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CHAPTER 1

INTRODUCTION

The study of problems involving few particles has always been a topic of interest since

the discovery of quantum mechanics. Throughout the years researchers have sought meth-

ods for efficiently solving the Schrödinger equation for these systems computationally[1].

One of the problems commonly studied in quantum mechanics is the stability of few

particle systems for a given type of interaction such as Coulomb, gravitational, Van der

Waals, electric and magnetic fields, among others. Stability can be determined not just

by the interacting force, but also by the fermionic or bosonic nature of the particles. For

example, a system of 3 negative and 2 positive charges is unbound if the particles are

fermions (electron-positron), but if they were bosons then the system would be bound,

despite them having the same forces acting upon them [2].

Throughout the years researchers have sought methods for efficiently solving the Schrödinger

equation. Numerical calculations to solve it in many cases involve the use of grids [1].

However such methods have their limitations and are restricted to systems with few de-

grees of freedom due to high computational costs. For systems with few particles it is often

possible to expand the wavefunction in a suitable basis and apply the variational principle.

Many types of basis functions are available, and some of the most popular choices are the

Hylleraas [3] and Gaussian basis [4], with the latter being the main focus of the present

work, in conjunction with the Stochastic Variational Method.

The Gaussian functions have proven to be valuable due to their mathematical proper-

ties. In quantum mechanics Gaussain wavepackets are important because they give the

minimum uncertainty admisible under the Heisenberg principle [5], and they are also used

to for solving electron scattering problems (e.g. See Salas et. al. [6]). Additional prop-

erties of Gaussians include the possibility of calculating matrix element integrals analyti-

1



cally. It is possible to employ different forms of Gaussians, such as with variable widths or

shifted origins and use them in cartesian, cylindrical or spherical coordinates [1]. They are

therefore versatile wavefunctions that can be used together with the Stochastic Variational

Method for computing energies.

One of the systems that has received lots of attention in computational atomic physics is

the helium atom for multiple reasons. One of the main ones is that it has only two electrons,

and therefore it is simple to represent with basis functions.

For the case of a two-electron system the critical nuclear charge needed to achieve

stability has been calculated to be Z2e = 0.910850 (see Ref. [7]), rendering helium a stable

atom. However, for the case of a three-electron system the critical nuclear charge to make it

bound has been calculated to be Z3e = 2.0090 (See Ref.[7]), which would mean that helium

would not be able to form stable negative ions, unless the conditions changed. Nevertheless

there are other ways that it could form stable structures.

Helium is known as a noble gas because its lack of reactivity to form compounds. It’s

few known compounds form under exotic conditions such as high pressure or low tem-

peratures. The most recently discovered helium compound consists of sodium and helium

formed at high pressures, above 113 GPa [8]. Helium atoms can interact by means of the

Van der Waals forces [9], but such interactions are so weak that they are only significant

for low temperatures. Even at absolute zero He3 and He4 do not solidify in the absence of

external pressure because of the zero-point energy motion [9]. This property is due to its

relatively low mass, which fails to keep the nuclei near their equilibrium position, unlike

other inert atoms of higher mass. However for the case of He4, a boson, it is possible to

obtain structures known as Efimov trimers due to the bosonic nature, but very low temper-

atures are required [10].

Advances in low temperature physics have allowed the experimental observation of

phenomena that were long predicted ago such as the formation of Efimov states, Bose-

Einstein condensates as well as Wigner crystals. The study of such phenomena requires
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methods for making accurate calculations for these systems. In Chapter 3 we show the use

of the Stochastic Variational Method for calculations of few boson systems.

Since the 1960’s theoretical works have suggested a different mechanism under which

helium can form a negative ion. Under very strong magnetic fields, the electronic structure

of atoms can change drastically, and under such conditions it has been predicted that He−

becomes stable. Moreover atoms in general are predicted to drastically change their proper-

ties under such fields. The discovery of very strong magnetic fields in celestial bodies such

as neutron stars has prompted research into the behavior of atoms under such conditions.

In the present work we computationally explore these effects for the case of small systems

in Chapter 4.

A Gaussian basis can also be used for simulating interactions with electric fields, which

in combination with time-dependent methods can be used to simulate absorption and emis-

sion of radiation and High Harmonic Generation. This simulation can be done by represent-

ing the eigenstates of the system, as well as the dipole moments. However, the Stochastic

Variational Method is best for ground or low excited states, rather than Rydberg or unbound

because the accuracy of each one depends on that of the states below (See for example

Ref.[11]).

On the other hand, there exists a Gaussian basis set, known as the Kaufmann basis,

which is good for scattering states, but not very accurate for ground states. In Chapter 5

we use the Stochastic Variational Method to enhance the Kaufmann basis and use it for

simulations with strong laser fields. In particular we show the Mollow sideband generation

for the hydrogen atom and the effects on the higher harmonics, going beyond the typical

2-level models. We also confirm our results with a separate method consisting of a confined

hydrogen model.
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CHAPTER 2

FORMALISM

This chapter is organized as follows: We first give an introduction to the Hamilto-

nian for different potentials in section 2.1 and to the variational principle in 2.2. Then an

overview of the Hylleraas basis is given in 2.3, followed by the Explicitly Correlated Gaus-

sians 2.4 and their deformed variant in 2.5. Finally the Stochastic Variational Method is

explained in 2.6.

2.1 Hamiltonian

The Hamiltonian of a nonrelativistic Coulombic N-particle system is defined as

H =
N

∑
i=1

(
− h̄2

2m
∇

2
i

)
+

N

∑
i

Ui(ri)+
N

∑
i< j

Vi j(ri j), (2.1)

where Ui is the single-particle potential and Vi j the two-body interaction, with specific

forms to be specified for each case individually.

2.1.1 Center of mass reduction

If there are no external fields present it is natural to separate the center of mass motion

from the intrinsic one of the system, which can be achieved by the use of a relative coor-

dinate system [12]. Two common choices are the Jacobi coordinates and one where the

origin is placed on one of the particles[13].

The laboratory frame coordinates (x1,x2, . . . ,xN) and the relative (Jacobi) coordinates

(r1,r2, . . . ,rN) ( rN is the position of the center of mass, rcm) are related by [12]:

ri =
N

∑
j=1

Ωi jx j, xi =
N

∑
j=1

(Ω−1)i jr j, i = 1, . . . ,N. (2.2)
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For the case of the Jacobi coordinates the transformation matrix Ω is [12]:

ΩJac =



1 −1 0 · · · 0

m1
M2

m2
M2

−1 · · · 0
...

...
... . . . ...

m1
MN−1

m2
MN−1

m3
MN−1

· · · −1

m1
MN

m2
MN

m3
MN

· · · mN
MN


. (2.3)

The transformation matrix for relative coordinates respect to particle 1 is:

Ωrel =



−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
... . . . ...

−1 0 0 · · · 1

m1
MN

m2
MN

m3
MN

· · · mN
MN


, (2.4)

where

Mk =
k

∑
i=1

mi. (2.5)

It is also possible to write out the inverse transformation explicitly[12, 13]. Placing

the origin on one of the particles can be a natural choice in many situations, such as when

one of them much more massive than others (i.e. an atom, which has massive nucleus and

electrons that are significantly less heavier) [12].

The corresponding linear momenta pi, conjugated to Jacobi or particle-1 relative coor-

dinates ri, are obtainable by means of the application of the inverse transformation:

pi =
N

∑
j=1

(Ω−1)i jq j, qi =
N

∑
j=1

Ωi jp j, i = 1, . . . ,N, (2.6)

where qi = mixi. Upon executing a coordinate transformation using the relations in Eq.

(2.3) or (2.4), the resulting kinetic energy operator T of the new Hamiltonian will contains

5



two terms: the kinetic energy of n = N − 1 (pseudo)particles motion respect to the new

reference frame and the kinetic energy of the center of mass [12]:

T =
1
2

n

∑
i, j=1

Λi jpi ·p j +Tcm, (2.7)

where Λ is a n×n “mass” matrix with the corresponding elements

Λi j =
N

∑
k=1

1
mk

ΩikΩ jk. (2.8)

The center of mass kinetic energy operator is given by

Tcm =
p2

cm
2MN

. (2.9)

In the absence of external fields the potential can only depend on the inter-particle

coordinates, so the total Hamiltonian of the system in the new coordinates will be indepen-

dent of rcm. The total wavefunction can therefore be represented as a product between a

plane wave, corresponding to the motion of the system as a whole, and a wavefunction ψ

describing the intrinsic motion [12]:

ψtot = exp(ipcm·rcm)ψ(r1, . . . ,rn). (2.10)

Afterwards the focus is on approximating the intrinsic wave function.

2.2 Variational Principle

The variational method allows the calculation of an upper bound for the energies of a

quantum system. It is based upon the variational principle [5, see ch 7]. This can be formu-

lated as follows. Let ψ be an arbitrary normalized wavefunction that satisfies the required

boundary conditions of the system. Then the ground state of the system, Egs, is always
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lower or equal to the expectation value of the Hamiltonian in that arbitrary wavefunction:

Egs ≤ 〈ψ|Ĥ|ψ〉. (2.11)

The wavefunction in Eq. (2.11) is referred to as a trial wavefunction, and the degree of

accuracy of the method relies on how closely it resembles the ground state. The strategy

employed to obtain the minimum energy possible consists in using a trial function that

depends on some adjustable parameter, and then vary the parameter to obtain the value for

which the expectation value is minimized.

For greater accuracy the trial wavefunction can be constructed as a linear combination

of N basis functions φi, as in Eq. (2.12). Each of the basis functions has its own variational

parameter αi that can be adjusted individually.

ψtrial =
N

∑
i=1

ciφi, (2.12)

2.2.1 Generalized method

It is also possible to calculate energies for the excited states, although the method has its

limitations. In general the energies of the system can be obtained by solving the generalized

eigenvalue problem [1, 13].

Hck = εkSck, (2.13)

In Eq. (2.13) εk and ck are the eigenvalues and eigenvectors respectively, H is the

Hamiltonian matrix with elements given by

Hi j = 〈φi|Ĥ|φ j〉, (2.14)

S is the overlap matrix:

Si j = 〈φi|φ j〉, (2.15)
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If the energies of the system are sorted so that Ek+1 >Ek, and the eigenvalues εk+1 > εk,

then the eigenvalues form upper bounds for each energy such that:

εk ≥ Ek, ∀k. (2.16)

One disadvantage of the method is that the accuracy of any given state depends on how

well converged are the ones below, so obtaining an accurate excited state can demand a

very large basis.

For the calculation of the eigenvalues, it is necessary to compute the matrix elements

Eq. (2.14) and (2.15). These calculations involve integrals that can sometimes be computed

numerically, but in many cases this can be unfeasible (especially when there are multiple

particles in the system). Usually it is desirable to have functions that permit this to be done

analytically.

Some of the most popular basis functions are: Gaussians [14, 15], Hylleraas [16] and

plane waves[1] because they allow such analytical calculations. The choice of basis func-

tions will greatly influence the accuracy of the results. The chosen functions should have

the same symmetry as the actual wavefunction to enable good convergence with less basis

functions.

2.3 The Hylleraas basis

The Hylleraas basis [17], has been used for a long time, since the early days of quantum

mechanics [18] but yet remains to be a method of the greatest importance in the present due

to its good accuracy and analytical integration of the matrix elements.

The Hylleraas expansion is given by [17]:

ψ(s,u, t) = e−1/2s
∑

n,l,m
Cn,l,mslumtn, (2.17)

where Cn,l,m is a constant.
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For a two electron atom the Hylleraas basis Eq.(2.17) is defined in terms of the coordinates

are u = r1 + r2, u = r1− r2, t = r12, with

r12 =
√

r2
1 + r2

2− r1r2 cos(θ12). (2.18)

The variable θ12 in Eq.(2.18) is the angle between~r1 and~r2.

The expansion can be generalized for many electrons, but its is not straightforward to

do so. Performing calculations with N ≥ 5 electrons is now possible due to the existence

of symbolic algebra software packages [17].

The Hylleraas approach has been vastly used to investigate lithium ground state ener-

gies [17]. With a 1589-term expansion it is possible to obtain an energy with 11 significant

decimals[17]. Calculations have also been done for isoelectronic ions [19, 20], as well as

larger systems such as beryllium and boron [17].

A Hylleraas-like wavefunction for three electron systems is given by:

ψ(~r1,~r2,~r3) = r j1
1 r j2

2 r j3
3 r j12

12 r j13
13 r j23

23 exp(−ω1r1−ω2r2−ω3r3)Y
L,ML
(l1l2)l12,l3

(~r1,~r2,~r3) ,

(2.19)

where the j’s are integers, ωi are non-linear variational parameters and Y are vector-

coupled product of spherical harmonics:

Y L,ML
(l1l2)l12,l3

(~r1,~r2,~r3)= rl1
1 rl2

2 rl3
3 ∑

m1,m2,m3

〈l1m1; l2m2|l1l2; l12m12〉〈l12m12; l3m3|l12l3;LML〉×

Yl1,m1(r̂1)Yl2,m2(r̂2)Yl3,m3(r̂3) (2.20)
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2.4 Explicitly Correlated Gaussians (ECG)

For a system with n particles the general form of the ECG is given in Cartesian coordi-

nates by

G(x1...xn) = exp

(
−1

2

n

∑
i, j=1

Ai jxi ·x j

)
, (2.21)

where Ai j is a variational parameter and x is the position vector.

It is also possible to employ spherical coordinates and have each basis function be the

product of Spherical Gaussian-Type Orbitals (SGTO) [14]. However, for systems with

interacting particles the SGTO can have a slow convergence of the variational energy. An

improvement consists on using Explicitly Correlated Gaussians in Spherical coordinates,

which give a faster convergence. For a system of n particles they are given by

φk = exp

(
−1

2

n

∑
i, j=1

Ai j(ri− r j)
2

)
n

∏
j=1

rl j
j Yl jm j(r̂ j), (2.22)

where ri is the position vector for particle i, Ylm is a spherical harmonic [15].

This basis has the advantage of having matrix elements that are analytically available

for the overlap, kinetic energy and multiple potentials [15]. Also it has more variational

parameters than SGTOs allowing a faster convergence with less basis functions.

Another advantage is that the permutation symmetry of the wavefunction can be easily

imposed, and be made either symmetric or anti-symmetric and coupled to an appropriate

spin wavefunction as needed.

2.4.1 Matrix elements

An important feature of the ECG based methods is the simplicity of the matrix elements

of the Hamiltonian as well as other operators [12]. We take take for example the overlap

between two spherically symmetric ECGs, defined in Eq. (2.21). Let, det(. . .) and tr(. . .)

10



denote the determinant and trace of a matrix, respectively. We then have:

S(Ak,Al) = 〈G(Ak)|G(Al)〉=
(

πn

det(Akl)

) 3
2

, (2.23)

where Akl = Ak +Al . The kinetic energy matrix element has the following form:

〈G(Ak)|T |G(Al)〉= 3tr
(
AkA−1

kl AlΛ
)

S(Ak,Al). (2.24)

Any one-body operator, based on the spatial coordinate, has matrix elements that can be

written as [12]

〈G(Ak)|V (ri)|G(Al)〉= I(βi)S(Ak,Al). (2.25)

where I(β ) is defined by [12]

I(β ) =
(

β

π

) 3
2 ∫

V (a) exp
(
−βa2)da (2.26)

and
1
βi

= w′iA
−1
kl wi, (2.27)

where wi is a vector with elements wi = δim. A two body interaction V (ri− r j) matrix

elements can be expressed in a similar way to Eq. (2.25):

〈G(Ak)|V (ri− r j)|G(Al)〉= I(βi j)S(Ak,Al), (2.28)

but with
1

βi j
= w′i jA

−1
kl wi j, wi j = δim−δ jm. (2.29)

The functional form of the potential has almost no restrictions. For the particular case of

central interactions the integral of Eq. (2.26) is reduced to an integral in one-dimension,

and can be easily evaluated either analytically or by numerical methods. For example, for
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the case of power law potentials, V (r) = rk (k >−3), one obtains

I(β ) =
2

√
πβ

k
2

Γ

(
k+3

2

)
, (2.30)

where Γ is the Euler gamma function [12]. Another property important of the ECG basis

is that the analytical complexity of the matrix elements does not change when the num-

ber of particles is increased, unlike the Hylleraas basis. The computational effort done to

evaluate the matrix elements, for pairwise interactions, increases as as n3× k!, where k is

the number of identical particles in the system (for an atom, k = n). The k! factor comes

from antisymmetrizing the wave function, and its dependence has limited the application

of ECG methods to systems few particles [12].

2.5 Deformed ECG’s

For problems that have cylindrical symmetry, such as those with external fields, the

form Eq. (2.22) may not be the best choice. An alternative is to use a deformed form of the

correlated Gaussians (DCG), which is defined in terms of cylindrical coordinates [12, 13]:

exp

{
−1

2

N

∑
i, j=1

Ai jρi ·ρ j−
1
2

N

∑
i, j=1

Bi jzi · z j

}
, (2.31)

where the nonlinear parameters Ai j,Bi j can be different and are independent in both the

radial and vertical direction.

For a system with no external torques along the z axis, the angular momentum operator

Lz has its corresponding eigenvalue M conserved. The form of the DCG in Eq. (2.31)

belongs to M = 0 and can be extended to allow for M 6= 0 states multiplying the basis by

N

∏
i=1

ξmi(ρi), (2.32)
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where

ξm(ρ) = (x+ iy)m. (2.33)

Thus the spatial variational trial function is then

ΦM(r) =

(
N

∏
i=1

ξmi(ρi)

)
exp

{
−1

2

N

∑
i, j=1

Ai jρi ·ρ j−
1
2

N

∑
i, j=1

Bi jzi · z j

}
, (2.34)

where M = m1 +m2 + ...+mN , and mi are integers.

2.5.1 Correlation and inter-particle distances

A quantity of interest for many systems is the average value of the distances between

particles or from the origin, since they yield information on the structure. These can be

obtained by means of the correlation function, which is defined as:

C(r) = 〈Ψ|
N

∑
i< j

δ (ri− r j− r)|Ψ〉. (2.35)

Using C(r), the radial part of the correlation function, the powers of interparticle distances

are given by

< rk >=
∫

∞

0
rkC(r)dr. (2.36)

Similarly Eq. (2.35), (2.36) can be also defined for single particles, by instead considering

the distance from the origin of coordinates.

2.6 Stochastic Variational Method (SVM)

The variational approach is employed selecting the optimal parameters capable of min-

imizing the eigenvalues in Eq. (2.13). More in depth explanations can be found in Refs[12,

13]. A problem with increased number of parameters is that multi-variable optimization

can be a complicated task [13]. The Stochastic Variational Method (SVM) consists in se-

lecting values for the nonlinear parameters at random and keeping the ones that minimize
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the energy. The algorithm is divided in two stages: increasing the size of the basis, and

refining an existing one, both briefly described below.

2.6.1 Increasing a basis

Given a starting basis of size N, the goal is to increase the basis to size N+1 by finding

an additional basis function that will reduce the eigenvalue ε . The variational principle

guarantees that the addition of an additional basis function will not make the eigenvalue

value increase. A set of many candidate nonlinear parameters are generated at random and

tested. Whichever gives the smallest eigenvalue is then kept as the new basis function. A

more detailed explanation can be found in Ref. [13].

2.6.2 Refining a basis

In the next stage the basis size remains a constant and another pool of candidate func-

tions is generated. The existing basis functions are then swapped by turns with candidate

ones and the eigenvalue is checked. Whichever of the two functions gives the lowest eigen-

value is kept.

It is important to take into account that the variational principle can fail in the event

of numerical accuracy problems, which can arise due to over-completeness of the basis.

Countermeasures can be taken to avoid over-completeness, such as discarding any can-

didate functions that give a high overlap with existing ones [13]. Afterwards, further in-

creases of the basis and subsequent refinements are possible until an adequate basis size

with a satisfactory eigenvalue is obtained.
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CHAPTER 3

FEW-BOSON SYSTEMS

In the present chapter the Stochastic Variational Method is used to study systems with

few bosons, with different types of interactions. The chapter is organized as follows: we

first present the motivation for this study in 3.1. We then present the results in 3.2 and

the conclusions in 3.3. The work described in the chapter was published in Ref.[21], and

reproduced with permission from the publisher.

3.1 Motivation

The recent experimental activity studying dilute ultracold atomic and molecular sys-

tems [22–28] has produced theoretical interest in few-body systems composed of bosons

[23, 29–46].

The investigation of bosonic systems covers many different subjects ranging from atom

interferometry to quantum universality: Efimov state governed phase transitions [27], dy-

namics of degenerate Bose-gas [28], halo states [45], and physics of bosons in harmonic

traps [47, 48] have been studied. The accurate solution of quantum mechanical few-body

problems is an indispensable tool in this research field.

Diverse theoretical and computational approaches have been previously used to cal-

culate the energy levels and structure of few-boson systems. The Gaussian variational

[43, 49], and hyperspherical [29, 37, 38, 41, 42] calculations are the most popular ap-

proaches. There are many benchmark calculations to check the accuracy and efficiency of

computational approaches for fermionic few-particle systems, e.g. for atoms and molecules

[2, 13]. The number of test systems as well as test calculations for few-boson cases is much

less. The goal of this chapter is to provide benchmark calculations for N bosons. In addition

to the energies, the particle-particle distances and correlation functions are also calculated
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in order to add extra information that can be compared for different approaches.

3.1.1 He-He molecule

Helium atoms, due to their noble gas nature, are well known for their lack of stable

negative ions and molecules, but exceptions do exist to this behavior [8]. Few body systems

formed of helium atoms have been a subject of theoretical and experimental work [50].

The He-He molecule has been verified experimentally. Due to its large scattering length

this molecule is one of the largest diatomic molecules in existence [50].

Multiple model potentials have been proposed to describe the helium dimer interac-

tions. Such potentials are attractive, but become highly repulsive at close range [50], be-

coming problematic for the purpose of calculations. The nature of the potential limits the

calculations of multiple He atoms. Although some methods have been employed for this

purpose [51], most calculations only address the case of three helium atoms [50].

The LM2M2 potential is an example of these potentials [51–53]. It is obtained ab-initio,

and is known to give reasonable agreement with experimental observations, despite small

discrepancies [53].

Systems with more than two helium atoms can be difficult to describe, because the

kinetic and potential energy present a large cancellation and the bound state is very shallow

[54].

A soft-core potential employed is an attractive Gaussian shaped given by [50, 54]:

V (r) =V0e−r2/R2
, (3.1)

with V0 = 1.227 K and R = 10.03 a.u. This potential can be considered a regularized form

of LM2M2 [53], and despite being an effective field approximation, it is capable of giving

reasonable agreement with experimental results [50]. Both LM2M2 and Gaussian predict

similar scattering lengths, effective range and phase shifts in the low energy limit [50].
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However the Gaussian potential is much easier to use for calculations.

The potential Eq.(3.1) has been used to investigate the three 4He system [54], as well as

the spectra of helium clusters with up to six atoms[50]. Since these few atom systems have

long scattering lengths, they are in the regime where the Efimov [55] effect takes place,

which we will describe in section 3.1.2.

3.1.2 Efimov states

One of the topics that has recently received much attention in low temperature physics

is the formation of Efimov states. They have attracted so much interest due to their strange

and counterintuitive properties, the large difficulty to observe them experimentally and their

close relationship to Bose Einstein Condensation, among other reasons [56].

In 1971 Vitaly Efimov studied the bound states of three identical bosons and predicted

the possibility that three particles could form a bound state whereas only two of them

would be otherwise unbound [57]. Furthermore the system would have an infinite number

of bound states, currently known as Efimov states. A typical analogy to understand Efimov

states are the Borromean rings, which are linked together such that if one of them is re-

moved they all become unbound [56]. This type of behavior is independent of the type of

interaction between the particles [56]. Also, the model predicts an infinite number of bound

states with the following property: upon scaling the length by a factor of 22.7 another state

is found such that its length is larger by that same factor, but its energy is diminished by a

factor of 22.72 [56].

Efimov’s prediction was investigated for many years. Observation of the Efimov reso-

nance was made in Insbruck in 2002 during attempts to obtain a Bose-Einstein condensa-

tion, but the work was not published and the effect was not identified at the time [56]. It

was not until 2006 when the experimental observation was confirmed and published using

Caesium atoms [56, 58].

Further research has also focused on the universality of the effect and the existence of
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trimers with more particles. Four-body states have also been found [59, 60]. Higher Efimov

states had still yet to be observed. That discovery was not an easy task because the binding

energy of the state is strongly diminished for excited states, so lower temperatures must be

reached in order to keep the system stable. In 2014 this was finally done, with a measured

scaling factor close to the predicted one [61].

Throughout the years Helium has been an important candidate for the formation of Efi-

mov states. Many theoretical works addressed this problem, but experiments on molecular

beams were unable to confirm the predictions [56]. However, the formation of Helium

trimers was finally observed and published in 2015 [10]. This was done by means of

Coulomb explosion imaging. The observed size matched the predicted one, and it showed

that the structure is such that two atoms are close to each other and the third one is far away.

3.1.3 Wigner Crystals

Eugene Paul Wigner conjectured that when the density of electrons in a metal is low

enough the Coulomb potential dominates over the kinetic energy, making the electrons

localize by forming a crystalline structure [62]. In his model the electrons oscillate around

their equilibrium positions even in the ground state, and can happen when the density is

low, ne� 1 [62].

Observation of Wigner crystals is not easy, but has been achieved experimentally after

more than forty years [62]. Its first experimental observation was obtained in a classical

2D Coulomb system formed by a monolayer of electrons trapped in a potential well above

the surface of liquid helium [63].

3.2 Solutions for few body systems

In addition to the energies, particle-particle distances and correlation functions are also

calculated to add extra information that can be compared for different approaches.

The Hamiltonian for the N-boson system is given by (2.1). The variational method was
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N E Eliterature < r−1 > < r > < r2 >

2 -0.001296 -0.001296a 0.026 98.490 18065.006
3 -0.15042 -0.1504a 0.088 16.346 355.849
4 -0.75138 -0.75137a 0.113 11.827 173.745
5 -1.94522 -1.9452a 0.130 10.105 124.212
6 -3.81093 -3.8109a 0.143 9.114 100.129
7 -6.40326 0.154 8.442 85.463
8 -9.76331 -9.7633b 0.163 7.943 75.419
9 -13.9232 0.171 7.552 68.022
10 -18.9102 -18.910b 0.178 7.235 62.334

Table 3.1: Energies (in Kelvin) and average powers of inter-particle distances (in a.u.) of
bosons interacting via soft-core Gaussian potential. Results are compared to a Ref. [50]
and b Ref. [37]. (Source: Horne, Salas & Varga 2014 [21])

used with a trial function consisting of Explicitly Correlated Gaussians, given by Eq. (2.21)

and are symmetrized to give the bosonic behavior [4, 13].

3.2.1 Bosons with Soft core Gaussian interaction

In this scenario there is no external field (U(r) = 0) in Eq.(2.1) and the interaction is

given by the soft core model in Eq.(3.1).

The results for the ground state N boson systems are given in Table 3.1, obtained from

Ref.[21]. It can be seen that the potential has a very weakly bound ground state for the

two-body case. The scattering length is vary large as expected and diminishes rapidly upon

the addition of particles. The correlation function is shown in Fig. 3.1 and it illustrates the

long scattering lengths.

As the number of particles increases the size of the system diminishes. This behavior

can be observed in Table 3.1 and in Fig 3.2, where the peaks approach the origin as N

increases. Additionally, the binding energies also increase due to the increase in attractive

pairs.
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Figure 3.1: Correlation function for N=2 bosons interaction via a soft-core Gaussian po-
tential. (Source: Horne, Salas & Varga 2014 [21], ©Springer-Verlag Wien 2014 with per-
mission of Springer.)

The results agree with those obtained with other methods in the literature. The present

method is that it can be easily employed for more particles, although there is a limitation

due to the N! growth of the computational time due to the symmetrization.

3.2.2 Bosons with Coulomb interaction

In this case we investigate a system that is composed by positive an negative charges,

similar to an electron-positron systems but the particles are bosons. In this case the potential

in Eq.(2.1) becomes

Vi j(ri j) =
qiq j

ri j
, (3.2)

where qi =±1 is the charge of particle i in a.u.
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Figure 3.2: Correlation function for N=3-8 bosons interaction via a soft-core Gaussian
potential. The peaks of the correlation functions moves toward the origin as the number
of particles increases. (Source: Horne, Salas & Varga 2014 [21], ©Springer-Verlag Wien
2014 with permission of Springer.)

The calculations were done for the case where half of the particles are positively and

the other half is negatively charged (or there is one extra positive charge if N is odd). A

similar arrangement is done for the spin of the particles , with half the particles spin-up and

half spin-down, with an extra spin-up when N is odd.

An important issue to discuss is the stability of these systems. Those with electrons

and positrons with more than four particles have been shown to be unbound [2] due to their

fermionic nature. On the other hand if the particles were bosons then bound states exist [2].

The results are presented in Table 3.2. The calculations up to four particles can be

compared to the literature values (see. e.g. Ref. [4]), to show the accuracy of the present

approach. For the case of the Coulombic interaction we can observe that that the addition

of particles does not produce a large decrease in the size of the system (unlike the soft-

core Gaussian). For opposite charges the correlation function is shown in Fig.3.3, where

it can be seen that adding particles produces a slight shift of the peaks outwards, while the
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Figure 3.3: Correlation functions between opposite charges for N=4-8 particle two-
component Coulomb systems. (Source: Horne, Salas & Varga 2014 [21], ©Springer-Verlag
Wien 2014 with permission of Springer. )

amplitude and width of the peaks change slightly. On the other hand, for like-charges the

function is shown in Fig. 3.4 and we can see that the system tends to become smaller with

increasing N.

3.2.3 Self-gravitating bosons

This case is similar to the previous one but now all bosons are identical and interacting

via an attractive gravitational-like potential with unitary strength (in a.u.) given by:

Vi j(ri j) =−
1
ri j

. (3.3)

The calculated energies are given in Table 3.3. The behavior of the system is similar

to the soft-core Gaussian, as expected. There is a rapid increase in binding energy and a

reduction of the distances as N increases. The correlation functions (not shown) are very

similar to those on Fig. 3.2.
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Figure 3.4: Correlation functions between like charges for N=4,6, and 8 particle two-
component Coulomb systems. (Source: Horne, Salas & Varga 2014 [21], ©Springer-Verlag
Wien 2014 with permission of Springer.)

N E < r−1 > < r > < r2 >

2 -0.250000 0.500 3.000 12.000
3 -1.071779 0.715 1.994 5.101
4 -2.790733 0.930 1.494 2.814
5 -5.732369 1.146 1.195 1.782
6 -10.22220 1.363 0.996 1.229
7 -16.58536 1.579 0.854 0.899
8 -25.147016 1.796 0.747 0.686

Table 3.3: Energies and average powers of particle-particle distances (all in a.u.) of self-
graviting bosons. (Source: Horne, Salas & Varga 2014 [21])
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3.2.4 Confined bosons

In the last case we consider an example which is a bosonic counterpart of artificial

atoms. In model artificial atoms electrons are confined by an external potential, most often

by a harmonic oscillator potential. The competition between the confinement and Coulomb

repulsion may lead to the appearance of Wigner crystals, where electrons are localized in

crystal like positions [64]. In this example we used bosons instead of electrons, with a

repulsive Coulomb interaction

Vi j(ri j) =
1
ri j

, (3.4)

and a confining potential

Ui(ri) =
1
2

mω
2r2, (3.5)

where ω = 0.5 and atomic units are used with m=1.

Electrons in harmonic oscillator quantum dots [64], similarly to electrons in atoms,

fill up the shells obeying the Hund rule. The major difference between the harmonically

confined fermions and bosons is that there is no restriction for shell filling in the bosonic

system. In the case of harmonically confined electrons, l = 1,2 and higher angular mo-

mentum orbitals become important for N > 2 electron systems [64] and the total orbital

momentum (L) of the ground state is not necessarily zero. In the bosonic case the lowest

l = 0 orbital can accommodate the particles and the ground state belongs to L = 0.

Table 3.4 shows the energies and the properties in this case. The N = 2 problem is

analytically solvable and the SVM easily recovers the analytical value. The energies for

N > 2 are significantly lower than in the case of fermions. Direct comparison is not easy,

because the fermionic case has different ground state quantum numbers, but for example,

the lowest energy of three electrons with identical spins is 4.31 a.u. (this belongs to L=0)

[64], while the energy in the bosonic case is 3.70 a.u..

Unlike the previous three cases, where there is no external potential, in this case the
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energy and the structure of the system is determined by the interplay of the confining

harmonic oscillator potential and the two-body repulsion. The energy levels for the N =

2, . . .,8 particle systems due to the harmonic oscillator potential alone would be equal to

3/2Nh̄ω . The difference between this and the calculated energy is due to the Coulomb

repulsion. The inter-particle distances (see Table 3.4 ) and the correlation functions (see

Fig. 3.5) both show that the size of the system increases by adding more particles.

3.3 Conclusions

The energies and other properties of bosonic few-particle systems were calculated using

the Stochastic Variational Method with correlated gaussian basis. Four different systems

were investigated and the energies were compared to the values found in the literature.

The comparison with the results of hyperspherical calculations [37, 50] shows that both the

hyperspherical approach and the correlated gaussians can be extended to larger systems.

The soft Gaussian potential is relatively easy to calculate and we could get results up to

N = 10 particles. The hyperspherical approach presented in Ref. [37] are extended up to

112 particles but the results for N > 10 case is calculated with a truncated basis and might

be less accurate.

We have carefully optimized the basis and checked the convergence of the results, just

as we did in previous calculations [4, 64] and the above results are expected to be accurate

in all decimals shown. The calculations presented in this paper thus will be hopefully useful

in benchmark calculations for bosonic systems.

Calculations for larger systems might be possible, but at present that is very computer

time consuming. The major bottleneck is the need of symmetrization which requires the

permutation of particles and lead to N! scaling. For systems containing identical particles

the permutation might be avoided by employing basis functions that are symmetric with

respect to exchange of particles. This would substantially reduce the computational burden

and may help in calculations for larger systems.
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Figure 3.5: Correlation function for N=2-8 bosons interaction via a repulsive Coulomb
interactions and confined with a harmonic oscillator potential. The peaks of the correlation
functions moves outward from as the number of particles increases. (Source: Horne, Salas
& Varga 2014 [21], ©Springer-Verlag Wien 2014 with permission of Springer.)
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CHAPTER 4

INTERACTIONS WITH STRONG MAGNETIC FIELDS

The present chapter focuses on using the Stochastic Variational Method for studying the

stability and structure of three-electron systems in the presence of strong magnetic fields,

with a big focus on the formation of negative Helium ions. The chapter is organized as

follows: An introduction to strong magnetic fields and their effects is given in 4.1. Then

the computational methods are described in 4.2, and the Hamiltonian and the employed

approximations explained in 4.3. The calculated energies and properties of the studied sys-

tems are then given in 4.4. The formation of He− is discussed in 4.4, and the possibility of

having stable H2− is studied in 4.6. We then study the diamagnetic properties of the sys-

tems in 4.7. Finally the limitations of the study are discussed in 4.8. The works described in

the present chapter were published in Refs.[65, 66], and reproduced with permission from

the publishers.

4.1 Atoms in strong magnetic fields

It is well known that the presence of external magnetic fields can alter the properties of

atoms. A weak external field gives rise to the Zeeman effect if the splitting of the levels

is small. If the field gets strong enough, then the spin-orbit coupling breaks, producing a

different splitting pattern [5], known as the Paschen-Back effect.

If the magnetic field gets even more intense, the Landau quantization becomes signif-

icant and the changes in energy levels are no longer small. Under strong magnetic fields

the properties of matter can change drastically, far beyond those described by the Paschen-

Back effect [67–71]. One of the most important effects is that states with adjacent energies

in the field-free case can crossover depending on the field strength, implying that a ground

state at a certain field intensity may become an excited state in another one and vice-versa.
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These changes in the energy levels imply variations in the transition frequencies and de-

formation of the orbitals. These changes alter the stability of the systems, and have been

predicted to induce the formation of negative ions such as He− [72–76].

The application of a very strong uniform field produces an effective confinement of the

electrons along the perpendicular plane due to the Lorentz force [77]. As the electrons are

kept closer, the electric force due to the nucleus becomes stronger. At the same time the

electron repulsion is also enhanced, so there is a competition between forces. Aligning

spins with the external magnetic field gives a lower energy, but achieving this configura-

tion requires placing the electrons in different orbitals. In field-free systems having higher

angular momenta in general implies a higher energy, but when a field is present then the

alignment of the orbital magnetic moments could instead reduce it. The magnetic field can

reshape the orbitals, breaking the spherical symmetry, inducing a quadrupole moment on

the atom [77–79]. The presence of a confining force on the perpendicular plane implies that

the stability of the system is solely determined by the interactions along the field direction

due to polarization effects. If the resulting effective 1D potential along that direction is

negative then the system is guaranteed to have at least one bound state [79].

The study of the effects of strong magnetic fields on energy levels and wave functions

is strongly motivated by the discovery of stars with very strong magnetic fields [80–82].

These magnetic field strengths range from the weaker fields of white dwarfs [83, 84] (≈ 107

G) through neutron stars [85] (≈ 1012 G) all the way up to fields of 1014-1015 G observed

in magnetars [86]. On the other hand, in general the magnetic fields in the universe tend

to be weak, of the order of µG [87], while in laboratory conditions the highest achievable

magnetic field is around 105 G [88, 89].

Accurate calculations of wavelengths, dipole moments and oscillator strengths for atoms

and molecules are needed to explain the observed spectra in the strong magnetic fields of

these stars. Recent studies have focused on the role of the strong magnetic field in the

formation of the crust of neutron stars [90]. Also, measuring magnetic fields can allow the
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exploration of stellar dynamo processes, and a model for employing molecules as magnetic

probes has been tested with data from realistic scenarios [91].

The effect of magnetic field on the energy levels of molecules has also been exten-

sively studied [92–101]. High magnetic fields drastically change the binding energies,

bond lengths [101], and can lead to new bonding mechanisms like paramagnetic bonding

[95]. Calculations for molecules are very difficult, because the separation of center of mass

motion [102] is not trivial and the description of nuclear and electronic structure is compli-

cated. Recent works [92, 93, 96] using current density functional theory [103] established

a non-perturbative framework to calculate the molecular properties in magnetic fields.

Another area of interest for the study of strong magnetic fields is condensed matter

physics, for which similar few-body problems exist. These can be found in systems of

electrons and holes in quantum dots, where the small effective masses and the large dielec-

tric constant lead to large effective magnetic fields [64, 104–108]. This has been recently

observed experimentally for Si:Se [108].

4.2 Computing solutions of few-electron systems

The computation of few-body systems in strong magnetic fields is complicated. First of

all, the magnetic field breaks the symmetry of the system and this symmetry breaking has

to be taken into account in constructing the wave function. Secondly, the magnetic field

confines the system in the plane perpendicular to the direction of the field leading to elon-

gated structures. In these structures the competition between the Coulomb interaction and

the magnetic field determines the energy levels of the system and the correlation between

the particles. At very strong fields the magnetic field dominates, e.g. the spins are aligned

anti-parallel to the direction of the field and the spin flip energy is much larger than the

single particle energy, at weak fields the Coulomb interaction has more pronounced effect,

but there is no perturbative regime where one or the other can be neglected.

Many different computational approaches [67–71, 77, 109–111] have been used to
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study the effects of strong magnetic fields on small atoms and ions, such as H, H−, He, Li,

Be. The most popular approaches include the Hartree-Fock method [78, 112–121], varia-

tional calculations with Gaussian [12, 13], Hylleraas [122, 123], or Lagrange basis func-

tions [124], Quantum Monte Carlo (QMC) [125, 126], finite element calculations [127],

or pseudospectral Hartree-Fock[128]. Most of these approaches treat all electrons explic-

itly, but some introduce approximations restricting the core electron degrees of freedom to

reduce the computational burden [129].

Analytical calculations have also been proven to be valuable tools. It has been ana-

lytically predicted, for example, that under very strong magnetic fields neutral atoms can

bind with an additional electron [76, 130]. In particular, it was claimed that Helium, de-

spite being a noble gas, was capable of forming a stable negative ion under such conditions

[72–76]. Recent works based on computational methods have verified this prediction of

the He− ion [65, 123].

The simplest system, the one-electron problem, has been intensively studied using B-

splines [131], finite elements [132], power series [133] and Lagrange mesh [134] methods,

and the the properties of the hydrogen atom in magnetic field is accurately known. The

two electron systems, including the He atom [112–115, 124, 135–137] and the H− ion

[79, 138–145], have been also focus of numerous studies and serve as a benchmark test for

quantum mechanical calculations.

The number of calculations for three-electron systems is much less. Ivanov and Schmelcher

studied the Li atom in magnetic field using the Hartree-Fock method [146]. Variations of

approaches restricting the core electrons [129, 147] have also been used to solve this prob-

lem. The most accurate energies of this system are calculated by the Hylleraas approach

[122].

Approaches based on explicitly correlated wave functions [65, 122, 124] are likely to

be restricted to smaller atoms, with the only exception being the QMC method [125, 126,

148]. For larger systems the QMC method [125, 126], the Hartree-Fock [78, 112–121, 128]
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and the density functional theory (DFT) approach [149, 150] seem to be applicable. The

DFT approaches are particularly important because they can help the development of better

exchange correlational functionals. A recent thorough review of different approaches can

by found in Ref. [151].

We first explain the Hamiltonian and the approximations used in section 4.3. We then

show the calculated energies and properties for He−, Li and Be+ in section 4.4. More

details on He− are shown in Refs. [65, 66].

4.3 The Hamiltonian for strong magnetic fields

The Hamiltonian of a Coulombic N-particle system in magnetic field is defined as

H =
N

∑
i=1

(
−1

2
∆i +

B2

8
(x2

i + y2
i )−

Z
ri

)
+

N

∑
i< j

1
ri j

+
B
2
(Lz +2Sz) (4.1)

= T +Vdia +VNe +Vee +
B
2
(Lz +2Sz) (4.2)

where Lz (Sz) is the z component of the orbital momentum (spin) of the system, the magnetic

field of strength B is directed along the z axis and Z is the charge of the nucleus. In the

second part of the equation we separated the terms of the Hamiltonian into kinetic energy

(T ), the diamagnetic term given by a two dimensional harmonic oscillator-like contribution

of the magnetic field (Vdia) plus the Coulomb interaction between the electrons (Vee) and

between the nucleus and the electrons (VNe). The positions of the particles are denoted by

ri = (xi,yi,zi), and the relative distances are defined by ri j = ri−r j. Atomic units are used,

and the magnetic field in these units is equal to 2.35×109 G.

All this is done within the non-relativistic framework, neglecting any QED effects and

center of mass motion due to an infinitely heavy nucleus, as it is commonly done in the

literature. Additionally the external magnetic field is assumed to be uniform and constant

in time. Any internal magnetic fields of the atom are neglected. The motion of the center

of mass is neglected as well as any thermal effects.

33



Quantum Numbers Electronic configuration ν2S+1(M)π

M = 0 Sz =−1
2 1s22s 2(0)+

M =−1 Sz =−1
2 1s22p−1

2(−1)+

M =−1 Sz =−3
2 1s2s2p−1

4(−1)+

M =−3 Sz =−3
2 1s2p−13d−2

4(−3)+

Table 4.1: Spin and angular momentum configurations for three-particle systems consid-
ered in the present work. ν is the degree of excitation and π is the parity of the state in
the z direction. For all cases only the lowest degree of excitation with positive parity was
considered. (Source: Salas et. al. 2015 [66])

4.3.1 States of interest and quantum numbers

For atoms in strong magnetic fields the spherical symmetry is broken, so the eigenstates

of the system can no longer be identified by the usual quantum numbers. Instead each state

is labeled depending on: total magnetic quantum number M, total spin quantum number

Sz, parity in z (π) , and degree of excitation ν .

There are three ways the states are denoted in the literature: by their quantum numbers

M and Sz, by their electronic configuration for weak/zero field, or the form ν2S+1(M)π .

Table 4.1 shows the equivalence between the different notations for the states of three-

electron systems studied in the present work.

These states in general have different energies because of broken degeneracies. How-

ever they exhibit crossovers, such that and their ordering in energy varies depending on

field strength. The points where the energy levels of two different states are equal are called

transition points in the literature [78, 152], and we employ the same terminology (not to

be confused with phase transitions or electronic transitions corresponding to emission or

absorption lines).
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4.3.2 Ionization Threshold and observables

To investigate the stability, we will compare the one-particle ionization threshold energy

ET (M,Sz) (the energy needed to move one electron to infinity) to the energy of the three-

particle system. The system is stable if the total energy is lower than the threshold energy.

For example, the He− ion it is defined as:

ET (M,Sz) = min
MHe,SHe

z

(
EHe(MHe,SHe

z )+Ee(Me,Se
z)
)
, (4.3)

where EHe(MHe,SHe
z ) is the total energy of the He atom, and

Ee(Me,Se
z) =

(
Me + |Me|+2Se

z +1
) B

2
(4.4)

is the energy of the Landau levels of the electron. The quantum numbers satisfy

M = MHe +Me Sz = SHe
z +Se

z . (4.5)

We consider only those states that satisfy conservation of orbital angular momentum

and spin, as given in Eq.(4.5), and calculate the threshold energy using Eq.(4.3). Once the

threshold is found the binding energy can be obtained from:

Eion = Etot−ET . (4.6)

The procedure is analogous for H−−/H−, Li/Li+, and Be+/Be++.

Distances can also be used as a guideline to determine if a state is bound or unbound.

Separations between particles in a bound system are small, and the particles are typically

confined into distances of a few atomic units. Loosely bound systems tend to be larger, but

still finite. In unbound systems the distances diverge. The distances can be calculated as

described in section 2.5.1.
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Another quantity of interest is the quadrupole moment which is defined the same way

as in Ref. [78]:

Qzz = 〈Ψ|
N

∑
i=1

2z2
i −ρ

2
i |Ψ〉= N(2z2

Ne−ρNe). (4.7)

The diamagnetic term of the Hamiltonian is:

Vdia =
N

∑
i=1

B2

8
(
x2

i + y2
i
)
, (4.8)

while the paramagnetic term is then given by:

Vpar =
B
2
(Lz +2Sz) . (4.9)

We also define Vmag as the total contribution of the energy due to the magnetic field as

the sum of the total paramagnetic and diamagnetic contributions to the energy:

Vmag = Vdia +Vpar (4.10)

=
N

∑
i=1

B2

8
(
x2

i + y2
i
)
+

B
2
(Lz +2Sz) . (4.11)

4.4 Energies and properties of three-electron systems

We have calculated the energies of the three-electron isoelectronic series with nuclear

charge Z=1-4 for multiple values of strong magnetic fields for bound states with differ-

ent angular momentum and spin configurations. N=400 basis functions are used unless

otherwise noted.

To test the accuracy of our results we compare our calculation for the energies of low

lying states of the Li atom to Ref. [116], the most accurate results found in the literature.

The calculations presented in Ref. [116] are based on Hylleraas-type basis functions and
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are expected to be very accurate for weak magnetic fields. For higher fields, the Hylleraas

description needs many high orbital momentum states and becomes computationally very

expensive.

Table 4.2 shows the present results and the energies predicted by the Hylleraas ap-

proach. For low fields the two calculations are in complete agreement. In the free field

case it is very hard to compete with the accuracy of the Hylleraas approach. One has to

use N=2000 basis functions to reach accuracy up to 6 decimal places. For higher fields the

Hylleraas basis seems to be less accurate and our results improve the previous energies at

the third decimal. There is one case, the 2(−2)+ state with B=0.009, where our energy

is significantly different from that of Ref. [122]. As other energies in this magnetic field

region agree perfectly, we suspect that there might be a typo in Ref. [122].

Using our approach we have studied the low lying positive parity states shown in Table

4.1. These states can be either ground states or lowest excited states depending on the

strength of the magnetic field. The evolution of the ground state as a function of the strength

of the magnetic field as predicted by our calculations is shown in Fig. 4.1. For Li and Be+

the ground state is the 2(0)+ configuration for low, 2(−1)+ for intermediate and 4(−3)+ for

very high fields. The ground state of He− is the 2(−1)+ configuration for smaller values

of B [65, 123] rather than the 2(0)+ configuration which is not bound. However for higher

values the ground state of He− follows the same pattern as that of Li and Be+.

The ground state transition points for three-electron systems have been studied in sev-

eral papers [78, 120, 125, 126]. The calculation of the precise location of the ground to

excited states transition points requires very high accuracy for both states, and that is com-

putationally expensive. For the case of Li, the transition has been predicted at B = 2.153

a.u. [78] and B = 2.19816 a.u. [125]. In the case of Be+, the crossover was estimated

to take place at around B = 4.501 a.u. in Ref. [118] and B = 4.55328 a.u. [125]. Our

calculation is in good agreement with these predictions (see Fig. 4.1).
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marked with the vertical lines, and indicating the corresponding configurations. (Source:
Salas et. al. [66]. ©2015 American Physical Society)
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4.4.1 The 2(0)+ (M = 0, Sz =−1
2) configuration

For Z ≤ 4 only the Li atom and the Be+ ion are bound. No bound states for He− were

found for this configuration. The threshold energy is defined by the energy of the Li+ and

Be++ ions with M = 0, Sz = 0 for all values of the magnetic field. The calculated energies

for Li and Be+ as a function of the magnetic field are shown in Fig. 4.2, and in Ref. [66].

The total energy of Li in this configuration has a local minimum, as previously reported

in Ref.[78] at B = 0.304 a.u. A similar minimum for Be+ is around B = 0.8 a.u., and

general behavior of the two curves is rather similar. The binding energies of these states

are shown in Fig. 4.2. The binding energies first start to increase with the magnetic field,

but at a certain maximum point this trend changes leading to a local minima after which the

binding increases again. The minimum values for binding energy are located around B = 2

a.u. for Li and B = 4 a.u. for Be+. The shape of the binding energy curve is determined

by the difference between the total energy of the three-electron and the total energy of

the two-electron system, therefore these curves have more complicated structure than the

three-electron energy curve (see Fig. 4.2). The maximum values of binding energies were

found around B = 0.4 a.u. for Li and B = 1.2 a.u. for Be+. It is important to point out that

the systems undergo significant structural changes near those regions. In the interval 0.24

a.u. < B < 0.4 a.u. Li becomes more elongated along the z direction and then changes back

to being a less prolate shape as seen in Fig. 4.2. For the case of Be+ a similar expansion is

observed in the same figure for Z2
Ne but around the interval 0.8 a.u. < B < 4 a.u.

4.4.2 The 2(−1)+ (M =−1, Sz =−1
2 ) configuration

The total energies for He−, Li and Be+ are plotted in Fig. 4.3. The corresponding

binding energies (see Fig. 4.3) are calculated by using the threshold energy belonging to

the 1(0)+ state of He atom and Li+ and Be++ ions for all magnetic fields. The 2(−1)+

state was found to be bound for Li and Be+ for all values of B, and but the He− ion is only
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bound for certain B field intensities.

The 2(−1)+ configuration has a local minimum in total energy for Li and Be+ (Fig.

4.3). However, there is no minimum observed for He−; it’s total energy is monotonously

increasing. This shows that the minimum in the energy curves of Li and Be+ is due to the

competition between the attractive nuclear Coulomb potential and the magnetic interaction.

In the Li atom and the Be+ ion the magnetic field forces the electron closer to the nucleus

and that decreases the energy up to a certain B value. In the He− ion the Z=2 charge is not

strong enough to produce the same effect.

The He− in this configuration is not bound without a magnetic field, and according to

the present calculation a minimal field strength B = 0.062(6) a.u. is needed for bound He−

ion. This is a slight improvement over the previous works [65, 123]. Determining a more

accurate value is possible but computationally expensive.

The quadrupole moments of the systems in the 2(−1)+ configuration are compared in

Fig. 4.3 and in Ref[66]. The weakly bound He− ion has a prolate shape and becomes

gradually more spherical as the magnetic field increases. The Li and Be+ have oblate

shapes at low magnetic fields and change to prolate shapes after the magnetic field becomes

strong enough.

4.4.3 The 4(−3)+ (M =−3, Sz =−3
2) configuration

The energies for this configuration are shown in Fig. 4.5. This state is fully spin po-

larized and eventually becomes the ground state at higher B fields for He−, Li and Be+, as

shown in Fig. 4.1.

The threshold for this state is similar to that of the 4(−1)+ configuration, corresponding

to configurations 2(0)+ and 2(−1)+ of the two-electron systems, as explained before. The

He− 4(−3)+ is not stable below B = 0.02 a.u., but for stronger fields it does becomes stable

and it is the ground state at higher fields.

In Ref.[66] there is greater details on the energy contributions for Li and He−. Note that
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〈VNe〉 is always more negative for the 2(−1)+ configuration than for the 4(−3)+ case (see

[66]). On the other hand 〈Vmag〉 is always more negative for the 4(−3)+ case since its fully

spin polarized. The electron repulsion tends to be less significant for 4(−3)+ than 2(−1)+,

for all three-electron systems. This shows that having a higher angular momentum allows a

reduction of the electron repulsion, while simultaneously decreasing the Coulombic attrac-

tion due to the larger distances. For large magnetic fields having larger angular momenta

is energetically favored since it allows for the alignment of the magnetic moments with the

external field, giving a more negative 〈Vmag〉. This eventually leads to crossover and the

4(−3)+ state becomes the ground state. Due to the difference in nuclear charge the contri-

bution of 〈VNe〉 is much larger for Li than for He−, which also induces larger kinetic energy

for Li. At the same time the magnetic contribution is comparable in the two systems, and

the strong magnetic contribution supports the bound state of the He− ion.

4.5 The He− ion

We previously showed some of the properties of the He− ion in section 4.4 in compar-

ison with other systems. In this section we focus on He− in more detail.

4.5.1 The M = 0, Sz =−1/2 state

The M = 0, Sz = −1/2 state of He− is not bound. Note that in this case the energy of

the He− should converge to the energy of the M = 0, Sz = 0 state of He. Table 4.3 shows

that our calculation indeed converges to that threshold. The convergence could be further

improved by increasing the range of the Gaussians, allowing a better approximation of the

wave function as a bound He and an electron in the continuum. The results of Ref.[153]

are only close to the threshold in the case of weak fields and very far off in stronger field

cases.

The M = 0, Sz = −1/2 state of He− is analogous of the M = 0, Sz = −1/2 state of

Li, but the latter is strongly bound (the ionization energy is about 0.2 a.u. at B=0 and
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B Total energy Threshold
Present work Ref. [153] ET =EHe(MHe = 0,SHe

z = 0)
0.00 −2.90292 −2.90372 [137]
0.10 −2.90108 −2.871 −2.90174 [124]
0.16 −2.89792 −2.861 −2.89829 [135]
0.24 −2.89169 −2.848 −2.89240 [124]
0.40 −2.87230 −2.816 −2.87287 [124]
0.50 −2.85566 −2.794 −2.85624 [137]
0.80 −2.78782 −2.713 −2.78843 [124]
1.00 −2.72976 −2.652 −2.73037 [124]
1.60 −2.50821 −2.50881 [124]

Table 4.3: Energies (in a. u.) of M=0, Sz=−1/2 He− in magnetic field are shown, as well
as their respective threshold energies.

it increases with the magnetic field). The square of electron-electron ρ2
ee (z2

ee) and the

electron-nucleus ρ2
Ne (z2

Ne) distances in the radial (perpendicular) direction are also shown

in Table 4.4. The harmonic oscillator part of the Hamiltonian confines the particles in

the radial direction, so the ρ2
ee and ρ2

Ne distances are finite and decreasing with increasing

magnetic field. In the perpendicular direction, z2
ee and z2

Ne converge to infinity showing that

an electron is detached from the He atom. By increasing the range of the Gaussians (γmax)

in the basis functions these distances increase. The results presented in Tables 4.3 and 4.4

are calculated with γmax = 100.

4.5.2 The M =−1, Sz =−1/2 state

Our calculation confirms that this state is indeed bound. The ionization threshold for

this case is given by EHe(MHe = 0,SHe
z = 0). The energy of the M =−1, Sz =−1/2 state

of He− is shown in Fig. 4.6. According to our calculation, this state is stable in a magnetic

field starting at around B = 0.01 and remains stable with increasing magnetic field. The

calculation of the precise boundary of the stability region is computationally expensive

(many basis functions are required to represent the very weakly bound system). This state
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B ρ2
ee z2

ee ρ2
Ne z2

Ne
0.00 875.85 243.06 437.89 121.52
0.10 14.44 957.20 7.20 478.58
0.16 9.42 897.28 4.70 448.61
0.24 6.62 994.59 3.29 497.27
0.40 4.36 1255.59 2.17 627.77
0.50 3.67 1203.83 1.82 601.89
0.80 2.58 1191.26 1.28 595.61
1.00 2.19 1261.02 1.08 630.49
1.60 1.55 1260.54 0.77 630.26

Table 4.4: Averaged distances (in a. u.) of M=0, Sz=−1/2 He− in magnetic field. The
square of electron-electron distances in the radial and perpendicular direction, ρ2

ee and z2
ee,

as well as the square of the electron-nucleus distances, ρ2
Ne and z2

Ne, are shown. (Source:
Salas & Varga 2014 [65])

becomes the ground state for the He− ion for weaker fields.

4.5.3 The M =−3, Sz =−3/2 state

The M =−3, Sz =−3/2 state, corresponding to the loosely bound state of Li, with the

same quantum numbers, is also bound (Fig. 4.8). The relevant threshold is associated with

the (MHe = 0,SHe
z = −1) state of He at B< 0.1. At B=0.1 a.u. and above the threshold

is determined by EHe(MHe = −1,SHe
z = −1) (see Eq. (4.3)). This He− state is much less

bound than the analogous Li state (at B=0.1 a.u the binding energy of He− is 0.02 a.u,

that of Li is 0.14 a.u) but as the energy and the particle-particle distances show the system

is bound. The system becomes bound at small magnetic fields at about B=0.02 a.u and

remains stable with increasing magnetic field.

At the transition points the total energies of the two configurations become equal. How-

ever, the structure of the two states can be very different. This is illustrated for He− in Fig.

4.9.
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot
0.160 2.329 0.587 -4.943 0.943 -2.057 -2.356
0.200 2.384 0.632 -5.011 0.974 -2.026 -2.400
0.240 2.439 0.674 -5.074 0.999 -2.001 -2.441
0.400 2.664 0.811 -5.290 1.062 -1.938 -2.590
0.500 2.807 0.881 -5.406 1.088 -1.912 -2.675
0.800 3.244 1.051 -5.712 1.142 -1.858 -2.904
0.825 3.281 1.063 -5.736 1.145 -1.855 -2.922
0.850 3.318 1.075 -5.759 1.148 -1.852 -2.940
0.875 3.355 1.086 -5.782 1.152 -1.848 -2.957
0.900 3.393 1.098 -5.805 1.155 -1.845 -2.975
1.000 3.543 1.143 -5.895 1.167 -1.833 -3.042
1.200 3.848 1.224 -6.068 1.188 -1.812 -3.171
1.500 4.312 1.331 -6.314 1.214 -1.786 -3.350
1.600 4.468 1.364 -6.393 1.221 -1.779 -3.407
2.000 5.100 1.484 -6.697 1.247 -1.753 -3.619

Table 4.5: Energy contribution of different terms of the Hamiltonian for the 4(−3)+ (M =
−3 Sz =−3

2) configuration of He−.
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot
0 5.143 0.595 -10.880 - - -5.143

0.001 5.143 0.594 -10.880 0.036 -2.964 -5.146
0.01 5.148 0.605 -10.896 0.293 -2.707 -5.169
0.02 5.158 0.624 -10.922 0.449 -2.551 -5.192
0.1 5.205 0.800 -11.101 0.550 -2.450 -5.341

0.16 5.254 0.884 -11.205 0.585 -2.415 -5.454
0.2 5.300 0.923 -11.273 0.626 -2.374 -5.525

0.24 5.351 0.957 -11.341 0.664 -2.336 -5.594
0.4 5.571 1.077 -11.600 0.775 -2.225 -5.842
0.5 5.715 1.143 -11.751 0.822 -2.178 -5.982
0.8 6.157 1.313 -12.161 0.917 -2.083 -6.358

0.825 6.194 1.325 -12.192 0.922 -2.078 -6.387
0.85 6.232 1.338 -12.224 0.928 -2.072 -6.416
0.875 6.269 1.350 -12.255 0.934 -2.066 -6.444

0.9 6.306 1.362 -12.286 0.939 -2.061 -6.472
1 6.456 1.409 -12.406 0.958 -2.042 -6.582

1.2 6.758 1.497 -12.635 0.991 -2.009 -6.793
1.5 7.214 1.614 -12.957 1.029 -1.971 -7.086
1.6 7.368 1.650 -13.060 1.039 -1.961 -7.179
2 7.987 1.782 -13.453 1.076 -1.924 -7.533
4 11.172 2.282 -15.172 1.182 -1.818 -8.989
5 12.795 2.477 -15.932 1.214 -1.786 -9.592

10 20.961 3.218 -19.138 1.300 -1.700 -11.958
20 37.143 4.216 -23.864 1.366 -1.634 -15.186
40 68.938 5.547 -30.438 1.412 -1.588 -19.457
50 84.667 6.060 -33.011 1.424 -1.576 -21.087
60 100.328 6.516 -35.299 1.432 -1.568 -22.520
80 131.487 7.302 -39.266 1.444 -1.556 -24.980

100 162.489 7.972 -42.661 1.451 -1.549 -27.065

Table 4.6: Energy contribution of different terms of the Hamiltonian for the 4(−3)+ (M =
−3 Sz =−3

2) configuration of Li.
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot
0 14.325 3.246 -31.895 - - -14.325

0.001 14.324 3.246 -31.894 0.001 -0.499 -14.325
0.01 14.324 3.246 -31.895 0.005 -0.495 -14.330
0.02 14.324 3.246 -31.895 0.011 -0.489 -14.334

0.1 14.335 3.252 -31.911 0.053 -0.447 -14.369
0.16 14.350 3.260 -31.934 0.082 -0.418 -14.391

0.2 14.363 3.267 -31.954 0.101 -0.399 -14.404
0.24 14.379 3.275 -31.977 0.117 -0.383 -14.415

0.4 14.455 3.311 -32.084 0.173 -0.327 -14.448
0.5 14.511 3.335 -32.157 0.201 -0.299 -14.461
0.8 14.690 3.399 -32.367 0.258 -0.242 -14.472

0.825 14.702 3.403 -32.379 0.261 -0.239 -14.471
0.85 14.717 3.408 -32.394 0.265 -0.235 -14.471

0.875 14.733 3.412 -32.411 0.268 -0.232 -14.470
0.9 14.748 3.417 -32.427 0.271 -0.229 -14.469

1 14.807 3.433 -32.485 0.283 -0.217 -14.463
1.2 14.925 3.460 -32.591 0.301 -0.199 -14.447
1.5 15.092 3.488 -32.718 0.319 -0.181 -14.410
1.6 15.146 3.495 -32.754 0.324 -0.176 -14.396

2 15.354 3.512 -32.871 0.338 -0.162 -14.331
4 16.485 3.561 -33.465 0.383 -0.117 -13.887
5 17.163 3.607 -33.890 0.404 -0.096 -13.599

10 21.116 3.901 -36.472 0.483 -0.017 -11.625
20 29.700 4.435 -41.425 0.560 0.060 -6.083
40 46.872 5.217 -49.204 0.622 0.122 7.764
50 55.330 5.526 -52.386 0.638 0.138 15.373
60 63.717 5.799 -55.251 0.650 0.150 23.257
80 80.309 6.271 -60.281 0.666 0.166 39.605

100 96.722 6.674 -64.642 0.677 0.177 56.492

Table 4.7: Energy contribution of different terms of the Hamiltonian for the 2(0)+ (M = 0
Sz =−1

2) configuration of Be+.
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B He−
2(−1)+ 4(−3)+ 4(−1)+

0 - - -48.16
0.001 - - -48.7
0.01 - - -36.38
0.02 - 108.31 -26.66
0.1 1,038.67 -22.19 -0.5

0.16 411.16 -9.76 8.82
0.2 248.97 -5.68 14.41

0.24 164.92 -3.09 20.38
0.4 53.34 1.7 65.25
0.5 34.76 2.87 161.95
0.8 15.41 4.06 -

0.825 14.68 4.09 -
0.85 14.01 4.16 -

0.875 13.53 4.19 -
0.9 13.01 4.2 -

1 11.21 4.27 -
1.2 9 4.29 -
1.5 7.07 4.26 -
1.6 6.63 4.19 -

2 5.46 4.07 -
4 3.5 3.44 -
5 3.12 3.21 -

10 2.31 2.59 -
20 1.75 2.05 -
40 1.35 1.58 -
50 1.24 1.47 -
60 1.16 1.36 -
80 1.04 1.23 -

100 0.95 1.12 -
120 0.88 1.05 -
140 0.81 0.98 -
200 - 0.8 -
300 - 0.7 -
400 - 0.62 -
500 - 0.56 -
600 - 0.52 -
700 - 0.42 -
800 - 0.47 -

Table 4.8: Quadrupole moments Qzz for the different configurations of He− for different
field intensities.
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B Li
2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

0 0 -10.81 -217.96 -4.49
0.001 0 -10.79 -217.1 -4.49

0.01 0.02 -10.7 -170.37 -4.48
0.02 0.09 -10.41 -124.5 -4.45
0.1 1.59 -6.49 -25.48 -3.73

0.16 2.94 -4.49 -15.59 -2.92
0.2 3.79 -3.61 -12.68 -2.36

0.24 4.58 -2.94 -10.74 -1.82
0.4 7.47 -1.42 -6.47 0.1
0.5 9.11 -0.94 -5.04 1.14
0.8 13.59 -0.23 -2.72 3.91

0.825 13.91 -0.19 -2.6 4.13
0.85 14.24 -0.16 -2.49 4.35

0.875 14.53 -0.13 -2.38 4.57
0.9 14.86 -0.1 -2.28 4.79

1 15.98 -0.01 -1.91 5.65
1.2 17.87 0.13 -1.37 7.34
1.5 19.84 0.26 -0.83 9.68
1.6 20.34 0.29 -0.7 10.39

2 21.63 0.37 -0.31 12.78
4 22.87 0.51 0.38 17.65
5 22.71 0.53 0.49 18.33

10 21.56 0.54 0.63 19.04
20 20.14 0.49 0.61 18.6
40 18.61 0.42 0.53 17.72
50 18.15 0.39 0.5 17.39
60 17.77 0.37 0.47 17.15
80 17.24 0.34 0.43 16.7

100 16.77 0.31 0.39 16.44
120 16.32 0.3 0.37 16.09
200 - 0.14 - 15.65

Table 4.9: Quadrupole moments Qzz for the different configurations of Li for different
magnetic field intensities
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B Li
2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

0 0 -2.67 -31.03 -1.72
0.001 0 -2.67 -31.05 -1.72

0.01 0 -2.67 -30.18 -1.72
0.02 0 -2.67 -28 -1.72
0.1 0.08 -2.53 -13.69 -1.66

0.16 0.2 -2.35 -10.59 -1.57
0.2 0.3 -2.22 -9.32 -1.49

0.24 0.4 -2.08 -8.34 -1.41
0.4 0.86 -1.61 -5.89 -1.02
0.5 1.16 -1.38 -4.96 -0.77
0.8 2 -0.9 -3.29 -0.03

0.825 2.06 -0.87 -3.19 0.02
0.85 2.13 -0.84 -3.1 0.08

0.875 2.2 -0.82 -3.01 0.14
0.9 2.26 -0.79 -2.93 0.19

1 2.52 -0.7 -2.63 0.41
1.2 3.03 -0.55 -2.16 0.83
1.5 3.75 -0.39 -1.66 1.42
1.6 3.98 -0.35 -1.53 1.61

2 4.82 -0.23 -1.13 2.34
4 7 0.03 -0.3 4.99
5 7.34 0.09 -0.14 5.64

10 7.45 0.19 0.16 6.52
20 6.96 0.22 0.26 6.43
40 6.34 0.21 0.27 6.04
50 6.16 0.21 0.26 5.89
60 6 0.2 0.25 5.77
80 5.75 0.19 0.24 5.58

100 5.57 0.18 0.23 5.43
120 5.44 0.17 0.21 5.31
200 5.05 0.14 - 4.98

Table 4.10: Quadrupole moments Qzz for the different configurations of Be+ for different
magnetic field intensities.
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Figure 4.8: Energies and thresholds of the M = −3, Sz = −3/2 state of He− for different
magnetic field intensities. (Source: Salas & Varga [65] ©2014 American Physical Society)
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Figure 4.9: Density contour plots of He− at the transition point. Neighboring lines differs
from each other by factor of e. (a) M = −1, Sz = −1

2 near the transition point, for B =

0.70416 a.u. (b) M =−3, Sz =−3
2 near the transition point, for B = 0.70416 a.u. (Source:

Salas et. al. [66] ©2015 American Physical Society)
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Figure 4.10: The ionization energy for H2− is plotted for different field strengths. All the
values of the energy are below zero, so no bound states are found.

4.6 The stability of H2−

No bound states were found for H2− , The energies and threshold were calculated for

configurations 2(0)+, 2(−1)+, and 4(−3)+. No bound states were found. The values

obtained can be seen in Fig. 4.10. The limitation to this result is that the energy is obtained

from two different calculations, so it carries the variational overestimate of both of them.

This result sets up a lower bound of Z = 1 for the minimum nuclear charge needed to

bind a three-electron system together. Finding the critical charge under strong magnetic

field conditions is feasible although computationally expensive.

4.7 Diamagnetism in strong fields

The quantity 〈Vmag〉 in Eq.(4.11) can give us some insight on the dominance of dia-

magnetism or paramagnetism on the system. We divide this by B so the asymptotic values

can become more apparent. For the studied states M < 0 and Sz < 0, so the paramagnetic
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contribution is always negative or zero. Therefore if 〈Vmag〉< 0 the paramagnetic term has

a greater magnitude than the diamagnetic term, which is always positive.

The Langevin model [9] is typically used for describing diamagnetism in atoms with

bounds electrons. In this model the magnetic field is treated as a perturbation. The diamag-

netic dipole moment is given by [154]:

µdia =−
∂E ′

∂B
=−2

B
8 ∑

i
〈ρ2

i 〉=−2〈Vdia〉/B, (4.12)

The paramagnetic dipole moment is given by:

µpar =
1
2
(M+2Sz) (4.13)

Typically both the paramagnetic and diamagnetic terms give very weak contributions,

with the paramagnetic usually being the larger one. Diamagnetism becomes more notice-

able with atoms that have closed shells and paired spins because the paramagnetic term

vanishes.

However these trends can break under very strong magnetic field conditions, as shown

by our results. The paramagnetic term, depends linearly on the magnetic field, and the

magnetic moment,Eq.(4.13), has a fixed value for a given configuration. On the other hand,

the diamagnetic term,Eq.(4.8), has a quadratic dependence on the field, so the diamagnetic

dipole moment is not a constant.

The values of 〈Vmag〉/B are shown in 4.11. For lower fields they all exhibit a more para-

magnetic behavior, as expected. However when the field increases, then 〈Vmag〉/B becomes

less negative, and in some cases has positive values. This indicates that the diamagnetic

behavior of the atom becomes more significant as the field is increased.

The magnitude of the diamagnetic dipole moment is plotted in Fig. 4.12. The param-

agnetic dipole moments of the studied configurations are marked as horizontal lines. We

can observe that the magnitude of the diamagnetic dipole moment can exceed that of the
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Figure 4.11: The magnetic contribution,〈Vmag〉/B, is plotted as a function of the magnetic
field. The increase reveals the increment in the diamagnetic term.

paramagnetic one. However, the limitation to this result is that the field produced by the

electrons themselves is not accounted for, which in turn can affect the magnetic moment.

This field is not uniform, and including it into the model may not be a simple task.

4.8 Limitations of the model

We must consider the fact that our results do not account for the magnetic field produced

by the atom itself, due to its paramagnetic or diamagnetic character. As the diamagnetic

moment increases the magnetic field should be diminished in a realistic system.

At very small distances the internal magnetic fields can become significant. Addition-

ally the internal magnetic fields of the atom are non-uniform and have components in all

directions, and they are neglected in the current work. Making a computational model that

accounts for this is not easy. This lack of field uniformity also has implications for the

formation of molecules or solids. Having a non-uniform field produced by the atom itself
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Figure 4.12: Magnitude of the induced diamagnetic dipole moments, µdia, for several stud-
ied systems. The paramagnetic dipole moment, µpar , is given for the three configurations
considered.

would also alter the behavior of neighboring atoms, also affecting their induced magnetic

moments, similar to a ferromagnetic material. Also, since the field is non-uniform, that

would imply that there is a force acting between the atoms, which will affect the stability

of the new composite system.

The movement of the center of mass of the system can also play a significant role, if

the nuclear mass is not infinite. This motion is coupled to the electronic motion, and other

works have shown that it can change the stability of the system by limiting the number

of existing bound states, which in some cases can render it unstable [68, 70, 77, 109].

Additionally thermal effects could also affect the formation of magnetically induced anions.

Another limitation is that this is a non-relativistic model. Such effects are neglected as

well as QED, and corrections might be needed to get a more accurate picture. For example,

the gyromagnetic factor for the electron is taken as 2 for consistency with the literature,

which is in general of little importance, but it becomes more noticeable for stronger fields.
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CHAPTER 5

INTERACTIONS WITH ELECTRIC FIELDS

5.1 Introduction

In the present chapter we explore the use of the SVM method to simulate the interac-

tions of atoms with external electric fields, and use it to study the Mollow sideband gener-

ation and the high harmonics in the case of a hydrogen atom. We simultaneously employ

a separate method, a confined hydrogen model, to corroborate the results. This chapter is

organized as follows: we first give an introduction to the application of external electric

fields and their effects. We then describe the method employed to construct the Gaussian

basis in 5.2 and the confined hydrogen atom model in 5.3. Then the method used for the

time dependent calculations is shown in 5.4. Afterwards we then demonstrate the use of

the Gaussian basis for long wavelength ionization conditions in 5.5.1, and then study the

Mollow sideband generation and its high harmonics in 5.5.2.

5.1.1 External electric fields

The application of a static external electric field on an atom gives rise to the well known

Stark effect. If the external field is weak then this can be treated using perturbation theory

[5]. However, as the electric field becomes larger the perturbative approach can fail. In

this perturbative treatment the wavefunction is expanded in terms of bound atomic orbitals,

which is a bad approximation for strong fields. The transitions between the bound states

and the continuum states must be accounted for properly to get reliable results in such case.

The Stark effect for the hydrogen atom can be described in an exact manner by the use

of parabolic coordinates for a static field [155]. However, for more complex systems or

time-dependent fields this is no longer the case and other methods must be employed.

Different effects can arise upon the application of a strong electric field, and in the
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present work we focus on the ionization, high harmonic generation and generation of Mol-

low sidebands and their simulations using a Gaussian basis, with the assistance of the

Stochastic Variational Method. We also use a confined hydrogen model for comparison.

5.1.2 Ionization

A strong external electric field competes with the coulombic, and can cause ionization

if it is intense enough. Two mechanisms can be responsible for this: Over-the-barrier and

Tunnel ionization. The former is produced when the electron has enough energy to escape

the barrier classically, while in the latter case is a purely quantum phenomena and the

electron escapes by means of the tunnel effect. For this to take place the potential barrier

has to be lowered long enough, so the process is favored the most when the laser frequency

is low.

The ionization probability will be dependent on factors such as the laser intensity, wave-

length, pulse shape and energy of the electron. The time it takes for the electron to get

through the depressed Coulomb potential is approximately τ ≈ L/v = 2Ip/F , where Ip and

F are the ionization potential and electric field strength respectively. There exists a quan-

tity called the Keldysh parameter which is used as a guideline to determine the dominant

ionization mechanism. It is obtained from the ratio of how fast the barrier oscillates and

the time it takes for the electron to ionize by tunnel effect. The Keldysh parameter is given

by [156]:

γ =
ω
√

Ip

F
. (5.1)

When γ � 1 it indicates the dominant mechanism is tunneling ionization, while the

γ � 1 instead is for the multiphoton ionization regime [156]. Nevertheless it is important

to note that the Keldysh parameter, for as popular as it may be, can also be misleading in

some circumstances, as explained in Ref.[156] and references within.
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5.1.3 High Harmonic Generation

The interaction of atoms with strong electric fields is known to give rise to high har-

monic generation (HHG). This process has been the subject to extensive research in the

literature and its description is given by the 3-step model [157].

The first step of such model is the tunnel ionization of the electron through the Coulomb

barrier. The electron then departs the atom and travels a certain distance before stopping.

The electron is then rescattered back towards the nucleus where it recombines, giving off

energy at higher harmonics of the laser frequency [157].

The emission and absorption of radiation by atoms in time dependent electric fields

depends on the oscillations undergone by the electrons [5]. If the laser is linearly polarized

along the z axis then the corresponding observable of interest is the expectation value of

the dipole moment as a function of time, along such axis:

d(t) = 〈ψ(t)|z|ψ(t)〉, (5.2)

where z is the spatial coordinate and ψ(t) is the wavefunction at a given time.

The HHG spectrum is determined by the oscillations of the dipole moment in frequency

domain. It can be calculated from the Fourier transform of the dipole moment[1, 158]:

d̃(ω) =
1
τ

∫
τ

0
d(t)e−iωtdt (5.3)

The harmonic spectrum of the dipole moment is then given by:

Pd(ω) = |d̃(ω)|2 (5.4)

A commonly used form for the HHG spectrum is the dipole acceleration, d̃acc(ω) =

¨̃d(ω). Sometimes ¨̃d(ω) is not hard to calculate directly, depending on the basis functions

employed.
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However, it is common to employ its approximate form [158]:

d̃acc(ω)≈ ω
2d̃(ω), (5.5)

for which the harmonic spectrum is then given by:

Pa(ω) = |ω2d̃(ω)|2. (5.6)

The harmonic generation has a classical cutoff energy, after which the spectral ampli-

tude decays significantly. This cutoff is given by [158]:

Ecut = Ipot +3.17Uponde, (5.7)

where Ecut is the classical cutoff energy, Ipot the ionization potential and Uponde the pon-

deromotive energy, determined by the intensity I and angular frequency ω of the external

field:

Uponde =
I

4ω2 . (5.8)

5.1.4 The Mollow sidebands

Whenever a two-level system is driven by a resonant strong external field the resulting

spectra can exhibit sidebands accompanying the driving frequency. Such sidebands, known

as Mollow sidebands [159] appear as a consequence of the Rabi frequency becoming com-

parable to the frequency of the laser, giving a triple peak structure in the spectra known as

the Mollow triplet[160], rather than the sole driving frequency.

The Rabi frequency is defined as:

ΩR =
di jε

h̄
(5.9)
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where di j is the dipole moment of the transition between two levels, and ε the amplitude of

the applied electric field. This quantity gives the rate at which the system is driven from the

populated lower state regime (absorption dominant) to the upper state (stimulated emission

dominant) being populated [161, 162].

It is very common to study quantum systems assuming that ΩR, is much smaller than

the driving frequency ωL, in such way that the population of the levels does not affect the

signal significantly. However, in the presence of a very strong field this assumption may no

longer be true. In a two-level system this creates sideband frequencies given by ωL±ΩR

[163].

Previous works, experimental and theoretical, have studied quantum dots [164], GaAs

[165], the hydrogen atom [166], molecules [159], solid state [167], atoms [166, 168] and

optical cavities [169, 170]. There has been little interest in investigating the Mollow side-

bands in the past because of the high laser intensities required to observe them, but recent

developments in laser technologies have changed this. The interest in these sidebands arises

from the possibility of tuning the output frequency by means of adjusting the intensity of

the input beam [166, 171].

Some recent theoretical and computational works have focused on hydrogen[166] and

alkali atoms [168] since they only have one active electron. For the case of hydrogen it was

shown that visible light can be produced by exciting the atom with a strong laser resonant

with the transition between 1s and 2p states [166]. This was done using a strong field

approximation and solving the time-dependent Schrödinger equation with a pseudospectral

approach[166]. In such work the changes in the peak structure were predicted theoretically

and shown to be in good agreement with the computation [166].

In Ref.[168] alkali atoms were chosen over others to employ the single active electron

approximation, avoiding complications such as electron correlation effects, whose role in

HHG is not well understood [168]. The effect of the Mollow sidebands on HHG gener-

ation was studied computationally for sodium and potassium atoms. The effects of the
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Rabi flips were seen in the third harmonic of potassium, which was stimulated with a fre-

quency resonant with a transition, while comparing them to the spectra of sodium, which

was stimulated off-resonance. Changes in the peak structure of the third harmonic were

clearly visible and they could be correlated to the Rabi oscillations[161], evidenced on the

population of the ground state.

One could start by assuming a simple 2-level model for any atom, but the problem is

that two-level atomic system approximations are only good for in the case of relatively

weak fields. In the presence of strong fields other effects must be accounted for such as

population other levels and ionization. This is easiest to do for a single-electron system, so

we make the hydrogen atom the focus of this chapter.

The present chapter addresses the generation of Mollow sidebands for the hydrogen

atom and the study of their effects on the harmonic spectrum, as well as the roles of the

bound states in the generation of the third harmonic, which to the best of our knowledge

has not been previously investigated. This is done using a Gaussian basis and a confined

hydrogen model, which will allow approximating transitions into unbound states, going

beyond the 2-level approximation. The Mollow sidebands are of interest because of their

potential applications for controlling the generation of frequencies by means of adjusting

the amplitude of the driving electric field.

5.2 Representation of unbound states using Gaussian basis

One of the big challenges for computation is representing unbound states. The problem

with such states is that they are associated to a continuum spectrum of allowed energies,

so some form of discretization is needed to work the problem computationally. Loosely

bound states can also be problematic to simulate because of their large spatial extension

and small spacing between energies.

A typical solution for this problem is to employ methods based upon representation of

the wavefunction on spatial grids [1]. This is computationally expensive, although still fea-
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sible for single-electron systems. Grid based methods can also have difficulties represent-

ing singularities, so softened potentials are commonly used in these cases. Additionally,

the simulation box boundaries can cause artifacts and affect the results, so methods such as

mask functions or complex absorbing potentials are needed, which in turn can cause other

artifacts.

Other methods of approximation include the use of basis functions such as Coulomb

wavefunctions [172], plane waves [1], Volkov states[173] and Gaussians [174, 175].

5.2.1 Spherical Bessel and Coulomb wavefunctions

The Spherical Bessel functions [176, §10.47] constitute the exact eigenstates of a parti-

cle in free space in spherical coordinates [5]. In contrast, the Coulomb wavefunctions [176,

§33] are the exact positive energy eigenstates for a hydrogen-like atom. The Spherical

Bessel functions have certain advantages over the Coulomb because they can be integrated

analytically in many cases, their zeros are easier to compute and they form a complete set,

making them usable for wavefunction expansions. However, the drawback is that diago-

nalizing the Hamiltonian in this basis can have slow convergence depending on the central

potential (e.g. Ref.[177]). The Coulomb wavefunctions have been extensively studied

for nuclear and atomic physics (e.g. Ref.[176, §33.22] and references within) and many

approximations that can be useful for computations are known (See Refs.[178–180] and

within).

Both of these functions can be computed numerically with very good accuracy. How-

ever, these are intended for systems with one particle and extending them to more by taking

the tensor product of the single particle basis, but this rapidly increases the computational

burden.
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5.2.2 Gaussian representation of scattering and Rydberg basis

A Gaussian basis representation could also be used for continuum states. Nevertheless

they are limited to wavefunctions with few oscillations [12]. Highly oscillatory wavefunc-

tions having more than about 5 nodes are difficult to represent accurately[181, 182].

For a single-particle system with low energies specific sets of Gaussian functions for

representation of the continuum have been developed [174, 175]. The Nestmann basis

[174] is used for the case of representing Spherical Bessel Functions, while the Kaufmann

basis [175] is optimized instead for representing Coulomb wavefunctions. The latter is

used for hydrogen-like systems and also for more complex atoms under the Single Active

Electron (SAE) approximation.

The Kaufmann basis for continuum states has the form:

rl exp(−αir2)Ylm(θ ,φ), (5.10)

with the exponents given by

α ' 1

4(aln+bl)
2 , (n = 1,2, ..N) . (5.11)

Additionally there exists a modified form of the Kaufmann basis optimized for repre-

sentation of Rydberg states[175], given by:

α '
(

Z
2n

)2 1

(aln+bl)
2 ,

(
n = 1,

3
2
,2,

5
2
, ..N

)
. (5.12)

The subscript l denotes the angular momenta and the values of al and bl given in

Ref.[175] are shown in Table 5.1.
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l al bl
0 0.584342 0.424483
1 0.452615 0.309805
2 0.382362 0.251333
3 0.337027 0.215013
4 0.304679 0.189944

Table 5.1: Numerical values of al and bl employed by the Kaufmann basis. These values
are taken from Ref[175].

5.2.3 Stochastically enhanced Kaufmann basis

The Gaussian basis can be used with SVM to calculate the ground state very accurately,

and the first few excited states. However for obtaining the Rydberg states the use of the

SVM does not work well because these states require accurate calculations of all the lower

states. Unbound states are therefore also problematic for the SVM for the same reason.

On the other hand, the Kaufmann basis can handle the Rydberg and continuum states

in a reasonable manner, but it fails to give an accurate ground state, as one can observe

in Table 5.2. A solution to this problem is to combine the Kaufmann basis with the SVM

calculated basis, to get an accurate ground state, Rydberg and continuum levels at the same

time.

It is important to note that it is not only the energies that need to be accurate, but also

the dipole moments, which converge slower than the energies. If the ground state is not

well converged then in accordance to the variational principle the initial energy of the elec-

tron will be higher, and can therefore alter the spectrum and ionization probabilities. For

example, a badly converged ground s state would give an initial state that is a superposition

with excited s states. Such combinations are known to be capable of augmenting the HHG

emission as suggested from the findings in Ref.[183].

Additionally, the Rydberg states also play an important role in high harmonic genera-

tion, as it has been shown in previous works[184], so they must be accounted for.
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Basis size Egs
12 -0.490452931051526
18 -0.490554731428998
24 -0.490762390914084
30 -0.490863150594297
36 -0.490917141044641
42 -0.490949591549928
48 -0.490970782433204
54 -0.490985504725198
60 -0.490996227764664
66 -0.491003972653931
Exact -0.500000000000000

Table 5.2: Ground state energies Egs (in a.u.) obtainable using the Kaufman basis for
different sizes. The convergence is very slow, and numerical accuracy issues arise for a
large basis.

Accuracy

The SVM method converges quite rapidly for the hydrogen atom, as shown in Table

5.3. The calculation for each angular momentum configuration is done separately. There is

a limit on the basis size due to numerical accuracy, which can take place if the basis is too

large.

The convergence of the dipole moment matrix elements for the SVM method is also

important, and it can be harder because it requires the wavefunction to have the correct

shape. We show the convergence of the 1s-2p transition dipole matrix element 〈ψ1s|z|ψ2p〉

for different basis sizes in Table 5.4 as an example. This transition is probably the most

important ones in general because of its high oscillator strength, and also plays an essential

role in Mollow sideband generation, as it will be discussed later.

The energies for the first states obtained of the enhanced Kaufmann are plotted in Fig.

5.1, along with the exact energy for l=0-2. This shows that the basis has good agreement

for the theoretical values of the lowest Rydberg states. An advantage of enhancing the
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Nbasis 1s 2s 2p
5 -0.499373591465410 -0.124568605293151 -0.124941534826204
8 -0.499927894211061 -0.124989591784600 -0.124999284321507
12 -0.499998746913927 -0.124997993274760 -0.124999952453690
15 -0.499999312985810 -0.124999911998884 -0.124999974359063
20 -0.499999975996560 -0.124999995549977 -0.124999999443980
25 -0.499999998129445 -0.124999999728159 -0.124999999642637
Exact -0.500000000000000 -0.125000000000000 -0.125000000000000

Table 5.3: Energies (in a.u.) obtainable using the SVM for the 1s, 2s and 2p states for
different basis sizes Nbasis. The 1s and 2s presented are obtained in the same calculation,
whereas the 2p is done separately because it has a different symmetry.

Kaufmann basis is that the number of Rydberg or unbound states can be increased if needed

by adding more functions using the procedure described in Ref.[175].

5.3 Confined Hydrogen model

Another way to represent the continuum states is to confine the atom with an impene-

trable barrier at a radius r0 [186]. This confinement makes the unbound continuum states

become discrete ones. This method has been previously shown to be capable of giving

accurate results for the photoionization cross section [186].

The calculation of HHG spectra for the confined hydrogen model is done in three stages.

One first solves the time-independent Schrödinger equation for the allowed states inside the

box to obtain a basis. Afterwards one calculates the matrix elements. A time propagation

scheme is then employed to obtain the HHG spectrum, described in section 5.4.
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Figure 5.1: The energies for each hydrogen state calculated by enhancing the Kaufmann
basis are shown along the exact energies of a hydrogen atom for l=0-2. We can observe
there is a good agreement between them for the Rydberg states.
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Basis size 〈ψ1s|z|ψ2p〉
10 0.752278413251
16 0.745100377081
24 0.744924753679
30 0.744936719120
40 0.744935585851
50 0.744935539651

“Exact” 0.744935539028

Table 5.4: The dipole moment matrix element of the 1s-2p transition, 〈ψ1s|z|ψ2p〉 , is given
for different basis sizes. Each basis has an equal number of s and p basis functions. The
“exact”value was obtained by using the explicit formula from Ref. [185], and it is limited
only by numerical accuracy.

5.3.1 Hamiltonian of the confined hydrogen atom

The Hamiltonian for a Hydrogen atom confined inside a box, in a.u., is given by:

Ĥ0 =−
∇2

2
− 1

r
+V (r), (5.13)

where V (r) is the confinement potential. For an impenetrable barrier it is given by:

V (r) =


0 , r < r0

∞ , r > r0

(5.14)

For the inner region we then have a similar solution as that of the free atom, and the

eigenvalue problem reduces to solving the eigenvalue problem Eq.(5.15).

− ∇2

2
ψ− 1

r
ψ = Eψ, (5.15)
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The solution of Eq.(5.15) is of the form [187]:

ψ = ∑
lm

Rl(r)Ylm(θ ,φ) (5.16)

where Rl(r) are the reduced radial wavefunctions and Ylm are spherical harmonics. Its

is common to write the solution in term of the reduced radial wavefunction [187]:

ul(r) = rRl(r). (5.17)

The reduced form of the time-independent Schrödinger equation inside the radius r0 is

then:

− 1
2

d2ul

dr2 +

(
−1

r
+

1
2

l(l +1)
r2

)
ul = Eul. (5.18)

The wavefunction must comply with the Dirichlet boundary condition:

ul(r0) = 0 (5.19)

The continuum eigenstates of the free atom become discretized due to the confining

potential, and although they are now bound states confined by the box, we will continue to

refer to them as unbound states to distinguish them from the ones bound by the nucleus.

The two possible cases, positive energies (unbound) and negative ones (bound states), will

be examined separately in section 5.3.2

In the presence of an electric field ε(t), polarized along the z axis, the Hamiltonian of a

hydrogen atom inside the confining box becomes:

Ĥ = Ĥ0−dzε(t), (5.20)
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where H0 is the field-free Hamiltonian Eq.(5.13) and dz is the dipole moment along the

z direction.

5.3.2 Allowed Energies

The solution of 5.15 is given by a form of the confluent hypergeometric function for

both positive and negative energies. However, different forms of the solution are employed

for each case, so the calculations are done separately.

For positive energies the reduced radial eigenfunctions ul(r) are the Coulomb wave-

functions, Fl which can also be written in terms of the Whittaker M function Ma,b, [176,

see 33.2]:

Fl (η ,kr) =Cl(η)2−l−1(∓i)l+1M±iη ,l+ 1
2
(±2ikr) , (5.21)

where η and the wavenumber k and energy E are related by:

η = −1/k (5.22)

k =
√

2E. (5.23)

The Whittaker M function is related to the confluent hypergeometric function by means

of a Kummer transformation [176, see 13.2.39]. Both the Whittaker M and Coulomb func-

tions have the same zeros, so for the purpose of calculating the allowed wavenumbers either

one can be used. Both give accuracies that are sufficient for the current work. The Coulomb

Wavefunctions can be obtained from the GNU Scientific library (GSL)[188] and the Whit-

taker M functions, with real and complex inputs, are available in MATLAB [189] as well

as in the Mpmath[190] library for Python.

Solving for the allowed positive energies of the system is done in several steps. First

it is necessary to isolate the roots of the wavefunction in separate intervals. We can then
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proceed to solve numerically for the zeros of the Coulomb/Whittaker function evaluated

at r = r0, which will give the allowed values of k. The energies are then obtained from

equation Eq.(5.23).

Since the wavefunction is smooth it is not hard to isolate the zeros. This was easily done

by spanning out the radial wavefunction Rl (kr0) on a grid with 50 000 points correspond-

ing to values of k between 10−10 and 10 a.u. Afterwards a peak detection algorithm was

employed on the absolute value of the wavefunction to get the maxima and minima. These

points correspond to the limits of the intervals where the search for the roots is to be con-

ducted by the fzero solver, which is available in MATLAB/Octave or the Anderson solver

available in Mpmath. In Fig. 5.2 we show an example of a calculation using this method

for r0 = 500 a.u. and l = 0. The absolute value of the wavefunction at r = r0 is plotted as

a function of k, together with the detected peaks and the located zeros. As k increases the

zeros appear on a quite regular pattern, approximately in the midpoint between the peaks.

The values obtained by the fzero solver can be easily inspected for correctness and accu-

racy. We must point out that the accuracy decays as l increases, but it is still sufficient for

the purpose of this work.

We expect the effects of the confinement to be noticeable mostly due to the discretized

energies and their separations rather than small energy shifts. We can see in Fig. 5.2 that

the obtained positive energies are well separated, so small errors in their values should not

be expected to make a significant difference.

For negative energies the solutions can be obtained from finding the roots of the Whit-

taker function:

Rl(r0) = Mξ ,l+1/2(2r0/ξ ) = 0. (5.24)

The value ξ in Eq.(5.24) is not necessarily an integer, and can take only certain positive

values depending on the location of the radius of the box. In the limit r0→ ∞ then ξ = n,

the principal quantum number which is an integer.
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Figure 5.2: Plot of the magnitude of the Whittaker M function at r0 = 500 a.u. for l=0. The
detected peaks are marked, as well as the location of the detected zeros. As k gets larger
the zeros tend to appear with more regular spacings. For other values of l the curves are
very similar to the one depicted.
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The negative energies of a hydrogen atom, confined or free, are given by:

Eξ =−0.5
ξ 2 a.u. (5.25)

Whenever the boundary is far away many of the lowest eigenstates are mostly unper-

turbed because they have exponentially decaying tails which approximately comply with

the Dirichlet boundary condition Eq.(5.24). This can be seen in Fig. 5.3, where the ground

state wavefunction (unnormalized) is plotted for different confinement radii and can be seen

to converge rapidly. If the confining wall is very distant the ξ values tend to be very close

to their integer parts. The allowed values of ξ for some orbitals are plotted for different

confinement radii in Fig. 5.4. The energy shift for the ground state, with the same r0, is far

beyond the representable range with a machine double precision variable. One can neglect

the effect of the confinement for low energy Rydberg states if very high accuracy is not

needed.

For large n or small r0 the confinement can produce energy increments that are big. For

a given value of n there is a critical value of r0 for which the corresponding energy of the

orbital becomes positive [191]. Conversely, this means that for a given r0 there is a critical

value of n for which the states cease to have negative energy. The exact value of the critical

radius rcrit , for a given n and l, can be calculated from the expression [191]:

rcrit(n, l) =
1
8
(
x2l+1,n−l

)2
, (5.26)

where xν ,i represents the ith zero of the Bessel function Jν(z). The values of rcrit are given

for some values of n and l in Table 5.5 and plotted in Fig. 5.5 for l = 0. The difference

between critical radii for states with the same n tends to differ only by few atomic units,

so the l = 0 provides a good guideline for all angular momenta. As the quantum number n

becomes larger so does rcrit because the size of the box can be larger avoiding making the

energy positive. On the other hand for a fixed quantum number n a state with higher l has
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Figure 5.3: The wavefunction (unnormalized) is plotted as a function of the radial distance
r for different confinement radii r0.
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Figure 5.5: The critical radius, calculated from Eq. (5.26), is plotted as a function of
quantum number n for the case of l=0.

a smaller rcrit because the wavefunction is less extended and therefore less affected by the

wall. We could therefore interpret the critical radius as a measure of the ease to make the

energy positive.

For the case of r0 = 500 a.u. the highest allowed bound state has n = 19, which will be

strongly affected by the confinement. We therefore selected n = 14 as our most energetic

bound state. For example, the free atom state with quantum numbers n=14 and l=0 becomes

shifted and now ξ ≈ 14.00099869, slightly above the unconfined value of 14, which gives

an energy shift in the order of 10−7 a.u. The change in energy due to the wall was shown

to be small, but this by its own does not suffice to guarantee the approximation is good

since the wavefunction must have the right shape. The n = 14, l = 0 wavefunction is shown

in Fig. 5.6 for different r0. With the confining radius at r0 = 500 the deviation from the

asymptotic unconfined value only appears in the last 50 a.u. before reaching the edge of
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n l=0 l=1 l=2
1 1.8352 - -
2 6.1523 5.0883 -
3 12.9374 11.9097 9.6174
4 22.1901 21.1744 19.0301
5 33.9102 32.9001 30.8119
6 48.0977 47.0907 45.0307
7 64.7527 63.7475 61.7038
8 83.8750 82.8710 80.8379
9 105.4648 104.4616 102.4354

Table 5.5: Critical radii, in atomic units, for different quantum numbers n and l. The values
are calculated from Eq.(5.26)

the box. The degree of disparity between the r0 = 500 and unconfined wavefunctions can

be further evaluated by projecting one onto the other:

P = 1−
∣∣〈ψcon f ined|ψuncon f ined〉

∣∣2 , (5.27)

which gives a value of P ≈ 2 ∗ 10−4. Since this is the worst case scenario we therefore

conclude approximating the wavefunctions using unconfined wavefunctions is justified.

The bound states for the time dependent calculations were approximated by employing

the states of the unconfined atom, assuming ξ is an integer, therefore neglecting the effect

of the confinement. Those eigenstates are available computationally in the GNU Scientific

Library. Solving for the exact bound eigenvalues and eigenstates is completely feasible but

more complicated and not worth the extra effort for the present work.

The root isolation procedure described previously for positive energies does not work

for the negative case because the changes in the wavefunction are very abrupt and extra care

must be taken to correctly isolate the roots, so a different algorithm is needed. It is only

worth the effort in the case of a small box or to include very high Rydberg states. Also, we

expect the effects of the confinement to be noticeable mostly due to the discretized energies
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Figure 5.6: The wavefunction for n=14, for different confinement radii, is plotted as a func-
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and their separations, as we will later discuss, rather than small energy deviations. We can

see that the obtained positive energies are well separated, so small errors in their values

should not make a meaningful difference.

In an unconfined hydrogen atom the potential is of the form 1/r, which creates the

degeneracy between eigenstates with the same n. However, adding the confining potential

changes the form of the potential and therefore the eigenstates are no longer degenerate

and now have an energy gap. The degeneracy breaking is illustrated in Figs. 5.7 for the

negative energy states. The energy gap ∆E is defined as:

∆E = Es−Ep, (5.28)

where Es and Ep are the energies of adjacent s and p orbitals respectively with the same

quantum number n.

The curves in Fig. 5.7 were obtained by setting r0 to a given value and then solving

for the allowed energies Es and Ep for different orbitals with n = 1,2,3. The vertical lines

indicate the critical radii rcrit given by Eq. (5.26). One can observe that the gap rapidly

disappears as the box gets larger as one would expect, becoming degenerate when r0→ ∞.

Also, for a fixed radius the gap tends to increase with the quantum number n.

The unbound states also show differences in energy caused by the confinement. The

allowed energies tend to be similar for different values of l. The energy gap, defined in

Eq. (5.26), is plotted in Fig. 5.8 for different state numbers for various confinement radii.

Here we notice that the gap tends to get larger for higher states. For any given state the gap

diminishes as r0 gets larger, as expected. The confinement clearly has a much larger effect

for these states than for the bound ones. The energy gaps vary with the confining radius,

so for high energy states the gaps could become significant. These gaps are associated to

possible electronic transitions, requiring the lowest energy. For this approximation to be

sufficient the gaps must be small enough to resemble a continuum.
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5.3.3 Dipole matrix elements

We calculate the dipole matrix elements numerically by representing the wavefunc-

tions, bound and unbound, on a radial grid that starts from the origin and ends up to at the

maximum allowed radius r0. The matrix elements that involve bound states are the hardest

to calculate using numerical integration because the wavefunctions decay rapidly, requiring

a sufficient number of grid points near the origin to get an accurate result.

It is important to consider the convergence of the calculation, with special attention

to the dipole moments, which converge slower than the energies. A grid with 70 000

points was first employed for the calculation. Additionally, the results were compared to

a calculation done with a finer grid with 1/10 spacing of the original one to ensure good

convergence. The difference in the dipole moments with both grid spacings is around 1%

in the worst case, which suggests that they are well converged. A sample calculation for

the dipole matrix element corresponding to the 1s-2p transition is shown in Table 5.6 for

different grid sizes. All the wavefunctions, bound and unbound, used in matrix element

calculation were obtained using the GNU Scientific Library (GSL) functions previously

mentioned, using double precision.

For the case of an unconfined atom the matrix elements that involve only bound states

can be calculated by the use of existing tables [155, 192] and explicit formulas [185].

A comparison of these to our numerical calculations was done to further confirm good

accuracy.

For a basis with a size on the order of 1000 the matrix element calculation can be done

in a simple workstation within a several minutes. The big computational bottleneck comes

from the time propagation scheme, further described, which can take many hours for the

mentioned basis size.

One way to measure the accuracy of the basis and matrix elements is by using oscillator

strengths, which are defined as [1]:
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Ngrid 〈ψ1s|z|ψ2p〉
100 2.79537481679193e+00
500 7.65064612516399e-01

1000 7.46399333555785e-01
2000 7.45031163455074e-01
5000 7.44938017607888e-01

10000 7.44935694182621e-01
50000 7.44935539276126e-01
70000 7.44935539092446e-01

100000 7.44935539043323e-01
200000 7.44935539028773e-01
700000 7.44935539027823e-01

1000000 7.44935539027792e-01
“Exact” 7.44935539027803e-01

Table 5.6: The dipole matrix element corresponding to the 1s-2p transition is calculated
using different grids ranging from 0 to r0 = 500 a.u. with Ngrid gridpoints. This is arguably
the most important dipole moment for the present work. The “exact”value was obtained
computationally by using the explicit formula from Ref. [185], and it is limited only by
numerical accuracy.
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fkn =
2m
h̄2 (Ek−En) |〈ψn|z|ψk〉|2 , (5.29)

where Ek and En are the energies corresponding to states ψk and ψn. The Thomas-Reiche-

Kuhn sum rule then states that [1]:

∑
k

fkn = 1. (5.30)

The sum rule includes all the states, bound and unbound, so it can be considered a

measure of completeness of the basis. We can split this sum into bound and unbound states

as follows:

∑ fbound +∑ funbound = 1. (5.31)

For an unconfined hydrogen atom the sum of the oscillator strengths corresponding to

transitions from the ground state to the continuum is equal to ∑ funbound = 0.4350 [155].

The value of ∑ funbound was calculated in the present work for different values of r0, shown

in Fig. 5.9. The values for r0 = 400 and r0 = 500 are very close to that of the unconfined

atom, although slightly above. This can be anticipated because the confinement is expected

to produce an increase in the number of unbound states while eliminating some bound ones.

One can observe that for r0 = 20 the final value is higher and reached quite rapidly with a

few states, in contrast to the others which require several hundred before settling down.
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5.4 Time dependent methods

For a time dependent electric field it is necessary to solve the time-dependent Schrödinger

equation:

ih̄
∂ |ψ(t)〉

∂ t
= Ĥ|ψ(t)〉, (5.32)

which can be solved by using the time propagator [1]:

U(t, t ′) = exp
(
−iS−1H(t− t ′)/h̄

)
. (5.33)

The S−1 in Eq.(5.33) is the inverse of the overlap matrix, which will become the identity

matrix for an orthogonal basis.

The time propagator operator will map the wavefunction from its state at time t ′ to the

one at t [1]:

ψ(t) =U(t, t ′)ψ(t ′). (5.34)

Let t1, t2 and t3 be three time instants. Then the following property exists for the time

propagator[1]:

U(t1, t3) =U(t2, t3)U(t1, t2) (5.35)

This property is important because it allows to break the calculation into multiple time

steps ∆t = tn+1− tn, which can be discrete if one ensures they are small enough. In that

case one may apply the operator consecutively for a determined number of time steps in

order to propagate a dynamic system.

By inserting Eq.(2.12) into (5.32) and allowing the basis coefficients to take on a time-

dependence ci(t) the following solution for the time-dependent state is obtained:
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c(t) = exp
[
−iS−1

h̄
H(t)∆t

]
c(0). (5.36)

The operator can be approximated by using the Crank-Nicholson method, in which it

becomes [1]:

exp
[
−iS−1

h̄
H(t)∆t

]
≈
(

I +
i∆tS−1

2h̄
H(t)

)−1(
I− i∆tS−1

2h̄
H(t)

)
. (5.37)

Unlike the commonly used Taylor expansion method [1], this approximation keeps the

propagator operator being unitary, thus allowing the use of relatively larger time steps and

longer simulation times while maintaining accuracy.

The HHG spectrum is calculated from the Fourier transform of the dipole moment d(t):

d̃(ω) =
1
τ

∫
τ

0
d(t)W (t)e−iωtdt, (5.38)

where W (t) is a window function. The window functions can take different shapes, and

some of the most common ones are depicted in Fig. 5.10. These window functions will

diminish the weight of the values of the signal at the endpoints, making it smoother, while

enhancing the weight near the center of the pulse for the Fourier Transform [193]. Some

windows, such as the Blackman begin and end at zero, while others such as the Gaussian

just reduce the signal to a small value.

We approximate Eq.(5.38) by means of the Fast Fourier Transform (FFT), using a

Blackman Window [194], which can be used to ensure the signal is smooth at the end-

points. The length of the window was increased by one extra point to force the resulting

signal to be fully periodic [195].
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Figure 5.10: Different window functions are plotted as a function of time.

92



5.4.1 Methods for simulating ionization

One of the limitations of the basis representation is that there is an infinite number of

allowed unbound states and it is necessary to truncate leaving only a finite number of them

in the Hamiltonian matrix.

The problem is that absorption cannot happen for the highest reachable energy states

because there are no higher levels available for the transitions to take place. That means

that only stimulated emission is possible from those levels, and this can lead to unphysical

features in the spectrum, such as background noise [196]. To prevent this the population of

the highest energy states must be kept low during the course of the simulation.

Also, in order to correctly approximate the photo-ionization of an unconfined atom it is

necessary to avoid reflections from the boundaries of the box. In the present work we use

two methods to address these issues: the heuristic lifetime method [197] and the complex

absorbing potential (CAP) [198], both described below.

Heuristic lifetime

The heuristic lifetime method is not as popular as the CAP, but it has received some

more attention recently [196, 197, 199–202]. The method assigns each energy level a finite

lifetime by adding an imaginary term to each energy En, as shown in Eq.(5.39).

En→ En− iΓn. (5.39)

The value of Γn is set using the following criteria:

Γn ≡


0 , En < 0

√
2En/dn , En > 0

(5.40)

In Eq.(5.40) Γ represents the inverse lifetime of the state, while dn represents the dis-

tance the electron with energy En would travel classically during the lifetime of the state.
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Therefore adjusting the value of dn to a small value would make the population of the

corresponding state disappear faster than for a large dn.

It is important to set up an appropriate value for dn. If dn is too short then ionization

could be overestimated; if too long then the highest energy states can become too populated

and cause artifacts on the signal, so a compromise is needed.

For simulating HHG most works had the value dn set to a constant value d for all

energies. However, a very recent work [202] employed a two different values of d as

follows:

dn ≡


d , En < Ecut

dcut , En ≥ Ecut

(5.41)

One of the values of dn in Eq.(5.41) is for the energies that are between the ionization

threshold and the classical cutoff energy, (given by Eq.(5.7)), and a smaller one for energies

above the cutoff. Such approach gives a better balance and was shown to give results with

better agreement with previous grid-based calculations [202].

Complex Absorbing Potential (CAP)

A typical solution to simulate ionizing systems is to place an imaginary potential near

the boundaries such that it will absorb any electron wavepackets that are a certain distance

away from the atom.

This method has the advantage of not disturbing localized high energy wavepackets

near the center. A typical problem that can arise from a CAP is having unphysical reflec-

tions or transmissions [198], but these can be diminished with proper choice of parameters.

The method is commonly used for spacial grid-based simulations [1]. However for an

eigenstate representation it can have its complications (See for example Ref. [203]). One of

the issues that can arise is that the matrix elements of the CAP may not be easy to calculate

because the integrals are not always analytically solvable for the needed basis.
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A CAP could potentially affect all the states, bound and unbound, meaning that Ry-

dberg states would be absorbed due to their long tails despite them being bound. This

problem can be avoided by using a projector corrected CAP [203], which can be made to

only affect the unbound states.

The addition of a CAP to the Hamiltonian means that the eigenvalues of the Hamilto-

nian Eq.(5.13) become complex. If any of the new eigenvalues has a positive imaginary

part this can cause instability giving completely nonphysical results, so caution must be

taken.

The CAP matrix elements were calculated numerically by the same method described

in 5.3.3. In the present work the stability issues were avoided by forcing all the CAP matrix

elements that involve a bound state to become zero. We only allow the unbound states to

be affected by the CAP and check the complex eigenvalues to ensure full stability.

The form of the CAP employed is:

VCAP(r) =


ar4 , rCAP < r < r0

0 , otherwise
(5.42)

More details on this particular shape can be found in Ref. [198].

The heuristic lifetime method has multiple advantages over the CAP such a the sim-

plicity of implementation, it can be used regardless of the type of basis employed or the

details of the system, and it guarantees the system will remain stable under all conditions.

A drawback is that it does not have a definite spatial region of action and it will there-

fore absorb highly localized high energy electron wavepackets regardless of their location,

whereas the CAP would not affect such a wavepacket until it approaches the boundaries.
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5.5 Results

5.5.1 HHG for long wavelength lasers

The Stochastically enhanced Kaufmann basis was used to simulate HHG using an 800

nm laser, which is typically studied in the literature by different methods [158, 204, 205].

We compare our results to the pseudo-spectral approach in Ref.[204], which employs a

complex absorbing potential. The importance of this calculation is showing the capabilities

of the employed basis to simulate the ionization of the atom in strong field conditions

The electric field is given by the equation:

ε(t) = εmax sin2(πt/τ)sin(ω0t), (5.43)

where εmax is the maximum amplitude of the electric field, ω0 the driving angular fre-

quency, and τ is the duration of the simulation. The values for each of the parameters are

later specified individually for each simulation.

Extra care is taken to ensure that τ is an integer multiple of the laser period, to minimize

the zeroth frequency component of the electric field, as well as optimizing the time steps

to ensure that the fundamental frequency and its harmonics have an exact representation

(within numerical accuracy) in the discretized Fourier space. If the Fourier space does

not have a vector with the exact frequency of the signal then the representation requires a

linear combination of many vectors, leading to a broadening of the peaks. If instead the

exact frequencies exists in Fourier space then the signal is orthogonal to all but a few of

the vectors, leading to a sparse representation and therefore narrow peaks [193]. Therefore,

by selecting suitable parameters the accuracy of the representation in frequency space can

be enhanced without having to alter the signal. The discrete Fourier Space was made to

contain each of the harmonics (ω = ω0,2ω0,3ω0...) within numerical accuracy. The effect

of these careful parameter selections can be seen in the spectra of the laser in Fig. 5.11,

where the background noise is many orders of magnitude smaller than the signal.
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Parameter Value Units
Total simulation time 53.370 fs

2206.4 au
20 cycles

Time step 0.000533 fs
0.022064 au
0.000200 cycles

Cutoff energy 1.111 au
30.23 eV
19.50 photons

Ponderomotive energy 0.193 au
5.243 eV

Quiver amplitude 15.41 au
Excursion amplitude 30.82 au
Classical kinetic energy 0.385 au

10.486 eV
Ionization energy 0.5000000 au

13.605698 eV
8.7789852 photons

Laser energy 0.056954191 au
1.549 eV

Laser wavelength 800.000 nm
15117.8 au

Laser period 2.669 fs
110.3 au

Pulse peak intensity 0.05 au
8.77E+13 W/cm2

Pulse duration (τ) 20 cycles
Keldysh parameter 1.13 (none)

Table 5.7: Simulation parameters for the long wavelength laser
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Figure 5.11: The Fourier Transform of the electric field (plotted in 5.12), using the Black-
man window is plotted as a function of the harmonic order. The laser parameters are given
in detail in Table 5.7. One can observe that the employed laser pulse has a very narrow
bandwidth, with practically no DC component, as a consequence of the careful parameter
selection.
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Figure 5.12: The dipole moment 〈ψ(t)|z|ψ(t)〉, and electric field are plotted as a function
of time. The laser wavelength is 800 nm and other details are given in Table 5.7. The dipole
moment, which was obtained using the Stochastically enhanced Kaufmann basis, can be
seen to oscillate with a very similar shape as the driving laser, although some distortions
are visible near the envelope maximum and towards the end.
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One of the challenges is to determine suitable parameters d for the Heuristic lifetime

method previously described. The typical way is to use the 3-step model classical electron

oscillation amplitude as a guideline to set up the distance d. In the following calculations

we use two different values of dn, as in Eq.(5.41). The one below cutoff, d, is specified for

each case while dcut = 0.1, unless otherwise specified.

As a first example the value of d is set to 25. The other parameters are given in Table 5.7.

The obtained expectation value of dipole moment, 〈ψ|z|ψ〉, as a function of time is plotted

in Fig. 5.11 together with the electric field. The dipole moment shown tries to follow the

shape of the laser pulse and also tend to approach zero as the laser pulse decays. However

some deviations from the laser shape are visible near the extrema and the endpoints which

can be attributed to nonlinear behavior of the system. The distortion if affected by the value

of d, so other values are also investigated.

In Figure 5.13 we show the harmonic spectrum for different values of d, as well as

the results obtained by Si-Lang et.al.[204] by means of a pseudo-spectral method. The

amplitudes were normalized using the amplitude of the fundamental harmonic of each run

as a reference. The results show good agreement for the lowest harmonics, which have

similar amplitudes, with some differences on the sides of each harmonic. The results from

Si-Lang et.al. are noisier in general, with some smaller structures in between peaks which

can be attributed in part to the transformation window [193], final values of the dipole

moment as the laser envelope decays [193], discretization of the Fourier space and the

excitation of Rydberg states [184].

For the 15th harmonic and beyond the pseudo-spectral method tends to give lower val-

ues than the ones predicted by our approach. Past the cutoff the amplitudes tend to decay,

and the differences between the values of d become more apparent, with larger values

yielding a higher amplitude of the signal.

The present method gives a much lower background noise, by several orders of mag-

nitude. This noise can have multiple causes, one of them being the accuracy of the repre-

100



 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  5  10  15  20  25  30

P
d
(
 

ω
 
)
 
(
n
o
r
m
a
l
i
z
e
d
)

Harmonic order

Si-Liang et. al.
Gaussian basis d=25
Gaussian basis d=15
Gaussian basis d=10

Figure 5.13: We show the HHG spectrum for different values of the heuristic lifetime
parameter d of the present work, as well as the results obtained by by Si-Lang et.al. by
means of a pseudo-spectral method [204]. The results are normalized to the peak amplitude
of the fundamental harmonic. The cutoff frequency is marked by a vertical dashed line.
The maximum laser amplitude is εmax = 0.05 a.u. and wavelength λ = 800nm. The other
simulation parameters can be found in Table 5.7.
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sentation of Rydberg states, whose transitions can persist even in the absence of the laser.

For the given conditions the pseudo-spectral method probably has better representation of

the Rydberg states in the vicinity of the atom (r ≤ 100 a.u.) and therefore presents higher

background levels than the present method, and therefore a faster decay. On the other hand,

the pseudo-spectral method has more structures between peaks (especially among the 7th

and 9th harmonic) that indicate the signal has less periodicity than the one with the present

method.

5.5.2 Mollow sidebands

We first built a 2-level model of the hydrogen atom, formed by the 1s and the 2p level,

with their exact energy and dipole moment which are analytically known [155]. We also

construct a 3-level model by adding the 2s state to the 2-level model.

For the Mollow sideband generation we set ω0 equal to the transition frequency be-

tween the 1s and 2p state (ω0 = 0.375 a.u.). Time dependent simulations were done using

four different models for the atom: 2-level, 3-level, Gaussian (Stochastically enhanced

Kaufmann basis) and Confined hydrogen. The laser parameters are given in Table 5.8 and

are the same for all models. The Heuristic lifetime method is used to create absorption in

the case of the Gaussian and Confined hydrogen basis.

Important details can be observed in the expectation value of the dipole moment. As an

example we show the 〈ψ(t)|z|ψ(t)〉, as a function of time, and the driving electric field in

Fig. 5.14 (obtained with a confined hydrogen). The first important feature is that the dipole

moment shows beats, which is a sign of sideband generations taking place. Secondly, it

is important to notice that the oscillations persists even after the laser pulse has decayed

entirely, which has a high significance for the current investigation.

The Fourier Transform of the laser pulse, using a Blackman window, is shown in Fig.

5.15. It is here that one can see the bandwidth of the laser is very small, with a practically

inexistent amplitude for higher harmonics. The bandwidth of the laser is kept small to
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Parameter Value Units
Total simulation time 20.264 fs

837.76 au
50 cycles

Time step 0.00041 fs
0.01676 au
0.00100 cycles

Cutoff energy 0.557 au
15.15 eV
1.48 photons

Ponderomotive energy 0.017956 au
0.489 eV

Quiver amplitude 0.715 au
Excursion amplitude 1.429 au
Classical kinetic energy 0.0359 au

0.9772 eV
Ionization energy 0.5000000 au

13.605698 eV
1.3333333 photons

Laser energy 0.375 au
10.204 eV

Laser wavelength 121.50 nm
2296.06 au

Laser period 0.405287959 fs
16.75516082 au

Pulse peak intensity 0.10 au
3.54E+14 W/cm2

Pulse duration (τ) 50 cycles
Keldysh parameter (γ) 3.73 (none)

Table 5.8: Simulation parameters for the Mollow sideband generation

ensure any obtained sidebands are generated by Rabi flipping and not by the laser itself.

The DC component is also maintained at a minimal level (due to the careful selection of

parameters for the simulation), which is important to avoid having the Stark effect alter the

dynamics of the atom.

The obtained harmonic spectra for all four models are compared in Fig. 5.16. The gen-

eration of sidebands on the fundamental harmonic is observed for all models, however the

peak structure shows differences depending on the model employed. An important feature
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Figure 5.14: The dipole moment (left axis) and electric field (right axis) are plotted as
a function of time, using a confined hydrogen model. The laser parameters are given in
detail in Table 5.8. The most important features to observe are the beats, produced by
Rabi flipping, and the persistence of the dipole moment oscillations after the laser has been
turned off.

is that the high harmonics also show a formation of sidebands (with some differences de-

pending on the model of the current work), not just the fundamental. There is no mention

of those sidebands in Ref.[166], and it is unclear if they were overlooked or if the formation

is beyond the limits of their method.

Two-level and three-level model

In Fig. 5.16 (bottom) one can observe that for the fundamental harmonic, the 2-level

and 3-level models give very similar results, but there are big differences for the higher

harmonics. One can see that the 2s-2p transition changes the results for the third harmonic
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Figure 5.15: The Fourier Transform of the electric field, using the Blackman window is
plotted as a function of the harmonic order. The laser parameters are given in detail in
Table 5.8. One can observe the bandwidth of the laser is very small, with the DC component
being practically inexistent, which is important in order to ensure the sidebands are created
solely due to Rabi flipping.

105



 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  5  10  15  20  25  30  35  40

P
a
(

ω
)
 
(
a
r
b
.
 
u
n
i
t
s
)

Harmonic order

Confined Hydrogen model
Gaussian basis

2 level
3 level

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  1  2  3  4  5  6  7

P
a
(
 

ω
 
)
 
(
a
r
b
.
 
u
n
i
t
s
)

Harmonic order

Confined Hydrogen model
Gaussian basis

2 level
3 level

Figure 5.16: (Top) Harmonic spectrum obtained by stimulating atom with an external field
with frequency equal to the 1s-2p transition. (Bottom) Shows the same plot but zoomed
on the first harmonics. The Heuristic lifetime method is used for absorption. The laser
parameters are given in Table 5.8.
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and above because the 2-level model predicts a suppression of the harmonic while the other

models show a peak. This shows that the 2-level model is therefore completely inapplicable

to explain the observed structure on the peaks for the studied case.

The transition between the 2p and 2s state would typically be a forbidden one because

there is no energy difference between degenerate levels. No photons are expected to be

absorbed or emitted by such transition, giving an oscillator strength of zero. However the

dipole moment of this transition is very large [155], and it is responsible for the strong

emission lines produced by the fine and hyperfine structure due to the lifting of the degen-

eracy.

The cause of the 2s-2p transition triggering in this case can only be attributed to the

external laser pulse, which brakes the degeneracy of the states. The DC component is

practically inexistent, so the Stark effect is not to be the likely cause. We must emphasize

that for the confined hydrogen model the bound states are degenerate because the effect of

the distant wall was neglected while constructing the basis.

A consequence of this transition being so important is that small perturbations that lift

degeneracy and affect the populations of the 2s and 2p levels could potentially alter the

harmonic spectrum because of their capability of populating and depleting these states,

even with a relatively weak signal.

Both 2-level and 3-level models also show a quick decay in amplitude for high frequen-

cies, and neither of them gives any visible peaks past the 10th harmonic, after which the

background signal is dominant.

Multilevel simulation

In this case we employ two different approaches to provide many levels of excitation: a

Gaussian basis (a stochastically enhanced Kaufmann basis) and a confined hydrogen atom

with the boundary located at r0 = 500. The angular momenta considered ranges from l=0

up to 2, unless otherwise specified. The confined Hydrogen basis contains 39 bound states
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and 900 unbound states. The harmonic spectra are also plotted in Fig. 5.16, where one can

see differences in the behavior for the highest harmonics (top), and similar results to those

of 3-level system for lower harmonics (bottom).

One question that arises is how many angular momentum states are needed to give an

accurate description of the system for the given parameters. To help answer this question

the calculation was repeated for the confined hydrogen model with a larger basis that has

lmax = 3. The results for this case are plotted in Fig. 5.17. There is a relatively good agree-

ment between the results for the lowest harmonics, the only changes are small differences

in amplitude. However, for the seventh harmonic and beyond much larger changes are ob-

served. Since the dipole selection rules only allow ∆l = ±1, adding l = 4 or higher states

is not expected to make any difference on the lower harmonics. We therefore conclude

that considering up to l = 2 is sufficient for studying the lowest harmonics for the given

parameters.

The third harmonic in Fig. 5.16 (bottom) shows a 3-peak structure with sidebands,

which are largest for the 3-level model, and smallest for the Gaussian Basis. The energy

associated with this peak is 1.125 a.u., which is greater than the ionization energy of hydro-

gen. This might suggest that the third harmonic sidebands are caused by transitions from

the continuum. However, it cannot be the case because the bands are present even for the

2-level and 3-level models, which have no unbound states. It is important to remember

that although the field-free eigenstates still form a complete set under strong electric field

conditions, they are no longer eigenstates and the energies can be significantly altered.

The generation of high harmonics in a 2-level system, produced by Rabi flipping of

bound states, is possible as shown in Refs.[160, 206]. Our model goes beyond the 2-level

approximation by including the effects of other transitions. Having higher energy states

available for the electron affects the amplitude of the peaks, allowing the apparition of the

central 3rd harmonic peak, which is absent in the two-level model in Fig. 5.16.

Multiple window functions were tested out, see Fig. 5.18, to show how these can affect
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Figure 5.17: The HHG spectrum for the confined hydrogen with a basis with maximum
angular momentum lmax = 2 (same as in Fig.5.16) and an enlarged one with lmax = 3 are
shown. The laser parameters are given in Table 5.8.
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Figure 5.18: The HHG spectrum for the confined hydrogen using different window types
is shown. The simulation parameters are given in Table 5.8. The background noise level is
clearly more significant for the Gaussian, which can be attributed to its nonzero endpoints,
in contrast with the Blackman which starts and ends in zero, giving a much lower level.

the spectra. The background noise level is much higher for the Gaussian window because

it does not start or end at zero, unlike the Blackman which does so and gives the lowest

background noise. However, the peaks seem to be largely unaffected by the shape of the

employed window.

The populations for the 1s, 2s and 2p states are plotted in Figs. 5.19, 5.20, and 5.21

for the 2-level, 3-level and confined hydrogen model respectively. For the 2-level case the

typical Rabbi flips can be observed in the 1s and 2p populations. On the other hand the 3-

level model shows that during the periods when the 2p state gets highly populated so does

the 2s state, and they both get depleted when the 1s state gets repopulated. In the 3-level

case, Fig. 5.20, the 2s state population shows almost twice as many peaks as the driving
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electric field, which suggests that the transition is becoming enabled every half laser cycle.

The 2-level and 3-level models show a big difference in the final populations, which

can be explained by thinking of the 2s state as is it were acting like a retardant for the

repopulation of 1s, giving as a result a larger probability for 2p. A similar behavior in the

2s population is observed in the confined hydrogen model, Fig. 5.21, among the 2s and

2p levels but the overall probabilities decrease over time because higher energy states get

populated.

In order to further investigate into the 2p-2p transition the 3-level system was studied

under different electric field intensities. The average and maximum populations for the 2s

state are plotted in Fig. 5.24. It is clear that an increase in the electric field intensity gives

a larger population of the 2s state, and for strengths above 0.1 a.u. it can even become

momentarily the state with the largest population. The average population increases in

a nearly linear fashion with the electric field maximum amplitude. This increase can be

attributed to the degeneracy breaking, which is larger for stronger fields.

For a hydrogen atom the transitions that involve an increase in both energy and angular

momentum tend to be preferred over those with only one of these quantities increasing

and the other one decreasing [155]. The presence of the 2s state allows a downwards

transition in angular momentum from the 2p, which has a high dipole moment and enters

in a competition with the transitions to 1s and d states. The apparition of an additional

pathway therefore alters the spectrum and ionization probabilities. These competitions can

be evidenced in Figs. 5.20, and 5.21, giving as a result different final populations. The

1s final population does not vary too much between the confined hydrogen and the 3-level

case, but the 2p is much more depleted for the confined hydrogen.

To further illustrate this competition between transitions we made a modified confined

hydrogen basis which has the 2s-2p dipole moment matrix element set to zero, and repeated

the calculation for the same previous parameters. The obtained populations are shown in

Fig. 5.22. The blocking of the transition clearly hinders the ability of the 2s state to popu-
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Figure 5.19: The populations of the 1s and 2p states are plotted as a function of time for
the 2-level model. The Rabi flipping can be clearly observed in the oscillations of the
populations. The simulation parameters are given in Table 5.8.

late. The 2p population curves in Figs. 5.22 and 5.21 are plotted side by side in Fig. 5.23

for ease of comparison. Upon careful inspection one can see that the multiple small valleys

in the curve descend to very low levels with the transition enabled, but with no longer de-

scend as deep in the blocked case. The final populations of the p state are also different and

the peaks are shifted towards earlier times when the transition is blocked. In the present

case the existence of the 2s-2p transition diminished the probability of ionization.

The employed electric field is very intense, so ionization cannot be neglected. The

ionization probability is plotted in Fig.5.25. The ionization values obtained in the present

work are near 50%, while Ref. [166] obtained near 40% using a pseudo-spectral method.

The exact value of the ionization probability can vary depending on the Heuristic life-

time parameters employed, so further investigation was done. The calculation was repeated

112



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

P
o
p
u
l
a
t
i
o
n

Time (fs)

1s
2s
2p

Figure 5.20: The populations of the 1s, 2s and 2p states are plotted as a function of time
for the 3-level model. The simulation parameters are given in Table 5.8. One can observe
that the 2s state populates due to the 2s-2p transition, which would be typically forbidden
because the levels have the same energy in the absence of the laser. It is important to notice
that the 2s state populates whenever the 2p does too, and both deplete almost completely.
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Figure 5.21: The populations of the 1s, 2s and 2p states are plotted as a function of time
for the confined hydrogen model. The simulation parameters are given in Table 5.8. One
can observe the 2s state populates together with the 2p, and although the populations tend
to decay the oscillations persist. The final population differs from the 3-level system due to
excitation of higher orbitals and competitions between the transitions.
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Figure 5.22: Populations for a modified confined hydrogen basis, with the 2s-2p dipole
matrix element set to zero. All other settings are identical to the ones used in Fig. 5.21.
One can see that the 2s state remains mostly unpopulated.
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Figure 5.23: Comparison of the populations for the 2p from the modified confined hydro-
gen basis, and the unaltered curve from Fig. 5.21. One can see that the final population
levels are different and the envelope maxima are time shifted due to the inability of the
electron to undergo a 2s-2p transition. This blockade also makes the atom more likely to
ionize.
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Figure 5.24: The average and maximum populations of the 2s state is shown plotted as a
function the maximum electric field intensity. A clear increase in population is observed
for larger fields and it even become the most populated state in some cases.

117



with different values of d, for the Gaussian basis, with different electric field intensities.

These results are shown in 5.26, together with the results of Zhang et. al. [166]. Their value

is close to our calculation for the case of large d (long lifetimes). In summary, the results of

our calculations with heuristic lifetimes range about 0−10 percentage points above those

of Zhang et. al. [166].

We additionally did a calculation using the confined hydrogen model and a CAP, de-

fined in Eq.(5.42), and the ionization probability calculated was about 55%. Overall, our

results tend to overestimate the ionization rate of Zhang et. al. However, despite all these

differences in ionization rates, for all the simulations done in the present work the peak

structure persists in the spectra.

We also repeated the calculation for different electric field intensities and observed the

shift of the sidelobes respect to the central one, for the fundamental and the third harmonic.

The sidebands were analyzed by using a peak detection algorithm, based on the Python

PeakUtils library. The obtained position of the peaks, upper and lower sidelobes, are plotted

as a function of the electric field in Fig.5.27 (top and bottom). The theory predicts a linear

dependence between the Rabi flipping and the applied electric field for the fundamental

harmonic [166], although deviations can occur. We can observe that the linearity was best

obtained for εmax ≥ 0.12 a.u. For the third harmonic the splitting also shows to increase

monotonously with the laser intensity for both the upper and lower sidebands for higher

intensities, while for lower ones the splitting was not observed with the employed laser

parameters. Since the variations are smooth, it seems plausible to control the sidebands,

and hence the emission, by changing the shape of the laser pulse.

Deviations in the detected positions of the peaks can occur due to several reasons such

as: insufficient frequency resolution, laser bandwidth, the window shape employed to cal-

culate the FFT, the signal to noise ratio, and the value of the dipole moment at t = τ . For

smaller intensities the sidebands can be very hard to distinguish since it would require good

frequency resolution and therefore a very long pulse. However, for higher intensities the
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Figure 5.25: The Ionization probability is plotted as a function of time, together with the
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Gaussian basis and confined hydrogen yield similar results in this case.
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ionization becomes significant and a long pulse would be undesirable in such case. The

final value of the dipole moment when the laser is turned off can also affect the sidelobes

due to the apparition of artifacts, such as an increase in background noise in the spectrum

[193]. Since the Rabi flipping is a consequence of the intensity, each simulation will have a

different flipping rate. It is possible to tailor each laser pulse duration such that it is turned

off when the absorption is near saturation to compensate for this artifact, but it comes at the

cost of making the conditions for different field strengths unequal. Nevertheless the trend

observed is clear in Fig.5.27(top and bottom) .

Further studies into the effects of the pulse shape might be able to provide ways to gain

additional control over the system, maximizing the HHG and minimizing the ionization.

In other works these types of studies on pulse shaping have been done using genetic al-

gorithms and other machine learning techniques [207]. Given the fact that our Kaufmann

enhanced basis requires little computation time, optimization by such procedures is quite

feasible.

Future works could also address the effects of the confinement by impenetrable barriers

on HHG, taking advantage of the developed code’s capabilities, with some slight modifi-

cations. For a confined hydrogen system the allowed k values, (see (5.23) ), tend to appear

in a nearly periodic manner, but the allowed energies come with increasing gap sizes. Con-

sequently the confinement should have an effect on the energy gaps, and therefore the

populations of different levels, suppressing or enhancing certain emission in frequencies.

We conclude that the apparition of the 3-peak structure on the third harmonic is related

to the enabling of the 2p-2s transition by means of degeneracy breaking caused by the

strong electric field, together with transitions to the d levels, due to their oscillator strengths.

Both methods, the confined hydrogen model and Stochastically enhanced Kaufmann basis

give a reasonable agreement on the HHG and ionization rate, despite it being not having

eigenstates as accurate as the confined hydrogen model. The enhanced Kaufmann basis has

the additional advantage of being compact, and gives good computational performance.
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The result could have implications for the study of HHG in systems that can be modeled

as being hydrogen-like. The advantage of generating the Mollow sidebands is that they are

tunable by altering the laser pulse shape and amplitude, although their limitation is set by

the possibility of ionization due to high intensities. The observed peak structure could also

be used as a test to see how degenerate are the eigenstates with quantum number n = 2

and indicate the presence of perturbations. Due to the strong dipole moment of the 2s-2p

transition any slight change in the population due to external radiation can manifest itself in

the HHG. The idea of controlling the HHG by degeneracy breaking can be further explored

in future works by simulating a pump-probe scheme that drives the transitions between 2s

and 2p, while at the same time triggering the 1s-2p transition.

Outlook

A natural extension for the Stochastically enhanced Kaufman basis is for single electron

systems such as He+ and other isoelectronic ions, as well as other systems that are modeled

as hydrogen atoms such as positronium or excitons.

Using the Kaufmann basis directly for systems with more electrons is possible, although

computationally expensive since the number of required functions grows very rapidly. For

the case of Helium the representation of the unbound states is not easy for multiple rea-

sons. Single active electron approximations are commonly used in Helium to describe its

optical properties [208], but fail for strong intensities due to transitions into doubly excited

states which are not stable [209]. Furthermore the Rydberg and unbound states are not

easy to represent [210], and augmented quantum chemistry standard tabulated basis sets

can become unsuitable for high intensities[211], making Helium hard to represent. How-

ever, these difficulties have prompted the recent development of exponentially tampered

Gaussian sets, which are used in conjunction with complex scaling, [210, 211] with im-

proved results. One new possibility for simulating Helium could then arise by using the

latter method, instead of the Kaufman basis, in combination with the SVM.

123



On the other hand, the Kaufmann basis might have a better prospect for Lithium, which

is commonly represented in terms of single active electron approximations. The Kaufmann

basis itself has been previously extended for such representation [175]. However a draw-

back with the approach is that the overlaps of the basis functions can become large and

difficult to handle with finite arithmetic. This is a consequence of the high excited states

becomes close in energies and the solutions gaining high oscillatory behavior [175]. Its

solely a numerical problem and not a problem of the basis set. Therefore it may be possible

to use a Stochastically enhanced Kauffman basis to obtain Lithium states and further work

would focus on handling any numerical issues properly.
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CHAPTER 6

CONCLUSIONS AND FURTHER REMARKS

Benchmark calculations for small boson systems were obtained with good accuracy,

and with potential for multiple applications such as the study of formation of Wigner crys-

tals, Helium trimers, and Efimov states. These results have been considered very accurate

and used for envelope theory in Refs.[212, 213]. The real limit for our present method

comes from the number of permutations arising from the symmetry of the wavefunction.

We have proven the effectiveness of the SVM method to calculate accurate energies

employing deformed Explicitly Correlated Gaussians for 3-electron systems in strong mag-

netic fields. This approach was capable of giving the lowest variational values in the lit-

erature up to date for these systems. This success is due to the fact that the exact solution

of a charged particle in a magnetic field is given by a Gaussian function, the solution to

the harmonic oscillator potential, which makes the convergence faster than the Hylleraas

approach. Additionally, this method can be employed for any number of particles, being

only limited by computational resources.

The stability of three-electron systems was studied using a non-relativistic Hamiltonian.

The model is in agreement with the theoretical prediction of formation of magnetically in-

duced He−, which would be typically unstable. Furthermore the energies, ranges of stabil-

ity and the corresponding ground state configurations were determined. The structure of the

system was also studied, and compared to the other systems of the isoelectronic sequence.

The different energy contributions of each term of the Hamiltonian were also shown in or-

der to elucidate more of the underlying physics and the competition between the Coulomb

forces and the magnetic ones. Our calculations revealed the existence of stable atomic

states with unpaired spins with very strong diamagnetism, contrary to the typical cases

where diamagnetism is overshadowed by paramagnetism. Nevertheless the model does not
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account for the motion of the center of mass, as well as other effects that can alter the sta-

bility. Further studies can include some of the mentioned effects in the model. Another

important aspect is the study of the electronic transitions and their wavelengths, which

would be the experimentally observable quantities. Also, the formation of more complex

systems like molecules or solids by means of paramagnetic bonding is another topic of

recent interest than could be investigated. In particular the study of changes in stability of

fermion systems, such as 2 positrons and 3 electrons, is another possible subject for further

investigation. Other possibilities could include corrections due to non-homogeneous fields

or using a periodic code to study the formation of long molecular chains.

For interactions with electric fields we have used a stochastically enhanced Kaufmann

basis to show the appearance of Mollow sidebands upon the higher harmonics of the spec-

trum of the hydrogen atom. We have also determined the importance of the 2s-2p transition

in the higher harmonics as well as the insufficiency of the 2-level model to correctly de-

scribe the peak structure. In weak field models the 2s-2p transition is not allowed because

it has no energy difference, but with strong electric fields the degeneracy is broken, en-

abling the transition and reshaping the high harmonic Mollow sidebands. These results,

to the best of our knowledge, have not been previously published. We further confirmed

the results by the use of a confined hydrogen model, which has the correct form of the

wavefunction for scattering states. Both methods give ionization levels with a reasonable

agreement with each other and with those previously published for the same intensity. The

results could have applications for HHG in systems that can be modeled as hydrogenic.

The speed performance of the stochastically enhanced Kaufmann basis seems make the

use of machine learning optimization algorithms feasible for the purpose of controlling the

Mollow sidebands and ionization. Further works could address the simulations of more

complex systems, such as He or Li, for which the extension of the present method is not

straightforward, but other variations could be attempted.
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Till Jahnke, Dörte Blume, and Reinhard Dörner. Observation of the Efimov state of

the helium trimer. Science, 348(6234):551–555, 2015.

[11] Sergiy Bubin and Ludwik Adamowicz. Explicitly correlated gaussian calculations

of the 2po rydberg spectrum of the lithium atom. The Journal of Chemical Physics,

136(13):–, 2012.

[12] Jim Mitroy, Sergiy Bubin, Wataru Horiuchi, Yasuyuki Suzuki, Ludwik Adamow-

icz, Wojciech Cencek, Krzysztof Szalewicz, Jacek Komasa, D. Blume, and Kálmán
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magnetic fields in the universe: how strong can they become? Frontiers in Physics,

2:59, 2014.

135



[88] The largest and highest powered magnet lab in the world - maglab.

https://nationalmaglab.org/.

[89] Glenn Elert. The physics factbook.

[90] Jianjun Fang, Helena Pais, Sidney Avancini, and Constan ça Providência. Larger and

more heterogeneous neutron star crusts: A result of strong magnetic fields. Phys.

Rev. C, 94:062801, Dec 2016.

[91] N. Afram and S. V. Berdyugina. Molecules as magnetic probes of starspots. A&A,

576:A34, 2015.

[92] E. I. Tellgren, A. M. Teale, J. W. Furness, K. K. Lange, U. Ekstrm, and T. Hel-

gaker. Non-perturbative calculation of molecular magnetic properties within current-

density functional theory. The Journal of Chemical Physics, 140(3):–, 2014.

[93] Erik I. Tellgren and Heike Fliegl. Non-perturbative treatment of molecules in linear

magnetic fields: Calculation of anapole susceptibilities. The Journal of Chemical

Physics, 139(16):–, 2013.

[94] Erik I. Tellgren, Alessandro Soncini, and Trygve Helgaker. Nonperturbative ab initio

calculations in strong magnetic fields using london orbitals. The Journal of Chemical

Physics, 129(15):–, 2008.

[95] Kai K. Lange, E. I. Tellgren, M. R. Hoffmann, and T. Helgaker. A param-

agnetic bonding mechanism for diatomics in strong magnetic fields. Science,

337(6092):327–331, 2012.

[96] Erik I. Tellgren, Simen S. Reine, and Trygve Helgaker. Analytical giao and hybrid-

basis integral derivatives: application to geometry optimization of molecules in

strong magnetic fields. Phys. Chem. Chem. Phys., 14:9492–9499, 2012.

136



[97] Erik I. Tellgren, Trygve Helgaker, and Alessandro Soncini. Non-perturbative mag-

netic phenomena in closed-shell paramagnetic molecules. Phys. Chem. Chem. Phys.,

11:5489–5498, 2009.

[98] Sarah Reimann, Ulf Ekstrom, Stella Stopkowicz, Andrew M. Teale, Alex Borgoo,

and Trygve Helgaker. The importance of current contributions to shielding constants

in density-functional theory. Phys. Chem. Chem. Phys., 17:18834–18842, 2015.

[99] Ryan D. Reynolds and Toru Shiozaki. Fully relativistic self-consistent field under a

magnetic field. Phys. Chem. Chem. Phys., 17:14280–14283, 2015.

[100] Hctor Medel Cobaxin and Alexander Alijah. Vibrating H3+ in a Uniform Mag-

netic Field. The Journal of Physical Chemistry A, 117(39):98719881, 2013. PMID:

23461566.

[101] Yu. P. Kravchenko and M. A. Liberman. Hydrogen molecule in a strong parallel

magnetic field. Phys. Rev. A, 57:3403–3418, May 1998.

[102] D. Baye and M. Vincke. Center-of-mass problem in a magnetic field: Unified treat-

ment of charged and neutral systems. Phys. Rev. A, 42:391–396, Jul 1990.

[103] G. Vignale and Mark Rasolt. Density-functional theory in strong magnetic fields.

Phys. Rev. Lett., 59:2360–2363, Nov 1987.

[104] C. Riva, F. M. Peeters, and K. Varga. Excitons and charged excitons in semiconduc-

tor quantum wells. Phys. Rev. B, 61:13873–13881, May 2000.

[105] C. Riva, F. M. Peeters, and K. Varga. Magnetic field dependence of the energy

of negatively charged excitons in semiconductor quantum wells. Phys. Rev. B,

63:115302, Feb 2001.

[106] C. Riva, F. M. Peeters, and K. Varga. Positively charged magnetoexcitons in a semi-

conductor quantum well. Phys. Rev. B, 64:235301, Nov 2001.

137



[107] Ashoori R. C. Electrons in artificial atoms. Nature, 379(6564):413419, feb 1996.

10.1038/379413a0.

[108] K. L. Litvinenko, M. Pang, Juerong Li, E. Bowyer, H. Engelkamp, V. B. Shuman,

L. M. Portsel, A. N. Lodygin, Yu. A. Astrov, S. G. Pavlov, H.-W. Hübers, C. R.
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