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CHAPTER I 

 

INTRODUCTION 

 

Modern science is now perfecting life saving technologies in de novo organ 

synthesis, stem cell therapies, and cancer treatment. Common to all these therapies is the 

fundamental understanding of the normal and pathological cell cycle and how cellular 

events are coordinated between and within cells. While the cell theory itself, that all 

organisms are made of one or more cells and that a new cell can only arise from division 

of the mother cell, was proposed close to two centuries ago by Schleiden and 

Schwann(reviewed in (Aszmann 2000)), it was no more than 40 years ago that we started 

to explore the basic tenants of chromosome segregation, cytoskeletal re-organization, and 

cell cycle protein regulation. 

The past four decades has seen an explosion of discovery and understanding of 

key cell cycle regulators and their interactions. The modern age of biochemistry has also 

been facilitated by computational biology, which has taken the considerable knowledge 

amassed by cell cycle scientists and made tenable models that simulate multiple protein 

characteristics, protein interactions, cellular events, and cell-cell communications, 

allowing scientists to test and refine their lab based hypothesis in an integrative manner. 

Thus, classical biochemistry and computational biology constantly refine and challenge 

one another, resulting in innovative understandings for the normal and pathological cell 

cycle, ultimately, allowing for insight into the manipulation of the cell for the benefit of 

human understanding and health.  
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This thesis will describe biochemical, genetic and computational studies which 

have contributed to the understanding of the module of protein interactions centered on 

the mitotic entry protein Cdc25. 

 

The Eukaryotic Cell Cycle 

The cell cycle is a precisely regulated series of events that allow a cell to replicate 

its DNA, equally segregate the DNA, and divide into two daughter cells (reviewed in 

(Morgan 2007)). Eukaryotic cell cycle times range from 24 hours in rapidly dividing 

human cells to around 3 hours in Schizosaccharomyces pombe and less than 2 hours for 

Saccharomyces cerevisiae. Despite temporal differences, all normal cell cycles share two 

discrete phases: S phase and mitosis (M). During S phase, the entire genome is replicated, 

sister chromatids are linked, and the centrosome is replicated (but remains linked until 

mitosis). In mitosis sister chromatids are aligned (prometaphase) and pulled towards 

separate poles of the cell (anaphase). Mammalian cells go through open mitosi in which 

the nuclear envelope dissolves during mitosis and reforms after chromosome separation. 

In contrast, some fungi, such as the fission yeast S. pombe and budding yeast S. 

cerevisiae, go through closed mitosis where the nuclear envelope remains intact during 

mitosis. After mitosis, cells usually initiate cytokinesis, resulting in the production of two 

daughter cells. In most cells, the S phase and M phases are separated by two gap phases 

(G1 and G2) where new ribosomes, cytoplasmic components, membranes, mitochondria, 

ER and most cellular proteins are produced. 

The cell cycle can vary for different cell types and for specialized events. For 

example Drosophila melanogaster embryos undergo 13 rapid cycles of S and M phases 
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without cytokinesis, forming a syncytium of nuclei before cell membrane invaginates into 

the syncytium to form individual cells (reviewed in (Mazumdar and Mazumdar 2002)). 

Endomitosis happens in mammalian megakaryocyte blood cells where multiple rounds of 

S phase without M phase or cytokinesis, resulting in increased ploidy (up to 64N 

compared to 2N of typical diploid cells) and increased cell volume. Build up of cell 

volume and DNA allows the megakaryocyte to rapidly sythensize protein and cytoplasm 

to shed in the form of platelets (reviewed in (Jackson 1990)). 
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Figure 1-1. The eukaryotic cell cycle with  associated Cyclin Dependent Kinases. 
Interphase is composed of 2 gap phases (G1 and G2) in which the cell expands in volume, 
cytoplasmic and protein contents and a Synthesis (S) phase, where the cell doubles in DNA 
content and duplicates its centrosome. Mitosis (M) starts, in mammalian cells, with nuclear 
envelope breakdown and chromosome condensation. Mitosis ends after the cell separates its 
DNA. During cytokinesis, the cell divides into two daughter cells with identical copies of DNA. 
Each phase of the cell cycle and transitions between phases are driven by Cyclin Dependent 
Kinases (Cdks) that associate with their specific Cyclin partners to phosphorylate key substrates. 
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Another specialized cell cycle is meiosis, composed of meiosis I and II. During 

sexual reproduction, two haploid (1N) parent cells, from two individual organisms, 

combine their DNA to form a diploid (2N) cell. The new cell then goes through S phase 

to duplicate its DNA and link sister chromatids. In meiosis I, pairs of sister chromatids 

combine and exchange DNA through homologous recombination, then the two sister 

chromatids are segregated and cytokinesis occurs to result in two daughter cells. In 

meiosis II, the two daughter cells separate their sister chromatids and go through 

cytokinesis again, resulting in four haploid cells that are genetically distinct from their 

parents (reviewed in (Morgan 2007)). 
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Figure 1-2. The meiosis cycle. 
Meiosis I and II are used during sexual reproduction to allow for exchange of parental genetic 
material and result in random segregation of the newly exchanged genetic materials into 4 
separate cells. Two haploid (1N) parent cells fuse to create a diploid cell with two genetically 
distinct sets of chromosomes, shown here in blue or red (2N, 2C). Cells then replicate their DNA 
(2N, 4C) and exchange genetic material through homologous recombination. During Meiosis I, 
cells divide each set of sister chromatids, resulting in 2 haploid daughters with sister chromatids 
still attached (1N, 2C). In meiosis II, the sister chromatids are segregated, resulting in 4 haploid 
daughter cells with one of each set of chromosomes (1N, 1C).  
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Cyclin Dependent Kinases and Cell Cycle Transitions  

The Cyclin Dependent Kinases (Cdks) are a family of serine/threonine kinases 

that are essential for cell cycle transitions. Throughout the cell cycle, Cdks oscillate in 

activity and associate with regulatory Cyclins to temporally and biochemically coordinate 

events that drive cell cycle progression (reviewed in (Satyanarayana and Kaldis 2009); 

(Gopinathan, Ratnacaram et al. 2011)). The Cdk-driven cell cycle is monitored by 

checkpoints that detect errors, modulate Cdk activity and initiate error-correcting 

algorithms.  

There are three main regulatory transitions during the cell cycle: G1/S (Start), 

G2/M (DNA damage checkpoint), and metaphase-anaphase (spindle assembly 

checkpoint). Before Start, the cell senses environmental conditions in G1 including 

nutrition and growth factor levels, and internal cell conditions such as senescence signals 

and DNA damage levels. When conditions are not correct for cell division, G1/S Cdk-

Cyclins (Cdk4/6-CyclinD and Cdk2-CyclinE) are inhibited through degradation of 

Cyclins, inhibition of Cdk and DNA replication, and inactivation of Cdk activators. 

When conditions are suitable for proliferation, cells activate Cdk-Cyclins to initiate DNA 

transcription and other S phase events. At the G2/M transition, cells ensure that DNA 

replication is complete and there is no DNA damage before allowing Cdk1-CyclinB to 

drive mitotic entry. The cell inhibits Cdk1-CyclinB by activating Cdk1 inhibitors, 

inhibiting activators and sequestering Cdk1 activators (such as CyclinB and Cdc25) away 

from the nucleus, where most key mitotic events occur. Finally during the metaphase-

anaphase checkpoint, the cell ensures that chromosomes have attached to the mitotic 

spindle and are aligned at the metaphase plate before the cell initiates late mitotic events 
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such as sister chromatid separation and Cdk1 inactivation through degradation of 

CyclinB and other Cdk1 activators (Reviewed in (Lukas, Lukas et al. 2004)). 

 

Cdk1 Regulation in Mitotic Entry 

 In vertebrates, Cdk1 associates with CyclinA and CyclinB1 to control mitotic 

entry and mitotic events. In comparison, fission yeast triggers mitosis with a single 

CyclinB (Cdc13), and budding yeast contain six B-type Cyclins that function together, 

most likely in a semi-redundant manner, to stimulate mitotic events (reviewed in 

(Morgan 1997)). Despite differences in Cyclin-Cdk1 pairing, control of Cdk1 activity 

during mitotic initiation is common to all eukaryotes. During G2, Cdk1 is inhibited 

following phosphorylation of Thr 14 and Tyr 15 by the Wee1 and Myt1 kinases. In 

mammalian cells, Wee1 only phosphorylates Tyr 15, and Myt1 phosphorylates both Thr 

14 and Tyr 15 (McGowan and Russell 1993; Mueller, Coleman et al. 1995). In fission 

yeast, Wee1 phosphorylation at Tyr 15 is primarily responsible for Cdk1 inhibition 

(Gould and Nurse 1989). When Wee1 is inactivated, cells are reduced to half the size of 

wild type cells due to lack of Cdk1 inhibition (Russell and Nurse 1987). In addition, the 

Mik1 kinase acts cooperatively with Wee1 in S. pombe to phosphorylate Tyr 15. Deletion 

of both Mik1 and Wee1 drives cells to mitotic catastrophe – with cells unable to stop 

mitosis upon DNA or environmental damage (Lundgren, Walworth et al. 1991). 

 Cdc25 phosphatases activate Cdk1 by removing Wee1 and Myt1 inhibitory 

phosphorylations. There is also evidence that, in mammalian cells, Cdc25 facilitates the 

initial mitotic Cdk-Cyclin complex formation (Timofeev, Cizmecioglu et al. 2010). 

Vertebrates have three Cdc25 isoforms (Cdc25 A, B, and C) that play various different 
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and redundant roles for Cdk1 activation during mitosis. Fission yeast has only one Cdc25 

that facilitates several cell cycle transitions but is essential for mitotic entry (reviewed in 

(Karlsson-Rosenthal and Millar 2006)). Inactivation of Cdc25 in fission yeast results in 

cell cycle arrest and subsequent cell death (Russell and Nurse 1986). 

 Cdk1 also negatively regulates Myt1 and Wee1, and positively regulates Cdc25 to 

facilitate rapid Cdk1 activation for mitotic entry. In mammalian cells, Cdk1 

phosphorylation initiates a cascade that ultimately inactivates Myt1 (Nakajima, 

Toyoshima-Morimoto et al. 2003). Cdk1 phosphorylates Wee1, and this phosphorylation 

is correlated with Wee1 degradation and inactivation in Xenopus laevis egg extracts and 

human cells (Michael and Newport 1998; Watanabe, Arai et al. 2004; Smith, Simanski et 

al. 2007). In mammalian cells, Cdk1 phosphorylates and further activates Cdc25C, 

stabilizes Cdc25A, and facilitates nuclear translocation of Cdc25B (Hoffmann, Clarke et 

al. 1993; Baldin, Pelpel et al. 2002; Mailand, Podtelejnikov et al. 2002). And finally, at 

the time my work began, it was known that in fission yeast, Cdc25 phosphorylation by 

Cdk1 at mitotic entry was associated with increases in Cdc25 levels, nuclear localization 

and activity (Wolfe and Gould 2004). 
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Figure 1-3. Mitosis is controlled by the activation of Cyclin Dependent Kinase 1. 
At mitotic entrance, Cdk1 is associated with CyclinB. It is phosphorylated and inactivated by 
Wee1 and Myt1 kinases via phosphorylation at T14 and Y15. Cdc25 phosphatase removes the 
inhibitory phosphorylations and activates Cdk1. Cdk1 is then able to phosphorylate a number of 
substrates to initiate and maintain mitosis. Among its substrates, Cdk1 phosphorylates Cdc25 and 
Wee1, further activating Cdc25 and inactivating Wee1. Factors like damage from the 
environment, DNA damage, and small cell volume prevent Cdk1 activation through control of 
Cdc25 and Wee1 stability, activity and localization to pause the cell in G2 until the cell is ready 
for mitosis.  
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Mitotic Exit 

Late mitotic and mitotic exit events are initiated after the metaphase-anaphase 

transition. After sister chromatids separate, the cell starts to reverse Cdk1 

phosphorylations, which turns off early mitotic events, allows for progression of late 

mitotic events (such as full DNA segregation and cytokinesis) and reduces Cdk1 activity 

to allow for proper transition into a new cell cycle.  

Two prominent components in promoting late mitotic events are the anaphase-

promoting complex or cyclosome (APC/C) E3 ubiquitin ligase, which facilitates 

degradation of mitotic proteins, and phosphatases that remove phosphorylation from 

Cdk1 substrates. During early mitosis, Cdk1 phosphorylates and activates the APC/C 

ubiquitin ligase. Activated APC/C associates with co-factors Cdc20, and later Cdh1, to 

ubiquitylate mitotic proteins for proteasomal degradation. Most prominently, APC/C 

ubiquitylates and targets CyclinB for proteolysis, the persistence of which results in cell 

cycle arrest in anaphase (reviewed in (McLean, Chaix et al. 2011)). 

The Cdc14 phosphatase specifically targets Cdk1 substrates during mitotic exit. In 

S. cerevisiae, Cdc14 dephosphorylates Cdh1 to allow for APC/C association, to facilitate 

total CyclinB protein ubiquitylation and degradation. In addition Cdc14 dephosphorylates 

Sic1p, a Cdk1 inhibitor that is targeted for degradation by Cdk1 phosphorylation 

(reviewed in (Stegmeier and Amon 2004)). Clp1, the Cdc14 phosphatase homologue in S. 

pombe, dephosphorylates and activates itself during mitosis (Wolfe, McDonald et al. 

2006). Clp1 also dephosphorylates Cdc15 to allow for contractile actomyosin ring 

formation, a key component for contraction and abscission during cytokinesis (Guertin, 

Chang et al. 2000; Trautmann, Wolfe et al. 2001; Clifford, Wolfe et al. 2008; Dischinger, 
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Krapp et al. 2008; Roberts-Galbraith, Ohi et al.). Clp1 and human Cdc14B also 

dephosphorylate Cdc25 to directly dampen the Cdk1-Cdc25 co-activation loop. At the 

time this thesis began, in S. pombe, Cdc25 dephosphorylation was associated with Cdc25 

degradation and inactivation (Wolfe and Gould 2004). 

 

Cdc25 Function and Regulation 

As stated previously, mammalian cells have three Cdc25 isotypes (Cdc25A, 

Cdc25B, and Cdc25C). All three isotypes control Cdk activity during cell cycle 

transitions in a mechanism similar to the single Cdc25 homologue in S. pombe. Cdc25A 

activates Cdk2-CyclinA/E and Cdk1-CyclinB and is thus involved in S phase progression 

and mitotic entry (Hoffmann, Draetta et al. 1994; Blomberg and Hoffmann 1999; Sexl, 

Diehl et al. 1999; Mailand, Podtelejnikov et al. 2002). Cdc25B and Cdc25C are mostly 

involved in activating Cdk1-CyclinB and function during mitotic entry and mitotic 

progression. In addition to different roles in the cell cycle, the three isoforms also play 

different developmental roles. CDC25A-/- animals are embryonic lethal, implicating vital 

roles for Cdc25A in embryogenesis (Ray, Terao et al. 2007). CDC25B-/- and CDC25C-/- 

mice survive through adulthood; however, CDC25B-/- female mice are sterile and have 

defects in meiotic resumption in oocytes (Lincoln, Wickramasinghe et al. 2002). 

The mammalian and yeast Cdc25 proteins share conserved C-terminal catalytic 

domains which contain a CX5R motif common to all dual specificity phosphatases (Fig. 

1-4), (reviewed in (Karlsson-Rosenthal and Millar 2006; Trinkle-Mulcahy and Lamond 

2006)). The N-terminal regulatory domains vary in sequence between yeast and human 

homologs, and even within the three human paralogs. In general, the regulatory domains 
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contain sites for phosphorylation, ubiquitylation, and interaction with regulators of 

nucleoplasmic transport.  

 

 

 

 

 

Figure 1-4. Cdc25 isoforms share consensus in the catalytic domain.  
While human and S. pombe Cdc25 isoforms share high sequence identity in their catalytic 
domains, their N-terminal regulatory domains vary in size and sequence. Despite the 
differences in N-terminal sequences, all isoforms contain protein localization domains 
(NLS and NES) and phosphorylation sites for regulatory kinases.  
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Amplification of Cdc25 Activity 

Cdc25 activity is controlled through transcriptional, translational, and post-

translational methods. Transcriptional maintenance of Cdc25 varies in different 

organisms. In fission yeast, Cdc25 mRNA accumulates through the cell cycle starting in 

early interphase and peaking at the G2/M transition (Moreno, Nurse et al.). In humans, 

Cdc25A mRNA level peaks before Cdc25B level, which is maximal around the mitotic 

transition (Jinno, Suto et al. 1994). While mRNA expression of Cdc25 differs, all 

organisms use post-translational modifications that alter protein stability, localization, 

and catalytic activity ultimately regulating total Cdc25 activity.  

Amplification of Cdc25 activity is mainly facilitated by the Cdks and Polo-like-

kinases. In mammalian cells, Cdc25A is involved in both S phase and mitotic progression 

and is phosphorylated by Cdk2/CyclinE or Cdk1/CyclinB in a cell cycle-specific manner. 

Phosphorylation of Cdc25A by Cdk2 directly activates Cdc25A at the S phase transition 

(Hoffmann, Clarke et al. 1993). At the G2/M transition Cdk1 phosphorylation stabilizes 

Cdc25A (Mailand, Podtelejnikov et al. 2002). Cdk1 phosphorylates and activates 

Cdc25B and Cdc25C at mitotic entry. Cdc25C is involved in the co-activation feedback 

with Cdk1 to drive rapid mitotic entry while Cdc25A and Cdc25B act earlier in G2 and 

are involved in the initial Cdk1-CyclinB complex formation, and initial Cdk1 activation 

at the centrosome (Hoffmann, Clarke et al. 1993; Lindqvist, Källström et al. 2005; 

Timofeev, Cizmecioglu et al. 2010). In S. pombe, at the time this thesis began, Cdk1 

hyperphosphorylation of Cdc25 was associated with increased Cdc25 concentration, 

nuclear accumulation and activation, although it was not clear if Cdk1 phosphoregulation 
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specifically modulated one or all three mechanisms of Cdc25 control (Kovelman and 

Russell 1996; Esteban, Blanco et al. 2004; Wolfe and Gould 2004). 

The Polo-like-kinases (Plks) also phosphorylate and positively regulate Cdc25. 

Plks play multiple roles and interact with multiple substrates during the G2/M transition, 

mitotic progression, and cytokinesis (reviewed in (Archambault and Glover 2009)). The 

Xenopus Polo-like-kinase activates Cdc25 directly via phosphorylation (Kumagai and 

Dunphy 1996; Qian, Erikson et al. 2001). In humans, Plk1 and Plk3 phosphorylate 

Cdc25C and facilitate Cdc25 nuclear translocation at prophase to facilitate proper Cdc25-

Cdk1 spatial interaction (Toyoshima-Morimoto, Taniguchi et al. 2002; Bahassi el, 

Hennigan et al. 2004). Plk1 also phosphorylates Cdc25B at the centrosome during late 

G2 and is thought to facilitate Cdc25 and Cdk1 activation at the centrosome, considered 

to be one of the first events during mitotic entry (Lobjois, Jullien et al. 2009).  

Regulation of Cdc25 During Cell Cycle Checkpoints 

Cdc25 isoforms contain nuclear import and export signals that can be regulated 

through DNA damage and environmental stress responses. DNA damage checkpoint 

inhibits Cdc25 to delay mitosis until DNA is repaired. In mammalian cells, 

phosphorylation by the Chk1 and Chk2 kinases on Cdc25B and Cdc25C causes nuclear 

exclusion by promoting association with the nuclear exportin Crm1 and binding to 14-3-3 

proteins to sequester Cdc25 in the cytoplasm (Graves, Lovly et al. 2001). Cdc25A 

phosphorylation by the Chk kinases induces degradation by ubiquitin-mediated processes 

(Mailand, Falck et al. 2000; Falck, Mailand et al. 2001). In S. pombe, Cdc25 

phosphorylation by the Chk kinases both inactivates Cdc25 and facilitates 14-3-3 binding 

in the cytoplasm (Furnari, Blasina et al. 1999). 



 16 

Cells also respond to environmental stresses, such as UV light damage, osmotic 

pressure changes and cytoskeletal disruptions, by inhibiting Cdc25. The p38 Mitogen 

Activated Protein Kinase (MAPK) cascade responds to these environmental stresses and 

through the effector kinase MAPK-Associated Protein Kinase 2 (MAPKAPK-2), 

phosphorylates Cdc25B and Cdc25C, to facilitate 14-3-3 binding leading to nuclear 

exclusion and delayed mitotic onset (Manke, Nguyen et al. 2005). In addition, p38 

activity ultimately induces Cdc25A and Cdc25B degradation during S phase and M phase 

entry, respectively, in response to environmental stresses (such as Osmotic and UV, 

respectively) (Khaled, Bulavin et al. 2005; Uchida, Yoshioka et al. 2009; Uchida, 

Watanabe et al. 2011). Similar to mammalian cells, in S. pombe, the p38 kinase Sty1 

responds to environmental stresses to activate downstream Srk1 (a MAPKAPK-2 related 

protein) to directly phosphorylate Cdc25 on the same sites as the Chk kinases to facilitate 

Cdc25 nuclear exclusion and inactivation (Lopez-Aviles, Grande et al. 2005). 
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Figure 1-5. Cdc25 is a heavily regulated molecule. 
DNA damage and environmental stresses activate downstream pathways that phosphorylate 
Cdc25 and inhibit mitotic entrance by facilitating Cdc25 degradation and preventing Cdc25 
activation and nuclear translocation. Conversely, Polo-like kinase and Cdk phosphorylation of 
Cdc25 is correlated with increased Cdc25 activity and nuclear localization.  
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Cdc25 During Mitotic Exit 

 Starting in anaphase, Cdc25 becomes progressively dephosphorylated by the 

Cdc14 phosphatases and undergoes ubiquitin-mediated degradation (Donzelli, Squatrito 

et al. 2002; Wolfe and Gould 2004; Tumurbaatar, Cizmecioglu et al. 2011). Cdc25 

dephosphorylation and inactivation quenches the Cdk1-Cdc25 positive feedback loop, 

and mitotic exit follows the reversal of Cdk1 kinase events. In S. pombe, clp1 deleted 

cells are shorter than wild type cells. This is partly due to the mutant’s inability to 

dephosphorylate and inactivate Cdc25, allowing for increased Cdk1 activity, which 

drives premature mitotic entry (Wolfe and Gould 2004). 

 How Cdc14 dephosphorylation of Cdc25 confers inactivation or degradation of 

Cdc25 is unclear. In humans, Cdc25A and Cdc25B are degraded by the ubiquitin-

proteasome system and are ubiquitylated by both Skp1-Cul1-F Box (SCF) and anaphase 

promoting complex/cyclosome (APC/C) E3 ubiquitin ligases (Donzelli, Squatrito et al. 

2002; Busino, Donzelli et al. 2003; Busino, Chiesa et al. 2004; Kieffer, Lorenzo et al. 

2007). However, the proteins that signal for Cdc25 ubiquitylation and degradation are 

unknown. In S. pombe, there is evidence that Clp1 and APC/C are involved in Cdc25 

destabilization at the end of mitosis (Wolfe and Gould 2004). In an mts3-1 mediated 

metaphase arrest facilitated by the inactivation of a temperature sensitive proteasomal 

component, cells without Clp1 or APC/C have decreased Cdc25 ubiquitylation (Wolfe 

and Gould).  The S. pombe Pub1 E3 ligase also may play a role in Cdc25 ubiquitylation. 

Pub1 has been shown to work with Clp1 to regulate the long-term destabilization of 

Cdc25 (Nefsky and Beach 1996; Esteban, Blanco et al. 2004; Esteban, Sacristán et al. 

2008). 
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 In addition to Cdc25 ubiquitylation and degradation, Clp1 also may play a role in 

Cdc25 localization. At the start of this thesis, it was shown that clp1Δ cells had increased 

Cdc25 nuclear localization during late anaphase (Wolfe and Gould 2004). Until the work 

described herein, it was not known if abnormal localization was due to increased Cdc25 

abundance or disrupted Cdc25 nuclear export. 

 

 

 

 

Figure 1-6. Cdc25 phosphoregulation by Cdk1 and Clp1 during mitosis.  
At mitotic entrance, Cdc25 phosphorylation by Cdk1 is correlated with activation, nuclear 
localization and accumulation of Cdc25. After metaphase, Clp1 dephosphorylates Cdk1 sites on 
Cdc25. Clp1 dephosphorylation is followed by Cdc25 degradation and a decrease in activity. 
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Bistability, Ultrasensitivity and Feedback Loops in Cell Cycle Progression 

 The stepwise nature of the cell cycle requires the cell to “remember” previous cell 

cycle events, rapidly execute decisions when requirements for future events are satisfied, 

and stay in a new cell cycle state once a transition has occurred. This form of feed-

forward mechanism has been proposed to be driven by feedback loops, in which an 

initially low disturbance in the system initiates a low amplitude signal that builds upon 

itself in an exponential manner until the system reaches a new equilibrium (Pomerening 

2009).  

 Two types of feedback loops exist: positive or negative feedback. In the positive 

feedback loop, element A enhances the output of element B, and element B in turn 

enhances the output of element A. In the negative feedback loop, element A decreases the 

output of element B while element B also reduces element A’s output (Fig 1-7) 

(Pomerening 2009).  

 In biological systems, combinations of both positive and negative feedback loops 

work together to create bistable steady states. A bistable system contains two low energy 

stable states separated by a high energy transition state (reviewed in (Ferrell and Xiong 

2001)). Generally, in the cell cycle, when the system has transitioned into one state it is 

nearly impossible for it to switch back to its previous state due to the high energy barrier 

between the two phases (for example, the transitions between G1 to S phases, G2 to 

mitosis phases, and mitosis back to G1) (Fig. 1-8).  
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Figure 1-7. Bistability requires one or more feedback loops and at least one component of 
the feedback loop(s) with ultrasensitive characteristics. 
Two types of feedback exist. In the positive feedback loop two elements co-activate one another 
while in the negative feedback loop, the two elements inactivate one another (top). For a system 
to be bistable, the system must contain one or more feedback loops. In addition, an element of the 
feedback loop (in this case A or B activities) must be ultrasensitive in nature, having sigmoid 
response curves (bottom).  
 

 

 For a system to be bistable, a component (or multiple components) of the 

contributing feedback loops must also exhibit ultrasensitivity (Fig 1-7). That is, the 

output response is low in the presence of “noise levels” of signal perturbations but once 

there is enough amplitude in the signal, the output response rapidly and exponentially 

increases until full response is reached, creating a sigmoidal (s-shaped) dose-response 

curve. The classic example of an ultrasensitive system is the hemoglobin molecule, a 

tetramer with four oxygen binding sites, used to store and deliver oxygen to human 

tissues. Binding is cooperative in hemoglobin. As one site binds O2, it increases the 

binding affinity of each remaining binding site. Thus, much more energy is needed for 

the initial O2 binding event, but once a binding site “catches” an O2 molecule, each 

subsequent binding event becomes easier and faster until hemoglobin is completely 
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saturated (reviewed in (Ferrell 2009)). Ultrasensitivity is useful in biological systems 

because it creates a sharp transition between “on” and “off” states. Thus, bistability 

allows the cell cycle to rapidly start DNA replication in S phase, stop protein and 

organelle synthesis during the switch into mitosis, and restart protein synthesis while 

prohibiting mitotic events during G1.  

 

Evidence for Mitotic Entry as a Bistable Event 

 Pioneering work in cell cycle modeling predicted that a bistable trigger facilitates 

the switch-like transition between interphase and mitosis (Tyson 1991; Novak and Tyson 

1993; Novak and Tyson 1993; Thron 1996). The model argues that bistability ensures 

that there are two stable steady states for the cell cycle, interphase or mitosis, and predicts 

a Cdk1 activity threshold for mitotic entry, and a lower Cdk1 activity threshold for 

mitotic exit, thus giving rise to hysteresis in the system.  

 Recent studies in Xenopus laevis and human cell extracts validated that the 

mitotic transition is driven by at least two major feedback loops: the Cdk1-Wee1 double 

negative feedback loop, in which Cdk1 and Wee1 inactivate one another by 

phosphorylation, and the Cdk1-Cdc25 positive feedback loop, where Cdk1 

phosphorylates and activates Cdc25, while Cdc25 dephosphorylates and further activates 

Cdk1 (Pomerening, Sontag et al. 2003; Pomerening, Kim et al. 2005; Kim and Ferrell 

2007; Deibler and Kirschner 2010; Trunnell, Poon et al. 2011).  

 In Xenopus egg extracts, ultrasensitivity in Wee1 inactivation is attributed to 

competition between essential and non-essential Cdk1 phosphosites on Wee1 and 

between Wee1 and other Cdk1 substrates (Kim and Ferrell 2007). More recently it was 



 23 

also shown in Xenopus egg extracts that Cdk1 multisite phosphorylation of Cdc25 

contributes to the highly ultrasensitive activation of Cdc25 and Cdk1 (Trunnell, Poon et 

al. 2011). These ex vivo results corroborate mathematical data showing important 

contributions of Wee1 and Cdc25 multisite phosphorylation to the bistability of mitotic 

entry (Yang, MacLellan et al. 2004; Domingo-Sananes and Novak 2010). While ex vivo 

and mathematical models suggest that both Cdk1-Wee1 and Cdk1-Cdc25 feedback loops 

contribute to the robustness of the mitotic entry switch, the existence of the feedback loop 

has not been explored in cycling cells, nor has the perturbations of the feedback loops in 

vivo been explored.  

 

 

 

Figure 1-8. Cdk1 activity exhibits bistability.  
The bistability of Cdk1 activity is contributed by two feedback loops: the Wee1-Cdk1 negative 
feedback loop, and the Cdk1-Cdc25 positive feedback loop. Of importance to Cdk1 bistability, in 
Xenopus cell lysates, both these feedback loops show ultrasensitivity in Cdc25 activation or Wee1 
inactivation.  
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Schizosaccharomyces pombe as a Model Organism for Cell Cycle Studies 

 S. pombe was originally isolated by Paul Lindner in 1783 from the East African 

beer called pombe in Swahili (Lindner 1893). By the 1950s, Mitchison and Leupold were 

separately using S. pombe. While Leupold took advantage of the propensity for S. pombe 

to grow as a haploid organism to study genetic events such as recombination, mutation 

and mating; Mitchison realized that the size of S. pombe was a good indication of cell 

cycle progression and related cell cycle changes to environmental and nutritional cues 

(reviewed in (Nurse 2004)). 

  Paul Nurse united the two fields of S. pombe studies in the mid 1970s. Using 

genetics to understand cell cycle components, Nurse published the landmark Nature 

paper in 1978 finding a link between accumulation of mRNA levels with cell cycle 

progression (Fraser and Nurse 1978). Around the same time that fission yeast was 

starting to be used for biochemical and genetic explorations of the cell cycle, studies in 

Xenopus and sea urchin egg extracts had found that a factor called MPF (mitosis 

promoting factor) is necessary for mitotic entrance. In addition, genetic studies in S. 

cerevisiae and S. pombe had isolated a number of cell cycle mutants that suggested a 

complex signal network drives cell cycle progression. In the following decade, the Nurse 

lab went on, using genetics, to isolate for the first time, cell cycle regulators such as cdk1 

(which was originally called cdc2 in S. pombe), wee1 (along with other wee mutants that 

were small or “wee”) and cdc25 (cell division cycle 25 mutant), along with many other 

cdc-deficient mutants. Expression of cdc2 protein product confirmed that Cdc2 is the 

kinase component of MPF and the master regulator of mitosis when associated with 

CyclinB (Cdc13 in S. pombe) (reviewed in (Murray and Hunt 1993). Later, these genes, 
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and subsequent gene products were also found to play important roles in humans and 

other metazoans. Thus, S. pombe played an important role in the early identification of 

key cell cycle regulators.  

 The fission yeast, S. pombe, is an excellent system to explore eukaryotic cell cycle 

control due to its genetic and biochemical tractability as well as its easily observable 

growth and division patterns (Fig. 1-9). A characteristic that is important for this study 

into mitotic entry and mitotic events, is that S. pombe elongates lengthwise during 

interphase and halts its growth during mitosis and cytokinesis, thus, a measurement of 

cell length at septation is an effective assay to estimate length at mitotic entrance and in 

turn, time to mitosis 

 Furthermore to facilitate biochemical and genetic studies, S. pombe has a fully 

sequenced genome that can be manipulated experimentally. Fission yeast prefers to grow 

as a haploid, easily uptakes mutagenic plasmids via electroporation or other established 

transformation methods, and rapidly recombines its DNA with plasmid DNA. In addition, 

many established biological, genetic and biochemical techniques are available for S. 

pombe to dissect molecular mechanisms. Finally, S. pombe contains proteins that are 

conserved throughout eukaryotes, allowing for global understanding of the molecular 

mechanisms that control the cell cycle.  
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Figure 1-9. The S. pombe cell cycle. 
S. pombe progresses through all normal phases of the eukaryotic cell cycle, making it a good 
model organism to study cell cycle control. In addition, S. pombe grows by tip elongation and 
divides by medial fission. Cells stop elongating after mitotic entry and remain the same length 
until cytokinesis, making septation length a sensitive assay to dissect disturbances in mitotic 
entrance and exit control.  
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Summary 

In this thesis, I describe my studies on the role of Cdk1 phosphorylation on Cdc25 

and how this in turn affects the timing of mitotic entry and mitotic events. In Chapter II, I 

describe the techniques used in this study. In Chapter III, I ask if Cdk1 phosphorylation 

controls Cdc25, nuclear localization, stabilization or activation. I found that Cdk1 

phosphorylation directly activates Cdc25 but does not affect Cdc25 localization, 

stabilization during the cell cycle, or ubiquitylation and degradation at mitotic exit. In 

Chapter IV, I examine the mechanism of Cdk1 phosphorylation on Cdc25, showing that 

Cdc25 phosphorylation by Cdk1 is ultrasensitive, distributive, and disordered. In 

addition, I use S. pombe as an undisrupted cell system to show that removing Cdc25 

phosphorylation by Cdk1 removes a cell’s ability to precisely time mitosis, and 

maintaining Cdc25 on Cdk1 phosphosites during late mitosis prevents cells from 

precisely regulating the timing of the mitotic exit switch. Finally, I show collaborative 

mathematical modeling data, developed by Dr. Maria Rosa Domingo-Sananes and Dr. 

Bela Novak from Oxford University, that incorporates the mechanism of Cdc25 

phosphorylation by Cdk1. From this model we are able to mathematically verify my 

experimental data on the effects of disrupting the Cdc25-Cdk1 positive feedback on 

mitotic timing. In Chapter V, I summarize our data and describe ongoing studies that will 

further examine Cdc25 phosphoregulation, mitotic switch timing, and the mechanisms of 

Cdc25 activation.  

In all, this work underscores the usefulness of S. pombe, as an organism to study 

feedback in biological switches within undisrupted cells. In addition, I examined a 

previously undiscovered mechanism of Cdc25 phosphorylation and activation. Finally, I 
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show, for the first time, that Cdc25 is not only involved in mitotic entry but also functions 

in regulating late mitotic events to prepare the cell for mitotic exit.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Strains, Media, and General Methods 

Yeast strains used in this study (Table 2-1) were grown in Yeast Extract (YE) or 

Edinburgh minimal medium with appropriate supplements. nda3-KM311 cells were 

grown at 32oC and arrested at 18oC for 6.5 hours. For block and release experiments, 

after arresting in 18oC, cells were released back into 32oC and collected at intervals. For 

hydroxyurea (HU) synchronized cells, cells were grown in 12 mM HU for 3.5 hours at 

32oC. mts3-1 or mts3-1 lid1-6 cells were grown at 25oC and arrested for 4 hours at 36oC. 

Strains were constructed using tetrad dissection or random spore analysis. To 

replace cdc25 mutants at the endogenous cdc25 locus, cdc25+/cdc25Δura4+ diploids were 

transformed with the cdc25 mutant gene in a pIRT2 vector. Haploid cells were selected 

for incorporation of the vector. Then, haploid cells that integrated mutant cdc25 were 

recovered based on resistance to 5-fluorourotic acid (5-FOA). cdc25+ and cdc25 mutant 

genes were tagged at the 3’ end of the ORF at their endogenous loci with V5::kanR, 

linker-GFP::kanR, or linker-HBH::kanR cassettes as previously described (Bähler, Wu et 

al. 1998). Yeast transformations were carried out using the lithium acetate method 

(Keeney and Boeke 1994). Integrants of cdc25 mutants and kanR cassettes were screened 

by whole-cell PCR to ensure proper genomic placements. The GFP tags were also 

visualized with fluorescence microscopy to ensure expression.  



 30 

All statistics were calculated with and graphs made using the Graphpad Prism 

software (GraphPad Software, CA) or using Microsoft Excel (Microsoft, WA).  

 

 

Table 2-1: Strains used in this study 
Strain Genotype Reference  

KGY42 h- cdc25-22 ura4-D18 leu1-32 Lab stock 

KGY246 h- ade6-M210 leu1-32 ura4-D18 Lab stock 

KGY3612 h- nda3-KM311 ura4-D18 leu1-32 Lab stock 

KGY7836 h- cdc25-HBH::kanR ura4-D18 ade6-M21X leu1-32 Lab stock 

KGY8415 h- sid4-HBH::kanR ura4-D18 ade6-M210 leu1-32 Lab stock 

KGY9476 h- nda3-KM311 ura4-D18 leu1-32 Lab stock 

KGY9678 h- mts3-1 cdc25-HBH::kanR ura4-D18 ade6-M21X leu1-32 Lab stock 

KGY9880 h- mts3-1 lid1-6 cdc25-HBH::kanR ura4-D18 ade6-M21X leu1-32 Lab stock 

KGY9985 
h- mts3-1 lid1-6 clp1::ura4+ cdc25-HBH::kanR ura4-D18 ade6-
M21X leu1-32 Lab stock 

KGY10264 
h+ sid4-RFP::kanR  cdc25-linkerGFP::kanR  ade6-M210 leu1-32 
ura4-D18 This study  

KGY10280 
h+ sid4-RFP::kanR  cdc25-13A-linkerGFP::kanR  leu1-32 ura4-
D18 ade6-216 This study  

KGY10326 h+ cdc25-13A-V5::kanR  ura4-D18 ade6-216 leu1-32 This study  

KGY10327 h+ cdc25-V5::kanR   This study  

KGY10328 h- nda3-KM311 cdc25-V5::kanR This study  

KGY10329 h- nda3-KM311 cdc25-13A-V5::kanR This study  
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Strain Genotype Reference  

 
KGY10715 h+ cdc25-S143A  ura4-D18 ade6-M210 leu1-32 This study  

KGY11010 
h- nda3-KM311 clp1::ura4+ cdc25-13A-V5::kanR ade6-216 ura4-
D18 This study  

KGY11683 h90 wee1::ura4+ cdc25-13A-V5::kanR  leu1-32  ura4-D18 This study 

KGY11686 h+ cdc2-33 cdc25-13A-V5::kanR  ade6-216 leu1-32 This study 

KGY11687 h90 cdc2-33 cdc25-V5::kanR   This study 

KGY11695 h+ cdc25-5A-1  ade6-216 leu1-32 This study 

KGY11796 h90 cdc25-3A-1 (66A,143A,332A) ura4-D18 leu1-32 ade6-216 This study 

KGY11844 h- cdc13-117 cdc25-V5::kanR   This study 

KGY11845 h- cdc13-117  cdc25-13A-V5::kanR  ura4-D18 This study 

KGY11846 h- cdr2::ura4+ cdc25-V5::kanR   ura4-D18 This study 

KGY11847 h- cdr2::ura4+ cdc25-13A-V5::kanR  leu1-32 ura4-D18 This study 

KGY11848 h- cdc2-L7 cdc25-V5::kanR   This study 

KGY11849 h+ cdc2-L7 cdc25-13A-V5::kanR  leu1-32 This study 

KGY11946 h+ cdc25-11A  ura4-D18 leu1-32 ade6-216 This study 

KGY11947 h90 cdc25-7A  ade6-216 leu1-32 This study 

KGY11948 h- clp1::ura4+ cdc25-13A-V5::kanR   ura4-D18 This study 

KGY11949 h+ cdc25-9A  ura4-D18 leu1-32 ade6-M210 This study 

KGY11955 h+ cdc25-3A-2 (104A,332A,351A) ura4-D18 leu1-32  This study 

KGY12200 h- cdr1::ura4+ cdc25-V5::kanR   ura4-D18 ade6-216 leu1-32 This study 
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Strain Genotype Reference  

KGY12201 h-  clp1::ura4+ cdc25-V5::kanR  ura4-D18 ade6-216 leu1-32 This study 

KGY12202 h- wee1::ura4+ cdc25-V5::kanR  ura4-D18 leu1-32 This study 

KGY12023 

 
h+ clp1::ura4+ sid4-RFP::kanR  cdc25-13A-linkerGFP::kanR   
ura4-D18  ade6-M210 leu1-32  This study 

KGY12022 h+ cdr1::ura4+ cdc25-13A-V5::kanR   ura4-D18 ade6-216 leu1-32 This study 

KGY12072 

 
h-  clp1::ura4+ sid4-RFP::kanR  cdc25-linkerGFP::kanR    ura4-
D18 This study 

KGY12615  h+  cdc25-5A-2  ura4-D18 leu1-32 ade6-216 This study 
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Molecular Biology Techniques 

Plasmid constructions were performed with standard molecular biology 

techniques. DNA oligonucleotides (Table 2-2) were purchased from Integrated DNA 

Technologies, Inc. (Iowa). Site-directed mutagenesis was carried out using 

oligonucleotides in Quikchange Site-Directed or Lightning Multisite-Directed 

Mutagenesis Kits (Agilent, CA) according to the manufacturer’s suggestions. DNA 

sequencing by GenHunter Corp. (Nashville, TN) was used to verify mutations in 

plasmids and following whole-cell PCR of mutations integrated at the cdc25 locus.  
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Table 2-2. Oligonucleotides used for mutagenesis. 
oligonucleotide 
name oligonucleotide sequence 
cdc25-S3A 5'-AACTAAAATGGATGCTCCGCTTTCTTCAC-3' 
cdc25-S3A GC 5'-GTGAAGAAAGCGGAGCATCCATTTTAGTT-3' 
cdc25-S66A 5'-TTGTTCGACAGCTGCTCCTGCATCTTCCTT-3' 
cdc25-S66A GC 5'-AAGGAAGATGCAGGAGCAGCTGTCGAACAA-3' 

cdc25-S84T89A 

5'-
GCATATCGATGAAGCCCCTGCCTTACCGGCGCCTCGTCGTACGCT-
3' 

cdc25-S84T89A 
GC 

5'-
AGCGTACGACGAGGCGCCGGTAAGGCAGGGGCTTCATCGATATGC
-3' 

cdc25-S84A 5'-TGCATATCGATGAAGCTCCTGCCTTACCGACTCC-3' 
cdc25-S84A GC 5'-GGAGTCGGTAAGGCAGGAGCTTCATCGATATGCA-3' 
cdc25-T89A 5'-GCGTACGCCGCGGAGCCGGTAAGGCAGGGCTTTCATCG-3' 
cdc25-T89A GC 5'-CGATGAAAGCCCTGCCTTACCGGCTCCGCGGCGTACGC-3' 

cdc25-
T104S113S118A 

5'-
CTTTCTTGTACTGTAGAAGCCCCTCTCGCTAACAAGACTATTGTTG
CACCTCTCCCCGAGGCACCCTCGAATGACGC-3' 

cdc25-
T104S113S118A 
GC 

5'-
GCGTCATTCGAGGGTGCCTCGGGGAGAGGTGCAACAATAGTCTTG
TTAGCGAGAGGGGCTTCTACAGTACAAGAAAG-3' 

cdc25-T104A 5'-TCTACTGTAGAAGCTCCTCTCGCTAAC-3' 
cdc25-T104A 
GC 5'-GTTAGCGAGAGGAGCTTCTACAGTAGA-3' 
cdc25-
S113S118A 5'-AAGACTATTGTTGCTCCTCTCCCGGAGGCTCCCTCGAATGACG-3' 
cdc25-
S113S118A GC 

5'-CGTCATTCGAGGGAGCCTCCGGGAGAGGAGCAACAATAGTCTT-
3' 

cdc25-S143A 
5'-
GTATTCCATTACCCAAGATGCCCCTCGAGTTTCCAGCACTATTGC-3' 

cdc25-S143A GC 

5'-
GCAATAGTGCTGGAAACTCGAGGGGCATCTTGGGTAATGGAATAC
-3' 

cdc25-S308A 5'-CAAGCTGCACCCATTAAACCTATTGATATGTTACC-3' 
cdc25-S308A GC 5'-GGTAACATATCAATAGGTTTAATGGGTGCAGCTTG-3' 
cdc25-
S332S334A 5'-CCTAGCTTGAAAGTTAGGGCGCCTGCTCCGATGGCATTCGC-3' 
cdc25-
S332S334A GC 5'-CCTAGCTTGAAAGTTAGGGCGCCTGCTCCGATGGCATTCGC-3' 
cdc25-S332A 5'-TTGAAAGTTAGGGCCCCTTCTCCGATGA-3' 
cdc25-S332A GC 5'-TCATCGGAGAAGGGGCCCTAACTTTCAA-3' 
cdc25-S351A 5'-GATGAGCAAGATGCTCCAGTGCTTCGT-3' 
cdc25-S351A GC 5'-ACGAAGCACTGGAGCATCTTGCTCATC-3' 
cdc25-T379A 5'-GCCAAGATCTTGTGTGCGTGGCGCCAAAACAATCGACC-3' 
cdc25-T379A 
GC 5-'GGTCGATTGTTTTGGCGCCACGCACACAAGATCTTGGC-3' 
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Immunoprecipitations and Immunoblots 

Whole cell lysates were prepared in supplemented (1 mM PMSF, 1 mM 

benzamidine) NP-40 buffer (6 mM Na2HPO4, 4 mM NaH2PO4-H2O, 1% NP-40, 300 mM 

NaCl, 2 mM EDTA, 50 mM NaF, 4 µg/mL leupeptin, 0.1 mM Na3VO4) and cells were 

lysed using bead disruption. Cdc25-V5 lysates were immunoprecipitated with anti-V5 

antibody (Invitrogen, CA) and then incubated with Protein G sepharose (1:1 beads to 

NP40 buffer)(GE life sciences, NJ), for 1 hour each. For λ phosphatase treatment, protein 

G beads were washed with 1x phosphatase buffer (50 mM HEPES, 100 mM NaCl, 2 mM 

DTT, 0.1 mM MgCl2, 0.1 mM EGTA). Beads were then incubated with λ phosphatase 

(NEB, MA) in phosphatase buffer for 30 mins at 30oC.  Immunocomplexes were mixed 

with SDS sample buffer and boiled before separation by 8% acrylamide SDS-PAGE and 

visualized by immunoblot using anti-Cdc25 (gift of Paul Russell). Cell lysates were 

probed with anti-Cdk1 (PSTAIRE) (Invitrogen, CA) as a loading control. For 

immunoblot analysis, membranes were treated with a fluorescently labeled secondary 

antibody and laser scanned using the Odyssey machine (LI-COR, NE).  

Tandem Affinity Purification of Cdc25-TAP 

Tandem affinity purification of Cdc25-TAP was performed as described (Tasto et. 

al. 2001). Briefly, approximately 2.5x 109 nda3-KM311 cdc25-TAP cells were collected 

from a culture incubated at 19oC for 6.5 hours to arrest cells in prometaphase. Cells were 

lysed for 8 minutes (30 seconds lysis, 30 seconds rest) on ice using bead disruption in 

supplemented NP40 buffer. Lysates were transferred to 3x 50 ml falcon tubes and spun at 

3000 RPM for 10 minutes. Supernatant was removed to new tubes and 800 µL IgG 

sepharose bead slurry (1:1 beads to NP-40 buffer) (GE Life Sciences, NJ) per tube was 
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added and then incubated at 4oC on a rotating platform for 1 hour. IgG beads were 

allowed to pack by gravity in a 0.8x4 cm Poly-prep chromatography column (Biorad, 

CA) at 4oC. Beads were washed with 30 mL IPP150 buffer (10 mM Tris HCl pH 8.0, 300 

mM NaCl, 0.1% NP-40) and then washed with 10 mL TEV cleavage buffer (IPP150 

buffer with 0.5 mM EDTA). Beads were then incubated in a capped column with 500 

units of TEV protease (recombinant protein from E. coli) in 1 mL TEV cleavage buffer 

for 1.5 hours at 18oC on a rotating platform. The flow through was drained to a new 

sealed column and the old column was washed with 1 mL TEV cleavage buffer and flow 

through was collected in the new column with previous flow through. 6 mL of CBB (10 

mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM Mg2+ Acetate, 1 mM imidazole, 2 mM 

CaCl2, 10 mM β mercapto-ethanol) and 6 µL 1M CaCl2
 were added to the new column. 

300 µL of calmodulin beads (1:1 beads to CBB) (Agilent, CA) was added and the 

solution was incubated at 4oC on a rotating platform for 1 hour. Beads were washed 2x 

by gravity in CBB with 0.1% NP-40, then 1x in CBB with 0.02% NP-40 at 4oC. Protein 

was eluted with CEB (10 mM Tris-HCl, pH 8.0, 300 mM NaCl, 0.02% NP-40, 1 mM 

Mg2+acetate, 1 mM imidazole, 20 mM EGTA, 10 mM β-mercapto-ethanol). Flow through 

was collected and protein pellet was collected through tricholoacetic acid precipitation 

(25% TCA).  

In vivo Ubiquitylation Assay  

 Cdc25-HBH and Sid4-HBH proteins were purified using a previously developed 

fully denatured two-step purification method at room temperature (Johnson and Gould 

2011). Cells were lysed using bead disruption in pH 8.8 buffer 1 (4 mM imidazole, 0.5% 

NP40, 300 mM NaCl, 50 mM NaPO4, and 8 M urea). Lysates were incubated with Ni2+-
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NTA agarose beads (Qiagen, CA) for 3 hours at room temperature. Beads were washed 

4x in pH 6.3 buffer 3 (20 mM imidazole, 0.5% NP40, 300 mM NaCl, 50 mM NaPO4, and 

8 M urea). Protein was then eluted in pH 4.3 buffer 4 (0.5% NP40, 200 mM NaCl, 50 

mM NaPO4, 8 M urea, 10 mM EDTA, 2% SDS and 100 mM Tris HCl). The elution was 

adjusted to pH 8 and incubated overnight with streptavidin ultra-link resin (Pierce, IL) at 

room temperature. Streptavidin beads were then washed 4x in pH 8 buffer 6 (200 mM 

NaCl, 2% SDS, 100 mM Tris HCl and 8 M urea) and then 1x pH 8 buffer 7 (200 mM 

NaCl, 100mM Tris HCl, and 8 M urea). Beads were mixed with SDS sample buffer and 

boiled before separation by 8% acrylamide SDS-PAGE and visualized by immunoblot 

using anti-streptavidin (Li-COR Odyssey, NE) or anti-ubiquitin (Roche, IN).  

 

In vitro Cdk1 Kinase Assay 

Recombinant MBP fusion proteins were produced in and purified from E. coli. 

Recombinant Cdc2-Cdc13 (Cdk1-CyclinB in S. pombe) was purified from baculovirus 

infected insect cells (gift of Robert Fisher). in vitro Cdk1 kinase and Cdc25 phosphatase 

assays were performed as previously described (Kovelman and Russell 1996; Wolfe and 

Gould 2004). For in vitro Cdk1 kinase assays, 100 ng (1x Cdk1 levels) or varying levels 

(0.02x to 10x) of recombinant Cdc2-Cdc13 was used to phosphorylate 1 µg of MBP 

tagged proteins in kinase buffer (10 µM Tris HCl, pH7.4, 10 µM MgCl2, 100 nM DTT) 

supplemented with 10 µM cold ATP and 5 µCi γ-32P-ATP. Proteins were incubated for 

30 minutes at 30oC and reactions were terminated by addition of 1:1 SDS sample buffer. 

Samples were boiled and separated by SDS-PAGE. Coomassie blue staining or western 



 38 

blot was used to visualize proteins. Autoradiography was used for detection of 

phosphorylated proteins.  

 

Cdc25 Activity Assay 

Cdc25 activity assays were performed as previously described (Kovelman and 

Russell 1996; Wolfe and Gould 2004). Briefly, 5 x 108 cells from nda3-KM311 

prometaphase blocked samples were lysed in buffer A (300 mM NaCl, 5 mM disodium 

EDTA, 10 mM EGTA, 25 mM MOPS-NaOH, 60 mM β-glycerol phosphate, 1 mM 

Na3VO4, 1 mM DTT, 1 mM PMSF). As loading control, 10 µl of each lysate was 

combined with SDS sample buffer, boiled, resolved by SDS-PAGE, and immunoblotted 

with anti-Cdk1 (PSTAIRE) to detect Cdk1. Anti-V5 antibody and protein G sepharose 

(GE Life Sciences, NJ) were used to immunoprecipitate Cdc25-V5 from the rest of the 

lysates. Immunocomplexes were washed with Buffer C (100 mM NaCl, 5 mM disodium 

EDTA, 10 mM EGTA, 25 mM MOPS-NaOH, 1 M DTT, 50 mM NaF, 0.1% NP40). 

Beads containing the mitotic forms of Cdc25-V5 were added to protein lysates of cdc25-

22 blocked cells (6 x 107) lysed in buffer B (100 mM NaCl, 5 mM disodium EDTA, 10 

mM EGTA, 25 mM MOPS-NaOH, 60 mM DTT, 50 mM NaF, 1 mM PMSF) incubated 

for 15 mins at 30oC and pelleted. Supernatants were moved to a new tube and beads were 

washed with buffer D (100 mM NaCl, 15 mM MgCl2, 10 mM EGTA, 25 mM MOPS-

NaOH, 60 mM β-glycerol phosphate, 1 mM Na3VO4, 1 M DTT, 1 mM PMSF). Protein 

bound beads were spun down and wash buffer was added to previously collected 

supernatants. SDS sample buffer was added to beads, samples were boiled and separated 

by SDS-PAGE. Cdc25-V5 was visualized with anti-Cdc25 antibody. For histone H1 
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kinase assays, Cdk1-Cdc13 was immunoprecipitated from the remaining supernatants 

using affinity purified anti-Cdc13 antibody (GJG8) and incubated with 1 mg histone H1 

with 10 µM cold ATP and 5 µCi γ-32P ATP as previously described (Gould, Moreno et al. 

1991). Histone H1 was visualized by Coomassie blue staining after boiling with SDS 

sample buffer and SDS-PAGE separation. The relative activity of Cdc25 was estimated 

using the equation: 

  

Where (CPM) is counts per minute for 32P-labeled histone H1 measured with a 

scintillation counter. [histone H1] is the relative amount of histone H1 visualized by 

Coomassie blue staining and quantified with ImageJ software. Final (CPM)/[histone H1] 

was calculated for each experimental group after subtraction of CPM in the untagged 

control. [Cdc25] and [Cdk1] are the relative amounts of Cdc25 and Cdk1 as determined 

by quantitative immunoblotting on an Odyssey instrument. Protein levels were calculated 

using ImageJ software. 

 

 

 

Figure 2-1. Schematic of the Cdc25 activity assay  
Cdc25 is immunoprecipitated from a strain of interest then added to cell lysates from cells 
arrested in G2 with inactive Cdc2-Cdc13. Activated Cdc2-Cdc13 is then immunoprecipitated and 
its activation level is assayed by measuring its ability to phosphorylate histone H1, a native Cdk1 
substrate.   

(CPM)/[Histone H1] 
([Cdc25]/[Cdk1]) Specific activity =  
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Microscopy 

For measuring cell lengths at septation, and fluorescence intensity measurements, 

cells were grown at 25oC or 32oC to midlog phase and live cell microscopy was 

performed using an Ultraview LCI spinning disk confocal microscope (PerkinElmer, 

Waltham, MA) with 0.6 µm spacing on Z-series optical sections, 60x NA, 1.4 Plan-

Apochromat oil immersion object, 488 nm argon ion laser, and 594 nm helium neon laser 

or with the Olympus IX71 Personal Deltavision microscope (Applied Precision, Issaquah, 

WA) with 250 W Xenon LED transillumination, 60x NA, 1.56 oil immersion object and 

2.25 µm optical axis integration. Images were processed using Metamorph7.1 (MDS 

Analytical Technologies, CA) or with softWoRx Explorer (Applied Precision) softwares.  

Time lapse microscopy was done on the Personal Deltavision microscope 

(Applied Precision, Issaquah, WA) using the Onix Microfluidic Perfusion System 

(CellAsic, Hayward, CA) platform, at 30oC for 16 hours and analyzed using softWoRx 

software. 

Tip to tip cell length in septating cells or nonsepatating cells were measured by 

using either the SoftWoRx explorer or Metaphorph7.1 software measure length functions. 

Total cellular Cdc25-GFP fluorescence was measured using ImageJ by equalizing 

background fluorescence between fields and selectively boxing two areas: (box1) an area 

including the cell and (box2) an area including both the cell and its surrounding 

background. Total fluorescence for the cell was obtained by subtracting total fluorescence 

of (box2) by (box1).  
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2D Tryptic Peptide Mapping 

MBP-Cdc25 or MBP-Cdc25-S143A was purified and subjected to in vitro Cdk1 

kinase assay as described (Gould, Moreno et al. 1991). 32P-labeled proteins were mixed 

with SDS sample buffer and boiled before separation by 8% SDS-PAGE and were then 

transferred to PVDF membranes. Labeled proteins on PVDF membranes were pretreated 

with methanol for 30 seconds and incubated for 30 mins at 37°C in 50 mM ammonium 

bicarbonate and 0.1% Tween20. Membranes were washed in 1 ml of 50 mM ammonium 

bicarbonate and treated twice with 10 µg trypsin in 50 mM ammonium bicarbonate for 3h 

at 37°C to separate phosphopeptides from membrane. Phosphopeptides were lyophilized 

and separated on TLC plates in two dimensions (electrophoresis at pH 1.9 and then 

chromatography) as previously detailed (Boyle, van der Geer et al. 1991). 

 

Mass Spectra Sample Preparation 

Purified Cdc25 was TCA precipitated and resuspended in 8 M urea in 100 mM 

Tris-Hcl, pH 8.5. Protein was reduced with 100 mM tris (2-Carboxyethyl) phosphine 

hydrochloride (Thermo Scientific, MA), and alkylated with 100 mM iodoacetamide 

(Sigma-Aldrich, MO). After diluting the sample to 2 M urea, the sample was digested 

overnight with 0.4 µg/µl trypsin or chymotrypsin at 37°C.   

Peptides were loaded onto a diphasic MudPIT column on a pressure loader, 

separated on a 10 cm 3 µm C18 column using a 12-point MudPIT salt gradient 

(McDonald and Yates 2002) and analyzed with a LTQ mass spectrometer (Thermo 

Scientific).  Agilent high performance liquid chromatography was used in line with 

FAMOS autosampler for 5 µl ammonium acetate injections.  Each peptide elution was 
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separated using a 0 – 90% acetonitrile gradient.  Peptide ions were acquired in positive 

mode with full precursor MS scan ranging from 400 to 2000 m/z, followed by 

fragmentation of ten most abundant precursors and their natural loss ions of either 98, 49, 

or 33 m/z, under collision induced dissociation (CID), isolation width of 2.0 for the 

parent ion and collision energy of 35V.  The instrument acquired at least two spectra per 

eluting species under dynamic exclusion with repeat duration and exclusion duration of 

1.5 times the chromatographic peak width at the base, and exclusion list of 150 ions.  

 

Mass Spectra Data Analysis 

MS2 spectra were extracted from Thermo RAW files and converted to DTA files 

using Scansifter v2.1.25 software (Ma, Dasari et al. 2009). Spectra with less than 20 

peaks were excluded from our analysis. Cdc25 peptides were searched against the Sanger 

Institute (www.pombase.org) S. pombe protein database (May 2011). Database sequences 

along with contaminant sequences (keratin and IgG isotopes) were reversed and 

concatenated. Searches were performed with the Sequest algorithm (TurboSequest v.27 

rev12) on a high performance computing cluster allowing for carbamidomethylation, 

oxidation of the methionine, phosphorylation of serine, threonine, and tyrosine, and 

acylation of the N-terminus.  Peptide mass tolerance was set to 2.5 m/z.  The DTAs were 

searched with trypsin and chymotrypsin as chosen endoproteases, allowing 10 

modifications per peptide, and maximum of 2 missed cleavages. Cdc25 peptides were 

visualized and validated utilizing Scaffold 3 and Scaffold PTM software (Proteome 

Software, Inc. Portland, OR), with the following identification parameters: minimum of 
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90% probability for correct protein identification, minimum of 2 peptides per protein, and 

minimum 95% peptide match probability. 

 

Mathematical Model of the Bistable Mitotic Switch with Cdc25 Multisite 

Phosphorylation by Cdk1 

I collaborated with Dr. Maria Rosa Domingo-Sananes and Dr. Bela Novak from 

Oxford University to modify a previous mathematical model of the mitotic switch 

(Domingo-Sananes and Novak 2010). We expanded on the mechanisms of Cdc25 

phosphoregulation and activation by Cdk1, modeling that Cdc25 multisite 

phosphorylation is distributive, disordered and ultrasensitive in nature. In addition, we 

assumed that entry into mitosis takes place when the total concentration of Cdc25 reaches 

a threshold concentration since the previous model (and all other previous models of 

mitosis) have used Cdc13 (CyclinB) for the threshold and Cdc13 levels are not rate 

limiting in fission yeast (Bueno and Russell 1993). These changes allow the model 

described below to replicate the different lengths of the phosphorylation site mutants. 

We assumed that both Cdc25 and Wee1 are phosphorylated at multiple sites by 

Cdk1, and that phosphorylation results in Cdc25 activation and Wee1 inactivation. The 

activities of Cdc25 and Wee1 will therefore depend on the concentrations of the different 

phosphoforms and their respective activities. 

First, because the length of Cdc25 phosphomutants increases gradually as 

phosphorylation sites are mutated, we reasoned that the activity should increase gradually 

with each phosphorylation. The simplest assumption is that phosphorylation leads to a 

linear increase in activity.  
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Second, because the data indicate that it is the number of mutated sites that 

determines length at division and not the identity of these sites, we reasoned that the 

phosphorylation of Cdc25 follows a distributive and disordered phosphorylation 

mechanism. Finally, to achieve ultrasensitivity in the response of Cdc25 to MPF (Cdk1-

Cdc13), we assumed that phosphorylation is cooperative in nature. That is, we assumed 

that the rate of each phosphorylation reaction increases linearly with the number of 

phosphorylations (the rate of dephosphorylation decreases with the number of 

phosphorylations). Assuming this mechanism leads to steady state equations for each 

phosphoform that closely resemble those for an ordered mechanism, as shown below. 

For simplicity, we assumed a similar scheme for Wee1 regulation by Cdk1 

phosphorylation, although in this case, the activity decreases linearly with the number of 

phosphorylations. In our model, ultrasensitivity in the responses of Wee1 and Cdc25 to 

MPF results from the cooperative phosphorylation mechanism (Trunnell, Poon et al. 

2011). In reality, there are probably other sources of ultrasensitivity such as phosphatase 

regulation (Novak, Kapuy et al. 2010) and substrate competition (Kim and Ferrell 2007). 

We could also have assumed more complicated changes in activity to closely fit the 

length of the phosphorylation site mutants, but this could lead to a much more 

complicated model and risks over-fitting the data. 

To describe the model, we derived general equations for the multisite 

phosphorylation mechanism in order to calculate the concentration of each phosphoform. 

We consider a protein X with n possible phosphorylation sites, phosphorylated by a 

kinase k and dephosphorylated by a phosphatase p, and where Xi is the form with i 

phosphorylations (Kapuy, Barik et al. 2009). For a disordered mechanism, the rates of the 
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reactions change with the number of phosphorylations (Kapuy, Barik et al. 2009). For the 

phosphorylation reactions: 

!!
      !"      

!!
!!! !

!!
(!!!)!

…
        !      

!! 

because the number of available sites decreases with each phosphorylation. Similarly, for 

the dephosphorylation reactions: 

!!           !           !!       !!     !!         !!       …         !"        
!! 

If we assume linear positive cooperativity, the phosphorylation rates increase by a 

factor γ after each phosphorylation site, so combined with the disordered mechanism, 

they become: 

!!
      !"#      

!!
!! !!! !

!!
!!(!!!)!

…
      !"#      

!! 

Similarly, the dephosphorylation rates decrease by a factor δ with each 

phosphorylation, and the rates of the dephosphorylation reactions are: 

!!           !"#           !!       !(!!!)!!     !!         !(!!!)!!       …         !"#        
!! 

Written in this way, the factors γ and δ can be incorporated into the kinase and 

phosphatase activities, k and p. Assuming that all the phosphorylation and 

dephosphorylation reactions are in equilibrium, and that the sum of all the phosphoforms 

is XT, the concentration of each phosphoform is described by an expression similar to that 

derived for ordered phosphorylation (Kapuy, Barik et al. 2009) because the factors for the 

disordered and the cooperative mechanisms cancel each other out: 

!! =   !!

!
!

!

!
!

!
!
!!!

 

(1) 
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We used this result to calculate the concentrations of each phosphoform of Cdc25 

and Wee1. We assumed that Cdc25 has a total of nc Cdk1 phosphorylation sites and that 

the sum of the concentrations of all the forms is Cdc25T. To define the activity of Cdc25, 

we assumed that the completely unphosphorylated form has a minimum, background 

activity, !!"! , and the fully phosphorylated form has a maximal activity, !!"" . We assumed 

that the activity changes linearly, so that for each phosphoform of Cdc25, the activity is: 

!!",! =   !!"! +   !" (2) 

where α is the slope of the activity increase, given by: 

! =   
!!"" −   !!"!

!!
 

(3) 

And we can calculate the total Cdc25 activity, !!", as the sum of the products of 

the activity of each phosphoform and its concentration, for any value of the kinase to 

phosphatase ratio: 

!!" = !!",!!"#25! + !!",!!"#25! + !!",!!"#25! +⋯+ !!",!!!"#25!!

=    !!",!!"#25!

!!

!!!

 

(4) 

Using the previous result for the concentration of the phosphoforms, the total 

Cdc25 activity is then: 

!!" =   !"#25! !!"! +   !
! !
!

!
!!
!!!

!
!

!
!!
!!!

 

         (5) 

The summations on the fraction of the above equation can be simplified, since 

!"!
!

!!!

=   
! − ! + 1 ! !!! + !"!!!

(1 − !)!
 

           (6) 

and the sum of a geometric series: 



 47 

!!
!

!!!

=   
1 − !!!!

1 − !
 

           (7) 

And finally, the equation for the activity of Cdc25 becomes: 

!!" =   !"#25!!!"            (8) 

where 

!!" =   !!"! +   !

!
! − !! + 1

!
!

!!!!
+   !!

!
!

!!!!

1 − !! 1 − !
!

!!!!
 

           (9) 

which gives the response of Cdc25 to Cdk1 (Fig. 3-8A), since in this case: 

!
!
=   
!!!"!"#
!!!"

 
        (10) 

Where MPF is the concentration of active Cdk1-Cdc13 dimers, and Va25 a rate 

constant for phosphorylation of Cdc25 by MPF, and Vi25 is the rate constant for Cdc25 

dephosphorylation by a constant phosphatase activity, part of which corresponds to Clp1. 

To model the effect of mutating the Cdk1 phosphorylation sites on Cdc25, we 

reduced the parameter describing the total number of phosphorylations, nc. However, the 

parameter α remained the same, since the activity profile of the different phosphoforms 

does not change by reducing the number of sites. 

For Wee1, we assumed that the completely dephosphorylated form has a maximal 

activity !!""" , and the fully phosphorylated form has a minimum activity !!""! . If Wee1 

has nw possible Cdk1 phosphorylation sites, and that the concentrations of all the 

phosphoforms sum to Wee1T, we derive an equation for the Wee1 activity respect to MPF 

(Fig. 3-8C), ϕwee, similar to that for Cdc25: 

!!"" = !""1!!!""         (11) 

where 
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!!"" = !!""" +   !

!!"##!"#
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− !! + 1
!!"##!"#
!!"##

!!!!
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!!!!

1 − !!"##!"#
!!"##

1 − !!"##!"#
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!!!!
 

       (12) 

where Viwee is a rate constant for Wee1 phosphorylation by MPF, and Vawee is the rate 

constant for Wee1 dephosphorylation by a constant phosphatase, and 

! = (!!""! − !!""" ) !!. 

To complete the model, we write a differential equation for MPF, which is 

regulated by Wee1 and Cdc25: 

!"#$
!"

= !!"!"#25! !"#! −!!" − !!""!"# 
        (13) 

Where !"#!, the total amount of Cyclin, is the sum of the active and inactive Cdk1-

Cdc13 dimers. Assuming that the system is in steady state, for any value of !"#! is 

possible to calculate !"#25! respect to MPF: 

!"#25! =   
!!""!"#

!!" !"#! −!"#
 

        (14) 

To fit our model to the experimental data, we assumed that the length of cells at 

division is proportional to the Cdc25 threshold for MPF activation, that is, the saddle-

node bifurcations shown in Figure 4-5A. Because Cdc13 does not seem to be rate-limiting 

for MPF activation, we assumed that when !"#25! reaches the threshold, Cyclin levels 

are already very high, so a change in their values has little effect on cell size (see two-

parameter bifurcation diagram, Fig. 2-2).  
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Figure 2-2. Two parameter bifurcation diagram of the model for the MPF activation 
threshold.  
Observe that the Cyclin (Cdc13) level is not rate limiting in the lower right corner of the diagram 
and MPF activation depends on Cdc25 level only. 
 

For each Cdc25 phosphomutant, we numerically determined the value of the 

!"#25! threshold, !, and calculate a scaling factor to fit these thresholds obtained from 

the model to the experimental data. Since we assumed that the cyclin threshold is 

proportional to length at division: 

! =   !"          (15) 

where l is the length at division and η is the scaling factor. Therefore, for each 

mutant, the scaling factor is: 

! =
!
!

 
        (16) 

We used the average of the scaling factors for all the phosphomutants, ηa, to fit 

the model to the experimental data, both for all the phosphomutants, cell cycle mutants, 
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and for the variability analysis, so that the estimated length at division, for each mutant 

is: 

!! =   !!!          (17) 

Table 2-3 shows the parameter values used for the model, and Table 2-4 describes 

the parameters changed to model the cell cycle mutants. 

 

 

Table 2-3. Parameter values for the model 
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Table 2-4. Parameter changes for cell cycle mutants 
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Variation of Cell Size Due to Variation in Parameter Values 

To determine whether elimination of one of the two positive feedback loops in the 

mitotic switch could explain the increased variability in cell size observed in the Cdc25-

13A mutant cells, we decided to look at the effects of noise in parameter values on cell 

length in our mathematical model. We generated 10,000 random parameter sets for the 

model of wild type and the same number for the model of the cdc25-13A mutant, which 

lacks the Cdc25-MPF positive feedback loop. To add noise to the model parameters, for 

each parameter, in each set, we sampled values form a normal distribution with mean 

equal to the parameter value in the deterministic model and a standard deviation of 2.5%. 

We did this for all parameters except for the number of phosphorylation sites on Wee1 

and Cdc25, which are part of model architecture. Parameters α and β where recalculated 

appropriately using the randomly generated values of the minimal and maximal activity 

of Cdc25 and Wee1. For each random set we then calculated the Cdc25T threshold for 

MPF activation and the estimated length, using equation 17, thus obtaining a distribution 

of length values, shown in Figure 4-5B. 
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CHAPTER III 

 

CDK1 PHOSPHORYLATION OF CDC25 REGULATES CDC25 ACTIVITY  

 

Introduction 

 At mitotic entry, Cdc25 phosphorylation by Cdk1 is associated with increased 

Cdc25 concentration, nuclear localization, and activity. While all three mechanisms are 

thought to contribute to the Cd25-Cdk1 positive feedback loop that drives rapid mitotic 

entry, no studies thus far has examined which mechanism of Cdc25 control is directly 

driven by Cdk1 phosphoregulation.  

 We previously found that, in S. pombe, clp1Δ cells had increased levels of Cdc25. 

As Clp1 specifically dephosphorylates Cdk1 sites, increased Cdc25 accumulation at 

mitotic entry in clp1Δ cells suggested that Cdk1 phosphorylation at mitotic entry could 

stabilize Cdc25 at mitotic entrance, allowing for rapid activation of Cdk1().  

 In addition to mitotic entry, we also observed Cdc25 levels at mitotic exit were 

higher in clp1Δ compared to clp1+ cells. Retention of Cdk1 sites on Cdc25 in clp1Δ cells 

may prevent Cdc25 degradation at mitotic exit. To test ubiquitylation-mediated 

degradation of Cdc25, we over-expressed ubiquitin through a pREP1 vector in cells. 

Through an ubiquitin immunoprecipitation followed by immunoblotting for Cdc25-MYC 

we found that, compared to cells with clp1+, Cdc25 seemed to be decreased in 

ubiquitylation in clp1Δ cells arrested at metaphase. Through the same method, we also 

found that lid1-6 cells, with inactivated APC/C ubiquitin ligase, had decreased Cdc25-

MYC ubiquitylation during metaphase. Thus we concluded that Cdk1 phosphorylation 

may stabilize Cdc25 at mitotic entry and allow for Cdc25 accumulation while 
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dephosphorylation of Cdc25 by Clp1 is important for the APC/C-mediated ubiquitylation 

and degradation of Cdc25 during late mitosis (Wolfe and Gould 2004). 

 We also previously tested for Cdc25 localization in clp1+ and clp1Δ cells. Cdc25 

is normally retained in the nucleus until late anaphase after which Cdc25 rapidly 

disappears from the nucleus. In clp1Δ cells, Cdc25 is retained in the nucleus until 

septation, when cells are already in S phase (Wolfe and Gould 2004). Thus, Cdk1 

phosphorylation on Cdc25 may retain Cdc25 in the nucleus or prevent Cdc25 export from 

the nucleus during late mitosis.  

 In human cells, Cdk1 localizes to the nucleus at mitotic entry partly due to Polo-

like kinase phosphorylation of CyclinB that forces nuclear localization of the Cdk1-

CyclinB complex (Toyoshima-Morimoto, Taniguchi et al. 2001). In addition, Cdk1 

phosphorylation of CyclinB also facilitates rapid nuclear accumulation in an auto-

amplification loop (Santos, Wollman et al. 2012). If Cdk1 phosphorylation can drive 

nuclear localization of Cdc25, then the rapid phosphorylation of Cdc25 by Cdk1 at 

mitotic entry can serve as a rapid feed forward loop that allows efficient association of 

Cdc25 and Cdk1.  

 In this section, we explore the effects of Cdk1 phosphorylation and Clp1 

dephosphorylation of Cdc25 on Cdc25 activity, localization, ubiquitylation and stability. 

We find that Cdk1 phosphorylation directly activates Cdc25 but does not affect Cdc25 

abundance during mitotic entry; instead, Cdc25 accumulation is directly related to the 

size of the cell. In addition, Cdk1 phosphorylation of Cdc25 does not seem to affect 

Cdc25 nuclear localization at mitotic entrance. Finally, we find Clp1 dephosphorylation 

of Cdc25 does not facilitate Cdc25 ubiquitylation or degradation at mitotic exit.  
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Results 

Characterization of Cdk1 and Clp1 Specific Phosphosites on Cdc25 

To examine how Cdk1 phosphorylation affects Cdc25, we eliminated Cdk1 

phosphosites on Cdc25 by mutating all 13 Ser and Thr in the minimal Cdk1 consensus 

sites (Ser/Thr-Pro) outside of the Cdc25 catalytic domain to non-phosphorylable alanines 

(Cdc25-13A). In vitro, active recombinant Cdk1-CyclinB phosphorylated recombinant 

MBP-Cdc25 but not MBP-Cdc25-13A (Fig. 3-1A), indicating that all major in vitro Cdk1 

sites were abolished in Cdc25-13A. Through tandem-affinity-purification of Cdc25 from 

prometaphase arrested cells, when Cdc25 is maximally phosphorylated (Kovelman and 

Russell 1996; Esteban, Blanco et al. 2004; Wolfe and Gould 2004), followed by LC-

MS/MS, we identified phosphorylation on all but 2 of these Cdk1 consensus sites (Table 

3-1). 

We next looked at Cdc25-13A phosphostatus in vivo. Endogenously tagged 

Cdc25-13A-V5 or Cdc25-V5 phosphorylation was assessed by SDS-PAGE mobility in 

cells arrested in prometaphase. Most of the gel shift due to phosphorylation was 

eliminated in Cdc25-13A-V5, consistent with Cdk1 being the major kinase for Cdc25 in 

mitosis, though some remained, suggesting that another kinase(s) contributes to mitotic 

Cdc25 phosphorylation (Fig. 3-1B).  

Clp1 reverses Cdk1-dependent phosphorylations on Cdc25 (Esteban, Blanco et al. 

2004; Wolfe and Gould 2004). We therefore expected that the mobility shift of Cdc25-

13A would not be affected by clp1Δ. Indeed, Cdc25-13A-V5 displayed the same SDS-

PAGE mobility with or without Clp1 (Fig. 3-1C), indicating that Cdc25-13A is not a 
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Cdk1 substrate in vivo and that Clp1 is unable to affect the phosphorylation of Cdc25 due 

to another protein kinase(s).  

Finally, cdc25-13A cells are significantly longer at septation compared to 

cdc25+cells, consistent with delayed mitotic entry and decreased Cdk1 activation due to 

removal of the Cdk1-Cdc25 positive feedback loop (Fig. 3-1D). 
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Figure 3-1.  Characterization of Cdc25 phosphomutant. 
(A) Recombinant MBP-Cdc25, MBP-Cdc25-13A, or MBP was incubated with active Cdk1-
CyclinB (Cdk1) or kinase dead Cdk1-CyclinB (Cdk1-KD) in an in vitro kinase assay. Proteins 
were separated by SDS-PAGE and visualized by Coomassie blue (CB) (bottom panel) and 
autoradiography (top panel). (B and C) Cdc25-V5 was immunoprecipitated (IP) from the 
indicated strains arrested in prometaphase and IPs were treated or not with λ phosphatase before 
immunoblotting with anti-Cdc25 antibody (top panel). Cdk1 levels from lysates used for IPs are 
visualized with PSTAIRE antibody (bottom panel). (D) DIC images of cdc25+ and cdc25-13A 
cells. Cell lengths at septation were measured and standard error of the mean (SEM) is presented.  
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Table 3-1. List of confirmed Cdc25 (S/T)P phosphopeptides 
Phosphorylation site localization probability is derived from SEQUEST and Scaffold PTM 
algorithms, which consider the number of possible modification sites and intensity of site-specific 
ions.  Delta mass (Daltons) describes the error around the parent ion of the peptide of interest. 
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Cdk1 Phosphorylation Does Not Affect Cdc25 Nuclear Localization 

 The ultrasensitive feedback loop between Cdk1 and Cdc25 could be driven by 

increase of Cdc25 activity, nuclear localization or abundance at prometaphase; 

subsequent dephosphorylation of Cdk1 sites on Cdc25 by Clp1 is associated with 

decreased Cdc25 activity, decreased Cdc25 nuclear localization and Cdc25 degradation 

(Kovelman and Russell 1996; Esteban, Blanco et al. 2004; Wolfe and Gould 2004). We 

asked if Cdk1 phosphorylation specifically modulates Cdc25 nuclear localization by 

observing the localization of Cdc25-GFP or Cdc25-13A-GFP through the cell cycle. Both 

Cdc25-GFP and Cdc25-13A GFP nuclear localization was highest at mitotic entrance, 

around spindle pole body (SPB) (visualized with Sid4-RFP) separation. Both Cdc25-GFP 

and Cdc25-13A-GFP stayed in the nucleus until late mitosis, until the SPBs have 

separated completely. Cdc25 nuclear localization rapidly disappeared after late anaphase 

and nuclear localization is almost completely gone after cells septated (Fig. 3-2). From 

this we concluded that since Cdc25-13A seems to localize to and from the nucleus 

normally during the cell cycle, Cdk1 phosphorylation does not directly control Cdc25 

nuclear localization.  
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Figure 3-2. Cdk1 phosphorylation does not regulate Cdc25 localization. 
cdc25-GFP sid4-RFP or cdc25-13A-GFP sid4-RFP were grown in YE media at 25oC. 
Arrowheads indicate prometaphase cells. Arrows point to anaphase nuclei.  
 
 
 
 
 
 

Cdk1 Phosphorylation Does Not Affect Cdc25 Accumulation 

 Next, we used cells with Sid4-RFP and Cdc25-GFP or Cdc25-13A-GFP to ask if 

Cdk1 phosphorylation affects Cdc25 abundance or stability during mitotic entrance. Cells 

in interphase were grouped according to cell lengths in 2 µm intervals, and mitotic cells, 

as judged by SPB separation, were separated into prometaphase and anaphase cells (Fig. 

3-3A). During interphase, Cdc25-GFP and Cdc25-13A-GFP fluorescence increased as a 

function of cell length until mitosis. cdc25-GFP cells reached mitosis between 13.5 µm 

and 15.5 µm with Cdc25-GFP fluorescence at 49.2+4.0 arbitrary units (AU). At the same 

length, cdc25-13A-GFP cells compared to cdc25-GFP had no significant difference in 

GFP fluorescence (47.0+2.0 AU). However, cdc25-13A cells did not enter mitosis until 

they were significantly longer (with 89.4+5.2 AU) (Fig. 3-3A). These results suggest that 
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Cdk1 phosphorylation does not play a role in maintaining Cdc25 abundance; instead, 

more Cdc25-13A-GFP than Cdc25-GFP is needed to induce mitotic entry.   

 To pursue this idea further, we blocked cdc25-GFP and cdc25-13A-GFP cells in 

S-phase using hydroxyurea (HU) and then monitored Cdc25 abundance and cell length as 

cells were released back into the cell cycle. During the HU-imposed S-phase arrest, 

cdc25-GFP and cdc25-13A-GFP cells were not significantly different in cell length or 

Cdc25 protein concentration, as assessed by GFP fluorescence (Fig. 3-3B). Because HU 

blocks cells in S phase by activating the DNA replication checkpoint and cdc25-13A cells 

arrested upon HU treatment (Fig. 3-3B and C) (Langerak and Russell 2011), we conclude 

that while Cdc25-13A cannot be phosphorylated by Cdk1, it remains responsive to 

checkpoint kinases that phosphorylate Cdc25 upon DNA damage. Following release from 

the HU block, cdc25-13A-GFP cells septated after cdc25-GFP cells (Fig. 3-3C). These 

results suggest that the delay in mitotic entry in cdc25-13A cells results from a change in 

Cdc25 specific activity.  

 We also measured Cdc25 abundance in late interphase cells compared to cells in 

mitosis. There was no significant change in GFP fluorescence levels between late 

interphase and mitotic cdc25-GFP or cdc25-13A-GFP cells (Fig. 3-3A), suggesting again 

that the increased Cdk1 activity at mitotic entry does not affect Cdc25 abundance. 

Interestingly, neither cdc25-GFP nor cdc25-13A-GFP cells had significant changes in 

GFP fluorescence levels between metaphase and mid anaphase (Fig. 3-3A), suggesting 

that Clp1 dephosphorylation of Cdc25 after metaphase also does not mediate Cdc25 

degradation. 
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 Finally, we examined the abundance and phosphostatus of Cdc25-13A relative to 

Cdc25 during mitotic progression by immunoblotting. Cells were arrested in 

prometaphase, released, and sampled at frequent intervals. While the phosphorylation 

level of Cdc25 and Cdc25-13A both decreased, Cdc25-13A was less phosphorylated 

initially and was dephosphorylated faster in both clp1+ and clp1∆ strains (Fig. 3-3D), 

suggesting that a kinase(s) and phosphatase(s) other than Cdk1 and Clp1 modulate Cdc25 

phosphostatus during mitosis; it is possible that kinases/phosphatases responsible for 

regulating Cdc25 during checkpoint and stress responses (Langerak and Russell 2011) 

contribute to this residual phosphoregulation. Neither Cdc25 nor Cdc25-13A decreased in 

abundance as cells exited mitosis, confirming that Cdk1-mediated phosphorylation is not 

involved in protecting Cdc25 from degradation (Fig. 3-3D). Thus, although clp1Δ cells 

have elevated Cdc25 levels (Esteban, Blanco et al. 2004; Wolfe and Gould 2004), this 

must be an indirect effect of Clp1 on another cellular process.  
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Figure 3-3. Cdk1 phosphorylation does not regulate Cdc25 accumulation. 
(A) Cdc25-GFP or Cdc25-13A-GFP fluorescence was quantified in cells at various lengths (25-50 
cells per group). Cells in different phases of mitosis, determined by Sid4-RFP-marked SPB(s) 
position, are indicated with arrows, interphase cells are unmarked, and average length and 
fluorescence intensity of these cell groups were measured separately. SEM is presented as error 
bars. (B) The indicated strains were blocked in S phase with HU and cells were visualized by DIC 
and fluorescence microscopy. Tip to tip lengths were measured. Cdc25-GFP or Cdc25-13A-GFP 
fluorescence was averaged and calculated as a percentage of average wildtype Cdc25-GFP 
intensity. SEM is presented. (C) Indicated strains were blocked in S phase using HU and cells 
were visualized by DIC. Cells were released by washing out HU and collected at the indicated 
times. Percent septation was calculated (100 cells per time point). (D) Cdc25-V5 was IP’ed with 
anti-V5 antibody from the indicated strains collected from a nda3-KM311 block and release at the 
indicated times. Cdc25-V5 was visualized with anti-Cdc25 antibody (top panel). Cdk1 levels in 
lysates used for IPs are visualized with PSTAIRE antibody (bottom panel). 
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Dephosphorylation of Cdc25 by Clp1 Does Not Affect Cd25 Ubiquitylation 

 We next asked if Cdk1 phosphorylation affects Cdc25 ubiquitylation during 

mitotic exit. In Wolfe and Gould 2004, we blotted for Cdc25-MYC after 

immunoprecipitating for His-ubiquitin over-expressed from a pREP1 vector. More 

Cdc25-MYC-His-ubiquitin conjugates were found in clp1+ cells compared to clp1Δ cells. 

More Cdc25-MYC-His-ubiquitin conjugates were also found in cells with APC/C 

compared to cells with a non-functional APC/C due in a temperature sensitive mutation 

to the Lid1 subunit (lid1-6).  

 Because an assay that detects overexpressed His-ubiquitin conjugates does not 

precisely examine endogenous protein ubiquitylation levels, we arrested cells in 

metaphase with a temperature sensitive mutation (mts3-1) in a proteasome component 

and performed an in vivo Cdc25 ubiquitylation assay by purifying endogenous Cdc25 

tagged with HBH (Cdc25-HBH). Comparing cells with or without clp1+,.we found that 

Cdc25 ubiquitylation status was not different between clp1+ and clp1Δ cells (Fig. 3-4A). 

Thus Cdk1 phosphorylation does not protect Cdc25 from ubiquitylation. In addition, in 

mts3-1 lid1-6 cells blocked at metaphase with non-functional APC/C, Cdc25-HBH 

ubiquitylation levels were reduced compared to cells with functional APC/C (Fig. 3-4B). 

We conclude that during late mitosis, Cdc25 ubiquitylation may be mediated by the 

APC/C but increased Cdk1 phosphorylation, in clp1Δ cells, does not protect Cdc25 from 

ubiquitylation and degradation. The previous finding of decreased Cdc25-MYC-His-

Ubiqutin in clp1Δ cells is probably an artificial finding due to the highly variable 

expression levels of His-ubiquitin from the pREP1 vector.  
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Figure 3-4.  Cdk1 phosphorylation does not regulate Cdc25 ubiquitylation. 
(A and B) Temperature sensitive strains (mts3-1, lid1-6) were incubated at 36oC for 4 hours. 
Cdc25-HBH or Sid4-HBH was immunoprecipitated from indicated strains with streptavidin 
beads. Cdc25-HBH or Sid4-HBH was detected using anti-streptavidin antibody (bottom panels) 
and ubiquitin conjugates were detected using anti-ubiquitin antibody (top panels). 
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Cdk1 Phosphorylation Directly Activates Cdc25 

 Finally, we examined if Cdk1 phosphorylation directly enhances Cdc25 activity 

using a previously described Cdc25 activity assay (Kovelman and Russell 1996; Wolfe 

and Gould 2004). Immunoprecipitated Cdc25 or Cdc25-13A from prometaphase-arrested 

cells was tested for its ability to stimulate inactive Cdk1-CyclinB in protein lysates 

derived from interphase cells. The level of Cdk1 activity was measured using the 

exogenous substrate, histone H1. Compared to Cdc25-13A, Cdc25 stimulated 

significantly higher histone H1 phosphorylation by Cdk1 (Figs. 3-5A and B). Thus, we 

conclude that Cdk1 phosphorylation does not affect Cdc25 abundance but directly 

activates Cdc25.  

 

 

 

Figure 3-5. Cdk1 phosphorylation regulates Cdc25 activity at mitotic entrance. 
(A) nda3-KM311, nda3-KM311 cdc25-V5 and nda3-KM311 cdc25-13A-V5 were blocked at 
prometaphase and protein lysates were prepared. Cdk1 levels in each lysate are visualized with 
PSTAIRE antibody (second panel from the top). The remaining lysates were subjected to IP with 
anti-V5 antibody and the IP’ed proteins were incubated in protein lysates from cdc25-22 arrested 
cells. IP’ed Cdc25 was resolved by SDS-PAGE and detected by immunoblotting (top panel). 
Next, Cdk1-CyclinB was IP’ed from each lysate and incubated with histone H1 in an in-vitro 
kinase assay. Histone H1 was resolved by SDS-PAGE and visualized by Coomassie (CB) 
staining (bottom panel) or autoradiography (third panel). (B) The specific activities of Cdc25 and 
Cdc25-13A in 5 separate experiments performed as in (A) were averaged and the SEM is 
presented. P-value was determined using the Student’s T-test.  
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Discussion 

 In this study, we explored how Cdk1 phosphorylation specifically amplifies 

Cdc25 activity to facilitate the rapid activation of Cdk1 to drive mitotic entry. While 

increased Cdc25 specific activity, accumulation, Cdc25 stability and Cdc25 nuclear 

localization were all associated with Cdk1 phosphorylation at mitotic entry, we find that 

only Cdc25 specific activity is directly affected by Cdk1 phosphorylation. 

Phosphoregulation of Cdc25 Activity 

 Previous studies examining Cdk1 phosphoregulation of Cdc25 assumed that 

phosphorylation correlates with Cdc25 activation; however, a definitive link between 

these two events has never been shown within a single study (Yang, MacLellan et al. 

2004; Domingo-Sananes and Novak 2010; Trunnell, Poon et al. 2011). To our knowledge 

this study is the first to comprehensively map Cdk1 specific phosphosites in vitro and in 

vivo and verify that these sites specifically contribute to Cdc25 activity.  

 While Cdk1 phosphorylation contributes importantly to Cdc25 activity, it is not 

the sole activator of Cdc25, as Cdc25-13A that cannot be phosphorylated by Cdk1 is still 

active enough to drive mitotic entry while cells cannot enter mitosis without Cdc25 

activity. Several possibilities could explain this activity. Cdc25 could have residual levels 

of catalytic activity without need for further modifications. Other kinases, such as the 

Polo-like kinase, that has been shown to directly activate Cdc25 in Xenopus (Kumagai 

and Dunphy 1996), or Aurora kinase, which phosphorylates Cdc25B at the centrosome 

(Cazales, Schmitt et al. 2005), may play roles in activating the protein. Finally, Cdc25 

may interact with Cdk1-CyclinB in a manner that facilitates the basal activation of Cdk1-

CyclinB without requiring Cdc25 catalytic activity. Evidence for this latter possibility can 

be found in human cells, where knockdown of both Cdc25A and B significantly 
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decreases the association of CyclinB with Cdk1 and overexpression of Cdc25A or 

Cdc25B increases association of CyclinB with Y15 phosphorylated Cdk1 (Timofeev, 

Cizmecioglu et al. 2010), suggesting Cdc25A and Cdc25B may directly contribute to 

Cdk1 and CyclinB complex formation. Much more is left to learn of the mechanisms of 

direct Cdc25 activation, Cdc25 interaction with Cdk1-CyclinB, and proteins that may 

contribute to Cdc25 activation. 

Cdc25 Nuclear Localization 

 While Cdk1 phosphorylation does not control Cdc25 nuclear localization in S. 

pombe, nuclear localization seems to be a mechanism of Cdc25 control shared between 

species to temporally and spatially unite Cdc25-Cdk1 in the nucleus where important 

mitotic events are regulated. While it is known that DNA damage checkpoint kinases 

phosphorylate and maintain Cdc25 in the cytoplasm via 14-3-3 protein binding (Lopez-

Girona, Furnari et al. 1999), the mechanisms that control nuclear transport of Cdc25 at 

mitotic entrance is less understood. In S. pombe Cdc25 nuclear translocation, observed 

from Cdc25-GFP expressed from a pREP41 vector, was abrogated in cells that lack the 

importinβ Sal3 (sal3Δ cells) (Chua, Lingner et al. 2002); however, what factors control 

Cdc25-Sal3 binding, or how or if endogenous Cdc25 associates with Sal3 need to be 

further explored. Phosphorylation by Polo and Aurora kinases facilitate Cdc25 

localization in human cells, yet how these phosphorylations drive Cdc25 localization to 

the nucleus or the centrosome, respectively, is not known (Toyoshima-Morimoto, 

Taniguchi et al. 2002; Cazales, Schmitt et al. 2005). In addition, it is possible that specific 

non-phosphorylation related events such as direct association of Cdc25 with nuclear 

proteins could drive rapid nuclear localization of Cdc25. It will be interesting to further 
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investigate what specific factors mediate nuclear localization in Cdc25 in S. pombe and 

more globally in all eukaryotic organisms.  

Regulation of Cdc25 Degradation at Mitotic Exit 

 We show here that Cdc25 ubiquitylation levels are not increased in clp1Δ cells, as 

would be expected if Cdk1 phosphorylation protects against Cdc25 ubiquitylation and 

degradation signals. In addition, Cdc25 levels do not appear to decrease substantially 

during mitotic progression, suggesting that even though APC/C facilitates some Cdc25 

ubiquitylation during anaphase, complete Cdc25 degradation or mitotic exit happens 

much later – during mitotic exit or early interphase. Cdc25-GFP and Cdc25-13A-GFP 

fluorescence levels do not go down between prometaphase and anaphase, and Cdc25 can 

be seen clearly in the nucleus even during late mitosis– when the SPBs have completely 

separated, at which point cells may have already completed most mitotic events. Maximal 

decrease of Cdc25-GFP fluorescence intensity happens between complete SPB separation 

and cytokinesis. Cdc25 degradation is an integral event for controlling cell cycle timing, 

as increased Cdc25 accumulation, in clp1Δ cells, forces premature mitotic entry (Wolfe 

and Gould 2004). Thus it will be important to further investigate when Cdc25 is 

specifically degraded and what factors mediate this degradation. 

 It is interesting to note that while mutations in the APC/C decrease Cdc25 

ubiquitylation at metaphase, Cdc25 ubiquitylation is not completely abrogated, 

suggesting that other ubiquitin ligases play a role in Cdc25 ubiquitylation later in the cell 

cycle. Human Cdc25 isoforms are ubiquitylated by both the APC/C and the SCF 

ubiquitin ligases and these ubiquitylations are involved in Cdc25 degradation during late 

mitosis/early G1 and in interphase respectively (Donzelli, Squatrito et al. 2002). 
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Furthermore, Pub1, a HECT E3 ubiquitin ligase may play a role in Cdc25 degradation in 

S. pombe. Cdc25 levels are maintained slightly longer into mitosis in pub1Δ cells 

compared to pub1+ cells, although the specific ubiquitylation status of Cdc25 in pub1Δ 

cells has yet to be examined (Esteban, Sacristan et al. 2008). Much more will need to be 

learned of what specific E3 ubiquitin ligases interact with Cdc25 and what roles 

ubiquitylation plays on Cdc25 accumulation during mitosis and throughout the cell cycle.  
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CHAPTER IV 

 

MULTISITE PHOSPHOREGULATION OF CDC25 ACTIVITY REFINES THE 

MITOTIC ENTRANCE AND EXIT SWITCHES  

 

Introduction 

 As detailed in Chapter I, at mitotic entry, the Cdc25 family of phosphatases 

activate Cdk1-CyclinB complexes by removing inhibitory phosphorylations on Cdk1 

catalyzed by Wee1 family kinases. Activated Cdk1-CyclinB phosphorylates its substrates 

and drives mitotic entry (Morgan 2007; Lindqvist, Rodriguez-Bravo et al. 2009).  

 Evidence from in vitro kinase studies along with Xenopus and human cell extracts 

(detailed in Chapter I) suggest that both requirements for bistability in Cdk1 activation 

during mitotic entry are satisfied: two feedback loops (the Cdk1-Cdc25 positive feedback 

loop and the Cdk1-Wee1 negative feedback loop) and ultrasensitivity in activation or 

inactivation of Cdc25 and Wee1. Despite these extensive ex vivo studies, no study to date 

has verified the ultrasensitivity of Cdk1 substrate phosphorylation and bistability of Cdk1 

activation exist in vivo, within non-disrupted cycling cells. In addition, there has not been 

a study looking at the consequences of disrupting these feedback loops and thus 

disrupting the ultrasensitivity of Cdk1 activation in vivo. 

 In addition to mitotic entry, mitotic exit and the spindle assembly checkpoint may 

also be modulated by a bistable switch (Holt, Krutchinsky et al. 2008; Pomerening 2009; 

He, Kapuy et al. 2011). In S. cerevisiae, Cdc14 contributes to the abruptness of the 

metaphase-anaphase switch by interacting with Securin, a protein that protects sister 
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chromatid separation until anaphase onset, in an ultrasensitive positive feedback loop. 

Cdc14 dephosphorylates Securin to target it for ubiquitylation and degradation. 

Degradation of Securin activates Separase, which further activates Cdc14 (Holt, 

Krutchinsky et al. 2008). Our lab and others found that Clp1 dephosphorylates Cdc25 on 

Cdk1 phosphosites, and this correlates with Cdc25 inactivation and degradation (Esteban, 

Blanco et al. 2004; Wolfe and Gould 2004). Because Cdc25 activates Cdk1, the activity 

of which inhibits Clp1 activity (Wolfe, McDonald et al. 2006), the interaction between 

Clp1 and Cdc25 may form a feedback loop that contributes to the mitotic exit switch in S. 

pombe. 

 Here, we use S. pombe to further understand how Cdc25 phosphorylation by Cdk1 

contributes to the mitotic entry and exit switches in cycling cells. Using this in vivo 

model, we find that the Cdk1-Cdc25 positive feedback loop is important for the precision 

of mitotic entry and maintenance of uniform cell length. We suggest a new mathematical 

model of mitotic entry based on our observations of the mechanisms of Cdc25 

phosphorylation. Finally, we show that the interactions of Clp1, Cdk1 and Cdc25 create a 

double negative feedback loop that significantly contributes to the robustness of mitotic 

exit, specifically controlling the timing of cell division.  

 

Results 

Abolishing Cdk1 Phosphosites on Cdc25 Disrupts the Mitotic Switch 

 We used cdc25+
 and cdc25-13A cells to ask if eliminating Cdk1 phosphosites on 

Cdc25 altered mitotic entry. S. pombe grows lengthwise during interphase and stops 

growing at mitotic entrance, so cell length at septation equates to cell length at mitotic 
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entrance (Fantes 1977). The increased septation length of cdc25-13A cells relative to 

wildtype indicated a mitotic entrance delay. In mitotic entrance mutants that are already 

longer than wildtype (cdc2-L7, cdc13-117, cdc2-33, cdr1Δ, and cdr2Δ), cdc25-13A-V5 

exacerbated their defects. In strains that enter mitosis prematurely (clp1Δ and wee1Δ), 

cdc25-13A-V5 delayed their mitotic entry (Fig. 4-1A). Thus, direct Cdk1 phosphorylation 

of Cdc25 is important for promoting mitotic entry. 

 If the Cdk1-Cdc25 positive feedback loop affects the precision of mitotic 

entrance, then disrupting this loop would be expected to increase the variation of mitotic 

entry timing, and thus septation length within the population. Indeed, compared to cdc25-

V5 cells, cdc25-13A-V5 strains exhibited a 2- to 6-fold increase in variation of cell length, 

as measured by standard deviation (Fig. 4-1A). To examine the regulation of mitotic 

timing on a single-cell level, we followed individual cells for 2-5 divisions by time-lapse 

microscopy and calculated the difference in septation lengths between mother and 

daughter cells. Compared to cdc25+ cells, cdc25-13A cells in every genetic background 

had significantly more varied lengths between generations (Fig. 4-1B, representative 

examples in Fig. 4-1C). The increased spectrum of cdc25-13A cell lengths within a 

population and between generations shows that the precision of mitotic entrance is 

disrupted when Cdk1 cannot phosphorylate Cdc25. 
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Figure 4-1 continuted 

 
Figure 4-1. Disruption of Cdk1 phosphorylation on Cdc25 delays mitotic entrance. 
(A) Scatter plot of the septation lengths of the indicated strains. >100 cells of each strain were 
measured. Mean lengths are indicated by the horizontal bars. (B) Scatter plot of length differences 
between mother and daughter cells of the indicated strains. For each strain n=50. (A&B) The 
standard deviation is displayed above each scatter plot.(C) Representative measurements for cell 
lengths for (B). For each indicated strain, 2 separate family trees showing cell lengths (µm) for 3 
generations are shown.  
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Multisite Phosphorylation of Cdc25 by Cdk1 Allows for Ultrasensitivity. 

 Ultrasensitive phosphorylation of Cdc25 by Cdk1 allows Cdc25 to be rapidly 

activated and filters out “noise” activity at high and low Cdc25 phosphorylation and 

Cdk1 activity levels. In Xenopus, xCdc25C has been shown to be phosphorylated by 

Cdk1 in an ultrasensitive manner (Trunnell, Poon et al. 2011). To understand if Cdc25 is 

ultrasensitively phosphorylated by Cdk1 in S. pombe, we performed in vitro kinase assays 

where we varied Cdk1 concentrations and measured 32P-ATP incorporation on MBP-

Cdc25 or MBP-Cdc25-11A (protein with 11 of the 13 Cdk1 sites mutated to alanines). As 

Cdk1 levels increased, MBP-Cdc25 was rapidly phosphorylated in an ultrasensitive  

manner (sigmoid shaped graph); however, MBP-Cdc25-11A incorporated 32P in a slower 

and more linear manner (Fig. 4-2). We conclude that the multiple Cdk1 sites on Cdc25 

allow for ultrasensitive phosphorylation by Cdk1, and abolishing most of these sites 

significantly reduces ultrasensitive phosphorylation, and thus activation, of Cdc25. 
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Figure 4-2. Multiple phosphorylation sites allow for ultrasensitive phosphorylation of Cdc25 
by Cdk1.   
Recombinant MBP-Cdc25 or MBP-Cdc25-11A was  incubated in vitro with indicated levels of 
active Cdk1-CyclinB (Cdc2-Cdc13). (A) Cdc25 hyperphosphorylation was assessed by 
autoradiography, measured by scintillation counting and presented as a percentage of maximal 
Cdc25 phosphorylation at 10x Cdk1 levels. For each Cdk1 concentration, data from 3 
independent experiments were averaged. (B and C) Proteins were separated by SDS-PAGE and 
Cdc25 was visualized by anti-Cdc25 antibody (top panel) or autoradiography (bottom panel).  
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Mechanisms of Cdc25 Activation by Cdk1  

 To examine if there are preferred Cdk1 sites on Cdc25 responsible for its 

activation, we performed an in vitro Cdk1 kinase assay followed by 2D tryptic peptide 

mapping and found one major and multiple other phosphopeptides derived from Cdc25 

(Fig. 4-3 A).  By LC-MS/MS analysis, Ser 143 (S143) was identified as a prominent 

phosphosite (Fig. 4-3 B and C). When S143 was mutated to non-phosphorylable alanine 

to produce Cdc25-S143A, the major phosphopeptide was eliminated from the 2D map 

(Fig. 4-3 A). We replaced cdc25+ with cdc25-S143A to assess its importance in vivo and 

found that this mutation did not significantly change septation length (14.6+0.1 µm) 

compared to wildtype (14.2+0.1 µm) (Fig. 4-4A ). In addition, the SDS-PAGE phospho-

shift of Cdc25-S143A-V5 from an nda3-km311 arrest was not significantly different from 

Cdc25-V5 (Fig. 4-4B). This indicated that while S143 is a favored phosphosite in vitro, it 

is not necessary for efficient Cdc25 activation in vivo. Next we mutated 5 sites (cdc25-

5A) identified from in vitro Cdc25 phosphorylation, or variations of these sites in clusters 

of 3 mutations (cdc25-3A-1, cdc25-3A-2) to alanines and replaced endogenous cdc25+ 

with these mutants (Figs. 4-3C , 4-4A, Table 4-1). These mutations statistically increased 

cell septation lengths, but only by 0.9 to 1.3 µm, showing that loss of these sites is not 

sufficient to reduce Cdc25 activity to that of Cdc25-13A levels. Mutating 5 other in vivo 

Cdk1 sites on Cdc25 identified by MS (cdc25-5A-2) (Fig. 4-3C, 4-4A, Table 4-1), also 

did not increase cell length to a large extent (15.5+0.2 µm) (Fig. 4-4A). We conclude that 

Cdk1 does not seem to have preferred sites of phosphorylation for Cdc25 activation.  
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Figure 4-3. Removal of Cdk1 phosphosites on Cdc25. 
(A) 2D tryptic peptide maps of MBP-Cdc25 or MBP-Cdc25 S143A, or a mix of the two proteins, 
after in vitro kinase assay with Cdk1. Open triangles indicate location of phosphorylated S143. 
Dotted line encircles S143 lost when mutated to Alanine. (B) Representative MS2 spectra of the 
S143-containing phosphopeptide. The peptide sequence ladder depicts identified Y and B ions 
(blue and red respectively) of the peptide.  Green peaks describe m/z of parent ions prior to 
fragmentation. Black peaks describe unidentified ions. (C) Schematic of Cdc25 with 
phosphorylation sites identified by MS indicated. Black triangles indicate sites identified from in 
vitro phosphorylation reactions; open red triangles indicate sites identified on Cdc25 purified 
from prometaphase arrested cells. (*) indicates Ser143. 
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 Cdk1 phosphorylation could activate Cdc25 by a stepwise mechanism, in which a 

specific number of phosphorylations are necessary for full Cdc25 activation or by a 

gradually cooperative mechanism in which Cdc25 is gradually activated as it becomes 

more highly phosphorylated. Furthermore, phosphorylation could occur in an ordered or 

a disordered manner (Kapuy, Barik et al. 2009; Domingo-Sananes and Novak 2010; 

Trunnell, Poon et al. 2011). To differentiate between these possibilities, we mutated more 

Cdk1 phosphosites on Cdc25, decreasing 2 available phosphosites in each subsequent 

phosphomutant (cdc25-7A to cdc25-11A) (Fig. 4-4A, Table 4-1) and immunoprecipitated 

endogenously V5 tagged Cdc25 mutants. The extent of Cdc25 SDS-PAGE phosphoshift 

decreased progressively as phosphosites were eliminated. However, the mutation of 

particular sites did not appear to preclude phosphorylation on other sites (Fig. 4-4B), 

suggesting phosphorylation is disordered although the order could be changed in the 

mutants. For these mutants, the change in cell length between subsequent 

phosphomutants was initially small, however, cell length increased significantly with 

additional mutations (Fig. 4-4A) suggesting gradual Cdc25 activation with increasing 

number of phosphorylations. We conclude that Cdk1 phosphorylates and activates Cdc25 

in a disordered and gradual manner. 

Cdc25 Phosphorylation by Cdk1 is Distributive or Semi-processive 

 Cdk1 phosphorylation of Cdc25 may also occur by a distributive mechanism, in 

which each phosphorylation on Cdc25 requires a separate Cdk1 binding and unbinding 

event, as modeled in silico (Domingo-Sananes and Novak 2010; Trunnell, Poon et al. 

2011). Alternatively, Cdk1 can act as a priming kinase for subsequent processive 

phosphorylation by itself or other kinases (Isoda, Sako et al. ; Koivomagi, Valk et al.). 

Using an in vitro kinase assay in which the amount of Cdk1 was varied, we found that 
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intermediate levels of Cdk1 yielded partially phosphoshifted Cdc25, indicating the 

existence of partially phosphorylated Cdc25 isoforms (Fig. 4-4 C). Because processive 

phosphorylation would yield small amounts of fully shifted protein even at low Cdk1 

concentrations, we conclude that Cdc25 phosphorylation by Cdk1 is distributive, or at 

least only semi-processive.  

 

 

 

Table 4-1: The identity of each Cdc25 phosphomutant with mean length and SEM 
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Figure 4-4. Activation of Cdc25 by Cdk1 multisite phosphorylation. 
(A)  Cell lengths at septation of the indicated cdc25 phosphomutant alleles were determined and 
SEM is shown. (B) Cdc25-V5 was immunoprecipitated with anti-V5 antibody from indicated 
strains arrested in prometaphase and visualized with anti-cdc25 antibody (top panel). Cdk1 levels 
from lysates used for IPs are visualized with PSTAIRE antibody (bottom panel). (C) 
Recombinant MBP-Cdc25 was incubated in vitro with indicated levels of active Cdk1-CyclinB 
(Cdc2-Cdc13). Proteins were separated by SDS-PAGE and Cdc25 was visualized by anti-Cdc25 
antibody.  
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Mathematical Model of Cdc25 Activation and Mitotic Entrance 

 The contribution of Cdk1 multisite phosphorylation of Cdc25 to the bistability of 

the G2/M transition was previously modeled (Domingo-Sananes and Novak 2010). We 

modified this model by assuming that Cdk1 phosphorylates Cdc25 in a cooperative, 

disordered manner (see Chapter II). Furthermore, we assumed a linear increase in Cdc25 

activity with increasing number of phosphorylations, which results in an ultrasensitive 

response of Cdc25 to active Cdk1-CyclinB (referred to as Mitosis Promoting Factor, 

MPF) (Fig. 4-5C). This leads to a bistable response of MPF to Cdc25 levels, shown by S-

shaped curves for cdc25+ in Fig. 4-5A. The S-shaped curve is composed of three 

branches: top and bottom branches correspond to interphase (bottom branch) and mitosis 

(top branch) stable steady states with a middle branch representing unstable steady states 

(dotted branch) (Fig. 4-5 A). During interphase, MPF activity rises slowly as Cdc25 

concentration increases. When Cdc25 levels reach the end of the lower branch, the Cdk1-

Cdc25-Wee1 feedback loops engage to fully activate Cdk1 and abruptly switch cells into 

mitosis (the top branch on the curve). Once in mitosis, MFP activity levels are high and 

the system stays in mitosis until Cdc25 level drops below a lower threshold than was 

required for mitotic entry, at which point the system transitions abruptly to interphase 

(Fig. 4-5A). Therefore, in this system there is a threshold level of Cdc25 required to reach 

mitosis. Because the Cdc25 level increases as the cell grows, we assume that this Cdc25 

threshold for MPF activation is proportional to size at mitotic entry.  

 Using this model, we tested mathematically how decreasing available 

phosphosites on Cdc25 would be expected to alter mitotic entry. Figure 4-5A shows that 

as the number of potential phosphosites decreases, the Cdc25 threshold for MPF 
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activation increases, which implies that mitotic entry is delayed and cell size increases. 

This observation fits our experimental data showing increased cell lengths at septation in 

our Cdc25 phosphomutants (Fig. 4-3A and Fig. 4-5D, Table 3-1). The mathematical 

model also predicts a significant decrease in both Cdc25 activity and ultrasensitivity as 

the number of phosphorylation sites on Cdc25 is reduced (Figs. 4-5C ). 

 To see if the variation in cell lengths of cdc25-13A at mitotic entrance  (Fig. 4-1A) 

could be predicted by our model, we generated the size distribution for 104 cells at 

mitotic entrance for both cdc25+ and cdc25-13A cells by randomly varying model 

parameters (See Chapter II). Indeed the modeled cdc25-13A average size is not only 

larger than wildtype cells, but importantly, the distribution of sizes in the mutant is much 

wider than wildtype (Fig. 4-5B). This could account for part of the experimental variation 

that we observed (Fig. 4-1A), and emphasizes the role of the Cdk1-Cdc25 positive 

feedback loop in controlling the precision of the mitotic switch.  

 Finally, we used our model to explore the contribution of disrupting Cdc25 

phosphorylation (Cdc25 vs. Cdc25-13A) in mitotic entrance mutants (cdc2-L7, cdc2-33, 

cdc13-117, clp1Δ, cdr1Δ, cdr2Δ) (Fig. 4-5E). The strong consensus between 

experimental data and calculated lengths of mitotic entrance mutants (Figs. 4-5D and E) 

emphasize the contribution of Cdc25 multisite phosphorylation in the precision of mitotic 

entrance within the dynamic of multiple protein interactions. 



 86 

 

Figure 4-5: Mathematical model of Cdc25 activation.   
(A) MPF activity as a function of total levels of Cdc25 for cdc25+ and different cdc25 
phosphomutants. Dotted lines show unstable transition states. (B) Model predicts distribution of 
cell lengths for wildtype and cdc25-13A cells. For each cell type, 104 cells (parameter sets) were 
generated by randomly varying model parameters. (C) Cdc25 or Wee1 activity as a function of 
Mitosis Promoting Factor  (MPF) activity. (D and E) Experimental and mathematically predicted 
values of cell lengths at septation for indicated strains. 
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Cytokinesis Timing is Controlled by Clp1 Dephosphorylation of Cdc25 

 We previously found that retention of Cdk1 phosphorylation on Cdc25 in clp1Δ 

cells delays Cdk1 inactivation (Wolfe and Gould 2004). To define which steps of mitotic 

exit were altered as a result, we monitored mitotic progression until septation in clp1+ 

cdc25-GFP, clp1+ cdc25-13A-GFP, clp1Δ cdc25-GFP and clp1Δ cdc25-13A-GFP cells, 

by measuring the distance between SPBs (marked by Sid4-RFP) as an indication of 

spindle length. S. pombe has three phases of spindle dynamics (Nabeshima, Nakagawa et 

al. 1998). In phase 1 a short 2-2.5 µm spindle is formed. In phase 2, spindle length is 

maintained while chromosomes align (metaphase and anaphase A). Phase 3 corresponds 

to anaphase B, wherein the spindle elongates. After phase 3, the mitotic spindle collapses 

and cells divide (Fig. 4-6A). 

 Because Clp1 dephosphorylates Cdc25 during anaphase (Esteban, Blanco et al. 

2004; Wolfe and Gould 2004), we measured the time in and after phase 3 to assess the 

contribution of Cdc25 dephosphorylation. Phase 3 was significantly longer in cdc25-13A-

GFP cells for both clp1+ and clp1Δ strains (25.6+1.1 and 24.6+1.2 mins, respectively) 

compared to cdc25-GFP cells (22.0+1.3 and 21.4+2.2 mins, respectively) (Fig. 4-6B and 

C). This change reflects the longer cell length and time required for the spindle to fully 

elongate, as clp1+ cdc25-13A-GFP and clp1Δ cdc25-13A-GFP cells are on average 

longer at division (19.5+1.0 µm and 20.2+0.8 µm respectively) compared to clp1+ cdc25-

GFP and clp1Δ cdc25-GFP cells (14.5+0.4 µm and 12.9+0.4 µm respectively).  The time 

from mitotic spindle collapse at the end of phase 3 to septation in clp1Δ cdc25-GFP cells 

was at least 10 minutes longer compared to all other strains, which were not significantly 

different between one another (Fig. 4-6B), confirming that Clp1 dephosphorylation of 
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Cdc25 plays an important role in controlling the time to cell division. Eliminating Cdk1 

phosphorylation in cdc25-13A cells restored normal timing of this cell cycle phase (Fig. 

4-6B). 

 To understand if Clp1 and Cdc25 are involved in a double negative feedback loop 

that contributes to the abruptness of cytokinesis, we calculated the variation of total time 

from anaphase onset to cell septation (mitotic exit) in individual cells. If a feedback loop 

exists, then removing the ability of Clp1 to dephosphorylate Cdc25 in clp1Δ cells should 

reduce the synchrony of mitotic exit. Significantly, we found that clp1Δ cdc25+ cells had 

a larger range in mitotic exit times compared to all other strains (Fig. 4-6D). Thus, our 

data indicate that Clp1 and Cdc25 are in an ultrasensitive double negative feedback loop 

that regulates the precise timing of cytokinesis and this may explain the low, but 

reproducible, rate of cytokinetic failure in clp1∆ cells (Trautmann et al., Cueille et al). 
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Figure 4-6. Clp1 dephosphorylation of Cdc25 is vital for proper mitotic exit. 
(A) Schematic of mitotic events for a wildtype cell. Red spots represent spindle pole, blue circle 
represents nucleus, black lines represent chromosomes. Graph measures distance between spindle 
poles as a function of time until septation. (B) The distances between SPBs for 10 cells per strain 
was measured from the beginning of mitosis until the time of septation at 2 mins intervals and 
averaged. SEM is indicated for each time point. (C) line graphs of individual cells showing 
distance between spindle poles as a function of time for each of the indicated strains. (D) Mean, 
standard deviation and range of total time from anaphase to septation for each strain . 
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Discussion 

In this study, we used S. pombe as an in vivo model to explore the interactions 

between Cdk1, Clp1, and Cdc25. In vivo systems provide volume constraint, 

compartmentalization of organelles, and precise activation of cell cycle checkpoints, 

variables that cannot be accounted for in cell extract systems used thus far to study 

bistability in mitotic control. We show, for the first time in vivo, that Cdk1 multisite 

disordered phosphorylation activates Cdc25 and is crucial for the precision of the mitotic 

entrance switch and as a result, the maintenance of constant cell length and size.    

Mitotic Switch Disruption Manifests as Increased Size Variation  

Division lengths and growth rates for undisturbed S. pombe cells are remarkably 

invariant (Sveiczer, Novak et al. 1996). However, cdc25-13A cells have increased 

division length variance, a mark of a disturbed mitotic switch. While size differences in a 

population could be due to subpopulations with distinct but stable mitotic switches, our 

single cell analysis showed that mitotic entry was less predictable in each cdc25-13A cell, 

irrespective of the mother’s length at septation. Thus, we show for the first time in vivo, 

that when the Cdk1-Cdc25 positive feedback loop is removed, this manifests as 

decreased precision in mitotic timing. Whether reduced mitotic entry precision in cdc25-

13A cells is due to a more stochastic mitotic switch or graded Cdk1 activity creating 

difficulty in executing a specific function (e.g. spindle pole separation) remains to be 

explored. 

Mechanism of Cdc25 Phosphorylation by Cdk1 

Our study shows that in vivo, Cdk1 phosphorylates Cdc25 in a disordered and 

distributive (or at least semi-processive) manner, confirming previous in silico models 



 91 

postulating that only a distributive multisite phosphorylation mechanism can result in 

ultrasensitivity in protein phosphorylation (Domingo-Sananes and Novak 2010). While a 

preferred Cdk1 phosphorylation site on huWee1 is important for its degradation at 

mitosis (Watanabe, Arai et al. 2004), whether a specific Cdk1 site on Cdc25 is important 

for Cdc25 activation has never been systematically studied. The relative ease of genetic 

manipulation in S. pombe allowed us to thoroughly study the effect on mitotic entry of 

mutating subsets of Cdk1 sites on Cdc25. Our data provide no evidence of selective 

requirements for individual sites; rather we propose that all 13 Cdk1 phosphosites on 

Cdc25 contribute equally to mitotic entry by the ultrasensitive phosphorylation and 

subsequent activation of Cdc25.  

Role of Cdc25 Multisite Phosphoregulation in Eukaryotes 

Cdc25 activation by Cdk1 multisite phosphorylation, whether by stabilizing 

Cdc25 or by direct activation, is likely a conserved mechanism that contributes to the 

switch-like initiation of mitosis in eukaryotes. In all species, Cdc25 proteins have at least 

6, and up to 13 possible Cdk1 phosphosites, according to the minimal Cdk1 consensus 

sequence (S/T-P), allowing for the possibility of ultrasensitive Cdc25 activation by 

multisite phosphorylation whether by stabilizing Cdc25 or by catalytic activation. 

Intriguingly, vertebrates, such as humans, with up to three Cdc25 isoforms may have 

evolved multiple isoforms to perhaps more precisely modulate the mitotic switch. In 

humans, all Cdc25 isoforms contribute to mitotic entrance, however, only Cdc25B 

localizes to the centrosome in a Cdk1 and Plk1 phosphorylation dependent manner during 

late interphase and early mitosis (Boutros and Ducommun 2008). In addition, Cdc25A 

and Cdc25B have 12 potential Cdk1 phosphosites while Cdc25C has only 6. These 
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differences may provide a means of fine-tuning the mitotic entry switch where 

localization may provide specificity in regulating different events while different 

numbers of available phosphosites may provide temporal control in ultrasensitive 

activation of different Cdc25 isoforms. Besides multisite phosphorylation, other 

mechanisms also may contribute to the ultrasensitive responses of Cdc25 and Wee1 to 

Cdk1, such as competition among Cdk1 substrates and protein phosphoisoforms for 

enzyme binding (Georgi, Stukenberg et al. 2002; Rape, Reddy et al. 2006; Kim and 

Ferrell 2007), and regulation of opposing enzymes such as Clp1 (Ferrell 2008). 

The Cdc14 Phosphatase Plays Important Roles in the Mitotic Exit Switch 

Our study also suggests the existence of a double-negative feedback loop between 

Clp1 and Cdc25 at the mitotic exit switch. Both S. pombe Clp1 and S. cerevisiae Cdc14 

are mediators of the mitotic exit switch. While Cdc14 directly promotes APC activity, 

which initiates CyclinB degradation and separation of sister chromatids, allowing for the 

switch-like transition of metaphase to anaphase (Holt, Krutchinsky et al. 2008; Lopez-

Aviles, Kapuy et al. 2009; He, Kapuy et al. 2011), Clp1 in S. pombe does not affect 

CyclinB (Cueille, Salimova et al. 2001). Instead, we have confirmed and extended our 

previous work (Wolfe and Gould 2004) showing that Clp1 dampens Cdk1 activity by 

dephosphorylating and inactivating Cdc25 after metaphase. Clp1 facilitates proper 

contractile ring dynamics and timely cytokinesis by antagonizing Cdk1 phosphorylations 

that negatively regulate the septation initiation network (SIN) and antagonize the 

formation of the contractile ring (Guertin, Chang et al. 2000; Trautmann, Wolfe et al. 

2001; Clifford, Wolfe et al. 2008; Dischinger, Krapp et al. 2008; Roberts-Galbraith, Ohi 

et al.). Our data show that abrogation of the Clp1-Cdc25 feedback reduces the abruptness 
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of cytokinesis. Therefore, unlike S. cerevisiae Cdc14, which facilitates the mitotic exit 

switch at the metaphase-anaphase transition, S. pombe Clp1 controls the abruptness of the 

mitotic exit switch primarily by promoting proper SIN and contractile ring activity. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 In this work, I present an analysis of the phosphoregulation of Cdc25 by Cdk1, 

the role of the Cdk1-Cdc25 feedback loop in the G2/M transition for undisrupted cells 

and the contribution of the feedback loop between Clp1 and Cdc25 to mitotic exit.  

 

Chapter Highlights 

 In Chapter II, I explained the biochemical, genetic, and mathematical modeling 

techniques used in this thesis. Most unique and pertinent for this study are methods for 

measuring Cdc25 activation, for measuring cell lengths at septation and time to 

cytokinesis to assess disturbance to the mitotic entry and mitotic exit switches, and for 

the mathematical modeling of mitotic entry. Although assaying immunoprecipitated 

Cdc25 activity by testing its ability to activate Cdk1 in vivo, and then measuring Cdk1’s 

ability to phosphorylate histone H1, is more indirect than directly testing Cdc25’s activity 

against an artificial substrate, Cdc25 is up to 3000 times more sensitive towards Cdk1 

than towards commonly used artificial substrates like mFP or pNPP (Rudolph, Epstein et 

al. 2001). Thus, the in vivo Cdc25 activity assay is used, in all organisms, to test 

immunoprecipitated Cdc25 activity due to the assay’s high sensitivity. 

While cell length at septation is a common measure for mitotic entry time, to our 

knowledge, this is the only study that measures variance in cell lengths as a test for 

disturbance in the mitotic switch. Our study shows that measuring variance in length and 
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time to easily observable mitotic events such as cytokinesis, are sensitive and effective 

ways to test disturbances in feedback loops that contribute to switch-like cell cycle 

events. 

Finally, collaboration with the Novak lab to mathematically model mitotic entry 

allowed us to simplify a number of in vivo variables to focus on the contribution of the 

Wee1-Cdk1-Cdc25 feedback loops to mitotic entry. We show that even within a 

simplified cell cycle model, we can predict variations in cell lengths due to changes in the 

Cdk1-Cdc25 feedback loop, validating that our experimentally predicted mechanism – of 

progressive, distributive, and ultrasensitive phosphorylation and activation of Cdc25 by 

Cdk1. While mechanisms of interaction for Cdk1, Wee1, and Cdc25 with other proteins 

need to be added to the model for a more complete picture of mitotic entry, we believe 

that the model presented is a step towards a more detailed mechanistic understanding of 

mitotic entry.  

In Chapter III, we clarified the role of Cdk1 phosphorylation on Cdc25. Previous 

to this thesis, it was known that Cdc25 localized to the nucleus and is most active and 

stable when it is hyperphosphorylated by Cdk1 at mitotic entry. Dephosphorylation by 

Clp1 at mitotic exit was associated with Cdc25 degradation (Wolfe and Gould 2004). In 

addition, the specific sites of Cdk1 phosphorylation on Cdc25 were not known. Our data 

convincingly show that Cdk1 phosphorylation directly activates Cdc25 and does not play 

a role in Cdc25 accumulation and nuclear localization at mitotic entry nor affects Cdc25 

ubiquitylation and degradation at mitotic exit. This is also the first study where Cdk1 

phosphorylation was comprehensively identified on Cdc25 by tryptic peptide mapping 

and tandem affinity purification followed by mass spectrometric (MS) identification.  
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In Chapter IV, we show that Cdk1 ultrasensitively phosphorylates Cdc25 in a 

cooperative and distributive mechanism and importantly contributes to the positive 

feedback between Cdk1-Cdc25 that rapidly switches the system into mitosis. We verified 

our proposed mechanism of Cdc25 phosphoregulation by validating our predictions 

against a mathematical model. Finally, we identified a potentially important feedback 

loop involving Clp1 dephosphorylation of Cdk1 sites on Cdc25 in mitotic exit. Prior to 

this work, all mathematical modeling of the feedback loops contributing to the mitotic 

entry switch were based on experimental data from ex vivo Xenopus egg lysates. Our 

work is the first and only model of the mitotic entrance loop based on the behavior of 

undisturbed cells that are able to properly enter mitosis, control mitotic events, exit 

mitosis, and normally progress through other phases of the cell cycle. By observing S. 

pombe cells, we are able to observe how an undisrupted system responds to interference 

to an important feedback arm of the mitotic switch. Without the Cdk1-Cdc25 feedback 

loop, cells cannot specifically control when they enter mitosis, having substantially 

varied times to mitosis between generations. This disruption in mitotic timing may be 

universal in cells that have interrupted Cdk1-Cdc25 feedback loops. It will be interesting 

to investigate the importance of mitotic coordination in organisms where timing to 

mitosis is important for organ development and pathogenesis. Finally, mitotic exit has 

always been thought of as a dampening of Cdk1 stimulated events, and specific 

mechanisms controlling exit timing events have not been comprehensively studied. Our 

study shows that Clp1 dephosphorylation of Cdc25 on Cdk1 sites is a control mechanism 

that allows for the rapid switch from late mitotic events to cytokinesis. Our study 
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highlights Clp1 as an important regulator of cytokinesis, and points to, for the first time a 

role for Cdc25 activity during mitotic exit.  

Figure 5-1 is a comprehensive model of our findings, showing that Cdk1 

distributively and non-selectively phosphorylates Cdc25, allowing for the ultrasensitive 

activation of Cdc25 and Cdk1 and for switch-like entrance into mitosis. The Clp1-Cdc25 

negative feedback loop, in turn, rapidly turns off Cdc25 and Cdk1 at mitotic exit, 

facilitating the switch like exit from mitosis, during cytokinesis.  

 

 

 

Figure 5-1. Cdc25 is involved in two feedback loops that significantly contribute to mitotic 
bistability. 
Cdc25 is phosphorylated by Cdk1 in an ultrasensitive and distributive manner. This ultrasensitive 
phosphorylation cooperatively drives the positive feedback between Cdk1 and Cdc25 to rapidly 
switch the cells into mitosis. Cdk1 phosphorylation inhibits Clp1 activity until mitotic exit. When 
Cdk1 activity decreases during late mitosis, Clp1 dephosphorylates and activates itself. Clp1 also 
dephosphorylates Cdc25 in a double negative feedback loop, in which Cdc25 activation of Cdk1 
inactivates Clp1 and Clp1 further inactivates Cdc25. This dephosphorylation loop not only 
controls proper timing to cytokinesis but also is important in the switch-like exit from mitosis to 
interphase.  
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Future Directions 

Wee1-Cdk1 Negative Feedback in the Mitotic Entrance Switch 

Both the Wee1-Cdk1 negative feedback and Cdc25-Cdk1 positive feedback loops 

are important in driving mitotic entry in Xenopus cell extracts (as detailed in Chapter I) 

(Trunnell et al. 2011; Kim and Ferrell, 2004). The existence of the Wee1-Cdk1 feedback 

loop in S. pombe and other undisrupted cells and how this feedback may affect mitosis 

have not yet been explored. To understand if and how the Wee1-Cdk1 double negative 

feedback loop contributes to the S. pombe cell cycle, we first performed an in vitro Cdk1 

kinase assay with MBP-Wee1 using recombinantly expressed S. pombe proteins, and 

showed that with increasing Cdk1 levels, Wee1 becomes phosphorylated in an 

ultrasensitive manner. In addition, by MS analysis following in vitro Cdk1 kinase assay, 

we have found at least 17 S/T-P sites on recombinant Wee1. We plan to further examine 

the roles of these phosphorylation sites in vivo by examining the effects of mutating these 

sites to nonphosphorylable alanines and phosphomimetic glutamate. In addition, we will 

explore the in vitro (by recombinant protein expression) and in vivo (by kinase assays 

using immunopurified proteins) activation levels and stability of these phosphomutants. 

Finally, we plan to assess how disrupting this negative feedback loop in vivo will alter the 

mitotic entrance and potentially mitotic exit switches by examining time to and in mitosis 

and mitotic events.  

Other Kinases that Affect Mitosis Through Cdc25 

 Activation of Cdc25 is necessary for mitotic entry, as cdc25-22 cells blocked at 

the restrictive temperature cannot enter mitosis. cdc25-13A cells take longer to reach 

mitosis, reflecting a decrease in Cdc25 total activation; however, the fact that cells still 
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septate and go through mitotic events suggest Cdc25-13A can still effectively activate 

Cdk1. Cdc25-13A has residual phosphorylation at prometaphase, indicating kinases other 

than Cdk1 also phosphorylate the protein. Thus, Cdc25 activation may be controlled by 

Cdk1 and other kinases at mitotic entrance.  

Along with Cdk1 phosphorylation on Cdc25, we also identified by MS analysis, a 

number of other phosphorylated sites on Cdc25 at mitotic entrance. The non-S/TP sites 

identified by our MS analysis include previously identified RXXS sites (Graves, Lovly et 

al. 2001) phosphorylated by Chk1/Spc1 kinases (six of the nine consensus sites were 

phosphorylated), at least two potential Polo-like kinase sites, and several other unknown 

phosphorylation sites. Polo-like kinases phosphorylate Cdc25 to control Cdc25 activity 

and localization at mitotic entry in human and Xenopus cells but their role in controlling 

Cdc25 in S. pombe not yet been explored. We verified that both in vivo 

immunoprecipitated and baculoviral expressed S. pombe Plo1 phosphorylate Cdc25. Plo1 

phosphorylates multiple other sites on Cdc25 in addition to those found by MS analysis. 

Mutating the Plo1 related phosphosites on Cdc25 to nonphosphorylable alanines and 

potentially phosphomimetic glutamates seem to affect the cell cycle during both mitotic 

entrance and later mitotic events. Future directions include finding all the Plo1 directed 

sites on Cdc25, examining the specific roles and mechanisms of Plo1 phosphorylation on 

Cdc25 and understanding how these phosphorylations contribute to mitotic events.  

Thus, along with Cdc25 dephosphorylation by Clp1 playing a role in regulating 

mitotic exit timing, our recent work in Plo1-Cdc25 interaction suggests that while Cdc25 

has always been thought to be important in mitotic entry, it also plays previously 

unexplored roles in late mitosis that deserve further examination. 
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Functional Characterization of the Cdc25 N-terminus 

 Cdk1 phosphorylates the N-terminal unstructured regulatory domain of Cdc25 to 

activate Cdc25. How the N-terminus, or parts of the N-terminus, specifically modulates 

the activation of Cdc25 is not known. A section of the N-terminus could directly 

structurally obstruct the catalytic domain of Cdc25 (in cis or trans manner), an 

obstruction that could be alleviated by Cdk1 phosphorylation. The N-terminus could 

dimerize in the presence or absence of Cdk1 phosphorylation to modulate Cdc25 activity. 

Phosphorylation of the N-terminus may directly alter the structure and thus activation 

level of the catalytic domain. Finally, the N-terminus could associate with the Cdk1-

Cyclin B complex directly, allowing for spatial proximity for Cdk1 and Cdc25 to activate 

one another. To differentiate between these possibilities, and to explore other 

possibilities, we have expressed several truncated forms of Cdc25 recombinants with 

various sections of the N-terminus removed, to explore which segment of the N-terminus 

is most important for Cdc25 activation. In addition, we have generated, and are in the 

process of designing more Cdc25 N-terminal truncated peptides of various sizes, with 

and without the catalytic domain, for two-hybrid interaction assays to understand N-

terminus binding properties to itself, Cdk1, CyclinB and the Cdc25 catalytic domain. 

Finally, these Cdc25 truncation and deletion constructs will be integrated into cells to 

explore the in vivo effects of disrupting N-terminal function in Cdc25 activation, mitotic 

entry, and other potential protein interactions.  
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Multisite Phosphorylation and Dephosphorylation in the Cell Cycle and Beyond 

Previous ex vivo methods only speculated on the positive feedback nature of 

Cdk1-Cdc25, we definitely verified the existence of the ultrasensitive feedback loop in 

vivo while showing that this loop can indeed allow for the rapid switch-like change into 

and out of mitosis. Given the importance of rapidly turning off interphase events, such as 

DNA replication, while turning on DNA and nuclear separation in mitosis, this positive 

feedback loop likely exists in vivo in all organisms. We also showed a mechanism by 

which Cdk1 distributively phosphorylates Cdc25 and directly activates Cdc25 in a 

cooperative phosphorylatory manner. This simple method of direct Cdc25 activation is 

likely a mechanism that adds significantly to the bistable nature of mitotic entrance in all 

eukaryotes; however, in other organisms, such as metazoans with more Cdc25 isoforms, 

and increased need to control mitotic entrance timing (due to multi-cell coordination), 

multisite phosphorylation may also control Cdc25 stability, by directly altering Cdc25 

structure or by preventing Cdc25 association with ubiquitin and proteasome components, 

and control Cdc25 localization- it has been seen that co-localization of Cdk1 effector 

proteins (such as CyclinB) with Cdk1 in important mitotic “hot spots” contributes to the 

switch-like entrance into mitosis (Santos, Wollman et al. 2012). Finally, while we have 

found that Cdk1 phosphorylation of Cdc25 is distributive or semi-processive in vitro and 

that Cdk1 phosphorylation sites do not seem to be specific in vivo in the progressive 

activation of Cdc25, these mechanisms may not be conserved in all Cdk1-substrate 

interactions. In S. cerevisiae, for example, Sic1 phosphorylation by Cdk1 involves Cdk1 

priming specific sites on Sic1, followed by semi-processive phosphorylation of clusters 

of sites near these primed sites (Koivomagi, Valk et al. 2011). Indeed, in addition to other 
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Cdk1-substrate interactions, even the specific mechanism of phosphorylation on Cdc25 

by Cdk1, in S. pombe and other organisms deserve further, and more detailed, 

exploration. 

Protein phosphorylations by kinases have been investigated as important post-

translational modification events for almost a century. It has often been assumed that 

dephosphorylation counters kinase-specified events, but interest in specific phosphatase 

interactions, especially in cell cycle studies, is a new field that has come into prominence 

only in the past few decades. Phosphatases, such as Protein phosphatase 1 (PP1) and 

Protein phosphatase 2A (PP2A) counter Aurora kinase phosphorylations during 

chromosome congression, kinetochore capture, and chromosome segregation. Cdc14 and 

PP2A counter Cdk1 phosphorylations by directly interacting with Cdk1 substrates, one of 

the most investigated of which being Cdc25 (reviewed in (Wurzenberger and Gerlich 

2011)). Dephosphorylation of Cdc25 through control of mitotic timing have been found 

to be conserved in S. pombe, S. cerevisiae and human cells ((Esteban, Blanco et al. 2004; 

Wolfe and Gould 2004; Lu, Domingo-Sananes et al. 2012; Forester, Maddox et al. 2007; 

Pal, Paraz et al. 2008). Studies have also shown that in S. pombe and S. cerevisae, 

specific Cdc14/Clp1 dephosphorylation and association with other substrates are 

involved in the metaphase-anaphase switch and cytokinetic timing (Wolfe, McDonald et 

al. 2006; Clifford, Wolfe et al. 2008; Roberts-Galbraith, Chen et al. 2009; Koivomagi, 

Valk et al. 2011; Lu, Domingo-Sananes et al. 2012). In addition, in S. pombe, Clp1 

associates with Mid1, a cytokinetic ring regulator, and controls cytokinetic ring stability, 

in a Cdk1 phosphorylation independent manner, suggesting that phosphatases may be 

involved in mechanisms of mitotic regulation that are independent from mitotic kinase 
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driven activity (Clifford, Wolfe et al. 2008). Thus, the contributions of phosphatases in 

mitosis are many and varied; however, the specific mechanism and kinetics of 

dephosphorylation, as well as how phosphatase contributes to the effectiveness of mitotic 

events, including the Clp1-Cdc25 control of cytokinetic timing, need to be further 

explored.  

Finally, this work adds to the growing understanding of how phosphoregulation 

mechanisms affect protein activity and interaction to allow for a system to fine tune its 

response to cellular and environmental changes. Multisite phosphorylation has recently 

been hypothesized, using in silico modeling, to be an important component for the 

switch-like activation of a protein or transitions in a system. While multisite 

phosphorylation is seen in many proteins in various cellular protein cascades, the EGF 

receptor and p53, of the growth factor and mitogen-activated protein kinase (MAPK) 

pathways respectively, just to name a few (reviewed in (Cohen 2000)), Cdc25 is part of 

only three proteins found by in vivo and ex vivo experimental data, to display switch-like 

and ultrasensitive characteristics after multisite phosphoregulation. The two other 

proteins found to add ultrasensivity to their systems are both Cdk1 targets, and are Wee1 

(in X. laevis), which contributes to mitotic entry, and Sic1 (in S. cerevisiae), which 

contributes to the metaphase-anaphase transition (Pomerening, Sontag et al. 2003; Kim 

and Ferrell 2007; Koivomagi, Valk et al. 2011). The contributions of substrate multisite 

phosphorylation by Cdk1 and other mitotic kinases, such as Plks and Aurora kinases, as 

well as proteins from other cellular systems that display switch-like behavior (such as the 

MAPK pathway), have not been studied and deserve further exploration.  
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Conclusions 

In summary, using S. pombe, I was able to explore the mechanisms of Cdc25 

phosphorylation, and show for the first time that the Cdk1-Cdc25 positive feedback loop 

and the Cdc25-Clp1 negative feedback loop exist in vivo and have significant effects in 

mitotic entry and mitotic exit. This work contributes importantly to the growing 

understanding of protein phosphoregulation and its contributions to the bistability of 

cellular systems. 
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