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CHAPTER I 

 

INTRODUCTION 

 

Multicellular organisms utilize a series of mechanisms to maintain the tissue 

homeostasis, including maintenance of genomic integrity and regulation of 

programmed cell death. Defects in the DNA damage/repair pathway and/or 

apoptosis pathway have been demonstrated to associate with various human 

diseases, such as malignancy, autoimmune disease, and neurological disease (1). 

First identified as a pro-apoptotic member in the cell death pathway, BH3 

interacting domain death agonist (BID) has recently been demonstrated to play a 

role to maintain genomic stability and execute DNA damage checkpoints following 

DNA damage treatments (2,3). To clarify the function of BID in the cellular 

response to DNA damage, especially the response to DNA damage induced by 

replicative stress, I used genetic and biochemical tools in this thesis to investigate 

the function and mechanism of BID in the Ataxia-telangiectasia mutated and 

RAD3-related (ATR)-mediated signaling pathways. The function of BID in the 

ATR-directed DNA damage response is investigated at multiple levels, from 

structural biology to animal models (4-6). The significance of the dual functions of 

BID in both DNA damage and cell death pathways will be discussed. 
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Apoptosis and BCL-2 family 

 

Programmed cell death and Apoptosis 

Programmed cell death is a highly regulated intracellular program used by 

various metazoans to initiate and execute cell death following various cellular 

stresses and/or extrinsic signals (7). Thus far, three types of programmed cell 

death have been identified and demonstrated in eukaryotic cells, i.e., apoptosis 

(Type I), autophagy (Type II), and programmed necrosis (Type III) (8). Apoptosis 

is the principle mechanism in metazoans to remove damaged or redundant cells 

by breaking down cell components into apoptotic bodies (9), which are recognized 

and engulfed by phagocytic cells to avoid inflammation around the dying cells(10). 

The most important molecular marker of apoptosis is the activation of various 

caspases (11). When apoptosis is inhibited by pharmacological agents or in 

certain genetic backgrounds, stressed cells might initiate programmed necrosis or 

necroptosis to execute caspase-independent cell death by activation of various 

RIP kinases (12). Different from apoptosis and necrosis, autophagy is a “survival” 

process involving the degradation of redundant or impaired intracellular 

components through lysosomal machinery as a response to cellular stress, such 

as starvation (13). Physiological level of autophagy is important for cellular 

homeostasis while excessive autophagy promotes cell death (14). Apoptosis, 

autophagy and programmed necrosis possess distinct characteristics with respect 
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to cellular morphology and molecular mechanism, however, certain key factors 

function in multiple cell death pathways and might control the cell fate in different 

types of programmed cell death. 

As the best studied programmed cell death, apoptosis is elaborately regulated 

at multiple levels to control cell fate following various endogenous or extrinsic 

signals (Fig. 1-1A). Typically, the cellular stresses or death signals are sensed by 

various BCL-2 (B-cell lymphoma 2) family proteins, which relay the death signals 

to mitochondria, an essential integration machinery of cellular metabolism and 

apoptosis (7). Following cellular stresses or death signals, pro-apoptotic members 

harboring only one BH3 domain (BH3-only pro-apoptotic members) are activated 

and translocate to mitochondria, which results in the oligomerization and 

activation of BAX/BAK (7,15,16). Once BAX/BAK is activated, mitochondrial outer 

membrane permeabilization (MOMP) leads to the release of multiple 

pro-apoptotic factors from the mitochondrial inter membrane space and apoptosis 

is executed (17-20)(Figure 1-1). Various BH-3 only molecules can either activate 

BAX/BAK directly or release the inhibition on BAX/BAK from anti-apoptotic BCL-2 

members indirectly (15,20-22) (Figure 1-1).  

The process of mitochondrial outer membrane permeabilization results in the 

release of multiple pro-apoptotic proteins from the mitochondrial intermembrane 

space into the cytoplasm, including cytochrome c ,  SMAC (second 

mitochondria-derived activator of caspases)/DIABLO (direct inhibitor of apoptosis 
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Figure 1-1. The function of BCL-2 family in apoptosis pathway. (A) Simplified apoptosis pathway. 

Cellular stresses or death stimuli are sensed by various BH-3 only molecules, which activate 

BAX/BAK directly or release the inhibition on BAX/BAK from anti-apoptotic BCL-2 members. The 

oligomerization of BAX/BAK results in the release of cytochrome c, which activates caspase-9. 

The resultant activation of various downstream effector caspases leads to apoptosis. (B) BCL-2 

family is comprised of three subclasses, multi-domain anti-apoptotic members (e.g. BCL-2 and 

MCL-1), multi-domain pro-apoptotic members (e.g. BAX and BAK), and BH-3 only pro-apoptotic 

members (e.g. BID, BAD and BIM).  
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(IAP)-binding protein with low pI), OMI/HTRA2 (high-temperature-requirement 

protein A2), ENDONUCLEASE G, and AIF (apoptosis-inducing factor). The 

released cytochrome c binds to APAF1 (apoptotic peptidase activating factor 1) 

and induces a conformational change (18,19). Activated APAF1 recruits 

caspase-9 in the presence of ATP/dATP to form the apoptosome, which cleaves 

and activates downstream effector caspases, e.g. caspase-3 (18,23). The 

released SMAC/DIABLO and OMI/HTRA2 bind to IAP and blocks its inhibition of 

caspases (24-26). The released ENDONUCLEASE G and AIF translocate to the 

nucleus to induce DNA fragmentation and degradation (27,28). It is worthwhile to 

note that the initiation of apoptosis in mammalian systems is predominantly 

regulated by BCL-2 family proteins at the sensor/transducer level (7,29) rather 

than by the effectors functioning downstream mitochondria. 

Based on the origin of death stimuli, the apoptotic response is initiated and 

mediated by either intrinsic or extrinsic cell death pathways. Intrinsic death stimuli 

(e.g. oncogene activation, DNA damage, and survival factor deprivation) are 

generated within the cells, predominantly sensed by various BH3-only molecules, 

and transduced to mitochondria to initiate apoptosis (7). Extrinsic death stimuli 

(e.g. death ligands, such as Fas ligand and TRAIL) are generated from 

extracellular environments, sensed by death receptors, and executed by 

caspases to initiate apoptosis directly (30). Interestingly, BH3-only BID mediates 

the crosstalk between the extrinsic pathway and the intrinsic pathway through the 
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generation of truncate BID by caspase 8 cleavage (31,32). Based on the function 

of BCL-2 family in the extrinsic pathways, two pathways have been reported in 

different cell types. In Type I cells (e.g. thymocytes), sufficient caspase 8 

activation results in an adequate activation of downstream effector caspase (e.g. 

caspase 3 and caspase 7) and tBID-induced activation of BAX at the mitochondria 

plays a minimum role in this death receptor-induced apoptosis (33). In Type II 

cells (e.g. hepatocytes), the mitochondrial amplification loop is an essential 

process to generate sufficient activation of downstream effector caspases and 

caspase 8-mediated cleavage of BID plays an important role to initiate death 

receptor-induced apoptosis (33).  

 

BCL-2 family 

  BCL-2 gene was first reported and cloned from non-Hodgkin lymphomas with 

t(14;18) chromosomal translocations, in which BCL-2 gene is fused with the 

immunoglobulin heavy-chain locus (IgH) (34-39). In a Bcl-2-Ig transgenic mouse  

model, under the control of the IgH enhancer, the BCL-2 gene is highly expressed 

at the transcriptional level to protect B cells from apoptosis following multiple 

physiological and pathological stimuli (40,41). Bcl-2-Ig transgenic mice 

spontaneously develop a polyclonal follicular hyperplasia comprised of 

B220-positive, IgM/IgD-positive B cells (41). Different from other oncogenes that 

induce cell proliferation (i.e., RAS and MYC), BCL-2 does not increase cell cycle 
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proliferation (42), suggesting that abnormal apoptosis is a novel mechanism of 

tumorigenesis.  

After the BCL-2 gene was cloned and investigated, a series of proteins sharing 

BCL-2 homology domains (BH domain) were identified by biochemical or genetic 

tools. The BCL-2 family is classified as three groups, multi-domain anti-apoptotic 

members (e.g. BCL-2 and MCL-1), multi-domain pro-apoptotic members (e.g. 

BAX and BAK), and BH3-only pro-apoptotic members (e.g. BID, BAD and BIM) 

(Figure 1-1) (7,15,43). Following cellular stresses or death signals, pro-apoptotic 

members harboring only one BH3 domain (BH3-only pro-apoptotic members) are 

activated and translocate to mitochondria to interact with other BCL-2 family 

members by their BH3 domain, which results in the activation of BAX/BAK 

(7,15,16). Once activated, BAX and BAK undergo conformational changes, which 

result in the homo-oligomerization of BAX/BAK to form a pore that results in 

mitochondrial outer membrane permeabilization (MOMP) (20,44). 

Although BH3-only proteins interact with BAX/BAK by BH3 domain, different 

BH3-only proteins activate BAX/BAK by different mechanisms (45). BID, BIM and 

PUMA are able to interact with all anti-apoptotic BCL-2 family members and 

function as direct activators of BAX/BAK (46,47). In an in vitro system with 

isolated mitochrondria or liposome vesicles, peptides comprised of the 

BH3-domain of BID activate monomeric BAX to form supramolecular membrane 

openings in the outer mitochondrial membrane (46,47). Similar effects on 
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cytochrome c release and BAX oligomerization have also been observed for tBID, 

BIM and PUMA (48,49). The detailed activation mechanism of tBID in 

mitochrondria was uncovered by Andrew’s lab in 2008 (50) using fluorescence 

techniques and an in vitro reconstitution system. tBID first associates with the 

membrane and then recruits BAX, followed by BAX oligomerization and 

membrane permeablization. In contrast, other BH3-only proteins (e.g. BAD, BIK 

and Noxa) function as indirect sensitizers to regulate the activation of BAX/BAK 

by releasing the inhibition of anti-apoptotic proteins (e.g. BCL-2 and MCL-1) on 

direct activators (BID and BIM). Each BH3-only sensitizer has a unique binding 

profile for limited anti-apoptotic BCL-2 family members and incubation of these 

sensitizers does not induce cytochrome c release from the isolated mitochrondria 

in vitro (48,51). When anti-apoptotic proteins are overexpressed, the 

pro-apoptotic function of direct activators is inhibited and co-expression of these 

sensitizers significantly diminishes the inhibition of anti-apoptotic proteins in a 

dose-dependent manner (48,51). However, how BH3-only molecules 

quantitatively activate BAX/BAK is still not clear, and the mechanisms deduced 

from different systems are still controversial(52,53).  

  As upstream sensors in apoptotic signaling pathways, various BH3-only 

molecules are selectively activated in response to specific cellular stresses or 

death stimuli by either transcriptional control or posttranslational 

modification(7,54). For example, following DNA damage, the activation of p53 
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increases the transcriptional level of PUMA and NOXA to initiate apoptosis (55). 

Following cytokine deprivation, BIM expression is up-regulated by the forkhead 

transcription factor FKHRL1 (56). Following survival factor withdrawal, BAD 

phosphorylation is blocked, which releases BAD from 14-3-3 binding and it 

interacts with anti-apoptotic proteins in the cytosol (57). Following death receptor 

stimulation, BID is cleaved by activated caspase 8 and truncated BID translocates 

to mitochondria to initiate apoptosis (31,32). 

 

Table 1. Summarized spontaneous phenotypes of animal model with deficiency in BCL-2 family 

member.  

Gene name Protein functions Knockout Phenotypes 

A1 Anti-apoptotic Enhanced apoptosis of peripheral blood neutrophils and mast 

cells (58,59) 

Bad Pro-apoptotic Diffuse large B cell lymphoma (60) 

Bax Pro-apoptotic Thymocytes and B cells hyperplasia, male infertile (61) 

Bax/Bak Pro-apoptotic Persistence of interdigital webs, abnormal accumulation of 

small neuronal cells and lymphocytes (62) 

Bcl-2 Anti-apoptotic Growth retardation, polycystic kidney disease, fulminant 

apoptosis of the thymus and spleen, hypopigmented hair (63)

Bcl-w Anti-apoptotic Failed spermatogenesis (64) 

Bcl-x Anti-apoptotic Defects of the survival of immature thymocytes (65) 

Bid Pro-apoptotic Chronic myelomoncytic leukemia (66) 

Bim Pro-apoptotic Develop plasmacytosis and autoimmune kidney disease 

(67-70) 

Mcl-1 Anti-apoptotic Loss of peripheral lymphocytes, loss of bone marrow early 

progenitor/stem cell populations (71,72) 

   

Although various BCL-2 family proteins share similar structure and apoptotic 

function in vitro, the physiological and pathological functions of different BCL-2 
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members differ in vivo (Table 1). The spontaneous phenotypes of animal models 

with deficiencies in Bcl-2 family members are summarized in Table 1. Bcl-2 -/- 

mice complete embryonic development, however, severe growth retardation, 

polycystic kidney disease, fulminant apoptosis of the thymus and spleen, and 

hypopigmented hair were observed in Bcl-2 -/- mice as early as one week of age 

(63). Inducible deletion of Mcl-1 in mice resulted in ablation of bone marrow and 

the loss of early bone marrow progenitor and stem cell populations (71,72). When 

both Bax and Bak gene are deleted in mice, the majority of Bax -/- Bak -/- mice 

died perinatally and the adult mice exhibit severe developmental defects (62). It is 

worthwhile to note that although the loss of Bcl-2, Mcl-1 and Bax/Bak results in 

severe defects, only mild phenotypes were observed in other Bcl-2 family 

knockout mice (Table 1), which suggests that Bcl-2 family proteins function 

differentially and hierarchically in vivo. Interestingly, most of the severe 

phenotypes in Bcl-2 family knockout mice were observed in the hematopoietic 

system (Table 1), suggesting that the Bcl-2 family plays an important role in the 

maintenance of hematopoiesis in vivo. 

 

Pro-apoptotic BID 

  First identified by protein interactive cloning with Bcl-2 and Bax, murine Bid 

cDNA was cloned and studied in Korsmeyer’s lab in 1996 (73). Harboring only 

one BH3 domain, BID is a pro-apoptotic BH3-only molecule that interacts with 
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other BCL-2 family proteins by its BH3 domain (73). In 1998, two research groups 

(Wang and Yuan’s lab) independently clarified the pro-apoptotic function of BID in 

the extrinsic cell death pathway and reported the cleavage of BID by activated 

caspase 8 (31,32). In 1999, the solution structures of both human and murine BID 

are resolved by NMR spectroscopy in two independent labs (Cowburn and 

Wagner’s lab) (74,75). In the same year, Korsmeyer’s lab successfully generated 

Bid -/- mice, which were reported to be resistant to Fas-induced hepatocellular 

apoptosis (76). Although Bid -/- mice develop quite normally, Zinkel et al in 

Korsmeyer’s lab demonstrated that Bid -/- mice spontaneously develop a fatal 

myeloproliferative disorder resembling chronic myelomonocytic leukemia (CMML) 

and genomic instability was reported in Bid -/- tumor cells in 2003 (66). In 2005, 

two independent research groups (Gross and Korsmeyer’s) identified a novel 

function of BID in the DNA damage signaling pathway and BID was demonstrated 

to be a novel ATM/ATR substrate following genotoxic stress (2,3). However, 

Strasser’s lab reported a dispensable role of BID in the DNA damage-induced 

response in 2007 (77). To resolve this issue, more scientific groups, including 

Zinkel’s lab, have published a series of research articles (4,78-83), which provide 

solid evidence demonstrating the important role of BID in the DNA damage 

response.  

BID is unique among BH3-only proteins in linking the intrinsic 

(mitochondria-dependent) and death receptor-mediated apoptotic pathways 
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(31,32). According to the solution 3D structure, BID is comprised of eight 

hydrophobic α helices with a long flexible loop region between Helix 2 and Helix 

3/BH3 domain (74,75) (Figure 1-2 A). Following death receptor (e.g., Fas or TNFα) 

treatment, the loop region of BID is cleaved by activated caspase 8 (31,32), which 

results in the myristoylation of Gly60 residue (84) and the exposure of 

hydrophobic BH3 domain (74,75). These post-translational modifications cause 

cytoplasmic BID to translocate to the mitochondria to cause the oligomerization of 

BAX/BAK and activate apoptosis. In the absence of BID, the Fas-induced 

hepatocellular apoptosis is abrogated in mice and cytochrome c release is 

prevented in cultured cells following anti-Fas antibody treatment (76). The 

biochemical and structural biology studies show that BID interacts with other 

BCL-2 members by hydrophobic interaction (73,85) and mutagenesis studies 

have demonstrated that the α-helical BH3 domain of BID is crucial for its 

interaction with other BCL-2 members to fulfill its proapoptotic function (73). 

Besides the classical model, other proteins also play additional roles in the 

regulation of BID’s apoptotic function, including Caspase 2 (86,87), casein kinase 

(88), Calpain (89), Cathepsin (90), Granzyme B (91), PACS-2 (92) (Table 2). 

In addition to its role in apoptotic signaling pathway, BID has also been 

demonstrated to play a role in the DNA-damage response and the maintenance of 

genomic integrity (Fig. 1-2B) (2,3). Bid -/- mice spontaneously develop a fatal 

myeloproliferative disorder resembling chronic myelomonocytic leukemia (CMML) 
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Figure 1-2. Dual functions of BID. (A) Solution NMR structure of mouse Bid (Protein data bank 

(PDB) entry 1DDB)(74). BID is comprised of eight hydrophobic helixes and one flexible loop region 

between Helix 2 and Helix 3 (BH3 domain). Following death receptor, BID is cleaved by caspase 8 

at Asp59/Gly60. Following DNA damage treatment, BID is phosphorylated by ATM/ATR at 

Ser61/64 and Ser78. (B) Pro-apoptotic BID plays dual roles in both cell death and DNA damage 

signaling pathways (2). Following death receptor, cytosolic BID is cleaved by activated caspase 8. 

Truncated BID (tBID) translocates to mitochondria to initiate apoptosis. Following DNA damage 

treatment, BID is found in the nucleus and phosphorylated by activated ATM/ATR to maintain 

genomic integrity.  
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and the tumor cells in Bid -/- mice display trisomy of multiple chromosomes and 

chromosomal translocation (66). In the absence of Bid, myeloid progenitor cells 

and mouse embryonic fibroblasts show intra-S checkpoint defects upon DNA 

damage (2,3). In addition, following DNA damage treatments, Bid is found in the 

nucleus and its Ser61/64 and Ser78 residues in the loop region are 

phosphorylated by ATM (ataxia telangiectasia mutated protein)/ATR (ATM and 

Rad3-related protein) rapidly and the phosphorylation of BID is essential for BID’s 

role in maintaining intra-S checkpoint (2,3,82,93).  

As BID plays dual roles in both the cell death and DNA damage response, 

multiple interaction partners and post-translational modifications have been 

reported to regulate BID’s function following various cellular stresses. The 

identified interaction partners and post-translational modifications of BID are 

summarized in Table 2. Interestingly, most of the post-translational modifications 

and functional domains lie in the flexible loop region and C-terminal helix domain 

of BID (Table 2). For example, besides caspase 8, caspase 2 also cleaves BID at 

Asp59/Gly60 site to generate tBID following heat shock and endoplasmic 

reticulum stress (86,87). In addition, casein kinase I and II phosphorylate BID at 

Thr58, Ser61, Ser64, which protect BID from cleavage by caspase 8 (88). 

Interestingly, cleaved BID interacts with mitochondrial cardiolipin by its Helix 6 

domain to facilitate its mitochondrial targeting and pro-apoptotic activity (94-96).  

  In addition to in vitro studies, the physiological functions of BID have also been 
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investigated in vivo in a mouse model. In Bid -/- mice, the hepatocytes are 

resistant to Fas-induced apoptosis (76) and the neurons are resistant to apoptosis 

after oxygen/glucose deprivation and focal cerebral ischemia (97). A similar 

pro-apoptotic effect has also been observed in renal ischemia-reperfusion (98) 

and UV-damaged Langerhans cells (83). Bid -/- mice spontaneously develop 

chronic myelomonocytic leukemia (CMML) and the tumor cells display 

 

Table 2. Identified interaction partners and post-translational modifications of BID. 

 

Partner 

 

Interaction

Post-translation 

modification/functional 

domain 

 

Function 

Caspase 8 (31,32) ES Asp 59 cleavage Truncated BID, initiate apoptosis

Caspase 2 (86,87) ES Asp 59 cleavage Truncated BID, initiate apoptosis

Calpain (89) ES Gly70/Arg71 Truncated BID, initiate apoptosis

Cathepsin (90) ES Arg65 and Arg71 Truncated BID, initiate apoptosis

Granzyme B (91) ES Asp 75 cleavage Truncated BID, initiate apoptosis

ATM/ATR (2) ES Ser61/64, Ser78 

phosphorylation 

Maintain intra-S checkpoint 

Casein kinase (88) ES Thr58, Ser61, Ser64 Protect BID from cleavage by 

Caspase 8 

BCL2/BCL-xl/BCL-w/

MCL-1/A1 (73) 

PPI BH3 domain Initiate apoptosis. 

BAX/BAK (73) PPI BH3 domain Initiate apoptosis. 

PACS-2 (92) PPI Unknown Facilitate translocation of BID to 

mitochondria 

Mitochondrial 

Cardiolipin (94-96) 

Lipid 

interaction

Helix 6 domain Mitochondrial targeting and 

pro-apoptotic activity of tBID 

ATRIP (4) PPI Helix 4 domain Facilitate ATR function following 

replicative stress 

RPA (5) PPI RPA-ID region Facilitate ATR function following 

replicative stress 

ES, enzyme-substrate interaction; PPI, protein-protein interaction 
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chromosomal aberrations (66). As both cell death and DNA damage signaling 

contribute to tissue homeostasis and genomic integrity, it is still unclear which 

function of BID directs the tumor suppressor function of BID in vivo. Interestingly, 

the tumor development in diethylnitrosamine-treated liver was significantly 

retarded in Bid -/- mice (99), suggesting that the tumor suppressor function of BID 

is to inhibit tumorigenesis rather than tumor progression.  

 

DNA damage and ATM/ATR-mediated signaling pathways 

 

DNA damage response 

As genetic information is stored in the genome, the maintenance of genomic 

integrity is critical for survival. The genome is constantly threatened by DNA 

damaging agents from both endogenous and exogenous sources. Endogenous 

DNA damage is produced continuously inside the living cell, by replication errors 

and reactive oxygen species generated from normal metabolic byproducts (1). 

DNA damage also results from external agents, such as ultraviolet light, various 

radiation resources, carcinogens and drugs used in chemotherapy (1). DNA 

lesions might occur at multiple levels, from base removal or modification, 

nucleotide deletion or insertion, strand breaks (single- or double- stranded breaks) 

to cross-linked strands (1). Cells employ different repair mechanisms to restore 

damaged DNA, dependent on the type and severity of the DNA lesions (1,100). 
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The irreparable DNA lesions will be eliminated by programmed cell death to 

prevent potentially catastrophic mutations in multi-cellular organisms. If 

irreparable DNA damage is preserved in dividing cells, it might generate 

replication errors and accumulation of DNA mutations in daughter cells. The 

accumulation of DNA mutations has been demonstrated to be an important cause 

of various diseases, including cancer and premature aging (1).  

Following DNA damage, cells initiate a series of responses to maintain genomic 

integrity, including DNA damage checkpoints (arrest cell cycle progression), DNA 

repair (restore damaged DNA), transcriptional response (change the transcription 

profile) and programmed cell death (eliminate irreparable cells) (1). The DNA 

damage is sensed by various DNA damage sensors and activates PIKK 

(Phosphoinositide-3 kinase-related kinase) protein kinases (e.g. ATM, ATR, 

DNA-PKcs). With the aid of mediators, damage signals are transduced to 

transducers (e.g., CHK1 and CHK2 Ser/Thr kinases) and then effectors (e.g. 

CDC25 phosphatases), which inactivate CDKs to arrest cell cycle progression at 

G1/S, intra-S or G2/M checkpoint (1). Meanwhile, the DNA lesions are repaired by 

various DNA repair mechanisms, including direct reversal of base damage, base 

excision repair, nucleotide excision repair, mismatch repair, double-strand break 

repair, and cross-link repair (1). It has been reported that it is the stable 

association of repair factors with chromatin rather than DNA damage itself that 

initiates the DNA damage signaling pathways (101). 
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The persistence of the DNA damage response, the selection of DNA repair, and 

the cellular sensitivity to DNA damage are quite dependent on cell type and cell 

cycle status (102). For example, thymocytes, neural precursor cells and myeloid 

progenitor cells have been reported to be exquisitely sensitive to DNA damage 

and undergo apoptosis following genotoxic insult (2,103,104). In contrast, 

hematopoietic stem cells are more resistant to IR treatment and use different 

types of DNA repair mechanisms based on their quiescent or proliferating status 

(105-107).  

 

ATM/ATR-mediated signaling pathways 

The DNA damage checkpoint signals are sensed, transduced and executed at 

multiple levels (Figure 1-3 A). Following genotoxic stress, checkpoint-specific 

damage sensors recognize the DNA lesions and activate downstream 

transducers with the assistance of various mediators, including 53BP1, Claspin, 

TopBP1 and BRCA1 (1). Two phosphoinositide-3 kinase-related protein kinases, 

ATM and ATR, have been identified as the primary sensors to DNA double strand 

breaks (DSBs) and to DNA damage that perturbs DNA replication (replicative 

stress), respectively (108-111). ATM and ATR are members of the PIKK family 

protein kinases and preferentially phosphorylate their substrates at serine or 

threonine residues followed by glutamine (SQ/TQ sites) (112,113). In structure, 

the PIKK family proteins are comprised of five characterized domains: N-terminal 
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Figure 1-3. Simplified ATM/ATR-mediated signaling pathways. (A) Following genotoxic stress, 

DNA damage is sensed and detected by sensor (e.g., ATM, ATR). With the aid of mediators (not 

shown), damage signals are transduced to transducers (e.g., CHK1 and CHK2), which further 

activate downstream effectors (e.g., p53 and CDC25A) to execute their function directly (e.g., 

checkpoint, apoptosis, DNA repair). The schematic diagram (B) and model (C) of the activation 

process of ATR-mediated signals. As a ribonucleotide reductase inhibitor, hydroxyurea blocks the 

biosynthesis of deoxyribonucleotides and results in the depletion of dNTP pools. Following 

replicative stress, the uncoupling activities between DNA polymerase and helicase results in the 

generation of excessive single stranded DNA (ssDNA). The ssDNA is sensed and coated by RPA, 

a ssDNA-binding protein. ATR/ATRIP complex and RAD17/9-1-1 complex are then recruited to 

RPA-coated ssDNA independently. The 9-1-1 complex then recruits TopBP1 to associate with 

ATR/ATRIP, which stimulate ATR kinase activity. The activated ATR phosphorylates numerous 

substrates, including CHK1, to block origin firing and cell cycle progression, stabilize stalled 

replication forks, and facilitate fork restart.  
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α-helical repeat subunits known as HEAT (huntingtin, elongation factor 3, A 

subunit of protein phosphatase 2A, and TORI) repeats, FAT (FRAP, ATM, TRRAP), 

a C-terminal highly conserved kinase catalytic domain, PIKK-regulatory domain 

(PRD) and FATC (FAT C terminus) domain (114,115). The PRD and FATC 

domains are important to regulate the kinase activities of most PIKK family 

members (114).  

 Following DNA double strand breaks, ATM is recruited to dsDNA by NBS1 and 

activated by MRE11-RAD50-NBS1 (MRN) complex (111). Upon DNA damage, 

ATM autophosphorylates on Ser1981, which causes dimer dissociation and 

initiates cellular ATM kinase activity (109). Activated ATM phosphorylates 

numerous substrates to slow origin firing, initiate DNA repair, and execute DNA 

checkpoint signals (Figure 1-3 A). One well-established and unique substrate of 

ATM is the checkpoint kinase CHK2. The phosphorylation of CHK2 by ATM 

results in CHK2 activation and the activated CHK2 phosphorylates 

phosphotyrosine phosphatase CDC25 (116). The phosphorylation of CDC25A in 

G1 and S phase results in 14-3-3 binding, nuclear exclusion and 

ubiquitin-mediated degradation (117,118). As CDC25A dephosphorylates the 

conserved Thr14/Tyr15 inhibitory phosphorylation sites of CDK2 (119), the 

degradation of CDC25A results in the inactivation of CDK2 and resultant arrest of 

the cells in G1/S and/or intra-S checkpoint. Defects in ATM pathways are 

associated with Ataxia telangiectasia (120) and various cancers in human (Table 
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3). Atm -/- mice display growth retardation, infertility, hypersensitivity to 

γ-irradiation and develop thymic lymphomas with chromosomal abnormalities 

(121). Besides genotoxic stress, ATM is also activated following oxidative stress 

by formation of a disulfide-cross-linked dimer (122). Progressive bone marrow 

failure is reported in mature Atm -/- mice with elevated levels of reactive oxygen 

species and treatment with anti-oxidative agents significantly restores this 

deficiency (123).  

Following replicative stress, ATR is recruited and activated at persistent ssDNA 

and many factors are involved to regulate this complicated process (Figure 1-3 B, 

C). Following replicative stress (e.g. depletion of dNTP pools by ribonucleotide 

reductase inhibitor), the uncoupling between DNA polymerase and helicase 

activities results in the generation of excessive single stranded DNA (ssDNA), 

which is sensed and coated by RPA, a ssDNA-binding protein (Figure 1-3 B) (124). 

ATR is recruited to RPA-coated ssDNA by its stable binding partner ATRIP via its 

checkpoint recruitment domain (108,125). Meanwhile, RAD17 and the 

RAD9-HUS1-RAD1 complex are recruited to the stalled replication folk 

independent of ATR-ATRIP loading (126). At the mediator level, TopBP1 is 

recruited to the 9-1-1 complex by its interaction with the C-terminus of RAD9 (127). 

The recruited TopBP1 in DNA damage sensor complex associates with the 

TopBP1-interaction domain of ATRIP and the PRD domain of ATR to stimulate 

ATR kinase activity (128,129). The activated ATR phosphorylates numerous 
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substrates to block origin firing and cell cycle progression, stabilize stalled 

replication forks, and facilitate fork restart (124). One well-established and unique 

substrate of ATR is checkpoint kinase CHK1 (130). With the aid of mediator 

Claspin, activated ATR phosphorylates CHK1 at Ser317 and Ser345 (131,132). 

The phosphorylation of CHK1 results in its structure change and exposes its 

active site (133). The activated CHK1 releases from chromatin (134,135) and 

phosphorylates CDC25 (136,137) to initiate a cell cycle checkpoint. The 

checkpoint signal is terminated by phosphatase-dependent dephosphorylation 

(138) and proteasome-dependent degradation of CHK1 (139).  

Different from ATM, ATR plays important roles in maintenance of genomic 

integrity in proliferating cells, especially in S phase (124). Mutations in the ATR 

gene have been identified to associate with human Seckel syndrome patients 

(140) (Table 3). Early embryonic lethality has been reported in Atr -/- embryo 

(E7.5-E8.5), and Atr -/- blastocytes fail to expand and die of caspase dependent 

apoptosis (141,142). Atr conditional knockout mice show defects in tissue 

homeostasis with aging-related phenotypes and exhaustion of tissue-specific 

stem and progenitor cells (143-145). Besides ATR, the core factors in the ATR 

pathway are essential for the viability of replicating yeast and mammalian cells, 

including RPA, ATRIP and CHK1 (108,129,130,146,147). Nevertheless, 

damage-induced ATR-mediated signaling pathway might function differently 

compared with its role in normal cell cycle. Although the DNA damage response 
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Table 3. Identified diseases associated with deficiency in ATM/ATR-mediated DNA response. 

Gene  Protein functions Diseases in clinic 

ATM PIKK; DNA damage and DNA repair of DSBs 

(Sensor) 

ataxia-telangiectasia; breast 

cancer; other cancers 

ATR PIKK; DNA damage of ssDNA; DNA replication 

(Sensor) 

Seckel syndrome; cancer 

predisposition 

MRE11 Homologous recombination, telomere length 

maintenance, and DSB repair (Sensor) 

ataxia-telangiectasia-like 

disease; Alzheimer’s disease 

NBS1 DNA damage and DNA repair of DSBs (Sensor) Nijmegen breakage syndrome; 

cancer predisposition 

CHK2 Protein kinase (Transducer) Li-Fraumeni syndrome; breast 

cancer 

p53 Tumor suppressor; transcription factor; cell cycle 

checkpoint; DNA repair; apoptosis (Effector) 

Li-Fraumeni syndrome; mutation 

in more than 50% tumors 

CDC25 Proto-oncogene; phosphatase; cell cycle 

checkpoint (Effector) 

Overexpression in various 

cancers 

 

was severely impaired, cells harboring mutated RPA70 (148) or ATRIP (129) 

showed a quite normal cell cycle profile. Interestingly, Atr -/- Arabidopsis 

developed normally and growth retardation was only observed when the plants 

were challenged with replicative stress (149). The above results highlight the 

importance of investigating the function of ATR pathway quantitatively in 

unstressed and stressed condition among different model organisms.  

Although ATM is primarily activated by double strand DNA breaks and ATR is 

primarily activated by stalled replication forks, activation of the ATM or ATR 

signaling pathways is not limited by a certain kind of DNA lesion. During 

replication fork collapse, DNA double strand breaks are also generated by 

endonuclease cleavage, thereby activating the ATM-mediated signaling pathway 
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(150). In addition, when DNA double strand breaks are processed into 

single-strand DNA, the ATR-dependent signaling pathway is also triggered by 

CtIP activation (151,152). On the other hand, in the absence of ATM, the ATR 

response is increased upon hydroxyurea treatment (153). In the T cell lineage, the 

deficiency of CHK1 is associated with an increased level of activated CHK2 and 

p53 (154). Thus, the cross-talk between ATM-CHK2 and ATR-CHK1 signaling 

pathways ensures the rapid activation of cell cycle checkpoints and DNA repair 

processes synergistically. 

 

ssDNA binding protein RPA 

First purified from human cell extracts as an essential component for the 

replication of simian virus 40 (SV40) (155-157), replication protein A (RPA) has 

been identified as a heterotrimeric ssDNA-binding protein with essential functions 

in multiple processes in eukaryotic DNA metabolism, including DNA replication, 

DNA damage/repair and recombination (147,158,159). As an abundant 

ssDNA-binding protein in eukaryotic cells, RPA protects ssDNA from various 

nucleases and prevents the formation of secondary structure, which will interfere 

with normal DNA processing (147,158,159). In addition, RPA stimulates the 

activity of several DNA helicases and DNA polymerases and coordinates the 

assembly and disassembly of DNA processing proteins through ssDNA in both 

initiation and elongation processes of DNA replication (158,159). Sensing 
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damaged DNA, RPA interacts with various DNA repair factors, such as XPA and 

RAD51, to assemble DNA repair complex and/or to initiate homologous 

recombination (160-165).  

RPA is comprised of three subunits, RPA70, RPA32 and RPA14, and organized 

into eight domains connected by flexible linkers (Figure 1-4 A). The flexible linkers 

joining the domains in each subunit allow for optimal association of RPA with 

different lengths of ssDNA and various associated proteins during DNA 

processing. Six domains of RPA (N, A, B, C domain of RPA70, D domain of 

RPA32, and RPA14) adopt an oligonucleotide binding (OB)-fold (166,167), and 

the A to D domains of RPA sequentially mediate its interaction with ssDNA with a 

defined 5'-3' polarity (168-171). Although the DNA-binding affinities of each 

individual domain are weak, the synergistic effect of various domains of RPA 

produces a very high and specific binding affinity for ssDNA with Kd on a scale of 

10-9 to 10-10 M (159,172). At least three different ssDNA binding modes have been 

characterized based on the length of ssDNA (i.e., 8-10 nt, 12-23 nt, and 28-30 nt) 

and the DNA-binding domains involved (159,171,173,174), suggesting that RPA 

possesses multiple dynamic structural conformations in DNA processing 

pathways. The flexible nature of RPA’s confirmation has also been demonstrated 

by scanning transmission electron microscopy and gel filtration studies (175). In 

addition to these DNA-binding motifs, the N, A and B domain in RPA70 and the C 

domain in RPA32 have been identified as the well-established protein-protein 
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Figure 1-4. RPA recruits ATR/ATRIP to ssDNA. (A) Schematic illustration of RPA. Reticulated 

boxes, classical protein-protein interaction domains in RPA70 and RPA32 subunits; dotty boxes, 

RPA subunits interaction domains; green box, phosphoamino acid cluster in the N-terminal of 

RPA32. Modified from the review from Fanning et al (159) with permission. (B) Schematic 

illustration of ATRIP. ATRIP is comprised of an N-terminal checkpoint recruitment domain which 

interacts with RPA70N, a coiled-coil domain, a TopBP1-interaction domain and C-terminal 

ATR-binding domain. One function of the coiled-coil domain is to mediate ATRIP 

homo-dimerization. Modified from the review from Mordes and Cortez (176) with permission. (C) 

The basic cleft region of RPA70N binds with multiple DNA damage checkpoint proteins, including 

ATRIP and RAD9, to regulate ATR signaling. The basic and acidic amino acids are labeled with 

red and blue color, respectively, in the solution NMR structure of human RPA70N domain (Protein 

data bank entry 2B3G) (177). 
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interaction domains of RPA to interact with various DNA processing factors 

(Figure 1-4 A) (147,158,159). It is worthwhile to note that RPA might interact with 

certain proteins via multiple domains. For example, RPA interacts with SV40 T 

antigen by both RPA70A and RPA32C domains (178-180). In addition, a 

phosphoamino acid cluster has been characterized in the N-terminal domain of 

RPA32 (Figure 1-4 A). Following DNA damage treatments, the phosphorylation of 

Ser33 and Thr21 in this region by ATM/ATR generates a hyperphosphorylated 

form of RPA, which prevents ssDNA accumulation and facilitates adaptation of a 

DNA-replication fork to replication stress (181,182). 

Following replicative stress, the uncoupled activity of DNA helicases and DNA 

polymerases generates excessive single-stranded DNA (ssDNA), which is sensed 

and coated by replication protein A (RPA) (124). Although the exact length of 

ssDNA in mammalian systems is unclear, the average length of ssDNA 

accumulated in wild type yeast is more than 330 nt following 2-hour hydroxyurea 

treatment (183). As one RPA molecule binds to 8-30 nt ssDNA (159), it is 

reasonable to speculate that one piece of extensive ssDNA might recruit a series 

of RPA molecules in cells (Figure 1-3 C).  

The recruitment of RPA to ssDNA initiates several events to maintain genomic 

integrity following replicative stress. The most well-established model is RPA70N 

domain functions as an “antennae” to recruit a series of checkpoint proteins to 

ssDNA, including RAD9 and ATRIP (108,125,126,148) (Figure 1-4 B, C). 
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Following the independent loading of ATR/ATRIP and 9-1-1 complex on 

RPA-coated ssDNA (126), TopBP1, a key ATR activator, is recruited to ssDNA by 

interaction with ATR/ATRIP (Figure 1-4 B) and RAD9 to facilitate the formation of 

activated DNA damage sensor complex (127-129). The activated ATR then 

phosphorylates numerous substrates in replicative stress-induced DNA damage 

response (93). ATR and its effectors maintain genomic integrity by arresting cell 

cycle, slowing origin firing, stabilizing replication fork, and facilitating fork restart 

(124). Besides this “classical” model, RPA also maintains genomic stability by 

interaction with multiple DNA damage/repair proteins, including RAD51, the MRN 

complex and the TIM/TIPIN complex (164,184,185). Recently, annealing helicase 

SMARCAL1(HARP) was demonstrated to interact with RPA to prevent the 

generation of excessive ssDNA following replicative stress (186-189). 

 

DNA damage-induced cell death 

Once DNA damage becomes persistent and irreparable, cells will initiate 

programmed cell death to clear damaged cells, which maintains the genomic 

integrity in tissues (100). Although both DNA damage and cell death signaling 

pathways have been well-established, how genotoxic stress is integrated and 

transduced to the core apoptosis machinery is still not completely understood. 

Multiple complicated mechanisms are involved in the process and the decision of 

the cell fate seems to be dependent on the cellular as well as genetic background. 
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The best understood model is the p53-dependent pathways (1). Following DNA 

damage treatment, p53 is phosphorylated by ATM/ATR or CHK1/CHK2 (190), 

which releases ubiquitin ligase MDM2 from p53 and stabilizes p53 (1,191). The 

activated p53 functions as a transcription factor to induce the expression of a 

series of proapoptotic genes (e.g. NOXA and PUMA), which activate BAX/BAK in 

the mitochondria to initiate apoptosis (55). Meanwhile, in cytosol or mitochondria, 

p53 interacts with BCL-2 family proteins directly to initiate cell death independent 

of its transcription function (192). In addition to the classical model, genotoxic 

stress also induces the activation of caspase 2 in a p53-dependent manner by 

formation of PIDDosome to cleave BID to initiate apoptosis (193). Following 

irradiation, histone H1.2 has been identified as an apoptogenic factor released 

from chromatin to translocate to the mitochondria in a p53-dependent manner 

(194). 

Several p53-independent mechanisms have also been reported to contribute to 

the DNA damage-induced apoptosis. For example, as a transcriptional regulator, 

BRCA1 induces apoptosis by activation of DNA damage-responsive gene 

GADD45, which further activates c-Jun N-terminal kinase/stress-activated 

kinase/Fas/caspase 8 pathways to initiate apoptosis (195,196). In addition, an 

ATR-CHK1 regulated p53/mitochondria-independent cell death pathway has 

recently been discovered and it is mediated in a caspase 2-dependent manner 

(197,198). Interestingly, following etoposide and ionizing radiation, BID has been 
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demonstrated to facilitate apoptosis in a p53-independent pathway and the 

pro-apoptotic function of BID in this setting is independent of caspase processing 

of the flexible loop region (79).  

 

Mouse hematopoietic system 

 

Hematopoiesis 

   Comprised of hematopoietic stem cells, progenitors, precursor cells, and 

various differentiated lineage-committed cells (Figure 1-5), the hematopoietic 

system is elaborately maintained to produce functional blood cells to satisfy the 

requirement of the body under various physiological and pathological conditions 

(199-201). Following embryo development, hematopoiesis is initiated in the yolk 

sac, and then occurs in the embryonic AGM (aorta-gonad-mesonephros) region 

(202). The definitive hematopoietic stem cells originate in the AGM and then 

colonize in the fetal liver until bone marrow is formed (203,204). In fetal 

development, the liver is the major hematopoietic organ, while hematopoiesis 

occurs primarily in bone marrow in postnatal development (205). In adults, various 

hematopoietic cells are predominately originated in bone marrow, mature in 

secondary lymphoid organs (i.e., spleen, thymus and lymph nodes), and function 

in peripheral blood and tissues (206).  

  All cellular blood components are derived from hematopoietic stem cells and 
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Figure 1-5. Schematic illustration of the differentiation of hematopoietic system. The hematopoietic 

system is comprised of hematopoietic stem cells, multipotential and lineage-restricted progenitors, 

and various differentiated lineage-committed cells. Supplemented with IL3, IL6, stem cell factor 

(SCF) and erythropoietin (EPO), hematopoietic cells are committed to differentiate through 

myeloid lineage in methylcellulose culture(207) and various colonies are observed according to 

colony morphology (208). Particularly, GEMM colonies (colony-forming unit of 

granulocyte/erythrocyte/macrophage/megakaryocyte) are formed from HSCs and CMPs (red 

frame); GM colonies (colony-forming unit of granulocyte/macrophage) are formed from GMP cells 

(green); G and M colonies are generated from granulocyte (blue) and macrophage (purple), 

respectively (209). HSC, hematopoietic stem cell; MMP, multipotent progenitor; CLP, common 

lymphoid progenitor; CMP, common myeloid progenitor; NK cells, nature killer cells; GMP, 

granulocyte macrophage progenitor; MEP, megakaryocyte erythroid progenitor. 
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matured through lineage-restricted differentiation (201,210). Given stimuli from 

certain colony stimulating factor and/or cytokines, hematopoietic cells are 

committed to differentiate through either the lymphoid or myeloid lineage (Figure 

1-5). Lymphocytes (B cells, T cells, NK cells), derived from common lymphoid 

progenitors, play an essential role to mediate the adaptive immune response. 

Myelocytes (granulocytes, megakaryocytes and macrophages), derived from 

common myeloid progenitors, are involved in various physiological roles, 

including innate immunity and hemostasis. The differentiation and maturation of 

various hematopoietic cells are associated with a series of identified surface 

markers, which makes it possible to distinguish and characterize various cell 

populations in hematopoietic system by flow cytometry. For example, the 

HSC-enriched LSK cells (Lin-Sca1+ckit+) and MPCs (Lin-Scal-ckit+) are identified 

and characterized by the staining with the surface markers of Lineage (CD3, B220, 

Gr-1, Ter119), Sca1 and ckit (211,212). The GMP, CMP, and MEP cells in MPC 

population are further gated as CD34+FcγR+, CD34+FcγR-, and CD34-FcγR- 

population from Lin-Scal-ckit+ population, respectively, by additional surface 

staining with CD34 and FcγR(209) (Figure 1-5). 

   One in every 105 nucleated cells, hematopoietic stem cells are a rare 

population in the adult bone marrow (201). However, hematopoietic stem cells are 

multipotent to generate all hematopoietic cells and reconstitute hematopoietic 

system (201). The regeneration ability of hematopoietic stem cells has been 
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demonstrated and applied in bone marrow transplantation (211). Based on the 

self-renewal capability, the HSCs-enriched LSK population are further 

distinguished and characterized into long-term HSC, short-term HSC and 

multipotent progenitors (MPP) by surface staining of CD34 and CD135 

(209,213,213,214). The self-renewal function of hematopoietic stem cells is 

maintained in the stem cell niche (microenvironment) in the bone marrow in vivo 

(215). Besides bone marrow, peripheral blood is another source to harvest HSCs, 

suggesting that HSCs might pass the bone marrow barrier and circulate in 

bloodstream to settle in other organs (216,217). Predominately in quiescent status, 

HSCs undergo either symmetric division (two daughter HSCs) to expand or 

asymmetric division (one HSC and one progenitor cell) to maintain HSC 

population (218). Although HSCs are multipotent stem cells, the self-renewal 

ability is limited and long-term mobilization of HSCs from quiescence into the cell 

cycle results in the depletion of stem cell function (218,219). 

 

Regulation of hematopoietic stem cells 

Controlled by quiescent or slowly cycling stem cells and rapidly cycling 

progenitor cells, the hematopoietic system is delicately regulated by various 

endogenous and extrinsic events to maintain hematopoietic homeostasis 

(200,220). In the adult, the balance among stem cells, progenitor cells and 

differentiated cells is controlled by a series of accumulation and elimination 



 34

factors, including proliferation, apoptosis, differentiation and self-renewal (201). 

Following cellular stresses or inflammatory signals, the homeostasis of the 

hematopoietic system is transiently disrupted by depletion of functional 

differentiated cells and then quickly compensated by mobilization of stem cells 

into the cell cycle (199,221). The activation of hematopoietic stem cells (HSCs) 

generates adequate progenitor cells and mature cells to recover hematopoietic 

homeostasis and then returns to a quiescent state (199,221). Such activation 

cycles, or “stem cell mobilization”, is tightly regulated, as abnormal proliferation of 

HSCs will deplete their self-renewal function (218). Defects in cell cycle 

checkpoints result in excessive mobilization of HSCs and depletes their 

self-renewal function in serial bone marrow transplantation (219). 

  Due to the rapid expansion and regeneration, the hematopoietic system is quite 

vulnerable to various genotoxic stresses (210). Various key factors in the DNA 

damage/repair pathways have been demonstrated to play an important role to 

maintain genomic integrity and stem cell function (222). Atr-conditional knockout 

mice demonstrated premature aging defects with significantly decreased LSK 

(Lin-Scal+ckit+) populations and thymic progenitors (145). Progressive bone 

marrow failure is observed in 24-week old Atm -/- mice due to a depletion of LSK 

cells as well as HSC function with elevated reactive oxygen species (123). Mice 

harboring a hypermorphic mutant allele of p53 display reduced proliferating HSC 

population in aging with limited HSC function (223). In addition, mice with 
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deficiencies in DNA repair machines, including nucleotide excision repair, 

telomere maintenance, non-homologous end-joining, have been demonstrated to 

deplete the hematopoietic stem cell function with age (224,225), suggesting that 

the accumulation of endogenous DNA damage limits stem cell function in a cell 

autonomous fashion. Interestingly, accompanied with increased DNA damage, the 

frequency of stem cells is increased with age (224), which is consistent with a 

compensatory expansion of the HSC reservoir due to the limited self-renewal 

function of HSCs. Besides DNA damage/repair factors, other cytoprotective 

properties have been proposed to protect HSCs from genotoxic stresses, 

including maintenance of a quiescent state by regulation of lipid raft clustering 

(226) and maintenance of a low metabolism level to prevent reactive oxygen 

species (227-229). 

  Ionizing irradiation (IR) and hydroxyurea (HU) have been used as two genotoxic 

models to investigate the DNA damage-induced response in vitro and in vivo(1). 

IR treatment damages all types of nucleated cells by generation of DNA 

double-strand breaks (DSB), which predominantly activate ATM-mediated 

checkpoint response (1). Interestingly, differential DNA damage response has 

been reported between hematopoietic stem cell and progenitor cell population 

following IR treatment (105,107) and the reliance on the error-prone NHEJ 

pathway in quiescence of HSCs has been demonstrated to contribute to 

hematopoietic abnormalities (105). Different from IR, hydroxyurea, a clinically 
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used ribonucleotide reductase inhibitor, arrests DNA replication and induces 

replicative stress in replicating cells but not in quiescent cells (1,230), which 

provide a reasonable model to selectively induce damage in progenitor cells 

rather than HSCs. In a mouse model, HU has been demonstrated to induce the 

mobilization of HSCs in vivo (231), presumably by a depletion of the rapidly 

proliferating progenitor cell population.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell biology experiments 

 

Cell lines and drug treatments 

Hox11-immortalized Bid +/+ and Bid -/- MPCs (66,232), were cultured in IMDM 

medium (Invitrogen, Carlsbad, CA, USA) with 20% FBS, 100 U/ml 

penicillin-streptomycin, 2 mM glutamine, 0. 1 mM β-mercaptoethanol, and 10% 

conditioned medium from WEHI cells as a source of IL-3. U2OS cells, Bid -/- 

MEFs harboring HA-tagged Bid, were cultured in DMEM (Invitrogen) with 10% 

FBS, 100 U/ml penicillin-streptomycin, 2 mM glutamine, and 0.1 mM 

β-mercaptoethanol. Early passage cells (10<P<20) were treated with hydroxyurea 

(HU) (Sigma, St. Louis, MO, USA) or etoposide (ETOP) (Sigma) as indicated. 

 

RNAi treatment and overexpression 

The siRNA oligonucleotides targeting human BID (SI02661911, SI02662415) 

were purchased from Qiagen Inc. (Valencia, CA, USA). The No. 7 (SI02661911) 

and No. 8 (SI02662415) hBID siRNA targeting sequences are 

5'-AAAGACAATGTTAAACTTATA-3' and 5'-CAGGGATGAGTGCATCACAAA-3', 



 38

respectively. For U2OS cells, the transfection of BID siRNA and control siRNA 

(1027310, target sequence: 5'-AATTCTCCGAACGTGTCACGT-3') was mediated 

by Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. 

Unless otherwise indicated, No.7 and No.8 hBID siRNAs were mixed together and 

used as BID siRNA in experiments. After 72-hour transfection, the transfected 

U2OS cells were treated as indicated in the figure legends.  

The siRNA oligonucleotides targeting mouse Bid (SI00929103) were purchased 

from Qiagen Inc. Mouse Bid siRNA target sequence is 

CACAGAAGATTCCATATCAAA. For MPCs, 10×106 cells were washed once with 

PBS, resuspended in 100 μl Mouse ES Cell Nucleofector Solution (Amaxa) 

containing 100 pmol siRNA, and transfected twice by Nucleofector Program A-30. 

After 72-hour transfection, the transfected MPCs were treated as indicated in the 

figure legends. 

For overexpression, BID siRNA and plasmids harboring various BID constructs 

in pcDNA3 vectors were co-transfected into U2OS cells by Lipofectamine 2000 

(Invitrogen) according to the manufacturer's instructions. After 72-hour 

transfection, the cells were treated with 10 mM HU for 2 hours. 

 

Stable cell line generation 

To generate U2OS cell lines stably expressing various BID mutants, 

pMSCVpuro (Clontech) plasmid harboring wild type or mutated BID was 
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transfected into 293T cells along with packaging vector using Fugene 6 (Roche) 

to product retrovirus. Silent mutations in the BID siRNA-targeted region (cDNA: 

G36A/T39C/G42A/C45T/C48T) were introduced in these retrovirus constructs so 

that the expressed mutated BID would not be knocked down by BID siRNA. Then, 

U2OS cells were infected twice with retrovirus harboring wild type or mutated BID 

and selected by 0.8-1 μg/ml puromycin for 48 hours. Live cells were cultured in 

DMEM medium containing 0.5 μg/ml puromycin. 

 

Immunofluorescence staining 

For ATRIP nuclear foci, BID siRNA, or control siRNA was delivered into U2OS 

cells by Lipofectamine 2000. After 40 hours, pcDNA3 vector containing wild type 

mouse Bid or H4A mutant Bid or vector alone was introduced by FuGene 6 

(Roche, Nutley, NJ, USA). After another 40 hours, the cells were treated with 

10 mM HU for 5 hours. Then, the cells were fixed by 3% paraformaldehyde/2% 

sucrose solution and permeabilized by Triton X-100 solution (0.5% Triton X-100, 

20 mM HEPES pH7.4, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose). ATRIP 

localization was detected by immunofluorescence using anti-ATRIP polyclonal 

antibody 403(108). The cells were examined using a Leica DM IRBE inverted 

wild-field microscope (Bannockburn, IL, USA). 

For BID-RPA co-localization analysis, synchronized Bid -/- MEFs harboring 

HA-tagged Bid were fixed in ice cold 3:1 methanol : acetone and blocked for 
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1 hour with 5% Normal Goat Serum (Sigma) in PBS. RPA was detected by 

immunofluorescence using Rat anti-RPA32 antibody (Cell Signaling, Danvers, MA, 

USA) and Alexa Fluor 546 conjugated Goat anti-Rat IgG antibody (Invitrogen). 

HA-tagged Bid was detected by immunofluorescence using Alexa Fluor 488 

conjugated mouse anti-HA IgG (Invitrogen). Microscopy was performed using a 

Zeiss (Thornwood, NY, USA) LSM 510 inverted confocal microscope. (Clinton 

Bertram in my lab helped me finish this experiment) 

 

Immunoprecipitation 

For endogenous immunoprecipitation (IP), the chromatin-enriched nuclear 

fractions of Bid +/+ MPCs or U2OS cells were collected and lysed in lysis buffer 

(25 mM HEPES pH 7.5, 250 mM NaCl, 2 mM EDTA, 10% glycerol, 0.5% NP-40, 

1 mM PMSF, 4 μg/ml leupeptin/antipain, 0.1 mM orthovanadate, 1 mM NaF). Then, 

the antibody for immunoprecipitation (i.e. biotinylated anti-human/mouse BID goat 

polyclonal antibody (R&D Systems, Minneapolis, MN, USA, BAF860), anti-ATRIP 

403(108), or anti-RPA70 (US biological, R3400)) was added to the lysate, and 

incubated at 4 °C for one hour. Then, beads for immunoprecipitation (i.e. 

Streptavidin agarose (Novagen, Gibbstown, NJ, USA), TrueBlot anti-Rabbit Ig IP 

Beads (cat No. 00-8800, eBioscience Inc., San Diego, CA, USA) or TrueBlot 

anti-mouse Ig IP Beads (cat No. 00-8811, eBioscience Inc.)) were added and 

samples were incubated at 4 °C for 2 hours. The beads were pelleted, washed, 



 41

boiled with 5 × Laemmli buffer and the supernatant was resolved on SDS-PAGE. 

(Qiong Shi in my lab helped me finish this experiment) 

For domain mapping experiments, the indicated BID constructs in pcDNA3 

vectors and the indicated HA-tagged ATRIP constructs in pLPCX vectors (from Dr. 

David Cortez) were transfected using Lipofectamine (Invitrogen) and expressed in 

293T cells for 48 h. Total cell lysates were prepared and BID was 

immunoprecipitated by anti-BID antibody. (Qiong Shi in my lab helped me finish 

this experiment) 

For BID-BCL2/MCL1 interaction, pcDNA3 (Invitrogen) plasmid harboring wild 

type or mutated BID was transfected into 293T cells by Fugene 6 (Roche) for 48 

hours. Cells were lysed in lysis buffer (25 mM HEPES pH 7.5, 250 mM NaCl, 2 

mM EDTA, 10% glycerol, 0.5% NP-40, 1 mM PMSF, 4 μg/ml Leupeptin/Antipain, 

0.1 mM orthovanadate, 1 mM NaF). Then, BID was immunoprecipitated by 

biotinylated anti-human/mouse BID goat polyclonal antibody (R&D system, 

BAF860) and streptavidin agarose (Novagen). The beads were pelleted, washed, 

boiled with 3×Laemmli buffer and the supernatant was resolved on SDS-PAGE. 

 

CHK1 IP-kinase assay 

U2OS cells transfected with control siRNA or BID siRNA (No. 8) for 72 hours 

were treated with 10 mM HU for 2 hours. The cells were lysed in IP buffer (25 mM 

HEPES, 250 mM NaCl, 2 mM EDTA, 0.5 NP-40, 10 % glycerol, 4 μg/ml 
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leupeptin/antipain, 1 mM PMSF, 10 mM β-glycerophosphate, 0.1 mM 

orthovanadate, 1 mM NaF, pH 7.5) and CHK1 was immunoprecipitated using 

polyclonal anti-CHK1 antibody (Chemicon, Temecula, CA, USA, AB3539) and 

protein G sepharose (Invitrogen). The immunoprecipitated products were washed 

once with kinase buffer (10 mM HEPES, 50 mM NaCl, 50 mM β-glycerophosphate, 

10 mM MgCl2, 10 MnCl2, 1 mM DTT, pH 7.5) and incubated with 1 μg 

GST-CDC25C protein (a generous gift from Dr. Jennifer Pietenpol) on ice for 

5 minutes. Then, 10 μM cold ATP and 5 μCi γ32P-ATP were added to the reaction. 

The kinase reactions were performed at room temperature for 1 hour and stopped 

by adding 5 × Laemmli buffer. Kinase reactions were resolved on SDS-PAGE. 

Gels were stained with SimplyBlue SafeStain (Invitrogen) according to the 

manufacturer's instructions, photographed, and dried before the autoradiography. 

 

Quantitative Real-time PCR 

The total RNA of 10×106 cells were extracted and purified by Trizol (Invitrogen) 

and 5 μg of RNA were subjected to reverse-transcription (Invitrogen) to obtain 

cDNA. Quantitative RT-PCR was performed (SYBR Green Jumpstart Taq 

Ready-Mix (Sigma)) on the iQ5 Real-Time PCR Detection System (Bio-Rad).  

Sequences of the primers that were used: Actin (5'-GGCTGTATTCCCCTCCATCG-3', 

5'-CCAGTTGGTAACAATGCCATGT-3'), Chk1 (5'-GTTAAGCCACGAGAATGTAGTGA-3', 

5'-GATACTGGATATGGCCTTCCCT-3'), Chk2 (5'-CTCGGCTATGGGCTCTTCAG, 
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5'-CTTCTCAACAGTGGTCCATCG-3'), Cdc25A (5'- ACAGCAGTCTACAGAGAATGGG-3', 

5'-GATGAGGTGAAAGGTGTCTTGG-3'), p21 (5'-CCTGGTGATGTCCGACCTG-3', 

5'-CCATGAGCGCATCGCAATC-3'), and Noxa (5'-GCAGAGCTACCACCTGAGTTC-3', 

5'-CTTTTGCGACTTCCCAGGCA-3'). 

 

Cell cycle analysis and pCHK1 intracellular staining 

BrdU incorporation analysis was performed according to BrdU Flow Kits (BD 

Pharmingen). Briefly, MPCs (0.5-1×106 cells/ml) and U2OS cells (20-40% 

confluence) were pulse labeled with 10 μM BrdU for 45 minutes, and 2 hours, 

respectively. Cells were fixed and permeabilized with BD Cytofix/Cytoperm Buffer, 

and incubated with BD Cytoperm Plus Buffer followed by an additional short 

fixation with BD Cytofix/Cytoperm Buffer. The incorporated BrdU was exposed by 

treatment with 30 μg DNase for 1 hour at 37°C and probed with FITC-conjugated 

anti-BrdU antibody (BD Pharmingen) for 20 minutes at room temperature. The 

total DNA content was stained immediately prior to flow cytometric analysis with 

20 μl of 7-aminoacridine (7-AAD) solution (BD Pharmingen). 

  For CHK1 intracellular staining, Bid +/+ and/or Bid -/- MPCs were fixed and 

permeabilized with BD Cytofix/Cytoperm Buffer, and incubated with BD Cytoperm 

Plus Buffer followed by an additional short fixation with BD Cytofix/Cytoperm 

Buffer. For pCHK1 staining, cells were stained with anti-pCHK1 (S345) antibody 

(Cell signaling, #2348) and then Alexa Fluor 488 conjugated Goat anti-Rabbit IgG 
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antibody (Invitrogen). DNA was stained by 7-AAD. Then cells were analyzed by 

flow cytometry. 

 

Subcellular fractionation 

Subcellular fractionation of MPCs or U2OS cells was performed as previously 

described (233) with minor modification. In brief, 10 × 106 MPCs or U2OS cells 

were washed once with PBS and suspended in 400 μl solution A (10 mM HEPES 

pH7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT, 

1 mM PMSF, 10 mM NaF, 10 mM β-glycerophosphate, 1 μM microcystin) with 

0.1% NP-40 on ice for 5 minutes. The cytoplasmic and nuclear fractions were 

collected by centrifugation at 1300 × g for 4 minutes at 4 °C The isolated nuclei 

were washed once with solution A and then lysed in solution B (3 mM EDTA, 

0.2 mM EGTA, 1 mM DTT, 1 mM PMSF, 10 mM NaF, 10 mM β-glycerophosphate, 

1 μM microcystin). After incubation on ice for 10 minutes, chromatin fractions were 

harvested by centrifugation at 1700 × g for 4 minutes at 4 °C. The chromatin pellet 

was washed once with solution B and resuspended in 100 μl RIPA buffer. After 

sonication for 20 s, the samples were boiled with 5 × Laemmli buffer. 

 

Single-cell gel electrophoresis (Comet) assay 

U2OS cells overexpressing HA-tagged wild type, Helix 4 mutated hBID, RPA-ID 

mutated hBID or IH5 mutated hBID was transfected with BID siRNA for 72 hours. 
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Silent mutations were introduced in the BID siRNA-target region so that only 

endogenous BID was knocked down by BID siRNA. Then, cells were treated with 

10 mM HU overnight. The untreated and treated cells were collected in ice-cold 

PBS and alkaline Comet assay was performed by CometAssay Kit (Trevigen, 

Gaithersburg, MD, USA) according to the manufacturer’s instructions. Briefly, 

cells were mixed with molten LMAgarose and pipetted onto a CometSlide. After 

incubation with Lysis Solution and Alkaline Solution, slides were placed in 

Genemate Compact Gel tank (Bioexpress, Kaysville, UT, USA). For Helix 4 

mutated hBID, TBE electrophoresis was performed at 22 V for 10 minutes. For 

RPA-ID and IH5 mutated hBID, Alkaline Electrophoresis was performed at 21V for 

30 minutes. After incubation with 70% ethanol for 5 minutes, the slides were 

stained with SYBR Green I. Then, samples were examined using a Leica DM 

IRBE inverted wild-field microscope and analyzed by CometScore Program 

Version 1.5. 

 

Antibodies 

The following antibodies were used in this study: anti-BID rabbit polyclonal 

antibody (73), anti-BID polyclonal antibody (R&D Systems, BAF860), anti-BID 

polyclonal antibody (Santa Cruz, FL-195), anti-CHK1 monoclonal antibody (Santa 

Cruz, G-4), anti-phospho-CHK1 (S345) polyclonal antibody (Cell signaling, 2341), 

anti-phospho-CHK1 (S317) polyclonal antibody (Cell signaling, 2344), 
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anti-CDC25A monoclonal antibody (Santa Cruz, F6), anti-BAX polyclonal 

antibody(234), anti-ACTIN monoclonal antibody (Sigma), anti-HISTONE H3 

monoclonal antibody (Upstate Biotechnology, Waltham, MA, USA, 05-928), 

anti-IκB polyclonal antibody (Cell signaling, 9242), anti-p53 monoclonal antibody 

(Santa Cruz, Pab240), anti-phospho-p53(S15) polyclonal antibody (Cell signaling, 

9284), anti-HA monoclonal antibody (Roche, 12CA5), and anti-ATRIP polyclonal 

antibody (403; a generous gift from Professor Cortez (108)), anti-ATR polyclonal 

antibody (Santa Cruz, N-19), anti-RPA32 monoclonal antibody (Cell signaling, 

2208), anti-RPA70 monoclonal antibody (US biological, R3400), anti-MCL-1 

polyclonal antibody (Rockland, Gilbertsville, PA, USA), anti-BCL-2 monoclonal 

antibody (Pharmingen, San Diego, CA, USA), anti-His monoclonal antibody (Cell 

signaling, #2365), anti-MCM3 polyclonal antibody (Bethyl Laboratories, 

A300-192A), anti-PCNA monoclonal antibody (BD Pharmingen, 555567) and 

anti-MBP monoclonal antibody (Sigma), anti-phospho-ATM (S1981) monoclonal 

antibody (Cell signaling, #4526), anti-ATM monoclonal antibody (Cell signaling, 

#2873), anti-MRE11 polyclonal antibody (Millipore, 07-638), anti-RAD9 

monoclonal antibody (Santa Cruz, M-389), anti-RUNX1 antibody was a generous 

gift from Professor Hiebert. 

 

Biochemical and biophysical experiments 

 



 47

Protein purification 

The E. coli BL21 strains harboring ATRIP/pSV282 (a generous gift from Dr. 

David Cortez) were induced by 0.1 mM isopropyl-β-D-thiogalactopyranoside 

(IPTG) at room temperature for 8 hurs and the His-MBP-ATRIP fusion protein was 

purified as previous described (235). The purification of various His-tagged RPA 

constructs was performed as previously described (236). The construction and 

purification of His-tagged RPA70-PDI fusion protein was performed as previously 

described (235). RPA expression constructs: RPA70N cDNA harboring 

R41E/R43E mutant was a generous gift from Professor Cortez (148). The 

expression vector of His-tagged RPA70NAB, AB, N, and 32C domain was a 

generous gift from Professor Fanning (237). To purify these His-tagged proteins, 

the harvested cells were resuspended in 30 mM Tris-HCl (pH 8.0) in 1/10 volume 

of the culture, lysed by 1mg/ml lysozyme, and sonicated on ice for 10 minutes. 

The lysate was centrifuged at 12,000 rpm for 20 minutes at 4 °C and the 

supernatant was purified on Ni-NTA resins in a batch procedure. After being 

washed with 15 ml washing buffer (20 mM imidazole, 300 mM NaCl, and 50 mM 

NaH2PO4, pH 8.0), the His-tagged proteins were eluted with the elution buffer 

(100 mM imidazole, 300 mM NaCl, and 50 mM NaH2PO4, pH 8.0). The proteins 

were dialyzed against 30 mM Tris-HCl buffer (pH 8.0) and were concentrated 

using the Ultrafree-15 centrifugal filter. The purified proteins were stored directly 

at -80°C.  
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Wild type or mutated human and mouse BID cDNA was cloned into pGEX-6P-1 

vectors and induced in BL21 strains by 1 mM IPTG at 37 °C for 4 hours. The 

harvested cells were resuspended in lysis buffer (50 mM Tris-HCl, 50 mM NaCl, 

5 mM EDTA, 1% Triton X-100, 1 mM DTT, 1 mM PMSF, pH 8.0) and centrifugated 

at 20,000 g for 20 minutes at 4 °C After incubation with glutathione-agarose for 

3 hours at 4 °C the supernatant was discarded and the beads were incubated with 

prescission protease (GE Healthcare Bioscience, Piscataway, NJ, USA) at 4 °C 

overnight. The BID protein was released from GST-BID fusion protein in the 

beads and the supernatant was dialyzed in 30 mM Tris-HCl (pH 8.0). 

 

Protein-protein in vitro interaction 

  For the BID-ATRIP in vitro interaction, 10 μg mouse Bid and 100 μg 

His-MBP-ATRIP protein were incubated in binding buffer (20 mM HEPES, 100 mM 

KCl, 5 mM MgCl2, 0.5 mM EDTA, 0.1% NP-40, pH7.5) at room temperature for 

30 minutes. Then biotinylated anti-human/mouse BID goat polyclonal antibody 

(R&D Systems, BAF860) was added and incubated at 4 °C for 1 hour. Streptavidin 

agarose (Novagen) was then added and incubated at 4 °C for 2 hours. The beads 

were pelleted by centrifugation and washed four times with binding buffer. The 

beads were boiled with 5 × Laemmli buffer. The supernatant was resolved on 

SDS-PAGE and immunoblotted with anti-BID and anti-ATRIP antibodies. 

  For the BID-RPA in vitro interaction, 100 pmol BID and 100 pmol RPA were 
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incubated in binding buffer (20 mM HEPES, 100 mM KCl, 5 mM MgCl2, 0.5 mM 

EDTA, 0.1% NP-40, pH7.5) at room temperature for 30 minutes. Then, BID was 

immunoprecipitated using biotinylated goat polyclonal anti-human/mouse BID 

antibody (R&D system, BAF860) and streptavidin agarose (Novagen). The beads 

were pelleted by centrifugation and washed five times with binding buffer. The 

beads were boiled with 3×Laemmli buffer and the supernatant was resolved on 

SDS-PAGE. 

ssDNA pull-down assay was performed as pervious described (238). Briefly, 5 

pmol 3'-biotinylated 80-nucleotide DNA oligomer (AGATTCACCAGTCACACGACCAG 

TAATAAAAGGGACATTCTGGCCAACAGAGATAGAACCCTTCTGACCTGAAAGCGTAA) 

was incubated with streptavidin agarose (Novagen) in buffer containing 10 mM 

Tris-HCl (pH 7.5) and 100 mM NaCl at 4°C for 30 minutes. Then, 1 μg purified 

recombinant His-tagged RPA and 80 pmol pre-cleared wild type or mutated BID 

was incubated with beads in binding buffer A (10 mM Tris-HCl, 100 mM NaCl, 10 

μg/ml BSA, 0.01% NP-40, 10% glycerol, pH 7.5) at 4°C for 1 hour. The beads 

were pelleted by centrifugation and washed five times with binding buffer A. The 

beads were resuspended in 3×Laemmli buffer, boiled, and resolved on 

SDS-PAGE. 

For in vitro RPA-ATRIP interaction, 250 pmol purified recombinant 

GST-wt-RPA70N or GST-RPA70N/R41E/R43E was incubated with 

Glutathione-Agarose (Sigma) in GST-binding buffer (20 mM HEPES, 100 mM KCl, 
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5 mM MgCl2, 0.5 mM EDTA, 0.2% NP-40, 10% glycerol, 1 mM PMSF, pH7.5) for 1 

hour at room temperature. After the agarose beads were pelleted and washed 

once with GST-binding buffer, 140 μg nuclear lysate of U2OS cells stably 

expressing HA-tagged ATRIP (a generous gift from Professor Cortez) was added 

with purified recombinant BID simultaneously. The mixture was incubated for 1 

hour at room temperature, and then the beads were pelleted by centrifugation and 

washed five times with GST-binding buffer. The beads were boiled with 

3×Laemmli buffer and the supernatant was resolved on SDS-PAGE. 

 

NMR analysis 

NMR experiments were performed by Dr. Vaithiyalingam in Professor Chazin’s 

lab and conducted using Bruker DRX 500-MHz and 600-MHz spectrometers 

equipped with z-axis gradient TXI cryoprobes. 15N-1H HSQC spectra were 

acquired using 75 µM 15N-enriched RPA70N sample in buffer containing 20 mM 

Tris (pH 7.0), 50 mM NaCl, and 2 mM DTT. The NMR chemical shift perturbations 

assays were performed by adding unlabeled protein into the solution of 

15N-enriched proteins until the molar ratio reached 1:4.  Resonance 

assignments are available for RPA70N (177) and BID (BMRB entry 5340; (75)). 

All spectra were processed by Topspin v2.0 (Bruker, Billerica, MA) and analyzed 

with Sparky (University of California, San Francisco, CA). 
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Docking of RPA70N with hBID 

A model of RPA70N-hBID complex was generated by Dr. Vaithiyalingam in 

Professor Chazin’s lab using HADDOCK2 software (239,240). Structures of RPA 

and hBID were taken from the protein data bank (PDB); entry 2B3G and 2BID, 

respectively. Ambiguous distance restraints (AIR) were generated based on 

significant chemical shift perturbations or line broadening and solvent accessibility. 

Side chain solvent accessibilities were calculated using NACCESS (241). 

Residues with a solvent accessible surface more than 50% and significant 

chemical shift perturbations were designed as active for docking calculations. The 

adjacent residues with more than 50% solvent accessible surface were designed 

as passive residues. An ensemble of 1000 rigid body docking models was 

generated at the first iteration of calculation. From this calculation, the best 200 

structures were selected based on the energy to perform a second iteration using 

semi-flexible simulated annealing protocol, and these structures were further 

refined in explicit solvent. The final structure solutions were clustered using 

HADDOCK score and the 10 lowest energy models were selected from the most 

populated cluster for structural analysis. 

 

Mouse model experiments 

 

Mice and DNA damage treatments 
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For HU treatment, wild type and Bid -/- C57/BL6 mice (6-8 weeks old) were 

treated with 100 mg/kg/day hydroxyurea by intraperitoneal injection for three 

consecutive days. Mice were sacrificed and bone marrow was harvested from 

femurs and tibias 24 hours after the third injection. For long-term HU treatment, 

after three-consecutive-day-HU treatment, mice were released from HU treatment 

for 7 days and subjected to HU treatment again for three consecutive days. This 

treatment cycle was repeated for 6 months. For IR treatment, wild type and Bid -/- 

C57/BL6 mice (6-8 weeks old) were irradiated with 2 Gy using a 137Cs source. 

Mice were sacrificed and bone marrow was harvested 24 hours after irradiation. 

At least two independent experiments were performed with n = 5 in each set (See 

figure legend for details). 

 

Cell staining and flow cytometry 

Bone marrow cells were stained with the following antibody in staining buffer 

(3% FBS in PBS): biotinylated CD3 (BD pharmingen), biotinylated B220 (BD 

pharmingen), biotinylated TER119 (BD pharmingen), biotinylated Gr-1 (BD 

pharmingen), APC-conjugated anti-c-kit (BD pharmingen), PE-Cy7-conjugated 

anti-Sca1 (eBioscience), FITC-conjugated anti-CD34 (BD pharmingen), 

FITC-conjugated anti-BrdU (BD pharmingen), PE-conjugated anti-FcγRII/III 

(eBioscience), Pacific blue-conjugated streptavidin (Invitrogen), Alexa Fluor 

488-conjugated anti-phospho-Histone H2A.X (Ser139) (Cell signaling, #9719), 
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PE-conjugated anti-CD45.1 (BD pharmingen), FITC-conjugated anti-CD45.2 (BD 

pharmingen). For lineage staining, cells were stained with biotinylated CD3, 

biotinylated B220, biotinylated Ter119 and biotinylated Gr-1 for 20 minutes on ice. 

Then, cells were stained with Pacific blue-conjugated streptavidin, 

APC-conjugated anti-c-kit, PE-Cy7-conjugated anti-Sca1, FITC-conjugated 

anti-CD34 and PE-conjugated anti-FcγRII/III for 20 minutes on ice. Cell population 

data were obtained by a 5-laser BD LSRII (Vanderbilt Flow Cytometry Core) and 

analyzed by Flowjo 8. Compensation parameter setting was performed using 

BD™ CompBead (BD pharmingen). 

 

BrdU incorporation and cell death analysis 

BrdU incorporation analysis was performed according to BrdU Flow Kits (BD 

Pharmingen). Briefly, mice were treated with 100 μl 10 mg/ml BrdU solution by 

intraperitoneal injection. Incorporation of BrdU was detected in bone marrow from 

femurs and tibias in 1 hour post injection. Erythrocytes were lysed in RBC lysis 

buffer (10 mM Tris-HCl, 0.83% NH4Cl, pH 7.3) and bone marrow cells were 

stained with various surface markers as mentioned in the figure legends. Then, 

cells were fixed and permeabilized with BD Cytofix/Cytoperm Buffer, and 

incubated with BD Cytoperm Plus Buffer followed by an additional short fixation 

with BD Cytofix/Cytoperm Buffer. The incorporated BrdU was exposed by 

treatment with 30 μg DNase for 1 hour at 37oC and probed with FITC-conjugated 
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anti-BrdU antibody (eBioscience) for 20 minutes at room temperature.  

  Cell death analysis was performed according to Annexin V-FITC Apoptosis 

Detection Kit (BioVision). Briefly, bone marrow cells were obtained from femurs 

and tibias and erythrocytes were lysed in RBC lysis buffer (10 mM Tris-HCl, 

0.83% NH4Cl, pH 7.3). Cells were stained with various surface markers as 

mentioned in the figure legends. Then, cells were stained by Annexin V-FITC in 

binding buffer (10 mM HEPES/NaOH, 150 mM NaCl, 5 mM KCl, 1mM MgCl2, 2 

mM CaCl2, pH7.4) at room temperature for 15 minutes. 

 

Methylcellulose culture 

Methylcellulose culture was performed as previously described (66). Briefly, 

bone marrow was harvested from femurs and tibias and erythrocytes were lysed 

in RBC lysis buffer. Then, 5 × 104 bone marrow cells were resuspended in 

Methylcult H4100 (StemCell Technologies) supplemented with BSA, FBS, Insulin 

and Transferrin, with the following cytokines/plate: SCF (R&D, 450 ng), IL3 (R&D, 

18 ng), IL6 (R&D, 9 ng) and erythropoietin (R&D, 5.4 Unit). Cells were plated in 

35-mm dishes and incubated in a humidified atmosphere at 37°C, 5% CO2. 

Typical colonies were photographed using a Leica DM IRBE inverted wild field 

microscope (Vanderbilt Cell Imaging Shared Resource). After six days, the 

cultures were washed with PBS, counted, and replated at the same density. The 

captured image was analyzed by Photoshop CS3 to measure the diameter of the 
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compact center of each GEMM or GM colony. 

 

γH2A.X immunofluorescence and intra-cellular staining 

Bone marrow was harvested from femurs and tibias and erythrocytes were 

lysed in RBC lysis buffer. Then, 5-10 × 104 bone marrow cells were centrifuged 

onto a glass coverslip by cytospin. Then, cells were fixed by 3% 

paraformaldehyde/2% sucrose solution and permeabilized by Triton X-100 

solution (0.5% Triton X-100, 20 mM HEPES pH7.4, 50 mM NaCl, 3 mM MgCl2, 

300 mM Sucrose). γH2A.X-positive cells were detected by immunofluorescence 

using Alexa Fluor 488-conjugated anti-phospho-Histone H2A.X (Ser139) (Cell 

signaling, #9719). The cells were examined using a Leica DM IRBE inverted wild 

field microscope (Vanderbilt Cell Imaging Shared Resource). 

  For γH2A.X flow cytometry analysis, bone marrows were obtained from femurs 

and tibias and erythrocytes were lysed in RBC lysis buffer. Bone marrow cells 

were stained with various surface markers as mentioned in the figure legends. 

Then, cells were fixed and permeabilized with BD Cytofix/Cytoperm Buffer, and 

incubated with BD Cytoperm Plus Buffer followed by an additional short fixation 

with BD Cytofix/Cytoperm Buffer. Then, cells were stained with Alexa Fluor 

488-conjugated anti-phospho-Histone H2A.X (Ser139) (Cell signaling) for 30 

minutes at room temperature and γH2A.X-positive cells were detected by flow 

cytometry. 
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Competitive reconstitution in bone marrow transplantation 

Congenic C57/BL6 mice recipient mice (CD45.1) were lethally irradiated with 9 

Gy using a 137Cs source. Donor cells were obtained from Bid +/+ (CD45.2) and 

Bid -/- (CD45.2) mice following 6-month HU treatment. Bone marrows were 

obtained from femurs and tibias and erythrocytes were lysed in RBC lysis buffer. 

Then, cells were stained with lineage markers (CD3, B220, TER119 and Gr-1) for 

20 minutes on ice. Lineage+ cells were depleted by Dynabeads Sheep anti-Rat 

IgG (Invitrogen) and lineage- cells were counted. 1 × 106 lineage- bone marrow 

cells from either wild type or Bid -/- C57/BL6 mice (CD45.2+) following 6-month 

HU treatment together with 1×106 lineage- bone marrow cells from normal wild 

type C57/BL6 mice (CD45.1+) were equally transplanted into 10 lethally irradiated 

recipients (CD45.1+) by intravenous injection. Hematopoietic reconstitution was 

detected followed 2 and 4 months after the transplantation. Peripheral blood from 

the recipient mice was subjected to Lymphocyte Separation Medium (MP 

Biomedicals) and lymphocytes were collected after centrifugation at 3000 rpm for 

30 minutes. The lymphocytes were washed once with PBS, stained by 

anti-PE-CD45.1 and anti-FITC-CD45.2 antibodies, and analyzed in flow 

cytometry. 
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CHAPTER III 

 

PROAPOPTOTIC BID MEDIATES THE ATR-DIRECTED DNA DAMAGE 

RESPONSE TO REPLICATIVE STRESS* 

 

Introduction 

 

The BCL-2 family of proteins regulates the intrinsic pathway of programmed cell 

death or apoptosis. The BH3-only members of the family function as sensors, 

relaying death signals to the core apoptotic machinery at the mitochondria. 

BH3-only BH3-interacting domain death agonist (BID) has a unique function in 

apoptosis to interconnect the death receptors of the extrinsic pathway to the 

mitochondrial amplification loop of the intrinsic pathway (31,32). Despite the 

potent role of BID in apoptosis, Bid -/- mice develop normally, but show 

deregulated myeloid homeostasis, culminating in a clonal disorder closely 

resembling human chronic myelomonocytic leukemia (CMML) (66). Bid -/- 

myeloid progenitor cells (MPCs) show an increased mitomycin c-induced 

chromosomal breaks (2), and Bid -/- leukemias show chromosomal abnormalities 

(66). Following DNA damage, ATM, and/or ATR phosphorylate Bid on Ser61/64 

and Ser78, and this phosphorylation is required for proper regulation of S phase 

after DNA damage (2,3,93). Thus, BID has two distinct and separable functions in 

*The research results in this chapter have been published as reference (4).  
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apoptosis and the DNA damage response. 

A highly regulated response program senses and repairs DNA damage (1). Two 

phosphoinositide 3-kinase-related protein kinases (PIKKs), ATM, and ATR, sense 

DNA damage at the site of the DNA lesion and activate downstream transducers 

to engage the checkpoint and DNA repair machinery (1), or the apoptotic pathway 

(110). ATM responds primarily to double strand breaks, and ATR to replication 

protein A (RPA)-coated single-stranded DNA (ssDNA) by interaction with its stable 

binding partner ATRIP (108,110,125). 

Stalled replication forks created by replicative stress produce a distinct DNA 

lesion comprised of RPA-coated ssDNA adjacent to a stretch of dsDNA. RPA 

recruits a multiprotein complex at the site of the DNA lesion, comprised of ATRIP, 

interacting with RPA via its checkpoint recruitment domain (CRD) and its stable 

binding partner ATR (242). RAD17 independently recruits the RAD9-HUS1-RAD1 

complex (9-1-1 complex) to stalled replication forks (126,243). The 9-1-1 complex 

then recruits TopBP1 (127), to associate with ATRIP and ATR, and stimulate ATR 

kinase activity (128,129). Activated ATR phosphorylates a multitude of 

downstream effectors to initiate the complex cellular response to replicative stress, 

including activation of checkpoints, DNA repair, and apoptosis (124). 

Proapoptotic BID functions in apoptosis as well as the DNA damage response 

(2,3,76). Several independent groups have demonstrated that Bid is found in the 

nucleus after DNA damage, is phosphorylated by ATM and/or ATR, and mediates 
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efficient activation of an S-phase checkpoint (2,3,80,81). BID has also been 

identified in a screen of proteins phosphorylated in response to DNA damage on 

consensus ATM/ATR phosphorylation sites (93). Furthermore, mice expressing 

mutated Nijmegen breakage syndrome 1 (NBS1) demonstrate defective ATM 

activation and BID phosphorylation (82). Nonetheless, the mechanism by which 

BID interacts within the DNA damage response is unknown, and there is some 

controversy in the literature, primarily concerning the generality of role of BID in 

DNA damage-induced apoptosis (77). Of note, transient knockdown (KD) of BID 

was not tested in the above studies, therefore, the differences may have been 

attributable to compensation of cells to the absence of BID in a given 

experimental setting. Indeed, a recent report showed defects (198) in S phase 

following replicative stress induced by thymidine in BID KD HCT116 cells. 

In this study, I demonstrate that BID facilitates ATR signaling, acting at the DNA 

damage sensor complex in response to replicative stress. In the absence of BID, 

ATR function is limited, as measured by recruitment of ATR and ATRIP to 

chromatin and nuclear foci following hydroxyurea (HU), phosphorylation of ATR 

substrates, and recovery of DNA replication following replicative stress (stalled 

replication forks). In addition, BID is found in nuclear foci with RPA following 

HU-induced replicative stress, and associates with members of the DNA damage 

sensor complex, ATR, ATRIP, and RPA. Importantly, the ATR/ATRIP association 

with RPA is diminished in the absence of BID. Furthermore, BID-ATRIP 
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association is required for CHK1 phosphorylation and accumulation of ATRIP at 

nuclear foci following HU. Thus, I demonstrate that BID facilitates the response of 

the ATR-mediated pathway to replicative stress through association with ATRIP at 

DNA damage foci, functioning at the level of the sensor complex. 

 

Results 

 

Bid is expressed in tissues with proliferating cells  

Previous results show increased chromosomal damage and increased 

sensitivity of Bid -/- MPCs after treatment with agents inducing replicative stress 

(2,66). Bid is highly expressed in tissues that contain proliferating cells, such as 

thymus, bone marrow, and spleen, as well as intestinal epithelium after DNA 

damage (244), but not in tissues comprised primarily of post-mitotic cells, such as 

brain and lungs (Figure 3-1 A). In addition, the expression level of Bid correlates 

with that of PCNA, a marker for cell proliferation (Figure 3-1 A). Bid is, therefore, 

expressed in settings, in which cells are undergoing proliferation. 

 

Bid -/- bone marrow cells are more sensitive to replicative stress 

I asked whether BID might have a role in vivo to monitor the response to 

replicative stress by treating mice with HU, a ribonucleotide reductase inhibitor 

that predominantly triggers activation of the ATR-mediated signaling pathway. 
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Figure 3-1. The cellular recovery from replicative stress and the HU-induced accumulation of 

ATRIP at nuclear foci are impaired in the absence of BID. (A) Bid is highly expressed in 

hematopoietic tissues. Tissues were harvested from wild type C57BL6 mice. Total cell lysates from 

the indicated tissues were resolved by SDS-PAGE and immunoblotted with the indicated 

antibodies. The molecular weight markers used in immunoblots are labeled on the right of the blots. 

(B) Bid -/- bone marrow cells are more sensitive to replicative stress. Bid +/+ and Bid -/- mice were 

injected with 100 mg/kg hydroxyurea (HU) for 3 consecutive days. Mice were killed and bone 
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marrow was harvested from mouse femurs and tibia at 24 h after the third injection. Bid +/+ and 

Bid -/- mice were irradiated with 2 Gy using a 137Cs source. Mice were killed and bone marrow was 

harvested from mouse femurs and tibia 24 h after irradiation. Following lysis of red blood cells, 

viable bone marrow cells were identified by trypan blue exclusion and counted. N=15 mice for HU 

treatment and n=10 mice for irradiation treatment. Error bar=90% confidence interval. p-value is 

calculated by student's t-test. (C) U2OS cells were transfected with control siRNA or BID siRNA. 

After 2 days, cells were exposed to 10 mM HU for 24 h, and released into fresh media containing 

1 μg/ml nocodazole for the indicated times. Cells were fixed and stained with 7-AAD and analyzed 

by flow cytometry. (D) U2OS cells were transfected with control siRNA or BID siRNA for 72 h. Cells 

were lysed and BID was detected in immunoblots. (E) Bid +/+ and Bid -/- MPCs were treated with 

10 mM HU for 2 h. The chromatin fraction was isolated and extracts were resolved on SDS-PAGE 

and immunoblotted with the indicated antibodies. (F) U2OS cells were transfected with control 

siRNA or BID siRNA and wild type mouse Bid was introduced into the cells simultaneously with 

siRNA. Cells were treated with 10 mM HU for 5 h, fixed, and stained with anti-ATRIP antibody. 

Representative images of ATRIP staining were shown. (G) Quantitative analysis of ATRIP 

accumulation at nuclear foci following replicative stress. The percentage of cells with >5 clearly 

visible ATRIP nuclear foci was calculated for each cell type. More than 600 cells were counted in 

three independent experiments. 
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Hematopoietic progenitor cells proliferate and repopulate the bone marrow 

following insult, and are vulnerable to agents inducing replicative stress. Bid -/- but 

not Bid +/+ bone marrow cells are more sensitive to systemic treatment with 

100 mg/kg HU in vivo (Figure 3-1 B), but not to a low dose of ionizing radiation 

(2 Gy), suggesting specific sensitivity to replicative stress. I, thus, demonstrate 

that BID has a role in vivo to mediate the response of bone marrow to HU-induced 

replicative stress. 

 

BID has a role in recovery and completion of DNA replication following HU 

One function of activated ATR that is distinct to ATR among the PIKKs is to 

facilitate cell cycle re-entry after the release of replicative stress (245). U2OS cells 

transfected with siRNA directed against BID (BID KD) or a control siRNA (control 

KD) were arrested in early S phase by 10 mM HU for 24 h. HU was washed out 

and cells were released into fresh medium with nocodazole to prevent cell division. 

Asynchronous BID KD and control KD U2OS cells showed similar cell cycle 

profiles at baseline (Figures 3-1 C, D). BID KD but not control KD U2OS cells 

demonstrated impaired DNA replication recovery and impaired progression 

through S phase (Figure 3-1 C, Figure 3-2 A), but no significant increase in 

apoptotic cells as measured by <2N DNA content (Figure 3-2 B). Thus, the 

recovery of DNA replication and completion of S phase after replicative stress was 

significantly impaired in the absence of BID further suggesting a defect in ATR 



 64

 
Figure 3-2. Cell cycle reentry is limited in BID KD cells. (A) The quantitative analysis of the 

arrested G1/early S phase cells following HU withdrawal in Fig 3-1 C. Data were collected from 

three independent experiments. *, p<0.05. (B) Hydroxyurea treatment does not result in significant 

increase of cell death in U2OS cells. U2OS cells transfected with control siRNA or BID siRNA for 

72 hours were treated with 10 mM hydroxyurea overnight. Then, cells were released to fresh 

medium containing nocodazole. Cells were fixed and DNA content was detected by 7-AAD. 

Quantitative analysis of the percentage of cell with less than 2N DNA content was obtained from 

three independent experiments. Error bar=90% confidence interval. 
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activation in the absence of BID. 

 

BID does not mediate TopBP1-directed ATR activation in vitro 

To determine whether BID modulates TopBP1 activation of ATR, ATR-ATRIP 

was purified by immunoprecipitation (IP) from 293T cells, and incubated with 

purified TopBP1 AAD, γ-32P-ATP, and Mcm2 as an ATR substrate (246,247), with 

and without BID (Figure 3-3 A). ATR-ATRIP phosphorylated BID and Mcm2, 

however, the presence of BID did not alter Mcm2 phosphorylation. Thus, BID is a 

substrate of ATR but does not modulate TopBP1-directed ATR activation in this in 

vitro system. 

 

BID has a role in recruitment or maintenance of ATRIP to nuclear foci following 

replicative stress 

In the presence of replicative stress, ATRIP and ATR are recruited to stalled 

replication forks and accumulate in nuclear foci. Bid -/- cells demonstrated 

decreased ATR/ATRIP accumulation in chromatin following HU relative to Bid +/+ 

cells (Figure 3-1 E). BID KD U2OS cells demonstrate decreased accumulation of 

ATRIP in HU-induced DNA damage foci (Figure 3-1 F, G). Importantly, 

reintroducing wild type BID into BID KD U2OS cells restored ATRIP accumulation 

at nuclear foci (Figure 3-1 F, G). No HU-induced increase in ATR or ATRIP levels 

was seen in control U2OS cells; a modest HU-induced increase in ATR protein 
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Figure 3-3. Expression of BID results in neither ATR activation in an in vitro system nor significant 

changes of cell death and sensor levels in U2OS cells. (A) BID does not facilitate TopBP1 

activation of ATR in vitro. HA-ATRIP and myc-ATR were overexpressed in 293T cells, and isolated 

from whole cell extracts by immunoprecipitation with anti-HA conjugated agarose beads. Purified 

ATR/ATRIP was incubated with the activating domain of TopBP 1 (TopBP1 AAD), the ATR 
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substrate MCM2 peptide, and γ-32P-ATP. Reactions were separated on SDS-PAGE, stained with 

Coomassie Blue, and exposed to film. Duplicate samples were separated on SDS-PAGE, and 

immuno-blotted with anti-ATR and anti-ATRIP. (B) The protein levels of various DNA damage 

sensors are not significantly changed in BID KD U2OS cells. U2OS cells were transfected with 

control siRNA or BID siRNA for 72 hours. Then the control knockdown and BID knockdown cells 

were treated with 10 mM hydroxyurea for 2 hours and various DNA damage sensors in ATM/ATR 

pathways were detected by immunoblots. (C) Bid +/+ and Bid -/- MPCs were treated with 10 mM 

hydroxyurea for 2 hours and various DNA damage sensors in ATR pathways were detected by 

immunoblots. (D) TNFα/CHX treatment but not hydroxyurea treatment significantly induces 

apoptosis in U2OS cells. U2OS cells were treated with 10 mM hydroxyurea or 10 ng/ml TNFα+25 

μg/ml CHX for 5 hours. Cells were fixed and stained with anti-activated caspase 3 (Asp175) 

polyclonal antibody (Cell signaling, #9661) in immunofluorescence. DNA was stained by Hoechst. 

(E) Expression of wild type or mutated BID does not cause significant apoptosis in U2OS cells. 

U2OS cells transfected with control siRNA, BID siRNA, wild type or Helix 4 mutated BID were 

treated with 10 mM hydroxyurea for 5 hours. No obvious apoptotic cells were detected by 

activated caspase 3 in immunofluorescence. DNA was stained by Hoechst. 



 68

level was observed following DNA damage in Bid +/+ but not Bid -/- MPCs (Figure 

3-3 B, C). The above data are consistent with a role for BID in recruitment or 

maintenance of ATR and ATRIP at nuclear foci following DNA damage. 

  Apoptosis activates DNAases. To rule out BID-induced apoptosis as the 

etiology of ATRIP accumulation at nuclear foci, I evaluated caspase 3 activation 

by immunofluorescence following reintroduction of BID (Figure 3-3 D, E). Death 

receptor stimulation but not HU treatment activates caspase 3 in U2OS cells. 

Reintroduction of BID +/+ to BID KD U2OS cells treated with HU does not activate 

caspase 3, indicating that the ATRIP accumulation at nuclear foci is not due to 

BID-induced apoptosis. 

 

DNA damage-induced phosphorylation of ATR substrates is diminished in the 

absence of BID 

I next evaluated phosphorylation of the ATR effectors, CHK1 and RPA32. 

Following HU treatment, CHK1 immunoblot displayed phosphatase-sensitive 

slower migrating bands that reacted with antibodies specific for phospho-CHK1 

(S317) and (S345) (Figure 3-4 A, B, Figure 3-5 A). These bands were diminished 

in Bid -/- MPCs following HU treatment (Figure 3-4 A, B). To acutely decrease BID 

protein levels, siRNAs targeted against human BID and mouse Bid mRNA were 

introduced into human U2OS cells and mouse MPCs, respectively, decreasing 

BID levels to <20% of endogenous levels in U2OS cells using siRNA7, and nearly 
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Figure 3-4. The phosphorylation of ATR substrates are diminished in Bid -/- and BID KD cells 

following replicative stress. (A) Phosphorylated mouse CHK1 presents as a shifted band. Bid +/+ 

and Bid -/- MPCs were treated with 10 mM HU for 2 h. Whole-cell extracts were incubated with 

10 U Calf Intestinal Alkaline Phosphatase (Invitrogen)/100 μg lysate, resolved by SDS-PAGE and 

immunoblotted with anti-CHK1, anti-pCHK1 (S317), or anti-pCHK1 (S345) as indicated. Solid 

arrows denote the mobility of shifted phosphorylated CHK1, and dashed arrows denote the 

mobility of unphosphorylated CHK1. (B) Bid +/+ and Bid -/- MPCs were treated 10 mM HU for the 

indicated times. Total cell lysate was resolved by SDS-PAGE followed by immunoblotting with the 

indicated antibodies. (C) U2OS cells were treated with BID-specific siRNA No.7, BID-specific 

siRNA No.8, or control siRNA for 72 h. BID KD and control KD cells were treated with 10 mM HU or 

25 μM ETOP for 2 h, and total cell lysate was resolved by SDS-PAGE followed by immunoblotting 

with the indicated antibodies. (D) U2OS cells transfected with control siRNA or BID siRNA (no. 8) 

for 72 h were treated with 10 mM HU for 2 h. Whole-cell lysates were immunoprecipitated with 

anti-CHK1 antibody, and the immunoprecipitated product was incubated with 1 μg GST-CDC25C 

protein, 10 μM cold ATP and 5 μCi γ-32P-ATP in kinase buffer. CHK1 kinase reactions were 

resolved on SDS-PAGE, stained with SimplyBlue SafeStain (Invitrogen) to visualize GST-CDC25c 
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levels, and analyzed by autoradiography. (E) Bid +/+ and Bid -/- MPCs were treated 10 mM HU 

over time. Total cell lysate was resolved by SDS-PAGE followed by immunoblot with the indicated 

antibodies. Relative band intensity has been measured by densitometry analysis. (F) U2OS cells 

were transfected with control siRNA or BID siRNA for 72 h, and then treated with 10 mM HU over 

time. Total cell lysate was resolved by SDS-PAGE followed by immunoblot with the indicated 

antibodies. Solid arrow denotes the mobility of shifted phosphorylated RPA32, and dashed arrow 

denotes the mobility of unphosphorylated RPA32. Relative band intensity was measured by 

densitometry analysis. 
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completely using siRNA8 (Figure 3-4 C). BID KD U2OS cells (Figure 3-4 C) and 

MPCs (Figure 3-4 A, B, Figure 3-5 B, D) displayed diminished phosphorylated 

CHK1 following HU or etoposide (ETOP) treatment. Furthermore, the degree of 

decreased CHK1 phosphorylation correlated with the degree of BID KD. 

Interestingly, the CHK1 level is increased in Bid -/- MPCs (Figure 3-4A, B), but not 

in U2OS cells when BID was knocked down by siRNA (Figure 3-4 C), consistent 

with a compensatory increase in CHK1 levels in the setting of chronic absence of 

BID, but not when BID is lost acutely. These results implicate BID in mediating 

ATR function. 

I next evaluated effectors of the DNA damage response, such as Cdc25A in Bid 

+/+ and Bid -/- cells. Cdc25A is phosphorylated by Chk1 following replicative 

stress, targeting it for degradation (248,249). Cdc25A degradation following DNA 

damage was delayed in Bid -/- MPCs as well as in BID KD U2OS cells (Figure 3-4 

B, C, Figure 3-5 B). Interestingly, Cdc25A levels are increased in untreated Bid -/- 

MPCs but not in BID KD U2OS cells, consistent with a compensatory increase in 

Cdc25A levels in the setting of prolonged loss of Bid. These results implicate BID 

in mediating CHK1 function. 

  I further evaluated CHK1 kinase activity via IP of CHK1 from control siRNA and 

BID siRNA-transfected U2OS cells followed by incubation with GST-cdc25C and 

γ-32P-ATP. The anti-CHK1 antibody immunoprecipitated both CHK1 and 

phosphorylated CHK1 (Figure 3-5 E, F). Following HU treatment, BID KD U2OS 
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Figure 3-5. CHK1 phosphorylation is diminished in Bid -/- MPCs following DNA damage treatments. 

(A) Phosphorylated mCHK1 present as a shifted band in immunoblots. Bid +/+ MPCs were treated 

with 10 mM hydroxyurea for 2 hours. Cells were lysed in RIPA buffer with or without phosphatase 

inhibitors. The indicated protein phosphatases (PP1, protein phosphatase type; PP2A, protein 

phosphatase types 2A; CIAP, calf intestine alkaline phosphatase) were added to 400 μg cell lysate 

and incubated at 30oC for 30 minutes. Protein extracts were resolved by SDS-PAGE and 

immunoblotted with anti-CHK1 antibody. Solid arrow denotes the mobility of shifted band 

corresponding to phosphorylated CHK1, and dashed arrow denotes the mobility of unshifted band 

corresponding to CHK1. (B) Bid +/+ and Bid -/- MPCs were treated 25 µM etoposide for the 

indicated times. Total cell lysate was evaluated by SDS-PAGE followed by immunobloting with the 

indicated antibodies. The quantitative analysis of the ratio of pCHK1 to total CHK1 were collected 

from three independent experiments. (C) The quantitative analysis of the ratio of pCHK1 to total 

CHK1 in Fig 3-4B were collected from three independent experiments. (D) Bid +/+ MPCs were 

treated with Bid-specific siRNA or control siRNA using nucleofectin and incubated for 72 hours. Bid 

knockdown and control knockdown cells were treated with 10 mM hydroxyurea for 2 hrs, and total 

cell lysate was resolved by SDS-PAGE followed by immunobloting with the indicated antibodies. 

The quantitative analysis of the ratio of pCHK1 to total CHK1 were collected from three 

independent experiments. *, p<0.05. 
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cells demonstrated decreased kinase activity relative to control KD cells 

suggesting that the HU-induced CHK1 activity, or a kinase associated with CHK1, 

is decreased in the absence of BID (Figure 3-4 D). These results strongly suggest 

that HU-induced CHK1 activation is decreased in the absence of BID. 

  I next evaluated phosphorylation of the ATR targets p53 and RPA32 following 

replicative stress. p53 phosphorylation at Ser15 (Figure 3-4 E, Figure 3-6 A), and 

the HU-induced expression levels of the p53 target genes p21 and Noxa were 

diminished (Figure 3-6 B) in Bid -/- MPCs following HU treatment. Furthermore, 

RPA32 phosphorylation was decreased in Bid -/- MPCs (Figure 3-4 E) and in 

U2OS cells upon siRNA KD of BID (Figure 3-4 F). Thus, in the absence of BID, 

phosphorylation of multiple ATR substrates was diminished, consistent with a role 

for BID in ATR activation. 

  In contrast, the autophosphorylation of ATM was normal in the absence of BID 

following ETOP treatment in U2OS cells (Figure 3-6 C), suggesting that BID does 

not have a major role in ATM activation. In addition, CHK1 phosphorylation was 

diminished in BID/ATM double KD U2OS cells as well as BID KD U2OS cells 

(Figure 3-6 D), suggesting that the function of BID in the ATR-mediated response 

is independent of ATM. 

  CHK1 phosphorylation increases in S phase. I observed no significant difference in 

the percentage of cells in S phase between Bid +/+ and Bid -/- cells (Figure 3-7 A, 

B). To stringently evaluate the status of CHK1 phosphorylation at a defined stage 
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Figure 3-6. p53 phosphorylation is diminished in Bid -/- MPCs following DNA damage treatments. 

(A) The quantitative analysis of the ratio of pS15/p53 to total p53 in Fig 3-4E. (B) The transcription 

level of p53-target genes is diminished in Bid -/- MPCs following replicative stress. Bid +/+ and Bid 

-/- MPCs were treated 10 mM hydroxyurea for 3 hours. Total RNA was extracted and real-time 

PCR performed to detect the relative transcription levels of p21 and Noxa. Actin was used as the 

reference. (The bars indicate the s.d., N=3) (C) ATM auto-phosphorylation is unaffected in the 

absence of BID following etoposide treatment. U2OS cells were treated with BID-specific siRNA 

No.7, BID-specific siRNA No.8 or control siRNA for 72 hours. BID knockdown and control 

knockdown cells were treated with 10 mM hydroxyurea or 25 µM etoposide for 2 hrs, and total cell 

lysate was resolved by SDS-PAGE followed by immunoblot with the indicated antibodies. (D) 

U2OS cells were transfected with control siRNA, BID siRNA and/or ATM siRNA for 72 hours. Then 

cells were treated with 10 mM hydroxyurea for 2 hours and CHK1 phosphorylation was detected 

by immunoblots. 
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of the cell cycle, I performed intra-cellular phospho-CHK1 staining with 7-AAD 

co-staining followed by flow cytometry. Bid -/- cells showed decreased numbers of 

phospho-CHK1+ cells, and the mean fluorescence index of phospho-CHK1 

staining was significantly decreased relative to Bid +/+ cells within the total cell 

population and in cells in late S/G2/M (Figure 3-7 D, K), demonstrating on a per 

cell basis that phospho-CHK1 is decreased in Bid -/- cells. Thus, the differences in 

CHK1 phosphorylation observed in Bid -/- cells were not because of an alteration 

of the cell cycle profile (250-252). 

 

BID associates with ATR/ATRIP/RPA 

The findings outlined above implicate a role for BID very early in the DNA 

damage response, at the level of ATR activation and recruitment to DNA damage 

foci. Qiong Shi, therefore, examined the ability of BID to associate with the DNA 

damage sensor complex, composed of ATR, ATRIP, and RPA. ATR, ATRIP, and 

RPA co-immunoprecipitated with Bid from nuclear extracts, and this co-IP was 

enhanced after HU treatment (Figure 3-8 A). Mouse but not human BID 

co-migrates with the immunoglobulin light chain on SDS-PAGE, therefore, she 

performed the reverse IP in U2OS cells. When endogenous ATRIP or RPA was 

immunoprecipitated from the nuclear fraction of U2OS cells, BID was detected in 

the immunoprecipitated product (Figure 3-8 B, C). The anti-BID antibody did not 

nonspecifically precipitate DNA as shown by immunoblotting with anti-RUNX1 
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Figure 3-7. CHK1 phosphorylation is diminished in Bid -/- MPCs by flow cytometry. (A) The cell 

cycle profile is similar between Bid +/+ and Bid -/- MPCs. Bid +/+ and Bid -/- MPCs were labeled 

with BrdU for 45 minutes. Then cells were fixed and permeabilized with BD Cytofix/Cytoperm 

Buffer. BrdU was detected by intracellular staining with FITC-conjugated anti-BrdU antibody (BD 

Pharmingen). DNA was stained by 7-AAD. Then cells were analyzed by flow cytometry. 

Quantitative analysis of the cell cycle data was obtained from eight independent experiments. 

Error bar=90% confidence interval. p value is calculated by student's t-test. (B) U2OS cells 

transfected with control siRNA or BID siRNA were labeled with BrdU for 2 hours and analyzed by 

flow cytometry. Quantitative analysis of the cell cycle data was obtained from six independent 

experiments. Error bar=90% confidence interval. p value is calculated by student's t-test. (C) Bid 

+/+ and Bid -/- MPCs were treated with 10 mM hydroxyurea for 2 hours. Then cells were fixed and 

permeabilized with BD Cytofix/Cytoperm Buffer. CHK1 phosphorylation was detected by 

intracellular staining with anti-pCHK1 (S345) antibody (Cell signaling, #2348) and Alexa Fluor 488 

conjugated Goat anti-Rabbit IgG antibody (Invitrogen). DNA was stained by 7-AAD. 

pCHK1-postive cells were gated as black rectangle. (D) pCHK1-positive cells were gated based 

on the hydroxyurea-induced population. The peak of pCHK1-positive Bid +/+ and Bid -/- cells was 

shown as yellow and red dash line, respectively. (E) Quantitative analysis of the percentage of 

pCHK1-positive cells from three independent experiments. Error bar, S.E.M. p value is calculated 

by student's t-test. **, p<0.01. (F) Gating on pCHK1-positive cells, Bid +/+ MPCs significantly 

increased pCHK1-positive population following hydroxyurea treatment. (G) Quantitative analysis 

of the relative mean fluorescence intensity (MFI) increase of pCHK1 signal by hydroxyurea in 

pCHK1-positive cells from three independent experiments. The HU-induced MFI increase of 

pCHK1 signal from pCHK1-positive Bid +/+ MPCs was set as 100 arbitrarily. Error bar, S.E.M. p 

value is calculated by student's t-test. *, p<0.05. (H) CHK1 phosphorylation is diminished in Bid -/- 

MPCs with high DNA content. Bid +/+ and Bid -/- MPCs were treated with 10 mM hydroxyurea for 

2 hours. Then cells were fixed and permeabilized with BD Cytofix/Cytoperm Buffer. CHK1 

phosphorylation was detected by intracellular staining with anti-pCHK1 (S345) antibody (Cell 

signaling, #2348) and Alexa Fluor 488 conjugated Goat anti-Rabbit IgG antibody (Invitrogen). DNA 

was stained by 7-AAD. Late S/G2/M phase cells (high DNA content) were gated. pCHK1-postive 

cells were gated as black rectangle. (I) pCHK1-positive cells were gated based on the 

hydroxyurea-induced population. The peak of pCHK1-positive Bid +/+ and Bid -/- cells was shown 

as blue and yellow dash line, respectively. (J) Quantitative analysis of the percentage of 

pCHK1-positive cells in late S/G2/M phase cells (high DNA content) following hydroxyurea 

treatments from three independent experiments. Error bar, S.E.M. p value is calculated by 

student's t-test. **, p<0.01. (K) Quantitative analysis of the relative mean fluorescence intensity 

(MFI) of pCHK1 signal in late S/G2/M phase cells (high DNA content) following hydroxyurea 

treatments from three independent experiments. The MFI of pCHK1 signal from Bid +/+ MPCs 

was set as 100 arbitrarily. Error bar, S.E.M. p value is calculated by student's t-test. *, p<0.05. 
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antibody. The above results are consistent with an association of BID with the 

RPA complex at stalled replication forks following replicative stress. 

 

The BID/ATR/ATRIP/RPA association does not require DNA 

To determine whether the association of BID with the RPA/ATR/ATRIP complex 

requires DNA, Qiong Shi isolated nuclear extracts from HU-treated Bid +/+ and 

Bid -/- MPCs and incubated the extracts with DNAase. There is no change in the 

association of Bid with ATR or RPA70 following DNAase treatment (Figure 3-8 D), 

indicating that the association of Bid with RPA/ATR/ATRIP is not dependent on 

intact DNA. 

 

BID is found at nuclear foci with RPA following HU 

The above results implicate a role for BID at the site of DNA damage following 

replicative stress, at stalled replication forks. To determine whether BID is present 

at these structures following DNA damage, Clinton Bertram synchronized Bid -/- 

MEFs stably expressing FlagHA-tagged BID (FHA/BID MEFs) in G1 by incubation 

in reduced serum (0.1% FBS) medium for 24 h, then released the cells into 

complete medium (10% FBS; Figure 3-8 E). The population of S-phase cells was 

enriched 17 h after release (Figure 3-8 E), whereupon cells were left untreated or 

treated with 1 mM HU for 1 h. Immunofluorescence using antibodies to HA and 

RPA32 revealed the presence of Bid and RPA32 in nuclear foci in synchronized 
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Figure 3-8. BID associates and co-localizes with ATR/ATRIP/RPA complex following replicative 

stress. (A) Bid +/+ and Bid -/- MPCs were treated with 10 mM HU for 2 h. BID was 

immunoprecipitated from nuclear extracts using biotin-conjugated anti-BID antibody and 

streptavidin–agarose beads. Samples were analyzed using SDS-PAGE followed by 

immunoblotting with the indicated antibodies. The asterisk (*) indicates a crossreacting band. 

Transcription factor RUNX1 was used as a negative control. (B) U2OS cells were treated with 

10 mM HU for 2 h. Cells were harvested, and ATRIP was immunoprecipitated from nuclear 

extracts using anti-ATRIP (401) antibody. Immunoprecipitates were analyzed using SDS-PAGE 

followed by immunoblotting with anti-BID and anti-ATRIP antibodies. (C) U2OS cells were treated 

with 10 mM HU for 2 h. Cells were harvested, and RPA was immunoprecipitated from nuclear 

extracts using anti-RPA70 antibody. Immunoprecipitates were resolved by SDS-PAGE followed by 

immunoblotting with anti-BID and anti-RPA70 antibodies. (D) The interaction between Bid and 

ATR complex is independent of DNA. Bid +/+ MPCs were treated with 10 mM HU for 2 h. Then, the 

nuclear fraction was purified and incubated with 250U Benzonase Nuclease (Novagen). Then, Bid 

was immunoprecipitated from nuclear extracts using biotin-conjugated anti-BID antibody and 

streptavidin-agarose beads. Samples were analyzed using SDS-PAGE followed by 

immunoblotting with the indicated antibodies. (E) Bid -/- MEFs harboring HA-tagged BID were 
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synchronized in low serum medium (0.1% FBS-DMEM) for 24 h. Following synchronization, cells 

were released into complete medium (10% FBS–DMEM). At 17 h after release, cells were left 

untreated (18 h serum) or treated for 1 h with 1 mM HU (18 h serum plus HU). Then, cells were 

fixed and stained for anti-HA and anti-RPA32 antibodies. Representative images in (F) were 

captured by a Zeiss LSM 510 inverted confocal microscopy. Scale bars represent 10 μm. The 

experiments in (A)-(D) in this figure are performed and finished by Qiong Shi. The experiments in 

(E)-(F) in this figure are designed and finished by Clinton Bertram. 
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FHA/BID cells treated with HU, but not in untreated cells, or serum-starved cells 

(Figure 3-8 F). Bid is thus present in the region of stalled replication forks following 

HU treatment. 

 

BID helix 4 associates with ATRIP 

To determine the domain of BID that associates with ATRIP, various BID 

mutants were transiently overexpressed in 293T cells with HA-tagged ATRIP 

(Figure 3-9 A). Cells that were untreated or treated with HU were harvested, and 

BID was immunoprecipitated from total cell extracts. Interestingly, BID mutants 

targeting the well-studied BH3 domain and phosphorylation sites still associated 

with ATRIP (Figure 3-9 B). Successive deletion of α-helices beginning at the C 

terminus of BID revealed that the BID-ATRIP association was maintained and 

enhanced following DNA damage even in the absence of helices 5-8, but not helix 

4 (data not shown). On the basis of nuclear magnetic resonance structure of BID 

(Figure 3-9 C), Leu105, Leu109, Gln112, and Asn115 in helix 4 are on the outer 

face of the protein, providing a candidate surface to interact with other proteins.29, 

30 Site-directed mutagenesis of Leu105 and Leu109 to polar cysteine residues 

(BID/H4A), or mutation of Gln112 and Asn115 to alanine residues (BID/H4B), 

severely diminished the BID-ATRIP association (Figure 3-9 A, D). Mutating 

residues in the loop between helices 4 and 5 by mutating Ser117 and Ser119 to 

alanines (loop A) or mutating Glu120, Glu121, and Asp122 to glycines (loop B) had 
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Figure 3-9. The helix 4 domain of BID interacts with the coiled-coil domain of ATRIP. (A) Schematic 

illustration of mouse Bid structure. (B) Cells (293T) were co-transfected with HA-ATRIP/pLPCX, 

and either wild type BID, or BID mutated in the BH3 domain or BID mutated in the ATM/ATR 

consensus phosphorylation sites. BID was immunoprecipitated from whole-cell extracts using 

anti-BID antibody. Samples were resolved on SDS-PAGE followed by immunoblotting with the 

indicated antibodies. (C) Sequence alignment of the helix 4 and helix 5 of BID among different 

species. Helix 4 and Helix 5 are labeled as purple arrows. The GenBank accession numbers of the 

sequences used here are: Homo sapiens (NM_197966), Mus musculus (NM_007544), Rattus 

norvegicus (NM_022684), Gallus gallus (NM_204552), Danio rerio (NM_001079826), Sus scrofa 
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(NM_001030535), Xenopus laevis (NM_001095594), Xenopus tropicalis (NM_001097226), and 

Bos taurus (NM_001075446). The alignment was performed by Clustal X. The Leu105 and 

Leu109 in helix 4 are labeled as green stars. The Gln112 and Asn115 in helix are labeled as cyan 

stars. Loop A amino acids are dark blue, Loop B amino acids are pink. The same amino acids are 

labeled in the nuclear magnetic resonance structure of BID. Helix 4 is denoted in red, and is on an 

exposed surface of BID. The BH3 domain is facing out of the page. (D) Cells (293T) were 

co-transfected with HA-ATRIP/pLPCX, and wild type BID or BID harboring mutations in helix 4: 

mutation of green stars to polar cysteine residues (H4A), or of cyan stars to alanine residues (H4B), 

or of dark blue stars at the end of helix 4 to alanine residues (loop A), or of pink stars in the loop 

region between helices 4 and 5 to glycine (loop B) BID was immunoprecipitated from whole-cell 

extracts and samples were analyzed as above. (E) Wild type or helix 4-mutated BID and 

His-MBP-ATRIP protein were purified from E.coli. BID (10 μg) and 100 μg His-MBP-ATRIP protein 

were incubated in binding buffer at room temperature for 30 minutes. BID was immunoprecipitated 

using anti-BID antibody, and the immunoprecipitated proteins were resolved on SDS-PAGE and 

immunoblotted with the indicated antibodies. (F) Schematic illustration of ATRIP structure. CRD, 

checkpoint recruitment domain. CC, coiled-coil domain. TopBP1, TopBP1-interacting domain. ATR, 

ATR-binding domain. (G-I) Wild type BID and HA-tagged full-length or various truncated ATRIP 

constructs were overexpressed in human 293T cells. Then the cells were treated with 10 mM HU 

for 2 h and BID was immunoprecipitated by anti-BID antibody. The immunoprecipitated products 

were detected by anti-BID and anti-HA antibodies. The experiments in this figure are performed 

and finished by Qiong Shi. 
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a less severe effect (Figure 3-9 A, D). Finally, I purified Escherichia coli-expressed 

BID and His-MBP-fused ATRIP. BID, but not BID/H4A or BID/H4B 

immunoprecipitated with full-length ATRIP (Figure 3-9 E). The above data indicate 

that BID interacts with ATRIP, and this interaction is dependent on an intact BID 

helix 4. Of note, BID helix 4 is highly conserved between human, mouse, and rat 

(Figure 3-9 C), underscoring its potential importance, and raising the possibility 

that the function of BID in the DNA damage signaling pathway might be a unique 

characteristic of BID among BCL-2 family members. 

 

BID binds to the ATRIP coiled-coil domain 

To determine the domain of ATRIP required for the association with BID, various 

HA-tagged ATRIP mutants (253), were tested for BID-ATRIP association in 293T 

cells as above (Figure 3-9 F, I). Deletion of the first 107 amino acids of ATRIP, 

including the CRD or amino acids 181-435 (TopBP1-binding domain) had no 

effect on the association of BID with ATRIP (Figure 3-9 G). Deletion of amino 

acids 112-414 significantly decreased the BID-ATRIP association (Figure 3-9 G, 

H). Although the deletion of ATRIP amino acids 112-225 resulted in decreased 

stability of the protein (253), the association of ATRIP∆112-225 with BID is 

decreased. As the BID-ATRIP association was preserved in deletions involving 

the TopBP1 domain, but not in deletions involving amino acids 112-225, the above 

data are most consistent with an association of BID with the ATRIP coiled-coil 
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domain. Cells harboring ATRIP/∆112-225 mutant showed defects in CHK1 

phosphorylation and ATRIP nuclear foci following replicative stress (253). 

 

BID helix 4 mutants maintain cell death activity 

BID/H4A and BID/H4B maintain a comparable ability to bind to BCL-2 and 

MCL-1, as well as the ability to be cleaved by caspase 8 (Figure 3-10 A, C). I 

further tested the ability of these helix 4 mutants to induce cell death by stably 

introducing BID +/+ and BID/H4A and H4B into U2OS cells. siRNA KD of 

endogenous BID but not control KD resulted in protection from 

TRAIL/cycloheximide-induced cell death. Trail-induced cell death was restored by 

re-introduction of BID +/+ or BID/H4A and BID/H4B but not BID mutated in the 

BH3 domain (Figure 3-10 D). Thus, BID helix 4 mutants are able to be cleaved by 

caspases and to induce cell death following death receptor stimulation, providing 

further evidence that the structure and cell death function of BID helix 4 mutants is 

intact (Figure 3-10 A, D and data not shown). Furthermore, the two functions of 

BID, cell death and DNA damage can be structurally separated, providing additional 

evidence that the DNA damage and apoptotic functions of BID are distinct. 

 

BID helix 4 mediates the ATR-directed DNA damage response 

To further define the role of BID helix 4 in the ATR-directed DNA damage 

response, I reintroduced BID/H4A or BID/H4B into BID KD U2OS cells, and 
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Figure 3-10. Mutations in helix 4 domain of BID do not significantly change the function of BID in 

the extrinsic cell death pathway. (A) Helix 4 mutated BID binds with other BCL-2 family proteins. 

Cells (293T) were transfected with wild type BID or helix 4-mutated BID. BID was 

immunoprecipitated from whole-cell extracts. Immunoprecipitates were resolved by SDS-PAGE 

followed by immunoblotting with anti-BID, anti-BCL-2 and anti-MCL-1 antibodies. All the samples 

were run in the same gel with interrupted lanes deleted. (B) Helix 4-mutated BID show similar 

sensitivity as wild type BID to caspase 8. Purified wild type and two helix 4 BID mutants (H4A and 

H4B) were cleaved by active caspase 8 (Millipore) in vitro for 0.5 and 1 h. The full-length and 

truncated BID in reaction products were analyzed by anti-BID antibody in immunoblots. (C) U2OS 

cells overexpressing HA-tagged wild type or helix 4-mutated BID was transfected with BID siRNA 

for 72 h. Silent mutations were introduced in the BID siRNA-target region so that only endogenous 

BID was knocked down by BID siRNA. Then, cells were treated with 50 ng/ml TRAIL and 5 μg/ml 

cycloheximide (CHX) for 4 h. Total cell lysate was analyzed by SDS-PAGE followed by 

immunoblotting with anti-BID antibody. Solid and dashed arrows denote endogenous BID and 

overexpressed BID, respectively. (D) Cells harboring helix 4-mutated BID show similar sensitivity 

to TRAIL/CHX treatment. U2OS cells overexpressing HA-tagged wild type or various BID 

mutations was transfected with BID siRNA for 72 h. Then, cells were treated with 50 ng/ml TRAIL 

and 5 μg/ml CHX over time. The apoptotic cells were detected by Annexin V-FITC Apoptosis 

Detection Kit (BioVision, Mountain View, CA, USA). 
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evaluated HU-induced accumulation of ATRIP at nuclear foci, CHK1 

phosphorylation, DNA damage, and recovery and completion of DNA replication. 

BID helix 4 mutants failed to restore HU-induced accumulation of ATRIP at DNA 

damage foci (Figure 3-11 A, B) or CHK1 phosphorylation in BID KD U2OS cells 

(Figure 3-11 C). To assess DNA damage following replicative stress, I performed 

alkaline Comet assays following HU treatment. BID KD U2OS cells demonstrated 

increased DNA damage relative to control KD cells as measured by tail moment. 

Expression of BID +/+ but not BID/H4A or BID/H4B in BID KD U2OS cells 

restored DNA damage levels to those observed in control KD cells. (Figure 3-11 

D). In addition, BID +/+ but not BID/H4A or BID/H4B rescued the recovery and 

completion of DNA replication in BID KD U2OS cells following HU (Figure 3-11 E, 

F). Taken together, these results are consistent with a role for BID in ATR 

activation, mediated by an interaction of BID helix 4 with ATRIP. 

 

The RPA/ATR/ATRIP association is decreased in the absence of BID 

To determine whether Bid alters the association of ATR/ATRIP and RPA, Qiong 

Shi immunoprecipitated RPA70 or ATR from nuclear extracts of HU-treated Bid 

+/+ and Bid -/- MPCs. The association of ATR/ATRIP and RPA was decreased in 

the absence of Bid (Figure 3-12 A). My data are most consistent with a role for Bid 

to facilitate ATR signaling through modulating the DNA damage sensor complex. 
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Figure 3-11. An intact BID helix 4 is required for BID's function following HU treatment. (A) U2OS 

cells transfected with control siRNA or BID siRNA, and BID KD cells with rescue by wt-BID, H4A, 

H4B or phospho-mutated (S/A) BID were treated with 10 mM HU for 5 h, fixed, and stained with 

anti-ATRIP antibody. Representative images of ATRIP staining were shown. (B) Quantitative 

analysis of ATRIP accumulation at nuclear foci following replicative stress. The percentage of cells 

with >5 clearly visible ATRIP nuclear foci was calculated for each cell type. More than 600 cells 
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were counted in three independent experiments. (C) U2OS cells were treated with control siRNA 

or BID siRNA for 72 h. Wild type mouse BID, BID/H4A, BID/H4B, or vector alone was introduced 

into the cells simultaneously with siRNA. Cells were treated with 10 mM HU for 2 h. Total cell lysate 

was resolved on SDS-PAGE and immunoblotted as above. Relative band intensity of pCHK1 

signal has been measured by densitometry analysis. (D) U2OS cells overexpressing HA-tagged 

wild type or helix 4-mutated hBID was transfected with BID siRNA for 72 h. Silent mutations were 

introduced in the BID siRNA-target region so that only endogenous BID was knocked down by BID 

siRNA. Then, cells were treated with HU overnight. The untreated and treated cells were collected 

in ice-cold PBS and detected in alkaline comet assay. At least 60 randomly chosen comets/sample 

were analyzed by CometScore Program Version 1.5. *p<0.05. (E) U2OS cells overexpressing 

HA-tagged wild type or helix 4-mutated hBID was transfected with BID siRNA for 72 h. Silent 

mutations were introduced in the BID siRNA-target region so that only endogenous BID was 

knocked down by BID siRNA. Then, cells were treated with HU for overnight and released into 

fresh media containing 1 μg/ml nocodazole for the indicated times. Cells were fixed and stained 

with propidium iodide. Live cells were gated on FSC/SSC and analyzed by flow cytometry. The 

quantitative analysis of the arrested G1/early S phase cells following 32 h HU withdrawal was 

shown in (F). *p<0.05. (F) The quantitative analysis of the arrested G1/early S-phase cells 

following HU withdrawal in (E). Data were collected from three independent experiments. *p<0.05. 
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Discussion 

 

The BH3-only BCL-2 family members serve as sensors for cellular damage, 

transducing death signals to the multidomain family members at the mitochondria. 

These proapoptotic BH3-only proteins may function by participating in 

fundamental cellular processes (2,254-256) in position to sense potentially 

catastrophic perturbations in cell function and signal to the core apoptotic 

machinery. BID has been shown to be a substrate of ATM/ATR and loss of BID 

results in an aberrant S-phase response to DNA damage (2-5,80,257). 

  In this study, I demonstrate that BID functions at a remarkably proximal position 

in the ATR-mediated DNA damage response to replicative stress, associating with 

ATR, ATRIP, and RPA, in the DNA damage sensor complex. In my study, Bid -/- 

and BID KD cells exhibit several phenotypes consistent with limited ATR function 

following replicative stress: (1) Bid -/- cells are hypersensitive to replicative stress 

in vitro, ex vivo (2) and in vivo (Figure 3-1 B); (2) cell cycle re-entry ability is limited 

in BID KD cells following HU withdrawal (Figure 3-1 C); (3) chromatin-bound ATR 

and ATRIP are significantly decreased following treatment with HU (Figure 3-1 E); 

(4) activation of the ATR substrates CHK1 and RPA is decreased (Figure 3-4); and 

(5) the association of ATR/ATRIP and RPA is diminished in the absence of BID 

(Figure 3-12 A). The data presented above clearly place BID in the DNA damage 

response at the level of the sensor complex, and are consistent with a role for BID 
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Figure 3-12. A proposed model for BID in the ATR-mediated DNA damage response to replicative 

stress. (A) The damage complex is unstable in Bid -/- MPCs following HU treatment. Bid +/+ and 

Bid -/- MPCs were treated with 10 mM HU for 2 h. Then, the nuclear fraction was purified and RPA 

or ATR was immunoprecipitated from nuclear extracts. The immunoprecipitated samples were 

analyzed using SDS-PAGE followed by immunoblotting with the indicated antibodies. (B) 

Schematic model of a proposed role for BID in the ATR-mediated DNA damage signaling pathway. 

BID serves as a mediator in the ATR-directed response to replicative stress at the level of 

ATR/ATRIP activation. BID associates with the ATR/ATRIP complex via ATRIP. Thus, BID 

functions at the level of the sensor complex, to facilitate and amplify ATR-directed CHK1 activation 

and ensure rapid and efficient checkpoint activation. 
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in stabilization of the ATR/ATRIP DNA damage sensor complex at nuclear foci 

following replicative stress, potentially by acting as a bridging protein. Alternatively, 

BID may have a role in the stabilization of the replication fork after DNA damage. 

  Cells respond to stalled replication fork progression by activating signal 

transduction pathways to initiate a complex set of responses, including checkpoint 

activation, DNA repair, and in settings of irreparable DNA damage, programmed 

cell death or apoptosis (1). A multi-protein complex assembles in a highly 

coordinated and regulated manner at the site of the DNA lesion. RPA senses the 

accumulation of single-stranded DNA at stalled replication forks, and has a central 

role in checkpoint activation through interaction with ATRIP to recruit ATR to the 

site of the DNA lesion. A unified model for activation of ATR/ATRIP incorporating 

the current data in the literature on the role of the association with RPA-ssDNA 

has not yet developed. ATR-ATRIP bound to RPA-coated single stranded DNA is 

not sufficient for checkpoint activation, but requires the ordered recruitment of 

additional factors, including the 9-1-1 complex and TopBP1 for downstream 

signaling to effect the complex response to DNA damage (124,258). This study 

places BID, a member of the BCL-2 family, in association with key proteins of the 

sensor complex. I further demonstrate that BID has a role in the stable association 

of ATR/ATRIP and RPA, and in an efficient ATR-mediated DNA damage response 

following replicative stress. 

  Following genotoxic stress, ATM/ATR phosphorylate Bid at Ser61 and Ser78. in 
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this study, I found that mutation in Ser61/64/78 attenuates the induction of the 

BID-ATRIP interaction following HU, but does not abrogate the interaction (Figure 

3-9 B). In addition, reintroduction of S61/64/78A mutated Bid only partially rescues 

the defects of ATRIP nuclear foci in BID KD U2OS cells (Figure 3-11 A, B). Further 

investigation is required to clarify the detailed mechanism of BID phosphorylation 

in the DNA damage response. 

  Recently, MCL-1 has been demonstrated to be a novel mediator in the 

ATR-CHK1 pathway (259,260). Although the MCL-1 level is not significantly 

altered in Bid -/- and BID KD cells (Figure 3-3 B, C), the increased IP of BID/H4A 

with no corresponding increase in the amount of co-immunoprecipitated MCL-1 

(Figure 3-10 A), suggests that binding of MCL-1 to BID/H4A (but not BID/H4B) 

might be reduced. Additional experiments will be required to evaluate the potential 

interaction of BID and MCL-1 in the DNA damage response. 

  The initial results differ from results reported by Kaufmann et al (77) with 

respect to the magnitude of sensitivity of Bid -/- cells to replicative stress (2,261). 

Kaufmann et al used different cell types and activation stimuli, thus the 

experiments are not directly comparable. Cells vary significantly in their apoptotic 

response to DNA damage, by both cell lineage as well as differentiation state due 

both to the percentage of cycling cells as well as the ‘hardwiring’ of the cell. 

Immature, rapidly cycling hematopoietic cells show a high propensity to undergo 

apoptosis. Fibroblasts are substantially more resistant. Moreover, redundancy in 
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the apoptotic pathway, particularly with respect to the role of a given BH3-only 

protein, results in variability of apoptotic outcome by cell signal and cell type. I 

expect that the differences observed between our group and Kaufmann et al were 

because of the cells and experimental parameters used. This is consistent with an 

effect that is cell type or context specific as I have proposed. 

  Distinct from cells defective in other classic mediators/effectors, such as ATRIP, 

RAD17, and Claspin, the CHK1 activation process is in fact initiated, albeit to a 

lesser extent, in Bid -/- cells following DNA damage treatment. Moreover, Bid -/- 

mice develop normally, whereas mice lacking the essential mediators/effectors 

(ATR, CHK1, RAD17) die early in embryonic development. The normal 

developmental program in the absence of BID may reflect the presence of 

redundancy or tissue/developmental stage specificity to the role of BID in ATR 

signaling. BID is present at high levels in hematopoietic cells, Bid -/- bone marrow 

is sensitive to in vivo HU, and Bid -/- mice develop CMML, consistent with a role 

for Bid in hematopoietic homeostasis and leukemogenesis. Although it is 

interesting to speculate that the location of BID as a participant in the DNA 

damage sensor complex places, it in position to have a key role in determining the 

fate of a cell following DNA damage, further studies will be necessary to dissect 

the roles of BID's apoptotic versus DNA damage function in this setting. 
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CHAPTER IV 

 

BID BINDS TO REPLICATION PROTEIN A AND STIMULATES ATR  

FUNCTION FOLLOWING REPLICATIVE STRESS# 

 

Introduction 

 

The BCL-2 family of proteins regulates a mitochondrial-directed program of 

cellular destruction, used by multicellular organisms to dispose of unwanted or 

damaged cells.  The BH3-only members such as BID, sense cellular stresses 

and initiate cell death by interacting with multi-domain BCL-2 members (7,254).  

Recent data suggest that these BH3-only members may possess additional 

functions in fundamental cellular processes, placing them in position to sense 

cellular damage (2,3,255,256). 

BID has been demonstrated to play a pro-apoptotic role in multiple cellular 

stress-induced responses (31,32,79,86,87,97). However, a singular apoptotic 

function does not account for all of the current data regarding BID’s function.  

BID is highly expressed in hematopoietic cells, and loss of BID impairs cell growth 

and increases sensitivity to replicative stress, consistent with a survival role to 

maintain genomic integrity following DNA damage treatments, especially 

replicative stress (2-4,261). Bid -/- mice spontaneously develop chronic 

# The research results in this chapter have been published as reference (5).  
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myelomonocytic leukemia with significant chromosomal abnormalities (66).  

Following replicative stress, BID associates with the ATR/ATRIP/RPA complex 

through BID helix 4 and the coiled-coil domain of ATRIP (4). BID’s association 

with ATRIP facilitates ATR function as measured by CHK1 phosphorylation and 

recovery of DNA synthesis following hydroxyurea (4). Interestingly, the 

association between ATR/ATRIP and RPA is diminished in Bid -/- cells following 

replicative stress, suggesting that BID might function to maintain the DNA damage 

sensor complex containing RPA and ATR/ATRIP (4). 

The assembly of the DNA damage sensor complex is a dynamic process 

involving the ordered recruitment of proteins to the single-stranded DNA 

generated by the uncoupled activity of DNA helicases and DNA polymerases 

(262). RPA, the primary eukaryotic single-strand DNA binding protein, serves as 

the initial sensor of replicative stress (159). RPA binds and coats the exposed 

single-stranded DNA (ssDNA), protecting it from nucleolytic damage and inhibiting 

formation of secondary structure (159).  

The RPA is a modular protein composed of three subunits (RPA70, RPA32, and 

RPA14) organized into eight domains connected by flexible linkers. Motion 

between domains allows for optimal association with DNA and associated 

proteins during DNA processing (159,171,174,263,264). RPA binds ssDNA using 

four OB-fold domains that bind sequentially to DNA with a 5'-3' polarity (168,169).  

The binding affinities of each individual domain are weak, but together produce a 
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high binding affinity for ssDNA, Kd 10-9-10-10 M (264). Scanning transmission 

electron microscopy and gel filtration studies have identified multiple 

conformations of RPA on DNA, further demonstrating the flexible nature of the 

protein (175). RPA also physically interacts with DNA processing factors through 

its protein-protein interaction modules, including RPA70N, RPA70AB, and 

RPA32C (159). RPA70N is a key protein interaction module for DNA damage 

response (DDR); a number of proteins involved in DDR have been shown to 

interact with this domain (148). In one model, RPA70N functions to recruit a series 

of checkpoint proteins to ssDNA, including RAD9 and ATRIP (148,159). RPA also 

maintains genomic stability by interaction with multiple proteins, including RAD51, 

the MRN complex, and the TIM/TIPIN complex (164,184,185), and prevents the 

generation of excessive ssDNA following replicative stress through recruitment of 

the annealing helicase SMARCAL1 (HARP) (186-189). 

Following replicative stress, proteins of the DNA damage sensor complex are 

recruited to RPA-coated ssDNA. ATR/ATRIP and the 9-1-1 complexes are 

independently recruited to RPA-coated ssDNA (126). TopBP1, a key ATR activator, 

is then recruited to ssDNA by interaction with ATR/ATRIP and Rad9 to facilitate 

the formation of activated DNA damage sensor complex (127-129). The activated 

ATR then phosphorylates numerous substrates required for replicative 

stress-induced DNA damage response (93). ATR and its effectors maintain 

genomic integrity by arresting cell cycle, slowing origin firing, stabilizing replication 
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fork, and facilitating replication fork restart (124).  

In my previous study, I demonstrated that BID interacts with the DNA damage 

sensor complex, including ATR-ATRIP and RPA in vivo and in vitro (4), and 

facilitates an efficient response to replicative stress through interaction of BID 

Helix 4 with ATRIP. In the present work, I demonstrate that the acidic N-terminal 

region of BID’s Helix 5 (named RPA-ID, RPA-interacting domain) interacts with the 

basic cleft of RPA70N. In addition, BID stimulates recruitment of ATR-ATRIP to 

RPA-coated ssDNA. Interestingly, association of RPA and PCNA with chromatin is 

not maintained in the absence of BID. I further demonstrate that the BID-RPA 

interaction is important for normal ATR function following replicative stress.  

 

Results 

 

BID interacts with the N-terminal domain of RPA70 

My previous study demonstrated that BID facilitates an efficient DNA damage 

response to replicative stress. I further demonstrated that the association of 

ATRIP and RPA with chromatin is diminished in the absence of BID (4). As RPA 

plays a key function to sense ssDNA and to recruit the proteins involved in 

checkpoint response and DNA repair, I asked whether BID might interact with the 

DNA damage response machinery through association with RPA.  

To evaluate the ability of BID to interact with the RPA, the protein was expressed 
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Figure 4-1. BID interacts with the N terminal domain of RPA70 in vitro. (A) Schematic diagram of 

the functional domains of RPA. The interactions between BID and various RPA domains are 

summarized. (B) BID interacts with RPA. Purified recombinant mouse BID and His-tagged RPA 

were incubated in binding buffer at room temperature for 30 minutes. BID was immunoprecipitated 

using anti-BID antibody, and the immunoprecipitated proteins were resolved on SDS-PAGE and 

immunoblotted with the indicated antibodies. (C) BID interacts with RPA70. Purified recombinant 

mouse BID was incubated with His-tagged RPA70-PDI fusion protein, His-tagged RAP70NAB 

domain, or His-tagged RPA70AB domain as in (B). BID was immunoprecipitated using anti-BID 

antibody, and the immunoprecipitated proteins were resolved on SDS-PAGE and immunoblotted 

with the indicated antibodies. (D) BID interacts with the N domain of RPA70. Purified recombinant 

mouse BID and His-tagged RPA70N domain (1 - 168 aa) were incubated as in (B). BID was 

immunoprecipitated using anti-BID antibody, and the immunoprecipitated proteins were resolved 

on SDS-PAGE and immunoblotted with the indicated antibodies. (E) BID does not interact with the 

C domain of RPA32. Purified recombinant mouse BID and His-tagged RPA32/C domain were 

incubated as in (B). BID was immunoprecipitated using anti-BID antibody, and the 

immunoprecipitated proteins were resolved on SDS-PAGE and immunoblotted with the indicated 

antibodies. (F) BID does not interact with RPA32/RPA14 domains. Purified recombinant mouse 
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BID and RPA32/14 subunits were incubated as in (B). BID was immunoprecipitated using anti-BID 

antibody, and the immunoprecipitated proteins were resolved on SDS-PAGE and immunoblotted 

with the indicated antibodies. 
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in E. coli and purified (Figure 4-1 A) (159). The purified RPA was incubated with 

purified recombinant mouse Bid and immunoprecipitated with anti-BID antibody. 

The immunoprecipitated product was resolved on SDS-PAGE and immunoblotted 

with the indicated antibodies. My experiments showed BID associates with RPA in 

vitro (Figure 4-1 B). As noted above, RPA70N, RPA70AB, and RPA32C are the 

protein interaction modules of RPA (Figure 4-1 A) (159). To identify the domain(s) 

that associate with BID, various RPA domain constructs were overexpressed in E. 

coli and purified (Figure 4-2), then evaluated for association with BID by 

immunoprecipitation. As the expression of the RPA70 subunit of RPA in E. coli is 

completely insoluble (265), I used the PDI-fusion system to express full-length 

RPA70 subunit and successfully purified soluble RPA70 in E. coli. To assess 

BID-RPA70 interaction, wild type BID was incubated with His-tagged RPA70-PDI 

fusion protein, His-tagged RPA70NAB, His-tagged RPA70AB or His-tagged 

RPA70N. After BID was immunoprecipitated by anti-BID antibody, the RPA70-PDI 

fusion, RPA70NAB and RPA70N were detected in the immunoprecipitated 

products, but not RPA70AB (Figure 4-1 C, D). These results suggest that BID 

interacts with the RPA70N domain. To evaluate whether BID may also associate 

with RPA32C, wild type BID was incubated with purified His-tagged RPA32C or 

RPA32/14. After BID was immunoprecipitated by anti-BID antibody, no significant 

RPA32C or RPA32/14 was found in the immunoprecipitated product (Figure 4-1 E, 

F), suggesting that BID does not interact with RPA32C. As controls, I established 
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Figure 4-2. Purified recombinant protein from E. coli in this study. (A) His-tagged RPA. (B) Wild 

type mouse Bid and two Helix 4 domain Bid mutants. H4A: L105C/L109C; H4B: Q112A/N115A. (C) 

Mouse Bid with mutations in RPA-ID region (E120G/E121G/D122G) and in IH5 region 

(D132A/E133A). (D) Wild type human BID and BID mutations in RPA-ID 

(E120G/E121G/D122G/D126A) region and in IH5 (E132A/Q133A) region. (E) 15N-labeled human 

BID. (F) His-tagged RPA70-PDI fusion protein, His-tagged RPA70NAB, His-tagged RPA70/AB, 

His-tagged RPA70N, and His-tagged RPA32/C. Asterisks denote two contaminating proteins. (G) 

His-tagged wild type RPA70N and RPA70N harboring R41E/R43E mutation. (H) His-tagged 

RPA70N harboring R41E, R43E, R91E, R92E, R91E/R92E, or R43E/R91E mutation. 
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that when BID was incubated with His-tagged PDI (Figure 4-3 A) or His-tagged 

MBP (Figure 4-3 B), followed by immunoprecipitation with anti-BID antibody, no 

significant His-tagged PDI (Figure 4-3 A) or His-tagged MBP (Figure 4-3 B) was 

detected in the immunoprecipitated product. Accordingly, I conclude that BID 

specifically interacts with the RPA70N domain. 

 

The acidic N-terminal region of Helix 5 of BID interacts with the basic cleft of 

RPA70N 

RPA70N has been demonstrated to play an important role in sensing and 

recruiting various DNA damage response factors to ssDNA following replicative 

stress. The basic cleft of RPA70N serves as a docking surface for a series of 

checkpoint proteins, including RAD9 and ATRIP, which interact primarily through 

charge-charge interactions (148). To further characterize the interaction between 

BID and RPA70N, 15N-1H HSQC (heteronuclear single quantum correlation) NMR 

was employed to map the interaction surfaces on the two proteins. This approach 

has been used extensively in the case of RPA to characterize binding interactions 

(148,178,236). In these experiments, one of the two binding partners is produced 

with enrichment in the NMR active 15N isotope and 15N-1H-HSQC NMR spectra 

are acquired as the unlabeled binding partner is titrated into the solution. The 

assay is effective because the NMR chemical shift is extremely sensitive to 

electronic environment, so when a molecule that interacts with the labeled 
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Figure 4-3. Bid does not interact with PDI or MBP. (A) Purified recombinant mouse Bid and 

His-tagged PDI were incubated in binding buffer at room temperature for 30 minutes. Bid was 

immunoprecipitated using anti-BID antibody, and the immunoprecipitated proteins were resolved 

on SDS-PAGE and immunoblotted with the indicated antibodies. (B) Purified recombinant mouse 

Bid and His-tagged MBP were incubated in binding buffer at room temperature for 30 minutes. Bid 

was immunoprecipitated using anti-BID antibody, and the immunoprecipitated proteins were 

resolved on SDS-PAGE and immunoblotted with the indicated antibodies. (C) Purified 

recombinant His-tagged human PDI from E. coli. (D) Purified recombinant His-tagged MBP from E. 

coli. 
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protein is added to the solution the chemical shifts of signals from residues at the 

binding interface are perturbed. It should be noted that additional chemical shift 

perturbations may arise as a result of changes in the structure of the labeled 

protein that are induced by the interactions with the binding partner. 

Titration of 15N-labled RPA70N with BID gave rise to a select set of chemical 

shift perturbations in 15N-1H HSQC NMR spectra (Figure 4-4 A), which indicated a 

specific binding interaction. The effects were within the fast exchange regime on 

the NMR time scale, which meant that chemical shift assignments could be traced 

from the continuous shifting of signals. The RPA70N residues most affected were 

mapped onto the structure of RPA70N (Figure 4-4 B), and include Arg31, Ile33, 

Arg43, Leu44, Arg92 and Tyr118. These residues are all located in the basic cleft 

of RPA70N, indicating that the binding site for BID on RPA70N is similar to that of 

ATRIP, MRE11, and RAD9 (148,242). A reciprocal titration of RPA70N into 

15N-labeled BID was also performed. The residues with the most significant 

chemical shift perturbations were located in Helices 4 and 5 and the loop between 

them, including Arg118, Ser119, Glu120, Glu121, Asp 122, Asp126, Leu127, 

Thr129, Ala130, and Gln133 (Figure 4-4 C, D). This region is termed the RPA 

interacting domain (RPA-ID) of BID. 

Having used NMR to map the residues involved in the interaction between BID 

and RPA70N, Sivaraja Vaithiyalingam turned to computational docking using 

these data to guide the generation of a structural model of the complex. The  
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Figure 4-4. NMR analysis of the interaction of RPA70N and BID. (A) Identification of the RPA70N 

residues in the BID binding site. Overlaid 15N-1H HSQC spectra of 15N-labled RPA70N (1 - 120 aa) 

in the absence (black) and presence (red) of BID. (B) Map of RPA70N residues (yellow) perturbed 

upon the addition of BID on the structure of RPA70N. (C) Identification of the BID residues in the 

RPA70N interaction domain.  Binding of RPA70N with BID monitored on the 15N-1H HSQC 

spectra of 15N-labled BID in the absence (black) and presence (red) of RPA70N. (D) Map of BID 
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residues (yellow) perturbed upon the addition of RPA70N on the structure of BID. (F) Electrostatic 

complementarity of the RPA70N (top) and BID (bottom) binding sites. (E) NMR-based model of the 

complex of BID with RPA70N. Ribbon representation of PA70N and BID are colored in salman red 

and cyan, respectively. (G) A close up view of the model of the BID-RPA70N complex. The whole 

experiments and models in this figure are designed and finished by Sivaraja Vaithiyalingam. 
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program HADDOCK (High Ambiguity Driven biomolecular DOCKing) was used 

for this purpose (239,240). Interface restraints were generated for residues that 

exhibited significant chemical shift perturbations or broadening and also had side 

chains with >50% solvent accessibility. An overview of the model of the 

BID-RPA70N complex is shown in Figure 4-4 E-G. A comparison of the 

electrostatic surfaces in the binding region of the two proteins show there is a 

significant electrostatic complimentarity (Figure 4-4 F). For example, there are a 

number of specific salt bridges in the model, in particular from acidic residues in 

RPA-ID of BID (e.g. Glu121, Asp122, Asp126) and basic residues in the basic 

cleft region of RPA70N (e.g. Arg43, Arg91) (Figure 4-4G).  

The structural model suggests key amino acids in the basic cleft region of 

RPA70N interact with acidic residues in the RPA-ID of BID. To test these 

predictions, a series of RPA70N and BID mutations were prepared and 

interactions were tested by co-immunoprecipitation experiments. Introduction of 

mutations in RPA70N basic residues Arg43 and Arg91 significantly impaired the 

BID-RPA70N interaction (Figure 4-5 A). Interestingly, although NMR chemical 

shift perturbations are observed for the Arg41 and Arg92 residues, mutation of 

these residues results in little to no effect on the BID-RPA70N interaction (Figure 

4-5 A). These observations confirm the validity of the model as residues 41 and 

92 do not face directly into the BID interaction interface and chemical shift 

perturbations can be attributed to changes induced by the binding of adjacent 
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Figure 4-5. Mutations in the RPA-ID of BID or the basic cleft region of RPA70N impair 

BID-RPA70N interaction. (A) BID interacts with the basic cleft of RPA70N. Purified recombinant 

His-tagged wild type RPA70N or RPA70N mutated at residues 41, 43, 91, 92- charged residues 

located around the RPA basic cleft region was incubated with BID in binding buffer at room 

temperature for 30 minutes. BID was immunoprecipitated using anti-BID antibody, and the 

immunoprecipitated proteins were resolved on SDS-PAGE and immunoblotted with the indicated 

antibodies. (B) Schematic diagram of the RPA-ID and IH5 mutated BID. Glu121, Asp122 and 

Asp126 in the RPA-ID region of BID are marked. (C) The BID RPA-ID region interacts with 

RPA70N. Purified recombinant His-tagged wild type RPA70N was incubated with wild type, 

RPA-ID or IH5 mutated mouse Bid in binding buffer at room temperature for 30 minutes. Bid was 

immunoprecipitated using anti-BID antibody, and the immunoprecipitated proteins were resolved 

on SDS-PAGE and immunoblotted with the indicated antibodies. (D) Purified recombinant 

His-tagged wild type RPA70N was incubated with wild type, RPA-ID or IH5 mutated human BID in 

binding buffer at room temperature for 30 minutes. BID was immunoprecipitated using anti-BID 

antibody, and the immunoprecipitated proteins were resolved on SDS-PAGE and immunoblotted 

with the indicated antibodies. (E) Mutation in RPA-ID region of BID impairs BID-RPA interaction in 

U2OS cells. U2OS cells harboring HA-tagged wild type hBID or mutated hBID in RPA-ID or IH5 

region were treated with 10 mM hydroxyurea for 5 hours. Then, the expressed HA-tagged BID was 

immunoprecipitated from purified nuclear extracts by anti-HA antibody and RPA70 was detected in 

the immunoprecipitated products. The HA-tagged mutated hBID and endogenous hBID are 

labeled as solid and dashed arrows, respectively. (F) Biotinylated ssDNA was incubated with 

streptavidin beads for 30 minutes at 4oC. Then, the pull-down products were incubated with 

His-tagged RPA in the presence of wild type or mutated mouse BID for 1 hour at 4oC and the 

pull-down products were resolved on SDS-PAGE and immunoblotted with the indicated 

antibodies. 
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residues to BID. I note some chemical shift perturbations in BID residues were 

observed for residues outside of the RPA-ID, particularly in Helix 4 and Helix 5. 

These effects are also attributable to a secondary effect induced by the binding of 

RPA70N to the BID RPA-ID. To test the involvement of the RPA-ID of BID in the 

BID-RPA70N interaction, acidic residues in the RPA-ID of BID were mutated. As a 

control, acidic residues inside of Helix 5 (IH5) (Figure 4-5 B), were also tested. In 

the BID-RPA70N co-IP experiments, wild type BID and IH5 mutants were found to 

interact with RPA70N, but RPA-ID mutated human or mouse BID did not (Figure 

4-5 B-D). These results further support the BID-RPA70N structural model in which 

the acidic RPA-ID primarily contacts the basic cleft region of RPA70N. 

To investigate whether mutation in RPA-ID region of BID impairs BID-RPA 

interaction at the endogenous level, U2OS cells harboring HA-tagged wild type 

hBID or mutated hBID in RPA-ID or IH5 region were treated with hydroxyurea to 

induce replicative stress. Then, the expressed HA-tagged BID was 

immunoprecipitated from purified nuclear extracts by anti-HA antibody and RPA70 

was detected in the immunoprecipitated products. RPA-ID mutated BID 

significantly deceased BID-RPA interaction while wild type and IH5 mutated BID 

show an intact BID-RPA interaction following replicative stress (Figure 4-5 E). 

Interestingly, the immunoprecipitation of HA-tagged nuclear BID also 

immunoprecipitates endogenous BID (Figure 4-5 E), suggesting that BID might 

form an oligomer in the nucleus. 
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I further evaluated the ability of wild type BID and BID mutants in the RPA-ID or 

the IH5 to associate with RPA bound to ssDNA. An 80-nucleotide 3'-biotinylated 

DNA oligomer was incubated with streptavidin agarose and then coated with 

His-tagged RPA. Wild type BID or BID mutated in the RPA-ID or the IH5 was 

incubated with the RPA-coated ssDNA and pulled down by streptavidin agarose. 

Wild type BID and IH5 mutated BID but not the RPA-ID mutant were found in the 

pull-downs (Figure 4-5 F). Additional controls were performed on mutants in other 

functional domains of BID (i.e. BH3 domain and Helix 4 domain) and these also 

do not significantly impair the BID-RPA70N interaction (Figure 4-6). The above 

results confirm the importance of the BID RPA-ID for the interaction of RPA70N 

with BID. 

 

The RPA-ID of BID is important for normal ATR function following replicative 

stress 

The N terminal domain of RPA70 has been demonstrated to play a crucial role 

in the ATR-mediated DNA damage response (125,148). Cells harboring 

RPA70-R41E/R43E exhibit significantly diminished ATR-mediated CHK1 

phosphorylation following UV treatment (148). To test whether the BID-RPA 

interaction is important for normal ATR function, wild type BID or an RPA-ID 

mutant BID was reintroduced into BID KD U2OS cells. Compared with mouse Bid, 

the RPA-ID region of human BID harbors an additional acidic amino acid (D126), 
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Figure 4-6. Mutations in the BH3 or Helix 4 region of BID do not impair the BID-RPA70N 

interaction. Purified recombinant His-tagged wild type RPA70N was incubated with wild type 

mouse Bid, or Bid harboring mutations in the Bid BH3 domain (I93A/G94A/D95A/E96A) or Bid 

Helix 4 domain (H4A: L105C/L109C; H4B: Q112A/N115A) in binding buffer at room temperature 

for 30 minutes. Bid was immunoprecipitated using anti-BID antibody, and the immunoprecipitated 

proteins were resolved on SDS-PAGE and immunoblotted with the indicated antibodies. 
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which displays an obvious chemical shift perturbation in NMR HSQC spectrum 

upon adding RPA70N. Therefore, I also mutated Asp 126 to Ala in human RPA-ID 

mutated BID (Figure 4-5 B). 

One unique ATR function is to facilitate cell cycle re-entry after release from 

replicative stress (124). U2OS cells harboring wild type, RPA-ID or IH5 mutated 

human BID were transfected with BID-targeted siRNA to knock down endogenous 

BID. Then, cells were arrested in early S phase by 10 mM HU overnight and 

released into fresh medium with nocodazole to prevent cell division. BID KD 

U2OS cells demonstrated impaired DNA recovery of replication and progression 

through S phase (Figure 4-7 A). Expression of wild type and IH5 mutated BID but 

not RPA-ID mutated BID rescued the recovery and completion of DNA synthesis 

in BID KD U2OS cells (Figure 4-7 A, B), suggesting that the BID-RPA association 

is important for normal ATR function following replicative stress.  

  ATR signals to downstream effectors in the DDR through phosphorylation of 

key substrates. Following HU-induced replicative stress, the phosphorylation of 

ATR substrates (i.e. CHK1 and RPA32) was diminished in BID KD U2OS cells (4) 

(Figure 4-7 C), suggesting that ATR kinase activity is limited in the absence of BID. 

Reintroduction of wild type but not the RPA-ID mutated BID rescued the defects of 

ATR substrate phosphorylation (Figure 4-7 C), suggesting that the RPA-ID of BID 

is important for normal ATR activity in the cellular response to replicative stress.  

Following replicative stress, ATR phosphorylates numerous substrates to 
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Figure 4-7. The RPA-ID of BID is important for normal ATR function following replicative stress. (A) 

An intact RPA-ID region of BID is required for normal recovery of DNA synthesis following 

hydroxyurea withdrawal. U2OS cells overexpressing HA-tagged wild type, RPA-ID or IH5 mutated 

human BID were transfected with BID siRNA for 72 hours. Then, cells were treated with 10 mM 

hydroxyurea overnight and released into fresh media containing 1 µg/ml nocodazole for the 

indicated times. Cells were fixed and stained with propidium iodide. Live cells were analyzed by 

flow cytometry gated on FSC/SSC. The quantitative analysis of the arrested G1/early S phase 

cells following 32-hour HU withdrawal was shown in (B). *, p < 0.05. (C) An intact RPA-ID region of 

BID is important for normal ATR substrate phosphorylation following hydroxyurea treatment. U2OS 

cells overexpressing HA-tagged wild type BID or RPA-ID mutated human BID were transfected 

with BID siRNA for 72 hours. Silent mutations were introduced into the BID siRNA-targeted region 

so that only endogenous BID was knocked down by BID siRNA. Then, cells were treated with 10 

mM hydroxyurea for 5 hrs, protein extracts were resolved on SDS-PAGE and immunoblotted with 

anti-phospho-CHK1 and anti-RPA32. (D) U2OS cells overexpressing HA-tagged wild type, RPA-ID 

or IH5 mutated human BID was transfected with BID siRNA for 72 hours. Silent mutations were 

introduced into the BID siRNA-targeted region so that only endogenous BID was knocked down by 

BID siRNA. Then, cells were treated with 10 mM hydroxyurea overnight. The untreated and 

treated cells were collected in ice-cold PBS and detected in alkaline comet assay (Trevigen). The 

samples were run in Alkaline Electrophoresis Solution at 21 V for 30 minutes. At least 60 

randomly-chosen comets per sample were analyzed by CometScore Program Version 1.5. *, p < 

0.05.  
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maintain the stalled replication fork and genomic integrity. To detect the DNA 

damage level following replicative stress, U2OS cells harboring wild type or 

RPA-ID mutated human BID were transfected with BID-targeted siRNA to knock 

down endogenous BID. Then, cells were treated with HU overnight. In the BID KD 

U2OS cells, the DNA damage level is significantly increased following HU 

treatment (Figure 4-7 D). Reintroduction of wild type but not the RPA-ID mutated 

BID rescued the increased DNA damage level (Figure 4-7 D), suggesting that the 

RPA-ID of BID is important to maintain genomic integrity following replicative 

stress.  

  The Helix 4 domain interacts with the coiled-coil region of ATRIP following 

replicative stress, and reintroduction of Helix 4 mutated BID into BID KD cells 

cannot rescue the defects in cell cycle re-entry ability, ATR substrate 

phosphorylation and DNA damage level (4).These results suggest that both the 

BID-ATRIP and the BID-RPA interactions are important for BID’s function in the 

ATR-mediated DNA damage signaling pathways. 

 

RPA-ID mutated BID maintains pro-apoptotic function 

To investigate whether mutations in the RPA-ID affect BID’s cell death function, 

purified wild type BID or RPA-ID mutant was incubated with purified caspase 8, 

the initiator caspase responsible for cleaving BID following death receptor 

activation. Purified recombinant wild type BID and RPA-ID mutant show similar 
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sensitivity to caspase 8 in vitro (Figure 4-8 A). Furthermore, incubation of BID with 

RPA70N did not change the sensitivity of BID to caspase 8 (Figure 4-8 B) in this in 

vitro assay.  In addition, truncated BID showed similar interaction with RPA70 as 

full-length BID (Figure 4-8 C), suggesting that cleavage of BID by caspase 8 does 

not impair BID-RPA interaction in vitro. These results are consistent with distinct 

separation of the RPA-ID and caspase cleavage site of BID. To determine if 

mutation in the RPA-ID resulted in loss of interaction with other apoptosis factors, 

I evaluated the ability of RPA-ID mutant to associate with BCL-2 and MCL-1 

(Figure 4-8 D, E). Wild type Bid or RPA-ID mutated mouse Bid was expressed in 

293T cells, and immunoprecipitated with anti-BID antibody. The 

immunoprecipitated product was resolved on SDS-PAGE and immunoblotted with 

anti-BCL-2 and anti-MCL-1. I found that the RPA-ID mutant associates with both 

BCL-2 and MCL-1 (Figure 4-8 D), suggesting that mutation does not disrupt the 

global structure of Bid, but maintains the ability to bind other BCL-2 family 

members. Similar results were also observed in U2OS cells stably expressing wild 

type or RPA-ID mutated human BID (Figure 4-8 E). In addition, TRAIL-induced 

cell death was restored by re-introduction of wild type and RPA-ID mutated human 

BID but not BH3 domain-mutated human BID (Figure 4-8 F), suggesting that 

RPA-ID mutated BID maintains its pro-apoptotic function. The above results are 

consistent with biological and biochemical separation of the functions of BID in cell 

death and the DNA damage response. 
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Figure 4-8. Mutation in RPA-ID region of BID does not significantly alter BID’s apoptotic function in 

the extrinsic cell death pathway. (A) Caspase 8 cleaves RPA-ID mutated BID. Purified wild type 

and RPA-ID mutated mouse Bid were incubated with active caspase 8 (Millipore) in vitro for 0.5, 1 

and 2 hours. The reaction products were resolved by SDS-PAGE and immunoblotted with anti-BID 

antibody. (B) Incubation with RPA does not affect Bid’s sensitivity to Caspase 8 in vitro. Purified 

wild type mouse Bid was incubated with active caspase 8 in the presence of RPA or BSA for 20, 40 

and 60 minutes. The reaction products were resolved by SDS-PAGE and immunoblotted with 

anti-BID antibody. (C) Cleaved Bid binds with RPA in vitro. Purified recombinant mouse Bid was 

first incubated with activated caspase 8 for 4 hours at 37oC. Then, the cleaved Bid was incubated 

with purified recombinant His-tagged RPA70-PDI fusion protein and in vitro co-IP assay was 

performed. (D) RPA-ID mutated Bid binds to other BCL-2 family proteins. 293T cells were 

transfected with wild type Bid or RPA-ID mutated mouse Bid for 48 hours. Then Bid was 

immunoprecipitated from whole-cell extracts with anti-BID antibody. The immunoprecipitated 

products were resolved by SDS-PAGE followed by immunoblotting with anti-BID, anti-MCL1 and 

anti-BCL2 antibodies. (E) U2OS cells overexpressing HA-tagged wild type or RPA-ID mutated 

human BID were lysed and HA-tagged BID was immunoprecipitated from whole-cell extracts with 

anti-HA antibody. The immunoprecipitated products were resolved by SDS-PAGE followed by 

immunoblotting with anti-BID, anti-MCL1 and anti-BCL2 antibodies. The HA-tagged mutated hBID 
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and endogenous hBID are labeled as solid and dashed arrows, respectively. (F) Cells harboring 

RPA-ID-mutated BID show similar sensitivity to TRAIL/CHX treatment. U2OS cells overexpressing 

HA-tagged wild type or RPA-ID mutated human BID were transfected with BID siRNA for 72 hours. 

Then, cells were treated with 50 ng/ml TRAIL and 5 μg/ml CHX for the indicated times. The 

apoptotic cells were detected using the Annexin V-FITC Apoptosis Detection Kit (BioVision).  
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RPA and PCNA are not maintained at the stalled replication fork in BID KD cells 

Following replicative stress, the ATR-mediated DNA damage response 

stabilizes stalled replication forks and facilitates replication re-entry. In my 

previous study, BID KD cells demonstrated limited replication re-entry following 

replicative stress, and decreased association of ATR-ATRIP and RPA, suggesting 

the possibility that BID may be involved at the replication fork. To evaluate the role 

of BID on association of replication fork proteins with chromatin following 

replicative stress, U2OS cells transfected with control siRNA or BID-targeted 

siRNA were treated with HU. Cells were then harvested at the indicated time 

points, chromatin fractions were isolated and resolved on SDS-PAGE, and 

immunoblotted with the indicated antibodies detecting factors involved in the 

replication fork. Consistent with my previous result, replicative stress induced an 

accumulation of ATR-ATRIP on the chromatin fraction in control KD but not BID 

KD U2OS cells (Figure 4-9 A). As a key ssDNA sensor, RPA accumulated in 

chromatin fractions in both control KD and BID KD U2OS cells. However, 

following treatment with HU, the accumulation of RPA on chromatin was 

significantly diminished in BID KD U2OS cells, most notably at four and eight 

hours of HU treatment (Figure 4-9 A). 

Following replicative stress, BID KD cells demonstrated increased DNA 

damage level (Figure 4-7 D). As ATR signal contributes to genomic integrity by 

stabilization of stalled replication fork (124), I asked whether the replication fork is  
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Figure 4-9. The stability of replication fork is diminished in BID KD cells following replicative stress. 

(A) U2OS cells were transfected with control siRNA or BID siRNA for 72 hours. Then cells were 

treated with 10 mM hydroxyurea over time and the chromatin fraction was purified and resolved on 

SDS-PAGE and immunoblotted with the indicated antibodies to various factors involved in the 

replication fork. (B) U2OS cells overexpressing HA-tagged wild type hBID, RPA-ID mutated hBID, 

or Helix 4 mutated hBID were transfected with BID siRNA for 72 hours. Overexpressed BID and 

BID mutants harbors silent mutations in the BID siRNA-targeted region to evade siRNA 

knockdown and thus only endogenous BID was knocked down by BID siRNA. Then, cells were 

treated with 10 mM hydroxyurea over time and chromatin fraction was purified, resolved on 

SDS-PAGE and immunoblotted with the indicated antibodies. (C) U2OS cells used in (B), 

overexpressing HA-tagged wild type hBID, RPA-ID mutated hBID, or Helix 4 mutated hBID 

harboring silent mutations to evade siRNA knockdown, were transfected with BID siRNA for 72 

hours. Then, cells were treated with 10 mM hydroxyurea for 5 hours and the chromatin fraction 

was purified, resolved on SDS-PAGE and immunoblotted with anti-BID antibody. 
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stable in the absence of BID. Strikingly, the maintenance of PCNA, a key co-factor 

of DNA polymerase delta in the replication fork, was significantly reduced in the 

BID KD chromatin fraction at eight hours post HU treatment, while PCNA was 

well-maintained in control KD chromatin four hours post HU treatment (Figure 4-9 

A). Of note, the total level of PCNA in BID KD cells was not significantly changed 

following HU treatment over time (Figure 4-10). Interestingly, chromatin-bound 

minichromosome maintenance complex 3 (MCM3) was maintained normally in 

BID KD cells following HU treatment, indicating that BID plays a minimal role to 

maintain the helicase on chromatin. This defect can be rescued by re-introduction 

of wild type BID but not by the RPA-ID mutated or Helix 4 mutated BID (Figure 4-9 

B). In addition, the chromatin-bound RPA-ID or Helix 4 mutated BID was 

significantly diminished following replicative stress (Figure 4-9 C). These above 

results are consistent with decreased stability of the protein complex involved in 

the DNA damage response at stalled replication forks in the absence of BID. 

Furthermore, both the BID-ATRIP and BID-RPA interactions are important for 

BID’s function to maintain the DNA damage sensor complex. 

 

BID facilitates the RPA-ATRIP interaction in vitro in a dose-dependent manner 

Following replicative stress, BID associates with ATR/ATRIP/RPA complex.  

The association between ATR/ATRIP and RPA is diminished in Bid -/- cells (4). To 

investigate the mechanism of BID’s regulation of the ATR/ATRIP/RPA complex, 
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Figure 4-10. The protein levels of various factors involved in the replication fork are not 

significantly changed in BID KD cells following replicative stress. U2OS cells were transfected with 

control siRNA or BID siRNA for 72 hours. Then cells were treated with 10 mM HU for the indicated 

times. Then, cells were lysed, protein extracts were resolved by SDS-PAGE and immunoblotted 

with the indicated antibodies. Solid arrows denote shifted bands in immunoblots that match the 

predicted position of phosphorylated CHK1 or RPA32. 
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the ATRIP-RPA interaction was evaluated in the absence or presence of purified 

recombinant BID. Interestingly, low concentrations of BID stimulate binding of 

HA-ATRIP in the nuclear lysate to GST-RPA70N while high concentrations of BID 

compete with HA-ATRIP binding to GST-RPA70N (Figure 4-11 A). In addition, the 

induction of HA-ATRIP bound to GST-RPA70N was also observed in HU-treated 

nuclear lysate, although to a lesser extent (Figure 4-11 B). It is worthwhile to note 

that HU treatment dramatically increases the binding ability of HA-ATRIP to 

GST-RPA70N (Figure 4-11 B), suggesting that a more stable ATR/ATRIP-RPA 

complex is formed following replicative stress. Mutations in either the RPA-ID or 

the Helix 4 region of BID impair BID’s ability to facilitate the RPA-ATRIP interaction 

in this in vitro system (Figure 4-11 C), which is consistent with my finding that BID 

facilitates formation of the DNA damage sensor complex in vivo, both through the 

BID-ATRIP interaction and the BID-RPA interaction. 

 

Discussion 

 

Although the BCL-2 family of proteins was first characterized as sensors 

and/ortransducers that function at the mitochondria to activate the intrinsic 

apoptosis pathway, accumulating data has implicated increasing numbers of 

BCL-2 family members that function in the nucleus following DNA damage. BCL-2 

plays a role to suppress DNA double strand-break repair and V(D)J recombination 
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Figure 4-11. BID facilitates the RPA-ATRIP interaction in vitro in a dose-dependent manner. (A) 

250 pmol His-GST fused wild type RPA70N or RPA70N harboring R41E/R43E mutations was 

bound to Glutathione-Agarose beads. Then, the nuclear fraction was purified from U2OS cells 

stably expressing HA-tagged ATRIP. The nuclear lysate was incubated with the RPA70N or 

RPA70NR41E/R43E beads in the presence of 50 or 1250 pmol purified human BID at room 

temperature for 1 hour. The GST-pulldown product was resolved on SDS-PAGE and 

immunoblotted with the indicated antibodies. (B) 250 pmol His-GST fused wild type RPA70N was 

bound to Glutathione-Agarose beads. Then, U2OS cells stably expressing HA-tagged ATRIP were 

left untreated or treated with 10 mM HU for 5 hours and the nuclear fraction was purified. The 

nuclear lysate was incubated with the RPA70N Glutathione-Agarose beads in the presence of 10, 

50, 250, 1250 pmol purified human BID at room temperature for 1 hour. The GST-pulldown 

product was resolved on SDS-PAGE and immunoblotted with the indicated antibodies. (C) 250 

pmol His-GST fused wild type RPA70N was bound to Glutathione-Agarose beads. Then, the 

nuclear fraction was purified from U2OS cells stably expressing HA-tagged ATRIP. The nuclear 

lysate was incubated with the RPA70N Glutathione-Agarose beads in the presence of 10 pmol 

purified wild type mouse Bid or Bid mutated in the RPA-ID, IH5, H4A (L105C/L109C) and H4B 

(Q112A/N115A) regions at room temperature for 1 hour. The GST-pulldown product was resolved 

on SDS-PAGE and immunoblotted with the indicated antibodies. (D) A structural view of the 

functional domains of BID. The BH3, Helix4 and RPA-ID domain are labeled in the solution of 
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human BID (PDB accession code: 2BID) to interact with BCL-2 family, ATRIP, and RPA, 

respectively. The different structural domains of BID mediate different functions of BID in either 

programmed cell death or DNA damage signaling pathways. 
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by interaction with Ku70 and Ku86 via its BH1 and BH4 domains (266). Following 

etoposide treatment, MCL-1 is found in the DNA damage complex containing 

NBS1 and γH2A.X to facilitate ATR-dependent CHK1 phosphorylation 

(259,260,267). The accumulation of nuclear MCL-1 in response to DNA damage 

is mediated by interaction with the IEX-1 protein (268). AVEN, a 

BCL-XL-interacting protein, functions as an ATM activator to inhibit G2/M 

progression (269). In addition to these anti-apoptotic members, I have shown that 

BID, a pro-apoptotic BH3-only protein, associates with the DNA damage sensor 

complex (4). Interestingly, following replicative stress, BID interacts with the DNA 

damage sensor complex (i.e. ATRIP and RPA) by its unique Helix 4 and RPA-ID 

regions, which are not shared by any other BCL-2 family members, supporting the 

notion that this function in the cellular response to replicative stress is unique to 

BID. It is worthwhile to notice that the dual functions of BID in programmed cell 

death and DNA damage signaling pathways are mediated by distinct domains in 

structure (Figure 4-11 D). Following death stimuli, BH3 domain plays a critical role 

for BID to facilitate its interaction with other BCL-2 family protein. Following 

genotoxic stress, the Helix4 and RPA-ID domain plays an important role for BID to 

facilitate its interaction with ATRIP and RPA in the DNA damage sensor complex, 

respectively (Figure 4-11 D). 

As the direct sensor of single-stranded DNA, RPA plays a crucial role in 

ATR-mediated DNA damage response to replicative stress (125). RPA binds to 
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exposed ssDNA and recruits other checkpoint proteins to form an activated DNA 

damage sensor complex. It is important to note that although I find a primary 

interaction of BID with RPA70N, it is also possible that other regions of RPA may 

participate in the interaction with BID. Following replicative stress, the ATR-ATRIP 

complex and the RAD9-HUS1-RAD1 complex (9-1-1) are recruited independently 

to RPA-coated ssDNA (126,243). The function of RPA in the ATR 

recruitment/activation process is predominantly mediated by its RPA70N domain, 

and RAD9 and ATRIP compete for the same basic cleft region of RPA70N in vitro 

(148). However, both RAD9 and ATRIP are essential positive regulators for 

normal ATR-mediated response in vivo (108,148), and are required to initiate and 

maintain the activated DNA damage sensor complex on chromatin. Both the 

length of ssDNA and the structure of the damaged DNA have also been reported 

to be important factors to initiate the ATR-mediated checkpoint response 

(270-272). Together, these results suggest that a higher order structure is required 

for a robust checkpoint response (273). In my studies, the association between 

ATR-ATRIP and RPA is diminished in Bid -/- cells following replicative stress (4), 

and BID stimulates the association of ATRIP with RPA on chromatin, suggesting 

that BID plays a role in vivo to maintain the high-order structure of DNA damage 

sensor complex. 

My studies also showed that chromatin-bound PCNA is significantly diminished 

in BID KD cells following replicative stress (Figure 4-9). Although PCNA is prone 



 129

to release from stalled replication forks in the absence of BID, the 

chromatin-bound MCM3 is maintained normally in BID KD cells (Figure 4-9). 

These results are consistent with the observation that although Bid -/- cells double 

more slowly, DNA replication can function, and Bid -/- mice are viable (4,76), with 

defects predominantly in hematopoietic homeostasis. My results are most 

consistent with a role for BID in the response to replicative stress, functioning as a 

novel mediator to help coordinate an efficient response to this cellular damage. 
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CHAPTER V 

 

Bid PRESERVES THE MOUSE HEMATOPOIETIC SYSTEM FOLLOWING 

HYDROXYUREA-INDUCED REPLICATIVE STRESS^ 

 

Introduction 

 

Hematopoietic stem cells (HSCs) are the multipotent cells responsible for 

maintaining the entire blood system over the lifespan of an organism.  Following 

stress induced by trauma or toxin, hematopoietic stem cells are mobilized to 

expand the pool of multipotent progenitors that rapidly proliferate and repopulate 

the hematopoietic system. Hematopoietic homeostasis therefore requires that the 

production of cells and the removal of damaged or superfluous cells be carefully 

balanced and coordinated (200,220). Loss of stem cell regulation with increased 

self-renewal is a defining step in malignant transformation, while loss of 

self-renewal capacity results in hematopoietic failure. In both cases, the 

consequence for the organism is catastrophic. 

The central role of HSCs for hematopoietic maintenance requires stringent 

protection of genomic integrity, while maintaining the ability to repopulate the 

hematopoietic system. HSCs are subject to genotoxic stress through both 

extrinsic sources such as environmental toxins and radiation, as well as DNA 

^ The research results in this chapter have been submitted as reference (6).  
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damage arising from essential functions of the cell, including DNA damage arising 

during DNA replication.  

Cells respond to DNA damage through activation of a highly regulated signaling 

program that results in activation of cell cycle checkpoints, DNA repair programs, 

and apoptosis in the setting of irreparable damage. ATM initiates the DNA 

damage response to double-strand breaks (DSB) induced by agents such as 

ionizing radiation (1). ATR mediates the DNA damage response (DDR) to single 

stranded DNA (ssDNA) generated during replicative stress. The ribonucleotide 

reductase inhibitor hydroxyurea (HU) stimulates the ATR-directed DDR by 

depleting nucleotide pools, resulting in stalled replication forks. ATR is also 

essential for DNA replication, in addition to regulating the DDR to replicative 

stress (124,125). Cells with defects in ATR pathways show increased sensitivity to 

DNA-damaging agents causing replicative stress such as HU (129,274,275).   

Recently, two groups investigated the response of HSCs and committed 

progenitor cells to DNA damage induced by ionizing radiation in mouse and 

human systems, respectively (105,107). Murine hematopoietic stem and 

progenitor cells (HSPCs-lin-/c-kit+/Sca-1+/Flk2-) resist IR-induced apoptosis and 

preferentially utilize error-prone non-homologous end joining for DNA repair (105). 

Human HSPCs isolated from human cord blood upregulate p53 in response to 

DNA damage and are removed by apoptosis (107). In both systems, HSCs 

demonstrated decreased repopulating ability following IR. HSCs thus appear to 
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maintain longterm genomic integrity at the expense of repopulating ability.   

The dynamic nature of the hematopoietic system places it in a vulnerable 

position with respect to genomic damage during DNA replication (210). Following 

hematopoietic stress, hematopoietic stem cells are mobilized, and enter the cell 

cycle to produce the rapidly cycling hematopoietic progenitors that replenish the 

hematopoietic compartment. Thus, in the setting of bone marrow stress requiring 

stem cell mobilization, both the HSCs as well as the committed progenitors are 

vulnerable to replicative stress-induced DNA damage. Indeed, defects in cell cycle 

checkpoint result in excessive mobilization of HSCs and depletes their 

self-renewal function in serial bone marrow transplantation (219). A number of 

key factors in the DNA damage/repair pathways play an important role to maintain 

genomic integrity and stem cell function (222). Atr conditional knockout mice 

demonstrated premature aging defects with significantly decreased LSK 

(Lin-Scal+ckit+) population and thymic progenitors (145). Atm -/- mice 

demonstrate progressive bone marrow failure due to a depletion of LSK cells as 

well as HSC function (123). Mice harboring a hypermorphic mutant allele of p53 

display reduced proliferating HSC population in aging with limited HSC function 

(223). In addition, mice with deficiencies in DNA repair, including nucleotide 

excision repair, telomere maintenance, non-homologous end-joining, have 

diminished hematopoietic stem cell function with age (224,225), suggesting that 

the accumulation of endogenous DNA damage limits stem cell function in a cell 
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autonomous fashion. Besides DNA damage/repair factors, other cytoprotective 

properties have been proposed to protect HSCs from genotoxic stresses, 

including maintenance of quiescence by regulation of lipid raft clustering (226) 

and maintenance of a low metabolism level to prevent reactive oxygen species 

(227-229).  

Pro-apoptotic Bid is highly expressed in the hematopoietic system and 

regulates myeloid homeostasis and tumorigenesis (4,66). Bid is a highly potent 

activator of intrinsic apoptosis following multiple cellular stresses 

(31,32,66,76,86,87,97,98), however, a singular apoptotic function does not 

account for all of the current data regarding Bid’s function. Bid -/- myeloid 

progenitor cells display decreased viability in culture (2,4). Cultured Bid -/- 

activated T cells and myeloid progenitor cells (MPCs) are hypersensitive to HU 

but not IR treatment in vitro (2). Bid -/- bone marrow is hypersensitive to 

intraperitoneal injection of HU but not to IR in vivo (4), consistent with an impaired 

DDR to replicative stress. Indeed, Bid -/- MPCs and BID KD U2OS cells 

demonstrate limited ATR function following hydroxyurea treatment (4). 

Furthermore, Bid associates with the ATR/ATRIP/RPA complex (4), and the 

association between ATR/ATRIP and RPA is significantly diminished in Bid -/- cells 

following replicative stress (4), suggesting that Bid plays a role to maintain the 

DNA damage sensor complex. Bid is thus positioned to play a role in the DDR 

response to replicative stress in the hematopoietic system.  
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In this study, I investigated the response of wild type and Bid -/- HSCs and 

committed progenitors to replicative stress. I found that HU-stressed 

hematopoietic progenitor cells are preferentially depleted. HSCs maintain normal 

cell numbers, but display increased BrdU incorporation, consistent with 

mobilization to replace the MPCs eliminated by replicative stress. Under 

conditions of repeated replicative stress, the LSK and MPC cell populations are 

expanded. Interestingly, in wild type mice, this expanded HSC pool competes 

adequately to repopulate lethally irradiated recipient mice.   

Consistent with a role for Bid in the DDR to replicative stress, Bid -/- 

hematopoietic progenitor cells demonstrate increased cell death and increased 

DNA damage. In addition, Bid -/- LSK cells demonstrate increased proliferation, 

consistent with increased mobilization following replicative stress-induced 

homeostatic recovery. Bid -/- bone marrow forms abnormal immature colonies 

and exhibits an abnormal growth potential in methylcellulose cultures. Following 

long-term HU treatment, the HSC-enriched LSK and myeloid progenitor cell 

populations are significantly diminished in Bid -/- mice and γH2A.X-positive cells 

are significantly increased in Bid -/- bone marrow. In addition, longterm 

HU-stressed Bid -/- bone marrow displays defective repopulating ability in 

competitive repopulation experiments consistent with diminished stem cell 

function. My studies are most consistent with Bid facilitating normal ATR function 

to maintain replication fork and genomic integrity in the cycling progenitor cells 
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following replicative stress. Proper control of replicative-stress-induced progenitor 

cell death thus prevents excessive mobilization of HSCs and resultant depletion of 

HSC function (6).  

 

Results 

 

MPC but not LSK cell populations are decreased in mouse bone marrow following 

hydroxyurea treatment 

The impact of DNA damage induced by IR on HSC function has recently been 

evaluated in both mouse and human systems. HSCs and MPCs are also 

subjected to DNA damage induced by replicative stress over the lifetime of an 

organism. To investigate the impact of DNA damage induced by replicative stress 

on HSC function, I treated mice with hydoxyurea (HU) to deplete nucleotide pools, 

thus selectively depleting the replicating MPCs. HU treatment has been 

demonstrated to increase cycling of the HSC-enriched LSK population in vivo 

(231), presumably by a mobilization of HSCs to compensate for the depletion of 

the progenitor cell population. Bid -/- mice were chosen as a model to investigate 

the physiological function of ATR-mediated DDR in the hematopoietic system.  

Bid +/+ and Bid -/- mice were treated with HU by intraperitoneal injection for 

three consecutive days and the regulation of hematopoiesis was studied. LSK 

(Lin-Sca1+ckit+) and MPC (Lin-Scal-ckit+) cells were evaluated by 
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immunostaining and flow cytometry (211,212). The lineage (Lin) cocktail consists 

of: CD3, B220, Ter119, Gr-1. Lin-, c-kit+, Sca-1- cells were stained for CD34 and 

FcγII/III to delineate subpopulations of progenitor cells. HSCs were defined as 

Lin-, c-kithigh, Sca-1high. Megakaryocyte-erythroid progenitors (MEPs) were defined 

as Lin−c-kithighSca-1lowCD34−FcγII/IIIlo, granulocyte-monocyte progenitors (GMPs) 

were defined as Lin−c-kithighSca-1lowCD34+FcγII/IIIhigh, and common myeloid 

progenitors (CMPs) were defined as Lin−c-kithighSca-1lowCD34+FcγII/IIIlo (209). 

Following HU treatment, the MPC populations (CMP, GMP, MEP) were 

significantly diminished in Bid -/- bone marrow (Figure  5-1 A, B), which is 

consistent with the previous finding that cultured Bid -/- MPCs are hypersensitive 

to HU (2). Interestingly, no obvious alteration was observed in the HSC-enriched 

LSK population (Figure 5-1 C), consistent with their quiescent state.  

 

Apoptosis is not increased in wild type MPC and LSK cells despite increased 

BrdU incorporation following HU 

To investigate the apoptotic response of MPCs and LSKs to replicative stress, 

Bid +/+ and Bid -/- mice were injected with 100 mg/kg/day HU intraperitoneally 

daily for three days, and the bone marrow was analyzed by flow cytometry on Day 

four. Using this treatment schedule, both LSK and MPC populations 

demonstrated only a modestly increased percentage of Annexin V-positive cells 

(Figure 5-2 A, B). Strikingly, Bid -/- bone marrow demonstrated increased 
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Figure 5-1. Bid -/- MPC but not LSK cell population is diminished following hydroxyurea treatment. 

(A) Bid +/+ and Bid -/- mice were treated with HU for three consecutive days and bone marrow 

was harvested from femurs and tibias 24 hours after the third injection. Cells were first stained with 

lineage marker (biotinylated CD3, B220, Gr-1 and Ter119) and then stained with c-kit, Sca1, CD34 

and FcγRII/III. MPC and LSK cells were gated as Lin-Sca1-ckit+ and Lin-Scal+ckit+ population, 

respectively. GMP, CMP, and MEP cells were gated as CD34+FcγR+, CD34+FcγR-, and 

CD34-FcγR- population from MPC cells, respectively. Representative results were shown. (B) 

MPC, CMP, GMP and MEP population cell number was counted and quantitative analysis was 

shown. (C) LSK population cell number was counted and quantitative analysis was shown. **, p < 

0.01. Error bar, SEM.  
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Annexin V-positive MPC and LSK cells following HU treatment (Figure 5-2 A, B). 

To investigate the proliferation of MPCs and LSKs following HU, Bid +/+ and Bid 

-/- mice were treated with HU for three consecutive days and then the bone 

marrow was labeled with BrdU for 1 hour by intraperitoneal injection. Following 

HU, both LSK and MPC populations demonstrate significantly increased BrdU 

incorporation compared with untreated mice (Figure 5-2 C, D), which is consistent 

with mobilization of HSC and MPC cells to replenish cells depleted by HU (231).  

Interestingly, HU-stressed LSK but not MPC populations in Bid -/- bone marrow 

demonstrated significantly increased BrdU incorporation (Figure 5-2 C, D), 

consistent with increased mobilization of Bid -/- LSK cells to replenish the 

observed increased loss of Bid -/- MPCs to HU in Bid -/- mice.  

This increased LSK apoptosis is consistent with the observed increase in BrdU 

incorporation of Bid -/- LSK cells. In addition, ATR function, mediated by Bid, is 

important to facilitate cell cycle re-entry after the release of replicative stress (124). 

It is also possible that apoptotic Bid -/- LSK cells might display delayed clearance 

in vivo.  

 

Hydroxyurea-stressed Bid -/- bone marrow forms abnormal immature colonies in 

methylcellulose culture 

To further evaluate the function of HU-stressed hematopoietic cells, bone marrow 

marrow from HU-stressed Bid +/+ and Bid -/- mice was harvested and cultured in 
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Figure 5-2. Cycling and apoptotic LSK cell population is increased in Bid -/- bone marrow following 

hydroxyurea treatment. (A) Bid +/+ and Bid -/- mice were treated with HU for three consecutive 

days. Bone marrow was harvested from femurs and tibias 24 hours after the third injection. Cells 

were stained with surface markers (CD3, B220, Gr-1, Ter-119, c-kit, Sca-1) first and apoptotic cells 

were detected by Annexin V-FITC Apoptosis Detection Kit. Annexin V-positive cells in various 

populations were analyzed by flow cytometry and representative results were shown. (B) The 

percentage of Annexin V-positive cells in LSK and MPC population was counted and quantitative 

analysis was shown. (C) Bid +/+ and Bid -/- mice were treated with HU for three consecutive days. 

23 hours after the third HU injection, mice were treated with 100 μl 10 mg/ml BrdU solution for 1 

hour by intraperitoneal injection. Bone marrow cells were stained with surface markers (CD3, 

B220, Gr-1, Ter-119, c-kit, Sca-1). After fixation and permeabilization, cells were treated with 

DNase for 1 hour at 37oC and stained with anti-BrdU antibody for 20 minutes at room temperature. 

The incorporation of BrdU in various populations was analyzed by flow cytometry and 

representative results were shown. (D) The percentage of BrdU-positive cells in LSK and MPC 

population was counted and quantitative analysis was shown. *, p < 0.05; **, p < 0.01. Error bar, SEM. 
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methylcellulose supplemented with interleukin 3 (IL3), interleukin 6 (IL6), stem cell 

factor (SCF) and erythropoietin (EPO). These conditions support differentiation of 

hematopoietic cells through the myeloid lineage (207). Colony morphology 

reflects the cell types in the colony, and thus reflects the differentiative capacity of 

the cell of origin. GEMM colonies (colony-forming unit of granulocyte/erythrocyte/ 

macrophage/megakaryocyte) are formed from HSCs and CMPs; GM colonies 

(colony-forming unit of granulocyte/macrophage) are formed from GMPs; G and 

M colonies are generated from granulocyte and macrophage cells, respectively 

(209). Strikingly, markedly increased GEMM colonies were observed in Bid -/- 

cultures on Day 4 after the bone marrow was plated (Figure 5-3 A, B), consistent 

with the increased proliferation noted in Bid -/- HSCs and MPCs. In addition, 

immature colonies (GEMM and GM colonies) but not mature colonies (G and M 

colonies) were significantly increased in Bid -/- methylcellulose cultures (Figure 

5-3 C, D). To evaluate the regenerative capacity of HU-stressed progenitor cells, 

methylcellulose cultures were serially replated at 7-day intervals. Interestingly, Bid 

-/- but not Bid +/+ bone marrow displayed a prolonged colony forming ability 

(Figure 5-3 E, F). These results suggest that Bid -/- immature HSC/MPC 

populations may possess an abnormal proliferative potential and/or decreased 

apoptosis ex vivo following HU stress. Of note, although unstressed Bid -/- bone 

marrow demonstrates increased colony forming ability, most notable in the third 

plating, ultimately it does not display increased regenerative capacity and is 
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Figure 5-3. Hydroxyurea-stressed Bid -/- bone marrow forms abnormal immature colonies in 

methylcellulose culture. (A) Hydroxyurea-stressed Bid -/- bone marrow forms bigger GEMM 

colonies in methylcellulose culture. Bid +/+ and Bid -/- mice were treated with HU for three 

consecutive days and bone marrow was harvested from femurs and tibias 24 hours after the third 

injection. Bone marrow cells were cultured in methylcellulose culture and representative GEMM 

colonies were shown on Day 4 after plating. (B) More than 5 or all representative GEMM colonies 

in each plate were photographed in 1st methylcellulose plating and the colony diameter was 

measured. Three independent experiments were performed with n = 5 in each set. (C) GEMM 

colony number was counted in 1st methylcellulose plating. (D) GM, G colony and M colony, and 

total colony number was counted in 1st methylcellulose plating. (E) Total colony number was 
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counted in methylcellulose re-plating process. (F) More than 5 or all representative GM colonies in 

each plate were photographed in each methylcellulose re-plating process and the colony diameter 

was measured. Three independent experiments were performed with n = 5 in each set. (G) 

Unstressed Bid +/+ and Bid -/- mice were sacrificed and bone marrow cells were cultured in 

methylcellulose culture. Total colonies number was counted. n = 5. (H) Bid -/- bone marrow 

exhibits similar colony formation ability in methylcellulose culture following IR treatment. 

IR-stressed Bid -/- bone marrow forms normal GEMM colonies in methylcellulose culture. Bid +/+ 

and Bid -/- mice were irradiated with 2 Gy using a 137Cs source. Mice were sacrificed and bone 

marrow was harvested 24 hours after irradiation. Bone marrow cells were cultured in 

methylcellulose culture. Two independent experiments were performed with n = 5 in each set. 

Various colonies were captured in methylcellulose plating process and the colony diameter was 

measured. GEMM colonies were captured in 1st plating (Day 7) and GM colonies were captured in 

re-plating. More than 5 or all representative colonies in each plate were photographed in each 

methylcellulose plating process and the colony diameter was measured. (I) Total colony number 

was counted in methylcellulose plating process. *, p < 0.05; **, p < 0.01. Error bar, SD. 
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exhausted after the 4th plate (Figure 5-3 G). 

To determine if the increased replating capacity of Bid -/- bone marrow was 

specific to treatment with HU, Bid +/+ and Bid -/- mice were irradiated with low 

dose IR (2 Gy). Bone marrow from IR-stressed Bid +/+ and Bid -/- mice was 

harvested and cultured in methylcellulose culture. Both Bid +/+ and Bid -/- bone 

marrow demonstrate modestly increased replating ability following IR relative to 

unstressed bone marrow. Distinct from HU-stress, IR-stressed Bid -/- and Bid +/+ 

bone marrow showed similar GEMM colony size in the 1st methylcellulose culture 

(Figure 5-3 H) and similar colony formation ability in methylcellulose replating 

(Figure 5-3 I). Overall, the phenotype in IR-stressed Bid -/- bone marrow is 

consistent with my previous finding that Bid plays a minimum role in the 

ATM-directed DDR, the predominant DDR to IR activation (4).  

I have previously demonstrated that Bid -/- cells display limited ATR function 

and increased sensitivity to replicative stress (2,4,5). Furthermore, bone marrow 

of Bid -/- mice displays increased sensitivity to intraperitoneal injection of HU but 

not to IR (4), and Bid -/- but not Bid +/+ MPC and LSK cells demonstrate 

increased annexin V+ cells following HU (Figure 5-2 A, B). Thus, I favor model 

that the formation of large GEMM colonies in Bid -/- methylcellulose cultures is 

due to increased proliferation of LSKs and MPCs. I can not exclude protection 

from apoptosis due to loss of Bid in this ex vivo culture system. 
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MPC and LSK cell populations increase following six months of HU treatment and 

Bid -/- MPC and LSK populations are decreased relative to Bid +/+ populations 

Enforced mobilization of HSCs from quiescence to a cycling state results in the 

depletion of stem cell self-renewal function (218,219). Following HU-induced 

hematopoietic recovery, Bid -/- HSCs demonstrate increased BrdU incorporation, 

consistent with increased mobilization to compensate for the depletion of 

progenitor cell populations. To determine whether long-term HU treatment results 

in the depletion of HSC function in Bid -/- mice, Bid +/+ and Bid -/- mice were 

treated with HU by intraperitoneal injection for three days, and allowed to recover 

for seven days. This regimen was repeated for 6 months (see Methods for details) 

(199). 

Both Bid +/+ and Bid -/- mice survived six months of HU treatment, although a 

gradual loss of body weight (Figure 5-4 A) and a trend towards decrease in HU 

sensitivity (Figure 5-4 B) were observed in Bid -/- mice. After six months, cell 

populations in the bone marrow were analyzed by flow cytometry. Both MPC and 

LSK cell populations were increased relative to untreated mice. Notably, both 

MPC and LSK cell populations were diminished in Bid -/- mice compared with 

those in Bid +/+ mice (Figure 5-4 A-D). Among myeloid progenitor cells, only the 

GMP population was significantly diminished in Bid -/- mice compared to the Bid 

+/+ mice (Figure 5-5 D). GMP cells are the most rapidly proliferating cells in 

themyeloid system (221), and thus are the most vulnerable to replicative stress. Bid 
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Figure 5-4. The body weight and bone marrow number in Bid +/+ and Bid -/- mice following 

long-term HU treatment. (A) Wild type and Bid -/- C57/BL6 mice (6-8 weeks old) were treated with 

100 mg/kg/day hydroxyurea by intraperitoneal injection for three consecutive days. After 

three-consecutive-day-HU treatment, mice were released from HU treatment for 7 days and 

subjected to HU treatment again for three consecutive days. Mice were continuously treated with 

HU for 4 or 6 month and the body weight was measured. *, p < 0.05; n = 5. Error bar, SD. (B) Mice 

were sacrificed and bone marrow was harvested from femurs and tibias 24 hours after last HU 

injection. After erythrocytes were lysed in RBC lysis buffer, bone marrow cell number was counted 

by Trypan Blue. *, p < 0.05; Untreated, n = 5; HU 3 days, n = 15; HU 6 month, n = 10. Error bar, 

SD. 
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-/- GMP cells showed persistent defects following long-term HU treatment. It is 

worthwhile to note that long-term HU treatment significantly induced both LSK and 

MPC populations compared with untreated mice (Figure 5-5 B, C). Interestingly 

an expanded MPC and LSK population is also observed in unstressed aged mice 

(276,277). This increase may reflect compensation for decreased function 

following longterm replicative stress or aging. 

 

Bid -/- bone marrow exhibits increased γH2A.X staining following six months of 

HU treatment 

To investigate the effect of long-term HU on the hematopoietic system, bone 

marrow was harvested from Bid +/+ and Bid -/- mice treated for six months with 

HU as above and cultured in methylcellulose. Similar GEMM colony number and 

size were observed in Bid -/- and Bid +/+ cultures (Figure 5-6 A, B), suggesting 

that the excessive mobilization of the LSK population is attenuated following 

long-term HU treatment. In addition, similar colony formation ability was observed 

between Bid +/+ and Bid -/- in methylcellulose replating (Figure 5-6 B), suggesting 

that the progenitor cell competency was not severely impaired following long-term 

HU treatment.  

Replicative stress has been demonstrated to induce genomic instability and 

accumulate DNA damage at the cellular level(124). γH2A.X is phosphorylated 

following DNA damage, and can be detected by immunofluorescence and flow 
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Figure 5-5. Bid -/- MPC and LSK cell population is diminished following long-term HU treatment. (A) 

Bid +/+ and Bid -/- mice were continuously treated with HU for 6 month and bone marrow was 

harvested from femurs and tibias 24 hours after last HU injection. Cells were first stained with 

lineage marker (biotinylated CD3, B220, Gr-1 and Ter119) and then stained with c-kit, Sca1, CD34 

and FcγRII/III. MPC and LSK cells were gated as Lin-Sca1-ckit+ and Lin-Scal+ckit+ population, 

respectively. GMP, CMP, and MEP cells were gated as CD34+FcγR+, CD34+FcγR-, and 

CD34-FcγR- population from MPC cells, respectively. Representative results were shown. (B) LSK 

population cell number was counted and quantitative analysis was shown. (C) MPC population cell 

number was counted and quantitative analysis was shown. (D) CMP, GMP and MEP population 

cell number was counted and quantitative analysis was shown. *, p < 0.05; **, p < 0.01. Error bar, 

SEM. 
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cytometry (Figure 5-7). DNA damage levels were detected by γH2A.X staining 

following six months of HU treatment. The γH2A.X-positive cells measured by 

immunofluorescence were significantly increased in Bid -/- bone marrow (Figure 

5-6 C-E), suggesting that DNA damage is accumulated in Bid -/- bone marrow 

following long-term HU treatment. To further identify the cell populations harboring 

γH2A.X-positive cells, Bid +/+ and Bid -/- bone marrow was stained with surface 

markers and γH2A.X-positive cells were detected by intra-cellular staining with 

anti-γH2A.X antibody by flow cytometry. Interestingly, γH2A.X-positive cells were 

significantly increased in Bid -/- MPCs but not the LSKs (Figure 5-6 F, G), 

suggesting that the accumulated γH2A.X-positive cells in Bid -/- bone marrow 

were generated at the progenitor cell level. Different DNA repair mechanisms 

have been reported between HSC and MPC following DSBs (105). My results are 

consistent cycling HSCs and MPCs utilizing a different mechanism to maintain the 

replication fork following replicative stress. Alternatively, HSCs may have a lower 

threshold for apoptosis or preferentially differentiate upon accumulation of DNA 

damage. 

 

Stem cell function is diminished in Bid -/- bone marrow following six months of HU 

treatment 

Given the relationship between HSC mobilization and stem cell functional depletion 

(218,219), I asked whether the self-renewal function of HSCs was altered in Bid +/+ 
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Figure 5-6. Bid -/- bone marrow exhibit increased γH2A.X staining following 6-month HU treatment. 

(A) Bid -/- bone marrow exhibits similar colony formation ability as Bid +/+ in methylcellulose 

culture. Bid +/+ and Bid -/- mice were treated with HU for 6 month and bone marrow was 

harvested from femurs and tibias 24 hours after last HU injection. Bone marrow cells were cultured 

in methylcellulose culture and various colonies were counted on Day 7 after plating according to 

colony morphology. Two independent experiments were performed with n = 5 in each set. (B) Total 

colony number was counted in methylcellulose re-plating process. (C-D) Bid -/- bone marrow 
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exhibit increased γH2A.X staining following 6-month HU treatment. Bid +/+ and Bid -/- mice were 

treated with HU for 6 month and bone marrow was harvested from femurs and tibias 24 hours after 

last HU injection. Bone marrow cells were fixed, permeabilized and stained by Alexa Fluor 

488-conjugated anti-phospho-Histone H2A.X (Ser139). Typical γH2A.X foci were observed in Bid 

-/- bone marrow (C, high resolution image). Representative figures of γH2A.X staining in around 

100 bone marrow cells were shown in (D). DNA was detected by Hoechst stain (blue). (E) 

γH2A.X-positive bone marrow cells were counted from 150-300 cells/mice and quantitative 

analysis was calculated from 5 mice. (F) Bid -/- MPC but not HSC population exhibits increased 

γH2A.X staining following 6-month HU treatment. Bid +/+ and Bid -/- mice were treated with HU for 

6 month and bone marrow was harvested. Cells were first stained with surface marker (CD3, B220, 

Gr-1, Ter119, c-kit and Sca-1). Then, cells were fixed and permeabilized and then stained with 

anti-phospho-Histone H2A.X (Ser139) for 30 minutes at room temperature and γH2A.X-positive 

cells was detected by flow cytometry. γH2A.X-positive cells were gated as Alexa Fluor 488 

intensity > 103 (See explanation in Fig. S2B). Representative figures were shown. (G) The 

percentage of γH2A.X-positive cells in MPC and LSK population was analyzed from 5 mice and 

quantitative analysis was shown. *, p < 0.05; **, p < 0.01. error bar, (A-B), SD; (E and G), SEM. 
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and Bid -/- mice following six months of HU treatment by competitive bone marrow 

reconstitution. Lineage-depleted Bid +/+ (CD45.2) and Bid -/- (CD45.2) bone 

marrow cells were transplanted into lethally irradiated recipient mice (CD45.1) 

with equal amounts of lineage-depleted competitor bone marrow cells (CD45.1). 

The reconstitution of the hematopoietic system was detected by the 

CD45.2/CD45.1 ratio in peripheral blood from the recipient mice over time (66) 

(Figure 5-8 A). The percentage of CD45.2+ cells in Bid -/- peripheral blood was 

significantly diminished compared with Bid +/+ cells, as demonstrated by the 

decreased CD45.2/CD45.1 ratio in the recipient mice for the Bid -/- but not the Bid 

+/+ test populations (Figure 5-8 B, C). As a control, no defect in the reconstitution 

capacity was observed in untreated Bid -/- bone marrow in a competitive 

reconstitution assay, but rather a slight competitive advantage (66), suggesting 

that the diminished HSC function is due to long-term HU treatment. Distinct from 

the HSC exhaustion noted in other mouse models (219,224), the reconstitution 

capacity of Bid -/- HSCs is only impaired following long-term HU treatment. 

Consistent with this thesis, Bid -/- MPCs but not HSCs display increased cell 

death following HU, suggesting that the increased death of Bid -/- MPCs triggers 

mobilization of Bid +/+ HSCs. Of note, Bid -/- hematopoietic cells display a defect 

in radioresistant DNA synthesis so I can not rule out a contribution from an 

additional cell cycle checkpoint defect of Bid -/- HSCs. 
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Figure 5-7. Test of anti-phospho-Histone H2A.X in immunofluorescence and intra-cellular staining 

in flow cytometry. (A) Bid +/+ mice were treated with 100 mg/kg/day hydroxyurea by intraperitoneal 

injection for 1 hour. Mice were sacrificed and bone marrow was harvested from femurs and tibias. 

Cells were centrifuged onto a glass coverslip by cytospin. Then, cells were fixed by 3% 

paraformaldehyde/2% sucrose solution and permeabilized by Triton X-100 solution. 

γH2A.X-positive cells was detected by immunofluorescence using Alexa Fluor 488-conjugated 

anti-phospho-Histone H2A.X. DNA was detected by Hoechst stain (blue). (B) Bid +/+ mice were 

treated with 100 mg/kg/day hydroxyurea by intraperitoneal injection for 1 hour. Mice were 

sacrificed and bone marrow was harvested from femurs and tibias. After erythrocytes were lysed 

in RBC lysis buffer, bone marrow cells were stained with lineage marker (biotinylated CD3, B220, 

Gr-1 and Ter119). Then cells were staining with APC-conjugated anti-c-kit, PE-Cy7-conjugated 

anti-Sca1 and Pacific blue-conjugated streptavidin. Cells were fixed and permeabilized with BD 

Cytofix/Cytoperm Buffer, and incubated with BD Cytoperm Plus Buffer followed by an additional 

short fixation with BD Cytofix/Cytoperm Buffer. Then, cells were stained with Alexa Fluor 

488-conjugated anti-phospho-Histone H2A.X (Ser139) for 30 minutes at room temperature and 

γH2A.X-positive cells was detected by flow cytometry. γH2A.X-positive cells were significantly 

increased in myeloid progenitor cell population (Lin-Sca1-ckit+) upon HU treatment, suggesting 

that anti-phospho-Histone H2A.X is a specific antibody against γH2A.X signals in flow cytometry. 

Based on the induced γH2A.X-positive cell population, γH2A.X-positive cells were gated as Alexa 

Fluor 488 intensity > 103. 
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Discussion 

 

Hematopoietic stem cells are susceptible to genotoxic stress from multiple 

etiologies. DSBs and replicative stress are two kinds of well-established DNA 

damage. Recently, the response of HSC and MPCs to IR has been studied in vivo 

(105,107) in both mice and humans. Two distinct PI3Kinase-like kinases regulate 

the DDR to double strand breaks and replicative stress, ATM and ATR, 

respectively. Bid has been shown to mediate the ATR-directed response to 

replicative stress. In this study, I use Bid -/- mice as a model to investigate how 

defects in ATR-mediated DDR impact the maintenance of the hematopoietic 

system following replicative stress. My results are most consistent with the 

following model: the hypersensitivity of Bid -/- MPCs to HU treatment results in an 

excessive depletion of the MPC population, which mobilizes HSCs to compensate 

for this defect (Figure 5-8 D). Following long-term HU treatment, the continuous 

mobilization of HSCs in Bid -/- mice leads to exhaustion of the HSC population, 

leading to a diminished LSK and MPC population (Figure 5-8 D). 

As Bid has been demonstrated to play a survival role in MPCs following 

replicative stress (2), it is surprising that Bid -/- mice survived following six months 

of HU treatment. Several possible reasons might explain this compensatory ability 

of Bid -/- HSCs. First, in unstressed conditions, Bid -/- bone marrow exhibits a 

competitive advantage in bone marrow competitive reconstitution 
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Figure 5-8. Stem cell function is diminished in Bid -/- bone marrow following 6-month HU treatment. 

(A) Experimental design. Following 6 month HU treatment, Bid +/+ and Bid -/- mice (CD45.2) were 

sacrificed and bone marrow were obtained from femurs and tibias. Lineage+ cells were depleted 

by Dynabeads Sheep anti-Rat IgG. 1×105 lineage- bone marrow cells from either Bid +/+ or Bid -/- 

mice (CD45.2+) following HU treatment together with 1×105 lineage- bone marrow “Competitor” 

cells (CD45.1+) were transplanted into lethally irradiated recipients (CD45.1+) by intravenous 

injection. Hematopoietic reconstitution was detected followed 2 and 4 months after the 

transplantation. (B) Peripheral blood was obtained from the recipient mice transplanted from Bid 

+/+ or Bid -/- mice following 6-month HU treatment. The lymphocytes were stained by anti-CD45.1 

and anti-CD45.2 antibodies, and analyzed in flow cytometry. Representative figure was shown. (C) 

The ratio of CD45.2-positive cells vs. CD45.1-positive cells in the peripheral blood of recipient 

mice after 4-month transplantation was calculated and quantitative analysis was shown. *, p < 0.05; 

n = 10. error bar, SD. (D) Proposed model of Bid’s function in hematopoietic system following 

replicative stress. In Bid +/+ mice, Bid facilitates normal ATR function to maintain replication fork 

and genomic integrity in the cycling progenitor cells following replicative stress. In Bid -/- mice, Bid 

-/- myeloid progenitor cells are hypersensitive to replicative stress. The excessive depletion of 

myeloid progenitor cells results in an over mobilization of hematopoietic stem cells to compensate 

this defect in Bid -/- progenitor cells. Long-term HU treatment causes an extended proliferation of 

HSCs and resultant depletion of stem cell self-renewal function in Bid -/- mice.  
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assays (66), suggesting that the self-renewal capacity might be augmented in Bid 

-/- HSCs potentially due to the loss of the pro-apoptotic function of Bid. Secondly, 

according to the immortal DNA strand hypothesis (278), it is quite possible that the 

DNA segregation is asymmetrical in mitotic HSCs and the undamaged parental 

strands are maintained in HSCs populations, which might explain the low DNA 

damage level in the LSK population following long-term HU treatment (Figure 5-6 

F, G). Thirdly, the compensated increase of LSK/MPC populations following 

long-term HU treatment (Figure 5-5 B, C) might limit the damage efficiency of HU 

to MPC population and lead to a diminished mobilization pressure of HSC to 

replicative stress. Lastly, although HU- induces the DNA damage response within 

1 hour (Figure 5-7), the half-life is only 3-4 hours in vivo (230). The rapid 

elimination of HU might limit its function, i.e., it can only stall replication fork rather 

than cause fork collapse in vivo. As no significantly increased γH2A.X-positive 

cells were observed in the Bid -/- LSK population following long-term HU 

treatment (Figure 5-6 F, G), the function of Bid in the regulation of HSCs might not 

be a cell autonomous effect. Interestingly, Bid has been demonstrated to be highly 

expressed in the GMP population rather than LSK population (105), which also 

suggests that Bid might play a preferential role in GMPs. 

ATR has been demonstrated to play important roles in maintenance of genomic 

integrity in proliferating cells, as well as in normal DNA replication (124). Germline 

deletion of ATR results in early embryonic lethality (141,142). Conditional Atr -/- 
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mice showed defects in tissue homeostasis with aging-related phenotypes and 

exhaustion of tissue-specific stem and progenitor cells (143-145). However, 

compared with its role in the normal cell cycle, the ATR-mediated signaling 

pathway functions diversely following replicative stress. Although the DNA 

damage response was severely impaired, cells harboring mutated RPA70 (148) or 

ATRIP (129) showed a quite normal cell cycle profile. Bid -/- cells demonstrated 

limited ATR function following replicative stress, however, no obvious defects 

were observed in the cell cycle profile of Bid -/- cells (4) or development of Bid -/- 

mice (66). In addition, Atr -/- Arabidopsis develops normally and growth 

retardation is only observed when the plants are challenged with replicative stress 

(149). In this study, no obvious aging defects were observed in long-term HU 

stressed Bid -/- mice and one-year aged untreated Bid -/- mice show a similar 

percentage of LSKs and MPCs as Bid +/+ mice (Figure 5-9). These results are 

consistent with my previous finding that the major function of Bid in the ATR 

response is DNA damage-induced (4).  

Bid has been demonstrated to play dual roles in both programmed cell death 

and the replicative stress-induced response (2,4,31,32). The two distinct functions 

of Bid are mediated by distinct functional domains (2,4,5), manuscript submitted. 

The apoptotic function of Bid is predominantly mediated by its caspase-cleavage 

sites (31) and BH3 domain (73), while Bid executes its function in the DNA 

damage signaling pathways by its ATM/ATR phosphorylation sites (2,3) and its 
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Figure 5-9. Aged Bid -/- mice show similar MPC and LSK population as Bid +/+. (A) One-year old 

Bid +/+ and Bid -/- mice were sacrificed and bone marrow was harvested from femurs and tibias. 

Cells were first stained with lineage marker (biotinylated CD3, B220, Gr-1 and Ter119) and then 

stained with c-kit, Sca1, CD34 and FcγRII/III. MPC and LSK cells were gated as Lin-Sca1-ckit+ 

and Lin-Scal+ckit+ population, respectively. GMP, CMP, and MEP cells were gated as 

CD34+FcγR+, CD34+FcγR-, and CD34-FcγR- population from MPC cells, respectively. 

Representative results were shown. (B) LSK, MPC, GMP, CMP, MEP population cell number was 

counted and quantitative analysis was shown. (C) One-year old Bid +/+ and Bid -/- mice were 

sacrificed and bone marrow was harvested. Cells were first stained with surface marker (CD3, 

B220, Gr-1, Ter119, c-kit and Sca-1). Then, cells were fixed and permeabilized and then stained 

with anti-phospho-Histone H2A.X (Ser139) for 30 minutes at room temperature and 

γH2A.X-positive cells was detected by flow cytometry. Representative results were shown. (D) The 

percentage of γH2A.X-positive cells in MPC and LSK population was analyzed and quantitative 

analysis was shown. Error bar, SEM. 



 158

unique Helix 4 and RPA-ID domain (4,5). Bid -/- mice spontaneously develop 

chronic myelomonocytic leukemia (CMML) and the tumor cells display 

chromosomal aberrations (66). Since both cell death and DNA damage signaling 

pathways are important for tissue homeostasis and genomic integrity, it will be 

interesting to determine which function of Bid directs the tumor suppressor 

function of Bid in vivo. It is likely that both the apoptotic and DNA damage function 

of Bid work synergistically to maintain hematopoiesis. My studies are most 

consistent with Bid facilitating normal ATR function to maintain replication fork and 

genomic integrity in the cycling progenitor cells following replicative stress, which 

prevents excessive mobilization of HSCs and resultant depletion of HSC function. 

First identified in non-Hodgkin lymphomas (39), BCL-2 and its family have been 

demonstrated to play crucial roles in maintenance of hematopoiesis (279). 

Ectopic expression or knockout of various BCL-2 family proteins predominantly 

results in defects in hematopoietic system, suggesting that the regulation of 

hematopoiesis is dependent on BCL-2 family (279). Besides sensing and 

transducing various survival or death signals to mitochondria to regulate 

apoptosis, more and more “non-canonical” functions of BCL-2 family members 

have been identified (254). For example, BCL-2 and MCL-1 have been 

demonstrated to play a role in DSBs repair and DNA damage checkpoint signal 

pathway, respectively (259,266). Investigating the physiological function of these 

novel properties of BCL-2 members will deepen our understanding of BCL-2 
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family in hematopoietic system, which is quite important in future pharmaceutics 

and therapeutics. 



 160

CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

 

BID, a BH3-only BCL-2 family member, was first identified as a pro-apoptotic 

protein to transduce death receptor signals to the core apoptotic machinery by 

activation of BAX/BAK at mitochondria (31,32,73). Recent evidence suggests that 

BID also maintains genomic integrity following DNA damage treatments. Bid -/- 

mice spontaneously develop chronic myelomonocytic leukemia with significant 

chromosomal abnormalities (66). Following genotoxic stress, Bid is found in the 

nucleus to be phosphorylated by the PI-3-like kinases ATM and/or ATR (2,3). 

Furthermore, Bid -/- cells show an intra-S phase checkpoint defect manifest by 

abnormal radio-resistant DNA synthesis (2,3). In addition, Bid -/- myeloid 

progenitor cells show increased chromosomal breaks and quadriradials following 

mitomycin c treatment and increased sensitivity to chemotherapy agents inducing 

replicative stress (2), suggesting that Bid might play a survival role following 

replicative stress. Although the function of BID in the apoptotic pathway has been 

extensively studied, relatively little is known about BID’s role in the DNA damage 

response, therefore I focus on the function of BID in DNA damage signaling 
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pathway in my thesis work. Following replicative stress, single-stranded DNA is 

sensed by RPA and ATR/ATRIP is recruited and activated at RPA-coated ssDNA 

(124,176). The ATR signals activate cell cycle checkpoints, maintain the 

replication fork, and slow origin firing by phosphorylation of numerous ATR 

substrates (124). Since ATR plays a crucial role to maintain genomic integrity 

following replicative stress, the function of BID in ATR-mediated pathway is 

investigated in this present thesis.  

Using genetic tools (e.g., knockout of Bid and knockdown of BID), I first 

demonstrated that BID facilitates the ATR-mediated DNA damage response by 

various functional assays. Following replicative stress, Bid -/- and BID KD cells 

demonstrate limited ATR function as manifest by diminished phosphorylation of 

ATR substrates, reduced recovery of DNA synthesis, reduced ATRIP nuclear foci, 

and defects in chromatin-bound ATR, ATRIP, RPA and PCNA (4). Then, using cell 

biology and biochemical tools, I demonstated that BID co-localizes with RPA in 

nuclear foci and associates with the ATR/ATRIP/RPA complex following 

replicative stress (4). In addition, the Helix 4 domain of BID interacts with the 

coiled-coil domain of ATRIP and this association is required for normal ATR 

function (4). Interestingly, the association between ATR/ATRIP and RPA is 

significantly diminished in Bid -/- cells following replicative stress (4), suggesting 

that Bid plays a role to maintain the DNA damage sensor complex. 

As a ssDNA-binding protein, RPA is the direct sensor of DNA damage in the 
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ATR-mediated response following replicative stress (125). To further investigate 

the mechanism by which BID functions in the ATR pathway, I investigated the 

interaction between BID and RPA. I found that BID stimulates the association of 

RPA with components of the DNA damage sensor complex through interaction 

with the basic cleft of the N terminal domain of the RPA70 subunit (5). Based on 

the chemical shift perturbation in two-dimensional 1H-15N HSQC spectrum, the 

basic cleft region of RPA70N and the acidic region in the N-terminus of BID’s Helix 

5 domain (named RPA-ID domain) are characterized as the potential 

BID-RPA70N interaction surface (5). Modeling of the BID-RPA70N complex with 

the binding information obtained from the NMR HSQC spectrum was performed 

using HADDOCK software (5). Mutations in the key amino acids in the basic cleft 

region of RPA70N or in the RPA-ID region of BID significantly impair the 

BID-RPA70N interaction, which is consistent with the model generated from the 

NMR experiment (5). Disruption of the BID-RPA interaction impairs association of 

ATR-ATRIP with chromatin as well as ATR function as measured by CHK1 

activation and recovery of DNA replication following hydroxyurea (HU) (5). I 

further demonstrate that association of BID with RPA stimulates association of 

ATR/ATRIP to the DNA damage sensor complex in an in vitro assay (5). I propose 

a model in which BID associates with RPA, and stimulates the recruitment and/or 

stabilization of ATR-ATRIP to the DNA damage sensor complex. 

  Hematopoietic stem cells (HSCs) possess longterm self-renewal capacity and 
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multipotent differentiative capacity, to maintain the hematopoietic system. Long 

term hematopoietic homeostasis requires effective control of genotoxic damage to 

maintain HSC function and prevent propagation of deleterious mutations 

(210,280). As Bid is highly expressed in the hematopoietic system and Bid -/- 

mice spontaneously develop chronic myelomonocytic leukemia, I focus on the 

Bid’s function in the hematopoietic system following DNA damage treatment. Here 

I investigate the response of murine HSCs to longterm replicative stress by 

hydroxyurea (HU). The serine/threonine kinase ATR initiates the DNA damage 

response to replicative stress. The pro-apoptotic BCL-2 family member Bid 

facilitates this response in hematopoietic cells (6). Bone marrow from HU-treated 

wild type mice demonstrates increased replating capacity relative to untreated 

wild type bone marrow (6). Following longterm HU treatment, the MPC and HSC 

populations expand and maintain longterm competitive repopulating ability (6). 

Bid -/- MPCs demonstrate increased sensitivity to HU and are depleted. Bid -/- 

HSCs demonstrate increased BrdU incorporation, and Bid -/- bone marrow 

demonstrates increased replating ability consistent with increased mobilization of 

HSCs and early progenitor cells (6). Following longterm HU treatment, Bid -/- 

MPCs and HSCs are relatively depleted, and bone marrow from Bid -/- mice 

displays increased DNA damage and decreased longterm competitive 

repopulating ability (6). Thus, HSCs and MPCs maintain function in the setting of 

increased replicative stress by expanding and repairing the DNA damage. Bid -/- 
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mice, deficient in the ATR-mediated DNA damage response, lose HSC function 

following longterm HU treatment. 

Overall, my studies establish a direct role for the BH3-only BCL-2 family 

member, BID, at the damage sensor level to facilitate the ATR-directed cellular 

response to replicative stress both in vitro and in vivo. The significance of my 

thesis work is summarized below. 

 Clarify the function of BID in the DNA damage response. BID has been 

demonstrated to play a role in the maintenance of genomic integrity and the 

DNA damage-induced checkpoint response (2,3), however, the detailed 

mechanism and function of BID in the DNA damage response are unknown 

and controversial results were reported in this field. My thesis work 

significantly increases our understanding of how BID functions in the DNA 

damage signaling pathways, especially in the ATR-mediated response. In the 

cell death field, although the mechanism by which BCL-2 family members 

transduce the apoptotic response at the mitochondria is well-established, the 

mechanism by which a damage signal is sensed and relayed to the 

mitochondria is still not understood. The present thesis provides an excellent 

model of a pro-apoptotic BH3-only molecule involved in the damage sensor 

complex to directly sense cellular stress. BID participates in the DNA damage 

sensor complex by physical interactions with the core DNA damage sensor 

proteins (i.e., ATRIP and RPA), which sense ssDNA and initiate a DNA 
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damage response directly following replicative stress. Although the detailed 

molecular mechanism is still not completely clear, the discovery of the 

association between BID and ATR/ATRIP/RPA provides a crucial clue to the 

function of BID in the stalled replication fork and DNA damage sensor 

complex following replicative stress. In addition, the exploration of 

pro-apoptotic BID as a novel regulator in the ATR-directed response extends 

our understanding of how cell fate is determined in response to DNA damage 

by elucidating the cross-talk between DNA damage sensing machinery and 

cell death signaling pathways. The investigation of the function of 

pro-apoptotic BID in the nucleus following genotoxic stress will deepen our 

understanding of how BH3-only molecules function in sensing various cellular 

stresses. Given the emerging interest in BH3-mimetics in cancer treatment, 

this is important information for clinical therapy as well as drug design. 

 Map the functional domains of BID in the DNA damage response. In structure, 

the BCL2 family proteins are characterized by their homologous BH domains 

and the BH3-only molecules harbor only one BH3 domain. To transduce 

stress/death signals to mitochondria, the BH3-only molecules interact with 

other BCL-2 family by the BH3 domain; however, it was still unclear how 

BH3-only molecules sense various cellular stresses at the structural level. 

Several post-translational modifications have been reported to facilitate 

detection of various stimuli, including phosphorylation, cleavage and 
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myristoylation, by BH3-only proteins (31,32,84,88,91). However, except for 

the BH3 domain, no other functional domains of BID have been identified and 

characterized that mediate interactions with other proteins. My findings 

advance the field through identification of two novel functional domains of BID, 

Helix 4 and RPA-ID domains, which mediate the interaction with ATRIP and 

RPA, respectively (4,5). This finding provides further evidence that the dual 

functions of BID in apoptosis and DNA damage response are mediated by 

distinct regions of the protein (Table 4). The present work consolidates my 

model that the dual functions of BID in programmed cell death and 

ATR-mediated DNA damage response are mediated by its different structural 

domains (Table 4). These domains provide a framework with which to identify 

and investigate such “damage-sensing domains” in other BCL-2 family 

proteins.  

 Provide an animal model to investigate the regulation and homeostasis of 

hematopoietic system following replicative stress. Although various DNA 

damage responses have been well-established at the cellular level, very few 

studies focus on the physiological and pathological response to DNA damage 

at the animal level. In this present thesis, I used Bid +/+ and Bid -/- mice as a 

model to investigate the in vivo function of Bid to replicative stress (6). Bid -/- 

bone marrow shows a hypersensitivity to in vivo HU treatment and long-term 

HU treatment impairs the ability of HSCs to maintain their function in Bid -/- 
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mice (6). As Bid -/- mice spontaneously develop chronic myelomonocytic 

leukemia and the tumor cells display chromosomal aberrations (66), Bid plays 

a tumor suppressor role and contributes to hematopoietic homeostasis. A 

purely apoptotic role for Bid cannot account for all of the current data 

regarding Bid’s function, and my thesis work provides additional physiological 

evidence to support my model that Bid facilitates ATR-mediated DNA damage 

response (6). It is quite possible that the dual roles of Bid in both apoptosis 

and DNA damage signaling pathways contribute synergistically to the tumor 

suppressor function of Bid in vivo.  

 

Table 4. Dual functions of BID in both apoptotic and DNA damage response. 

Pathway Apoptosis DNA damage 

Cellular stress Death receptor Replicative stress 

Character Senor Sensor/Mediator 

Protein interaction BCL-2 family (i.e. BCL-2, MCL-1, 

BAX/BAK) 

DNA damage sensor complex 

(i.e. ATR/ATRIP, RPA) 

Post-translational 

modification 

Asp 59 cleavage (Caspase 8); Gly60 

myristoylation (N-myristoyltransferase) 

Ser61/64, Ser78 

phosphorylation (ATM/ATR) 

Functional domain Helix 3 (BH3) Helix 4; RPA-ID 

Localization Mitochondria Chromatin 

Function Programmed cell death Genomic integrity 

Family BCL-2 family Unknown 

 

Future directions 

 

How does BID work? 
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  Although my results are consistent with a model that BID facilitates ATRIP-RPA 

interaction in vivo (Figure 3-12 A) and in vitro (Figure 4-11 A-C), the detailed 

molecular mechanism is still elusive. Several possible models at the molecular 

level are proposed below. It is worthwhile to note that all these models are not 

mutually exclusive and BID might function at multiple levels in the DNA damage 

sensor complex. 

 BID might function as an “RPA activator” to facilitate certain conformational 

changes of RPA70N. After ATRIP is recruited, BID releases from this 

RPA-ATRIP complex (Figure 6-1 A). However, no obvious structure change 

has been observed in RPA70N upon adding other binding partners in vitro. 

 BID might function as an adaptor to stabilize ATR/ATRIP complex to multiple 

RPA molecules (Figure 6-1 B). BID interacts with ATRIP and RPA by its Helix 

4 and RPA-ID regions, respectively. However, it is still unclear whether one 

BID molecule binds with ATRIP and RPA simultaneously or not. To investigate 

BID-RPA-ATRIP complex directly, the chromatin fraction from HU-stressed 

Bid +/+ cells could be purified and then fractionated by various biochemical 

separation, such as size exclusion chromatography and sucrose density 

gradient centrifugation. Then the molecular weight of the complex harboring 

BID, RPA and ATR/ATRIP could be estimated. The limitation of this procedure 

is that the DNA damage sensors are quite large (>500kDa) and many other 

factors are involved in this complex. Alternatively, an in vitro reconstitution 
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assay with purified BID, RPA, and ATRIP might be performed to detect the 

molecular weight of the complex. The limitation of this procedure is that, by far, 

it is very difficult to purify high-pure ATR and ATRIP proteins.  

 BID interacts with other unknown factors to stabilize ATR/ATRIP complex 

binding to RPA (Fig. 6-1 C). In my studies, I found that BID facilitates 

RPA-ATRIP interaction in vitro in a dose-dependent manner. At low molar ratio, 

BID facilitate ATRIP bound to RPA while it competes with ATRIP at high molar 

ratio (Figure 4-11 A-B). Interestingly, the binding ability of ATRIP to RPA is 

much more induced by hydroxyurea treatment than by incubation with BID 

(Figure 4-11 B), suggesting that other factors are involved in this DNA 

damage sensor complex to facilitate the formation of stable RPA-ATR/ATRIP 

complex in vivo. Further studies need to be performed to clarify how the 

high-order structure of DNA damage sensor complex is maintained and how 

BID functions in the DNA damage sensor complex.  

 Although ATRIP is predominantly in the form of an ATR-ATRIP heterodimer by 

hydrodynamic methods (281), ATRIP could form oligomers by its coiled-coil 

domain (∆112-225) as demonstrated by co-IP assay (253). Following 

replicative stress, BID interacts with the coiled-coil domain of ATRIP. Thus, it 

is possible that BID facilitates or stabilizes ATRIP oligomerization on 

RPA-coated ssDNA following replicative stress (Figure 6-1 D).  
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Figure 6-1. Proposed working models for BID to facilitate ATRIP-RPA association at the molecular 

level. (A) “RPA activator” model. BID might interact with RPA and facilitate certain conformational 

change of RPA70N, which makes RPA70N bind to ATRIP easily. After ATRIP is recruited, BID 

releases from this RPA-ATRIP complex. (B) “Adaptor” model. BID might function as an adaptor to 

stabilize ATR/ATRIP complex binding to multiple RPA molecules. Pol, DNA polymerase. (C) 

“X”model. BID interacts with other unknown factors to stabilize ATR/ATRIP complex binding to 

RPA. (D) “ATRIP oligomerization” model. As ATRIP could form oligomers by its coiled-coil domain 

(∆112-225) and BID associates with the coiled-coli domain of ATRIP following replicative stress, it 

is possible that BID facilitates or stabilizes ATRIP oligomerization on RPA-coated ssDNA following 

replicative stress. 
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In addition to activation of cell cycle checkpoint, ATR signals also maintain 

genomic integrity by controlling origin firing and stabilizing stalled replication forks 

following replicative stress (282). In yeast, Mec1 (ATR) and RecQ helicase has 

been reported to maintain DNA pol α and pol ε in the replication fork by a density 

isotope substitution method and chromatin immunoprecipitation assay (283,284). 

In addition, the mediator in ATR pathway, Mrc1 (Claspin), has been found to 

interact with DNA pol ε and Mcm complex, which stabilizes Pol2 at stalled 

replication forks following replicative stress (285). However, due to technical 

limitation, it is still difficult to investigate the stalled replication fork directly in 

mammalian cells (286). In my study, chromatin-bound PCNA is significantly 

diminished in BID KD cells following replicative stress (Figure 4-9). Although 

PCNA is prone to release from stalled replication fork in the absence of BID, the 

chromatin-bound MCM3 is maintained normally in BID KD cells (Figure 4-9). It will 

be interesting to investigate whether the unstable replication fork in ATR 

function-limited cells is attributed to the release of certain key components (e.g. 

PCNA) from the replisome or to a global dissociation of the replisome from 

chromatin. It is also worthwhile to investigate whether BID associates with certain 

key factors in various DNA polymerases to maintain the stalled replication fork 

following replicative stress. 

 

Why BID?  
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  Although BID has been demonstrated to play dual roles in both apoptosis and 

the ATR-mediated DNA damage response, it is worthwhile to think about the 

significance of these functions of BID in evolution. ATR-mediated DNA damage 

response is quite conserved from yeast to human. However, apoptosis only 

occurs in multicellular organisms and BID is only identified in vertebrates, which 

leaves a question as to why BID is involved in the DNA damage response.  

In apoptosis, BCL-2 family proteins function as sensors to sense and relay 

various cellular stresses to mitochondria to initiate programmed cell death. 

Apoptosis and BCL-2 family proteins have been demonstrated to play important 

roles in the maintenance of tissue homeostasis and prevention of tumorigenesis 

in metazoans. It is a challenge for multicellular organisms to maintain their tissue 

homeostasis by efficient clearance of damaged or irreparable cells and exquisite 

preservation of unstressed or repaired cells simultaneously, which is not a 

problem for unicellular organisms (e.g. yeast). Thus, it is reasonable to speculate 

that more and more complicated mechanisms are involved in higher organisms to 

regulate the DNA damage response elaborately, especially DNA damage-induced 

programmed cell death.  

Following DNA damage, cells maintain genomic integrity by two major decision 

programs. Cell cycle checkpoint is first executed to arrest cell cycle progression, 

which cooperates with the DNA repair process to ensure cell survival. If the 

damage is overwhelming, cells then initiate apoptosis to eliminate injured cells. It 
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is still unclear how such a critical control point is established to decide cell fate 

from survival to death following genotoxic stress. Based on the studies from our 

lab and other research groups, BID might be such a feasible candidate to 

participate in both checkpoint responses following DNA damage. First, BID 

functions as a survival factor to facilitate ATR-mediated DNA damage checkpoint 

as well as maintenance of replication fork. Following prolonged or severe DNA 

damage, BID might be released from the DNA damage sensor complex or stalled 

replication fork to execute its apoptotic function at mitochondria. As caspase 2 has 

been reported in the nucleus and caspase 2 cleaves BID in vitro (86,87,193), it is 

very interesting to investigate whether nuclear BID is cleaved by caspase 2 or not 

following prolonged replicative stress. However, as apoptosis is quite a 

context-dependent cellular response, different cell types or culture condition might 

utilize distinct mechanism to decide cell fate following cellular stress.  

Except for its BH3 domain, BID does not share any homologous domains with 

other proteins. Accordingly, it is important to study how these unique damage 

sensing domains are generated in evolution. It is worthwhile to search the protein 

or cDNA databases to explore and identify the invertebrate BID homologues 

harboring Helix 4 or RPA-ID regions. 

 

Functions in ATR pathway 

  In my thesis studies, the functions of various factors in the ATR-mediated 
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signaling pathways have been detected in Bid -/- and BID KD cells, including ATR, 

ATRIP, RPA, TopBP1, p53, CHK1 and CDC25A (4). However, the functions of 

9-1-1, RAD17 and Claspin were not detected directly. To further clarify the 

function of BID in the ATR-mediated response, it is necessary to detect the 

recruitment of the 9-1-1 complex to ssDNA as well as the interaction among 9-1-1, 

RAD17 and Claspin in BID KD cells. In addition, it will provide us much additional 

information by detection of the post-translational modifications of various DNA 

damage sensors in BID KD cells following replicative stress, such as RAD17 

phosphorylation. 

Following replicative stress, checkpoint protein RAD17 is phosphorylated by 

ATR at Ser635 and Ser645 residues (132,287,288) prior to CHK1 activation. The 

phosphorylated RAD17 binds with and regulates the phosphorylation of Claspin 

by ATR following genotoxic stress (132). The phosphorylated Claspin recruits 

CHK1 and facilitates CHK1 to be phosphorylated by ATR exclusively (131). 

Interestingly, cells harboring S635A/S645A mutated RAD17 exhibit a quite similar 

phenotype as BID -/- cells, including intra-S checkpoint defects, genomic 

instability, hypersensitivity to replication stress, and unstable CHK1 

phosphorylation (132). Accordingly, it is worthwhile to investigate whether 

RAD17-Claspin function is normal or not in BID KD cells and whether BID 

interacts with RAD17 or Claspin directly in the DNA damage sensor complex 

following replicative stress.  
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  Although signaling pathways are thought to be conserved, individual proteins 

might be diversely regulated in different species. In ATR-mediated pathway, a 

unique feature has been reported for human ATR in Seckel syndrome. In humans, 

Seckel syndrome is “a rare autosomal recessive disorder characterized by growth 

retardation, microcephaly with mental retardation, and a characteristic 

'bird-headed' facial appearance” (ncbi.nlm.nih.gov). In molecular genetics, Seckel 

syndrome locus has been assigned to 3q22.1-q24 (289) and a mutation in the 

exon 9 of ATR gene is reported in Seckel patients (140). Intriguingly, the A2101G 

mutation inside exon 9 region of ATR gene is synonymous but significantly 

impairs the proper splicing of exons 8-10 via an unknown mechanism, producing 

a message with premature termination. This defect only occurs in human ATR as 

no phenotype is observed in mice harboring mouse Atr gene with similar mutation 

(143). Mice harboring human ATR exon 8-10 region with A2101G mutation 

recapitulate human Seckel syndrome, including decreased body weight, brain 

development defects and premature aging (143), indicating a unique mechanism 

by which the human ATR gene ensures its efficient expression. It is worthwhile to 

investigate whether similar human-specific mechanisms exist in other DNA 

damage sensor genes, which are quite important for human genetics and clinical 

investigation. 

Except the ATR-Seckel mice, few studies have been performed to focus on the 

physiological and pathological functions of the ATR-mediated pathway using an 
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animal model because of the essential function of ATR/ATRIP in mammalian 

systems. Nevertheless, cells harboring mutated RPA70 (R41E/R43E)(148) 

showed a quite normal cell cycle profile but significant defects in ATR-mediated 

DNA damage response, which provides us an additional feasible model to 

investigate the RPA-ATR mediated DNA damage response in vivo. A mouse 

model harboring knockin RPA with mutation in the basic cleft region (e.g. 

R41E/R43E) might develop normally but exhibit severe defects following DNA 

damage treatments. Other feasible target proteins include, but not limited to, BID 

mutations in Helix 4 or RPA-ID region, ATRIP mutation in TopBP-binding domain, 

RAD17 mutation in ATM/ATR phosphorylation sites, and CHK1 mutation in S317 

residue.  

 

Other cell death proteins 

Besides the canonical apoptotic function in mitochondria, more and more cell 

death proteins have been demonstrated to play additional roles in other signaling 

pathways following various cellular stresses (Table 5). BCL-2 has been reported 

to suppress DNA double strand-break repair and V(D)J recombination by 

interaction with Ku70 and Ku86 via its BH1 and BH4 domains (266). Following 

etoposide treatment, MCL-1 is found in the DNA damage complex containing 

NBS1 and γH2A.X to facilitate ATR-dependent CHK1 phosphorylation (259,260). 

In addition, the accumulation of nuclear MCL-1 in response to DNA damage is 
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mediated by interaction with IEX-1 (268). As BID interacts with BCL-2 and MCL-1 

by its BH3 domain in cytoplasm, it is quite possible that BID might also interact 

with BCL-2 and MCL-1 in the nucleus or on the chromatin following genotoxic 

stress. As the function of MCL-1 on CHK1 phosphorylation is exclusive to ETOP 

but not HU treatment, it is interesting to investigate the function of BID/MCL-1 in 

processing DSBs to ssDNA.  

Recently, BCL2L12 has been identified as a novel negative regulator of p53 to 

inhibit p53 transcription factor function following DNA damage response (290). 

p53 plays dual roles in DNA damage response. p53 activates cell cycle 

checkpoint and DNA repair proteins to fix the damage. On the other hand, p53 

induces the expression of pro-apoptotic proteins to initiate programmed cell death. 

As BID might play similar roles in DNA damage response, it is possible that BID 

affects the transcription factor activity of p53 by interaction with other BCL-2 family 

proteins. Although it is less likely that BID acts as a transcription regulator directly, 

it is interesting to investigate how Bid -/- p53 -/- cells sense and transduce DNA 

damage signals to mitochondria. 

AVEN, a BCL-XL-interacting protein, has been reported to function as an ATM 

activator to inhibit G2/M progression (269). Following various DNA damage 

treatments, BID is phosphorylated by ATM/ATR and the phosphorylation of BID is 

significantly diminished in Atm -/- cells. In my thesis studies, no obvious defects of 

ATM autophosphorylation (Figure 3-6 C) as well as CHK2 phosphorylation (data 
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not shown) were observed in BID KD cells following etoposide treatment, 

suggesting that BID plays a minimal role in ATM activation following DSBs. 

Nevertheless, ATM has also been demonstrated to play a role following oxidative 

stress in vitro and in vivo (122,123), and the cleavage of BID by caspase-2 has 

been demonstrated to be a critical apoptotic signal downstream of endoplasmic 

reticulum stress (87). Given the close relationship between ROS and ER stress, it 

is worthwhile to investigate whether BID plays a role at the sensor level following 

oxidative stress.  

Importantly, most of the identifications of these novel functions are at the 

cellular level, and it is necessary to demonstrate the non-canonical function of 

these cell death proteins in vivo to clarify the physiological and/or pathological 

significance of these multifunctional proteins. 

 

Table 5. Non-canonical functions of proteins in cell death pathways. 

Protein 

name 

Function Interaction 

partner 

AVEN An novel ATM activator ATM 

BAX Inhibit homologous recombination Unknown 

BID Facilitate ATR function following replicative stress  ATR/ATRIP/RPA

BCL-2 Suppress DSB repair and V(D)J recombination Ku70/Ku86 

BCL2L12 Inhibits the p53 tumor suppressor p53 

MCL-1 Facilitate ATR-mediated CHK1 phosphorylation CHK1 

NOXA Stimulates glucose consumption and enhance glucose 

turnover via the pentose phosphate pathway 

CDK5 

 

BID’s phosphorylation 

Following replicative stress, BID interacts with ATRIP and RPA by its Helix 4 
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and RPA-ID regions, respectively (Figure 3-9 and Figure 4-5). In addition, BID 

nulcera foci is only observed following DNA damage treatments (2,3) and the 

association between BID and the DNA damage sensor complex is significantly 

induced by hydroxyruea treatment in cells (Figure 3-8). It is still unclear how 

BID-ATRIP and BID-RPA interaction are regulated by DNA damage. Following 

DNA damage, BID is phosphorylated by ATM and/or ATR (2,3). Mutation in the 

ATM/ATR consensus phosphorylation sites (S61/64/78A) does not block 

BID-ATRIP interaction; however, this interaction is not induced by HU treatment 

(Figure 3-9 B). In addition, ATM/ATR consensus phosphorylation sites mutated 

BID only partially rescues ATRIP nuclear foci in BID KD U2OS cells following HU 

treatment (Figure 3-11 A, B). Based on these observations, it is reasonable to 

speculate that the phosphorylation of BID by ATM/ATR following DNA damage 

facilitate BID’s association with the DNA damage sensor complex. In mechanism, 

the phosphorylation of BID might alter the flexible feature of the long loop region 

in BID, which might mediate BID to interact with other unknown factors in the DNA 

damage sensor complex. Alternatively, the phosphorylation of BID might stabilize 

BID in chromatin and increase its access to various DNA damage sensors. It is 

interesting to investigate the function of BID (e.g. phosphorylation, localization, 

interaction) in ATR- and/or ATM- deficient cells following various DNA damage 

treatments. 
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Clinical implications 

  Most of BID’s regulation occurs at the post-translational level, and most studies 

of human tumors have relied on gene expression analysis therefore extensive 

data on BID in human tumors is not available. Nonetheless, one study in cervical 

cancer did indicate a correlation of BID expression with clinical outcome. High 

expression of BID has been reported as an adverse prognostic factor for 

radiotherapy outcome in carcinoma of the cervix (291), suggesting that BID might 

play a survival role for cancer cells following DNA damage treatment. In addition, 

6.0% of gastric carcinomas have been reported to associate with mutations in BID 

gene (either frameshift or missense mutations), and one mutation in 342G results 

in a frameshift at the end of Helix 4 domain, which loses the RPA-ID region of BID 

(292). These observations provide a link between my results and cancer 

pathophysiology. 

  Bid -/- cells exhibit a hypersensitivity to chemotherapy drugs inducing 

replicative stress and the function of BID in the DNA damage response is 

mediated by its association with ATRIP and RPA in the damage sensor complex. A 

pharmaceutical inhibitor might be developed to mimic and block the BID-ATRIP or 

BID-RPA interaction, which might be used in clinic combination therapy with HU to 

increase DNA damage level and kill rapid proliferating tumor cells efficiently.  
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