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CHAPTER I 
 
 

 
INTRODUCTION 

 
Neuroblastoma 

 
An embryonal tumor of the sympathetic nervous system, neuroblastoma 

arises from aberrantly committed neural crest cells [1]. Approximately 700 new 

cases are reported for neuroblastoma each year, making it the most common 

extracranial solid tumor in the pediatric population [2]. Arising from the cells of the 

sympathetic nervous system, neuroblastoma usually occurs along the sympathetic 

chain, but most frequently in the adrenal medulla (Fig. 1). Neuroblastoma typically 

metastasizes to the regional lymph nodes, bone and the liver [1]. In North America, 

the Children’s Oncology Group (COG) has stratified neuroblastoma risk groups (low, 

intermediate and high) based on the stage of the tumor (as defined by the 

International Neuroblastoma Staging System), age at diagnosis, histopathology and 

tumor biology. Despite multimodality therapy, which can be compromised of 

chemotherapy, surgery, radiation, myeloablative therapy, autologous stem cell 

rescue and 13-cis retinoic acid (RA) treatment, the overall survival rate for patients 

with high-risk disease is a dismal 10-30% [3,4]. Minimal residual disease resulting in 

disease relapse remains a primary reason for this low event-free survival rate. Long-

term remission is further hindered by neuroblastomas that remain refractory to 

standard treatment strategies. To make matters worse, two-thirds of neuroblastoma 

patients present with metastasis at the time of diagnosis and are considered 

advanced-stage disease, precluding the efficacy of current conventional regimes. 

Hence, the last decade has seen an increased attempt in developing targeted 

therapies based on the genomic and proteomic signatures of neuroblastoma patients 
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Figure 1. Clinical presentations of neuroblastoma (Maris, NEJM, 2010). 
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toma or has other clinical conditions that are 
strongly suggestive of a highly penetrant trans-
missible mutation, such as bilateral primary tumors 
of the adrenal glands. Such testing is currently 
available to practitioners (www.ncbi.nlm.nih.gov/ 
sites/GeneTests). Although ALK and PHOX2B mu-
tations account for the majority of familial cases 
of neuroblastoma, additional familial genes may 
still be discovered.

In sporadic neuroblastoma cases, malignant 

transformation probably arises from the interac-
tion of common DNA variants in which each 
individual variation has a relatively modest effect 
on susceptibility. A genomewide association study 
of neuroblastoma is currently under way, under 
the auspices of the Children’s Oncology Group 
(COG). To date, the study has shown that alleles 
with common single-nucleotide-polymorphism 
variations within the putative genes FLJ22536 at 
chromosome band 6p22.3 and BARD1 (BRCA1-

Paraspinal tumor Horner’s syndrome

Celiac-axis tumor

Adrenal tumor

Liver infiltration

Bone marrow metastasis

Figure 1. Clinical Presentations of Neuroblastoma.

Neuroblastoma is a childhood cancer that is diagnosed at a median age of about 17 months. Tumors can arise anywhere along the sym-
pathetic nervous system, with the majority occurring in the adrenal medulla. Primary tumors in the neck or upper chest can cause 
Horner’s syndrome (ptosis, miosis, and anhidrosis). Tumors along the spinal column can expand through the intraforaminal spaces and 
cause cord compression, with resulting paralysis. Although many lower-stage neuroblastomas are encapsulated and can be surgically ex-
cised with little chance of complications, higher-stage tumors often infiltrate local organ structures, surround critical nerves and vessels 
such as the celiac axis, and are largely unresectable at the time of diagnosis. Neuroblastomas typically metastasize to regional lymph 
nodes and to the bone marrow by means of the hematopoietic system. Tumor cells metastatic to marrow can infiltrate cortical bone. 
Neuroblastomas also can metastasize to the liver, most notably in patients with stage 4S tumors, in whom involvement can be exten-
sive; however, transient and complete regression often occurs with no intervention other than supportive care.

The New England Journal of Medicine 
Downloaded from nejm.org at VANDERBILT UNIVERSITY on June 11, 2013. For personal use only. No other uses without permission. 

 Copyright © 2010 Massachusetts Medical Society. All rights reserved. 
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with aggressive, refractory phenotypes of the disease.  

Current studies are heavily focused on the induction of disease remission at a 

molecular level using neuroblastoma-specific gene transcripts and aberrant signaling 

pathways (Fig. 2). MYCN amplification, with a prevalence of ~22%, is the most 

common genetic feature in neuroblastoma and correlates with poor prognosis and 

unfavorable patient outcomes [5,6]. Despite being extensively studied as a major 

oncogenic driver in neuroblastoma, there are currently no clinical trials targeting 

MYCN in neuroblastoma. Hence, recent drugs have focused on signaling pathways 

that regulate MYCN protein, such as aurora kinase A (AURKA) and the 

bromodomain and extra-terminal (BET) domain family of proteins [7,8]. Mutations in 

the anaplastic lymphoma kinase (ALK) and more recently, in α-thalassemia/mental 

retardation syndrome X-linked (ATRX) genes account for some of the other 

mutations observed in children with neuroblastoma [4]. However, there has been 

limited progress in successfully initiating clinical trials targeting these chromosomal 

aberrations. The other class of targeted therapy that is gaining significance in 

pediatric tumors after their successful implementation in adult cancers includes 

targeting growth factors, cell surface receptors and protein kinases downstream of 

such receptors. Targeting growth factors such as insulin-like growth factor (IGF), 

vascular endothelial growth factor (VEGF) and hepatocyte growth factors (HGF) 

demonstrated promising results in neuroblastoma preclinical trials [9,10,11]. 

Pharmacological inhibitors against protein kinases, AKT, ALK and AURKA, recently 

have entered clinical trials after their success in preclinical studies [12,13,14].  
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Figure 2. Hallmarks of high-risk neuroblastoma with druggable targets. 
Preclinical and clinical targets presently under investigation for patients with high-risk 
neuroblastoma. (Adapted from Cheung and Dyer, Nature Reviews Cancer, 2013; 
Hanahan and Weinberg, Cell, 2011). 
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However, the stark reality of (i) acquired drug resistance to efficacious drugs, and (ii) 

failure of clinical trials in patients with recurrent and progressive disease, inspite 

promising preclinical data, are concerns that need to be addressed. These concerns 

can be partly attributed to flawed preclinical studies where effects on tumor inhibition 

are investigated using subcutaneous murine tumor models, but clinically tested in 

cohorts of patients with refractory disease and/or metastasis. In such circumstances, 

it becomes pertinent to investigate novel therapeutic strategies using animal models 

that can mimic aggressive, metastatic disease.  

Accounting for about 40% of all targeted therapies and representing the hub of 

drug development activities are members of the G-protein coupled receptor (GPCR) 

superfamily, which transmit chemical signals into a wide gamut of cell types. The Nobel 

Prize in Chemistry for 2012 provided further recognition to the importance of GPCRs and 

to the efforts of Drs. Lefkowitz and Kobilka. Our laboratory has previously shown that 

one such GPCR, called gastrin-releasing peptide receptor (GRP-R) and its ligand 

gastrin-releasing peptide (GRP), are notably increased in undifferentiated human 

neuroblastomas when compared to its benign phenotype, ganglioneuromas [15]. 

Moreover, we have also demonstrated that GRP acts as a growth factor for 

neuroblastoma cells in vitro and stimulates growth of subcutaneous tumors in vivo 

[15,16]. The next sections will provide a brief insight into the role of GRP under 

normal conditions and during tumorigenesis.  

 

Gastrin-releasing Peptide 

 Initially isolated as the amphibian equivalent bombesin (BBS), it took almost a 

decade to identify and characterize the mammalian GRP [17]. The name for this 

peptide was derived from its first known activity as an inducer of gastrin secretion 
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from G cells in the gastric antrum. Cloning of the GRP cDNA [18] facilitated analysis 

of GRP mRNA expression in various tissues by Northern analysis and in situ 

hybridization. GRP was found in the brain, central nervous system, nerve fibers 

throughout the gastrointestinal tract and pancreas, lung, thymus, prostate, urethra 

and pregnant uterus [19].  

 Apart from gastrin secretion, GRP is also involved in the secretion of other 

gastrointestinal peptides such as somatostatin and cholecystokinin. Moreover, GRP 

stimulates exocrine secretion from the pancreas and smooth muscle contraction in 

the stomach and small intestine; along with neural effects regulating suppression of 

food intake, sensation of itch and the circadian system. Furthermore, BBS/GRP has 

the ability to stimulate the growth of gastrointestinal mucosa and pancreas [20,21]. 

Interestingly, BBS/GRP was observed to have protective functions in animal models 

of gastrointestinal injury [22]. Moreover, its mitogenic effects in normal tissues and 

regenerative/protective functions during wound healing are dependent on signaling 

pathways that are commonly activated during tumorigenesis [23]. Hence it was not 

surprising when Cuttitta and colleagues demonstrated that GRP acts as an autocrine 

growth factor in small-cell lung cancer (SCLC) [24]. 

 

Gastrin-releasing Peptide and the Hallmarks of Cancer 

Since the initial observation made by Cuttitta and colleagues regarding its 

role as a novel mitogen, studies demonstrated the role of GRP as a potential 

morphogen and a pro-angiogenic molecule [25,26,27]. Some groups argue that the 

mitogenic properties of GRP is subordinate to its morphogenic property and that 

GRP essentially acts as an “onco-fetal antigen”, recapitulating its role in normal 

development, but in a dysfunctional manner. To truly understand the oncogenic 
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properties of GRP, studying its role with respect to multiple hallmarks of cancer 

simultaneously is becoming increasingly important. Some of the affected hallmarks 

have been outlined below: 

1. Sustaining cell proliferation – As an autocrine/paracrine growth factor, a critical 

role for GRP with regard to this hallmark is predictable. Subcutaneous injection of an 

SCLC cell line followed by BBS treatment significantly increased tumor weight and 

DNA content [28]. In neuroblastoma, GRP/BBS stimulation enhanced tumor cell 

proliferation in vitro and subcutaneous tumor growth in vivo [15,16]. Conversely, 

GRP antagonists suppressed the growth of SCLC, prostate, gastric, pancreatic, 

breast and colorectal cancer cell lines in vitro and in vivo [29,30,31,32,33]. Martinez 

and colleagues reported that a specific GRP blocker 77427 completely reduced 

tumor volume in a xenograft model of lung cancer, but surprisingly, the tumors grew 

back at normal rates once the treatment was suspended [34]. This observation 

indicates a cytostatic role for GRP inhibition instead of a cytotoxic effect, highlighting 

the significance of developing combination therapies targeting GRP.  

2. Evasion of cell death – Most studies have focused on the role of GRP as a 

mitogen and observed decreased cancer cell proliferation after GRP antagonist 

treatment. But whether these antagonists induce a concomitant cancer cell death 

remains to be studied. A recent report suggests that GRP stimulates the growth of a 

hepatocellular carcinoma cell line, HepG2, by blocking endoplasmic reticulum stress-

mediated apoptosis [35]. Interestingly, our laboratory has recently demonstrated that 

GRP stimulation can potentially inhibit autophagy-mediated cell death of human 

umbilical vein endothelial cells (HUVECs) [26]. Whether inhibiting GRP signaling can 

induce neuroblastoma cell death and the plausible mechanism(s) involved remain to 

be elucidated. 
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3. Inducing angiogenesis – More than a decade ago the proangiogenic effects of 

BBS/GRP had been established when Levine and colleagues demonstrated that 

BBS stimulation induced NFκB activation and the expression of proangiogenic 

molecules in prostate cancer [36]. Since then studies have reported that GRP 

antagonists block angiogenesis in cancers of the lung, breast and kidney [34,37,38]. 

Neuroblastoma is characterized by florid vascularization and our laboratory has 

previously demonstrated that GRP treatment stimulates vascular endothelial cell 

proliferation and in vitro tubule formation [26]. Hence, it will be pertinent to study 

whether targeting GRP directly affects neuroblastoma cell-mediated angiogenesis. 

4. Invasion and metastasis – “Unless tumor cells are able to invade, that is, push 

into surrounding tissue, they cannot force their way into blood vessels. Therefore, 

without invasion metastasis cannot occur…” [39]. The importance of tissue invasion 

and metastasis had been established as early as the 19th century, but a role for GRP in 

this hallmark of cancer has only recently been identified. GRP stimulation increased the 

invasiveness of prostate cancer cell lines in vitro [40]. Similarly, Zhang and 

colleagues demonstrated that combination treatment of GRP receptor (GRP-R) and 

epidermal growth factor receptor (EGFR) inhibitors decreased head and neck 

squamous cell carcinoma invasion [41]. Moreover, BBS treatment enhanced the 

incidence of peritoneal metastasis from gastric cancers induced in vivo [42]. 

Interestingly, survival of gastric cancer patients positive for GRP-R was not 

significantly different from patients negative for GRP-R expression [43]. In contrast, 

breast cancer patients with lymph node metastasis had a lower survival rate when 

positive for GRP [44]. Using an in vivo metastasis model our laboratory 

demonstrated that silencing GRP-R inhibited the formation of secondary lesions in 
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the liver [45]; however, we have yet to investigate the effect of inhibiting GRP in 

neuroblastoma metastasis. 

 Additionally, recent studies have implicated a role for GRP/GRP-R in 

deregulating cellular metabolism and in tumor-associated inflammation [46,47]. 

Hence, targeting GRP will potentially have multi-faceted effects on neuroblastoma 

tumor initiation and progression and needs to be investigated extensively. As an 

autocrine/paracrine growth factor, GRP and its receptor, GRP-R, activate various 

signal transduction pathways, so the next section will briefly discuss various 

signaling pathways mediating the oncogenic effects of GRP/GRP-R in cancer. 

 

Signaling Pathways Activated by Gastrin-releasing Peptide in Cancer 

 GRP-R, the G-protein coupled receptor for GRP, couples to G proteins 

triggering downstream signal transduction pathways critical for cancer cell 

proliferation, survival, angiogenesis and metastasis.  Typically upon ligand binding, 

GPCRs via Gαq protein stimulate phospholipase C-β (PLC-β) resulting in the 

production of second messengers inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG), increased free cytosolic Ca2+, and the activation of protein 

kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways. In addition, 

Gαq also activates AKT pathway, thereby, modulating mTOR and NFκB signaling. 

GPCRs via Gαs proteins initiate PKA- and MAPK-dependent signaling; Gαi activates 

SRC, PI3K, ERK and Rho-mediated signals. Moreover, crosstalk with growth factor 

receptors allows GPCRs to regulate ERK, PI3K and JAK-STAT signaling pathways 

[48,49]. Differential activation of downstream signaling pathways by GPCRs, termed 
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“functional selectivity”, determines the biological outcome in tumor cells and provides 

a potential explanation regarding tumor heterogeneity. 

Studies in prostate cancer have identified that BBS/GRP stimulation activates 

MAPK pathway during tumor cell proliferation [50]; GRP enhances interleukin-8 (IL-8) 

and VEGF expression in prostate cancer cells [36] via NFκB [47]. Similarly, Chao 

and colleagues have shown that in breast cancer cells GRP-R synergizes with 

EGFR to regulate cell migration and IL-8 expression, but not cell proliferation, and 

ectopic expression of GRP-R alone was sufficient in eliciting similar responses [51]; 

BBS/GRP stimulated hepatocellular cancer cell proliferation via an EGFR-

independent MAPK pathway activation [35]. In colon cancer, a proteomic based 

approach identified that heat shock protein (HSP), heterochromatin protein 1 (HP1), 

intercellular adhesion molecule 1 (ICAM-1) and acetyl-coenzyme A acyltransferase 

(ACAT) were upregulated after GRP-R overexpression and contributed to the 

aggressiveness of this disease [52]. These studies clearly underline the complexity 

of GRP/GRP-R signaling within solid tumors and the necessity to study disease-

specific downstream signaling to effectively understand GRP/GRP-R-dependent 

tumor pathophysiology and pathobiology. 

 In the context of neuroblastoma, our laboratory has identified multiple 

pathways that mediate the oncogenic effects of GRP/GRP-R (Fig. 3). GRP can 

induce rapid short term VEGF secretion in neuroblastoma cells by activating the 

PKC pathway [53]. GRP/GRP-R signaling can also induce neuroblastoma cell 

motility by activating focal adhesion kinase (FAK) – a phenomenon observed in adult 

solid tumors as well [54]. Higher levels of VEGF or FAK correlate with unfavorable 

histology and aggressive tumor behavior in neuroblastoma [54,55]. The observation  
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Figure 3. GRP/GRP-R activates multiple downstream signaling pathways to 
induce neuroblastoma cell survival, proliferation, motility and tumor cell-
mediated angiogenesis.  
  

GRP 

GRP-R 

Cell Proliferation 
Cell Survival 
Angiogenesis 

PI3K/AKT FAK 

Cell Proliferation 
Cell Motility 

PKC 

Angiogenesis 



 12 

that GRP/GRP-R stimulated neuroblastoma cell-mediated angiogenesis and motility 

provides a strong lead regarding the potential efficacy of inhibiting neuroblastoma 

progression by targeting GRP [16]. But from these studies, the pathway that stands 

out to be critical in mediating GRP/GRP-R regulated hallmarks of neuroblastoma is 

the AKT signaling. AKT activation by GPCRs had been first identified nearly 15 

years ago, when two seminal studies reported that GPCRs induce phosphorylation 

of AKT at Ser473 in a PI3K-dependent manner [56,57]. We have demonstrated that 

GRP stimulation induces neuroblastoma cell cycle progression via AKT pathway [58]. 

Furthermore, GRP-R silencing downregulated the activation of AKT and S6 kinase in 

neuroblastoma cells [45], whereas, GRP-R overexpression suppressed the mRNA and 

protein expression of PTEN [59]. The next section will briefly highlight how PI3K/AKT 

pathway has proven to be critical and positioned AKT as a key determinant in the 

biological aggressiveness of neuroblastomas. 

 

AKT/PTEN Axis in Neuroblastoma 

From inducing resistance to chemotherapy to facilitating MYCN-mediated 

oncogenic effects, PI3K/AKT has garnered considerable interest in neuroblastoma 

studies. Most importantly, activation of AKT signaling correlates with poor prognosis 

in neuroblastoma patients [60]. PI3K/AKT signaling is required for mediating the 

actions of oncogenes like IGF-1R, ALK and TRK-B in neuroblastoma cell 

proliferation, evasion of apoptosis and chemoresistance [61,62,63]. Studies have 

also implicated a role for AKT in mediating CD133-regulated chemoresistance and 

inhibition of neuroblastoma cell differentiation [64,65]. Activation of PI3K/AKT/mTOR 

signaling appears to be critical for MYCN protein stabilization and MYCN-dependent 

angiogenesis in neuroblastoma [66,67,68,69].  
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Based on neuroblastoma preclinical studies, targeting AKT and its 

downstream target, mTOR, has achieved immense significance. AKT inhibition alone 

or in combination with rapamycin, a specific mTOR inhibitor, suppressed 

neuroblastoma growth in vitro and in vivo [12]. NVP-BEZ235, a novel dual inhibitor of 

PI3K and mTOR, decreased angiogenesis and increased overall survival in a 

primary xenograft model of neuroblastoma [69]. Preclinical studies demonstrating 

sensitivity to mTOR inhibitors led to the initiation of clinical trials using temsirolimus 

in neuroblastoma patients with relapsed/refractory disease, but failed to have any 

significant antitumor activity in such patients [70]. Interestingly, a specific AKT 

antagonist significantly inhibited VEGF production in rapamycin-refractory 

neuroblastoma cell lines [71]. This indicates that as a central molecule and a 

merging point for multiple signaling nodes AKT is a more promising target than 

individual membrane receptors or downstream AKT targets, like mTOR, in treating 

aggressive, metastatic neuroblastomas. 

Phosphatase and tensin homolog (PTEN), a negative regulator of AKT (Fig. 

4), acts as tumor suppressor and is frequently mutated in cancers. Early work on 

PTEN in neuroblastoma suggested that only a small number of cell lines harbor 

mutations in this gene that could contribute to oncogenesis and malignant tumor 

progression [72,73]. These initial studies seemed to indicate that significance of 

PTEN is, at best, marginal and that its role as a tumor suppressor may not be critical 

in neuroblastoma. There is a dearth of studies examining the role of PTEN as a 

negative regulator of AKT, and thereby, in the aggressiveness of neuroblastomas. 

Interestingly, a differential expression in PTEN and phosphorylated AKT (pAKT) levels 

was observed in neuroblastoma patients; a higher PTEN expression was noted in  
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Figure 4. GPCR-mediated PI3K/AKT/PTEN signaling in cancer. Generation of 
PIP3 after PI3K activation recruits AKT to the cell membrane where PDK1 
phosphorylates AKT on Thr308 and at Ser473 by PDK2. Activated AKT, via 
downstream signaling molecules, enables various hallmarks of cancer. PTEN acts 
as a negative regulator of AKT, by converting PIP3 to PIP2. 
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differentiated ganglioneuroblastomas in comparison to undifferentiated neuroblastoma 

[59]. There was no significant difference in pAKT levels based on the differentiation 

status of these tumors [59]. But this observation does not discount a potential role for 

AKT in neuroblastoma progression. Moreover, based on this work, the association 

between PTEN and a more undifferentiated neuroblastoma phenotype suggests that 

PTEN could potentially regulate molecular pathways associated with invasion and 

neuroblastoma metastasis. Observations in adult solid tumors where PTEN 

regulates cell migration, raises such a possibility [64-66]. To date only one study has 

reported that PTEN overexpression enhanced the inhibitory effect of a c-Met 

antagonist on neuroblastoma cell proliferation and migration [74]. There is a huge 

gap in the current literature regarding the role of PTEN in neuroblastoma metastasis 

and the mechanism(s) by which PTEN/AKT axis can modulate GRP-mediated 

neuroblastoma progression. Furthermore, if PTEN/AKT axis indeed plays a critical 

role in neuroblastoma metastasis, then it would be important to study the expression 

of these proteins in neuroblastoma patients with respect to aggressiveness of the 

disease. 

 

Statement of Problem 

Despite recent advances in multi-modality therapy, the overall survival for 

neuroblastoma remains dismally low. The two major problems in treating this 

heterogeneous cancer are - 1) frequent resistance to standard chemo- and radiation 

therapy resulting in relapse and/or refractory tumors, and 2) a majority of the patients 

present with metastasis at the time of diagnosis. We need to address the concern of 

not only reducing the recurrence and metastasis of these tumors, but also decrease 

chemotherapy-mediated complications by allowing usage of lower drug doses in 
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children affected by this disease. Moreover, based on the genomic and proteomic 

signatures of patients, we need to identify novel therapeutic strategies which when 

used in combination to current treatment regimes will provide potential options for 

neuroblastoma patients with aggressive, metastatic disease who are refractory to 

current therapeutic modalities alone.  

 

Central Hypothesis and Specific Aims 

GRP acts as an autocrine and paracrine growth factor in neuroblastoma 

[15,58]. But much remains unknown in GRP-induced evasion of neuroblastoma cell 

death and the downstream signaling pathways associated with its oncogenic 

functions. It becomes pertinent to study whether targeting GRP can inhibit 

tumorigenesis by inducing apoptosis in neuroblastoma cells. This would support the 

use of GRP antagonists as an adjuvant to current chemotherapeutic regimes in 

treating refractory neuroblastomas. Moreover, we have identified PTEN/AKT axis as 

a critical mediator of the mitogenic potential of GRP/GRP-R signaling; but the role of 

this axis in regulating GRP-mediated neuroblastoma progression remains unknown. 

Hence, the central hypothesis of this study is that GRP-mediated AKT activation and 

PTEN inhibition drives neuroblastoma progression by regulating multiple aspects of 

tumorigenesis.  To examine and confirm this hypothesis, two specific aims had been 

designed: 

 

Aim 1: Determine the role of GRP in cell cycle progression and modulating the 

cytotoxic effects of standard chemotherapeutic agents. This study aimed to 

examine whether silencing GRP enhanced apoptosis in neuroblastoma cells. 

Moreover, we also wanted to investigate whether targeting GRP could potentiate the 
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cytotoxic effects of some commonly used chemotherapeutic drugs in neuroblastoma. 

GRP antagonists like RC-3095 and 2A11 (monoclonal antibody) have been 

previously used in preclinical and clinical studies in adult solid tumors and 

demonstrated no toxic effects. Thus, this study can provide a potential rationale for 

the use of GRP antagonists in combination with standard chemotherapeutic regimes 

in treating neuroblastoma patients with aggressive, refractory disease.  

 

Aim 2: Determine the role of GRP and PTEN/AKT axis in regulating 

neuroblastoma progression. This study was designed to examine the role of GRP 

in the multi-step invasion-metastasis cascade in neuroblastoma. We also wanted to 

determine the downstream signaling pathways that facilitate GRP-mediated 

neuroblastoma progression. Thus, this study can provide a rationale for targeting 

GRP as a therapeutic approach in advanced-stage neuroblastoma patients by 

potentially regulating multiple aspects of tumor progression.  
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CHAPTER II 
 
 
 

MATERIALS AND METHODS 
  

Reagents 

Primary antibodies used include cleaved caspase-3, cleaved PARP, p53, p21 

pERK1/2, pAKT (S473), AKT, PTEN, pmTOR,  mTOR, TWIST from Cell Signaling 

Technology; pFAK and FAK from BD Biosciences; β-actin from Sigma-Aldrich; Alexa 

Fluor 568 and 488 from Molecular Probes. Horseradish peroxidase (HRP)-

conjugated secondary antibodies against mouse and rabbit IgG were obtained from 

Santa Cruz Biotechnology, Inc. Enhanced chemiluminescence (ECL) HRP 

substrates were purchased from Millipore (Immobilon Western) and Perkin Elmer 

(Western Lightning). Primers for GRP, MYCN, FAK and TWIST were designed using 

Primer-BLAST and ordered from Sigma-Aldrich. GRP was purchased from Bachem. 

Propidium Iodide (0.5mg/mL) was obtained from Roche Diagnostics. Agarose 

(SeaPlaque®) was from Cambrex Bio Science. Doxycycline was purchased from 

Sigma-Aldrich Cell Counting Kit-8 (CCK-8) was from Dojindo Molecular 

Technologies. Immunohistochemistry reagents were from Dako Corporation. siRNA 

pool against GRP was purchased from Dharmacon, along with non-targeting 

scrambled sequences that were used as controls. 

 

Cell culture, plasmids and transfection 

Human neuroblastoma cell lines, SK-N-SH, SH-SY5Y and BE(2)-C, were 

purchased from American Type Culture Collection. JF cell line was a kind gift from 

Dr. Jason Shohet (Baylor College of Medicine). Cells were maintained in RPMI 1640 

medium with L-glutamine (Cellgro Mediatech) supplemented with 10% fetal bovine 
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serum (FBS; Sigma-Aldrich). The cells were maintained at 37°C in a humidified 

atmosphere of 95% air and 5% CO2. For transfection, cells were plated in 6-well 

plates and were transfected with plasmid (4µg) or siRNA (100nM) using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. All 

GRP (100nM) treatments were performed after serum-starved overnight to clearly 

understand the effects of GRP on signaling pathways. Experiments were repeated 

on 3 separate occasions. Vectors pBP2 and pBP2-HA-PTEN were gifts from Dr. 

Webster Cavenee (Univ. of California, San Diego, CA).  

 

Inducible knockdown system 

For knockdown of our target gene, human GRP, we used BLOCK-iT Inducible 

H1 Lentiviral RNAi System (Life Technologies, Invitrogen, Grand Island, NY). The 

sequence targeting GRP (NM_002091) is underlined in the shRNA (shGRP) 

sequence: 5’-CACCAGCAATCAGCAGCCTTCGTGGGACGAATCCCACGAAGG 

CTGCTGATTGC-3’; the nonspecific control shCON is: 5’-CACCGGGCGCGCTTTGT 

AGGATTCGCCG AAGCGAATCCTACAAAGCGCGCC-3’. shRNA sequences were 

cloned into the BLOCK-iT Inducible H1 RNAi Entry Vector (pENTRTM/H1/TO), and 

then shRNA was inserted into Lentiviral vector pLenti4/BLOCK-iT-DEST by LR 

recombination between pENTRTM/H1/TO entry and pLenti4/BLOCK-iT expression 

constructs. Inducible shRNA expression cells were established by transfecting cells 

with both pLenti6/TR and pLenti4/BLOCK-iT-DEST, or by introducing the vectors 

with the lentiviral-mediated delivery system. Production of lentivirus was performed 

in 293FT cells. Stable cell lines BE(2)-C/Tet/shCON, BE(2)-C/Tet/shGRP, SH-

SY5Y/Tet/shCON and SH-SY5Y/Tet/shGRP were established by selecting with 
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Blasticidin at 8 µg/ml and Zeocin at 50 µg/ml post lentiviral transductions. 

 

RNA isolation and reverse transcription 

 Total RNA was isolated from neuroblastoma cells using Trizol® (Life 

Technologies). Cells were incubated in Trizol® reagent. Chloroform was added and 

mixed by vortexing. Cells were then centrifuged at 12000x g for 15 min. The clear 

supernatant was transferred to a new tube, incubated with isopropanalol for 10 min 

and centrifuged. The pellet obtained was washed twice with 70% ethanol and 

resuspended in DNAse, RNAse free water. The concentration of RNA (OD260:280) 

was measured using a FlexStation 3 (Molecular Devices). Isolated RNA (1 µg) was 

used to synthesize cDNA using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems) according to manufacturer’s instruction. 

 

Quantitative and semi-quantitative PCR 

 Semi-quantitative PCR was performed using a Peltier Thermal Cycler (PTC-

200) using specific 3’and 5’ primers for GRP was final product visualized on 1% 

agarose gel using a Gel Doc (BioRad). Quantitative PCR was performed using a 

Bio-Rad Thermocycler CFX96. SsoFAST EvaGreen Supermix, cDNA and specific 3’ 

and 5’ primers were incubated together using the manufacturer’s protocol (Bio-Rad). 

The reactions were set up at 20 µl with 1 µl cDNA template, 10 µl Sso Fast™ 

EvaGreen Supermix, 1 µl of each primer (5 µmol/l), and 7 µl distilled water. The 

reactions were programmed with an initial denaturation step of 2 min at 98°C, 

followed by 40 temperature cycles for 5 s at 98°C and 5 s at 60°C. At the end of 

amplification, the melting curve analysis was performed for the PCR products to 

ensure the amplification specificity. All measurements were produced in duplicate. 
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Relative mRNA levels were calculated based on ratios of the initial cDNA quantity of 

housekeeping control. GAPDH and β-actin were used as housekeeping controls. 

Primers: GAPDH forward primer 5′-TCCTCTGACTTCAACAGCGACACC-3′, GAPDH 

reverse primer 5′-TCTCTCTTCCTCTTGTGCTCTTGG-3′; β-actin forward primer 5’-

ACCGAGCGCGGCTACAG-3’, β-actin reverse primer 5’-

CTTAATGTCACGCACGATTTCC; GRP forward primer 5’-

GCTGGGTCTCATAGAAGCAAAG-3’, GRP reverse primer 5’-

TGGAGCAGAGAGTCTACCAAC-3’; MYCN forward primer 5’-

GCTTCTACCCGGACGAAGATG-3’, MYCN reverse primer 5’-

CAGCTCGTTCTCAAGCAGCAT-3’; FAK forward primer 5’-

TTATTGGCCACTGTGGATGA-3’, FAK reverse primer 5’ 

TACTCTTGCTGGAGGCTGGT-3’; TWIST forward primer 5’-

GGAGTCCGCAGTCTTACGAG-3’, TWIST reverse primer 5’-

TCTGGAGGACCTGGTAGAGG-3’.  

 

Immunohistochemistry 

Tissues were fixed in formalin for 3 days and embedded in paraffin wax. 

Paraffin-embedded sections (5 µm) were deparaffinized in three xylene washes 

followed by a graded alcohol series, antigen retrieval performed with 10 mM sodium 

citrate buffer, and then blocked with blocking solution for 1 h at RT. Sections were 

incubated with primary antibodies (PTEN or pAKT) overnight at 4°C, washed with 

PBS, incubated with secondary antibodies for 30 min at RT, and developed with 

DAB reagent. All sections were counterstained with hematoxylin, and then 
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dehydrated with ethanol and xylene. Coverslips were mounted and slides observed 

by light microscopy. 

  

Immunoblotting 

Whole cell lysates were collected using cell lysis buffer (20 mM Tris, 150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate, 1% Triton X-

100, aprotinin, leupeptin, and 1 mM sodium orthovanadate) supplemented with 

proteinase inhibitors (Roche). PMSF (1 mM) was added immediately prior to use. 

Protein (30 µg) was run on a SDS-PAGE gel, transferred onto a PVDF membrane, 

and probed with antibodies. Blots were developed using an enhanced 

chemiluminescence system (Amersham Biosciences). Image J (NIH) was used to 

perform the densitometric analysis of protein expression from immunoblots. 

 

Cell cycle analysis by flow cytometry 

Cell cycle distribution was analyzed using flow cytometry. Cells were 

trypsinized, washed once with PBS, and fixed in 70% ethanol. Fixed cells were 

washed with PBS, incubated with 100 mg/ml RNAse for 30 min at 37ºC, stained with 

Propidium Iodide (5 mg/ml) and approximately 1 x 106 cells were analyzed on a 5-

laser BD LSRII. The percentages of cells in different cell cycle phases were 

analyzed using FACSDiva version 6.1.3. 

 

Cell viability assay, anchorage-independent growth and clonogenic assay 

JF and SK-N-SH cells were seeded at a density of 3 x 103 cells in a 96-well 

plate and grown for up to 4 days after transfection. Cell numbers were assessed 

using CCK-8 daily. Each assay was performed in triplicate, and the experiment was 
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repeated three times for each cell line. The values, corresponding to the number of 

viable cells, were read at OD450 with a FlexStation 3 (Molecular Device).  For 

anchorage-independent growth, BE(2)-C and SH-SY5Y cells were trypsinized and 

resuspended in media containing 0.4% agarose and 7.5% FBS and then overlaid 

onto a bottom layer of solidified 0.8% agarose in 5% serum media. Cells were plated 

at varying concentrations and incubated for 5 weeks. Colonies were stained with 

0.05% Crystal Violet, photographed using a Gel DocTM XR+ system (BioRad) and 

quantified using a colony counting software Quantity One (4.6.9, BioRad). For 

clonogenic assay, JF cells were seeded at low concentrations (1 X 103) in 6-well 

plates and allowed to form colonies. Colonies were counted in a manner similar to 

the anchorage-independent growth assay. 

 

DNA fragmentation ELISA 

Cells (100 µl; 5-10 x 103 cells/well) were plated in triplicate 24 h before 

transfection. Cells were then treated with siRNA for control (NTC) or GRP for 48 and 72 

h. Cytoplasmic histone-associated DNA fragments (mono- and oligonucleosomes) were 

detected using a Cell Death Detection ELISAplus kit according to manufacturer’s 

recommended protocol. The experiments were repeated on at least three separate 

occasions. 

 

Migration assay 

 For transwell migration assay, polycarbonate transwell filters (8 µm; Corning 

Inc., Corning, NY) were coated on the lower side with 5 µg/ml collagen type I (BD 

Biosciences) overnight and then blocked with 2.5% BSA in PBS for 1 h. 1 × 105 cells 
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in 500 µl of serum-free media were added to the transwell and allowed to migrate for 

4 h at 37 °C under tissue culture conditions. Media with 1% FBS or 100 nM GRP 

was added to the lower chamber. Cells that failed to migrate through the filter after 

incubation were scraped out using a sterile cotton swab. Cells that migrated to the 

bottom surface of the filter were fixed with 4% paraformaldehyde, stained with DAPI, 

and counted. Each substrate was repeated in duplicate wells, and within each well 

counting was done in five randomly selected microscopic fields (200X magnification).  

 

In vitro tubule formation assay 

 HUVECs grown to ∼70% confluence were trypsinized, counted, and seeded 

with various conditioned media at 48 X 103 cells per well in 24-well plates coated 

with 300 µl of Matrigel (BD Biosciences) and treated with cell culture supernatant 

from transfected BE(2)-C or SH-SY5Y cells. HUVECs were periodically observed by 

microscope as they differentiated into capillary-like tubule structures. After 6 h, cells 

were stained with hematoxylin & eosin (H&E) and photographed via microscope. 

The average number of tubules was calculated from examining three separate 

microscopic fields (200X) and representative photographs obtained.  

 

Tissue microarray and pathological scoring 

For preparation of the neuroblastoma tissue microarray, the surgical 

pathology specimen database at Vanderbilt Medical Center was searched for 

neuroblastoma diagnosis from 1992 to 2011 (Vanderbilt IRB protocol #111723). A 

Beecher Instruments Manual Tissue Arrayer was used to prepare tissue cores from 

selected regions of archival tissue blocks. Four 1 mm cores were prepared for each 
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tumor case. In general, tissue biopsies were obtained from the adrenal medulla or 

paraspinal mass for Stage 1-3 patients without metastasis, and from the lung, lymph 

node or liver for Stage 4 patients with metastasis. Blinded scoring (0-3) was 

performed by a pathologist with expertise in neuroblastoma (Dr. Hernan Correa). 

 

In vivo studies 

Male athymic nude mice (4–6 weeks old) were maintained as previously 

described [16]. All studies were approved by the Institutional Animal Care and Use 

Committee at Vanderbilt University and were conducted in accordance with NIH 

guidelines. BE(2)-C cells stably transfected with Tet/shCON or Tet/shGRP was used 

for animal experiments. Mice were anesthetized with isofluorane/oxygen mixture, 

and a small left flank incision was made to isolate and exteriorize the spleen. A total 

of 1 × 106 cells in 50 µl of HBSS was injected into the splenic capsule using a 27-

gauge needle. Abdominal wall was closed with metal wound clips. Mice were 

randomized to 3 groups: (1) vector-control group BE(2)-C/Tet/shCON (n=3) was 

allowed to drink autoclaved water mixed with sucrose (3%) and doxycycline (2 

mg/mL), (2) inducible-control group BE(2)-C/Tet/shGRP (n=4) was given sucrose 

(3%) alone without doxycycline, and (3) inducible-treatment group BE(2)-

C/Tet/shGRP (n=4) was given sucrose (3%) and doxycycline (2 mg/mL). Mice were 

weighed weekly and tumor growth was assessed biweekly. At about 4 weeks mice 

were sacrificed, spleens and livers were harvested, weighed and fixed in formalin for 

analyses. 

  

Statistical analysis 
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Scoring index was expressed as means ± SEM for both in vitro and in vivo 

experiments; statistical analyses were performed using Student’s t-test for in vitro 

and in vivo experiments and Kruskal-Wallis one-way analysis of variance by ranks 

for comparisons between the treatment groups in vivo. For immunohistochemistry, 

quantification was based on blinded scoring by a pediatric pathologist across serial 

sections from multiple animals or patient samples. Scores were analyzed by 

Student’s t-test for statistical significance. Data analysis was conducted using 

GraphPad InStat3 (GraphPad Software). For all experiments, a p value of < 0.05 

was considered statistically significant. 
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CHAPTER III 

 

GASTRIN-RELEASING PEPTIDE AS A NEOADJUVANT IN REFRACTORY 

NEUROBLASTOMAS 

Introduction 

Despite advances in multi-modality therapy in neuroblastoma, survival rates 

for all stages remain a dismal 50%, and therefore, novel therapeutic options are 

needed to improve patient outcomes. Acquisition of chemo-resistance represents a 

significant issue concerning the failure to achieve long-term survival in the treatment 

of neuroblastoma [75]. Failure to respond to conventional chemotherapy may 

indicate a shift to the malignant phenotype of the disease, and may impose altered 

molecular regulation involving apoptosis and cell cycle regulation signaling pathways 

[76]. Hence, novel molecular approaches that upregulate apoptotic pathways in 

neuroblastoma cells may potentiate the effect of existing anticancer drugs, such as 

vincristine and etoposide; this would allow for use of lower dosages, thus minimizing 

serious complications associated with chemotherapeutic agents. 

Vincristine is a vinca alkaloid that disrupts microtubule assembly and arrests 

cells in metaphase, preventing cell replication. It is part of an arsenal of 

chemotherapeutic agents commonly used to treat solid tumors based on its 

mechanism of action to induce apoptosis, which in part, is mediated by the 

inactivation of Raf1/MEK/ERK cascade [77]. Some of the unwarranted side effects of 

vincristine include neuropathy [78]. Etoposide, an epipodophyllotoxin, interferes with 

topoisomerase II activity and arrests cell division in the late S-G2 phase of the cell 

cycle; it induces a caspase-3-dependent apoptosis in neuroblastoma cells [79]. 
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Although etoposide is highly cytotoxic for neuroblastoma, the side-effects as a result 

of myelosuppression makes it dose-limiting in the treatment of this childhood cancer. 

Suppression of GRP activity with cell surface receptor antagonists or 

neutralizing antibodies has been shown to inhibit tumor growth [16,80]; however, the 

molecular mechanisms involved in the inhibition of neuroblastoma cell proliferation 

upon GRP down-regulation are not known. Furthermore, combining conventional 

chemotherapy and targeted antagonism of GRP-R appears to significantly enhance 

cancer cell death by a mechanism termed as “receptor enhanced chemosensitivity”. 

Therefore, the purpose of our current investigation was to demonstrate and elucidate, 

in broader detail, the mechanism by which GRP inhibition induces neuroblastoma 

cell death and potentiates the cytotoxic effects of chemotherapeutic drugs in the 

treatment of aggressive, refractory neuroblastomas.  

In this study, we report that silencing GRP induced apoptosis in 

neuroblastoma cell lines, JF and SK-N-SH, when administered alone or in 

combination with chemotherapeutic drugs, vincristine or etoposide. Moreover, GRP 

silencing decreased cell proliferation and induced cell cycle exit of neuroblastoma 

cells. We also observed, at the molecular level, that p53 and its downstream target 

p21 are upregulated by GRP knockdown, leading to a decreased activation of cell 

proliferation regulator, ERK. Moreover, GRP or GRP-R silencing in a neuroblastoma 

cell line deficient in p53 activity, enhanced the expression of another tumor 

suppressor, PTEN. Our findings demonstrate that silencing GRP promotes apoptosis 

in neuroblastoma cells and enhances the cytotoxic effects of chemotherapeutic 

agents by the potential activation of tumor suppressors. 
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Results 

GRP silencing induced apoptosis in neuroblastoma cells 

Using quantitative and semi-quantitative PCR, we first examined the level of 

GRP mRNA in a panel of neuroblastoma cell lines available in our laboratory and 

reported the differential expression of GRP in these cell lines (Fig. 5A). To examine 

the effects of GRP siRNA on GRP mRNA expression, we used constitutively GRP-

overexpressing (JF and SK-N-SH) human neuroblastoma cell lines. As assessed by 

quantitative PCR, siGRP resulted in significant GRP mRNA reduction of 

approximately 80-90% in both JF and SK-N-SH cells after 48 h treatment indicating 

the specificity of siGRP in our study (Fig. 5B). We next examined the effect of GRP 

inhibition on neuroblastoma cell death. Using a clonogenic assay, we demonstrated 

that GRP silencing decreased colony formation by JF and SK-N-SH cells (Fig. 5D). 

Moreover, a significant increase in apoptosis was detected in both human 

neuroblastoma cell line, JF and SK-N-SH, at 48 h after GRP silencing, as measured 

by levels of DNA fragmentation, a hallmark of apoptosis (Fig. 5E). Increases in 

apoptosis were noted to a maximum of 2.5 fold change. Conversely, targeting GRP 

also notably decreased neuroblastoma cell proliferation, as measured by the Cell 

Counting Kit-8 (CCK-8) (Fig. 5F), thus demonstrating dual cellular effects of GRP 

silencing on proapoptotic as well as anti-proliferative responses in neuroblastoma 

cells. 
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Figure 5. Silencing GRP induced apoptosis in neuroblastoma cells. (A) 
Differential expression of GRP mRNA levels in a panel of 12 neuroblastoma cell 
lines. (B) JF and SK-N-SH cells were transfected with siGRP or siNTC, and gene 
expression was analyzed using quantitative PCR. GRP expression was effectively 
silenced with siGRP when compared to controls (siNTC) in both cell lines examined. 
(C) Clonogenic assay using JF cells demonstrated decreased colony formation after 
GRP silencing. (D) Cells treated with siGRP exhibited an increase in apoptosis in 
comparison to control cells (siNTC). (E) GRP silencing (siGRP) resulted in a 
significant decrease in cell proliferation when compared to control cells. Apoptosis 
and cell proliferation were analyzed using Cell Death ELISA and CCK-8, respectively 
(mean ± SEM; * = p < 0.05). Relative DNA Fragmentation indicates DNA 
fragmentation of treated cells relative to control cells, where control cells have been 
assumed to have 100% DNA fragmentation.  
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ABI7000. Duplicate CT values were analyzed in Mi-
crosoft Excel using the comparative CT (DDCT)
method as described by the manufacturer (Applied
Biosystems). The amount of target (2-DDCT) was
normalized to endogenous reference (18 s) and
relative to a calibrator (one of the experimental
samples).

Western blot analysis. Whole-cell lysates were
prepared using cell lysis buffer with 1 mM PMSF
and incubated on ice for 30--60 min. Total protein
(50 mg/lane) was resolved on NuPAGE Novex
4--12% Bis--Tris gels and electrophoretically trans-
ferred to polyvinylidene difluoride membranes (Bio-
Rad Laboratories, Hercules, CA). Nonspecific
binding sites were blocked with 5% milk in TBST
(120 mM Tris--HCl, pH 7.4, 150 mM NaCl, and
0.05% Tween 20) for 1 h at room temperature or
overnight at 48C. Target proteins were detected by
using rabbit or mouse antihuman antibodies
(1:500--1000 dilution) for 3 h at room temperature
or overnight at 48C. The membranes were washed
3 times and incubated with secondary antibodies
(1:5000 dilution) conjugated with HRP. Immune
complexes were visualized using the enhanced
chemiluminescence system (Amersham Biosci-
ences, Arlington Heights, IL). Equal loading and
transfer were confirmed by blotting the same
membrane with b-actin antibody (1:5000 dilution).
Data are representative of 3 independent experi-
ments with nearly identical results.

DNA fragmentation assay. Apoptosis was mea-
sured using a DNA fragmentation assay as previously
described.14 Briefly, cells (100 ml; 5--10 3 103 cells/
well) were re-plated in triplicate in 96 well plates
24 h after transfection. Cells were then treated with
siRNA for control (NTC) or GRP for 48 and 72 h.
Cytoplasmic histone-associated DNA fragments
(mono- and oligonucleosomes) were detected using
a Cell Death Detection ELISAplus kit according to
manufacturer’s recommended protocol. The experi-
ments were repeated on at least 3 separate occasions.

Cell proliferation assay. Cells were seeded in 96-
well plates at a density of 5--10 3 103 cells/well in
RPMI 1640 culture medium with 10% FBS and
grown for up to 3 days after transfection. Cell num-
bers were assessed by using Cell-Counting Kit-8
(Dojindo Molecular Technologies Inc., Gaithers-
burg, MD) daily. Each assay point was performed
in triplicate, and the experiment was repeated 3
times for each cell line. The values, corresponding
to the number of viable cells, were read at OD450
with EL808 Ultra Microplate Reader (Bio-Tek
Instruments Inc., Winooski, VT).

Cell cycle analysis. Cell cycle distribution was
analyzed using flow cytometry. Cells were

trypsinized, washed once with PBS, and fixed in
70% ethanol. Fixed cells were washed with PBS,
incubated with 100 mg/ml RNAse for 30 min at
378C, stained with Propidium Iodide (50 mg/ml)
and approximately 13 106 cells were analyzed on a
5-laser BD LSRII. The percentages of cells in differ-
ent cell cycle phases were analyzed using FACSDiva
version 6.1.3.

Statistical analysis. Scoring index, relative DNA
fragmentation, relative mRNA expression, and cell
proliferation were expressed as means ± SEM; statis-
tical analyses were performed using 1-way analysis of
variance for comparisons between the treatment
groups. A P value <.05 was considered significant.

RESULTS

GRP transcript depletion by GRP siRNA. To
examine the effects of GRP siRNA on GRP mRNA
expression, we used constitutively GRP-amplified
(JF and SK-N-SH) human neuroblastoma cell lines.
To assess for the reduction in gene expression, cells
were treated with siGRP or siNTC over a time
course (24, 48, and 72 h) and total cellular RNA
was extracted for analysis of GRP transcripts by real-
time RT-PCR. As shown in Fig 1, siGRP resulted in
significant GRP mRNA reduction of approximately
80--90% in both JF and SK-N-SH cells after 48 h
treatment indicating the specificity of siGRP in
our study. Comparable results were also observed
at 24 and 72 h post treatment (data not shown).

GRP silencing induces apoptosis. Since we have
previously demonstrated that GRP acts as a mito-
gen in human neuroblastoma cell lines, we next

Fig 1. Knockdown of GRP expression using siRNA in
GRP-amplified neuroblastoma cell lines. JF and SK-N-
SH cells were transfected with siGRP or siNTC, and
gene expression was analyzed using RT-PCR. GRP ex-
pression was effectively silenced with siGRP when com-
pared to controls (siNTC) in both cell lines examined
(mean ± SEM; *P < .05 versus siNTC).
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examined the effect of GRP inhibition by siGRP on
cell growth and viability. A remarkable increase in
apoptosis was detected in both human neuroblas-
toma cell lines, JF and SK-N-SH, at 48 h after siGRP
treatment, as measured by levels of DNA fragmen-
tation, a hallmark of apoptosis (Fig 2, A). Increases
in apoptosis were noted to a maximum of 2.5
fold change. Conversely, siGRP also significantly
decreased neuroblastoma cell proliferation, as
measured by the Cell Counting Kit-8 (CCK-8)
(Fig 2, B), thus demonstrating dual cellular effects
of siGRP on proapoptotic as well as antiprolifera-
tive responses in neuroblastoma cells.

Vincristine- and etoposide-induced apoptosis.
Chemotherapeutic drugs exert lethality on tumor
cells by induction of apoptosis. So, we determined
apoptotic dose response curves of 2 commonly
used chemotherapeutic agents, vincristine and
etoposide. Human neuroblastoma cell lines, JF
and SK-N-SH, were treated for 48 h with varying
dosages of vincristine and etoposide. Treatment with
chemotherapeutic drugs resulted in significant cell
death of JF and SK-N-SH cells in a dose-dependent
manner. The lowest dosages of vincristine that
produced significant apoptosis were determined to
be 25 nM and 1 nM for JF and SK-N-SH cells,
respectively (Fig 3, A). Whereas, these values for
etoposide were 2 mM for JF cells and 0.1 mM for
SK-N-SH cells (Fig 3, B).

GRP knockdown enhances chemotherapy-
induced apoptosis. Individually, GRP inhibition
and administration of chemotherapeutic drugs
have the same end point---apoptosis of human
neuroblastoma cells. Therefore, it is conceivable
that GRP silencing could serve as an adjuvant
therapy to chemotherapy. Hence, we combined
the 2 approaches and measured the level of apo-
ptosis in human neuroblastoma cell lines. JF and
SK-N-SH cells were transfected with siGRP, and
then subsequently exposed to the lowest dosages
of either vincristine or etoposide that produced

apoptosis. A significant augmentation in apoptosis
was observed for the combination treatment using
siGRP and either vincristine (Fig 4, A) or etoposide
(Fig 4, B) when compared to chemotherapeutic
agent alone. These findings suggest an important
role for siGRP as an effective adjuvant therapy to
be used in combination with lower concentrations
of current chemotherapeutic regimen, thus poten-
tially decreasing the incidence of chemotherapy-
associated complications.

siGRP-mediated cleavage of PARP and caspase-3.
To further validate our hypothesis that GRP silenc-
ing results in human neuroblastoma cell death
via an apoptotic pathway, we measured cleavage
of PARP and caspase-3, as markers of apoptosis.
SK-N-SH cells were transfected with siGRP, and
then treated to varying concentration of either
vincristine or etoposide for 48 h. siNTC transfected
cells served as controls. As shown in Fig 5, dose-
dependent increases in cleaved PARP protein
levels were observed with both chemotherapeutic
drugs; these effects were further enhanced when
combined with GRP silencing. Similarly, siGRP
also produced additive effects on caspase-3 activity,
but only with higher dosages of vincristine and
etoposide.

GRP inhibition blocks cell proliferation and
induces cell cycle arrest. The mechanisms of
action for the chemotherapeutic drugs, vincristine
and etoposide, have been well elucidated. The
cytotoxic effects of vincristine are associated with a
cell cycle arrest in the G2/M phase and induction
of apoptosis in target cells.3 On the other hand,
studies have reported that etoposide induces
apoptosis in neuroblastoma cells in caspase-
dependent fashion and upregulation of p21.5,15

In order to investigate the mechanism by which
GRP silencing enhances the capacity of these drugs
to induce apoptosis, we next examined cell cycle
regulators, namely, p53, p21, and pERK, after
siGRP treatment alone. As expected, GRP silencing

Fig 2. GRP silencing-induced apoptosis. (A) Cells treated with siGRP exhibited an increase in apoptosis in comparison
to control cells (siNTC). (B) GRP silencing (siGRP) resulted in a significant decrease in cell proliferation when com-
pared to control cells. Apoptosis and cell proliferation were analyzed using Cell Death ELISA and CCK-8, respectively
(mean ± SEM; *P < .05 versus siNTC).
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Chemotherapy-induced apoptosis in neuroblastoma cells 

Chemotherapeutic drugs exert lethality on tumor cells by induction of 

apoptosis. So, we determined apoptotic dose-response curves of two commonly 

used chemotherapeutic agents, vincristine and etoposide. Human neuroblastoma 

cell lines, JF and SK-N-SH, were treated for 48 h with varying dosages of vincristine 

and etoposide. Treatment with chemotherapeutic drugs resulted in significant cell 

death of JF and SK-N-SH cells in a dose-dependent manner. The lowest dosages of 

vincristine that produced significant apoptosis were determined to be 25 nM and 1 

nM for JF and SK-N-SH cells, respectively (Fig. 6A); whereas, these values for 

etoposide were 2 µM for JF cells and 0.1 µM for SK-N-SH cells (Fig. 6B).  

 

GRP knockdown enhanced chemotherapy-induced apoptosis 

Individually, GRP inhibition and administration of chemotherapeutic drugs 

appeared to have the same end point – apoptosis of human neuroblastoma cells. 

Therefore, it is conceivable that GRP silencing could serve as an adjuvant therapy to 

chemotherapy. Hence, we combined the two approaches and measured the level of 

apoptosis in human neuroblastoma cell lines. JF and SK-N-SH cells were 

transfected with siGRP, and then subsequently exposed to the lowest dosages of 

either vincristine or etoposide that produced apoptosis. A significant augmentation in 

apoptosis was observed for the combination treatment using siGRP and either 

vincristine (Fig. 7A) or etoposide (Fig. 7B) when compared to chemotherapeutic 

agent alone. These findings suggest an important role for siGRP as an effective 

adjuvant therapy to be used in combination with lower concentrations of current   
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Figure 6. Chemotherapy treatment induced apoptosis in neuroblastoma cells. 
(A) A dose-response curve for the effects of chemotherapeutic agents on apoptosis 
was assessed using Cell Death ELISA for JF and SK-N-SH cells at 48 h time point. 
(A) The lowest effective dosage of vincristine was determined as 25 nM for JF cells 
and 1 nM for SK-N-SH cells. (B) The lowest effective dosage of etoposide was 
determined as 2 µM for JF cells and 0.1 µM for SK-N-SH cells (mean ± SEM; * = p < 
0.05). 
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Figure 7. GRP knockdown enhances chemotherapy-induced apoptosis. (A) 
Combination treatment with vincristine and siGRP resulted in augmentation of 
apoptosis in JF and SK-N-SH cells when compared to vincristine alone. (B) GRP 
silencing, in addition to treatment with etoposide, resulted in an increase in apoptosis 
in comparison to drug treatment alone in both JF and SK-N-SH cells (mean ± SEM; * 
= p < 0.05 vs. siNTC alone, †= p < 0.05 vs. siNTC plus drug). 
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chemotherapeutic regimen, thus potentially decreasing the incidence of 

chemotherapy-associated complications. 

 

Silencing GRP induced PARP and caspase-3 cleavage 

To further validate our hypothesis that GRP silencing results in human 

neuroblastoma cell death via an apoptotic pathway, we measured cleavage of PARP 

and caspase-3, as markers of apoptosis. SK-N-SH cells were transfected with 

siGRP, and then treated to varying concentration of either vincristine or etoposide for 

48 h. siNTC transfected cells served as controls. Dose-dependent increases in 

cleaved PARP protein levels were observed with both chemotherapeutic drugs; 

these effects were further enhanced when combined with GRP silencing (Fig. 8). 

Similarly, siGRP also produced additive effects on caspase-3 activity, but only with 

higher dosages of vincristine and etoposide. 

 

GRP inhibition induced cell cycle arrest in neuroblastoma cells 

The mechanisms of action for the chemotherapeutic drugs, vincristine and 

etoposide, have been well elucidated. The cytotoxic effects of vincristine are 

associated with a cell cycle arrest in the G2/M phase and induction of apoptosis in 

target cells [77]. On the other hand, studies have reported that etoposide induces 

apoptosis in neuroblastoma cells in caspase-dependent fashion and upregulation of 

p21 [79,81]. In order to investigate the mechanism by which GRP silencing 

enhances the capacity of these drugs to induce apoptosis, we next examined cell 

cycle regulators, namely, p53, p21, and pERK, after siGRP treatment alone. As 

expected, GRP silencing led to increased expression of p53 and its transcriptional  
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Figure 8. Activation of apoptotic pathway after GRP silencing. Combination 
treatment of SK-N-SH cells with chemotherapeutic drugs and siGRP resulted in 
increased cleavage of PARP and caspase-3 suggesting activation of apoptosis as 
the mechanism of cell death by GRP silencing. β-actin levels indicate equal sample 
loading. 
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target p21 at 48 h after treatment in SK-N-SH cells (Fig. 9A). A delayed yet 

significant decrease in the expression of pERK was observed at 72 h after treatment. 

In order to determine the effects of GRP silencing on cell cycle progression, we also 

analyzed SK-N-SH cells using flow cytometry after siGRP treatment. An increase in 

the percentage of cells in apoptotic sub G0/G1 phase was observed when compared 

to control cells (Fig. 9B). This indicates that upon GRP silencing neuroblastoma 

cells probably undergo cell cycle exit, and subsequent apoptosis. 

 

GRP/GRP-R inhibition enhanced PTEN expression 

We have previously shown GRP-R overexpression decreases PTEN levels in 

SK-N-SH cells [59]. Others have demonstrated that tumor suppressor PTEN and its 

downstream target p27 cooperate to inhibit cell cycle progression in prostate cancer 

cells [82,83], potentially by directly interacting in the cytoplasm [84]. PTEN can 

modulate the expression of p21 and p27, thereby, regulating neuroblastoma cell 

cycle arrest [85]. As another potential mechanism for cell cycle arrest, we analyzed 

the levels of PTEN in the cell line, BE(2)-C, that has mutant p53 and, probably, does 

not utilize p53 signaling to inhibit neuroblastoma cell cycle progression or modulate 

apoptosis. PTEN expression increased after doxycycline-induced GRP silencing in 

BE(2)-C cells (Fig. 10A). Similarly, doxycycline-induced GRP-R silencing increased 

PTEN levels in BE(2)-C cells (Fig. 10B). Thus, our data indicate that targeting 

GRP/GRP-R enhanced the expression of PTEN in neuroblastoma cells, providing a 

potential p53-independent pathway in inducing neuroblastoma cell death. 
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Figure 9. GRP silencing-induced apoptosis is mediated by p53 and G0-G1 cell 
cycle arrest. (A) Treatment of SK-N-SH cells with siGRP over a time course (24-96 
h) resulted in an increase in phosphorylation of p53 and its downstream target p21. 
A delayed decrease in phospho-ERK was observed at 72 and 96 h time points. (B) 
siGRP or siNTC transfected SK-N-SH cells (1x 106 cells/well) were plated and 
analyzed for cells in different phases of the cell cycle using flow cytometry. The 
percentage of cells in the apoptotic sub G0/G1 phase showed a significant increase 
after siGRP treatment. The term sub G0/G1 refers to the neuroblastoma cells gated 
during cell cycle analysis by flow cytometry in a manner where they represent 
apoptotic cells as assessed by propidium iodide staining. 
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Figure 10. GRP silencing induced PTEN expression. (A) PTEN expression was 
enhanced by doxycycline-induced GRP silenced BE(2)-C cells. (B) PTEN 
expression was enhanced by doxycycline-induced GRP-R silenced BE(2)-C cells 
(mean ± SEM; *=p<0.05). 
 
  

B A 
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Discussion 

In this study, we show that specific, selective silencing of GRP by siRNA 

leads to increased apoptosis in human neuroblastoma cells that constitutively 

express high levels of GRP; cell death was strongly associated with attenuation of 

cell proliferation, and cell cycle arrest in the G0-G1 phase. Moreover, GRP 

knockdown enhanced the cytotoxic effects of chemotherapeutic drugs routinely used 

in the treatment of neuroblastomas. Increases in caspase-3 activation and 

p53/PTEN expression after GRP silencing further validated activation of apoptotic 

pathways. These observations underscore the significance of targeting GRP, and 

suggest a potential novel combinational treatment for refractory, chemoresistance 

neuroblastomas. 

GRP and its equivalent BBS act as autocrine growth factor to promote cell 

proliferation in various cancer cell types [28,86]; these mitogenic effects of GRP on 

tumor cells have been well established. Similarly, we have previously shown that 

overexpression of GRP-R increases the proliferative capacity of SK-N-SH human 

neuroblastoma cells [59]. In this study, we found that silencing of GRP in JF and SK-

N-SH cell lines induced significant apoptosis. We also showed that cell proliferation 

and cell cycle progression are intricately related to GRP expression, as silencing of 

GRP led to inhibition of both of these processes. Our findings are consistent with 

reports published by others, where inhibition of GRP using GRP/BBS analogs 

inhibited cell proliferation in a variety of cancer cell types [41,87,88].  

Evaluating drug toxicities and mechanism of action becomes extremely 

important when designing treatment regimens; this is especially critical for patients 

with advanced-stage neuroblastoma with a potential to develop drug resistance to 

conventional chemotherapy. Microtubule-damaging agents, such as vincristine, 
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induce apoptosis in cancer cells via inhibition of ERK/MAPK pathway. On the other 

hand, topoisomerase II inhibitors like etoposide activate a p53-dependent cell death 

mechanism in cancer cells [81]. In the current study, we report that both of these 

chemotherapeutic agents induced apoptosis in human neuroblastoma cell lines with 

wild-type p53. When the lowest effective dosages of either drug were combined with 

siGRP treatment, the level of apoptosis was enhanced in both cell lines examined in 

comparison to either drug alone. Targeting neuroblastoma cells with simultaneous 

use of sublethal dose of chemotherapeutic drugs and GRP silencing has not been 

reported previously. Thus, our findings in this study suggest a potential novel 

regimen to reduce chemotherapy-mediated side effects in neuroblastoma patients, 

thereby, improving the quality of their lives considerably.  

Failure to activate apoptotic pathways in response to drug treatment as a 

result of development of chemoresistance has been one of the major hurdles in 

anticancer therapies. Previous studies have reported a correlation between silencing 

of caspase activation with that of chemoresistance in neuroblastoma patients with 

unfavorable outcomes [89,90]. Here, we demonstrated the activation of caspase-3 

and PARP cleavage when JF and SK-N-SH cell lines were subjected to a 

combination treatment of chemotherapeutic drugs and GRP silencing, indicating 

additive effects on activation of apoptotic pathway. Consequently, induction of 

apoptosis via activation of caspase cascade upon treatment with siGRP would allow 

for potential bypassing of chemoresistance, and thus provide significant therapeutic 

benefit to patients with advanced-stage neuroblastomas.  

Previous reports suggest that the presence of a wild-type p53 gene in 

neuroblastomas and the functional competence of this tumor suppressor protein in 

this form of pediatric cancer is controversial [91]. It has been suggested that 
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sequestration of p53 in the cytoplasm leads to an attenuated DNA-damage induced 

G1 arrest in neuroblastomas [92]. Our data demonstrated that silencing GRP leads 

to a plausible stabilization of p53 protein in neuroblastoma cells as assessed by the 

levels of phosphorylated p53 (stable form of p53), and thus leading to activation of 

p21, a transcriptional target of p53. This finding is in agreement with reports by 

others on reactivation of p53 function in neuroblastomas [91,93]. Moreover, our cell 

cycle analysis data suggests an enhancement in cell cycle arrest followed by 

apoptosis in SK-N-SH cells after GRP silencing. Hence, we postulate that GRP 

inhibition acts in parallel with the chemotherapeutic drugs to enhance G1-arrest in 

neuroblastoma cells, thereby leading to the induction of apoptosis in these cells.  

We have previously demonstrated that GRP-R silencing inactivated the 

PI3K/AKT pathway and markedly increased PTEN expression [45]. To further 

examine other tumor suppressors downstream of GRP/GRP-R signaling that can 

potentially induce neuroblastoma cell death, we examined the expression of PTEN. 

Cancer cells typically have low nuclear to cytoplasmic ratio of PTEN. In the nucleus, 

PTEN can mediate cell cycle arrest and growth inhibition via downregulation of 

MAPK and cyclin D1, while in the cytoplasm, PTEN can downregulate AKT activity 

and upregulate p27 resulting in caspase-mediated apoptosis [94]. In this study, we 

further demonstrated that silencing GRP, the specific ligand for GRP-R, resulted in a 

similar increase in PTEN expression, thus indicating that PTEN is a key negative 

regulator of GRP/GRP-R signaling in neuroblastoma tumorigenesis. Thus, inhibition 

of GRP/GRP-R signaling increased PTEN, thereby, potentially inducing cell death in 

neuroblastoma under conditions of mutant p53. 

In summary, chemoresistance in patients with refractory neuroblastomas and 

toxicities associated with conventional chemotherapeutic drugs necessitates the 
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need for novel therapeutics in advanced-stage neuroblastomas. Our findings from 

this study indicate that silencing GRP, an autocrine growth factor for neuroblastoma, 

induces significant apoptosis, allowing for chemosensitization. This could potentially 

allow for use of lower, safer doses of conventional chemotherapeutic drugs in 

multimodality treatment for neuroblastomas. 

  



 43 

CHAPTER IV 

 

GASTRIN-RELEASING PEPTIDE IN NEUROBLASTOMA PROGRESSION 

Introduction 

In the previous chapter we demonstrated the role of targeting GRP in 

inducing apoptosis-mediated neuroblastoma cell death, potentially through the 

activation of tumor suppressors like p53 and PTEN. Also, we have previously 

reported that GRP-stimulated neuroblastoma cell proliferation and cell survival is via 

AKT activation [15,58]. We also showed that BBS/GRP increases angiogenesis and 

primary neuroblastoma growth in vivo [16] and stimulates neuroblastoma cell 

migration in vitro [95]. While we have demonstrated the importance of GRP in the 

establishment of neuroblastoma at its primary site, its role in tumor progression and 

metastasis via regulation of the PTEN/AKT axis remains to be investigated. 

Metastasis – the spread of cancer cells from the primary tumor to distant sites 

- is typically a hallmark of a more aggressive and chemoresistant phenotype for 

various cancers, and neuroblastoma is no exception. The process of metastasis 

requires tumor cell proliferation, angiogenesis and invasion into the local lymphatic 

and capillary network. Further, metastatic cells must detach and embolize into the 

systemic circulation, extravasate and arrest into distant organs and, finally, “seed” 

and survive at distant sites [96]. A key aspect in the transition from primary tumor 

growth to invasion and metastasis is acquisition of anchorage-independence [97]. 

Hence, tumor cells must acquire resistance to anoikis, a form of apoptosis induced in 

cells that become detached from the extracellular matrix [98]. The ability to evade 

anoikis early on sets the stage for cancer progression and eventual metastasis to 

other organs.  
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The patients >18 months of age presenting with metastatic neuroblastoma at 

diagnosis remain difficult to treat and cure [99]. Therefore, understanding the 

process of dissemination and invasion-metastasis cascade is critical to developing 

targeted therapeutic strategies that could prevent tumor progression. GRP is known 

to increase invasiveness of prostate cells through enhanced motility [100]. However, 

whether GRP is involved in promoting metastasis and by what mechanism this may 

occur in neuroblastoma has not been answered. Given its crucial function in primary 

neoplasm growth, we sought to determine the role of GRP in neuroblastoma 

invasion and metastasis.  

In this report, we show that silencing of GRP signaling has a negative effect 

on the invasion-metastasis cascade in neuroblastoma cells. Our results demonstrate 

that GRP silencing leads to upregulation of phosphatase and tensin homologue 

(PTEN), a negative regulator of the PI3K/AKT pathway, with a simultaneous 

decrease in the expression of phosphorylated AKT (pAKT) and mTOR (pmTOR). We 

also identified new downstream targets of GRP in neuroblastoma that are known to 

be responsible for tumor progression. Furthermore, in vitro migration of cancer cells 

and tubule formation by human umbilical vein endothelial cells (HUVECs) 

demonstrate that PTEN overexpression decreased GRP-mediated motility and 

angiogenesis in neuroblastoma potentially through decreased activation of FAK 

and/or AKT. Importantly, using a tissue microarray we observed an inverse 

correlation between PTEN expression and AKT activation in metastatic lesions from 

liver or bone marrow when compared to localized disease. Finally, we demonstrate 

that GRP silencing inhibited liver metastasis in our in vivo tumor-metastasis model. 

Taken together, our findings illustrate the significance of GRP in promoting tumor 
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progression and make it a promising target in preventing a more aggressive, 

metastatic neuroblastoma phenotype. 

 

Results 

Silencing GRP inhibited neuroblastoma tumorigenicity in vitro 

Tumor progression requires local migration and invasion, the ability to evade 

anoikis-induced cell death while disseminating through lymphatic and hematogenous 

systems to establish tumors at distant sites. Using a doxycycline-inducible system to 

silence GRP in human neuroblastoma BE(2)-C and SH-SY5Y cells, we examined 

the effects of targeting GRP in neuroblastoma progression. Here, we demonstrate 

that GRP silencing decreased the anchorage-independent growth of neuroblastoma 

cells, which indicates enhanced anoikis-induced cell death in vitro. The number of 

soft agar colonies after doxycycline treatment-induced GRP silencing was 

significantly reduced when compared to doxycycline-untreated BE(2)-C/Tet/shGRP 

cells or doxycycline-treated BE(2)-C/Tet/shCON cells (Fig. 11A). Moreover, 

doxycycline-induced silencing of GRP also significantly decreased transwell 

migration of BE(2)-C/Tet/shGRP cells when compared to controls (Fig. 11B). 

Consistent with decreases in soft agar colony formation and cell migration, HUVECs 

grown in cell culture supernatant from doxycycline treated BE(2)-C/Tet/shGRP also 

demonstrated visibly reduced tubule formation in comparison to untreated BE(2)-

C/Tet/shGRP cells and BE(2)-C/Tet/shCON cells (Fig. 11C). Similar observations 

were made with the SH-SY5Y cells transfected with Tet/shCON or Tet/shGRP (Fig. 

11D-F). GRP silencing was confirmed by semi-quantitative and quantitative PCR 

(Fig. 11G and 11H, respectively). Taken together, these data indicate that targeting 

GRP affects multiple steps of the invasion-metastasis cascade. 
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Figure 11. Targeted GRP silencing inhibited neuroblastoma progression. (A, D) 
BE(2)-C/Tet/shGRP (+DOX) cells and SH-SY5Y/Tet/shGRP (+DOX) cells, 
respectively, demonstrated a decrease in soft agar colony formation in comparison 
to Tet/shGRP (-DOX) cells or Tet/shCON (+DOX) cells. (B, E) GRP silencing in 
BE(2)-C/Tet/shGRP (+DOX) and SH-SY5Y/Tet/shGRP (+DOX) cells, respectively, 
decreased cell migration in a transwell assay in comparison to controls. (C, F) 
HUVECs cultured in cell culture supernatant from GRP silenced cells resulted in 
decreased tubule formation than when grown in supernatant from control cells 
(mean ± SEM; *=p<0.05). (G, H) Semi-quantitative and quantitative PCR analysis, 
respectively, confirmed GRP silencing after doxycycline treatment (mean ± SEM; 
*=p<0.05). 

G 

H 



 47 

Silencing GRP downregulated AKT/mTOR signaling 

Gastrin-releasing peptide receptor (GRP-R) overexpression downregulated 

PTEN transcription [59] and GRP treatment induces neuroblastoma cell cycle 

progression via PI3K/AKT [58]. Much is unknown about the downstream signaling 

pathways and target genes involved in GRP-mediated neuroblastoma progression. 

Similar to studies of GRP-R silencing [45], silencing of GRP using doxycycline 

inducible system increased PTEN expression with a concomitant decrease in pAKT 

expression and its downstream effector, pmTOR (Fig. 12A). Interestingly, GRP 

silencing in BE(2)-C/Tet/shGRP cells suppressed the transcription of critical 

oncogenes involved in neuroblastoma progression such as MYCN, TWIST and FAK 

(Fig. 12B). Correlative to downregulation at the transcriptional level, GRP silencing 

also decreased protein levels of MYCN, TWIST and FAK (Fig. 12C). SH-SY5Y, a 

MYCN-nonamplified cell line, did not demonstrate any appreciable change in FAK 

levels, but had lowered TWIST expression (Fig. 12B and 12C). Hence, our data 

indicate that GRP may modulate both the transcription of oncogenes as well as 

signaling pathways implicated in neuroblastoma progression. 
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Figure 12. GRP silencing on PTEN/AKT/mTOR signaling. (A) BE(2)-C/Tet/shGRP 
(+DOX) cells and SH-SY5Y/Tet/shGRP (+DOX) cells had an increase in PTEN 
expression along with correlative decreases in pAKT and pmTOR expression when 
compared to control cells (without doxycycline; -DOX). (B) GRP silencing decreased 
the mRNA levels of MYCN, TWIST and FAK by ~50-60% in BE(2)-C/Tet/shGRP 
cells, but only TWIST was significantly decreased in SH-SY5Y/Tet/shGRP cells 
(mean ± SEM; *=p<0.05 vs. without DOX). (C) Immunoblotting confirmed the 
decreases in the protein levels of MYCN, TWIST and FAK after GRP silencing 
(+DOX) in comparison to untreated cells (-DOX) in BE(2)-C/Tet/shGRP cells, and 
TWIST expression in SH-SY5Y/Tet/shGRP cells. β-actin was used as a loading 
control.  
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PTEN overexpression decreased GRP-mediated neuroblastoma progression  

PTEN negatively regulates cancer cell migration by suppressing the tyrosine 

phosphorylation of FAK or p130CAS [101]. Therefore, we next examined the role of 

PTEN overexpression in neuroblastoma cell migration using pBP2-HA-PTEN 

overexpression plasmid or the control vector, pBP2. BE(2)-C/HA-PTEN cell migration 

was significantly reduced when compared to BE(2)-C/CON cells when subjected to 

media containing 1% FBS in the lower chamber (Fig. 13A). In order to ascertain the 

role of PTEN in inhibiting GRP-mediated migration, we added media containing 1% 

FBS and 100 nM GRP in the lower chamber. As expected, under reduced serum 

conditions GRP treatment increased the migratory capacity of BE(2)-C/CON cells in 

comparison to BE(2)-C/CON cells without GRP (Fig. 13A). Interestingly, the number 

of migrated BE(2)-C/HA-PTEN cells with GRP treatment was significantly lower than 

BE(2)-C/CON cells with or without GRP (Fig. 13A). Furthermore, PTEN 

overexpression had a similar inhibitory effect on in vitro tubule formation indicating a 

novel role for PTEN in tumor progression (Fig. 13B). PTEN overexpression could 

completely block GRP-mediated increase in tubule formation by HUVECs (Fig. 13B). 

Similar observations were made with SH-SY5Y cells transfected with control vector 

or PTEN overexpression vector, and subsequently treated with or without GRP (Fig. 

13D and 13E). PTEN acts a lipid phosphatase and converts PIP3 to PIP2, thereby, 

decreasing AKT activation, as assessed by phosphorylation of Ser473. PTEN can 

also act as a protein phosphatase and dephosphorylate FAK at Y397 directly. 

Immunoblotting demonstrated that PTEN overexpression decreased pAKT (Ser473) 

and pFAK (Y397) expression in BE(2)-C and SH-SY5Y cells (Fig. 13C and 13F, 

respectively). This set of novel observations indicated that PTEN overexpression 

could potentially inhibit GRP-induced neuroblastoma progression. 



 50 

 

Figure 13. PTEN overexpression inhibited GRP-mediated neuroblastoma 
progression. (A, D) PTEN overexpression (HA-PTEN) decreased BE(2)-C and SH-
SY5Y cell migration in comparison to vector control (CON) as assessed by transwell 
migration assay. GRP treatment increased BE(2)-C and SH-SY5Y cell migration; this 
was attenuated by PTEN overexpression (HA-PTEN+GRP). (B, E) In vitro tubule 
formation by HUVECs grown in the supernatant of PTEN overexpressing BE(2)-C or 
SH-SY5Y cells (HA-PTEN) was markedly reduced in number in comparison vector 
control (CON). GRP-mediated (GRP) increase in HUVEC tubule formation was 
inhibited when grown in supernatant from PTEN overexpressing BE(2)-C or SH-
SY5Y cells (HA-PTEN+GRP). (C, F) PTEN overexpression in BE(2)-C and SH-SY5Y 
cells decreased pAKT and pFAK as assessed by immunoblotting. β-actin was used 
as a loading control (mean ± SEM; *=p<0.05). 
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PTEN and pAKT expression in human neuroblastoma sections 

 Activation of AKT has been correlated with poor prognosis in neuroblastoma 

patients and indicates disease progression [60]. We have previously identified an 

inverse correlation between PTEN expression and AKT activation with respect to 

differentiation in human neuroblastoma samples [59]. To further delve into how 

PTEN correlates with activation of AKT during neuroblastoma progression, we used 

an in vivo metastasis model established in our laboratory [45] for our study. Human 

neuroblastoma BE(2)-C cells were injected intrasplenically into mice and liver 

metastasis occurred in ~4 weeks. Primary tumors from the spleen as well as liver 

metastases were harvested, fixed and immunohistochemistry was performed in 

paraffin-embedded sections. Primary splenic tumors showed a comparatively higher 

expression of PTEN than the secondary liver lesions (Fig. 14A, left panels). 

Interestingly, there was an increased expression of pAKT in the secondary lesions in 

the liver in comparison to the primary spleen tumor (Fig. 14A, right panels).  

To further confirm this inverse correlation of PTEN and pAKT expression in 

liver metastases from mice study, we next assessed the expression of PTEN and 

pAKT by immunohistochemistry using a tissue microarray containing human 

neuroblastoma sections from primary tumor or metastatic lesions at distant organs 

(Fig. 14B). Neuroblastoma sections obtained from 13 patients at the time of biopsy 

and/or resection with or without metastasis were chosen for further analyses. 

Immunohistochemistry analysis of patients with respect to multiple parameters and 

expression of PTEN/pAKT is summarized in Table 1. We found that there was an 

inverse correlation of PTEN and pAKT in more advanced-stage disease (i.e., stages 

3 or 4), with pAKT expression being relatively higher. Specifically, two thirds of 

patients (4/6) who had higher PTEN expression were also characterized as having  
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Figure 14. Inverse pattern of PTEN and pAKT expression in metastatic lesions. 
(A) Immunohistochemistry demonstrated increased pAKT expression in liver lesions 
(brown staining; bottom right) from our in vivo spleen-liver metastasis model in 
comparison to primary splenic tumors, whereas, PTEN expression was slightly 
decreased in metastatic liver foci when compared to primary splenic tumors (brown 
staining; top left) (black arrows indicate tumors). (B) PTEN expression was lower in 
liver metastatic sections from human neuroblastoma samples in comparison to 
sections from primary localized tumors. pAKT expression was comparatively higher 
in patients with liver metastasis. 
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Stage at 

diagnosis 

MYCN 

status 
Risk Relapse Metastasis Status PTEN pAKT 

4 No 
 

Refractory Lung Deceased +++ + 

4S No Low No 
 

Alive +++ + 

4 No 
  

Lymph 

node 
Alive +++ ++ 

4S Yes 
 

Yes Liver Deceased + ++ 

4 Yes High No Liver Alive + +++ 

4 Yes High Yes Liver Deceased + +++ 

3 No Intermediate No 
 

Alive + ++ 

1 No Low No 
 

Alive +++ + 

4 No 
 

No 
Bone 

marrow 
Deceased + +++ 

4 Yes High Refractory 
Bone 

marrow 
Deceased - ++ 

3 Yes High Yes 
 

Deceased + ++ 

1 No Low No 
 

Alive +++ ++ 

1 No Low Yes 
 

Alive ++ +++ 

 

Table 1. PTEN and pAKT expression patterns in human neuroblastoma 

sections. 
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early-stage disease, suggesting that expression of this gene may be a positive 

prognostic indicator. Interestingly, the other two patients with high PTEN expression 

were both characterized as having stage 4 diseases with metastases to the lung and 

lymph nodes. The patients with stage 1 disease, as identified by the INSS, had 

similar expression pattern of PTEN and pAKT (Fig. 14B; top row). Similar to our in 

vivo murine metastasis model, expression of pAKT was markedly higher in stage 4 

patients with metastasis to the liver compared to PTEN expression (Fig. 14B, 

middle and bottom rows). Taken together, PTEN and pAKT appear to be inversely 

correlated during neuroblastoma progression. 

 

Silencing GRP inhibited liver metastasis 

We next wanted to determine the effects of silencing GRP on neuroblastoma 

tumor growth and metastasis using our murine metastasis model. Mice 

intrasplenically injected with BE(2)-C/Tet/shCON (vector-control group) received 

water containing doxycycline and sucrose. Mice intrasplenically injected with BE(2)-

C/Tet/shGRP were further randomized into two groups: (A) Inducible-treatment 

group receiving doxycycline and sucrose in drinking water, and (B) the inducible-

control group receiving sucrose alone. Silencing GRP did not significantly reduce 

growth of primary tumors in murine spleen in comparison to mice in control groups 

(Fig. 15A). Interestingly, large liver lesions were observed in mice from the vector 

control group receiving doxycycline and inducible-control group without doxycycline 

compared to inducible-treatment group receiving doxycycline, indicating that 

silencing GRP inhibits establishment of macrometastases in the liver (Fig. 15A). 

Statistical analyses indicated a significant decrease in the tumor burden in mice 

injected with BE(2)-C/Tet/shGRP and receiving doxycycline in drinking water in 
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comparison to the controls (Fig. 15B). These data demonstrate the critical role of 

GRP in metastasis to secondary sites and a potential use of targeting GRP in 

treating aggressive, advanced-stage neuroblastomas. 
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Figure 15. Targeted silencing of GRP inhibited liver metastasis. (A) Large gross 
tumors were observed in the spleen and liver of mice injected with BE(2)-
C/Tet/shCON and subjected to drinking water with doxycycline (2mg/mL) and 3% 
sucrose [shCON (+DOX)] or injected with BE(2)-C/Tet/shGRP and subjected to 
drinking water with 3% sucrose alone [shGRP (-DOX)], whereas, a near complete 
inhibition of hepatic metastatic lesions was observed in mice subjected to drinking 
water with doxycycline (2 mg/mL) and 3% sucrose [shGRP (+DOX)]. (B) Liver 
weights of mice injected with BE(2)-C/Tet/shGRP and receiving doxycycline in 
drinking water significantly decreased in comparison to control groups (mean ± SEM; 
*=p<0.05). 
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Discussion 

The presence of metastatic disease is a harbinger of poor clinical outcome 

and, unfortunately, decreased survival. Because of this fact, the importance of 

determining the mechanisms by which cancer cells undergo hematogenous and/or 

lymphatic dissemination and become metastatic cannot be understated. In the 

present study, we identify that key oncogenic properties, such as anchorage-

independence, migration and angiogenesis, required for tumor invasion and 

metastasis, were all negatively affected by GRP silencing.  

Due to our prior knowledge that PTEN mRNA and protein expression is 

negatively impacted by GRP-R overexpression [59] and that GRP treatment 

stimulates the PI3K/AKT pathway in neuroblastoma cells [58], we sought to 

determine whether GRP-mediated signaling regulates PTEN expression. Inhibition of 

GRP led to increased expression of PTEN. Furthermore, targeted inhibition of GRP 

suppressed the activation of the AKT/mTOR signaling cascade and transcription of 

critical oncogenes involved in neuroblastoma progression, specifically TWIST in both 

BE(2)-C and SH-SY5Y cell lines. Interestingly, in conjunction with MYCN 

amplification, the transcription factor TWIST has been shown to prevent the 

apoptotic response by inhibiting the ARF-p53 pathway in neuroblastoma [102]. 

Transcriptional regulation of oncogenes by GRP highlights its role in promoting 

metastasis.   

A diverse group of “molecular sensors”, including cell adhesion molecules, 

integrins and ligands act in concert with one another to regulate anoikis [103]. These 

cellular molecules initiate signaling cascades that maintain a pro-apoptotic balance 

when cellular detachment occurs. Consequently, molecular targets, which can 

suppress aberrant cell signaling pathways that promote resistance to anoikis, have 
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become the focus of many investigations. Interestingly, PTEN plays a critical role in 

regulating anoikis [104] and overexpression of this gene inhibits cell migration and 

invasion in many different cell lines [101,105]. In concert with its inhibitory role in 

migration and invasion, restoration of the cellular function of PTEN has been shown 

to induce anoikis in glioma cell lines via suppression of AKT phosphorylation [106]. 

Independent of the PI3K/AKT pathway, phosphatase activity of PTEN has also been 

shown to act on FAK, by dephosphorylating this kinase at tyrosine 397 position 

(Y397) [101,105], which also acts as an autophosphorylation site for FAK, and 

initiate anoikis [107]. FAK, a nonreceptor protein kinase, has a significant role in 

many cellular pathways including cellular adhesion and migration [108], especially in 

neuroblastoma [54]. In a similar fashion, we demonstrated that PTEN 

overexpression reduced neuroblastoma cell migration and tumor-mediated 

angiogenesis in BE(2)-C and SH-SY5Y cell lines with concomitant suppression of 

pAKT and pFAK protein expression. Our findings suggest that PTEN has a crucial 

role in neuroblastoma, specifically directed at inhibiting cellular processes that 

promote resistance to anoikis and a pro-metastatic phenotype. Most importantly, 

PTEN overexpression blocked GRP-mediated tumor progression as assessed by in 

vitro functional assays, thereby, demonstrating the critical role of PTEN in reversing 

the oncogenic roles of GRP in neuroblastoma. 

Our results demonstrated that silencing GRP has a negative effect on the 

development of characteristics necessary for invasion and metastasis. Previous 

studies ascertaining the efficacy of GRP antagonists in cancer have focused on its 

mitogenic property with the aid of subcutaneous xenograft models [16,54]. To our 

best knowledge, this is the first report of targeted inhibition of GRP with respect to 

metastatic disease in vivo. Using our above mentioned metastasis model, we were 
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able to demonstrate that targeting GRP inhibited tumor metastasis. This inhibition 

can also be attributed to delayed cell proliferation after GRP silencing, though only a 

marginal reduction in the proliferative capacity of neuroblastoma cells was observed 

after GRP silencing [109]. The result of these in vivo experiments illustrates the 

inhibition of several key features in the invasion-metastasis cascade. Taken together, 

our results are significant because it identifies a rationale for targeted therapy 

against GRP to modulate signaling pathways that contribute to neuroblastoma 

metastasis.  

Focused efforts are needed to improve the clinical outcomes of children with 

advanced-stage, aggressive neuroblastomas and create specific therapeutic 

treatments that block molecular pathways contributing to resistant and metastatic 

disease. In this study we have identified that GRP silencing can negatively impact 

neuroblastoma progression in several ways. Functionally, it appears to inhibit critical 

steps that are required for metastasis including, anchorage-independence, migration, 

and angiogenesis. Mechanistically, GRP silencing resulted in upregulation of tumor 

suppressor PTEN with subsequent downregulation of critical oncogenes and 

proliferation/survival pathways implicated in neuroblastoma progression. 

Combination therapies using cytotoxic chemotherapeutic agents and GRP 

antagonists to targeting metastatic disease would be of significance in treating 

aggressive neuroblastoma in the future.  
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CHAPTER V 

 

CONCLUSION 
 

Summary 

The National Cancer Institute has a number of active clinical trials for 

neuroblastoma patients, but only one such trial has progressed to Phase III, 

underlining the importance of investigating novel therapeutic strategies for refractory 

and/or metastatic neuroblastomas. Moreover, the overall survival for neuroblastoma 

remains dismal, in part due to the emergence of resistance to chemotherapeutic 

drugs resulting in aggressive, refractory disease. One of the hallmarks of 

neuroblastoma is increased cell proliferation; this is partly attributed to the synthesis 

and response to various growth factors and cytokines. As a neuroendocrine tumor, 

neuroblastomas secrete a number of peptides; one such being the gastrin-releasing 

peptide (GRP) [15]. 

We have previously demonstrated that GRP, a neuro- and gut peptide 

secreted by neuroblastoma, acts as an autocrine growth factor and stimulates 

neuroblastoma cell proliferation [15]. GRP antagonists have been used to inhibit the 

proliferation of glioblastoma, pancreatic and breast cancer cells. But whether there is 

a concomitant induction of cell death upon GRP inhibition and the plausible 

mechanism(s) involved required further investigation. Hence, for the first part of this 

project, my goal was to study whether GRP silencing could induce apoptosis in 

neuroblastoma cells and potentiate the cytotoxic effects of chemotherapeutic agents. 

We observed that GRP silencing induced apoptosis in neuroblastoma cells and, in 

combination, allowed the usage of sublethal doses of chemotherapeutic drugs to 

elicit responses similar to lethal doses of the same chemotherapeutic drugs when 
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used alone. Increase in the proteins levels of activated pro-apoptotic proteins, 

cleaved caspase 3 and cleaved PARP, further corroborated the efficacy of 

combination therapy in inducing apoptosis-mediated neuroblastoma cell death. 

Moreover, targeting GRP enhanced the percentage of neuroblastoma cells arrested 

in the subG0/G1 phase of the cell cycle, indicating an increase in apoptosis-

mediated neuroblastoma cell death. These observations have two implications – 1) a 

potential reduction in the dose of commonly used chemotherapeutic agents in 

neuroblastoma and 2) a plausible diminution in the side effects associated with 

exposure to such drugs.  

After examining the significance of targeting GRP in neuroblastoma cell death, 

my next goal was to establish the effects of targeting GRP in neuroblastoma 

metastasis. This study included understanding the significance of the PTEN/AKT 

signaling axis that GRP potentially utilizes in the invasion-metastasis cascade. Using 

a doxycycline inducible system, we demonstrated that silencing GRP suppressed 

anchorage-independent growth, migration and neuroblastoma cell-mediated 

angiogenesis in vitro and liver metastasis in vivo. GRP silencing activated PTEN 

signaling with a simultaneous inhibition of AKT/mTOR/FAK activation in 

neuroblastoma cells. Similarly, PTEN overexpression inhibited GRP-mediated 

neuroblastoma cell migration and tumor cell-mediated angiogenesis in vitro, and 

downregulated FAK and AKT activation at the molecular level. This placed PTEN as 

a critical negative regulator of the oncogenic effects of GRP in neuroblastoma.  

Using an animal in vivo metastasis model and neuroblastoma patient samples, we 

demonstrated an inverse correlation between the expression of pAKT and PTEN in 

metastatic lesions in the liver, thereby, implicating a role for GRP/AKT in 

neuroblastoma progression. These two studies provide a rationale for the use of 
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GRP antagonists in conjunction with conventional chemotherapeutic regimes in 

neuroblastoma patients with aggressive, refractory forms of this disease by 

mechanisms depicted in Fig. 16. 
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Figure 16. Schematic representation of the oncogenic effects of GRP in 
neuroblastoma. Combination treatment of GRP silencing and chemotherapeutic 
drugs can induce DNA damage in neuroblastoma cells, resulting in the activation of 
tumor suppressors, like p53, with subsequent neuroblastoma cell cycle arrest and 
apoptosis. GRP also regulates multiple aspects of the invasion-metastasis cascade 
in neuroblastoma, potentially, via activation of AKT/FAK and PTEN negatively 
regulates this oncogenic function of GRP in neuroblastoma progression. 
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Future Directions 

 Low- and intermediate-risk group neuroblastoma patients usually have a 

favorable outcome and >80% event-free survival rate [4]. It is the high-risk group, 

which requires our immediate attention with regards to improved novel targeted 

therapeutics. From my studies, a critical role for GRP in neuroblastoma initiation and 

progression can be predicted. Preliminary results from these studies merit further 

discussions and raise additional exciting questions. 

 

Combination therapy using GRP antagonists and chemotherapy in vivo 

A GRP specific antagonist reduced the tumor burden in an animal model of 

SCLC; but this effect was reversible and tumors reappeared when the treatment was 

stopped [34]. This study identified that blocking GRP might be cytostatic and not 

necessarily cytotoxic, arguing for the use of cytotoxic agents in combination with 

GRP antagonists. Keeping that in mind, I demonstrated that a combination of GRP 

inhibition and commonly used chemotherapeutic drugs enhances apoptosis-

mediated neuroblastoma cell death in comparison to drugs alone [109]. It would be 

of significant importance to simulate the in vitro studies in an in vivo setting. Since, 

siRNA-mediated gene silencing is not yet suitable for in vivo studies, I will be using a 

specific GRP antagonist, RC-3940-II, which has been successfully used in preclinical 

studies involving benign prostatic hyperplasia and hepatic cancer [47,110]. Also RC-

3940-II had a synergistic effect on colon cancer inhibition when used in combination 

with cytotoxic drugs [111]. This study further provides a rationale for the use of 

combination therapy involving RC-3940-II and vincristine/etoposide for preclinical 

studies in neuroblastoma. Successful completion of in vitro studies will facilitate 
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animal studies using this combination therapy using dosage of RC-3940-II as 

suggested by previous studies [47,111].  

 

GRP antagonists and chemotherapy against acquired resistance 

A number of neuroblastoma patients, who initially respond quite well to 

current therapeutic regimes, acquire resistance to conventional treatments – 

hypothesized about 15 years back as potentially due to expansion of a sub-

population of neuroblastoma cells with alterations that confer drug resistance [112]. 

Today, the presence of stem cells as “alterations” in tumors has been examined 

extensively. Our laboratory has isolated clones of neuroblastoma cells that 

demonstrated resistance to high doses of chemo- or radiation therapy. These clones 

demonstrated increased neurosphere formation under stem cell-promoting 

conditions. I will use such refractory clones to mimic the phenomenon of acquired 

drug/radiation resistance and aid in in vivo examination of the efficacy of 

combination therapy using GRP antagonist and metronomic chemotherapy. 

Completion of such studies will place us one step towards initiating clinical trials for 

neuroblastoma patients with disease relapse due to acquired resistance.  

 

GRP/GRP-R in neuroblastoma cell extravasation and formation of metastatic 

lesions 

Investigations in the area of tumor metastasis should not be limited to 

understanding the tumor alone, but also the tumor microenvironment. In the second 

part of my studies, GRP inhibition suppressed formation of secondary lesions in the 

liver without significantly altering primary tumor burden in the spleen [113]. Tumor 

cell dissemination and the final establishment of secondary lesions in distant organs 
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involves multiple aspects including survival during circulation, extravasation at 

secondary sites and establishment of colonies amidst a new microenvironment [114].  

 Targeting GRP significantly, but not completely, inhibited anchorage-

independent growth of neuroblastoma cells [113] – an assay that was used to 

determine the ability of GRP silenced cells to evade anoikis-mediated cell death and 

their capacity to form micro- or macrometastasis in the liver. But, this assay does not 

take into account the ability of GRP silenced cells to extravasate through the 

endothelial cells in the liver and the role of the hepatic microenvironment in aiding 

the formation of secondary tumors. Extending this to our in vivo observations, I 

hypothesize that extravasation of GRP silenced cells into the liver would behave as 

a rate-limiting step. Moreover, whether targeting GRP reduces the expression of 

molecules required for interacting with the hepatic microenvironment, thereby, 

preventing formation of metastatic lesions need to be investigated. Interestingly, we 

have recently demonstrated that silencing GRP-R upregulated expression of 

miRNAs that can play critical roles in inhibiting neuroblastoma progression [115]. 

Moreover, targeting GRP-R, or its downstream effector AKT2 [116], downregulated 

the mRNA expression of integrins, angiogenic factors and matrix metalloproteinases 

– key groups of molecules regulating extravasation of cancer cells and formation of 

tumor colonies in a new microenvironment. Using in vitro co-culture assays, I will test 

the ability of GRP silenced cells to attach, degrade extracellular matrix, migrate 

through and survive in the presence of hepatocytes or conditioned medium from 

hepatocytes.  

 Cancer stem cells are becoming increasingly important in the successful 

establishment of metastatic lesions. Hence, the role of metastasis-initiating cancer 

stem cells (MICs) is becoming a focal point of studies examining tumor metastasis 
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[117]. Identifying a role for GRP in MICs would be of great relevance to my study, as 

it would provide a potential explanation for reduced liver metastasis upon GRP 

silencing in neuroblastoma cells. Interestingly, GRP-R overexpression increased 

expression of stem cell marker, CD44, conversely, GRP-R silencing decreased the 

potential the neuroblastoma cells to form neurospheres under stem cell-promoting 

conditions. Using in vitro assays like neurosphere formation assay, ALDH 

fluorescence, limiting dilution assay, I will study the capacity of GRP/GRP-R in 

maintaining self-renewal of neuroblastoma cells and identify potential cancer stem 

cell markers through which GRP/GRP-R maintains stem cell-like properties of 

neuroblastoma cells. 

 

GRP/GRP-R-mediated regulation of AKT2 via TWIST in neuroblastoma 

metastasis 

In the second part of my studies, I demonstrated that GRP inhibition 

suppressed TWIST expression in both MYCN-amplified and nonamplified cell lines. 

We have also observed that GRP treatment enhanced TWIST luciferase activity in 

neuroblastoma cells. TWIST is a transcription factor involved in the transcription of 

AKT2 in breast cancer cells [118]. Interestingly, silencing GRP-R downregulated 

AKT2 expression in neuroblastoma cells [116]. Hence, a potential role for TWIST as 

a mediator of GRP/GRP-R-mediated regulation of AKT2 needs to be examined. 

Using GRP stimulation and modulation of TWIST/AKT2 expression, I will perform 

luciferase-based studies to determine the GRP-dependent regulation of AKT2 by 

TWIST in neuroblastoma cells. Moreover, using in vitro functional assays I will 

determine the specific hallmarks of cancer regulated by GRP/AKT2 and critically 

dependent on TWIST. A critical role for TWIST in epithelial-to-mesenchymal 



 68 

transition (EMT) and metastasis has been established in epithelial cancers [119]. 

Being a neuroendocrine tumor, neuroblastoma does not undergo this transition, but 

patients with advanced-stage neuroblastomas usually have metastasis to the bone, 

bone marrow and liver. Hence, it will be pertinent to identify the exact role of TWIST 

in neuroblastoma progression and precisely how GRP/TWIST induces 

neuroblastoma metastasis without EMT.  

 

PTEN/AKT signaling axis in early- versus advanced-stage neuroblastoma 

Subcutaneous and orthotopic models are confined to studying primary tumor 

growth. Using an in vivo model established in our laboratory to study liver metastasis, 

I have reported the significance of GRP in aiding the formation of metastatic lesions 

in the liver. Also, I have identified a differential expression of AKT/PTEN axis in 

primary neuroblastoma tumor and secondary liver lesions. But currently there is no 

animal model that mimics aggressiveness of this disease. Hence, using an in vivo 

selection model, I have isolated a sub-population of aggressive neuroblastoma cells 

from secondary liver lesions after two cycles of liver metastasis. This sub-population 

of cells had a higher rate of proliferation, anchorage-independent growth and 

neurosphere formation in comparison to the parental neuroblastoma cell line. 

Interestingly, this aggressive sub-population of neuroblastoma cells had a higher 

expression of pAKT and pFAK when compared to parental cells. Moreover, this 

aggressive sub-population demonstrated tumor burden in the spleen and liver 

metastasis while the parental cells had only established primary tumors in the spleen; 

providing a potential model to study early- versus advanced-stages of 

neuroblastoma. My studies do not extensively examine whether both the lipid 

phosphatase and/or the protein phosphatase function of PTEN is critical in inhibiting 
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GRP-mediated neuroblastoma progression. Hence, I will mutate PTEN in the 

lipid/protein phosphatase domains to study the role of this tumor suppressor in 

neuroblastoma progression and also use the in vivo selection model to examine how 

PTEN/AKT/FAK axis can be used for neuroblastoma prognosis and a potential novel 

tool for detecting early-stage neuroblastoma versus advanced-stage disease. 

 

Differential role of AKT isoforms in neuroblastoma initiation and progression 

Though, activation of AKT indicates poor prognosis and unfavorable outcome 

in neuroblastoma patients [60], isoform-based studies are lacking in neuroblastoma. 

A recent study from our laboratory demonstrated a role for AKT2 in neuroblastoma 

cell migration, invasion, VEGF secretion and anchorage-independent growth in vitro, 

and metastasis in vivo [116,120]. This is not surprising, as isoform-specific studies in 

cancer places AKT1 as the isoform involved in survival and proliferation of cancer cells, 

AKT2 in motility and invasion, and, AKT3 in inducing hormone-independence in cancers 

[121]. Silencing AKT1 or AKT3 had similar inhibitory effects on anchorage-independent 

growth of neuroblastoma cells in vitro, but only AKT1 and not AKT3 inhibition 

demonstrated reduced VEGF expression similar to AKT2. This leaves a scope for further 

studies examining the differential role of AKT1 and AKT2 with respect to neuroblastoma 

tumor initiation and progression as observed in adult solid tumors like breast, ovarian 

and colorectal cancer [122,123]. Moreover, AKT2 silencing, but not AKT1 or AKT3, 

inhibited MYCN expression and suppressed IGF-1 stimulated MYCN protein levels in 

neuroblastoma cells, indicating that receptor tyrosine kinases expressed on 

neuroblastoma cells might preferably use AKT2 for downstream effects, over AKT1 and 

AKT3 [116].  
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Using in vitro assays, I will determine the role of AKT1 versus AKT2 in different 

hallmarks of cancer and examine whether an isoform switch indeed occurs during the 

transition from primary tumor to metastatic disease. Immunohistochemistry-based 

detection of pAKT expression in the second part of my studies provided no significant 

difference in neuroblastoma patients with or without metastasis. Hence, isoform-based 

detection of protein expression might enable me to observe a difference in pAKT1 and 

pAKT2 levels, thus, confirming a role for a specific AKT isoform in neuroblastoma 

metastasis and a plausible AKT isoform switch during neuroblastoma progression. 

 

Concluding Remarks 

 The results reported in this study demonstrate a crucial role for GRP in 

neuroblastoma progression. Silencing GRP in conjunction with chemotherapeutic 

drugs can enhance neuroblastoma cell death. Furthermore, inhibiting GRP 

expression suppressed tumorigenic properties of neuroblastoma cells in vitro. Using 

our in vivo metastasis model, we demonstrated the critical role of GRP in 

neuroblastoma metastasis, as GRP silenced cells failed to metastasize to the liver 

inspite of forming primary tumors in the spleen. I also reported the significance of the 

PTEN/AKT axis in regulating GRP-mediated oncogenic effects in neuroblastoma and 

report a novel role for PTEN in inhibiting GRP-dependent neuroblastoma cell 

migration and angiogenesis in vitro. A more comprehensive understanding of 

GRP/PTEN/AKT axis in neuroblastoma progression will help identify crucial steps in 

the invasion-metastasis cascade that this axis regulates and allow induction of 

successful clinical trials for children with aggressive, refractory neuroblastomas. 
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