( j)(x) with correspondingly small α .

With α( j,n( j)) and n( j) fixed, g1/ j(·, t) is as regular as is permitted by uo, and from the

uniform L1 estimates of f1/ j and its derivatives, sup bounds for the mollifications and their

derivatives may be obtained. Indeed the kernel ‖Jε‖∞
= O(ε−N), so each g1/ j (·, t)− uo
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and its derivatives are uniformly L∞–bounded, independent of t. Accordingly, g1/ j ∈

L∞(E2η ;L2(Ω)). Finally, due to the uniform BV estimates given in (3.6) and the α and n

fixed, the perturbative term similarly belongs to L∞

(
E2η ;uo +C∞

0,γ( j),p0
(Ω)
)

and accord-

ingly g1/ j ∈
{

L∞(E2η ;uo +C∞
0,γ,po

(Ω))
}

γ>0
.

Remark 3.2 The proof actually shows the stronger estimate

∥∥g1/ j (·; t)−uo
∥∥

W 1,∞(Ω)
≤ Λ( j)< ∞ ∀t ∈ E2η

Remark 3.3 Estimates (3.5)–(3.8) imply that when all concerned functions are regarded

as extended by uo from Ω into Ω∗ as defined in (1.7), the g1/ j (·, t) approximate the f (·, t)

in the BV (Ω∗) norm.

3.2 Parabolic Case:
{

L∞(0,T ;uo +C∞
0,γ,po

(Ω))
}

γ>0
∩L∞

(
0,T ;L2(Ω)

)
is Dense in L1 (0,T ;BVuo(Ω))

Proposition 3.2 The set
{

L∞(0,T ;uo +C∞
0,γ,po

(Ω))
}

γ>0
∩L∞

(
0,T ;L2(Ω)

)
is dense in the

space L1 (0,T ;BVuo(Ω)).

Proof - Let v ∈ L1(0,T ;BVuo(Ω)) be fixed. Then, in particular, as discussed in (1.9),

‖Dv(·, t)‖(Ω∗) = ‖Duo‖
(
Ω
∗ \ Ω̄

)
+
∥∥tr− v(·, t)−uo

∥∥
L1(∂Ω)

+‖Dv(·, t)‖(Ω),

and

ϕ(t) := ‖v(·, t)‖BV (Ω∗) ∈ L1 (0,T ) .

Next, we decompose this function. Write

ϕ(t) = ϕ(t)χ[ϕ≤M]+ϕ(t)χ[ϕ>M] := ϕ1,M(t)+ϕ2,M(t).

Observe that both ϕ1,M,ϕ2,M ≤ ϕ , which is an integrable function. In particular, integra-

bility implies that for almost every t ∈ (0,T ), ϕ(t) is finite and limM→∞ χ[ϕ(t)≥M] = 0 for
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almost every t, and so the Dominated Convergence Theorem applies.

We claim that it is sufficient to approximate v in the norm of the space L1 (0,T ;BVuo(Ω))

over the set [ϕ ≤M] by an element

φ ∈
{

L∞(0,T ;uo +C∞
0,γ,po

(Ω))
}

γ>0
∩L∞

(
0,T ;L2(Ω)

)
,

which is identically uo in [ϕ > M]. Note that at each time level such a function is regarded

as extended to be uo throughout all of Ω∗, as defined in (1.7). Let us first consider the

contribution coming from the L1-norm. For such a φ ,

∫ T

0
‖v−φ‖1,Ω∗ (t)dt ≤

∫ T

0
‖v−uo‖1,Ω∗ (t)χ[ϕ>M]dt

+
∫ T

0
‖v−φ‖1,Ω∗ (t)χ[ϕ≤M]dt

≤
∫ T

0
ϕ(t)χ[ϕ>M]dt+‖uo‖1

∫ T

0
χ[ϕ>M]dt

+
∫
[ϕ≤M]

‖v−φ‖1,Ω (·, t)dt.

By suitably a priori picking M and using DCT, we can make the first two terms arbitrarily

small. Thus, if vχ[ϕ≤M] can be approximated by such φ , the last term is small too, and

netwise we may use them to approximate v in L1 (0,T ;L1(Ω∗)
)
.

Similarly, for the total variation part over Ω∗ we have

∣∣∣∣∫ T

0
|v|BV dt −

∫ T

0
|φ |BV dt

∣∣∣∣
≤
∫ T

0
ϕ2,Mdt + |uo|BV

∫ T

0
χ[ϕ>M]dt

+

∣∣∣∣∫ T

0
|v|BV χ[ϕ≤M]dt−

∫ T

0
|φ |BV χ[ϕ≤M]dt

∣∣∣∣ .
Once more, from the integrability of ϕ , we may choose M, so that the first terms are

arbitrarily small. We are still assuming that φ may be picked to approximate our desired

vχ[ϕ≤M] term. Thus, it is sufficient to approximate the latter term.
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On the χ[ϕ≤M] time levels, the |v(·, t)|BV (Ω∗) norm is uniformly bounded by M. We may

apply Proposition 3.1 and for η > 0 fixed, we conclude that there exist a set E2η ⊆ [ϕ ≤M]

such that | [ϕ ≤M]\E2η |< 2η , and a corresponding family of functions v1/ j(·, t) as given

in the proposition. For t ∈ [ϕ ≤M]\E2η , set v1/ j(·; t) = u0 like before.

At each time level these W 1,p
uo (Ω)∩L2(Ω) traces are now regarded as also extended to

Ω∗ through the uo extension, as defined in (1.7). In particular,

∥∥Dv1/ j(·, t)
∥∥(Ω∗) = ‖Duo‖

(
Ω
∗ \ Ω̄

)
+
∥∥Dv1/ j(·, t)

∥∥(Ω)

We relied on the approximation (3.6)–(3.7), on the Dominated Convergence Theorem, and

that v1/ j may not charge the boundary due to its Sobolev regularity. Altogether, these facts

yield that

lim
j→∞

∫
[ϕ≤M]

∥∥Dv1/ j (·, t)
∥∥(Ω∗)dt = lim

j→∞

(∫
E2η

∥∥Dv1/ j (·, t)
∥∥(Ω∗)dt +

∫
[ϕ≤M]\E2η

∥∥Dv1/ j (·, t)
∥∥(Ω∗)dt

)
=
∫
[ϕ≤M]

‖Duo‖
(
Ω
∗ \ Ω̄

)
dt + lim

j→∞

(∫
E2η

∥∥Dv1/ j (·, t)
∥∥(Ω)dt +

∫
[ϕ≤M]\E2η

∥∥Dv1/ j (·, t)
∥∥(Ω)dt

)
=
∫
[ϕ≤M]

‖Duo‖
(
Ω
∗ \ Ω̄

)
dt +

∫
E2η

‖trv(·, t)−uo‖1,∂Ω
dt +

∫
E2η

‖Dv(·, t)‖(Ω)dt

+ lim
j→∞

R j

The R j are bounded in magnitude by |u0|BV ∗ 2η . We may further ensure that χE2η
→

χ[ϕ≤M] a.e. by choosing a subsequence 2ηi = 2−i. Indeed, by the Borell-Cantelli lemma

we would have that the measure of points belonging to infinitely many of the sets [ϕ ≤M]\

E2ηi is 0. Now appealing to dominated convergence over the sequence ηi – recall [47, page
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180] guarantees the trace term is bounded by the BV norm – we obtain

lim
j→∞

∫
[ϕ≤M]

∥∥Dv1/ j (·, t)
∥∥(Ω∗)dt

=
∫
[ϕ≤M]

‖Du0‖
(
Ω
∗ \ Ω̄

)
dt +

∫
[ϕ≤M]

‖trv(·, t)−uo‖1,∂Ω
dt +

∫
[ϕ≤M]

‖Dv‖(Ω)dt

=
∫
[ϕ≤M]

‖Dv(·, t)‖(Ω∗)dt.

4 Some Technical Results

Lemma 4.1 Assume that Ω⊂ RN is an open, convex domain. Then uniform BV estimates

imply uniform translation continuity.

Proof - We recall an elementary step of the Rellich compactness argument for an arbitrary

function ϕ ∈C∞(Ω)∩BV (Ω). If, for a fixed h ∈ RN we let Ω−h def
= {x−h : x ∈ Ω}, we

have

∫
Ω

|Thϕ−ϕ|dx =
∫

Ω

|ϕ (·+h)χΩ−h−ϕ (·)|dx

=
∫

Ω∩Ω−h
|ϕ (·+h)−ϕ (·)|dx+

∫
Ω\Ω−h

|ϕ (·)|dx. (4.1)

In the first term on the right-hand side of (4.1), appealing to the convexity of Ω to justify

the line integral, we may estimate

∫
Ω∩Ω−h

|ϕ (·+h)−ϕ (·)|dx≤
∫

Ω∩Ω−h

∣∣∣∣∫ |h|0

d
dt

[
ϕ

(
x+

t
|h|

h
)]

dt
∣∣∣∣dx

≤
∫

Ω∩Ω−h

∫ |h|
0

∣∣∣∣Dϕ

(
x+

t
|h|

h
)
· h
|h|

∣∣∣∣dtdx

≤
∫ |h|

0

∫
Ω∩Ω−h

∣∣∣∣Dϕ

(
x+

t
|h|

h
)∣∣∣∣dxdt

≤ |h|‖Dϕ‖1,Ω .

69



In the last inequality, the convexity of Ω allows us to conclude that, even with the shift, we

are still integrating in Ω. As for the second term of (4.1), we used the Hölder inequality

and a Sobolev embedding:

∫
Ω\Ω−h

|ϕ|dx≤ ‖ϕ‖ N
N−1
|Ω\Ω−h|

1
N ≤ γ(Ω)‖ϕ‖BV (Ω) |Ω\Ω−h|

1
N .

Therefore, if an estimate for ‖ϕ‖BV (Ω) is given, then for any ε > 0 fixed, we may find a

suitable δ > 0, such that for |h|< δ , we have

∫
Ω

|Thϕ−ϕ|dx < ε.

Lemma 4.2 Let p→ 1. When Proposition 2.2 holds, if (up;∂tup)→ (u1,∂tu1) weakly in

L2 (ΩT ), then up (·, t)→ u1 (·, t) weakly in L2(Ω) for all t. As a consequence

‖u1 (·, t)‖2,Ω ≤ liminf
p→1

∥∥up (·, t)
∥∥

2,Ω .

Proof - By a standard approximation argument, for all ϕ ∈ L2(Ω) we have

∫
Ω

up (x, t)ϕ(x)dx =
∫

Ω

uo(x)ϕ(x)dx+
∫

Ω×(0,t)
∂τup(x,τ)ϕ(x)dxdτ.

By weak convergence on the right side, we see that the functional

L2(Ω) 3 ϕ (x)→ lim
p→1

∫
Ω

up (x, t)ϕ (x)dx

is well-defined and by the Hölder inequality is also continuous. By the Riesz representation

theorem, ∃w(·, t) ∈ L2(Ω), such that

∫
Ω

w(x, t)ϕ(x)dx = lim
p→1

∫
Ω

up (x, t)ϕ(x)dx.
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By Proposition 2.2, we have that the traces converge strongly to u1 (·, t) in Lq(Ω) for q< 1∗.

Thus, ∀ϕ ∈C∞
o (Ω) ∫

Ω

[w(x, t)−u1 (x, t)]ϕ(x)dx = 0.

As both functions belong to Lq(Ω), this suffices to conclude that the functions agree al-

most everywhere. Finally, weak lower semicontinuity of the trace L2 norm follows by an

elementary argument: for ‖ϕ‖2,Ω = 1,

∫
Ω

u1 (·, t)ϕ dx = lim
p→1

∫
Ω

up (·, t)ϕ dx≤ liminf
p→1

∥∥up
∥∥

2,Ω .

Taking the supremum over all such ϕ allows us to conclude.
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Chapter 4

Analysis of Diffusion in Curved Surfaces and its Applicationto Tubular Membranes

This chapter was published under this title in Molecular Biology of the Cell online

October 2016, [15], at http://www.molbiolcell.org/content/27/24/3937.abstract .

1 Introduction

Lateral diffusion of proteins in membranes is ubiquitous and is known to play important

roles in several cellular processes, including neuronal signaling, immunological reactions,

receptor endocytosis, and many signaling pathways [50, 51, 52, 53, 54, 55] The diffusion

of biomolecules in membranes is actively modulated in cells through several mechanisms,

including actin barriers and active fluctuations [55, 56, 57, 58, 59, 60]. Diffusion of proteins

in membranes is also sensitive to a number of factors, including the size of the protein, its

confinement to domains, the viscosity of the environment, and crowding [61, 62, 63, 64,

65]. Classical studies on diffusion in cell membranes assume the surface to be planar

and model diffusion in two dimensions [66]. This assumption, though valid in studying

many phenomena, may not be correct in studying diffusion in membrane deformations

[67, 68, 69].

Manifestations of curvature in membrane are ubiquitous and have observable biological

functionality. For instance, curvature is highly regulated in development and retraction of

outgrowths in neurons [70]. Many processes such as recruitment of proteins, changes in

composition of lipids, and changes in membrane physical properties are curvature depen-

dent [71, 72, 73, 74, 75, 76, 77]. Geometry is also known to play an important role in sorting

of proteins. It has been hypothesized that the curvature of the transGolgi network (TGN)

aids in protein sorting [72]. Interestingly, the relative concentration of proteins and lipids

in the membrane and tubules emanating from the membranes are different [78, 79, 73].
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This implies that molecular concentration in tubules and in the planar surface that they are

connected to can be different, and this difference can have biological significance. Several

researchers have elegantly shown that this sorting could arise through a variety of physical

and biological mechanisms reviewed in [80].

As with most physical properties of biological systems, curvature and shape of various

membranes and membrane-bound organelles are highly regulated [81, 82, 83]. In several

cases, cells expend energy to maintain the geometry of these structures, as illustrated by

recruitment of BAR domain proteins to sites of endocytosis [84]. Because geometry is

tightly regulated in a cell, it is possible for the cells to modulate geometry to steer diffu-

sion and concentration gradients. An important factor responsible for this, although less

understood, is how biomolecules diffuse differently simply as a result of the nonplanarity

of the surface [85, 86]. This influence of geometry on diffusion has been demonstrated for

tubular geometries. Experimentally determined diffusion constants measured for a protein

KvAP have been shown to be directly proportional to the radius of the tubule in which

the protein diffuses [87, 12]. However, even the measurement of diffusion coefficients

in nonplanar geometries could be inherently difficult due to the complexity of geometry

[67, 88, 87, 89]. Thus there is a real need to develop models that accurately measure the

diffusion of molecules in complex geometries.

In this paper, we examine how the geometry of a surface plays a role in diffusion of

molecules and, consequently, how concentration gradients of diffusing species develop. To

address this, we developed a numerical implementation of the Laplace-Beltrami mathe-

matical model to understand diffusion in geometrically complex surfaces using membrane

tubules as a biologically relevant example. Tubular membrane geometries are typical of

many structures found in cells, including dendritic spines, the endoplasmic reticulum,

membrane nanotubes, primary cilia, clathrin-independent carriers, and sorting tubules em-

anating from endosomes and the TGN [90, 91, 92, 72, 93, 94, 87, 95]. We report numerical

simulations of the mathematical model that incorporate the cylindrical nature of tubules
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and the effect of the cylindrical geometry on diffusion of molecules along the tubule sur-

face. We show by adapting standard diffusion paradigms that geometry has a nontrivial

influence on diffusion and thereby the concentration of molecules that diffuse into tubules.

These mathematical considerations predict that nonplanarity of membranes prolongs con-

centration gradients across a tubular surface. The amplitude and temporal spread of the

concentration gradient is systematically dependent on the curvature of the tubule and the

diffusion coefficient of the molecule. Thus our results imply that biological regulation can

emerge from a strategic coupling of these geometric constraints with the cellular sorting

machinery.

2 Results

Diffusion in membranes has been characterized by a wide variety of theoretical tech-

niques, including some that describe a tubular geometry [66, 96, 85, 86]. Many of these

methods use random-walk simulations, which apply stochastic models to describe diffu-

sion. While these methods have been highly successful in addressing many interesting

biological questions, they only asymptotically solve the diffusion equation of inherent in-

terest and so add an extra order of approximation. Therefore, to understand how diffusion

scales with different geometric parameters on a tubular surface, we described classical mo-

tion of diffusion set on a surface. We then derived a Laplace-Beltrami operator for the

diffusion equation and solved it using finite element methods (FEM) for a symmetric con-

dition (Supplemental Text S1). See also Supplemental Text S2 for the more general case of

nonsymmetric conditions.

We solved the Laplace-Beltrami equations to understand how various geometric pa-

rameters affect diffusion and thereby the concentration gradient of a diffusing species

along the surface of a tubule for a prescribed boundary condition. A tubule is mod-

eled as a cylinder with length h and radius r attached to a hemispherical cap of radius

r. A cartoon representation of a tubule is shown in Figure 1A. We considered a range
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of radii and lengths that mimic various dimensions of membrane tubules found in cells

or generated in vitro (Table 1 and Figure 1C). The geometry of the tubule is assumed

Figure 4.1: (A) A tubule is described as two
geometric structures: a cylindrical portion
(clear) and a hemispherical portion (gray).
(B) Example of plots of concentration of dif-
fusing species for a tubule with length 1 m
and radius 200 nm. The shaded portion cor-
responds to the hemisphere region, and the
white portion represents the cylindrical re-
gion of the tubules. The dotted and solid lines
illustrate two different arbitrary concentration
profiles. (C) Illustration of the difference in
length scales of membrane tubules in biology.

to be constant as a function of time. This

implies that molecules diffuse into pre-

existing tubules. Such tubules are common

in biological systems. Unless otherwise

specified, we assume that diffusing species

enter the tubule from the open rim and dif-

fuse into the body of the tubule. We want

to emphasize that all diffusion conditions

described in this paper refer solely to sur-

face diffusion along tubules and not diffu-

sion in the lumen of the tubule. A reser-

voir of molecules is assumed to be present

outside the rim and available to diffuse into

the tubule. Diffusion from the rim into the

tubule occurs with a defined diffusion co-

efficient k, which falls within a range of

values previously reported for membrane-

associated proteins [97, 98]. Note that the

model only considers the effects of geomet-

ric factors on diffusion. Thus the diffusing

species have no explicit size or shape, the

surface of the tubule does not have a de-

fined thickness, and the regions inside or

outside the tubule have no viscosity. Cor-

respondingly, hydrodynamic effects are not included in this model.
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Structure Radius(nm) Height Reference
Calthrin-coated Pits Pits 20-

80; Coats
35-100

Kirchhausen, 2009

Caveolae 40-60 100nm Westermann et al, 1999
Cholera toxin endocytic tubules ≤ 250 5µm Day et al, 2015
Shiga toxin endocytic tubulues ≤ 250 1 −

20µm
Römer et al, 2007; Re-
nard et al, 2015

Filopodia 100 1−2µm Mogilner and Rubin-
stein, 2005

PACSIN2 tubes 10-100 Wang et al, 2009
Endophilin A2 tubulues 10-50 Farsad, 2001
Endoplasmic reticulum tubule 57 Upadhyaya and Sheetz,

2004
Golgi tubule 90 Upadhyaya and Sheetz,

2004
Inner mitochondrial tubule 18 Scorrano et al, 2002
Neurites 25-1250 ≥ 1µm Windebank et al, 1985;

Briggman and Bock,
2012

Table 4.1: Examples of lengths and radii of membrane tubules.

To understand how material diffuses on the tubules as a function of time, we typically

generate plots of the concentration of diffusing species along the length of the tubule, where

the rim of the tubule is set as 0. Note that the coordinate system used in the figures is

different from the coordinate system used while solving the Laplace Beltrami equation.

An explanation and the relationship between the coordinate system used in the figure

and in the equation are described in Supplemental Text S3 and in Supplemental Figure 2.

Examples of two possible concentration gradients are illustrated in Figure 1B. For these

cases, the concentration of diffusing species is identical at the rim but differs along the

length of the tubule.
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3 How does geometry impact the time it takes for material to equilibrate along the

surface of a tubule?

In subsequent sections, we simulate biologically relevant tubular dimensions and bound-

ary conditions to understand how molecules in tubules diffuse. We expect the geometry of

the tubule to control the diffusion of molecules along its surface in two ways. First, ge-

ometry should regulate the time it takes for a molecule to equilibrate completely across the

length of the tubule. Second, geometry can influence how concentration scales spatially

along the length of the tubule. We performed simulations to understand the magnitude of

each of these effects. To carry out these studies, we considered tubule lengths and radii

similar to those seen in biological membranes (Table 1 and Figure 1C). Diffusion coeffi-

cients ranging from 0.01 to 0.5 µm2/s were chosen to mimic those previously reported for

membrane proteins [97, 98].

To investigate the impact of tubule geometry on the equilibration time, we simulated

a condition in which the concentration of diffusing species within the surface of the tube

is initially 0 except at the rim, where it is set as 1. We assume that the concentration of

diffusing species available to enter the rim of the tube remains constant throughout the

time course of the simulation. This boundary condition represents a unity Dirichlet data,

and the simulations with this boundary condition are referred to subsequently as Dirichlet

simulations purely for the sake of convenience. This represents a biological condition in

which the surrounding membrane is saturated with molecules at all times. These molecules

will then diffuse into the tubule until equilibrium is reached between the membrane and

tubule.

We first characterized diffusion onto a tubule as a function of time under the Dirichlet

boundary condition. For this, we selected a tubule with radius of 0.1 µm and length 1 µm

and set the diffusion coefficient as 0.1 µm2/s. We then simulated the concentration of dif-

fusing material across the tubule surface at 0.25 s intervals for a total time of 10 s. Under

these conditions, the magnitude of the concentration gradient across the tubule systemati-
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cally decreases, and eventually the tubule fully equilibrates to a concentration of 1 (Figure

2A). Correspondingly, a plot of the average concentration of diffusing species in the tube

Figure 4.2: Variation of concentration along the tubule over
time under Dirichlet boundary conditions. (A) Evolution of
concentration gradients as a function of time for a Dirichlet
simulation of molecules actively flowing into a tube of length
1 µm and radius 0.1 µm with a diffusion coefficient of 0.1
µm2/s shown for time steps of 0.25 s. The zero time point
is indicated by the solid line and the subsequent time points
are shown as dashed lines. The arrow indicates increasing
time. (B) Change in average concentration of molecules in
the tubule as a function of time for the case of the unity
boundary conditions. (C) Half-time (t1/2) required to fully
equilibrate material along the entire tubule (black circles) or
the cylindrical region only (gray squares) as a function of
tubule length for a tubule of radius 0.1 µm. Inset shows t1/2
for small lengths. (D) t1/2 required to fully equilibrate mate-
rial across the entire tubule (black circles) and the cylindrical
portion only (gray squares) as a function of tubule radius for
a tubule with length of 1 µm.

saturates as a function of

time (Figure 2B). From

such plots, the half-time

t1/2 required for equilibra-

tion can be directly calcu-

lated.

We next investigated how

diffusion coefficient, tubule

radius, and tubule length al-

ter the equilibration time.

For these studies, we varied

each of the parameters indi-

vidually, keeping the other

two constant. First, we

varied diffusion coefficients

from 0.01 to 0.5 µm2/s on

a tubule of length 1 µm and

radius 0.1 µm for a total

simulation time of 5 s. Not

surprisingly, for faster dif-

fusion coefficients (Supple-

mental Figure 3), the dif-

fusing species equilibrates

faster, while for slower dif-

fusion coefficients, the equilibration is considerably slower. For example, diffusing species
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with a diffusion coefficient of 0.5 µm2/s have a half-time of 0.5 s, whereas a 10-fold slower

diffusion coefficient of 0.05 µm2/s yields a half-time of 4.5 s.

Next we simulated diffusion on tubules of variable lengths, assuming a constant radius

of 0.1 µm and a diffusion coefficient of 0.1 µm2/s. (Supplemental Figure 4A). While

the shortest tubule (h = 0.1 µm) equilibrated rapidly, as expected, even lengths of 0.5 µm

posed a significant barrier to the diffusion of molecules onto the tubule (Supplemental

Figure 4B). To generalize how the length of the tubule affects equilibration, we calculated

the half-time (t1/2) of the tubule to equilibrate (Figure 2C). For tubules that had not reached

half-saturation by the end of the simulation, we used extrapolation to obtain t1/2. We

found that t1/2 is not linear for small lengths (Figure 2C, inset), but for lengths > 2µm,

it increases linearly, since the contribution from the hemispherical region is negligible.

We also determined the t1/2 for the cylindrical portion only and found that this closely

resembles the t1/2 of the entire tube, especially for long tubules. When we attempted to do

the same for the hemisphere, we found that, for longer length scales, the hemisphere was

devoid of diffusers, and extrapolations were therefore not accurate. Thus these have not

been reported here.

We next simulated diffusion in tubules with a constant length of 1 µm but radii ranging

from 0.01 to 0.2 µm (Supplemental Figure 4D). These simulations were carried out for a

time period of 5 s. As before, we determined the t1/2 required for material to equilibrate

along the entire tube or the cylindrical region (Figure 2D). The results of these simulations

show that increasing the tubule radius from 0.01 to 0.2 µm slows down the entry of material

onto the tubule. For example, the time it takes for the average tubule to become halfsatu-

rated increases from almost 1.5 to 2.2 s when the radius is increased from 0.01 to 0.2 µm,

translating to almost a 50 percent increase.
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4 How does geometry influence the magnitude of concentration gradients across the

surface of the tubules?

In the scenario outlined above, we considered a situation in which the material that

Figure 4.3: Variation of concentration along the tubule sur-
face under Neumann boundary condition simulations. (A)
Evolution of concentration gradients as a function of time
for a Neumann simulation of molecules actively flowing into
a tube of length 1 µm and radius 0.1 µm with a diffusion
coefficient of 0.1 µm2/s. The zero time point is indicated
by the solid line and the subsequent time points are shown
as dashed lines (time steps = 0.25 s). (B) Change in aver-
age concentration of molecules along the tubule surface as a
function of time in the case of the unity Neumann boundary
conditions. (C) Effect of changing the radius of a tubule on
the exclusion factor for a molecule with diffusion coefficient
of 0.1 µm2/s while keeping the length of the tubule constant
at 1 m. (D) Effect of changing the length of a tubule on the
exclusion factor for a molecule with diffusion coefficient of
0.1 µm2/s while keeping the radius of the tubule constant at
0.1 µm.

enters the tubules is present

at constant levels in the

membrane reservoir. How-

ever, under some condi-

tions, the concentration of

material available to enter

the tubes may itself vary as

a function of time, for ex-

ample, as the result of a

chemical reaction or signal-

ing event. To model this

situation, we considered a

second boundary condition,

in which we assumed that

the concentration of diffus-

ing species is initially 0

both across the surface of

the tube and at the rim at

t = 0. A linearly increas-

ing quantity of molecules

was then added to the rim

as a function of time, and

the molecules then diffused

onto the tubule. Because the flow is unity and increasing, this boundary conditions rep-
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resents a unity Neumann data, and the simulations are henceforth referred to as Neumann

simulations for the sake of convenience. We then examined how concentration evolves as

a function of time for the same tubule dimensions and diffusion coefficients simulated for

the Dirichlet boundary condition.

We first characterized how a typical Neumann boundary condition evolves by using

as an example a molecule with a diffusion coefficient 0.1 µm2/s diffusing onto a tubule

of radius 0.1 µm and length 1 µm. Figure 3A shows the concentration gradients along the

length of the tubule as a function of time over 0.25 s time intervals (dashed lines) beginning

at time t = 0 (solid line) for a total of 10 s. Unlike the Dirichlet boundary condition,

here the concentration of material in the tubule grows without bounds as the result of the

constant rate of influx of molecules at the rim for as long as that constant rate of influx is

prescribed (Figure 3A). Consequently, for a given tubule, the overall shape of the gradient

is maintained over time, and the total concentration rises linearly (Figure 3B). To provide

a measure of the relative differences in concentration at the rim and the tip of the tubule at

the end of these simulations, we define an exclusion factor term as

exclusion factor =
C0−C1

C0

where C0,C1 are the concentrations of moleculus at the rim and at the end of the tubule.

This factor ranges from 0 to 1, with 1 implying that the tubule bottom has 0 concentration

and 0 representing an equilibrated state with equivalent concentrations at the tubule rim

and tip.

To study how tubule geometry influences the way molecules are sorted into tubules,

we varied the length and radius of the tubule and the diffusion coefficient of the diffusing

species to determine the corresponding concentration gradients. We would like to stress

that, in real biological systems, this condition would not continue indefinitely and would

have an upper bound on the time up to which material flows. Hence we compare the con-
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centration profiles and exclusion factor (Supplemental Text S4) between different condi-

tions at a single time point (t = 5 s) for the different Neumann simulations. This time point

was chosen arbitrarily to emphasize diversity in concentration gradients for the different

parameters we compared. The flow rate was likewise held constant across our simulations.

First, we investigated how diffusion coefficients impact the evolution of concentration

gradients across the surface of a tubule of constant length 1 µm and radius 0.1 µm for a

simulation time of 5 s. Not surprisingly, as shown in Supplemental Figures 5 and 6, increas-

ing the diffusion coefficient increased the absolute concentration of material present within

the tubule. Interestingly, increasing the diffusion coefficient also decreased the exclusion

factor (Supplemental Text S4). Thus the less mobile a molecule is, the less its gradient

relative to the reservoir.

Next we studied the effect of tubule radius (Supplemental Figure 7A) by simulating

molecules diffusing into tubules of a constant length 1 µm and diffusion coefficient of 0.1

µm2/s for a period of 5 s. For this analysis, we kept the concentration of molecules avail-

able at the rim for diffusion as a constant, implying that the total number of molecules

available differs as a function of radius. We found that changing the radius does not sub-

stantially impact the underlying characteristics of the concentration profile in the tubule,

although we did note that at the largest radius, r = 0.2 µm, a concentration gradient was

present at the bottom of the tube. This presumably reflects the fact that the radius is com-

parable to the tube length. As the tube radius was decreased, a higher density of molecules

accumulated in the bottom of the tubule. This behavior is also reflected in the exclusion

factor increasing linearly with increasing radii for this range of values (Figure 3C).

Finally, we varied the length of the cylindrical region to determine the effects of tube

length. We varied the tubule length over two orders of magnitude ranging from 0.1 µm up

to 10 µm with a constant tubule radius of 0.1 µm under the Neumann boundary condition.

We observed that overall concentration gradients are different for different tubule lengths

with identical radii (Supplemental Figure 7B). As seen from the exclusion factor (Figure
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3D) for very small length scales, for instance for h = 0.1 µm, the length is sufficiently

small for the entire tubule to be exposed to diffusing molecules within 5 s, resulting in a

relatively uniform concentration across the entire tubule. The plateau seen in the exclusion

factor occurs because material has not yet reached the hemispherical region and, hence, for

these geometries at this time point, the exclusion factor would remain the same. In the case

of long tubules, the hemisphere and even some portions of the cylindrical region are not

even exposed to the diffusing molecules. However, length of the tubule, more than radius

is a chief contributing factor in determining the exclusion factor.

5 Comparison of diffusion of molecules in a tubular surface and a flat surface

Until now, we have compared the diffusion of molecules along a tubular surface of var-

ious dimensions. To understand the importance of tubular geometry on diffusion from a

more general perspective, it is useful to compare diffusion on a tubule to diffusion on a flat

surface. Such a comparison requires one to define a geometrically comparable noncurved

surface. However, due to Gaussian curvature obstructions, we cannot expect these systems

to be pointwise comparable in the mathematical sense of isometric equivalence. A Rieman-

nian isometry would erase the very local curvature differences we aim to explore. Instead,

we design surfaces that are comparable by enforcing that they share a common amount of

total material (area). By this, we preserve global area, and the same total area is available to

diffusion in both systems, though in one it is shaped like a curved tube and in the other like

a flat disk. In this sense, differences in diffusion are solely due to differences in curvature

between the systems. We designed such a control by defining a planar disk containing an

outer annulus with an area corresponding to the cylindrical area of the tubule and an inner

circular region with an area equal to the hemispherical region of the tubule (Supplemental

Text S1 and Supplemental Figure 8).

In this manner, the vertical tube and flat annulus respectively surround the hemisphere

and corresponding disk in two and three dimensions. We then described the flat surface
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Figure 4.4: Comparison of concentration gradients in flat surfaces and in tubules. Slow-
down of diffusion in the tubular geometry was quantified at the rim of the hemisphere-
cylinder junction as slowdown =

(C0−C.25)tubule
(C0−C.25)flat

t = 0 s and t = 0.25 s. (A) Effect of tubule

length with tubule radius and diffusion coefficient held constant at 0.1 µm and 0.1 µm2/s,
respectively. (B) Effect of diffusion coefficient with tubule radius and length held constant
at 0.1 and 1 µm, respectively. (C) Effect of tubule radius with tubule length and diffusion
coefficient held constant at 1 µm and 0.1 µm2/s, respectively.

using the same coordinate system used to describe the tubules.

Using this equivalent geometric description, we simulated conditions to compare diffu-

sion in curved tubes with that on comparable planar disks. To carry out these simulations,

we used an initial condition in which the molecules were present uniformly in the hemi-

spherical region or its corresponding planar region and allowed them to diffuse into the

cylindrical region or its flattened equivalent for a total time of 5 s. Thus, unlike the pre-

vious simulations, where the material diffused from the open rim of the cylindrical region

of the tubule, in these simulations material diffuses from rim of the hemisphere into the

cylindrical region of the tube. The initial value of concentration was arbitrary set at 1000

U. In addition, these simulations have a closed boundary condition, in that the molecules

do not flow out of the tube.

We performed the simulation with the initial boundary conditions described above,

except that, in this case, the hemisphere contained a uniform concentration of diffusing

species at t = 0. Thus, for these simulations, the concentration gradient should dissipate

outward toward the tubule rim given sufficient time. However, comparison of the diffu-

sion as a function of time between two distinct geometries could be extremely arbitrary.
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At the start of the simulation, the two conditions have similar concentration, and in many

cases, both the tubule and the flat surfaces could be completely equilibrated at the end of

the simulation. Hence it becomes important to compare them using a temporally equivalent

parameter. Similarly, the difference between the two geometries could be spatial as well.

Therefore, to compare the rate of dispersal of material between the two different geome-

tries, we introduce a slowdown parameter, which incorporates both the spatial and temporal

components as a single measure. This is calculated at the rim of the hemispherecylinder

junction as

slowdown =
(C0−C.25)tubule
(C0−C.25)flat

between time t = 0 s and t = 0.25 s (the first time step in these simulations). The numerator

terms, C0 and C.25, denote the concentration at the junction of the two surfaces (cylinder

and hemisphere) for the tubule for times t = 0 and 0.25 s, respectively, while the denomi-

nator denotes the concentration at the intersection of the two concentric annuli of the flat

surface for the same two time steps. The slowdown parameter is in essence the ratio of

how fast molecules can diffuse out of a tubular surface compared with a flat surface. By

this measure, a value of 1 indicates the tubule and the flat geometry match. While this

quantification of slowdown is arbitrary, it enables us to study the relative effects of flat

versus tubular geometries on diffusion. The slowdown parameter is explained in detail in

Supplemental Text S5.

As before, we varied the three parameters of interest (radius, length, and diffusion co-

efficient), but in this case, we carried out simulations for both flat and curved surfaces. In

every case examined, we found that, compared with the flat geometry, the loss of mate-

rial from the hemisphere was slowed in the tubular geometry (Figure 4). In some cases,

the magnitude of this effect was nearly 20 percent. When we increased the length of the

tubule, the effective slowdown due to tubular geometry reached an asymptotic value. This

is because the effect of hemispherical region is minimal for lengths greater than 1 µm, and

thus all longer tubules behave identically at the early time points. However, the effects of
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radii and diffusion coefficient were nonsymmetrical paraboloids, suggesting that a complex

relationship exists between these parameters.

6 Comparison with experimental results

To assess the validity of our models, we compared our simulations with a recent ex-

perimental work by Aimon et al. (2014), [12], who measured diffusion of proteins in

membrane

Figure 4.5: Comparison of simulated diffusion with previ-
ously published experimental data (Aimon et al., 2014). The
experimental recovery curve data are adapted from Figure 3
(gray circles) and Figure S3B (black circles) of Aimon et al.
(Original data depicted in the figure as gray/black open cir-
cles and the diffusion coefficients were kindly provided by
Patricia Bassereau, Institut Curie.) The open circles denote
the original FRAP data from the paper, and the lines denote
the recovery curve from the simulation, adapting the geome-
try and diffusion coefficients measured in the paper.

tethers connected to a

giant unilamellar vesicle

using a fluorescence re-

covery after photobleaching

(FRAP) assay. In these ex-

periments, an entire tubule

of a defined length and ra-

dius was photobleached and

allowed to recover (Figure

5). The diffusion coeffi-

cient was then determined

using a theoretical solution

for diffusion in the special

case of a long, thin cylinder

connected to a sphere that

acts as a reservoir for the

diffusing molecules (Berk

and Hochmuth, 1992). Both experiments were performed on tubes with a length of 6

µm but slightly different radii of 30 and 20 nm and contained two different proteins whose

diffusion coefficients were quantified as 0.73 and 0.38 µm2/s.
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To compare these experimental photobleaching data with our diffusion model, we sim-

ulated diffusion on these exact geometries using the experimentally determined diffusion

coefficients. We assumed that, at time t = 0, the tubule contains no diffusing species ex-

cept at the rim, which is attached to a reservoir with a uniform concentration of one. We

simulated diffusion into the tubes for 80 s and then calculated the average concentration of

diffusing species across the tubule surface over time. The data obtained from the simula-

tion closely agree with the data obtained experimentally (Figure 5). Thus our simulations

capture this special geometric scenario, corroborating our approach using the finite element

model for solving the Laplace-Beltrami equation.

7 Discussion

Understanding how geometry influences diffusion of molecules on membrane surfaces

has important cell biological implications. In this paper, we have developed a mathemati-

cal framework to describe how geometry influences diffusion using a tubular surface as a

model system. This geometry occurs in a number of biologically important structures, in-

cluding primary cilia, dendritic spines, endosomal tubules, and clathrin-independent endo-

cytic carriers. For diffusion along the curved surface, the local area available for diffusion

is different relative to a flat surface. This gives rise to a strong dependence of diffusion

on the tubule geometry. We examined three key parameters that can potentially influence

diffusion – the tube radius, the length of the tubule, and the diffusion coefficient of the

diffusing species – using a range of biologically relevant values of these parameters. We

found that each of these variables plays a distinct role in regulating diffusion, depending

on the boundary conditions. We also compared diffusion in tubular structures with that in

a comparable flat surface and showed that the tubular geometry slows down diffusion.

The model described in our paper represents a significantly different approach for un-

derstanding diffusion in surfaces with complex geometries compared with many other

earlier models that typically use random-walk motion and escape times of molecules to
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determine geometric effects on diffusion [85, 99, 80, 100, 101, 102]. Our model repre-

sents a simple but fundamental formulation of a diffusion equation in a static tube. Com-

pared with random-walk approaches, in which the only modeling degree of freedom is the

random variable describing the walk of an individual particle [103], a diffusion equation

based method requires less restrictive assumptions about individual particle motions. In

our model, the dynamics at the boundary are prescribed and not merely observed, and the a

priori knowledge of the boundary reconstructs the system behavior. An alternate approach

to solving diffusion equations would be to use analytical approaches. This approach is typ-

ically not feasible for complex geometries and boundary conditions. In case of a tubule,

for example, the adjoin of the hemisphere and tube disallows the use of analytical methods

due to the need to knit the solutions across the boundary of the two geometries. To ob-

tain a solution in the whole tubule (i.e., across the separating boundary), one has to ensure

continuity of the solution and continuity of fluxes across such a boundary. Enforcing such

conditions could result in at least one of the two problems (in their own regions) being

overdetermined. Iteration techniques typically lead to issues of convergence, and the limit

may not be expected to be explicit in some topologies. In this paper, we have sought to

present a method that may be directly applied to many future real-world geometries of in-

terest. In these cases, numerical methods will be the only realistic recourse for determining

solutions. Further, to broaden the scope of usage of our model, we have implemented an-

other parallel approach of solving the LaplaceBeltrami using virtual coordinates, and this

has been described in Supplemental Text S2. Thus, compared with the 1-D used in the sim-

ulation, this framework can model more general boundary conditions such as asymmetric

initial boundary conditions (Supplemental Figure 1C), and the models presented here can

be applied to any arbitrary surface geometry and boundary condition.

In this study, we focused on understanding how geometric effects impact concentration

gradients under conditions that are relevant to tubular structures found in biological mem-

branes. We acknowledge that this description is still incomplete, as other factors could
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potentially impact how concentration gradients evolve for a given tubule geometry and dif-

fusion coefficient. The most prominent of these factors that are not included in the present

model is the effect of hydrodynamics [104, 105, 106, 107]. Membranes can be approxi-

mated as a viscous fluid enclosed by fluids on both sides. Recent studies have shown that

hydrodynamics vary as a function of tubule geometry for membranes [88, 75, 108, 87],

which in turn could alter the way molecules diffuse in tubules. Similarly, our model does

not account for the size of the diffusing species, which could also be critical for under-

standing diffusion in a real membrane [109]. Earlier experiments have shown that the

protein and lipid composition of membrane tubes themselves can be curvature dependent,

which could potentially introduce additional constraints on diffusion [80, 12]. To delineate

these factors from differences arising purely from geometry, we have included a program

(Supplemental Text S6) that can determine the expected diffusion coefficient given t1/2 (as

measured in FRAP experiments) for concentration equilibration for a given tubule geome-

try. Comparison of diffusion coefficients obtained from the simulation with those obtained

from other empirical models [96] that incorporate factors such as hydrodynamic effects

[88] will decouple these two factors. In the case of long thin tubules, our simulated diffu-

sion profile resembles but is not identical to the experimentally observed diffusion profiles

[12], as demonstrated in Figure 5. In the two examples, we see that the difference in t1/2

as predicted from our model is 20-30 percent different from the experimental values using

an empirical model for this particular case [96]. The discrepancy between the two values

could potentially arise from hydrodynamic effects.

Even just using first principles and varying only relative geometry, we can make sev-

eral interesting predictions about material flow and concentration gradients arising from

diffusion in tubules with relevance to biological processes occurring in membranes. One

such prediction is that diffusion of a particle in a tubular structure appears to be slower than

its diffusion in a flat surface, simply as a consequence of geometric effects. This can be

thought about as a loss of freedom due to the constrained geometry imposed by the cur-
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vature. Thus, while the total areas of the tubular and the flat surface are equal, the local

area for the diffusion of molecules is reduced in a tubular geometry due to radial curvature,

thus prolonging the gradient. This effect could potentially explain recent observations that

diffusion of membrane proteins is slower in tubules than the surrounding flat membranes in

vitro [87]. The predicted slowdown also confirms other theoretical works by groups who

have investigated diffusion in curved surfaces. For instance, Kusters and Storm (2014)

[102], using random-walk simulations of single particles diffusing on tubes, have shown

that curved surfaces retain molecules for an increased period of time before the molecules

escape. The predicted slowing down of diffusion due to curvature effects was shown to

influence receptor egress from the dendritic spine [86]. This is analogous to the retention

of a concentration gradient along the tubule length due to its inherent curvature. Most

models and experiments assume that the changes in diffusion with curvature are due to the

altered diffusion coefficients of molecules [96, 87, 110, 12]. However, from a fundamental

standpoint, our results show that geometry itself can also contribute to such effects. This

delineation between diffusion coefficient changes and geometric slowdown is a critical, yet

underrealized aspect of diffusion that readily emerges from our work.

Our model also predicts a priori the conditions that would increase the entry or reten-

tion rate of molecules in tubules. Because the tubular nature of the membrane stretches out

the concentration gradient temporally, it leads to an interesting hypothesis, that is, cells can

tune the geometry of tubes as a mechanism to regulate the entry and exit of membrane-

associated cargo. Modulation of concentration gradients could potentially be one reason

why curvature in membrane tubules is tightly regulated by proteins such as BAR domain

proteins [84, 111, 112]. Of the three parameters we examined (tubule length, tubule radius,

and diffusion coefficient), within the limits of biological molecules, we found that tubule

length was a key parameter affecting the equilibration of material across the surface of

tubules. Variation of tubule radii found in cells could change equilibration times by almost

50 percent, and we expect this factor, along with hydrodynamics [87], to also play a crucial
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role in setting up concentration gradients. Based on these findings, we predict that entry of

membrane-bound cargo into tubes should occur most slowly in the case of slowly diffusing

molecules moving into long tubes with large radii. Such a mechanism could potentially

slow down the intake of cargoes to allow the cellular machinery the time to respond, for

example, by scissioning the tubules and thus decoupling them from the membrane reser-

voir. This type of kinetic sorting model has been proposed to regulate the entry of the β2

adrenergic receptor (β2AR) into a specific class of endosomal tubules [113]. In that study,

β2AR was shown to diffuse four times more slowly than another cargo protein, transferrin

receptor, on endosomal membranes. Consequently transferrin receptor was able to enter

into endosomally derived bulk recycling tubules more rapidly than β2AR could. These

bulk recycling tubules scissioned from the endosomal membrane relatively rapidly, thus

disfavoring the entry of β2AR. Instead, β2AR tended to accumulate in a longer-lived spe-

cialized class of endosomal tubules stabilized by actin. Interestingly, the t1/2 for β2AR

to recover on a small region of the endosomal membrane by FRAP was 25 s. This is

comparable to the lifetime of the short-lived bulk-recycling tubules (<30 s) [113]. Thus,

even though the concentration gradients that develop across the tubules are transient, their

temporal evolution ultimately has a significant biological impact on sorting.

Another prediction of our model is that, in situations in which increasing concentrations

of cargo are available to flow into tubes, a concentration gradient along the length of the

tube would be set up almost immediately. The geometry of tubes also dictates the tempo-

ral evolution of the shape and the magnitude of the concentration gradient along the tube

surface. Such concentration gradients could play a biological role in clathrin-independent

endocytosis of AB5 toxins. These toxins not only drive the formation of tubular endocytic

structures but are also known to change membrane physical properties in a concentration-

dependent manner [94]. The cell could in principle couple the geometry of the tubule with

the regulation of endocytosis to sense the cargo concentration in the tubule.

In summary, we have developed a generalizable model of diffusion in tubular geome-
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tries from fundamental diffusion equations and have simulated diffusion for various biolog-

ically relevant boundary conditions and parameters. Our findings emphasize that sorting

and concentration gradients can be initiated merely by the presence of curvature in the sys-

tem, without requiring that the surface embedded molecules themselves exhibit curvature

preferences. These results provide a framework for modeling diffusion in complex sur-

faces and suggest new numerical models for how biological functions could emerge as a

consequence of the nature of diffusion in tubular geometries.

8 Materials and Methods: Finite element approximations and simulation details of

Laplace-Beltrami equations

We first derived a LaplaceBeltrami equation (Eq. 5 in Supplemental Text S1) for tubu-

lar surfaces. We would like to emphasize that complementary approaches for deriving

the equation of continuity can be found elsewhere (Marsden et al., 1984; Frankel, 2011).

To solve this equation for a tubular surface, we have developed a univariate FEM solver

(Oden, 2006). This FEM solver is designed for tubular diffusion under symmetric condi-

tions, that is, all prescribed solutions are independent of the angle about the tubes center

axis. Consequently the data depend only on the position along the tubes center axis. Under

such symmetric conditions, the tubular diffusion has only a single degree of freedom and

is modeled in a univariate setting. The symmetric tubule diffusion using defined virtual co-

ordinates reduces to the form ut− k [A(x)ux]x = 0 for specific forms of A(x) determined by

the tube’s geometry. This is then solved using our 1-D FEM solver. The numerical solution

is computed by semidiscrete methods. First, the uniform mesh and approximating spline

space are user specified. As the basis of the symmetric solver, we use normalized B-splines

Sr
d(∆) [16]. Generally their use increases approximation power and, unlike other meth-

ods such as nodal basis elements, avoids artifacts such as negativity while smoothing the

splines. We then use the DeCastlejeau algorithm for the evaluation of the B-splines without

having to construct individual basis spline in the Sr
d(∆) space. Then a Galerkin procedure is
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implemented. The integration is accomplished through a Gaussian quadrature exact up to

polynomials of degree 11. For example, when the approximation is conducted in any of the

recommended spaces S0
1,S

1
2,S

2
3(∆), the quadrature is exact. The remaining temporal part

is then handled using Matlabs ODE45 solver. All our simulations were performed using

Matlab R2014/R2015a on Windows computers. A more general two-dimensional code ca-

pable of handling even asymmetric boundary conditions is described in Supplemental Text

S2. Finally, as a note, we do remind readers that numerical approximation of this model

is entirely a different problem to solve and this is independent from the models theoretical

justification and derivation. We have included ways to improve numerical solutions and

avoid artifacts due to approximation in Supplemental Text S7.

9 Availability of the Code

The complete code has been made available online at

https://my .vanderbilt.edu/kenworthylab/fem-software-for-diffusion. We have also included,

as a part of the code, a diffusion coefficient mapper for FRAP experiments of tubules that,

given the height, radius, and t1/2 will give out the diffusion coefficient. Instructions for use

of the code are given in Supplemental Text S6.
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Chapter 5

Bridging Across Physical Scales: Homogenization and Concentrating Capacity Applied to

Cone Visual Transduction

1 Comparative Advantages and Disadvantages of Wetbench versus Numerical

Approaches in Cone Visual Transduction Models

1.1 The Signalling Cascade.

Visual transduction is a prototypical, system’s biology example of a G-protein mediated

signalling cascade. It is reviewed in [17, 114, 115]. Paradigmatically, rods and cones op-

erate similarly though their kinetics are often quite different as are sometimes the proteins

involved specific to one photoreceptor or the other.

Light acts as a ligand and triggers a conformational change in the cis retinal attach-

ment of Rhodopsin, or Opsin in cones. Upon activation the G-protein coupled receptor

Rhodopsin diffuses along a discal face and activates the G-protein Transducin which in

turn activates the effector Phosphodiesterase. All these processes occur in the face of a

membrane disc, naturally described as a two dimensional surface.

The activated effector, however, begins to hydrolyze the 2nd messenger cGMP, which

lives in the volumic cytosol with its partner 2nd messenger Ca2+. Their diffusion occurs

in a distinct and dimensionally different domain than that of the GPCR, G-protein, and

effector. As cGMP drops, gated channels sensitive to the levels of cGMP begin to close

reducing a Na+ and Ca2+ current. This current drop is regarded as the chief output of a

visual receptor’s detection of light.

At the same time recovery processes begin to deactivate the GPCR. As the concentra-

tions fall, Recoverin – Visinin in cones – is increasingly less bound by Ca2+ which allows

the Rhodopsin Kinase to begin phosphorylating the GPCR. With successive phosphoryla-
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tion the GPCR diminishes its catalytic activity for G-protein and increases its affinity for

Arrestin. Upon binding with Arrestin, the GPCR is no longer able to activate G-protein for

the duration of the photoresponses considered here. Cones are thought to possess two types

of Arrestin, one of which may form shorter lived, more transient complexes than the other.

It is speculated this may contribute to cone adaptation under continuous light illumination

[17]. Both phosphorylation and Arrestin binding are stochastic events in contrast with the

cytoslic diffusion of the 2nd messengers which is modeled deterministically. [116] takes 6

phosphorylation sites in rods. In the presence of less information with cones, the numerical

experiments here modeled with a single step to Arrestin shutoff.

The G-protein effector complex deactivates through GTP-ase decay which is acceler-

ated in cones through an increase of RGS9 expression. cGMP concentration is restored to

its dark value through synthesis by Guanylate Cyclase. This synthesis of cGMP is accel-

erated in recovery through stimulus by Mg2+ bound GCAP’s. Under dark conditions the

GCAP’s are Ca2+ bound and inhibited. The return of cGMP to dark levels reopens the

gated channels and restores Ca2+ to its dark value.

1.2 Making the Case for Numerical Experimentation.

Historically, rod photoreceptors were fairly practical to isolate and their proteins to pu-

rify. This was done first from bovine retinas [114]. Through purification, experimentalists

were able to isolate individual elements of rod transduction machinery and quantify their

in vitro activation and deactivation rates as well as their native expression levels. This work

is responsible for producing a large literature on the kinetics of rod biochemistry [117].

Except for some farily recent experimental designs however, see [118], cones have proven

much more difficult to isolate and their proteins to purify. As a consequence, there is less

literature and consensus on the kinetics demonstrated in cone photoreceptors.

Due to its inherent complexity, the visual cascade’s processes are best regarded as a

synergistic outcome of all their individual parts working in tandem. To understand the
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relative importance of each part to its cascade, it would be best to study each part always

in that context and not artifically extracted from it. Though possible, single cell recordings

of cones are difficult to obtain [119]. Knockouts and genetically modified animals may be

used to change the underlying biochemical kinetics in photoreceptors in vivo; however, that

does not overcome the technical difficulty involved in isolating cones. Inevitably, too, this

approach incurs costs both financially and in time. The animals must be bred and allowed

to mature. Though scientists can control which genes are expressed, this control is not so

surgical as to specify individual kinetics parameters at will for example.

Numerical experiments, conversely, supplement the indispensable work of experiments

in the aforementioned areas. Once the interactions of a system have been encoded by a

numerical model, the kinetics are very easily manipulated in real time through the adjust-

ment of model parameters. Virtual genetic experiments can be conducted at essentially

no financial cost and reduced amounts of time. Access to kinetics in numerical models is

surgical, and individual components of the cascade may be altered with guarantee that no

other biophysics is changed. Geometric variables may also be precisely manipulated. For

example in cones, the consequences of the cGMP channels residing in different locations

can be explored. The numerically modeled responses of the cone with channels in spec-

ified locations may be compared to one another to help shed light on where the channels

physically reside.

2 Statement of the Non-homogenized Pointwise Diffusion of cGMP and Ca2+.

2.1 The Geometrical Domain of Cone Photoreceptors.

Take a standard right cone with vertex angle α and R its greatest radius. Starting at the

cross section of radius R mark a height of H along the cone’s axis. Let r be the radius of

the cross section found at H. This object now constitutes an initial truncated cone C .

The datum ω0 will be understood to mean an angle drawn at the origin of the xy plane
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rotating out of the x-axis in a counter-clockwise direction. The values ν ,σ ,ε0 are arbitrary

.

.

.

.

.

.

.

.

.

.

.

.

ε0

2ω0

Cj*

H

2R + σε0

2r + σε0

νε0

Figure 5.1: The nonhomogenized geometry is a cone with excised discal
pieces and a sliver over a partial angle 2ω0 of the rim.

but fixed param-

eters except that

ε0 is subject to

the integral re-

striction

n = H
ε0(1+ν) ∈

N. This en-

sures the num-

ber of chambers

and interdiscal

spaces are integers.

For the given ε0 and geometrical data, we will build a corresponding domain Ω.

Matlab Ten Chamber Mesh

Figure 5.2: A Matlab generated nonhomogenized, 10 chamber
geometry. In actual simulations, the number of chambers varies
from 100-500. In this figure, the sliver size is exaggerated.

Along the height of the

truncated cone take tick

marks: the first and last

are interdiscal heights of

1
2νε0 and in between the

sizings alternate in ε0

νε0 pairs, ie disc to inter-

discal space. Those seg-

ments of length ε extend

outward to fill regions of

the truncated cone which

we designate the C j’s.

We excise these regions

form C0 = C \
⋃

j C j.
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By inspection we see that

C0 is a disconnected stack of equispaced and equiheight conical cuts of C except for the

first and last interdiscal space.

Recall the angle ω0 defined earlier. A cone of angle α may be regarded as a volume of

revolution about the z-axis, where the outer boundary of the rotated, planar region is a line

emanating from the origin and with slope cot(α).

To this interior region we now will attach a connecting sliver which models the geo-

metric membrane. Take the vector direction eρcyl = (cosθ ,sinθ ,0). Over the angle range

spanning [−ω0,ω0] about the z-axis extend the cone along eρ in the length σε0. Call this

sliver S .

The promised domain Ω we set equal to C0
⋃

S . It is comprised by a stack of conical

cuts occupying our original truncated cone C , with heights and separations of small order

O(ε0). These chambers we hereafter refer to as the I j’s. They are connected only at the

boundary of our cone along the angles [−ω0,ω0], taken about the z-axis, and through the

sliver possessing radial width also of O(ε0) order.

2.2 The Nonhomogenous, Pointwise Diffusion Law for the 2nd Messenger cGMP and

Ca2+ System.

Let the volumic concentration of cGMP and Ca2+ be denoted respectively by u and

v. The parameters referenced below are defined in Table 5.3-5.5. Let z0 be a site level of

photon absorption. Then the concentration of cGMP is governed by the diffusion law

ut−DcG∆u = 0 (2.1)
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with u(·;0) = u0, which is the dark equilibrium concentration of cGMP, and Neumann data

DcG∇u ·n =



−1
2νε0

(
βdarku− f (v)

)
−χ[z=z0]u f1(v;x; t) | on ∂ I+j

−1
2νε0

(
βdarku− f (v)

)
| on ∂ I−j

0 | on L j and ∂ΩS

Note the factor 1
2νε0 is a conversion factor to express volumic concentrations as surface

densitites. Also, the above variational data is for a single photon isomerization. In the case

of several photons, the u f1(v;x; t) hydrolysis term is present at each isomerization point.

The role of f (v) and f1(v;x; t) is to encode the cone biochemistry:

f (v) = αmin +
αmax−αmin

1+(v/Kcyc)
mcyc

expresses the synthesis of cGMP by guanylate cyclase. This synthesis is Ca2+ dependent

due to the calcium inhibited GCAPS becoming magnesium activated and stimulating the

cyclase.

f1(v;x; t) expresses the hydrolysis of cGMP due to light activated PDE. It encodes the

activation and deactivation of the GPCR, G-protein, and effector at the activation disc. It

does not have an explicit functional form. Rather it, too, is modeled through a series of

diffusion processes [120]. In particular when a model where Rhodopsin is taken to have

multiple phosphorylation sites is used, the deactivation process is modeled stochastically:

Activated Rhodopsin generates G-protein which in turn diffuses throughout the activation

disc. This leads to the equations

∂ [G∗]
∂ t
−DG∆x,y [G∗] =

N

∑
j=1

ν jχ[t j−1,t j](t)δx(t)−νGE [E] [G∗]

∂ [E∗]
∂ t
−DE∆x,y [E∗] = νGE [E] [G∗]− kE [E∗]
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Here [E∗] (x,y,z, t) + [E] (x,y,z, t) = [E] (0) due to mass conservation. The ν j’s are the

catalytic activity of j-times phosphorylated GPCR which decreases exponentially in accor-

dance with (6) of [116]: νi = νRGe−kv(i−1). The t j denote the random sojourn time intervals

of the activated rhodopsin in each phosphorylation state. The x(t) is the position of the

GPCR on the disc. Finally,

f1(v;x; t) = k∗σ ,hyd [E
∗]

While the code is written to handle the full generality of stochastic deactivation, for

cones, the simulations use only a single step to Arrestin binding, and the time before Ar-

restin binding is deterministically taken to be the mean sojourn time. The activated Rhop-

dopsin is taken at a fixed position in space throughout time.

The concentration of Ca2+ is governed similarly by

vt−DCa∆v = 0 (2.2)

with v(·;0) = v0, which is the dark equilibrium concentration of Ca2+, and Neumann data

DCa∇v ·n =


−g1(v)+g2(u) | on ∂ΩS

0 | on ∂ I±j and L j

In this case, the functions g1,g2 encode the efflux and influx of Ca2+ due to an exchanger

and also the cGMP-gated channel. They are given explicity by

g1(v) =
1

BCaF
Jex =

1
BCaF

(
jsat
ex

Σcone

v
Kex + v

)

which is a Michaelis-Menten relationship expressing the calcium efflux through its ex-

changer, and

g2(u) =
1

BCaF

1
2

fCaJcG =
1

BCaF

1
2

fCa

(
jmax
cG

Σcone

umcG

KmcG +umcG

)
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which is a Hill equation expressing cGMP binding to the channels which gate the influx

of calcium. The Hill exponent, mcG, is a measure of the cooperativity of cGMP molecules

needed at once to bind the gated channel.

3 Statement of the Homogenized Pointwise Diffusion of cGMP and Ca2+.

3.1 How Homogenization Informs cGMP and Ca2+ Diffusion.

While the form of the diffusion laws (2.1, 2.2) are themselves relatively simple, they

are set to a cone geometry which itself exhibits competing physical scales which should

not be neglected in modeling the photoreceptor response. Though the chambers are thin

and numerous, each one of their faces contains the biochemistry which drives the cascade.

Similarly, the volumic diffusion of cGMP and Ca2+ is global throughout the cone photore-

ceptor. At the same time its diffusion within thin regions like the sliver cannot be neglected

because this opens and closes gated channels.

The presence of several, relevant geometric scales is computationally expensive to

model numerically. Finite element meshes must be sufficiently refined to capture the fine

features, but this taxes memory usage and incurs time costs to assemble the spline mass

and stiffness matrices as well as perform the time integration.

The program of homogenization first handles the multi-scale complexity of the domain

at a modeling level before the numerics are implemented. The intuitive idea is that because

certain features of the domain are quite small now already, it would not perturb the process

to continue diminishing those small features to an asymptotic limit.

Where the nonhomogenized problem consists of a standard diffusion law set to a geo-

metrically complex domain, homogenization recasts that geometric complexity into a novel

diffusion process set to a simplified and single scale geometry. In this way, information

originally encoded by geometry is now encoded in the equation. This reshuffling of infor-

mation into the other type can preserve the overall model (see Table 5.1). Moreover, the
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final product is less computationally expensive to implement numerically than the original

(see Table 5.2). The limiting process leads to a simplified form of geometry with an alter-

native governing law whose equation’s terms reflect the small scale geometrical features

present before the limit.

3.2 The Formal Homogenous Diffusion Law for the 2nd Messenger cGMP and Ca2+

System: Weak Form

The formal homogenized limit for the cGMP and Ca2+ system is presented in its weak

form below. The symbol χcGMP is 1 when the cGMP diffusion equation is intended. It is 0

when the Ca2+ diffusion equation is intended. The symbol χCa2+ is defined similarly with

respect to Ca2+ diffusion. w below is a placeholder symbol which is u in the case of cGMP

and v in the case of Ca2+.

The Formal Homogenized, Global System Limit

The Ca2+ and cGMP are taken to satisfy the formally obtained homogenized, diffusion and

coupled system below. The processes at different domains are linked through the common

test function:

0 = (1−θ0)

{∫
Ω0,T

(
−ϕtw+Dw∇x̄ϕ∇x̄w+χcGMP (βdarku− f (v))ϕ

)
dxdt−

∫
Ω0

ϕ(·,0)w0dx
}

Int

+νε0

{∫
Dz0,T

(
−ϕtw̄+Dw∇x̄ϕ∇x̄w̄+χcGMP

[
(βdarkū− f (v̄))+

1
νε0

ū f1 (v̄)
]

ϕ

)
dx̄dt

− −
∫

Dz0

ϕ(·,0)w0dx̄

}
Act

+
σε0√

1+η2r2

{∫
∂ΩS,T

(
−ϕtŵ+Dw∇Sϕ ·∇Sŵ+

√
1+η2r2

σε0
χCa (g1 (v̂)−g2 (û))ϕ

)
dSdt

−
∫

∂ΩS

ϕ(·,0)w0dS
}

Sliver
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Here

∫
∂ΩS

∇Sϕ ·∇SŵdS=
∫

ω0

θ=−ω0

∫ H

z=0

(
1

[λ (z)]2 r2
ϕθ ŵθ +

1
1+η2r2 ϕzŵz

)
λ (z)r

√
1+η2r2dθdz

Note that θ0 = (1+ν)−1,
(
1+η2r2)−1/2

= cosα , and that the principal part in the sliver

is a Laplace-Beltrami driven diffusion up to this latter geometric scaling factor.

Remark.
σε0

α

α
α

Figure 5.3: Concentrating capacity
recovers the perpendicular width of
the sliver.

The factor
(
1+η2r2)−1/2 has a geometric meaning

and is equal to cosα where α is the aperture angle

for the cone. The value σε0/
√

1+η2r2 is in fact

the projection of the σε0eρ oblique attachment vec-

tor onto the cone surface’s exterior normal. Accord-

ingly, this factor is the perpendicular length of the

sliver off the cone surface. This quantity emerged

from the formal application of concentrating capac-

ity rather than being presupposed.

3.3 The Formal Homogenous Diffusion Law for the 2nd Messenger cGMP and Ca2+

System: Pointwise Form

In turn there is a formal strong version of the homogenized limit which is reported here.

Recall u will stand for [cGMP] and v will stand for
[
Ca2+].

Limit in the Interior Volume: Test by a ϕ supported away from the activation site and

cone boundary, it holds in the distributional sense

ut−DcG∆x̄u =−
(

βdarku− f v
)

(3.1)

vt−DCa∆x̄v = 0 (3.2)
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Limit at the Activation Site. For a fixed function defined on the two dimensional disc

interior, regard it as a trace for some extension ϕ . In the weak formulation, test by ζA(z)ϕ

where the latter is a bump function concentrating at the activation site. In the formal limit,

we will recover a process independent of the choice of extension and depending only on

the given trace. It holds distributionally that

ūt−DcG∆x̄ū =−
(

βdarkū− f v̄
)
− 1

νε0
ū f1(v̄) (3.3)

v̄t−DCa∆x̄v̄ = 0 (3.4)

To show, observe that due to ζAϕ’s support, only interior and activation terms survive in

the homogenized weak formulation. Because the interior terms only carry ∇x̄ derivatives,

even the interior terms vanish as the ζA(z) is concentrated to the activation disc.

Limit at the Sliver. As will be formally shown below, at the sliver there is the formal

pointwise process

ût−DcG∆Sû =− (1−θ0)
√

1+η2r2

σε0
DcG∇x̄u ·~n−δ[z=z0]

ν
√

1+η2r2

σ
DcG∇x̄ū · eρ (3.5)

v̂t−DCa∆Sv̂ =−
√

1+η2r2

σε0
(g1v̂−g2û)− (1−θ0)

√
1+η2r2

σε0
DCa∇x̄v ·~n (3.6)

−δ[z=z0]
ν
√

1+η2r2

σ
DCa∇x̄v̄ · eρ

To show (3.5),(3.6) take ζSϕ where ζS concentrates to the bounding sliver surface and

decays along the sliver’s normal. Again, the ϕ as a trace on the sliver is meant to be in the

sliver’s interior. Once more, it’s the gradient terms in the interior and activation that may

additionally contribute to the formal sliver process. Other terms vanish as the domain’s

measure vanishes. For the gradient terms we will have a limit applied to

(1−θ0)
∫

Ω0

Dwϕ∇x̄ζS∇x̄w+νε0

∫
Dz0

Dwϕ∇x̄ζS∇x̄w̄
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Because ∇xζS∇x̄w = ∇ζS∇x̄w and distributionally the gradient of this bump function tends

to the vector-valued normal surface measure, the first term becomes

lim(1−θ0)
∫

Ω0

Dwϕ∇x̄ζS∇x̄w = (1−θ0)
∫

∂ΩS

Dwϕ∇x̄w ·~ndS

The second term is more delicate because the direction ζS decays is not contained in the

domain of the integral. To compute we observe that ∇ζS is directed along the inward

normal rays originating from the sliver as we have taken ζS to be a bump function along the

sliver’s normal. The inward normal will be the direction of maximum decrease. Letting p∂

be a point of origin for the inward ray normal at the boundary, its magnitude is found by

(
1− 1

ε
s
)

χ[0,ε](s) = ζS(p∂ + s~n)⇒−1
ε

χ[0,ε](s) = ∇ζS(p∂ + s~n) ·~n =−|∇ζS(p∂ + s~n)|

Observe that −|∇ζS| is the coordinate of the gradient on the inward normal~n. If p∂ is that

point on the conical, sliver boundary parameterized by cylindrical coordinates (θ ,z), then

p∂ + s~n =


λ (z)rcosθ

λ (z)rsinθ

z

+ s


−cosθ/

√
1+η2r2

−sinθ/
√

1+η2r2

ηr/
√

1+η2r2


If given a point p ∈ Dz0 , we may find p∂ (p) as so: parameterize the disc by polar coordi-

nates at the origin. Observe this θ coincides with the angle used in the parameterization at

the sliver. Indeed, they are the rotation angle about the z-axis. It follows that p’s θ coor-

dinate defines its corresponding normal ray~n since motion along that ray preserves θ . We

need only follow the ray till the cone’s boundary is crossed. This will occur when motion

along the outward normal from p hits the boundary:

ρ +
s√

1+η2r2
= λ

[
z0− s

ηr√
1+η2r2

]
r = η

(
z0− s

ηr√
1+η2r2

)
r+ r
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In particular, the value z = z0− sηr/
√

1+η2r2 is the height value of p∂ . Eliminating

s, we obtain p∂ lies at the z-height

z =
z0−ηr2 +ρηr

1+η2r2

Remember because the disc was parameterized with polar coordiantes ρ ∈
[
0,λ (z0)r

]
.

The θ was already known from p. Together these determine the location of p∂ through the

relation

p∂ =


λ [z(z0,ρ)]rcosθ

λ [z(z0,ρ)]rsinθ

z(z0,ρ)


From this expression, we may evaluate the s associated to p ∈ Dz0 . Its value is used to

compute−1
ε

χ[0,ε](s) =−|∇ζS (p∂ + s~n)|. Knowing p− p∂ = s~n, we may look to any com-

ponent to solve for s. We arbitrarily choose the z-component:

z0−
z0−ηr2 +ρηr

1+η2r2 = s
ηr√

1+η2r2
⇒ s =

ηrz0 + r−ρ√
1+η2r2

Hereafter, we will write ~ni for the interior normal as soon we will revert back to the

usual exterior normal. Altogether we have

νε0

∫
Dz0

Dwϕ∇x̄ζS∇x̄w̄ = νε0

∫
π

θ=−π

∫
λ (z0)r

ρ=0
Dwϕ(θ ,ρ)∇ζS(θ ,ρ)∇x̄w̄(θ ,ρ)ρdρdθ

= νε0

∫
ω0

θ=−ω0

∫
λ (z0)r

ρ=0
Dwϕ(θ ,ρ)∇ζS

(
p∂ (θ ,ρ)+ s~ni (θ ,ρ)

)
∇x̄w̄(θ ,ρ)ρdρdθ

= νε0

∫
ω0

θ=−ω0

∫
λ (z0)r

ρ=0
Dwϕ(θ ,ρ)

(
−1

ε
χ[0,ε]

(
s(z0,ρ)

)
~ni

)
∇x̄w̄(θ ,ρ)ρdρdθ

Using the expression for s, we have

0≤ s =
ηrz0 + r−ρ√

1+η2r2
≤ ε ⇔ ηrz0 + r− ε

√
1+η2r2 ≤ ρ ≤ ηrz0 + r
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Substitute this into the integral limits above after recognizing the non ε term is λ (z0)r and

obtain

νε0

∫
Dz0

Dwϕ∇x̄ζS∇x̄w̄ = νε0

∫
ω0

θ=−ω0

∫
λ (z0)r

ρ=λ (z0)r−ε

√
1+η2r2

Dwϕ(θ ,ρ)

(
−1

ε

)
∇x̄w̄(θ ,ρ) ·~niρdρdθ

We now will have

lim
ε→0

νε0

∫
Dz0

Dwϕ∇x̄ζS∇x̄w̄

= νε0
√

1+η2r2
∫

ω0

θ=−ω0

Dwϕ(θ ,λ (z0)r)(−1)∇x̄w̄(θ ,λ (z0)r) ·~niλ (z0)rdθ

Note that~ni is the inward cone normal and not yet the disc’s normal. Next get

(−1)∇x̄w̄(θ ,λ (z0)r)·~ni =∇x̄w̄(θ ,λ (z0)r)·


cosθ/

√
1+η2r2

sinθ/
√

1+η2r2

−ηr/
√

1+η2r2

=∇x̄w̄(θ ,λ (z0)r)·eρ/
√

1+η2r2

We now have formally

limε→0νε0

∫
Dz0

Dwϕ∇x̄ζS∇x̄w̄ = νε0

∫
ω0

−ω0

Dwϕ(θ ,λ (z0)r)∇x̄w̄(θ ,λ (z0)r) · eρλ (z0)rdθ

= νε0

∫
∂Dz0∩S

Dwϕ∇x̄w̄ · eρds
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4 Validating the Homogenized Model Through Numerical Experiments and the Model’s

Advantages.

4.1 An Overview of the Finite Element Code.

Both the non-homogenized and homogenized models have been implemented as finite

element code in Matlab. Maple was also used in the local element assembly to produce

a master element coordinate representation of the PDE terms at each element. The non-

homogenized and homogenized codes both have been included with this thesis and may be

run in Matlab. For both models, the software divides into two parts.

The first part numerically models the activation process on the special disc. There

are several variations of the code that account for the stochastic shut-off and diffusion

of R∗, the activated GPCR. The simplest model takes the site of activation R∗ as a dirac

mass source term in a diffusion equation for G∗, activated G-protein. The G-protein and

available effector generate source terms for diffusion of E∗, the activated effector, with

its own parameter weight again reflecting the G-protein’s catalytic activity and shut-off

[120]. This concludes the processes on the special disc, and the E∗ is now used in the

boundary data terms of the volumic diffusion process for cGMP and Ca2+. Each equation

is integrated through a standard Galerkin, spatial discretization over a horizontal disc which

is the cross section of the cone at the z-height where photon isomerization occurs. The

user specifies the location of photon isomerization by giving its z-height and its horizontal

location in polar coordinates. The horizontal location becomes the dirac mass site for R∗.

The z-height specifies where the isomerization occurs along the length of the cone.

The R∗ dirac mass generates G-protein, and its associated catalytic activity depends on

time in oder to encode shut-off. This acitivity can be made stochastic by the user – by

setting an option in the code – to express the random variability of phosphorylation and

Arrestin binding. In the case of rods, a continuous time Markov chain was used to generate

the probabilities of being in any phosphorylated or Arrestin state [116]. In the simulations
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presented here, cones have been modeled with a single step direct to Arrestin binding.

Consequently the probability of Rhodopsin staying active goes like an exponential decay.

The code is sufficiently general to handle more complex stochastic events, but the modeling

choice in the figures was to take a single step.

The time integration is handled through an implicit theta method. Both the non-homogenized

and homogenized models use essentially the same numerical code to model activation. This

holds because the small scale structures are along the height of the cone while activation

occurs within a cross section.

The volumic diffusion is a system for the cGMP and Ca2+ concentrations coupled

through their Neumann data. The non-homogenized and homogenized codes are critically

different here. In the latter, the domain is a simple, truncated cone while in the nonhomog-

enized model it is a stack of conical chambers connected through a sliver. These meshes

have been built in Matlab. See Figure 5.2 for reference. Note simulations were done with

500 chambers and a sliver scaled accordingly. In the homogenized model, the number of

chambers is encoded through the parameters ν and ε0 entered by the user.

Again a Galerkin, spatial discretization is used but now over the volume elements of

the respective cone domain. The non-homogenized and homogenized models are distinct

at this point for two reasons: One is that their three dimensional geometries are now differ-

ent. The second is that their equation terms over the volume now also differ. Observe also

that the couple between these two concentrations is in fact nonlinear owing to the presence

of Michaelis-Menten and Hill laws at the channels and the synthesis of cGMP by Cyclase.

This nonlinear system is solved through an implicit theta-method iteration which approx-

imates the true solution through a numerical fixed point scheme at each consecutive time

step. The a posteriori and relative error parameters, which the code uses to decide if it has

found a numerical fixed point, are preset by the user.
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4.2 Observed Numerical Convergence Rates Between the Models.

Simulations with both codes are compared to show numerical evidence that the homog-

enized model approximates the standard diffusion model as the spacing between chambers

diminishes, equivalently, as the number of chambers in the cell geometry grows. These

simulations were performed with the best known model parameters as of May 2017. The

homogenized model is shown with a solid blue line. The nonhomogenized model is shown

with a dashed red line. The single photon response is the left panel, while the ten phton

response is the right panel. Simulations have been performed by changing the geometric

number of chambers in the non-homogenized model and changing the parameter ε0 which

encodes the number of chambers in the homogenized model. Single photon and ten photon

simulations were performed by changing the number of activation sites.

Single photon numerical experiments dropped a photon at .4 ∗H of the height (H) of

the cone in the center of the disc. Ten photon simulations dropped the photons at the center

of discs at heights .4∗H to .58∗H in increments of .02∗H.

For convenience the errors are reported together in Table 5.1.

4.3 Benefits of a Homogenized Model

As Table 5.1 and the above figures show, the homogenized model better approximates

the nonhomogenized one as the number of chambers increases. Further, the homogenized

model requires far less time and computer memory. Table 5.2 gives the time it took a

desktop computer to build just the mass and stiffness matrix in the volume for the finite

element, nonhomogenized model. Recall that building these matrices is a necessary first

Relative Error 100ch 200ch 300ch 400ch 500ch
Single 8.38% 7.46% 6.67% 6.01% 5.60%
Ten 28.32% 17.13% 12.56% 9.89% 8.33%

Table 5.1: Numerical Errors Between Homogenized and Nonhomogenized Models.
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Figure 5.4: Comparison of homogenized and nonhomogenized models: 100 chambers.
Relative errors of single and ten photons: 8.38% and 28.32%
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Figure 5.5: Comparison of homogenized and nonhomogenized models: 200 chambers.
Relative errors of single and ten photons: 7.46% and 17.13%
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Figure 5.6: Comparison of homogenized and nonhomogenized models: 300 chambers.
Relative errors of single and ten photons: 6.67% and 12.56%
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Figure 5.7: Comparison of homogenized and nonhomogenized models: 400 chambers.
Relative errors of single and ten photons: 6.01% and 9.89%
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Figure 5.8: Comparison of homogenized and nonhomogenized models: 500 chambers.
Relative errors of single and ten photons: 5.60% and 8.33%

Assembly Time 100ch 200ch 300ch 400ch 500ch
Nonhom 17.4 hr 56.8 hr 106.1 hr 171.9 hr 217.8 hr
Hom 10 sec 16 sec 17 sec 22 sec 26 sec

Table 5.2: Times to assemble volume mass and stiffness matrices on the prototype bass
model geometry with sliver on half the rim’s circumference. This assembly was performed
by a computer with Intel(R) Core(TM) i5-4200U CPU @ 1.60 GHz and 2.30GHz with
4.00GB of ram.

step in running the model.

The nonhomogenized model’s time integration was performed on Vanderbilt’s super-

computer cluster ACCRE. ACCRE routinely reported that in the course of factoring the

mass and stifness matrices and performing time integration, it used 80-120 gigabytes of

virtual memory. Time integration on Accre could last anywhere from a couple hours to

multiple days. Desktop computers with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 3.41

GHz and 16.0 GB Ram routinely returned a ran out of memory error when factoring the

mass and stiffness matrix when chambers were given a 6 layer spatial discretization within
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each chamber. Even at times when the desktop computers successfully obtained the matrix

factorization, in ten photon simulations of 400 and 500 chambers and a 6 layer discretiza-

tion, desktop computers would often run out of memory at the first or second step of time

integration.

By contrast all homogenized models ran and finished in under ten minutes on desktop

computers.

5 Biochemical and Geometrical Parameters for Cone Species.

We next report the parameters used in the non-homogenized and homogenized cone

models. Compared to rods, the literature quantifying cone biochemistry is relatively small.

We report the best numbers found to date. See Table 5.3-5.5. It should be noted that

the table does not present parameters for a single model species, but gives the values for

whatever species a parameter may have been found or computed. Some parameters have

even been computed from measurements drawn from different species. In the absence of

any information, the value for rods listed in [117] was substituted instead.

5.1 The Basis for Parameter Values

Any necessary comments on how parameter values reported in the table were derived

are explained in detail here.

• αmax

The concentration of guanylate cyclase in carp cones and carp rods respectively has

been measured by Kawamura in [121] to be 72µM and 4.2µM respectively. Their

ratio then scales the mouse rod value of αmax = 76.5µMs−1 given in [117].

• αmax/αmin

The rod value reported in [117] is taken.
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• βdark

The synthesis rate of cGMP in the dark is proportional with the dark concentration

of cGMP through the proportionality constant βdark. This relationship is used both in

[117] and [122]. In [117], the authors report the value of .25± .06s−1. This estimate

is based on a combination of measurement and empirifical fit and uses a [cGMP]dark

value for bass which is more than 10 times larger than that measured elsewhere for

Carp. In [123], the authors report that the relative PDE dark activity measured in

cone membranes (2.5±2.2% of maximum activity) was similar to that of rod (1.1±

1.0%). In that paper, the maximum PDE activity was measured as 17.8cGMP/R∗/s.

If [cGMP]dark = 25µM as reported in [122] for bass and the concentration of visual

protein is 3mM as measured for carp in [121], this would lead to an estimate in units

s−1 of

βdark = 17.8∗ (2.5%)∗ (3∗103)/25 = 53.4

The value βdark = 66.9s−1 was chosen and used in models because it expressed equi-

librium balance between PDE hydrolysis and cyclase synthesis for the given choice

of other model parameters. Indeed from text equation (11) and (13) in [117], we have

the relation

αmin +
αmax−αmin

1+([Ca2+]dark /Kcyc)
mcyc = βdark [cGMP]dark

Upon substitution with model values, this becomes in the appropriate units:

1311/13.9+
1311−1311/13.9

1+(.4/.1)2.45 = βdark ∗2

• BcG

In [121], the total quantities of PDE in carp cone and rods were reported as similar,

so that their ratio is taken as 1. The buffering power for cGMP is then taken as 1
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times the mouse rod value BcG = 1 reported in [117].

• BCa

In [122] at text equation (1.12), a parameter value Ω = .15 is reported where the

influx of calcium is Jin(t) = fCa
Ω

zF Im(t) where fCa = .33 is the fraction of current Im

carried by calcium, z = 2 is the valence of Ca2+, and F is Faraday’s constant. By

direct comparison with (12) of [117], it follows

.5∗ fCa

BCa ∗F
= fCa

Ω

zF

from whence the reciprocal relationship BCa = Ω−1 holds. Note that [115] believes

that the calcium buffer mechanism is more complicated in cones, and should not be

taken as a single number.

• cT E

cT E is the ratio νRE/νRG. The mouse rod value, 1, in [117] is taken.

• [cGMP]dark

[115], as reported in Table 1, uses parameter fitting of the dark current to estimate

the dark concentration of cGMP. This led to an estimate of 27.9± 14.2. In [124],

the value is instead estimated as 2µM and is the value taken in the presented in

simulations.

• DcG−DR

Diffusion coefficients are taken as they are for rods per [117]

• η

η is the asymptotic conversion ratio to pass from the volumic density defined in a

chamber and the surface area densities defined on discal faces:

η =
π ∗ r2

z ∗ν ∗ ε0

2∗π ∗ r2
z

= .5∗ν ∗ ε0
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• fCa

[125] has found the fraction of current carried by calcium in cones to be larger than

the .06 value reported for rods [117].

• jdark

In [126], the striped bass measurement was obtained through measuring current in

18 different striped bass cones.

• jsat
ex

In [126], the striped bass measurement was obtained through measuring current in

18 different striped bass cones.

• kcat/KM

[122] reports for striped bass that the PDE hydrolysis rate of cGMP is given by

−kcat

KM
N∗ [cGMP]

where N∗ is the number of active PDE molecules and KM is the Michaelis-Menten

constant for cGMP. In this context kcat/KM was reported to be (5∗103moleculess1)/(10µM).

This value is within the range reported in [117] for mouse rod.

• kσ ,hyd

This quantity may be computed from the expression (23) in [117]:

kσ ,hyd =
ηβdark

[PDE]
σ

=
(.0075µm)(66.9s−1)

1000 PDE molecules per µm2 = 5.02∗10−4
µm3s−1

In simulations where [PDE]
σ
= 5µm−2 was taken, this parameter value was adjusted

accordingly.

• k∗
σ ,hyd
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This quantity may be computed from the expression just after (24) in [117]:

k∗σ ,hyd =
kcat/KM

NAvBcG
=

(
500µM−1s−1)

6.02∗1023/mol
= .83µm3s−1

• kR

[117] gives the highest measured rate constant for inactivation of Rhodopsin in mouse

rod as 12.5s−1. This value was used in the single step Arrestin shut-off in simulations

presented here. Separately, [123] approximates rhodpsin quantities by an exponen-

tial decay and reports that the inverse of the exponential decay, time constant of R∗ in

the presence of phosphorylation (ATP+) is 1.0s. The authors give experimental evi-

dence here that phosphorylation plays a role in cones because in experiments without

phosphorylation (ATP-), they measure of this time constant as 2.9s. The decay rate

is taken as the inverse of the lifetime: 1s−1. Note that this value is less than rate

constant of 12.5 reported for rods in [117].

• Kcyc

[126] draws from the experimental data of [124] and the calcium dependence of [127]

to produce this value.

• KcG−Kex

The mouse rod values reported in [117] are taken.

• ν

From the measurements of ε and νε = ν ∗ νε , it follows that this value is taken as

unity.

• νRG

Computed from cT E and νRE .
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• n

Computed from H, ν and ε through the relation

n =
H

νε + ε
= 15µm/(2∗ .015µm) = 500

• mcyc

The rod value in [117] is reported.

• mcG

[126] draws from the experimental data of [124] and the calcium dependence of [127]

to produce this value.

• [PDE]
σ

The highest reported mouse rod value of [117] was taken in simulations. Literature

does give quantities that could compute this density except they lead to numbers

much less than those for rods. [123] reports that the PDE dark activity of cones is

2.5±2.2% of the maximum PDE activity. [121] reports that the total concentration

of PDE in the outersegment is 11µM in frog. By approximating the volume of the

cone as a cylinder of same height and radius the average radius of the cone, this leads

to the total number of active PDE molecules in the cone OS being approximately

(2.5%)(11µM)
[
π ∗ (2µm)2 ∗ (15µm)∗6.02∗1023/mol

]
= 31193.96

There are 500 chambers with an average radius of approximately 2µm, each of which

has 2 faces. This would lead to a surface density of

[PDE]
σ
= 31193.96/

[
500∗2∗π ∗ (2µm)2]= 2.49µm−2. [122] reports that the total

number of active PDE molecules in the dark is 60 and that the total number of PDE

molecules is 3∗106. If 60 is regarded as too low, one could repeat the argument done
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for [121] and obtain an estimate

5.96µm−2 =
(2.5%)(3∗106 PDE molecules )

500∗2∗π ∗ (2µm)2

A value of 5µm−2 was used in some simulations not shown to explore the effects

of these values compared to the taken value of 1000µm−2. While the peak drops

lowered and the time to peak grew, these differences were modest. More importantly,

the same current response behaviors emerged in numerical experiments regardless of

whether the density was 5 or 1000.

6 Numerical Transduction Experiments.

In this section, several virtual experiments are reported to explore cone photoreceptor

system behavior. Unless otherwise stated, all cone geometries place the channels at the

sliver only.

In the first set of panels the mouse rod parameters of [117] are used as a base model.

Then first the geometry is changed to a striped bass cone geometry while the mouse rod

biochemistry is fixed. Second the biochemistry is changed to the model cone biochemistry,

in Tables 5.3-5.5, while the mouse rod geometry is fixed. The second set of panels does the

same except uses the model cone as the base.

In [125], it is observed that the fraction of current carried by calcium is greater in

cones than rods: .33 vs .06. The next virtual experiment compares differences brought

about by this difference in calcium current. The virtual experiment after it compares the

effect of fixing the biochemical parameters as in Tables 5.3-5.5 while varying the geometry

dimensions to be those of Human, Salamander and Striped Bass.

Finally two virtual experiments are presented that highlight differences caused by the

possible localization of the cGMP-gated channels either at the sliver only or instead through-

out all the folds and sliver of the outersegment.
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It would be desireable to use biochemical parameters specific to each species. How-

ever, at present the literature did not have a complete set of biochemical parameters for

any species. For the aforementioned reasons, the parameters in Table 5.3 - 5.5 cannot

be regarded as reflecting a physical cone pertaining to a single real species. Similarly

the numerical experiments shown may be superseded in time as more parameters become

available or are improved.
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Table 5.3: Parameters

Symbol Units Definition Species Value Reference
αmax µMs−1 Maximum rate of cGMP synthesis at low

Ca2+ concentration
Carp-Mouse 1311 [117],[121]

αmax/αmin - Suppresion ratio of α from high to low Ca2+

concentration
Carp-Mouse 13.9 [117]

βdark s−1 Rate of cGMP hydrolysis by dark activated
PDE

66.9,53.4 Computed

s−1 Striped Bass .26; .51 [115],
[126],
[122]

s−1 Carp ∼= rod [123]
BcG - Buffering power of cytoplasm for cGMP 1 [115],

[122],
[126]

BCa - Buffering power of cytoplasm for Ca2+ Striped Bass 6.67 [122]
cT E - Coupling coefficient from G∗ to E∗ 1 [117]
[cGMP]dark µM Concentration of cGMP in the dark Carp 2 [124]

Striped Bass 27.9±14.2 [115][
Ca2+]

dark µM Concentration of Ca2+ in the dark Striped Bass .4 [115],
[128]

Carp .41 [129]
rbase µm Radius of COS base Striped Bass 3.08± .31 [130]

Tiger Salamander 2.5; 2 [130],
[131]

Human 1.5 [130]
Turtle 1.25 [131]
Primate 1.5 [131]

rtip µm Radius of COS tip Striped Bass 1.2,1.15 ±
.15

[130],
[126]

Tiger Salamander 1.1; 1.25 [130],
[131]

Human .75 [130]
Turtle .5 [131]
Primate .5 [131]

ω0 - Open margin angle for sliver Striped Bass π [130]
Frog π [128]

DcG µm2s−1 Diffusion coefficient for cGMP Mouse 120 [117]
DCa µm2s−1 Diffusion coefficient for Ca2+ Mouse 15 [117]
DE µm2s−1 Diffusion coefficient for activated PDE Mouse 1.2 [117]
DT µm2s−1 Diffusion coefficient for activated G-protein Mouse 2.2 [117]
DR µm2s−1 Diffusion coefficient for activated Rh Mouse 1.5 [117]
ε nm disc thickness Striped Bass 15 [130]
η nm Volume to surface ratio Striped Bass 7.5 [117]
F C/mol Faraday’s Constant 96 500 [117]
fCa - Fraction of current carried by Ca2+ Striped Bass .33± .08 [125],[126]
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Table 5.4: Parameters Cont...

Symbol Units Definition Species Value Reference
H µm Length of COS Striped Bass 15.2±1.46 [130],[126]

Tiger Salamander 8 [131]
Mouse 20 [131]
Turtle 15 [131]
Primate 13 [131]
Human 7 [130]

jdark pA Dark current Striped Bass 27.3±10.5 [126],
[115],[122]

Tiger Salamander 50 [131]
Primate 40 [131]

jmax
cG pA Maximum cGMP gated channel current

(when saturate by cGMP)
2500 [126],[132]

jsat
ex pA Saturated exchanger current Striped Bass 4.87±1.88 [126]

kcat/Km µM−1s−1 Hydrolytic efficiency of activated PDE
dimer

Striped Bass 500 [122],
[117]

kσ ,hyd µm3s−1 Surface hydrolysis rate of cGMP by dark-
activated PDE

5.02∗10−4 [122],
[117]

k∗
σ ,hyd µm3s−1 Surface hydrolysis rate of cGMP by light-

activated PDE
Carp .83 [133],[126],

[117]
kE s−1 Rate constant for inactivation of PDE Striped Bass 18.5 [122]
kR s−1 Rate constant for inactivation of VP Mouse 12.5 [117]

Carp 1 [134],
[135],
[123]

Kcyc nM Half-saturation
[
Ca2+] for GC activity Striped Bass 100 [126]

KcG µm [cGMP] for half-maximum cGMP-gated
channel opening

Mouse 20 [117]

Kex µM
[
Ca2+] for half-maximum exchanger chan-

nel opening
Mouse 1.6 [117]

ν - Ratio between interdiscal space and disk
thickness

1 Computed

νε nm Interdiscal space Striped Bass 15 [130]
νRE s−1 Rate of PDE formation per fully activated Rh Striped Bass 125 [122]

Carp 30,42 [121],[133]
νRG s−1 Rate of Transducin formation per fully acti-

vated Rh
Striped Bass 125 Computed

Carp 30,33 [121],[134],
[133]

n - Number of disks 500 Computed
NAv mol−1 Avogadro number 6.02∗1023 [117]

123



Table 5.5: Parameters Cont...

Symbol Units Definition Species Value Reference
mcyc - Hill coefficient for GC effect Mouse 2.45 [117]

Striped Bass 2 [126],
[124],
[127]

mcG - Hill coefficient for cGMP-gated channel Striped Bass 2.5 [126],
[136],
[132]

[PDE]
σ

µm−2 Surface density of dark activated PDE Frog-Carp-
Mouse

1000 [121],[123],
[134],
[122]

σ - Ratio between the disk thickness and sliver
thickness

Striped Bass 1 [130]

σε nm Distance between the disk rim and outer
plasma membrane at the sliver

Striped Bass 15 [130]

Vcyt µm3 Cytoplasmic volume Tiger Salamander 70; 35 [114],[131]
Mouse 14;15 [119],[131]
Turtle 30 [131]
Primate 30;15 [131],[114]
Striped Bass 125 [122]
Carp 90 [114]

124



0 0.5 1 1.5

Time(s)

-1

0

1

2

3

4

R
e

la
ti

v
e

 C
u

rr
e

n
t 

D
ro

p

Both Geometries Set to Rod Biochemistry

0 0.5 1 1.5Time(s)
0

1

2

3

4

R
e

la
ti

v
e

 C
u

rr
e

n
t 

D
ro

p

Both Biochemistries Set to Rod Geometry

Rod Geometry

Cone Geometry

Rod Biochemistry

Cone Biochemistry

Figure 5.9: These panels compare the Mouse Rod SPR (blue) with a mutant (red) which
expresses rod biochemistry on cone geometry (top) and then with a mutant which expresses
the model cone biochemistry (bottom).

125



0 0.5 1 1.5Time(s)
-0.2

0

0.2

0.4

0.6

0.8

R
e

la
ti

v
e

 C
u

rr
e

n
t 

D
ro

p

Both Geometries Set to Cone Biochemistry

0 0.5 1 1.5
Time(s)

-0.2

0

0.2

0.4

0.6

0.8

R
e

la
ti

v
e

 C
u

rr
e

n
t 

D
ro

p

Both Biochemistries Set to Cone Geometry

Rod Geometry

Cone Geometry

Cone Biochemistry

Rod Biochemistry

Figure 5.10: These panels compare the Model Cone SPR (blue) with a mutant (red) which
expresses cone biochemistry on rod geometry (top) and then with a mutant which expresses
the mouse rod biochemistry (bottom).
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Figure 5.11: The top panel compares the response when the fraction of current carried by
calcium, f Ca, is the reported value (blue) or the rod value (red). The bottom panel shows
the effect of different species geometries on response when the biochemistry has been fixed
like in the Model parameter set. Human geometry is red. Salamander geometry is purple.
Striped bass is blue.
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Figure 5.12: The top panel shows the effect on response of the channels being localized
to the sliver (blue) or being present at the sliver, discs and folds (red). Each data point
in the bottom panel is the maximum current drop of a 10 photon, numerical experiment:
Draw a diameter in the disc of a cone, which evenly splits the channels. This figure’s
horizontal axis shows where on this diameter the isomerization occurs. As the values go
from negative to positive, the isomerization spot approaches the sliver. Both cases where
channels are only at the sliver (blue +) and where the channels are at the sliver, folds, and
disc (red o) are shown.
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