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CHAPTER I

TIME HORIZON SENSITIVITY OF THE FORWARD PREMIUM PUZZLE: IN-SAMPLE FIT AND
OUT-OF-SAMPLE FORECAST

Introduction

One of the most examined hypotheses in international �nance is whether the foreign exchange forward

rate is an unbiased estimator of the future spot exchange rate, that is,

Et[st+k] = ft;k; (1)

where st+k is the (log) spot exchange rate at time t+ k , ft;k is the (log) forward exchange rate at time t

with maturity k.1 This unbiasedness hypothesis may be understood as a joint hypothesis of risk neutrality,

e¢ cient market, and rational expectations. Simply speaking, if investors are risk-neutral, ignoring the

in�ation factor and transaction costs, they should expect future spot exchange rates to be equal to the

forward rates of corresponding maturities (that is, Emt [st+k] = ft;k; where Emt refers to the investors�

subjective expectation conditional on the information set at time t). Otherwise, they will take equal

and opposite positions in the forward and the future spot transactions, expecting to make pro�ts. These

trading activities will continue until the equality (Emt [st+k] = ft;k) holds. And if the investors�expectations

are rational, that is, Emt [st+k] = Et[st+k]; where Et is the true population expectation conditional on

information available at time t, then the unbiasedness hypothesis should hold.

Though theoretically justi�able, the unbiasedness hypothesis has often been rejected in the empirical

literature. The common �nding is that the forward rates predict the future exchange rate changes with

the wrong sign. For example, the following regression:

�st;k = st+k � st = �+ �(ft;k � st) + "t+k (2)

1Throughout this paper, we use small letters for variables in log, and capital letters for variables in level; also, for both
spot and forward exchange rates, we express foreign currency in terms of domestic currency.
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appears frequently in the literature and the joint hypothesis of � = 0, � = 1 is tested. It is often found that

the estimated slope coe¢ cient is negative, and is signi�cantly di¤erent from 1. As noted by Froot (1990),

the average �̂ over 75 published papers is �0.88. A huge number of papers in the literature have been

written to explore the possible explanations, which include: risk premiums (e.g. Engel, 1996), irrational

expectations (e.g. Frankel and Rose, 1994), learning and peso problems (e.g. Lewis, 1994; Evans, 1995),

measurement errors (e.g. Cornell, 1989; Bekaert and Hodrick, 1993), long memory of forward premiums

(e.g. Baillie and Bollerslev, 1994; Maynard and Phillips, 2001), and limits to speculation (e.g. Lyons, 2001;

Sarno, Valente and Leon, 2004). So far, however, none of these explanations successfully accounts for the

magnitude of the discrepancy between the forward rate and its associated future spot rate. As a result,

this discrepancy is an unsolved anomaly called the "forward premium puzzle".2

In this paper, we aim at providing another perspective on the forward premium puzzle: its sensitivity

to the horizon k. To determine the motivation behind it, let us �rst sketch a consumption-based asset

pricing model, linking the future spot rates to the forward rates. Following Lucas (1978), Hansen and

Singleton (1982), and Obstfeld and Rogo¤ (1996), consider an in�nitely-lived representative agent who

faces the optimization problem as follows:

Max E0
P1
s=t �

tU(Ct);

s:t: Ct +
PK
k=1 P

k
t Q

k
t �

PK
k=1R

k
t�kQ

k
t�k +Wt;

where Ct and Wt are consumption and (real) wage in time period t. The collection of K assets have

di¤erent investment horizons; P kt and Q
k
t are the price and quantity purchased of asset k at date t, and

Rkt�k is the date t (real) payo¤ from holding a unit of asset k purchased at date t � k. Solving the �rst

order condition gives us the Euler condition:

1 = �kEt[
RktU

0(Ct+k)

P kt U
0(Ct)

]; k = 1; 2; � � � ;K:

Let rt;k =
Rkt
P kt
; that is, the (real) gross return of holding one unit of asset k in time period t. We then get:

1 = Et[rt;k � �k �
U 0(Ct+k)

U 0(Ct)
]:

2Sometimes it is called the forward discount puzzle or the forward discount/premium anomaly. In international �nance
literature, it is often referred to as a violation of the uncovered interest parity (UIP).
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In words, the (real) gross return of an asset (rt;k), when discounted by an appropriate factor (�k �
U 0(Ct+k)

U 0(Ct)
)

, should be equal to 1. The result can be easily generalized to the case where there are N kinds of assets

of the same horizon k: Under that situation, we will have:

1 = Et[r
n
t;k � �

k � U
0(Ct+k)

U 0(Ct)
]; n = 1; 2; :::; N ; or,

0 = Et[(r
n
t;k � rmt;k) �

U 0(Ct+k)

U 0(Ct)
]; n;m = 1; 2; :::; N; n 6= m: (3)

Now let us see what it implies in our case. Consider a nominal home-currency bond with maturity

k (denoted as asset 1), and a portfolio constructed as follows (denoted as asset 2): buy foreign currency

and invest in a nominal foreign-currency bond with maturity k; and then sell for domestic currency at the

maturity date. The (real) gross returns of these two assets will be:

r1t;k = (1 + i
1
t;k) �

Pt
Pt+k

, r2t;k =
St+k
St

(1 + i2t;k) �
Pt
Pt+k

,

where int;k is the domestic (n = 1) or foreign (n = 2) nominal interest rate (in level) of period k; St is the

spot exchange rate (in level), Pt is the domestic price level. Imposing the covered interest parity condition

St(1 + i
1
t;k) = Ft;k(1 + i

2
t;k);

3 where Ft;k is the forward rate (in level) with maturity k, we have:

r1t;k � r2t;k =
Pt
Pt+k

� (1 + i1t;k)(
Ft;k � St+k

Ft;k
): (4)

Combining (3) and (4), and factoring out the term Pt(1 + i
1
t;k)

1

Ft;k
(since they are in the information set

at t), we get:

0 = Et[(
Ft;k � St+k
Pt+k

)
U 0(Ct+k)

U 0(Ct)
]:

Now assuming the CRRA preference (U(C) =
C1��

1� �); and also assuming fFt;k; St+k;Pt+k;Ct+kg are jointly

3Covered interest parity is generally found to hold in real data (see Sarno and Taylor, 2002, chapter 2 for a survey of the
evidence).
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log-normally distributed, we arrive at the following equation:

Et[st+k] = ft;k � 0:5V art(st+k) + Covt(st+k;pt+k) + �Covt(st+k; ct+k):4 (5)

Though the model is built on some assumptions (CRRA preferences and log normal distributions), it

demonstrates the sense that the unbiasedness hypothesis (1) may be contaminated by other factors in (5).

Moreover, the extent of contamination may depend on the horizon k: On one hand, when the horizon k is

short (say, one day or one week), macro factors (for example, p and c here) are unlikely to change much.

Hence, we may expect that the conditional covariances in equation (5) are of very small magnitude. On the

other hand, since the (log) exchange rates st+k are commonly found to be non-stationary (for example, see

Hodrick, 1987, Section 3.5), the conditional variance V art(st+k) is likely to increase with k.5 Combining

these two arguments, we might expect that the unbiasedness hypothesis (1) is less contaminated at short

horizons.6 For medium and long horizons, because the interaction of the last three terms in (5) is unknown,

we leave it to the empirical part to see how the unbiasedness hypothesis is a¤ected.

Recent empirical evidence also suggests the time horizon-sensitivity of the unbiasedness hypothesis.

For example, Chaboud and Wright (2005) test the uncovered interest parity (UIP) (which is equivalent to

the unbiasedness hypothesis if the covered interest parity holds) using high frequency data, and �nd that

UIP holds at the 1-day horizon. On the other end, Chinn and Meredith (2004) �nd supporting evidence

of UIP over very long horizons (5 and 10 years).

The above empirical �ndings, however, may partly be due to a di¤erent methodology, or a di¤erent

dataset, instead of purely due to a change of time horizon. For example, in Chaboud and Wright (2005), the

evidence is found only when small-interval exchange returns are regressed on multi-day interest di¤erentials,

which is a di¤erent method from what has been used in the literature. In Chinn and Meredith (2004, page

415), their long-horizon interest rates data, �are inherently somewhat less pure from the point of view of

4Following the literature, �0:5V art(st+k) + Covt(st+k; pt+k) are referred to as the "Jensen�s Inequality Terms" and
�Covt(st+k; ct+k) is referred to as the "risk premium."

5For a simple illustration, assume that st follows a random walk, st = st�1 + "t; where "t � i:i:d N(0; 1): Then st+k = st+
"t+1+ "t+2 + :::+ "t+k; and V art(st+k) = V art(st+k � st) = k:

6We note that the Jensen�s Inequality Terms are empirically found to be small (see, for example, Engel, 1996, page 133).
However, we are not sure if this empirical �nding is robust to di¤erent horizons. Even though the �nding is true over all
horizons, the risk premium term will still make the unbiasedness hypothesis sensitive to the time horizon.
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the UIP hypothesis.�

To get a precise sense of how the time horizon matters, we employ the commonly used in-sample method

on a large dataset over a much wider variety of horizons than those examined in the existing literature.

Speci�cally, we obtain the forward rates of nine horizons (ranging from 1 day to 1 year) from Bloomberg,

one of the largest �nancial data providers over the world. We then run the regression (equation 2) to test

the unbiasedness hypothesis for each horizon. By applying the same methodology to the data from the

same source, we aim to control for factors other than the time horizon.

Meanwhile, to complement our understanding of the horizon-sensitivity of the puzzle, we also evaluate

the out-of-sample forecastability of spot exchange rates using the forward premiums (without imposing

theoretical restrictions; hereafter, we denote it as the forward premium model) across various horizons. As

indicated by Chinn and Meredith (2004, note 8), even though the unbiasedness hypothesis may not hold in

sample, we might still expect that the forward premiums have predictive power in forecasting the future spot

rates. And similarly to the above argument, depending on the magnitude of macro factor contamination,

the predictive power of the forward premiums may vary with the forecast horizon. Therefore, we examine

the forecast performance of the forward premium model relative to that of eight linear/nonlinear exchange

rate models across di¤erent horizons. Speci�cally, we �rst carry out a comparison between the forward

premium model and the random walk model, which is the most popular benchmark model in forecasting

exchange rates. We then use the reality check procedure proposed by White (2000) to implement multiple

comparisons between the forward premium model and the competing forecast models.

The remainder of the paper is organized as follows: Section 2 explains the data; Section 3 analyzes the

time series properties of the data; Section 4 and 5 examine the in-sample �t and the out-of-sample forecast,

respectively; Section 6 check the robustness of the out-of-sample performance. Some concluding remarks

are presented in Section 7.

Data

We obtain daily data of seven major currencies from Bloomberg: the Australian Dollar (AD), the

British Pound (BP), the Canadian Dollar (CD), the Deutsche Mark (DM), the Euro, the Japanese Yen
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(JY), and the Swiss Franc (SF), expressed in units of US Dollar per unit of currency. For each currency,

we have 10 series: spot, spot/next, 1-week, 2-week, 3-week, 1-month, 2-month, 3-month, 6-month, 1-year

(forward) rates. All are the closing middle prices. Weekend data are excluded because of the negligible

trading during weekends. For missing weekday data, we substitute the previous day�s prices.

All the data (except for the DM and the Euro) range from January 1, 1994, to April 13, 2004, with a

total of 2,682 observations for each currency. For the DM and the Euro, the data range from January 3,

1994, to December 31, 1998, and from January 1, 1999, to April 13, 2004, with a total of 1,304 and 1,378

observations, respectively.

To closely align the future spot rates with their corresponding forward rates, we need to determine

the settlement dates of forward contracts. The settlement convention in the foreign exchange market

is as follows.7 The spot rate settles in two business days after the trade. The spot/next forward rate

settles on the next business day after the spot settlement date. For forward rates with a horizon above

1 week (including 1 week), the settlement is similar: if the horizon is 1-week (or 1-month, etc.), then the

settlement occurs 1 week (or 1 month, etc.) after the spot settlement date. Exceptions regarding weekends

and holidays are described in detail in Walmsley (2000).

In this paper, to comply with the above market convention, we construct the return series �st;k

(= st+k � st), and their associated forward premium series (ft;k � st), in the following way:

1) For spot/next forward rates, k = 1, that is, the spot/next rate is treated as 1-day forward rate;8

2) For 1-week forward rates, k = 7: This is based on the fact that the 1-week forward contract

commences in 2 business days (spot settlement date), and there are 5 observations per week (weekend data

are excluded);

3) For 2-week forward rates, k = 7 + 5 = 12;

4) For 3-week forward rates, k = 7 + 2 � 5 = 17;

5) For 1-month forward rates, k = 24. This is based on the fact that we have 2,682 daily data for

each series, while they span 123.5 months. So on average, there will be 22 daily data per month. Since the

contract commences in two business days, k should be 2 + 22 = 24;

6) For 2-month forward rates, k = 2 + 22 � 2 = 46;
7Walmsley (2000) and Bloomberg terminal are good references for the settlement convention in the foreign exchange market.
8For more discussion of using spot/next rates as the 1-day forward rates, we refer to Chaboud and Wright (2003).
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7) For 3-month forward rates, k = 2 + 22 � 3 = 68;

8) For 6-month forward rates, k = 2 + 22 � 6 = 134;

9) For 1-year forward rates, k = 263. This is based on the fact that we have around 261 daily data

per year, and the commencing date is 2 business days from the contract date.

The �nal series of foreign exchange returns and their associated forward premiums range from January

3, 1994, to April 9, 2003, with a total of 2,418 observations per series. For the DM and the Euro, the �nal

series ranges from January 3,1994, to December 31, 1997, and from January 1, 1999, to April 9, 2003, with

a total of 1,043 and 1,112 observations per series, respectively.

Unit root and long memory properties

To obtain reliable regression results, we need to make sure that both the regressors and the regressands

are stationary. There has been a universal agreement on the non-stationarity of both the (log) spot rates

and the (log) forward rates. Less consensus, however, has been achieved on the properties of their �rst

di¤erenced series, that is, the foreign exchange returns and the forward premiums.9 Therefore, we test

the unit root hypothesis in the foreign exchange returns and forward premiums. Speci�cally, we use the

Phillips-Perron tests, with an intercept and a time trend included in the standard Dickey-Fuller regression,

and calculate the residual spectrum at frequency zero using the Bartlett kernel with bandwidth k + 1.10

Recent evidence also shows that the foreign exchange returns and the forward premium series have

di¤erent memory properties, which makes conventional statistical theory inapplicable to the regression

model (2) (e.g. Baillie and Bollerslev, 1994; Maynard and Phillips, 2001). Therefore, in addition to the

unit root tests, we also estimate the long memory parameters of both the return and the forward premium

series. In particular, we estimate the fractionally integrated model:

(1� L)d(xt � �) = ut;
9 In a non-overlapping case, it is often documented that the exchange rate return series are serially uncorrelated and

stationary. However, when overlapping return series, such as a 1-week or a 1-month return series at the daily frequency, are
involved, we remain unsure until appropriate tests are implemented.
10The results using alternative methods are similar and available upon request.
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where fxtg is the return or the forward premium series, futg is a short memory time series. The parameter

d determines the memory behavior of the returns or the forward premiums series, as described in Maynard

and Phillips (2001). We follow the modi�ed log periodogram procedure by Kim and Phillips (1999), and

report the point estimates, as well as the 95% con�dence intervals for d.

The results are given in Table 1. In terms of unit root tests, we �nd that both the return and the

forward premium series do not contain unit roots at short horizons (within 3-week). From 1-month up to

the 6-month horizon (the cut-o¤ horizon varies among di¤erent currencies), we �nd that the return and

the forward premium series have di¤erent time series properties. On average, over these medium horizons,

we can reject the unit root hypothesis in the return series, but not in the forward premium series. The

only exception involves the DM, where the result is opposite. When the horizon is 1 year, however, both

series contain unit roots.

With respect to the long memory behavior, there are also three cases. Over a very short horizon (1

day), both the return and forward premium series are stationary (d < 1=2). And for most of the currencies

(except for the CD), these two series are likely to have short memory rather than long memory, that is, d

is closer to 0 than to 1/2. Over intermediate horizons (from 1 week up to 1 month, the cut-o¤ horizon

varies among di¤erent currencies), the return series are likely to be long memory, non-stationary (d > 1=2),

while the forward premium series are likely to be long memory, stationary (d < 1=2). When the horizon is

beyond 1 month, both series are long memory, non-stationary (d > 1=2). And the longer the horizon, the

more likely it is that both series contain unit roots (d = 1).

In summary, the time series properties of the return and forward premium series vary over di¤erent

horizons. Generally, over short horizons, both series are likely to be short memory, stationary. Over

intermediate horizons, the two series tend to have divergent time series properties, in terms of both unit

root and long memory results. Over long horizons, both series become non-stationary, and seem to contain

unit roots.

In-sample �t

Having examined the time series properties of the return and the forward premium series, we now turn

to the in-sample analysis. Speci�cally, for each currency, we run regression (2) over the nine horizons, and

8



report the point estimates of � and �; their standard errors, and the adjusted R2.11 At the 1-day horizon,

there are no overlapping observations, and hence the error terms are not autocorrelated. Therefore, we

compute White�s standard errors. For other horizons, overlapping observations are involved, which induces

moving average terms of order k � 1 in the errors. Therefore, the Newey-West heteroskedasticity and

autocorrelation consistent (HAC) standard errors are reported. For the convenience of a visual check,

we also construct Figure 1, where, for each currency, the center line connects the point estimates over

all horizons, and the lower and upper lines connect the lower and upper bounds of the 95% con�dence

intervals.

The results are reported in Table 2 and several patterns can be observed. First, consistent with the

literature, the point estimate of � is often negative, and signi�cantly di¤erent from 0 for horizons longer

than 1 month (including 1 month). For horizons shorter than 1 month, which are less frequently examined

in the literature, the results are mixed. At the 1-day horizon, �̂ is insigni�cantly di¤erent from 0 for all

currencies. Over horizons from 1 week to 3 weeks, �̂ is signi�cantly negative for AD, EURO, SF at all the

three horizons, and for JY at the 1-week and 2-week horizons; while �̂ is insigni�cantly di¤erent from 0

for BP, CD, DM at all the three horizons, and for JY at the 3-week horizon. In all cases, the unbiasedness

hypothesis (� = 1) is rejected.

Second, the adjusted R2 increases with the horizon for all currencies. At the 1-day horizon, the adjusted

R2 is negligible, indicating that the forward premiums have little power in explaining the returns. However,

the adjusted R2 increases as the horizon lengthens, with an average of 0.49 at the 1-year horizon. This

fact seems to suggest that over longer horizons, the forward premiums may contain more information for

forecasting the returns.12 This point will be further explored in the out-of-sample analysis.

Third, the point estimate of � tends to decrease as the horizon goes from 1-day to 1-year. As can be seen

from Figure 1, for most currencies (except EURO and JY), the center line connecting point estimates shows

a downward sloping trend with the horizons. For EURO and JY, �̂ has unusually large size (in absolute

11The evidence in Section 3 indicates a discrepancy in the time series properties between the regressand and the regressors,
over various horizons. This discrepancy may render unreliable conventional statistical tests (Maynard and Phillips, 2001).
Nonetheless, since we aim to examine the horizon-sensitivity of the puzzle, we proceed with this regression method while
taking some caution in interpreting the results.
12This �nding is consistent with the evidence reported in Mark (1995). In his paper, Mark uses fundamentals instead of

forward premiums as the regressors, and �nds that the adjusted R2increases from 0.01 to 0.64, when the horizon is lengthened
from 1 to 16 quarters.
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value) at 1-week and 2-week horizons, which obfuscates the downward trend. On average, however, �̂ still

tends to be more negative at long horizons than at short horizons for these two currencies.

Since the third �nding is relatively unexplored in the literature, and may possibly be due to the

overlapping feature in our data, we further check its robustness to non-overlapping cases as follows. For

each horizon (except for 1-day), we create the non-overlapping data by sampling at the corresponding

frequency from the original daily data. For example, for the 1-week horizon, we sample the 1-week foreign

exchange returns and forward premiums at a weekly frequency. Since k = 7 for the 1-week horizon,

we obtain seven weekly samples by changing the initial sample point. We then run the regression for

each sample and report the lower quantile, upper quantile, median, mean, and standard deviation of the

estimates (denoted as beta1w) : Similar methodology applies to other horizons. As seen from Table 3,

the results of the non-overlapping case are very similar to those of the overlapping case. Take AD as an

example. From the statistics, the empirical distribution of the estimates �̂ shifts to the left as the horizon

lengthens, which is in accordance with the downward trend of �̂ in the overlapping case. Also, the mean

of �̂ at each horizon in the nonoverlapping case has similar magnitude to the corresponding point estimate

in the overlapping estimation. Therefore, the third �nding is not due to the overlapping sampling in our

methodology.

In summary, we have the following in-sample �ndings. First, the unbiasedness hypothesis is often

rejected, consistent with the literature. Second, the deviation from the unbiasedness hypothesis increases

with the horizon. These two �ndings are partially in line with our conjecture in the introduction part,

namely, the unbiasedness hypothesis may be contaminated by other factors, and the contamination may be

lesser at shorter horizons. Third, without any restriction on the regression model, the explanatory power

of the forward premiums increases with the horizon, as indicated by the adjusted R2.

Out-of-sample forecast

Ever since the in�uential works of Meese and Rogo¤ (1983a, b), out-of-sample techniques have fre-

quently been used in forecasting foreign exchange rates. The common �nding in the literature is that the

random walk model performs at least as well as any structural or time series exchange rate model. To
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our best knowledge, however, considerably less work has been done to examine the out-of-sample perfor-

mance of the forward premium model.13 Meanwhile, in terms of evaluation methods, statistical criteria,

such as the mean squared forecast error (MSFE), the mean absolute forecast error (MAFE) or root mean

squared error (RMSE) are often used, which may not be as important as economic measures, such as the

direction-of-change statistics (Granger, 1999).14

In this section, therefore, we compare the out-of-sample performance of the forward premium model

(FP)15 with the random walk (RW) model, using both statistical and economic measures. To be more

speci�c, we use four measures to evaluate the forecast performance: the MSFE, the MAFE, the MFTR

(mean forecast trading return), and the MCFD (mean correct forecast direction), which are de�ned below.

Also, we use the rolling scheme to construct out-of-sample forecasts.16 Speci�cally, for each horizon k; we

divide the whole sample (T observations of k-period foreign exchange returns and forward premiums) into

�rst R and last P observations (T � R+P ). We then use the regression result from the �rst R observations

to forecast the k-period-ahead returns at time R+1 (�ŝR+1;k). The observations from 2 to R+1 are then

used to forecast the k-period-ahead returns at time R + 2 (�ŝR+2;k). This procedure continues until the

last forecasted return (�ŝR+P;k) is obtained, yielding a total of P forecasts. We then construct the four

measures as follows:

MSFE = P�1
PP
t=1
(�sR+t;k ��ŝR+t;k)2 ,

MAFE = P�1
PP
t=1
j�sR+t;k ��ŝR+t;kj ,

MFTR = P�1
PP
t=1
sign(�ŝR+t;k)�sR+t;k ,

MCFD = P�1
PP
t=1
1(sign(�ŝR+t;k)sign(�sR+t;k) > 0) .

13Meese and Rogo¤ (1983a) compare the out-of-sample performance of the random walk model with that of the forward
premium model at 1, 3, 6, and 12 months. The comparison, however is solely based on statistical measures, and no formal
tests of whether the di¤erences are statistically signi�cant are employed. We also note that Clarida and Taylor (1997) and
Clarida, Sarno, Taylor, and Valente (2003) examine the out-of-sample forecast performance of the forward premiums, relative
to alternative models across di¤erent horizons. Their focus, however, is on the the term structure models of forward premiums.
14Cheung, et al. (2003) use a direction-of-change measure to compare the forward premium model with the random walk

model. In contrast with our unrestricted model, however, they use the restricted coe¢ cient (� = 1) to construct out-of-sample
forecasts, and �nd that the restricted model cannot beat the random walk model.
15We also check the FP model with the restriction of � = 0; � = 1; or just � = 1; and �nd the restricted models often

perform worse than the RW model, which is consistent with the evidence in Cheung et al. (2003).
16There are three prevalent out-of-sample forecast schemes: recursive, rolling, and �xed. See MacCracken (2004) for a

description and comparison of these three methods. In view of the large size of our data and a possible time-varying risk
premium (e.g. Fama, 1984; Engel, 1996), we think that the rolling scheme may be more appropriate in our case.
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MSFE and MAFE are traditional statistical measures, with smaller values equivalent to better forecast

performance. MFTR and MCFD are economic measures, with the former evaluating the average rate

of return from forecasting, and the latter relating to market timing. Larger values of these two measures

implie better forecast performance. These four measures are also used in Hong and Lee (2003).

According to the RW model, the future exchange rates are unpredictable using publicly available

information, that is,

�st;k = st+k � st = �+ "t+k:17 (6)

For the RW model, the forecast at time R+ t is then obtained by:

�ŝR+t;k = �̂;

where �̂ is estimated from the in-sample observations. For the FP model, the forecast at time R + t is

obtained by

�ŝR+t;k = �̂+ �̂(fR+t;k � sR+t);

where �̂; �̂ are estimated from the in-sample observations, (fR+t;k�sR+t) is the forward premium observed

at time R + t. To test the equivalence of predictive accuracy, we calculate the Diebold-Mariano (DM)

statistic as:

DM =
p
P

�dq

̂d

;

where �d is the loss di¤erential between the two models with respect to the four performance measures, that

is,

�d = �(MSFE1 �MSFE0);
�d = �(MAFE1 �MAFE0);
�d =MFTR1 �MFTR0;
�d =MCFD1 �MCFD0;

17Actually, this is called the random walk with drift, di¤erent from the original version which restricts � = 0: We use the
random walk with drift here, because the two economic measures of forecasting performance, MFTR and MCFD, are not
directly applicable to the random walk without drift. Nonetheless, in the next section we also compare the forward premium
model with the random walk without drift and �nd similar results.
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and 
̂d is the Newey-West HAC variance estimator of �d with lag truncation parameter k � 1: The super-

script 0 and 1 denote the RW model and the FP model, respectively.18 Under the null of equal forecast

performance, we have DM !d N(0; 1) as P !1 (Diebold and Mariano, 1995):

For the convenience of a visual check, we report the results in Figure 2.19 In this �gure, for each

currency, we report the MSFE-, MAFE-, MCFD-ratio, and the MFTR-di¤erence of the FP model relative

to the RW model over di¤erent horizons. If the MSFE (MAFE) ratio is smaller than 1, or the MCFD

ratio is greater than 1, or the MFTR di¤erence is greater than 0, then a better performance of the FP

model compared to the RW model is implied. Meanwhile, we use solid diamonds to denote those ratios (or

di¤erences) at a 15% signi�cance level, and diamonds to denote the insigni�cant ratios (or di¤erences).

Some patterns can be observed from Figure 2. First, for most of the currencies (except for JY), the

FP model performs at least as well as the RW model over all the horizons. The outcome is recognized by

comparing the ratio or the di¤erence of forecast measures to the benchmark value (1 or 0). For JY, the RW

model slightly outperforms the FP model at the 3-month horizon in terms of the MAFE ratio, and at the 1-,

2-, 3-week and 1-month horizons in terms of the MCFD ratio. Second, the longer the horizon is, the better

the FP model performs relative to the RW model. This result can be seen from the downward slope of

the MSFE- and MAFE-ratios, or the upward slope of MFTR di¤erences and MCFD ratios. Generally, for

horizons shorter than one month, both models have very similar forecast performance. When the horizon

is beyond one month, however, the FP model outperforms the RW model in terms of the ratios/di¤erences,

and the superiority increases as the horizon is lengthened. The only exception is DM, where the FP model

loses its superiority in terms of MCFD ratio at the 1-year horizon.

For a numerical illustration, Table 4 reports the average (of all seven currencies) MSFE-, MAFE-,

MFTR-ratios, and the MCFD-di¤erences of the FP model, relative to the RW model. The average value

of the MSFE (MAFE) ratios is 1 for horizons within one month, then decreases all the way to 0.42 and

0.62, respectively, at the 1-year horizon. In terms of MFTR, the FP model shows no superiority over the

RW model from one day to one month (the average MFTR di¤erence = 0). Beyond one month, however,

it generates 1% more pro�t at the 2-month and 3-month, 2% more pro�t at the 6-month, and 4% more

18To comply with the convention in the literature, we use the RW model as the benchmark model.
19The results in table form are available at request. Also, to check the robustness of the results, we vary the in/out sample

ratio (R/P) from 2 to 1. The results are qualitatively similar.
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pro�t at the 1-year horizons. In terms of correctly predicting the directions of changes in exchange rates

(MCFD), the FP model does 1% less than the RW model at the 1-day horizon, but 3% more at the 1-week,

2-week and 3-week horizons, 10% more at the 1-month horizon, and, remarkably, 37% more at the 1-year

horizon.

It is apprarent from the DM test that these ratios/di¤erences are mostly signi�cant, which can be

noted from the number of the solid diamonds in Figure 2. However, we should notice that the RW model

is nested in the FP model with restriction � = 0: According to Clark and McCracken (2001), the DM test

of the equal MSFE of two nested models may have a non-standard limiting distribution unless P=R ! 0

as T ! 1. Since in our case, P=R (1 or 1/2) is not negligible as T ! 1 , statistical inference based on

the standard normal critical value may not be reliable. Therefore, we also compute the Chao, Corradi,

and Swanson (2001) test statistic, which is designed for the nested case, for the null hypothesis of equal

predictive ability,

CCS = P �m
̂m �m;

where �m = P�1
PP
t=1 ê

0
R+t;k(fR+t;k�sR+t), ê0R+t;k is the forecast error of the RW model at time R+t; and


̂m is the HAC covariance estimator of �m with lag truncation parameter k� 1. Under the null hypothesis

of equal MSFE, the test follows �2 distribution with 1 degree of freedom. As seen from plate 5 of Figure

2, although the statistical inferences may sometimes be di¤erent from those of the DM tests, the results

are not qualitatively di¤erent.

Robustness checks

According to the results in Section 5, the FP model performs at least as well as the RW model in

the out-of-sample forecast. More importantly, when the horizon is lengthened beyond one month, the

former shows a systematic superiority over the latter. This result seems to be at odds with the common

belief in the literature, that the RW model is unlikely to be outpredicted by either structural or statistical

models. Therefore, in this section, we check the robustness of the FP model�s out-of-sample superiority
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by comparing it with eight previously examined linear and nonlinear time series exchange rate models.20

Speci�cally, the models to be examined for each horizon k are as follows:21

FP: forward premium model (benchmark model) �st;k = �+ �(ft;k � st) + "t+k;

L1: random walk model without drift �st;k = "t+k;

L2: random walk model with drift �st;k = �+ "t+k;

L3: linear AR(d) model �st;k = �0 +
Pd
j=1 �j�st�j�k;k + "t+k;

N1: autoregressive polynomial model �st;k = �0 +
Pd
j=1

Pm
i=1 �i;j�s

i
t�j�k;k + "t+k;

N2: functional coe¢ cient model�st;k = a0(Ut)+
Pd
j=1 aj(Ut)�st�j�k;k , where Ut = St�k�L�1

PL
j=1 St�j�k;

S denotes exchange rates in level;22

N3: the combined forecast of (L3-N2) �ŝt;k =
P3
n=1wnt�ŝ

(n)
t;k ; where �ŝ

(n)
t;k is the forecast by model m

(one of L3-N2), and the weight:

wnt =
exp[��t

Pt�1
j=1(�sj;k ��ŝ

(n)
j;k )

2]P3
n0=1 exp[��t

Pt�1
j=1(�sj;k ��ŝ

(n0)
j;k )

2]
;

In addition to the above linear and nonlinear models, we also consider the following two models in

forecasting the direction of exchange returns, which are used in practical trading:

N4: moving-average technical trading rule sign(�ŝt;k) = sign(Ut+k); where U is de�ned in N2,

sign(x) = 1 if x > 0, �1 if x < 0;

N5: buy & hold rule sign(�ŝt;k) = 1 for all t.

The results in Section 5 are based on our daily, overlapping observations. To ensure that the results

are robust to di¤erent frequencies, in this section, we use the constructed non-overlapping returns for each

horizon.23 Because of the limited number of non-overlapping observations over long horizons, we only

examine horizons up to 1-month, which are less frequently examined in the literature. For each horizon,

we calculate the MSFE, the MAFE, the MFTR and the MCFD of each competing model, and their

ratios/di¤erences relative to those of the FP model, as described in Section 5. We then test the following

two null hypotheses:
20We do not consider the structural models here, because these models are found not to �t the data well, and generally are

outperformed by the RW model (e.g. Meese and Rogo¤, 1983a, b; Cheung, et al., 2003).
21Hong and Lee (2003) give a detailed discussion of the validity and estimation of these models.
22Following Hong and Lee (2003), we choose d = 2; m = 5; L = 26:
23The construction of non-overlapping observations has been discussed in Section 4, except that we now use only one sample

path for simplicity. The results are similar for di¤erent sample paths.
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H1
0 : Model n is no better in the forecast than the benchmark model (FP);

H2
0 : The best of the �rst n alternative models is no better in the forecast than the benchmark model

(FP).

Note that the test of H1
0 is similar to the binary comparison in Section 5. The second null involves

comparisons among several models, which may lead to a �data-snooping bias�if we use an individual test

sequentially (White, 2000; Hong and Lee, 2003). To avoid the bias, we therefore use the White�s reality

check method, where the p-values are based on the bootstrap procedure.

The results are reported in Table 5.24 Although speci�c rules may vary across currencies, some general

patterns can be observed. First, consistent with the results in Section 5, according to the values of the

MSFE (MAFE, MCFD) ratio and the MFTR di¤erence, the forecast performance of the FP model relative

to the competing models improves as the horizon lengthens. At short horizons such as 1 day or 1 week,

some competing models may perform better than the FP model (that is, the MSFE (MAFE) ratio < 1,

or the MFTR di¤erence > 0, or the MCFD ratio>1).25 At the horizon of 1 month, however, the FP

dominates most of the alternatives. Take AD as an example. At the 1-day horizon, four of the alternative

models, L1, L2, L3 and N3, outperform the FP model in terms of all measures. Meanwhile, all competing

models demonstrate better performance than the FP model when economic measures (MFTR, MCFD) are

considered. At the 1-month horizon, however, only model N5 beats the FP model, and the superiority is

only in terms of economic measures (MFTR, MCFD).

Second, with respect to the statistical inference from White�s reality check p-value P 1RC , the null

hypothesis H1
0 is more easily rejected at short horizons than at long horizons. For example, at the 1-day

horizon, the number of rejections of H1
0 at the 15% level is 36 (9 for AD, 11 for BP, 2 for CD, 2 for JY,

12 for SF). At the 1-month horizon, the number decreases to 9 (2 for AD, 1 for BP, 0 for CD, 0 for JY, 6

for SF).

Third, based on P 2RC , the null hypothesis H
2
0 is hardly rejected over all horizons. Equivalently, the

best of the eight alternative models is unlikely to beat the FP model over all horizons. The exceptions

include AD at the 3-week horizon (MFTR and MCFD), BP at the 1-day (MFTR) and 3-week horizons

24To save space, the results for R/P=2 are reported. The results for R/P=1 are similar and available upon request.
25Since the FP model is now the benchmark model, larger values of the �rst two measures, or smaller values of the last two

measures, indicate better performance of the FP model.
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(MFTR, MCFD), and SF at the 1-day (MCFD) and 3-week horizon (MFTR). It is easily seen that all

these exceptions apply to economic measures only.26

In summary, the reality check results generally con�rm the evidence in Section 5, that is, the out-of-

sample forecast performance of the FP model is enhanced as the horizon lengthens. In addition, the results

show that the FP model is unlikely to be outperformed by available statistical models of exchange rates,

especially in terms of the statistical measures (MSFE and MAFE).

Conclusion

This paper checks the sensitivity of the forward premium puzzle to the time horizon, using the last

decade of daily data covering nine horizons (ranging from 1 day to 1 year). The evidence shows that

the forward premium model is sensitive to the time horizon in a systematic way. In terms of in-sample

estimation, the point estimate of beta generally decreases with the horizon, while the adjustedR2 goes in the

opposite direction. These patterns are robust to most of the currencies examined and to both overlapping

and non-overlapping cases. In the out-of-sample forecast, the performance of the forward premium model

(with unrestricted coe¢ cients) improves as the forecast horizon lengthens, in terms of both statistical

and economic measures. More importantly, the random walk model, which is commonly believed to be

unbeatable by either statistical or structural models, seems to be dominated by the forward premium

model when the forecast horizon is longer than one month. The out-of-sample forecast superiority of the

forward premium model and its horizon-sensitivity are further corroborated in the multiple comparisons

between the forward premium model and eight linear/nonlinear time series models, using White�s reality

check procedure.

The forward premium puzzle remains unsolved, as the beta coe¢ cient is found to be signi�cantly

negative over various horizons. However, the evidence here supports our view that the contamination of

the unbiasedness hypothesis is sensitive to the horizon, as predicted by the equilibrium condition derived

from a consumption-based asset pricing model. Meanwhile, it helps us to understand the interaction

between the forward premium and the omitted variables (such as Jensen�s Inequality Terms, and the risk

26 It is possible that the insigni�cance P 2RC may be due to low power of the reality check procedure in the �nite samples,
which remains to be investigated.
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premiums) in determining future spot exchange rates. For example, as discussed in Fama (1984) and Engel

(1996), the negative estimate of beta may be caused by a su¢ ciently large negative covariation between

the forward premium and the omitted variables. If this is true, then the fact that the point estimate of

beta decreases with the horizon indicates that the forward premium and the omitted variables are more

negatively covariated as the horizon is lengthened. This relation could serve as a guideline for modeling

the omitted variables. In addition, the in-sample inference might be reconciled with the out-of-sample

forecasts. As found by Mark (1995), the fundamentals have more power in forecasting exchange rates at

longer horizons. If this is the case, the increasing forecast power of the forward premiums over the time

horizon may be due to two factors: the increasing (negative) covariation between the forward premiums

and the omitted variables (fundamentals), and the increasing forecast power of the omitted variables

(fundamentals). We leave formal investigation on this issue for future work.

Another possible extension is to examine the puzzle at longer horizons. Due to the di¢ culty in obtaining

forward premiums (or interest rate di¤erentials) with long-horizon maturities, the empirical results in this

paper are restricted to horizons within one year. However, it would be interesting to extend our analysis

to long-horizon data, as some recent evidence shows that the estimate of beta is positive and close to one

at long horizons, such as 5 years and 10 years (Chinn and Meredith 2004). Although more work is needed

to check the robustness of our �ndings over long horizons, we hope that this paper helps us understand

more about the anomaly, and points us in the right direction toward explaining the puzzle.
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currency horizon
unit root 

in returns²

d of 

returns
ci_low ci_up²

unit root 

in forward 

premiums

d of 

forward 

premiums 

ci_low ci_up

AD 1 day *** (0.04) (0.11) 0.03 *** 0.05 (0.02) 0.12

1 week *** 0.62 0.55 0.69 *** 0.23 0.16 0.30

2 week *** 0.66 0.59 0.73 *** 0.23 0.16 0.30

3 week *** 0.87 0.80 0.94 *** 0.36 0.29 0.43

1 month *** 0.91 0.84 0.98 *** 0.43 0.36 0.50

2 month *** 0.92 0.85 0.99 *** 0.53 0.46 0.60

3 month *** 0.87 0.80 0.94 * 0.64 0.57 0.71

6 month 0.98 0.91 1.05 0.72 0.65 0.79

1 year 0.95 0.88 1.02 0.92 0.85 0.99

BP 1 day *** 0.16 0.09 0.23 *** (0.07) (0.14) 0.00

1 week *** 0.60 0.53 0.67 *** 0.19 0.12 0.26

2 week *** 0.73 0.66 0.80 *** 0.13 0.06 0.20

3 week *** 0.90 0.83 0.97 *** 0.54 0.47 0.61

1 month *** 0.91 0.84 0.98 *** 0.31 0.24 0.38

2 month *** 0.95 0.88 1.03 *** 0.68 0.61 0.75

3 month *** 0.96 0.89 1.03 0.91 0.84 0.98

6 month ** 0.98 0.91 1.05 1.04 0.97 1.11

1 year 1.00 0.93 1.07 1.04 0.97 1.11

CD 1 day *** 0.24 0.17 0.31 *** 0.30 0.23 0.37

1 week *** 0.62 0.55 0.69 *** 0.23 0.16 0.30

2 week *** 0.68 0.61 0.75 *** 0.28 0.21 0.35

3 week *** 0.86 0.79 0.93 *** 0.20 0.13 0.27

1 month *** 0.94 0.87 1.01 *** 0.66 0.59 0.73

2 month *** 0.97 0.90 1.04 ** 0.63 0.56 0.70

3 month *** 1.00 0.93 1.07 0.96 0.89 1.03

6 month 0.97 0.90 1.04 0.95 0.88 1.02

1 year 1.00 0.93 1.07 0.99 0.92 1.06

DM 1 day *** 0.10 0.01 0.19 *** (0.23) (0.32) (0.14)

1 week *** 0.83 0.74 0.92 *** 0.34 0.25 0.43

2 week *** 0.81 0.73 0.90 *** 0.32 0.23 0.41

3 week *** 0.84 0.75 0.93 *** 0.46 0.37 0.55

1 month *** 0.96 0.87 1.04 *** 0.62 0.53 0.71

2 month ** 0.97 0.88 1.06 *** 0.64 0.55 0.73

3 month 1.03 0.94 1.12 * 0.91 0.82 1.00

6 month 1.00 0.91 1.09 *** 0.86 0.77 0.95

1 year 1.03 0.94 1.12 0.92 0.83 1.01

EURO 1 day *** 0.11 0.02 0.21 *** 0.13 0.04 0.23

1 week *** 0.76 0.67 0.86 *** 0.35 0.26 0.45

2 week *** 0.86 0.77 0.96 *** 0.31 0.21 0.40

3 week *** 0.85 0.75 0.94 *** 0.19 0.09 0.28

1 month *** 0.93 0.83 1.02 0.88 0.78 0.98

2 month ** 0.88 0.78 0.97 0.96 0.86 1.05

3 month ** 0.95 0.85 1.04 0.96 0.86 1.05

6 month * 0.96 0.86 1.05 0.99 0.89 1.08

1 year 0.99 0.89 1.09 1.00 0.91 1.10

JY 1 day *** 0.06 (0.01) 0.13 *** 0.07 0.00 0.14

1 week *** 0.60 0.53 0.67 *** 0.19 0.12 0.26

2 week *** 0.69 0.62 0.76 *** 0.21 0.14 0.28

3 week *** 0.84 0.77 0.91 *** 0.81 0.74 0.88

1 month *** 0.90 0.83 0.97 ** 0.60 0.53 0.67

2 month *** 0.91 0.84 0.98 0.77 0.70 0.84

3 month ** 0.94 0.87 1.01 0.89 0.82 0.96

6 month 0.97 0.90 1.04 0.96 0.88 1.03

1 year 0.95 0.88 1.02 0.94 0.87 1.01

SF 1 day *** 0.08 0.01 0.15 *** (0.01) (0.08) 0.06

1 week *** 0.59 0.52 0.66 *** 0.20 0.13 0.27

2 week *** 0.67 0.60 0.74 *** 0.17 0.10 0.24

3 week *** 0.86 0.79 0.93 *** 0.14 0.07 0.21

1 month *** 0.92 0.85 0.99 *** 0.32 0.25 0.39

2 month *** 0.93 0.86 1.00 0.70 0.63 0.77

3 month *** 0.95 0.88 1.02 0.77 0.70 0.84

6 month * 0.97 0.90 1.04 0.83 0.76 0.90

1 year 0.97 0.90 1.05 0.95 0.88 1.02
Note:

1 The unit root results are based on the Philips-Perron test statistics.
*, **, *** denote the rejection of unit root at 10%, 5% and 1%, respectively.

2 The memory parameter d is estimated from the modified log periodogram procedure by Kim and Phillips (1999).  
ci_low and ci_up are the lower and upper bounds of the 95% confidence interval.

           TABLE 1. Unit Root and Long Memory Results 



   regression equation: sample frequency: daily

currency horizon²       ³ currency horizon

AD 1 day -0.0001 (0.01) (0.00) BP 1 day 0.00 0.18 0.00

(0.0001) (0.0861) (0.0001) (0.1306)

1 week -0.0006 (1.43) 0.00 1 week 0.00 (0.72) 0.00

(0.0007) (0.4244) (0.0005) (0.6304)

2 week -0.0011 (1.46) 0.01 2 week 0.00 0.08 (0.00)

(0.0012) (0.5114) (0.0009) (0.2973)

3 week -0.0018 (2.16) 0.02 3 week 0.00 0.43 0.00

(0.0017) (0.721) (0.0013) (0.8965)

1 month -0.0052 (5.91) 0.06 1 month (0.00) (1.32) 0.00

(0.003) (1.8275) (0.002) (1.292)

2 month -0.0106 (6.42) 0.13 2 month (0.00) (2.96) 0.03

(0.0051) (1.7152) (0.004) (1.7)

3 month -0.0164 (6.96) 0.23 3 month (0.01) (3.31) 0.06

(0.0066) (1.629) (0.0057) (1.6372)

6 month -0.0325 (6.96) 0.44 6 month (0.01) (3.21) 0.12

(0.0125) (1.3489) (0.0104) (1.4415)

1 year -0.0629 (7.10) 0.55 1 year (0.02) (4.13) 0.30

(0.0266) (1.4439) (0.0161) (1.2913)

CD 1 day 0.0000 0.02 0.00 DM 1 day 0.00 0.13 0.00

(0.0001) (0.0301) (0.0002) (0.1389)

1 week -0.0003 (0.42) 0.00 1 week (0.00) (0.35) (0.00)

(0.0004) (0.4477) (0.0011) (0.876)

2 week -0.0005 (0.18) 0.00 2 week (0.00) (0.55) 0.00

(0.0006) (0.224) (0.0018) (0.8894)

3 week -0.0006 (0.54) 0.00 3 week 0.00 (2.62) 0.02

(0.0008) (0.3862) (0.0027) (1.8423)

1 month -0.0004 (2.63) 0.03 1 month 0.01 (6.32) 0.08

(0.0012) (1.0972) (0.0036) (1.8754)

2 month 0.0000 (3.32) 0.09 2 month 0.01 (6.52) 0.15

(0.0024) (1.1624) (0.0061) (1.6034)

3 month 0.0008 (3.66) 0.15 3 month 0.02 (7.70) 0.27

(0.0036) (1.2725) (0.0089) (1.7134)

6 month 0.0014 (3.44) 0.25 6 month 0.05 (8.20) 0.50

(0.0064) (1.1977) (0.0133) (1.4144)

1 year 0.0040 (3.94) 0.47 1 year 0.10 (7.46) 0.53

(0.0114) (1.1874) (0.0213) (1.3604)

EURO 1 day -0.0001 (0.98) (0.00) JY 1 day 0.00 (0.03) (0.00)

(0.0002) (1.2366) (0.0002) (0.147)

1 week 0.0003 (7.77) 0.03 1 week 0.00 (3.22) 0.01

(0.001) (2.9162) (0.0012) (1.1735)

2 week 0.0006 (6.29) 0.05 2 week 0.00 (1.60) 0.00

(0.0017) (2.0724) (0.0018) (0.7058)

3 week 0.0003 (4.54) 0.04 3 week 0.00 (0.32) 0.00

(0.0025) (1.9668) (0.0024) (0.6768)

1 month 0.0020 (6.79) 0.11 1 month 0.01 (3.75) 0.02

(0.0035) (2.2122) (0.0064) (1.7583)

2 month 0.0061 (7.06) 0.20 2 month 0.02 (3.29) 0.03

(0.0068) (1.9728) (0.0125) (1.7031)

3 month 0.0103 (7.10) 0.30 3 month 0.03 (3.24) 0.04

(0.0089) (1.7236) (0.0178) (1.659)

6 month 0.0242 (7.03) 0.63 6 month 0.07 (3.43) 0.08

(0.0096) (0.9598) (0.0236) (1.2576)

1 year 0.0699 (7.41) 0.82 1 year 0.16 (3.82) 0.21

(0.0085) (0.5471) (0.0283) (0.9233)

SF 1 day 0.0000 0.09 (0.00) SF 2 month 0.03 (6.01) 0.12

(0.0001) (0.152) (0.0078) (1.4967)

1 week 0.0008 (1.26) 0.00 3 month 0.04 (6.04) 0.17

(0.0008) (0.6122) (0.0109) (1.4486)

2 week 0.0024 (2.17) 0.01 6 month 0.08 (6.05) 0.35

(0.0015) (0.8535) (0.0137) (1.1601)

3 week 0.0028 (1.59) 0.01 1 year 0.17 (6.21) 0.54

(0.002) (0.6666) (0.0185) (1.0231)

1 month 0.0099 -4.2213 0.0416

(0.0036) (1.3249)
Note: 

1 k=1,7,12,17,24,46,68,134,263 for 1 day,1 week,2 week,3 week,1 month,2 month,3 month,6 month,1 year.
2 The numbers in parentheses are White's standard errors for 1 day, and are Newey-West HAC standard errors 

for other horizons.

           TABLE 2. In-Sample Estimation 

α̂ 2R 2R
, ,( )t k t k t t ks f sα β ε +∆ = + − +

α̂β̂ β̂



variable    25%       50%       75%        Mean     Std. Dev.  # of Obs.

Beta1w  -2.55725   -2.16514   -0.88116   -1.71004    0.88419    7.00000 

Beta2w  -3.49217   -2.13305   -1.10248   -1.93031    1.33152   12.00000 

Beta3w  -3.65932   -2.84106   -2.19357   -2.91556    1.67007   17.00000 

Beta1m  -6.87474   -6.39427   -5.84114   -6.24663    0.84216   24.00000 

Beta2m  -7.54493   -7.01190   -6.43507   -6.93941    0.78259   46.00000 

Beta3m  -7.71840   -7.40019   -6.99710   -7.29997    0.69266   68.00000 

Beta6m  -7.90041   -7.59474   -7.20766   -7.53302    0.54774  134.00000 

Beta1y  -8.26264   -7.67396   -6.88814   -7.67004    0.81889  263.00000 

Beta1w  -2.11978   -1.54900   -0.22255   -1.13561    0.99866    7.00000 

Beta2w  -1.01147   -0.19430    0.45663   -0.01287    1.02439   12.00000 

Beta3w  -0.73570    0.35829    0.83218   -0.18266    1.67253   17.00000 

Beta1m  -2.60680   -2.19025   -1.25458   -1.81837    1.13246   24.00000 

Beta2m  -4.06814   -3.43346   -2.90159   -3.46955    0.92657   46.00000 

Beta3m  -3.91583   -3.57147   -3.03184   -3.45702    0.65915   68.00000 

Beta6m  -4.67755   -3.75844   -3.14270   -3.85129    0.94529  134.00000 

Beta1y  -6.89472   -5.94115   -4.25824   -5.65771    1.62713  263.00000 

Beta1w  -1.67495   -0.91657   -0.39487   -0.79227    0.88360    7.00000  

Beta2w  -0.40733   -0.27167   -0.13704   -0.24478    0.27168   12.00000  

Beta3w  -1.48175   -0.68173   -0.48054   -0.85438    0.63001   17.00000  

Beta1m  -3.33504   -2.83739   -2.57188   -2.88894    0.55161   24.00000  

Beta2m  -4.23606   -3.94932   -3.63200   -3.88646    0.54820   46.00000  

Beta3m  -4.27671   -4.01703   -3.79887   -4.01552    0.47627   68.00000  

Beta6m  -4.71733   -4.39958   -4.07278   -4.41963    0.44000  134.00000  

Beta1y  -4.71573   -3.98812   -3.22654   -3.96659    0.79305  263.00000  

Beta1w  -2.35361   -1.34865   -0.15490   -0.75619    1.70347    7.00000 

Beta2w  -1.71195   -0.33528   -0.01132   -0.88909    1.89881   12.00000 

Beta3w  -5.46191   -4.09579   -1.96439   -3.32390    2.50205   17.00000 

Beta1m  -6.33574   -5.72320   -5.21434   -5.47601    1.37563   24.00000 

Beta2m  -7.11720   -6.10140   -5.04518   -5.96243    1.53515   46.00000 

Beta3m  -7.43857   -6.93739   -6.55800   -7.08493    1.09548   68.00000 

Beta6m  -8.92230   -7.70104   -6.98575   -7.97198    1.44999  134.00000 

Beta1y  -9.55183   -8.19154   -6.87533   -9.39819    4.40824  263.00000 

Note: This table checks the robustness of the in-sample results to the sampling frequencies.

TABLE 3. Robustness of the In-sample Results to Sampling Frequencies

AD

BP

CD

DM



variable    25%       50%       75%        Mean     Std. Dev.  # of Obs.

Beta1w  -8.84948   -8.39182   -7.79200   -7.93181    1.22921    7.00000 

Beta2w  -7.13930   -6.91725   -6.70321   -6.61747    0.78204   12.00000 

Beta3w  -7.01391   -6.36216   -5.37841   -5.60285    1.92867   17.00000 

Beta1m  -7.67028   -7.35292   -7.20283   -7.41608    0.28441   24.00000 

Beta2m  -7.98404   -7.80835   -7.56079   -7.79353    0.28046   46.00000 

Beta3m  -7.52949   -7.19271   -7.01226   -7.25309    0.34413   68.00000 

Beta6m  -7.80989   -7.09551   -6.68607   -7.17425    0.69709  134.00000 

Beta1y  -7.68831   -7.20805   -6.70701   -7.19176    0.70949  263.00000 

Beta1w  -4.11838   -4.01682   -3.56984   -3.56691    0.90667    7.00000 

Beta2w  -3.76203   -2.28167   -1.39654   -2.24384    1.56640   12.00000 

Beta3w  -0.82192   -0.56894   -0.02512   -0.63283    0.92853   17.00000 

Beta1m  -4.07493   -3.70878   -3.56448   -3.80717    0.40439   24.00000 

Beta2m  -3.58319   -3.34975   -3.19187   -3.32414    0.35323   46.00000 

Beta3m  -3.70042   -3.27111   -2.69278   -3.22284    0.67146   68.00000 

Beta6m  -4.32758   -3.99471   -3.64949   -3.97793    0.46568  134.00000 

Beta1y  -4.56363   -3.90920   -3.39810   -4.02291    0.77990  263.00000 

Beta1w  -2.10787   -1.49215   -1.21270   -1.26680    1.39011    7.00000 

Beta2w  -5.33936   -2.92432   -1.24282   -2.89063    1.85095   12.00000 

Beta3w  -3.02664   -2.05391   -0.84658   -2.10637    1.49651   17.00000 

Beta1m  -5.84427   -5.42790   -4.10292   -4.66462    1.54208   24.00000 

Beta2m  -6.38939   -6.22948   -5.98214   -6.12326    0.40024   46.00000 

Beta3m  -6.24121   -5.96789   -5.83588   -5.97193    0.35247   68.00000 

Beta6m  -6.86727   -5.77159   -5.24632   -5.96491    0.86926  134.00000 

Beta1y  -6.51549   -5.95383   -5.40189   -5.96224    0.70452  263.00000 

measure 1d 1w 2w 3w 1m 2m 3m 6m 1y

MSFE ratio 1.00 1.00 1.00 1.00 0.97 0.90 0.82 0.63 0.42

MAFE ratio 1.00 1.00 1.00 1.00 0.98 0.96 0.92 0.79 0.62

MFTR diff. 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04

MCFD ratio 0.99 1.03 1.03 1.03 1.10 1.12 1.15 1.30 1.37

Note: This table gives the average (of all the seven currencies) MSFE-, MAFE-, MFTR-ratios and

MCFD-differences of the FP model relative to the RW model.

The R/P ratio (R and P stand for the number of in-sample and out-of-smaple observations) is 

2

TABLE 4. Out-of-Sample Comparison between the FP Model and the RW Model 

TABLE 3(Continued):Robustness of the In-sample Results to Sampling Frequencies

EURO

JY

SF



k Model MSFE Ratio MAFE Ratio MFTR Diff MCFD Ratio

0 FP 0.502 0.542 -0.002 0.474
1 L1 0.501 0.997 0.136 0.137 0.541 0.997 0.025 0.015 0.000 0.002 0.405 0.438 0.000 0.000 1.000 1.000
2 L2 0.502 0.999 0.236 0.153 0.542 0.999 0.096 0.015 0.001 0.003 0.298 0.578 0.477 1.008 0.212 0.491
3 L3 0.502 0.999 0.441 0.345 0.541 0.997 0.158 0.109 0.012 0.015 0.261 0.418 0.497 1.050 0.070 0.119
4 N1 0.504 1.004 0.734 0.502 0.542 1.000 0.482 0.258 0.025 0.027 0.144 0.309 0.500 1.056 0.048 0.118
5 N2 0.637 1.269 0.918 0.805 0.562 1.036 0.915 0.698 0.025 0.028 0.208 0.435 0.486 1.027 0.292 0.234
6 N3 0.501 0.997 0.213 0.863 0.541 0.997 0.043 0.764 0.046 0.049 0.016 0.155 0.511 1.080 0.010 0.112
7 N4 0.017 0.019 0.251 0.230 0.491 1.037 0.211 0.181
8 N5 -0.001 0.002 0.434 0.277 0.504 1.064 0.136 0.216

0 FP 2.264 1.201 0.039 0.491
1 L1 2.271 1.003 0.655 0.650 1.205 1.004 0.767 0.789 0.000 -0.039 0.668 0.651 0.000 0.000 1.000 1.000
2 L2 2.306 1.019 0.969 0.766 1.220 1.016 0.997 0.886 -0.194 -0.233 0.932 0.751 0.408 0.831 0.951 0.988
3 L3 2.341 1.034 0.993 0.814 1.230 1.024 0.998 0.905 -0.257 -0.295 0.975 0.782 0.379 0.771 0.984 0.989
4 N1 2.366 1.045 0.993 0.854 1.232 1.026 0.995 0.928 -0.257 -0.296 0.973 0.808 0.426 0.867 0.923 0.988
6 N2 3.111 1.374 0.973 0.941 1.370 1.141 0.989 0.973 -0.144 -0.183 0.918 0.872 0.420 0.855 0.960 0.857
8 N3 2.278 1.006 0.661 0.960 1.209 1.007 0.669 0.983 -0.103 -0.142 0.809 0.881 0.420 0.855 0.932 0.875

10 N4 0.104 0.065 0.372 0.783 0.544 1.108 0.232 0.540
11 N5 0.192 0.153 0.241 0.563 0.574 1.169 0.152 0.322

0 FP 4.928 1.753 0.557 0.638
1 L1 5.242 1.064 0.897 0.885 1.837 1.048 0.988 0.977 0.000 -0.557 0.925 0.921 0.000 0.000 1.000 1.000
2 L2 5.444 1.105 0.998 0.973 1.867 1.065 0.996 0.991 -0.450 -1.007 0.997 0.990 0.400 0.627 0.997 1.000
3 L3 5.689 1.154 0.999 0.988 1.895 1.081 1.000 0.998 -0.486 -1.043 1.000 0.994 0.438 0.686 0.998 1.000
4 N1 6.034 1.224 0.996 0.989 1.931 1.102 0.998 0.999 -0.605 -1.162 0.957 0.994 0.413 0.647 0.993 1.000
6 N2 10.658 2.163 0.937 0.998 2.289 1.305 0.974 1.000 -0.263 -0.820 0.981 0.997 0.463 0.725 0.961 1.000
8 N3 5.033 1.021 0.637 0.992 1.794 1.023 0.751 0.999 -0.638 -1.195 0.998 0.999 0.400 0.627 0.995 1.000

10 N4 0.238 -0.319 0.911 0.999 0.588 0.922 0.891 0.998
11 N5 0.536 -0.021 0.280 0.932 0.613 0.961 0.380 0.986

0 FP 6.660 2.120 -0.028 0.460
1 L1 5.915 0.888 0.090 0.078 1.992 0.940 0.081 0.070 0.000 0.028 0.347 0.354 0.000 0.000 1.000 1.000
2 L2 6.315 0.948 0.251 0.107 2.087 0.984 0.307 0.095 -0.340 -0.312 0.888 0.600 0.400 0.870 0.788 0.899
3 L3 7.221 1.084 0.843 0.218 2.285 1.078 0.958 0.328 -0.613 -0.585 0.921 0.675 0.320 0.696 0.921 0.915
4 N1 8.143 1.223 0.968 0.321 2.463 1.162 0.990 0.411 -0.564 -0.536 0.864 0.728 0.320 0.696 0.903 0.933
6 N2 22.872 3.434 0.891 0.735 2.987 1.409 0.916 0.784 0.081 0.109 0.358 0.327 0.520 1.130 0.174 0.211
8 N3 5.904 0.886 0.130 0.740 1.987 0.937 0.185 0.784 0.041 0.069 0.437 0.368 0.480 1.043 0.377 0.238

10 N4 0.645 0.673 0.071 0.184 0.660 1.435 0.000 0.026
11 N5 0.726 0.754 0.050 0.142 0.680 1.478 0.000 0.026

0 FP 11.500 2.550 0.842 0.714
1 L1 12.199 1.061 0.736 0.727 2.815 1.104 0.922 0.915 0.000 -0.842 0.973 0.960 0.000 0.000 1.000 1.000
2 L2 12.904 1.122 0.888 0.750 2.961 1.161 0.995 0.942 -0.692 -1.534 0.966 0.968 0.371 0.520 0.984 1.000
3 L3 14.058 1.222 0.976 0.784 3.160 1.239 1.000 0.961 -0.451 -1.293 0.925 0.973 0.371 0.520 0.997 1.000
4 N1 16.637 1.447 0.874 0.843 3.199 1.254 0.908 0.974 -0.086 -0.929 0.845 0.976 0.514 0.720 0.952 1.000
6 N2 37.592 3.269 0.969 0.964 4.429 1.737 0.997 0.993 0.335 -0.507 0.595 0.931 0.457 0.640 0.933 1.000
8 N3 11.979 1.042 0.595 0.923 2.789 1.094 0.871 0.994 0.824 -0.019 0.286 0.753 0.543 0.760 0.791 0.999

10 N4 0.666 -0.177 0.469 0.408 0.571 0.800 0.744 0.771
11 N5 1.122 0.280 0.062 0.408 0.743 1.040 0.062 0.716

Note:
1 The reality check results are based on non-overlapping observations constructed from the original daily data, that is, weekly data for a one-week 

horizon, monthly data for a one-month horizon, etc.  
2 For the model description, please refer to page 13-14.
3        is the bootstrap p-values of White's (2000) test for the null that model n is no better in forecasting than  the benchmark (FP) model, while

       is for the null that the best of the first n alternative models is no better in forecasting than the benchmark (FP) model.These p-values are  
based on 1,000 bootstrap replications and a bootstrap smoothing parameter a = 0.25. The results are similar when different values of a (0.5, 0.75) 
are used.

4 Redness denotes better performance of the alternative to the FP model in terms of ratio/difference, boldness denotes significance level at 15%.

5 The bootstrap program was generously provided by Tae-Hwy Lee.

Horizon = 1 week; (R, P) = (340,169)

Horizon = 2 week; (R, P) = (161,80)

Horizon = 3 week; (R, P) = (101,50)

Horizon = 1 month; (R, P) = (72,35)

TABLE 5. Reality check on predictive ability over different horizons

MSFE MAFE

Horizon = 1 day; (R, P) = (1594,796)

MFTR MCFD

Panel A. Australian Dollars (AD); R/P = 2

2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP

1
RCP
2

R CP



k Model MSFE Ratio MAFE Ratio MFTR Diff MCFD Ratio

0 FP 0.251 0.379 -0.025 0.486
1 L1 0.251 0.999 0.027 0.028 0.379 1.000 0.141 0.144 0.000 0.025 0.055 0.054 0.000 0.000 1.000 1.000
2 L2 0.251 1.000 0.132 0.029 0.379 1.000 0.247 0.179 -0.018 0.007 0.286 0.077 0.491 1.010 0.311 0.547
3 L3 0.251 1.000 0.505 0.386 0.380 1.003 0.796 0.504 0.003 0.028 0.080 0.117 0.497 1.023 0.254 0.432
4 N1 0.252 1.003 0.697 0.539 0.380 1.002 0.739 0.607 0.019 0.045 0.044 0.047 0.506 1.041 0.193 0.309
5 N2 0.256 1.020 0.852 0.780 0.385 1.015 0.959 0.808 0.015 0.041 0.025 0.072 0.514 1.057 0.092 0.251
6 N3 0.251 0.999 0.014 0.835 0.379 0.999 0.060 0.854 0.008 0.033 0.060 0.044 0.501 1.031 0.203 0.276
7 N4 -0.022 0.003 0.415 0.062 0.469 0.964 0.721 0.337
8 N5 -0.001 0.025 0.189 0.082 0.501 1.031 0.300 0.382

0 FP 1.348 0.923 0.110 0.544
1 L1 1.362 1.010 0.843 0.835 0.930 1.008 0.849 0.849 0.000 -0.110 0.863 0.858 0.000 0.000 1.000 1.000
2 L2 1.364 1.012 0.892 0.873 0.930 1.008 0.865 0.879 -0.049 -0.159 0.883 0.917 0.515 0.946 0.689 0.825
3 L3 1.381 1.024 0.957 0.897 0.939 1.018 0.979 0.893 -0.100 -0.210 0.947 0.922 0.444 0.815 0.974 0.857
4 N1 1.384 1.027 0.944 0.933 0.935 1.013 0.857 0.917 -0.046 -0.156 0.917 0.936 0.527 0.967 0.639 0.831
6 N2 2.954 2.191 0.921 0.982 1.131 1.225 0.968 0.965 -0.007 -0.117 0.805 0.968 0.503 0.924 0.722 0.874
8 N3 1.359 1.008 0.832 0.984 0.928 1.006 0.853 0.978 0.095 -0.016 0.547 0.852 0.556 1.022 0.424 0.722

10 N4 0.033 -0.078 0.732 0.910 0.527 0.967 0.550 0.779
11 N5 0.130 0.019 0.316 0.836 0.533 0.978 0.580 0.811

0 FP 2.478 1.250 0.208 0.538
1 L1 2.537 1.024 0.830 0.803 1.267 1.013 0.841 0.811 0.000 -0.208 0.869 0.842 0.000 0.000 1.000 1.000
2 L2 2.549 1.028 0.879 0.835 1.269 1.015 0.905 0.876 -0.054 -0.262 0.883 0.921 0.525 0.977 0.544 0.650
3 L3 2.675 1.079 0.908 0.863 1.267 1.013 0.591 0.884 0.013 -0.195 0.739 0.914 0.600 1.116 0.171 0.218
4 N1 2.765 1.116 0.938 0.898 1.328 1.062 0.827 0.900 -0.425 -0.633 0.969 0.924 0.413 0.767 0.789 0.275
6 N2 5.674 2.289 0.995 0.940 1.723 1.378 0.999 0.967 -0.399 -0.607 0.979 0.946 0.375 0.698 0.927 0.338
8 N3 2.581 1.042 0.688 0.966 1.285 1.028 0.644 0.975 -0.076 -0.284 0.820 0.953 0.513 0.953 0.497 0.382

10 N4 0.086 -0.123 0.815 0.903 0.525 0.977 0.612 0.402
11 N5 0.319 0.111 0.111 0.683 0.563 1.047 0.155 0.407

0 FP 4.212 1.703 -0.492 0.440
1 L1 4.135 0.982 0.143 0.125 1.689 0.992 0.190 0.174 0.000 0.492 0.052 0.038 0.000 0.000 1.000 1.000
2 L2 4.205 0.998 0.475 0.131 1.703 1.000 0.465 0.189 -0.493 -0.001 0.512 0.038 0.400 0.909 0.779 0.885
3 L3 4.439 1.054 0.894 0.347 1.774 1.042 0.910 0.409 -0.481 0.011 0.507 0.115 0.380 0.864 0.698 0.904
4 N1 5.004 1.188 0.877 0.544 1.828 1.073 0.827 0.541 -0.420 0.072 0.439 0.152 0.400 0.909 0.541 0.919
6 N2 6.905 1.639 0.972 0.856 2.035 1.195 0.989 0.844 0.127 0.619 0.039 0.096 0.520 1.182 0.083 0.377
8 N3 4.203 0.998 0.425 0.889 1.703 1.000 0.351 0.880 -0.218 0.274 0.256 0.111 0.460 1.045 0.389 0.404

10 N4 0.246 0.738 0.035 0.079 0.560 1.273 0.077 0.282
11 N5 0.495 0.987 0.002 0.024 0.640 1.455 0.015 0.062

0 FP 5.640 1.760 0.628 0.657
1 L1 5.866 1.040 0.748 0.784 1.822 1.035 0.836 0.847 0.000 -0.628 0.869 0.878 0.000 0.000 1.000 1.000
2 L2 5.992 1.062 0.887 0.818 1.840 1.045 0.917 0.868 -0.373 -1.001 0.900 0.899 0.429 0.652 0.879 0.985
3 L3 6.459 1.145 0.827 0.838 1.956 1.111 0.878 0.870 -0.208 -0.836 0.773 0.899 0.400 0.609 0.879 0.985
4 N1 7.795 1.382 0.821 0.877 2.058 1.169 0.768 0.899 -0.286 -0.914 0.797 0.901 0.457 0.696 0.778 0.985
6 N2 8.525 1.511 0.777 0.921 2.097 1.191 0.740 0.928 0.186 -0.442 0.598 0.830 0.543 0.826 0.581 0.837
8 N3 5.973 1.059 0.597 0.930 1.836 1.043 0.637 0.934 0.271 -0.356 0.569 0.790 0.486 0.739 0.723 0.839

10 N4 0.575 -0.053 0.397 0.668 0.629 0.957 0.385 0.679
11 N5 0.743 0.115 0.133 0.570 0.657 1.000 0.222 0.616

Note:
1 The reality check results are based on non-overlapping observations constructed from the original daily data, that is, weekly data for a one-week 

horizon, monthly data for a one-month horizon, etc.  
2 For the model description, please refer to page 13-14.
3        is the bootstrap p-values of White's (2000) test for the null that model n is no better in forecasting than  the benchmark (FP) model, while

       is for the null that the best of the first n alternative models is no better in forecasting than the benchmark (FP) model.These p-values are  
based on 1,000 bootstrap replications and a bootstrap smoothing parameter a = 0.25. The results are similar when different values of a (0.5, 0.75) 
are used.

4 Redness denotes better performance of the alternative to the FP model in terms of ratio/difference, boldness denotes significance level at 15%.
5 The bootstrap program was generously provided by Tae-Hwy Lee.

TABLE 5 (Continued). Reality check on predictive ability over different horizons

MSFE MAFE

Horizon = 1 day; (R, P) = (1594,796)

MFTR MCFD

Panel B. British Pound (BP); R/P = 2

Horizon = 1 week; (R, P) = (340,169)

Horizon = 2 week; (R, P) = (161,80)

Horizon = 3 week; (R, P) = (101,50)

Horizon = 1 month; (R, P) = (72,35)

2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP

1
RCP
2

R CP



k Model MSFE Ratio MAFE Ratio MFTR Diff MCFD Ratio

0 FP 0.128 0.281 -0.003 0.480
1 L1 0.127 0.998 0.135 0.126 0.280 0.999 0.114 0.099 0.000 0.003 0.401 0.403 0.000 0.000 1.000 1.000
2 L2 0.128 0.999 0.217 0.128 0.281 1.000 0.508 0.102 0.000 0.002 0.341 0.552 0.484 1.008 0.259 0.514
3 L3 0.127 0.998 0.226 0.317 0.281 1.000 0.546 0.276 0.004 0.007 0.297 0.459 0.487 1.016 0.329 0.529
4 N1 0.130 1.020 0.907 0.602 0.283 1.007 0.941 0.531 -0.010 -0.008 0.675 0.555 0.480 1.000 0.484 0.606
5 N2 0.166 1.302 0.953 0.817 0.299 1.065 0.986 0.835 -0.021 -0.018 0.880 0.626 0.470 0.979 0.664 0.408
6 N3 0.128 0.999 0.261 0.845 0.280 0.999 0.342 0.881 0.009 0.011 0.195 0.581 0.485 1.010 0.355 0.446
7 N4 -0.012 -0.010 0.689 0.648 0.480 1.000 0.461 0.505
8 N5 0.000 0.003 0.431 0.655 0.504 1.050 0.193 0.471

0 FP 0.966 0.807 -0.003 0.491
1 L1 0.958 0.992 0.122 0.103 0.803 0.994 0.093 0.076 0.000 0.003 0.505 0.479 0.000 0.000 1.000 1.000
2 L2 0.964 0.998 0.321 0.105 0.807 0.999 0.268 0.076 -0.068 -0.065 0.885 0.703 0.462 0.940 0.886 0.951
3 L3 0.983 1.017 0.835 0.417 0.821 1.016 0.916 0.329 0.047 0.050 0.317 0.463 0.533 1.084 0.150 0.191
4 N1 0.983 1.018 0.711 0.578 0.811 1.005 0.594 0.475 -0.007 -0.003 0.500 0.515 0.485 0.988 0.429 0.233
6 N2 2.520 2.609 0.933 0.807 1.002 1.241 0.956 0.772 0.014 0.018 0.418 0.624 0.509 1.036 0.295 0.355
8 N3 0.955 0.988 0.036 0.864 0.804 0.996 0.226 0.839 0.092 0.095 0.127 0.399 0.533 1.084 0.137 0.392

10 N4 -0.060 -0.056 0.739 0.486 0.462 0.940 0.648 0.463
11 N5 0.069 0.073 0.258 0.506 0.527 1.072 0.232 0.484

0 FP 2.066 1.131 -0.089 0.475
1 L1 2.026 0.981 0.034 0.040 1.122 0.991 0.078 0.087 0.000 0.089 0.190 0.204 0.000 0.000 1.000 1.000
2 L2 2.057 0.996 0.164 0.040 1.131 0.999 0.317 0.087 -0.179 -0.089 0.953 0.231 0.438 0.921 0.932 0.974
3 L3 2.081 1.007 0.546 0.081 1.127 0.996 0.213 0.217 -0.229 -0.140 0.711 0.300 0.425 0.895 0.614 0.981
4 N1 3.857 1.867 0.923 0.586 1.395 1.233 0.940 0.606 -0.185 -0.096 0.578 0.364 0.438 0.921 0.545 0.988
6 N2 33.500 16.21 0.904 0.814 2.016 1.782 0.902 0.799 -0.101 -0.011 0.535 0.546 0.475 1.000 0.479 0.841
8 N3 2.035 0.985 0.087 0.869 1.126 0.995 0.204 0.786 0.117 0.206 0.063 0.158 0.513 1.079 0.075 0.439

10 N4 0.080 0.170 0.241 0.219 0.513 1.079 0.306 0.543
11 N5 0.200 0.289 0.118 0.221 0.588 1.237 0.099 0.191

0 FP 2.786 1.270 0.182 0.560
1 L1 2.756 0.989 0.326 0.313 1.256 0.988 0.318 0.316 0.000 -0.182 0.865 0.863 0.000 0.000 1.000 1.000
2 L2 2.811 1.009 0.808 0.379 1.275 1.004 0.579 0.375 -0.253 -0.434 0.939 0.910 0.440 0.786 0.976 0.994
3 L3 2.808 1.008 0.678 0.468 1.271 1.000 0.452 0.432 -0.181 -0.363 0.910 0.915 0.440 0.786 0.986 0.998
4 N1 12.337 4.427 0.922 0.801 1.751 1.378 0.921 0.802 -0.291 -0.472 0.963 0.940 0.420 0.750 0.996 1.000
6 N2 7.395 2.654 0.968 0.911 1.883 1.483 0.987 0.914 -0.185 -0.366 0.933 0.969 0.420 0.750 0.941 0.999
8 N3 2.737 0.982 0.218 0.951 1.246 0.981 0.215 0.933 0.088 -0.093 0.841 0.982 0.480 0.857 0.893 1.000

10 N4 0.298 0.117 0.254 0.842 0.600 1.071 0.229 0.801
11 N5 0.341 0.159 0.393 0.806 0.640 1.143 0.303 0.581

0 FP 3.858 1.590 0.142 0.543
1 L1 3.919 1.016 0.630 0.583 1.621 1.019 0.684 0.654 0.000 -0.142 0.731 0.689 0.000 0.000 1.000 1.000
2 L2 4.044 1.048 0.710 0.627 1.667 1.048 0.797 0.691 -0.155 -0.297 0.743 0.740 0.429 0.789 0.825 0.907
3 L3 4.198 1.088 0.886 0.692 1.703 1.071 0.922 0.745 0.074 -0.067 0.656 0.739 0.457 0.842 0.775 0.877
4 N1 39.655 10.28 0.919 0.823 3.085 1.939 0.921 0.822 -0.045 -0.186 0.697 0.774 0.486 0.895 0.715 0.867
6 N2 24.815 6.432 0.916 0.914 3.010 1.892 0.949 0.899 -0.179 -0.320 0.769 0.827 0.400 0.737 0.881 0.886
8 N3 3.872 1.004 0.534 0.947 1.604 1.008 0.583 0.933 0.199 0.058 0.542 0.814 0.514 0.947 0.642 0.805

10 N4 0.366 0.224 0.379 0.588 0.571 1.053 0.450 0.591
11 N5 0.381 0.240 0.268 0.592 0.571 1.053 0.429 0.608

Note:
1 The reality check results are based on non-overlapping observations constructed from the original daily data, that is, weekly data for a one-week 

horizon, monthly data for a one-month horizon, etc.  
2 For the model description, please refer to page 13-14.
3        is the bootstrap p-values of White's (2000) test for the null that model n is no better in forecasting than  the benchmark (FP) model, while

       is for the null that the best of the first n alternative models is no better in forecasting than the benchmark (FP) model.These p-values are  
based on 1,000 bootstrap replications and a bootstrap smoothing parameter a = 0.25. The results are similar when different values of a (0.5, 0.75) 
are used.

4 Redness denotes better performance of the alternative to the FP model in terms of ratio/difference, boldness denotes significance level at 15%.
5 The bootstrap program was generously provided by Tae-Hwy Lee.

TABLE 5 (Continued). Reality check on predictive ability over different horizons

MSFE MAFE

Horizon = 1 day; (R, P) = (1594,796)

MFTR MCFD

Panel C. Canadian Dollars (CD); R/P = 2

Horizon = 1 week; (R, P) = (340,169)

Horizon = 2 week; (R, P) = (161,80)

Horizon = 3 week; (R, P) = (101,50)

Horizon = 1 month; (R, P) = (72,35)

2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP

1
RCP
2

R CP



k Model MSFE Ratio MAFE Ratio MFTR Diff MCFD Ratio

0 FP 0.367 0.460 -0.004 0.496
1 L1 0.367 0.999 0.317 0.324 0.460 1.000 0.557 0.548 0.000 0.004 0.421 0.415 0.000 0.000 1.000 1.000
2 L2 0.367 1.000 0.186 0.324 0.460 1.000 0.218 0.601 -0.004 0.000 0.501 0.556 0.496 1.000 0.509 0.702
3 L3 0.368 1.002 0.953 0.560 0.460 1.001 0.915 0.783 0.004 0.008 0.374 0.545 0.505 1.018 0.325 0.524
4 N1 0.368 1.001 0.779 0.777 0.460 1.000 0.402 0.723 0.014 0.019 0.110 0.350 0.514 1.035 0.142 0.338
5 N2 0.380 1.035 0.999 0.926 0.467 1.016 0.994 0.910 -0.044 -0.039 0.925 0.508 0.476 0.959 0.806 0.475
6 N3 0.367 1.000 0.523 0.979 0.460 1.001 0.843 0.955 -0.011 -0.007 0.598 0.562 0.489 0.985 0.671 0.529
7 N4 0.013 0.017 0.247 0.451 0.501 1.010 0.359 0.602
8 N5 -0.015 -0.010 0.605 0.482 0.480 0.967 0.677 0.629

0 FP 1.847 1.107 0.155 0.533
1 L1 1.854 1.004 0.685 0.665 1.102 0.996 0.368 0.354 0.000 -0.155 0.971 0.968 0.000 0.000 1.000 1.000
2 L2 1.852 1.003 0.595 0.684 1.102 0.996 0.374 0.405 0.068 -0.087 0.730 0.915 0.491 0.922 0.756 0.947
3 L3 1.862 1.008 0.681 0.696 1.104 0.998 0.440 0.425 -0.021 -0.177 0.878 0.921 0.479 0.900 0.817 0.947
4 N1 1.895 1.026 0.913 0.763 1.117 1.010 0.808 0.526 0.036 -0.119 0.851 0.950 0.509 0.956 0.688 0.903
6 N2 1.925 1.042 0.719 0.911 1.105 0.999 0.344 0.775 -0.018 -0.173 0.896 0.964 0.527 0.989 0.489 0.851
8 N3 1.870 1.013 0.573 0.921 1.104 0.998 0.331 0.798 -0.026 -0.181 0.933 0.967 0.509 0.956 0.670 0.857

10 N4 -0.102 -0.257 0.990 0.981 0.462 0.867 0.937 0.889
11 N5 0.072 -0.083 0.881 0.999 0.515 0.967 0.862 0.979

0 FP 3.335 1.431 0.014 0.463
1 L1 3.239 0.971 0.134 0.129 1.396 0.976 0.096 0.118 0.000 -0.014 0.393 0.384 0.000 0.000 1.000 1.000
2 L2 3.268 0.980 0.162 0.156 1.409 0.985 0.123 0.128 -0.074 -0.088 0.679 0.622 0.438 0.946 0.677 0.816
3 L3 3.287 0.986 0.368 0.283 1.425 0.996 0.454 0.169 -0.031 -0.045 0.568 0.684 0.438 0.946 0.618 0.875
4 N1 3.374 1.012 0.606 0.354 1.457 1.018 0.737 0.257 -0.050 -0.064 0.616 0.730 0.463 1.000 0.429 0.719
6 N2 3.209 0.96 0.106 0.456 1.396 0.976 0.092 0.441 0.082 0.067 0.365 0.483 0.525 1.135 0.097 0.327
8 N3 3.247 0.974 0.451 0.679 1.401 0.979 0.374 0.660 0.003 -0.012 0.513 0.525 0.475 1.027 0.276 0.350

10 N4 0.156 0.142 0.170 0.572 0.488 1.054 0.177 0.396
11 N5 0.191 0.177 0.188 0.585 0.563 1.216 0.070 0.195

0 FP 5.851 1.963 -0.040 0.500
1 L1 5.784 0.988 0.546 0.518 1.964 1.000 0.654 0.649 0.000 0.040 0.607 0.603 0.000 0.000 1.000 1.000
2 L2 5.803 0.992 0.340 0.528 1.953 0.995 0.333 0.577 0.225 0.265 0.101 0.411 0.580 1.160 0.028 0.299
3 L3 6.122 1.046 0.727 0.726 1.988 1.013 0.619 0.715 -0.319 -0.278 0.899 0.528 0.480 0.960 0.664 0.325
4 N1 6.492 1.110 0.860 0.860 2.034 1.036 0.789 0.866 0.015 0.055 0.617 0.694 0.540 1.080 0.504 0.443
6 N2 7.294 1.246 0.796 0.955 2.119 1.079 0.800 0.940 -0.293 -0.253 0.872 0.746 0.420 0.840 0.931 0.473
8 N3 5.954 1.018 0.524 0.985 1.979 1.008 0.530 0.963 -0.001 0.040 0.456 0.771 0.500 1.000 0.463 0.491

10 N4 0.346 0.386 0.122 0.647 0.540 1.080 0.121 0.543
11 N5 0.312 0.352 0.471 0.699 0.500 1.000 0.627 0.598

0 FP 6.805 2.169 0.060 0.486
1 L1 6.441 0.947 0.430 0.394 2.107 0.971 0.390 0.358 0.000 -0.060 0.736 0.711 0.000 0.000 1.000 1.000
2 L2 6.467 0.950 0.278 0.395 2.099 0.968 0.193 0.326 0.017 -0.043 0.651 0.876 0.486 1.000 0.344 0.691
3 L3 6.668 0.980 0.339 0.491 2.108 0.972 0.269 0.441 0.405 0.344 0.319 0.480 0.543 1.118 0.314 0.530
4 N1 8.988 1.32 0.905 0.582 2.443 1.126 0.893 0.552 -0.255 -0.316 0.745 0.530 0.457 0.941 0.589 0.547
6 N2 7.008 1.030 0.499 0.709 2.208 1.018 0.591 0.672 -0.004 -0.065 0.539 0.599 0.457 0.941 0.606 0.608
8 N3 6.923 1.017 0.450 0.894 2.142 0.987 0.328 0.842 0.306 0.245 0.335 0.611 0.543 1.118 0.239 0.632

10 N4 0.186 0.125 0.069 0.613 0.543 1.118 0.042 0.641
11 N5 0.462 0.402 0.531 0.698 0.543 1.118 0.552 0.728

Note:
1 The reality check results are based on non-overlapping observations constructed from the original daily data, that is, weekly data for a one-week 

horizon, monthly data for a one-month horizon, etc.  
2 For the model description, please refer to page 13-14.
3        is the bootstrap p-values of White's (2000) test for the null that model n is no better in forecasting than  the benchmark (FP) model, while

       is for the null that the best of the first n alternative models is no better in forecasting than the benchmark (FP) model.These p-values are  
based on 1,000 bootstrap replications and a bootstrap smoothing parameter a = 0.25. The results are similar when different values of a (0.5, 0.75) 
are used.

4 Redness denotes better performance of the alternative to the FP model in terms of ratio/difference, boldness denotes significance level at 15%.
5 The bootstrap program was generously provided by Tae-Hwy Lee.

Horizon = 1 week; (R, P) = (340,169)

Horizon = 2 week; (R, P) = (161,80)

Horizon = 3 week; (R, P) = (101,50)

Horizon = 1 month; (R, P) = (72,35)

TABLE 5 (Continued). Reality check on predictive ability over different horizons

MSFE MAFE

Horizon = 1 day; (R, P) = (1594,796)

MFTR MCFD

Panel D.  Japanese Yen (JY); R/P = 2

2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP 2
R CP1

RCP

1
RCP
2

R CP



k Model MSFE Ratio MAFE Ratio MFTR Diff MCFD Ratio

0 FP 0.475 0.529 -0.024 0.481
1 L1 0.474 0.997 0.066 0.050 0.528 0.999 0.161 0.139 0.000 0.024 0.141 0.151 0.000 0.000 1.000 1.000
2 L2 0.475 1.000 0.343 0.050 0.529 1.000 0.617 0.139 -0.028 -0.004 0.777 0.153 0.475 0.987 0.893 0.967
3 L3 0.474 0.997 0.258 0.258 0.527 0.996 0.073 0.080 0.023 0.047 0.021 0.044 0.524 1.089 0.018 0.026
4 N1 0.478 1.006 0.856 0.470 0.530 1.003 0.818 0.277 -0.001 0.023 0.173 0.060 0.496 1.031 0.213 0.027
5 N2 0.474 0.997 0.369 0.743 0.526 0.996 0.227 0.518 -0.013 0.011 0.379 0.155 0.482 1.003 0.516 0.019
6 N3 0.474 0.997 0.059 0.807 0.528 0.999 0.136 0.573 0.019 0.043 0.065 0.199 0.518 1.076 0.043 0.022
7 N4 -0.004 0.020 0.300 0.265 0.481 1.000 0.486 0.042
8 N5 0.024 0.048 0.133 0.287 0.518 1.076 0.132 0.066

0 FP 2.118 1.158 -0.004 0.515
1 L1 2.118 1.000 0.540 0.503 1.161 1.003 0.769 0.769 0.000 0.004 0.515 0.518 0.000 0.000 1.000 1.000
2 L2 2.142 1.011 0.959 0.655 1.167 1.008 0.966 0.861 -0.086 -0.082 0.769 0.667 0.485 0.943 0.767 0.909
3 L3 2.160 1.020 0.990 0.729 1.169 1.010 0.966 0.909 -0.237 -0.233 0.965 0.712 0.432 0.839 0.961 0.926
4 N1 2.318 1.094 0.971 0.869 1.210 1.045 0.967 0.955 -0.138 -0.134 0.914 0.755 0.479 0.931 0.848 0.940
6 N2 2.273 1.073 0.958 0.956 1.195 1.033 0.957 0.988 -0.167 -0.163 0.929 0.845 0.450 0.874 0.942 0.963
8 N3 2.107 0.995 0.218 0.914 1.155 0.998 0.349 0.941 -0.073 -0.069 0.734 0.688 0.491 0.954 0.754 0.387

10 N4 -0.069 -0.065 0.707 0.750 0.462 0.897 0.908 0.486
11 N5 0.144 0.148 0.182 0.502 0.550 1.069 0.335 0.512

0 FP 4.393 1.748 0.223 0.513
1 L1 4.378 0.997 0.498 0.523 1.746 0.999 0.535 0.536 0.000 -0.223 0.870 0.872 0.000 0.000 1.000 1.000
2 L2 4.504 1.025 0.799 0.612 1.744 0.998 0.515 0.592 -0.304 -0.527 0.952 0.918 0.525 1.024 0.513 0.597
3 L3 4.499 1.024 0.778 0.681 1.745 0.999 0.504 0.651 -0.155 -0.378 0.889 0.941 0.538 1.049 0.344 0.593
4 N1 4.735 1.078 0.905 0.744 1.784 1.021 0.648 0.707 -0.444 -0.667 0.971 0.947 0.438 0.854 0.789 0.627
6 N2 4.914 1.119 0.988 0.837 1.811 1.037 0.885 0.813 -0.427 -0.650 0.974 0.950 0.513 1.000 0.545 0.666
8 N3 4.353 0.991 0.533 0.868 1.722 0.985 0.404 0.768 0.083 -0.140 0.731 0.777 0.563 1.098 0.348 0.501

10 N4 0.005 -0.218 0.890 0.814 0.525 1.024 0.264 0.514
11 N5 0.357 0.134 0.159 0.791 0.525 1.024 0.240 0.516

0 FP 6.345 2.007 -0.306 0.480
1 L1 6.040 0.952 0.025 0.017 1.964 0.978 0.024 0.022 0.000 0.306 0.127 0.100 0.000 0.000 1.000 1.000
2 L2 6.332 0.998 0.141 0.017 2.002 0.998 0.080 0.022 -0.358 -0.052 0.612 0.107 0.480 1.000 0.361 0.512
3 L3 6.436 1.014 0.691 0.017 2.037 1.015 0.804 0.024 -0.166 0.139 0.322 0.251 0.500 1.042 0.261 0.433
4 N1 6.192 0.976 0.232 0.142 1.983 0.988 0.264 0.215 0.215 0.520 0.030 0.113 0.540 1.125 0.118 0.205
6 N2 7.224 1.138 0.966 0.476 2.176 1.084 0.964 0.549 -0.238 0.068 0.346 0.163 0.500 1.042 0.256 0.321
8 N3 6.053 0.954 0.086 0.676 1.968 0.980 0.265 0.788 -0.033 0.273 0.108 0.188 0.520 1.083 0.202 0.430

10 N4 0.277 0.583 0.104 0.248 0.480 1.000 0.509 0.569
11 N5 0.621 0.926 0.025 0.073 0.500 1.042 0.261 0.579

0 FP 7.852 2.355 0.180 0.400
1 L1 7.920 1.009 0.611 0.593 2.230 0.947 0.033 0.030 0.000 -0.180 0.715 0.703 0.000 0.000 1.000 1.000
2 L2 8.309 1.058 0.854 0.660 2.280 0.968 0.078 0.045 -0.248 -0.427 0.831 0.819 0.400 1.000 0.402 0.559
3 L3 8.977 1.143 0.970 0.802 2.389 1.014 0.675 0.201 -0.550 -0.730 0.938 0.897 0.429 1.071 0.478 0.630
4 N1 9.860 1.256 1.000 0.851 2.541 1.079 0.930 0.473 -0.640 -0.820 0.963 0.910 0.429 1.071 0.505 0.680
6 N2 22.046 2.808 0.930 0.912 2.977 1.264 0.824 0.660 0.416 0.236 0.506 0.734 0.600 1.500 0.075 0.180
8 N3 7.873 1.003 0.589 0.911 2.203 0.935 0.103 0.628 -1.091 -1.271 0.990 0.767 0.371 0.929 0.650 0.183

10 N4 0.667 0.487 0.149 0.329 0.514 1.286 0.094 0.199
11 N5 0.823 0.643 0.198 0.335 0.514 1.286 0.179 0.203

Note:
1 The reality check results are based on non-overlapping observations constructed from the original daily data, that is, weekly data for a one-week 

horizon, monthly data for a one-month horizon, etc.  
2 For the model description, please refer to page 13-14.
3        is the bootstrap p-values of White's (2000) test for the null that model n is no better in forecasting than  the benchmark (FP) model, while

       is for the null that the best of the first n alternative models is no better in forecasting than the benchmark (FP) model.These p-values are  
based on 1,000 bootstrap replications and a bootstrap smoothing parameter a = 0.25. The results are similar when different values of a (0.5, 0.75) 
are used.

4 Redness denotes better performance of the alternative to the FP model in terms of ratio/difference, boldness denotes significance level at 15%.
5 The bootstrap program was generously provided by Tae-Hwy Lee.

TABLE 5 (Continued). Reality check on predictive ability over different horizons

MSFE MAFE

Horizon = 1 day; (R, P) = (1594,796)

MFTR MCFD

Panel E. Swiss Franc (SF); R/P = 2

Horizon = 1 week; (R, P) = (340,169)

Horizon = 2 week; (R, P) = (161,80)

Horizon = 3 week; (R, P) = (101,50)

Horizon = 1 month; (R, P) = (72,35)
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Note: The central line connects the point estimates of beta,

while the lower and upper lines connect 

the lower and upper bounds of the 95% 

confidence interval.

      Figure 1. The Beta over Different Horizons.
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Note: MSFE ratio = MSFE¹/MSFE⁰, where ¹ denotes the FP model and ⁰ denotes the RW model.

The solid diamonds denote the ratios significant at the 15% level in the Diebold-Mariano test, while the diamonds denote 

the insignificant cases. The dotted line gives the benchmark ratio (=1).

      Figure 2. Out-of-Sample Comparison (FP v.s. RW).
Plate 1. MSFE Ratio (R/P =2).



Note: MAFE ratio = MAFE¹/MAFE⁰, where ¹ denotes the FP model and ⁰ denotes the RW model.

The solid diamonds denote the ratios significant at the 15% level in the Diebold-Mariano test, while the diamonds denote 

the insignificant cases. The dotted line gives the benchmark ratio (=1). 

      Figure 2 (Continued). Out-of-Sample Comparison (FP v.s. RW).
Plate 2. MAFE Ratio (R/P =2).



Note: MFTR difference = MFTR¹-MFTR⁰, where ¹ denotes the FP model and ⁰ denotes the RW model.

The solid diamonds denote the differences significant at the 15% level in the Diebold-Mariano test, while the diamonds denote   

the insignificant cases. The dotted line gives the benchmark difference (=0).

      Figure 2 (Continued). Out-of-Sample Comparison (FP v.s. RW).
Plate 3. MFTR Difference (R/P =2).



Note: MCFD ratio = MCFD¹/MCFD⁰, where ¹ denotes the FP model and ⁰ denotes the RW model.

The solid diamonds denote the ratios significant at the 15% level in the Diebold-Mariano test, while the diamonds denote 

the insignificant cases. The dotted line gives the benchmark ratio (=1).

      Figure 2 (Continued): Out-of-Sample Comparison (FP v.s. RW).
Plate 4. MCFD Ratio (R/P =2).



Note: MSFE ratio = MSFE¹/MSFE⁰, where ¹ denotes the FP model and ⁰ denotes the RW model.

The solid diamonds denote the ratios significant at the 15% level in the Chao, Corradi and Swanson's (CCS) test, while the diamonds denote 

the insignificant cases. The dotted line gives the benchmark ratio (=1). 

      Figure 2 (Continued). Out-of-Sample Comparison (FP v.s. RW).
Plate 5. MSFE Ratio with CCS Test (R/P =2).



CHAPTER II

INTER-MARKET INFORMATION TRANSMISSIONS: EVIDENCE FROM HIGH-FREQUENCY
INDEX FUNDS DATA

Introduction

Important to understanding international �nancial integration, the linkages across international stock

markets have received much attention over the past two decades. Most of the research relies on parametric

GARCH models based on low-frequency data, and often �nds con�icting results about causality. For

example, Hamao, Masulis, and Ng (1990) studied the return and volatility spillovers for Tokyo, London,

and New York, using a GARCH-in-mean model based on daily open and closing prices of three major stock

indices. They found uni-directional volatility spillovers from New York to Tokyo and London for the pre-

October 1987 period. On the other hand, Lin, Engle, and Ito (1994) found bi-directional volatility spillovers

between Tokyo and New York for the same period. In contrast to Hamao, Masulis, and Ng (1990), they

used a signal-extraction GARCH model to separate the global factor that a¤ected stock returns globally

from a local factor that a¤ected stock returns locally. And their model was based on the �rst 15-minute

or 30-minute index prices in order to mitigate the "stale quotes" problem. Both the GARCH-in-mean

and the signal-extraction GARCH approaches, however, did not take into account the asymmetric relation

between stock returns and volatility changes. In view of this problem, Susmel and Engle (1994) used an

asymmetric GARCH model to study the interrelations between New York and London. They found weak

evidence of bi-directional volatility spillovers between these two markets. Other related works include

Bae and Karolyi (1994), Karolyi (1995), Koutmos and Booth (1995), and Ng (2000). Despite extensive

studies in this literature, the issues of which model is the most appropriate, and in which direction the

true causalities go remains unresolved.

In this study, we examine the short-term linkages in stock returns and volatilities by utilizing high-

frequency, intra-day exchange-traded funds (ETFs) data. As a new type of investment tool developed in

the mid-1990s, the ETFs are aimed at achieving the same return as a particular market index, such as the
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S&P 500 index and the Morgan Stanley Capital International (MSCI) equity indices.27 Moreover, unlike

most of the international equity indices, the ETFs are traded continuously in stock exchanges, such as the

American Stock Exchange, and their real-time transaction prices are available at tick-by-tick frequencies.28

These two features enable us to examine the cross-market linkages from a more microscopic view, which

in turn provides us with higher statistical precision than do the lower-frequency data employed in the

previous literature.

Based on the high-frequency feature of our data, we apply the realized volatility method to estimate

daily return volatilities and other quantities of interest (daily standardized returns and daily correlations).

The realized volatility method has three major advantages. (1) In contrast to the parametric GARCH

framework employed in previous studies, the realized volatility method does not assume any speci�c func-

tional form for the data-generating process, and thus is free of model misspeci�cation (Andersen, Bollerslev,

and Diebold, 2005). This will avoid the complication of searching a correctly speci�ed parametric volatility

measurement model. (2) According to the theory of quadratic variation, the realized volatilities measure

the latent volatilities approximately free of error, as long as the prices are sampled at an appropriately high

frequency (Andersen, Bollerslev, Diebold, and Labys, ABDL, 2001, 2003; Barndor¤-Nielsen and Shephard,

2004). Hence, the analysis based on these measures has a high level of statistical precision. The GARCH

approach, on the other hand, may provide very noisy estimates of daily volatilities, even though the model

is correctly speci�ed (ABDL, 2003). (3) Our method is easy to implement even in a high-dimensional mul-

tivariate environment. This feature is important to the study of international stock markets, as a broad

range of assets are involved. In contrast, the estimation of GARCH models becomes very di¢ cult when

the dimension of analysis extends to three or above.

The second extension of this paper is that we examine not only the in-sample, cross-market linkages, but

also how these linkages help to forecast the relevant quantities out-of-sample. Most studies in this literature

rely on in-sample analysis with little emphasis on out-of-sample forecasts, though forecasts are important in

�nancial practice. The main reason that the literature examines the out-of-sample forecasts less frequently

lies in the fact that volatilities and correlations are not directly observable. As a result, the measure of

27MSCI indices represent a broad aggregation of national equity markets, and are the leading benchmarks for global portfolio
managers.
28For more detailed information about ETFs, see www.amex.com and www.ishares.com.

38



out-of-sample forecast errors (such as mean squared errors) is not easy to calculate. Since the volatilities

and correlations studied in this paper are constructed from high-frequency data approximately free of

measurement error, they may be treated as directly observable. Therefore, the out-of-sample technique

can easily be accommodated.

Lastly, we study a broader range of assets over a much longer period of time than in those cases

examined in the previous literature. As mentioned above, the stock markets examined in earlier studies

are normally con�ned to two or three, and the sample period spans con�ned within �ve years. In contrast,

the international ETFs used in this study track fourteen international stock markets. The sample period

spans nearly a decade, ranging from May 1996 to December 2004. The extensive sample examined in this

paper provides us with a higher degree of freedom and more precise estimators.

We note that all the ETFs studied in this paper are traded in the US market. Therefore, the ETFs�

return volatilities should be interpreted as the information revealed during the opening time of the US

market. We do not think, however, that this quali�cation causes a problem for the purpose of this paper

for at least two reasons. (1) Even though the underlying stock market (for example, the Tokyo market)

is closed, news that has impact on economic fundamentals (for example, an earthquake in Tokyo) is still

released, and may a¤ect the price of the corresponding ETF traded in the US market. (2) The US

news released during the opening time of the US market may have impact on investors� expectations

about international stock markets, which in turn causes the ETFs�prices to change. For example, an

announcement of an increased trade de�cit with the UK may cause investors to expect a booming UK

economy, and hence the UK ETF�s price is likely to increase. Indeed, there is an additional bene�t using the

ETFs instead of national stock indices: it avoids the problem of non-synchronous trading in international

stock markets. This outcome enables us to examine the contemporaneous correlations between di¤erent

stock market returns.29

Our main goal is to detect the cross-market linkages using the ETFs prices. The linkages, if any, could

be generated through di¤erent channels, such as the macro news (e.g., Becker, Finnerty, and Friedman,

1995), or the contagion e¤ects (e.g., King and Wadhwani, 1990). In addition, the ETFs prices, though

generally tracking the stock indices very well, may signi�cantly deviate from their fair values for a short

29Similar methodology was employed in Karolyi and Stulz (1996) where they used the NYSE-traded American Depository
Receipts (ADRs) as a proxy for the Japanese stock index.
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period of time (e.g., Jares and Lavin, 2004). We leave further exploration along these lines for future work.

The remainder of the paper is organized as follows. In Section 2, we describe our high-frequency,

intra-day ETFs data. In Section 3, we provide a brief discussion of the theory underpinning our realized

volatility measures, along with a discussion of the volatility and correlation calculations. We then analyze

the unconditional distributions and time series properties of the calculated measures in Section 4. Using

these properties, we examine the in-sample return, volatility and correlation spillovers, and the associated

out-of-sample forecastability in Section 5. In Section 6, we extend our analysis to investigate additional

related hypotheses, such as the Monday e¤ects, the leverage e¤ects, and the contagion e¤ects. We conclude

in Section 7 with a brief summary of our main �ndings and some suggestions for future research.

Data

We obtain high-frequency intra-day transaction data between 9:30 and 16:00 Eastern Standard Time

(EST) from the Trade and Quote (TAQ) database for the S&P 500 index fund (US), as well as fourteen

international ETFs that track the MSCI indices of the following countries: Austria, Belgium, France, Ger-

many, Hong Kong, Italy, Japan (JP), Malaysia, the Netherlands, Singapore, Spain, Sweden, Switzerland,

and the United Kingdom.30 The S&P 500 index fund was introduced on January 29, 1993, and all the

international ETFs were introduced on March 12, 1996. We examine the period from May 1, 1996, to De-

cember 31, 2004, to avoid thin trading during the introductory period. To see how closely the ETFs track

their underlying stock market indices, we also obtain the corresponding daily MSCI indices denominated

in US Dollars from Datastream Inc. over the same period.

We calculate the correlations of daily, weekly, and monthly returns between the ETFs and their un-

derlying MSCI indices. The results are reported in Table 1. Generally, the correlations of daily returns

are low, especially for Asian countries (with the minimum of 0.50 for Hong Kong). These are likely due

to non-synchronized daily data, as the ETFs data are based on New York trading time, while the MSCI

indices are based on local trading time.31 As the horizon extends to one week or one month, the correla-

30For more information on the TAQ database, see Andersen, Bollerslev, Diebold, and Ebens (ABDE, 2001).

31As detailed in Hamao, Masulis, and Ng (1990), the New York trading time does not overlap with the Asian market trading
time and partly overlaps with the European market trading time.
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tions become remarkably high (with the minimum of 0.75 and 0.86 for Malaysia at weekly and monthly

frequencies, respectively). The US fund has the highest correlations among all at 0.95, 0.97, and 0.96

for daily, weekly, and monthly returns, respectively. In summary, the ETFs track the underlying stock

market indices reasonably well and can serve as good instruments for international asset allocation and

risk hedging.

Table 2a gives the list of ETFs ticker symbols as well as a summary of their daily transactions. From

Table 2a, we can see that the transaction intensity varies among the ETFs, with the maximum of 3877

trades per day for the US, and the minimum of 6 trades per day for the Netherlands. Therefore, to

achieve a certain degree of comparability and to qualify the high-frequency technique to be used later,

we focus our investigation on the two most active ETFs, the US and JP, as well as two equally-weighted

portfolios: the Asia ex-Japan portfolio (AS), which includes Hong Kong, Malaysia and Singapore; the

Europe portfolio(EU), which includes Austria, Belgium, France, Germany, Italy, the Netherlands, Spain,

Sweden, Switzerland, and the United Kingdom. Similar international portfolio construction is also used in

Guidolin and Timmermann (2004).

The components of ETF portfolios and their transaction activities are summarized in Table 2b. As can

be seen from Table 2b, the portfolios are active enough for high-frequency analysis (with the minimum

of 122 trades per day, which amounts to the inter-trade duration of 3 minutes). Meanwhile, focusing on

portfolios rather than individual assets has the following additional bene�ts: 1) it reduces the dimension of

analysis and facilitates the statistical estimation and testing; and 2) it extracts the common movement in

regional markets, which is more relevant in international asset pricing and risk hedging than the individual

movement. The second point will be further illustrated below.

To achieve high statistical precision while avoiding possible market microstructure noise, we construct

arti�cial �ve-minute prices for each individual ETF using the previous-tick interpolation method, that

is, using the prices recorded at or immediately before the corresponding �ve-minute marks.32 We then

calculate the individual ETF returns as the logarithmic di¤erences between adjacent prices, and construct

32For a detailed description of the interpolation methods, we refer to Dacorogna et al. (2001, chapter 3). We note that
Zhang, Mykland, and Aït-Sahalia (2003), and Hansen and Lunde (2004) have proposed incorporating the microstructure noise
to utilize higher frequency data. In view of our data properties (the two portfolios are not highly active), we think that the
�ve-minute frequency may be the upper bound of the sampling frequencies. To see the robustness of our results, we also
experiment with the half-hour frequency and get qualitatively similar results, which are available upon request.
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the portfolio returns as the arithmetical means of the individual component returns.33 In Figure 1, we

plot a randomly selected sub-sample of the historical �ve-minute trade and quote returns for the studied

ETFs/portfolios. Visual inspection shows that the quote data are very noisy, possibly due to discrete

clustering and bid-ask bounce e¤ects (Dacorogna et al., 2001, chapter 5). We therefore focus our analysis

on trade data. Table 3 gives the summary statistics of �ve-minute trade returns. The means of all �ve-

minute return series are approximately zero. In terms of �ve-minute volatilities, JP and AS are the most

volatile series, with sample standard deviations around 0.3, followed by the US (0.16) and then EU (0.1).

The US and EU are skewed to the left, while JP and AS are skewed to the right. All the return series are

leptokurtic. These are generally in line with the stylized facts of high-frequency returns (e.g., Dacorogna,

2001, chapter 5).

In addition, we calculate the �rst principal components of the individual ETFs trade returns and plot

them in Figure 2. Comparing Figure 2 with Figure 1a, we see that the portfolio returns behave almost

identically to the �rst principal components of their individual ETFs returns, allowing for a di¤erent scale.

This con�rms our previous claim that the portfolio returns extract the common components in regional

movement.

Measurement of volatilities and correlations

In view of the high-frequency property of our data, we apply a recently developed method, the realized

volatility and correlation, to measure the ETFs return volatilities and correlations. This method assumes

that the multivariate asset return process is a special semi-martingale (which is justi�ed if the asset price

process is arbitrage-free and has a �nite instantaneous mean; e.g., Back, 1991, Meheswaran and Sims, 1993).

Under this assumption as well as some other mild assumptions, the realized volatility and correlation are

unbiased estimators of the conditional volatility and correlation, without further assuming any speci�c

return generating model. ABDL (2001, 2003) present formal derivations and proofs, while Barndor¤-

Nielsen and Shephard (2004) provide the asymptotic distribution theory by adding the assumption that

the (logarithmic) asset price process is a continuous stochastic volatility semi-martingale. Below we brie�y

33All the returns are expressed in percentage. And the �rst �ve-minute return of a day is equal to the logarithmic di¤erence
between the �rst �ve-minute price and the previous day�s last �ve-minute price, thus is quivalently the overnight return.

42



review the theory and empirical �ndings in the literature, and discuss the calculations of our volatility

and correlation measures. For a thorough review and comparison between the realized volatility and other

volatility measurements, we refer to Andersen, Bollerslev, and Diebold (2005).

Theory

The sample period is denoted as [0; T ]. Let an n-dimensional vector of arbitrage-free logarithmic prices

at any time point t be pt, and the associated cumulative returns are de�ned as:

r�(t) � pt � p0 . (7)

Under regular conditions (such as a �nite mean in the asset price process, the information �ltration

satisfying the usual conditions of P completeness and right continuity, etc.), the cumulative return process

is a special semi-martingale, and has the following unique canonical decomposition:

r�(t) = �t +Mt = �t +M
c
t +�Mt; (8)

where �t (the mean return process) is a locally integrable and predictable process of �nite variation,Mt (the

return innovation process) is a local martingale,M c
t and �Mt are the continuous part and the compensated

jump part of Mt. Meanwhile, the quadratic variation or covariation (QV) of the return process at time t

is well de�ned as:

[r; r]t � plimJ!1
J�1X
j=0

[r�(tj+1)� r�(tj)][r�(tj+1)� r�(tj)]0 (9)

for any sequence of partitions t0 = 0 < t1 < � � � < tJ = t with supjftj+1�tjg ! 0 as J !1, and plimJ!1

refers to convergence in probability:34 In short, the QV process measures the realized sample-path variation

of the squared return process. It immediately follows from the de�nition that for a time interval (t; t+ h]

within the sample [0; T ], the increment of QV has the property:

34For a more rigorous de�nition of the quadratic variation or covariation process, we refer to Protter (1990, chapter 2).
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[r; r]t+h � [r; r]t = plimM!1

M�1X
m=0

[r�(tm+1)� r�(tm)][r�(tm+1)� r�(tm)]0 (10)

for any sequence of partitions t0 = t < t1 < � � � < tM = t+ h with supmftm+1 � tmg ! 0 as M !1. The

sum on the right hand side of (10) is referred to as realized variation or covariation (RV) in the literature.

Furthermore, the increment of QV is related to the conditional return covariance matrix (which is highly

relevant in economic modeling and �nancial practice) by the following theorem (ABDL, 2003):

Theorem: Assume 1) the arbitrage-free logarithmic price process is square-integrable; and conditional on

information at time t: 2) the mean return process f�s��tgs2(t;t+h] is independent of the return innovation

process fMugu2(t;t+h]; 3) the mean process f�s��tgs2(t;t+h] is a predetermined function over (t; t+h]: Then

the increment of QV is an unbiased estimator of the return covariance matrix conditional on information

at time t, that is,

Cov[r�(t+ h)� r�(t)jzt] = Ef[r; r]t+h � [r; r]tjztg; (11)

where zt is the information �ltration at time t.

Although the assumptions in the theorem are somehow restrictive, they accommodate a variety of

situations in the literature, such as a constant mean in the return process, deterministic intra-period

variation in the conditional mean process, the asymmetric relation between returns and volatilities, etc.

The drawback of the assumptions is that they exclude the feedback e¤ects from the return innovation to

the mean return. However, these feedback e¤ects seem to be of trivial magnitude in practice, as discussed

in ABDL (2003).

Combining (10) with (11), we can see that the RV serves as a desirable measurement of the conditional

return covariance matrix, as long as the sampling frequency is high enough and the market microstructure

noise is controlled.

44



Calculations

The above theory justi�es using the RV in the construction of conditional volatilities and correlations.

Speci�cally, in our case, n = 4 (assets), h = 1 (day), M = 78 (�ve-minute intervals); T = 2178 (days). The

daily return over (t� 1; t] is calculated as rt = r�(t)� r�(t� 1): And the RV at the daily interval (t� 1; t]

is calculated as:

RVt�1;t =
M�1X
m=0

[r�(tm+1)� r�(tm)][r�(tm+1)� r�(tm)]0; t = 1; 2; � � �T; (12)

where t0 = t � 1 < t1 < � � � < tM = t; and tm+1 � tm =
1

M
;8m = 0; 1; � � �M � 1: Furthermore,

following ABDL (2001, 2003), for t = 1; 2; � � � ; T; we de�ne daily realized variance v2i;t � [RVt�1;t]ii;

standard deviation vi;t �
p
[RVt�1;t]ii; logarithmic standard deviation lvi;t � ln

p
[RVt�1;t]ii; covariance

covij;t � [RVt�1;t]ij ; and correlation corij;t =
covij;t
vi;tvj;t

; where the subscripts ii and ij refer to the (i; i) and

(i; j) element of a matrix. Obviously, v2i;t; vi;t; and lvi;t provide appropriate measures of the conditional

variances, standard deviations and logarithmic standard deviations of asset i returns, while covij;t and

corij;t measure the conditional covariances and correlations between asset i and asset j returns.

Empirically, these measures have been applied to high-frequency foreign exchange rates (ABDL, 2001,

2003), and actively traded stocks such as the Dow Jones Industrial Average (DJIA) stocks (Andersen,

Bollerslev, Diebold, and Ebens, ABDE, 2001). The common �ndings can be summarized as follows. In

terms of unconditional distributions, v2i;t; vi;t; covij;t are right-skewed and fat-tailed, while lvi;t, corij;t; and

daily returns standardized by daily realized standard deviations (ri;t=vi;t) are approximately Gaussian.

Regarding time series properties, lvi;t and corij;t are stationary but have strong persistence, which can

largely be captured by a fractionally-integrated long memory process.
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Data analysis of daily returns, volatilities, and correlations

Unconditional distributions

The upper panel in Table 4 summarizes the unconditional distributions of daily returns (rt), as well as

daily standardized returns (rt=vt) for the four ETFs/portfolios.35 Generally, the means of rt are around

zero, and the standard deviations are larger than one. The daily US and EU returns are (slightly) left-

skewed while the daily JP and AS returns are right-skewed. All the daily returns have fatter tails than

the normal distribution with the mean kurtosis equal to 6.569. These properties are consistent with those

reported in the literature (e.g., ABDE, 2001; ABDL, 2003).

On the contrary, the unconditional distributions of daily standardized returns are similar across the

four ETFs/portfolios and are approximately standard normal. With the means still around zero, the

standard deviations are now close to one. Meanwhile, the mean of skewness coe¢ cients is reduced from

0.105 to -0.018, and the mean of kurtosis coe¢ cients is remarkably reduced from 6.569 to 2.558. Allowing

for certain sampling variation, these statistics suggest that the daily standardized returns approximately

follow the standard normal distribution.36

The middle panel in Table 4 summarizes the unconditional distributions of daily realized standard

deviations (vt) and logarithmic standard deviations (lvt). Generally, vt is skewed to the right (with the

minimal skewness coe¢ cient equal to 1.566) and is very leptokurtic (with the minimal kurtosis coe¢ cient

equal to 9.720). In contrast, lvt is only slightly skewed (with the maximal absolute skewness coe¢ cient

equal to 0.355) and much less leptokurtic than vt (three out of four kurtosis coe¢ cients are between 3

and 4). Therefore, although vt is strikingly di¤erent from a normal distributed random variable, lvt is

approximately normally distributed.

The bottom panel in Table 4 reports the unconditional distribution statistics for daily realized covari-

ances (covt) and correlations (cort). We report only the covariances and correlations between the US and

other ETF/portfolios, as these may be of main interest to US investors. Other covariances and correla-

35For notational simplicity, we omit the subscript i (or j) when the symbol is self-evident.
36Under the null hypothesis that the returns are i.i.d. normally distributed, the sample skewness and kurtosis are asymp-

totically normal with means of 0 and 3, and variances of
6

T
and

24

T
: Since T = 2178 in our case, the two standard errors are

0.052 and 0.105.
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tions share similar patterns. From Table 4, the daily realized covariances are extremely skewed to the

right (with the minimal skewness coe¢ cient equal to 4.564) and extremely fat-tailed (with the minimal

kurtosis coe¢ cient equal to 42.320). In contrast, the corresponding daily realized correlations (cort) are

approximately normal, with the skewness and kurtosis coe¢ cients close to 0.5 and 3.5.

In summary, the unconditional distribution properties found in our study are in line with those found

in foreign exchange rates and DJIA individual stocks. Speci�cally, the daily standardized returns, realized

logarithmic standard deviations, and realized correlations are close to being normally distributed. For

convenience of analysis, we thereafter focus our attention on these three quantities.

Time series properties

We now turn to the dynamic properties of the daily returns, volatilities, and correlations. Speci�cally,

we examine the following three properties: temporal dependence, stationarity, and long memory. For

temporal dependence, we test serial correlations in the time series using the Ljung-Box Q statistic. Under

the null of no serial correlations up to lag k; Qk is asymptotically Chi-square distributed with k degrees of

freedom: We choose k = 20 (approximately one month) to take into account possible weekly and monthly

seasonalities. With respect to stationarity, we employ both the augmented Dickey-Fuller (ADF) and the

Phillips-Perron (PP) tests. In the ADF test, we include a constant term, a linear time trend, and k (= 20)

lagged di¤erence terms of the dependent variable in the standard Dickey-Fuller regression. Similarly, in

the PP test, we include a constant term, a linear time trend in the standard Dickey-Fuller regression, and

calculate the residual spectrum at frequency zero using the Bartlett kernel with bandwidth k + 1 (= 21).

Under the null that the series contain a unit root, both tests follow a nonstandard distribution, with the

critical values given by simulation results.

In terms of long memory properties, we estimate the fractionally integrated model:

(1� L)d(yt � �) = "t; t = 1; 2; � � �T; (13)

where fytg is the time series of interest, and f"tg is a general short memory time series. The parameter d

determines the memory properties of fytg: when d � 0; fytg is a short memory stationary process with
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no serial correlations or with quick-decaying autocorrelations; when 0 < d < 0:5; fytg is a long memory

stationary process with slow-decaying autocorrelations; when d � 0:5; fytg is a long memory non-stationary

process.37

We apply two methods to estimate d: The �rst is the modi�ed log periodogram regression (MLP) by

Kim and Phillips (1999a), which is a modi�ed version of the log periodogram regression (LP) originally

proposed by Geweke and Porter-Hudak (1983). Speci�cally, the LP estimator of d (denoted as dLP ) is

based on the least squares regression:

ln(I(�j)) = cLP � dLP ln j1� ei�j j2 + uj ; (14)

where I(�j) is the periodogram of fytg at the the fundamental frequencies �j = 2�j=T (j = 1; � � � ; T a),

and cLP ; dLP are the parameters to be estimated. And the MLP involves a similar regression:

ln(I�(�j)) = cMLP � dMLP ln j1� ei�j j2 + uj ; (15)

where I�(�j) = v(�j)v(�j); v(�j) = w(�j)+
ei�j

1� ei�j
yTp
2�T

; w(�j) is the discrete Fourier transform of fytg

at frequency �j ; and v(�j) is the complex conjugate of v(�j). Although both d̂LP and d̂MLP are similar in

the stationary case (d < 0:5), d̂LP compares less favorably to d̂MLP when 0:5 � d < 1 and is not consistent

when d > 1 (Phillips 1999, Kim and Phillips 1999b). Therefore, we use the MLP (with a = 0:75), and

report the point estimates as well as the 95% con�dence intervals.38

With respect to the second method, we make use of a scaling law as observed in the fractionally

integrated time series (e.g., Diebold and Lindner, 1996). Speci�cally, when yt is fractionally integrated as

modeled by (13), the h-fold partial sums, [yt]h =
P
j=1;��� ;h yh(t�1)+j ; obey a scaling law var([yt]h) = c�h2d+1:

Therefore, we run the regression:

ln[var([yt]h)] = �+ � ln(h) + uh; h = 1; � � � ;H; (16)

37For a detailed discussion of long memory processes, we refer to Beran (1994) and Robinson (2003).
38Nevertheless, we also use the log periodogram regression method formalized by Robinson (1995) and obtain similar

estimation results for d. Details are available upon request.
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and estimate the long memory parameter, d̂S = (�̂ � 1)=2: In our case, we choose H = 30 and report the

point estimates and the adjusted R-squared.

Returns

The time series properties of daily standardized returns are summarized in the upper panel of Table

5. As shown by the Ljung-Box test statistics, the daily standardized returns are not serially correlated,

which is in line with the e¢ cient market hypothesis that the asset returns are generally not forecastable.

The exception is the Europe portfolio return process, which has some evidence of serial correlations (at a

5% signi�cance level). All the return series are stationary, as the unit root hypothesis is rejected by both

the ADF test and the PP test at a 1 % signi�cance level.

The above results are further corroborated by the long memory parameter estimation result. The point

estimates of dMLP and dS are around zero for all ETFs/portfolios returns, indicating that the return series

are short memory stationary. Moreover, the fact that �R2ss are nearly equal to one shows a remarkable

goodness of �t in the scaling law regression. Combined with the Ljung-Box tests and the unconditional

distribution properties (zero mean), the evidence shows that the daily standardized returns approximately

follow white noise processes.

Volatilities and correlations

In contrast with the returns, the daily realized logarithmic standard deviations and realized correlations

have very strong dynamic dependence, as seen from the middle and bottom panel of Table 5. The Q20

statistics are extremely large, with the means of 13041 and 282.2 for lvt and cort; respectively. As a result,

the null of no serial correlations up to lag order of 20 has uniformly been rejected. Despite this strong

evidence of temporal dependence, however, the unit root is rejected for almost all daily realized volatilities

and correlations (except for lvt of the Asia ex-Japan Portfolio). These together point to stationary long

memory processes, as further supported by the long memory estimation results. The estimates of dMLP

and dS generally lie in the range (0:3; 0:5) for lvt (with the means of 0.448 and 0.425, respectively) and
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in the range (0:1; 0:3) for cort (with the means of 0.117 and 0.171, respectively). Therefore, both lvt and

cort seem to follow fractionally integrated processes, and the former tends to be more persistent than the

latter. Note that a larger value of d means more persistence.

To further illustrate the long memory behavior of the volatilities and correlations, we plot in Figure

3 the sample autocorrelation functions (ACF) up to lag order of 120 for lvt and cort, as well as for the

�ltered series, (1 � L)dMLP lvt and (1 � L)dMLP cort:
39 The solid lines in the �gure represent the ACF of

the original series, while the dashed lines are the ACF of the �ltered series. The dotted lines give the

95% con�dence bands of an i.i.d. Gaussian process. As seen from the �gure, the ACF of lvt and cort are

signi�cantly positive even at the lag of 120 days, with lvt showing much stronger persistence than cort. In

contrast, the ACF of the �ltered series are within the 95% con�dence bands most of the time. This result

shows that the fractional di¤erencing operator has eliminated much of the temporal dependence in the

daily realized logarithmic standard deviations and realized correlations. However, there are still signi�cant

autocorrelations, at least at the �rst one or two lags in the �ltered series.

In summary, the daily standardized returns are found to approximately follow white noise processes,

while the daily realized logarithmic standard deviations and realized correlations are long memory sta-

tionary. Applying the fractionally di¤erenced operator (1 � L)d; where d is the long memory parameter

estimated by either the MLP or the scaling law method, we can eliminate much but not all of the serial

dependence in the realized logarithmic standard deviations and realized correlations.

Cross-market linkages in returns, volatilities and correlations

Taking into account the data properties observed in Section 4, we now investigate the linkages of daily

returns, volatilities, and correlations across the United States (US), Japan (JP), Asia ex-Japan (AS),

and Europe (EU) markets/regions. The investigation is carried out in two ways. First, we examine

whether there are any signi�cant in-sample return, volatility, and correlation spillovers across the four

markets/regions. Second, we examine whether the in-sample spillovers help to forecast daily returns,

volatilities, and correlations out-of-sample .

39Similar results are found for the �ltered series (1� L)dS lvt and (1� L)dS cort:
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While in-sample analysis has been frequently applied to investigate the cross-market linkages with

relatively low frequency data (e.g., Hamao, Masulis, and Ng, 1990; Lin, Engle, and Ito, 1994; Craig, David,

and Richardson, 1995), the out-of-sample forecastability has been less examined although it may be more

relevant in a practical sense. Since the volatilities and correlations in our study are constructed from high-

frequency, intra-day data approximately free of measurement error (as discussed in Section 3), we may

treat them as directly observable and hence evaluate the out-of-sample forecastability accordingly. For a

good reference of using realized volatility measures in out-of-sample forecasts, we refer to ABDL (2003).

In-sample spillovers

In view of the di¤erences in time series properties, we model and estimate the in-sample return, volatility

and correlation linkages separately. Meanwhile, we note that our sample period covers the Southeast Asia

Crisis (1997) and the recent technology bubble (1996-2000).40 Also, the trading of the ETFs was not highly

active during the early period after the inception. These factors could lead to potential structural changes

in the sample and a¤ect the estimation results. Therefore, in addition to the full sample analysis, we do

the same analysis over the sub-period from September 2000 to December 2004 (approximately half the size

of the entire sample period), during which there was a dramatic decline in the US market.

Returns

Although the daily returns have fatter tails than the normal distribution, the daily standardized re-

turns are approximately Gaussian (as described in Section 4). Meanwhile, the daily standardized returns

are contemporaneously related, based on their sample correlation matrix (with the minimal correlation

coe¢ cient equal to 0.44; the table is available upon request). Therefore, we model the daily standardized

returns as a Gaussian Vector Autoregressive (VAR) system, that is:

yt = �+

5X
j=1

�jyt�j + "t; (17)

40See Forbes and Rigobon (2002), and Ball and Torous (2004) for analysis of the cross-market linkages during the Southeast
Asia Crisis. See also Brooks and Negro (2002), and Hon, Strauss, and Yong (2003) for e¤ects of the technology bubble on the
cross-market comovement.
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where yt = frus;t=vus;t; rjp;t=vjp;t; ras;t=vas;t; reu;t=veu;tg0.41 All the inverse roots of the characteristic AR

polynomial lie inside the unit circle, indicating covariance stationarity. In addition, the VAR residuals

reveal no signi�cant autocorrelations based on the portmanteau tests (Lutkepohl, 1991, p. 150), which

suggests that the lag order of 5 is adequate to accommodate the dynamics in the standardized returns

system. To save space, we report only the coe¢ cients for the �rst lags, which can be seen as measuring the

overnight return spillovers, and the adjusted R-squared ( �R2). Meanwhile, we carry out pairwise Granger

causality tests to see whether there are signi�cant return spillovers (up to 5 lags) from one endogenous

variable to another. Under the null of no signi�cant spillovers, the test statistic is asymptotically Chi-

square distributed with 5 degrees of freedom. In addition, we test to determine if there are signi�cant

spillovers (up to 5 lags) from all other lagged endogenous variables, in which case the Granger causality

test statistic is asymptotically Chi-square distributed with 15 (= 5� 3) degrees of freedom. To save space,

we report only the p-values for the Granger causality tests.

The results are reported in Table 6a. Three speci�c patterns are observed. First, the standardized

returns generally demonstrate reversals over a one-day horizon, as can be inferred from the negative sign of

the AR(1) coe¢ cients. (The only exception is the EU returns, which have positive but insigni�cant AR(1)

coe¢ cients.) The reversals in asset returns have been documented in the literature and may be explained

by the "stock market overreaction" hypothesis (e.g., DeBondt and Thaler, 1985; Lo and MacKinlay, 1999).

According to this explanation, investors are subject to waves of optimism and pessimism and tend to

overreact to unexpected and dramatic news. As an empirical implication, the asset returns must be

negatively autocorrelated for some holding period.42

Second, there is some evidence of overnight return spillovers across markets/regions, though the signs

might di¤er. On one hand, positive spillovers are observed between the US and EU markets/regions. For

example, over the full sample, the coe¢ cient for the �rst lag of EU (US) in the US (EU) return equation

is 0.05 (0.21) at a 1% signi�cance level. In an economic sense, it means that a 1% increase in the EU (US)

standardized return leads to a 0.05% (0.21%) increase in the following day�s US (EU) standardized return

41The Akaike and Schwarz criteria choose the lag order of 5 and 1, respectively. Considering our large sample size, we choose
the lag order of 5 (approximately one week) to maintain conservatism.
42See Lo and MacKinlay (1999, chapter 5) for a more detailed discussion.
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(all other things being equal). On the other hand, negative spillovers are found from JP to the US and EU.

For example, over the full sample, the coe¢ cient for the �rst lag of JP in the US (EU) return equation is

-0.08 (-0.16) at a 5% (1%) signi�cance level. That is, a 1% increase in the JP standardized returns leads

to a 0.08% (0.16%) decrease in the following day�s US (EU) standardized returns (all other things being

equal). It remains uncertain what causes the di¤erence in the signs of return spillovers.

Third, the in-sample return spillovers (up to 5 lags) generally disappear in the sub-sample period. This

can be seen from the results of pairwise Granger causality tests. Over the full sample, there are signi�cant

spillovers from all other lagged returns to the US returns (at a 2% level), of which the spillovers from the

AS returns play an important role (at a 3% level). Similarly, signi�cant spillovers from all other lagged

returns to the EU returns (at a 1% level) are observed, where the spillovers from the US and JP returns

(at a 1% level) play the dominant role. Over the sub-sample, however, no signi�cant spillovers are found.

The change of results from the full sample to the sub-sample is consistent with a basic prediction of

e¢ cient markets. Speci�cally, during the initial period after the inception of ETFs, the investors knew

little about these new products and therefore might not have taken positions in the ETFs. The thin trading

led to market ine¢ ciency in that the ETF returns might be forecastable from cross-market linkages (and

its own history). However, as the investors were well informed about the ETFs, they were more involved

in trading the ETFs and exploring possible arbitrage opportunities. These activities eventually weakened

or annihilated the cross-market linkages in returns.43

Despite these three patterns, the daily standardized returns of the four markets/regions are hardly

explained by either the spillover e¤ects or its own lags, as re�ected by the negligible magnitude of adjusted

R-squared (with the maximum of 0.02). It is consistent with our �nding in Section 4 that daily standardized

returns are short memory stationary (approximately white noise processes). Combined with the out-of-

sample evidence below, our result is in line with previous �ndings in the literature that the returns are

generally not forecastable.

Volatilities

Based on the time series properties discussed in Section 4, we model daily realized logarithmic standard

43Lo and MacKinlay (1999, chapter 1) have provided a more detailed explanation along this line.
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deviations as a long memory Gaussian VAR system, that is:

(1� L)dyt = �+
5X
j=1

�j(1� L)dyt�j + "t; (18)

where yt = flvus;t; lvjp;t; lvas;t; lveu;tg0; and d is the long memory parameter vector for yt estimated from

the MLP method, i.e., d = fdus; djp;das;deug0MLP ; and the product of (1�L)d and yt is calculated through

element-by-element multiplication.44 The fractional di¤erence �lter (1 � L)d is used to capture the long

memory in the flvtg process, while the VAR captures any remaining dynamics.45 The long memory

Gaussian VAR model is validated by the characteristic AR polynomial results and the portmanteau test

results. Again, we report only the coe¢ cients for the �rst lags (measuring the overnight volatility spillovers)

and the pairwise Granger causality results.

The results are reported in Table 6b. Several patterns are observed, although the full-sample results are

slightly di¤erent from the sub-sample results. First, self memory (both long and short memory) dominates

the volatility dynamics. The long memory parameter captures the main dynamics in the volatility process

(see Section 4, Figure 3). And as indicated by the magnitude of the AR(1) coe¢ cient (relative to that

of the spillover coe¢ cients) in each equation, the short memory plays the dominant role in the �ltered

volatility processes. Note that negative AR(1) coe¢ cients do not con�ict with the volatility clustering

observed in the data, since they are applied to the �ltered instead of the original volatility series (ABDE,

2001).

Second, there are asymmetric overnight volatility spillovers, which are mainly driven by the US infor-

mation. Speci�cally, there are signi�cant overnight volatility spillovers from the US market to all other

three markets/regions, but not in the opposite directions. For example, over the full sample, the coe¢ cients

for the �rst lag of the US in the JP, AS, EU volatility equations are 0.07 (at a 1% signi�cance level), 0.06

(at a 5% signi�cance level), 0.08 (at a 5% signi�cance level), respectively, with the magnitude only smaller

than that of the corresponding AR(1) coe¢ cients.46 In the US volatility equation, however, no signi�cant

44Similar results are obtained using the long memory parameters estimated from the scaling law method (dS).
45The Akaike and Schwarz criteria choose the lag order of 4 and 1, respectively. Considering our large sample size, we

employ VAR(5) to maintain conservatism.
46The values of AR(1) and spillover coe¢ cients should be interpreted carefully since they are applied to the �ltered, instead

of the original volatilities.
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overnight spillovers are found from any other markets/regions. This evidence corroborates the �nding in

Hamao, Masulis, and Ng (1990), as summarized in the introduction. In addition, there are signi�cant

overnight volatility spillovers between AS and JP in the full sample (with both spillover coe¢ cients equal

to 0.05 at a 5% signi�cance level), as well as from EU to AS (with spillover coe¢ cients equal to 0.04 and

0.06 at a 5% signi�cance level in the full and sub-sample, respectively).

The interpretation of the asymmetry in the volatility spillovers is uncertain at this stage. It could be

explained by the public information hypothesis, as discussed in Becker, Finnerty, and Friedman (1995, p.

1192). According to this explanation, "because the US is the dominant producer of goods and services

in the world economy, the US is also the most important producer of information. In addition, US

investors will possess a more provincial view and ignore information from other countries." Therefore, the

volatilities in the US stock markets (as caused by the US news) tend to lead those in other markets/regions.

Alternatively, the asymmetry may be due to market frictions in the international ETFs. As reported in

Table 2, the international ETFs are traded much less frequently than the US ETF. Accordingly, the bid-ask

spreads of the international ETFs are much wider than those of the US ETF (generally more than ten-fold

in magnitude, not reported here). These market frictions may cause international ETFs to slowly respond

to the US news, say, with one day lag or longer. On the other hand, the high liquidity and small bid-ask

spreads in the US ETF market enable the US ETF to immediate incorporate the news from other markets,

say, within a day or even an hour. Thus, we �nd signi�cant inter-day information spillovers from the US to

other ETFs/ETF portfolios, while no inter-day spillovers in the opposite direction. Formal investigation

is needed of the causes of these volatility spillovers. Not surprisingly, the bilateral overnight spillovers

between AS and JP could be attributed to the close tie between these two economies.

Third, cross-market spillovers provide strong forecastability in the JP and AS volatilities, as indicated

by the Granger causality results. Speci�cally, the lagged volatilities of all other markets/regions (up to 5

lags) Granger cause the JP and AS volatilities at a 1% level in both full and sub-sample. This evidence

suggests the importance of appreciating the cross-market linkages in volatility forecasts. We will further

explore this point in the out-of-sample analysis.

Correlations

55



Correlations have frequently been utilized to examine international transmission mechanisms using low-

frequency return data (e.g., King and Wadhwani, 1990; Lee and Kim, 1993; Calvo and Reinhart, 1996; See

Claessens and Forbes, 2001, for an excellent survey of recent empirical papers). The realized correlation

method using high-frequency data, however, is relatively less employed in this literature. A related study is

done by ABDE (2001), where they use the daily realized correlations to examine whether past volatilities

have a larger impact on asset return correlations when the markets are in a downturn.

As in the volatility modeling, we model the daily realized correlations (cort) as a long memory Gaussian

VAR system, that is:

(1� L)dyt = �+
5X
j=1

�j(1� L)dyt�j + "t; (19)

where yt = fcorus;jp;t; corus;as;t; corus;eu;tg0; d = fdus;jp; dus;as;dus;eug0MLP .
47 Again, the model is validated

by the characteristic AR polynomial results and the portmanteau test results. We report the coe¢ cients

for the �rst lags (measuring overnight correlation spillovers) and the pairwise Granger causality results.

These results are reported in Table 6c. A large part of the correlation dynamics is captured by their own

long memory (as discussed in Section 4). The VAR system explains only a small portion of the correlation

variations, as re�ected by the marginal magnitude of �R2 (with the mean of 0.016). Nonetheless, the VAR

system successfully removes the remaining dynamics in the �ltered correlation series, as the VAR residuals

reveal no signi�cant autocorrelations based on the portmanteau tests.

With regard to correlation linkages, we observe positive spillovers from the US-EU to the US-AS

correlations. Speci�cally, the overnight spillover coe¢ cients are 0.06 (at a 1% signi�cance level) and 0.09 (at

a 5% signi�cance level) in the full and sub-sample, respectively. This lead-lag relation is further con�rmed

by the Granger causality results, where the US-EU correlations Granger cause the US-AS correlations at

a 5% and a 1% signi�cance level in the full and sub-sample, respectively. As a result, there is a signi�cant

predictive enhancement in the US-AS correlation from all cross-market spillovers (a 1% level in both the

full and sub-sample). Besides, we also observe bilateral causality between the US-JP and the US-AS in

the sub-sample.

47Both the Akaike and Schwarz criteria choose the lag order of 1 and we employ VAR(5) to maintain conservatism.
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The correlation spillovers from the US-EU to the US-AS could possibly be due to timezone di¤erence

in the underlying stock markets. As documented in Hamao, Masulis, and Ng (1990, Figure 1), the US

market opens in late afternoon for the European (London) market, resulting in concurrent trading in both

markets for about two-and-a-half hours (ignoring the di¤erences in daylight savings time). The Asian

(Tokyo) market, on the other hand, is closed during the US trading hours. Therefore, when some common

shock occurs during the US trading period, the US-EU correlations could be immediately impacted, while

the e¤ect on the US-AS correlations might not be observed until the next day. As a result, we observe a

lead-lag relation from the US-EU to the US-AS. The drawback for this interpretation is that it could not

explain why the US-EU correlations do not lead the US-JP correlations. Formal investigation may need

to take into account the trading activity of each market, investors�expectations, etc.

Out-of-sample forecastability

In the out-of-sample analysis, we examine whether the in-sample cross-market linkages help to improve

the forecastability of returns, volatilities and correlations out-of-sample. There has been a growing amount

of literature discussing the pros and cons of the in-sample and out-of-sample analysis (e.g., Granger, 1990;

Inoue and Kilian, 2005). We view here the in-sample linkages and out-of-sample forecastability as mutually

complementary, if not two sides of the same coin. On one hand, the discovered in-sample linkages may not

enhance the forecasts signi�cantly as their explanatory power may be marginal (as indicated by small �R2).

In this case, although the in-sample linkages help us understand the market relations, they may not be

of much value in �nancial practice where forecasts are of more concern. On the other hand, even though

some in-sample linkages are not signi�cant, they may be relevant in improving forecasts if they contain

useful information of missing variables in the true forecast model.

With respect to the out-of-sample methodology, there are three prevalent schemes: recursive, rolling,

and �xed.48 We use the recursive scheme in this paper, and qualitatively similar results are found for

the other two methods. Speci�cally, we divide the whole sample fytg of size T into two sub-samples of

size R and P; where R = P =
T

2
. For each model (described below), we use the estimation result from

48See McCracken (2004) for description and comparison of these three schemes.
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the �rst sub-sample to form a one-day-ahead forecast; denoted as ŷR+1. We calculate the forecast error

at T + 1 as êR+1 = yR+1�ŷR+1: Then we expand the estimation window by including yR+1 and run the

regression on the increased sample and form the forecast error êR+2 = yR+2�ŷR+2. We repeat these steps

until the last forecast error, êR+P = yT�ŷT ; is obtained. We then calculate the mean squared errors as

MSE = P�1
PP
t=1 ê

2
R+t:

In accordance with our in-sample analysis, the models used in out-of-sample forecasts are as follows:

H0 : yi;t = �+

5X
j=1

�ijyi;t�j + "i;t;

Hk
a : yi;t = �+

5X
j=1

�ijyi;t�j +
5X
j=1

�kj yk;t�j + "i;t; k 6= i; k = 1; � � � ; n;

Hall
a : yi;t = �+

nX
k=1

5X
j=1

�kj yk;t�j + "i;t;

where yt refers to rt=vt; (1� L)dMLP lvt; (1� L)dMLP cort; accordingly; n = 4 for rt=vt; (1� L)dMLP lvt; and

n = 3 for (1� L)dMLP cort. In other words, we use H0 (AR(5) model) as the benchmark model for return,

volatility and correlation forecasts. We then examine the forecastability from the kth market spillovers

by comparing the MSE of H0 and Hk
a . In addition, we examine the forecastability from all possible

cross-market linkages by comparing the MSE of H0 and Hall
a : Therefore, there are four alternatives to the

benchmark model in each return (or volatility) forecast, and three alternatives in each correlation forecast.

To test the signi�cance of cross-market forecastability, we construct the Diebold-Mariano (DM) t-

statistic as:

DM =
p
P

�dp
!̂d
;

where �d is the di¤erence between the MSE of H0 and Hk
a (or H

all
a ), and !̂d is the heteroscedasticity

consistent variance estimator of �d: Under the null that the alternative model does not improve the out-

of-sample forecastability over the benchmark model; DM t-statistic follows an asymptotically normal
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distribution (Diebold and Mariano, 1995). However, since here H0 is nested in Hk
a (or H

all
a ), the asymptotic

distribution of DM t-statistic is nonstandard unless P=R! 0 as T !1 (see Clark and McCracken, 2001;

McCracken, 2004). In view of this fact, we use the critical values calculated numerically by McCracken

(2004). As shown by the Monte Carlo and empirical evidence in McCracken (2004), the critical values

provide accurately sized and powerful tests for forecast comparison among nested models.

The results are reported in Table 7. For daily standardized returns, there is no signi�cant out-of-sample

forecastability from cross-market linkages. Indeed, including the cross-market information usually does

worse than the benchmark model, as re�ected by the negative sign of DM t-statistics. Note that negative

DM t-statistic means larger MSE of Hk
a (H

all
a ) than that of H0: This �nding con�rms our previous result

that daily standardized returns are generally not forecastable.

In contrast, there is strong evidence of predictive enhancement from cross-market linkages in volatilities.

Speci�cally, the volatility spillovers from US improve both the JP and AS volatility forecasts at a 5%

signi�cance level. Meanwhile, the information from JP (AS) enhances the forecastability in AS (JP)

volatility at a 1% (5%) signi�cance level. As a result, the information from all other markets/regions

yields superior forecast performance in the JP and AS volatilities at a 1% signi�cance level. No signi�cant

forecastability is found for other cross-market volatility linkages.

With regard to correlations, we �nd that the US-AS correlations improve the forecastability in the US-

JP correlations at a 1% signi�cance level. In addition, for the US-JP correlation forecasts, the model taking

account of all cross-market information outperforms the benchmark model at a 5% level. Meanwhile, the

lagged US-JP correlations improve the US-EU forecasts at a 5% level, but all the cross-market information

together does not yield a signi�cant improvement in forecasting the US-EU correlations.

In summary, the out-of-sample results are partially consistent with the in-sample evidence. The weak

in-sample return spillovers do not help to forecast daily standardized returns out-of-sample, consistent with

the common wisdom that returns are generally not forecastable. The in-sample volatility spillovers from

the US, as well as bilateral spillovers between JP and AS, yield a signi�cant enhancement in forecasting

the JP and AS volatilities. The in-sample correlation spillovers from the US-AS to the US-JP improve the

predictive performance in the US-JP correlations. Other discovered in-sample volatility and correlation

linkages, however, do not provide signi�cant improvement in out-of-sample forecasts.
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Extensions

The cross-market linkages discussed in the preceding section are examined in a simpli�ed framework,

that is, without considering possible exogenous variables. In this section, additional tests of related hy-

potheses are performed.

The �rst set of tests concerns the Monday e¤ects in daily returns, volatilities, and correlations. On

one hand, negative mean returns are documented for US stocks on Mondays (e.g., French, 1980; Gibbons

and Hess, 1981). Similar evidence is also found for international stocks (e.g., Ja¤e and Wester�eld, 1985;

Condoyanni, O�Hanlon, and Ward, 1988). On the other hand, the return volatilities of US stocks are found

to be higher on Mondays (Fama, 1965; Godfrey, Granger, and Morgenstern, 1964). Since correlations

are closely related to volatilities, it is natural to suspect that similar seasonality might also exist in daily

correlations. Therefore, we add a dummy variable Dt for the day following a weekend or holiday in all

return, volatility, and correlation equations to examine possible seasonality. 49

The second set of tests deals with the leverage e¤ects of daily returns on daily volatilities. It is a

well-known stylized fact that negative returns have a larger impact on future volatilities than do positive

returns of similar magnitude, as �rst discussed by Black (1976).50 In a recent work, ABDE (2001) used daily

realized logarithmic standard deviations to examine this e¤ect and �nd statistically (but not economically)

signi�cant volatility asymmetry for most DJIA stocks. Motivated by their methodology, we include in each

equation in the volatility VAR system the following extra terms (1� L)dxt�1; where xt = flvus;tI(rus;t <

0); lvjp;tI(rjp;t < 0); lvas;tI(ras;t < 0); lveu;tI(reu;t < 0)g0; d = fdus; djp;das;deug0MLP ; and I(�) is the indicator

function. Note that we here allow for more general leverage e¤ects, that is, not only the asset�s own returns

but also other assets�returns may have asymmetric e¤ects on the asset�s volatilities.

Finally, we check whether there are contagion e¤ects in daily correlations. As de�ned in Forbes and

Rigobon (2002), contagion refers to "a signi�cant increase in cross-market linkages after a shock to one

country (or group of countries)." To test this hypothesis, cross-market return correlations are often calcu-

lated for a stable period and then compared with the return correlations calculated after a shock. If there

49We also study the Monday e¤ects by isolating the Monday e¤ects from the day-after-holiday e¤ects and obtain similar
results. The tables are available upon request.
50 It is under discussion whether this volatility asymmetry is due to the leverage e¤ect as explained by Black, or due to a

volatility feedback as discussed by Campbell and Hentschel (1992).
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was a signi�cant rise in correlations after the shock, then contagion occurred (e.g., King and Wadhwani,

1990; Lee and Kim, 1993; Calvo and Reinhart, 1996). One drawback for this methodology is that it does

not allow for the time-varying property in return correlations. In fact, as with return volatilities, the return

correlations are stochastic and change over time (e.g., Dacorogna et al., 2001, chapter 10). Ignoring the

stochastic property in correlations, therefore, may lead to an over-rejection of the null of no contagion,

as discussed in Ball and Torous (2004). The realized correlation, by construction, takes into account the

stochastic nature in correlations. In addition, the high-frequency feature in this measure enables us to

detect contagion (if there is any) within a much shorter period.

Speci�cally, we include in each equation in the correlation VAR system the following extra terms zt�1;

where zt = fI(rus;t < rus;(q)); I(rjp;t < rjp;(q)); I(ras;t < ras;(q)); I(reu;t < reu;(q)g0, the subscript (q) denotes

the qth quantile. Therefore, the extra terms zt�1 are the dummy variables for those markets/regions

experiencing a dramatic downturn. To our knowledge, there is no economic theory to guide the choice of

the threshold quantile q: We therefore experiment with various values from the 5
1000 th quantile to the

1

2
th

quantile (median). The results are similar and we report the results with q =
1

100
.

Table 8 shows the results for the three sets of tests.51 With respect to daily standardized returns, there

are generally no signi�cant Monday e¤ects. The only exception is the AS market in the full sample, with

the coe¢ cient equal to -0.08 at a 5% signi�cance level. The di¤erence between our result and previous

�ndings may be due to the high-frequency data and methodology employed here. Alternatively, it could

be that the Monday e¤ects in returns have weakened or disappeared as practitioners implement strategies

to take advantage of this anomaly, as argued in Schwert (2002).

With respect to daily volatilities, signi�cant Monday e¤ects are observed in all markets/regions. Inter-

estingly, in contrast with other markets/regions, where signi�cantly positive Monday e¤ects are found, the

US market has signi�cantly lower volatilities on Mondays.52 In addition, we �nd signi�cant leverage e¤ects

of the US returns on the US, AS, and EU volatilities in the full sample. That is, negative US returns are

likely to increase the following day�s return volatilities in the US, AS, and EU markets/regions. Signi�cant

leverage e¤ects are also observed for the AS returns on the US and AS volatilities (full sample), as well as

51To save space, we report only the coe¢ cients measuring the Monday, leverage, and contagion e¤ects. Detailed estimation
results are available upon request.
52This is contrary to �ndings of Fama (1965) and Godfrey, Granger, and Morgenstern (1964), but is in accordance with

evidence in Halil Kiymaz and Hakan Berument (2002), where the lowest return volatility is observed on Mondays for the US.
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for the EU returns on the US (sub-sample) and AS (full sample) volatilities.

In terms of daily correlations, the evidence of Monday e¤ects is mixed. Speci�cally, signi�cantly positive

Monday e¤ects are found in the US-AS correlations (sub-sample) as well as the US-EU correlations (full and

sub-sample), but not in other cases. In addition, we �nd no evidence of contagion in all markets/regions,

as all the contagion coe¢ cients are insigni�cant. The lack of contagion evidence could be due to the fact

that there are no extreme shocks such as the 1987 US market crash during the sample period we examine.53

Alternatively, it could be the case that there is indeed no contagion e¤ect at all, as discussed in Forbes

and Rigobon (2002).

Conclusion

In this paper we examine the cross-market linkages in returns and volatilities over the period 1996-

2004, using high-frequency intra-day transaction data of the exchange-traded funds (ETFs) that track the

S&P 500 index and fourteen international stock indices. To overcome inactive intra-day trading of the

international ETFs, we focus on the linkages across the United States, Japan, and two regions: Asia ex-

Japan and Europe. The high-frequency feature in the data enables us to construct model-free estimates of

daily volatilities and correlations with statistically high precision, as suggested by the theory of quadratic

variation. This allows us to analyze the properties of daily returns, volatilities, and correlations as they

are directly observable and use these quantities to model and test the in-sample cross-market spillovers

and out-of-sample forecastability.

We �nd that our constructed measures (of daily returns, volatilities, and correlations) share very sim-

ilar properties to those constructed from high-frequency exchange rates or Dow-Jones Industrial Average

individual stock prices, as documented in Andersen, Bollerslev, Diebold, and Labys (2001, 2003), and

Andersen, Bollerslev, Diebold, and Ebens (2001). In terms of unconditional distributions, daily realized

variances and covariances are right-skewed and leptokurtic, while daily returns standardized by daily real-

ized standard deviations, daily realized logarithmic standard deviations, and daily realized correlations are

53Although the 1997 Southeast Asia crisis is covered, the crisis may not a¤ect the countries/regions outside that area (e.g.,
Ball and Torous, 2004).
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approximately Gaussian. With respect to time series properties, daily realized logarithmic standard devia-

tions and realized correlations are long memory stationary, which may be largely captured by fractionally

integrated processes.

We observe weak cross-market linkages in daily standardized returns and correlations, as well as strong

linkages in daily realized volatilities. Speci�cally, there is some evidence of in-sample return spillovers

over the entire sample period (May 1996-December 2004). However, the discovered cross-market return

linkages either disappeared or diminished over the sub-period (September 2000-December 2004). Moreover,

the cross-market return spillovers, if there are any, do not help to forecast the daily returns out-of-sample.

We view this evidence as consistent with a basic prediction of e¢ cient markets. In contrast, there are

signi�cant in-sample volatility spillovers from the US market to the other markets/regions, but not in the

opposite direction. This �nding corroborates the evidence in Hamao, Masulis, Ng (1990), but is contrary to

the �nding in Lin, Engle, and Ito (1994). Moreover, the discovered volatility spillovers signi�cantly improve

the out-of-sample forecastability in the Japan and Asia ex-Japan volatilities. This suggests the importance

of incorporating cross-market linkages in volatility forecasting. In terms of correlation linkages, we �nd the

US-Europe daily correlations lead the US-Asia ex-Japan correlations. The discovered correlation linkages,

however, do not signi�cantly improve the forecastability in the US-Asia ex-Japan correlations.

We further check the Monday e¤ects (in daily returns, volatilities, and correlations), the leverage

e¤ects (in daily volatilities), and the contagion e¤ects (in daily correlations). We �nd no signi�cant

Monday e¤ects in daily returns, weak evidence of positive Monday e¤ects in daily correlations, and strong

evidence of Monday e¤ects in daily volatilities. Interestingly, in contrast with other three markets/regions,

the US volatilities are found to be lower on Monday or the day after a holiday. Regarding the leverage

e¤ects, negative US returns are likely to increase the following day�s volatilities in three out of the four

markets/regions examined. Finally, we �nd no contagion e¤ects in daily correlations; that is, there is no

signi�cant rise in correlations after a shock to a market. This could be seen as evidence supporting Forbes

and Rigobon (2002).

The results in this paper suggest at least three avenues of future research. First, our volatility mea-

sures are based on the realized volatility method, since this method is free of model-misspeci�cation. It

is interesting to see if our results hold under parametric GARCH models as employed in the previous
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literature. By directly comparing the results from both methods, we may get a better sense of the gains

from high-frequency sampling. This approach is pursued in Yang (2006).

Second, although we detect signi�cant cross-market linkages, we remain uncertain about the forces

behind them. It is conceivable that the US macro news plays an important role because all the ETFs are

traded on the US market. However, since the ETFs are special instruments that track national stock indices,

the underlying countries� economic fundamentals, the exchange rate dynamics, as well as the investors�

expectations, all may contribute to the observed patterns as well. To disentangle these intervening factors,

we need to add actual information �ows (e.g., macroeconomic news) to sort out what the markets are

responding to. Again, the high-frequency feature in our data is essential for such analysis.

Lastly, our study in this paper mainly concerns the short-run cross-market linkages. It is of interest to

examine the cross-market linkages at a longer horizon, such as one week or one month. These may help us

to detect the trend in international �nancial integration. And these linkages may provide useful information

to investors of medium and long horizons. In addition, since the number of observations increases within

each week or month, we could apply the realized volatility and correlation method to a wider range of

individual markets (such as the UK, Germany, Hong Kong, Singapore, etc.), that may be of interest to a

particular group of theorists and investors. Moreover, we could incorporate economic variables that are

only available at low frequencies, such as industrial production, in�ation, and international trade account,

into the model as to examine the macro factors behind the cross-market linkages. We leave these for future

work.
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Table 1. Correlations between the Exchange-Traded Funds and their Underlying Market Indices�Returns

Country Daily correlaton Weekly correlation Monthly correlation
Austria 0.57 0.83 0.90
Belgium 0.67 0.86 0.94
France 0.77 0.92 0.96
Germany 0.74 0.92 0.96
Hong Kong 0.50 0.81 0.93
Italy 0.80 0.93 0.97
Japan 0.64 0.88 0.93
Malaysia 0.52 0.75 0.86

The Neitherlands 0.75 0.90 0.96
Singapore 0.57 0.84 0.93
Spain 0.78 0.92 0.96
Sweden 0.73 0.93 0.95

Switzerland 0.65 0.89 0.95
United Kingdom 0.65 0.87 0.94
United States 0.95 0.97 0.96

Note: The exchange-traded funds (ETFs) prices are taken from TAQ database, while their underlying market
indices (MSCI national market indices) are from Datastream Inc. Daily (weekly, monthly) correlations refer
to the correlations of daily (weekly, monthly) returns between the ETFs and their underlying MSCI indices.
The sample period is from May 1996 to December 2004.

69



Table 2a. Individual Exchange-Traded Funds

Country Ticker Trades per day Quotes per day
Austria EWO 13 68
Belgium EWK 7 39
France EWQ 10 101
Germany EWG 26 157
Hong Kong EWH 60 166
Italy EWI 9 81
Japan EWJ 248 516
Malaysia EWM 34 128

The Neitherlands EWN 6 46
Singapore EWS 35 108
Spain EWP 8 57
Sweden EWD 9 54

Switzerland EWL 10 58
United Kingdom EWU 24 113
United States SPY 3877 39605

Table 2b. Equally-Weighted Portfolios of Exchange-Traded Funds
Portfolios Components Trades per day Quotes per day

United States - 3877 39605
Japan - 248 516

Asia ex-Japan Hong Kong, Malaysia, Singapore 129 402
Europe Austria, Belgium, France, Germany, Italy, 122 774

The Netherlands, Spain, Sweden, Switzerland, United Kingdom

Note: The trades and quotes per day refer to the average number of trades and quotes from 9:30 EST until
16:00 EST. The calculation is based on the transaction records of the American Stock Exchange (AMEX)
and the Nasdaq National Market System (NMS) over the period May 1996 to December 2004. The trades
and quotes per day for the ETF portfolios are calculated as the sum of their individual components�trades
and quotes per day.

70



Table 3. Summary Statistics of Five-Minute Trade Returns
Mean Std.Dev. Skewness Kurtosis Obs.

United States 0.0004 0.1592 -0.2421 90.9677 169884
Japan -0.0002 0.2999 0.3810 50.5501 169884

Asia ex-Japan -0.0003 0.2866 0.9770 69.0208 169884
Europe 0.0003 0.0992 -0.8276 81.2505 169884

Note: The sample covers the period May 1996 to December 2004. The number of working days (when all
the four ETF portfolios are traded) is 2178. With 78 �ve-minute intervals per day, we thus have a total
of 169884 (= 2178�78) observations for each series. The portfolio returns are calculated as the arithmetic
mean of the individual component returns.
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Table 4. Unconditional Distribution Summary of Daily Returns, Volatilities and Correlations
rt rt=vt

Mean St.Dev. Skew. Kurt. Mean St.Dev. Skew. Kurt.
United States 0.028 1.234 -0.084 5.923 0.054 0.907 0.035 2.697

Japan -0.019 1.702 0.391 6.228 0.002 0.662 0.023 2.621
Asia ex-Japan -0.022 1.841 0.290 8.435 -0.005 0.709 -0.054 2.620

Europe 0.020 1.207 -0.179 5.690 0.065 1.279 -0.077 2.292

Mean 0.002 1.496 0.105 6.569 0.029 0.890 -0.018 2.558
St.Dev. 0.026 0.323 0.278 1.263 0.036 0.281 0.056 0.181

vt lvt
Mean St.Dev. Skew. Kurt. Mean St.Dev. Skew. Kurt.

United States 1.258 0.630 3.034 22.539 0.135 0.424 0.301 3.814
Japan 2.391 1.146 1.566 9.720 0.762 0.479 -0.274 3.066

Asia ex-Japan 2.169 1.309 2.197 11.125 0.629 0.529 0.190 3.260
Europe 0.778 0.403 2.227 12.428 -0.363 0.476 -0.355 7.164

Mean 1.649 0.872 2.256 13.953 0.291 0.477 -0.034 4.326
St.Dev. 0.760 0.426 0.602 5.830 0.512 0.043 0.328 1.918

covt cort
Mean St.Dev. Skew. Kurt. Mean St.Dev. Skew. Kurt.

US-JP 0.321 1.137 6.312 80.688 0.091 0.210 0.563 3.936
US-AS 0.291 1.214 5.772 92.008 0.071 0.199 0.500 3.765
US-EU 0.139 0.393 4.564 42.320 0.094 0.191 0.428 3.289

Mean 0.250 0.914 5.549 71.672 0.085 0.200 0.497 3.664
St.Dev. 0.098 0.453 0.895 26.042 0.013 0.009 0.067 0.335

Note: The sample covers the period May 1996 to December 2004, altogether 2178 observations per series. The
daily returns (rt) are calculated using daily open and close prices, while the daily realized standard deviations
(vt), logarithmic standard deviations (lvt), covariances (covt), and correlations (cort) are calculated from
�ve-minute intraday returns as described in Section 3.2.
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Table 5. Dynamic Dependence of Daily Returns, Volatilities and Correlations
rt=vt

Q20 p� value ADF20 PP dMLP ci_low ci_up dS �R2s
United States 24.82 0.208 -9.587 -47.90 0.019 -0.054 0.092 -0.006 0.991

Japan 22.06 0.337 -10.64 -49.79 0.078 0.005 0.151 -0.028 0.990
Asia ex-Japan 26.44 0.152 -9.199 -48.74 0.061 -0.012 0.134 0.033 0.993

Europe 31.54 0.049 -9.167 -43.60 0.052 -0.021 0.125 0.031 0.998

Mean 26.22 0.186 -9.649 -47.51 0.052 -0.021 0.125 0.007 0.993
St.Dev. 3.980 0.120 0.690 2.722 0.025 0.025 0.025 0.030 0.003

lvt
Q20 p� value ADF20 PP dMLP ci_low ci_up dS �R2s

United States 12046 0.000 -4.265 -24.70 0.554 0.481 0.627 0.416 1.000
Japan 15254 0.000 -4.003 -25.18 0.387 0.314 0.460 0.440 1.000

Asia ex-Japan 18400 0.000 -3.253 -20.75 0.407 0.334 0.480 0.453 1.000
Europe 6465 0.000 -3.819 -32.03 0.445 0.372 0.518 0.393 0.999

Mean 13041 0.000 -3.835 -25.66 0.448 0.375 0.522 0.425 1.000
St.Dev. 5094 0.000 0.429 4.684 0.075 0.075 0.075 0.027 0.001

cort
Q20 p� value ADF20 PP dMLP ci_low ci_up dS �R2s

US-JP 688.6 0.000 -7.851 -44.73 0.144 0.071 0.217 0.254 0.994
US-AS 79.05 0.000 -9.230 -47.70 0.135 0.062 0.208 0.128 0.993
US-EU 78.89 0.000 -9.408 -45.52 0.071 -0.002 0.144 0.133 0.997

Mean 282.2 0.000 -8.830 -45.99 0.117 0.044 0.190 0.171 0.995
St.Dev. 352.0 0.000 0.852 1.540 0.040 0.040 0.040 0.071 0.002

Note: The table summarizes the time-series dependence in the daily realized standardized returns (rt=vt),
logarithmic standard deviations (lvt), and correlations (cort), over the period May 1996 to December 2004.
The Ljung-Box Q-statistic, Q20, is a test statistic for the null hypothesis of no autocorrelation up to order
20. The unit root hypothesis is tested by both the augmented Dickey-Fuller statistic with 20 augmentation
lags, ADF20, and the Phillips-Perron statistic, PP , with the 1% and 5% critical values given by �3.9676 and
-3.4145. The long memory parameter is estimated by two methods, the modi�ed log periodogram estimation
(Kim and Phillips, 1999a) and the scaling law regression (Diebold and Lindner, 1996). The point estimates,
and the lower and upper bounds of the 95% con�dence intervals estimated from the former method, are
denoted as dMLP , ci_low and ci_up. The point estimates and the adjusted R-squared from the latter
method are denoted as dS and �R2s:
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Table 6a. In-Sample Spillovers
rt=vt

United States Japan Asia ex-Japan Europe
full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample

C 0.06a 0.01 -0.00 0.02 -0.01 0.01 0.06b 0.05
(3.04) (0.44) (-0.05) (0.90) (-0.61) (0.61) (2.05) (1.22)

US(-1) -0.06b -0.06 -0.02 -0.06 0.02 -0.00 0.21a 0.15b

(-2.12) (-1.35) (-0.98) (-1.74) (0.95) (-0.08) (5.19) (2.40)
JP(-1) -0.08b -0.08 -0.07a -0.07 -0.04 -0.02 -0.16a -0.15b

(-2.35) (-1.41) (-2.82) (-1.62) (-1.25) (-0.51) (-3.09) (-2.00)
AS(-1) 0.06 0.08 0.01 0.07 -0.06b -0.11a 0.06 0.10

(1.85) (1.30) (0.31) (1.54) (-2.11) (-2.66) (1.35) (1.29)
EU(-1) 0.05a 0.03 0.03 0.03 0.02 0.02 0.01 0.01

(2.60) (1.10) (1.82) (1.14) (1.30) (1.05) (0.30) (0.12)

�R2 0.008 0.007 0.002 0.001 0.006 0.011 0.020 0.009

Pairwise Granger Causality
United States Japan Asia ex-Japan Europe

full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample
US - - [0.62] [0.24] [0.51] [0.51] [0.00]a [0.10]
JP [0.13] [0.22] - - [0.34] [0.73] [0.01]a [0.13]
AS [0.03]b [0.26] [0.82] [0.32] - - [0.34] [0.65]
EU [0.07] [0.08] [0.08] [0.11] [0.10] [0.24] - -

All [0.02]b [0.13] [0.49] [0.32] [0.11] [0.44] [0.00]a [0.14]

Note: The table reports the results for the in-sample return VAR(5) yt = � +
P5
j=1 �jyt�j + "t; where

yt = frus;t=vus;t; rjp;t=vjp;t; ras;t=vas;t; reu;t=veu;tg0. The Akaike and Schwarz criteria choose the lag order of 5
and 1, respectively. Considering our large sample size, we employ VAR(5) to maintain conservatism. All the
inverse roots of the characteristic AR polynomial lie inside the unit circle, indicating covariance stationarity.
The VAR residuals reveal no signi�cant autocorrelations based on the portmanteau tests. We report only
the coe¢ cients for the �rst lags, which can be seen as measuring overnight return spillovers. The full sample
covers May 1996 to December 2004, while the sub-sample covers September 2000 to December 2004. The
numbers in parenthesis (brackets) are t-statistics (p-values). The symbols a, b denote signi�cance level at
1% and 5% , respectively.
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Table 6b. In-Sample Spillovers (continued)
lvt

United States Japan Asia ex-Japan Europe
full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample

C -0.01 -0.01 0.04a 0.00 0.03a 0.01 -0.03a -0.02
(-0.83) (-1.22) (5.95) (0.35) (4.03) (0.67) (-3.07) (-1.81)

US(-1) -0.30a -0.34a 0.07a 0.08b 0.06b 0.06 0.08b 0.06
(-12.82) (-10.17) (2.75) (2.29) (2.21) (1.78) (2.45) (1.48)

JP(-1) 0.04 0.03 -0.21a -0.22a 0.05b 0.05 0.03 0.04
(1.77) (0.89) (-9.06) (-6.75) (2.00) (1.75) (1.10) (0.99)

AS(-1) -0.01 -0.01 0.05b 0.03 -0.19a -0.23a -0.02 -0.01
(-0.68) (-0.22) (2.12) (0.86) (-8.36) (-7.02) (-0.77) (-0.15)

EU(-1) 0.01 0.01 0.01 0.04 0.04b 0.06b -0.34a -0.35a

(0.42) (0.50) (0.50) (1.27) (2.05) (2.20) (-15.10) (-10.75)

�R2 0.076 0.096 0.037 0.037 0.041 0.052 0.100 0.094

Pairwise Granger Causality
United States Japan Asia ex-Japan Europe

full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample
US - - [0.06] [0.14] [0.00]a [0.00]a [0.03]b [0.45]
JP [0.27] [0.31] - - [0.00]a [0.17] [0.26] [0.90]
AS [0.34] [0.90] [0.00]a [0.11] - - [0.24] [0.59]
EU [0.84] [0.74] [0.76] [0.77] [0.23] [0.16] - -

All [0.51] [0.80] [0.00]a [0.01]a [0.00]a [0.00]a [0.02]b [0.66]

Note: The table reports the results for the long-memory Gaussian VAR(5) (1 � L)dyt = � +
P5
j=1 �j(1 �

L)dyt�j + "t; where yt = flvus;t; lvjp;t; lvas;t; lveu;tg0;and d = fdus; djp;das;deug0MLP . The product of (1� L)d
and yt is calculated through element-by-element multiplication. The Akaike and Schwarz criteria choose
the lag order of 4 and 1, respectively. Considering our large sample size, we employ VAR(5) to maintain
conservatism. All the inverse roots of the characteristic AR polynomial lie inside the unit circle, indicating
covariance stationarity. We report only the coe¢ cients for the �rst lags, which can be seen as measuring
overnight volatility spillovers. The full sample covers May 1996 to December 2004, while the sub-sample
covers September 2000 to December 2004. The numbers in parenthesis (brackets) are t-statistics (p-values).
The symbols a, b denote signi�cance level at 1% and 5% , respectively.
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Table 6c. In-Sample Spillovers (continued)
cort

US-JP US-AS US-EU
full sample sub-sample full sample sub-sample full sample sub-sample

C 0.04a 0.06a 0.03a 0.05a 0.06a 0.07a

(6.56) (6.71) (5.71) (5.30) (10.82) (8.69)
US-JP(-1) -0.09a -0.09a 0.00 -0.04 -0.01 -0.01

(-3.97) (-2.62) (-0.08) (-1.43) (-0.49) (-0.39)
US-AS(-1) -0.04 -0.07b -0.17a -0.19a 0.00 0.00

(-1.88) (-1.97) (-7.35) (-5.78) (0.01) (-0.09)
US-EU(-1) 0.01 0.01 0.06a 0.09b -0.04b -0.07b

(0.28) (0.17) (2.79) (2.51) (-1.97) (-2.26)

�R2 0.011 0.012 0.027 0.045 0.002 0.002

Pairwise Granger Causality
US-JP US-AS US-EU

full sample sub-sample full sample sub-sample full sample sub-sample
US-JP - - [0.06] [0.01]a [0.06] [0.25]
US-AS [0.06] [0.04]b - - [0.97] [0.72]
US-EU [0.84] [0.99] [0.03]b [0.01]a - -

All [0.20] [0.30] [0.01]a [0.00]a [0.24] [0.34]

Note: The table reports the results for the long-memory Gaussian VAR(5) (1 � L)dyt = � +
P5
j=1 �j(1 �

L)dyt�j + "t; where yt = fcorus;jp;t; corus;as;t; corus;eu;tg0; and d = fdus;jp; dus;as;dus;eug0MLP . The product of
(1 � L)d and yt is calculated through element-by-element multiplication. The Akaike and Schwarz criteria
choose the lag order of 4 and 1, respectively. Considering our large sample size, we employ VAR(5) to
maintain conservatism. All the inverse roots of the characteristic AR polynomial lie inside the unit circle,
indicating covariance stationarity. We report only the coe¢ cients for the �rst lags, which can be seen as
measuring overnight correlation spillovers. The full sample covers May 1996 to December 2004, while the
sub-sample covers September 2000 to December 2004. The numbers in parenthesis (brackets) are t-statistics
(p-values). The symbols a, b denote signi�cance level at 1% and 5% , respectively.
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Table 7. Out-of-Sample Forecastability
rt=vt

Model United States Japan Asia ex-Japan Europe
H1
a : AR(5)+

P5
p=1US(�p) � -1.469 -0.981 -0.383

H2
a . AR(5)+

P5
p=1JP(�p) -1.748 � -0.772 -0.523

H3
a . AR(5)+

P5
p=1AS(�p) 0.054 -1.996 � -0.392

H4
a . AR(5)+

P5
p=1EU(�p) -0.540 0.014 -0.435 �

Hall
a . VAR(5) -0.771 -1.040 -1.322 -0.384

Cri. Value for H1
a �H4

a 0.995 (1%) 0.386 (5%) 0.062 (10%)
Cri. Value for Hall

a <0.621 (1%) <0.043 (5%) <-0.248 (10%)

lvt
Model United States Japan Asia ex-Japan Europe

H1
a : AR(5)+

P5
p=1US(�p) � 0.656b 0.771b 0.055

H2
a . AR(5)+

P5
p=1JP(�p) -0.634 � 0.651b -0.565

H3
a . AR(5)+

P5
p=1AS(�p) -1.206 2.062a � -1.361

H4
a . AR(5)+

P5
p=1EU(�p) -0.869 -0.311 -0.093 �

Hall
a . VAR(5) -1.405 0.836a 0.562b -1.441

Cri. Value for H1
a �H4

a 0.995 (1%) 0.386 (5%) 0.062 (10%)
Cri. Value for Hall

a <0.621 (1%) <0.043 (5%) <-0.248 (10%)

cort
Model US-JP US-AS US-EU

H1
a : AR(5)+

P5
p=1US-JP(�p) � -0.140 0.676b

H2
a . AR(5)+

P5
p=1US-AS(�p) 1.349a � -1.718

H3
a . AR(5)+

P5
p=1US-EU(�p) -1.187 0.002 �

Hall
a . VAR(5) 0.299b 0.032 -0.728

Cri. Value for H1
a �H3

a 0.995 (1%) 0.386 (5%) 0.062 (10%)
Cri. Value for Hall

a 0.621 (1%) 0.043 (5%) -0.248 (10%)

Note: The table reports the Diebold-Mariano (DM) t-statistics for the out-of-sample comparison between
the benchmark AR(5) model H0: yi;t = �+

P5
j=1 �jyi;t�j + "i;t; where yt refers to rt=vt; (1�L)dMLP lvt; (1�

L)dMLP cort; and alternative models Hk
a ; where the AR(5) model is augmented by adding �ve lags of another

variable; and Hall
a ; where the AR(5) model is augmented by adding �ve lags of all other variables (VAR(5)

model). We use the recursive scheme in constructing DM t-statistics. The sample covers May 1996 to
December 2004, with the in/out sample ratio (R=P ) equal to 1. Since Hk

a and H
all
a nest H0; the DM

t-statistics follow nonstandard distributions under the null of no superior forecastability from Hk
a (H

all
a )

relative to H0. Hence, we report the asymptotically valid critical values from McCracken (2004). The
superscript a and b indicate signi�cance at 1% and 5% level, respectively.
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Table 8. Tests of Related Hypotheses
rt=vt

United States Japan Asia ex-Japan Europe
full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample

Monday 0.04 0.01 -0.05 -0.02 -0.08b -0.00 -0.04 0.01
(0.77) (0.20) (-1.58) (-0.38) (-2.16) (-0.06) (-0.64) (0.12)

lvt
United States Japan Asia ex-Japan Europe

full sample sub-sample full sample sub-sample full sample sub-sample full sample sub-sample
Monday -0.08a -0.07a 0.03b 0.03 0.06a 0.05b 0.10a 0.11a

(-5.13) (2.46) (2.05) (1.40) (3.42) (2.10) (4.93) (4.02)
Leverage_US 0.14a 0.06 0.06 0.00 0.12a 0.12b 0.13b 0.12

(3.33) (0.96) (1.22) (0.05) (2.62) (1.96) (2.29) (1.49)
Leverage_JP -0.02 -0.03 0.01 0.01 -0.01 0.05 0.09 -0.05

(-0.62) (-0.52) (0.27) (0.18) (-0.18) (0.92) (-1.63) (-0.64)
Leverage_AS 0.08b 0.07 0.05 0.06 0.10b 0.09 0.06 0.07

(2.06) (1.28) (1.13) (0.98) (2.40) (1.55) (1.05) (0.96)
Leverage_EU 0.06 0.11b 0.04 0.06 0.07b 0.07 0.00 0.03

(1.86) (2.46) (1.26) (1.16) (1.98) (1.44) (0.04) (0.57)

cort
US-JP US-AS US-EU

full sample sub-sample full sample sub-sample full sample sub-sample
Monday 0.00 0.02 0.02 0.04b 0.02b 0.03b

(0.39) (0.91) (1.65) (2.63) (2.32) (2.31)
Contagion_US -0.02 0.00 -0.01 -0.03 0.04 0.05

(-0.44) (-0.01) (-0.14) (-0.51) (0.84) (0.84)
Contagion_JP 0.05 0.10 0.00 0.07 0.03 0.08

(1.22) (1.06) (-0.09) (0.85) (0.69) (0.97)
Contagion_AS -0.04 -0.02 0.02 0.11 0.00 -0.14

(-0.79) (-0.08) (0.35) (0.50) (0.04) (-0.67)
Contagion_EU 0.06 -0.02 0.02 -0.02 0.05 0.03

(1.16) (-0.28) (0.40) (-0.30) (1.06) (0.44)

Note: The table reports the test results of related hypotheses, as described in Section 6. Speci�cally,
for daily standardized returns, we estimate the extended model yt = � +

P5
j=1 �jyt�j + �Dt + "t; where

yt = frus;t=vus;t; rjp;t=vjp;t; ras;t=vas;t; reu;t=veu;tg0; Dt is the Monday dummy that equals 1 on days following
weekends and holidays and is 0 otherwise. Hence, the coe¢ cient � measures the Monday e¤ect. For daily
volatilities, we estimate the extended model (1 � L)dyt = � +

P5
j=1 �j(1 � L)dyt�j + 
(1 � L)dxt�1 +

�Dt + "t; where yt = flvus;t; lvjp;t; lvas;t; lveu;tg0;xt = flvus;tI(rus;t < 0); lvjp;tI(rjp;t < 0); lvas;tI(ras;t <
0); lveu;tI(reu;t < 0)g0; d = fdus; djp;das;deug0MLP ; I(�) is the indicator function. Hence, the coe¢ cient matrix

 measures the leverage e¤ects. For daily correlations, we estimate the extended model (1 � L)dyt =
� +

P5
j=1 �j(1 � L)dyt�j + �zt�1 + �Dt + "t; where yt = fcorus;jp;t; corus;as;t; corus;eu;tg0; zt = fI(rus;t <

rus;(q)); I(rjp;t < rjp;(q)); I(ras;t < ras;(q)); I(reu;t < reu;(q)g0; d = fdus;jp; dus;as;dus;eug0MLP , the subscript (q)
denotes the qth quantile (we report the case q = 1

100). Hence, the coe¢ cient matrix � measures the contagion
e¤ects. To save space, we report only the results for the Monday, leverage, and contagion e¤ects.

78



-8

-6

-4

-2

0

2

4

100000 102500 105000 107500 110000

US

-4
-3
-2
-1
0
1
2
3
4

100000 102500 105000 107500 110000

Japan

-6

-4

-2

0

2

4

100000 102500 105000 107500 110000

Asia ex-Japan

-4

-3

-2

-1

0

1

2

3

100000 102500 105000 107500 110000

Europe

-40
-30
-20
-10

0
10
20
30
40

100000 102500 105000 107500 110000

US

-40
-30
-20
-10

0
10
20
30
40

100000 102500 105000 107500 110000

Japan

-30

-20

-10

0

10

20

30

100000 102500 105000 107500 110000

Asia ex-Japan

-20

-15

-10

-5

0

5

10

15

100000 102500 105000 107500 110000

Europe

Figure 1a. Five-Minute Trade Returns.

Figure 1b. Five-Minute Quote Returns.
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Figure 2. First Principal Components of Individual Returns.

Note: PC1_AS refers to the first principal components of individual Asian ex-Japan
          ETFs' five-minute trade returns. PC1_EU refers to the first principal components
          of individual European ETFs' five-minute trade returns. The figures are based
          on a randomly selected subsample (100000-110000) of the original sample
          (1-169884).



 

Figure 3. Realized Volatility and Correlation Autocorrelations.  

Note: The graphs give the sample aucocorrelation functions (ACF) for daily
realized volatilities and correlations. The sample covers May 1996 to December
2004. The solid lines in the figure represent the ACF of the original series,
while the dashed lines are the ACF of the corresponding fractionally differenced
series. The dotted lines give the 95% confidence bands of an i.i.d. Gaussian
process.



CHAPTER III

HOW MUCH DO WE GAIN FROM HIGH-FREQUENCY DATA: INFORMATION TRANSMISSIONS,
RISK HEDGING, AND PORTFOLIO OPTIMIZATION

Introduction

High-frequency �nance (in particular, high-frequency volatility models) has become one of the two

important frontiers of �nance research (Engle, 2003).54 In high-frequency �nance, intra-day �nancial data,

such as irregularly-spaced tick-by-tick data, or regularly-spaced minute-by-minute, hour-by-hour data,

etc., are used for analysis. This approach was originally suggested by Merton (1980) according to which

high-frequency sampling is essential for volatility estimation. Because of the di¢ culty of obtaining and

manipulating high-frequency �nancial data, however, data at daily or lower frequencies are often used to

estimate and forecast volatilities. And typically a parametric framework, such as a GARCH model, is

assumed. With the development of computer technology and the accessibility of intra-day �nancial data,

high-frequency �nance literature has now been in a fast-developing phase.

One of the most popular high-frequency �nance models is the realized volatility model. In this model,

low-frequency (daily, weekly, or monthly, etc.) return volatilities are measured as the sum of high-frequency

returns squared. The realized volatility model is an extension of the sample variance method, which has

been used in the empirical �nance literature (for example, Poterba and Summers, 1986; French, Schwert,

and Stambaugh, 1987; Hsieh, 1991; Taylor and Xu, 1997). Despite its seemingly trivial extension from

the sample variance method, the realized volatility method has desirable theoretical properties. Based on

the theory of quadratic variation, the ex-post realized volatility is a consistent, approximately unbiased

volatility estimator (Andersen, Bollerslev, and Diebold, ABD, 2005). In addition, relative to traditional

models based on low-frequency data, the realized volatility is free from model misspeci�cation, easy to

implement in multi-variate systems, and provides a quick adapting estimate of current volatility. The

advantages of the realized volatility method have been examined in Andersen, Bollerslev, Diebold, and

Labys (ABDL, 2003), where they found that the realized volatility method produces superior out-of-sample

volatility and Value-at-Risk forecasts relative to volatility models based on low-frequency data.
54The other frontier is high-dimension multivariate �nance models.
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This paper examines the gains of using high-frequency data from a more practical perspective. Volatility

estimation and forecast have been applied in many academic researches and �nancial practices, including

but not limited to detecting information (volatility) transmissions, risk hedging, and portfolio optimization.

Intuitively, a superior volatility estimation method would lead to better detection of volatility transmissions,

or enhanced e¢ ciency of risk hedging and portfolio optimization. However, it remains uncertain how much

the gains could be unless a rigorous statistical test is performed. Motivated by this empirical question, this

paper does a comparative study where both traditional GARCH models based on low-frequency sampling

and the realized volatility model based on high-frequency sampling are used to estimate (and forecast)

daily volatilities. Implications in volatility transmissions, risk hedging, and portfolio optimization of these

two methods are then compared.

The data used in this paper are high-frequency, intra-day transaction prices for two exchange-traded

funds (ETFs): the S&P 500 index fund and the Ishares MSCI Japan index fund. These two funds are

special instruments that aim to track the S&P 500 index and the MSCI Japan index. Unlike traditional

index funds, these two funds are traded like common stocks in stock exchanges, such as the American

Stock Exchange and the New York Stock Exchange. Therefore, their real-time transaction prices are

available at intra-day frequencies. Besides the high-frequency feature of the data, these two funds are ideal

candidates for the purpose of our study. First, because of their index-tracking feature, these two funds

may be used to examine volatility transmissions between the US and Japan stock markets, two of the

major international stock markets. This inter-market volatility transmission mechanism is important to

understanding international �nancial integration, and has been frequently examined in the literature (see,

Bauwens, Laurent, and Rombouts, 2003; Yang, 2006). Second, a global portfolio can be formed using these

two index funds so as to hedge country-speci�c risk and achieve mean-variance e¢ ciency. By focusing on

these two major index funds as the portfolio components, we can capture a vast part of international stock

markets while keeping our analysis within a manageable dimension.

The remainder of the paper is organized as follows. Section 2 describes the high-frequency �nancial

data. Section 3 discusses the GARCH and the realized volatility models. Their implications in volatility

transmissions, risk hedging and portfolio optimization are examined in Section 4 and 5, respectively. Some

concluding remarks are made in Section 6.
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Data

High-frequency intra-day transaction data between 9:30 and 16:00 Eastern Standard Time (EST) are

obtained from the Trade and Quote (TAQ) database for the S&P 500 index fund (US) and the Ishares

MSCI Japan index fund (JP). The S&P 500 index fund was introduced on January 29, 1993, and the Japan

index fund was introduced on March 12, 1996. To avoid thin trading during the introductory period of the

Japan index fund, the period from May 1, 1996, to December 31, 2004, is examined.

Table 1 gives the ETF ticker symbols as well as a summary of their daily transactions. From Table

1, we can see that both ETFs are actively traded, with the minimum of 248 trades per day for JP

(equivalently, one trade every 1.5 minutes). Based on the high-frequency tick-by-tick transaction data,

arti�cial 5-minute trade and quote prices are constructed through the previous-tick interpolation method.

The 5-minute frequency is chosen to achieve a reasonably large intra-day sample size while mitigating the

market microstructure noise. A similar method has been used in ABDL (2001). The 5-minute trade and

quote returns are then calculated as the logarithmic di¤erences between adjacent prices.55 As a result,

there are 78 trade and quote returns per day.

Figure 1 plots a randomly selected sub-sample of the historical 5-minute trade and quote returns.

Visual inspection shows that the quote data are very noisy, possibly due to discrete clustering and bid-ask

bounce e¤ects. Therefore, the analysis hereafter will be based on trade data.

Table 2 presents the summary statistics of 5-minute and daily trade returns and volatilities (measured

by absolute returns). The 5-minute return series are approximately zero. In terms of the variability of

5-minute returns, JP is more widely dispersed with the standard deviation of arount 0.3. Both of the

5-minute return series are skewed and leptokurtic. The 5-minute absolute returns are skewed to the right

and leptokurtic, with US having an extremely large kurtosis coe¢ cient of 223.5. These are generally in line

with the stylized facts of high-frequency returns and volatilities (e.g., Dacorogna, 2001). With regard to

the daily data, the mean returns are approximately 78 times that of the 5-minute data. The variability of

daily returns increases and the kurtosis decreases relative to those of the 5-minute returns. The skewness

remains the same direction with small changes in magnitude. Relative to the 5-minute absolute returns,

55All the returns are expressed in percentage. And the �rst �ve-minute return of a day is equal to the logarithmic di¤erence
between the �rst �ve-minute price and the previous day�s last �ve-minute price, thus is quivalently the overnight return.
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the daily absolute returns have larger means and standard deviations, but smaller skewness and kurtosis.

Figure 2 plots the autocorrelation functions (ACFs) of the 5-minute and daily returns and absolute

returns up to 10 days (2 weeks). From Figure 2a, the 5-minute returns are generally not serially correlated,

except for the signi�cantly negative �rst-order autocorrelations. Besides the �rst-order autocorrelations,

the autocorrelations are generally not signi�cant. The autocorrelations of the 5-minute absolute returns,

however, are signi�cantly positive at all lags. In addition, the 5-minute absolute returns possess strong

daily seasonalities. From Figure 2b, the autocorrelations of daily returns are generally not signi�cant.

Exceptions are daily JP returns at the 1-day and 5-day lags, where signi�cantly negative autocorrelations

are observed. As regards daily absolute returns, signi�cantly positive autocorrelations are observed at all

lags, consistent with the volatility clustering e¤ect documented in the literature.

Figure 3 presents the distribution of 5-minute returns and absolute returns over a day. For each 5-

minute mark within the trading time of a day, the average 5-minute returns and absolute returns over the

whole sample are plotted. This �gure would reveal if the intra-day transactions are similar over di¤erent

5-minute intervals. For the �rst several 5-minute intervals, the returns are very volatile, possibly due to the

reaction to overnight information. The magnitude of return variabilities is reduced after that. If the �rst

several big jumps are removed, the returns are observed to follow a volatile-tranquile-volatile process, that

is, the returns change frequently at the beginning and at the end, but are relatively quiet in the middle

of a day. Correspondingly, the volatilities follow a "U" shape, which is documented in the high-frequency

volatility literature.

Models

Both the bi-variate GARCH and the realized volatility models are used to estimate and forecast daily

variance-covariance matrices, which are essential in various areas, such as detecting information transmis-

sions, risk hedging, and portfolio optimization. Based on the daily data, the bi-variate GARCH method

models the daily conditional variance-covariance matrix as a linear function of its own lags and the lagged

cross products of return residuals. On the other hand, the realized volatility model makes use of intra-day

high-frequency data and measures daily variance-covariance matrices as the sum of the cross products of
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intra-day returns. The conditional variance-covariance matrix is then considered as observed and can be

directly modeled as an autoregressive moving average (ARMA) process for forecast purpose.

Bi-variate GARCH model

The mean return process is modeled as a VARMA(P,Q) system:

rt = a+

PX
p=1

bprt�p +

QX
q=1

cqet�m + et; r
0
t = [r1t r2t]; (20)

etj
t�1 s N(0;Ht) (21)

where a is a (2� 1) vector, b and c are (2� 2) matrices and c is restricted to be diagonal; r1 and r2 stand

for the daily returns for US and JP, respectively.

The bi-variate GARCH method models the second moments (daily variance-covariance matrices) as

follows:

Ht = C
0C +

LX
l=1

A0let�le
0
t�lAl +

MX
m=1

B0mHt�mBm; (22)

where C;Al;and Bm are (2 � 2) matrices and C is restricted to be upper triangular. This model is

proposed by Engle and Kroner (1995) and is generally referred to as the BEKK(L,M) model (the acronym

comes from early work on multivariate GARCH models by Baba, Engle, Kraft, and Kroner). The BEKK

model guarantees the positive de�niteness of Ht. In addition, it incorporates cross-asset dependence while

keeping the number of parameters relatively small. These properties are desirable for the purpose of our

study. For propositions and proofs of the BEKK model, see Engle and Kroner (1995). For a survey on

multi-variate GARCH models, see Kroner and Ng (1998), Bauwens, Laurent, and Rombouts (2006).
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Realized volatility model

The realized volatility model measures daily variance-covariane matrices as:

Ht =
NX
n=1

rn;tr
0
n;t; r

0
n;t = [rn;1t rn;2t]; (23)

where rn;1t and rn;2t are the nth 5-minute returns for US and Japan index funds on day t; respectively;

N = 78 in our case. Assuming that the multivariate asset return process is a special semi-martingale, as well

as some other mild conditions, the realized volatility method measures the conditional variance-covariance

matrices approximately free of measurement error, without further assuming any speci�c return generating

model. ABDL (2001, 2003) present formal derivations and proofs, while Barndor¤-Nielsen and Shephard

(2004) provide the asymptotic distribution theory by adding the assumption that the (logarithmic) asset

price process is a continuous stochastic volatility semi-martingale. For a thorough review and comparison

between the realized volatility and other volatility models, we refer to ABD (2005).

The measured daily realized variance-covariance matrices are then modeled as a long-memory VAR(K)

system:

(1� L)dvech(Ht) = �+
KX
k=1

	k(1� L)dvech(Ht�k) + "t; (24)

where vech(Ht) denotes the lower triangular portion of Ht; d is the long memory parameter vector for

vech(Ht) estimated using the modi�ed log periodogram regression (MLP) by Kim and Phillips (1999);

and the product of (1 � L)d and vech(Ht) is calculated through element-by-element multiplication; � is

a (3 � 1) vector; 	s are (3 � 3) matrices. The fractional di¤erence �lter (1 � L)d is used to capture the

long memory, while the VAR captures the short-memory dynamics in Ht. The VAR model of realized

volatilities (henceforth VAR-RV) has been used in ABDL 2003, and is shown to out-perform uni-variate

daily GARCH and related models in terms of volatility forecast.
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Information Transmissions

Information transmissions are referred to as the lead-lag relations in stock returns and volatilities

across international markets. Important to understanding international �nancial integration, information

transmissions have received much attention over the past two decades. Most of the research relies on

GARCH models of di¤erent parametric speci�cations based on low-frequency data: Hamao, Masulis, and

Ng (1990); Lin, Engle, and Ito (1994); Susmel and Engle (1994); Bae and Karolyi (1994); Karolyi (1995);

Koutmos and Booth (1995); and Ng (2000), to name a few. Despite extensive studies in this literature,

the issues of which GARCH model is the most appropriate, and in which direction the true causalities go

remains unresolved. In a recent study, Yang (2006) utilizes high-frequency, intra-day ETFs data to examine

information transmissions across the US, Japan, Asia ex-Japan, and Europe markets. In his study, the

realized volatility model is used to avoid possible misspeci�cation of volatility models. And uni-directional

volatility spillovers from the US to other markets are observed. A direct comparison between the GARCH

and the realized volatility models, however, has not been pursued in his study. In this section, both the

bi-variate GARCH and the VAR-RV models are employed to examine volatility transmissions between the

US and Japan ETFs, and their implications are compared.

With respect to the bi-variate GARCH model, some speci�cations need to be made. (1) Mean return

equations. Following French, Schwert, and Stambaugh (1987), Hamao, Masulis, and Ng (1990), the mean

return process is modeled as an MA(1) model (equivalently, VARMA(0,1) for the mean return vector)

to accommodate possible �rst-order autocorrelations in the daily returns (as seen in the Japan ETF),

which may be due to non-synchronous trading, bid-ask spreads, etc. Meanwhile, dummy variables for the

day following a weekend (the Monday dummy) or a holiday (the Holiday dummy) are included in the

return equations to take into account potential Monday and holiday e¤ects, as documented by French

(1980) and Gibbons and Hess (1981). (2) Variance-covariance equation. Based on the BIC criterion, the

BEKK(2,1) speci�cation is chosen. In addition, following Kroner and Ng (1998), the leverage terms are

included to allow for the asymmetric e¤ect (a negative daily return has a larger e¤ect on the following day�s

return variance-covariance matrix). The Monday and Holiday dummies are also included in the BEKK

speci�cation. Therefore, the �nalized BEKK model is as follows:
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rt=a+ d1Holt+d2Mont+c1et�1+et; r
0
t= [r1t r2t]; etj
t�1� N(0;Ht); (25)

Ht=C
0C+

2X
l=1

A0let�le
0
t�lAl+B

0Ht�1B +N
0�t�1�

0
t�1N +D01D1Holt+D

0
2D2Mont; (26)

where Holt, Mont are Holiday and Monday dummies; d1 and d2 are (2 � 1) vectors; �t (= [e1t � I(e1t <

0); e2t � I(e2t < 0)]0) is the leverage vector, I(�) is the indicator function; N , D1; D2 are (2 � 2) matrices,

and D1; D2 are restricted to be upper triangular. To test volatility transmissions from one market to the

other, tests of nonlinear restrictions are involved. See Appendix A for discussion.

In the VAR-RV model, a lag order of 5 (K = 5) is chosen to take into account possible week seasonality.

The leverage e¤ects and Monday/holiday e¤ects are taken into account as well, that is:

(1� L)dvech(Ht) = �+
5X
k=1

	k(1� L)dvech(Ht�k) + �(1� L)dxt�1 + �1Holt + �2Mont + "t (27)

where xt (= [H11;t � I(r1t < 0);H22;t � I(r2t < 0)]0) is the leverage vector; � is a (3 � 2) vectors; �1 and

�2 are (2 � 1) vectors. All the inverse roots of the characteristic AR polynomial lie inside the unit circle,

indicating covariance stationarity. To test overnight spillovers, the coe¢ cients for the �rst lags and the

associated t statistics are calculated. In addition, pairwise Granger causality tests are carried out to see

whether there are signi�cant return spillovers (up to 5 lags) from one endogenous variable to another.

The results are reported in Table 3. From diagnostic statistics, the daily return residuals standardized

by the GARCH volatilities are fat tailed with the excess kurtosis of 1.2574 and 0.9248 for US and Japan,

respectively; and they are very extremely non-normal distributed, with the Jarque-Bera statistics equal

to 190.5356 and 78.7583, respectively. The daily return residuals standardized by the realized volatilities,

on the contrary, are less fat tailed (the excess kurtosis equal to -0.2995 and -0.3652, respectively) and

close to normally distributed (the Jarque-Bera statistic equal to 8.4412 and 12.3492, respectively). These

�ndings are consistent with those reported in ABDL (2001). The Ljung-Box statistics indicate that the

bi-variate GARCH speci�cation is adequate in capturing the dynamics in the �rst and second moments of

the standardized return residuals.
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In both models, signi�cant self volatility spillovers are observed, which are consistent with the volatility

clustering e¤ect. For example, H11;t�1 in theH11;t equation andH22;t�1 in theH22;t equation, are signi�cant

at a 1% level for both the BEKK and the VAR-RV models.56 Results about cross-market volatility

spillovers, on the other hand, are di¤erent between the two models. For the bi-variate GARCH model,

generally no signi�cant cross-market volatility spillovers are observed. An exception is the leverage e¤ect

term (�21t�1) in the H22;t equation, which indicates that a negative US return is likely to increase the next

day�s Japan volatility. In contrast, signi�cant volatility spillovers from US to JP are observed in the VAR-

RV model (H11;t�1 is 0.1462 at a 1% level in the H22;t equation). The di¤erence in cross-market spillovers

is corroborated by the Chi-squared tests of block exogeneity: no cross-market spillovers are found in the

BEKK model, while signi�cant volatility spillovers from US to JP are observed in the VAR-RV model at

a 1% level.

In summary, while the bi-variate GARCHmodel based on daily data generally does not reveal signi�cant

volatility spillovers between the US and Japan ETFs, the VAR-RV model based on high-frequency, intra-

day data detects a uni-directional volatility spillovers from US to Japan. The di¤erence could be due to the

following reasons. First, although daily data are adequate in terms of capturing daily returns, they may

not incorporate intra-day return volatility information. In other words, both a trading day with large intra-

day return volatility and one with small intra-day return volatility could yield the same daily return. This

lack of intra-day information may lead to failure of the GARCH model in detecting cross-market volatility

spillovers. Second, the GARCH measure of daily volatilities essentially relies on long and slowly decaying

weighted moving averages of past daily squared returns (ABDL, 2003). This renders the GARCH volatility

measure a relatively noisy and imprecise estimator, which in turn may obfuscate volatility transmissions.

Obviously, these two reasons are intertwined with each other. The VAR-RV model, on the other hand,

captures intra-day information and provides a quick-adapting estimate of daily volatilities. These features

may provide the VAR-RV model better capability to detect volatility transmissions.

56Note that negative AR(1) coe¢ cients in the VAR-RV model do not con�ict with the volatility clustering e¤ect, since they
are applied to the fractional di¤erenced instead of the original volatility series (see Andersen, Bollerslev, Diebold, and Ebens,
2001).
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Risk Hedging and Portfolio Optimization

The variance-covariance matrix of asset returns plays an important role in portfolio construction. For

example, the variance-covariance matrix can be used to minimize portfolio variance via the so-called "risk-

minimizing hedge ratio" (Kroner and Ng, 1998). Also, the variance-covariance matrix is an important input

in constructing the mean-variance frontier. According to ABD (2003, 2005), the VAR-RV model produces

superior out-of-sample volatility forecast relative to GARCH(1,1) and other low-frequency volatility models.

ABD (2003) also studied the application of VAR-RV model in return density forecast and associated

Value-at-Risk estimation. To my best knowledge, however, the comparison between high-frequency and

low-frequency models in a multivariate setup and its direct implication in portfolio e¢ ciency have yet to be

explored. Therefore, this section examines how the high-frequency method (VAR-RV) improves portfolio

e¢ ciency relative to the low-frequency method (GARCH).

For forecast purpose, daily returns are modeled as a VAR(1) system.57 Daily variance-covariance

matrices are modeled as a BEKK(1,1) model and a VAR(5)-RV model, respectively. Without loss of

generosity, the Monday/holiday e¤ects and the leverage e¤ects are omitted in both return and variance-

covariance equations. For evaluation of forecast performance, the whole sample (1:2178) is divided into two

sub-samples with the ratio of 2:1. The �rst sub-sample (in-sample) is used for model estimation. Based

on in-sample estimation, 1-day, 2-day, ..., up to 1-month (22-day) ahead returns and variance-covariance

matrices are forecasted. Accordingly, the optimal portfolios (to be de�ned below) are constructed 1-day,

2-day, ..., up to 1-month ahead. One month later, the in-sample window is rolled over by including the

latest one month data and excluding the earliest one month data. The in-sample estimation and out-of-

sample optimization procedure are then repeated. This process continues until the end of our sample is

reached. In total, the portfolio optimization procedure is repeated 33 times (=(2178� 1452)=22).

Depending on the objective function, there are two kinds of optimal portfolios. (1) Minimum-variance

portfolio. If our objective is to minimize portfolio risk (without considering portfolio returns), we can

calculate the "risk-minimizing hedge ratio" h between the US and Japan ETFs, that is, how many dollars

57Both AIC and BIC choose the lag order of 1. Considering our large sample size, it might be desirable to choose a higher
lag order. However, a high order VAR system for the daily returns will cause di¢ culty in estimating multi-variate GARCH
models. Since our main goal is to compare di¤erent models of the second moments, I therefore set the lag order of 1 for
returns.
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to short in the US ETF in order to hedge the risk of longing one dollar in the Japan ETF. Speci�cally, at

date t; ht+kjt is calculated so as to minimize portfolio variance �2p;t+kjt:

Min �2p;t+kjt � V art+kjt(hr1 + r2) = h
2
t+kjt�

2
1;t+kjt + �

2
2;t+kjt + 2ht+kjt�12;t+kjt: k = 1; 2; :::; 22; (28)

where t+kjt denotes the expected (forecast) value at t + k based on information set at t: By FOC, we can

easily get

h�t+kjt = �
�12;t+kjt
�21;t+kjt

: (29)

(2) Mean-variance e¢ cient portfolio. Although the minimum variance portfolio shields the investors

from price volatility risks, it does not take portfolio returns into account. Therefore, we may also choose

appropriate portfolio weights [w1;t+kjt;w2;t+kjt] to maximize the expected return-to-variance ratio St+kjt:

Max St+kjt �
Et+kjt(w1r1 + w2r2)

V art+kjt(w1r1 + w2r2)
=

w1;t+kjtr1;t+kjt + w2;t+kjtr2;t+kjt
w21;t+kjt�

2
1;t+kjt + w

2
2;t+kjt�

2
2;t+kjt + 2w1;t+kjtw2;t+kjt�12;t+kjt

;

(30)

subject to w1;t+kjt + w2;t+kjt = 1: It is easy to show that the optimal weights are (see Appendix B; for

simplicity of notation, t+kjt is omitted)

w�1 =
1

r1 � r2
(

s
r22�

2
1 � 2r1r2�12 + r21�22
�21 + �

2
2 � 2�12

� r2); (31)

w�2 = 1� w�1: (32)

Based on Equation (29), (31) � (32) and out-of-sample forecasts of returns and variance-covariance

matrices, the optimal portfolios are constructed. To evaluate portfolio performance, we need to use �true�

daily variance-covariance matrices (as well as daily returns), which are not directly observable. Following

ABDL (2003), Ledoit, Santa-Clara, and Wolf (2003), I use the realized variance-covariance matrices

estimated from intra-day 5-minute return data as a proxy.
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To compare the two models in terms of minimizing portfolio risks, the realized portfolio variances at

date t+ k are calculated based on the constructed hedge ratios for each model, that is,

�2p;t+k � vart+k(h�r1 + r2) = h�2t+kjt�
2
1;t+k + �

2
2;t+k + 2h

�
t+kjt�12;t+h; (33)

where h�t+kjt is calculated by Equation (29), and �
2
1;t+k; �

2
2;t+k; �12;t+k are the realized variances and covari-

ance at date t+ k: For ease of comparison, the realized average daily portfolio variances for 1-day, 1-week,

2-week, and 1-month horizons are calculated as �2p;t!t+K =
1

K

PK
k=1 �

2
p;t+k; where K = 1; 5; 10; 22: The

average �2p;t!t+K over the 33 periods (��
2
p;t!t+K) are then calculated, and converted to annualized standard

deviations (
q
��2p;t!t+K � 250).

Similarly, the realized portfolio return-to-variance ratio at date t + k are calculated based on the

constructed weighting vector for each model, that is,

St+k =
w�1;t+kjtr1;t+k + w

�
2;t+kjtr2;t+k

w�21;t+k�
2
1;t+k + w

�2
2;t+k�

2
2;t+k + 2w

�
1;t+kw

�
2;t+k�12;t+k

; (34)

where w�1;t+kjt and w
�
2;t+kjt are calculated by Equation (31) and (32), and r1;t+k; r2;t+k;�

2
1;t+k; �

2
2;t+k; �12;t+k

are the realized returns, variances and covariance at date t+k. I then calculate the realized daily portfolio

return-to-variance ratio for 1-day, 1-week, 2-week, and 1-month horizons as Sp;t!t+K =
1

K

PK
k=1 Sp;t+k;

where K = 1; 5; 10; 22: The average Sp;t!t+K over the 33 periods ( �Sp;t!t+K) are then calculated, and

converted to annualized return-to-variance ratio (actually it remains the same, since �Sp;t!t+K �
250

250
=

�Sp;t!t+K).

The results are report in Table 4. In the upper panel, the average annualized portfolio standard

deviations for each model, as well as the associated matched pairs t statistic, are reported.58 Over all the �ve

horizons, the VAR-RV model consistently beats the GARCH model at a 1% signi�cance level. Generally,

the annualized portfolio standard deviations increase monotonically with the horizon, indicating that the

forecast performance of both models worsens with the forecast horizon. There is no obvious evidence,

however, showing that the di¤erence of the forecast performance between the two models changes with the

horizon.
58Based on descriptive statistics (not reported here but available upon request), the di¤erences of average annualized portfolio

standard deviations and return-variance ratios between GARCH and VAR-RV are approximately normal.
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In the lower panel, the average annualized return-variance ratios for each model, as well as the associated

matched pairs t statistics are reported. The VAR-RV return-variance ratios outperforms the GARCH

return-variance ratios at a 1% signi�cance level at the 1-day horizon, and a 5% signi�cance level for all the

other horizons. Both models have superior performance at the 1-day horizon relative to the other horizons.

This short-run superiority could results from the short-term forecastability in both returns and variances.

Again, it is not obvious that the di¤erence between the VAR-RV return-variance ratio and the GARCH

return-variance ratio changes with the horizon.

Conclusion

This paper examines the gains of using high-frequency data relative to low-frequency data in a multi-

variate framework. Speci�cally, it compares a vector autoregressive model of the realized volatilities (VAR-

RV) with a bi-variate GARCH model from the following aspects: detection of cross-market volatility

transmissions, risk hedging, and portfolio optimization. In the analysis, the intra-day high-frequency

returns for the US and Japan exchange-traded funds (ETFs) are used. Both ETFs are highly liquid assets

and represent two of the largest international stock markets. The results show that while the bi-variate

GARCH model generally does not detect any signi�cant volatility transmissions between the two ETFs,

the VAR-RV model reveals signi�cant uni-directional volatility spillovers from US to Japan. In addition,

the optimized portfolios based on the VAR-RV model outperform those based on the GARCH model in

terms of minimizing portfolio risk (standard deviations) or maximizing portfolio return-to-variance ratios

over various horizons.

There are at least two directions for future research. First, the comparison between high-frequency and

low-frequency data analysis is based on two most popular multi-variate volatility models, the bi-variate

GARCH and the VAR-RV model. Obviously, we need to check the robustness of the results to other model

speci�cations. For example, among high-frequency volatility models, the range-based volatility method

(which estimates the volatility over an interval as the di¤erence between the highest and lowest intra-interval

log prices) can also capture intra-day information. Moreover, it is less subject to market microstructure

noise than the realized volatility model is. With its development in a multi-variate framework (e.g., Brandt
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and Diebold, 2006), the range-based method would be another ideal candidate for our analysis. Similarly,

the bi-variate GARCH model speci�cation is far from being ideal. One extension of the bi-variate GARCH

model would be to incorporate the long memory characteristic.

Second, the gains from high-frequency data are examined based on their application in the estimation

of low-frequency (daily) variance-covariance matrix. It will also be (or even more) interesting to see if

exploring high-frequency information would enable us to gain from high-frequency trading. Intuitively,

high-frequency data provide us the opportunity to examine the predictability of asset return, volatility,

and trading time over a very short horizon. The predictability, if any, could be used to generate high-

frequency trading opportunities. Indeed, high-frequency trading strategies have been pursued by �nancial

practitioners. For example, Renaissance Technologies, a hedge fund company founded by Dr. Jim Simons

in 1982, has been developing sophisticated high-frequency trading models and generating a compounded

annual return in excess of 30 percent for the past 20 years. Undoubtedly, it remains a challenging topic

to combine short-term predictability and high transaction costs to examine the gains from high-frequency

data. I leave these for future research.

95



Appendix A

Tests of Information Spillovers

This appendix documents the speci�cs of testing information (volatility) spillovers using the bi-variate

GARCH model. The model is:

rt=a+ d1Holt+d2Mont+c1et�1+et; r
0
t= [r1t r2t]; etj
t�1� N(0;Ht); (35)

Ht=C
0C+

2X
l=1

A0let�le
0
t�lAl+B

0Ht�1B +N
0�t�1�

0
t�1N +D01D1Holt+D

0
2D2Mont; (36)

The variables of interest are the diagonal elements of Ht (H11;t and H22;t), that is, the daily variance

of US and Japan ETFs. Based on (36), we can write

H11;t= C
2
11+

2X
l=1

[(A
(l)
11e1t�l)

2+2A
(l)
11A

(l)
21e1t�le2t�l+(A

(l)
21e2t�l)

2] + (B211H11;t�1+2B11B21H12;t�1+B
2
21H22;t�1)

+[(N11�1t�1)
2+2N11N21�1t�1�2t�1+(N21�2t�1)

2] +D21;11Holt+D
2
2;11Mont;

H22;t=(C
2
12+C

2
22)+

2X
l=1

[(A
(l)
12e1t�l)

2+2A
(l)
12A

(l)
22e1t�le2t�l+(A

(l)
22e2t�l)

2] + (B212H11;t�1+2B12B22H21;t�1+B
2
22H22;t�1)

+[(N12�1t�1)
2+2N12N22�1t�1�2t�1+(N22�2t�1)

2] + (D21;12+D
2
1;22)Holt+(D

2
2;12+D

2
2;22)Mont:

And the hypotheses tested can be summarized in the following table:
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Spillovers to H11;t Spillovers to H22;t

From Null Hypothesis Null Hypothesis

Self overnight spillovers

H11;t�1 B211= 0 B212= 0

e21t�1 (A
(1)
11 )

2= 0 (A
(1)
12 )

2= 0

�21t�1 N2
11= 0 N2

12= 0

Cross-market overnight spillovers

H22;t�1 B221= 0 B222= 0

e22t�1 (A
(1)
21 )

2= 0 (A
(1)
22 )

2= 0

�22t�1 N2
21= 0 N2

22= 0

Cross-market spillovers up to one week

B221= (A
(1)
21 )

2= (A
(2)
21 )

2= N2
21= 0 B212= (A

(1)
12 )

2= (A
(2)
12 )

2= N2
12= 0

Therefore, nonlinear restrictions are involved. For overnight spillovers, the values of these nonlinear

functions are calculated based on estimated coe¢ cients (for example, B̂211), and the associated t statistics

are calculated based on the �rst order Taylor expansion method (Greene, 2003, (6-24)-(6-26)). Similarly,

to test the cross-market spillovers up to one week, the chi-squared statistics are calculated (Greene, 2003,

(6-27)-(6-29)).
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Appendix B

Deriving the Optimal Portfolio Weights

Suppose we know Et+kjt[rus] = r1;V art+kjt[rus] = �21; Et+kjt[rjp] = r2;V art+kjt[rjp] = �
2
2; Covt+kjt(rus;rjp) =

�12; We want to choose [w1;w2] to:

Max St+kjt �
w1r1 + w2r2

w21�
2
1 + w

2
2�
2
2 + 2w1w2�12

; subject to w1 + w2 = 1: (37)

Substituting 1� w1 for w2; and by FOC, we have

(r1�r2)[w21�21+(1�w1)2�22+2w1(1�w1)�12] = [(r1�r2)w1+r2][2w1�21�2(1�w1)�22+2�12�4w1�12] (38)

(r1�r2)[(�21+�22�2�12)w21+2(�12��22)w1+�22] = 2[(r1�r2)w1+r2][(�21+�22�2�12)w1+�12��22] (39)

(r1 � r2)(�21 + �22 � 2�12)w21 + 2r2(�21 + �22 � 2�12)w1 + 2r2�12 � (r1 + r2)�22 = 0 (40)

w�1 = �
r2

r1 � r2
� 1

r1 � r2

s
r22�

2
1 � 2r1r2�12 + r21�22
�21 + �

2
2 � 2�12

(41)

Without loss of generality, I will use w�1 = �
r2

r1 � r2
+

1

r1 � r2

s
r22�

2
1 � 2r1r2�12 + r21�22
�21 + �

2
2 � 2�12

;and w�2 = 1�w�1:
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:Table 1. Daily Transaction Summary (1996-2004)

ETFs Ticker Trades per day Quotes per day
US SPY 3877 39605

(6 sec/trade) (0.5 sec/quote)
Japan EWJ 248 516

(1.5 min/trade) (0.7 min/trade)

Note: The trades and quotes per day refer to the average number of trades and quotes from 9:30 EST until
16:00 EST. The calculation is based on the transaction records of the American Stock Exchange (AMEX)
and the Nasdaq National Market System (NMS) over the period May 1996 to December 2004.

Table 2. Summary Statistics of Returns and Volatilities
ETFs Mean Std.Dev. Skewness Kurtosis Obs.

Five-Minute Returns
US 0.0004 0.1592 -0.2421 90.9676 170274
Japan -0.0002 0.2999 0.3810 50.5501 170274

Five-Minute Absolute Returns
US 0.1010 0.1230 8.2028 223.5364 170274
Japan 0.1320 0.2692 5.0051 66.4719 170274

Daily Returns
US 0.0281 1.2329 -0.0845 5.9290 2183
Japan -0.0189 1.7005 0.3910 6.2427 2183

Daily Absolute Returns
US 0.9079 0.8345 2.0806 10.6712 2183
Japan 1.2645 1.1368 2.1711 12.5501 2183

Note: The sample covers the period May 1996 to December 2004. The number of working days is 2183.
With 78 �ve-minute intervals per day, we thus have a total of 170274 (= 2183�78) observations for each
series. The returns are expressed in percentage.
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Table 3. Volatility Transmissions Based on a Bi-variate GARCH Model and a VAR-RV Model
GARCH model VAR_RV model

Equation 1 Equation 2 Equation 1 Equation 2
H11;t H22;t H11;t H22;t

Coef. t value Coef. t value Coef. t value Coef. t value
H11;t�1 0.896 [39.63]a 0.0000 [0.24] -0.122 [-7.63]a 0.146 [3.31]a

e21t�1 0.004 [1.21] 0.014 [1.64] � � � �
�21t�1 (x1t�1) 0.153 [4.18]a 0.056 [2.68]a 0.975 [46.69]a 0.084 [1.46]
H22;t�1 0.000 [0.13] 0.903 [42.09]a 0.012 [1.82] -0.105 [-5.57]a

e22t�1 0.000 [0.48] 0.055 [3.85]a � � � �
�22t�1 (x2t�1) 0.002 [0.61] 0.006 [0.78] 0.017 [1.61] 0.965 [32.94]a

Chi-squared tests of block exogeneity
from US � � 8.9193 (0.11) � � 3.672a (0.00)a

from Japan 8.505 (0.13) � � 1.808 (0.11) � �
Standardized return residuals diagonostic statistics

Mean 0.003 0.005 0.027 0.011
Std. dev. 1.001 0.997 0.907 0.663
Skew. -0.360a 0.056 0.029 0.026

Excess Kurt. 1.257a 0.925a -0.300a -0.365a

JB 190.54a 78.758a 8.441b 12.349a

LB(12) 13.079 9.261 22.254b 19.108
LB2(12) 13.143 4.819 49.664a 358.30a

Note: The coe¢ cients and associated t values in the bi-variate GARCH model are calculated based on the
procedure described in Appendix A. LB(12) and LB2(12) are the Ljung-Box statistics for serial correlation
in the standardized return residuals and standardized return residuals squared at lag 12. The symbol a

and b indicate signi�cance at the 1% and 5% level, respectively.
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Table 4. Performance of Optimized Portfolio based on a bi-variate GARCH and a VAR-RV model
Annualized Portfolio Std. Dev.

Horizon GARCH VAR-RV Di¤. t value
1 day 25.627 24.186 1.441 3.872a

1 week 27.565 26.139 1.426 5.340a

2 week 28.391 27.337 1.054 5.037a

3 week 28.676 27.493 1.183 4.340a

1 month 28.601 27.614 0.987 4.265a

Annualized Return-Variance Ratio
Horizon GARCH VAR-RV Di¤. t value
1 day 0.168 0.388 -0.220 -2.816a

1 week 0.036 0.099 -0.063 -2.188b

2 week 0.015 0.051 -0.036 -1.970b

3 week 0.012 0.052 -0.040 -2.002b

1 month 0.022 0.058 -0.036 -2.293b

Note: t value is one-sided, matched pairs t statistic, with VAR-RV as the benchmark. A positive t value
in annualized portfolio std. dev. indicates a better performance of VAR-RV than that of GARCH; while a
negative t value in annualized return-variance (and sharpe ratio) indicates a better performance of VAR-RV
than that of GARCH.
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