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CHAPTER I 
 

Introduction 
 

Motivation 
 

Enhancers are traditionally defined as genomic sequences that regulate the transcription of one or more 

genes, regardless of orientation or relative distance to the target promoter1. These cis-regulatory regions 

can bind specific transcription factors and cofactors to increase transcription, and in current models of 

enhancer function, they physically interact with their long-range targets via loops in the three-dimensional 

chromatin structure. Enhancers play a vital role in the regulation of genes during development and cell 

differentiation2,3. Genetic variation in enhancers has been implicated in etiology of complex disease4,5 and 

in differences between closely related species6–8.  

 Given their significant role in a range of biological processes, enhancers have seen considerable 

study in recent years. More than 2,300 papers have been published on enhancer biology (MeSH: 

Enhancer Elements, Genetic) since the start of 2015; hundreds of these have focused on the role of 

enhancers in disease. However, despite the importance of enhancers, they remain difficult to identify1,9,10. 

Experimental assays that directly confirm enhancer activity are time-consuming, expensive, and not 

always conclusive1,11. Although there are recent promising developments in massively parallel reporter 

assays, current methods are unable to definitively identify and test enhancers on an unbiased genome-

wide scale12. As a result, many studies use more easily measurable attributes associated with enhancer 

activity, defining enhancers based on a single set of biochemical and sequence-level proxies for activity. 

An evaluation of the robustness of this ‘single definition’ approach through a comprehensive 

analysis of similarity in the genomic, evolutionary, and functional attributes of enhancers identified by 

different strategies is essential. Through this comparison, we can assess the stability of conclusions made 

using only one enhancer identification strategy. While we expect some variation due to differences in the 
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underlying assays, we found significant differences between enhancer sets identified in the same context 

which were sufficient to influence downstream conclusions and biological interpretations. 

 

Attributes of Gene Regulatory Enhancers 
 

Enhancer regions are known to be associated with a variety of biochemical, sequence, and functional 

attributes. Combinations of enhancer-correlated attributes are often used as the enhancer definitions 

themselves or leveraged as input into more complex computational models.  

 

Biochemical signatures of enhancers 

Since they operate through binding to relevant transcription factors, active enhancers localize in regions 

of open, or accessible chromatin. This is commonly assayed by testing the sensitivity of DNA segments 

to DNase I nuclease followed by sequencing (DNase-seq)13,14, identifying nucleosome depleted regions 

with Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq)15,16, or more recently with the 

transposase Tn5 mediated Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)17. 

Each of these methods leverages the variable susceptibility of nucleosome-occupied versus nucleosome-

free DNA to nucleases, formaldehyde cross-linking, or transposase activity, respectively. Despite the 

differences in DNA-targeting approaches, DNase-seq, FAIRE-seq, and ATAC-seq generate similar output 

data. The final step in each method is to align the sequencing reads back to a reference genome to 

generate enrichment ‘peaks’ thought to be accessible for transcription factor binding13–17. 

Enhancers also often have characteristic sets of histone modifications on surrounding 

nucleosomes that can be detected using chromatin immunoprecipitation assays followed by next 

generation sequencing (ChIP-seq)18. DNA-bound proteins are cross-linked to the DNA, the genome is 

fragmented into small pieces, and specific antibodies are used to precipitate out relevant fragments for 

sequencing. The resulting reads are aligned to the genome, forming peaks where the mark was reliably 

present. Commonly assessed markers for enhancer identification are monomethylation of lysine 4 on 
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histone H3 (H3K4me1) and acetylation of lysine 27 on histone H3 (H3K27ac), which often denotes active 

enhancers1,19,20. Combining H3K27ac with the lack of a modification characteristic of promoters, 

trimethylation of lysine 4 on histone H3 (H3K4me3), is often used to distinguish enhancers from 

promoters1,21.  

 

Sequence features of enhancers 

Genomic sequence-level features are also often used to locate or characterize potential enhancer regions. 

Many enhancers, especially those involved in developmental processes, are evolutionarily conserved22–25. 

As a result, evolutionarily conserved sequences are frequently prioritized when identifying putative 

regulatory elements. Perhaps more directly, the presence of known transcription factor binding motifs26 or 

binding of known enhancer associated proteins, such as the histone acetyltransferase p30019,27,28, have 

been used to successfully locate enhancer elements1. Transcription factor (TF) binding can be elucidated 

with ChIP-seq assays, resulting in a genome-wide map of locations bound to the factor of interest in the 

cell at the time the assay was performed18. However, if multiple relevant factors exist, this approach can 

be expensive and time-consuming. Instead, computational methods have been developed for the de novo 

identification of TF binding motifs, or calculating enrichment for computationally derived motifs and 

known motifs of interest1,29,30.  

Notably, while evolutionary conservation and the presence of relevant TF binding sites are 

suggestive of enhancer function, they are not a guarantee of activity. Successful binding of TFs is often 

context-dependent, and the presence of a motif does not require binding29. A recent study integrating TF 

binding motifs with ChIP-seq data in K562 cells reported an average of 430 times the number of unbound 

motifs as bound motifs, suggesting that actual binding may be rare in comparison with the number of TF 

motifs31. Even positive evidence of binding from a ChIP-seq assay does not confirm enhancer activity. 

There is a high false-positive rate for enhancer prediction from TF ChIP-seq, possibly because enhancers 

require specific combinatorial binding patterns29 or because it is difficult to distinguish transient 

interactions from critical ones with ChIP-seq data alone32. Alternatively, a lack of conserved binding 
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motifs does not indicate lack of activity; previous studies in mouse embryos have demonstrated that 

turnover in transcription factor binding sites is quite high, showing that there can be strong conservation 

of enhancer activity with little to no sequence similarity across evolutionary time28. 

 

Functional characteristics of enhancers  

More recently, other functional attributes related to transcriptional activity and three-dimensional 

chromatin structure have been used both to identify potential enhancer regions and to predict the activity 

and target genes of those regions. Some enhancers are transcribed, and it has become possible to map 

active enhancers by identifying characteristic bi-directionally transcribed enhancer RNAs (eRNAs)33,34. 

The cap analysis of gene expression followed by sequencing (CAGE-seq) has been used to quantify and 

map eRNAs in a variety of biological contexts, notably by the FANTOM consortium, which generated 

eRNA measurements across a wide range of tissues and cell lines33. These predicted enhancers validate at 

a relatively high rate (~70%). It is important to note that the function of these noncoding eRNAs is still 

not well understood. A recent review proposed three potential classes for eRNAs,: (1) eRNAs with no 

biological function, (2) eRNAs contributing to the activity of the enhancer itself, and (3) eRNAs with 

independent functionality or effect34. However, confirming these classifications will require additional 

experimental characterization. There is also some question about the specificity of the bi-directional 

transcription pattern to enhancers35.  

Understanding the three-dimensional structure of chromatin, and its interaction points, is another 

method used to functionally characterize putative enhancer regions. Chromatin conformation assays are 

able to generate long-range interaction maps of the genome, suggesting locations that interact with 

promotors or form three-dimensional compartments that localize regulatory activity36,37. Chromatin 

conformation capture (3C), circular chromatin conformation capture (4C), chromosome conformation 

capture carbon copy (5C), and Hi-C all generate these maps through sequencing interacting DNA 

segments after formaldehyde cross-linking1,36. A variant of the chromatin conformation capture 

approaches, chromatin interaction analysis with paired-end tag sequencing (ChIA-PET), uses a similar 
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methodology to discover interacting regions; however, ChIA-PET has the benefit of allowing the user to 

pull down interactions involving specific proteins, similar to ChIP-seq36. The resulting ChIA-PET maps 

are used to draw inferences about regions frequently associated with long-range interactions and proteins 

of interest. Interacting DNA regions can be further combined with alternate biochemical and sequence-

level attributes to suggest potential regulatory activity, validate previously predicted enhancer regions, or 

locate potential gene targets1,36,38. Due to the generally low resolution and a decreased ability to detect 

short (< 10 kb) interactions, these methods require further refinement before they could be applied to 

reliably identify novel enhancers and their target promoters1,36.  

 

Limitations of using attributes correlated with enhancer activity to identify enhancers 

While informative, none of these attributes are comprehensive, exclusive to enhancers, or completely 

reliable indicators of enhancer activity. For example, enhancers defined using eRNA based methods are 

often more restricted sets than those suggested by alternate approaches. They do not capture all sequences 

that have demonstrated the ability to drive transcription in small-scale transgenic assays, suggesting that 

they do not provide a complete picture of the regulatory landscape in a given cellular context33. 

Alternately, many of the biochemical and sequence level features account for increased levels of genomic 

sequence, but these are not exclusive to enhancer regions39–41. Previous work describes a potential 

spectrum of functional genetic elements, including promoters and insulators, that share attributes with 

enhancers42,43. Indeed, a recent study by Dao et al. suggests that some mammalian promoters also 

demonstrate enhancer behavior in certain contexts44. Selecting enhancer-associated combinations of 

histone modifications is another a notable example of this complexity1,2,39,40. H3K27ac is known to mark 

active promoters as well as enhancers, despite being used as a working definition of an enhancer21,45–49. 

The commonly used enhancer-mark, H3K4me1, has been discovered in regions that do not demonstrate 

enhancer activity2,39. The repressive H3K27me3 mark has also been reported to coincide with H3K4me1 

marked enhancer regions, referred to as bivalent or poised enhancers, suggesting a mechanism for finer 

control of enhancer activation2. Other recent papers claim additional histone modifications are also 
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correlated with enhancer states (H3K64ac, H3K122ac, H3K79me3, and H4K16ac), and can mark active 

enhancer regions lacking the traditional H3K27ac mark, further complicating the idea of a single ‘histone 

code’ for enhancer discovery40,50,51. Earlier validations of enhancer predictions also suggest that 

definitions of enhancers based solely on combinations of histone modifications have a low specificity, 

leading to low validation rates (20-33%)26,33. Technical constraints and biases in the experimental assays 

generating data used to identify enhancers, either alone or in combination with further statistical 

approaches, are also not fully appreciated52.  

Aside from limitations assaying and using data associated with enhancer activity, biological 

characteristics of the regulatory architecture add an additional layer of complexity. Enhancer activity is 

also context- and stimulus-dependent, suggesting that the lack of enhancer activity in a single context or 

condition may not be sufficient to completely rule out activity20,53. There are a number of case studies to 

explore the enhancer regions with activity only in a specific tissue or developmental time point20,53. Other 

research also suggests that enhancers may occupy multiple states. Sometimes classified as ‘poised’, 

‘primed’, or ‘latent’, enhancers may be subject to intermediate states between activity and inactivity, 

complicating a simpler switch-like model of enhancer activity1,2,41,54. Genetic variation between 

individuals is also known to affect epigenetic modifications and enhancer activity, potentially 

confounding the generalizability of identification approaches built on epigenetic features. However, 

recent studies suggest that only a small fraction (1–15%) of epigenetic modifications are influenced by 

nearby genetic variants55. 

 

Computational Models for Enhancer Identification  
 

Many complementary computational enhancer identification methods that integrate data correlated with 

enhancer activity (e.g. histone modification profiles, chromatin accessibility, TF binding, eRNA) in both 

supervised and unsupervised machine learning approaches have been developed10,56,57. These typically 
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approach the problem by using unsupervised methods to segment the genome into broader functional 

categories or using supervised learning to classify regions into ‘enhancer’ and ‘non-enhancer’ states.  

Popular unsupervised chromatin segmentation approaches include ChromHMM, Segway, and the 

more recent GenoSTAN58–60. These methods integrate knowledge of histone modifications ChIP-seq with 

hidden Markov models or dynamic Bayesian networks, to produce a map of the genome labeled by a 

user-specified number of states. The levels of enrichment for different combinations of markers can then 

be assessed by an expert to assign a plausible annotation to each state56. Unsupervised approaches are 

useful since they do not require a positive and negative training set, which, given the small number of 

experimentally validated enhancers, can be difficult to define and introduce unknown biases into the 

model60.  

Supervised classification approaches used to distinguish enhancers from other functional regions 

and genomic background range in complexity. Some of the most widely used approaches involve simple 

rule-based intersections of combinations histone modifications and other genomic 

annotations2,19,66,20,21,39,61–65. For example, the co-occurrence of H3K4me1 and H3K27ac in the same 

genomic region, or the presence of H3K27ac without any H3K4me3 signal are often cited as evidence of 

an enhancer regions19–21,39,64,65. Since enhancers are frequently defined as non-protein-coding regions that 

regulate target genes from a long distance, these simple intersections can also be filtered to exclude 

coding sequences and regions within a certain distance from the nearest transcription start site (TSS)61,66–

69. In some cases, however, this filtering may be too stringent since enhancer sequences have been 

reported in coding sequences and intronic regions close to genes1,70. In recent years, the application of 

supervised machine learning classifiers for enhancer prediction has grown in popularity. These models are 

trained on similar combinations of input as the unsupervised or simple approaches: histone modifications, 

regions of open chromatin, transcription factor binding motifs, and other genomic annotations10,57,67,68. 

They use statistical principles to learn higher order patterns and classify the sequence or region by 

enhancer status.  
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Limitations of computational enhancer predictions 

Despite current and widespread use, an accurate quantification of the model performance is limited by the 

available validation metrics and the lack of a comprehensive gold standard. Without a gold standard 

enhancer set, enhancer identification studies and algorithms validate their results via a combination of 

small-scale transgenic reporter gene assays and enrichment for other functional attributes, such as trait-

associated genetic variants, evolutionary conservation, or proximity to relevant genes. This form of 

validation does provide additional evidence of enhancer function. However, considering that attributes 

correlated with enhancer activity also have an error rate, the validation can become biased. Furthermore, 

complex statistical models like many of those employed in an enhancer prediction framework can be 

difficult to interpret. The ‘black box’ nature of machine learning makes it difficult to discern 

generalizable biological and mechanistic insights into the regulatory architecture, even from well-

performing models71.  

 

Experimental Approaches for Enhancer Identification and Validation 
 

Until recently, experimental identification of enhancer sequences was limited to small-scale studies in cell 

lines or transgenic embryos. In this approach, the sequence of interest is incorporated into a bacterial 

plasmid upstream of a minimal promoter and reporter gene1,72. Sequences with activity sufficient to drive 

expression of the reporter construct are labeled as enhancers. While informative, transgenic reporter 

assays are low-throughput and require all sequences to be specified in advance1. With the advent of more 

sophisticated high-throughput experimental approaches, focus turned to the development of genome-scale 

enhancer identification protocols.  

One such technology, massively parallel reporter assays (MPRAs), shows promise for generating 

large-scale enhancer maps with demonstrated activity12. In an MPRA, unique barcodes are incorporated 

into reporter constructs with the putative enhancer sequences being tested. Libraries with thousands of 
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barcode labeled plasmids can be tested in a single experiment, allowing for validation of a large number 

of sequences at one time. MPRAs have been used extensively in recent years, both to test the regulatory 

potential of a large number of candidate regions and to assess the impact of variation on putative enhancer 

elements73–77. Despite a relatively low validation rate for computationally predicted enhancer sequences 

(~26%), MPRA results do confirm many long-held beliefs about enhancers76. They find enrichment for 

active regulatory elements in DHSs and evolutionarily conserved regions, and show active enhancers co-

occurring with traditional histone modifications and relevant TF binding motifs12,43,74. A variation on the 

original MPRA, self-transcribing active regulatory region sequencing (STARR-seq) has also recently 

been applied to human enhancer sequences78,79. STARR-seq differs from other MPRAs in that the 

predicted enhancer sequence is placed downstream of the minimal promoter and is thus transcribed if the 

enhancer is active. This allows for direct quantification of enhancer strength and activity level without 

secondary barcodes78. 

 

Limitations of experimental approaches 

While significant progress has been made in recent years, experimental enhancer identification and 

validation retain a number of caveats that prevent the adoption of a single gold-standard enhancer map. 

The recent focus on MPRAs for identifying enhancers on a genome-wide scale overcomes some of the 

issues of previous experimental methods, primarily in terms of throughput. However, the sequences 

derived from this method still represent only a subset of active enhancers in a given cell type12. Enhancers 

are known to be cell-type and stimulus-dependent, which cannot be fully accounted for using transgenic 

assays or MPRAs as a validation approach. Additionally, MPRAs suffer from several of the same caveats 

as traditional reporter constructs, including sequence length restrictions and removal from the enhancer’s 

endogenous context11,12. The latter has been explored as a source of potential bias by altering an 

enhancer’s ability to drive gene expression11. A study by Inoue et al. compared the results of a traditional 

episomal MPRA with that of a novel lentivirus MPRA (lenti-MPRA) that integrates the putative enhancer 

sequence into the genome11. While the two approaches were highly correlated, the authors concluded that 
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the integrated MPRA resulted in increased reproducibility and positive signals that were more highly 

correlated with relevant genomic annotations. Poorer performance of the traditional MPRA suggests that 

noise and a lack of biological context in episomal assays may obscure relevant signals, and that it is 

important to consider the endogenous context when testing enhancer sequences11. Furthermore, a recent 

study by Muerdter et al. claimed that transcription often initiates in the origin-of-replication in plasmid-

based reporter constructs, including both small-scale luciferase assays and high-throughput methods like 

STARR-seq, confounding readouts of enhancer activity. They also describe unintended inflammatory 

responses induced by plasmid transfection which can also obscure true signals and confound 

interpretability of such assays79. These caveats must be understood and accounted for in order to obtain 

reliable identification and validation of enhancer sequences. Currently, the use of clustered regularly 

interspaced short palindromic repeats (CRISPR)-Cas9 is being explored as a way to validate enhancer 

sequences and assess the impact of genetic variation on regulatory elements in an endogenous context43. 

  

Chapters 
 

Genome-wide enhancer maps are commonly used in many different applications, including studies of the 

gene regulatory architecture of different tissues, and the interpretation of variants identified in genome-

wide association studies (GWAS)4,5,45. However, in these applications, a single assay or computationally 

predicted enhancer set regularly serves as the working definition of an “enhancer” for all analyses and 

individuals. We hypothesized that differences between identification strategies are substantial enough to 

influence biological interpretations and conclusions about enhancer evolution and disease-associated 

variant function. Chapter II provides a quantification of the genomic differences between nine diverse 

enhancer identification strategies across four biological contexts. This highlights the level of 

disagreement between enhancer definitions in common use. Chapter III characterizes the functional 

implications of the similarities and differences between putative enhancer sets through standardized 

analyses of each set. Understanding the way identification strategies impact the functional associations of 



 11 

each enhancer set is vital to both scientific reproducibility and furthering our understanding of the 

regulatory architecture. Chapter IV contrasts the performance of each identification strategy on 

experimentally validated enhancer sequences and assesses the extent to which focusing on enhancers 

supported by multiple identification methods can resolve the disagreement between individual methods. 

In this work, we highlight a fundamental challenge to studying gene regulatory mechanisms, and to 

evaluating the functional relevance of thousands of non-coding variants associated with traits, for instance 

from GWAS. Understanding and incorporating the unique characteristics of different enhancer 

identification strategies will be essential to ensuring reproducible results, and to furthering our 

understanding of enhancer biology.  
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CHAPTER II 

 

Quantifying Genomic Differences Between Enhancer Sets 
 

Introduction 
 

The successful identification of gene regulatory enhancers remains a complex problem, due to the large 

number of activity-correlated attributes and the lack of a gold-standard enhancer map. As a result, many 

enhancer identification and validation approaches exist. In practice, most studies consider a single 

identification approach based on a select number of enhancer characteristics and base all downstream 

analyses on that definition. Given the wide range of identification strategies, we hypothesized that 

enhancer identification strategies would display significant genome differences. This chapter evaluates 

the variation in enhancer sets annotated by different strategies using a consistent computational pipeline 

to compare enhancer sets genome-wide. We consider a representative selection of enhancer sets, 

contrasting genomic characteristics such as location, length, distance from transcription start sites (TSSs), 

and level of evolutionary conservation. We then quantify the amount of overlap and genomic similarity 

between all pairs of enhancer sets. 

 

Methods 
 

Defining a panel of enhancer identification strategies 

Our approach is based on publicly available data applied to a representative set of methods in four 

common cell types and tissues (biological contexts): K562, Gm12878, liver, and heart cells (Figure 1). 

Given the large number of enhancer identification strategies that have been proposed1,10, it is not possible 

to compare them all; so for each biological context, we consider methods that represent the diversity of 

experimental and computational approaches in common use. We define “common use” as methods cited 

as the enhancer identification or definition strategy in at least one high-profile published paper after 2007, 
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although most strategies have more frequent publications. All enhancer sets were generated and analyses 

were performed in the context of the GRCh37/hg19 build of the human genome. We used transcription 

start site (TSS) definitions from Ensembl v75 (GRCh37.p13). 

 

 

Figure 1: Ten diverse enhancer identification strategies were evaluated across four cellular contexts. Each row 
summarizes the data sources, analytical approaches, and contexts for the ten enhancer identification strategies we 
considered. The leftmost columns of the schematic represent the experimental assays and sources of the data used by 
each identification strategy. The middle columns describe the computational processing (if any) performed on the 
raw data (ML: machine learning). The rightmost columns give the contexts in which the sets were available. Error! 
Reference source not found. gives the number, length, and genomic coverage of each enhancer set. 
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peaks were generated by pooling data from two isogenic replicates. The Roadmap Epigenomics broad 

peaks were also generated with data from two biological replicates. The “H3K27acPlusH3K4me1” track 

is a combination of H3K27ac and H3K4me1 ChIP-seq peak files2,20,39. If both types of peaks were present 

(i.e., the regions overlap by at least 50% of the length of one of the regions) the intersection was classified 

as an enhancer. Similarly, to create the “H3K27acMinusH3K4me3” set for each context, we intersected 

H3K27ac and H3K4me3 ChIP-seq peak files and kept regions where H3K27ac regions did not overlap a 

H3K4me3 peak by at least 50% of their length. We derived the combination of H3K27ac and H3K4me3 

and the 50% overlap criterion from previous studies19,21,39. We also downloaded enhancer predictions in 

liver from Villar et al. 201521 which uses an identical histone-modification-derived enhancer definition as 

the H3K27acMinusH3K4me3 set. In liver, the “Villar15” set provides us with the ability to contrast 

enhancer sets formed using the same definition and input data type in different laboratories. 

 To represent an additional enhancer identification strategy in common use, we created another 

enhancer set for this study using histone modification ChIP-seq peaks and DNase-seq peaks downloaded 

from ENCODE and Roadmap Epigenomics. The “DNasePlusHistone” track is based on the pipeline 

described in Hay et al. 201661. It combines H3K4me1, H3K4me3, DNaseI hypersensitive sites (DHSs), 

and transcription start site (TSS) locations. We filtered a set of DHSs, as defined by DNase-seq, for 

regions with an H3K4me3 / H3K4me1 ratio less than 1, removed regions within 250 bp of a TSS, and 

called the remaining regions enhancers.  

 We also curated five representative computationally-defined enhancer sets using more 

sophisticated machine learning approaches: “EncodeEnhancerlike”, “ChromHMM”, “Yip12”, and 

“Ho14”. We downloaded the “enhancer-like” annotations from ENCODE (version 3.0). These combine 

DNase-seq and H3K27ac ChIP-seq peaks using an unsupervised ranking model. Each DNase-seq peak is 

ranked based on the level of combined DNase and H3K27ac signal across a uniform genomic window 

from the center of the peak (500bp for DNase and 2kb for H3K27ac). The edges of the enhancer-like 

region are predicted by intersecting the ranked DNase peaks with H3K27ac, and the set is filtered to the 

top 20,000 regions, excluding those within 2kb of a TSS. However, since there is potential for more 
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proximal enhancers, any regions within 2kb of a TSS but ranking within the top 20,000 distal enhancer-

like elements are included. We retrieved ChromHMM enhancer predictions58 for the K562 and Gm12878 

cell lines from the 25-state segmentation models trained on ENCODE data56. This model was trained on 

ChIP-seq data for eight histone modifications (including H3K4me3, H3K4me1, H3K27me3, and 

H3K27ac), CTCF, and RNA polymerase II. We downloaded ChromHMM predictions for liver and heart 

tissues from the additional 15-state segmentation performed by the Roadmap Epigenomics Consortium. 

This model was trained on H3K9me3 and four of the same histone modifications as the ENCODE model: 

H3K4me3, H3K4me1, H3K27me3, and H3K36me3. For all ChromHMM sets, we combined the regions 

labeled as weak and strong enhancer states into a single enhancer set. We considered two enhancer sets 

for K562 and Gm12878 based on supervised machine learning techniques—one described in Yip et al. 

201268, and the other in Ho et al. 201467. The Yip12 set predicted ‘binding active regions’ (BARs) from 

DNA accessibility data from DNase-seq and FAIRE-seq, and histone modification data on twelve marks 

using a random forest model. The histone modifications included: H3K27ac, H3K27me3, H3K36me3, 

H3K4me1, and H3K4me3. To train the random forest, the positive set contained 5,000 randomly sampled 

BARs overlapping at least one ‘transcription-related factor’ (TRF), and the negative set contained 5,000 

randomly BARs with no TRF peaks. Regions predicted as a BAR with a score above 0.9, a low promoter 

score, some evidence of evolutionary conservation, and at least 2kb from a TSS became the final BAR 

set. These positively predicted regions were filtered for relevant TF binding motifs and combined with a 

second set of putative enhancers. The second set was generated by an additional machine learning model 

incorporating evolutionary, chromatin, and sequence features to predict TF binding. Proximal regions 

were excluded and remaining distal regions were required to have used H3K4me1 or H3K4me3 as 

features during the prediction process. The intersection of the two sets was length restricted (100-700 bp) 

to create a final set of ~13,000 enhancers68. Ho14 was created with a supervised model-based boosting 

algorithm (mboost). The feature set included fold enrichment of H3K4me1 and H3K4me3 ChIP-seq 

peaks in conjunction with DHS location and p300 binding sites. The model was trained to predict regions 
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with regulatory activity both distal (>1 kb) and proximal (< 250 bp) to TSSs. The predicted distal 

regulatory elements make up the published enhancer set67.  

 Finally, since transcriptional signatures are increasingly used to identify enhancers, we consider 

“FANTOM” enhancers identified from bidirectionally transcribed eRNA detected via cap analysis of 

gene expression (CAGE) by the FANTOM5 Project33,82,83. We downloaded enhancer regions predicted by 

FANTOM for each of the four sample types analyzed33. In K562 and Gm12878, CAGE-seq was 

performed with 3 replicates that were pooled into the final published enhancer sets. In liver and heart, the 

published predictions were generated from tissue samples from multiple donors33. 

 After obtaining or generating each enhancer set, we uniformly processed each one by excluding 

elements overlapping ENCODE blacklist regions and gaps in the genome assembly84. Additionally, due to 

the presence of extremely long regions in some enhancer sets, likely caused by technical artifacts, we 

removed any regions more than three standard deviations above or below the mean length of the dataset. 

The filtering process removed relatively few annotations (Error! Reference source not found.). 

 

Analysis of biological replicates in ChIP-seq 

When considering the agreement between biological replicates for K562, Gm12878, and liver H3K27ac 

ChIP-seq data, we downloaded the FASTQ files from ENCODE80 and Villar et al. 201521, respectively. 

We aligned the reads from each replicate to GRCh37.p13 using the Burrows-Wheeler Aligner (BWA)85 

(v.0.7.15, default options). We called peaks of broad enrichment using the Model-based Analysis of 

ChIP-seq (MACS) tool86 (v.1.4.2, default options). We processed each of the replicate peak files using the 

same pipeline as the published peak files. 
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Context Enhancer Set Number of Enhancers Removed 
K562 H3K27acPlusH3K4me1 200 
K562 H3K27acMinusH3K4me3 684 
K562 DNasePlusHistone 220 
K562 ChromHMM 2117 
K562 EncodeEnhancerlike 593 
K562 Yip12 109 
K562 Ho14 765 
K562 FANTOM 21 
Gm12878 H3K27acPlusH3K4me1 205 
Gm12878 H3K27acMinusH3K4me3 461 
Gm12878 DNasePlusHistone 400 
Gm12878 ChromHMM 1300 
Gm12878 EncodeEnhancerlike 733 
Gm12878 Yip12 109 
Gm12878 Ho14 766 
Gm12878 FANTOM 49 
Liver H3K27acPlusH3K4me1 686 
Liver H3K27acMinusH3K4me3 2342 
Liver DNasePlusHistone 3546 
Liver ChromHMM 1985 
Liver EncodeEnhancerlike 719 
Liver Villar15 225 
Liver FANTOM 14 
Heart H3K27acPlusH3K4me1 590 
Heart H3K27acMinusH3K4me3 3908 
Heart DNasePlusHistone 1693 
Heart ChromHMM 1978 
Heart EncodeEnhancerlike 892 
Heart FANTOM 35 
Heart VISTA 0 

Table 1: Number of enhancers removed by length filtering. 
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Genomic region overlap and similarity 

To quantify genomic similarity, we calculated the base pair overlap between two sets of genomic regions, 

A and B, by dividing the number of overlapping base pairs in A and B by the total number of base pairs in 

B. We also performed this calculation on element-wise level, by counting the number of genomic regions 

in B overlapping regions in A by at least 1 bp, and dividing by the number of genomic regions in B. We 

performed both calculations for each pairwise combination of enhancer sets. All overlaps were computed 

using programs from the BEDtools v2.23.0 suite87. 

 We also evaluated the similarity between pairs of genomic region sets using the Jaccard similarity 

index. The Jaccard index is defined as the cardinality of the intersection of two sets divided by cardinality 

of the union. In our analyses, we calculated the Jaccard index at the base pair level. We also computed the 

relative Jaccard similarity as the observed Jaccard similarity divided by the maximum possible Jaccard 

similarity for the given sets of genomic regions, i.e., the number of bases in the smaller set divided by the 

number of bases in the union of the two sets. To visualize overlaps, we plotted heatmaps for pairs of 

methods using ggplot2 in R88. 

 

Enrichment for overlap with other genomic regions 

To evaluate whether the observed base pair overlap between pairs of enhancer sets is significantly greater 

than would be expected by chance, we used a permutation-based approach. We calculated an empirical p-

value for an observed amount of overlap based on the distribution of overlaps expected under a null 

model of random placement of length-matched regions throughout the genome. We used the following 

protocol: let A and B denote two sets of genomic regions; count the number of bp in A that overlap B; 

generate 1,000 random sets of regions that maintain the length distribution of B, excluding ENCODE 

blacklist regions and assembly gaps; count the number of bp in A that overlap regions in each of the 

random sets; compare the observed bp overlap count with the overlap counts from each iteration of the 

simulation and compute a two-sided empirical p-value. We used the same framework to evaluate element-

wise comparisons by counting the number of regions in A that overlap B rather than the bps. This 
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approach was performed using custom Python scripts and the Genomic Association Tester (GAT)89. We 

note that this measure of overlap significance is not symmetric, and we confirmed results of our element-

wise results for both orderings of the pairs of enhancer sets accordingly. 

 

Enrichment for overlap with evolutionarily conserved elements 

In addition to comparing the overlap between pairs of enhancer sets, we also computed enrichment for 

overlap of evolutionarily conserved regions with each of the enhancer sets. We downloaded 

evolutionarily conserved regions defined by PhastCons, a two-state hidden Markov model that defines 

conserved elements from multiple sequence alignments90. We concatenated primate and vertebrate 

PhastCons elements defined over the UCSC alignment of 45 vertebrates with humans into a single set of 

conserved genomic regions. We used the same permutation analysis approach as the genomic 

comparisons between pairs of enhancer sets, but considered the conserved elements as set A and the 

enhancers as set B. 

 

Results 
 

Genomic coverage of different enhancer sets varies by several orders of magnitude 

Enhancer regions identified in the same context by different methods differ drastically in the number of 

enhancers identified, their genomic locations, their lengths, and their coverage of the genome (Error! 

Reference source not found.; Figure 2). Different identification methods assay different aspects of 

enhancer biology (e.g., co-factor binding, histone modification, enhancer RNAs), and therefore we 

expected to find variation among enhancer sets. Nevertheless, the magnitude of differences we observed 

is striking. For each attribute we considered, enhancer sets differ by several orders of magnitude (Error! 

Reference source not found.; Figure 2). In liver, FANTOM identifies 326 kilobases (kb) of sequence 

with enhancer activity, EncodeEnhancerlike identifies 89 megabases (Mb), and H3K27acMinusH3K4me3 

identifies almost 138 megabases (Mb). In addition, methods based on similar approaches often differ 
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substantially; e.g., Villar15, which uses the same enhancer definition as H3K27acMinusH3K4me3, only 

annotates 86.1 Mb with enhancer function in liver. Overall, methods based on histone modifications tend 

to identify larger numbers of longer enhancers compared with CAGE data, while machine learning 

methods are variable. We highlight these trends in liver, but they are similar in other contexts (Error! 

Reference source not found.; Figure 2). 
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Figure 2: Enhancer identification methods vary in the number and length of predicted enhancers. The number of (A) 
K562, (C) Gm12878, (E) liver, and (G) heart enhancers identified by each method vary over two orders of 
magnitude. There is considerable variation even among methods defined based on similar input data, e.g., histone 
modifications. The length of (B) K562, (D) Gm12878, (F) liver, and (H) heart enhancers identified by different 
methods shows similar variation. Enhancer lengths are plotted on a log10 scale on the y-axis.  
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Context Enhancer Set Number of Base 
Pairs (kb) 

Number of 
Enhancers 

Median 
Length 

Genomic 
Fraction 

K562 H3K27acPlusH3K4me1 22,113 6,642 1,903 0.0078 

K562 H3K27acMinusH3K4me3 34,072 19,698 525 0.0120 

K562 DNasePlusHistone 6,620 13,402 431 0.0023 

K562 ChromHMM 96,545 100,837 600 0.0339 

K562 EncodeEnhancerlike 39,961 36,008 878 0.0140 

K562 Ho14 29,027 35,769 556 0.0102 

K562 Yip12 5,389 13,303 342 0.0019 

K562 FANTOM 390 1,084 344 0.0001 

Gm12878 H3K27acPlusH3K4me1 28,355 8,019 2,749 0.0099 

Gm12878 H3K27acMinusH3K4me3 20,868 11,238 701 0.0073 

Gm12878 DNasePlusHistone 9,286 19,815 386 0.0033 

Gm12878 ChromHMM 73,929 69,314 800 0.0259 

Gm12878 EncodeEnhancerlike 50,224 38,872 1,018 0.0176 

Gm12878 Ho14 41,543 39,550 674 0.0146 

Gm12878 Yip12 5,389 13,303 342 0.0019 

Gm12878 FANTOM 1,025 2,826 343 0.0004 

Liver H3K27acPlusH3K4me1 87,576 37,644 1,831 0.0307 

Liver H3K27acMinusH3K4me3 137,874 77,014 1,096 0.0484 

Liver DNasePlusHistone 51,292 170,212 152 0.0180 

Liver ChromHMM 108,375 101,260 800 0.0380 

Liver EncodeEnhancerlike 89,129 37,426 1,849 0.0313 

Liver FANTOM 326 869 347 0.0001 

Liver Villar15 86,139 27,725 2,545 0.0302 

Heart H3K27acPlusH3K4me1 59,892 42,910 1,102 0.0210 

Heart H3K27acMinusH3K4me3 157,468 141,162 684 0.0553 

Heart DNasePlusHistone 33,224 103,898 168 0.0117 

Heart ChromHMM 93,067 113,092 600 0.0327 

Heart EncodeEnhancerlike 186,866 47,235 2,872 0.0656 

Heart FANTOM 611 1,720 335 0.0002 

Heart VISTA 261 96 2,772 0.0001 
Table 2: Summary of enhancer sets analyzed in this study. 
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Enhancer sets also vary in their relative distance to other genomic features, such as transcription 

start sites (TSSs). For example, in liver, the average distance to the nearest TSS ranges from 14 kb for 

EncodeEnhancerlike to 64 kb for DNasePlusHistone (Error! Reference source not found.). In general, 

the EncodeEnhancerlike regions are the closest to a TSS, possibly due to inclusion of promoter proximal 

regions with strong H3K27ac and DNase signal.  

 

Context Enhancer Set Average Distance to 
TSS (kb) 

Gm12878 EncodeEnhancerlike 12.71 
Gm12878 H3K27acPlusH3K4me1 25.99 
Gm12878 Yip12 34.58 
Gm12878 Ho14 37.67 
Gm12878 FANTOM 39.84 
Gm12878 H3K27acMinusH3K4me3 40.29 
Gm12878 DNasePlusHistone 42.54 
Gm12878 ChromHMM 46.75 
Heart EncodeEnhancerlike 24.73 
Heart FANTOM 34.04 
Heart ChromHMM 40.69 
Heart H3K27acPlusH3K4me1 54.93 
Heart H3K27acMinusH3K4me3 63.35 
Heart VISTA 67.44 
Heart DNasePlusHistone 76.04 
K562 EncodeEnhancerlike 13.85 
K562 H3K27acPlusH3K4me1 21.38 
K562 ChromHMM 35.63 
K562 DNasePlusHistone 36.21 
K562 Ho14 37.67 
K562 Yip12 38.04 
K562 H3K27acMinusH3K4me3 38.04 
K562 FANTOM 45.26 
Liver EncodeEnhancerlike 14.18 
Liver H3K27acPlusH3K4me1 32.93 
Liver FANTOM 35.21 
Liver H3K27acMinusH3K4me3 43.80 
Liver ChromHMM 46.31 
Liver Villar15 35.36 
Liver DNasePlusHistone 64.41 
Table 3: Average distance (kb) to the closest TSS for all enhancer sets. 
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Enhancer sets overlap more than expected by chance but have low genomic similarity 

Given the diversity of the enhancer sets identified by different methods, we evaluated the extent of bp 

overlap between them. All pairs of enhancer sets overlap more than one could expect if they were 

randomly distributed across the genome (Figure 3A; p < 0.001 for all pairs). As expected due to the 

greater cellular heterogeneity and genetic variation of tissue samples vs. cell lines, enhancer sets 

identified by different methods in the same cell line have more significant overlap than enhancer sets 

identified in tissues (Figure 3B).  

 

 

Figure 3: Enhancer sets have more overlap than expected by chance. (A) Pairwise base pair enrichment values (log2 
fold change) for overlap between each K562 (upper triangle) or liver (lower triangle) enhancer set, compared to the 
expected overlap between randomly distributed, length-matched regions. (B) The enrichment for base pair overlap 
compared to a random genomic distribution for each pair of enhancer sets within each context. The fold changes for 
the primary tissues—liver and heart—are significantly lower than the cell lines—K562 and Gm12878 (p = 4.11E-21 
Kruskal-Wallis test, followed by Dunn’s test with Bonferroni correction for pairwise comparisons). 

 

However, the magnitude of overlap between enhancer sets is low: less than 50% for nearly all 

pairs of methods across contexts (Figure 4). Indeed, 54% of all annotated regions are “singletons” that are 

annotated by only a single enhancer identification strategy. Furthermore, the largest overlaps are in 

comparisons including one enhancer set with high genome coverage, or in comparisons of sets that were 

identified based on similar data. These patterns were nearly the same when evaluating overlap on an 
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element-wise basis, although the percentage of overlap was higher (Table 4). This is not surprising given 

that only 1 bp of overlap is required for a shared element. Nonetheless, even with more lenient criterion, 

we still see low percentages overall. 

 

 

Figure 4: Percent overlap (bp) between enhancer sets. The percent base pair (bp) overlap between all pairs of (A) 
K562, (B) Gm12878, (C) liver, and (D) heart enhancer sets. Percent overlap for each pair was calculated by dividing 
the number of shared bp between the two sets by the total number of base pairs of the set on the y-axis. The highest 
overlap is observed for pairs based on similar input, e.g., machine learning models trained on the same functional 
genomics data, or comparisons with large sets, e.g. ChromHMM. 
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Context Comparison Type Minimum Maximum Median Mean 

K562 Base-pair 0.00 0.61 0.18 0.21 
Element 0.00 0.72 0.23 0.29 

Gm12878 Base-pair 0.00 0.64 0.16 0.19 
Element 0.01 0.79 0.19 0.25 

Liver Base-pair 0.00 0.61 0.30 0.28 
Element 0.00 0.71 0.34 0.34 

Heart 
 

Base-pair 0.00 0.84 0.17 0.19 
Element 0.00 0.83 0.22 0.24 

Table 4: Summary statistics for pairwise percent overlap. 

 

To further quantify overlap, we calculated the Jaccard similarity index—the number of shared bp 

between two enhancer sets divided by the number of bp in their union—for each pair of methods. Overall, 

the Jaccard similarities are also extremely low for all contexts, with an average of 0.07 for K562 and 0.13 

for liver and all pairwise comparisons below 0.35 (Figure 5, upper triangles). Since the Jaccard similarity 

is sensitive to differences in set size, we also computed a “relative” Jaccard similarity by dividing the 

observed value by the maximum value possible given the set sizes. The relative similarities were also 

consistently low (Figure 5, lower triangles). In these comparisons, FANTOM and EncodeEnhancerlike 

had among the highest relative similarity scores, suggesting they localize in similar genomic regions. 
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Figure 5: Jaccard similarity (bp) between enhancer sets. The Jaccard similarity between all pairs of (A) K562, (B) 
Gm12878, (C) liver, and (D) heart enhancer sets. The upper triangle gives the Jaccard similarity, and the lower 
triangle gives the relative Jaccard similarity in which the observed similarity is divided by the maximum possible 
similarity for the pair of sets. 

  

To assess the influence of technical variation on the observed overlaps, we compared the overlap of 

replicates from H3K27ac ChIP-seq data in K562, Gm12878, and liver generated by the same laboratory. 

H3K27ac ChIP-seq data is used in the formation of the majority of the enhancer sets considered here, so 

high technical variability could impact many of the predictions. In practical applications, we expect the 

replicates to have high overlap and serve as an “upper bound” of similarity. On average, the replicates 

overlap 76% at the bp level. Thus, while there is variation, the amount of overlap observed between 

enhancers identified by different methods almost always falls far below the variation between ChIP-seq 

replicates.  
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Enhancer sets have different levels of evolutionary conservation 

Enhancers identified by different methods also differ in their levels of evolutionary constraint. Using 

primate and vertebrate evolutionarily conserved elements defined by PhastCons90, we calculated the 

enrichment for overlap with conserved elements for each enhancer set. All enhancer sets have more 

regions that overlap with conserved elements than expected from length-matched regions drawn at 

random from the genome. However, enhancers identified by some methods are more likely to be 

conserved than others (Figure 6). Across each context, the histone-based, ChromHMM, Villar15, and 

Ho14 enhancer sets are approximately 1.3x to 1.8x enriched for overlap with conserved elements. Adding 

DNaseI hypersensitivity data, as in the DNasePlusHistone and EncodeEnhancerlike sets, increases the 

level of enrichment slightly compared to solely histone-derived enhancers (1.9x–2.3x). In contrast, the 

FANTOM and Yip12 enhancers are nearly twice as enriched for conserved regions as the histone-based 

sets (2.7x and 3.3x, respectively). Evolutionary conservation was directly considered in the definition of 

the Yip12 set, but not in FANTOM. Here we considered enhancer elements overlapped by conserved 

elements; enrichment trends are similar when we consider the number of conserved base pairs overlapped 

by each enhancer set (Figure 6). 
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Figure 6: Enhancer sets vary in their degree of evolutionary conservation. (A) Base pair enrichment for conserved 
elements. (B) Element-wise enrichment for conserved elements. Each point represents the enrichment (fold change 
compared to randomly shuffled regions) for overlap between a conserved element (combined primate and vertebrate 
PhastCons) and each enhancer set.  

 

Conclusion 
 

Despite attempting to annotate the same regulatory element, different identification strategies produce 

enhancer sets that have low levels of genomic similarity. This chapter provides a formal quantification of 

similarity in genomic locations, demonstrating low overlap between enhancer sets. Furthermore, the 

enhancer sets differ in other genomic attributes such as distance to a TSS and level of evolutionary 

conservation.  
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CHAPTER III 
 

Characterizing Functional Similarity Between Enhancer Sets 
 

Introduction 
 

While some variation due to differences in the underlying assays or computational processing is expected, 

Chapter II identifies significant differences between enhancer sets defined in the same context. Since it is 

well established that the dysregulation of genes due to perturbations of enhancer sequences lead to disease 

phenotypes, a common goal for genome-wide enhancer maps is to inform our functional and mechanistic 

understanding of gene regulation. The ability to accurately map and interpret enhancer annotations is 

critical to achieving this goal. Chapter III explores the differences in biological interpretations caused by 

differences in enhancer identification strategies. We begin by quantifying the stability of conclusions 

about disease and expression associated variation between enhancer sets. We then use several enhancer-

target mapping approaches coupled with Gene Ontology (GO) enrichment analyses to contrast the 

mechanistic and functional attributes associated with each enhancer set. Finally, we cluster enhancer sets 

based on their dissimilarity in genomic or functional space to understand the relationships between 

enhancer sets from multiple perspectives. 

 

Methods 
 

GWAS Catalog SNPs and GTEx eQTL 

We downloaded the full list of 20,458 unique GWAS SNPs from the NHGRI-EBI GWAS Catalog (v1.0, 

downloaded 08-10-2016)91. From this set we manually curated the GWAS SNPs into two subsets 

associated with phenotypes relevant to liver (n = 50) or heart (n = 169), respectively, for context-specific 

analyses (Appendix). We also downloaded all GTEx eQTL from the GTEx Portal (v6p, downloaded 09-

07-2016)92. We concatenated the data from all 44 represented tissues and ran the enrichment analysis on 
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unique eQTL, filtering at four increasingly strict significance thresholds: 10-6, 10-10, 10-20, and 10-35. We 

present the results from the p-value threshold of 10-10, although the choice of threshold did not 

qualitatively alter the results. We also performed separate context-specific analyses on liver and heart 

specific eQTL from GTEx using the same significance threshold (p < 10-10). To identify other variants 

tagged by the GWAS SNPs and eQTL, we expanded each set to include SNPs in high LD (r2 > 0.9) in 

individuals of European ancestry from the 1000 Genomes Project (phase 3)93.  

 

Enrichment for overlap with GWAS catalog SNPs and GTEx eQTL 

We computed enrichment for overlap with GWAS SNPs and GTEx eQTL with each of the enhancer sets 

described in Chapter II using the same permutation framework. For GWAS tag SNPs, we considered each 

variant as a region in set A and the enhancer regions as set B. We used an identical approach for testing all 

variants in LD (r2 > 0.9) with GWAS tag SNPs and for testing enrichment for liver- and heart-specific 

GWAS tag SNP sets. We also tested for enrichment using only the variant with the maximum number of 

enhancer set overlaps for each GWAS SNP’s LD block. In this analysis, A was the set of variants with 

maximum enhancer set overlap for each LD block and B was the set of enhancers. We computed 

enrichments for the eQTL SNP sets using the same strategy as described above for GWAS SNPs. 

 

Enhancer set Gene Ontology annotation and similarity 

We used GREAT to find Gene Ontology (GO) annotations enriched among genes nearby each enhancer 

set. GREAT assigns each input region to regulatory domains of genes and uses both a binomial and a 

hypergeometric test to discover significant associations between regions and associated genes’ GO 

annotation. The regulatory domain was defined using the ‘basal plus extension’ rule, which includes base 

pairs 5 kb upstream and 1 kb downstream of a gene (e.g. the basal domain) plus up to 1000 kb on either 

side. The domain ends after extending 1000 kb or at the TSS of the next gene94. Due to the large number 

of reported regions in each enhancer set, we considered significance based only on the binomial test with 
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the Bonferroni multiple testing correction (p < 0.05). We downloaded up to 1,000 significant terms for 

each enhancer set from both the Molecular Function (MF) and Biological Process (BP) GO ontologies.  

To calculate the similarity between lists of GO terms we used the GOSemSim package in R95. 

GOSemSim uses a sematic similarity metric that accounts for the hierarchical organization of the 

ontology and relatedness between terms when calculating the similarity score96. For each pair of enhancer 

sets, we calculated the similarity between their associated GO terms. We converted the resulting 

similarity matrix into a dissimilarity matrix by subtracting each score from 1. We also calculated the 

number of shared GO terms between pairs of methods and manually compared the top ten significant 

terms for each enhancer set. 

 Since enhancers often target genes across long distances, we also considered target predictions 

generated by the JEME algorithm to assign enhancers to potential target genes in each context. JEME is a 

two-step process that considers the superset of all enhancers across contexts as well as context-specific 

biomarkers to make its predictions using a regression model. The first step creates regression models for 

all enhancers within 1Mb of a potential target gene, using error terms from those models to inform the 

second step. The second step trains random forest models to predict the final enhancer targets97. By 

intersecting each enhancer set with corresponding enhancer-target maps from JEME, we created a set of 

putatively regulated genes for each method in a given context. We performed GO enrichment analyses on 

the gene sets using the online tool WebGestalt98. We downloaded the top 1,000 significant terms (p < 0.05 

after Bonferroni correction) for each enhancer set from the BP and MF GO ontologies. We calculated the 

pairwise similarity between lists of GO terms using the same semantic similarity metric as above. 

 

Genomic and functional clustering of enhancer sets 

To identify groups of similar enhancers in genomic and functional space, we performed hierarchical 

clustering on the enhancer sets. For genomic similarity, we converted the pairwise Jaccard similarity to a 

dissimilarity score by subtracting it from 1 and clustered the enhancer sets based on these values. For 

functional similarity, we clustered the lists of GO terms returned by GREAT for each enhancer set. We 
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calculated similarity using the semantic similarity metric described above and converted it to dissimilarity 

by subtracting the score from 1. For both, we used agglomerative hierarchical clustering in R with the 

default complete linkage method to iteratively combine clusters99. We visualized the cluster results as 

dendrograms using ggplot2 and dendextend88,100. We also performed multidimensional scaling (MDS) on 

the Jaccard and GO term dissimilarity matrices using default options in R99.  

 

Results 
 

Interpretation of GWAS hits and eQTL is contingent on the identification strategy 

Genome-wide enhancer sets are commonly used to interpret the potential function of genetic variants 

observed in GWAS and sequencing studies49,62,64,65,83,101–105. Functional genetic variants—in particular 

mutations associated with complex disease—are enriched in gene regulatory regions4,5. We evaluated the 

sensitivity of this pattern to enhancer identification strategy by intersecting each of the enhancer sets with 

20,458 unique tag SNPs significantly associated with traits from the GWAS Catalog. Overall, 32.9% 

(6,736 / 20,458) of GWAS SNPs overlap an enhancer identified by at least one of the strategies in one of 

the contexts we considered. However, there is wide variation in the number of overlapping GWAS 

Catalog SNPs between enhancer sets, as is expected given the large variation in the number and genomic 

distribution of enhancers predicted by different methods (Table 5).  
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Context Enhancer Set Number of GWAS SNPs Number of Context-
Specific GWAS SNPs 

K562 
 

H3K27acPlusH3K4me1 269  

H3K27acMinusH3K4me3 420 

DNasePlusHistone 88 

ChromHMM 1081 

EncodeEnhancerlike 476 

Ho14 332 

Yip12 79 

FANTOM 2 

Gm12878 
 

H3K27acPlusH3K4me1 371  

H3K27acMinusH3K4me3 235 

DNasePlusHistone 161 

ChromHMM 865 

EncodeEnhancerlike 666 

Ho14 499 

Yip12 79 

FANTOM 24 

Liver 
 

H3K27acPlusH3K4me1 1102 25 

H3K27acMinusH3K4me3 1658 36 

DNasePlusHistone 654 12 

ChromHMM 1303 34 

EncodeEnhancerlike 1268 36 

FANTOM 3 0 

Villar15 1203 26 

Heart 
 

H3K27acPlusH3K4me1 644 91 

H3K27acMinusH3K4me3 1633 222 

DNasePlusHistone 428 47 

ChromHMM 1126 155 

EncodeEnhancerlike 2284 302 

FANTOM 16 3 

VISTA 3 0 
Table 5: Number of overlapping GWAS SNPs per enhancer identification method. 

 

Nonetheless, GWAS tag SNPs are significantly enriched at similar levels in most enhancer sets 

and contexts, with the exception of FANTOM, which has roughly twice the enrichment of other methods 
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in Gm12878 and heart (Figure 7A). Since the tag SNPs are often not the functional variants, we also 

considered SNPs in high linkage disequilibrium (LD) with the GWAS SNPs (r2 > 0.9). While the overall 

enrichments were lower, the variability between enhancer sets remained small (Figure 7B). We also 

identified the variant in each LD block with the maximum number of overlaps with distinct enhancer sets. 

Even when limiting our analysis to this biased set, 58% of GWAS SNPs (11,854 / 20,458) have no 

enhancer overlap (Figure 8A). 

 

 

Figure 7: Different GWAS SNP enrichment between enhancer sets. (A) GWAS SNP enrichment among all enhancer 
sets for each biological context. All sets are significantly enriched, except FANTOM in K562 and liver contexts due 
to small sample size. (B) Enhancer sets are less enriched for variants in LD with GWAS tag SNPs than with the tag 
SNPs, but, more importantly, a similar magnitude of enrichment is observed across enhancer identification methods. 
Transparent points indicate non-significant enrichment values. 

 

 Furthermore, GWAS SNPs with enhancer overlap are commonly predicted to overlap an 

enhancer by only a single identification strategy (Figure 8B). For example, in liver, 47% (1710 / 3660) of 

the GWAS SNPs that overlapped an enhancer are unique to a single set, and only 27% (982 / 3660) 

overlap enhancers from more than two sets. The distribution of enhancer overlaps was similar when 

considering all candidate variants in LD (Figure 8B). Even after limiting to GWAS LD blocks with 

enhancer overlap and selecting the variant with maximum overlap, 30% (2620 / 8604) are still only 
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predicted by one enhancer identification method (Figure 8B). This demonstrates that the annotation of 

variants in regions highlighted by GWAS varies greatly depending on the enhancer identification strategy 

used. Since the GWAS catalog contains regions associated with diverse traits, we manually curated the 

set of GWAS SNPs into subsets associated with phenotypes relevant to liver or heart (Appendix). As in 

the full GWAS set, the majority of curated GWAS liver SNPs with any enhancer overlap are overlapped 

by a single method (53%) and none are shared by all methods (Figure 8B). The heart and liver enhancer 

sets are almost universally more enriched for overlap with GWAS SNPs that influence relevant 

phenotypes compared to GWAS SNPs overall (Table 6; 1.74x–2.68x). FANTOM enhancers are the 

exception to this trend due to the small number of overlapping context-specific SNPs (Table 5). This 

suggests that the different methods, in spite of their lack of agreement, all identify regulatory regions 

relevant to the target context. 

 

 

Figure 8: Most GWAS SNPs overlapped by a single enhancer set. (A) For each LD block, the majority of variants 
with the maximum amount of overlap do not overlap enhancers identified by the studied methods. (B) Among all 
GWAS SNPs that overlap at least one enhancer in a context, the colored bars represent the number of methods that 
identified the region as an enhancer. The majority of these variants are supported by a single method; very few 
GWAS variants are shared among all methods. The conclusions are similar when considering variants in high LD (r2 
> 0.9) with the GWAS tag SNPs in liver (Liver LD), when limiting to SNPs associated with liver or heart related 
phenotypes (Liver Specific, Heart Specific), and when considering the SNP in each LD block with the maximum 
number of enhancer overlaps (Liver Max). 
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Context Method Fold Change P Value 

Liver 
 

H3K27acPlusH3K4me1 2.12 0.002 
H3K27acMinusH3K4me3 2.00 0.001 
DNasePlusHistone 1.74 0.035 
ChromHMM 2.38 0.001 
EncodeEnhancerlike 2.95 0.001 
FANTOM 0.945 1.000 
Villar15 2.24 0.001 

Heart 
 

H3K27acPlusH3K4me1 2.00 0.001 
H3K27acMinusH3K4me3 1.87 0.001 
DNasePlusHistone 1.83 0.001 
ChromHMM 2.16 0.001 
EncodeEnhancerlike 2.10 0.001 
FANTOM 2.68 0.023 

Table 6: Enrichment for overlap with context-specific SNPs in liver and heart. 

  

To test if these patterns hold for genetic variants in other functional regions, we analyzed the 

overlap of enhancer sets with expression quantitative trait loci (eQTL) identified by the GTEx 

Consortium. These analyses yielded similar results as for the GWAS Catalog variants (Figure 9). Within a 

context, most eQTL are identified as enhancers by a single enhancer prediction method only, and there is 

wide variation in the number and enrichment of eQTL overlapped by different enhancer sets (Figure 9; 

Table 8). Across liver enhancer sets, 50% (33,941 / 68,563) of all overlapped eQTL are called an 

enhancer by only a single method (Figure 9). Considering variants in high LD (r2 > 0.9) does not affect 

this trend (Figure 9B). Similarly, after limiting the analysis to the variants with the maximum number of 

overlaps in each LD block, 24% (64871 / 271732) of the eQTL with enhancer overlap are identified by 

only one enhancer set (Figure 9B). Furthermore, restriction to context-specific eQTL in liver or heart does 

increase the enrichment for eQTL across most methods, but the distribution of shared eQTL remains 

similar (Figure 9B; Table 8). Thus, the interpretation of variants in regions known to influence gene 

regulation varies substantially depending on the enhancer identification strategy used. 
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Figure 9: Enhancer set differ in amount of GTEx eQTL overlap. (A) GTEx eQTL enrichment among all enhancer 
sets for each biological context. Transparent points indicate nonsignificant enrichment (p > 0.05). (B) Among eQTL 
that overlap at least one enhancer, the majority is supported by only a single method. This holds for LD-expanded 
and context-specific sets (Liver LD, Liver Specific, Heart Specific). Many variants remain unique to a single 
method, even when limiting to the variant in each LD block overlapping the maximum of enhancer sets (Liver 
Max). These trends are similar to what is seen for GWAS SNPs in Figure 8. (C) Number of enhancer sets intersected 
by the variant with the maximum number of overlap for each eQTL LD block; 37% do not overlap an enhancer 
identified by the studied methods. 
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Context Enhancer Set Number of GTEx eQTL Number of Context-
specific GTEx eQTL 

K562 
 

H3K27acPlusH3K4me1 5768  

H3K27acMinusH3K4me3 8076 

DNasePlusHistone 1561 

ChromHMM 24072 

EncodeEnhancerlike 13142 

Ho14 6910 

Yip12 988 

FANTOM 112 

Gm12878 
 

H3K27acPlusH3K4me1 7254  

H3K27acMinusH3K4me3 4653 

DNasePlusHistone 1881 

ChromHMM 14794 

EncodeEnhancerlike 15423 

Ho14 8672 

Yip12 988 

FANTOM 207 

Liver 
 

H3K27acPlusH3K4me1 21426 1603 

H3K27acMinusH3K4me3 30704 2477 

DNasePlusHistone 9698 596 

ChromHMM 24279 2037 

EncodeEnhancerlike 23962 1904 

FANTOM 95 2 

Villar15 18648 1281 

Heart 
 

H3K27acPlusH3K4me1 12193 3466 

H3K27acMinusH3K4me3 32068 9165 

DNasePlusHistone 5380 1412 

ChromHMM 18665 5269 

EncodeEnhancerlike 45916 14061 

FANTOM 162 72 

VISTA 14 23 
Table 7: Number of GTEx eQTL overlap per enhancer set. 
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Context Method Fold Change P Value 

Liver 
 

H3K27acPlusH3K4me1 1.63 0.002 
H3K27acMinusH3K4me3 1.62 0.001 
DNasePlusHistone 1.05 0.534 
ChromHMM 1.68 0.001 
EncodeEnhancerlike 1.84 0.001 
FANTOM 0.58 0.575 
Villar15 1.34 0.001 

Heart 
 

H3K27acPlusH3K4me1 1.42 0.001 
H3K27acMinusH3K4me3 1.45 0.001 
DNasePlusHistone 1.07 0.234 
ChromHMM 1.35 0.001 
EncodeEnhancerlike 1.76 0.001 
FANTOM 2.49 0.006 

Table 8: Number of overlapping GTEx eQTL per enhancer set. 

 

Enhancers identified by different strategies have different functional contexts 

Given the genomic dissimilarities between enhancer sets, we hypothesized that different enhancer sets 

from the same context would also vary in the functions of the genes they regulate. To test this hypothesis, 

we identified Gene Ontology (GO) functional annotation terms that are significantly enriched among 

genes likely targeted by enhancers in each set. We used two different approaches to discover genes and 

associated GO terms: (i) using the joint effect of multiple enhancers (JEME) method for mapping 

enhancers to putative target genes and then performing enrichment analyses, and (ii) applying the 

Genomic Regions Enrichment of Annotations Tool (GREAT)94,97. Many of the GO terms identified by 

both methods for the enhancer sets are relevant to the associated context (Table 9). However, most of the 

associated terms for the target-mapping approach were near the root of the ontologies and thus lacking in 

functional specificity (Table 9), likely due to the large gene target lists for most enhancer sets (Table 10).  
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Enhancer Set GO MF Terms 
(GREAT) 

GO MF Terms 
(JEME+WebGestalt) 

H3K27acPlusH3K4me1 

cytoskeletal adaptor activity small molecule binding 
14-3-3 protein binding anion binding 
leukotriene-C4 synthase activity nucleoside phosphate binding 
nucleobase-containing compound 
transmembrane transporter activity 

nucleotide binding 

FAD binding transferase activity 

H3K27acMinusH3K4me3 

14-3-3 protein binding oxidoreductase activity  
cytoskeletal adaptor activity anion binding 
thyroid hormone receptor binding small molecule binding 
ARF guanyl-nucleotide exchange factor 
activity 

nucleoside phosphate binding 

high-density lipoprotein particle binding nucleotide binding 

DNasePlusHistone 

cytoskeletal adaptor activity small molecule binding 
glucocorticoid receptor binding anion binding 
nucleobase-containing compound 
transmembrane transporter activity 

transferase activity 

high-density lipoprotein particle binding nucleotide binding 
14-3-3- protein binding nucleoside phosphate binding 

ChromHMM 

high-density lipoprotein particle binding nucleotide binding  
nucleobase-containing compound 
transmembrane transporter activity 

nucleoside binding 

cytoskeletal adaptor activity purine nucleoside binding 
14-3-3 protein binding DNA binding 
retinoid X receptor binding RNA binding 

EncodeEnhancerlike 

cytoskeletal adaptor activity nucleotide binding 
14-3-3 protein binding transferase activity  
nucleobase-containing compound 
transmembrane transporter activity 

small molecule binding 

apolipoprotein A-I binding anion binding 
high-density lipoprotein particle binding carbohydrate derivative binding 

FANTOM 

glucocorticoid receptor binding structural constituent of ribosome  
protein kinase binding receptor binding 
kinase binding cell adhesion molecule binding 
methylglutaconyl-CoA hydratase activity molecular function regulator 
vitamin D response element binding transcription regulatory region DNA 

binding 

Villar15 

protease binding anion binding  
phosphatidylinositol 3-kinase binding small molecule binding 
14-3-3 protein binding oxidoreductase activity 
cytoskeletal adaptor activity cofactor binding 
glucocorticoid receptor binding oxidoreductase activity, acting on 

CH-OH group of donors 
Table 9: Top five GO terms for liver enhancer sets from GREAT and JEME target-mapped WebGestalt 
enrichments. 
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Context Enhancer Set Number of Genes 

K562 
 

H3K27acPlusH3K4me1 3444 

H3K27acMinusH3K4me3 4837 

DNasePlusHistone 3001 

ChromHMM 10676 
EncodeEnhancerlike 10004 

Yip12 2754 

Ho14 7064 

FANTOM 3152 

Gm12878 
 

H3K27acPlusH3K4me1 4626 

H3K27acMinusH3K4me3 3407 

DNasePlusHistone 5014 

ChromHMM 10710 
EncodeEnhancerlike 11303 

Yip12 1941 

Ho14 8947 

FANTOM 5352 

Liver 
 

H3K27acPlusH3K4me1 6871 

H3K27acMinusH3K4me3 5964 

DNasePlusHistone 7176 

ChromHMM 11788 
EncodeEnhancerlike 8066 

Villar15 3626 

FANTOM 1796 

Heart 
 

H3K27acPlusH3K4me1 2121 
H3K27acMinusH3K4me3 3940 

DNasePlusHistone 1771 

ChromHMM 7144 

EncodeEnhancerlike 5124 
FANTOM 1779 

VISTA 32 
Table 10: Number of target genes mapped to each enhancer set by JEME. 

 

 The majority of the top 30 significant annotations from GREAT for each enhancer set are not 

enriched in any other set in the same context, and no terms are shared by all of the methods in a given 

context (Figure 10, lower triangles). In all of these pairwise comparisons, fewer than half of the GO terms 
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are shared between a pair of enhancer sets. Furthermore, many of the terms shared by multiple enhancer 

sets are near the root of the ontology and thus are less functionally specific. These results provide 

evidence that the different enhancer sets influence different functions relevant to the target biological 

context. Using the MF GO enrichment analyses calculated with the JEME target-mapped genes, we see 

similar trends, although the numbers of overlapping terms are higher, especially for enhancer sets relying 

on histone modification data from ENCODE (Figure 11). We note that since the JEME target maps were 

built using ENCODE ChromHMM enhancer tracks, it is likely that some of this additional similarity is 

due to bias in the predictions.  

 

 

Figure 10: GO term similarity for GREAT (MF). Enhancer sets from the same biological context have different 
functional associations. The upper triangle shows the semantic similarity from GoSemSim; the lower triangle shows 
the number of top 30 most significant GO MF terms shared by each pair of enhancer sets in K562 (A), Gm12878 
(B), liver (C), and heart (D). 
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Figure 11: GO term similarity for JEME-mapped genes (MF). Pairwise similarity for GO Molecular Function (MF) 
enrichments for enhancer sets based on JEME’s putative mappings to target genes in K562 (A), Gm12878 (B), liver 
(C), and heart (D). The upper triangle shows the semantic similarity calculated using GoSemSim, and the lower 
triangle shows the number of shared terms of the top 30 most significantly enriched. Gray squares indicate that the 
analysis found no significantly enriched terms. There is greater similarity between these associations compared to 
GREAT (Figure 10) although the similarity remains relatively low and many of the matched terms are high in the 
hierarchy. 

 

 To further compare the enriched GO MF and BP annotations of each enhancer set in a way that 

accounts for the distance between GO terms in the ontology hierarchy and their specificity, we computed 

a semantic similarity measure developed for GO annotations95,96. The EncodeEnhancerlike and 

ChromHMM enhancer sets are among the most functionally similar, with similarity scores near 0.80 in 

most contexts (Figure 10, Figure 11, upper triangle; Figure 12). This is not surprising given that their 
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underlying assays overlap. The functional similarity scores are lower for comparisons of the other histone 

modification sets, around 0.50–0.75. In all comparisons, the FANTOM enhancers have the lowest 

functional similarity with other enhancer sets—below 0.40 in the vast majority of comparisons in K562, 

liver, and heart (Figure 10, Figure 11). FANTOM is more similar to other methods in Gm12878, with an 

average score of 0.59, and in the JEME mappings (Figure 10, Figure 11). Since the JEME target 

predictions used FANTOM enhancers as input, it is difficult to know if the increased similarity represents 

shared function or a technical artifact. In general, these trends hold for both the Biological Process (BP) 

ontologies (Figure 12). However, the JEME mappings for heart do not result in many significantly 

enriched terms for the BP ontology which makes it difficult to make detailed comparisons. 

As a benchmark, biological replicates of the Gm12878 H3K27ac ChIP-seq peaks received a 

similarity of 0.93. This is much lower than most of the functional similarities across target mapping 

approached and ontologies. It suggests there are different functional influences for enhancer sets from the 

same context identified by different methods, with FANTOM as a particular outlier. We note that 

enhancer target gene identification remains a challenging problem, and both strategies for mapping 

enhancers to potential target genes considered here (GREAT and JEME) likely include false positives. 

However, insofar as they reflect the regulatory context of the different enhancer sets, they reveal 

significant functional differences between enhancer identification methods. 
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Figure 12: GO Enrichment for BP ontology using GREAt and JEME target-mapping. There is low pairwise 
similarity between GO Biological Process (BP) enrichments calculated with GREAT for enhancer sets in the same 
context. Pairwise similarity for GO MF terms for enhancer sets in K562 (A), Gm12878 (B), liver (C), and heart (D). 
Pairwise similarity for GO Biological Process (BP) for enhancer sets based on JEME’s putative mappings to target 
genes in K562 (E), Gm12878 (F), liver (G), and heart (H). The upper triangle shows the semantic similarity 
calculated using GoSemSim, and the lower triangle shows the number of shared terms of the top 30 most 
significantly enriched. Scores for the BP ontology are noticeably lower than those for the MF ontology. There are 
few significantly enriched terms for genes mapped from heart enhancers. 

 

Genomic and functional clustering of enhancer sets 

Our analyses of enhancer sets within the same biological context reveal widespread dissimilarity in both 

genomic and functional features. To summarize and compare the overall genomic and functional 

similarity of the enhancer sets across contexts, we clustered them using hierarchical clustering and 

multidimensional scaling (MDS) based on their Jaccard similarity in genomic space and the GO term 

functional similarity of predicted target genes.  

 

 

Figure 13: Multidimensional scaling (MDS) projections of enhancer sets. (A) MDS plot of liver enhancer sets 
based on the Jaccard similarity of the genomic distributions. (B) MDS plot for liver enhancers based on distances 
calculated from molecular function (MF) Gene Ontology (GO) term semantic similarity values with GREAT. 

 

 Several trends emerged from analyzing the genomic and functional distributions within and 

between biological contexts. First, the FANTOM eRNA enhancers are consistently distinct from all other 
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enhancer sets in both their genomic distribution and functional associations (Figure 13, Figure 14, Figure 

15). Differences between eRNA and non-eRNA enhancer sets appear to dominate any other variation 

introduced by biological, technical, or methodological differences. Second, similarity in genomic 

distribution of enhancer sets does not necessarily translate to similarity in functional space, and vice 

versa. For example, although EncodeEnhancerlike regions are close to ChromHMM and the histone-

derived H3K27acPlusH3K4me1 set and the machine learning models in the genomic-location-based 

projection (Figure 13, Figure 14), they are located far from those sets in the functional comparisons and 

hierarchical clustering (Figure 13, Figure 14). Finally, comparing enhancer sets by performing 

hierarchical clustering within and between biological contexts reveals that genomic distributions are 

generally more similar within biological contexts, compared to other sets defined by the same method in a 

different context (Figure 15). For example, the ChromHMM set from heart is more similar to other heart 

enhancer sets than to ChromHMM sets from other contexts. In contrast, the enhancer set similarities in 

functional space are less conserved by biological context (Figure 15). Here, the heart ChromHMM set is 

functionally more similar to the H3K27acMinusH3K4me3 set from liver cells than other heart enhancer 

sets. In general, cell line enhancer sets (red and green) show more functional continuity than heart and 

liver sets (blue and purple). However, FANTOM enhancers are the exception to these trends; FANTOM 

enhancers from each context form their own cluster based on their genomic distribution, underscoring 

their uniqueness. 
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Figure 14: Ranked hierarchical clustering of enhancer sets. Clustering based on the Jaccard similarities of the 
genomic distributions (A) of all liver enhancer sets compared to clustering based on GO semantic similarity (B). 
FANTOM enhancers are the most distant from all other enhancer sets in both genomic and functional similarity, but 
the relationships between other sets are not conserved. Red branches denote identical subtrees within the hierarchy. 

 

 

Figure 15: Hierarchical clustering of enhancer sets across biological contexts. (A) Hierarchical clustering based on 
genomic Jaccard distances for all methods and all contexts. (B) Hierarchical clustering of all available enhancer sets 
based on GO term distances. Terminal branches are colored by biological context. With the exception of FANTOM 
enhancers, the enhancer sets’ genomic distributions are more similar within than between biological contexts. 
Functional similarity does not always correlate with genomic similarity, and the clustering by biological context is 
weaker in functional space. 
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Conclusion 
 

Although all enhancer sets considered here display enrichment for relevant functional attributes, the level 

of enrichment varies between sets. Additionally, when multiple gene-target mapping strategies are 

employed, enhancer sets identified by different methods are enriched for functional terms with little 

overlap and low similarity. This chapter demonstrates significant functional differences between enhancer 

sets that are substantial enough to influence biological interpretations and conclusions about disease-

associated variant in enhancer regions. These results have implications for the interpretation of enhancer 

annotations and the use of enhancer sets for the interpretation of disease or expression associated genetic 

variants. 
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CHAPTER IV 
 

 
Assessing Performance of Integrated Enhancer Identification Methods 

 

Introduction 
 

The work in Chapters II and III characterizes the differences between enhancer sets in both genomic and 

functional space These disagreements show that enhancer identification strategies result in putative 

enhancer annotations in disparate locations throughout the genome associated with different biological 

functions. Chapter IV builds on these observations to explore potential solutions. We begin by looking at 

enrichment of the nine representative enhancer sets with experimentally validated sequences from small-

scale transgenic reporter assays and a high-throughput MPRA. The chapter concludes with an analysis of 

the enrichment of regions predicted by multiple enhancer identification strategies for functional proxies 

and higher confidence scores. 

Methods 
 

Experimentally validated enhancer sets: VISTA and Sharpr-MPRA 

Experimentally validated enhancer sequences with activity in the heart and all negative enhancer 

sequences were downloaded from the VISTA enhancer browser (downloaded 11-16-2017)72. We also 

downloaded sequences and Sharpr-MPRA activity levels for 15,720 putative enhancer regions tested for 

regulatory activity in K562 cells using a massively parallel reporter assay (MPRA)77. The Sharpr-MPRA 

algorithm infers a regulatory score for each base pair in a region using a probabilistic model, with positive 

scores indicating activating regulatory regions and negative scores indicating repressive regions. 

Following Ernst et al., we summarized the overall regulatory activity of a given enhancer region as the 

activity value with the maximum absolute value and classified the enhancer regions into activating (n = 

5,373) and repressive (n = 10,347) based on the score’s sign77. Regions were selected for the tiling 

Sharpr-MPRA based on previous evidence of regulatory function in one of four cell lines, including 
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K562. Evidence included DNase-seq peaks and enhancer states from a 25-state ChromHMM model 

trained on histone modifications, DHSs, CTCF and RNA polymerase II.  

 To evaluate the ability of different methods to distinguish VISTA or MPRA positives from 

negatives, we computed the relative enrichment for positive/activating regions vs. negative/repressive 

regions. A positive value indicates higher enrichment for enhancers with demonstrated activity in the 

relevant context, and a negative value indicates more enrichment for non-enhancers or repressive base 

pairs. Equal enrichment in both sets yields a score of 0. 

 

Combinatorial analysis of enhancer sets and enrichment for functional signals 

We stratified genomic regions by the number of enhancer identification strategies that annotate them in 

order to determine whether regions predicted to be enhancers by more methods show greater enrichment 

for three signals of function—evolutionarily conserved base pairs, GWAS SNPs, or GTEx eQTL—

compared to regions with less support. We divided all regions predicted by any enhancer identification 

method in a given context into bins based on the number of methods that predicted it. Some enhancer 

regions had varying prediction coverage and were split across multiple bins. While infrequent (<3% of 

regions), we removed all regions less than 10 bp in length since these are unlikely to function as 

independent enhancers. For each enhancer support bin, from 1 to the number of prediction methods, we 

calculated the enrichment for overlap with each functional signal using the permutation framework 

described above. We considered three different proxy sets: evolutionarily conserved base pairs as defined 

by PhastCons elements, GWAS SNPs, and GTEx eQTL. In each enrichment analysis, the functional 

signal regions were set A and the enhancer regions with a given level of support were set B. We report the 

average enrichment for each enhancer support bin with the empirical 95% confidence intervals. 

 For enhancer sets with quantitative enhancer-level scores available we ranked each enhancer by 

its score, and then analyzed whether regions that have higher scores are more likely to be predicted by 

other identification methods. We calculated the rank using the ChIP-seq or CAGE-seq signal scores for a 

subset of methods (H3K27acPlusH3K4me1, H3K27acMinusH3K4me3, DNasePlusHistone, FANTOM), 
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and the machine learning derived score for EncodeEnhancerlike regions. Within each set, we sorted the 

enhancer regions by score and assigned ranks starting at 1 for the top-scoring region. We then partitioned 

the enhancer regions in each set by the number of other enhancer sets that overlap at least one base pair in 

that region.  

Results 
 

Identification strategies highlight different subsets of experimentally validated enhancers 

Though we lack unbiased genome-wide gold-standard sets of enhancers, nearly two thousand human 

sequences have been tested for enhancer activity in vivo in transgenic mice at E11.5 by VISTA72 and 

thousands more have been tested in cell lines via massively parallel reporter assays (MPRAs). Strong 

ascertainment biases in how regions were selected for testing in these assays prevent their use as a gold 

standard, but they do provide an opportunity to examine overlap between validated and predicted 

enhancers. We evaluated the overlap and enrichment of each heart enhancer set with 1,837 regions tested 

for enhancer activity in the developing heart by VISTA (Table 11), and for each annotated K562 enhancer 

with 15,720 regions tested in K562 cells by Sharpr-MPRA77.  

 

Context Enhancer Set Observed VISTA 
Positive Overlaps 

Observed VISTA 
Negative Overlaps 

Heart H3K27acPlusH3K4me1 19 79 

Heart H3K27acMinusH3K4me3 36 152 

Heart DNasePlusHistone 25 106 

Heart ChromHMM 71 168 

Heart EncodeEnhancerlike 87 179 

Heart FANTOM 17 5 
Table 11: Number of VISTA enhancer overlaps. 

 

All heart enhancer sets are significantly enriched for overlap with the 126 VISTA heart positives 

(Figure 16; p < 0.001 for all), and each set is at least ~3x more likely to overlap validated enhancers than 

expected if it was randomly distributed across the genome. The FANTOM set is 16x enriched; however, 
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given its smaller size, this was based on 17 overlaps compared to an expected ~0. However, the heart 

enhancer sets are also significantly enriched for overlap with VISTA negatives (p <= 0.004). This is not 

surprising as the regions tested by VISTA were largely selected based on having evidence of enhancer 

activity, and they may have enhancer activity in other contexts not tested by VISTA, including adult 

heart.  The methods in heart demonstrate some ability to distinguish between the positives and negatives; 

however, there are only small differences in relative enrichment between the histone derived enhancer 

sets. Overall, FANTOM heart enhancers have the highest enrichment for experimentally validated 

enhancers relative to the negative set, but again we note that the FANTOM results are based on relatively 

small numbers of enhancers (Supplementary Table 3) 

 

 

Figure 16: Enrichment for VISTA enhancers in heart. (A) Plot of the element-wise enrichment for 126 positive 
VISTA heart enhancers (upper panel) and 882 negative VISTA regions (middle panel). All heart enhancer sets are 
significantly enriched for overlap with the VISTA positives (p < 0.001 for all), and each set is at least ~3x more 
likely to overlap validated enhancers than expected if it was randomly distributed across the genome. The bottom 
panel is the log2 of the relative enrichment ratio for heart enhancer sets with VISTA heart positives compared to 
VISTA negatives. 
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Furthermore, there is substantial disagreement among the enhancer sets about the status of the 

VISTA heart enhancers; 16% (n = 20) of validated heart enhancers are not predicted to have enhancer 

activity by any method, and 17% (22) are only predicted by one method (Figure 17).  Of the top three 

relatively enriched methods, nearly 40% (41/104) of the VISTA heart positives identified by the top 

methods are unique to one method (Figure 17A). Perhaps more striking, out of the validated VISTA heart 

enhancers 17% are identified by a single method. Less than 5% of the positives are identified by all 

methods, suggesting that different methods identify different subsets of validated enhancers (Figure 17B). 

 

 

Figure 17: Enhancer sets share relatively few overlaps with the same VISTA enhancers. (A) Venn diagram of shared 
VISTA positives between enhancer sets with the top three relative enrichment methods. (B) Stacked bar chart 
showing the proportion of VISTA positives overlapped by zero or more enhancer sets. 
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activating and repressive regions characterized by Sharpr-MPRA (Figure 18; p < 0.001). There is little 
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activating regions. FANTOM has the highest relative enrichment (4.2x; p < 0.001). Overall, the 
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This could be due to the heterogenous nature of primary tissue samples, like heart, compared to cell lines, 

like K562. It is also likely related to the way regions were selected for testing in the Sharpr-MPRA: DHS 

sites and ChromHMM enhancer states from a 25-state model trained on ENCODE data77. We also note 

that the enrichment for repressive regions is also higher, leading to relative enrichment values that are 

similar in magnitude to the VISTA enhancers. 

 

 

Figure 18: Enrichment for Sharpr-MPRA activating and repressive regions. (A) Enrichment (log2 fold change) for 
activating (top) and repressive (middle) regions as defined by the Sharpr-MPRA assay in K562. The bottom panel 
shows the relative enrichment for activating regions of each enhancer set.  

 

Many of the MPRA validated regions are not shared between the top three enriched sets 

(FANTOM, DNasePlusHistone, EncodeEnhancerlike). Among the activating regions identified by the top 
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sets, and 40% of activating regions overlapping a predicted enhancer are unique to a single set (Figure 
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that different strategies identify different subsets of active regulatory regions in the same context, and that 

all strategies miss a sizable portion of functional enhancer sequences. However, we again caution against 

interpreting the relative performance of different enhancer identification strategies on these data, since 

there are strong ascertainment biases in how regions were selected for testing. For example, ChromHMM 

enhancer predictions and DNase I hypersensitivity data were used to select the regions tested by Sharpr-

MPRA. Additionally, like lower-throughput reporter assays, MPRA approaches also suffer from 

inaccuracies induced by experimental variation, length restrictions on the tested sequences, and removal 

of the tested element from its endogenous context11. 

 

 

Figure 19: Number of activating Sharpr-MPRA regions overlapped by enhancer sets. (A) Venn diagram of shared 
Sharpr-MPRA activating regions from the top 3 relatively enriched sets. (B) Stacked bar chart showing the 
proportion of Sharpr-MPRA activating regions overlapped by zero or more enhancer sets. 
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analyzed whether regions identified by multiple methods have increased “functional support” compared 

to regions identified by fewer methods. We evaluated three signals of functional importance: (i) 

enrichment for overlap with evolutionarily conserved elements, (ii) enrichment for overlap with GWAS 

SNPs, and (iii) enrichment for overlap with GTEx eQTL. For each, there are only small changes as the 

number of methods identifying a region increases (Figure 20). Regions identified as enhancers by more 

than one method are slightly more enriched for conserved elements compared to the genomic background, 

but there is little difference among regions identified by 2–5 methods (Figure 20A). Regions predicted by 

6 or more methods are significantly more enriched for conserved elements than those with less support, 

but effect size is modest (1.36x for 1 vs. 1.62x for 6). There is a modest increase in the enrichment for 

overlap with GWAS SNPs among enhancers identified by more identification methods; however, given 

the relatively small number of GWAS SNP overlaps, none of these differences were statistically 

significant (Figure 20B). We observed no increase in the enrichment for overlap with eQTL as the 

support for enhancer activity increased (Figure 20C). Thus, we do not find strong evidence of increased 

functional importance in enhancers identified by multiple methods compared to enhancers identified by a 

single method. Importantly, this implies that intersecting enhancer identification strategies will focus on a 

smaller set of enhancers with little evidence for increased functional relevance. 
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Figure 20: Enrichment for signals of functional importance in shared enhancer regions. (A) Enrichment for overlap 
between conserved elements (n = 3,930,677) and liver enhancers stratified by the number of identification methods 
that predicted each enhancer. (B) Enrichment for overlap between GWAS SNPs (n = 20,458) and liver enhancers 
stratified by the number of identification methods that predicted each enhancer. (C) Enrichment for overlap between 
GTEx eQTL (n = 429,964) and liver enhancers stratified by the number of identification methods that predicted each 
enhancer. In (A–C), the average enrichment compared to 1,000 random sets is plotted as a circle; error bars 
represent 95% confidence intervals; and n gives the number of enhancers in each bin.  

 

 Several enhancer identification methods provide confidence scores that reflect the strength of 

evidence for each enhancer. We hypothesized that high confidence enhancers from one method would be 

more likely to overlap enhancers identified by other methods. To test this, we ranked each enhancer based 

on its confidence or signal, with a rank of 1 representing the highest confidence in the set. There was no 

clear trend between the confidence score of an enhancer from one method and the number of methods that 

identified the region as an enhancer (Figure 21-24). Overall, enhancers identified by multiple methods 

show a similar confidence distribution when compared to regions identified by a single method. Indeed, 

for some enhancer sets the median score decreases as the regions become more highly shared 

(Figure23A-C, Figure 24A-C). While possibly a sign of poor specificity in shared enhancer regions, this 

trend may also be explained by transcription factor binding within or near histone acetylation sites. 

Transcription factor binding has been previously associated with the local minima of acetylation ChIP-seq 

binding profiles, so the decrease in peak signals may indicate that some of these shared regions are 

correlated with TF binding activity106. The lack of increase in enhancer score with the number of methods 
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supporting it held across all methods tested, providing further evidence that building enhancer sets by 

simple combinations of existing methods is unlikely to lead to a higher confidence subset (Figure 21-24). 

Similarly, filtering based on simple agreement between methods may not improve the specificity of 

enhancer predictions. 

 

 

Figure 21: Confidence distributions for K562 enhancer sets. Score distributions for K562 enhancer sets are similar 
between regions identified as enhancers by a single method and those identified by multiple methods: (A) 
H3K27acPlusH3K4me1, (B) H3K27acMinusH3K4me3, (C) DNasePlusHistone, (D) EncodeEnhancerlike, and (E) 
FANTOM.   

n = 236 n = 327 n = 215 n = 152 n = 83 n = 52 n = 17 n = 20

300

600

900

0 1 2 3 4 5 6 7
Number of Overlapping Methods

  R
an

k

FANTOM

●

n = 8198 n = 7746 n = 7994 n = 6791 n = 3815 n = 1229 n = 230 n = 50

10000

20000

30000

0 1 2 3 4 5 6 7
Number of Overlapping Methods

  R
an

k

EncodeEnhancerlike

n = 995 n = 2308 n = 2672 n = 3409 n = 2635 n = 1170 n = 210 n = 30

5000

10000

0 1 2 3 4 5 6 7
Number of Overlapping Methods

  R
an

k

DNasePlusHistone

●

●

●

n = 4733 n = 3993 n = 4278 n = 3129 n = 2246 n = 1005 n = 299 n = 150

5000

10000

15000

20000
0 1 2 3 4 5 6 7

Number of Overlapping Methods

  R
an

k

H3K27acMinusH3K4me3

●

●

n = 165 n = 790 n = 1285 n = 1482 n = 1606 n = 1000 n = 300 n = 140

2000

4000

6000

0 1 2 3 4 5 6 7
Number of Overlapping Methods

  R
an

k

H3K27acPlusH3K4me1A B C

D E



 61 

 

 

Figure 22: Confidence distributions for Gm12878 enhancer sets. Score distributions for Gm12878 enhancer sets are 
similar between regions identified as enhancers by a single method and those identified by multiple methods: (A) 
H3K27acPlusH3K4me1, (B) H3K27acMinusH3K4me3, (C) DNasePlusHistone, (D) EncodeEnhancerlike, and (E) 
FANTOM. 
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Figure 23: Confidence distributions for liver enhancer sets. The confidence distributions for regions shared between 
multiple enhancer sets are similar to the confidence distributions of regions unique to a single set: (A) 
H3K27acPlusH3K4me1, (B) H3K27acMinusH3K4me3, (C) DNasePlusHistone, (D) EncodeEnhancerlike, and (E) 
FANTOM.  
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Figure 24: Confidence distributions for heart enhancer sets. The confidence distributions for regions shared between 
multiple enhancer sets are similar to the confidence distributions of regions unique to a single set: (A) 
H3K27acPlusH3K4me1, (B) H3K27acMinusH3K4me3, (C) DNasePlusHistone, (D) EncodeEnhancerlike, and (E) 
FANTOM. As in liver enhancer sets (Figure 23), in some cases (A-B) the median score decreases as the regions are 
more highly shared. This trend may be a result of poor specificity, or is potentially a sign of transcription factor 
binding activity in the region 

 

Conclusion 
 

Chapter IV shows that, while each enhancer strategy is enriched for experimentally validated enhancers, 

each is also enriched for overlap with confirmed negatives. This analysis begins to quantify the false 

positive and negative rates for different enhancer sets; however, without a gold standard we are unable to 

definitively quantify those values. Surprisingly, filtering enhancer sets to only include high confidence or 

highly shared predictions does not increase evidence of function. This suggests that simple combinations 

of existing enhancer sets will not sufficiently improve predictions for many practical applications.  
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CHAPTER V 

 
Discussion 

 

Accurate enhancer identification is a challenging problem, and recent efforts have produced a variety of 

experimental and computational approaches. Each method, either explicitly or implicitly, represents a 

different perspective on what constitutes an enhancer and which genomic features are most informative 

about enhancer activity. The lack of comprehensive genome-wide “gold standard” enhancer sets makes 

comparisons and evaluation challenging. Thus, we compared existing strategies with respect to one 

another and to proxies for regulatory function. All pairs of enhancer sets overlap more than expected by 

chance, but we found substantial differences in the genomic, evolutionary, and functional characteristics 

of identified enhancers within similar tissues and cell types. Enhancer sets vary significantly in their 

overlap with conserved genomic elements, GWAS loci, and eQTL. Furthermore, the majority of GWAS 

loci and eQTL have inconsistent evidence of enhancer function across enhancer sets. In addition, regions 

identified as enhancers by multiple methods do not have significantly stronger evidence of regulatory 

function.  

 Because enhancer identification strategies have such substantial differences, one strategy cannot 

and should not be used as a proxy for another. Using different strategies can yield substantially different 

biological interpretations and conclusions, e.g., about the gene regulatory potential of a SNP or the degree 

of evolutionary constraint on enhancers. This is particularly important, given that studies of gene 

regulation commonly use only a single approach to identify enhancers. For example, GWAS have 

identified thousands of non-coding loci associated with risk for complex disease, and a common first step 

in the interpretation of a trait-associated locus is to view it in the context of genome-wide maps of 

regulatory enhancer function48,49,62,64,65,83,105,107. Thus, our findings complicate the use of annotated 

enhancers to study the mechanisms of gene regulation and to elucidate the molecular underpinnings of 

disease, most notably in non-coding variant prioritization45,108,109.  
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 Our main goal was to evaluate the congruence of the diverse strategies in use today. Given their 

differences in assumptions, motivations, and protocols, it is not surprising that different assays and 

algorithms identify somewhat different sets of enhancers. We would expect such diversity in enhancer 

definitions to produce different sets of annotations, despite the use of identical terminology to describe 

these regions in the literature. Technical biases in the underlying experimental assays or data processing 

pipelines may lead to variation between putative enhancer sets preventing high levels of agreement. 

However, comparisons between biological replicates of histone modification ChIP-seq data suggests that 

the level of difference we observe between enhancer sets is greater than this potential technical bias. 

Individual genetic variation may also explain some of the discordance. Previous work shows that 

chromatin states associated with weak enhancer activity exhibit some variation between individuals, and 

QTL associated with changes in epigenetic modifications leading to variation in enhancer activity 

between individuals have been identified110,111. However, the proportion of epigenetic modifications that 

are variable across individuals is estimated to be small (1–15%)55, and thus is unlikely to be the main 

cause of the lack of agreement we observe between methods, in particular for enhancer sets defined from 

cell lines. Taking these limitations into account, the differences we observe remain striking.   

 The consistent lack of agreement between methods demonstrates that many working definitions 

of “enhancer” have low overlap. Focusing on functional annotations, we find agreement between methods 

about basic functions, but substantial differences in more specific annotations. This suggests that different 

strategies contribute unique information towards the identification of functionally important enhancers. 

Our results argue that, given the lack of a clear gold standard and the substantial disagreement between 

strategies, it does not make sense to identify a single “best” method given current knowledge. In general, 

enhancers defined by FANTOM have modestly more enrichment for proxies of functional activity than 

other methods, but this comes at the expense of low sensitivity. Methods derived from combinations of 

histone modifications and chromatin accessibility profiles generate large and likely inclusive sets of 

candidate regions. However, since the input attributes are also correlated with genomic elements other 

than enhancers, the specificity of such methods may suffer. Integrative machine learning models could 
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reduce the noise in a prediction set, although it is difficult to quantify the true prediction accuracy with 

current validation approaches. 

 In light of this complexity, what should we do? First, we must resist the convenience of ignoring 

it. When interpreting non-coding variants of interest or characterizing the enhancer landscape in a new 

biological context, we must be mindful that using a single identification strategy is insufficient to 

comprehensively catalog enhancers. Different assays and algorithms have different attributes, and we 

suggest employing a range of approaches to obtain a more robust view of the regulatory landscape. The 

most appropriate identification strategy is likely dependent on a number of application-specific factors, 

preventing simple ‘one-size-fits-all’ recommendations. To facilitate exploration of different strategies, we 

developed creDB, a comprehensive, easily queried database of over 3.5 million putative enhancer 

annotations. However, simply focusing on variants with multiple lines of evidence of enhancer activity 

will not solve the problem, especially when our ability to quantify the false positive rate in a genome-

wide enhancer map is limited. Indeed, we find little evidence that regions with higher levels of agreement 

between identification strategies are more enriched for functional signals. Ultimately, we need more 

sophisticated statistical models of enhancers and their properties in order to interpret non-coding variants 

of interest. Previous work has shown that integrating diverse genomic, evolutionary, and functional data 

can improve the ability to distinguish validated enhancers from the genomic background57, but obtaining a 

concordant and functionally relevant set of enhancers remains challenging. We are hopeful that new 

experimental techniques and biologically motivated machine learning methods for integrating different 

definitions of enhancers will yield more consistent and specific annotations of regions with regulatory 

functions.  

 Second, our study highlights the need for more refined models of the architecture and dynamics 

of cis-regulatory regions. Many different classes of regions with enhancer-like regulatory activities have 

been discovered2,19,20,39,40,45,112. We argue that collapsing the diversity of vertebrate distal gene regulatory 

regions into a single category is overly restrictive. Simply calling all of the regions identified by these 

diverse approaches “enhancers” obscures functionally relevant complexity and creates false dichotomies. 
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While there is some appreciation of this subtlety, there is still a need for more precise terminology and 

improved statistical and functional models of the diversity of cis-regulatory “enhancer-like” sequences. 

Given this diversity, we should not expect all results to be robust to the enhancer identification strategy 

used.  

 Finally, we believe that ignoring enhancer diversity impedes research progress and replication, 

since “what we talk about when we talk about enhancers” includes diverse sequence elements across an 

incompletely understood spectrum, all of which are likely important for proper gene expression. Efforts to 

stratify enhancers into different classes, such as poised and latent, are steps in the right direction, but are 

likely too coarse given our incomplete current knowledge. We suspect that a more flexible model of distal 

regulatory regions is appropriate, with some displaying promoter-like sequence architectures and 

modifications and others with distinct regulatory properties in multiple, potentially uncharacterized, 

dimensions42,113,114. Consistent and specific definitions of the spectrum of regulatory activity and 

architecture are necessary for further progress in enhancer identification, successful replication, and 

accurate genome annotation. In the interim, we must remember that genome-wide enhancer sets generated 

by current approaches should be treated as what they are—incomplete snapshots of a dynamic process. 
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APPENDIX 
 

List of Relevant Phenotypes in Liver 
 
Aspartate aminotransferase 
Autoimmune hepatitis type-1 
Biliary atresia 
Bilirubin levels 
Bilirubin levels in extreme obesity 
Butyrylcholinesterase levels 
CYP3A4 enzyme activity 
Drug-induced liver injury 
Drug-induced liver injury (amoxicillin-clavulanate) 
Drug-induced liver injury (flucloxacillin) 
Gamma gluatamyl transferase levels 
Gamma gluatamyl transferase levels (interaction with age) 
Gamma glutamyl transpeptidase 
Gaucher disease severity 
Hematological and biochemical traits 
Hematology traits 
Hepatitis 
Hepatitis B 
Hepatitis B (viral clearance) 
Hepatitis B vaccine response 
Hepatitis C induced liver cirrhosis 
Hepatitis C induced liver fibrosis 
Hepatocellular carcinoma 
Hepatocellular carcinoma (hepatitis B virus related) 
Hepatocellular carcinoma 
Hepatocellular carcinoma (hepatitis B virus related) 
IFN-related cytopenia 
Lapatinib-induced hepatotoxicity 
Lipid levels in hepatitis C treatment 
Liver disease in chronic hepatitis B virus infection 
Liver enzyme levels 
Liver enzyme levels (alanine transaminase) 
Liver enzyme levels (alkaline phosphatase) 
Liver enzyme levels (aspartate transaminase) 
Liver enzyme levels (gamma-glutamyl transferase) 
Lumiracoxib-related liver injury 
Non-albumin protein levels 
Non-alcoholic fatty liver disease 
Non-alcoholic fatty liver disease histology (AST) 
Non-alcoholic fatty liver disease histology (lobular) 
Non-alcoholic fatty liver disease histology (other) 
Nonalcoholic fatty liver disease 
Primary biliary cirrhosis 
Primary sclerosing cholangitis 
Response to hepatitis C treatment 
Response to protease inhibitor treatment in hepatitis c (bilirubin toxicity) 
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Response to protease inhibitor treatment in hepatitis c (peak serum total bilirubin levels) 
Serum albumin level 
Serum alkaline phosphatase levels 
Total bilirubin levels in HIV-1 infection 
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List of Relevant Phenotypes in Heart 
 
AR-C124910XX levels in individuals with acute coronary syndromes treated with ticagrelor 
Abdominal aortic aneurysm 
Aortic root size 
Aortic stiffness 
Aortic-valve calcification 
Arterial stiffness 
Arterial stiffness (pulse-wave velocity) 
Atrial Septal Defect 
Atrial fibrillation 
Atrial fibrillation/atrial flutter 
Atrioventricular conduction 
Atrioventricular septal defects in Down syndrome 
B-type natriuretic peptide 
Blood pressure 
Blood pressure (age interaction) 
Blood pressure (anthropometric measures interaction) 
Blood pressure (response to antihypertensive medication) 
Blood pressure (smoking interaction) 
Blood pressure measurement (cold pressor test) 
Blood pressure measurement (high sodium and potassium intervention) 
Blood pressure measurement (high sodium intervention) 
Blood pressure measurement (low sodium intervention) 
Blood pressure response to hydrochlorothiazide in hypertension 
Blood pressure variability 
Brugada syndrome 
Cardiac Troponin-T levels 
Cardiac hypertrophy 
Cardiac muscle measurement 
Cardiac repolarization 
Cardiac structure and function 
Cardio vascular disease (drug interaction; BB) 
Cardioembolic ischaemic stroke 
Cardiovascular disease (drug interaction, BB) 
Cardiovascular disease (drug interaction, CCB) 
Cardiovascular disease (drug interaction, diuretics) 
Cardiovascular disease (drug interaction; ACE) 
Cardiovascular disease risk factors 
Cardiovascular heart disease in diabetics 
Carotid artery intima media thickness (sex interaction) 
Carotid atherosclerosis (smoking interaction) 
Carotid atherosclerosis in HIV infection 
Carotid intima media thickness 
Carotid plaque burden (smoking interaction) 
Cervical artery dissection 
Chagas cardiomyopathy in Tripanosoma cruzi seropositivity 
Cholesterol 
Cholesterol and Triglycerides 
Cholesterol, total 
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Circulating vasoactive peptide levels 
Clozapine-induced agranulocytosis 
Clozapine-induced cytotoxicity 
Congenital heart disease 
Congenital heart malformation 
Congenital left-sided heart lesions 
Congenital left-sided heart lesions (maternal effect) 
Conotruncal heart defects 
Coronary arterial lesions in patients with Kawasaki disease 
Coronary artery calcification 
Coronary artery calcification (smoking interaction) 
Coronary artery disease 
Coronary artery disease or ischemic stroke 
Coronary artery disease or large artery stroke 
Coronary artery disease-related phenotypes 
Coronary heart disease 
Coronary heart disease event reduction in response to statin therapy (interaction) 
Coronary heart disease in familial hypercholesterolemia 
Coronary restenosis 
Coronary restenosis 
Coronary spasm 
Cystatin C 
Dilated cardiomyopathy 
Drug-induced torsades de pointes 
Echocardiographic traits 
Electrocardiographic conduction measures 
Electrocardiographic traits 
Factor VII 
Factor VII levels 
Factor VIII levels 
Factor XI 
HDL cholesterol 
Heart failure 
Heart rate 
Heart rate variability traits 
Hemostatic factors and hematological phenotypes 
Hypertension 
Hypertension (pulmonary) 
Hypertension (young onset) 
Hypertension risk in short sleep duration 
Hypertrophic cardiomyopathy 
IgE levels 
Ischemic stroke 
LDL (oxidized) 
LDL cholesterol 
LDL cholesterol subfractions 
LDL peak particle diameter (total fat intake interaction) 
Large artery atherosclerosis ischaemic stroke 
Large artery stroke 
Left ventricular mass 
Life threatening arrhythmia 
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Lipoprotein-associated phospholipase A2 activity and mass 
Lipoprotein (a) - cholesterol levels 
Lp (a) levels 
Major CVD 
Mitral annular calcification 
Mitral valve prolapse 
Mortality among heart failure patients 
Mortality in heart failure 
Myocardial infarction 
Myocardial infarction (drug interaction; ACE) 
Myocardial infarction (drug interaction; BB) 
Myocardial infarction (drug interaction; CCB) 
Myocardial infarction (drug interaction; diuretics) 
Myocardial infarction (early onset) 
Myocardial infarction in coronary artery disease 
Nonobstructive coronary artery disease 
Oleic acid (18:1n-9) plasma levels 
P wave duration 
PR interval 
PR interval in Tripanosoma cruzi seropositivity 
PR segment 
Palmitic acid (16:0) plasma levels 
Palmitoleic acid (16:1n-7) plasma levels 
Pericardial fat 
Perioperative myocardial infarction in coronary artery bypass surgery 
Peripartum cardiomyopathy 
Plasma cystastin c levels in acute coronary syndrome 
Plasma omega-6 polyunsaturated fatty acid levels (adrenic acid) 
Plasma omega-6 polyunsaturated fatty acid levels (arachidonic acid) 
Plasma omega-6 polyunsaturated fatty acid levels (dihomo-gamma-linolenic acid) 
Plasma omega-6 polyunsaturated fatty acid levels (gamma-linolenic acid) 
Plasma omega-6 polyunsaturated fatty acid levels (linoleic acid) 
Postoperative atrial fibrillation in coronary artery bypass grafting surgery 
Postoperative ventricular dysfunction 
Pulse pressure in young-onset hypertension 
QRS duration 
QRS duration in Tripanosoma cruzi seropositivity 
QT interval 
QT interval (interaction) 
QT interval in Tripanosoma cruzi seropositivity 
RR interval (heart rate) 
Red blood cell count 
Red blood cell fatty acid levels 
Red blood cell traits 
Renal sinus fat 
Response to Dalcetrapib treatment in acute coronary syndrome 
Response to rate control therapy in atrial fibrillation 
Response to statin therapy 
Response to statin therapy (LDL cholesterol subfractions) 
Response to statin therapy (LDL-C) 
Response to statins (LDL cholesterol change) 
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Resting heart rate 
Serum dimethylarginine levels (asymmetric/symmetric ratio) 
Sick sinus syndrome 
Stearic acid (18:0) plasma levels 
Subclinical atherosclerosis traits (other) 
Sudden cardiac arrest 
Symmetrical dimethylarginine levels 
Tetralogy of Fallot 
Thoracic aortic aneurysms and dissections 
Ticagrelor levels in individuals with acute coronary syndromes treated with ticagrelor 
Triglycerides 
Vascular constriction 
Vein graft stenosis in coronary artery bypass grafting 
Venous thromboembolism 
Venous thromboembolism (SNP x SNP interaction) 
Ventricular conduction 
Ventricular fibrillation 
vWF and FVIII levels 
vWF levels 
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