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Chapter 1. Introduction

“T'he senses which operate through external media, viz. smelling, hearing, seeing, are
found in all animals which possess the faculty of locomotion. To all that possess them
they are a means of preservation; their final cause being that such creatures may,
guided by antecedent perception, both pursue their food, and shun things that are bad
or destructive. But in animals which have also intelligence they serve for the
attainment of a higher perfection. They bring in tidings of many distinctive qualities
of things, from which the knowledge of truth, speculative and practical, is generated

in the soul.”

— Atristotle, De Sensu et Sensibilibus

The Multisensory World

I answer my ringing phone and hear my friend’s voice. A group is meeting up to go out
tor lunch. Outside my apartment on the busy street, I join a mob of pedestrians rushing past. As
I am walking down the sidewalk, a barrage of events occurs all around. Countless pedestrians
engage in conversations all around me. A construction crew is working on a new high-rise
building. I pass food carts where venders sell hot dogs and pizza. As I approach the intersection,
an airplane slides across the sky above. Across the street in a park, a dog is barking and trees sway

in the wind. The same wind ruffles my clothes. Cars are rushing past; one driver beeps their



horn. Finally, the cars stop and there is a beep as the crosswalk figure lights up, indicating that it

is safe to cross.

These events in my environment generate a variety of energies—electromagnetic

radiation, waves of air pressure, physical manipulation upon the skin, and chemical odorants—

which propagate outward from their sources. As I navigate the urban jungle, a portion of these

energies is captured by my sensory periphery. They are transduced into the neural language and

transmitted to my brain for processing into sensations and perceptions of light, sound, touch,

and smell. Somehow, from the cacophony of sensations that make up the sensory landscape, my

brain has composed a coherent symphony and has identified the instrument corresponding to the

signal to cross the street.

Our accurate perception and interaction with our environment depend critically on the

appropriate integration of these sensory signals. The many ongoing events which cause the

sensory landscape to become chaotic can make this a difficult endeavor. However, our brains

accomplish this task seamlessly, using statistical regularities in sensory signals to combine and

separate sensory features into distinct sensory objects (Bizley & Cohen, 2013; Shinn-

Cunningham, 2008; Wagemans et al., 2012). Many of the events that occur in the environment
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have features that span sensory modalities. The brain uses regularities that occur across

modalities to group features from different modalities (Bizley et al., 2016). In doing so, the brain

forms a coherent and unified picture of our multisensory environment.

The brain can synergistically combine redundant or complementary information across

the different senses to enhance the representation of events in the environment. The behavioral

and perceptual manifestations of multisensory integration are well established (Calvert, Spence,

& Stein, 2004; Murray & Wallace, 2012). In general, multisensory integration often leads to

behavior that is more accurate (Frassinetti, Bolognini, & Ladavas, 2002; Ohshiro, Angelaki, &

DeAngelis, 2011; Stein, Huneycutt, & Alex Meredith, 1988) and also faster (Amlot, Walker,

Driver, & Spence, 2003; Colonius & Diederich, 2004; Diederich, Colonius, Bockhorst, &

Tabeling, 2003; Frens, Van Opstal, Van der Willigen, Opstal, & Willigen, 1995; Hershenson,

1962; Hughes, Reuter-Lorenz, Nozawa, & Fendrich, 1994) than behavior based on unisensory

signals. These multisensory interactions are ubiquitous and have been shown in domains such as

detection (Bolognini, Frassinetti, Serino, & Ladavas, 2005; Frassinetti et al., 2002; Grant &

Seitz, 2000; Lovelace, Stein, & Wallace, 2003), localization (Battaglia, Jacobs, & Aslin, 2003;

Bolognini, Leo, Passamonti, Stein, & Ladavas, 2007; Hairston, Laurienti, Mishra, Burdette, &
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Wallace, 2003; Nidiffer, Stevenson, Krueger Fister, Barnett, & Wallace, 2016; Wallace et al.,

2004), speech discrimination (Erber, 1969; Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007,

Sumby & Pollack, 1954), target selection (Corneil, Van Wanrooij, Munoz, & Van Opstal, 2002;

Kosem & van Wassenhove, 2012), and attention (Convento, Rahman, & Yau, 2018; Maddox,

Atilgan, Bizley, & Lee, 2015; Mast, Frings, & Spence, 2017). They have been demonstrated in

manual responses and saccadic eye movements (Amlot et al., 2003; Colonius & Diederich, 2004;

Corneil et al., 2002; Frens et al., 1995; Hughes et al., 1994).

Multisensory presentations can enhance perception in unisensory domains (Sumby &

Pollack, 1954), even when the information in the other modality is irrelevant (Colonius &

Diederich, 2011; Lovelace et al., 2003; Maddox et al., 2015). Multisensory combinations can

give us the “best of both worlds,” for example, the speed of auditory behavior and the spatial

accuracy of visual behavior (Corneil et al., 2002). Conversely, multisensory interactions can make

observers less sensitive to spatial and temporal conflicts in unisensory signals (Parise, Harrar,

Ernst, & Spence, 2013; Vatakis & Spence, 2007), errantly bias unisensory perception (Alais &

Burr, 2004; R. Sekuler, Sekuler, & Lau, 1997; Shams, Kamitani, & Shimojo, 2000; Wallace et



al., 2004), and even elicit a percept that is absent from the unisensory signals (Mcgurk &

Macdonald, 1976).

Multisensory guiding principles

Some of the earliest descriptions of the neural instantiation of multisensory interactions

were described in the optic tectum of the rattlesnake (Newman & Hartline, 1981) and in the

superior colliculus (SC; the mammalian homologue of the optic tectum) of the cat (Meredith &

Stein, 1983; Stein, 1978; Stein & Arigbede, 1972). The SC is a midbrain structure that receives

converging inputs from a very large portion of the brain including visual, auditory, and

somatosensory areas in cortex (Kawamura & Konno, 1979) and sub-cortex (Edwards,

Ginsburgh, Henkel, & Stein, 1979). These inputs converge on single neurons in the SC and

result in neural activity that is often profoundly changed by the presentation of multisensory

signals (Meredith & Stein, 1986b). In terms of the strength of the multisensory response relative

to the unisensory response, these interactions can be described as response depression

(multisensory < unisensory) or response enhancements (multisensory > unisensory). Response

enhancements can further be divided based on a comparison to the sum of unisensory responses

into additive, sub-additive, and super-additive interactions (Stanford & Stein, 2007; Stevenson
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et al., 2014). The magnitude of multisensory interactions were determined not to be a sole

property of the neuron (c.f., Perrault, 2003, 2005) but were guided by a set stimulus factors:

spatial and temporal proximity and stimulus effectiveness.

Temporal proximity

Stimuli that occur in close temporal proximity can produce multisensory interactions in

single neurons whereas stimuli separated by a long interval are processed as distinct unisensory

events (Meredith, Nemitz, & Stein, 1987). However, the temporal relationships that guide

multisensory interactions are not quite this simple. Multisensory interactions are not dependent

on matching the onsets of multisensory stimuli per se, but rather how their resultant activity

patterns overlap in a neuron. This notion is further complicated by two key elements. First, the

multisensory system is tasked with combining energies that propagate at very different velocities

through the environment. At room temperature conditions, light travels at =299,792,456 m/s

(Evenson et al., 1972) while sound is much slower at 343 m/s (Dean, 1979). In contrast,

somatosensory energy does not travel through the atmosphere and activates receptors on the skin

instantly. Second, once stimulus energy has reached the sensory receptors and is transduced into

neural energy, the times it takes for neuronal activity to reach the SC are substantially different
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across the sensory systems (Meredith et al., 1987). Auditory stimuli cause the discharge of action

potentials in SC neurons in approximately 5-29 ms (Middlebrooks & Knudsen, 1984), spikes are

present about 9-18 ms after a somatosensory stimulus is applied to the skin (Stein, Magalhaes-

Castro, & Kruger, 1976), and visual stimuli takes quite a bit longer—39-145 ms—to induce

spiking activity in SC (Meredith et al., 1987; Stein & Arigbede, 1972). These issues explain two

somewhat surprising findings. First, the most intense interactions often occur with some

asynchrony among sensory signals, and second, the duration of the “temporal window” over

which interactions can occur is rather long. This window has been interpreted as a means by

which we integrate multisensory signals across different distances. Because auditory energy

propagates slowly in the environment relative to visual energy, multisensory signals at further

distances result in longer delays in the arrival of the auditory portion of the signal.

Spatial proximity

Neurons in the SC have receptive fields that respond to stimuli which are present in well

circumscribed areas of visual (Mcllwain, 1975; Meredith & Stein, 1990), auditory (Gordon,

1973; Middlebrooks & Knudsen, 1984), and somatosensory (Meredith, Clemo, & Stein, 1991;

Stein et al., 1976) space. These spatial receptive fields are organized topographically in the SC
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with a common organizational structure across sensory modalities. Therefore, neurons in the SC

that respond to multiple sensory signals have separate but overlapping spatial receptive fields for

each of its sensory modalities. The result of such an organization is that spatially coincident

multisensory stimuli tend to fall within their respective spatial receptive fields and thus produce

response enhancements proportional to the spatial congruence (Meredith & Stein, 1986a, 1996).

When multisensory stimuli are spatially disparate or when one stimulus falls outside its receptive

field, SC responses are depressed or are not distinct from unisensory responses. Typically,

spatially proximal stimuli fall within their respective receptive fields, and therefore produce

multisensory enhancement. However, spatial proximity is not a strict requirement for

multisensory enhancements. When animals are reared in an altered sensory environment where

temporally-coupled audiovisual signals originate from different locations in space, SC neurons

develop unisensory spatial receptive fields that are separated in space commensurate with the

discrepancy in their environment (Wallace & Stein, 2007). When stimuli are spatially

coincident, one stimulus falls within its receptive field while the other falls out outside its

receptive field. These neurons show normal multisensory integrative ability so long as unisensory



signals are separated by a distance that corresponds to the statistics of the developmental

environment and thus occur within their respective receptive fields.

Inwerse effectiveness

Maximum multisensory enhancements occur when weakly effective stimuli are combined

(Meredith & Stein, 1986b). One of the benefits of multisensory interactions is the ability to

enhance the physiological salience of external events which can help an organism to maximize

the extraction of information from their surroundings. An organism does not stand to benefit

much from the integration of stimuli that are effective on their own. Conversely, when stimuli

are decreasingly effective (e.g., from low signal or high background noise), multisensory

interactions become increasingly advantageous to that organism. Interestingly, this principle has

been demonstrated by changing the spatial location of stimuli within the heterogeneous receptive

fields of SC neurons (Carriere, Royal, & Wallace, 2008; Krueger, Royal, Fister, & Wallace,

2009). Large interactions are observed when stimuli are placed at receptive field locations which

produce meager responses while highly excitable receptive field locations produce much smaller

multisensory enhancements, if any.



Table 1.1: The multisensory principles outside single unit electrophysiology.

Behavior Electrophysiology Imaging
Temporal (Dixon & Spitz, (Schall, Quigley, (Macaluso, George,
Coincidence 1980; Hershenson, ~ Onat, & Konig, 2009; Dolan, Spence, &
1962; Wallace et al., Senkowski, Talsma, Driver, 2004)
2004) Grigutsch,
Herrmann, &
Woldorff, 2007)
Spatial Parity (Bolognini et al., (Zhou, Zhang, Tan,  (Macaluso et al.,

Inverse Effectiveness

2005; Frassinetti et
al., 2002; Wallace,
2004)
(Sumby & Pollack,
1954)

& Han, 2004)

(Crosse, Di Liberto,
& Lalor, 2016;
Stevenson et al.,

2012)

2004)

(Stevenson & James,

2009)

The principles outside the single neuron

Although the multisensory principles were codified using electrophysiological recordings

of single SC neurons in cat and later in the primate SC (Wallace, Wilkinson, & Stein, 1996),

they were first touch on in human nearly a century ago (Todd, 1912). These principles, based on

the early physiology work (Meredith et al., 1987; Meredith & Stein, 1983, 1986a), have since

been demonstrated in a wide range of human methodologies including behavior,

electrophysiology, and imaging. Table 1 summarizes a few key papers.
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Other considerations

Although the principles have been demonstrated and remain robust across a broad variety

of tasks and techniques, there are select cases in which multisensory interactions do not conform

to the principles. For example, although Sumby and Pollack (1954) found that enhancement

increased monotonically with decreasing signal-to-noise ratio (SNR) of a speech signal (inverse

effectiveness), others have found maximal enhancement occurring at intermediate SNRs, a so-

called “sweet spot” (Foxe et al., 2015; Ross, Del Bene, Molholm, Frey, & Foxe, 2015; Ross et al.,

2007), or in a manner unexplained by inverse effectiveness altogether (Chandrasekaran, Lemus,

Trubanova, Gondan, & Ghazanfar, 2011). Additionally, there is evidence that the spatial

misalignment can still cause integration under certain contexts (Murray et al., 2005).

Other factors have been presented that shape the multisensory product. One of these

posits that multisensory signals must be semantically congruent to produce multisensory

enhancements (Laurienti, Kraft, Maldjian, Burdette, & Wallace, 2004). When participants were

shown a red or blue visual stimulus, they were faster at pressing a corresponding red or blue

button when there was a semantically congruent auditory stimulus (spoken “red” or “blue”).

Multisensory stimuli that are semantically incongruent (spoken “green”, akin to a multisensory

11



Stroop Effect) were shown to impede behavioral performance. Further, two principles aimed to
explain multisensory behavior have been proposed (Otto, Dassy, & Mamassian, 2013). The
principle of congruent effectiveness states that multisensory behavioral enhancement is largest
when behavioral performance in corresponding unisensory conditions is matched. The variability
principle says that multisensory enhancements increase as unisensory behavior becomes less
reliable. Interestingly, both of these can be thought of a nuanced reframing of the inverse
effectiveness principle. First, mismatched unisensory behavioral performance reduces
multisensory enhancements due to the increased effectiveness in one modality. Likewise,
unisensory behavior becomes more variable as stimuli become less effective and therefore

produces larger response enhancements.

The Binding Problem

Originally, the multisensory principles were described as a means to explain what the
brain should integrate under the assumption that stimuli that are spatially and temporally
congruent likely originate from a common event (i.e., causal inference; Kording et al., 2007,
Magnotti, Ma, & Beauchamp, 2013) and therefore should be “bound” together. These statistical

cues are important because the brain does not know a priori what sensory features should go

12



together and which should be separated into distinct objects. So the brain uses cues to infer a

common cause for sensory events. This binding problem deals with the question of how we

achieve the experience of a coherent world of integrated objects, and avoid seeing a world of

disembodied or wrongly combined shapes, colors, motions, sizes and distances (Treisman, 1998).

In order to evaluate and interact with our environment, we bind features from the same source

into a single object while segregating features from different sources into multiple objects

(Treisman & Gelade, 1980). In order to form these objects, our brains must first encode its

component features and then sow the features are combined (Treisman, 1996).

Gestalt psychologist have long been aware of the binding problem. One core principle of

Gestalt psychology is prignanz, which is the observation that humans tend to order our

perceptual experience in predictable ways. These observations lead to the formalization of

principles describing the conditions which facilitate perceptual grouping (Wertheimer, 1923,

1938). Their principles, such as similarity, proximity, and common fate — which describe

grouping based on resemblance, closeness, and movements—relate closely to binding cues (i.e.,

spatial and temporal correlations) described in research today.
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Unisensory grouping and segregation

Our sensory environment contains many signals that need to be appropriately combined.

Returning to our early example, where I have just crossed the busy street, I am approached by my

friend. For us to have a conversation, my auditory system must group the audible features (e.g.,

frequency components, spatial location) related to his voice and all the other ongoing sensory

events into auditory objects and segregate them appropriately. These objects then must maintain

continuity across longer time scales into streams. Humans are particularly adept at tracking these

changes across time, even when multiple sources overlap significantly (Woods & Mecdermott

Correspondence, 2015). Finally, we must focus attention on the target voice (Shinn-

Cunningham, 2008). This process has been called the cocktail party problem (Cherry, 1953),

which is a specific instance of auditory scene analysis (Bregman, 1990) and represents a non-

trivial problem for our auditory perceptual system.

Auditory scene analysis takes advantage of a number of cues based in part on the spectral

features of sounds (Darwin, 1997). One well-documented cue for grouping and segregation of

sound sources is frequency proximity (Darwin, 1992). If two vowels are presented

simultaneously, larger differences in the fundamental frequency—which is potentially indicative
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of two speakers—result in better identification of both vowels (Assmann & Summerfield, 1994;

Culling & Darwin, 1993; Culling & Darwin, 1994; de Cheveigné, Kawahara, Tsuzaki, &

Aikawa, 1997). Similarly, in a classic paradigm designed to manipulate the perception of the

number of perceived streams, a repeating sequence of alternating tones (A and B) are separated

in frequency by varying amounts. In this paradigm, if the frequency separation between the tones

is small, the sequences will be perceived as a single trill-like stream (ABAB). However, if the

tones are separated sufficiently in frequency, the sequence will be perceived as two separate

streams (A-A- and -B-B; Bregman & Campbell, 1971; Miller & Heise, 1950; Noorden, 1977).

Although frequency separation is important in the formation of auditory streams, another

factor—the temporal structure of sounds—is also crucial in this process (Zion Golumbic,

Poeppel, & Schroeder, 2012). Listeners are able to detect onset and offset asynchrony in sound

features and can use these cues for segregating sounds (Darwin & Carlyon, 1995). In the ABAB

paradigm, tone streams that are synchronous are more likely to be grouped into a single stream,

regardless of frequency separation (Shamma et al., 2013). Tone sequences that are presented at

different speeds, thus decoupling the temporal correlation between tones sequences, leads to the

perception of separate of streams, regardless of frequency similarity, a result that is evident in
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behavioral and neurophysiological data (Elhilali, Ma, Micheyl, Oxenham, & Shamma, 2009;

Micheyl, Hanson, Demany, Shamma, & Oxenham, 2013). Listeners can also take advantage of

temporal coherence independent of onset in complex sounds that change stochastically over time

to segregate a figure from a background (O’Sullivan, Shamma, & Lalor, 2015; Teki, Chait,

Kumar, Shamma, & Griffiths, 2013; Teki, Chait, Kumar, von Kriegstein, & Griffiths, 2011).

Just as auditory grouping relies strongly on cues encoded topographically (i.e., frequency),

visual grouping relies on the topographically organized spatial structure (Blake & Lee, 2000;

Kramer & Yantis, 1997; Rikhye & Sur, 2015). And paralleling auditory grouping, correlated

temporal structure is an important cue in visual feature binding as well (Blake & Lee, 2005;

Fahle, 1993; Treisman, 1999) and is more important than precise synchrony in onset (Guttman,

Gilroy, & Blake, 2007). Visual feature grouping has been demonstrated via correlated or

synchronized motion cues (Kandil & Fahle, 2004; S. H. Lee & Blake, 1999), sinusoidal gratings

(Alais, Van Der Smagt, Van Den Berg, & Van De Grind, 1998), and paralleling auditory

streaming paradigm, luminance changes that do not rely on spatial grouping cues (A. B. Sekuler

& Bennett, 2001). There is even evidence that temporal cues can override spatial cues in visual

perception (J. M. Wallace & Scott-Samuel, 2007). The brain’s use of temporal structure and
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correlation in the analysis of auditory and visual scenes (Bizley & Cohen, 2013; Blake & Lee,

2000) suggests a general mechanism of feature binding built on temporal correlations that can be

used to group features across sensory modalities.

Multisensory binding and temporal correlation

After my auditory system has grouped the spectrotemporal features of my friend’s voice

into a stream, I am left with the challenging task of understanding what my friend is saying. In

quiet, we can easily understand audible speech but performance drops as the environment gets

louder or when distractors are present (Hygge, Ronnberg, Larsby, & Arlinger, 1992; Miller,

1947). And so, on the loud city street and with everyone talking around us, I struggle to

understand what a single friend is saying. So naturally, I look to his face for help.

Although it is natural for us to use facial cues to aid in our listening ability, our visual

system is not very adept at understanding speech (Romano & Berlow, 1973; Ross et al., 2007). It

is not immediately apparent how we derive a benefit from an input that carries so little

information, but despite our poor lip reading abilities, when we are able to see the face of a

person speaking to us, we are better able to understand what is said (Erber, 1969; Ross et al.,

2007; Sumby & Pollack, 1954). It has been proposed that one way in which we derive this
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benefit is from the enhancements bestowed by forming a multisensory object and directing

attention toward it (Bizley et al., 2016). This proposition is rooted in the tenets of object-based

visual attention (Desimone & Duncan, 1995) where objects are the recipients of our attention

and that attention enhances all features of an object. Indeed, it has been posited that attention is

a critical component of the binding process (Treisman, 1998).

When a multisensory object emerges in our perception, that object becomes more salient

than a unisensory one (Bizley et al., 2016). This becomes apparent in the context of stimulus

competition and selective attention (e.g., the cocktail party). In a recent task that parallels the

cocktail party problem, participants were engaged in streaming two auditory objects and were

asked to report brief frequency or timbre events in one stream while ignoring events in the other.

Performance was better when a separate visual stream was temporally correlated with the target

stream than when it match the distractor (Maddox et al., 2015).

Just as we are likely to group unisensory features that change together over time, temporal

correlation is said to be a strong determinant of multisensory binding (Bizley et al., 2016) and as

mentioned above is a property of audiovisual speech (Figure 1.1a; Chandrasekaran, Trubanova,

Stillittano, Caplier, & Ghazanfar, 2009). Visual speech has been shown to improve the detection
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of auditory speech tokens when the two are temporally correlated (Bernstein, Auer, &

Takayanagi, 2004; Grant & Seitz, 2000; Kim & Davis, 2004). This benefit is abolished when the

visual stimulus is decorrelated by time-reversing the visual stimulus (Kim & Davis, 2004) or with

presentation of unmatched visual speech (Figure 1.1b; Grant & Seitz, 2000). Interestingly, with

a simple visual stimulus where the size is modulated by the speech envelope, thus preserving the

temporal correlation, a small but reliable detection benefit is still observed (Bernstein et al.,

2004) suggesting that temporal correlation, and not just the presence of a speaker’s face—or any

visual cue for that matter—is responsible for benefits conferred by visual speech on auditory

speech perception.

Figure 1.1(next page): Multisensory temporal correlation and its consequences on behavior. (a) Mouth
opening area and auditory envelope intensity from an exemplar spoken sentence are plotted across time
(left). Mouth opening and envelope are temporally correlated (right). (b) Detection thresholds in noise
for three spoken sentences under auditory only (A) or paired with a matched (same sentence) visual
stimulus (AV) or unmatched (different sentence) visual stimulus (AVu; left). Masking protection (AV-
A) conferred by the addition of matched, unmatched, or orthographic (AVo; written sentence) visual
stimulus. (¢) Localization (left) and spatial discrimination task (right) using correlated or uncorrelated
streams of Gaussian flashes and noise burst. When stimuli are correlated, stimuli are integrated in a
statistically optimal fashion and are harder to separate in space. (d) An auditory event (frequency
modulation, vowel shift) is presented in an auditory target or masker streams (tone complex or synthetic
vowel) with randomly fluctuating amplitude envelopes (left). Participants were asked to detected target
events and ignore masker events. Meanwhile, a visual stream containing a disk where the size could be

modulated with an envelope that matched the auditory target, masker, or neither stream. When the
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visual stream matched the auditory target stream, sensitivity in detecting the target event was improved
(right). Adapted from (Chandrasekaran et al., 2009; Grant & Seitz, 2000; Maddox et al., 2015;
Parise, Spence, & Ernst, 2012; Parise et al., 2013).
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In several tasks and stimulus types, temporal correlation of non-speech auditory and

visual cues has been shown to facilitate multisensory binding and integration. In a localization

task, streams of discrete auditory and visual events were combined in a statistically optimal

fashion (i.e., reducing the perceptual variance; Ernst & Banks, 2002) only if the auditory and

visual streams were correlated over time (Figure 1.1c; Parise et al., 2012). When the same stimuli

were presented with varying degrees of spatial separation, auditory and visual streams that were

correlated required larger separation than uncorrelated stimuli for participants to reliably judge

the relative location of the unisensory parts (Figure 1.1c; Parise et al., 2013), suggesting that

correlated stimuli are unified into a multisensory object that is resistant to deconstruction.

During auditory stream segregation, selective attention toward a target stream in the presence of

a distractor is improved with the presence of a temporally correlated, yet irrelevant, visual stream

(Figure 1.1d; Maddox et al., 2015).

Although the spatial and temporal proximity of bimodal cues is an important feature that

modulates multisensory processing (Bolognini et al., 2005; Frassinetti et al., 2002; Meredith et

al., 1987; Meredith & Stein, 1986a, 1996), the formation of a unified object can occur despite

large spatial and temporal discrepancies (Wallace et al., 2004). This is often demonstrated when
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audiovisual stimuli are temporally correlated, and thus likely to be bound. Observer are more

tolerant of spatial and temporal separation between stimuli that are temporally correlated (Chuen

& Schutz, 2016; Parise et al., 2012, 2013; Vatakis & Spence, 2007). This phenomenon is the

basis of an illusion termed the Ventriloquist Effect (Bertelson, 1999; Bertelson, Vroomen,

Wiegeraad, & de Gelder, 1994). In this illusion, an auditory stimulus’ perceived location is

shifted toward a more salient visual stimulus (Alais & Burr, 2004; Wallace et al., 2004). When

the temporal correlation between the auditory and visual components is removed, the

ventriloquism effect, that is, the spatial tolerance, is extinguished. (Jack & Thurlow, 1973;

Thurlow & Jack, 1973).

In another illusion, the McGurk Effect, which results from the binding and fusion of

disparate bimodal cues (Nahorna, Berthommier, & Schwartz, 2012), the pairing of a

semantically incongruent auditory (/ba/) and visual (/ga/) can result in a fused percept (/da/ or

/tha/) (Mcgurk & Macdonald, 1976). The McGurk effect is also resilient to spatial incongruence

(Bertelson et al., 1994). However, manipulation of the temporal structure present in the visual

cue (such as presenting a time-warped cue or cues from different speaking speeds) degrades the

temporal correlation between auditory and visual signals and results in a reduction of the fused
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percept (Munhall, Gribble, Sacco, & Ward, 1996; Venezia, Thurman, Matchin, George, &

Hickok, 2016). Additionally, presentation of incoherent auditory and visual streams prior to a

McGurk target leads to fewer reports of a McGurk percept (Ganesh, Berthommier, & Schwartz,

2017; Nahorna et al., 2012).

Thus far, we have discussed multisensory objects in terms of stimuli in the environment,

namely speech. However, a particular case of multisensory objecthood results from the binding of

of exteroceptive and interoceptive cues (Blanke, Slater, & Serino, 2015), which has been

described as the multisensory basis of embodied self-consciousness (Noel, Blanke, & Serino,

2018). Interestingly, we can demonstrate this binding by generating binding failures through

spatial discrepancies between these cues. Importantly, temporal congruence is an important

constraint in these examples. In one, repetitive and temporally coincident [but not temporally

disparate (Tsakiris & Haggard, 2005)] stimulation of a rubber hand and a participant’s hidden

hand can alter bodily ownership as participants reported feeling the touch on the rubber hand

(Botvinick & Cohen, 1998). In a more impressive demonstration of this concepts, participants

can take ownership of an entire virtual body presented in front of them via virtual reality
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(Lenggenhager, Tadi, Metzinger, & Blanke, 2007). Again, the illusion is dependent on temporal

cues, demonstrating the importance of time in multisensory binding and perception.

Correlations in the Environment and the Brain

So far, we have discussed in depth how sensory features can have temporal structure and

how those features can be correlated within and across sensory modalities. But correlations can

arise in other domains in the environment. When we encounter a natural visual scene, it is

composed of a wide range of features such as luminance, contrast, orientation, and spatial

frequency. These features occur with a highly organized and auto-correlated spatial structure

(Ruderman, 1994). That is, areas in natural scenes tend to be similar (i.e., correlated) to

neighboring areas with similarity decreasing with distance. For example, the features (e.g.,

luminance and edges) of a visual object tend to be continuous throughout that object and distinct

from other objects in a scene. These statistics in visual scenes are used by the visual system to

efficiently encode spatial information from the environment (Barlow, 2001; Rikhye & Sur, 2015;

Simoncelli & Olshausen, 2001).

Binaural hearing is perhaps the prototypical implementation of correlation detection in

the nervous system (Jeffress, 1948). Sound signals reach the two ears with a temporal delay,
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known as interaural time difference (ITD), which is proportional to the azimuthal location of the
sound source (Feddersen, Sandel, Teas, & Jeftress, 1957). Neurons in the medial superior olive
are sensitive to specific I'TDs. These neurons behave like cross-correlators, responding cyclically
to increasing I'TD and maximally when the ITD produces a phase difference between the ears
that correspond to neurons’ preferred phase difference (Goldberg & Brown, 1969).

Beyond these examples, correlation detection has been implicated in several sensory and
cognitive processes such as stereoscopic vision (Ohzawa, 1998), texture segregation (Bergen &
Landy, 1991), and motion perception (Hassenstein & Reichardt, 1956). Additionally,
correlation across sensory modalities cues has been posited as a mechanism for synchrony
perception (Burr, Silva, Cicchini, Banks, & Morrone, 2009; Fujisaki & Nishida, 2005), cross-
modal temporal encoding (Guttman, Gilroy, & Blake, 2005), and as a general mechanism for

multisensory integration (Parise & Ernst, 2016).

The Drift-Diffusion Model in Perception

The current work also seeks to place the role of correlation in a decisional framework and
thereby ascertain its role in the decision-making process. Decision making is a ubiquitous

occurrence in our interaction with the environment. However, there are many factors, both
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external (i.e., from the environment) and internal (i.e., from the observer) that contribute to this

process (Gold & Shadlen, 2007). A univariate approach to studying behavior, such as analysis of

reaction times or accuracy in isolation, can miss the interactions between these metrics and how

they relate to and explain both internal and external factors (Voss, Nagler, & Lerche, 2013;

Wagenmakers, 2009). However, by accounting for choice probabilities as well as shape of

reaction time distributions for both correct and error responses [which univariate analyses often

overlook (Luce, 1986)], decisional models can successfully disentangle these factors that

contribute to decision-making (Ratcliff & Rouder, 1998).

During the formation of a simple decision, sensory evidence is accumulated in favor of a

single choice between multiple alternatives (Churchland, Kiani, & Shadlen, 2008; de Lafuente,

Jazayeri, & Shadlen, 2015; Gold & Shadlen, 2007; Roitman & Shadlen, 2002). When organisms

have access to stronger sensory evidence we are able to accumulate evidence faster and with

better accuracy, which is reflected in our decisions. In the above examples, sensory evidence is

manipulated through the coherence of random dot motion stimulus, but can be as simple as

stimulus intensity (Rach, Diederich, & Colonius, 2011) or a more complex measure such as
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memory salience (Ratcliff, 1978). However, a number of other factors influence the decision-

making process such as bias, evidence encoding time, and speed/accuracy trade-off.

These factors of the decision-making process have been formalized in several models of

evidence accumulation (Ratcliff & Smith, 2004; Ratcliff, Smith, Brown, & McKoon, 2016).

These include models include random walk (Laming, 1968; M. Stone, 1960), Wiener diffusion

(Ratcliff, 1978), Ornstein-Uhlenbeck diffusion (Busemeyer & Townsend, 1992), leaky

competing accumulator (Usher & McClelland, 2001), and linear ballistic accumulator (Brown &

Heathcote, 2008) models, to name a few. Although these models differ in several nuances such

as decisional criteria that are relative or absolute, number of accumulators and/or decision

bounds, constant versus decaying drift rates, or the stochastic/deterministic nature of the

evidence accumulation process, they share some core commonalities. In short, evidence begins at

a starting point between two decisional thresholds or as a fraction of one threshold and

accumulates toward a threshold at a certain rate. Once the evidence crosses the decision

threshold, the model assumes a choice is made and that simulated choice and reaction time are

recorded. Models typically include parameters that can account for differences in evidence

starting point (bias), evidence threshold (speed/accuracy trade-off), non-decision time (pre-
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decisional encoding of stimuli) and evidence accumulation rate (strength of sensory evidence).

Often, there are one or more parameters involving variability of these processes so that

simulating large numbers of decisions results in reaction time distributions that vary predictably

with the manipulation of a given parameter (Ratcliff & McKoon, 2008). These parameters can

then be fit to observed reaction time distributions (Voss et al., 2013) or mean reaction times

(Wagenmakers, Van Der Maas, & Grasman, 2007).

One popular and well-documented evidence accumulator model, the drift-diffusion

model (Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013) assumes accumulation of

noisy evidence that is sampled sequentially. Thus, the decision variable is modeled as a stochastic

process where the value takes on the cumulative sum of random changes over time (i.e., particle

diffusion). A constant value, whose magnitude and sign are related respectively to strength and

direction of sensory evidence, is added to this process at each time point and causes the decision

variable to trend toward (i.e., drift) a positive or negative decision threshold. We’ve chosen to use

this class of model due to its biologically relevant parameters that have been extensively validated.
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Figure 1.2: A depiction of the diffusion model and its parameters. [: evidence starting point (i.e.,
participant bias), 0: decisional threshold (speed-accuracy trade-off), T,: non-decision time (sensory
encoding and motor time), 8: drift rate (magnitude of sensory evidence). Adapted from
(Vandekerckhove, Tuerlinckx, Bulletin, Vandekerckhove, & Tuerlinckx, 2007 ).

Figure 1.2 depicts the parameters of the drift-diffusion model and four simulated

decision variables. The parameters have been shown to index a handful of relevant cognitive

processes (Voss, Rothermund, & Voss, 2004). The decision variable begins with a value, f3,

which is constrained to be between the values of the decision thresholds, +0. A value for B that is

different from O represents participant bias toward one decisional alternative and its sign

represents the alternative that bias favors. The value of 8 has been shown to index the speed-

accuracy trade-off. Lower values of 0 represent a more liberal strategy (higher speed, lower
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accuracy) and larger values represents a more conservative strategy (lower speed, higher

accuracy). The decision variable drifts toward +0 with a rate, §, proportional to the strength of

stimulus evidence, with a sign reflecting the decisional alternative the evidence supports. A time

adjustment, T\, is added to each process to account for non-decision time and motor processes.

In Figure 1, three decision variables are shown (thin black lines) that come from the drift rate

that is shown (thick black line). Variability introduced through the diffusion process causes the

decision variables to terminate at different times, allowing variability in the reaction time

distributions. A single decision process from a negative drift rate is shown (thin grey line).

Thesis

On the busy sidewalk I have found myself walking down, I am likely to have a difficult

time talking to my friend because of others talking around us. These other conversations produce

signals that are fairly similar to the voice I am trying to listen to. So, the simple presence of

audiovisual temporal correlation would be insufficient to induce appropriate binding and thus

may lead to perceptual errors. The audible speech is, of course, strongly correlated with the

articulatory movements of his mouth which produces that speech, but it also likely to be

correlated (though with less strength) with mouth movements from the other speakers. Assessing
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the strength of the correlations between stimuli could aid in the process of selecting the

appropriate visual signal in an environment with many competing stimuli. Thus far, no

systematic study of audiovisual correlation and its effect on multisensory integration has been

undertaken. Studies on the importance of temporal correlations in multisensory binding have

focused on the role of correlation in optimal cue combination (Parise et al., 2012), spatial fusion

(Parise et al., 2013), auditory scene analysis (IMaddox et al., 2015), and speech processing (Kim

& Davis, 2004; Munhall et al., 1996; Venezia et al., 2016). These studies present a very coarse

description of the role of correlation in multisensory processes, utilizing only two or three levels

of correlation. The current work seeks to simplify the task and stimuli to explore and better

characterize the role of temporal correlation in multisensory perception and binding.

In Chapter 1, we have laid out how temporal correlation is an important cue that is

informative of whether sensory information belong to the same external event and therefore what

sensory-related activity should be linked in the brain. This link (i.e., binding) in the brain relies,

in part, on neural synchrony across regions, presumably related to the correlation of the different

teatures of the external event. Here we hypothesize that the brain has a mechanism for binding

that relies on a graded measure of the correlation. This effect across sensory domains should
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manifest in multisensory integration. We hypothesize that weakly correlated stimuli will be less

likely to bind together and thus produce smaller multisensory enhancements. As signals become

more and more positively correlated, binding, and by extension multisensory perception, should

be enhanced.

Chapter 2 presents a test of a first component of this hypothesis in which we measure the

effect of temporal correlation strength on the process of multisensory integration. Following this,

in Chapter 3 the role of the strength of temporal correlation in shaping the process of

multisensory binding is tested. The role of correlation is placed in a bigger context of

multisensory processes in Chapter 4. Here, we propose a developmental link between similarity

and proximity whereby correlation, a measure of similarity, acts as a cue that signals across

modalities belong together and thus shapes low-level multisensory processes represented by

spatial and temporal proximity. A series of experiments to test predictions that follow from this

frame work are proposed. The work is summarized and discussed in a broader context in Chapter

5 and future experiments are proposed to expand on the findings presented in this dissertation.
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Chapter 2. Multisensory perception reflects individual differences in

processing temporal correlations

Introduction

Our environment provides us with an enormous amount of information that is encoded
by multiple sensory modalities. One of the fundamental tasks of the brain is to construct an
accurate and unified representation of our environment from this rich array of sensory signals. To
accomplish this, the brain must decide which signals arise from a common source. For example,
during conversation among a group of individuals, listeners can group appropriate words from
the same voice and further associate voices with the appropriate speakers, a process greatly
facilitated by the availability of both audible and visible cues (Stein, 2012). Benefits that are
associated with the presence of multisensory signals include increased detection (Frassinetti et al.,
2002) and localization accuracy (Odegaard, Wozny, & Shams, 2015), improved speech
intelligibility (Sumby & Pollack, 1954) and speeding of reaction times (Frens & Van Opstal,

1995; Hershenson, 1962).
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A number of principles have been proposed that relate the spatial and temporal proximity

of multisensory signals and the manner in which these enhance neural and behavioral responses

(Bolognini et al., 2005; Frassinetti et al., 2002; Meredith et al., 1987; Meredith & Stein, 1986a).

These factors have also been related to our brain’s determination that multisensory signals come

from the same source (Kérding et al., 2007; Magnotti et al., 2013). In addition to these

principles, it has been demonstrated that the temporal similarity (i.e., correlation) of these signals

are also important in shaping our multisensory perception and causal inference (Chuen &

Schutz, 2016; Jack & Thurlow, 1973; Parise et al., 2013; Vatakis & Spence, 2007). Indeed,

temporal similarity is a hallmark feature of signals originating from the same source, such as the

voice and mouth movements of a speaker (Chandrasekaran et al., 2009), and has been shown to

be a robust cue for the binding of unisensory (Blake & Lee, 2005; Elhilali et al., 2009) and

multisensory (Bizley et al., 2016; Maddox et al., 2015; Munhall et al., 1996; Parise et al., 2012)

teatures. Observers can utilize these temporal correlations in multisensory signals to enhance

behavioral performance (Grant & Seitz, 2000; Maddox et al., 2015; Parise & Ernst, 2016).

Although we know that temporal correlation between unisensory signals leads to a

unified multisensory percept and enhancement of multisensory behaviors, it is not known
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whether, and if so how, multisensory behavioral performance varies with the strength of the

correlation. We hypothesize that audiovisual temporal correlation provides sensory evidence for

multisensory decisions that is proportional to the sign and magnitude of the correlation. Further

we hypothesize that these graded changes in sensory evidence will result in corresponding

changes in multisensory behavior. To test these hypotheses, we presented participants with

audiovisual signals with barely detectable (i.e., near threshold) amplitude modulation (AM).

While manipulating the temporal correlation between the auditory and visual signals, we

measured how observers’ ability to detect these fluctuations changed with changes in stimulus

correlation. We propose a mechanism—analogous to a phase shift—that approximates relative

differences in unisensory temporal processing and that accounts for individual differences in

behavioral results. Finally, we employed drift-diffusion modelling to test whether multisensory

behavioral performance is better approximated by absolute stimulus correlation or by the adjusted

correlations that account for this phase shift.

Results

Participants (n=12) detected near-threshold amplitude modulated (AM) audiovisual

stimuli (Figure 2.1a-b). The temporal correlation of the AM signals was manipulated by
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systematic changes in the phase and frequency relationship of the auditory and visual pairs

(Figure 2.1c). Our central hypothesis was that multisensory behavioral performance would

improve commensurate with increasing temporal similarity between the paired audiovisual

stimuli (i.e., as correlation become more positive). To examine the potential dependence of

behavior on stimulus correlation, a discriminability (#') matrix and a reaction time (RT) matrix

for each participant was constructed and related to the stimulus correlation (r.,) matrix (A

frequency x A phase; Figure 2.1d).

Figure 2.1 (next page): Amplitude modulation detection task. (a) Schematic representation of a single
trial. Each trial began with the illumination of a fixation target. After a variable wait period,
simultaneously presented auditory and visual stimuli appeared (see b). Participants indicated the
presence or absence of amplitude modulation with a button press. (b) Auditory and visual stimuli were
always present, but modulation was presented in auditory stimuli only (Auga trial), visual stimuli only
(Vigna trial), audiovisual stimuli (AVga trial), or neither stimulus (no signal, catch trial). (¢) During
audiovisual presentations, the frequency and phase of auditory modulation could be independently
manipulated yielding a range of audiovisual correlations (v..). Correlations were computed using the
time series of the auditory and visual envelopes. Note that the visual envelope is always constant while
the auditory envelope is varied. Four conditions out of forty are shown for illustration. (d) Stimulus
Correlation Matrix (ru | Qo). All forty AV stimulus conditions are shown organized according to A
frequency x A phase. Colors represent the correlation values of audiovisual stimuli across the different
frequencies and phases presented where each color box represents one condition. In the task structure,
there were 21 unique audiovisual stimulus correlations. (e) In order to account for phase shifts in
individual participant data, the values in the stimulus correlation matrix (7. | Qo) were correlated to
each participant’s discriminability matrix (vz). In the top panel, a series of correlation matrices are

shown in which a phase lag, @i, was applied to auditory (positive shifts) or visual (negative shifts)
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before correlations were computed, (1r | @i). A total of 360 correlation matrices were correlated with the
participant’s discriminability matrix (rs; middle panel, nine examples shown), approximating a cross
correlation. In the bottom panel, each of the 360 correlations (rs) were plotted against phase lag [(r+ |
@); black line, examples shown by blue dots]. This function was fit to a sine wave and the phase of that
fit was extracted (Q'; red dot and arrow) and was taken to represent a participant’s individual phase
shift. The stimulus correlation at that phase shift (ru | 9°) was taken to represent a participant’s

“Internal” correlation matrix.
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While RTs did not show a robust systematic pattern (likely a result of the near-threshold

nature of the stimuli, although see Table 2.1 for RT correlations in some participants),

discriminability had a discernible pattern that reflected the nature of the stimulus correlations. In

eight of 12 participants, discriminability was significantly correlated with stimulus correlation

(Figure 2.2a). However, upon visual inspection, the discriminability matrices of two of the

remaining four participants mirrored the stimulus correlation matrix but with an apparent shift

along the A phase dimension (see Figure 2.2a-b, middle panels for one example). In fact, this

phase shift appeared to be present in most participants to varying degrees and seemed to occur

evenly across A frequency for each participant (i.e., any shift along the phase dimension was

present for all auditory frequencies presented). We therefore hypothesized that this phase shift

reflects an internal transformation that alters the relationship between stimulus correlation and

behavior (and that is likely driven by individual differences in unisensory temporal processing).
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Table 2.1: Reaction time (RT), hit rate (HR) and discriminability (d’) correlations
RT HR d
Ptc. R p R p R p
-0.24 0.14 0.77 4.5e-9 0.76 1.2e-8
-0.59 5.3e-5 0.91 4.0e-16 091 1.1e-15
-0.34 0.031 0.50 0.001 0.49 0.001
0.05 0.78 0.68 8.7e-7 0.68 1.2e-6
-0.25 0.14 0.14 0.36 0.12 0.45
-0.44 0.0042 0.70 4.3e-7 0.68 1.2e-06
-0.21 0.19 0.71 2.7e-7 0.70 4.7e-7
-0.54 3.3e-4 0.89 1.2e-14 0.88 5.8e-14
0.05 0.75 0.87 3.1e-13 0.86 8.0e-13
10 -0.39 0.014 0.57 1.3e-4 0.57 1.4e-4
11 -0.41 0.01 0.70 4.9e-7 0.62 2.2e-5
12 0.08 0.65 0.19 0.22 0.20 0.21
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Figure 2.2: Individual participant data examples. (a) Behavioral dependence on stimulus correlation
(12 | Qo) of three example participants. For parts a-d, each row represents a single participant.

Participants are represented by the same color across the figures. (b) Discriminability matrices from three
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participants show how changes in phase (A phase; y-axis) and frequency (A frequency; x-axis) impact
the ability to detect amplitude modulation (discriminability). Diagonal dashed lines represent the
computed individual phase shifts (¢’ = 0%, -104°, and 21°) corresponding to the approximate middle of
the diagonal of positive correlations in (c). Color values have been scaled separately and range from the
lowest to highest value (shown in panel a) for each participant. c: Phase shifted (‘perceived’) correlation
matrices (tuy | Q) from each participant shown in (a). Note the strong positive (upward) shift in the
second example participant and the moderate negative (downward) shift in the third example
participant, relative to Figure 2.1d. d: Behavioral dependence (s | @’) on perceived stimulus
correlation. Each participant shows a strong positive relationship between perceived stimulus correlation
and detection behavior (i.e., discriminability). Note that the data in the middle panel was not
significantly correlated to physical stimulus correlation (a) but reached significance when accounting for
the phase shift. Further, note that the top participant shown did not differ between the two measures due
to the lack of observed phase shift. Colors follow the convention described in Figure 2.2a. e: Distribution
of observed phase shifts from all participants and mean resultant vector. Phase shifts were concentrated
around the mean (14.7°, not uniform across phase). Phases were shifted toward positive values (visual
leading) but were not significantly different from zero. f-g: Accuracy and reaction time effects between
stimuli with the strongest negative and positive perceptual correlations. Strong positive correlation

improves detection performance but has no impact on reaction times.

Individuals display unique characteristics for auditory and visual temporal processing

We sought to measure and account for these individualized phase shifts. We modeled

this by applying a phase shift to every condition in one of the unisensory modalities before

recalculating a stimulus correlation matrix. We then measured the correlation between the

discriminability matrix and a series of stimulus correlation matrices computed with phase shifts
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ranging from -180° to +180° (Figure 2.1e; more detail in methods). We then fit this series of

correlations to a sine wave. Due to the cyclical nature of the stimulus correlation matrix along the

A phase dimension, we expected the correlations to be in the shape of a sine wave. As expected,

each participant’s phase-shifted correlations were well fit (> = 0.99999 + 2.9 x 10°°). Another

expectation is for these functions to have a period of 360° and to be centered about zero. Indeed,

we found no evidence that their period was different from 360° (period = 360.06 + 0.71; #; =

0.2702, p = 0.79) or that their center was different from 0 (center = 1.3 x 10* + 5.4 x 10% #1; =

0.783, p = 0.45). Therefore, we calculated a participant’s phase shift from these fits and then

recomputed a unique correlation matrix for each participant using their individual phase shift.

As a test of the validity of phase shift, the pattern of data in the discriminability matrix

should mirror the pattern of the phase-shifted stimulus matrix. This would manifest in several

ways. First, if the perceived correlation matrix accounts for the data, large changes in the data

should be accounted for by changes in the correlations. Therefore, the residual errors between

the two measures should be very small relative to the data and centered on zero. Discriminability

values (Figure 2.2b) were significantly above zero (&’ = 1.30 + 0.66; z = 43.579, p = 8.75 x107%).

Subtracting the predicted &, which was computed from the perceptual correlation matrices (see
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Methods; Figure 2.2¢), from the observed &, yielded residual errors which were substantially

smaller and less variable compared to &’ (mean error = 0.018 + 0.33). Indeed, these residual errors

did not differ significantly from zero (z = 1.210, p = 0.23). Second, we might question the

validity of these phase shifts if the data do not mirror perceptual correlations equally for each A

frequency (e.g., if the diagonal of high & values in the discriminability matrix has a slope that

doesn’t match the slope of high &’ values in the predicted discriminability matrix). To quantify

this, we examined residual errors across different frequencies for any systematic changes.

Residual error magnitude and variability showed no linear relationships across A frequency in any

participant (magnitude: slopes = 0.047 + 0.10, all p > 0.12; variability: slopes = 0.016 + 0.07, all p

> 0.09). Thus, phase shifts appear to be valid and systematic shifts in the phase dimension are

independent of frequency. As such, the correlation matrices constructed using each participant’s

unique phase shift could be envisioned to represent the internal (“perceived”) correlations of the

external stimuli, accounting for differences in latency of sensory processing between the auditory

and visual systems.

These perceptual correlations were used when determining the relationship between

discriminability and stimulus correlation (rs; Figure 2.2d). The sine wave fits between phase shift
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and correlation revealed the degree of participant audiovisual phase shift (¢’; Figure 2.2¢). Phase

shifts were not significantly different from 0 across participants but favored a visual leading shift

(mean @’ = 14.7 + 39.7%;, 95% CI [42.2° -12.9°]). The distribution of shifts was concentrated

about the mean as indexed by the mean resultant vector length (Figure 2.2e; MRVL = 0.76; z =

11.998, p = 1.5x10°%, Rayleigh Test). To further probe the validity of these phase shifts, we

tested whether the magnitude of phase shift was correlated to the strength of the relationship

between behavior and stimulus correlation. Smaller correlations associated with larger phase

shifts might suggest that the repeated phase shift approach returned spurious correlations. We

found no evidence of such a relationship (rho = 0.25, p = 0.68).

Amplitude modulation discriminability varies with perceived stimulus correlation

Previously, it has been shown that strongly correlated multisensory stimuli provided

behavioral and perceptual benefits relative to unisensory performance whereas poorly correlated

stimuli fail to provide such benefits (Maddox et al., 2015; Parise et al., 2012, 2013). To examine

whether a similar relationship is evident for the current task, we compared the discriminability of

stimuli that had the highest and lowest correlation for each participant. We found that

discriminability of audiovisual signals with the highest correlations was better than for
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audiovisual signals with the lowest correlations (Figure 2.2f; t11 = 4.312, p = 0.0062, corrected).

In contrast, reaction times failed to differ between correlated signals and uncorrelated signals

(Figure 2.2g; t11 = 3.384, p = 0.19, corrected).

Our focus of the current study was to show that multisensory behavior varied

proportionally with stimulus correlation. Although we demonstrated above that this relationship

was robust in most participants (Figure 2.2a), there was evidence that this effect was weakened—

and in some participants absent—due to significant individual variability. Thus, it still remained

unclear whether phase shift plays an important role in this relationship. To test this, we

measured the association between perceived stimulus correlation and discriminability (ra | @’

Figure 2.3a). These correlations were significant in ten out of the twelve participants—two

participants more than when not accounting for phase shift. This proportion, 10/12, was

significantly greater than expected based on random effects (p = 0.019, binomial test). The

significant correlations revealed effects that were very strong (Figure 2.3b). The correlation

values for discriminability and hit rate are presented for each participant in Table 1.

Because we varied auditory parameters while holding visual parameters stationary, it

remained possible that participant performance was driven by cues in the auditory modality
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rather than by audiovisual correlation. In order to rule out that the effects reported here may be a

result of unisensory auditory performance, four participants returned and completed a new

experiment where visual modulation depth was set to zero while auditory depth was set at their

individual threshold. We correlated auditory performance with AM frequency, AM phase, and

perceived stimulus correlation. These data are summarized in Table 2. None of these correlations

were significant in any of the four participants, even when computing perceived correlations

based on potential phase shifts in auditory or audiovisual performance data. Moreover, phase

shifts obtained from the auditory data were very different than those obtained from audiovisual

data. As a final check, we subtracted the auditory data from the audiovisual data and measured

the phase shift and resultant correlation. All four participants showed a significant correlation

and the obtained phase shifts corresponded well to the phase shifts obtained from audiovisual

data. These results suggesting that audiovisual correlations—rather than auditory modulations—

are responsible for the behavioral effects presented here.
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Table 2.2. Results of auditory only experiments

Stimulus Correlation Effect on Frequency Phase

Ptc. AV Al A? AV-A Effecton A Effecton A
1 Shift 47 99 - 35 - -
R 0.76 0.29 0.09 0.55 -0.01 0.20

p 1.2¢-8 0.067 0.59 2.7e-4 0.93 0.43

6 Shift -89 100 - -89 - -
R 0.68 0.2 -0.18 0.6 -0.04 0.26

P 1.2e-6 0.21 0.22 4.5¢-5 0.83 0.25

8 Shift 21 -152 - 23 - -
R 0.88 0.27 -0.27 0.81 0.03 0.31

P 5.8e-14 0.097 0.091 1.9¢-10 0.85 0.14

10 Shift -19 -18 - -17 - -
R 0.57 0.05 0.04 0.35 -0.15 0.11

p 1.4e-4 0.76 0.82 0.026 0.35 0.76

! Correlations were unconstrained and reflect best possible correlations. ? Correlations were

constrained by audiovisual phase shift. Nonsignificant correlations are in red.

When accounting for phase shift, the strength of these behavioral effects increased in all

participants (Arg = 0.19 + 0.29) and the increase was more pronounced in participants with larger

magnitude phase shifts (Figure 2.3e, o = 0.706). Due to the nature of the phase-shift fitting

process, simulated random data (details can be found in methods) produces correlational

improvement that peaks at + 180° (anu = 0.205, 95% CI [0.144 0.271]). Nonetheless, the

observed effect was significantly larger than what would be expected by these random effects (z =

21.80, p = 2.1x10%). Lastly, in contrast to the concentrated distribution of observed phase shifts
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(Figure 2.2¢), the distribution of simulated phase shifts was not significantly different from

uniform (Figure 2.3f; MRVL = 0.04; z = 2.08, p = 0.125, Rayleigh Test). These findings provide

strong support for the notion that phase shift reflects an important transformation between

stimulus correlation as it occurs in the environment and how it manifests in perceptual

performance.
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Figure 2.3 (previous page): Behavioral results. (a) Behavioral dependence on perceived stimulus

correlation across all participants (same as Figure 2.2d). Behavioral performance in 10 of 12

participants was driven by stimulus correlation. Non-significantly correlated data are represented in

grey. Significantly correlated data is depicted in color. As in Figure 2.2, each participant retains the

same color across the figures. (b) Correlation coefficients (ra | @’) for each participant. The critical value

of the correlation coefficient is denoted by a dashed line. (c) Slope of linear data fits shown in (a) for each
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participant. (d) Criterion for each participant. Each participant but one held a conservative criterion
indicating that participants weren’t biased toward responding “yes.” (e) Improvement in correlation
(Ary) is associated with phase shift and the effect is larger than expected by chance. Red line and shaded
region represent the average fit and 95% confidence bands of random data from the Monte Carlo
simulation fit to a sine wave. The black line represents the fit of the observed data to the sine wave. The
amplitude of the data fit sine wave was significantly larger than expected by chance. (f) Distribution of
phase shifts and the corresponding MIRVL obtained from the Monte Carlo simulation. In contrast to
observed data shown in Figure 2.2e, these phase shifts are not significantly concentrated about the

circular mean. Note the scale difference in the radial axis between Figure 2.2¢ and here.

Individuals showed widely varying dependencies on stimulus correlation as measured by
the slope of a linear psychometric function fit to discriminability data (Figure 2.3c; sig. slopes =
0.43 + 0.18). Lastly, despite the stimuli being presented at threshold levels, we were concerned
about the possibility of participants adopting a strategy that exploits the low proportion of catch
trials (i.e., they could be always reporting the presence of the stimulus modulation). We therefore
quantified participant’s willingness to respond with “modulation present.” Figure 2.3d confirms
that this strategy was not employed (c = 0.61 + 0.41) with 11 of 12 participants adopting a
conservative criterion. Further reinforcing this, 10 out of 12 participants (including the lone
participant with a liberal criterion) were within one standard deviation of an unbiased criterion (-

l1<c<1).
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Perceived stimulus correlation predicts audiovisual behavior via changes in evidence

accumulation

Next, we sought to describe how audiovisual temporal correlation and phase shift

influence behavioral performance in a decisional framework. Typically, changes in choice

frequency and reaction time in a decision task are driven by changes in sensory evidence. We

hypothesized that, in our task, sensory evidence was conferred by the temporal correlation of the

stimuli. Further, we asked whether perceptual correlations rather than physical correlations better

account for changes in behavioral performance on a participant-by-participant basis. To answer

these questions, we employed two decision models.

The first model assumed that the drift rates, which index sensory evidence, are related to

physical stimulus correlations (. | ¢o) across conditions (Figure 2.4a). For the second model we

assumed that the drift rates are related to the perceived stimulus correlations (Figure 2.4b), that

is, correlations determined after a phase shift was applied (r. | ¢:). This design allowed the

models not only to predict choice and reaction times with sensory evidence based on stimulus

correlation, but also to measure participant phase shifts, providing converging evidence (in

78



conjunction with results provided above) of an internal phase shift of the representation of the

physical stimuli.

Table 2.3. Model 1 parameters

Ptc. 0 B T, w X? AIC
1 13 0.2151 0.5741 0.0182 97.719 -0.281
2 7 0.4954 0.7915 0.0762 87.192 -10.808
3 19 2.3893 0.6113 0.0111 175.113 77.113
4 9 3.5568 0.7605 0.0001 70.945 -27.055
5 13 -4.4554 0.8 0.0018 125.043 27.043
6 9 6.2835 0.6364 0.0001 95.408 -2.592
7 8 -0.6953 0.6018 0.0334 142.682 44.682
8 15 0.1974 0.788 0.0292 108.722 10.722
9 17 0.1539 0.7956 0.025 131.553 33.553
10 5 1.3622 0.7738 0.0339 88.424 -9.576
11 16 -11.9243 0.588 0.0333 163.444 65.444
12 9 3.2324 0.7994 0.0089 142.744 44.744

Participants (Ptc.) with nonsignificant correlations (Figure 2.3b) are in red. 8 = boundary

separation, f3 = evidence starting point, T; = residual time, w = drift-rate scaling parameter.
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Table 2.4. Model 2 parameters

Ptc. P 0 B T, w X? AIC
1 46 16 1.3753 0.4859 0.0214 214.55 14.55
2 0 7 -0.2467 0.7881 0.078 158.4 -41.6
3 0 19 2.3988 0.6074 0.011 281.68 81.681
4 -104 6 2.6569 0.7915 0.0348 136.03 -63.97
5 -2 13 -4.4437 0.8 0.0012 217.53 17.528
6 -92 8 4.6167 0.6443 0.0519 181.62 -18.382
7 13 10 -2.0867 0.5639 0.0298 252.04 52.041
8 19 15 0 0.7863 0.0317 168.74 -31.256
9 -46 17 -1.3041 0.8 0.0374 208.79 8.79
10 -16 14 2.3778 0.6013 0.0133 237.15 37.146
11 -8 15 -11.4521 0.6079 0.0375 225.2 25.201
12 2 9 2.2282 0.7951 0.0086 242.31 42.309

Participants (Ptc.) with nonsignificant correlations (Figure 2.3b) are in red. ® = phase shift, 8 =

boundary separation, § = evidence starting point, T: = residual time, w = drift-rate scaling

parameter.

Table 3 and 4 show the estimated parameters for each model and their goodness of fit.

Both models were well fit to the data and model 2 successtfully incorporated the extra parameter

tor phase shift without compensation from other parameters meant to index bias, speed-accuracy

tradeoff, and sensory encoding/motor preparation. As evidence that the models were not simply

adjusting other parameters to adjust between models, we found that these parameters were

strongly correlated between models when accounting for phase shift using partial correlations (0:

rho = 0.78, p = 0.0046; : rho = 0.98, p = 7.67 x 10, T.: rho = 0.87, p = 0.00044). Using Akaike
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Information Criterion (AIC) as a model selection metric, we found that most (8/12) participants’

behavior was better described by the second model, in which the perceived correlation, included

as a phase shift parameter, drives the decision process. Qualitatively, perceptual choice across
p p ) p Yy, percep

conditions can be described as a dampening oscillator with dampening increasing with A

frequency, a pattern which is also apparent in the model prediction of choice. Figure 2.4b shows

the model fit (colored lines matching conditions shown in Figure 2.4c) to a single participant’s

data (filled circles).

Figure 2.4 (next page): Modeling results and comparison to behavioral results. (a) Model 1 fit for a
single participant. Proportion of correct responses (top panel), reaction times for correct responses (R1t;
middle panel), and reaction times for incorrect responses (RT3 bottom panel) are shown (black dots, + 1
S.E.M) for the 21 unique audiovisual correlations. The same data are shown from the model prediction
(red lines). (b) Model 2 fit for the same participant. Proportion of correct responses (top panel), reaction
times for correct responses (R1c; middle panel), and reaction times for incorrect responses (RTi; bottom
panel) are shown (black dots, + 1 8.E.M) for all 40 audiovisual conditions (top arrow). Model
predictions and observed data are shown along a single continuous axis for simplicity with non-
continuous data points connected by dashed lines (see panel ¢ for key). (c) Representation of experimental
conditions (frequency and phase) and how they are represented in panel (b). Conditions are organized in
matrices (as in Figure 2.2b-c) with columns representing different frequencies and rows representing
different phases. In (b), data have been reorganized column-wise such that Condition 1 is the first phase
in the first frequency and Condition 40 is the last phase in the last frequencies. Colors of the model fit
and bottom axis in (b) correspond to columns in the matrix with the same color. The top arrow in (b)
correspond to the arrow in (c), unfolded. (d) Across all participants, phase shifts measured from
discriminability matrices (Figure 2.2¢) are strongly correlated with the phase shift parameters output by
the diffusion model. Participant data shown in (b) correspond to the marker indicated by the arrow. (e)
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Measures of bias, criteria (from Figure 2.3d) and evidence starting point parameters are correlated

across participants. Participant data shown in (b) correspond to the marker indicated by the arrow.
P p p P y

Measures of dependence on stimulus correlation, psychometric slopes (from Figure 2.3c) and scaling

parameters are correlated across participants. Participant data shown in (b) correspond to the marker

indicated by the arrow.
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Model 2 made accurate predictions of behavioral choice and reaction times based on the

perceptual correlations and returned parameters that closely matched their signal detection

theory counterpart. Each participant’s model-fit phase shift parameter (¢p)) nearly perfectly

matched their phase shift obtained from discriminability (¢’, Figure 2.4d; rho = 0.98, p = 0.026,

slope = 0.98). Additionally, evidence starting point, 8, which is the parameter that measures the

participant’s bias toward one response over another (Laming, 1968; Voss et al., 2004), was also

correlated with the signal detection theory measure of bias, ¢ (Figure 2.4e; tho = 0.77, p =

0.0053). The bias reflects the participant’s tendency to respond with “modulation present” or

“modulation absent”, which is unrelated to the sensitivity of the participant. Lastly, the drift-rate

weighting coefficient was strongly correlated with the slope of their psychometric functions

(Figure 2.4f; rho = -0.86, p = 0.00032), with both measures describing the dependence of

behavior on changes in correlation. Moreover, the parameters were very consistent between

models.

Discussion

Temporal factors such as (a)synchrony have long been known to influence multisensory

processes in the brain (Bushara, Grafman, & Hallett, 2001; E. Macaluso, Frith, & Driver, 2002;
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Macaluso et al., 2004; Meredith et al., 1987; Senkowski et al., 2007; Wallace et al., 1996) and in

behavior (Colonius & Diederich, 2004; Dixon & Spitz, 1980; Frens et al., 1995; Fujisaki,

Shimojo, Kashino, & Nishida, 2004; Hershenson, 1962; McGrath & Summerfield, 1985; J. V

Stone et al., 2001). More recently, Parise and colleagues (2012) presented evidence that the fine

temporal structure of an audiovisual stimulus independent of asynchrony can influence

multisensory perception. They further showed that it is possible to explain a number of

multisensory phenomena based on a general correlation detection mechanism (Parise & Ernst,

2016).The findings presented in the current study provide additional and unique support for the

growing evidence implicating temporal correlation as an important cue in multisensory

processing.

In the current work we extend this knowledge about multisensory temporal dependencies

by showing that audiovisual detection behavior is a monotonic function of stimulus correlation.

As the temporal similarity of two unisensory signals increased, detection of amplitude

modulation embedded in the audiovisual signal improved in a linear manner (Figure 2.3a).

Additionally, we qualify this finding in a way that provides mechanistic insight into how the

brain combines dynamic stimuli across sensory modalities. Thus, the temporal correlation of the
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audiovisual stimuli did not necessarily map directly onto multisensory behavioral performance;

conditions in which physical stimulus correlation was highest did not always result in the best

behavioral performance. Instead, it appears that a transform occurs in the brain of each

individual and that results in a phase shift in behavioral performance relative to physical stimulus

correlation (ra | @o). Calculating temporal correlation after applying a phase lag to one of the

stimuli (r. | ¢°), which simulates differential processing times for sensory signals in the brain,

accounts for this difference. These phase-shifted correlations presumably represent the

correlations as they are available to our decisional system.

Although our task did not reveal any measurable effects of temporal correlation on

reaction times, we are not surprised. This lack of effect can be explained in terms of RT

variability. Our stimuli employed near-threshold signals which are known to produce reaction

times that are more variable than those produced by supra-threshold signals (McKendrick,

Denniss, & Turpin, 2014). Additionally, the correlations in some stimulus conditions unfolded

over time. In contrast, for some conditions the correlation does not change throughout the

course of the signals. For example, when the auditory and visual modulations are both at 6Hz,

across the entire stimulus, the relationship is maintained regardless of phase. However, when the
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frequencies of visual and auditory AM are different (e.g., 6Hz and 7Hz, respectively), the

starting and ending phase relationships change. In one phase condition (see Figure 2.1¢), stimuli

start out of phase (strong negative correlation) and end in phase (strong positive correlation). In

another they start in phase and end out of phase. However, both of these conditions have an

averaged correlation of 0 across the entire stimulus duration. This difference could introduce

more reaction-time variability in some conditions than others, which may mask potential RT

effects in some participants. To better measure any potential effect on reaction times, future

experiments should be designed using supra-threshold signals that generate more reliable

reaction times and take into account how correlations unfold over time.

The current study strongly grounds the relationship between stimulus correlation and

multisensory processing in a decisional framework. Our model successfully incorporated the

relationship between two signals (i.e., temporal correlation) into a dynamic-stochastic approach

to account for choice frequency and response time. With only very few parameters (4 for model 1

and 5 for model 2) stimulus correlation was able to account for the observed patterns. Moreover,

it was able to account for individual differences within and across participants. Our primary

finding is related to the nature of how stimulus correlation influences the accumulation of
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sensory evidence for a decision. Specifically, we found that perceived (phase-shifted) stimulus

correlation serves as a good predictor of behavior when used to constrain drift rate. For

perceptual tasks, drift rate is often interpreted as an index for the quality (e.g., strength) of

sensory evidence that is available to the decisional system (Gold & Shadlen, 2007; Ratcliff &

Smith, 2004). Typically, the strength of sensory evidence is provided by the physical attributes of

the stimulus, for instance, the degree of motion coherence (Ratclift & McKoon, 2008), intensity

(Rach et al., 2011), line length (Diederich & Busemeyer, 2006), or numerosity (Leite, 2012). For

simple multisensory behaviors (e.g., detection of simple stimuli), the drift rate relates to the

combined evidence obtained from integrating the physical stimulus properties across modalities

(Otto & Mamassian, 2012; Rach et al., 2011), especially when these properties are weak or

ambiguous (e.g., low intensity, poor motion coherence, etc.) in the unisensory component stimuli

(Rach et al., 2011).

In the current task, the key physical parameter that would presumably modulate the

magnitude of evidence for detection is the depth of the amplitude modulation, with strength of

evidence increasing with depth. However, modulation depth, and thus sensory evidence from the

unisensory signals, is held constant across conditions. Although we cannot rule out that evidence
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is supplied by integration of the unisensory stimulus properties, sensory evidence cannot come

from these alone but instead is generated via a computation involving both stimuli. Different

types of multisensory decisions require different architectures that depend on the structure of the

task or stimulus (Bizley, Jones, & Town, 2016). The results presented here—that the strength of

sensory evidence is based on a computation of the unisensory signals rather than the strength of

the unisensory signals themselves—suggests that unisensory signals converge and evidence is

computed prior to being evaluated by the decisional system. Other multisensory decisions such as

simultaneity judgement (Simon, Nidiffer, & Wallace, 2018) and temporal order judgement

(Diederich & Colonius, 2015; Mégevand, Molholm, Nayak, & Foxe, 2013), which require a

similar comparison of the unisensory signals, have also been described in terms of their cross-

modal computations.

It has recently been discussed that the presence or absence of audiovisual temporal

correlation is a strong determinant of multisensory binding (Bizley et al., 2016) which manifests

in a variety of behavioral enhancements (Grant & Seitz, 2000; Maddox et al., 2015; Parise et al.,

2012). Results presented here extend this concept, despite the substantially different nature of

the stimuli and task employed. According to our results, multisensory benefits—and likely by
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extension the propensity to bind two signals—are monotonically related to the strength and sign

of the temporal correlation (similarity) between unisensory signals. This notion implies that the

process of binding signals is probabilistic. Stochastic binding related to temporal correlation

could be an important mechanism in cognitive flexibility. It must be noted that weak, yet often

significant, correlations exist in randomly paired stimuli (Chandrasekaran et al., 2009). In a

sensory-rich environment, compulsory binding based on temporal similarity could lead to the

perceptual unification of unrelated stimuli, creating great ambiguity in deciphering the sensory

world. Instead, since the perceptual system has access to the strength of the correlation, the

strongest and likely most appropriate signals can be bound. Further, it’s likely that binding and

integration are built on several other features such as spatial and temporal proximity. In the

natural environment, these features are very often aligned; a single event will produce energies

across different modalities that overlap in space and time and that are temporally correlated.

Where these features are somewhat discrepant, the brain will appropriately weight (i.e.,

according to their reliability) proximity and similarity in the construction of a multisensory

percept (Alais & Burr, 2004; Ernst & Banks, 2002).
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The perceptual benefits of increased stimulus correlation are likely the result of

mechanisms involving synchronized or coherent neural activity across brain regions (Nozaradan,

Peretz, & Mouraux, 2012). Neural coherence has been hypothesized to play a role in shaping our

conscious experience (Tononi & Koch, 2008) by underpinning mechanisms of sensory awareness

(Engel & Singer, 2001), attentional selection (Schroeder & Lakatos, 2008), cognitive flexibility

(Fries, 2005), and perceptual binding (Elhilali et al., 2009; Hipp, Engel, & Siegel, 2011;

Senkowski, Schneider, Foxe, & Engel, 2008; Singer & Gray, 1995). Further, temporally

correlated audiovisual streams have been shown to improve the representation of the auditory

stimulus envelope and features in auditory cortex (Atilgan et al., 2018). This enhanced

representation is likely the end result of why seeing a speaker’s face improves speech intelligibility

(Erber, 1969; Grant & Seitz, 2000; Sumby & Pollack, 1954). Rhythmic auditory and visual

stimuli like the ones used in the current study are known to entrain neural oscillations (Henry &

Obleser, 2012; Nozaradan et al., 2012; Thut, Schyns, & Gross, 2011) which index patterns of

neuronal excitability over time (Bishop, 1933). Since uni- and multisensory stimuli can

simultaneously entrain oscillations in multiple frequency bands (Henry, Herrmann, & Obleser,
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2014; Nozaradan et al., 2012), it is likely that our stimuli do the same and thus induce coherent

brain activity commensurate with the correlation in the stimuli.

In the current study, participants’ behavioral performance was not necessarily best for the

stimuli with highest physical correlation but were instead phase-shifted by differing amounts for

each participant. Behavior very closely matched the correlation of the modulations after a phase

lag was applied to one of the modulation signals. This phase lag could be adjusting for different

processing times and abilities of participants’ auditory and visual systems. It's known that

oscillations entrain to rhythmic auditory stimuli at different phase lags across listeners (Henry &

Obleser, 2012). It is possible that visual entrainment occurs in a similar manner and that these

phase lags differ between the auditory and visual systems, though we are not aware of such data.

Interestingly, phase lag of the entrained oscillations can be calibrated to the particular temporal

structure of an audiovisual stimulus (Kosem, Gramfort, & Van Wassenhove, 2014). Thus, the

phase lags reported in the current study are likely a “preferred” or “natural” phase that can be

easily manipulated depending on context (e.g., attending an event that is near or far from the

body which would result in different temporal relationships between auditory and visual
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representations in the brain) in a manner similar to the phenomenon of recalibration of the

perception of audiovisual simultaneity (Fujisaki et al., 2004; Van der Burg, Alais, & Cass, 2013).

During multisensory decisions, temporal correlation between the features of the

component stimuli modulates behavior. It does so by changing the nature of the sensory evidence

that is evaluated by the sensory system. The strength of the sensory evidence is proportional to

the strength of the correlation of the signal. Finally, the physical correlations present in stimuli

are transformed, via a phase shift, into “perceptual” correlations that are unique to an individual.

This process likely occurs through differences in unisensory temporal processing. This was

confirmed by a dynamic-stochastic model in which the drift rate was related to physical or to

perceived correlations between the auditory and visual signals in the audiovisual presentation.

These results motivate several fundamental questions. Is binding truly stochastic? Can cross-

modal correlation embedded in one feature (e.g., intensity) have the same proportional effect on

behavioral performance reported here in tasks utilizing orthogonal stimulus features (e.g.,

frequency or timbre)? What are the neural signatures of this proportional change and their

relation to behavior? Finally, does the perception of naturalistic audiovisual stimuli such as

speech benefit in the same way with changes in audiovisual correlation?
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Materials and Methods

Participants

Twelve individuals (age = 26.4 + 5.1, seven females) participated in the current study. All

participants reported normal or corrected-to-normal vision and normal hearing and were right

handed. The study was conducted in accordance with the declaration of Helsinki, and informed

written consent was obtained from all participants. All procedures were approved by the

Vanderbilt University Institutional Review Board. When applicable, participants were given

monetary compensation for participation.

Apparatus and stimuli

All stimuli were generated in MATLAB (The MathWorks, Inc., Natick, MA) and

presented using PsychToolbox version 3 (Brainard, 1997; Kleiner et al., 2007). Auditory stimuli

were digitized at 44.1 kHz, and presented through calibrated open-back circumaural headphones

(Sennheisser HD480). Visual stimuli were centered about a red fixation dot in the center of a

dark (0.15 c¢d/m?) viewing screen (Samsung Sync Master 2233rz, 120 Hz refresh rate).

Auditory stimuli were frozen tokens of white noise (generated by the randn function) at

moderate baseline level (48 dB SPL, A-weighted). Visual stimuli consisted of a moderately
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bright ring (24 c¢d/m? at baseline; inner diameter: 1.8°, outer diameter: 3.6° visual angle). Both
stimuli were presented simultaneously, lasted 500 ms, and were gated by a linear 10 ms onset and
offset ramp. Stimulus timing was confirmed with a Hameg 507 oscilloscope, photodiode, and
microphone.

For each stimulus, auditory intensity and visual luminance, y, could be modulated around

their baseline over time, #, such that

y(@) = [1+m()] x c(t)

where

m(t) = M x sin(Zrtfmt + <p0,j)

and ¢(#) is the time series of the carrier stimulus (auditory: noise; visual: ring). The form of the
amplitude modulation (AM) signal m(2) is defined by a modulation depth M which represents
the amplitude of the modulation signal as a proportion of the amplitude of the carrier signal and
ranged from 0 (no AM) to 1 (full AM), frequency £, in Hz, and starting phase ¢y, in degrees.
On any given trial, the AM signal could be present in the auditory channel alone, the
visual channel alone, both channels (audiovisual trials), or neither (catch trials; Figure 2.1b). If

present, modulation depth was set to individual unisensory thresholds (see below for
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thresholding procedures). Unisensory signals (AM was present in auditory stimulus only or

visual stimulus only) were always presented in cosine phase such that the modulation began at

the trough (¢ = 0°) and at the same frequency (£, viuar = 6 Hz). When AM was present in both

stimuli, visual modulation was always 6 Hz and cosine starting phase while auditory signals could

be presented at various frequencies (£, adiry = 16, 6.25, 6.5, 6.75, 7 Hz}) and initial phases (¢, =

{-135, -90, -45, 0, 45, 90, 135, 180°}, with o, € o). This structure results in a total of 40 (5 x 8)

different audiovisual stimulus conditions.

Because we are interested in the temporal correlation between the two signals, the

Pearson correlation between the auditory and visual envelopes (r.,) was computed for each of the

40 audiovisual conditions (Figure 2.1c). For example, when the auditory and visual envelopes

were characterized by the same frequency and phase, correlation was 1. Conversely, stimuli of the

same frequency but presented anti-phase resulted in a correlation of -1. The parameters chosen

resulted in a representation of correlations between -1 and 1. A stimulus correlation matrix (r. |

(o) was constructed for all audiovisual conditions by organizing the correlation values according

to their frequency and phase relationship between auditory and visual signals (A frequency x A

phase; Figure 2.1d).
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Procedure

Participants were seated comfortably inside an unlit WhisperRoom™ (SE 2000 Series)

with their forehead placed against a HeadSpot™ (University of Houston Optometry) with the

forehead rest locked in place such that a participant’s primary eye position was centered with

respect to the fixation point at the center of the viewing screen. Chinrest height and chair height

were adjusted to the comfort of the participant.

Prior to the main experiment, each participant completed two separate 3-down 1-up

staircase procedures to obtain 79.4% modulation depth thresholds for auditory and visual AM at

6 Hz. For these staircase procedures, on a given trial (Figure 2.1a), the red fixation dot appeared

at the center of the screen. Participants were instructed to fixate the dot for its entire duration.

After a variable time, either an auditory or visual stimulus was presented in which the presence of

modulation was determined at random for each trial. Participants were instructed to report the

presence of amplitude modulation (described as "flutter") after the stimulus presentation by

pressing “1” on the number pad of a computer keyboard if the modulation was present or

pressing “0” if the modulation was absent. The modulation depth decreased after three successive

correct responses and increased after one incorrect response. At the beginning of each staircase,
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the step size was set to increase or decrease modulation depth by 0.05. After two reversals

(correct to incorrect response or incorrect to correct response), step size was reduced to 0.025.

Finally, after eight reversals, step size became 0.01 in order to arrive at an accurate estimate of

modulation depth threshold. Each staircase terminated after 20 reversals. Threshold was

determined to be the average of the modulation depth at the last 10 reversals. Instructions

included an example of a stimulus with AM at the initial starting modulation depth (M = 0.5)

and an example of a stimulus with no AM. So that there was no ambiguity in cases where the

first trial did not include a modulation signal, participants were informed that the first trial

would have the same modulation depth as the example if present. To control for “runs” of trials

with no modulation during the staircase (which could result in erroneously low threshold

estimates), a sequence of two trials containing no modulation was always followed by a trial with

modulation. The auditory staircase was always completed first and served as a period of dark

adaptation prior to the visual staircase.

The main experiment consisted of four blocks lasting approximately 30 minutes each.

Each block consisted of 10 trials of each stimulus condition (420 signal trials per block).

Additionally, there were catch (no signal) trials included to make up 10% of total trials for that
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block (47 catch trials per block). Therefore, each block was identical in trial composition (467

total trials per block) but with individual trials presented in a predetermined, pseudorandom

order. Each participant completed a total of 1868 trials over the four blocks. Breaks were offered

frequently (every 100 trials) to prevent fatigue. Participants completed the full experiment in 2-4

sessions, never completing more than 2 blocks during a session. If a participant completed two

blocks in a single session, they were given the opportunity to stretch and walk around while the

experimenter set up the second block. Before each block and after any break where the

participant was exposed to normal light levels, participants were dark adapted for five minutes.

Trials during the main experiment were identical to staircase trials with three exceptions. First,

in each trial, both auditory and visual stimuli were presented. Modulation signals could be

present in the visual channel alone (Vigna), auditory channel alone (Aggna), in both (AViigna; with

frequency and phase configuration discussed above), or neither channel (no signal). Second,

modulation depth was set to a participant’s unique auditory and visual modulation depth

thresholds. These threshold values are shown in Table 5. Last, participants were told that they

should respond as soon as they had made their decision and were instructed to respond as quickly

and accurately as possible. In addition to the participant's choice, response times were recorded
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for each trial, sampling every 2.2 ps (4.6 kHz). Response window was terminated after 1.5

seconds. Subsequent responses were censored. This ended up being 2% of trials or less for most

participants.

Table 2.5. Participant modulation depth thresholds

Ptc.  Aud. Vis.
1 0.041 0.047
2 0.081 0.059
3 0.028 0.049
4 0.104 0.076
5 0.051 0.042
6 0.087 0.062
7 0.068 0.043
8 0.048 0.040
9 0.060 0.058
10 0.063 0.043
11 0.072 0.050
12 0.072 0.070

Behavioral analysis

Discriminability (4 a measure of sensitivity) for each of the 40 audiovisual conditions

and two unisensory conditions was computed from the relative frequencies of the respective

résponscs,

d' =z(H;) —z(F)
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where H; is the proportion of hits ("1" | modulated stimulus) for the i condition, F'is the

proportion of false alarms ("1" | no modulated stimulus), and z is the inverse of the normal

distribution function (MATLAB’s norminv function) and converts the hit rates and false alarm

rates into units of standard deviation of a standard normal distribution. &'was organized into a

matrix in the same manner as the stimulus correlation matrix. Because the proportion of catch

trials was held low and errors had no associated cost (Green & Swets, 1966), participants could

potentially adopt a strategy of simply pressing “1” which would result in a correct choice more

often than not. To account for this, criterion (¢; a measure of bias) for each participant was

computed in a similar manner such that

c=2z(H)+z(F)

where H is the proportion of hits across all conditions. A single criterion was computed for each

participant.

To account for individual differences, which became apparent in assessing the phase shift

in the &’ matrices, a series of correlation matrices based on the stimulus correlation matrix (r. |

(o) were computed after iteratively applying a single degree phase lag to one stimulus (i.e., ¢; =

{-134, -89, -44, 1, 46, 91, 136, -179°}, ¢, = {-133, -88, -43, 2, 47, 92, 137, -178°}, in general ¢;
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={-135+4,-90 + 7,-45 + 1,0 + 4,45 + 4,90 + 4, 135 + 7, 180 + i } with 7 = -180, ..., 180, resulting

in a total of 360 different matrices). A phase-shifted correlation matrix (r., | ¢:) could be

conceptualized as the “internal” or “perceived” correlation of the signals given a particular phase

lag, i, of one of the signals. Each of the phase-shifted correlation matrices (Figure 2.1e, nine

examples shown) was in turn evaluated for correlation (re) with the discriminability matrix of

each participant. The resulting correlation values (ro | @) were then fit to a sine wave using the

nonlinear least-squares method. The phase shift value of the fitted sine wave was recorded for

each participant (¢"). The CircStat toolbox (Berens, 2009) was used to describe the nature of the

phase shifts and compute the directional statistics across the sample of participants. The

“perceptual” correlation matrix corresponding to each participant’s unique phase shift (r., | @)

was used to measure the dependence of behavior on perceived correlation (ra | ¢").

To show that phase shift is related to a central mechanism (e.g., a relative difference in

processing latencies between auditory and visual systems), we tested whether the phase shift

occurred systematically across all A frequencies within each participant. First, a predicted

discriminability matrix was calculated from phase-shifted correlations. Phase-shifted correlation

matrices were normalized to each participant’s discriminability range by scaling and shifting each

101



unique correlation matrix such that the correlation values at the maximum and minimum

correlation matched the & values at the corresponding locations in the discriminability matrix.

Next, the values in the predicted discriminability matrix were subtracted from the actual

discriminability matrix, resulting in a matrix of residual errors. Then, a linear model was used to

determine the relationship (i.e., slope) between A frequency and the magnitude and variability

(standard deviation) of errors. To calculate significance of variability slope across A frequency, a

permutation test was used that shuffled the A frequency label of errors before calculating

standard deviation within each A frequency and then fitting a line to the shuffled standard

deviations.

We sought to demonstrate that accounting for phase shift improved the measured

correlation between behavior and stimulus correlation. Therefore, we computed this dependence

on stimulus correlation (re | o) and subtracted it from the dependence on perceived correlation

discussed above (rs | @’) which yielded a score of improvement (Ar). Because of the nature of the

phase shift fitting process described above, (ra | @’) 2 (o | o) with the difference growing to a

maximum when @ = +180° even for data with no effect (random numbers). Therefore, we

accounted for this statistical effect by running a simulation where we computed the phase shift
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(same process described in Figure 2.1e) of 1000 matrices of shuffled data from participants
chosen at random. For each matrix, we measured (r¢ | ¢’) and (ra | @o) and subtracted them as
above so that we had 1000 pairs of ¢’ and Ar. These data, along with our observed data, were fit
to the function

Ar = a x sin(¢p") + a

which returned 4, the amplitude of the function. We then bootstrapped (10000 samples
of 20 randomly drawn pairs of simulated ¢’ and Ar chosen with replacement) fits to the
simulated data to obtain a distribution of 4 for these null data. From this distribution, we

computed a z-score for the observed amplitude parameter as

_ Qobs
T (w—=0/(2 % 1.96)

VA

where a.; is the amplitude parameter of the fit to the observed data and # and /are the

upper and lower 95% confidence bounds from the bootstrapped fits to the shuffled data,

respectively.

Diffusion model analysis

For binary choices, sequential-sampling models assume that upon presentation of the

stimulus, the decision maker sequentially samples information from the stimulus display over
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time, which provides sensory evidence to a decision process. It also assumes that the decision

process accumulates this evidence in a noisy manner for choosing one option over the other, here

“modulation present” or “modulation absent.” Sequential-sampling models account

simultaneously for choice frequency and choice response times. However, the focus here will be

on choice frequencies. Let X(t) denote the random variable representing the numerical value of

the accumulated evidence at time # A bias, f3, (i.e., prior beliefs about the stimulus before it is

presented) can influence the initial starting position of the decision process, X(0). This initial

state may either favor choice option “modulation present” (X(0) >0) or choice option

“modulation absent” (X(0) <0). X(0)=0 reflects an unbiased response. (The initial states can also

be given a probability distribution). The participant then samples small increments of evidence at

any moment in time, which either favor response “modulation present” (dX(t) > 0) or response

“modulation absent” (dX(t) < 0). The evidence is incremented according to a diffusion process.

In particular, we apply a Wiener process with drift, lately called drift-diffusion model (Bogacz,

Brown, Moehlis, Holmes, & Cohen, 2006) with

dX(t) = & + odW (£)
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The drift rate, 8, describes the expected value of evidence increments per unit time. The

diffusion rate, o, in front of the standard Wiener process, #(z), relates to the variance of the

increments. Here we set 0 = 7. The small increments of evidence sampled at any moment in time

are such that they either favor response “modulation present” (dX(z) > 0) or response “modulation

absent" (dX(#) < 0). This process continues until the magnitude of the cumulative evidence

exceeds a threshold criterion, 6. That is, the process stops and response “modulation present” is

initiated as soon as the accumulated evidence reaches a criterion value for choosing response

“modulation present” (here, X(#) = 6 > 0), or it stops and a “modulation absent” response is

initiated as soon as the accumulated evidence reaches a criterion value for choosing response

“modulation absent” (here, X(2) = 6 < 0). The probability of choosing the response “modulation

present” over “modulation absent” is determined by the accumulation process reaching the

threshold for response “modulation present” before reaching the threshold for response

“modulation absent”. The criterion is assumed to be set by the decision maker prior to the

decision task. The drift rate may be related to the quality of the stimuli (i.e., the better the

quality the higher the drift rate). For instance, stimuli that are easier to discriminate are reflected

in a higher drift rate. In the following we consider two models. In Model 1 we assume that the
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physical correlation between the auditory and visual stimuli, (r.y | @o), weighted by the decision

maker drives the evidence accumulation process for initiating a “modulation present” or

“modulation absent” response. That is, the drift rate is defined as

8 =w X (1ld0)

Of the 40 correlation coefficients several of them were identical (for instance, a 6Hz

auditory stimulus with starting phases of +45° and -45° both resulted in a correlation of .7075)

resulting in 21 unique correlation coefficients and by that in 21 different drift rates.

In Model 2 we assume that the physical correlation between the auditory and visual

stimuli is distorted by a shift in phase as perceived by the decision maker. That is, the drift rate is

defined by

§=wX (ravld)i)

where 7 is a free parameter of the model estimated from the data and its returned value

corresponds to a phase shift that is unique to each participant (¢’). The model term ¢; relates to

the initial phase term ¢;introduced earlier and follows the same naming conventions. A phase

shift unequal to 0, +45, +90, +135, or +180 results in 40 different correlation coefficients which

in turn results in 40 drift rates.
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Diffusion model parameters

We assume for both models that the observed response time is the sum of the decision

time, modeled by the diffusion process, and a residual time, 7, which includes the time for

processes other than the decision, e.g., sensory encoding and motor components. Here, 75, is a

constant for each participant. Because correlation coefficients varied between 1 and -1 but none

of the participants showed perfect performances (e.g. 100% of correct responses to either a

perfectly positively correlated stimulus pair or a perfectly negatively correlated stimulus pair), we

allow an adjustment by including a weight for the correlations 0 < w < 1. We also allow for an a

priori response bias, f3, in favor of one response (present/absent). The decision criteria are 0 =

-6].

In addition to these parameters, Model 2 returns a parameter ¢’ to account for perceived

correlations based on individual phase shifts (rather than correlations based on the physical

stimuli only) to be estimated from the data. To summarize: For Model 1 four parameters (w, f3,

0, T)) are estimated from 63 data points (21 relative frequencies for correct responses, 21 mean

response times for correct responses, 21 mean response times for incorrect responses. Trials with

identical correlations were collapsed.) For Model 2 five parameters (¢, w, B, 6, 7T;) are estimated
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from 120 data points (40 relative frequencies for correct responses, 40 mean response times for

correct responscs, 40 mean response times for incorrect I'CSpOI’lSCS).

The model was implemented in terms of the matrix approach (Diederich & Busemeyer,

2003) and parameters were estimated by minimizing the chi-square function (Smith & Vickers,

1988),

2 2
2 RTobs - RTpred Probs - Prpred
x= SE i SE
RTops PTobs
using the optimization routine fminsearchbnd in MATLAB. The fininsearchbnd routine is similar
to the standard fininsearch routine except that the range of the parameters of the parameters can
be predetermined, for instance, positive real numbers for the residuals, or real numbers between
0 and 1 for the weights. The fminsearch uses the Nelder-Mead simplex search method (Lagarias,
Reeds, Wright, & Wright, 1998). SEgrr ., and SEp, . _refer to the standard error of the observed
obs obs
mean response times and relative choice frequencies, respectively. Note that mean response times
and relative choice frequencies are conditioned on the stimulus presented. Here we consider only
the trials in which a modulation was present.
For both models, the following procedures/restrictions to parameter values were imposed

in the estimation procedure: The decision criteria (absorbing boundaries) were estimated using a
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search grid. This was done because it quickens the estimation procedure when boundaries are

integers (matrix approach). 6 ranged from 3 to 20 in steps of 1. The residual time, 7}, was

restricted to 100 ms < 7, < 800 ms and the weight to 0.0001 < w < 1. For the Model 2 parameter

¢;, the value of i was restricted to integers ranging from -180 to 180 in steps of 1. For each value

of i in Model 2, a different set of correlations were computed.
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Chapter 3. Multisensory binding is proportional to stimulus correlation

Introduction

Our conscious perception depends crucially on our ability to appropriately piece together
the features of events in our environment. We do this effortlessly across auditory and visual
domains in processes called auditory scene analysis (Bregman, 1990) and visual grouping
(Wertheimer, 1923). Each unisensory domain has its own set of cues (e.g., spectral, spatial, and
temporal) that influence the binding of features into objects. One cue that is common to both
unisensory modalities, temporal correlation, has also been shown to be a robust cue that binds
features across modalities (Bizley et al., 2016). Indeed correlation across time is a property of
cross-modal stimuli that originate from a common source, such as the mouth movements and
vocal intensity of audiovisual speech (Chandrasekaran et al., 2009).

Temporal correlation is an important cue that leads to the binding and integration of
multisensory signals (Grant & Seitz, 2000; Maddox et al., 2015; Parise & Ernst, 2016; Parise et

al., 2012, 2013). Despite demonstrating the importance of correlation on perception, these
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studies have been limited to a restricted set of correlations. Because of this, it is unclear whether

our perceptual system evaluates stimuli for the presence of correlation or evaluate the strength of

correlation between stimuli. This distinction may be important in the context of multiple

competing stimuli. For example, the cocktail party problem ambiguous mouth movements can

have strong, errant correlations with unrelated acoustic speech envelopes (Chandrasekaran et al.,

2009). Evaluating the strength of correlation rather than the presence of sufficient correlation

could possibly mitigate this problem.

Recently, we found that behavioral performance does vary with the magnitude of

correlation imbedded in dynamic audiovisual stimuli (Nidiffer, Diederich, Ramachandran, &

Wallace, 2018), showing that the brain does perform a computation on the strength of

audiovisual correlation. However, in that study, participants were making judgements on the

presence of amplitude modulation, which was the correlated feature. It has been suggested that

to unambiguously dissociate multisensory integration—which encapsulates a large number of

neuronal, perceptual, and decisional processes involving the convergence of sensory

information—from binding (i.e., object formation), judgements should be made on a stimulus

feature orthogonal to the feature that induces the binding (Bizley et al., 2016). This assertion is

124



rooted in principles of object-based attention (Blaser, Pylyshyn, & Holcombe, 2000; Desimone

& Duncan, 1995; Shinn-Cunningham, 2008; Treisman, 1998) where attention, when directed

toward an object, enhances all features of that object. For example, to demonstrate audiovisual

binding, Maddox (2015) manipulated correlation of the amplitude envelopes of auditory and

visual streams while asking participants to discriminate a deviation in the frequency of the

auditory stream.

In the current study, we leveraged these principles to determine whether our previous

findings extend to multisensory binding. Participants were to make judgements on a frequency

modulation feature while changing the strength of correlation in an audiovisual stream. We find

that behavioral performance on the orthogonal feature does change with temporal correlation in

a linear fashion, though to a lesser degree than when judgements are made on the correlated

teature. These results suggest that multisensory integration and binding both depend on the

magnitude of similarity between events in the environment.
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Results

Multisensory binding is modulated proportional to stimulus correlation

In the first experiment, participants detected near threshold frequency modulation (FM)

events imbedded in amplitude modulated (AM) audiovisual streams (Figure 3.1). The phase of

the visual AM was adjusted across conditions, thereby changing the correlation between the

auditory and visual streams. If the AM correlation is inducing binding of the audiovisual streams,

we expect the change in stimulus correlation to induce changes in the perception of the FM

event. Figure 3.2 shows discriminability (d’) data from two participants plotted across visual

phase. There is a clear cyclic pattern in these data (Figure 3.2a). Moreover, there seems to be a

phase shift whereby the best discrimination did not occur when the auditor and visual AM

streams perfectly overlapped, a finding that was evident and thoroughly tested in our previous

report (Nidiffer et al., 2018).
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Figure 3.1 (previous page): Stimulus and task. (a) Participants fixated a red dot at the center of the
display. After a variable time, an amplitude modulated (AM) audiovisual stimulus lasting 1.5 s
appeared. Participants were asked to report the presence of a frequency (c) or color (d) deviation target.
(b) AM could be present in the auditory stimulus (by modulating the intensity) or both auditory and
visual stimuli (by modulating the luminance). Targets consisting of a frequency deviation or color
deviation could be present at 1 s after stimulus onset. During audiovisual AM with the frequency
deviation, the phase of the visual modulation was varied to generate a range of stimulus correlations
(inset). (c) The auditory stimulus consisted of a single pure tone of 440 Hz which could be briefly (100
ms) frequency modulated (FM). FM depth was adjusted to the threshold of each participant via 3-
down-1-up staircase procedure prior to the main experiment. (d) The visual stimulus was a grey ring set

upon a black background. During a visual event, its color would briefly (100 ms) change to blue.
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In an effort to account for this phase shift, we fit these data to a sine wave and extracted

the phase parameter (see methods) to measure the deviation of the peak from zero. This is

necessary for calculating each participant’s perceptual correlation. Previously, we have shown that

this phase shift can be accounted for by iteratively fitting phase-shifted matrices (8 phases x 5

frequencies) to discriminability matrices, consistent with a timing difference between unisensory

systems. However, since we only measured discriminability at one frequency, we sought to

compare these two methods using data from the previous study (Nidiffer et al., 2018).

Discriminability data from one frequency were fit to the same sine wave used here. Figure 3.2b

shows this measure of phase shift as plotted against the phase shifts obtained previously. These

two methods produce comparable results when considering participants that had reliable

estimates of their phase shift. Not only are they strongly correlated (rho = 0.95, p = 0.02), but

their values are very consistent (slope = 0.92, CI: [0.73, 1.13]).

128



Q

Auditory Discriminability (d')

(@]

Auditory Discriminability (d')

Figure 3.2: Individual participant data. (a) Discriminability (d')—a measure of sensitivity—of the
frequency event was calculated and is shown plotted against the visual phase. Each phase maps onto a
different stimulus correlation. A cyclic relationship between visual phase and auditory discriminability is
evident. As shown previously, best performance is not aligned to the best correlated stimuli in the
environment (0°) but is instead shifted along phase. We fit this curve with a sine wave and extracted the
phase shift parameter to recompute correlation in perceptual space. (b) Might change to phase shift
distribution. (c) Auditory discriminability plotted against perceived audiovisual correlation which
accounts for the phase shift in (a). Discriminability is clearly modulated by correlation in a linear
manner. Although this relationship is evident across the sample, individual participants performed at
different levels. (d) Normalized discriminability was calculated in order to account for individual

differences in performance. The z-score of d’ was taken for each condition and within each participant
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129



This phase shift was applied to the audiovisual AM envelope and the correlations based

on these new envelopes were computed. Participants’ discriminability is plotted against these

stimulus correlations in Figure 3.2¢c. So that we can directly compare participants who are

performing at different levels, we normalized each participants’ discriminability data (Figure

3.2d). In line with our hypothesis, discriminability was significantly modulated by stimulus

correlation across participants (Figure 3.3a; r = 0.39 CI: [0.18 0.57], p = 0.00033). This

relationship was positive such that stronger correlations in the AM feature was associated with

better discriminability of the orthogonal FM feature, and thus influenced binding in a

proportional manner.

In the previous work (Nidiffer et al., 2018), participants detected AM in similar stimuli.

In that study, participants similarly showed a linear increase in discriminability of the AM, an

effect that can’t be unambiguously attributed to the binding of the stimuli (Bizley et al., 2016).

In both studies, the dependence on correlation was measured by finding the slope of the best

fitting line between stimulus correlation and discriminability. The effect sizes for individual

participants were significantly different between the current (r = 0.40+0.20) and previous

investigation (r = 0.62+0.25; £,; = -2.65, p = 0.013; Figure 3.2b), the dependence of binding on
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correlation (slope = 0.09+0.04) was significantly smaller than the dependence of integration on

correlation (slope = 0.37+0.22; #,; = -5.15, p = 2.0x107%; Figure 3.2¢). The difference across the

most positive and negative correlation (Ad’ = 0.18) is comparable to a study that used only two

extremes of similarity (Ad’ = 0.2; Maddox et al., 2015).
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Figure 3.3: Group binding data. (a) Normalized discriminability across all participants is significantly
correlated to perceived temporal correlations. A bootstrapped distribution of correlations (inset) does not
cross below zero. (b) Correlation coefficients (mean * s.e.m.) from each participant’s non-normalized
data in the current study where a stronger correlation of audiovisual amplitude modulations leads to an
increase in discriminability of the orthogonal frequency event (“Binding”) and a previous study where
stronger correlation of audiovisual AM leads to increased detection of those envelopes (Integration) are
significantly different, indicating the effect of correlation is stronger on integration than binding. (c)
Slope (mean + s.e.m.) of the line of best fit to non-normalized data in the current and previous study are

different, indicating a lower dependence on correlation in the current study.
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AM phase shift is related to unisensory temporal processing

Previously, we found that individuals show unique differences in their perception of

multisensory correlation that could be accounted for by lagging one modality with respect to the

other (Nidiffer et al., 2018). We hypothesized that the resultant measure, phase shift, is related

to individual differences in unisensory processing speeds. There are several known phenomena

that are related to unisensory differences. First, reaction speeds have been shown to be different

for auditory and visual stimuli and lead to different asynchronies that result in peak multisensory

gain across participants (Hershenson, 1962). We had an a priori expectation that measures taken

from the RT task would correlate with phase shift due to the similarity in the tasks and probably

similarity in neural architecture underlying the two behaviors (Bizley, Jones, et al., 2016).

Second, point of subjective simultaneity and binding window width which accounts for temporal

differences in our perception of audiovisual synchrony and relate to sensory differences and

differences in propagation in the environment (Zampini, Guest, Shore, & Spence, 2005). Due to

the difference between this task, synchrony judgement, and our task, detection, we expected the

correlation between these measures and ours to be weak at best. Two additional experiments
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were conducted in order to quantify measures of unisensory and multisensory temporal

processing and to relate them to phase shifts obtained in the current experiment.

In Experiment 2, participants reacted as quickly as possible to auditory, visual, and

audiovisual stimuli. Audiovisual stimuli were presented a different stimulus onset asynchronies

(SOAs), including objective synchrony. Figure 3.4a shows reaction times for auditory (red line),

visual (blue line), and audiovisual (black line) stimuli in a single subject. The multisensory

reaction times across SOAs were subtracted from a prediction based on the unisensory reaction

times while accounting for stimulus lag for that condition (Figure 3.4b-c). These curves were fit

to a Gaussian function (R? = 0.59+0.22). Unisensory RT differences (Figure 3.4a, blue minus red

lines) and peak RT gain (Figure 3.4b, mean parameter of Gaussian fit) were computed for each

participant. Experiment 3 consisted of a simultaneity judgement task. Audiovisual stimuli were

presented with a larger range of SOAs and participants were asked to report whether they

perceived the stimuli to be synchronous or asynchronous, emphasizing accuracy over speed. The

probability of the perception of synchrony was calculated across SOAs (Figure 3.4d-¢). These

curves were fit to the same Gaussian function (R? = 0.95+0.03; Figure 3.4d) and we measured the

point of subjective simultaneity (mean) and window width (2xstandard deviation).
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Figure 3.4. Individual and group reaction time and simultaneity judgement data. (a) Reaction time
data from an individual participant in Experiment 2. Auditory (red line), visual (blue line) and
audiovisual (solid black line) reaction times are plotted against SOA. Unisensory reaction time lines are
extended across SOAs for illustrative purposes. Auditory reaction time is faster than visual reaction
times, which was typical for most participants. A prediction (dashed line) of audiovisual reaction time
computed from the unisensory data while accounting for lag imposed by SOA is presented for comparison
with empirical audiovisual reaction times. Audiovisual reaction times typically were faster than this
prediction. (b) Reaction time gain for a single participant from (a) was calculated by subtracting
obtained audiovisual reaction times from their predictions. This curve was fit with a Gaussian function
for each participant. (c) Reaction time gain (mean * s.e.m.) across all participants show gains across
typical SOAs. (d) Simultaneity judgement data from the same participant in (a) is shown across SOAs.
This curve was fit with a Gaussian function for each participant. (e) Simultaneity judgements (mean *

s.e.m.) across all participants exhibit typical temporal binding windows and the typical rightward shift.
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Each of these measures, unisensory RT difference, peak RT gain, PSS, and window

width are plotted against phase shift in Figure 3.5. The difference between auditory and visual

reaction times (50.1£34.9 ms) along with the delay corresponding to peak RT gain (42.6+48.6

ms) were in line with those reported previously (Hershenson, 1962). Although the mean PSS

(7.42£29.3 ms) was slightly lower that what has been previously reported (Zampini et al., 2005),

the distributions overlap considerably. In comparison, window size in the current study

(429.9+203.1) was considerably larger than was reported in that study (Zampini et al., 2005).

However, the stimuli used in that study were very punctate (9 ms vs. 166 ms in the current study)

and longer stimuli are known to produce wider temporal windows (Vroomen & Stekelenburg,

2011; Wallace & Stevenson, 2014). When comparing to phase shift, neither temporal window

measures, PSS and window width, were correlated with phase shift. However, both RT

difference (r = 0.63, p = 0.031) and peak RT (r = 0.62, p = 0.032) were significantly correlated

with phase shift, indicating that they likely share a common mechanism.

In summary, we have extended our previous findings, showing that in addition to

integration, multisensory binding is linearly related to stimulus correlation. We have further
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forms of uni- and multisensory temporal processing.

b

demonstrated that a phase shift, which was demonstrated here and previously, is related to other
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Figure 3.5. Phase shift correlates with unisensory reaction time differences. (a) Point of subjective
simultaneity (PSS) is plotted against phase shifts obtained in Experiment 1. (b) Temporal binding
window width is plotted against phase shifts obtained in Experiment 1. (c) Unisensory RT differences
are correlated phase shifts obtained in Experiment 1. (d) RT peak gain SOA is plotted against phase

shifts obtained in Experiment 1.
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Discussion

Temporal correlation has been shown to influence a variety of multisensory processes.

Detection is improved (Nidiffer et al., 2018), cue combination is statistically optimal (Parise et

al., 2012), spatial and temporal segregation is more difficult (Chuen & Schutz, 2016; Jack &

Thurlow, 1973; Parise et al., 2013; Vatakis & Spence, 2007), and selective attention is improved

(Maddox et al., 2015). Previously, we showed that this relationship scales with the magnitude of

the correlation, which could potentially provide a means for selection of appropriate signals in

challenging environments (Nidiffer et al., 2018). Here, we build up on this foundation, using

tenets of object-based attention (Desimone & Duncan, 1995; Shinn-Cunningham, 2008), to

show that multisensory binding occurs proportional to the level of correlation.

The fact that multisensory interaction scales with the strength of correlation requires the

neural computation of the degree of similarity between environmental signals. Further, that this

process can influence the perception of other features is evidence that cross-modal binding is

stochastic and dependent on the strength of correlation. Given that our environment is

composed of auditory and visual signals such as speech that span a range of correlations

(Chandrasekaran et al., 2009), this computation may underlie the appropriate association of
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those signals in complex acoustical environments where a binary determination of correlation

may be insufficient.

Griffiths and Warren (2004) proposed four principles that define perceptual objecthood,

specifically for auditory objects. Among those principles is the notion that information in the

sensory world related to an object is separable from other sensory information. Temporal

correlation (referred to as coherence) has been shown to be a strong cue for the binding and

segregation of sound sources (Elhilali et al., 2009). This process has further been shown to

depend on the degree of coherence (O’Sullivan et al., 2015; Teki et al., 2013). In short, we can

form an auditory object based on the temporal correlation among its features and segregate that

object from an uncorrelated background. Our ability to form a perceptual object and segregate a

background is enhanced by a correlated visual stimulus (Maddox et al., 2015). Since multisensory

binding is proportional to the strength of the correlation, a natural extension of the current work

is to directly test whether auditory stream segregation is proportionally enhanced by a visual

stimulus in the same way by leveraging stimulus competition in a stream segregation task while

manipulating the strength of the correlation of a visual stream.
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Previously, it was demonstrated that rhythmic audiovisual stimuli with the strongest

correlations (i.e., those with the same frequency and phase) do not necessarily drive the best

behavioral performance (Nidiffer et al., 2018). Instead, performance was found to be shifted

along the phase dimension. A likely candidate for the mechanism underlying this process is

differences in stimulus processing time between the sensory systems, especially those involving

the entrainment of oscillations. Although there is no direct evidence of such a process, there are

several pieces of tangential evidence. First, unisensory entrainment is different across individuals

(Henry & Obleser, 2012; Simon & Wallace, 2017), suggesting some variability in the

entrainment process that might also manifest across modalities. Second, entrainment timing is

malleable under conditions involving audiovisual onset timing differences (Kosem et al., 2014).

Here we provide further support for this hypothesis in showing that phase shift is related to

unisensory reaction time differences.

Although detection speed and oscillatory entrainment are largely separate phenomena, it

is possible that their differences across the sensory systems are a manifestation of general timing

differences. It is unclear whether the phase relationship discussed here is preserved across

frequencies or is simply a timing difference between the sensory systems. Further, whether this
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phenomenon has any bearing on audiovisual binding of more complex, arrhythmic stimuli

remains to be seen. One study relating stimulus correlation to multisensory integration found

that correlation lead to optimal cue combination, irrespective of onset timing (i.e., cross-

correlation; Parise et al., 2012). However, the stimuli used in that study were arrhythmic

auditory and visual events, rather than continuous fluctuations, and the authors made no attempt

to analyze any potential effect of sensory delay.

Our findings and those of others (Atilgan et al., 2018; Maddox et al., 2015), that

audiovisual temporal correlation enhances the discrimination of a frequency feature, suggest a

pathway in which visual speech enhances the discrimination of acoustic speech. The cortical

representation of an auditory stream, both speech and non-speech, is enhanced by a congruent

visual stream (Atilgan et al., 2018; Crosse, Butler, & Lalor, 2015). Visual congruence also

enhances the representation of orthogonal frequency features embedded in the auditory stream

(Atilgan et al., 2018). Frequency features and their cortical representation are important for

speech perception (Elliott & Theunissen, 2009; Mesgarani & Chang, 2012) and frequency

discrimination ability has been linked to speech perception (Nan et al., 2018).
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Materials and Methods

Participants

17 individuals (age = 25.4 + 4.9, 10 females) participated in the current study. All

participants reported normal or corrected-to-normal vision and normal hearing and were right

handed. The study was conducted in accordance with the declaration of Helsinki, and informed

written consent was obtained from all participants. All procedures were approved by the

Vanderbilt University Institutional Review Board. When applicable, participants were given

monetary compensation or course credit for participation.

Experiment 1

Apparatus and stimuli

All stimuli were generated in MATLAB (The MathWorks, Inc., Natick, MA) and

presented using PsychToolbox version 3(Brainard, 1997; Kleiner et al., 2007). Auditory stimuli

were digitized at 44.1 kHz, and presented through calibrated open-back circumaural headphones

(Sennheisser HD480). Visual stimuli were centered about a red fixation dot at the center of a

dark (0.15 c¢d/m?) viewing screen (Samsung Sync Master 2233rz, 120 Hz refresh rate).
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The auditory stimulus was a single frequency (440 Hz) tone presented at moderate level
(48 dB SPL, A-weighted). Visual stimuli consisted of a moderately bright ring (24 cd/m? inner
diameter: 1.8°, outer diameter: 3.6° visual angle) over a black background. Both stimuli were
presented simultaneously, lasted 1.5 s, and were gated by a linear 10 ms onset and offset ramp.
Stimulus timing was confirmed with a Hameg 507 oscilloscope, photodiode, and microphone.

The amplitude of each stimulus, y, was modulated over time, #, such that

y(@) = [1+m(D)] x c(t)

where

m(t) = M X cos(27 fomt + ¢ ;)

and ¢(#) is the time series of the carrier stimulus (auditory: tone; visual: ring). The form of the
amplitude modulation (AM) signal m(#) is defined by a modulation depth M which represents
the amplitude of the modulation signal as a proportion of the amplitude of the carrier signal,
modulation frequency f» in Hz (£, = 6), and starting phase ¢y, in degrees. The auditory stimulus

could be frequency modulated (FM) such that

fu

c(t) = cos <2nfct + sin(anfmt)>
ffm
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where f; is the frequency of the tone in Hz (. = 440), fa is the deviation of the frequency

modulation in Hz, and £, is the frequency of the FM in Hz (f;, = 10). A FM event was

implemented using the fmmod() in MATLAB and briefly (100 ms, one full FM cycle) occurred 1

second after stimulus onset so that it occurred at exactly the same phase of the AM to obviate

any behavioral dependence on AM phase (Henry & Obleser, 2012).

The AM signal was always present in the auditory channel with modulation depth set to

M = 0.5 and starting phase set so that the modulation begins at the trough (¢, = 0°). Visual AM

could be present (M = 0.5) or absent (M = 0). Thus, this configuration produced four separate

conditions based on a factorial design included Auditory AM (no visual AM) vs Audiovisual

AM and FM event present (go trials) vs no FM event (catch trials). Visual modulation during

audiovisual go trials occurred with various starting phases (¢o = {-135, -90, -45, 0, 45, 90, 135,

180°}, with ¢y, € @o). Because we were interested in the interactions between auditory and visual

stimuli on an orthogonal feature, but the task could be carried out with only the auditory stimuli,

we included a visual target condition (go trial) to ensure participants were observing both

auditory and visual stimuli. In this condition the color of the visual stimulus changed gradually
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from its base color (RGB = {100,100,100}) to blue-green (RGB = {60,100,100}) and back over

100ms. The visual and auditory target never occurred in the same trial.

Procedure

Participants were seated comfortably inside an unlit WhisperRoom™ (SE 2000 Series)

with their forehead placed against a HeadSpot™ (University of Houston Optometry) with the

torehead rest locked in place such that a participant’s primary eye position was centered with

respect to the fixation point at the center of the viewing screen. Chinrest height and chair height

were adjusted to the comfort of the participant.

Prior to the main experiment, each participant completed a 3-down 1-up staircase

procedure to obtain an estimate of their FM deviation (f2) threshold. For the staircase procedure,

on a given trial (Figure 3.1a), the red fixation dot appeared at the center of the screen.

Participants were instructed to fixate the dot for its entire duration. After a variable time, the

auditory stimulus was presented. The FM event was presented at random for each trial.

Participants were instructed to report the presence of the FM event (described as a "frequency

deviant") after the stimulus presentation by pressing “1” on the number pad of a computer

keyboard if the modulation was present or pressing “0” if the modulation was absent. The /2
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decreased after three successive correct responses and increased after one incorrect response. At

the beginning of each staircase, the step size was set to increase or decrease fa by 5Hz. After two

reversals (COI‘I‘CCt to incorrect response or incorrect to correct I‘CSpOIlSG), step size was reduced to

2Hz. Finally, after eight reversals, step size became 1Hz in order to arrive at an accurate estimate

threshold. Each staircase terminated after 20 reversals. Threshold was determined to be the

average of the modulation depth at the last 10 reversals.

Instructions included an example of a stimulus with FM at the initial starting modulation

depth (2 = 30) and an example of a stimulus with no FM. So that there was no ambiguity in

cases where the first trial did not include a modulation signal, participants were informed that

the first trial would have the same modulation depth as the example if present. To control for

“runs” of trials with no modulation during the staircase (which could result in erroneously low

threshold estimates), a sequence of two trials containing no modulation was always followed by a

trial with modulation. At the conclusion of the staircase, the experimenter visually inspected the

staircase for its typical asymptotic form and had participants repeat the procedure if necessary.

The main experiment consisted of two blocks lasting approximately 25 minutes each.

Each block consisted of 20 trials of each stimulus condition (160 signal trials per block).
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Additionally, there were catch (no signal) trials (10% of total trials, 23 trials per block), visual

(visual color change) trials (10%, 23) auditory only (no visual AM) trials (5%, 11), and auditory

only catch trials (5%, 11). Therefore, each block was identical in trial composition (229 total

trials per block) but with individual trials presented in a predetermined, pseudorandom order.

Each participant completed a total of 458 trials over the two blocks. Breaks were offered

frequently (every 100 trials) to prevent fatigue. Participant were given the opportunity to stretch

and walk around while the experimenter set up the next block. Trials during the main

experiment were identical to staircase trials with two exceptions. First, in each trial, both auditory

and visual stimuli were presented. Modulation signals could be present in the auditory channel

alone (auditory only and auditory catch), in both (with phase configuration discussed above), or

neither channel (no signal catch trials). Second, participants were told that they should respond

as soon as they had made their decision and were instructed to respond as quickly and accurately

as possible. In addition to the participant's choice, response times were recorded for each trial,

sampling every 2.2 ps (4.6 kHz).
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Analysis

Discriminability (4 a measure of sensitivity) for each of the 8 audiovisual conditions and

two unisensory conditions was computed from the relative frequencies of the respective

responscs,

d' = z(H;) — z(F)

where H; is the proportion of hits ("1" | FM stimulus) for the i condition, F'is the proportion of

false alarms ("1" | no FM stimulus) from the corresponding catch trial condition, and z is the

inverse of the normal distribution function (MATLAB’s norminv function). d'was organized

into a matrix in the same manner as the stimulus correlation matrix. Because the proportion of

catch trials was held low and errors had no associated cost (Green & Swets, 1966), participants

could potentially adopt a strategy of simply pressing “1” which would result in a correct choice

more often than not. To account for this, criterion (¢; a measure of bias) for each participant was

computed in a similar manner such that

c=z(H)+z(F)

where H is the proportion of hits across all conditions. A single criterion was computed for each

participant.
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Because we have previously shown that perception of rhythmic audiovisual stimuli is
shifted across phase, we fit d’ data for the audiovisual AM conditions to the function

d =ax cos((po,j +¢')+b

where ¢y, is the starting phase of the visual stimulus. The fitting returns parameters ¢', which is
the phase shift and 4 and & influence the magnitude and shift of the function, respectively. We
recalculated the correlations using the phase shift parameter as described previously(Nidiffer et
al., 2018) and these phase-shifted correlations were used to measure the dependence of behavior
on stimulus correlation. To normalize d’, which was on different scales for different participants,
the z-score of each d’ value was calculated for each participant individually. All participant data
were pooled and a Pearson correlation was computed for stimulus correlation and
discriminability. Bootstrapped correlation distribution by computing the Pearson correlation on
pairs of stimulus correlation and its corresponding discriminability, sampled with replacement.
Experiment 2 and 3
Apparatus and stimuli

The stimuli were brief (166 ms) and consisted of the same visual ring described above and

a frozen token of broadband auditory noise. The visual stimulus was presented about a fixation
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dot that remained on the screen, uninterrupted, for the entirety of the experiments. The noise

was generated by MATLAB’s randn() function and presented diotically at moderate level (48 dB

SPL, A-weighted). The amplitude envelope of both stimuli was modulated as described in

Experiment 1, but because the duration was 166ms, only one trough-to-trough cycle of AM was

present. Thus, the stimuli did not appear to flutter, but had the same envelope characteristics.

Auditory and visual stimuli could be present individually (only in Experiment 2) or

together during a trial. When presented together, they were presented synchronously or with a

stimulus onset asynchrony (SOA) by delaying one stimulus relative by a short interval. For

Experiment 2 SOA = {-+10, £20, 30, 40, 50, 60, 70, 80, 90, and 100ms}. For Experiment 3,

SOA = {25, £50, £75, +100, +150, +300, +450ms}. Negative values indicate that the visual

stimulus occurred after the auditory stimulus.

Procedure

Experiments 2 and 3 occurred between the two blocks of Experiment 1 and their order

was randomized across participants. Both experiments took 12-15 minutes to complete.

Participants were seated comfortably in the experiment room as detailed above. Experiment 2

was a speeded response task (Hershenson, 1962). A trial consisted of the presentation of a visual,
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auditory, or audiovisual stimulus with their temporal relationship as described above. Participants

were asked to react as quickly as possible to any stimulus, auditory or visual, with a button press.

Reaction time was recorded as the interval of time between stimulus onset (the first stimulus in

the case of asynchronous audiovisual stimuli) and the button press. Experiment 3 was a

simultaneity judgement task (Zampini et al., 2005). Each trial consisted of the presentation of an

audiovisual stimulus with temporal relationships as described above. After each trial, a response

screen appeared, prompting participants to indicate on the number pad of a keyboard whether

each audiovisual pair were presented synchronously (by pressing “1”) or not (by pressing “0”).

Participants were asked to take their time and answer as accurately as possible. For both

experiments, 20 trials of each condition were presented and trials were separated by a variable

time from U(1,3).

Analysis

For Experiment 2, median reaction times (RTs) for auditory, visual, and audiovisual

presentations were calculated. The difference of median auditory and visual RT's was calculated.

A prediction of audiovisual RT's across SOA was computed by taking the minimum of each

auditory or visual RT while accounting for the lag imposed by the SOA(Hershenson, 1962).
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Audiovisual RTs were subtracted from this prediction to yield a measure of RT facilitation.

These data were then fit to a Gaussian curve:

(x—p)?
f(x) = ae 207

where p represents the SOA at peak multisensory gain. For experiment 3, the proportion of

synchronous judgement was computed at each SOA. These data were fit to a Gaussian curve as

above, where the p represents the point of subjective simultaneity (PSS) and 20 is a measure of

the width of the so-called temporal binding window.
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Chapter 4. How similarity and proximity shape two multisensory

processes: binding and integration

The Multisensory World Revisited

Events (and objects) in our environment produce a rich diversity of sensory energies
which correspond to different features of those events. Somehow, our sensory systems effortlessly
collect, transduce, and process this information about the features of the environment, often
from unreliable signals. One of the great challenges our brains overcome in constructing our
perceptual experience is sorting through these neural signals and deciding which correspond to
the same event. Often, signals across the sensory modalities provide redundant or complementary
information about single events or objects in the environment. The brain is able to combine
these multisensory signals synergistically, and thus enhance the representation of and our
interaction with the environment (Murray & Wallace, 2012; Stein, 2012).

From the earliest descriptions, it’s clear that the benefits of multisensory integration lie in

the enhancement of unisensory representations that are weak (Crosse et al., 2016; Meredith &
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Stein, 1986b; Sumby & Pollack, 1954) or the complementary combinations of strengths across

unisensory systems (e.g., the speed of audition and spatial accuracy of vision; Corneil et al.,

2002). These interactions are beneficial typically when sensory signals are informative of the

same event. The presence of a cross-modal signal that comes from a source that is different from

a target often interferes with behavioral performance (Amlot et al., 2003; Corneil & Munoz,

1996; c.f., Murray et al., 2005). Therefore, critical in the integration process is determining

whether two signals come from a common event, a process termed causal inference (Shams &

Beierholm, 2010). In this way, multisensory integration and the benefits it confers can be

thought of as consequence of multisensory binding, but as we’ll discuss in this chapter, this

relationship isn’t as simple as this.

Several stimulus factors have been demonstrated to contribute to multisensory binding

and causal inference. These include the spatial and temporal proximity between unisensory

stimuli (K6rding et al., 2007; Magnotti et al., 2013) and their similarity, based on temporal

correlation (Bizley et al., 2016; Parise & Ernst, 2016). Even though we make the case in this

chapter that proximity lacks specificity for multisensory binding on its own, it is undoubtedly a

feature of stimuli that belong together and plays a key role in multisensory integration. The
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question remains as to the relationship between proximity and similarity cues and their
relationship to multisensory binding. In this chapter we will build on the idea that integration
and binding are two distinct multisensory processes (Bizley et al., 2016). We argue that
proximity and similarity are stimulus properties that drive integration and binding, respectively,
albeit nonexclusively. Further, we propose a connection where the manifestations of multisensory
integration related to stimulus proximity (i.e., the spatial and temporal principles) are shaped by
stimuli the brain has learned to bind via stimulus similarity during development. We frame this
connection through a set of predictions that can be tested and we outline a series of experiments

aimed at testing them.

Two Multisensory Worlds: Proximity and Similarity

One of the hallmarks of sensory signals that originate from a common event is their
proximity in space and time. In line with this, multisensory interactions in neurons become more
prevalent and powerful with increasing spatially and temporally proximity of unisensory stimuli
(e.g., the so-called spatial and temporal principles; Meredith et al., 1987; Meredith & Stein,
1986a). Multisensory behaviors are constrained by these same principles that govern interactions

in neurons (Stein et al., 1988). These principles were shown to influence human behaviors as
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well (Bolognini et al., 2005; Frassinetti et al., 2002; Frens et al., 1995). Together, these

phenomena are loosely interpreted as evidence that spatial and temporal proximity serve as cues

to our multisensory system during causal inference (Kording et al., 2007; Magnotti et al., 2013).

However, stimulus proximity and the resultant multisensory enhancements are often at

odds with binding and even occurs following stimuli that do not belong to a common physical

event. When asked to indicate whether spatially and temporally disparate multisensory stimuli

appear “unified,” participants report a perception of unity even for stimuli with low spatial and

temporal proximity (up to 15 and 800 ms of disparity; Wallace et al., 2004). The spatial and

temporal principles are commonly demonstrated with stimuli that are highly artificial and have

arbitrary pairings across modalities, such as simple flashes and noise or tone bursts (Hershenson,

1962) or moving visual bars of light with stationary noise bursts (Meredith et al., 1987; Meredith

& Stein, 1986a). Multisensory interactions are even observed when the relationship between the

unisensory stimuli is explicitly dissociated (e.g., during focused attention; Bolognini et al., 2005;

Colonius, 2010; Van Wanrooij, Bremen, & John Van Opstal, 2010). To our knowledge there

has been no attempt to account for this apparent inconsistency.
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Another multisensory stimulus factor—similarity (e.g., temporal correlation)—

and its yet unexplored relationship to proximity might represent the key to accounting for this

discrepancy. Correlation over time is known to be important in unisensory feature binding

(Bizley & Cohen, 2013; Blake & Lee, 2005; Elhilali et al., 2009; S. H. Lee & Blake, 1999;

Shinn-Cunningham, 2008) and more recently, it has been demonstrated as a cue that can be

utilized to bind multisensory signals (Maddox et al., 2015; Parise et al., 2012, 2013).

Multisensory temporal correlation reflects changes that are shared between sensory signals when

a single dynamic event produces energy across multiple modalities, such as audiovisual speech

(Chandrasekaran et al., 2009). In line with this, improvements in speech in noise (Ross et al.,

2007; Sumby & Pollack, 1954) have been attributed to a temporal envelope present in visible

mouth movements of a speaker that is shared with the amplitude envelope of acoustic speech

(Bernstein et al., 2004; Grant & Seitz, 2000; Kim & Davis, 2004; Munhall et al., 1996). The

presence of a speaking face alone is not sufficient for these enhancements. Furthermore, the

presentation of a simple visual stimulus where the size changes with the envelope of an acoustic

speech signal confers a small but reliable benefit in detecting that speech in noise (Bernstein et
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al., 2004), illustrating the importance of temporal correlation independent of other factors

related to the face on our multisensory perception.

There appears to be a trade-off between the effects of similarity and proximity on

multisensory perception. Temporal similarity between multisensory stimuli can compensate for a

lack of proximity in time or space, resulting in larger just-noticeable differences in detecting

spatial and temporal conflict compared to uncorrelated audiovisual stimuli (Chuen & Schutz,

2016; Parise et al., 2013; Vatakis, Navarra, Soto-Faraco, & Spence, 2007). In fact, the

phenomenon known as the ventriloquism effect, where the binding of a dummy’s mouth

movements and the ventriloquist’s voice can cause the perception that the dummy is the source

of the voice, is dependent on the temporal similarity between the auditory and visual streams

(Jack & Thurlow, 1973; Thurlow & Jack, 1973). Similar effects have been reported for other

forms of similarity, such as the learned association between a steaming kettle and a whistle sound

(C. V. Jackson, 1953), indicating that binding and the compensation of the lack of proximity can

be driven by influences that are not based on temporal correlation.

Findings from a recent experiment (Nidiffer et al., 2018) were reanalyzed in order to

empirically disentangle proximity and similarity as they relate to another principle of
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multisensory integration: inverse effectiveness (Meredith & Stein, 1983; Sumby & Pollack,

1954). In brief, participants were asked to detect amplitude modulation (AM; e.g., “flutter”) in

audiovisual stimuli. The AM could be present in unisensory channels independently or in both

channels. When present in both channels, the temporal correlation was manipulated through

changes in frequency and/or phase of the auditory stimulus. Figure 4.1a-f presents a reanalysis of

multisensory data and unreported unisensory data from the experiment. We fit a line relating

multisensory discriminability to stimulus correlation (Figure 4.1a). The intercept term of this line

was taken as a representation of general multisensory performance related to the presentation of

the two AM signals independent of their similarity. This value was compared to the best

unisensory performance to derive a proportional measure of multisensory enhancement

analogous to integrative index (Stevenson et al., 2014; Figure 4.1a, straight arrows). We

compared this to a measure of dependence on similarity: the slope of the same line (Figure 4.1a,

curved arrows). In an initial test of their independence, we found no significant relationship

between these measures (Figure 4.1b). Further, the magnitude of the enhancement from

stimulus proximity in our task was dependent on the unisensory performance (viz. inverse

effectiveness), but the benefit afforded by similarity was not (Figure 4.1c-d). Finally, in
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agreement with the principle of congruent effectiveness presented by Otto and colleagues (2013)

general multisensory benefits were associated with the equivalence of unisensory performance

whereas similarity benefits were higher when auditory performance was greater (Figure 4.1e-f).

These data, along with those presented earlier demonstrate the separate influences of similarity

and proximity in three major principles that guide multisensory processes: space, time, and

effectiveness.
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Figure 4.1 (previous page): The relationship between binding/integration and stimulus
similarity/proximity. (a) To show that the effects of proximity and similarity can be empirically
dissociated, behavioral sensitivity for two participants plotted against audiovisual stimulus correlation.
A line (solid) was fit to multisensory conditions. The slope of the line (curved arrow) was taken to
represent the effect of similarity. The intercept of this line was compared to unisensory performance
(dashed line) proportionally (straight arrow) and was taken to represent the effect of proximity
(enhancement). () The slopes were plotted against enbancements for each participant. No relationship
was found between the two measures. (c) Multisensory enbancement is maximal when unisensory
performance is low, consistent with inverse effectiveness (d) No relationship between slope and
unisensory performance was found. (¢) Multisensory enhancement is greatest for participants who
exhibited equal auditory and visual performance. (f) Slope is greatest for participants who performed
better on the auditory task. (g) Schematic representing the relationship between similarity/proximity
(left) and binding/integration (right). Binding specifically results in a perceptual shift while integration
often results in a criterion shift (adapted from Bizley et al., 2016).

The distinction between two processes—integration and binding—that shape

multisensory behavior and perception has grown in recent years. Integration constitutes any form

of convergence or interaction across the senses. Binding is more restrictive, referring to the

process of grouping cross-modal stimulus features into a unified object (Bizley et al., 2016).

Multisensory binding is a form of integration, but the reverse is not necessarily true. Figure 4.1g

describes the relationship between binding and integration proposed by Bizley and colleagues,

which we extend to include stimulus features similarity and proximity. Typically, binding is
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driven by some consistency or similarity between dynamically changing unisensory features (e.g.,

matching amplitude envelopes; Maddox et al., 2015; c.f., Mishra, Martinez, & Hillyard, 2013).

We posit that integration, on the other hand, requires only the presence and proximity of

stimuli. It makes sense that binding require more constrained stimulus features since it’s

considered a more restrictive process.

It is clear is that stimulus similarity and proximity are important in shaping our

multisensory perceptions and in processes such as feature binding. But due to seemingly

conflicting information in the literature, the nature of the relationships between these stimulus

features is unclear. Further, their role in binding and causal inference is also unclear. Here we

hypothesize a link to explain their relationship whereby low-level spatial and temporal proximity

filters which are observable at the level of single neurons (Meredith et al., 1987; Meredith &

Stein, 1986a; Stein & Meredith, 1993) and behavior (Bolognini et al., 2005; Frassinetti et al.,

2002) are scaffolded and refined by stimulus similarity—which is a feature that is more closely

tied to cross-modal signals originating from a single event.

Thus, we propose a developmental link between similarity and proximity. According to

this framework, stimulus similarity is a robust cue for which stimuli should be bound and shapes
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the brain’s current estimate of causal inference. Low-level proximity filters reflect the brain’s

learned estimate of causal inference and can, in the absence of dynamic similarity between

stimuli, drive binding. This learned estimate is built upon stimulus similarity present in

environmental stimuli during development. During the inference of a common cause, the

proximity and similarity of multisensory stimuli (as well as other factors such as perceptual

priors) contribute to this inference differently (e.g., with different weights).

This framework can begin to explain empirical findings related to similarity and

proximity that are seemingly discrepant. For example, in a multisensory stimulus where similarity

is high, but proximity is low (e.g., a ventriloquist’s voice and a dummy’s mouth), the brain’s

judgement of causal inference and the subsequent binding weights similarity over proximity. The

framework also is agnostic to potential top-down factors that may influence the binding of

simple stimuli (e.g., Mishra et al., 2013; Wallace et al., 2004). This relationship would then

become more important in shaping multisensory filters in complex and noisy environments

where spatial and temporal proximity are less informative of a common source underlying

multisensory signals. Practically, this hypothesis can develop a set of predictions based on the

environmental relationship between cross-modal signal onset and the correlation between them.
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A Developmental Scaffold—the Relationship Between Similarity and Proximity

During development, our sensory systems undergo profound changes (Hensch, 2004)
including tuning and refinement of neuronal receptive fields. This process is shaped by and
depend on experiences in the developmental environment. Importantly, sensory representations
tend to adapt to represent the sensory structure that is present in the external world (Rabinowitz,
Willmore, Schnupp, & King, 2011; Schwartz & Simoncelli, 2001; Simoncelli & Olshausen,
2001). When any orderly structure is present and there are no sensory features to represent,
development is delayed (Chang & Merzenich, 2003). Conversely, an over-abundance of a feature
results in its over-represented in the brain (de Villers-Sidani, Chang, Bao, & Merzenich, 2007;
Hirsch & Spinelli, 1971). Finally, development in an enriched sensory environment speed the
onset of development and enhance the representation of the sensory environment (Cancedda et
al.,, 2004; Engineer et al., 2004).

This experience-dependent refinement is not just restricted to unisensory
processing. Multisensory processes are also shaped to represent the environment during
development through a process of perceptual narrowing (Lewkowicz & Ghazanfar, 2009). Early

in development, multisensory temporal filters are broad (Lewkowicz, 1996) and narrow over the
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course of maturation (Hillock, Powers, & Wallace, 2011). Spatial receptive fields of multisensory

neurons follow a similar trajectory during development: newborn receptive fields are large and

can extend the entire surface of the body or visual or auditory field but are gradually refined over

the course of maturation (Wallace, Carriere, Perrault, Vaughan, & Stein, 2006; Wallace & Stein,

1997, 2001). Similar to unisensory neurons, multisensory neurons develop the ability to integrate

their inputs during maturation, tuning their spatial and temporal filters to match the statistical

structure of their developmental environment (Figure 4.2a-b ; Polley et al., 2008; Wallace &

Stein, 2007).

Figure 4.2 (next page). Proposed link between proximity and similarity during multisensory
development. These plots represent the synchronous occurrences of multisensory stimuli in the
environment across azimuth (spatial proximity) and distance (temporal proximity). One sensory signal
is indicated by the crossed black lines directly in front of an observer (green dot) and the other is
represented by a probability cloud. This probability cloud is blurred across the spatial axis due to the
variability of our sensory estimates of space and further blurred across the distance/time axis due to the
increased discrepancy between sensory timing with increased distance. (a) In a quiet environment with
little stimulus competition (left), most coincident multisensory signals originate from the same event and
thus come from the same location in space. The likelihood that synchronous signal come from separate
regions of space is quite low and thus simple stimuli and their onset times are sufficient to shape and tune
multisensory proximity filters (right). (b) When the multisensory spatial and temporal statistics of the
environment are changed, multisensory filters shift to reflect that change. (c) We predict that an increase
in stimulus competition, with nothing to anchor the binding of auditory and visual stimuli in the
environment will broaden multisensory filters, reduce the magnitude of multisensory integration, or

both. (d) We predict further that introducing correlation in stimuli should provide a sufficient anchor for
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binding and thus refine multisensory filters. (e) If correlation serves as this anchor, shifting the

correlation should result in shifted multisensory filters.
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When one event produces multimodal energies, those energies are spatially and

temporally coincident. And when there are few events occurring in the environment, the

likelihood that separate events occur simultaneously is low and thus coincident signals most often

originate from the same location in space and converge on neurons within a narrow time

window. In this environment, these spatial and temporal relationships between these coincident

unisensory signals may provide sufficient information as to whether a set of events belong

together. As a result, low-level multisensory filters built on proximity alone can accurately reflect

a common source for these signals (Figure 4.2a). These filters can also shift when spatial and

temporal discrepancies are introduced during development (Figure 4.2b). When more events

occur, the environment becomes crowded with sensory signals. The chance of separate events

producing coincident but spatially disparate energies increases. The result is a degraded or noisy

spatial and temporal structure in the environment. In the absence of a more robust cue for

appropriate cross-modal association, may decrease the selectivity (i.e., width) of low-level spatial

and temporal filters (Figure 4.2¢), the overall benefit (i.e., amplitude of enhancement) of

multisensory stimulus combination, or both. Empirically, this hypothesis could be tested by

measuring multisensory spatial and temporal filters (after Meredith et al., 1987; Meredith &
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Stein, 1986a) in animals reared in a simple environment where multisensory coincidence occurs

only with spatial and temporal proximity (Figure 4.2a) or environments with increasing levels of

sensory complexity driving increased spurious stimulus overlap (Figures 4.2¢).

If increasing the stimulus competition in the environment reduces the spatial and

temporal specificity of multisensory filters, a separate cue, distinct from spatial and temporal

ambiguity, must be responsible for the refinement of spatial and temporal processing. As alluded

above, a strong candidate is temporal correlation. In a complex developmental environment, two

stimuli might often occur at the same time but come from separate locations. Despite their

common onset, their dynamic features (e.g., amplitude envelope) are far less likely to be

correlated. Following this prediction, adding correlation to spatially and temporally proximal

multisensory stimuli would restore the specificity of spatial and temporal receptive fields in

multisensory neurons (Figure 4.2d). This prediction can be tested experimentally by rearing

animals in the same noisy environment as before, but where signals have complex amplitude

envelopes (after Maddox et al., 2015) with environmentally coincident stimuli (simulated

“events”) sharing a common fluctuation(Figure 4.2d, red line).
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This developmental relationship can be further tested by probing the relative strength of

correlation in shaping low-level filters. As above, animals can be reared in a complex sensory

environment. If correlation serves as a true anchor for appropriately associating stimuli and if

spatial and temporal filters are reflective of the brains prediction of that association, then if the

correlation is applied to spatially and/or temporally disparate signals during development, we

would observe a shift in those filters (Figure 4.2¢). If present, the magnitude of this shift relative

to the disparity that is present during development would provide a measure of the strength of

the scaffold that correlation provides to the low-level filters (after Jay, Martha F, Sparks, 1984).

We can further probe this by varying the noisiness of the environment and measuring the

resultant filter shift. Further, the limits can be tested by correlating stimuli with different levels

of spatial and temporal disparity.

A mechanism that could potentially be responsible for establishing low-level

filters through correlation is correlated spike-timing-dependent plasticity (STDP). STDP

strengthens synaptic inputs when those inputs occur just before the post-synaptic neuron fires

(Sjostrom, Rancz, Roth, & Hiusser, 2008) and in itself is a related to the degree of correlation

between pre and postsynaptic activity (olde Scheper, Meredith, Mansvelder, van Pelt, & van
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Ooyen, 2018). This logic has been extended to account for how multisensory neurons are tuned
through development. A neural network model that has been shown to produce physiological
features of mature multisensory neurons (Cuppini, Ursino, Magosso, Rowland, & Stein, 2010;
Magosso, Cuppini, Serino, Di Pellegrino, & Ursino, 2008; Ursino, Cuppini, Magosso, Serino,
& di Pellegrino, 2009) is shaped during a developmental “training phase” where Hebbian rules
refine and align spatial receptive fields of the simulated neurons according to the unisensory
inputs (Cuppini, Magosso, Rowland, Stein, & Ursino, 2012; Cuppini, Stein, Rowland,
Magosso, & Ursino, 2011). Importantly, when developmental exposure consisted of misaligned
unisensory inputs, the mature model produced integrated responses only when inputs were
appropriately misaligned. Despite the simple nature of the input “stimuli” used during the
development of these neural networks, it is plausible that correlation across dynamic inputs could

induce similar development of multisensory neuronal features.

Concluding Remarks

Neural and behavioral enhancements conferred by multisensory integration are
likely the result of the brain inferring a common origin of multisensory stimuli. Indeed, these

interactions are most useful when they involve the combination of sensory inputs from a single
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event or object. However, as illustrated in this chapter, these interactions can occur in response

to paired multisensory stimuli that do not strictly belong together (e.g., artificial stimuli such as

flashes and beeps), as long as they occur in close spatial and temporal proximity. Spatial and

temporal proximity become less important in guiding multisensory enhancements when stimuli

are correlated (i.e., similar) over time.

We've presented a framework that attempts to bridge this disparity. Patterns of

multisensory integration based on the proximity of multisensory stimuli (e.g., spatial and

temporal filters) reflect the statistics of multisensory stimuli that the brain has learned to

associate with a common origin. Stimuli that originate from a single event, because of their

spatial and temporal proximity, should be bound. Our framework posits that this bridge is built

during development while the brain is adapting to the statistics of the environment. We predict

that this bridge is guided by stimulus similarity when stimulus proximity becomes an ineffective

cue for linking signals. This is possible because similarity is more selective of a common event

than proximity.

Following others (Bizley et al., 2016), we acknowledge that the process of multisensory

integration is separate from binding. We extend this logic to relate two stimulus features—
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similarity and proximity—to each other and ascribe each (loosely) to a multisensory process. It’s

turther likely that these stimulus features (and by extension their ascribed processes) tap into

different multisensory operations, again loosely. Multisensory operations associated with

proximity are mostly “hard-wired” (Alvarado, Rowland, Stanford, & Stein, 2008; Magosso et al.,

2008; Rowland, Stanford, & Stein, 2007; Ursino et al., 2009) but still susceptible to the statistics

of the environment during development (Cuppini et al., 2012) and . This operation likely

bestows enhancements based on a special case of neural integration that depends on the dendritic

morphology of excitatory inputs and those inputs being balanced by parallel local inhibitory

interneurons which synapse close to the soma (Rowland et al., 2007). Binding, on the other

hand, represents an instantiation of a more flexible architecture involving synchronization across

neural populations (Engel, Roelfsema, Fries, Brecht, & Singer, 1997; Fries, 2005; Schroeder &

Lakatos, 2008; Womelsdorf et al., 2007). Such a division of multisensory labor has been

proposed before. Proximity—being a “classical” integration cue—may rely on the divisive

normalization operation (Ohshiro et al., 2011) and similarity may drive the oscillatory operations

(Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008) in the scheme proposed by Van Atteveldt
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and colleagues (2014). Taking this into account, there exist at least two “flavors” of multisensory

processes which depend on two distinct operations and two separate stimulus features.
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Chapter 5. General Discussion

“‘But it is impossible to perceive two objects coinstantaneously in the same sensory act
unless they have been mixed, [when, however, they are no longer two, for their
amalgamation involves their becoming one, and the sensory act related to one object
is itself one, and such act, when one, is, of course, coinstantaneous with itself. Hence,
when things are mixed we of necessity perceive them coinstantaneously: for we

perceive them by a perception actually one.”

— Aristotle, De Sensu et Sensibilibus

Summary and Implications of Results

The findings reported herein are the first pieces of evidence that the correlation between
auditory and visual streams, over time, can influence multisensory feature integration and
perceptual binding commensurate with the strength of that correlation. As correlation between
the features [i.e., amplitude modulation (AM) envelopes] of the signals increased, so did
behavioral performance in tasks designed to quantify integration and binding. First, despite
holding the depth, and thus the detectability, of unisensory AM constant across conditions,
multisensory configurations in which the two AM envelopes were better overlapped (i.e., were

more correlated) improved that detectability of the AM. Unlike many previous findings which
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relate multisensory behavioral changes to unisensory differences, the current finding cannot be

attributed to changes in the unisensory domains (e.g., inverse effectiveness) but is rather a

product of a multisensory comparison. Second, the benefits of (de)correlating amplitude

envelopes extended to a separate feature of the stimulus. When the correlation between auditory

and visual AM envelopes was increased, the detectability of a frequency modulation (FM) event,

improved. According to principles of object-based attention (Desimone & Duncan, 1995;

Shinn-Cunningham, 2008), when our attention is directed toward an object based on one feature

(in our case, the amplitude envelope), other features (here, the frequency) of that object are

enhanced. Therefore, the enhancement of the FM feature is important in showing that

correlation in AM is inducing the perceptual binding of the auditory and visual streams (Bizley

et al., 2016). Together, these findings are in agreement with the temporal correlation hypothesis

(Gray, 1999; Singer & Gray, 1995) and the hypothesis that our multisensory perceptual

experience is driven in part by temporal coherence across uni- and multisensory brain regions

(Senkowski, Schneider, et al., 2008).

Common across both tasks, we found that behavioral performance was not necessarily

best when the stimuli were objectively correlated. Instead, both tasks revealed a transform
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between stimulus correlation and participant performance that occurred along the phase

dimension and was unique to each participant. This transformation could be accounted for by

simulating a delay in one of the sensory signals prior to computing correlation across conditions.

This delay simulated differences in temporal processing between the sensory systems. Indeed, a

tangential experiment found that differences between auditory and visual reaction times (RTs)

correlate with phase shift across participants. Although this phase shift stands up to several tests

of its validity, several aspects of its instantiation remain unclear and constitute a direction for

future work.

Finally, we presented a perspective on these two multisensory processes, binding and

integration, which we argued are loosely shaped by separate stimulus features: similarity and

proximity and we proposed a developmental link to bridge the two. We compared two metrics

from our data: one measuring the benefit of combining of auditory and visual signals and another

measuring the benefit of temporal correlation. We related these to integration and binding,

respectively; an integration conforms to known principles of integration [i.e., inverse

effectiveness (Meredith & Stein, 1983) and congruent effectiveness (Otto et al., 2013)] while the

binding metric does not. The finding that binding can be dissociated from the principles of
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integration is in agreement with previous reports which were not specifically aimed at

differentiating multisensory integration from binding (Chuen & Schutz, 2016; Denison, Driver,

& Ruff, 2013; Parise et al., 2012, 2013; Vatakis & Spence, 2007). Admittedly, this collection of

evidence is tangential at best, and so we suggested a series of experiments aimed at testing the

relationship between integration and binding directly during development.

Integration versus binding

This issue concerning the differences in binding and integration is a major issue in

multisensory research (Bizley et al., 2016; Vatakis & Spence, 2007; Wallace et al., 2004) and in

this dissertation. Multisensory integration typically describes the convergence and interaction of

sensory information in the brain and often leads to measurable changes in neural activity,

perception, decisional processes, or overt behavior (Stein et al., 2010; Stein, Stanford, &

Rowland, 2009; Stein & Stanford, 2008). There seems to be a hardline argument that

“integration” necessarily involves a differences between multisensory and unisensory responses

(Stein et al., 2010), however, the definition used in this dissertation does not hold this as an

absolute requirement. The definition is broad as it involves a large and widely varied set of neural

mechanisms, experimental techniques, assumptions, and dependent measures. A set of three
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general principles—space, time, and effectiveness—have been used to describe multisensory

integration and have been repeatedly demonstrated across a variety of domains (see Chapter 1 for

a short review of these principles).

Multisensory binding, on the other hand, is a specific integrative process whereby

multisensory features are linked to form a single, unified representation of an external event or

object (Bizley et al., 2016). Being a specific process, binding carries a restrictive definition.

Typically, binding involves some similarity between features (e.g., temporal correlation) of

multisensory stimuli and the enhancement of other features present in that object, a finding

replicated in the current work. This last component, the enhancements of the features of an

object other than the ones carrying the correlation, are also not an absolute requirement for

binding. Rather, this is a means to exclude interactions in which the underlying process is

ambiguous. For example, if responses are made on the feature that induces binding (as was the

case in Chapter 2 where participants detected the AM that carried the temporal correlation), it is

difficult to differentiate between a true perceptual enhancement that results from binding and a

shift in the decisional criterion.
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These similarities that drive binding, especially temporal correlation, appear to operate

independently of—and sometimes bend—core multisensory principles. It was shown previously

that temporally correlated stimuli can be separated further in time and space than uncorrelated

stimuli while still being perceived as spatially and temporally coincident (Chuen & Schutz, 2016;

Denison et al., 2013; Parise et al., 2012, 2013; Vatakis & Spence, 2007). Our results presented in

Chapter 4 round out the list of core multisensory principles by showing that integration follows

the principle of inverse effectiveness but a measure likely reflecting binding by temporal

correlation does not. Thus, temporal correlation, especially when it induces multisensory

binding, appears to act as a perceptual “glue” that binds features between the senses.

This metaphor of “glue” has been invoked previously in the context of binding. In the

Feature-Integration Theory of attention (Treisman & Gelade, 1980), features are encoded in

parallel along a number of dimension (e.g., color, orientation, brightness). These features are

represented separately until bound together into a perceptual object at a later stage of processing.

In this stage, stimulus locations are processed serially by focused attention and features falling in

the same locus of attention are combined into a single object. In this model, the “glue” that binds
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features together is that attention, which seems to conflict with the notion of temporal

correlation as that glue.

Attention can also influence the processing of features across modalities, especially when

they are temporally correlated. When participants are listening to auditory speech, directing

attention toward matched visual speech increases neural activity compared to attending

unmatched visual speech (Fairhall & Macaluso, 2009). Further, enhanced neural activity related

to deploying attention toward irrelevant visual speech is associated with poorer recognition of

audiovisual speech targets (Senkowski, Saint-Amour, Gruber, & Foxe, 2008). This apparently

discrepancy between bottom-up (e.g., temporal correlation as the “glue”) and top-down (e.g.,

attention as the “glue”) processing was addressed more recently (Talsma, Senkowski, Soto-

Faraco, & Woldorft, 2010). Briefly, Talsma proposed that in the absence of stimulus

competition, integration (and by extension, binding) of a temporally-correlated target such as

audiovisual speech may be automatic. But when other stimuli or tasks are introduced that capture

attention, neural resources are diverted toward the extra stimulus and away from the target.

Focusing attention on the target then becomes necessary to properly integrate that target, a

process that is enhanced when that target is temporally correlated (Maddox et al., 2015;
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O’Sullivan & Lalor, 2017). The glue metaphor can then be extended. If attention provides the

“glue” that binds features, then temporal correlation [or some other form of consistency (Bizley

et al., 2016)] provides the structure on which the glue can adhere. When the structure is better

matching (e.g., has increased temporal correlation), the bond becomes stronger which provides a

more salient signal for attentional capture.

Although it may be possible to differentiate binding and integration theoretically and

empirically, it is only logical that the two are linked. Enhancements bestowed by simple

multisensory integration help guide our action only in the context of appropriate causal inference

(Kording et al., 2007; Magnotti et al., 2013; Schutz & Kubovy, 2009; Shams & Beierholm,

2010). Therefore, multisensory enhancements that can be measured with stimuli with no

environmental relationship, such as the spatial and temporal principles (Bolognini et al., 2005;

Frassinetti et al., 2002) must be shaped somehow by the binding process. In Chapter 4, we

propose that temporal correlation is this scaffold. A natural environment is noisy with stimuli

that often overlap in onset time but not in space. A multisensory system built only on stimulus

timing would have spatial and temporal filters that are broad and non-specific. These filters
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ought to be refined during development by a cue that is less ambiguous as to the relationship

between two sensory signals. We proposed that this cue is temporal correlation.

Binding through neural synchrony

It has been suggested that the coordination of activity across brain regions is

accomplished by the synchronization of rhythmic fluctuations in those regions (Fries, 2005;

Gray, 1999; Senkowski, Schneider, et al., 2008). Neural synchrony and oscillatory entrainment

has been identified or implicated as important factor in sensory awareness (Engel & Singer,

2001), attentional selection (Lakatos et al., 2008; Womelsdorf & Fries, 2007), flexible routing of

information in the brain (Fries, 2005; Womelsdorf et al., 2007), and sensory feature binding

(Hipp et al., 2011; Singer & Gray, 1995), which was the focus of this dissertation.

Multisensory binding, and the subsequent improvement in perception, is driven in part

by oscillatory synchronization (Engel, Senkowski, & Schneider, 2007; Senkowski, Schneider, et

al., 2008). Low-frequency neural oscillations reflect the pattern of neural excitability over time

(Bishop, 1933) and therefore influence the probability of neural firing and even stimulus-related

activity (Buzsaki & Draguhn, 2004; Lakatos et al., 2005). Behavioral performance has been

linked to oscillatory phase in both auditory (Henry et al., 2014; Henry & Obleser, 2013;
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Neuling, Rach, Wagner, Wolters, & Herrmann, 2012; Ng, Schroeder, & Kayser, 2012; Okada,

1994) and visual (Busch, Dubois, & VanRullen, 2009; Cravo, Rohenkohl, Wyart, & Nobre,

2013; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009) tasks. Oscillations appears to be

particularly important in the context of temporally fluctuating stimuli (Henry et al., 2014;

Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010) where endogenous neuronal

oscillations readily entrain to low-frequency fluctuations of sensory inputs (Thut et al., 2011),

and offer a dynamic prediction about upcoming signals (Engel, Fries, & Singer, 2001).

Oscillations are important in the processing and binding of audiovisual speech.

Endogenous oscillations entrain to the rhythmic structure of acoustic speech (Luo & Poeppel,

2007; Peelle, Gross, & Davis, 2013; Zoefel, Archer-Boyd, & Davis, 2018) and these oscillations

control local spiking activity through hierarchical organization (Giraud & Poeppel, 2012;

Lakatos et al., 2005). The ability of the auditory cortex to encode the structure of acoustic speech

(Pasley et al., 2012) is correlated with its comprehension (Ahissar et al., 2001). Visual speech is

known to also entrain oscillations in cortex (O’Sullivan, Crosse, Di Liberto, & Lalor, 2017).

Access to temporally congruent audiovisual speech cues enhances the synchrony of brain activity

to that speech in both auditory and visual cortices (Park, Kayser, Thut, & Gross, 2016;
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Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008). Thus, the cortical representation of on-

going speech is enhanced by seeing the face of the speaker (Crosse et al., 2015) and this benefit

is larger in noisy conditions where the representation is degraded (Crosse et al., 2016).

The utility of oscillations in multisensory binding becomes apparent in the presence of

competing stimuli. The entrainment of neural oscillations has been proposed as a mechanism

attentional selection (Lakatos et al., 2008; Schroeder & Lakatos, 2008) which is of particular

importance when there are competing streams, for example when trying to focus on one speaker

among a group of speakers (Zion-Golumbic & Schroeder, 2012; Zion Golumbic et al., 2012).

When listeners are listening to a mixture of competing speech streams, neural activity in auditory

cortex is able to encode and reconstruct the attended speech stream as if the listener heard that

speaker alone (Mesgarani & Chang, 2012). The representation of attended speech in a multi-

speaker environment is enhanced during the presentation of a congruent visual stream

(O’Sullivan & Lalor, 2017). Consistent with theories of object-based attention (Bizley et al.,

2016; Desimone & Duncan, 1995; Shinn-Cunningham, 2008), this process may be mediated by

enhancements in features (e.g., frequency or timbre) orthogonal to those that are correlated in

audiovisual speech (e.g., amplitude; Maddox et al., 2015). Similarly, during the presentation of
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competing auditory speech-like streams, a visual stream that is temporally congruent with one of
peting ry sp ) p y cong

the auditory streams enhances the representation of that stream and its other features in single

neurons in auditory cortex (Atilgan et al., 2018).

Interestingly, oscillatory synchrony across large cortical networks can mediate binding in

the absence of rhythmically fluctuating stimuli. In the stream-bounce illusion, two identical

visual objects—typically disks or bars of light—appear at the left and right sides of a display and

travel toward the opposite side of the display. Their paths coincide mid-way through the

presentation which is most often interpreted perceptually as the objects passing through each

other. However, on rare presentations, some observers report the perception of the disks

colliding and then bouncing apart (Metzger, 1934). The introduction of an auditory token at the

moment of coincidence of the visual objects biases reports in favor of a “bounce” percept (R.

Sekuler et al., 1997). The auditory stimulus can be decoupled from the visual stimulus by

presentation of identical auditory tokens before and after the auditory token, thus forming and

auditory stream that is overall unmatched from the visual stream. When this happens, report the

bounce percept less often (Watanabe & Shimojo, 2001). Critically, when the frequency of the

middle auditory token is different from the flanking tokens, thus ungrouping the auditory stream
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(Darwin, 1992), the perception of a bounce is recovered. Therefore, the perception of a “bounce’
is dependent on the binding of the visual streams with the auditory event. During identical
multisensory presentations of this illusion, two long-range cortical networks involving frontal,
parietal, and occipital regions and across multiple frequency bands become more synchronized
when observers bind the auditory token with the visual streams and report the perception of the
visual stimuli bouncing (Hipp et al., 2011), illustrating the importance of neural synchrony on
audiovisual binding, even in the absence of temporal correlation.
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Figure 5.1 (previous page): Representation of stimulus correlation and neural synchrony. Rhythmic

auditory (red) and visual (blue) stimuli are known to entrain oscillations in their respective sensory

cortices. When played together, auditory and visual cortex may become (de)synchronized based on the
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parameters of the stimulus rhythms (frequency and phase). Along the vertical axis we show a decrease in
frequency of the visual stimulus which leads to a decrease in the frequency of the entrained oscillations in
visual cortex. These changes desynchronize the neural activity between auditory and visual cortices
which ultimately decouples the activity. This can be likened to audible speech signals and mouth
movements generated by one speaker (high temporal correlation, high synchrony) or by two speakers (low
temporal correlation and synchrony; adapted from Beker et al 2018).

The signals that were used in the work described here, sinusoidal AM, were chosen

because of their known ability to entrain ongoing neural oscillations (Henry et al., 2014; Henry

& Obleser, 2012; Schroeder et al., 2010; Thut et al., 2011). Rhythmic uni- and multisensory

stimuli are able to entrain oscillations in multiple frequency bands at once (Henry et al., 2014;

Nozaradan et al., 2012). Moreover, behavioral sensitivity is modulated by both oscillatory

patterns (Henry et al., 2014). We leveraged this ability with the assumption that modifying the

parameters of the AM in one stimulus would change the oscillations that follow that stimulus.

Thus, manipulating the magnitude of correlation of the stimuli should change the degree of

synchrony of the underlying oscillatory activity and their functional connection (Figure 5.1), as

described in the examples above. In turn, this connection should drive binding. The work

presented in Chapter 3 confirms parts of this hypothesis.
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The work presented here shows that behavioral performance in two orthogonal tasks

depends on a linear relationship between two multisensory AM signals (viz., correlation).

Because of the nature of the stimuli used here, behavioral performance likely also depends on the

strength of neural synchrony that is established by correlated oscillatory activity. First, when low-

frequency fluctuations in auditory and visual signals are congruent, both auditory and visual

neural activity that follows a higher-frequency feature is enhanced across trials (Nozaradan et al.,

2012). Second, in a similar experiment that used non-rhythmic stimuli, the ability of neurons in

auditory cortex to follow an auditory stream and encode events in that stream are enhanced by a

congruent visual stream (Atilgan et al., 2018). Whether these or other neural processes scale with

the strength of the correlation is a large focus for future research endeavors (see below).

Flexible binding

Audiovisual stimuli, such as speech, that come from a common event are typically well

correlated with each other (Chandrasekaran et al., 2009). However, the sensory world is very

complex. Even though the correlations between stimuli that go together are typically strong,

spurious correlations do exist between unrelated, randomly-paired auditory and visual speech

signals. In a situation where multiple individuals are speaking, a mechanism that simply indexes
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whether signals are correlated or uncorrelated could lead to obligatory and errant binding.

Flexible binding of the appropriate signals would require a mechanism based on the strength of

the correlation. So far, most studies have tested the effect of only two levels of correlation on

behavioral and neural processes (Atilgan et al., 2018; Denison et al., 2013; Maddox et al., 2015;

Nozaradan et al., 2012; Parise et al., 2012, c.f. 2013), making inference about the measurement

of correlation impossible. However, a recent report of a general multisensory correlation detector

model (Parise & Ernst, 2016), utilized the detection of correlation along a continuum to predict

a number of multisensory behaviors.

By manipulating the frequency and phase relationships between the two AM stimuli, we

were able to generate stimuli with a range of temporal correlations over which to test binding

and integration. The first main finding, that multisensory integration depends on the strength of

correlation, is evidence that the brain can represent of the degree of similarity between two

streams. Furthermore, the second finding is that this incremental process appears to influence

multisensory object formation (Bizley et al., 2016). Thus, we are increasingly more likely to form

multisensory objects as the underlying correlation between sensory streams increases. This allows

for appropriate inference of multisensory associations in complex sensory environments.
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The incremental dependence on correlation could also be involved in a

multisensory process similar to hierarchical image segmentation (Ullman, 2007; Ullman & Sali,

2000; Ullman, Vidal-Naquet, & Sali, 2002). Image segmentation involves the representation of

objects by groups of common image fragments. Visual features of increasing complexity are

combined hierarchically and flexibly to promote object invariance. It was proposed that

intermediately complex features, which convey more information about an object than simpler or

more complex ones (Ullman et al., 2002), could be grouped by a hierarchy of similarity (Kubilius,

Wagemans, & Op de Beeck, 2014).

In a version of this process, different levels of objects could potentially be bound by

different degrees of correlation. Take for example a forest of trees. One could focus attention to

the forest, to a cluster of trees, to a single tree, or to a leaf from a single tree. Within a single leaf,

its uniform surface is likely to have a high degree of correlation across space and, if the wind is

blowing, across time as all parts of the leaf will move together. A single tree contains a multitude

of leaves. The individual leaves are more correlated with themselves than other leaves and so the

correlations across the entire tree are diminished relative to a single leaf. This logic can be

extended to account for different correlations among a cluster of trees or the entire forest. We are
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left with four levels of objects with three levels of correlations. As a general principle, correlation

decreases with increased object hierarchy. Focusing attention on each of these levels possibly

draws from our ability to process different levels of correlation as demonstrated in the current

work.

Modeling temporal correlation

One of the novel approaches to the current work is the use of a decisional model to

explain the evidential nature of correlation. Evidence accumulation models, especially the class of

diffusion model used here, can disentangle participant- and stimulus-related phenomena by

fitting choice probabilities and RTs simultaneously (Voss et al., 2004). From these two measures,

decision models can reliably estimate differences in participant bias, speed/accuracy trade-off, the

time it takes to process stimuli, and the amount of sensory information in that stimuli relevant

for the decision.

While analyzing the data from Chapter 2, we discovered an interesting feature of our

stimuli that we discussed briefly in the Discussion section of that chapter. Just by changing the

duration of the audiovisual stimulus we can change its overall temporal correlation. For example,

when the auditory AM is 7 Hz/90° and the visual AM is 6 Hz/0°, at 500 ms the correlation

212



coefficient is -0.69 (Figure 5.2a). When that duration is extended out to 1 s, the correlation

becomes ~0 (Figure 5.2b). Since observer will typically report the presences of AM after ~800

ms, it is impossible that the decisional system is utilizing correlation present in the full 1 second

of duration. Considering this observation, we attempted an experiment aimed at dissecting how

this correlation unfolding in the stimulus over time, in turn, unfolded in behavior. We

hypothesized that we could measure the interval over which participants accumulated correlation

by varying stimulus duration (and thus the magnitude of correlation) prior to a feature (an

auditory gap) that participants were detecting.

These experiments ultimately did not pan out. However, a slight modification of our

model might be able to measure the build-up of correlation over time. In our model, we

constrained drift rate to be proportional to stimulus correlation. Specifically, we took the average

correlation over the entire 500 ms stimulus duration. Although this assumes the participants are

using the entire correlation, behavioral data was fit nicely by this assumption. For each condition,

this resulted in a drift rate that was a constant term which was added to the random fluctuations

(diffusion) in the evidence accumulation process. This constant drift term is a feature of many

accumulator models (Ratcliff et al., 2016). However, a subset of accumulator models—such as
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the Ornstein-Uhlenbeck, interactive race, and leaky-competing models—employ non-constant

drift rates. In many of these models, drift rates simply decay over time but it is possible to

constrain drift rate to any shape across a single trial (Diederich & Oswald, 2014).
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Figure 5.2 (previous page): Representation of stimulus correlation across durations. (a) Stimulus
correlation matrix for 500 ms stimulus. The condition in which auditory AM parameters are 7Hz/90° is
highlighted and the auditory (red) and visual (blue) AM envelopes are shown above the matrix. (b) The
same information is shown as in (a) except for the stimulus duration is now 1 s. By simply changing
duration, the general pattern of the matrix, and the correlation of the example condition have changed.
(c) 4 longer duration stimulus ~2 s is shown for AM envelopes (red and blue) having the same
parameters as in (a) and (b). Below, the fluctuations of correlation are depicted. High correlations align
with in-phase envelopes while low correlations occur when envelopes are out of phase. (d) Probability
density functions (PDF) of correct (green) and incorrect (red) responses. Note the bi-modality of each
PDF and the out-of-phase nature of the modes. For this condition, there are more incorrect trials due to
the stimulus initially having a negative correlation. In the “opposite” condition in which the auditory
has a starting phase of 90", we would expect the correlation to begin positive and the two RT

distributions to reverse (red becomes green and vice-versa). The time axis has been compressed relative to

(c).

A more complex model could be constructed where temporal fluctuations in the

correlation (Figure 5.2¢) are used to constrain drift rate. Given that correlations fluctuate

between positive and negative which is a product of the auditory and visual AM moving in and

out of phase, we might expect RT distributions to be multimodal with modes aligning to the

waveform of the correlation fluctuations (Figure 5.2d). Because positive correlation should

induce correct responses (hits) and negative correlation should lead to errors (misses), we would

predict that the multiple modes be out of phase across correct and error RT distributions.
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Because of these intricacies, we would not be able to employ model fitting on mean RT's as we
did in Chapter 2 and would instead need to fit the entire distribution, and thus the procedure
would require many correct and error trials, which can take as many as 200 trials to get a

satisfactory estimate of both distributions (Wagenmakers, 2009).

Future Experiments

A practical extension of the utility of temporal correlation is in the processing of
audiovisual speech. Visual access to the face improves speech intelligibility (Erber, 1969; Ross et
al., 2007; Sumby & Pollack, 1954). Given the correlations embedded in audiovisual speech and
their importance to speech processing and perception (Crosse et al., 2015; Grant & Seitz, 2000;
Munhall et al., 1996; O’Sullivan & Lalor, 2017; Park et al., 2016; Venezia et al., 2016), the
question of how correlation strength affects these processes naturally emerges. Does correlation
bestow benefits on speech perception in the same incremental manner as described in this
dissertation?

Another question provoked by the current findings involves the neural substrates of
temporal correlation. What is the underlying computation of correlation and where (in terms of

both physical location and along the processing hierarchy) can we find it? Does multisensory
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correlation incrementally enhance activity in both respective sensory cortices? Is there another

region of the brain that is tasked with measuring the strength of correlation? With regard to the

ascent along the auditory processing axis (Marslen-Wilson & Warren, 1994), does correlation

incrementally affect the representation of speech envelope (Crosse et al., 2015) or spectrogram

(Pasley et al., 2012), their intermediate phonemic representation (Di Liberto, O’Sullivan, &

Lalor, 2015), the transform into linguistic information (Brodbeck, Hong, & Simon, 2018), and

their modulation by attention (Brodbeck et al., 2018; Mesgarani & Chang, 2012; O’Sullivan &

Lalor, 2017)?

The questions and experiments posed here surround the temporal structure of the stimuli

and its relevance to human speech. Electroencephalography (EEG) or magnetoencephalography

(MEG) represent excellent tools given their temporal precision and non-invasive nature.

Moreover, the questions posed involve questions about neural encoding and tracking of stimuli

which are easily posed using time-series data from M/EEG (Crosse et al., 2015; Ding, Melloni,

Zhang, Tian, & Poeppel, 2016; Haynes & Rees, 2006; Keitel, Gross, & Kayser, 2018).

Although similar experiments have been performed while recording from neurons in vivo

(Atilgan et al., 2018), the work proposed here will focus on M/EEG methods. One set of
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proposed experiments would benefit from single neuron recordings, but those have been

described in Chapter 4.

Neural underpinnings of correlation

In one experiment, participants would be presented with stimuli like those used in the

current work, AM visual and auditory stimuli where one AM signal changes along frequency

and/or phase. Time-frequency analysis would be used instead of more traditional event-related

potential (ERP) analysis. Spectrograms of the M/EEG signal recorded during audiovisual

conditions would be compared to predicted spectrograms based on a model combining

unisensory auditory (A) and visual (V) spectrograms [e.g., A + V, max(A,V)]. Here, we would

predict that the power difference at the frequency of AM (auditory, visual, or average frequency)

would improve with correlation. Correlation can be regressed against these measures across

electrodes and the regression coefficients can be plotted topographically. One might expect these

power differences to vary with correlation over temporal and occipital electrodes, as these scalp

locations have been reported to be active during the processing of similar stimuli (Crosse et al.,

2015, 2016). Following an experiment that showed changes in synchronization during binding

(Hipp et al., 2011), this experiment could also benefit from functional connectivity analysis
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(Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011) to explore how correlation

changes network dynamics throughout the brain and whether those changes correspond to those

shown previously.

Another experiment might be aimed at testing how well one stimulus aids in the neural

tracking of another stimulus, which describes how well a particular feature is represented in the

brain. These features can be stimulus related (e.g., envelope, spectrogram, coherence; Crosse et

al., 2015; O’Sullivan et al., 2015; Pasley et al., 2012). or even related to information extracted

from the stimulus (e.g., semantic information; Ding et al., 2016). In these experiments, stimuli

are typically long (>3 s) and usually require an arrhythmic temporal form (c.f., Ding et al., 2016)

and so using sinusoidal AM stimuli is impractical. However, more complex envelopes can be

constructed in the frequency domain by selecting desired frequencies with a uniform amplitude

and assigning each a random phase and computing the inverse Fourier transform (Maddox et al.,

2015). Visual stimuli with varying degrees of correlation can be constructed in the same way by

specifying a correlation in the phase component (R. K. Maddox, personal communication,

March 6, 2018). M/EEG recorded during the presentation of these stimuli can be used to define

a temporal filter, called the temporal response function (TRF; Crosse, Di Liberto, Bednar, &
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Lalor, 2016; Lalor & Foxe, 2010), which represents the mapping between some time-varying

sensory feature(s) in a stimulus—in this case the amplitude envelope—and the resultant M/EEG

response. The TREF can be used to reconstruct the time course of the auditory envelope signal by

convolving it with the neural signal across different listening conditions via cross-validation

(Figure 5.3a; Crosse et al., 2015; Crosse & Lalor, 2014). Frequency features could be added to

the stimuli and spectrograms can be reconstructed from the underlying neural activity (Pasley et

al., 2012). Reconstruction accuracy can be measured by correlating the stimulus envelope with

the reconstruction of that envelope (or the actual and reconstructed spectrograms).

Reconstruction accuracy can then be measured with the addition of temporally coherent visual

stimuli (Figure 5.3a-b). Predictably, increasing the coherence should proportionally improve the

neural tracking (Figure 5.3c, right side). A topography of channel contributions to the

reconstruction (i.e., which channels carry the most information) can be used to localize where the

information used in the reconstruction comes from.
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Figure 5.3: Stimulus reconstruction with M/EEG (previous page): A. Auditory stimulus envelopes
(black) are reconstructed from neural activity during auditory (red), visual (blue), and audiovisual
(purple) presentations. The accuracy is measured as the Pearson’s correlation between stimulus envelope
and the reconstruction. B. Reconstruction accuracy is improved by the presentation of a congruent
audiovisual stimulus (adapted from Crosse et al., 2015). C. Hypothesized linear effect of correlation on
reconstruction accuracy on a selective attention experiment. When visual coherence matches a distractor,

reconstruction accuracy suffers.

In a version of the experiment, participants can be asked to detect a target feature

imbedded in the stimuli. Presumably, the sensitivity of detecting the target should vary with the
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ability of the neural activity to encode the stimulus and the target. This could be measured by

correlating behavior with neural tracking performance (e.g., reconstruction accuracy) or with the

performance of a classifier that chooses whether the feature was present or not. The assumption

here is that higher reconstruction accuracy induced by stronger correlations should enhance the

representation of the target feature. We can also test the effects on attention by simultaneously

presenting a distractor stimulus while varying the visual stream from fully coherent with the

target to incoherent and further to fully congruent with the distractor. The coherence of the

visual stream and which auditory stream it is coherent with should affect both behavior and the

ability to reconstruct the stimulus envelope proportionally (Figure 5.3c).

Oscillatory phase shift

One way to test whether phase shift is related to neural oscillations is to measure

the neural activity in an experiment similar to the first described above. Then the benefit with

different frequency and phase conditions could be fit to stimulus correlation computed with a

phase lag in a manner similar to what was described in Chapter 2. Neural phase shift can be

compared to behavioral phase shift across participants. A necessary experiment that might

highlight any mechanistic interactions would involve taking separate and direct measures of
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auditory and visual phase lag (Henry & Obleser, 2012). A prediction of phase shift can then be

computed by taking the difference between auditory and visual phase lags. Any systematic

difference between the predicted and fit phase shift might indicate an interaction that normalizes

the stimulus timing in the brain.

Speech perception

Previous reports relating the effect of similarity on speech perception have done so

indirectly. These studies have reported different conditions in which the auditory and visual

speech were unmatched in gender (Vatakis & Spence, 2007), speaking speed (and thus duration;

Munhall et al., 1996), and direction (forward and reverse; Kim & Davis, 2004). To more directly

evaluate the contribution of correlation to our perception of speech, one behavioral experiment

would measure recognition of speech in noise with and without the addition of a visible face.

Performance would be titrated to a noise level where multisensory benefit to matched stimuli is

maximal (Ross et al., 2007) in order to maximized the potential effect of changing the visual

correlation. Mouth movements can be artificially modulated by an envelope that is correlated

with the acoustic envelope along a continuum of strengths (as described above). Participants can

be asked to identify spoken words. Audiovisual speech recognition can be compared across
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different correlations and compared to auditory only performance. Further, performance on trials

with highly-correlated artificial speech can be compared to matched audiovisual speech as a

measure of the contribution of visemes and visual semantic information (P. L. Jackson, 1988).

An extension of this would be aimed at resolving the neural substrates involved in the

contribution of correlated audiovisual speech to speech perception. In this task participants

would listen to continuous speech signals with similar artificially modulated mouth movements.

In the experiments participants would be tasked with reporting whether a target word appeared

in the speech stimulus across different correlations. The underlying neural effect of correlation

could be observed in a measure of reconstruction accuracy (see above; Crosse et al., 2015; Crosse

& Lalor, 2014) or the accuracy of a classifier trying to classify correct and incorrect responses.

Hit rate would likely be correlated with reconstruction/classifier accuracy across correlation levels

and across subjects.

One of the driving predictions related to a linear representation of correlation was that it

allowed for the selection of an appropriate signals to bind when the potential signals are

correlated to some degree. According to the prediction, the selection should be based on the

strongest correlation among audiovisual pairs. We can probe this hypothesis by introducing
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competition. In one task, two differentiable speech streams (e.g., one to the left ear and one to

the right ear, one begins earlier than the other) are presented in noise. A target word is displayed

prior to speech onset and is present in one of the two streams. Participants are asked to making a

judgement about the stream containing the target word. A visual stimulus involving a face with

an artificially modulated mouth movements can be presented that is correlated to some degree

with both speech envelopes. It would, of course, be more correlated with one acoustic cue.

According to the prediction, participant performance should increase with difference in

correlation between the visual cue and the two auditory cues.

One final experiment is aimed at deconstructing how correlation affects processing along

the auditory hierarchy. For these experiments, M/EEG is recorded from participants as they

watch videos of natural, continuous speech. We can use TRFs to map the temporal filter for a set

of audiovisual features, across a variety of listening conditions. For example, forward models that

involve increasingly complex features such as amplitude envelopes, acoustic spectra, phonemes

and visemes, or even the semantic information in the speech can be generated. We can

deconvolve the neural signal with correlations embedded in these features. These TRFs should

give us a measure of the contribution of each feature to the neural signal. Manipulation of the
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listening condition (low vs. high background noise, one speaker vs. many speakers) might

provide conditions in which these features contribute differently to the processing of speech. One

might predict that in high levels of noise, where the physical features of the acoustic speech (i.e.,

the amplitude envelope or spectrogram) are degraded, integration of correlation might occur at

the phonemic/visemic level or higher. A more causal role might be established by manipulating

these features just prior to a target word. By interrupting the brain’s tracking of these features

and their relation to word recognition, we can ascribe a causal role for each in the intelligibility of

speech.

Conclusions

Previous work has characterized the role of temporal correlation in a variety of processes

such as temporal processing, spatial processing, selective attention, and speech perception. These

studies have forfeited a fine-grain view of correlation in favor of more natural and realistic tasks

and stimuli. In this dissertation, we have simplified the task and the stimuli in favor of a deeper

look into temporal correlation and its role in multisensory processes of integration and binding.

We have parametrically varied correlation and found that the strength of correlation makes a

contribution to both of these processes, but with different magnitudes. This granularity of
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processing temporal correlation in the brain is requisite to a host of processes such as selection of

stronger correlation, which may be necessary for appropriate binding in complex audiovisual

environments, and hierarchical binding. The answers to the questions posed here lay a solid

foundation for future work on the investigation of temporal correlation, its instantiation in the

brain, and its effects on different processes involving multisensory integration and binding, and

the neural underpinnings of those processes.
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