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CHAPTER I 

 

  INTRODUCTION 

 

Overview 
  

This introductory chapter of my thesis discusses the processes involved in kidney 

development and describes the influence of growth factors, basement membrane 

composition, and basement membrane remodeling in renal development. This chapter 

will conclude with a detailed focus on membrane type 1 matrix metalloproteinase (MT1-

MMP) and its speculated role in kidney development.  Chapter II is the manuscript which 

describes our in vivo and in vitro findings which show that “MT1-MMP-MEDIATED 

extracellular matrix (ECM) REMODELING REGULATES NORMAL RENAL 

DEVELOPMENT.”  Chapter II will conclude with a discussion of the future directions 

proposed for this body of work. 

 

Background and Motivation 
  

The renal system is involved in a large proportion of childhood congenital 

abnormalities. Abnormalities of kidney and urinary tract development are the most 

common cause of renal failure in childhood in the United States, comprising 31% of 

children with end-stage kidney disease (Reidy K 2009).  Our recent work on matrix 

metalloproteinases in mouse models has shown that these molecules may be involved in 
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the development and resolution of some of these kidney diseases, in particular renal 

dysplasia (abnormal tissue development) or hypoplasia (inadequate tissue development) 

(Koshikawa 2004).  

 Matrix metalloproteinases are a family of more than 20 zinc-dependent proteins 

that exist in the extracellular matrix of all tissues. Based on sequence homology and 

substrate specificities, the MMPs fall into several subgroups including collagenases, 

gelatinases, stromelysins, matrilysins and the membrane-type metalloproteinases. There 

is considerable overlap in substrate specificities, and the MMPs play a an important role  

in the degradation of most  ECM components, including laminins, collagens and 

fibronectin. The MMPs also affect the release and turnover of cytokines and cell surface 

receptors of adjacent cells (Somerville RP 2003).   

Cells secrete most MMPs as soluble enzymes into the extracellular milieu; 

however, some MMPs are membrane-bound and called the membrane-type 

metalloproteinases (MT-MMP). Despite in vitro evidence that some soluble MMPs play 

an important role in renal development, no mice lacking this class of MMPs have shown 

significant renal phenotypes.  There is still significant disagreement in the community 

concerning the experimental and physiological relevance of MMPs in kidney 

development.  The global focus of my research seeks to address this discrepancy by 

assessing the importance MT1-MMP-mediated extracellular matrix turnover on renal 

development.   
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Kidney Development 
 

The kidneys are an essential part of the urinary system that function to regulate 

electrolytes and blood pressure, maintain acid-base balance, and excrete toxins from the 

body.  Each kidney is comprised of two regions; the outer most region of the cortex and 

the inner medulla.  Nephrons are the functional filtering units of the kidney and a largely 

contained within the cortex while the collecting duct system which carries the urine from 

the kidney through the ureter and into the bladder is housed in the medulla (Figure 1).  

This complex structure derives from two distinct embryonic cell types.  This part of the 

thesis will discuss the process of kidney development and some of the molecules and 

programs that are critical for mammalian renal development that forms the basis of my 

work.   

 Kidney development is a highly regulated process that involves the concerted 

action of growth factors, integrins, extracellular matrix components, and matrix 

metalloproteinases.  In 1987, Lauri Saxén wrote a comprehensive review on kidney 

development that has become one of the best-known and most-cited works in the field 

(Davies J 2002).  Strikingly, it contained no mention of the role of metalloproteinases 

(MMPs) and matrix turnover during renal development.  Even today, the role of MMPs in 

development is poorly acknowledged because it is not well understood.   

The original studies of kidney development involved descriptions of the 

morphologic changes, including seminal work by Edith Potter on human fetal kidneys 

(Holliday 1994).  From this and more recent studies, we know that there are 2 embryonic 
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kidney transitory precursors that are vestiges of the nephrogenic cord: the pronephros and 

mesonephros (Kanwar YS 2004).  

 

 

Figure 1:  Reciprocal Signaling during Renal Development 
Adapted from Gomez 1999 

 

The pronephros consists of simple tubules that empty into a pronephric duct. As 

the pronephros begins to regress, the mesonephros arises at embryonic days 10-11 in the 

mouse and at about week 5 of gestation in humans (Saxẻn 1987). The mesonephros will 

fuse with the cloaca near the end of the development and contributes to formation of the 

urinary bladder.  

The last embryonic kidney, the metanephros, forms as the ureteric bud branches 

out of the caudal end of the Wolffian duct.  During meta-nephrogenesis, the ureteric bud 

develops as an epithelial-lined tubular out branch of the Wolffian duct. Reciprocal 
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interactions occur between the ureteric bud and the metanephric mesenchyme.  The 

undifferentiated mesenchymal tissue condenses to form nephrons in response to signals 

from the tip of each successive branch of the ureteric bud (Hartman HA 2007).   

 During reciprocal signaling, subsets of cells within the mesenchyme form 

condensates and develop an epithelial phenotype (known as a mesenchymal-epithelial 

transition or MET) (Figure 2). These cells mature into well-developed nephrons with 

vascular glomeruli connected to proximal and distal tubules that drain into ureteric bud. 

As the cells mature through MET, they undergo a sequence of morphologic changes, 

starting as a sphere of cells called the vesicle, becoming a comma-shaped body, and then 

an S-shaped body.  Three segments of the S-shaped body emerge, oriented with the distal 

segment adjacent to the ureteric bud tips: the proximal segment differentiates into the 

glomerular epithelial cell (podocytes), the midsection forms the proximal tubule and loop 

of Henle, and the distal segment becomes the distal tubule and joins with the ureteric bud 

branches. Vascular development in the kidney occurs concurrent with glomerular 

development (Sariola 1985; Eremina 2007).  

The ureteric bud undergoes arborization where each branch subsequently induces 

the production of one nephron. The induction of nephrons in mice continues until ~1 

week after birth and then ceases once the full complement of nephrons has formed (Saxẻn 

1987).  Mice typically reach kidney maturity having 10,000-100,000 nephrons.  These 

UB branches will eventually form the collecting system, including collecting ducts, renal 

pelvis, ureter, and bladder trigone in the adult kidney. While mammalian kidney 

morphogenesis is well understood, the molecules involved continue to be the focus of our 

group.     
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Modulation of the ECM is critical for the normal growth and development of 

embryonic renal tissue.  Recent work on matrix metalloproteinases (MMPs) suggest that 

these molecules may be involved in this ECM modulation.  Our work focuses on the 

importance of the MMPs, particularly MT1-MMP during renal development.  MMPs are 

a family of Zn2+ dependent proteases which collectively can cleave most of the 

components of the ECM and will be discussed in detail, later.  The following discussion 

of kidney development is intended to focus on molecular programs relevant to this 

investigation.   

 

 

Figure 2: Development of the UB and mesenchyme  
Adapted from Horster 1999 
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Molecular programs which regulate kidney development 

 

Influence of Growth Factors 

 Numerous growth factors are significant during renal organogenesis, namely bone 

morphogenic proteins, fibroblast growth factor, glial cell–derived neurotrophic factor 

(GDNF), and hepatocyte growth factor (HGF) pathways. While I will not discuss every 

growth factor that has been ascribed a role, it is important to discuss certain growth factor 

programs activated during renal development that are relevant to my study.  Recent 

evidence has even linked GDNF and HGF, two major growth factor receptors, to MT1-

MMP activity.    

 GDNF 

The metanephric mesenchyme cells produce GDNF, which is an important 

stimulant of ureteric bud branching. GDNF signals are important for ureteric bud cell 

proliferation, cell survival and branching of the epithelium.  Although GDNF is a major 

trophic factor for bud branching, its effects are modulated by several other growth factors 

as well as inhibitors of bud branching (Reidy K 2009).   

  Renal cells in the Wolffian duct and later at the tips of the ureteric bud coexpress 

two receptors that GDNF acts through: the receptor tyrosine kinase RET (REarranged 

during Transfection protooncogene) and the coreceptor GDNF family receptor-α1.  The 

ablation of GDNF or RET genes in mice results in the absence of the kidney, due to 

failure of ureteric bud outgrowth, or severe malformation, as a result of limited ureteric 

bud branching (Costantini 2006).  In humans, RET mutations coincide with Hirschsprung 
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disease, cancer, and renal agenesis.  For example, Skinner and colleagues, found RET 

mutations in 7 of 19 stillborn human fetuses with bilateral renal agenesis (37%) and 2 of 

10 fetuses (20%) with unilateral agenesis (Skinner MA 2008). 

While the RET/GDNF pathway largely controls ureteric bud outgrowth and 

branching morphogenesis; the exact mechanisms by which this occurs remain unknown. 

GDNF regulates a number of genes, but none of them can account for effects of GDNF 

on ureteric bud morphogenesis (Lu BC 2009).  For this reason, Frank Costitini’s group 

conducted a genome-wide analysis of mRNA expression in isolated ureteric buds 

cultured with or without GDNF.  Among the genes identified were two transcription 

factors, Etv4 (Pea3) and Etv5 (Erm). Etv4 and Etv5 are important in neuronal, 

spermatogonial and limb development, but prior research had not investigated a role in 

renal development.  By analyzing the renal development of genetic crosses of mice 

lacking three of the four Etv4 and Etv5 alleles, Costitini’s group showed that reduced 

ureteric bud branching caused moderate to severe defects in renal development. 

Furthermore, they showed that mice lacking all four alleles do not develop kidneys.  In 

the same study, researchers found that in the hypoplastic kidneys of Etv4−/−; 

Etv5+/compound mutants three genes showed greatly reduced expression: Cxcr4 

(chemokine receptor), Met (HGF receptor), and Mmp14(MT1-MMP). The reduced 

expression of these genes indicates that they are direct or indirect targets Etv4 and Etv5 

(Lu BC 2009).   These studies establish the first link between MT1-MMP and GDNF and 

allude to the  importance for MT1-MMP in early renal organogenesis. 
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HGF 

The interaction of mesenchyme-derived HGF with its receptor tyrosine kinase c-

MET (mesenchymal-epithelial transition factor) are required for ureteric bud elongation 

in renal development.  The current literature holds that this HGF/c-MET system plays an 

essential role in cell growth, cell differentiation, organ regeneration, embryogenesis, and 

tumorogenesis (Liu 2002).  Treating cultured embryonic kidneys with anti-HGF 

antibodies or inhibiting their endogenous HGF activator causes their UB development to 

stop through the inhibition of mesenchymal differentiation, increased cell death and 

perturbation of UB branching (Woolf 1995). 

Additionally, embedding Madin Darby Canine Kidney (MDCK) epithelial cells in 

collagen matrix allows them to form branching tubules under HGF stimulation.  However, 

inhibiting MT1-MMP expression in MDCK cells in otherwise identical conditions 

eliminates the formation of these branching tubules (Kadono Y 1998).  

Research has shown that HGF can also induce several intracellular signaling 

pathways during branching.  Kadono and colleagues showed that MT1-MMP was 

involved in one of these pathways and suggested a role for the protease in kidney 

tubulogenesis (Kadono Y 1998).  Studies have confirmed similar analyses in cultured 

endometrial carcinomas (Park 2003) and mesothelioma cell lines(Harvey P 2000).  

 The literature has just begun to suggest a possible link between the role of MT1-

MMP and growth factors during renal development (Figure 3). It is possible that MT1-

MMP could act synergistically with growth factors but research is lacking to support a 

definite link.  As the role of GDNF and HGF have been defined by several groups, a 
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better understanding of the role of MT1-MMP during renal development is necessary in 

order to support the hypothesis of MT1-MMP and growth factor associations.   

 

 

Figure 3:  Cell-ECM Interaction in Renal Development 

 

Influence of Basement Membrane   
 
 As early as 1955, Clifford Grobstein proposed that one tissue might induce 

another to develop through the presence of ECM (Grobstein 1955).  He was able to show 

that ECM, alone, could induce mouse salivary gland tissue to differentiate (Powell 2005). 

This study and the work of others provide strong evidence supporting the idea that the 

ECM may provide many of the cues for cells to alter cellular function in organogenesis.  
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The ureteric bud lies proximal to a milieu of ECM components, some made by the 

bud and some by the surrounding mesenchyme. Immunohistochemistry can detect 

changes in the composition of the ECM of the mesenchyme, which shows that the ECM 

is dynamic (Ekblom 1980; Ekblom 1981). Specifically, an enhanced synthesis of a set of 

epithelial-type proteins, (namely collagen type IV, laminin, heparan sulphate 

proteoglycan, and entactin/nidogen) replace the interstitial proteins fibronectin, collagen 

type I, and collagen type III as they are removed from the condensed areas (Saxẻn 1987).  

 The diverse composition of the ECM allows it to have uses well beyond its static 

function as the physical barrier that segregates adjacent tissues.  Not only does the 

literature show that the ECM provides support and anchorage for cells and regulates 

intercellular communications, several studies have provided evidence to suggest that the 

ECM also influences a variety of epithelial cell behaviors including proliferation, 

differentiation, and morphogenesis—all of which are important processes during renal 

development.   

   

Basement Membrane Composition 

 Basement membranes are specialized extracellular matrices 50-100 nm in 

thickness and found throughout the body. They play particularly important roles in the 

kidney, as demonstrated by the fact that defects in renal basement membranes are often 

concurrent with kidney malfunction. The kidney exhibits four different types of 

continuous basement membrane (BM) encasing every nephron. These types are tubular, 

glomerular, and vascular BMs as well as the BM surrounding the Bowmen’s capsule.  

This regional heterogeneity makes the kidney an ideal model system in which to 
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investigate the importance of BM composition.  In general, basement membranes contain 

four main components: type IV collagen, laminin, nidogen, and the proteoglycan perlecan 

(Breitkrentz D 2009).  I will briefly describe each BM component and explain its relative 

significance according to the current literature. 

Collagen IV 

 As with all collagens, type IV collagen consists of three α chains coiled around 

one another to form a triple helical molecule or protomer.  In vertebrates, the genes 

COL4A1-COL4A6 encode six distinct versions of these α(IV) chains, allowing for 56 

possible protomer combinations.  Despite all of these possible associations, there are only 

three known protomers α1.α1.α2(IV), α3.α4.α5(IV), and α5.α5.α6(IV).   Collagen 

protomers associate with each other outside of cells to form a two-dimensional meshwork.  

This provides a scaffold for assembly of the basement membrane.   

 The α1.α1.α2(IV)–α1.α1.α2(IV) network is ubiquitous and expressed in all 

basement membranes of immature nephrons during embryonic development.  During 

glomerular maturation, a switch in collagen IV networks occurs in the glomerular 

basement membrane (GBM) wherein the α3.α4.α5(IV) trimer replaces the α1.α1.α2(IV) 

trimer (Hudson 1993).  The α1.α1.α2(IV)–α5.α5.α6(IV) network is prevalent in the 

Bowman’s capsule and in the collecting duct basement membrane (JH. 1998; Miner 1998; 

Hudson BG 2003).  

 While BM formation does not require type IV collagen, many experts believe that 

the type IV collagen network confers BMs with their structural integrity.  α1.α1.α2(IV)-

null mice display a defective placental structure and embryonic hemorrhaging. They 

subsequently die at E10.5-E11.5 (Pöschl E 2004). This study suggests that Collagen IV is 
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fundamental for the maintenance of integrity and function of basement membranes under 

conditions of increasing mechanical demands  

Other studies have shown that mutations in type IV collagen genes cause 

hereditary glomerular diseases.  Alport's syndrome results from the production of post-

translational defects in α3(IV), α4(IV), or α5(IV) chains, which lead to rapid degradation 

of the protein.  These mutations arrest the normal developmental switch and cause the 

persistence of α1.α1.α2(IV) networks in glomerular basement membrane (Hudson BG 

2003).   Furthermore, Lemmink and others have shown that a point mutation in the α4 

chain gene is responsible for thin GBM disease, which many texts describe as autosomal 

dominant benign familial hematuria (Lemmink 1996). 

Goodpasture syndrome (or anti-glomerular basement membrane disease) is an 

autoimmune disorder involving a deficiency in collagen IV.  Individuals with this disease 

develop antibodies against the NC1 domain of α3 (Butkowski 1987; Saus 1988; Turner 

1992; Kalluri 1996).  As a major component of the GBM, attack on type IV collagen α3 

leads to glomerulonepritis, which can result in renal failure and even death.  As the 

absence of specific collagen IV chains promotes disease, it is likely that this component 

of the BM is more than a barrier, as it plays an actual role in kidney function.   

As collagen IV provides the basement membrane with most of its structural 

integrity, the expression of type IV collagenase is critical for developing tissues that 

require migration through the BM.  Most notably, soluble MMP-2 and MMP-9 are 

classified as type IV collagenases and their roles in renal development will be discussed 

later in this chapter.  In a mouse model of Alport’s syndrome, researchers found that 

inhibition of MMPs early in the disease, before the buildup of proteins in the urine, 



15 
  

reduced symptoms (Schubert 2006).  Furthermore, the MMP-2 that degrades type IV 

collagen is also activated by MT1-MMP (Sato 1994) but there has been much debate over 

the capabilities of MT1-MMP to directly degrade collagen IV as studies have both 

suggested (Ohuchi 1997; Hotary 2006; Hotary K 2007) and denied (Itoh 2006) MT1-

MMP type IV collagenase abilities.  As it is clear that collagen IV is a major contributor 

to renal BM integrity, a study of collagen IV in reference to MT1-MMP activity is 

important for our study.  

 

Laminins 

 Another key component for BM formation is the laminin (Ln) family.  In 

mammals, there are at least 15 Lns derived from five α, three β, and three γ subunits (Li 

2003). While immunohistochemical assays have found that the highest numbers of 

laminin chains are in the kidney, research has uncovered only a few laminins that affect 

renal development.  These laminins are laminin-111 (Ln-111), laminin-511 (Ln-511), 

laminin-521 (Ln-521), and laminin-411 (Ln-411).     

During development, a basement membrane containing Ln-111 and Ln-511 binds 

the ureteric bud.  Meanwhile, an assembly of a nascent basement membrane containing 

primarily Ln-111, but also Ln-411, accompanies the MET of the nephron-bound cells (St 

John PL 2001).  Finally, as the endothelial cells of the developing glomerulus invade the 

wall of the tissue to form capillaries adjacent to epithelial cells, Ln-521 replaces Ln-111 

in a developmental transition.  In addition to the complexity of the temporal laminins in 

the kidney, there is a difference in the spatial expression of laminin chain in the various 

segments of the kidney.  Sophisticated studies using in vitro blocking antibodies as well 
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as targeted gene deletions in mice model system have uncovered a role for several of the 

laminin chains, namely lamα1, lamα4, lamα3, lamα5, lamβ2 and lamγ1 chains.  As MT1-

MMP can cleave Ln-111 (Pei 1996), Ln-332 (Koshikawa 2004), Ln-511(Bair 2005),  I 

will briefly discuss the laminin chains that are relevant to our study. 

Ln-111 

 The inactivation of the lamγ1 chain demonstrates the importance of laminins 

during development.  This inactivation prevents the formation of 10 out of the 14 known 

laminin isoforms. Mice homozygous for the mutation lack basement membranes and die 

at 5.5 days post coitum through a failure of ectodermal and endodermal cell 

differentiation (Smyth 1999; Murray 2000).  Classic experiments that use antibodies to 

lamα1 (of Ln-111 and Ln-121) to block either assembly of or cell interaction with Ln-111 

in cultured metanephroi inhibit mesenchymal to epithelial transition through this 

technique (Klein G 1988).   

Ln-332 

Our lab has shown that laminin-332 is expressed within the developing UB and 

required for normal UB branching morphogenesis in whole embryonic kidney organ 

culture as well as isolated UB culture (Zent 2001).   When a well-characterized functional 

blocking antibody directed against laminin-332 was used in normal UB development was 

inhibited in both whole-kidney and isolated UB culture.  Comparatively, mice with 

targeted disruption of the lamα3 gene have a skin blistering defect that mimics the Herlitz 

junctional epidermolysis bullosa (H-JEB) phenotype in humans.  These lamα3 null 

animals develop abnormalities in glomerulogenesis, similar to the recent post-mortem 

analysis done on an infant with H-JEB (Hata 2005).   
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Ln-521 

In vivo studies in mice show that blocking the laminin transition through the 

mutation the α5 component of laminin 511/521(or lamα5) results in breakdown of the 

GBM, disorganization of glomerular cells, and failed glomerular vascularization (Miner 

JH 2000).  Furthermore, about 20% of Lamα5 null embryos lack either one or both 

kidneys. Studies have not yet determined the exact mechanism for this defect, but the fact 

that Ln-511 is normally present in the ureteric bud basement membrane, and that cultured 

Lamα5 null metanephroi exhibit attenuated ureteric bud branching, suggests that agenesis 

results from a primary ureteric bud defect (Kanwar YS 1997). Comparatively, in the 

absence of laminin β2 (of Ln-521), the GBM does not develop correctly resulting in 

proteinuria in adult mice (Jarad G 2006).   

 From these observations, it is evident that laminin networks are important for 

renal development through their direct contribution to BM integrity thus relevant to our 

discussion.  Furthermore, our novel observation that the dysplastic dysgenic phenotype of 

MT1-MMP null mice was associated with decreased cleavage of Ln-332 (Koshikawa 

2004) has both established a link between MT1-MP and Ln-332 is kidney development 

and been the foundation of this study.  Therefore, exploring other laminins involved in 

development is critical to our work.  

Nidogen 

 Nidogen (or entactin) is a ubiquitous BM glycoprotein that consists of two amino 

domains (G1, G2) and one carboxyl globular domain (G3). A rod domain consisting 

primarily of EGF repeats connects these two domains. There are two closely related 

nidogen genes in mammals denoted as nidogen-1 and nidogen-2. While nidogens-1 and -

http://www.wormbase.org/db/get?name=G1;class=Cell�
http://www.wormbase.org/db/get?name=G2;class=Cell�
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2 show a divergent expression pattern in certain adult tissues, both have a similar 

distribution during development (Bader B 2005).  Specifically, nidogen-1 and -2 are 

present at sites of epithelial-mesenchymal interactions in embryonic tissue in epithelial 

and endothelial cells of the adult mouse kidneys (Miosge N 2000).   This localization 

makes nidogen of particular interest within our studies. 

 Biochemical studies have suggested that nidogen can mediate the formation of the 

ternary complexes between laminins and collagen IV (Fox 1991).  However, some 

studies have shown that nidogen-1 also binds to the basement membrane protein perlecan 

(Timpl 1996).  A study conducted by Ekblom used antibodies against the nidogen 

binding site on the laminin β2 chain to determine the relative importance of nidogen 

during kidney organogenesis.  Interfering with nidogen-laminin interactions perturbs in 

vitro epithelial development in embryonic kidney and lung (Ekblom P 1994). These 

studies suggested that mesenchymal nidogen could be important for early stages of 

epithelial morphogenesis.  Furthermore, the G3 domain binds with high affinity to the 

laminin γ1 (Pöschl E 1994), and γ3 (Gersdorff 2005) chain, while the G2 domain can 

bind perlecan and type IV collagen. The ability of nidogen to form a ternary complex 

with laminin and type IV collagen has led many to suggest nidogen as a BM protein 

linker (Kramer 2005).    

 Gene knockout studies in mice demonstrated that the loss of either isoform has no 

effect on basement membrane formation and organ development, suggesting 

compensatory functions. However, complete ablation of both nidogens results in perinatal 

lethality (Bader 2005).  While nidogen-1 and -2 do not appear to be crucial in 

establishing tissue architecture during organ development, studies have implicated them 

http://www.wormbase.org/db/get?name=G2;class=Cell�
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in ensuring the late stages of lung development and for maintaining the integrity of 

cardiac tissue (Miosge 2002).  Despite the ubiquitous presence of nidogens in basement 

membranes, defects do not occur in all tissues or in all basement membranes, suggesting 

a varying spectrum of roles for nidogens in the basement membrane.  

 Nidogen-directed ECM remodeling could potentially effect the entire BM 

meshwork.  While it is been shown that MT1-MMP cleaves nidogen, in vitro (d'Ortho 

1997), this association has not been confirmed within any in vivo analysis.  The cleavage 

of nidogen by MT1-MMP could be key in the disruption of basement membranes, as 

nidogen acts as a structural linker to bridge the laminin and collagen IV networks.  

Therefore, a study of nidogen is important for our study. 

Proteoglycans 

 Proteoglycans (PGs) also play a significant role in the morphogenesis of several 

tissues. They consist of core peptides that are bound by O-glycosidic linked 

glycosaminoglycan (GAGs) chains. The GAG chains enable proteoglycans to interact 

with other matrix molecules, (such as laminin), and become a reservoir for various 

growth factors, (e.g., basic FGF).  Such interactions allow PGs to influence 

morphogenesis by more than one mechanism.   

 The kidney expresses several different types of PGs, including perlecan and 

syndecans as heparan sulfate-proteoglycans (HSPG), chondroitin sulfate-proteoglycan 

(CSPG), decorin, and biglycan (Wallner EI 1998).  At the time of induction, sulfated PGs 

concentrate densely at the tips of the ureteric bud branches, at the location of epithelial-

mesenchymal interface.  Inhibiting these sulfated PGs likely causes blunting of the tips of 

the ureteric bud branches and dysmorphogenesis of the kidney (Kanwar YS 2004).   
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Interestingly, ureteric buds developing in culture in the absence of GAGs will 

develop normally if  HGF, GDNF, neurturin, persephin, or BMP-4 is present (Ekblom P 

1994). Thus, it appears that GAG chains mediate the biological actions of PGs. 

Experiments with salivary glands showing that enzymatic deletion of GAGs inhibits 

tubulogenesis support this notion.  Complementary to these findings, studies have shown 

that proteoglycans are necessary for branching of epithelial tissues, including the ureteric 

bud, in organ culture and in the isolated UB (Lelongt B 1988; Meyer TN 2004; Shah 

2004; Steer 2004).  However, in the absence of perlecan, mice do not reveal any defective 

renal phenotype. Instead, most of them die at midgestation due to bleeding diathesis. 

Those that survive appear to have normal BMs (Kanwar YS 2004). 

In vitro proteolysis analysis has suggested that MT1-MMP cleaves perlecan at 

multiple sites within the molecule (d'Ortho 1997).  This cleavage of perlecan could be of 

particular importance as this molecule is involved in growth-factor binding.  As MT1-

MMP is already association with GFNF and HGF during renal development, perlecan is 

of interest to our study.  

The aforementioned described renal abnormalities suggest that the basement 

membrane is bioactive and capable of directing cellular events such as adhesion, 

migration, proliferation, differentiation, and survival.  While there are no known direct 

associations between aberrant BM turnover and dysplactic/hypoplastic renal disease in 

humans, our recent work on MT1-MMP in a mouse model has shown that these BM 

molecules may be involved in the development and resolution of some of these kidney 

diseases., in particular renal dysplasia (abnormal tissue development) or hypoplasia 

(inadequate tissue development) (Koshikawa 2004).  
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MMPs in Basement Membrane Remodeling 
 
 MMPs are a family of related yet structurally distinct proteases.  The MMP family 

has ~26 members that are classified as such because of the conserved pro-domain and 

catalytic domain. The pro-domain of a typical MMP is ~80 amino acids and contains the 

consensus sequence PRCXXPD, where X denotes any amino acid (the exception is 

MMP-23) (Velasco 1999). With the exception of MMP-7, -23 and -26, MMPs have a 

flexible proline-rich hinge region and a carboxy (C)-terminal hemopexin-like domain, 

which functions in substrate recognition.  Although MMPs are often subdivided into 

groups based on differences in domain composition (Figure 4), there is little consensus in 

the field about how such subdivisions should be assigned as domain structure alone does 

not predict function (Parks 2004).  There is considerable overlap in substrate specificities, 

and the MMPs play an important role in the degradation of most ECM components, 

including laminins, collagens, and fibronectin. The MMPs also affect the release and 

turnover of cytokines and cell surface receptors of adjacent cells (Somerville RP 2003).   
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Figure 4: MMP Structure 
Adapted from VanSaun 2006 
 
 
 

MMP regulation is critical for balance between maintenance and disease.  

Endogenous MMP regulation can occur at the level of gene transcription, enzyme 

activation, and the balance between MMPs and their natural inhibitors known as TIMPs 
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(Matrisian 1990; Matrisian 1992). TIMPs or tissue inhibitors of metalloproteinases are 

endogenous inhibitors of these metalloproteinases and are consequently important 

regulators of ECM turnover, tissue remodeling, and cellular behavior.  There have been 4 

genes identified to encode TIMPs-1 to TIMP-4.  All four TIMPs inhibit MMPs, but with 

varying affinities (Nagase 2008).  

The expression patterns of TIMPs and MMPs suggest a role for MMPs during 

renal development.  At embryonic days 11 and 12, TIMP-1, -2, and -3, MMP-2,-3, -9, 

and MT1-MMP are all expressed in the kidney groups (Reponen 1992; Apte 1994; 

Lelongt 1997; Ota 1998; Tanney 1998; Barasch 1999; Kanwar YS 1999).  However, 

unlike MMP-2, -9, and MT1-MMP, MMP-3 expression is brief, rapidly decreases over 

time, and has not been localized to an embryonic cell type (Table 1) (Pohl 2000).  
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Table 1:  MMPs in Early Renal Development 
 

 

 

 

Researchers have thoroughly investigated the roles of the mesenchymal derived 

gelatinases, MMP-9 and MMP-2 in renal development.  The gelatinases are a subfamily 

of MMP that share the ability to degrade type IV and V collagen in the basement 

membrane, as well as the denatured collagens aggrecan, elastin and gelatins (Vu TH 

1998).  The mesenchyme of 11-day mouse embryonic kidneys synthesizes both MMP-9 

and MMP-2, whereas these enzymes are undetectable in the ureter bud (Lelongt 1997).   

In these systems, inhibition of MMP-9 appears to cause a more severe branching 

phenotype (Kanwar YS 1999).  Anti-MMP-9 IgG with enzyme-blocking activity, impairs 

Adapted from Lelongt 2001 and Pohl 2000 
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the morphogenesis of embryonic day 11 mouse kidney, in a concentration-dependent 

manner, by inhibiting T-shaped branching and further divisions of the ureter bud (Lelongt 

1997).  Although it inhibits enzyme activity, anti-MMP-2 IgG has no apparent effect on 

kidney morphogenesis (Lelongt 1997). However, when embryonic day 13 rat kidneys 

were treated with MMP-2 antisense oligodeoxynucleotides, UB abnormalities were 

evident but mild (Kanwar YS 1999).  

Lelongt and colleagues suggested that this discrepancy could be related to the 

different stages of kidney development in which the scientists preformed the experiments 

(embryonic days 11 versus 13).  They hypothesized that MMP-9 and MMP-2 could act 

sequentially in branching morphogenesis of the ureter bud and that MMP-2 only plays a 

role at embryonic day 13 (Lelongt 2001).  However, Kanwar and others have reasoned 

that the discrepancies may be due to the fact that anti-MMP-2 antibodies may not be the 

blocking type (Kanwar YS 2004).  

 Researchers have further analyzed the requirement for MMP-2 and MMP-9 in 

kidney development for mice harboring a targeted null mutation in either of the genes 

encoding these proteases.   In vivo analyses show that MMP-2-deficient mice develop 

normally, are fertile, and do not show obvious defects in branching morphogenesis.  

However, the MMP-2-deficient mice have an approximately 15% slower growth rate than 

control littermates (Itoh 1997).  Similarly, MMP-9 null mice are viable without any 

observed renal abnormalities, but show a 12% reduction in nephron numbers, which most 

likely results from subtle defects in branching morphogenesis (Lelongt 1997). 

 More recently MMP14, also referred to as MT1-MMP, which is the prototype 

membrane type (MT) MMP has been studied in this context.  To understand the role of 
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MT1-MMP, it is important to dissect the protease at the molecular level.  To do so, I will 

discuss MMP structure, activity, and the field’s current understanding of about the role of 

MT1-MMP in developing tissue.  This discussion is intended to speculate a role for the 

protease during renal development. 

 

MT1-MMP 

 MT1-MMP or MMP14 was first discovered in 1994 by Seiki and colleagues as a 

gene product expressed on the cell surface of invasive tumor cells including lung and 

stomach carcinomas (Sato 1996). Originally, MT1-MMP was shown to induce specific 

activation of MMP-2 (Sato 1994; Cao 1995; Strongin 1995; Takino 1995; Yu 1995) in 

vitro and enhance cellular invasion of the reconstituted basement membrane (Sato 1994).  

Later in 1997, Apte and colleagues determined the structure of the Mmp14 gene encoding 

MT1-MMP.  MT1-MMP has been mapped to chromosome 14 and shown to be encoded 

by ten exons. The novel C-terminal peptide domains of MMP-14 are encoded by a single 

large exon that also encodes the 3′-untranslated region (Apte 1997).   

    MT1-MMP shares a common domain structure with other MMP family 

members, including a pre/propeptide (M1–R111), a catalytic domain (Y112–G285), a 

hinge region (linker-1) (E286–I318), a hemopexin domain (C319–C508), a stalk (linker-2) 

region (P509–S538), a transmembrane domain (A539–F562), and a cytoplasmic tail 

(R563–V582) (Brinckerhoff 1991; Sato 1994; Itoh 2002; Seiki 2003).  Each domain has 

been the point of interest for several groups.  I will briefly take time to describe the 

importance of each domain. 
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Pro-domain 

 MT1-MMP is kept in a catalytically inactive state by the interaction between the 

thiol group of a pro-domain cysteine residue and the zinc ion of the catalytic site.  

Conversion to an active state by disruption of this interaction which is achieved by 

proteolysis of the pro-domain (VanSaun 2006).  MT1-MMP has a basic amino acid motif 

of RRKR111 at the end of the propeptide which is cleaved by furin or related proprotein 

convertases (Sato 1996; Yana 2000). This sequence allows the proMT1-MMP (~64 kDa) 

to be converted to a catalytically active enzyme (~55 kDa) by the proteolytic cleavage of 

furin in the trans-Golgi network  prior to its arrival at the plasma membrane (Yana 2000; 

Mazzone 2004); the process is similar for other MT-MMPs. However, for soluble MMPs, 

the activation takes place extracellularly (Mazzone 2004).   

Hemopexin Domain 

   It is believed that the hemopexin domain determines MT1-MMP specificity for its 

substrates including ECM components: type-I, -II and -III (and possibly type-IV) 

collagen, gelatin, laminins-111 and -332, fibronectin, vitronectin, aggrecan and fibrin 

(Hotary 2006). Additionally, the hemopexin domain is required for protein dimerization 

as well as MT1-MMP-mediated invasion and growth in three-dimensional type I collagen 

(Itoh 2008).  Purified MT1-MMP catalytic domain itself cannot cleave native type I 

collagen in vitro.  Thus, it is inferred that the deletion of the hemopexin domain 

incapacitates MT1-MMP to bind, degrade substrates, and consequently impairs cell 

invasiveness (Hurst DR 2004). Additionally, this domain is believed to play a role in the 

activation of proMMP-2 (Figure 5) and pro-MMP-13 (Lehti 2002) however, studies have 

been conducted to refute these claims (Wang 2004). 
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Transmembrane Domain 

 The transmembrane domain is unique to MT1-, MT2-, MT3-, and MT5-MMPs.  

This stretch of 23 amino acid restricts MT1-MMP to the cell surface and enables the 

protease to modify the immediate pericellular environment while also providing an 

optimal position to function at the leading edge of migrating and invasive cells (Buccione 

2004).  

Catalytic Domain  

The catalytic domain is responsible for the proteolytic activity of MT1-MMP.  In 

addition to the aforementioned ECM, MT1-MMP cleaves several cell surface proteins 

such as CD44 (Kajita 2001), transglutaminase (Belkin 2001), low-density lipoprotein 

receptor related protein (Rozanov 2004), αv integrin (Deryugina 2002), and syndecan-1 

(Endo 2003). The expression of MT1-MMP on the cell surface, together with the soluble 

MMPs that it activates allows for numerous modifications within much of the pericellular 

space which could ultimately result in modulation of cellular function.  In the instance of 

cellular growth, Golubkov and colleagues have even suggested that MT1-MMP catalytic 

activity qualifies the protein as an oncogene that promotes malignant transformation of 

normal cells rather than just an enzyme that supports the growth of preexisting tumors 

(Golubkov 2006). 

Cytoplasmic Domain 

 Increasing evidence suggests that the cytoplasmic tail of MT1-MMP may regulate 

its activity at the cell surface.  It has been demonstrated that MT1-MMP is internalized 

from the cell surface and that this process requires the presence of the cytoplasmic 
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domain (Uekita 2001; Moss 2009).  Cytoplasmic tail truncation inhibits internalization 

and restricts MT1-MMP to the cell surface (Uekita 2001; Moss 2009) but the underlying 

mechanism has yet to be determined.  Interestingly, both invasion and migration are 

down-regulated in cells where MT1-MMP is restricted to the cell surface (Uekita 2001; 

Moss 2009).  These data suggest a correlation between internalization and matrix 

turnover, where MT1-MMP activity is either abrogated or enhanced under appropriate 

stimuli.  

 The cytoplasmic domain of MT1-MMP has three potential phosphorylation sites: 

Thr567, Tyr573, and Ser577. Recent work by Nyalendo and others indicates that MT1-

MMP is phosphorylated at tyrosine residue Tyr573, and that this modification influences 

cell migration (Nyalendo 2007).  The Thr567 within the MT1-MMP cytoplasmic tail has 

homology with the consensus sequence for both protein kinase C and ERK1/2, 

suggesting the possibility that active MT1-MMP might also be regulated through 

phosphorylation of this cytoplasmic tail residue (Moss 2009). 

 Understanding of the functional domains of MT1-MMP, allude to the pleiotropic 

and potent nature of the protein. While MT1-MMP is involved in normal growth and 

tissue maintenance, unregulated enzymatic activity is key to acquiring a metastatic 

phenotype in a variety of tumor cells, including lung, colon, breast, and cervical 

carcinomas (Yana 2000; Sabeh 2004; Zhai 2005; Itoh 2006). Stringent cellular regulation 

of MT1-MMP enzymatic activity is necessary and accomplished through gene 

transcription, enzyme activation, and TIMP-2, -3, and -4 activity (Matrisian 1990; 

Matrisian 1992; Nagase 2008). 
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Figure 5:  MT1-MMP at cell surface. 
Adapted from Seiki 2003  
   

 

 The growing interest of the MT1-MMP field prompted the generation of a MT1-

MMP null mouse by two separate groups a decade ago. The MT1-MMP null mouse was 

the first example of an MMP knockout with a severe baseline phenotype (Fingleton B 

2010). These mice are severely runted and live only several weeks after birth (Holmbeck 

1999; Zhou 2000).  This mouse model has been an invaluable resource for MMP studies.  

Through many studies, MT1-MMP appears to be a complex multifunctional molecule 

influencing different cell functions. Its importance during development is supported by 

the severe phenotype associated with MT1-MMP deficiency in mice (Zhou 2000; Hotary 

2006).  I will now discuss the phenotype of these mice and studies done to ascribe a role 

for MT1-MMP in developing tissue.    
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The role of MT1-MMP in Development 

Bone development 

 MT1-MMP-deficient mice exhibit damages in skeletal development manifested 

by craniofacial dysmorphism, dwarfism, osteopenia and fibrosis (Holmbeck 1999; Zhou 

2000). Furthermore, these mice (on a mixed background) die around 7-12 weeks of age.  

The functional significance of MT1-MMP during skeletal development is related to the 

requirement for ECM cleavage as regulated ECM degradation promotes cell migration 

and tissue stabilization. Detailed analyses suggest that the bone phenotype of the MT1-

MMP null mice may, in part, result from the lack of cellular collagen degradation by 

osteocytes (Holmbeck 2005).  As bone formation involves the highly regulated process of 

formation by osteoblasts and resorption by osteoclasts, the manifestation of this 

phenotype suggests that osteocytes were not able to create the right ECM environment 

for osteocytogenesis.  These findings strongly suggest that MT1-MMP is an essential 

cellular collagenase important for organizing the ECM microenvironment, which cannot 

be substituted for by any other MMP during development. No other MMP gene KO mice 

have shown such drastic phenotypes within the long bone growth, soft tissue organization, 

molar root formation and eruption, and cartilage remodeling (Holmbeck 2004). 

White Adipose Tissue 

 Studies have demonstrated that MT1-MMP coordinates adipocyte differentiation 

in vivo.  In the absence of the protease, white adipose tissue development is aborted, 

leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. 

While MT1-MMP preadipocytes display a defect in vivo, null progenitors retain the 
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ability to differentiate into functional adipocytes during 2-dimensional (2D) culture. By 

contrast, within the context of the 3-dimensional (3D) ECM, normal adipocyte 

maturation requires a MT1-MMP-mediated proteolysis that modulates pericellular 

collagen rigidity in a fashion that controls adipogenesis. It is believed that MT1-MMP 

acts as a 3D-specific adipogenic factor that directs the dynamic adipocyte-ECM 

interactions critical to white adipose tissue development (Chun 2006 ). 

Muscle 
 

MT1-MMP was identified as a major contributor for morphological 

differentiation in muscle tissue.  Muscle development and differentiation proceeds 

through three distinct stages of proliferation, elongation and fusion.  In vitro inhibition of 

MT1-MMP using short hairpin RNA effected muscle fusion by lessened myotube 

elongation.  In vivo studies employing MT1-MMP null mice confirmed the role of MT1-

MMP in myogenesis as mice had smaller myofibers in association with abnormal 

procession of laminin-211/221 in the basement membrane compared with those in the 

wild-type mice.  These findings have lead to the belief that MT1-MMP is a multilateral 

regulator for muscle differentiation and maintenance through processing of stage-specific 

distinct ECM substrates (Ohtake 2006).  

Lung development 
 
 Lung development in MT1-MMP null mice has been reported by two independent 

groups (Atkinson 2005; Oblander 2005).  Findings reveal that development is arrested at 

the prealveolar stage, suggesting that MT1-MMP is required for the postnatal 

development of the alveolar septae.  Interestingly, MMP-2 null mice lacked comparable 
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defects in with the lung, suggesting that MT1-MMP acts via mechanisms independent of 

pro-MMP-2 activation. MT1-MMP null mice also show reduced migration of lung 

endothelial cells and formation of three-dimensional structures on Matrigel (Oblander 

2005).   

Submanibular Gland 

 The submandibular salivary gland shows a classic branching morphogenesis and 

has been used as a model of organ culture in vitro for over 50 years (Borghese 1950).  

Oblander and colleagues have shown that MT1-MMP is required for the branching 

morphogenesis of the submandibular gland as two-week-old submandibular glands from 

MT1-MMP null mice were smaller than their control littermates and consistent with in 

vitro organ culture studies using E13.5 submandibular gland rudiments which branching 

in MT1-MMP null mice was subnormal compared to rudiments from control animals 

(Oblander 2005).  A recent study has also found that MT2-MMP may play a role in this 

process as MT2-MMP dependent proteolysis of collagen IV regulates more protease 

expression and epithelial proliferation to promote branching morphogenesis (Rebustini IT 

2009).   

  The role of MT1-MMP in the lung and submanibular gland is of particular 

importance towards understanding the role of the protein in kidney development.  All 

three organs develop in a similar method and require the branching morphogenesis of an 

epithelial structure and MMPs have long been postulated to play a role in this process.  In 

1986, Nakanishi and colleagues conducted a seminal study that used exogenous 

collagenases to alter the morphogenesis of the salivary gland (Nakanishi 1986) to 

implicate a role for protease degradation during development.  5 years later, Ganser and 
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others were able to culture murine lung bud extracts and stimulate MMP activity through 

growth factors treatment.  The stimulated branching was reversed in the presence of 

TIMP-1 to confirm a definite role for MMPs during branching morphogenesis (Ganser 

1991).  It is with the aforementioned knowledge that we wanted to determine the 

significance of MT1-MMP in kidney development.  

Kidney 

As described earlier, the roles of the gelatinases, MMP-9 and MMP-2, have been 

investigated in renal development.  Despite the in vitro data suggesting a role of these 

gelatinases in branching morphogenesis, MMP-2- and MMP-9-deficient mice do not 

appear to have any obvious defects in renal development (Andrews 2000).  Ota and 

colleagues have shown that the mesenchyme expresses all components except MT1-

MMP at embryonic day 11, and MT1-MMP become concentrated in the induced 

mesenchyme after epithelial induction at embryonic day 12 (Ota 1998).  Meanwhile they 

also observed MT1-MMP in the ureter bud at embryonic day 11, and found it localizes 

both in the ureteric bud and in the induced mesenchyme at embryonic day 12.  MMP-2 

also showed a weak expression in the ureter bud at this developmental stage, suggesting 

that either the ureteric bud or the mesenchyme subsequently produces MMP-2 as a ligand 

of MT1-MMP.  

 The ureteric bud tips appear to be the key areas for branching morphogenesis of 

the isolated ureteric bud, and increased expression of MT1-MMP and MMP-2  localizes 

to the isolated UB tips (Meyer TN 2004).  The expression patterns of MT1-MMP are 

significant, as they suggest a role for the protein in ureteric bud development. It is 
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important to note, however, that there has been no evidence of this in vivo (Kanwar YS 

1999). 

MT1-MMP plays a broad spectrum of activity against ECM components such as 

type I, II and III collagens, ln-111, ln-332, nidogen, and perlecan.  Therefore, it is 

possible that MT1-MMP plays a regulatory role in the maintenance of the renal basement 

membrane and in the absence of such regulation, kidney morphology is affected.  Based 

on these data we hypothesize that MT1-MMP-mediated ECM remodeling regulates 

normal renal development.  We will test this hypothesis in the following 2 aims: 

 

Aim 1. Determine how lack of MT1-MMP leads to a renal phenotype.  

The physiological role of MT1-MMP in kidney development is still unclear.  We have 

found that MT1-MMP is highly expressed in the kidney and MT1-MMP null mice have 

postnatal defects.  In this aim we will test the hypothesis that MT1-MMP cleavage of 

renal ECM components is critical for normal ureteric bud by a) analyzing embryonic and 

adult kidneys from wildtype and MT1-MMP-null mice to determine anatomical 

abnormalities, especially with reference to the composition and integrity of ECM 

components, and b) isolating collecting duct cells from wild type and MT1-MMP-null 

mice nephrons to determine the effects of lack of this enzyme on ECM-dependent 

cellular functions such as migration, adhesion and tubulogenesis. 

 

Aim 2. Determine the relevant ECM substrates for MT1-MMP in vivo.  MT1-MMP 

may i) directly cleave ECM components; ii) promote the activation of soluble MMPs; or 

iii) act synergistically with soluble MMPs.   In this aim we will test the hypothesis that 
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MT1-MMP plays a major role in extracellular matrix turnover by determining in vivo 

whether there are differences in the composition of the renal basement membranes of the 

MT1-MMP null mice compared to their wild type counterparts. 
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CHAPTER II  

 

MT1-MMP-MEDIATED ECM REMODELING REGULATES NORMAL RENAL 

DEVELOPMENT 

 

Introduction 
 

The kidney is composed of multiple nephrons that connect to collecting ducts 

which ultimately join together to form the ureter. The nephrons, which consist of the 

glomerulus and highly differentiated tubules, are derived from the metanephric 

mesenchyme, while the collecting system is derived from the UB.  Due to the complexity 

of its specialized functions, different nephron segments have developed some of the most 

complex and specialized BM in the body whose formation and turnover are tightly 

controlled both spatially and temporally.  The major constituents of these BMs are 

collagen IV, the laminins and heparan sulphates. The MMPs are important for the 

regulation of turnover and development of these BMs.  Although numerous MMPs are 

expressed in the kidney, the most extensively studied are the gelatinases, MMP-2 and 

MMP-9, due to their ability to degrade type IV collagens and laminins, which are major 

kidney BM component.  Despite these in vitro findings mice harboring targeted null 

mutations for MMP-2 (Itoh 1997),  MMP-9(Andrews 2000) and MMMP-2/MMP-9 

mutant mice (Miosge 2002) had no renal abnormalities. In a disease model of 

angiotensin-II induced hypertension, MMP-9 was demonstrated to preserve vessel 

structure and alleviate blood pressure increases (Kalluri 2003), however progression of 
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anti-glomerular basement disease is not affected in either MMP-2 or MMP-9 null mice 

(Nart 2010). These minor effects on renal development and following renal injury 

suggest that there is redundancy of the gelatinases with respect to BM turnover of the 

kidney. 

 More recently MT1-MMP has been studied in this context. This enzyme not only 

has intrinsic proteolytic capabilities but also induces its effects by activating MMP-2 and 

MMP-13 (Itoh 2006).  Numerous extracellular matrix (ECM) components, including type 

I, II and III collagens, fibronectin, vitronectin, laminins 111 and 332, fibrin and 

proteoglycans are substrates for MT1-MMP (Seiki 2003). In addition it can cleave other 

cell surface proteins such as CD44 (Kajita 2001), transglutaminase (Belkin 2001), low-

density lipoprotein receptor related protein (Rozanov 2004), αv integrin (Deryugina 

2002), and syndecan-1 (Endo 2003). These highly divergent substrates for MT1-MMP 

make it a critical regulator of the pericellular environment and allow it to regulate 

multiple cellular functions. The physiological importance of MT1-MMP was 

demonstrated by the multiple abnormalities observed in the MT1-MMP null mice, which 

die shortly after birth with severe musculoskeletal abnormalities characterized by 

decreased chondrocyte proliferation and decreased collagenase activity (Holmbeck 1999). 

In addition they have submandibular gland branching morphogenesis abnormalities 

(Oblander 2005) as well as defects in lung development (Atkinson 2005; Oblander 2005), 

angiogenesis (Zhou 2000) and myeloid cell fusion (Gonzalo P 2010). These deficiencies 

have been ascribed to a lack of MT1-MMP catalytic ability, alterations in downstream 

pro-MMP-2 activation and alterations in cell functions regulated by the MT1-MMP 

cytosolic tails.  
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 Like the gelatinases, MT1-MMP function was shown to be required for UB 

branching morphogenesis in kidney organ cultures, where it induced its affects, at least in 

part, by activating  MMP-2 (Kanwar YS 1999).  In contrast to the gelatinase null mice, 

we described subtle but distinct renal abnormalities in 10-week-old out bred MT1-MMP 

mice, which were characterized by a proportional decrease in both cortical and medullary 

mass. Both the glomeruli and the tubules were slightly dysmorphic and these renal 

abnormalities correlated with an increase in laminin 332, suggesting that lack of laminin 

332 cleavage by MT1-MMP accounted for these abnormalities (Koshikawa 2004). 

 Although these data defined a role for MT1-MMP in renal development and 

suggested its role was to cleave at least one ECM component in renal BMs, the 

mechanisms whereby the renal abnormalities occur is unclear. We therefore explored the 

role of MT1-MMP in renal development in detail and demonstrate that when MT1-MMP 

null mice are bred onto a C57/B6 background, they die at P14 with small kidneys due to a 

severe proliferative defect and a moderate UB branching abnormality. We show that 

MT1-MMP does not activate MMP-2 in the kidney in vivo and the proteolytic activity of 

MT1-MMP is required for normal UB branching in in vitro organ culture models. We 

further demonstrate an increase of multiple laminins, collagen IV, nidogen and perlecan 

in MT-MMP-null kidneys. Utilizing MT1-MMP deficient renal tubular epithelial cells we 

show that MT1-MMP proteolytic activity is required for normal cell migration on these 

BM components. Thus our results suggest that pericellular cleavage of multiple BM 

components by MT1-MMP, which affects cell proliferation and migration plays a critical 

role in normal kidney development.  
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Experimental Procedures 

 

Morphological analysis of MT1-MMP null mice.  

MT1-MMP mice generated by Dr. M Seiki (University of Tokyo) were bred onto 

a pure C57/B6 background. Kidneys were isolated at different time points, fixed in 4% 

formaldehyde for 1 hour and embedded in paraffin. Paraffin tissue sections were stained 

with either hematoxylin and eosin or periodic acid-Schiff (PAS).   

 

Glomerular counting   

Glomeruli counts in the mutant and wild type mice were performed as described 

previously (Boyle 2007).  Briefly, individual kidneys were isolated from 2 week old mice 

and minced into 2-mm cubes.  Fragments were incubated in 5 ml of 6M HCl at 37°C for 

90 min.  Tissue was further homogenized by repeat and vigorous pipetting.  25 ml of H2O 

was added and after overnight incubation at 4°C, glomeruli in 1 ml of this solution were 

counted in a 35-mm counting dish; each sample was counted 5 times.  Total glomerular 

number per kidney was extrapolated mathematically from the mean of these five counts. 

 

Organ culture   
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Embryonic kidneys were isolated from E12.5 mice and cultured on top of 

transwell filters as previously described.  For the TIMP studies, TIMPs-1 or -2 were used 

at a concentration of 15μg/ml.  Seventy two hours later, the kidneys were fixed in 4% 

paraformaldehyde and stained with fluorescein-conjugated E-cadherin antibodies (BD 

Transduction Laboratories), as described. Quantification of branching structures in 10 

kidneys were performed as previously described.   

 

Zymography assays 

Gelatin zymograms of kidneys were performed as previously described. Briefly, 

equal amounts of plasma proteins (30 ug/lane) were loaded on a 10% SDS-PAGE 

containing 1 mg/ml gelatin and run under non-reducing conditions. The gels were 

incubated in 50 mM Tris–HCl, pH7.5, 0.1 M NaCl and 2.5% Triton-X100 for 2 h at room 

temperature, and then incubated in 50 mM Tris–HCl, 1 mM CaCl2 and 0.02% NaN3 for 

18 h at 37oC.  The gels were stained with Commasie Blue to visualize MMP activity. 

 

Immunoblotting 

30 µg total protein was electrophoresed by SDS-PAGE and subsequently 

transferred to nitrocellulose membranes. Membranes were incubated with different 

primary antibodies followed by the appropriate HRP-conjugated secondary antibodies.  

Immunoreactive bands were identified using enhanced chemiluminescence according to 

the manufacturer's instructions. The following antibodies were used: Collagen IV 

(Biodesign International, 1:500), Laminin-β1 chain (Mab 5A2 a gift from Dale 
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Abrahamson, 1:100) Laminin-α3 chain (a gift from Vito Quaranta, 1:1000), Laminin-α5 

chain (Chemicon International, AB8948,  1:800), Nidogen (a gift from Peter Yurchenco 

as described by Li et al., 2005, 1:500), and Perlecan (Endorepellin mAb a gift from Peter 

Yurchenco as described by Yurchenco et al., 1987, 1:250). FAK (Santa Cruz 

Biotechnology, sc558, 1:1000). 

 

Immunohistochemistry. 

  Antibodies used were Collagen IV antibody (BioDesign International, 1:400), 

Laminin α3 chain (a gift from Vito Quaranta, 1:100), Laminin α5 chain (Chemicon 

International, AB8948,  1:500), Nidogen (a gift from Peter Yurchenco as described by Li 

et al., 2005, 1:500), and Perlecan (Endorepellin mAb a gift from Peter Yurchenco as 

described by Yurchenco et al., 1987, 1:500),  ERK (1:1000, 9102), pERK (1:1000, 

9101S), p38 MAPK (1:1000, 9212), pp38 MAPK (1:1000, 9211S) antibodies were 

purchased from Cell Signaling. 

For basement membrane staining, 5um kidney sections were cut from paraffin 

blocks and treated sequentially with 100, 95, and 70% alcohol for 5 min each. Sections 

were quenched with 1.25% H2O2 in methanol for 15 min, then incubated for 90 min 

with %3 BSA. Sections were then incubated with the aforementioned primary antibodies. 

A 2-step method for signal amplification was used (BioGenex Laboratories) following 

primary antibody incubation.  Slides were then washed in PBS then diaminobenzidine 

was added as a chromogen.  
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For Laminin-β1 chain (Mab 5A2 a gift from Dale Abrahamson, 1:500), antibody 

was applied on 0.2% paraformaldehyde fixed tissue (10 min. RT) which was 

subsequently permeabilized with 0.5% Triton X-100 in PBS for 5 min., washed 3x, then 

labeled as described above. 

 

Immunofluorescence 

For immunofluorescence, 5 µm kidney sections were fixed in 4% 

paraformaldehyde for 1 hour at room temperature, blocked with 1% BSA in PBS and 

then stained with the following primary antibodies: anti-E-cadherin (1:50,BD  

BioSciences Pharinogen); anti-ZO1 (1:200, Zymed). Detection of bound primary 

antibodies was accomplished with Alexa Fluor 488 anti-mouse IgG and Alexa Fluor 647 

goat anti-rabbit IgG or (Molecular Probes), respectively. Slides were then analyzed under 

an epifluorescence microscope. 

 

Generation of MT1-MMP-expressing cell line 

Innermedullary collecting duct (IMCD) cells were isolated and cultured from 

MT1-MMP null mice as described by Husted, 1988. The cells were then transfected with 

either MT1-MMP or E240A MT1-MMP, which has no proteolytic activity. Levels of 

MT1-MMP expression in the reconstituted cells were verified by flow cytometry utilizing 

an anti-rabbit MT1-MMP antibody (Chemical International, AB8345).   
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Small interference RNA assay 

MT1-MMP expression in ureteric bud cells was knocked down utilizing small 

interfering RNA duplexes corresponding to the target sequences 

5’CAUCUGUGACGGGAACUUtt3’ and 5’AGUACUACCGGUUCAAUGAtt3’ which 

are commercially available as siRNAs s69919 and s69920 respectively from Ambion. 

Oligonucleotides were transfected into UB cells using the Lipofectamine 2000 system 

(Invitrogen Corporation).  

 

Cell migration  

Cell migration was assayed as previously described (Chen 2004). Briefly, 

transwells with 8 µm pores were coated with different ECM components and 1x106 cells 

were added to the upper well in serum-free medium. The cells that migrated through the 

filter after 4 hours were counted. Five random fields were analyzed per treatment. Three 

independent experiments were performed in triplicate for each substrate tested.  

 

Cell proliferation 
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For 2-Dimensional analysis,   5x103 cells were plated in 96-well plates on various 

ECM components and maintained in DMEM (10% FBS).  After 12 hours, the cells were 

incubated in DMEM (2% FBS) for 24 hours and then pulsed with 1 µCi/well [3H] 

thymidine (PerkinElmer Life Sciences). Twenty-four hours later, the cells were 

solubilized and radioactivity was measured using a scintillation counter.  For manual 

counting assays, 6x104 cells were plated per plate on collagen and maintained in a serum-

free environment.   

For 3-Dimensional analysis, UB or IMCD cells were embedded within a 3-D 

collagen matrix containing Collagen I and Matrigel and maintained in DMEM (10% 

FBS). After 12 hours, the cells were incubated in DMEM (2% FBS) for 48 hours and then 

pulsed with 1 µCi/well [3H] thymidine (PerkinElmer Life Sciences). 48 hours later, the 

gels were removed from the plate and dialyzed in PBS for 24 hours to remove 

unincorporated [3H] thymidine.  The gels were subsequently solubilized in 100μl of 20% 

SDS.  Radioactivity was measured using a scintillation counter.  

 

Tubulogenesis Assays  

Tubulogenesis of UB-derived cells was performed in 3D ECM gels as previously 

described (Chen et al., 2004). The gels were composed of 0.1 mg/ml Collagen I in 

DMEM containing 20 mM HEPES (pH 7.2). For the Matrigel/Collagen I gels, a 1:1 

mixture of the collagen solution described above was mixed with growth factor-reduced 

Matrigel, giving a final concentration of 0.5 mg/ml of Collagen I and 0.5 mg/ml of 



46 
  

Matrigel (Sakurai et al., 1997).  One hundred microliters of medium supplemented with 

10% FBS were added to the gels after they had solidified.  Assays were performed at 

least in triplicate, and error bars represent SE. P values were calculated with Student’s t-

test. 

MTT Assays 

The viability of siRNA treated cells was estimated by MTT Cell Viability Kit 

( Sigma Chemical Co., St. Louis, MO).  Briefly, 5mg/ml MTT ( 3-[4-,5-dimethylthiazol-

2-yl]-2,5-diphenyl tetrazolium bromide) stock solution was added to each well in an 

amount equal to 10% of the culture volume in triplicates and incubated for 4 hours at 

37ºC.  After the incubation period, the resulting formazan crystals were dissolved in MTT 

solvent (0.1N HCL in anhydrous isopropanol) in an amount equal to the original cell 

culture volume. Absorbance was measured at a wavelength of 570 nm and background 

absorbance at 690nm was subtracted. 

 

Results 

 
MT1-MMP null kidneys are small with a severe proliferation and mild branching 

morphogenesis defect.  

We previously examined the kidneys of MT1-MMP mice bred on a mixed 

background that died at 10 weeks and found them to be small, dysmorphic and dysplastic.  

To define the kidney developmental abnormalities further, we bred MT1-MMP mice onto 

a pure C57/B6 background.  These mice die at approximately 15 days at which time they 

are significantly smaller than their wild type controls and have musculoskeletal defects as 
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previously described.  At the time of death the kidneys were small, but the size was 

proportional to the decreased size of the mice (Figure 6A).  

 

Figure 6:  MT1-MMP affects postnatal kidney development. 
Collecting ducts within the papilla are slightly irregular showing tubular disorganization as 
well as dilation in MT1-MMP null mice (A, C) as compared the wildtype (B, D).  ZO-1 and 

ZO-1

E-cadherin

Null WT

Null WT
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E-cadherin staining of P14 kidneys showed no differences in localization and cell polarity 
between null (E and G, respectively) and wildtype (E and H, respectively) littermates. 
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On light microscopy, the parenchyma of MT1-MMP null kidneys was less dense 

than their wild type controls, suggesting there was a UB branching morphogenesis defect 

as well as decreased nephron formation. The branching defect was clearly evident in the 

papilla of the kidney (Figure 6C), where the tubules were loosely packed, dilated and 

dysmorphic.  To our surprise, the tubular abnormalities were not due to defects in cellular 

polarity when we looked at E-cadherin and ZO-1 (Figure 6E-H) expression patterns.    

The cortex of the MT1-MMP null mice was small, the cortico-medullary junction poorly 

delineated and fewer glomeruli were evident (Figure 7A). The decreased number of 

glomeruli was confirmed by glomerular counts (Figure 7C).  As MT1-MMP is expressed 

in the UB at E11.5 and MM at E12.5 we assessed the morphology of the kidneys from 

E12.5 till birth.  The MT1-MMP null kidneys were smaller than wildtype kidneys at all 

time points and this was associated with a moderate UB branching defect and MM 

induction (examples at E13.5 and E17.5 Figure 8A,C). The UB branching defect in the 

MT1-MMP null mice was confirmed in in vitro organ cultures of E12.5 kidneys (Figure 

8E), which exhibited a significant decrease in UB branches in the mutant mice.  MT1-

MMP null kidneys proliferated approximately half as much as wild type kidneys when 

measured by Ki67 staining (Figure 9A) and there was no difference in apoptosis (data 

not shown). 
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Figure 7: MT1-MMP affects glomerular development. 
PAS staining revealed that MT1-MMP null mice (A) have a poorly delineated 
cortico-medullary junction with fewer glomeruli than wildtype littermates (B). The 
number of glomeruli in the cortices from whole kidneys of MT1-MMP null and 
wildtype mice were counted and expressed as the average+/- the standard deviation. 
A significant difference in the number of glomeruli between genotypes was present 
(p<0.05) (C).  The mean and ±s.d. between MT1-MMP null and wildtype animals are 
shown.  
 
 

*
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While MT1-MM is most noted as a protease, it has also been shown to activate 

intracellular ERK to affect cell function.  To further investigate the proliferation defect in 

our MT1-MMP mice, we assessed the expression of activated ERK and p38 in MT1-

MMP null and wildtype animals using total kidney lysates.  Our findings suggest that 

there is no difference in the relative levels of protein activation (Figure 9D).  Therefore,  

proliferative defect in MT1-MMP null mice is not associated with defects in the 

proliferation-promoting intracellular signaling cascades. 
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Figure 8: MT1-MMP affects embryonic kidney development. 
Diminished kidney parenchyma and delayed development of tubular structures of the UB is 
present in E13.5 and E7.5 MT1-MMP null mice kidneys (A and C, respectively).  Cultures 
of E12.5 kidneys of MT1-MMP null (E) and wildtype mice (F) were performed on 
transwells, as described in the Experimental Procedures. The kidneys were stained with 
antibodies directed against E-cadherin. The number of branches in 10 kidneys of MT1-
MMP and WT mice were counted and expressed as the average +/- the standard 
deviation. There was a significant difference in branch number between genotypes 
(p<0.05)(G). 

*
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The branching morphogenesis kidney phenotype of the MT1-MMP mice is 

independent of MMP-2 and MMP-9 activity.  

MT1-MMP exerts its proteolytic effects on ECM by both its intrinsic enzymatic 

functions as well as by activating proMMP-2. To define which of these mechanisms 

caused the developmental abnormalities in the MT1-MMP null mice, we performed 

zymography to define the activity of the gelatinases on kidneys from MT1-MMP null and 

wildtype mice.  There was no difference in the amount or activity of MMP-2 and MMP-9 

between these genotypes, suggesting that the observed renal phenotype is independent of 

MMP-2 and MMP-9 activity (Figure 10A and B).  To confirm that the gelatinases did 

not play a role in the MT1-MMP induced effects on renal development, we cultured E 

12.5 kidneys from wildtype animals in either TIMP-1, which specifically inhibits  MMP-

2 and MMP-9 activity, or TIMP-2 which inhibits MT1-MMP, MMP-2 and MMP-9 

activity (Figure 10C-E). There were no differences in UB branching morphogenesis of 

kidneys grown in the presence or absence of TIMP-1; however it was decreased by 

approximately 33% (p< 0.01) by TIMP-2.  
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*  
 
Figure 9:  MT1-MMP affects cellular growth. 
Ki67 staining was performed on kidneys of MT1-MMP null (A) and wildtype (B) newborn 
mice. The number of Ki67-positive cells were quantified and expressed as mean ± s.d. of five 
high power fields of three different mice (C). Total kidney lysates (30 µg) were 
immunoblotted for for levels of activated and total  ERK and p38 MAPK. A representative 
experiment is shown (D). 
 
 

*
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Together, these results confirm that MT1-MMP does not increase gelatinase 

activity in the kidney and that the gelatinases are not required for UB branching 

morphogenesis of the of the kidney.  

 

 

Figure 10:  MT1-MMP inhibition attenuates UB branching. 
Gelatin zymography of total kidney tissue lysates from week-old MT1-MMP null and 
wildtype mice show activated MMP-9 and MMP-2 at comparative levels (A).  Bar graph 
shows quantified densitometry data (B).  Cultures of E12.5 kidneys of MT1-MMP null and 
wildtype mice were untreated (C) or treated with TIMP-1 (D) or TIMP-2 (E) as described 
in the Experimental Procedures. The number of branches were counted in 10 kidneys from 
both genotypes and expressed as mean ± s.d. differences between TIMP-1 and TIMP-2 
treated kidneys (F).   
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MT1-MMP proteolytic activity is required for renal tubular cells to proliferate and 

undergo tubulogenesis in vitro. 

In addition to the moderate branching morphogenesis defect, a severe 

proliferative deficiency was evident in the MT1-MMP-null mouse kidneys. To 

investigate the mechanisms of both these defects, we made use of a well described UB 

cell line derived from E12.5 mouse kidneys that is able to undergo tubulogenesis in three 

dimensional collagen/matrigel gels.  These cells endogenously express MT1-MMP 

(Figure 11A), which we were able to knock down utilizing siRNA. When the siRNA 

treated UB cells were placed in 3-dimensional gels they exhibited a moderately severe 

(50%) branching morphogenesis defect (Figure 11B and C).  Furthermore, the tubules 

were smaller suggesting these cells had a significant proliferative defect. We therefore 

next determined the ability of these cells to proliferate in 3-D gels by thymidine 

incorporation assays.  As predicted the siRNA treated UB cells treated had a severe 

proliferative disorder (Figure 12A). To define whether there was a specific MT1-MMP-

dependent substrate that regulated the cell proliferation, we performed thymidine 

incorporation assays on siRNA treated UB cells on various ECM substrates that are 

expressed in the basement membranes of the kidney in 2-dimensional cultures (Figure 

12B).  Interestingly, under these conditions siRNA treated UB cells proliferated as well 

as untreated cells irrespective of the ECM substrate (undigested and trypsin digested 

collagen IV, laminins 111, 332 or 511/521).  To ensure that siRNA treatment, itself,  did 

not influence proliferation, siRNA-treated cells underwent MTT analysis.  As predicted 

the knockdown system did not interfere with cell viability (Figure 12C). 
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Figure 11: Silencing MT1-MMP results in abnormalities in UB growth and 
tubulogenesis. 
 UB  cells were transfected with empty vector, double-strand irrelevant small interfering 
siRNA oligonucleotides (GAPDH and scrambled siRNAs) or siRNA oligonucleotides against 
MT1-MMP. Western blot analysis  was performed 72 hours later utilizing a primary 
antibody against the catalytic domain of MT1-MMP as described in Experimental 
Procedures (A).  UB cells were subjected to 72 hours of MT1-MMP siRNA targeted 
constructs and subsequently cultured in 3D-Collagen 1 and Matrigel gels (B), and compared 
to UB cells treated with the scrambled construct as that the same concentration (D). Images 
were recorded 12 days after culture. The number of branches in 10 kidneys in each 
group was counted and expressed as the average +/- the standard deviation. * 
denotes  a significant decrease in branch number in kidneys grown in the presence 
of TIMP-2 relative to control (p<0.05) (D). 
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 While the results presented demonstrate that MT1-MMP expression is required 

for renal tubule cells to proliferate in a 3-dimensional matrix, they do not define the 

requirement of the proteolytic activity of MT1-MMP.  We therefore isolated inner 

medullary collecting duct cells from MT1-MMP null mice at postnatal day 15, which 

were reconstituted with either human MT1-MMP or a proteolytically inactive E240A 

MT1-MMP mutant.  Cells were sorted for equal expression by flow cytometry (Figure 

13A). We verified there was increased MMP activation in the MT1-MMP null cells  

reconstituted with wild type MT1-MMP by performing zymography (Figure 13B). When 

these cells were placed in 3-dimensional collagen/matrigel gels (Figure 13C) or collagen 

gels (data not shown) the MT1-MMP null IMCD cells reconstituted with wild type MT1-

MMP proliferated significantly more than either the MT1-MMP null IMCD cells or 

E240A reconstituted cells. 
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Figure 12:  Silencing MT1-MMP results in abnormalities in UB growth, 3D. 
UB cells were transfected with either an empty vector (control) or double-strand 
irrelevant small interfering (si) RNA oligonucleotides against GAPDH, a scrambled 
peptide or MT1-MMP. Western blot analysis was performed 72 hours later utilizing 
primary antibodies against MT1-MMP, GAPDH or focal adhesion kinase (FAK) 
which was used as a loading control. A representative of four separate experiments 
is shown. (B-C) UB cells either treated with siRNA directed against MT1-MMP or a 
scrambled siRNA were placed in 3D-collagen I/matrigel gels and allowed to undergo 
branching morphogenesis as described in the methods. The number of branches in 
the different UB cell populations was counted and expressed as the average number 
of branches/tubular structure +/ the standard deviation (A). * denotes that 
significantly fewer branches were observed in the UB cells treated with siRNA 
directed against MT1-MMP (p<0.01). (B) UB cells treated with siRNA directed 
against MT1-MMP and scrambled siRNA were placed in 3D-collagen I/matrigel gels 
and proliferation was determined utilizing tritiated thymidine as described in the 
methods. The average and standard deviation of 4 experiments is shown.  * denotes 
a significant decrease in proliferation in UB cells treated with siRNA (p<0.05) (F). 
When control UB cells and UB cells treated with siRNA directed against MT1-MMP 
or scrambled siRNA were placed in onto laminin-111, laminin-332, laminin-511, 
trypsin digested collagen IV (α1α1α2) and undigested collagen IV (α1α1α2) shown 
3D-collagen I/matrigel gels no differences in proliferation was seen as determined by 
tritiated thymidine (B). UB cells treated with siRNA constructs were tested for viability 
using the MTT assay as described in Experimental Procedures.  The average and standard 
deviation of 3 experiments is shown (C). 
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 Together these results demonstrate that MT1-MMP is required for normal 

branching morphogenesis of UB cells in vitro and for proliferation of renal tubular cells 

in 3-dimensional ECM matrices.  Furthermore, in this model system that phenocopies our 

in vivo data, we demonstrate the requirement of the proteolytic function of MT1-MMP 

for renal tubular cell proliferation in 3-dimensional matrices.    

 

Figure 13:  MT1-MMP-dependent proteolysis enhances for IMCD  
Flow cytometry was performed MT1-MMP null IMCD containing pcDNA3.1 mammalian 
empty vector, pcDNA3.1 contain Human MT1-MMP-flag tagged, or pcDNA3.1 Human 
MT1-MMP E240A cells utilizing antibodies directed against the catalytic domain of MT1-
MMP (A). Gelatin zymography of CD cells isolated from MT1-MMP null mice and 
reconstituted with MT1-MMP (MT1-MMP) were grown in 3D collagen gels.  Gelatin 
zymography of cell lysates show activated MMP-9 and MMP-2 at comparative levels (B).  
MT1-MMP-null, MT1-MMP-null reconstituted with MT1-MMP (MT1-MMP) or an 
E240A mutant (MT1-MMP E240A) inner medullary collecting duct cells were 
placed in 3D-collagen I/matrigel gels and proliferation was determined utilizing 
tritiated thymidine as described in the methods. The average and standard 
deviation of 4 experiments is shown.  * denotes a significant increase in proliferation 
in IMCD cells expressing MT1-MMP (p<0.05) (C).  
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Kidney basement membranes of MT1-MMP null mice have excessive amounts of 

ECM components.  

We previously demonstrated that the dysmorphic dysgenic renal phenotype of the 

MT1-MMP null mice correlated with increased laminin 332 in renal tubules. However in 

the experiments described above, we show that MT1-MMP is also required for renal 

tubular cells to proliferate and undergo tubulogenesis in 3-dimensional collagenI/matrigel 

gels which do not contain laminin 322. Together these results suggest that renal tubule 

cell MT1-MMP exerts its proteolytic effects on multiple ECM components.  

 

To examine this possibility further, we performed immunohistochemistry on  

kidneys on MT1-MMP-null and wild type mice to define whether there were differences 

in the amount of  the predominant ECM components of the kidney basement membranes 

in vivo namely; collagen IV (α1.α2.α1.), laminins 111, 332, 511/521, entactin/nidogen 

and  sulfated proteoglycans.  Relative to the wildtype controls, all components of the BM 

were increased in either the tubules and/or the glomeruli of the MT1-MMP null animals 

(Figure 14A).  These increases were confirmed on immunoblots of whole kidney lysates 

of MT1-MMP-null mice (Figure 14B).  Thus, MT1-MMP regulates the amount of 

deposition of all the major components of the renal basement membranes.  Surprising, 

despite the increase in BM deposition in null animals, MT1-MMP null and wildtype 

kidney glomerular basement membranes were of similar thickness in electron microscopy 

analysis (Figure 15A) with no evidence of glomerular function abnormalities as 

evidenced by urine analysis (Figure 15B).   

 



62 
  

MT1-MMP proteolytic cleavage of laminin and collagen IV BM components is 

required for renal tubular epithelial cell migration.  

We next wanted to assess whether the lack of MT1-MMP-dependent BM 

proteolysis affects cellular processes known to be required for renal development. We 

therefore measured cell migration of UB cells where MT1-MMP was knocked down by 

siRNA on the BM components Ln-111, Ln-332, and Ln-511/521, and Collagen IV 

(Figure 16A).  Depleting MT1-MMP significantly decreased haptotactic migration on all 

these substrates but not on trypsin cleaved collagen IV. Conversely when the full length 

but  not the R/A mutant proteolytically dead MT1-MMP was transduced into MT1-MMP 

null IMCD cells, there was significantly increased cell migration on all these substrates. 

(Figure 16B). Thus the proteolytic activity of MT1-MMP increases renal tubular 

epithelial cell migration on the major  ECM components found in renal tubule BMs. 
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Figure 14: MT1-MMP modulates renal basement membrane composition. 
Mouse kidneys at different stages of postnatal development were stained for collagen IV, 
laminins 111, 332, 511/521, entactin/nidogen and  sulfated proteoglycans expression using 
Immunohistochemistry techniques mentioned in Experimental Procedures section (A).  Total 
kidney lysates (30 µg) were immunoblotted for proteins described above.  Membranes were 
incubated with anti-FAK antibody to confirm equal loading (B).  Immunoblots of the BM 
proteins and FAK from MT1-MMP and wild type mice were scanned, normalized and 
expressed as the relative intensity of MT1-MMP mice compared to wild type mice.  The 
averages and standard deviations of 4 different mice are shown. * denotes a significant 
increase in the amount of basement membrane proteins in the MT1-MMP-null mice (C).  
  

*
* * * *
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Conclusion 

MT1-MMP  remodeling of the pericellular ECM environment plays a critical role 

in bone (Holmbeck 1999), lung (Atkinson 2005; Oblander 2005) and submandibular 

gland development (Oblander 2005).  We now demonstrate that MT1-MMP also plays a 

role in kidney development.  Kidneys from MT1-MMP null mice exhibit a severe 

proliferation and a mild to moderate UB branching defect with decreased nephrogenesis. 

These morphological defects are associated with increased amounts of the principal BM 

components.  No defects in MMP-2 and MMP-9 activation were evident in the kidneys 

suggesting that the developmental abnormalities were due to a defect in MT1-MMP 

proteolysis of BM components.  MT1-MMP-dependent proteolysis is shown to be 

required for kidney branching morphogenesis in organ culture, renal tubular cell 

proliferation in 3D matrix gels and cell migration on specific BM components. Thus, 

MT1-MMP regulates normal renal development due to its ability to cleave renal BM 

components. 
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Figure 15:  MT1-MMP null mouse kidneys have functional BM. 
Embryonic and newborn kidneys were isolated, fixed in glutaraldehyde, and examined by 
electron microscopy to determine structural abnormalities. GBMs appear to be similar in 
null and wildtype animals (A). Urine was extracted from MT1-MMP null and wildtype mice 
and analyzed for protein by SDS-PAGE and subsequent Coomassie staining (5 μl/lane) 
Albumin (66KDa) concentrations are similar in MT1-MMP null and wildtype mice(B). 
 
 

 

 MT1-MMP is the only MMP shown to play a significant role in renal 

development both in vivo and in vitro. We demonstrate a branching defect in the MT1-

MMP null mice that occurs early in development. This is consistent with the recent 

observation that MT1-MMP is a downstream target of ETS transcription factors Etv4 and 

Etv5, which are positively regulated by Ret signaling in the ureteric bud tips (Lu BC 

2009). The Ret-GDNF axis is one of the critical determinants for the initiation and 

subsequent branching of the UB in renal development (Schuchardt A 1994; Pichel JG 

1996; Zehnder 2005; Roy 2009). 

66KDa
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 The UB branching morphogenesis defect in MT1-MMP null mice, which is 

recapitulated in an in vivo organ culture model, is similar to that seen in the 

submandibular gland but not in the lung where branching is normal (Oblander 2005). Our 

data confirm previous studies demonstrating a role for MT1-MMP in UB branching 

morphogenesis in vitro (Kanwar YS 1999).  However, contrary to these in vitro reports, 

our data demonstrates that MT1-MMP modulates renal branching morphogenesis by its 

inherent proteolytic activity and does not require MT1-MMP/TIMP-2-dependent MMP-2 

activation.  These results are similar to the observation that MMP-2 activation occurs in 

fibroblasts isolated from MT1-MMP null animals (Miner 1999) and verifies that like 

other physiological situations, MMP-2 activation is not required for normal renal 

development.  

 

Figure 16:  MT1-MMP proteolytic activity stimulates renal cell migration. 
UB cells were subjected to either a scrambled siRNA or siRNA directed at MT1-MMP silencing and 
allowed to migrate on digested and undigested collagen IV (α1α1α2), laminin-111, laminin-332 or 
laminin 521 (all at 10 μg/ml) for 4 hours. The cells were counted at the end of this time and the 
number is expressed as cells/high power field. Values are the mean and standard deviation of three 
experiments performed in triplicate. * denotes statistically significant differences (P<0.05) between 
the two cell populations (A)  IMCD cells that were either null for MT1-MMP or were reconstituted 
with MT1-MMPor MT1-MMP E240/A were allowed to migrate on digested and undigested collagen 
IV (α1α1α2), laminin-111, laminin-332 or laminin 521 (all at 10 μg/ml) for 4 hours. The cells were 
counted at the end of this time and the number is expressed as cells/high power field. Values are the 
mean and standard deviation of three experiments performed in triplicate. * denotes statistically 
significant differences (P<0.05) between MT1-MMP null IMCD cells reconstituted with human MT1-
MMP or MT1-MMP E240A(B). 
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 One of the most striking abnormalities in the MT1-MMP null kidneys is the 

proliferation defect, which was also seen in our in vitro organ (data not shown) and 3D 

cell culture systems but not in 2D cell culture irrespective of the ECM on which the cells 

were plated. These results are consistent with in vitro studies where pericellular 

collagenolysis has been shown to be required for cellular proliferation (Hotary 2003). 

The mechanisms whereby this mediates proliferation is unclear, however, it was recently 

demonstrated that MT1- and MT2-MMP dependent cleavage of NC1 domains of 

collagen IV is required for the proliferation and branching of the submandibular gland 

(Rebustini IT 2009).  In this system, it was proposed that NC1 domains signal via β1 

integrins to induce epithelial proliferation by the induction of epithelial HB-EGF and 

FGF1. Another study showed that HB-EGF is a substrate for MT1-MMP, thus it is 

possible that MT1-MMP increases cell proliferation by inducing both ECM proteolysis 

and processing HB-EGF to a more active form (Koshikawa, in press). 

The kidney is the only organ to show BM abnormalities in the MT1-MMP null 

mice. We previously demonstrated an increase in the γ2 laminin  chain (Koshikawa 2004) 

and in the current study we show that all the major components of the BM are increased 

in vivo.  Our study is the first demonstration of increased nidogen and perlecan deposition 

in the MT1-MMP mice and is consistent with the ability of MT1-MMP to digest these 

ECM components in vitro (d'Ortho 1997).  Our observation of increased BM components 

in the kidney in the MT1-MMP mice contrasts with the submandibular gland where the 

BM component increases were only seen when MT2-MMP siRNA was used (Rebustini 

IT 2009).  In this context the α2 chains of collagen IV and laminin α5 were increased due 
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to both a decrease in degradation and an increase in production. The increased collagen 

IV in the MT1-MMP null kidney was less than that of other BM components, suggesting 

that MT2-MMP might be the major MT-MMP for collagen IV degradation. The role of 

MT2-MMP in renal development has not been defined, however based on the data from 

the submandibular gland it is likely that its expression is increased in the MT1-MMP-null 

mice. 

 In conclusion, we have shown that MT1-MMP plays an important role in renal 

development, where it mediates it regulates both cell proliferation and branching 

morphogenesis. These affects are at least in part mediated by the direct ability of MT1-

MMP to proteolytically cleave multiple ECM components. Based on the critical role of 

MT2-MMP in submandibular gland development in vitro, it is likely that both MT1-,  

MT2- and perhaps MT4-MMP regulate renal development. The specific roles of these 

different MT-MMPs will only be defined when floxed mice for these proteases are 

generated so that compound and cell specific mutants can be analyzed in detail.   

 

Discussion 
 
2D versus 3D 

 It is interesting that MT1-MMP stimulates UB cell growth in a 3D and not 2D-

dependent manner.  Much like our embryonic UB cell model system, cancer cells have 

been shown to proliferate at accelerated rates within the confines of a three-dimensional 

(3D) extracellular matrix (ECM) that is rich in type I collagen.  Specifically, Hotary and 

colleagues were able to show that MT1-MMP confers tumor cells with a distinct 3D 

growth advantage in vitro and in vivo.  This growth advantage conferred by MT1-MMP 



69 
  

requires pericellular proteolysis of the ECM, as proliferation is fully suppressed when 

tumor cells are suspended in 3D gels of protease-resistant collagen.  

 Pericellular degradation is believed to require changes within the cell shape or 

cytoskeleton reorganization (Hotary 2003).  It is probable that this kind of rearrangement 

is not afforded in a 2-dimensional system.  Studies have suggested that cell geometry or 

cytoskeleton reorganization can largely be determined by two core cellular properties, 

cell-cell adhesion and cell contractility (Montell 2008).  I have been able to show that 

MT1-MMP does not affect the cell-cell interactions in our in vivo mouse model through 

E-cadherin and ZO-1 localization.  However, cell contractility has not been explored.  It 

is important to mention, here, that cultured MT1-MMP null IMCD cells differ in shape 

than IMCD cells that have been transfected with MT1-MMP.  With MT1-MMP 

expression, cells appear to form more expansive cellular extensions and projections on 2-

D substratum compared to null control cells.  As the ability for a cell to generate cell 

protrusions while contributes to the movement of the cells (Montell 2008), this 

unpublished observation identifies a MT1-MMP-dependent cell geometry which is 

probably exaggerated within a 3-D matrices.    

 

UB tip is a developmental model for invasion 

Our developmental research exploring the importance of MT1-MMP-mediated 

ECM turnover is of interest in the scope of cancer biology.  The regulated process 

involving ECM degradation has been shown to be disregulated during cancer metastasis 

(Kalluri 2003; Nart 2010).  The major family of ECM degrading enzymes involved in 

both kidney organogenesis and tumorigenesis is the matrix metalloproteinases (MMPs) 
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family (Lelongt 1997; Hornebeck 2002).  Furthermore, in different cancer invasion 

models, functional loss of MT1-MMP is poorly compensated by other enzymes (Hotary 

2000; Sabeh 2004).  Our findings provide much insight to a MT1-MMP-dependent 

mechanism in develop and cancer.   

Invadopodia, or invasive foot processes, are actin-rich structures that function in 

degradation of the extracellular matrix (Buccione 2004); these cellular processes are 

believed to play a role in tumor cell metastasis.  Within the findings of our study, it is 

important to identify the UB as a multi-cellular protrusion.  Whereas single cell 

movement can occur independently of protease function and migrate in an amoeboid 

fashion, multi-cellular movement requires manipulation of the ECM.   

 According to studies on the UB, the formation of cellular processes is a critical 

part of the morphological change that occurs during tubulogenesis (Sakurai 1997).   

Much like invadopodia, the UB outgrowth of the Woffian duct must invade through the 

basement membrane to enable organ formation.  UB and invadopodia processes have two 

commonalities: 1) movement is concerted and directional and 2) MT1-MMP has been 

localized to the leading edge of both invading structures.  Under this comparison, it is 

acceptable that kidney development studies can further the fields knowledge on tumor 

invasion and metastasis. 

 The proteolytic turnover of the ECM mediated by MMPs is another important 

factor in the regulation of tumorigenesis.  Overexpression of collagenase in the skin of 

transgenic mice enhances chemically induced carcinogenesis (D'Armiento 1995), and 

stromelysin-1 can trigger mammary epithelial cell transformation and tumorigenesis 

(Sympson 1995; Lochter 1997). Conversely, the loss of stromelysin-3 inhibits chemical 
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carcinogenesis and stroma-dependent tumor implantation (Lukashev 1998; Masson 1998).  

We have now shown that the loss of MT1-MMP attenuates cell proliferation as well as 

protease-stimulated migration on ECM substrates.  Additionally, we have shown that 

MT1-MMP promotes cellular proliferation and UB branching within 3-D matrices.  Our 

work suggests that the presence of abundant MT1-MMP at the tips of UB is a potential 

mechanism for tubule formation and subsequent growth through extracellular matrix 

action. 

Future Directions 

MT1-MMP Synergy 

Weiss and colleagues have proposed that a triad of membrane tethered proteases 

namely, MT1-, MT2-, and MT3-MMP  trigger agents that independently confer cancer 

cells with the ability to proteolytically efface the BM scaffolding and propagate 

transmigration (Hotary K 2007).  Furthermore, studies involving MT2-MMP activity in 

submanibular development have also led us to consider that other membrane bound 

proteases during kidney development (Rebustini IT 2009).   While the expression or 

importance of MT2- and MT3-MMP have not been explored in renal development, it is 

possible that MT1-MMP acts in synergy with MT2- and MT3-MMP.  It would be 

interesting to utilize our in vivo mouse model as well as our in vitro cell systems to 

determine the relative expression levels of membrane tethered MMPs, namely MT2- and 

MT3-MMPs during renal development using RT-PCR analysis. Additionally in vitro 

proteolysis analysis would determine whether MT1-MMP directly cleaves ECM 

components and/or acts synergistically with MT2-MMP and/or MT3-MMP.  These 

studies would also allude to any amount of compensation in the absence of MT1-MMP.  
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Despite the homology of the overall domain structures of MT1-, MT2- and MT3-MMP, 

the potency of MT1-MMP has been distinct from the other MT-MMPs (Nagase 1999).  

Thus, while these studies may reveal MT-MMP synergy, it likely that MT1-MMP will 

play the major role in basement membrane remodeling. 

While our current MT1-MMP null mouse model was appropriate at this present 

study, our null animals die at 2 weeks old and would present extensive limitations to a 

study on MT-MMP synergies.  A more appropriate in vivo model for these studies would 

be using the conditional knock out Cre-loxP system.  As the MT1-MMP null phenotype 

is characterized by moderate a UB branching defect with decreased nephrogenesis, the 

best system would be mice expressing HoxB7-Cre.  Under the control of the HoxB7, 

MT1-, MT2-, and MT3-MMP expression could be ablated from the UB and its 

derivatives. 

Once this system is established, further investigation to determine the relevant 

ECM substrates in renal development would compliment our current study.  We would 

assess MT-MMP-dependent basement membrane remodeling by isolating basement 

membrane from wildtype, MT1-, MT2-, MT3-MMP knockout animals at various 

embryonic and adult time points.   These studies would determine whether there are 

differences in the cleavage products within the renal basement membranes of the MT1-

MMP null mice compared to MT2- and MT3- null mice. It would serve to support the 

finding of the in vitro proteolysis analysis mentioned earlier.  Additionally, UB cells 

isolated from MT1-, MT2-, and MT3-MMP floxed mice, would be an excellent tool to 
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determine the MT-MMPs that are critical regulators of early cellular processes including 

migration, proliferation and even tubulogenesis.   

MT1-MMP and growth factors 

GDNF, a growth factor found to regulate Mmp14 expression (Lu BC 2009), is 

important for UB cell proliferation, cell survival and branching of the epithelium.  We 

have shown that MT1-MMP also influences UB tubulogenesis, in part, through 

modulating proliferation through a 3-D dependent pathway.  It is quite possible that 

MT1-MMP-mediated ECM degradation collaborates with GDNF signaling to stimulate 

UB morphogenesis.  To test this hypothesis, we would first have to determine the relative 

expression levels of GDNF and Ret in MT1-MMP null and wildtype littermates at 

embryonic time points.  This would determine whether MT1-MMP expression can 

modulate the GDNF pathway. We could then treat isolated MT1-MMP null and wildtype 

kidneys at E12.5 with exogenous GDNF and/or Ret inhibitors to determine whether the 

MT1-MMP null phenotype could be rescued.  Collectively, these findings should confirm 

gene expression data that expresses a link between MT1-MMP and GDNF. 

HGF signaling is required for UB elongation and has been linked to MT1-MMP 

stimulated tubulogenesis (Kadono Y 1998).  This is important as MT1-MMP expression 

at the UB tip, in vivo (Kanwar YS 1999) and in vitro (Meyer TN 2004) suggests a 

potential mechanism for UB outgrowth and subsequent elongation.  In the discussion of 

growth factor modulation, it would be interesting to assess the level of crosstalk between 

MT1-MMP and HGF in renal development.  Reports have shown that the addition of 

exogenous HGF to MDCK cells overexpressing MT1-MMP showed initial scattering of 

cells from the cavity into the gel, but organized branching tubules were not formed 
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(Kadono Y 1998), similar to reports looking at HGF and MT2-MMP (Hotary 2000).  

These studies suggest that HGF may stimulate MT1-MMP and MT2-MMP-dependent 

matrix degradation at a rate permissive for invasion,  not branching morphogenesis. 

However, our studies show the MT1-MMP, independent of HGF, modulates 

branching during tubulogenesis.  Concomitant with our findings, the overexpression of 

MT1-MMP in mammary epithelial cells lead to the development of roughly twice the 

number of branch sites (Ha 2001).  It is possible that MT1-MMP stimulates tubule 

branching while HGF stimulation induces MT-MMP dependent invasion.   

We could utilize our siRNA system in our UB cells to inhibit MT1-MMP and/or 

MET in the presence or absence of HGF within 3D cultures. These experiments could 

distinguish the roles of HGF and MT1-MMP in the process of tubulogenesis as the two 

molecules are linked but the connection is not well defined.  The proposed experiments 

would provide more insight to the actual influence of HGF on MT1-MMP-dependent UB 

morphogenesis. 

 

Adhesion and Migration Equilibrium 

Our laboratory is globally interested in cell-ECM interactions during renal 

development and disease.  Primarily, our lab focuses on the role of integrins as ECM 

receptors including integrins with laminin-binding activity.  Our MT1-MMP analysis has 

shown a correlation between lack of Ln-γ2 chain cleavage, increased accumulation of 

uncleaved Ln-332 and renal abnormalities in the MT1-MMP null mice. Based on this 

data, we believe that the abnormalities present in the MT1-MMP mice are due, in part, to 
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aberrations of Ln-332 cleavage.  However, it is also known that full length Ln-332 plays 

are role in epithelial cellular processes such as cell spreading, migration, and proliferation.  

We have shown that Ln-332 is expressed during renal organogenesis, but there is 

no evidence that determines whether the Ln-332 is present as uncleaved or cleaved form. 

Furthermore, little is known about the function of Ln-332 in renal development. While 

recent studies suggest a role for Ln-332 in glomerulogenesis (Abrass CK 2006), our lab 

has observed severely dysplastic kidneys of Ln-332 null mice with abnormalities in all 

components of the kidney.  

Therefore, it is possible that the importance of MT1-MMP mediated processing of 

Ln-332 is due in part to the critical role of Ln-332 during renal development.  By 

characterizing the renal phenotype of embryonic and newborn kidneys from wildtype and 

Ln-332-null mice (LAMα3- and LAMγ2- null mice) to determine anatomical 

abnormalities and then using embryonic UB and collecting duct cells to assess the 

importance of Ln-332 as a migratory substrate, the importance of  the MT1-MMP 

substrate, laminin-332 could be determined.  Our preliminary findings are intriguing as 

we are the first group to show that 42% of mice lacking the α3 subunit fail to develop a 

right kidney.  These findings have led us to suggest a role for Ln-332 in UB induction 

and/or branching.  
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