
Low-Cost, Intention-Detecting Robot to

Assist the Movement of an Impaired Upper Limb

By

Eric Young

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Mechanical Engineering

December, 2015

Nashville, Tennessee

Approved:

Nilanjan Sarkar, Ph.D.

Zachary E. Warren, Ph.D.

Thomas J. Withrow, Ph.D.

ii

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my advisor, Dr. Nilanjan Sarkar, for graciously

introducing me to the world of research and consistently making me feel welcome and capable.

From passing on his love for dynamics, to offering me opportunities to explore diverse topics

such as gesture recognition, programming, and robotics, to giving me a glimpse of teaching via

grading and holding tutorials, Dr. Sarkar helped make my undergraduate career as rewarding as

could be. His natural mix of guidance and lenience allowed me to make my projects my own,

and develop a greater appreciation for research than I ever expected. I would also like to thank

the members of my thesis committee. Dr. Zachary Warren for teaching me, by example, that

research can truly make the world a better place, and Dr. Thomas Withrow for all of the

generous insight provided via early-morning emails, and giving me my first introduction to

hands-on mechanical engineering and continuing to teach me ever since.

 I would also like to thank all of the lab members from the Robotics and Autonomous

Systems Laboratory (RASL) for their assistance and never-ceasing friendliness. Working with

this wonderful group never felt like work, and I can only hope to find myself surrounded by

people as hospitable in the future. I would particularly like to thank Jenny Zheng for kindly

guiding me through my first months in the lab and for providing constant insight since, and Josh

Wade for consistently being willing to volunteer his day to help a fellow lab member, whether it

be with a masters project or a just-for-fun online card game. I am additionally grateful for

Vanderbilt’s mechanical engineering department as a whole. Countless students took time to

assist in machining, laser-cutting, and 3D-printing with nothing but a “thank you” in return, and

countless professors made clear their willingness to put the students first. I would like to

especially thank Phil Davis for taking the time to teach an inexperienced machinist the ropes.

iii

 Finally, I would like to offer my greatest gratitude to my friends and family. To my

friends, for providing me with a perfect mix of all things nerdy and much needed breaks from all

things nerdy. To Mom, Dad, Aaron and Evan, for your constant love and support, and being the

coolest family a guy could ask for.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

Chapter

1. Introduction ...1

1.1. Background ...1

 1.2. Robotic Assistive Devices ..3

 1.2.1. Robot-aided Rehabilitation ..3

 1.3. Human Intention Detection ...7

 1.3.1. Eye-Gaze Implementation ...9

 1.4. Project Overview ..10

 1.5. Thesis Outline ...13

2. Mechanical Design..14

 2.1. Mechanical Design Overview ...14

 2.2. Design Requirements ..15

 2.3. Linear Actuation ...16

 2.3.1. Motor Selection ..18

 2.3.2. Spring Selection ...19

 2.3.3. Potentiometer Integration...20

 2.4. Rotational Actuation ...21

 2.4.1. Motor/Gearbox Selection ...21

 2.4.2. Torque Transmission ...22

 2.5. Wrist Interface Design ..24

 2.5.1. Transmitting Force ...24

 2.5.2. Recording Forces ...25

 2.5.3. Design and Validation..26

 2.6. Eye-tracker Mount ..28

 2.7. Mechanical Safety Considerations ..29

 2.8. Bill of Materials ..30

3. Electronics and Hardware Architecture ...31

 3.1. Overall Schematic ...31

 3.2. Brushed DC Motor for Linear Subsystem ..31

 3.3. Brushed DC Motor/Gearbox for Rotational Subsystem ...32

v

 3.4. RoboClaw Brushed DC Motor Controller ..33

 3.5. Arduino Uno Microcontroller ...34

 3.6. XBee Wireless Module ...35

 3.7. Potentiometer for Linear Subsystem ...36

 3.8. Potentiometer for Rotational Subsystem ..37

 3.9. Force-Sensing Resistors (FSRs) ...37

 3.10. Batteries. ...38

 3.11. Eye-Tracker...39

 3.12. Bill of Materials ..40

4. Software Architecture ..41

 4.1. Overall Schematic ...41

 4.2. Xbee to Arduino Wireless Communication ..41

 4.3. Arduino to MATLAB Communication ..42

 4.4. MATLAB to C# Application Communication ...45

 4.5. Eye-Tracker to C# Application Communication ..46

5. Controller Design ...47

 5.1. Overall Controller Structure ...47

 5.2. Force-Based Control ...48

 5.2.1. Desired Characteristics ..49

 5.2.2. Force-Feedback Structure ..49

 5.3. Position-Based Control ...52

 5.3.1. Desired Characteristics ..53

 5.3.2. Position-Feedback Structure ..53

 5.3.3. Eye-Tracker to Position Calibration ..55

 5.3.4. Potentiometer to Position Calibration ..58

 5.4. Conversion of Sub-controller Outputs to Arduino Pulse Outputs60

 5.4.1. Desired Velocity to Pulse-Width Calibration ..60

 5.5. Control-based Safety Considerations ..68

6. System Evaluation ...69

 6.1. System Mechanical Responses ...69

 6.1.1. Step Response ..70

 6.1.2. Ramp Response ..74

 6.1.3. Frequency Response ..79

 6.2. System Response to Force Inputs ...82

 6.3. Eye-Tracker Evaluation ..84

 6.4. System Response to Combined Force and Eye-Tracker Inputs86

 6.5. System Cost ..89

7. Contributions and Future Work ...90

vi

 7.1. Future Work ..91

 7.1.1. Mechanical Development ..91

 7.1.2. Electronic/Software Development ...92

 7.1.3. Experimentation with Intention-Detection ..94

Appendix

A. Arduino Code ..95

B. MATLAB Code...98

REFERENCES ..123

vii

LIST OF TABLES

Table Page

2-1. Bill of Materials for Mechanical Components ...30

3-1. XBee Specifications ...35

3-2. Bill of Materials for Electronic Components ...40

6-1. Average Errors for System under Normal Operation ..87

6-2. Cost of Components for Entire System ...88

viii

LIST OF FIGURES

Figure Page

1-1. Conceptual Model of Entire System ..11

2-1. Front View of Entire System ...14

2-2. Top View of Entire System..15

2-3. Spring-Holder Design ..17

2-4. Above and Front Views of Linear Subsystem ...18

2-5. Force vs. Length of Constant Force Spring ...19

2-6. Linear Potentiometer Setup..20

2-7. Design of Rotational Motor Torque Transmission ..22

2-8. Complete Design of Wrist-Interface ..25

2-9. Schematic for FSR Circuitry ..25

2-10. FSR Holder Design and ANSYS Stress Evaluation ..27

2-11. Design of the Eye-Tracker Mount ...28

2-12. Wrist-Interface shown Connected and Disconnected from Carriage Plate29

3-1. Schematic of Electronic Components for Entire System ...31

3-2. MY1016 DC Motor Used for Linear Actuation ..32

3-3. FIRST CIM Motor and P80 Gearbox Used for Rotational Actuation32

3-4. RoboClaw Motor Controller ..33

3-5. Arduino Uno Microcontroller ..34

3-6. XBee S2 Module ..35

3-7. Potentiometer Used for Measurement along Linear Subsystem ..36

3-8. Potentiometer Used for Measurement of Rotational Subsystem37

ix

3-9. Short-tailed Force-Sensing Resistor ..38

3-10. CSB HR1290W High Capacity Lead Acid battery ..38

3-11. Tobii EyeX Eye-Tracker ..39

4-1. Schematic of Software Layout for Entire System..41

4-2. Times for Requesting Arduino ADC Data Values using an Arduino Library43

4-3. Times for Requesting Arduino ADC Data Values using Custom Methods44

5-1. Schematic of the System Controller ..48

5-2. Schematic Depicting the Process of Choosing which Sub-controller to Implement50

5-3. Schematic of the Force-Based Controller ..50

5-4. Schematic of the Position-Based Controller ..52

5-5. Eye-Tracker Setup Dimensions ...56

5-6. Eye-tracker Position Outputs for 50 Consecutive Fixations between Two Locations57

5-7. True Eye-Gaze Position and Eye-Gaze Position Detected by the Eye-Tracker for an Array

of 30 Eye-Gaze Locations ..57

5-8. True Distance vs. Potentiometer Analog Voltage Reading for the Linear and Rotational

Potentiometers..59

5-9. Velocity vs. analogReference for RoboClaw set to Linear and Exponential Modes61

5-10. Velocity vs. Time Response of Linear System when Driven with

 analogReference Value of 209 ...62

5-11. AnalogReference vs. Final Velocity of the Linear System..63

5-12. AnalogReference vs. Final Velocity of the Rotational System ...64

5-13. Response of Rotational System when Driven with analogReference value of 20965

5-14. Response of Rotational System when Driven with analogReference value of 209 with

 Line of Best Fit ..66

6-1. Position vs. Time Responses of the Linear System to Step Inputs in X-Direction70

x

6-2. Velocity vs. Time Responses of Linear System to Step Inputs in X-Direction71

6-3. Position vs. Time Responses of System to Step Inputs in Y-Direction71

6-4. Velocity vs. Time Response of System to Step Inputs in Y-Direction72

6-5. Position vs. Time Responses of System to Step Inputs in Both Directions73

6-6. Velocity vs. Time Response of System to Step Inputs in Both Directions........................73

6-7. Trajectory of End-effector During Response to Step Input in Both Directions74

6-8. Position and Velocity Responses of System to Ramp Input of

 200mm/s in X-Direction ..75

6-9. Position and Velocity Responses of System to Ramp Input of

 1000mm/s in X-Direction ..76

6-10. Position and Velocity Responses of System to Ramp Input of

 200mm/s in Y-Direction ..77

6-11. Position and Velocity Responses of System to Ramp Input of

 1000mm/s in Y-Direction ..77

6-12. Position and Velocity Responses of System to Ramp Input of

 200mm/s in Both Directions ..78

6-13. Position and Velocity Responses of System to Ramp Input of

 1000mm/s in Both Directions ..78

6-14. Trajectory of End-effector During Response to Ramp Input in Both Directions

 at 200 mm/s and 1000 mm/s ..79

6-15. Position and Velocity Responses of System to Sinusoidal Input of

 0.2 Hz in X-Direction ..80

6-16. Position and Velocity Responses of System to Sinusoidal Input of

 1 Hz in X-Direction ...80

6-17. Bode Plots of System Responses to Sinusoidal Inputs in X-Direction, Y-Direction,

 and Both Directions ...81

6-18. Trajectory of End-Effector with System in Force mode ..82

6-19. Extracted Begin and End Points for Example Motion During Force-Based Evaluation ...83

xi

6-20. Eye-Tracker Position, the Desired Position output by the Controller, and the Measured

End-Effector Position during an Eye-Gaze Controlled Trial ...85

6-21. Key Data Points Extracted from an Eye-Gaze Controlled Trial ..86

1

CHAPTER 1

INTRODUCTION

1.1. Background

 Despite advances in methods of prevention and rehabilitation associated with disability-

causing conditions, a large portion of the world’s population continues to live with some degree

of upper limb physical impairment. Stroke is the leading cause of such long-term disability in

developed and developing countries, and the prevalence of stroke is increasing due to the aging

of worldwide populations [1,2]. Approximately 795,000 persons in the United States suffer a

new or recurrent stroke each year, and the combined direct and indirect costs of stroke exceed

$34 billion annually [3]. With stroke having such a clear negative impact on individuals and

society as a whole, many studies over the past few decades have been dedicated to determining

better methods of alleviating the social, economic and physical burdens of stroke.

 Recently, increased attention has been given to stroke rehabilitation, particularly robot-

assisted rehabilitation, in hopes of easing the difficulties associated with post-stroke life.

Specific examples of robotic systems will be given in the following section, but in general robot-

assisted rehabilitation shows enormous promise in the field of rehabilitation due to its potential

cost-effectiveness, adaptability, and mobility. Yet despite improving technology and continued

development of effective robotic rehabilitative devices, vast numbers of stroke survivors

continue to live with physical impairments. Among those who recover from stroke, only 10%

recover completely, and many of the remaining survivors need rehabilitation due to continued

impairments [4]. Approximately 50% of stroke survivors experience chronic hemiparesis (or

weakness of one side of the body) and 26% become dependent in activities of daily living

2

(ADLs) [5]. These numbers depict a global population still in need of alternative forms of stroke

relief.

 Life-long physical impairment is not limited to stroke patients. Spinal cord injuries are

another common cause of long-term disability. Approximately two million people worldwide

live with a spinal-cord injury (SPI), nearly 250,000 of whom live in the United States [6].

Among them, 36.7% sustain paraplegia (impairment of lower limbs) and 52.2% sustain

tetraplegia (impairment of all limbs and torso) [7]. Due, in part, to the physical barriers to basic

mobility experienced by those with SPIs, the global unemployment rate of adults with spinal

cord injury is over 60% [8]. Research studies show a rehabilitative environment that is

continuously evolving and improving, but the numbers show a large population still experiencing

a significantly reduced standard of living due to some form of physical impairment.

 While pursuing better rehabilitation methods is a crucial endeavor, it is also important to

acknowledge that many people need an alternative form of assistance for physical impairments,

both while undergoing rehabilitation and in the unfortunate but common scenario of

rehabilitation providing insufficient improvements. The aim of this thesis is to present a low-

cost robotic assistive device which may serve as a complement to rehabilitation procedures. The

proposed system determines the intended movement of a user’s upper arm and assists said

movement. In this manner, the system may provide immediate relief for someone suffering from

physical impairments in their upper limbs, either as a complement to ongoing rehabilitation

therapy or as a partial solution in the case of insufficient improvements from rehabilitation.

3

1.2. Robotic Assistive Devices

 As robotic technology has advanced, robotic systems have been sought out to assist in

nearly all aspects of human life. Many studies have shown the potential of robotic systems to

effectively complement conventional rehabilitation therapy [9,10,11,12,13], encouraging rapid

growth in robotic rehabilitation in recent years. The projects discussed here all aim to assist the

rehabilitation of those with impaired movements of upper limbs. While non-rehabilitative robotic

assistance (the purpose of this thesis) and robotic rehabilitation have different objectives, both

share a common necessity to assist the movement of an impaired limb to a specific location.

1.2.1. Robot-aided Rehabilitation

 The adaption of robotic systems to rehabilitative environments has evolved rather quickly

in recent years. In the early 1990s, Hogan et al. developed the MIT-MANUS, a two degrees-of-

freedom (DOF) robot designed to move a patient’s upper limb within a two-dimensional plane

[14]. This system consisted of a two-link serial robot responsible for the unrestricted movement

in the horizontal plane, and a splint attached to both the robot and the patient, which allowed the

motion of the robot’s end effector to be translated to the user’s forearm. When used by patients

with post-stroke hemiparesis, the MIT-MANUS was shown to produce benefits in the recovery

stage which were sustained over three years after hospital discharge [15,16]. The MIT-MANUS

helped lay a foundation for rehabilitative robotics, and has since become one of the most well-

known and widely used robot for arm rehabilitation. The ARM (Assisted Rehabilitation and

Measurement) Guide, developed by Reinkensmeyer et al, was soon developed to allow for

motion in a three-dimensional space, although three of the four degrees-of-freedom were

manually controlled [17]. The device primarily assisted “reaching” motions, and included a

4

motor-driven linear track and manually adjustable yaw, pitch and height. Lum et al. presented a

rehabilitation robot with an even greater workspace in the Mirror-Image Motion Enabler

(MIME) [18]. MIME, which incorporated a Puma robot, used the motion of a patient’s

unaffected arm to assist the motion of the affected arm. The system included 6 degree-of-

freedom load cells and was capable of 6 degree-of-freedom motion, meaning both the orientation

and position of the user’s forearm could be controlled. Once rehabilitation robots were able to

manipulate all 6 degrees-of-freedom of a user’s forearm, many systems were developed in hopes

of finding more powerful, cost-effective and space-effective designs. The WREX family of

robots, including WREX, T-WREX and Pneu-WREX, all continued the serial link based robotic

design, with each progression providing a slightly new take on design features [19]. T-WREX

focused on the use of counterbalancing to reduce the force needed by the robot, and thus the cost

and size [20]. Pneu-WREX added pneumatic actuators to the passive counterbalancing design,

which allowed significant forces to be applied to the patient [21].

 To further reduce the cost and size of rehabilitation robotics, wire-based designs began to

emerge. Cable-driven systems used relatively light-weight cables instead of rigid links to

transmit desired motion to a user’s limb, and became well known for their low mass and large

workspace [22,23,24]. Various wire-based robots were developed, including an upper limb

motion robot by Takahashi et al [25], a 7 degree-of-freedom virtual interface named SPIDAR-G

[26], and GENTLE/s, which included both cable-based actuation and rigid robotic links [27].

The NeReBot, later adapted to the MariBot, consisted of a rigid-link robotic system which

moved in a horizontal plane above the user and acted as a foundation from which cables could be

dropped and driven to move a splint located below [28]. Initial trials of the NeReBot yielded

promising results, with patients demonstrating significant improvement after 25 sessions with

5

robot-led training compared to patients in the control group [29]. The group is continuing to

develop the system with a progression named MariBot. Only two of MariBot’s five degrees-of-

freedom are in the rigid robotic arm, allowing the arm to be low-inertia and relatively low-cost

[30]. The use of cables also produces a more visually clean workspace, which is important in

promoting the use of rehabilitation robotics outside research laboratories. In the past decade,

systems based entirely on cables have been developed, allowing for extremely low inertias and

large workspaces. The Multi-Axis Cartesian-based Arm Rehabilitation Machine (MACARM)

features an array of eight motors mounted at the corners of a stationary cubic workspace, each of

which drives a cable attached to a centrally located end-effector [31]. The MACARM

eliminated all rigid body motion, except that of the central end-effector, significantly reducing

the inertia of the system.

 Researchers have also begun to combine the designs of serial robotic devices and cable-

driven robotic devices to form exoskeleton devices. These devices typically attach each segment

of the user’s limb to a similarly structured robotic segment, which allows the device to more

accurately control each individual component of the user’s arm movement. Early exoskeleton

robotic devices include Armin [32], BONES [33], Rupert [34], and Dampace [35]. Later

exoskeletons such as CADEN-7 [36] and MEDARM [37] attempted to reduce the moment of

inertia by using wires to transmit torque from stationary motors to the joints of the exoskeleton.

Yang et al. combined the ideas behind serial link based and cable based robotics with the

introduction of a seven degrees-of-freedom cable-driven exoskeleton for the arm [38]. This

design was later adapted to a four degrees-of-freedom cable-driven exoskeleton with a more

robust control architecture at the University of Delaware [39], and eventually to CAREX [40].

Such a design maintained the desirable low inertia of cable-driven systems by allowing the

6

motors to be mounted away from movement, while avoiding the large amounts of free space

needed for non-exoskeleton cable-driven devices such as the MACARM.

 Clearly, progress in the field of robotic rehabilitation for upper limbs has been swift and

is likely to continue its rapid evolution. However, none of the systems described attempt to

bridge the gap between robotic rehabilitation and robotic assistance in the outside world. The

solutions to rehabilitation and assistance have many overlaps, such as control methods, forms of

human-robot interface, a preference for low inertia, etc. However, each of the designs presented

so far has limitations in its ability to be adapted to real-world assistive robotic systems. To

begin, for an assistive robot to reach its full potential, it must assist the user in the widest

possible range of motion while occupying the smallest workspace. Many of the rehabilitative

robots described are used in research settings, where obstacles can be displaced or removed. The

ultimate goal of assistive robotics is to help the user in whatever setting the user needs

assistance, which often may not be as controllable as a laboratory setting. Serial link based

robots, such as MIT-MANUS, ARM Guide, and MIME are all fairly bulky, which would be

undesirable in a work or home setting. Cable-driven robots such as MACARM require cables to

extend from the end-effector in all directions, which would render a large fraction of any

environment unusable. CAREX appears to be a reasonable solution, but still requires substantial

setup and would be difficult to quickly attach and detach if so desired. In addition to workspace

limitations, current rehabilitative robotic systems have no method of recording human intention.

For rehabilitation, the robot is conventionally driven along a pre-planned repetitive motion.

Many systems include user input, such as force sensors and control effort detection, but all use

such input to alter desired motion, not to define it.

7

1.3. Human Intention Detection

 An effective assistive robotic device requires the addition of human intention detection.

As robots have become more commonplace in industry and academia, greater emphasis has been

placed on finding seamless methods of communication between humans and robots. Many

robots have been designed to monitor a human for a wide array of cues, from which human

intention can then be interpreted. As described by Kulić and Croft, two categories currently exist

for robot-human monitoring systems. One category is mechanical-based, where the system

measures forces and displacements during physical contact between user and robot, and the other

is communication-based. Communication-based systems can be further divided into monitoring

visual cues, such as eye-gaze, head position, facial expression or gestures, and monitoring

physiological cues, such as heart rate, skin conductance and brain activity [41].

 One example of mechanical-based monitoring is the Extender technology developed by

Kazerooni et al. This system senses and amplifies the force applied by a human in order to assist

in the manipulation of a heavy object [43-46]. Other systems require a joint effort between

human and robot by having a user guide an object that is carried by a robot, thus reducing its

inertia [47,48]. In an attempt to reduce the need for force sensors, some researchers have

explored techniques to detect input forces by observing changes in the actuation effort rather

than using force sensors directly [49-51]. A system developed by Erden and Tomiyama expands

upon this technique. The control scheme of this system estimates the intention of the human by

observing the change in control effort [42]. Thus the user applies a force to the robot, the robot

recognizes the force and calculates the user’s intended motion, and then the robot assists the user

in said motion. While these systems have given promising results, they both rely on the ability

of the user to give an initial input. In the realm of assistance for mobility impairments, the user

8

may not always be capable of providing the initial force input. Thus, while mechanical

monitoring may be beneficial for giving the human increased control, alternative monitoring

mechanisms are also needed.

 The field of communication-based monitoring is much larger. One proposed method is

the monitoring of physiological signals. While physiological signals tend to be more difficult to

interpret, studies have shown this can be overcome with careful classification and evaluation.

Sarkar has proposed using multiple physiological signals to examine the user’s emotional state,

which can then be used to modify the robot to make the user more comfortable [52]. Picard et al.

uses physiological signals as well, although to interact with a computer-interface rather than a

robotic system [53]. Other projects draw inspiration from human-to-human communication.

Communication-based monitoring is important during interperson interaction, where non-verbal

cues such as eye-gaze direction, facial expression and gestures are all used as modes of

communication [54]. Nehaniv et al. classified types of gestures into 5 main classes as a primer

for inferring intent from gestures in human-robot interaction [55]. Researchers have proposed

using gesture recognition to record and repeat the virtual drawing of letters [58], guide a wheeled

robot to specific locations [59,60], and even control and program a robotic vacuum [61]. Ho et

al. used two integrated sub-processes to isolate human intended actions from ordinary walking

behavior, which could then be used as control inputs for a robotic system [56]. Song et al. took a

slightly different approach, and proposed a controller for a wheelchair-based robotic arm based

on the user’s mouth gestures [57]. The use of speech recognition has been implemented in a

wide array of systems, from everyday cellphone use to setting the affective state of a robot [62].

 In terms of driving an assistive robot to a desired location, the goal is to allow the user to

set the location without physical movement via communication monitoring. Although gesture

9

recognition and physiological data may prove beneficial to such systems, eye-gaze can be used

to allow the user to set the location in a much more natural manner. Eye-gaze is particularly

attractive, as it has potential to be observable without direct contact and is not physically

demanding.

1.3.1. Eye-Gaze Implementation

 Even within the field of eye-gaze tracking there are many different approaches to

gathering the most accurate data in the most seamless manner. Kaufman et al. describes the

electro-oculogram (EOG) method, where electrodes are placed around the eye and small

differences in skin potential are measured [63]. These small differences correspond to the eye

position, allowing eye-gaze to be calculated. Chen and Newman discuss the design and

implementation of an electrooculography-based gaze-controlled robotic system. The group

concluded that using electrooculography to determine user intention has advantages such as high

accuracy, but requires physical contact (for the electrodes), and a relatively significant setup

[64].

 In their review of eye-tracking technology, Morimoto and Mimica discusses the appeal of

remote eye gaze trackers (REGTs), noting REGTs offer comfort of use and an easier and faster

setup [65]. However, only recently has remote eye-tracking technology been accurate enough

and cheap enough to incorporate into low-cost robotic systems. In 2000, Schnipke and Todd

found that existing commercial REGTs eye-tracking were not ready to be employed in usability

laboratories. The pair found that even an eye-tracker operator with one year of experience was

only able to make an REGT successfully track 6 out of 16 participants [66]. Since then, studies

have steadily improved upon existing techniques, making eye-trackers more forgiving of

10

different head poses and thus more accurate. Nguyen et al. explored the infrared bright pupil

response of human eyes to help give possible explanations for variation between subjects [67].

Variations of infrared eye-tracking include placing IR light emitting diodes and IR photo-

transistors above and below the eye [68], generating bright and dark pupil images by using IR

sources with different wavelengths [69] or using IR sources in different locations [70].

Morimoto et al. proposed a method of using a single camera and at least two near infra-red light

sources to first detect the position of the human’s eyes, then use the position to better estimate

the eye-gaze [71]. Yoo et al. proposed using five infra-red lights and a single camera to compute

the user’s eye-gaze without a need for computing the geometrical relationship between the user,

computer and camera [72]. Due to simplicity and reasonable accuracy, many REGTs today are

based on the infra-red (or near infra-red) corneal reflection technique [73-78].

 Remote eye-tracking has grown tremendously in recent years and now even

commercially available products, such as the Tobii Eye X which will be discussed later, give

high accuracy at a low cost. Equipping an assistive robotic device with a remote eye-tracking

has potential to effectively give the system a means of monitoring a human’s eye-gaze and thus

detecting human intention.

1.4. Project Overview

 The system proposed in this thesis combines desirable elements from rehabilitative

robotics and human intention detection via eye-tracking. From the beginning, the device was

hoped to be used in common everyday settings, such as a workplace or home. For this initial

version, the designated target environment was a desktop, similar to what one would find in an

office. Thus the mechanical design had to occupy a small workspace, attach to and detach from

11

the user effortlessly, and use low-cost methods wherever possible. Of the rehabilitative robots

presented before, this most closely matches the NeReBot and MariBot, which house all rigid

robotic components in a region of space otherwise unused by the human.

 The proposed system can be subdivided into a subsystem responsible for linear motion

and a subsystem responsible for rotational motion. The actuators for both subsystems are housed

at one end of the device, creating a low moment of inertia and allowing the system to drive the

end-effector to all parts of a large workspace while requiring little space to be left unoccupied for

the device itself to move within. Currently the linear subsystem rests on the tabletop, which

would ultimately render much of the desktop useless. Ideally, this prototype will be adapted to

attach to a support above the user and assist the human’s movements from above, allowing the

desk fully cluttered without hindering the use of the robotic assistive device. The device collects

input from the human via force sensors in the wrist-interface and a Tobii Eye X eye-tracker

which follows the user’s gaze. The control scheme gives priority to force inputs, as the human

should be allowed to move to any desired location if capable, and then accepts eye-gaze data as a

secondary input should the user not be able to provide large enough forces to drive the system.

Figure 1-1: Conceptual Model of Entire System

12

 Along with providing the desired assistive motion, a secondary goal of this project was to

explore the use of low-cost technology, so to make the system as impactful as possible. One way

this was done was by using a passive spring to induce linear motion in one direction. This will

be further explained in Chapter 2, but the use of a passive element to create motion reduces the

inertia of the system as well as its cost. In addition, common, low-cost electronics were used

wherever applicable. The wrist-interface acting as the end effector of the system houses four

force-sensing resistors (FSRs), which are capable of collecting forces in all directions at a

fraction of the cost of traditional load cells. Potentiometers were used to measure the position of

the end effector with sufficient accuracy, eliminating the need for expensive encoders. Arduino

was used for acquiring data from the FSRs and potentiometers, and for sending control signals to

the motor controller. As mentioned before, eye-tracking technology has advanced significantly

in the past decade, and current commercial remote eye-gaze trackers (REGTs) are both cost-

effective and sufficiently accurate, as will be shown in Chapter 6 under eye-tracker validation.

The system combines low-cost with higher-quality components (such as the motor controller and

rotational motor/gearbox combination) in a manner that allows the user to seamlessly interact

with all of them.

 Of course, the robotic assistive device presented could be used for rehabilitation if so

desired, similar to many of the robots presented before. However, it can also be used as an

immediate helping hand for the physically impaired due to the addition of human intention

detection via an eye-tracker. Preliminary testing shows the device is able to accurately detect a

desired location input from the user, and drive the end effector to the designated position with or

without a load.

13

1.5. Thesis Outline

 This thesis aims to describe the design, control scheme, and preliminary performance

evaluations for a low-cost, human intention detecting assistive robot for those with upper-limb

physical impairments. The subsequent chapters are organized as follows. Chapter 2 describes

the mechanical design and construction of the entire system, from the linear one degree-of-

freedom subsystem, to the rotational subsystem, to the wrist interface. Chapter 3 discusses the

electronic and hardware architecture of the system. Chapter 4 presents the software architecture

and the methods of communication between Arduino, MATLAB, and a C# application. Chapter

5 gives a detailed explanation of the code present in all portions of the software, thus showing

the overall control scheme for the system. Chapter 6 presents preliminary experimental results

validating the potential of the system. Chapter 7 concludes this thesis.

14

Figure 2-1: Front View of Entire System

CHAPTER 2

MECHANICAL DESIGN

 This chapter discusses the mechanical design and construction of the system. The linear

and rotational portions of the design will be discussed separately in this section, as the

mechanical design of each is independent of the other. An overview of the entire system will be

presented, followed by the initial design requirements, and then the linear and rotational portions

will each be discussed.

2.1. Mechanical Design Overview

 The overall design of the system consists of two mechanically independent subsystems:

one controlling linear motion and one controlling rotational motion. The linear subsystem allows

controllable linear motion of over 0.6 meters, which will be discussed in detail later. The entire

linear subsystem rotates about a vertical axis located just outside, but collinear with, the region

of allowed linear movement. In this way, the workspace is expanded to an annular wedge.

Contrary to systems which consist of multiple linkages, this design allows both motors and

nearly all electronics to be located in one central location, which keeps the workspace free of

clutter and reduces the inertia of the system. The pictures below show the CAD model of the

entire system.

15

Figure 2-2: Top View of Entire System

 The above picture shows a birds-eye view of the system. The linear portion of the system

rotates about the fixed rotational portion of the system, which is housed in the framing seen at

the left of the picture. The red dot indicates the axis about which the linear subsystem rotates,

and the green annulus depicts the resulting workspace of the device.

2.2. Design Requirements

 Before any design or development could begin, it was first necessary to determine the

mechanical objectives of the system. Of primary concern was the desired force and speed

capabilities. Since the goal of the system was to drive a participant’s impaired arm to a desired

location, the system needed to be able to approximate natural human movement. For a first

design, the desired maximum velocity of the end-effector was set at 1 m/s. While faster natural

X

Y

Axis of Rotation

Usable Workspace

16

arm movement is possible, a speed of one meter per second allows the end-effector to transverse

a desktop in a short time without the concern of moving so quickly the user becomes

uncomfortable. It was also desired that the system be able to drive the end-effector to its

maximum speed quickly, or within half of a second, giving the end-effector a desired maximum

acceleration of 2 m/s2. In his study of various segments of the human body, Clauser et al. show

that the mass of a typical arm is under 5 kg [79]. In fact, all arms examined in the study were

below this mass, showing it is a safe upper limit on arm mass. With a desired acceleration of 2

m/s2 and an estimated mass of 5 kg, the system should be able to apply 10 N (roughly 2.5 lbs) of

force in all directions. To ensure the system is able to meet and exceed the requirements

presented, both the linear and rotational subsystem were designed to reach velocities of 1 m/s

and accelerations of 2 m/s2, and provide 20 N of force to the end-effector.

2.3. Linear Actuation

 The linear portion of the design centers on the use of an active motor and a passive

constant-force spring to control linear motion. The spring provides a constant force away from

the motor, meaning a force from the motor smaller than the force of the spring will result in a net

force away from the motor, while a force from the motor greater than the force of the spring will

result in a new force toward the motor. In this way, a single motor is able to apply a force in

either direction, while only being attached at one end. The use of a passive spring simplifies the

system, reduces mass and cost, and eliminates the issues of having two motors pulling against

each other.

 The constant-force spring is a flat strip of metal wound into a cylinder, and changes

length by rotating about its central axis. A holder for the spring was made using ¼’’ acrylic and

17

a laser-cutter, and houses a shoulder bolt around which the spring rotates. Since the spring’s

inner diameter is fairly large, a low-friction UHMW polyethylene rod is used as the contact

between the spring and the shoulder bolt. The outer diameter of the rod is 1’’, which is slightly

larger than the spring’s natural inner diameter, and causes the spring to be held tightly in place

with respect to the polyethylene rod. The rod was drilled to allow it to rotate about the shoulder

bolt, and its slippery surface reduces the friction associated with the spring’s movement.

 A low-friction carriage and rail combination is used to reduce frictional losses while

maintaining sufficient rigidity. The rail runs from the spring to the motor and rests on structural

framing for additional support. The carriage houses the wrist interface, which includes a 3D-

printed mount for the wrist brace, a set of four force-sensing resistors (FSRs), and an XBee

module for wireless data transmission. The design of the wrist interface will be discussed in

section 3.5.

 A potentiometer is used to determine the position of the carriage along the rail. The

potentiometer is located on the rail near the motor, in order to keep wiring in a central location

Figure 2-3: Spring-Holder Design

18

and allow the greatest range of measureable movement. The picture below shows the setup of

the entire linear portion of the system.

2.3.1. Motor Selection

 The primary concern for motor selection was meeting the design requirements laid out

earlier in the chapter. The linear motor needed to be able to apply at least 20 N (~5 lbs) of force

to the end-effector and drive the carriage at up to 1 m/s. Since the system was to be built at a

low cost, the goal was to find a DC motor which met these requirements, as DC motors and their

controllers are typically less expensive than their AC counterparts. The motor found to perform

the actuation for the linear subsystem is a MY1016 brushed DC motor from Unite Motor Co.

This 24V 250W motor has a rated torque of 0.9 N-m and a rated speed of 2750 rpm. A 3D-

printed spool with a diameter of 14.2 mm was attached to the shaft of the motor, which allows

the motor to provide over 50 N (~11 lbs) of linear force and drive the end-effector at up to 2

meters per second. Even if driven with a 12 V battery, as ended up being the case, the maximum

velocity is just over 1 meter per second.

Motor
Carriage Spring

Potentiometer

Figure 2-4: Above (Top) and Front (Below) Views of Linear Subsystem

19

2.3.2. Spring Selection

 The spring chosen for the system also had to meet the requirements laid out earlier in the

chapter. Since the spring would be a passive element, the speed requirement does not apply, but

the spring still needed to be able to apply 20 N at all times and all locations. In order to ensure

this force existed at all locations along the rail, a constant-force spring was used, which applies

the same force regardless of position, unlike a traditional spring. A constant-force spring rated to

provide 5 lbs (~22.24 N) of force at all lengths was selected. Once the spring was ordered, its

characteristics were tested to verify its ability to apply a constant force. Due to friction in the

spring-holding device, the spring would remain stationary at a range of lengths for any applied

force. For the sake of evaluation, a relationship was found between the applied force and the

average spring length at which the spring would remain stationary under the applied force. The

graph below shows the results.

Figure 2-5: Force vs. Length of Constant Force Spring

21

21.5

22

22.5

23

23.5

24

24.5

25

0 100 200 300 400 500 600

Fo
rc

e
(N

ew
to

n
s)

Spring Length (mm)

Force Applied by Constant-Force
Spring

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

Fo
rc

e
(N

ew
to

n
s)

Spring Length (mm)

Force Applied by Constant-Force
Spring

20

 As shown in the graph, while not perfectly constant, the constant-force spring provides a

force of nearly 22 N at all lengths. The resting length of the spring was 80 mm and the spring

stayed at this length until over 22 Newtons was applied. The maximum force applied by the

spring was at its maximum used length of 900 mm, with a force of 25 Newtons.

2.3.3. Potentiometer Integration

 The only sensor needed for the linear portion of the system was a potentiometer to

determine the current position of the carriage along the rail. A kit was bought from AndyMark

[84] that uses a cheap design to attach a string and a spring to potentiometer, which ensures the

string will always be taught and accurately give the position of the carriage. A diagram of the

potentiometer is shown below.

 Part B in the diagram is attached to potentiometer and free to rotate within the case

created by parts A and C. The 1-meter string is wound around the labeled groove, with one end

tied to Part B and the other end exiting the case and left free to connect to the carriage. One end

of the spring coil is attached to Part C and the other end is attached to the rotating Part B,

allowing the spring to apply a small force on the string at all times and keep the string taught.

A B C

Figure 2-6: Linear Potentiometer Setup

21

All system dynamics were calibrated and tested with the potentiometer in place, eliminating the

need to worry about the force applied by the spring on the carriage.

2.4. Rotational Actuation

 The rotational portion of the system consists of a motor and gearbox combination, a

potentiometer to measure angular position, and a means of transmitting torque from the motor to

the linear subsystem. The motor and gearbox are aligned vertically and are attached to an

aluminum plate on a fixed housing. The housing acts as a central location for electrical

components, as well as a sturdy, fixed structure capable of providing the reaction forces

necessary to keep the motor in place. The shaft of the gearbox is supported by a bronze bearing

and transmits torque via a key to a keyed bushing which is rigidly attached to the linear

subsystem. The end of the gearbox shaft is suspended above the table, allowing a potentiometer

to sit beneath and collinear with the axis of rotation. A simple 3D-printed connector rests

between the motor shaft and the potentiometer and keeps the two aligned. Four ball transfers

were attached to the bottom of the linear subsystem to allow low-resistance rotation.

2.4.1. Motor/Gearbox Selection

 Following the derivation laid out previously in the chapter, the rotational motor needed to

be able to apply at least 20 N of force to the end-effector and drive the carriage at up to 1 m/s.

However, the angular velocity needed to drive the end-effector at a linear velocity of 1 m/s

depends on the distance between the end-effector and the axis of rotation. If the end-effector is

only 10 mm from the motor shaft, the angular velocity would need to be 100 rad/s, which would

result in the far end of the meter-long rail travelling at an unreasonable speed of 100 m/s. If the

22

end-effector’s minimum distance from the motor shaft is set to be 300 mm, the angular velocity

needed can be reduced to 3.33 rad/s. With regards to torque, the greatest requirements on the

motor will be needed to apply 20 N to the end-effector when it is the maximum allowed distance

from the axis of rotation, or 1 meter. The torque needed by the motor is 20 N-m.

 The selected motor is a BaneBots FIRST CIM 12V DC motor, with a maximum torque of

up to 2.4 N-m and maximum angular velocity of over 5000 rpm, or 520 rad/s. The motor is used

with a 64:1 P80 planetary gearbox, which brings the maximum torque to 115 N-m (due to limits

on the gearbox) and a maximum angular velocity of just over 8 rad/s. These specifications meet

the presented requirements even with an efficiency as low as 50%.

2.4.2. Torque Transmission

 The output shaft of the gearbox is connected to the linear sub-system via a key and keyed

bushing. The picture below shows the connection.

Figure 2-7: Design of Rotational Motor Torque Transmission

Gearbox

Bearing

Gearbox

Keyed Bushing

Shaft/Potentiometer

Connection

Potentiomet

er

Potentiometer

Holder

23

 The gearbox shaft drives the keyed bushing via a 1/8’’ steel key. The bushing is rigidly

attached to a 1/4’’ thick piece of aluminum, which is in turn rigidly attached to the linear

subsystem. The rotational potentiometer housing is shown below the motor, as well as the 3D-

printed connection between the gearbox shaft and the potentiometer.

 The most likely point of failure during torque transmission is either the key or the

connection between the bushing and the aluminum plate. The factor of safety calculation for the

key, along with an accompanying diagram, is shown below, following the guidelines of

Beardmore [80].

σ =
T ∗ Ks

x ∗ L ∗ r
 [1]

where T is the applied torque, Ks is a factor explained more thoroughly by Beardmore, x is key

depth, L is key length, and r is shaft radius. Using the equation above, the maximum stress is

calculated to be 139 MPa. Since the strength of the key is given as 63800 psi, or approximately

440 MPa, the factor of safety for the key is over 3.

 To check the safety of the connection between the bushing and the aluminum plate, both

the screws and the aluminum plate must be checked. The three cap screws are located 20 mm

from the bore center, with each having a diameter of 4.826 mm and a strength of over 300 MPa.

The maximum expected stress is given by:

σ =
22N ∗ m

0.02m
∗

1

3 ∗ π ∗ 0.002413m2
= 20 MPa

 The 6061 Aluminum plate has a strength of over 100 MPa and a thickness of 1/4’’. The

maximum expected stress in the aluminum is given by:

σ =
22N ∗ m

0.02m
∗

1

3 ∗ 0.00635m ∗ 0.004826m
= 11.9 MPa

24

 Both of these calculations yield safety factors of over 10, showing the connections

suggested are viable means of transmitting the torque required by the system.

2.5. Wrist Interface Design

 The interface between the user’s wrist and the system is responsible both for transmitting

the system’s generated forces to the user and for recording the resulting forces between the user

and the system. The wrist interface design was responsible for meeting the requirements

associated with both of these responsibilities, including comfort, sufficient rigidity, and low

force-loss during force transmission.

2.5.1. Transmitting Force

 With regards to transmitting the system’s generated forces to the user’s wrist, the primary

objective was achieving a desirable combination of rigidity and comfort. If the interface were

too flexible, the force applied to the user would be reduced and additional dynamics would exist

in the system in the form of the flexible interface’s motion. However, if the interface were too

rigid, it would likely be uncomfortable, or even painful, for the user. A happy medium was

found by combining a rigid platform with a flexible wrist brace, giving a rigid location from

which system dynamics can be calculated, while allowing the user to tighten or loosen the brace

for a desirable level of comfort. A ball bearing with its rotation axis oriented vertically connects

the rigid platform to the carriage, allowing the wrist interface to rotate freely and align with the

user regardless of the orientation of his forearm. The picture on the following page shows the

entire design of the wrist-interface.

25

2.5.2. Recording Forces

 The second responsibility of the wrist interface is to record the net force between the

system and the user. The recording of interaction forces helps ensure excessive forces are

avoided and allows force inputs to be used as an additional control method for the system. While

many varieties of load cells exist which are capable of recording torque and force in all

directions, the high cost of such devices would go against the secondary goal of keeping the

project as cost-effective as possible. Force-sensing resistors (FSRs) were used as a low-cost

alternative to load cells. FSRs are resistors whose resistance depends on the amount of force

being applied to the sensor. The simple circuit shown below allows the resistance of an FSR to

be determined by measuring the voltage at VA, which then allows the force applied to the sensor

to be calculated, assuming the relationship between force and resistance is known.

Figure 2-8: Complete Design of Wrist-Interface

+VS

20k Ω

FSR

VA

Figure 2-9: Schematic for FSR Circuitry

Flexible

Wrist Brace

Rigid

Platform

Ball Bearing

Carriage

Plate

Flexible

Wrist Brace

FSRs

26

 For this design, the torques and vertical force applied by the user to the system and vice

versa were deemed unnecessary, since the system was only capable of providing actuation in the

horizontal 2-D plane. Furthermore, the force input would be used to determine general

intentions of the user, not calculate exact desired locations, meaning only the direction and

approximation of magnitude of the forces were needed, not the exact magnitude. FSRs would be

able to meet these conditions, as long as the design wrist interface allowed the FSRs to measure

forces in all directions in the 2-D plane and transmit forces between the user, FSRs, and carriage

with as little loss as possible.

2.5.3. Design and Validation

 Various designs of the FSR-holding apparatus were tested via ANSYS, in order to

determine which design best translated force readings to true force inputs. An early design and

the final design are both shown on the following page, to emphasize the final design’s ability to

decouple moments and linear forces relative to other designs. The first column of pictures show

a preliminary design and the second column show the final design. The upper ANSYS figures

show the stresses resulting from a horizontal force acting on the center of the design towards the

upper right side. As seen in both instances, higher stresses exist in the direction of the force,

suggesting the FSRs would be able to accurately detect the applied force. The lower ANSYS

figures show the stresses resulting from a horizontal force acting on a location slightly to the

right of the center towards the lower corner. Since the force is slightly off-center, it creates a

moment about the center as well as a linear force. With the preliminary design, this moment

causes compression around the entire apparatus, which would result in the FSRs detecting forces

in all directions.

27

 The final design solves this by decoupling moments from linear forces. As shown in the

upper figure, the final design separates forces into components acting along two perpendicular

axes. Of course induced moments still elicit reaction forces, but these forces are handled away

from the FSR locations. The ANSYS simulation of the final design shows that for the example

described above, it is able to decouple moments from linear forces and only cause stresses in the

Figure 2-10: FSR Holder Design and ANSYS Stress Evaluation. The left column represents the original
design and the second column shows the final design. Top figures show the mechanical design, middle
figures show the stress from a centrally located horizontal force directed toward the upper right side,

and bottom figures show the stress from an off-center horizontal force toward the bottom corner.

28

direction of the applied force. Testing the final design with real loads verified the simulations,

with the FSRs only registering forces in the direction of the applied force.

2.6. Eye-Tracker Mount

 Another important consideration for the mechanical design of the system developing a

mount for the eye-tracker that was both adjustable and able to be locked into place. For different

users, it was essential that the eye-tracker mount be able to adjust to differences in height.

However, during a session it was necessary to keep the eye-tracker locked in place once

calibration had completed. The eye-tracker mount also needed to allow ample space for the user

to reach the wrist interface without having to bend unnaturally to avoid parts of the mount. The

design shown below allows the eye-tracker to be repositioned vertically for different user

heights. The eye-tracker can also slide left to right or be set to a different angle, which allows

slight variations to be used for individuals the eye-tracker may otherwise have difficulty

observing.

 The eye-tracker hangs on the underside of the cross piece, which gives as much room as

possible between the table and the mount for the user’s arm to move freely. The second picture

shows that the wooden eye-tracker holder is mounted to the sliding component by hinges which

allow the eye-tracker to pivot.

Figure 2-11: Design of the Eye-Tracker Mount

29

2.7. Mechanical Safety Considerations

 The majority of the safety features of the design exist in the coding, but a few are

included in the mechanical design as a failsafe, in case a glitch in code or hardware cause the

system to behave erratically. To begin, the system has a few features to protect itself in case of

failure. The carriage and the spring-holder are padded at the locations where the two meet when

the spring is fully compressed. Thus if the motor were killed, the padding would absorb a

portion of the energy released by the retraction of the spring, which would reduce the likelihood

of fracture within the rigid components of the carriage and the spring-holder. The system also

has mechanical stops in all directions, meaning in a worst-case scenario the system will still be

confined to a set workspace.

 With regards to protecting the user, the mechanical stops provide a first measure of

safety. In addition, the wrist-interface currently rests in place with four bolts placed through

holes which are rigidly attached to the system. The bolts are sufficient to hold the wrist-interface

in place if only horizontal forces are present, but should the user apply a vertical load, the wrist-

interface will freely slip up and out of its position, and away from all contact with the rest of the

system, as shown in the diagram below.

 Finally, a mechanical disconnect is attached to the positive terminal of the battery,

allowing electrical power to be cut from the entire system.

Figure 2-12: Wrist-Interface shown Connected and Disconnected from Carriage Plate

30

2.8. Bill of Materials

 The total cost of the mechanical components for the system is roughly $400. The system

also included the following 3D-printed materials: Motor spool, holder for the rotational

potentiometer, rotational motor to potentiometer connector, wrist brace attachment, and a

housing for the bearing on the wrist interface. The pieces laser-cut from the 24’’ by 48’’ piece of

acrylic included a cover for the electronic component housing, a platform for the linear motor, a

plate attached to the carriage, six pieces comprising the wrist-interface, and three pieces

comprising the spring holder.

Quantity Part Number Description Supplier Unit Cost Total Cost

1 8589K84 1/4'' Thick, 24'' x 48'' Acrylic McMaster-Carr $55.76 $55.76

1 9293K56 5lb Constant-Force Spring McMaster-Carr $7.85 $7.85

1 8701K45 UHMW Polyethylene Rod - 1'' Diameter x 1' Length McMaster-Carr $3.08 $3.08

1 91259A102 1/4'' x 1-3/4'' Shoulder Screw, 10-24 Thread McMaster-Carr $1.53 $1.53

1 93070A121 M5 x 10mm Socket Head Cap Screws (Qty: 50) McMaster-Carr $9.40 $9.40

1 90327A126 M5 x 12mm Socket Head Cap Screws (Qty: 50) McMaster-Carr $6.33 $6.33

1 9059A012 M5 Plain Steel Hex Nut (Qty: 100) McMaster-Carr $1.70 $1.70

4 5674K1 Flange-Mount Ball Transfer McMaster-Carr $3.07 $12.28

20 5537T454 Steel End-Feed Fastener, M5 (Pack of 4) McMaster-Carr $2.55 $51.00

2 5537T101 Aluminium T-Slotted Framing Extrusion (8ft) McMaster-Carr $21.58 $43.16

2 92510A357 Aluminum Unthreaded Spacer, 3/8'' Screw Size McMaster-Carr $2.32 $4.64

1 5912K5 Self-Lubricating Bronze Bearing, 1/2'' McMaster-Carr $12.28 $12.28

1 6086K111 Quick-Disconnect Bushing, 1/2'' Bore McMaster-Carr $12.24 $12.24

1 5972K326 Steel Ball Bearing, Double Shielded, 10mm Diameter McMaster-Carr $4.80 $4.80

1 161659 2'' x 4'' x 10 ft Lumber Home Depot $4.09 $4.09

1 B00R575B46 80/20 Aluminum Corner Bracket w/Tabs (Qty: 25) Amazon $18.50 $18.50

2 B009YSHYTE 6061 Aluminum Sheet, 1/4'' x 8'' x 8'' Amazon $13.23 $26.46

1 B001AXF31M 50-lb Fishing Line Amazon $2.10 $2.10

1 B006AR54TY Futuro Sport Wrap Around Wrist Support Amazon $6.99 $6.99

1 B0035FZTSO Steel Key Stock, 1/8'' x 1/8'' Amazon $3.65 $3.65

1 TBI-TR20N-0900-30-30 900 mm Linear Guide Rail Anaheim Automation $78.00 $78.00

1 TBI-TRS20VN-N-Z0 Carriage Anaheim Automation $35.00 $35.00

Total: $400.84

Mechancal Construction

Table 2-1: Cost of Materials for Mechanical Components of Entire System

31

CHAPTER 3

ELECTRONICS AND HARDWARE ARCHITECTURE

 This chapter will give an overall schematic to help depict the structure of the hardware

and communication needed between components. The chapter will then elaborate on the

specifications of the electronic components of the system.

3.1. Overall Schematic

3.2. Brushed DC Motor for Linear Subsystem

 The motor used to perform the actuation for the linear subsystem is a MY1016 brushed

DC motor from Unite Motor Co. This 24V 250W motor has a rated torque of 0.9 N ∙ m and a

rated speed of 2750 rpm. As described in Chapter 2, a 3D-printed spool with a diameter of 14.2

mm was attached to the shaft of the motor, which allows the motor to provide over 50 N (~11

lbs) of linear force and drive the end-effector at up to 2 meters per second. Even if driven with a

12 V battery, as ended up being the case, the maximum velocity is just over 1 meter per second,

Figure 3-1: Schematic of Electronic Components for Entire System

32

meeting the requirements laid out in Chapter 2. Below is a picture of the motor used for linear

motion.

3.3. Brushed DC Motor/Gearbox for Rotational Subsystem

 The motor used to perform the actuation for the rotational subsystem is a M4-R0062-12

FIRST CIM brushed DC motor from BaneBots LLC. This motor has a nominal voltage of 12V

and provides 18.2 mN ∙ m of torque per amp, up to a maximum torque of 2.42 N ∙ m at 133

amps. Its no-load speed is 5310 rpm. The picture below and to the left is of the FIRST CIM

motor.

Figure 3-2: MY1016 DC Motor Used for Linear Actuation

Figure 3-3: FIRST CIM Motor (Left) and P80 Gearbox (Right) Used for Rotational Actuation

33

Figure 3-4: RoboClaw Motor Controller

 The picture above and to the right is of the BaneBots P80 Planetary Gearbox with a 64:1

ratio, to which the FIRST CIM motor was paired. With the gearbox, the effective maximum

torque is roughly 150 N ∙ m (above the maximum suggested torque of 115 N ∙ m), and a no-load

speed of 83 rpm. Even with an efficiency of 50%, this is able to meet the requirements laid out

in Chapter 2.

3.4. RoboClaw Brushed DC Motor Controller

 The motor controller for our system needed to be able to control the two brushed DC

motors previously described. Both motors needed to be drivable in both directions, and ideally

the controller would have a simple interface to keep the cost and complexity of the system as

minimal as possible. The maximum current for the linear subsystem’s motor was 14 amps, while

the rotational subsystem’s motor could handle 100 amps before exceeding the maximum

suggested torque of 115 N ∙ m, assuming perfect efficiency. Although perfect efficiency is

impossible in a real system, limiting the maximum current to 100 amps ensured the BaneBots

gearbox would not be damaged with some factor of safety. The RoboClaw 2 x 60A met the

requirements presented by the motors with two channels, each having a continuous current rating

of 60A and a peak current rating of 120A.

34

The RoboClaw has an operating voltage of between 6V and 34V, which easily covers the range

of both motor voltages. The RoboClaw can also receive control signals as analog, serial or RC

signals, making it a very versatile controller and easily controllable with an Arduino, which was

the microcontroller used for the system.

3.5. Arduino Uno Microcontroller

 From the beginning, a goal of this project was to keep the system as low-cost and

accessible as possible. The Arduino Uno provided the perfect opportunity to do just this, as its

specifications met the requirements of the system at a fraction of the cost of more powerful

microcontrollers. The raw requirements for the microcontroller included six analog inputs (four

FSRs and two potentiometers), at least two PWM pins for controlling the motors, and the ability

to communicate with the computer, in this case via a USB serial port. The Arduino Uno featured

all of these components, with the additional benefit of being widely used by the public, meaning

control of the system would be easily understood by outsiders with no previous knowledge of the

system. While offering no immediate benefit to the system presented in this paper besides

keeping the cost to a minimum, the use of popular components, such as an Arduino Uno, will

hopefully encourage use and continued development of the system in the future.

 Figure 3-5: Arduino Uno Microcontroller

35

3.6. XBee Wireless Module

 Two XBee S2 modules are used to enable wireless communication between the FSRs and

the Arduino. Since the FSRs were attached to the carriage as it moved around the workspace of

the system, reading from the FSRs via eight wires would likely be incredibly messy. While a

method of organizing the wiring could be developed if necessary, a more clean solution is to

transmit the information wirelessly. The XBee S2 modules made this possible, by connecting

one XBee to the FSRs in the carriage and connecting another XBee to the Arduino located at the

electronic hub of the system. The following table gives the specifications for the XBee S2

module.

Table 3-1: XBee Specifications [83]

Figure 3-6: XBee S2 Module

36

The supply voltage and standard baud rate compatibility, in addition to an operating current of

45mA, make the XBee S2 compatible with the Arduino Uno, while the data transmission rate of

250,000 b/s and the range of 90m show the XBee S2 satisfies any requirements of the system.

3.7. Potentiometer for Linear Subsystem

 The potentiometer for the linear subsystem was part of a setup described in Chapter 2 that

allowed it to read the position of a string attached to the carriage while keeping the string taught

[84]. The primary concern for this potentiometer was being able to read a wide range of motion.

While the diameter of the spool to which it attaches can be changed to give any linear range for

any potentiometer, ideally the potentiometer would have a large range to allow the spool to be as

compact as possible. The chosen potentiometer is a 10-turn potentiometer, which gives a total

measurable linear range of 0.94 meters when attached to a 30mm-diameter spool. Since the

Arduino has a 10-bit ADC, the ten revolutions of the potentiometer map to 1024 counts on the

Arduino, giving a total resolution of 3.5 degrees. However, the more important measure of

resolution is linear distance, which will be calculated in Chapter 5.

Figure 3-7: Potentiometer Used for Measurement along Linear Subsystem

37

3.8. Potentiometer for Rotational Subsystem

 The goal for the potentiometer for the rotational system was the opposite – to have a

small mechanical range, which would mean the small rotational range of the system would have

the greatest resolution possible. The chosen potentiometer, part PTV09A-4020F-B103 from

Mouser Electronics, is a ¾ turn linear potentiometer, with a mechanical angular range of roughly

280 degrees. When read by an Arduino, this potentiometer gives the rotational subsystem a

resolution of 0.00076 degrees, or 4.77 mm at one meter out.

3.9. Force-Sensing Resistors (FSRs)

 The force interactions between the system and the user are measured by force-sensing

resistors. As described in Chapter 2, FSRs are resistors whose resistance depends on the amount

of force being applied to the sensor. The inclusion of an FSR in a simple circuit allows the

resistance of the FSR to be measured, which in turn allows the applied force to be calculated

once a relationship between force and resistance is determined. The primary benefit of force-

sensing resistors, in addition to their relative simplicity, is their extremely low cost. Whereas

load cells typically run from hundreds to thousands of dollars, the short-tailed 0.6’’ diameter

FSR used here, Pololu part 2728, costs under $6. The FSRs used have a force sensitivity range

Figure 3-8: Potentiometer Used for Measurement of Rotational Subsystem

38

of ~0.2 to 20N, which corresponds to a resistance of over 100MΩ when no force is applied to a

few hundred Ohms when the maximum load is applied. A short-tailed FSR is shown below.

3.10. Batteries

 Batteries are used to power the entire system. A set of four smaller AAA batteries

provides power to the wireless system, including four FSRs and an XBee S2 wireless module. A

larger battery located with the electrical components in a stationary position powers the

RoboClaw motor controller, and thus both motors. The main battery is a CSB HR1290W high

capacity lead acid battery. This 12V battery has a capacity of 23 amp-hours and is rated for a

maximum discharge current of 300 amps, which is enough to supply both motors with their

maximum currents.

Figure 3-9: Short-tailed Force-Sensing Resistor

Figure 3-10: CSB HR1290W High Capacity Lead Acid battery

39

3.11. Eye-Tracker

 The eye-tracker used for the system is a Tobii EyeX Controller. This eye-tracker is

commercially available and uses near-infrared microprojectors to create reflection patterns on the

user’s eye, which are then registered by the controller. The reflected image is processed to find

the location and gaze direction of the user’s eyes. The eye-tracker has a length of 12.5’’ and a

weight of 91 grams. The EyeX eye-tracker is still under development and evaluation, meaning

technical specifications have not yet been released. However, previous versions of Tobii eye-

trackers have obtained precisions of less than 1 degree, even under varying illumination settings

[78]. Evaluation of the Tobii EyeX eye-tracker alone is given in Chapter 5, and evaluation of the

eye-tracker when implemented with the system is given in Chapter 6. A picture of the Tobii

EyeX is shown below.

Figure 3-11: Tobii EyeX Eye-Tracker

40

3.12. Bill of Materials

 The total cost of the electronic components for the entire system is under $800.

Quantity Part Number Description Supplier Unit Cost Total Cost

1 B00ITELF12 Battery Disconnect Cut Off Amazon $8.62 $8.62

1 B00INVF468 Black 10-Gauge Wire Amazon $10.28 $10.28

1 B000K7GRCI Solderless Wire Terminal and Connection Kit Amazon $12.56 $12.56

1 B00NNDAFW4 EBL AAA Charger w/ 8 AAA Batteries Amazon $15.99 $15.99

1 B00829IN36 3 x 1.5 V AAA Battery Holder Amazon $3.40 $3.40

1 B00H8T6J3S 1 x 1.5 V AAA Battery Holder Amazon $3.57 $3.57

1 HR1290W CSB High Rate AGM Battery AtBatt $34.99 $34.99

1 LC1-12-3A Leoch 12V/3A SLA Battery Charger AtBatt $26.99 $26.99

1 AM-2618 Sting Potentiometer Kit AndyMark $17.00 $17.00

1 FIRST CIM Motor FIRST CIM Motor BaneBots $28.00 $28.00

1 P80 Gearbox Planetary P80 CIM Gearbox, 64:1 BaneBots $143.25 $143.25

1 MY1016 United 250W 24V DC Motor Motion Dyanamics $45.95 $45.95

1 1499 RoboClaw 2x60A Motor Controller Pololu $199.95 $199.95

4 2728 Force-Sensing Resistor: 0.6'' Diameter, Short Tail Pololu $5.80 $23.20

1 N/A Tobii EyeX Eye Tracker and Development Kit Tobii $139.00 $139.00

1 N/A Arduino Uno Rev3 Arduino $24.95 $24.95

2 WRL-10414 Xbee 2mW Wireless Antenna Series 2 Sparkfun $22.95 $45.90

Total: $783.60

Electronic Compontents

Table 3-2: Bill of Materials for Electonic Components

41

CHAPTER 4

SOFTWARE ARCHITECTURE

 The current chapter explains the communication between the hardware components

described in the previous chapter. A full schematic will be given with an accompanying

explanation, followed by specific details for each communicative link in the system. Details on

the setup of each connection will be discussed, as well as the resulting speed of data transmission

achieved by each.

4.1. Overall Schematic

 The schematic below shows the overall structure of the system’s software, following the

color scheme of the schematic in Chapter 3.

4.2. XBee to Arduino Wireless Communication

 There are actually two XBee modules used in the system. One is attached to the wrist-

interface and is used to transmit FSR data wirelessly, and the other is a stationary module

connected to two Arduino digital pins and used to receive and relay wireless information from

Figure 4-1: Schematic of Software Layout for Entire System

42

the remote XBee module. The Arduino is first given a virtual serial port, using the AltSoftSerial

library [82]. The XBee module’s receive and transmit pins are directly connected to the pins

designated for Arduino’s virtual serial port, which allows Arduino’s serial communication over

the port to be automatically broadcast wirelessly. In this manner, there isn’t true communication

between the Arduino and the stationary XBee module, but rather the XBee is hardwired to be a

wireless extension to the Arduino’s virtual serial port.

 During Arduino startup, the Arduino issues a command to set the baud rate of its virtual

serial port to 57600 bits per second, the fastest allowed for XBee communication. Once

initialized, the Arduino only requests wireless FSR data when it receives a MATLAB command

to do so. If such a request is received, the Arduino sends a 19 byte request command through its

virtual port, which is broadcast wirelessly via the stationary XBee. This request tells any

receiving XBee modules to measure the analog readings on all four ADC pins and wirelessly

return the results.

 After sending the request, the Arduino continues normal operation. The virtual serial

port is polled with every loop and any available data is stored. Once all four ADC values are

received from the wireless XBee module, the data is compiled and returned to the MATLAB

application. The entire process from Arduino requesting wireless data to Arduino receiving

wireless data takes roughly 50 milliseconds, meaning the FSR data can be read at roughly 20 Hz.

4.3. Arduino to MATLAB Communication

 The Arduino is connected to the central MATLAB application via a wired serial port.

This connection is responsible for sending MATLAB requests for FSR data to Arduino, sending

MATLAB pulse-width commands to Arduino, and returning FSR data from Arduino to

43

MATLAB. There are a few libraries that exist to facilitate communication between MATLAB

and Arduino. Originally a MATLAB library was used for communication, but it was

considerably slower than direct serial communication. The two pictures below show code which

requests 100 sets of analog data to be sent from Arduino to MATLAB using the available library,

and the resulting average time of each request.

 The picture on the left shows that it took roughly 23.1 milliseconds to request a single

analog voltage reading, which was quicker than the FSR data would be wirelessly received and

would thus be sufficiently fast. However, the picture on the right shows that this time is linearly

proportional to the number of analog readings requested. Thus to read four FSR voltages and

two potentiometer voltages would take over 132 milliseconds, which would create significant lag

and is unacceptable for this system.

 To improve the speed of communication between MATLAB and Arduino, the existing

library was abandoned and a simple communication infrastructure was implemented on both

ends. At startup, MATLAB is set to open a serial port with the Arduino with a baud rate of

Figure 4-2: Times for Requesting One (Left) and Six (Right) Arduino
ADC Data Values using an Arduino Library

44

115200 bits per second, the fastest suggested for Arduino applications. MATLAB then

communicates with Arduino via custom message arrays, where the first byte entry indicates the

type of message being transmitted. The Arduino code receives these message arrays, determines

the message type based on the first byte entry, and responds accordingly. The example below

shows the average times for the custom communication handling. The picture on the left shows

the results when the Arduino is programmed to respond to a message of [1,0,0] with a single

analog value. The picture on the right shows the results when Arduino is programmed to

respond by reading and returning six analog values.

 The pictures above show a significantly reduced time needed for MATLAB to Arduino

communication, with all six analog values being requested and returned in under 10

milliseconds. Additionally, even though it takes longer for six analog readings than one, the

Figure 4-3: Times for Requesting One (Left) and Six (Right) Arduino ADC
Data Values using Custom Methods

45

relationship is no longer linear, which means additional data transmission will have less of an

impact on the communication speed than if the MATLAB library were used.

 The final structure for communication between MATLAB and Arduino has three

message types. One for initializing the Arduino, one for requesting analog data from the

Arduino, and one for commanding the Arduino to send desired pulses to the RoboClaw motor

controller. Once MATLAB sends a request, it will wait until the response is received or until 20

milliseconds has passed with no response, in which case it will send the request again. The final

setup allows the MATLAB application to receive potentiometer data at over 50 Hz, receive FSR

data at over 10 Hz, and send pulse commands at over 50 Hz.

4.4. MATLAB to C# Application Communication

 The MATLAB and C# applications communicate via a virtual socket connection. Since

the only information sent from MATLAB to C# is a request for eye-tracker data, the C#

application doesn’t need to sort the messages it receives. Instead, it is set to continuously poll

the socket connection and return the most recent eye-tracker data collected if any communication

has occurred over the socket connection. MATLAB requests eye-tracker data with every cycle,

or at roughly 50 Hz, and does not wait for a response. Instead, MATLAB simply checks whether

the response has been received with every loop. If so, the eye-gaze data is updated and the

controller continues. The system is able to retrieve eye-tracker data at over 40 Hz.

46

4.5. Eye-Tracker to C# Application Communication

 The Tobii Eye X eye-tracker is connected to the C# application through a USB serial

port. An SDK from Tobii handles the communication with the eye-tracker and is included in the

C# code. When eye-tracker data is available, an interrupt is called and the data is stored within

variables in the C# application itself. These variables are then passed to MATLAB whenever a

request is received, as explained in the previous section.

47

CHAPTER 5

CONTROLLER DESIGN

 The following chapter gives the structure of the controller design for the entire system.

The controller is based in the MATLAB application, which as described in the previous chapter,

sends and receives data to and from the Arduino and the eye-tracker. Thus this chapter will only

look at the portion of the overall logic which relates to interpreting the data once it has been sent

to the central MATLAB application. First a description of the structure of the entire controller

will be given, followed by descriptions of the controller under force-based control and then

position-based control. Each section will include details regarding the calibration needed for that

particular control mode.

5.1. Overall Controller Structure

 The overall controller can be divided into two separate sub-controllers, one of which

controls the system via force inputs and the other of which controls the system via eye-tracker

inputs and position data. Each sub-controller outputs a desired velocity, which is then fed into

the main controller and converted to the appropriate pulse signal to send the RoboClaw. Only

one sub-controller is active at any given time, meaning the system is either in force mode or

position mode. The exact criteria for switching between control modes will be explained within

each section of this chapter, but priority is given to the force-based controller, as any force inputs

from the user indicates a desire to deviate from the current system trajectory. The schematic on

the following page gives an overview of the entire controller.

48

 It is important to note that at no point does the system measure velocity. Although the

potentiometer data is accurate for positioning, the relatively low resolution of the Arduino ADC

makes it unreasonable to calculate velocity by integrating. During each loop of the controller,

the potentiometer values only change by a few counts. Thus the range of measurable velocities

would be relatively small unless the potentiometer values were summed over a longer period of

time, which would in turn cause significant lag. Instead of measured velocity data, the controller

uses position data and estimated velocity for feedback. It will be shown that the system is still

able to follow desired velocity trajectories.

5.2. Force-Based Control

 The ultimate goal for the controller in force mode is to simulate a massless system should

the user have the strength and desire to move the impaired arm without the aid of the system.

Although it is not expected that this mode be used frequently, if the user finds the strength to

perform a given movement, an effective assistive robotic device should never punish such

movement by imposing extra resistance. Instead, this effort should be rewarded with low-inertia

compliance.

Figure 5-1: Schematic of the System Controller

49

 The force-based control mode is initiated if the system detects a force that is due to

intention rather than inertial reaction. Once initiated, the system will remain in force mode until

a given time duration has passed without the system receiving any additional sufficiently large

force inputs. Force mode ignores position data and instead converts force inputs (recorded by

the FSRs) to acceleration inputs, which are then used to adjust the desired velocity accordingly.

5.2.1. Desired Characteristics

 The requirements of the force-based controller can be simplified into two main

components: decoding user intention from force inputs, and completing the desired movement.

In terms of using force inputs to determine intention, the controller must first distinguish

deliberate forces from involuntary reactionary forces. The controller must then combine any

intentional forces with the current kinematic state of the system to determine a desired velocity

to which the system should be driven. Finally, the controller must drive the system to this

desired state with reasonable speed and accuracy. The force-based controller must cycle through

all of these steps in a smooth manner, making the system kinetically invisible to the user.

5.2.2. Force-Feedback Structure

 The system is set to force control whenever the user force input exceeds a force

threshold. This threshold is proportional to the desired velocity of the system, in order to isolate

meaningful force inputs from force inputs due to the inertia of the user’s arm. For example,

when the end-effector is being driven to a certain position, one would expect a relaxed arm to

exert a force in the opposite direction. Although mathematically this force should be

proportional to the acceleration, setting the threshold proportional to the velocity gives the user

50

greater control earlier in the process of slowing down and helps dissipate the appearance of lag in

the resulting motion. A schematic of the sub-controller selection process is shown below.

 Once force mode is initiated, the controller is conceptually straightforward. Input forces

are directly converted to acceleration cues, which are then multiplied by the elapsed time since

the previous cycle to obtain a desired change in velocity. A schematic of the entire force-based

sub-controller is shown below.

Figure 5-2: Schematic Depicting the Process of Choosing which Sub-controller to Implement

Figure 5-3: Schematic of the Force-Based Controller

51

 Due to the imperfect nature of the low-cost electronic components used in the system, a

few minor additions were made to the force mode controller. To begin, the FSRs work well for

detecting forces, but are not meant to determine the exact magnitude of forces, especially small

forces. Even when trying to exert no force on the end-effector, the FSRs will often detect small

forces, which can then lead to a jump in the system’s motion. To prevent jittery movement,

force inputs below a certain force threshold are deemed negligible and do not lead to an

acceleration command. In addition, all FSR signals are averaged over a few cycles (the number

of which is determined by an adjustable constant) before being fed into the controller.

 One consequence of averaging the force data over a set number of cycles is an increase in

the lag between force input and system response. This lag is most noticeable to the user when

the system is slowing down. When the system is at rest and the user applies a force, even though

the force is averaged with the previous negligible forces, the average still has a non-zero

magnitude and thus the system begins to move. However, when the system is in motion and the

user applies an opposing force to stop movement, the average force is typically still in the

direction of the motion, meaning the system will continue to move. To make the system feel

more responsive, the end-effector is set to begin slowing down when the force input is below a

second force threshold. The deceleration begins before the force input reaches zero, which is

earlier than would previously occur, thus reducing the appearance of lag.

 Once the force inputs and the described modifications are made, the output of the force-

based sub-controller is a new desired velocity, which is the sum of the previous desired velocity

and the change in velocity obtained from the force inputs.

52

5.3. Position-Based Control

 A schematic of the entire position-based sub-controller is shown below.

 The overall goal for the controller in position mode is to assist the movement of the

user’s arm to a desired position should the user be unable to perform the movement alone. The

position sub-controller must first determine the intention of the human, in terms of desired end

position, and then drive the end effector to the position with sufficient accuracy and comfort.

Position mode is the default mode, and will be used as long as no deliberate force inputs are

detected. In position mode, eye-tracker data is examined to determine a desired position. The

desired position, along with the current desired velocity and the current position, is then used to

calculate a desired velocity, which is the output of the sub-controller. As described before, this

desired velocity is then converted to an analogReference value and sent to the RoboClaw to

control the motors.

Figure 5-4: Schematic of the Position-Based Controller

53

5.3.1. Desired Characteristics

 Similar to the force-based controller, the requirements for the position sub-controller can

be broken into two main components: calculating a desired position from eye-tracker data, and

driving the end-effector to the desired position. With regards to deriving a desired position from

eye-tracker data, the controller must be intuitive and easy to use. In terms of driving the end-

effector to the desired position, the system must meet the dynamic requirements laid out in

Chapter 2 by having an acceleration of 1000
mm

s2
. The combination of eye-gaze data and position

feedback must allow the position sub-controller to reach a final position reasonably close to the

user’s true desired position. The accuracy of the controller will be evaluated in Chapter 6.

5.3.2. Position-Feedback Structure

 The position sub-controller is enabled if the force sub-controller is not, namely if an

intentional force input has not been detected for a specified time duration. Upon entering

position mode, the desired position of the end-effector is updated to its current position, which

prevents the system from ignoring adjustments made under force control. Once the position-

based controller had been entered, the eye-tracker data is first analyzed to determine if the data

meets the criteria for eye-gaze fixation laid out by Chen and Newman [64]:

 1) The dispersion of eye-gaze points is less than some dispersion threshold

 2) The persistence of these fixation points must be larger than a time threshold…”

 If this criteria is met, the desired position is updated to match the position dictated by the

user’s gaze. If this criteria is not met, the desired position is left alone. Thus in order to drive

54

the system to a certain position, the user must look at said position for a time greater than a

threshold, without looking elsewhere.

 A third criterion was added to the requirements above to allow a more seamless

integration of the force and position sub-controllers. The final requirement was that the eye-gaze

must be directed toward a location more than 10 cm from the end-effector’s current position.

This criterion prevents jittery motion that may occur due to quick eye movements, even though

the general direction of eye-gaze remains the same. The additional requirement also allows the

force-based controller to be used to make any minor adjustments to desired position without

those adjustments being overruled by a slight discrepancy in eye-gaze direction.

 Once the desired position has been updated (or left alone), the controller determines

whether the end-effector needs to accelerate or decelerate by placing the current state of the

system into one of five mutually exclusive possible states. This entire process is done separately

for x and y components. First, the distance between the current position and the desired position

is calculated, and if this distance is less than a given threshold the system is in state one and the

end-effector is set to decelerate. Thus the controller acts as a virtual damper when the end-

effector is within a certain distance of the desired position, which helps the end-effector settle to

a resting position near its objective. If the distance is greater than the threshold, then the system

checks if the end-effector is moving away from the desired position. If so, the system is in state

two and the end-effector is again set to decelerate. If the system doesn’t fall into this category

either, then the system checks whether it is approaching the desired position at too great of a

speed. For constant acceleration,

Vf
2 = V0

2 + 2a∆x

55

 Since the system is designed to produce a constant acceleration when slowing down, the

distance needed to stop (Vf = 0) is given by:

∆x =
−V0

2

2a
 [2]

 The controller checks if the distance to the desired position is less than the magnitude of

−V0
2

2a
 minus a threshold distance. If so, the system is in state three and the end-effector is set to

decelerate. The threshold distance is equal to a constant multiplied by the estimated velocity,

and is used to compensate for the lag in the system. The fourth check is identical to the third, but

with a slightly larger threshold distance. If the distance to the desired position is less than the

magnitude of
−V0

2

2a
 minus threshold2, the system is in state four and the end-effector is set to

maintain a constant velocity. The purpose of state four is to give a small region of no

acceleration between the regions of acceleration and deceleration, which eliminates the chatter

that would otherwise constantly exist. Finally, if no previous check has been satisfied, the

system is in state five. State five means the end-effector is far enough away from the desired

position that it is free to move as quickly as possible, and thus is set to accelerate.

5.3.3. Eye-Tracker to Position Calibration

 The eye-tracker was initially evaluated separately, to determine the general

characteristics and accuracy of eye-gaze data it could provide. The general process for

evaluation was to continuously collect groups of 50 frames of data from the eye-tracker and to

print out key values, such as average eye-gaze coordinates, percentage of frames with successful

tracking, etc. This allowed continuous updates on the performance of the eye-tracker while

various adjustments were made, such as stand height and angle of elevation. Before significant

56

data was collected, multiple stand heights, elevation angles, and head positions were explored to

get a general feel for the eye-tracker behavior. The eye-tracker was found to be fairly robust to

head movement, as long as the eye-tracker was pointed directly at the user and the user’s gaze

was never directed below the eye-tracker. For a 6-foot-tall user, the ideal positioning is shown

below. The user’s head should be positioned such that the closest boundary of allowable motion

appear just above the eye-tracker.

 The first true eye-tracker evaluation was to have a user look repeatedly between two

points to find the average difference between true eye-gaze location and measured eye-gaze

location, as well as observe the potential for drift. The graph on the following page shows the

eye-gaze locations as measured by the eye-tracker for 50 consecutive fixations between two

points located 100 mm apart. The measurements showed a range of 0.1 units (~50mm) in the y-

direction for the points and a range of 0.06 units (~30mm) in the x-direction for the points.

Although this was a preliminary test, it showed that the eye-gaze data collected by the eye-

tracker should be assumed accurate to no more than 0.1 eye-tracker units.

Eye Location

Range of Allowable Motion

Desktop

80mm

280mm
10mm

Eye-Tracker

520mm

40mm

Figure 5-5: Eye-Tracker Setup Dimensions

57

 Eye-gaze data was then collected for 30 points spread evenly across the desktop to

examine the relationship between eye-tracker units and real-world position. The graph below on

the left shows the true locations of the 30 points, which covered a 2-D desk space of 0.5 meters

by 0.4 meters. The graph below on the right was created by collecting 50 frames of eye-gaze

data and averaging the results at each of the 30 points.

 The graph on the right shows a mapping from real position to eye-tracking units that

resembles a trapezoid, with the eye-tracker outputting a slightly smaller range of x-values as the

0.35

0.45

0.55

0.65

0.75

0.3 0.4 0.5 0.6 0.7

Y-
D

ir
ec

ti
o

n
 G

az
e

P
o

si
ti

o
n

(E

ye
-t

ra
ck

er
 U

n
it

s)

X-Direction Gaze Position (Eye-tracker Units)

Eye-Tracker Precision Test

Figure 5-6: Eye-tracker Position Outputs for 50 Consecutive Fixations between Two Locations

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Y-
P

o
si

ti
o

n
 (

Ey
e

-t
ra

ck
er

 U
n

it
s)

X-Position (Eye-tracker Units)

Eye-Gaze Data From Eye-Tracker

0

100

200

300

400

300 400 500 600 700 800 900 1000

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

True Eye-Gaze Locations

Figure 5-7: True Eye-Gaze Position (Left) and Eye-Gaze Position Detected
by the Eye-Tracker (Right) for an Array of 30 Eye-Gaze Locations

58

y position of the eye-gaze increases. However, the maximum y-coordinate which was reachable

by the user, and thus would be used by the system, was 200 mm. Between y values of 0mm and

200mm, the x-coordinate boundaries only varied by a combined 0.1 eye-tracker units, which is

equal to the previously measured maximum accuracy of the eye-tracker.

 Since the measured eye-gaze values appeared to be linearly proportional to the real-world

endpoint of the user’s gaze, a simple 4-corner calibration is performed at the beginning of a

session to determine the conversions from eye-tracker units to real-world gaze position. This

calibration has the user look at the four corners bounding the useable workspace for the trial, and

then determine the maximum, minimum, and range for x-direction and y-direction gaze data.

The accuracy of this quick calibration will be evaluated in Chapter 6.

5.3.4. Potentiometer to Position Calibrations

 The potentiometers used for feedback in the position sub-controller were calibrated to

allow the conversion from Arduino analog readings to real position data. For the linear

potentiometer, the system was driven to various analog potentiometer values and the

corresponding real positions along the x-axis were measured. The first graph on the following

page shows the results. A similar calibration was done for the rotational potentiometer. The

linear rail was manually rotated such that the x and y coordinates of a given point on the rail

could be measured and converted to an angle. The potentiometer was then read and the value

recorded. The keyed connection between gearbox shaft and the linear rail allowed the rail to

rotate roughly 0.03 radians without any movement of the gearbox shaft. To account for this,

multiple measurements were made after moving the rail in both angular directions and the values

were averaged. The second graph on the following page shows the results.

59

 The final relationships between analog potentiometer readings and position are given

below, with the respective potentiometer analog voltage reading denoted as PAVR:

Linear Position (mm) = 0.748951 ∗ (PAVR + 367) [3]

Angular Position (radians) = 0.0043 ∗ (PAVR − 2.2306) [4]

 The high correlation values show that both relationships are reliable. However, despite

the high correlation, the ability of the linear rail to rotate 0.03 radians without resistance means

that angular position can only be known to within 0.03 radians.

y = 0.7489x + 275.48
R² = 0.9999

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

D
is

ta
n

ce
 (

m
m

)

Potentiometer Analog Voltage Reading (0-1024 Scale)

Linear Potentiometer Calibration

y = 0.0043x - 2.2306
R² = 0.9991

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

450 500 550 600 650

R
ad

ia
n

s

Potentiometer Analog Voltage Reading (0-1024 Scale)

Rotational Potentiometer Calibration

Figure 5-8: True Distance (mm) vs. Potentiometer Analog Voltage Reading
for the Linear (Upper) and Rotational (Lower) Potentiometers

60

5.4. Conversion of Sub-controller Outputs to Arduino Pulse Outputs

 As has been shown, the controller as a whole is velocity based, with the desired velocity

being determined by one of the two sub-controllers. The sub-controllers output x and y

components of desired velocity, which are converted to polar coordinates and separately

converted to pulse-widths for each respective motor.

5.4.1. Desired Velocity to Pulse-Width Calibration

 The RoboClaw motor controller acts as a voltage source whose voltage is controlled via

pulse-width modulation (PWM). Since the Arduino PWM signals are slow relative to the

RoboClaw’s ability to read voltage signals, using the RoboClaw in analog mode results in jittery

output voltages. Instead, the RoboClaw is used in RC mode, in which the voltage is set based on

the length of the pulse it receives. A 1000μs pulse sets the motor to full reverse and a 2000μs

pulse sets the motor to full forward. Most PWM pins on the Arduino Uno operate at 490 Hz,

which gives a maximum pulse-width of 2040μs. Arduino PWM functions by writing a value,

which we will call analogReference, between 0 (full off) to 255 (full on). Thus the full range of

pulses between 1000μs and 2000μs requires analogReference values between 125 and 250.

 The RoboClaw had a few additional features that make it an effective motor controller for

this system. The first feature is called exponential mode, which softens the middle control

positions. This changes the relationship between analogReference and motor speed from linear

to exponential, and gives much more control over the lower speeds. The graphs on the following

page show the relationships between the velocity of the system and the analogReference value

sent to the linear motor for both linear and exponential modes.

61

 Since the system is most often used at low speeds, and since small changes in speed are

more noticeable at low speeds, it was decided to use the controller in exponential mode. The

second RoboClaw feature is the ability to auto-calibrate the range of pulses the controller

receives, or more importantly, the ability to turn off auto-calibration. Auto-calibration ends up

being more of a hassle during longer runs of the device, because a single pulse outside the range

-1500

-1000

-500

0

500

1000

1500

150 160 170 180 190 200 210 220

V
el

o
ci

ty
 (

m
m

/s
)

analogReference

Velocity vs. analogReference (Exponential Mode)

-800

-600

-400

-200

0

200

400

600

170 175 180 185 190 195 200 205

V
el

o
ci

ty
 (

m
m

/s
)

analogReference

Velocity vs. analogReference (Linear Mode)

Figure 5-9: Velocity vs. analogReference for RoboClaw set to
Linear (Upper) and Exponential (Lower) Modes

62

of acceptable pulses recalibrates the motor controller and stores the calibration until the

controller is powered off. Thus the occasional stray signal could lead to drastic changes in

system behavior for the rest of a session. The RoboClaw was set to RC Mode 4, which enables

exponential mode and disables auto-calibration.

 The relationship between analogReference and motor velocity was found for each motor

experimentally. The linear motor was driven with a constant analogReference value until the

end-effector reached the end of the rail. The position data was collected and integrated to find

the final velocity after the fact. The analogReference value was then increased (or decreased for

testing in the opposite direction) until a speed of 1000 mm/s was reached. Below is an example

of the data collected with an analogReference value of 209, which was the maximum

analogReference value in the negative direction.

 As the graph shows, the system quickly drives the end-effector to a constant velocity (in

this case, -1080 mm/s) and maintains that velocity until the end-effector travels the length of the

linear rail. It is also important to note how quickly the linear system reaches its final velocity.

-1400

-1200

-1000

-800

-600

-400

-200

0

0.00 0.10 0.20 0.30 0.40 0.50 0.60

V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velcity vs. Time for analogReference = 209

Figure 5-10: Velocity vs. Time Response of Linear System when
Driven with analogReference Value of 209

63

This was the longest settling time of all pulse-widths tested, yet still only took 0.16 seconds to

reach a speed of over 1000 mm/s. The quickness with which the linear system reaches its target

velocity allowed the desired velocity to be tracked accurately simply by sending the respective

pulse duration; no other kinematic calculations were needed.

 The graphs below show the final velocities of the linear system for the entire range of

analogReference values. Since the ultimate goal was to convert a given desired velocity to an

analogReference value, the independent variable was linear velocity.

y = 5.6712ln(x) - 28.275
R² = 0.999

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200 1400

an
al

o
gR

ef
 -

1
9

7

Final Speed in Negative Direction (mm/s)

analogReference vs. Final Velocity
(Negative Direction)

y = 6.2092ln(x) - 20.973
R² = 0.9997

0

5

10

15

20

25

0 200 400 600 800 1000 1200

1
8

2
 -

an
al

o
gR

ef

Final Velocity (mm/s)

analogReference vs. Final Velocity
(Positive Direction)

Figure 5-11: AnalogReference vs. Final Velocity of the Linear System in the
Positive (Upper) and Negative (Lower) Directions

64

 A logarithmic function gave the closest fit, and a velocity offset was adjusted to make the

fit as close as possible. The final relationships between desired velocity vdes and

analogReference (aref) are as follows:

 For motion in the positive direction:

aref = 182 − (6.2092 ∗ ln(vdes − 70) − 20.973) [5]

 For motion in the negative direction:

aref = 197 + (5.6712 ∗ ln(100 − vdes) − 28.275) [6]

 The same procedure was followed to calibrate the rotational motor. The graph below

shows the relationship between analogReference value and angular velocity of the rotational

motor.

y = 2.997ln(x) + 3.1272
R² = 0.9988

0

0.5

1

1.5

2

2.5

3

3.5

0.00 0.20 0.40 0.60 0.80 1.00

an
al

o
gR

ef
er

en
ce

 -
1

9
4

Final Angular Velocity (rad/s)

analogReference vs. Final Angular Velocity
(Positive Direction)

y = 4.3809ln(x) + 4.2
R² = 0.9991

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

1
7

5
-a

n
al

o
gR

ef
er

en
ce

Final Angular Speed in Negative Direction (rad/s)

analogReference vs. Final Angular Velocity
(Negative Direction)

Figure 5-12: AnalogReference vs. Final Velocity of the Rotational System in the
Negative (Upper) and Positive (Lower) Directions

65

 The final relationships between desired angular velocity ωdes and analogReference (aref)

are as follows:

 For motion in the positive direction:

aref = 194 + (2.997 ∗ ln(ωdes + 0.15) + 3.1272) [7]

 For motion in the negative direction:

aref = 175 − (4.3809 ∗ ln(0.25 − ωdes) + 4.2 [8]

 However, during testing it was clear that the rotational subsystem responded much more

slowly to the controller’s commands than the linear subsystem. The graph below shows the

angular velocity data when the rotational motor was driven with an analogReference value of

171, the lowest value used by the system.

 As is seen in the graph, the rotational motor took much longer to reach its final velocity

than the linear motor, with settling times of nearly one second. Since the torque needed by the

rotational motor was much larger, motor dynamics more visibly came into play as shown by the

motor’s exponential approach to its final velocity. Thus if the system were simply driven to a

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0 0.2 0.4 0.6 0.8

A
n

gu
la

r
V

el
o

ci
ty

 (
ra

d
/s

)

Time (s)

Angular Velcity vs. Time for
analogReference = 209

Figure 5-13: Response of Rotational System when
Driven with analogReference value of 209

66

desired angular velocity, the response would be much slower than desired. Instead, the dynamics

of the motor were used to drive the rotational system to a desired angular acceleration.

 As explained by Rojas [81], a DC motor can be modeled by the equation:

ω̇ =
Ts

J
(1 −

ω

ωf
)

where Ts is the stall torque, J is moment of inertia of the motor (or in our case of the entire

system), ω is the current angular velocity, and ωf is the final velocity for the applied voltage.

The RoboClaw motor controller and the experimentally found relationship between

analogReference and final velocity give the system direct control over final velocity. Thus, we

want to solve this equation for ωf. The stall torque, Ts, is also given as Ts = ωfke, allowing the

equation to be rewritten:

ω̇ =
ωfke

J
(1 −

ω

ωf
) → ω̇ =

ke

J
(ωf − ω)

ωf = (ω +
J

ke
ω̇) [9]

 Once the ratio
J

ke
 is determined, if the current angular velocity and the desired angular

acceleration are known, the equation above will give the final velocity to which the system

should be driven. By creating an artificial desired velocity as described above, the system is able

to more accurately track angular velocities, as will be shown in Chapter 6.

 To determine
J

ke
, Equation 9 was integrated and solved for ω to get:

ω = ωf (1 − e
−Ke

J
∗t

)

An exponential fit was then applied to the angular velocity vs time graphs, and the best estimate

of
ke

J
 was found.

67

 The ratio
ke

J
 for the system without an arm attached was found to be roughly 4. However,

this value would be expected to decrease when the device is used to move an impaired limb, as

the limb will act as an inertial object to the system. In the future this value may be calibrated

while the system is operating, as it would likely vary as the user experiences bouts of fatigue or

energy. The current system uses the ratio
ke

J
 as a comfort setting which is manually adjusted to

the user’s desire. For the results presented in Chapter 6, a value of 2 was used for
ke

J
 when a

user’s arm was attached.

 The steps described above are used with both force-based and position-based control

modes. Once the respective sub-controller outputs a desired velocity, the equations described

above are used to convert the desired velocity to pulse durations for each motor, which are then

sent to the RoboClaw motor controller to drive each motor at the appropriate voltage.

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
n

gu
la

r
V

el
o

ci
ty

 (
ra

d
/s

)

Time (s)

Angular Velcity vs. Time for
analogReference = 209

𝑦 = −0.7(1 − 𝑒−4𝑡)

Fgure 5-14: Response of Rotational System when Driven with analogReference
value of 209. The Line of Best Fit gives the ratio Ke/J for the System

68

5.5. Control-based Safety Considerations

 In Chapter 2, various mechanical safety features were described. The following section

describes safety features implemented in the system’s code. To begin, maximum limits are set

for velocities in the x, y, r and θ directions. Maximum positions are set for the r and θ directions,

and if the end-effector meets or exceeds these positions it is only allowed to be driven inward,

away from the boundary. If the potentiometer reads a sudden jump in position, indicating a brief

stop in communication with the Arduino, an emergency stop is initiated and both motors will be

held motionless until the system is reset. As a final safety, a maximum and minimum allowable

pulse-lengths are given, preventing the Arduino from sending commands beyond these values.

69

CHAPTER 6

SYSTEM EVALUATION

 This chapter presents performance data for the complete system. First the system without

the eye-tracker will be evaluated and responses to step, ramp and sinusoidal inputs will be given.

The system’s response to user force inputs will then be shown with data from attempts to drive

the end-effector to four points with the controller being held in force mode. Finally the entire

system including the eye-tracker will be evaluated. Data will be presented on the effectiveness

and efficiency of eye-tracker calibration before a session. Results from sessions in which the

user was asked to use eye-gaze to direct the end-effector to a series of four points will then be

presented, as means of evaluating the accuracy and speed of the integrated system. Since a

priority of the project was to keep the cost at a minimum, a final means of evaluation will be the

total cost of the project.

6.1. System Mechanical Responses

 To evaluate the performance of the position-based controller, the system responses to

various position inputs were recorded. These inputs included step inputs, ramp inputs, and

sinusoidal inputs, each of which will be discussed separately as each examines different

characteristics of the system. The responses were first measured in the x-direction alone, then

the y-direction alone, then a combination of both. This allowed each sub-system to be evaluated

individually and as part of the entire system. The responses were observed with loads of 0 lbs (0

N), 2.2 lbs (9.8 N), and 5 lbs (22.2 N) attached to the end-effector. Since the complete position-

based controller was used to evaluate system performance, the responses are all subject to the

70

constraints imposed by the controller, such as maximum velocities and accelerations. These

limitations are observable in many of the responses.

6.1.1. Step Response

 The response of the system was first measured for step inputs. The following graphs

show the system’s responses when the (x,y) components of the desired position were switched

from (900,0) to (400,0) and vice versa. Since no change in the y position was required, these

step inputs isolated the linear subsystem from the rotational subsystem and was able to evaluate

linear motion alone.

 The graphs show that the linear subsystem was able to reach a steady-state error of less

than 10 mm, and that the response was nearly identical with and without the 5-pound load. Even

though the carriage was able to travel the entire range of linear motion in roughly one second, the

position vs. time graphs make the response look somewhat slow, particularly immediately

following the step input. The graphs below show velocity vs. time data for the same responses.

0

200

400

600

800

1000

0.00 0.50 1.00 1.50

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Step Input in
X-Direction

Step Input

0 lbs

5 lbs

0

200

400

600

800

1000

0.00 0.50 1.00 1.50

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Step Input in
X-Direction

Step Input

0 lbs

5 lbs

Figure 6-1: Position vs. Time Responses of the Linear System to Step Inputs in X-Direction

880

890

900

910

71

 These velocity vs. time graphs help show that the slow start to the step response is due to

the acceleration limits placed on the motion by the controller. The true velocity follows the ideal

velocity very closely, this ideal velocity is just limited by comfort constraints rather than

mechanical constraints.

 The below graphs show the system’s responses when the (x,y) components of the desired

position were switched from (700,300) to (700,0) and vice versa. Again, these points were

selected as an attempt to isolate rotational motion from linear motion. While this motion does in

fact require some movement along the linear subsystem, since the controller operates in the x-y

coordinate system this step input was used as an approximation of rotational movement alone.

-1,000

-800

-600

-400

-200

0

200

0.00 0.50 1.00 1.50

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Step Input in
X-Direction

Ideal

0 lbs

5 lbs

-200

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Step Input in
X-Direction

Ideal

0 lbs

5 lbs

-100

0

100

200

300

400

0.00 1.00 2.00

Y-
P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Step Input in
Y-Direction

Step Input

0 lbs

5 lbs

-100

0

100

200

300

400

0.00 0.50 1.00 1.50 2.00

Y-
P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Step Input in
Y-Direction

Step Input

0 lbs

5 lbs

Figure 6-2: Velocity vs. Time Responses of Linear System to Step Inputs in X-Direction

Figure 6-3: Position vs. Time Responses of System to Step Inputs in Y-Direction

72

 It is clear from the response data that additional load has a larger impact on rotational

motion than on linear motion. With a load of 5 lbs, the system takes roughly two seconds to

travel the range of rotational motion. Although the response to a step input in the y-direction is

somewhat slower, the steady-state error is still less than 15 mm, which is essential for the

ultimate goal of assisting the user in reaching the desired location. The velocity data of the

responses in the y-direction are shown below.

 The disorganized data is a result of the relatively low resolution of the Arduino ADC

combined with the small change in the rotational potentiometer’s voltage. The velocity

responses in the y-direction show that the true velocity in the y-direction slightly lags the desired

velocity, and with an additional load isn’t able to accelerate as quickly as desired. This may be

addressed more directly in the future with better motor equations and in-the-loop moment of

inertia calculations, but the y-direction step responses show the system is able to reach minimal

steady-state error, which is the main concern for the device’s purposes.

-400

-200

0

200

400

600

800

0.00 1.00 2.00Y-
V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Step Input in
Y-Direction

Ideal

0 lbs

5 lbs

-800

-600

-400

-200

0

200

400

0.00 0.50 1.00 1.50 2.00

Y-
V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Step Input in
Y-Direction

Ideal

0 lbs

5 lbs

Figure 6-4: Velocity vs. Time Response of System to Step Inputs in Y-Direction

73

 The following graphs show the system’s responses when the (x,y) components of the

desired position were switched from (900,0) to (600,250) and vice versa. This step input was

used to evaluate the combination of linear and rotational motion.

 The graphs show that the system as a whole reaches a steady-state error of less than

10mm, and that the velocity is fairly well driven to its desired value. The graph below shows the

trajectory of the end-effector during the entire system step response.

0

100

200

300

400

500

0.00 0.50 1.00 1.50

P
o

si
ti

o
n

 (
m

m
)

Time (s)

Position Response to Step Input in
Both Directions

Step Input

0 lbs

5 lbs

0

100

200

300

400

500

0.00 0.50 1.00 1.50 2.00
P

o
si

ti
o

n
 (

m
m

)
Time (s)

Position Response to Step Input in
Both Directions

Step Input

0 lbs

5 lbs

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50

V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velocity Response to Step Input in
Both Directions

Ideal

0 lbs

5 lbs

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50

V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velocity Response to Step Input in
Both Directions

Ideal

0 lbs

5 lbs

Figure 6-5: Position vs. Time Responses of System to Step Inputs in Both Directions

Figure 6-6: Velocity vs. Time Response of System to Step Inputs in Both Directions

74

 The graphs show a slight delay in rotational motion to linear motion. Although the

trajectory does seem to be more disrupted with an additional load, the trajectories on the whole

appear to be fairly direct.

6.1.2. Ramp Response

 The response of the system was also tested with ramp inputs. These followed the same

desired trajectories as the step inputs, but instead of having the desired position jump the entire

range of motion, the ramp inputs gradually adjusted the desired position by some designated

velocity. While the ramp input simulates a desired velocity, it’s important to note that the

desired velocity that the controller outputs is a separate value, resulting from calculations

explained in Chapter 5, such as proximity to destination. Graphs for both position vs. time and

velocity vs. time will be shown, to better demonstrate the system’s ability to track the

controller’s desired velocity vs. the input desired velocity. Since the step input evaluations

showed the responses were similar regardless of direction, the ramp responses will only be

-50

0

50

100

150

200

250

300

500 600 700 800 900 1,000

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Position Response to Step Input in Both Directions

0 lbs

5 lbs

Figure 6-7: Trajectory of End-effector During Response to Step Input in Both Directions

75

shown in one direction for each of the three ramp input types. Ramp inputs were given at 100

mm/s, 200 mm/s, 500 mm/s, 1000 mm/s and 1500 mm/s. These results will only discuss the

responses to ramp inputs of 200 mm/s and 1000 mm/s, as these are the best indicators of the

range of inputs the system could be expected to receive.

 The following graphs show the system’s responses when the (x,y) components of the

desired position were switched from (400,0) to (900,0) at a rate of 200 mm/s.

 The graphs show the system is quickly able to reach a velocity of 200 mm/s and maintain

a constant velocity until commanded to stop. Even though the position vs. time graphs shows no

elimination of error as time continues due to the absence of an integrating term in the controller,

the graph also shows no indefinite growth of error as time continues, which shows the linear sub-

system is able to track ramp inputs without diverging from the desired velocity.

-50

0

50

100

150

200

250

300

350

0.00 1.00 2.00 3.00

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Ramp Input
in X-Direction at 200 mm/s

Ideal

0 lbs

5 lbs

0

200

400

600

800

1,000

0.00 1.00 2.00 3.00

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Ramp Input
in X-Direction at 200 mm/s

Ramp Input

0 lbs

5 lbs

Figure 6-8: Position vs. Time Response (Left) and Velocity vs. Time Response
(Right) of System to Ramp Input of 200mm/s in X-Direction

76

 The graphs below show the same trajectories as the previous graphs, but at a greater

velocity. These are the system’s responses when the (x,y) components of the desired position

were switched from (400,0) to (900,0) at a rate of 1000 mm/s.

 While these graphs show much greater deviation from the desired position and the actual

position, the velocity graph shows this is yet again due to acceleration constraints, not

mechanical limitations of the system. The range of motion isn’t large enough for the system to

accelerate to the full 1000 mm/s, but the system was able to follow the desired velocity

accurately up to 800 mm/s, with and without a 5 lb load.

 The graphs on the following page show the system’s responses when the (x,y)

components of the desired position were switched from (700,0) to (700,300) at a rate of 200

mm/s. Similar to the step responses, the load on the end-effector has a larger effect on rotational

motion than on linear motion. The steady-state error appears to be contained, although there is

some lag between desired velocity and actual velocity.

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Ramp Input
in X-Direction at 1000 mm/s

Ramp Input

0 lbs

5 lbs

-200

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50
X

-V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velocity Response to Ramp Input
in X-Direction at 1000 mm/s

Ideal

0 lbs

5 lbs

Figure 6-9: Position vs. Time Response (Left) and Velocity vs. Time Response (Right)
of System to Ramp Input of 1000mm/s in X-Direction

77

 The graphs below show the same trajectories, but at a greater velocity. These are the

system’s responses when the (x,y) components of the desired position were switched from

(700,0) to (700,300) at a rate of 1000 mm/s.

 The range of rotational motion was not large enough for the system to reach its desired

velocity, but the true velocity with and without a 5lb load continues to increase until the

command to slow down is given. The steady-state error for high velocity in the y-direction was

undetermined.

-400

-200

0

200

400

600

800

0.00 1.00 2.00X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Ramp Input
in Y-Direction at 1000 mm/s

Ideal

0 lbs

5 lbs

-600

-400

-200

0

200

400

600

0.00 1.00 2.00 3.00

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Ramp Input
in Y-Direction at 200 mm/s

Ideal

0 lbs

5 lbs

-50

0

50

100

150

200

250

300

350

400

0.00 1.00 2.00 3.00

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Ramp Input
in Y-Direction at 200 mm/s

Ramp Input

0 lbs

5 lbs

-50

0

50

100

150

200

250

300

350

-0.50 0.50 1.50 2.50

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Ramp Input
in Y-Direction at 1000 mm/s

Ramp Input

0 lbs

5 lbs

Figure 6-10: Position vs. Time Response (Left) and Velocity vs. Time Response (Right)
of System to Ramp Input of 200mm/s in Y-Direction

Figure 6-11: Position vs. Time Response (Left) and Velocity vs. Time Response (Right)
of System to Ramp Input of 1000mm/s in Y-Direction

78

 The following set of four graphs give the entire system response to a ramp input requiring

both linear and rotational movement with a load of 0lbs and 5lbs. These are the system’s

responses when the (x,y) components of the desired position were switched from (900,0) to

(650,200) at a rates of 200 mm/s and 1000 mm/s.

 These graphs reinforce the results from the unidirectional ramp inputs. The steady-state

error to a ramp input appears to be contained, although is greater for higher velocities due to the

0

100

200

300

400

500

0.00 1.00 2.00

P
o

si
ti

o
n

 (
m

m
)

Time (s)

Position Response to Step Input in
Both Directions at 200 mm/s

Ramp Input

0 lbs

5 lbs

0

100

200

300

400

500

600

700

0.00 0.50 1.00 1.50 2.00

P
o

si
ti

o
n

 (
m

m
)

Time (s)

Position Response to Step Input in
Both Directions at 1000 mm/s

Ramp Input

0 lbs

5 lbs

0

200

400

600

800

1,000

0.00 0.50 1.00 1.50 2.00

V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velocity Response to Step Input in
Both Directions at 1000 mm/s

Ramp Input

0 lbs

5 lbs

0

100

200

300

400

500

600

0.00 1.00 2.00

V
el

o
ci

ty
 (

m
m

/s
)

Time (s)

Velocity Response to Step Input in
Both Directions at 200 mm/s

Ramp Input

0 lbs

5 lbs

Figure 6-12: Position vs. Time Response (Left) and Velocity vs. Time Response (Right)
of System to Ramp Input of 200mm/s in Both Directions

Figure 6-13: Position vs. Time Response (Left) and Velocity vs. Time Response (Right)
of System to Ramp Input of 1000mm/s in Both Directions

79

acceleration constraints of the controller. The graphs below show the trajectory of the end-

effector during these responses.

 The end-effector takes a trajectory that is slightly less linear with increased load and

increased speed, but even after the skewed initial trajectory shown in the second graph, the

system is able to correct itself as motion continues.

6.1.3. Frequency Response

 The system’s frequency response was evaluated by setting the desired position to a

sinusoidal trajectory with varying frequencies. First an example response will be given and then

the overall Bode diagrams will be presented. The graphs on the following page show the

system’s response to an x-directional sinusoidal input which covered the entire range of linear

motion at 0.2 Hz. The graphs show little difference in magnitude or phase between input and

response, regardless of the mass of the additional load. Thus the system is very-well able to

track x-direction sinusoidal inputs at frequencies around 0.2 Hz.

-50

0

50

100

150

200

250

300

500 700 900 1,100

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Position Response to Ramp Input
in Both Directions at 200 mm/s

0 lbs

5 lbs

-50

0

50

100

150

200

250

300

500 700 900 1,100

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Position Response to Ramp Input
in Both Directions at 1000 mm/s

0 lbs

5 lbs

Figure 6-14: Trajectory of End-effector During Response to Ramp
Input in Both Directions at 200 mm/s (Left) and 1000 mm/s (Right)

80

 The following graphs show the response at a higher frequency of 1 Hz. Again, the

sinusoidal input was in the x-direction only.

 These graphs show a response magnitude which is significantly reduced from the input

magnitude, as well as a phase shift of roughly 180 degrees. The velocity graph shows that the

phase shift and decrease in magnitude is largely due to the acceleration limits of the system, and

that the system accurately tracked the controller’s desired velocity output.

0

200

400

600

800

1,000

0.00 5.00 10.00

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Sinusoidal
Input in X-Direction at 0.2 Hz

Input

0 lbs

5 lbs

-600

-400

-200

0

200

400

0.00 2.00 4.00 6.00 8.00 10.00

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Sinusoidal
Input in X-Direction at 0.2 Hz

Ideal

0 lbs

5 lbs

-600

-400

-200

0

200

400

600

2.00 2.50 3.00 3.50 4.00

X
-V

el
o

ci
ty

 (
m

m
/s

)

Time (s)

Velocity Response to Sinusoidal
Input in X-Direction at 1 Hz

Ideal

0 lbs

5 lbs

0

200

400

600

800

1,000

2.00 2.50 3.00 3.50 4.00

X
-P

o
si

ti
o

n
 (

m
m

)

Time (s)

Position Response to Sinusoidal
Input in X-Direction at 1 Hz

Input

0 lbs

5 lbs

Figure 6-15: Position vs. Time Response (Left) and Velocity vs. Time
Response (Right) of System to Sinusoidal Input of 0.2 Hz in X-Direction

Figure 6-16: Position vs. Time Response (Left) and Velocity vs. Time
Response (Right) of System to Sinusoidal Input of 1 Hz in X-Direction

81

 Similar sinusoidal inputs were tested at frequencies of 0.1 Hz, 0.2 Hz, 0.4 Hz, 0.6 Hz, 0.8

Hz, 1 Hz, and 1.5 Hz. Separate sets of data were collected for x-direction inputs, y-directions

inputs, and inputs that required motion in both the x and y directions. All responses were tested

with no load and with a 5lb load. The following Bode plots show the magnitude and phase

characteristics of the responses.

-25

-20

-15

-10

-5

0

5

0.1 1 10

M
ag

n
it

u
d

e
(d

B
)

Angular Frequency (rad/s)

Frequency Response in
Y-Direction

0 lbs

5 lbs

-25

-20

-15

-10

-5

0

5

0.1 1 10

M
ag

n
it

u
d

e
(d

B
)

Angular Frequency (rad/s)

Frequency Response in
Both Directions

0 lbs

5 lbs

-30

-25

-20

-15

-10

-5

0

0.1 1 10

M
ag

n
it

u
d

e
(d

B
)

Angular Frequency (rad/s)

Frequency Response in
X-Direction

0 lbs

5 lbs

-250

-200

-150

-100

-50

0

0.1 1 10

P
h

as
e

(d
eg

re
es

)

Angular Frequency (rad/s)

Frequency Response in
Y-Direction

0 lbs

5 lbs

-250

-200

-150

-100

-50

0

0.1 1 10

P
h

as
e

(d
eg

re
es

)

Angular Frequency (rad/s)

Frequency Response in
X-Direction

0 lbs

5 lbs

-200

-150

-100

-50

0

0.1 1 10

P
h

as
e

(d
eg

re
es

)

Angular Frequency (rad/s)

Frequency Response in
Both Directions

0 lbs

5 lbs

Figure 6-17: Bode Plots of System Responses to Sinusoidal Inputs in X-Direction (Top), Y-Direction (Middle), and Both Directions (Bottom)

82

 The Bode plots show the system is able to track sinusoidal inputs with frequencies up to 1

rad/s with little change in phase or magnitude. All phase diagrams cross -180 degrees at between

5 rad/s and 10 rad/s, corresponding to response magnitudes of between -10 and -20 dB. The gain

margin can be safely estimated at 10dB, supporting the explanation of the system’s stability

presented in Chapter 5. The Bode plots show no distinguishable difference between a load of

0lbs and a load of 5lbs.

6.2. System Response to Force Inputs

 While the force-mode is not meant to be used frequently, it is important that the system

moves with the user if the user has the strength and desire to move without assistance. To

evaluate the force-based controller alone, the system was held in force mode and a user was

asked to move the end-effector to four designated locations using the wrist interface. The system

ignored eye-tracker data for these tests, and instead motion was based purely on force inputs

registered by the FSRs. The user was asked to move the end-effector along a crossing pattern

that was broken into four legs. The system began at the (x,y) coordinate (900,0) and the user

was asked to move first to (600,200), then (900,200), then (600,0), and then return to (900,0).

The graph below shows an example trajectory of this evaluation.

 -50

0

50

100

150

200

250

500 600 700 800 900 1,000

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Trajectory of End-effector While
Guided via Force Control

Figure 6-18: Trajectory of End-Effector with System in Force mode and
Being Driven by Force to the Four Designated Points

83

 The data presented here is based on two individuals performing the entire motion twice,

giving a total of 16 force-controlled motions. To evaluate the motion, the data for the entire

movement was broken into four legs based on when the user’s motion came to a rest for each

leg. In the above graph, it’s difficult to tell where the user finished each leg of motion since time

is not represented on either axis. The graph below shows the extracted begin and end points for

the motion depicted in the above graph, which better shows the overall accuracy of the force-

based controller.

 Once beginning and ending points were extracted from all 16 force-driven motions, the

distance between the final resting point and the desired destination and the total time required

were calculated for each motion. One of the 16 motions triggered an emergency stop described in

Chapter 5 (due to an outlier potentiometer reading). This motion was excluded from analysis.

The calculations from the remaining 15 motions showed that the average position error was

31mm and that the average length of time from initial force input to reaching a steady final

position was 3.08 seconds.

-50

0

50

100

150

200

250

500 600 700 800 900 1,000

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Extracted Points During
Force-Based Evaluation

Figure 6-19: Extracted Begin and End Points for Example Motion During
Force-Based Evaluation

84

6.3. Eye-Tracker Evaluation

 When the controller in in position mode, the desired position of the system is calculated

from eye-tracker data. To evaluate the mechanical responses of the system, the desired position

was taken directly from the input, and thus known to be accurate. For the complete system, the

accuracy of the calculation of desired position from eye-gaze data must be verified.

 For the following evaluation, the eye-tracker was calibrated to the user before each set of

data was collected. While using saved calibration data was found to be an effective, time-saving

alternative, the process of calibrating the eye-tracker and then collecting data was used as a

means of evaluating the calibration as well. Calibration consisted of having the user look at four

pre-determined points marking the boundary of allowable motion until a certain number of

successful eye-gaze frames were collected. The carriage followed along with the calibration by

traveling to the pre-determined locations, allowing the user to train the eye-tracker to associate

the current gaze with the carriage’s current position. If too few of the collected eye-gaze frames

had valid data, the user was prompted to look at the same point and repeat the process. The most

time-consuming part of the process was the carriage movement and the sequence of beeps which

act as instructions for the user; the process of collecting frames for a given point took under two

seconds. After running ten calibrations sets, the average time for calibration was 51.25s.

 Following calibration, a trial consisted of having the user direct the end-effector to the

same positions from the force-mode evaluation. The user was asked to use only eye-gaze to

direct the system to (x,y) positions (600,200,), (900,200), (600,0), and then return to (900,0).

These trials were performed with the user’s right wrist attached to the wrist-interface. The force-

sensors were operational, but the user was asked to relax the arm attached to the end-effector, in

85

order to simulate a physically impaired limb. Since this is a preliminary evaluation to show the

potential of the system, a total of ten trials were performed and analyzed.

 The graph below shows an example x-y position graph of the user’s eye-gaze, the desired

position output by the controller, and the end-effector’s real position for one trial.

 For each trial, the key data points were separated from the others to perform

mathematical analysis. For each coordinate there were three key data points. The first was

collected when the eye-tracker first collected enough successful frames to update the eye-gaze to

the new coordinate. The second data point was when the end-effector reached a steady position

or when force input was received to override eye-tracker data. The third point was the data

collected immediately before the eye-tracker successfully tracked the next coordinate. This final

point allowed evaluation of the amount of drift associated with unintentional force input once the

destination was reached. The graph on the following page shows the key data points from the

above trial.

-50

0

50

100

150

200

250

500 600 700 800 900 1000

Y-
P

o
si

ti
o

n
 (

m
m

)

X-Position (mm)

Position Data for Entire System
Under Position Control

Eye-Tracker Position

Controller Position

Actual Position

Figure 6-20: Three Data Series showing the Eye-Tracker Position, the Desired Position output
by the Controller, and the Measured End-Effector Position during an Eye-Gaze Controlled Trial

86

 A total of ten trials were performed, resulting in 40 individual motions. The overall

average distance between the eye-tracker output position and the true desired position was

15.98mm. The eye-tracker was slightly less accurate for the farther away gazes than the closer

gazes. The individual motions to points (600,200) and (900,200) had an average eye-gaze error

of 23.42mm, while motions to points (600,0) and (900,0) had an average eye-gaze error of only

8.53mm.

6.4. System Response to Combined Force and Eye-Tracker Inputs

 The data and graphs shown in the previous section were also used to evaluate the entire

system response to eye-tracker inputs. While the previous section explores the accuracy of the

eye-tracker, this section discusses the accuracy of the end-effector when driven by the eye-

tracker. The end-effector is expected to be somewhat less accurate than seen in the mechanical

response section, since the load of a real human arm is often more resistive than a dead weight.

As the end-effector moves the user’s wrist away from the body, more and more weight from the

arm resists the movement, which can even apply a force in the opposite direction due to gravity.

Evaluating the end-effector’s final position is somewhat difficult, since force inputs were

-50

0

50

100

150

200

250

500 600 700 800 900 1,000
Y-

P
o

si
ti

o
n

 (
m

m
)

X-Position (mm)

Key Data Points UnderPosition Control

Eye-Tracker Position

Controller Position

Actual Position

Figure 6-21: Key Data Points Extracted from the previously shown
Eye-Gaze Controlled Trial

87

allowed to alter the desired position. Even though the user did not intentionally apply forces, the

FSRs occasionally registered forces from inertial resistance described above.

 In an attempt to best evaluate the system, the position error of the end-effector was

calculated by three different methods. Method 1 measured the distance between the eye-

tracker’s desired location and the end-effector’s location when a steady position was reached or

an intentional force was registered. Method 2 measured the distance between the true desired

location and the end-effector’s location when a steady position was reached or an intentional

force was registered. Method 3 measured the distance between the true desired location and the

end-effector’s position immediately before the eye-tracker output a new desired position. This

final measurement was used to determine if there was significant drift due to unintentional

forces. The table below shows the results from all ten trials. The “Back Coordinates” are

(600,200) and (900,200), and the “Front Coordinates” are (600,0) and (900,0).

 Again, the system has a smaller position error for the front coordinates than the back

coordinates, both in eye-gaze accuracy and in the accuracy of the end-effector’s motion. The

larger errors among the back coordinates are likely due to difficulty in reaching the back left

position, as shown by the outlier in the graph of key data points. Since this location was the

farthest from the user’s free-hanging arm, the arm offered the most natural resistance to being

driven to this location. No average distance was greater than 5cm, and if the back left location is

 Distance (mm)

 Method 1 Method 2 Method 3

Complete Average 20.81 31.63 31.07

Back Coordinates 32.12 49.46 40.67

Front Coordinates 9.51 13.80 11.88

Table 6-1: Average Errors for System under Normal Operation as measured by Three Different Methods

88

excluded this drops to less than 3cm. The similarity of the distances calculated by Method 2 and

Method 3 show that unintentional force inputs did not play a large role in altering the desired

positions, and thus were effectively ignored by the controller. Overall, the system was shown to

be reasonably accurate, with a maximum position error of 50mm and an average position error of

just over 30mm when driving a relaxed arm.

89

6.5. System Cost

 The total cost to rebuild the system is roughly $1,200. This includes the cost of

components retrieved from past projects, such as the MY1016 motor, but does not include the

cost of some smaller standard components, such as wiring and a few miscellaneous bolts and

nuts.

Quantity Part Number Description Supplier Unit Cost Total Cost

1 8589K84 1/4'' Thick, 24'' x 48'' Acrylic McMaster-Carr $55.76 $55.76

1 9293K56 5lb Constant-Force Spring McMaster-Carr $7.85 $7.85

1 8701K45 UHMW Polyethylene Rod - 1'' Diameter x 1' Length McMaster-Carr $3.08 $3.08

1 91259A102 1/4'' x 1-3/4'' Shoulder Screw, 10-24 Thread McMaster-Carr $1.53 $1.53

1 93070A121 M5 x 10mm Socket Head Cap Screws (Qty: 50) McMaster-Carr $9.40 $9.40

1 90327A126 M5 x 12mm Socket Head Cap Screws (Qty: 50) McMaster-Carr $6.33 $6.33

1 9059A012 M5 Plain Steel Hex Nut (Qty: 100) McMaster-Carr $1.70 $1.70

4 5674K1 Flange-Mount Ball Transfer McMaster-Carr $3.07 $12.28

20 5537T454 Steel End-Feed Fastener, M5 (Pack of 4) McMaster-Carr $2.55 $51.00

2 5537T101 Aluminium T-Slotted Framing Extrusion (8ft) McMaster-Carr $21.58 $43.16

2 92510A357 Aluminum Unthreaded Spacer, 3/8'' Screw Size McMaster-Carr $2.32 $4.64

1 5912K5 Self-Lubricating Bronze Bearing, 1/2'' McMaster-Carr $12.28 $12.28

1 6086K111 Quick-Disconnect Bushing, 1/2'' Bore McMaster-Carr $12.24 $12.24

1 5972K326 Steel Ball Bearing, Double Shielded, 10mm Diameter McMaster-Carr $4.80 $4.80

1 161659 2'' x 4'' x 10 ft Lumber Home Depot $4.09 $4.09

1 B00R575B46 80/20 Aluminum Corner Bracket w/Tabs (Qty: 25) Amazon $18.50 $18.50

2 B009YSHYTE 6061 Aluminum Sheet, 1/4'' x 8'' x 8'' Amazon $13.23 $26.46

1 B001AXF31M 50-lb Fishing Line Amazon $2.10 $2.10

1 B006AR54TY Futuro Sport Wrap Around Wrist Support Amazon $6.99 $6.99

1 B0035FZTSO Steel Key Stock, 1/8'' x 1/8'' Amazon $3.65 $3.65

1 TBI-TR20N-0900-30-30 900 mm Linear Guide Rail Anaheim Automation $78.00 $78.00

1 TBI-TRS20VN-N-Z0 Carriage Anaheim Automation $35.00 $35.00

1 B00ITELF12 Battery Disconnect Cut Off Amazon $8.62 $8.62

1 B00INVF468 Black 10-Gauge Wire Amazon $10.28 $10.28

1 B000K7GRCI Solderless Wire Terminal and Connection Kit Amazon $12.56 $12.56

1 B00NNDAFW4 EBL AAA Charger w/ 8 AAA Batteries Amazon $15.99 $15.99

1 B00829IN36 3 x 1.5 V AAA Battery Holder Amazon $3.40 $3.40

1 B00H8T6J3S 1 x 1.5 V AAA Battery Holder Amazon $3.57 $3.57

1 HR1290W CSB High Rate AGM Battery AtBatt $34.99 $34.99

1 LC1-12-3A Leoch 12V/3A SLA Battery Charger AtBatt $26.99 $26.99

1 AM-2618 Sting Potentiometer Kit AndyMark $17.00 $17.00

1 FIRST CIM Motor FIRST CIM Motor BaneBots $28.00 $28.00

1 P80 Gearbox Planetary P80 CIM Gearbox, 64:1 BaneBots $143.25 $143.25

1 MY1016 United 250W 24V DC Motor Motion Dyanamics $45.95 $45.95

1 1499 RoboClaw 2x60A Motor Controller Pololu $199.95 $199.95

4 2728 Force-Sensing Resistor: 0.6'' Diameter, Short Tail Pololu $5.80 $23.20

1 N/A Tobii EyeX Eye Tracker and Development Kit Tobii $139.00 $139.00

1 N/A Arduino Uno Rev3 Arduino $24.95 $24.95

2 WRL-10414 Xbee 2mW Wireless Antenna Series 2 Sparkfun $22.95 $45.90

Total: 1,184.44$

Mechancal Construction

Electronic Compontents

Table 6-2: Cost of Components for Entire System

90

CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

 This thesis has introduced a low-cost robotic device capable of determining a user’s

intention from eye-gaze data and force input, and using such information to assist the movement

of an impaired upper limb. While the past decade has seen robotics increasingly utilized to assist

those with physical impairments, the applications thus far have been restricted to rehabilitative

environments, where researchers and robotic systems determine trajectories of motion, not the

individual with the physical impairment. These systems have proven to be wonderfully

beneficial, yet the simple truth remains that millions of people continue to live with physically

impaired limbs. The project presented in this thesis aims to allow robotics to reach a new level

of assistance, in which the ultimate goal is to give the user himself control of an impaired limb,

even in the face of ongoing or unsuccessful rehabilitation. Furthermore, the control presented is

intuitive. The control scheme described in this thesis combines real-time force inputs and eye-

gaze data in a way that requires no training, no detailed explanation, and no physical abilities. If

the user has the physical strength to move to a location, the system adapts. If the user prefers

instead to use eye-gaze, the system adapts. Such a scheme is absolutely essential if assistive

robots are to reach their full potential in society. This thesis presents a control scheme which can

be easily adapted to fit a wide array of human-robot interaction applications.

 A secondary accomplishment of the system presented is its potential accessibility. All

portions of the design, from mechanical to electronic, take accessibility into consideration. A

design for the first prototype was developed based on polar coordinates, in order to keep the bulk

of the system’s mass in a single, stationary position. The portion of the system responsible for

linear motion included a passive constant-force spring pulling against a DC motor, which kept

91

the cost and inertia to a minimum while still being able to create force and motion in two

directions. A wrist-interface made of laser-cut materials and four low-cost force-sensing

resistors was designed to decouple applied moments and linear forces. The electronics used in

the system are consistent with the goal of keeping the system low-cost. From the Arduino

communication hub to a commercially available Tobii EyeX eye-tracker, all electronic

components were selected to be as cost-effective as possible. The low-cost nature of the system

presented in this thesis, shown by the total cost of just over $1,000, suggests assistive robotics

can be made accessible to the people who need them most, including the 26% of stroke survivors

who are dependent in activities of daily living [5]. This thesis aims to take a step toward making

that goal a reality.

7.1. Future Work

 The work presented in this thesis provides a foundation for future development of an

intention-detecting assistive robotic device to help individuals with physically impaired limbs.

While this thesis has demonstrated the system’s promise with a first prototype, there are various

improvements which are necessary in order for the system to reach its full potential, including

expansion to a 3D workspace, increased eye-tracker data, and improved controller robustness.

7.1.1. Mechanical Development

 Since a goal of the described system is to be as low-cost as possible, improvements can

always be made as technology and materials become more readily available. A more specific

improvement in mechanical design would be the expansion to three dimensional movement.

There are a few ways this system could be adapted to allow 3D movement, but it is important

92

that the method prevents the robot from interfering with desk space. The current design is meant

to facilitate this conversion, as attaching it to a fixture above the user’s desk would allow similar

motion without interfering with the desktop in the way the current design does. Once the system

is inverted, the design must allow motion in the vertical direction. The current design is most

suited to adding a linear actuator of some sort to the carriage, which would allow the entire wrist-

interface to move vertically below the carriage while the carriage moves in a 2D plane above the

user. However, vertical motion could also be obtained via cables, although this would induce

non-rigid dynamics and would require considerable modifications to the current design.

 While the wrist-interface is effective in registering the presence of force inputs from the

user, reducing the friction between the sliding components of the wrist-interface could allow the

FSRs to be used to better estimate the magnitudes of applied forces. Simply finding a lower-

friction alternative to the laser-cut acrylic would likely reduce the minimum detectable force and

allow smoother force readings.

 The way in which the user’s wrist is attached to the wrist-interface could also be

improved, as the current wrist brace is more time-consuming to attach than desired. Ideally, the

user would be able to attach and detach the end-effector effortlessly, without needing to actually

attach or detach anything.

7.1.2. Electronic/Software Development

 The positioning of the eye-tracker is the area in most need of attention during future

development. The current eye-tracker holder works well in terms of its adaptability to the user,

due to its easily adjusted height, angle and position. However, the holder takes up space and

obstructs some arm movements, which make it a hindrance to the system’s ultimate goals. A

93

suspension system could be designed to “float” the eye-tracker above the table, but a more ideal

solution is to simply place the eye-tracker on the table. Now only would this clear the desktop

and free the workspace from any obstacles, but it would also allow the user to sit at the desk,

something the current system does not allow. This setup would require a few improvements

upon current commercially available eye-tracker technology. To begin, the eye-tracker must be

able to recover eye-gaze data even if an arm obstructs the view from one sensor. In addition, the

eye-tracker must be able to track eye-gaze data when the user looks beyond the width of the eye-

tracker. Both of these could be solved with the inclusion of a second or third eye-tracker, as the

total width of the eye-tracker collection would span the width of the desktop and if one eye-

tracker is blocked another could relay the data instead. However, the Tobii EyeX is not currently

compatible with multiple eye-trackers, since each could interfere with the others’ infrared

reflections. Theoretically the controller could switch between eye-trackers quickly to simulate

all being active at once, but this may require considerable programming to implement.

 Of course, improvements can always be made to the controller as well. The current

controller displayed sufficient accuracy from eye-gaze input to end-effector position, but the

conversions between desired velocity and pulse durations could be better formulated, particularly

for the rotational motor. One such improvement would be to have the system automatically

adjust, or calibrate, the estimated moment of inertia of the system. The current controller

calculates the desired velocity based on the estimated current velocity and the ratio Ke/J, as

dictated by motor dynamics. However, the system’s moment of inertia J is currently adjusted to

the user’s comfort and then held constant, whereas the true value of J is constantly changing.

Better estimation of the moment of inertia could elicit much improved responses from the

rotational motor.

94

7.1.3. Experimentation with Intention-Detection

 There are a vast number of potential ways to improve the intention detection capabilities

of the system and the evaluation of which are best suited for the task will require countless well-

designed experiments. User input could be given from blink data, a hand device such as a

joystick, verbal communication, etc. The field of intention detection is expansive and ever-

growing, and the specific ability to determine an exact location from subtle clues is far from

being fully examined. The results shown in this thesis show the promise of using eye-gaze data

to determine a user’s desired movement, but future systems would benefit greatly from being

able to combine a wide array of collected non-physical user inputs to augment eye-gaze data.

95

APPENDIX A

ARDUINO CODE

//Message received from MATLAB

char messageIn[]={0,0,0};

//Message to be sent to MATLAB

char messageOut[]={0,0};

//Pin Assignments

int motor_r = 3;

int potpin_r = 0;

int motor_theta = 11;

int potpin_theta = 5;

//PW controls the KEPCO current output. Must be between 0-255.

int pw_r=0;

int pw_theta=0;

//Stores analog read values for FSR and potentiometers

int voltage[]={0,0,0,0,0,0};

#include <AltSoftSerial.h>

int xbeeByte;

unsigned long time;

int returnInd = 50;

int adcVal[] = {0,0,0,0,0,0,0,0};

byte requestADC[] = {126,0,15,23,1,0,19,162,0,64,140,88,78,255,254,2,73,83,37};

byte changeBaudLocal[] = {126,0,5,8,1,66,68,6,106};

AltSoftSerial xbee;

void setup() {

 Serial.begin(115200);

 //Set XBee communication to 57600 bits/s

 xbee.begin(9600);

 xbee.write(changeBaudLocal,9);

 xbee.end();

 xbee.begin(57600);

}

void loop(){

 //If no recent actions have occured...

 //...trigger reset by setting returnInd equal to 50

 if ((millis()-time)>100)

 {

 returnInd = 50;

 }

 //Receive message from MATLAB

 if(Serial.available()>0)

 {

 //The message will have 3 bytes.

96

 //[0] => Type of message. 1 = Begin. 2 = Send voltage values. 3 = Send PW values to current

controller.

 //[1] => Only used for sending PW (see below)

 //[2] => Only used for sending PW (see below)

 Serial.readBytes(messageIn,3);

 //Initialize

 if (messageIn[0]==1){

 Serial.write(1);

 Serial.write(1);

 returnInd = 50;

 int voltage[]={0,0,0,0,0,0};

 //Clear current XBee readings

 while (xbee.available()>0)

 {

 xbee.read();

 }

 }

 //MATLAB is asking for FSR and pot values. Send these to MATLAB.

 //Update these in the void loop.

 if (messageIn[0]==2){

 if (returnInd > 30)

 {

 time = millis();

 xbee.write(requestADC,19);

 returnInd = 0;

 }

 voltage[0] = analogRead(potpin_r);

 voltage[1] = analogRead(potpin_theta);

 //Sends a 2-byte message for each voltage value.

 //[0] = Voltage/256

 //[1] = Remainder

 for(int i=0;i<6;i++){

 messageOut[0]=voltage[i]/256;

 messageOut[1]=voltage[i]-messageOut[0]*256;

 for(int j=0;j<2;j++) {

 Serial.write(messageOut[j]);

 }

 }

 }

 //Receive PW value from MATLAB and send to current controllers

 if (messageIn[0]==3){

 pw_r=int(messageIn[1]);

 pw_theta = int(messageIn[2]);

 analogWrite(motor_r,pw_r);

 analogWrite(motor_theta,pw_theta);

 }

 }

97

 //Read information from XBee if available

 if (xbee.available())

 {

 xbeeByte = int(xbee.read());

 if (returnInd == 22)

 {

 adcVal[0]=xbeeByte;

 }

 else if (returnInd == 23)

 {

 adcVal[1]=xbeeByte;

 voltage[2] = adcVal[0]*256+adcVal[1];

 }

 else if (returnInd == 24)

 {

 adcVal[2]=xbeeByte;

 }

 else if (returnInd == 25)

 {

 adcVal[3]=xbeeByte;

 voltage[3] = adcVal[2]*256+adcVal[3];

 }

 else if (returnInd == 26)

 {

 adcVal[4]=xbeeByte;

 }

 else if (returnInd == 27)

 {

 adcVal[5]=xbeeByte;

 voltage[4] = adcVal[4]*256+adcVal[5];

 }

 else if (returnInd == 28)

 {

 adcVal[6]=xbeeByte;

 }

 else if (returnInd == 29)

 {

 adcVal[7]=xbeeByte;

 voltage[5] = adcVal[6]*256+adcVal[7];

 }

 returnInd++;

 }

}

98

APPENDIX B

MATLAB CODE

function time=positionAndForce2_EyeGaze(a,x,y)
%Drives the 2D system to the location specified by "posDesired" in the
%constants section. Accepts input from FSRs (priority)

%Assume Arduino returns voltages as [Pos, Left FSR, Right FSR, Front FSR, Back FSR]

%Call on command window beforehand...
%a=serial('COM3')
%a.BaudRate=115200
%a.ReadAsyncMode='manual'
%fopen(a)
%justPosition(a)

%% Constants
%data = ['Time','LeftForce','RightForce','FrontForce','BackForce','XposDes','XvelDes','XposCur','
useEyeTracker = 1;
doCalibrate = 0;
messageIn=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
messageOut=[0,0,0];
%XY Constants (Units = mm)
posDesired_x = x;
posDesired_y = y;
lastPwUpdate=0;
timeSincePwUpdate = 0;
%X,Y Constants (Units = mm)
acceptableDistance_r_Min = 15;
acceptableDistance_r_Max = 25;
acceptableDistance_r = 15;
acceptableDistance_theta = 0.01;
acceptableDistance_theta_Min = 0.01;
acceptableDistance_theta_Max = 0.02;
accel_x = 0;
accel_y = 0;
accel = 1500;
accelMax = 1500;
velMax_x = 1000;
velMax_y = 1000;
velDesired_x=0;
velDesired_y=0;
%R Constants (mm)
posMax_r=930;
posMin_r=350;
pwZero_r=193;
pwMin_r=160;
pwMax_r=209;
velMin_r = 20;
velMax_r = 1000;
velDesired_r = 0;

99

pw_r=pwZero_r;
pwPosition_r=0;
%Theta Constants (Units = radians)
posMax_theta=0.4;
posMin_theta=0;
pwZero_theta=184;
pwMin_theta=170;
pwMax_theta=198;
velMin_theta = 0.07;
velMax_theta = 0.9;
velDesired_theta = 0;
pw_theta=pwZero_theta;
pw_theta_Des = pwZero_theta;
pwPosition_theta=0;
velCalibrationOffset = 0;
arrived = 0;
posDif = 0;
lastPosDif = 0;
timeProgressMade = 0;
%Force Feedback Constants
force_x = 0;
force_y = 0;
force_r = 0;
force_theta = 0;
lastForce_r=0;
lastForce_theta=0;
lastForceUpdate=0;
timeLastForceDrive = 0;
smoothNum = 5;
positionDrive=1;
forceDrive=0;
forceVel_x = 0;
forceVel_y = 0;
forceAccel_x=0;
%Universal Constants
emerStop=0;
firstRun=1;
shutOffMin = 183;
shutOffMid = 184;
shutOffMax = 185;

%Eye-Tracker Calibration
if(useEyeTracker==1)
%Setup socket communication
s=tcpip('127.0.0.1', 20005, 'NetworkRole', 'client');
fopen(s);
%Send request for eye-tracker data
fwrite(s,'C');
currentFrame = 0;
calibrationPoints = 4;
calXCoords = [600,900,900,600];
calYCoords = [200,200,0,0];
calibrationXMin = 600;
calibrationXMax = 900;
calibrationYMin = 0;
calibrationYMax = 200;

100

%Arrays to store calibration data
framesPerPoint = 50;
calLeftX = zeros(calibrationPoints,framesPerPoint);
calLeftY = zeros(calibrationPoints,framesPerPoint);
calRightX = zeros(calibrationPoints,framesPerPoint);
calRightY = zeros(calibrationPoints,framesPerPoint);
avgLeftX = zeros(calibrationPoints,1);
avgLeftY = zeros(calibrationPoints,1);
avgRightX = zeros(calibrationPoints,1);
avgRightY = zeros(calibrationPoints,1);
calXAvg = zeros(calibrationPoints,1);
calYAvg = zeros(calibrationPoints,1);
failsAllowedCalibrate = 20;
failsAllowedPercentage = 0.2;
EyeGazeX=[-1];
EyeGazeY=[-1];
xGaze = 0;
yGaze = 0;
timeEyeGaze = zeros(1,1);
fprintf('Get ready to calibrate \n');
pause(2);
begin=0;

%Setup beep used to tell user calibration status
duration=1;
freq=3000;
fs = 3*freq;
values=0:1/fs:duration;
longBeep=sin(2*pi* freq*values);
duration=0.2;
freq=3000;
fs = 3*freq;
values=0:1/fs:duration;
shortBeep=sin(2*pi* freq*values);
end

%Initialize
%% Start
start=0;
%Initialize Arduino
tic;
while(start==0)
time=toc;
%readasync BEFORE sending message...
if(a.TransferStatus == 'idle')
readasync(a,2);
end
%Send command to initialize Arduino
messageOut=[1,1,0];
fwrite(a,messageOut);
while(a.BytesAvailable<2)
%Wait for response from Arduino
if (toc-time)>1
break;
end

101

end
%Error handling if a complete response isn't received
if(a.BytesAvailable<2&&a.BytesAvailable>0)
fread(a,a.BytesAvailable);
continue;
end
if(a.BytesAvailable==0)
continue;
end
%Read response from Arduino
messageIn=fread(a,a.BytesAvailable);
if (messageIn(1)==1)
if (messageIn(2)==1)
start=1;
end
end
end

%Setup Eye Tracker
if(useEyeTracker==1)
%Pre-calibrated Eye-Tracker Data is default
leftXAvg = 0.2661;
rightXAvg = 0.8503;
topYAvg = 0.5211;
bottomYAvg = -0.0244;
XRange = 0.5841;
YRange = 0.5455;
%Initialize Eye-tracker
while(~begin)
if s.BytesAvailable>0
event = char(fread(s, s.BytesAvailable));
index = 0;
if (event == ['B';'e';'g';'i';'n'])
begin = 1;
end
end
end
%Calibration Procedure
if(doCalibrate==1)
goToPoint(a,900,0);
for(currentPoint = 1:calibrationPoints)
%Read location for current calibration point
currentPointX = calXCoords(currentPoint);
currentPointY = calYCoords(currentPoint);
tic;
%Send end-effector to current calibration point
goToPoint(a,currentPointX,currentPointY);
fprintf('Look to the %s\n',calibrationPointNames(currentPoint));
pause(1.5);
sound(shortBeep,fs);
pause(1.5);
sound(shortBeep,fs);
pause(1.5);
sound(longBeep,fs);
%Request data from eye-tracker
fwrite(s,'C');

102

calibrate = 1;
while(calibrate)
%Read response from eye-tracker, if available
if s.BytesAvailable>0
event = char(fread(s, s.BytesAvailable));
index = 0;
currentFrame = currentFrame + 1;
%Seperate string into four doubles
for(i=1:length(event))
if event(i)==',';
if(index==0)
xLeft = event(1:i-1);
xLeft = str2double(xLeft);
index = index + 1;
start = i+1;
elseif (index == 1)
yLeft = event(start:i-1);
yLeft = str2double(yLeft);
index = index + 1;
start = i+1;
elseif (index == 2)
xRight = event(start:i-1);
xRight = str2double(xRight);
index = index + 1;
start = i+1;
elseif (index == 3)
yRight = event(start:i-1);
yRight = str2double(yRight);
index = index + 1;
end
end
end
%Store eye gaze
calLeftX(currentPoint,currentFrame) = xLeft;
calLeftY(currentPoint,currentFrame) = yLeft;
calRightX(currentPoint,currentFrame) = xRight;
calRightY(currentPoint,currentFrame) = yRight;
if currentFrame<framesPerPoint
%Keep collecting data...
fwrite(s,'C');
else
%If failed, start over
if

(sum(calLeftX(currentPoint,:)==0)>failsAllowedCalibrate)||(sum(calLeftY(currentPoint,:)==0)>failsAllowedCalibra

te)||(sum(calRightX(currentPoint,:)==0)>failsAllowedCalibrate)||(sum(calRightY(currentPoint,:)==0)>failsAllowed

Calibrate)
fprintf('Calibration Failed\n');
sound(longBeep,fs);
pause(1.5);
sound(longBeep,fs);
pause(1.5);
fprintf('Try calibration again\n');
sound(shortBeep,fs);
pause(1.5);
sound(shortBeep,fs);
pause(1.5);

103

sound(longBeep,fs);
pause(1.5);
currentFrame = 0;
fwrite(s,'C');
continue;
end
%When successful calibration occurs...
%Set variables to move to next calibration point
currentFrame = 0;
calibrate = 0;
%Calculate and store important values
avgLeftX(currentPoint,1) = sum(calLeftX(currentPoint,:))/sum(calLeftX(currentPoint,:)~=0)
avgLeftY(currentPoint,1) = sum(calLeftY(currentPoint,:))/sum(calLeftY(currentPoint,:)~=0)
avgRightX(currentPoint,1) = sum(calRightX(currentPoint,:))/sum(calRightX(currentPoint,:)~=0)
avgRightY(currentPoint,1) = sum(calRightY(currentPoint,:))/sum(calRightY(currentPoint,:)~=0)
calXAvg(currentPoint,1) = (avgLeftX(currentPoint,1)+avgRightX(currentPoint,1))/2
calYAvg(currentPoint,1) = (avgLeftY(currentPoint,1)+avgRightY(currentPoint,1))/2
continue;
end
end
end
end

%Final Calibration Calculations
leftXAvg = (calXAvg(1,1)+calXAvg(4,1))/2
rightXAvg = (calXAvg(2,1)+calXAvg(3,1))/2
topYAvg = 1 - (calYAvg(1,1)+calYAvg(2,1))/2
bottomYAvg = 1 - (calYAvg(3,1)+calYAvg(4,1))/2
XRange = rightXAvg - leftXAvg
YRange = topYAvg-bottomYAvg
calData = [leftXAvg,rightXAvg,topYAvg,bottomYAvg,XRange,YRange];
%Store calibration results
filename = 'Calibrate Four Points.xlsx';
xlswrite(filename,calData);
end
fwrite(s,'C');
end

%% Main Loop
tic;
lastPwUpdate = toc;
while(1)
%% Initialize
time=toc;
% Read Data
if(a.TransferStatus == 'idle')
readasync(a,12);
end
messageOut=[2,0,0];
fwrite(a,messageOut)
while(a.BytesAvailable<12)
if (toc-time)>0.02
break;
end
end

104

%If incomplete, delete data and try again...
if(a.BytesAvailable<12&&a.BytesAvailable>0)
fread(a,a.BytesAvailable);
continue;
end
if(a.BytesAvailable==0)
continue;
end

%% Get values
messageIn=fread(a,a.BytesAvailable);
potValue_r=(messageIn(1)*256+messageIn(2));
potValue_theta = (messageIn(3)*256+messageIn(4));
rightForce=(messageIn(5)*256+messageIn(6));
backForce=(messageIn(7)*256+messageIn(8));
frontForce=(messageIn(9)*256+messageIn(10));
leftForce = (messageIn(11)*256+messageIn(12));
rightForce = round(1.25*rightForce);
leftForce = round(0.9*leftForce);

%Set maximum limits to force input. Currently set to max possible ADC
%output.
if(leftForce>1024)
leftForce=0;
end
if(rightForce>1024)
rightForce=0;
end
if(backForce>1024)
backForce=0;
end
if(frontForce>1024)
frontForce=0;
end

%Store current position
if(firstRun==1)
posCurrent_r = 0.748951*(potValue_r+367);
posCurrent_theta = 0.004313*potValue_theta-2.3;
firstRun=0;
continue;
end

%Calculate current position
posLast_r = posCurrent_r;
posCurrent_r = 0.748951*(potValue_r+367);
posLast_theta = posCurrent_theta;
posCurrent_theta = 0.004313*potValue_theta-2.23413;
posCurrent_x = (posCurrent_r)*cos(posCurrent_theta);
posCurrent_y = (posCurrent_r)*sin(posCurrent_theta);

%% Calculate Desired Positions. Check boundaries...
%NOTE: Only update eyetracker posDes if last n gaze points were
%consistent AND gazepoint is L distance away from current point...
if(useEyeTracker==1)

105

%POSITION FEEDBACK (WITH EYE GAZE)
if s.BytesAvailable>0
event = char(fread(s, s.BytesAvailable));
index = 0;
for(i=1:length(event))
if event(i)==',';
if(index==0)
xLeft = event(1:i-1);
xLeft = str2double(xLeft);
index = index + 1;
start = i+1;
elseif (index == 1)
yLeft = event(start:i-1);
yLeft = str2double(yLeft);
index = index + 1;
start = i+1;
elseif (index == 2)
xRight = event(start:i-1);
xRight = str2double(xRight);
index = index + 1;
start = i+1;
elseif (index == 3)
yRight = event(start:i-1);
yRight = str2double(yRight);
index = index + 1;
end
end
end
end
%If successful read
if (xLeft>0)&&(xRight>0)&&(yLeft>0)&&(yRight>0)
%Calculate desired position from gaze data
yLeft = 1-yLeft;
yRight = 1-yRight;
xGaze = ((((xLeft+xRight)/2-leftXAvg)/XRange)*(calibrationXMax-calibrationXMin)+calibrationXMin);
yGaze = ((((yLeft+yRight)/2-bottomYAvg)/YRange)*(calibrationYMax-calibrationYMin)+calibrationYMin);
xGaze = min(xGaze,calibrationXMax);
xGaze = max(xGaze,calibrationXMin);
yGaze = min(yGaze,calibrationYMax);
yGaze = max(yGaze,calibrationYMin);
else %If failed read
xGaze = -1;
yGaze = -1;
end
%Delate first (oldest) entry
EyeGazeX(length(EyeGazeX)+1) = xGaze;
EyeGazeY(length(EyeGazeY)+1) = yGaze;
timeEyeGaze(length(timeEyeGaze)+1) = time;
while((timeEyeGaze(length(timeEyeGaze))-timeEyeGaze(1))>1.5)
EyeGazeX(1)=[];
EyeGazeY(1) = [];
timeEyeGaze(1) = [];
end
%Add newest eye gaze data
if (((sum(EyeGazeX~=(-1))/length(EyeGazeX))>failsAllowedPercentage)&&((sum(EyeGazeY~=(-

1))/length(EyeGazeY))>failsAllowedPercentage)) %If enough points were successful

106

%If close enough together...
if ((range(EyeGazeX(EyeGazeX~=(-1)))<30)&&(range(EyeGazeY(EyeGazeY~=(-1)))<30))
newPosDesired_x = sum(EyeGazeX)/sum(EyeGazeX~=(-1));
newPosDesired_y = sum(EyeGazeY)/sum(EyeGazeY~=(-1));
%If certain distance from current desired position
if((abs(newPosDesired_x-posDesired_x)>100)||(abs(newPosDesired_y-posDesired_y)>100))
posDesired_x = newPosDesired_x;
posDesired_y = newPosDesired_y;
end
else
%fprintf('Too Spread Out');
end
end

fwrite(s,'C');
end

posDesired_r = sqrt(posDesired_x^2+posDesired_y^2);
posDesired_theta = atan2(posDesired_y,posDesired_x);
posDif = sqrt((posDesired_x-posCurrent_x)^2+(posDesired_y-posCurrent_y)^2);

%FORCE FEEDBACK
force_r = rightForce-leftForce;
force_theta = backForce-frontForce;
lastForce_r(1)=[];
lastForce_theta(1)=[];
lastForce_r(smoothNum)=force_r;
lastForce_theta(smoothNum)=force_theta;
force_r = mean(lastForce_r);
force_theta = mean(lastForce_theta);
%Check if new force input was received
if((lastForce_r(smoothNum)~=lastForce_r(smoothNum-

1))||(lastForce_theta(smoothNum)~=lastForce_theta(smoothNum-1)))
lastForceUpdate=toc;
end
%If force hasn't been updated in 0.3s, assume data is invalid
%Prevents frozen XBee from sending large force indefinitely
if((time-lastForceUpdate)>0.3)
force_r=0;
force_theta=0;
end

force_x = force_r*cos(posCurrent_theta)-force_theta*sin(posCurrent_theta);
force_y = force_r*sin(posCurrent_theta)+force_theta*cos(posCurrent_theta);

%ignorableForce is the force below which force inputs will be
%ignored. This allows inertial forces to be discarded.
magVel = sqrt(velDesired_x^2+velDesired_y^2);
ignorableForce = 10*magVel;
ignorableForce = max(ignorableForce,300);
ignorableForce = min(ignorableForce,1000);
magForce = sqrt(force_x^2+force_y^2);
%Determine Feedback Method
%If force is over 900, OR greater than 10*velocity...
if(magForce>ignorableForce)

107

%Set controller to force mode
forceDrive=1;
velCalibrationOffset = 0;
timeLastForceDrive = time;
positionDrive=0;
end

%If 2 seconds has passed without significant force input
if((time-timeLastForceDrive)>2)
%Set controller to position mode
forceDrive = 0;
forceVel_x = 0;
forceVel_y = 0;
positionDrive = 1;
end
timeSincePwUpdate = toc-lastPwUpdate;
if(forceDrive)
%Update desired velocity
forceVel_x = velDesired_x;
forceVel_y = velDesired_y;
posDesired_x=posCurrent_x;
posDesired_y = posCurrent_y;
if(forceVel_x==0)
forceAccel_x = force_x*0.8;
forceAccel_x = min(accel,forceAccel_x);
forceAccel_x = max(-accel,forceAccel_x);
forceVel_x = forceVel_x + forceAccel_x*timeSincePwUpdate;
elseif(forceVel_x>0)
if(force_x>300)
forceAccel_x = force_x*0.8;
forceAccel_x = min(accel,forceAccel_x);
forceAccel_x = max(-accel,forceAccel_x);
forceVel_x = forceVel_x + forceAccel_x*timeSincePwUpdate;
elseif(force_x<150)
forceAccel_x = -1500;
forceVel_x = forceVel_x + forceAccel_x*timeSincePwUpdate;
if(forceVel_x<0)
forceVel_x=0;
end
end
%else... 150 < force_x < 300 => keep velDes constant.
else %forceVel_x<0
if(force_x<-300)
forceAccel_x = force_x*0.8;
forceAccel_x = min(accel,forceAccel_x);
forceAccel_x = max(-accel,forceAccel_x);
forceVel_x = forceVel_x + forceAccel_x*timeSincePwUpdate;
elseif(force_x>(-150))
forceAccel_x = 1500;
forceVel_x = forceVel_x + forceAccel_x*timeSincePwUpdate;
if(forceVel_x>0)
forceVel_x=0;
end
end
end
velDesired_x = forceVel_x;

108

if(forceVel_y==0)
forceAccel_y = force_y*0.5;
forceAccel_y = min(accel,forceAccel_y);
forceAccel_y = max(-accel,forceAccel_y);
forceVel_y = forceVel_y + forceAccel_y*timeSincePwUpdate;
elseif(forceVel_y>0)
if(force_y>300)
forceAccel_y = force_y*0.5;
forceAccel_y = min(accel,forceAccel_y);
forceAccel_y = max(-accel,forceAccel_y);
forceVel_y = forceVel_y + forceAccel_y*timeSincePwUpdate;
elseif(force_y<150)
forceAccel_y = -2000;
forceVel_y = forceVel_y + forceAccel_y*timeSincePwUpdate;
if(forceVel_y<0)
forceVel_y=0;
end
end
else %forceVel_x<0
if(force_y<-300)
forceAccel_y = force_y*0.5;
forceAccel_y = min(accel,forceAccel_y);
forceAccel_y = max(-accel,forceAccel_y);
forceVel_y = forceVel_y + forceAccel_y*timeSincePwUpdate;
elseif(force_y>(-150))
forceAccel_y = 2000;
forceVel_y = forceVel_y + forceAccel_y*timeSincePwUpdate;
if(forceVel_y>0)
forceVel_y=0;
end
end
end
velDesired_y = forceVel_y;
end

%POSITION FEEDBACK
if(positionDrive)
%Set limits in x-y coordinate frame
if (posDesired_x<350)
posDesired_x = 350;
end
if(posDesired_x>900)
posDesired_x = 900;
end
if(posDesired_y>400)
posDesired_y = 400;
end
if(posDesired_y<0)
posDesired_y = 0;
end

posDesired_r = sqrt(posDesired_x^2+posDesired_y^2);
posDesired_theta = atan2(posDesired_y,posDesired_x);

109

% POSITION FEEDBACK
%Set limits in r-theta coordinate frame
if (posDesired_r>posMax_r)
posDesired_r=posMax_r;
end
if ((posDesired_r<posMin_r))
posDesired_r=posMin_r;
end
if (posDesired_theta>posMax_theta)
posDesired_theta=posMax_theta;
end
if ((posDesired_theta<posMin_theta))
posDesired_theta=posMin_theta;
end

posDesired_x = (posDesired_r)*cos(posDesired_theta);
posDesired_y = (posDesired_r)*sin(posDesired_theta);

%Calculate direction of desired acceleration
%If x OR y component of acceleration is greater than limit, adjust
%entire acceleration accordingly.
accelAngle = atan2((posDesired_y-posCurrent_y),(posDesired_x-posCurrent_x));
accel_x = accel*cos(accelAngle);
accel_y = accel*sin(accelAngle);
accel_r = accel_x*cos(posCurrent_theta)+accel_y*sin(posCurrent_theta);
accel_theta = (accel_y*cos(posCurrent_theta)-accel_x*sin(posCurrent_theta))/posCurrent_r;
multiplier = 1;
if((velDesired_r+accel_r*timeSincePwUpdate)>velMax_r)
multiplier = abs((velMax_r-velDesired_r)/(accel_r*timeSincePwUpdate));
end
if((velDesired_r+accel_r*timeSincePwUpdate)<-velMax_r)
multiplier = abs((-velMax_r-velDesired_r)/(accel_r*timeSincePwUpdate));
end
if((velDesired_theta+accel_theta*timeSincePwUpdate)>velMax_theta)
multiplier = abs((velMax_theta-velDesired_theta)/(accel_theta*timeSincePwUpdate));
end
if((velDesired_theta+accel_theta*timeSincePwUpdate)<-velMax_theta)
multiplier = abs((-velMax_theta-velDesired_theta)/(accel_theta*timeSincePwUpdate));
end

accel_x = multiplier*accel_x;
accel_y = multiplier*accel_y;

%Once the end-effector reaches the target, the acceptable distance
%is made slightly larger to prevent jittery motion
if((abs(posDesired_r-posCurrent_r)<acceptableDistance_r_Min)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta_Min))
acceptableDistance_r = acceptableDistance_r_Max;
acceptableDistance_theta = acceptableDistance_theta_Max;
end
if((abs(posDesired_r-posCurrent_r)>acceptableDistance_r_Max)||(abs(posDesired_theta-

posCurrent_theta)>acceptableDistance_theta_Max))
acceptableDistance_r = acceptableDistance_r_Min;
acceptableDistance_theta = acceptableDistance_theta_Min;
end

110

%X-PositionFeedback
arrived=0;
%Check if we're close enough... If so, decelerate
if ((abs(posDesired_r-posCurrent_r)<acceptableDistance_r)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta))
%Decelerate..
arrived = 1;
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%Check if we are past the desiredPosition and moving away... If so,
%decelerate
elseif(((posDesired_x-posCurrent_x)*(velDesired_x))<0)
%Decelerate
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
elseif (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%See if we're approaching from the correct direction... If so,
%decelerate
elseif ((abs(posDesired_x-posCurrent_x)-abs(velDesired_x*0.15))<=(velDesired_x^2/(2*accel)))
%Decelerate
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%This is a small buffer to prevent too much switching by the controller
%If we're CLOSE to approaching, don't do anything
elseif ((abs(posDesired_x-posCurrent_x)-abs(velDesired_x*0.2))<=(velDesired_x^2/(2*accel)))
else %We are far enough away... Pedal to the metal
%Accelerate
%Check if max vel is reached... have to change other DOF too...
if (posDesired_x>posCurrent_x)
velDesired_x = velDesired_x + (accel_x*timeSincePwUpdate); %Update desired velocity
end
if (posDesired_x<posCurrent_x)
velDesired_x = velDesired_x + (accel_x*timeSincePwUpdate);
end
end

%Y-PositionFeedback
if ((abs(posDesired_r-posCurrent_r)<acceptableDistance_r)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta))
%Decelerate..
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_y<0)

111

velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
%Check if we are past the desiredPosition and moving away... If so,
%decelerate
elseif(((posDesired_y-posCurrent_y)*(velDesired_y))<0)
%Decelerate
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity
elseif (velDesired_y<0)
velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
%See if we're approaching from the correct direction... If so,
%decelerate
elseif ((abs(posDesired_y-posCurrent_y)-abs(velDesired_y*0.15))<=(velDesired_y^2/(2*accel)))
%Decelerate
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_y<0)
velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
elseif ((abs(posDesired_y-posCurrent_y)-abs(velDesired_y*0.2))<=(velDesired_y^2/(2*accel)))
else %We are far enough away... Pedal to the metal
%Accelerate
if (posDesired_y>posCurrent_y)
velDesired_y = velDesired_y + (accel_y*timeSincePwUpdate); %Update desired velocity
end
if (posDesired_y<posCurrent_y)
velDesired_y = velDesired_y + (accel_y*timeSincePwUpdate);
end
end

%If the end-effector hasn't arrived yet
if(arrived==0)
%If progress hasn't been made in a certain amount of time, then
%increase velCalibrationOffset. This variable acts as an
%integral component of the controller, and will make the
%controller stronger if the system's inertia prevents progress
%from being made.
if(posDif<(lastPosDif-20))
lastPosDif = posDif;
timeProgressMade = time;
elseif(posDif>lastPosDif)
lastPosDif = posDif;
end
if((time-timeProgressMade)>0.5)
velCalibrationOffset = velCalibrationOffset + timeSincePwUpdate;
velCalibrationOffset = min(velCalibrationOffset,10);
end
else
velCalibrationOffset = 0;
end
end

%Check Max Velocities

112

if (velDesired_x>velMax_x)
velDesired_x = velMax_x;
end
if (velDesired_x<-velMax_x)
velDesired_x = -velMax_x;
end
if (velDesired_y>velMax_y)
velDesired_y = velMax_y;
end
if (velDesired_y<-velMax_y)
velDesired_y = -velMax_y;
end

%CALCULATE AND SEND LINEAR MOTOR COMMANDS
velDesired_r = velDesired_x*cos(posCurrent_theta)+velDesired_y*sin(posCurrent_theta);

%Safety checks
if (velDesired_r>velMax_r)
velDesired_r = velMax_r;
end
if (velDesired_r<(-velMax_r))
velDesired_r = (-velMax_r);
end

%velCurrent is used for the conversion to pulse command. We want to
%adjust this value without changing the true desired velocity.
velCurrent_r = velDesired_r;
if ((velCurrent_r<=-velMin_r)&&(velCurrent_r>-40))
velCurrent_r=-40;
end
if((velCurrent_r>=velMin_r)&&(velCurrent_r<100))
velCurrent_r=100;
end

%Calculate pwPosition from velDesired...
if (velCurrent_r<=-40)
pwPosition_r = 197+(5.6712*log(-velCurrent_r+100)-28.275);
elseif (velCurrent_r>=100)
pwPosition_r = 182 - (6.2092*log(velCurrent_r-70)-20.973);
else %-100<velCurrent<40
pwPosition_r = pwZero_r;
end
pwPosition_r = round(pwPosition_r);

%%CALCULATE AND SEND ROTATIONAL MOTOR COMMANDS
lastVelDesired_theta = velDesired_theta;
velDesired_theta = (velDesired_y*cos(posCurrent_theta)-velDesired_x*sin(posCurrent_theta))/posCurrent_r;

%Safety checks
if (velDesired_theta>velMax_theta)
velDesired_theta = velMax_theta;
end
if (velDesired_theta<(-velMax_theta))
velDesired_theta = (-velMax_theta);
end

113

%Implement motor dynamics
if(abs(velDesired_theta)>abs(lastVelDesired_theta))
accelDesired_theta = (velDesired_theta-lastVelDesired_theta)/timeSincePwUpdate;
velCurrent_theta = (accelDesired_theta/2)+lastVelDesired_theta;
else
velCurrent_theta = velDesired_theta;
end

%Set min values, since smaller values will not trigger any motion
if((velCurrent_theta*velDesired_theta)>0)
if ((velCurrent_theta<=-velMin_theta)&&(velCurrent_theta>-0.13))
velCurrent_theta=-0.13;
end
if((velCurrent_theta>=velMin_theta)&&(velCurrent_theta<0.35))
velCurrent_theta=0.35;
end
end

%Calculate pwPosition from velDesired...
if (velCurrent_theta<=-0.13)
pwPosition_theta = 175-(4.3809*log(-velCurrent_theta+0.25)+4.2+velCalibrationOffset);
elseif (velCurrent_theta>=0.2)
pwPosition_theta = 194 + (2.997*log(velCurrent_theta+0.15)+3.1272+velCalibrationOffset);
else %-100<velCurrent<40
pwPosition_theta = pwZero_theta;
end
pwPosition_theta = round(pwPosition_theta);

%% Safety Checks
pw_r=pwPosition_r;
pw_theta = pwPosition_theta;
lastPwUpdate=toc;

if((posCurrent_r<posMin_r)&&(pw_r>pwZero_r))
pw_r=pwZero_r;
end
if((posCurrent_r>posMax_r)&&(pw_r<pwZero_r))
pw_r=pwZero_r;
end
if((posCurrent_theta<posMin_theta)&&(pw_theta<pwZero_theta))
pw_theta=pwZero_theta;
end
if((posCurrent_theta>posMax_theta)&&(pw_theta>pwZero_theta))
pw_theta=pwZero_theta;
end

%Adjust pw commands to avoid 183-185, since these commands will turn
%off the RoboClaw
if (pw_r<=shutOffMid)&&(pw_r>=shutOffMin)
pw_r=shutOffMin-1;
end
if (pw_r>shutOffMid)&&(pw_r<=shutOffMax)
pw_r=shutOffMax+1;
end

114

if (pw_theta<=shutOffMid)&&(pw_theta>=shutOffMin)
pw_theta=shutOffMin-1;
end
if (pw_theta>shutOffMid)&&(pw_theta<=shutOffMax)
pw_theta=shutOffMax+1;
end

%If the system jumped, this means there was a lapse in communication,
%and all motion should be stopped
if (abs(posCurrent_r-posLast_r)>100)
emerStop = 1;
end
if (abs(posCurrent_theta-posLast_theta)>0.1)
emerStop = 1;
end

if(emerStop==1)
pw_r=pwZero_r;
pw_theta=pwZero_theta;
end

if (pw_r<pwMin_r)
pw_r=pwMin_r;
end
if (pw_r>pwMax_r)
pw_r=pwMax_r;
end
if (pw_theta<pwMin_theta)
pw_theta=pwMin_theta;
end
if (pw_theta>pwMax_theta)
pw_theta=pwMax_theta;
end

%For Easier Data Analysis
prevTime(6)=time;
prevTime(1)=[];
prevXPos(6) = posCurrent_x;
prevXPos(1)=[];
velXAvg = (prevXPos(5)-prevXPos(1))/(prevTime(5)-prevTime(1));
prevYPos(6) = posCurrent_y;
prevYPos(1)=[];
velYAvg = (prevYPos(5)-prevYPos(1))/(prevTime(5)-prevTime(1));
prevRPos(6) = posCurrent_r;
prevRPos(1)=[];
velRAvg = (prevRPos(5)-prevRPos(1))/(prevTime(5)-prevTime(1));
prevTPos(6) = posCurrent_theta;
prevTPos(1)=[];
velTAvg = (prevTPos(5)-prevTPos(1))/(prevTime(5)-prevTime(1));

%% Print
%fprintf('%d

%d

%d\n',time,leftForce,rightForce,backForce,frontForce,forceVel_x,forceVel_y,velCalibrationOffset,posDesired_x,vel

Desired_x,posCurrent_x,velXAvg,posDesired_y,velDesired_y,posCurrent_y,velYAvg,posDesired_r,velDesired_r,p

115

osCurrent_r,velRAvg,velCurrent_r,pw_r,posDesired_theta,velDesired_theta,posCurrent_theta,velTAvg,velCurrent_t

heta,pw_theta,emerStop);
fprintf('%d

%d %d

%d\n',time,leftForce,rightForce,backForce,frontForce,forceVel_x,forceVel_y,velCalibrationOffset,xGaze,yGaze,pos

Desired_x,velDesired_x,posCurrent_x,velXAvg,posDesired_y,velDesired_y,posCurrent_y,velYAvg,posDesired_r,v

elDesired_r,posCurrent_r,velRAvg,velCurrent_r,pw_r,posDesired_theta,velDesired_theta,posCurrent_theta,velTAv

g,velCurrent_theta,pw_theta);

%Send signal to Arduino
messageOut=[3,pw_r,pw_theta];
fwrite(a,messageOut);
end
end

%USED FOR CALIBRATION... SAME METHOD AS IN MAIN FUNCTION
function goToPoint(a,calX,calY)
%% Constants
lastPwUpdate=0;
timeSincePwUpdate = 0;
acceptableDistance_r_Min = 15;
acceptableDistance_r_Max = 25;
acceptableDistance_r = 15;
acceptableDistance_theta = 0.01;
acceptableDistance_theta_Min = 0.01;
acceptableDistance_theta_Max = 0.02;
accel_x = 0;
accel_y = 0;
accel = 1500;
accelMax = 1500;
velMax_x = 1000;
velMax_y = 1000;
velDesired_x=0;
velDesired_y=0;
%R Constants (mm)
posMax_r=900;
posMin_r=350;
pwZero_r=193;
pwMin_r=160;
pwMax_r=209;
velMin_r = 20;
velMax_r = 1000;
velDesired_r = 0;
pw_r=pwZero_r;
pwPosition_r=0;
%Theta Constants (Units = radians)
posMax_theta=0.4;
posMin_theta=0;
pwZero_theta=184;
pwMin_theta=170;
pwMax_theta=198;
velMin_theta = 0.07;
velMax_theta = 0.9;
velDesired_theta = 0;
pw_theta=pwZero_theta;

116

pw_theta_Des = pwZero_theta;
pwPosition_theta=0;
velCalibrationOffset = 0;
arrived = 0;
posDif = 0;
lastPosDif = 0;
timeProgressMade = 0;
emerStop=0;
firstRun=1;
shutOffMin = 183;
shutOffMid = 184;
shutOffMax = 185;
%% Real Code
firstRun=1;
lastTimeAway = 0;
posDesired_x = calX;
posDesired_y = calY;
pointReached = 0;
while (pointReached==0)
%% Initialize
time=toc;
% Read Data
if(a.TransferStatus == 'idle')
readasync(a,12);
end
messageOut=[2,0,0];
fwrite(a,messageOut)
while(a.BytesAvailable<12)
if (toc-time)>0.02
break;
end
end
%If incomplete, delete data and try again...
if(a.BytesAvailable<12&&a.BytesAvailable>0)
fread(a,a.BytesAvailable);
continue;
end
if(a.BytesAvailable==0)
continue;
end

%% Get values
messageIn=fread(a,a.BytesAvailable);
potValue_r=(messageIn(1)*256+messageIn(2));
potValue_theta = (messageIn(3)*256+messageIn(4));

if(firstRun==1)
posCurrent_r = 0.748951*(potValue_r+367);
posCurrent_theta = 0.004313*potValue_theta-2.2806;
firstRun=0;
continue;
end

posLast_r = posCurrent_r;
posCurrent_r = 0.748951*(potValue_r+367);

117

posLast_theta = posCurrent_theta;
posCurrent_theta = 0.004313*potValue_theta-2.23413;
posCurrent_x = (posCurrent_r)*cos(posCurrent_theta);
posCurrent_y = (posCurrent_r)*sin(posCurrent_theta);
posDesired_r = sqrt(posDesired_x^2+posDesired_y^2);
posDesired_theta = atan2(posDesired_y,posDesired_x);

% POSITION FEEDBACK
%Put limits on posdesired... (not really necessary for this function)
if (posDesired_r>posMax_r)
posDesired_r=posMax_r;
end
if ((posDesired_r<posMin_r))
posDesired_r=posMin_r;
end
if (posDesired_theta>posMax_theta)
posDesired_theta=posMax_theta;
end
if ((posDesired_theta<posMin_theta))
posDesired_theta=posMin_theta;
end

posDesired_x = (posDesired_r)*cos(posDesired_theta);
posDesired_y = (posDesired_r)*sin(posDesired_theta);
accelAngle = atan2((posDesired_y-posCurrent_y),(posDesired_x-posCurrent_x));
accel_x = accel*cos(accelAngle);
accel_y = accel*sin(accelAngle);
accel_r = accel_x*cos(posCurrent_theta)+accel_y*sin(posCurrent_theta);
accel_theta = (accel_y*cos(posCurrent_theta)-accel_x*sin(posCurrent_theta))/posCurrent_r;
multiplier = 1;
if((velDesired_r+accel_r*timeSincePwUpdate)>velMax_r)
multiplier = abs((velMax_r-velDesired_r)/(accel_r*timeSincePwUpdate));
end
if((velDesired_r+accel_r*timeSincePwUpdate)<-velMax_r)
multiplier = abs((-velMax_r-velDesired_r)/(accel_r*timeSincePwUpdate));
end
if((velDesired_theta+accel_theta*timeSincePwUpdate)>velMax_theta)
multiplier = abs((velMax_theta-velDesired_theta)/(accel_theta*timeSincePwUpdate));
end
if((velDesired_theta+accel_theta*timeSincePwUpdate)<-velMax_theta)
multiplier = abs((-velMax_theta-velDesired_theta)/(accel_theta*timeSincePwUpdate));
end

accel_x = multiplier*accel_x;
accel_y = multiplier*accel_y;

if((abs(posDesired_r-posCurrent_r)<acceptableDistance_r_Min)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta_Min))
acceptableDistance_r = acceptableDistance_r_Max;
acceptableDistance_theta = acceptableDistance_theta_Max;
end
if((abs(posDesired_r-posCurrent_r)>acceptableDistance_r_Max)||(abs(posDesired_theta-

posCurrent_theta)>acceptableDistance_theta_Max))
acceptableDistance_r = acceptableDistance_r_Min;
acceptableDistance_theta = acceptableDistance_theta_Min;

118

end

timeSincePwUpdate = toc-lastPwUpdate;
%X-PositionFeedback
arrived=0;
%Check if we're close enough... If so, decelerate
if ((abs(posDesired_r-posCurrent_r)<acceptableDistance_r)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta))
%Decelerate..
arrived = 1;
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%Check if we are past the desiredPosition and moving away... If so,
%decelerate
elseif(((posDesired_x-posCurrent_x)*(velDesired_x))<0)
%Decelerate
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
elseif (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%See if we're approaching from the correct direction... If so,
%decelerate
elseif ((abs(posDesired_x-posCurrent_x)-abs(velDesired_x*0.15))<=(velDesired_x^2/(2*accel)))
%Decelerate
if (velDesired_x>0)
velDesired_x = velDesired_x - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_x<0)
velDesired_x = velDesired_x + (accel*timeSincePwUpdate);
end
%This is a small buffer to prevent too much switching by the controller
%If we're CLOSE to approaching, don't do anything
elseif ((abs(posDesired_x-posCurrent_x)-abs(velDesired_x*0.2))<=(velDesired_x^2/(2*accel)))
else %We are far enough away... Pedal to the metal
%Accelerate
%Check if max vel is reached... have to change other DOF too...
if (posDesired_x>posCurrent_x)
velDesired_x = velDesired_x + (accel_x*timeSincePwUpdate); %Update desired velocity
end
if (posDesired_x<posCurrent_x)
velDesired_x = velDesired_x + (accel_x*timeSincePwUpdate);
end
end

%Y-PositionFeedback
if ((abs(posDesired_r-posCurrent_r)<acceptableDistance_r)&&(abs(posDesired_theta-

posCurrent_theta)<acceptableDistance_theta))
%Decelerate..
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity

119

end
if (velDesired_y<0)
velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
%Check if we are past the desiredPosition and moving away... If so,
%decelerate
elseif(((posDesired_y-posCurrent_y)*(velDesired_y))<0)
%Decelerate
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity
elseif (velDesired_y<0)
velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
%See if we're approaching from the correct direction... If so,
%decelerate
elseif ((abs(posDesired_y-posCurrent_y)-abs(velDesired_y*0.15))<=(velDesired_y^2/(2*accel)))
%Decelerate
if (velDesired_y>0)
velDesired_y = velDesired_y - (accel*timeSincePwUpdate); %Update desired velocity
end
if (velDesired_y<0)
velDesired_y = velDesired_y + (accel*timeSincePwUpdate);
end
elseif ((abs(posDesired_y-posCurrent_y)-abs(velDesired_y*0.2))<=(velDesired_y^2/(2*accel)))
else %We are far enough away... Pedal to the metal
%Accelerate
if (posDesired_y>posCurrent_y)
velDesired_y = velDesired_y + (accel_y*timeSincePwUpdate); %Update desired velocity
end
if (posDesired_y<posCurrent_y)
velDesired_y = velDesired_y + (accel_y*timeSincePwUpdate);
end
end

if(arrived==0)
lastTimeAway = time;
if(posDif<(lastPosDif-20))
lastPosDif = posDif;
timeProgressMade = time;
% velCalibrationOffset = 0;
elseif(posDif>lastPosDif)
lastPosDif = posDif;
end
if((time-timeProgressMade)>0.5)
velCalibrationOffset = velCalibrationOffset + timeSincePwUpdate;
velCalibrationOffset = min(velCalibrationOffset,10);
end
else
velCalibrationOffset = 0;
end

if(arrived ==1)
if((time-lastTimeAway)>1)
velDesired_x=0;

120

velDesired_y=0;
velDesired_theta=0;
pointReached=1;
end
end

%Check Max Velocities
if (velDesired_x>velMax_x)
velDesired_x = velMax_x;
end
if (velDesired_x<-velMax_x)
velDesired_x = -velMax_x;
end
if (velDesired_y>velMax_y)
velDesired_y = velMax_y;
end
if (velDesired_y<-velMax_y)
velDesired_y = -velMax_y;
end

velDesired_r = velDesired_x*cos(posCurrent_theta)+velDesired_y*sin(posCurrent_theta);

%Safety checks
if (velDesired_r>velMax_r)
velDesired_r = velMax_r;
end
if (velDesired_r<(-velMax_r))
velDesired_r = (-velMax_r);
end

velCurrent_r = velDesired_r;
if ((velCurrent_r<=-velMin_r)&&(velCurrent_r>-40))
velCurrent_r=-40;
end
if((velCurrent_r>=velMin_r)&&(velCurrent_r<100))
velCurrent_r=100;
end

%Calculate pwPosition from velDesired...
if (velCurrent_r<=-40)
pwPosition_r = 197+(5.6712*log(-velCurrent_r+100)-28.275);
elseif (velCurrent_r>=100)
pwPosition_r = 182 - (6.2092*log(velCurrent_r-70)-20.973);
else %-100<velCurrent<40
pwPosition_r = pwZero_r;
end
pwPosition_r = round(pwPosition_r);

%% Calculate pwPosition_theta
lastVelDesired_theta = velDesired_theta;
velDesired_theta = (velDesired_y*cos(posCurrent_theta)-velDesired_x*sin(posCurrent_theta))/posCurrent_r;

121

%Safety checks
if (velDesired_theta>velMax_theta)
velDesired_theta = velMax_theta;
end
if (velDesired_theta<(-velMax_theta))
velDesired_theta = (-velMax_theta);
end

% if(abs(velDesired_theta)>abs(lastVelDesired_theta))
accelDesired_theta = (velDesired_theta-lastVelDesired_theta)/timeSincePwUpdate;
velCurrent_theta = (accelDesired_theta/4)+lastVelDesired_theta;
% else
% velCurrent_theta = velDesired_theta;
% end

if((velCurrent_theta*velDesired_theta)>0)
if ((velCurrent_theta<=-velMin_theta)&&(velCurrent_theta>-0.13))
velCurrent_theta=-0.13;
end
if((velCurrent_theta>=velMin_theta)&&(velCurrent_theta<0.35))
velCurrent_theta=0.35;
end
end

%Calculate pwPosition from velDesired...
if (velCurrent_theta<=-0.13)
pwPosition_theta = 175-(4.3809*log(-velCurrent_theta+0.25)+4.2+velCalibrationOffset);
elseif (velCurrent_theta>=0.2)
pwPosition_theta = 194 + (2.997*log(velCurrent_theta+0.15)+3.1272+velCalibrationOffset);
%pwPosition_theta = 194 + (5.997*log(velCurrent_theta+0.15)+6.1272);
else %-100<velCurrent<40
pwPosition_theta = pwZero_theta;
end
pwPosition_theta = round(pwPosition_theta);

%% Safety... And send PW's
%Combine feedback into one pulse-width to send
%pw=pwForce+pwPosition+pwComp;
pw_r=pwPosition_r;
pw_theta = pwPosition_theta;
lastPwUpdate=toc;

if((posCurrent_r<posMin_r)&&(pw_r>pwZero_r))
pw_r=pwZero_r;
end
if((posCurrent_r>posMax_r)&&(pw_r<pwZero_r))
pw_r=pwZero_r;
end
if((posCurrent_theta<posMin_theta)&&(pw_theta<pwZero_theta))
pw_theta=pwZero_theta;
end
if((posCurrent_theta>posMax_theta)&&(pw_theta>pwZero_theta))
pw_theta=pwZero_theta;
end

122

if (pw_r<=shutOffMid)&&(pw_r>=shutOffMin)
pw_r=shutOffMin-1;
end
if (pw_r>shutOffMid)&&(pw_r<=shutOffMax)
pw_r=shutOffMax+1;
end
if (pw_theta<=shutOffMid)&&(pw_theta>=shutOffMin)
pw_theta=shutOffMin-1;
end
if (pw_theta>shutOffMid)&&(pw_theta<=shutOffMax)
pw_theta=shutOffMax+1;
end

if (abs(posCurrent_r-posLast_r)>100)
emerStop = 1;
end
if (abs(posCurrent_theta-posLast_theta)>0.1)
emerStop = 1;
end

if(emerStop==1)
pw_r=pwZero_r;
pw_theta=pwZero_theta;
end

if (pw_r<pwMin_r)
pw_r=pwMin_r;
end
if (pw_r>pwMax_r)
pw_r=pwMax_r;
end
if (pw_theta<pwMin_theta)
pw_theta=pwMin_theta;
end
if (pw_theta>pwMax_theta)
pw_theta=pwMax_theta;
end
fprintf('pw_r = %d. pw_t = %d. posDesX = %d. posDesY = %d. posR = %d. posDesR = %d. posT = %d. posDesT =

%d. velDesX = %d. velDesY = %d. stop =

%d.\n',pw_r,pw_theta,posDesired_x,posDesired_y,posCurrent_r,posDesired_r,posCurrent_theta,posDesired_theta,v

elDesired_x,velDesired_y,emerStop)
messageOut=[3,pw_r,pw_theta];
fwrite(a,messageOut);
end
end

123

REFERENCES

[1] G.R. Williams, “Incidence and characteristics of total stroke in the United States,” BMC

Neural, vol. 1, pp. 2, 2001.

[2] P. Muntne, E. Garrett E, MJ Klag, J. Coresh. Trends in stroke prevalence between 1973

and 1991 in the US population 25 to 74 years of age. Stroke. vol. 33, pp. 1209-1213,

2002.

[3] Centers for Disease Control and Prevention, Stoke Facts. March 24, 2015. <http://-

www.cdc.gov/stroke/facts.htm>.

[4] Rosenberg CH, Popelka GM. Poststroke rehabilitation. A review of the guidelines for

patient management. Geriatrics 2000;55:7581.

[5] A. S. Association, http://www.strokeassociation.org/, 2005.

[6] "General Information." Campaign For Cure. International Campaign for Cures of Spinal

Cord Injury Paralysis. 2000.

[7] National Spinal Cord Injury Statistical Center, Facts and Figures At a Glance.

Birmingham, AL: University of Alabama at Birmingham, March 2013.

[8] "Spinal Cord Injury." WHO. World Health Organization, 1 Nov. 2013.

[9] Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the

upper limb after acute stroke. Arch Phys Med Rehabil 88: 142–149.

[10] Volpe BT, Krebs HI, Hogan N. Is robot-aided sensorimotor training in stroke

rehabilitation a realistic option? Curr Opin Neurol 2001;14:745-52.

[11] Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, IJzerman MJ.

Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm

after stroke. J Rehabil Res Dev 2006;43:171-84.

[12] Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper

limb of stroke survivors: a critical review. Neurorehabil Neural Repair 2003;17:220-6.

[13] Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and

arm training after primary middle-cerebralartery stroke: a randomized trial. Lancet

999;354:191-6.

[14] Hogan, N.; Krebs, HI.; Sharon, A.; Charnnarong, J., inventors. Interactive robotic

therapist. U.S. Patent. #5 466 213. 1995.

124

[15] Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels C, Aisen M. A novel approach to

stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000;54:1938-44.

[16] Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels CM, Aisen ML. Robot training

enhanced motor outcome in patients with stroke maintained over 3 years. Neurology

1999;53:1874-6.

[17] D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole, B. D. Schmit, and

W. Z. Rymer, “Understanding and treating arm movement impairment after chronic brain

injury: progress with the arm guide,” Journal of Rehabilitation Research and

Development, vol. 37, no. 6, pp. 653–662, 2000.

[18] P. S. Lum, C. G. Burgar, and P. C. Shor, “Evidence for improved muscle activation

patterns after retraining of reaching movements with the mime robotic system in subjects

with post-stroke hemiparesis,” IEEE Trans. on Rehab. Engineering, vol. 12, no. 2, pp.

186–194, 2004.

[19] T. Rahman, W. Sample, and R. Seliktar, "Design and Testing of WREX," presented at

The Eighth International Confrence on Rehabilitation Robotics, Kaist, Daejeon, Korea,

2003.

[20] R. Sanchez, P. Shah, J. Liu, S. Rao, R. Smith, S. Cramer, T. Rahman, J. E. Bobrow, and

D. Reinkensmeyer, "Monitoring Functional Arm Movement for Home-Based Therapy

after Stroke," presented at Proceedings of the 2004 IEEE Engineering in Medicine and

Biology Society Meeting, San Francisco, California, September 1-5, 2004.

[21] Sanchez Jr. RJ, Wolbrecht E, Smith R, Liu J, Cramer S, Rahman T, Bobrow JE,

Reinkensmeyer DJ. A pneumatic robot for retraining arm movement after stroke:

Rationale and mechanical design. Proceedings of the 9th IEEE International Conference

on Rehabilitation Robotics; 2005 June 28 - July 1; Chicago, USA: IEEE press; 2005. p.

500-504.

[22] S. Oh and S. K. Agrawal. Cable-suspended planar robots with redundant cables:

controllers with positive tensions. IEEE Trans. Robot., 21:457-464, 2005.

[23] S. Oh and S. K. Agrawal. The feasible workspace analysis of a set point control for a

cable-suspended robot with input constraints and disturbances. IEEE Trans. Control Syst.

Technol., 14(4):735-742, 2006.

[24] S. Oh and S. K. Agrawal. Generation of feasible set points and control of a cable robot.

IEEE Trans. Robot., 22(3):551-558, 2006.

[25] Y. Takahashi and T. Kobayashi, “Upper limb motion assist robot,” in Proceedings of the

IEEE 6th International Conference on Rehabilitation Robotics ICORR1999, Stanford,

CA, 1999.

125

[26] S. Kim, M. Ishii, Y. Koike, and M. Sato, “Development of a spidar-g and possibility of

its application to virtual reality,” in Proceedings of the 10th VRST2000, Seoul, Korea,

2000, pp. 22–25.

[27] S. Coote, E. K. Stokes, M. B.T., and W. Harwin, "The Effect of GENTLE/s Robot

Mediated Therapy on Upper Extremity Function Post Stroke," presented at International

Confrence on Rehabilitation Robotics, Korea, 2003.

[28] C. Fanin, P. Gallina, A. Rossi, U. Zanatta, and S. Masiero, “Nerebot: a wire-based robot

for neurorehabilitation,” in Proceedings of the IEEE 8th International Conference on

Rehabilitation Robotics ICORR2003, Daejeon, Republic of Korea, April 2003.

[29] S. Masiero, A. Celia, V. Perticaro, M. Armani, G. Rosati, P. Gallina, A. Rossi, M.

Ortolani, and C. Ferraro, “Robot-aided intensive training in post-stroke recovery,” 2005,

editorial review, submitted for publication on Aging Clinical and Experimental Research.

[30] Rosati G, Gallina P, Masiero S, Rossi A: Design of a new 5 d.o.f. wire-based robot for

rehabilitation. IEEE ICORR, Chicago; 2005:430-433.

[31] D. Mayhew, B. Bachrach, W.Z. Rymer, and R.F. Beer, “Development of the MACARM

– a novel cable robot for upper limb neurorehabilitation,” 9th International conference on

Rehabilitation Robotics, pp. 209-302, 2005

[32] T. Nef, M. Guidali, and R. Riener. Armin iii - arm therapy exoskeleton with an

ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2):127-142, 2009.

[33] J. Klein, S. J. Spencer, and J. Allington. Biomimetic orthosis for the neurorehabilitation

of the elbow and shoulder (BONES). In Proc. IEEE International Conference on

Biomedical Robotics and Biomechatronics, pages 535-541, 2008.

[34] S. Balasubramanian, R. Wei, M. Perez, B. Shepard, E. Koeneman, J. Koeneman, and J.

He. Rupert: An exoskeleton robot for assisting rehabilitation of arm functions. In Virtual

Rehabilitation, pages 163-167, August 2008.

[35] A. H. A. Stienen, E. E. G. Hekman, F. C. T. Van der Helm, G. B. Prange, M. J. A.

Jannink, A. M. M. Aalsma, and H. Van der Kooij. Dampace: dynamic force coordination

trainer for the extremities. In Proc. IEEE International Conference on Rehabilitation

Robotics, pages 820-826, 2007.

[36] J. C. Perry, J. Rosen, and S. Burns. Upper-limb powered exoskeleton design.

IEEE/ASME Trans. Mechatronics, 12(4):408{417, 2007.

[37] S. J. Ball, I. E. Brown, and S. H. Scott. Medarm: a rehabilitation robot with 5dof at the

shoulder complex. In Proc. IEEE/ASME international conference on Advanced

intelligent mechatronics, pages 1-6, September 2007.

126

[38] G. Yang, W. Lin, S. K. Mustafa, C. B. Pham, and S. H. Yeo. Kinematic design of a 7-dof

cable-driven humanoid arm: a solution-in-nature approach. In Proc. IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, pages 444-449, 2005.

[39] E. A. Brackbill, Y. Mao, S. K. Agrawal, M. Annapragada, and V. N. Dubey. Dynamics

and control of a 4-dof wearable cable-driven upper arm exoskeleton. In Proc. IEEE

International Conference on Robotics and Automation, pages 2300-2305, May 2009.

[40] Y. Mao and S. K. Agrawal. A cable driven upper arm exoskeleton for upper extremity

rehabilitation. In Proc. IEEE International Conference on Robotics and Automation,

pages 4163-4168, May 2011.

[41] D. Kulic and E. Croft, "Estimating Intent for Human-Robot Interaction," presented at

IEEE International Conference on Advanced Robotics, Coimbra, Portugal, pp. 810-815,

2003.

[42] M. S. Erden and T. Tomiyama, “Human-intent detection and physically interactive

control of a robot without force sensors,” IEEE Transactions on Robotics, vol. 26, no. 2,

pp. 370–382, 2010.

[43] H. Kazerooni and M. G. Her, “The dynamics and control of a haptic interface device,”

IEEE Trans. Robot. Autom., vol. 10, no. 4, pp. 453–464, Aug. 1994.

[44] H. Kazerooni, “The human power amplifier technology at the University of California,

Berkeley,” Robot. Auton. Syst., vol. 19, pp. 179–187, 1996.

[45] H. Kazerooni, “Human–robot interaction via the transfer of power and information

signals,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 450–463, Mar./Apr. 1990.

[46] H. Kazerooni, “Human power extender: An example of human–machine interaction via

the transfer of power and information signals,” in Proc. 5th Int. Workshop Adv. Motion

Control, Coimbra, Portugal, 1998, pp. 565–572.

[47] O. Khatib, K. Yokoi, O. Brock, K. Chang, and A. Casal, “Robots in human

environments: Basic autonomous capabilities,” Int. J. Robot. Res., vol. 18, no. 7, pp.

684–696, 1999.

[48] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal, “Vehicle/arm

coordination and multiple mobile manipulator decentralized cooperation,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., Osaka, Japan, 1996, pp. 546–553.

[49] K. S. Eom, I. H. Suh, W. K. Chung, and S. R. Oh, “Disturbance observer based force

control of robot manipulator without force sensor,” in Proc. IEEE Int. Conf. Robot.

Autom., Leuven, Belgium, 1998, pp. 3012–3017.

127

[50] K. Ohishi, M. Miyazaki, and M. Fujita, “Hybrid control of force and position without

force sensor,” in Proc. IEEE Int. Conf. Power Electron. Motion Control, San Diago, CA,

1992, vol. 2, pp. 670–675.

[51] S. Tungpataratanawong, K. Ohishi, and T. Miyazaki, “Force sensor-less workspace

impedance control considering resonant vibration of industrial robot,” in Proc. 31st Annu.

Conf. IEEE Ind. Electron. Soc., Raleigh, NC, 2005, pp. 1878–1883.

[52] N. Sarkar. Psychophysiological Control Architecture for Human-Robot Coordination –

Concepts and Initial Experiments. ICRA 2002.

[53] R. W. Picard et al. Toward Machine Emotional Intelligence: Analysis of Affective

Physiological State. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.

23(10): 1175 – 1191, 2001.

[54] R. Picard. Affective Computing. MIT Press. Cambridge, Masssachusetts, 1997.

[55] Chrystopher L. Nehaniv, Kerstin Dautenhahn, Jens Kubacki, Martin Haegele,

Christopher Parlitz, and Rachid Alami, ‘A methodological approach relating the

classification of gesture to identification of human intent in the context of human-robot

interaction’, in 14th IEEE International Workshop on Robot and Human Interactive

Communication (Ro-Man 2005), pp. 371–377, (2005).

[56] M.A.T. Ho, Y. Yamada, Y. Umetani, “An HMM-based temporal difference learning with

modelupdating capability for visual tracking of human communicational behaviors”, In

Proceeding of 5th IEEE International Conference on Automatic Face and Gesture

Recognition, pp.163-168, 2002.

[57] W. K. Song et al. Visual Servoing for a User’s Mouth with Effective Intention Reading in

a Wheelchair-based Robotic Arm. ICRA 2001, pp. 3662 – 3667.

[58] Billard, A., Epars, Y., Calinon, S., Cheng, G., and Schaal, S. Discovering optimal

imitation strategies. Robotics & Autonomous Systems, Special Issue: Robot Learning

from Demonstration 47, 2-3 (2004), 69.77.

[59] Kortenkamp, E. Huber, and P. Bonasso. Recognizing and interpreting gestures on a

mobile robot. In Proceedings of AAAI-96, pages 915-921. AAAI Press/The MIT Press,

1996.

[60] S. Waldherr, S. Thrun, D. Margaritis, and R. Romero. Template-based recognition of

pose and motion gestures on a mobile robot. In Proceedings of the Fifteenth National

Conference on Arti.

[61] BREAZEAL, C., AND ARYANANDA, L. Recognition of affective communicative

intent in robot-directed speech. Autonomous Robots 12, 1 (2002), 83.104.

128

[62] IBA, S., PAREDIS, C. J. J., AND KHOSLA, P. K. Interactive multimodal robot

programming. In Proceedings of the 2002 IEEE International Conference on Robotics

and Automation, Washington D.C., May 11-15, 2002 (2002).

[63] A. Kaufman, A. Bandopadhay, B. Shaviv, An eye tracking computer user interface, in:

Proc. of the Research Frontier in Virtual Reality Workshop, IEEE Computer Society

Press, 1993, pp. 78–84.

[64] Y. Chen and W. S. Newman. A human-robot interface based on electrooculography. In

Proc. of the International Conference on Robotics and Automation (ICRA 2004), volume

1, pages 243–248, April 26–May 1, 2004.

[65] Morimoto CH, Mimica MR. Eye gaze tracking techniques for interactive applications.

Comput Vis Image Underst. 2005;98(1):4–24.

[66] S.K. Schnipke, M.W. Todd, Trials and tribulations of using an eye-tracking system, in:

Proc. ACM SIGCHI—Human Factors in Computing Systems Conference, 2000, pp.

273–274.

[67] K. Nguyen, C. Wagner, D. Koons, M. Flickner, Differences in the infrared bright pupil

response of human eyes, in: Proc. of the Eye Tracking Research & Applications

Symposium, New Orleans, LA, 2002.

[68] J. Reulen, j.T. Marcus, D. Koops, F. de Vries, G. Tiesinga, K. Boshuizen, J. Bos, Precise

recording of eye movement: the iris technique, part 1, Med. Biol. Eng. Comput. 26 (1)

(1988) 20–26.

[69] A. Tomono, M. Iida, Y. Kobayashi, A tv camera system which extracts feature points for

non-contact eye movement detection, in: Proc. of the SPIE Optics, Illumination, and

Image Sensing for Machine Vision IV, vol. 1194, 1989, pp. 2–12.

[70] Y. Ebisawa, S. Satoh, Effectiveness of pupil area detection technique using two light

sources and image difference method, in: A. Szeto, R. Rangayan (Eds.), Proc. of the 15th

Annual Internat. Conf. of the IEEE Eng. in Medicine and Biology Society, San Diego,

CA, 1993, pp. 1268–1269.

[71] C. Morimoto, A. Amir, M. Flickner, Detecting eye position and gaze from a single

camera and 2 light sources, in: Proc. of the Internat. Conf. on Pattern Recognition,

Quebec, Canada, 2002.

[72] D. Yoo, J. Kim, B. Lee, M. Chung, Non contact eye gaze tracking system by mapping of

corneal reflections, in: Proc. of the Internat. Conf. on Automatic Face and Gesture

Recognition, Washington, DC, 2002, pp. 94–99.

[73] ASL. Available from: <http://www.a-s-l.com>.

129

[74] S.M.I. Inc, Eyelink gaze tracking. Available from: < http://www.smi.de>.

[75] LCTech, The eyegaze development system. Available from: < http://www.eyegaze.com>.

[76] The Eye Tribe. Available from: <http://theeyetribe.com>

[77] EyeWorks. The FOVIO eyetracker. Available from <http://www.eyetracking.com>

[78] Tobii. Tobii Eye X. Available from <http://www.tobii.com/en/eye-experience/>

[79] Clauser, Charles, John McConville, and J.W. Young. "Weight, Volume, and Center of

Mass of Segments of the Human Body." National Technical Information Service, 1969.

[80] Beardmore, Roy. "Key Strength." Key/Spline Strength Calculations. 19 Jan. 2013. Web.

<http://www.roymech.co.uk/Useful_Tables/Keyways/key_strength.html>.

[81] Rojas, Raul. "Models for DC Motors." Unpublished document.

[82] "AltSoftSerial Library." PRJC. Web. 12 Aug. 2015. <https://www.pjrc.com/teensy/td_li-

bs_AltSoftSerial.html>.

[83] Digi International. XBee/XBee-PRO ZigBee RF Modules User Guide, 2015. pp. 12.

[84] AndyMark. “String Potentiometer Kit (no housing).” <http://www.andymark.com/produ-

ct-p/am-2618.htm>.

