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Chapter 1  Comparative mass spectrometry-based metabolomics strategies for the 

investigation of microbial secondary metabolites 

 

This chapter was adapted with permission from the Royal Society of Chemistry from a review written by 

Brett C. Covington, John A. McLean, and Brian O. Bachmann, first published in Nat. Prod. Rep. 2017, 34, 

6-24 

 

Introduction 

 

Natural products for antibiotic discovery. 

  Since their discovery and implementation, antibiotics have become a central component of modern 

medicine and changed the landscape of the pharmaceutical industry. Their importance is apparent by the 

250 million antibiotic prescriptions that are given in the United States each year, enough for over 80 % of 

the population. However, over the past 30 years there has been a rapid increase in the incidence of 

antibiotic resistant infections, and at the same time it is becoming more and more difficult to discover 

new antimicrobial agents. To make matters worse, despite the increasing demand for new compounds 

with novel targets, many drug companies have scaled back or eliminated their antibiotic development 

programs.18 The combination of these events is leading us towards what many experts are calling a post-

antibiotic era in which antibiotics will no longer be effective at treating bacterial infection, and widespread 

resistance of this nature will significantly impact the death rate, period of infection, and the cost of health 

care. However, by unlocking hidden bioactive compounds from nature we may be able to expedite 

antibiotic discovery and effectively postpone or even prevent this crisis. 

 Fully 75 % of clinically relevant antibiotics are derived from natural products (NP)s, compounds 

produced by living organisms, and the majority of these are produced by microorganisms.19 These 
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metabolites are seemingly not involved directly with normal growth, development, or reproductive 

processes within their producer and are commonly called secondary metabolites (SM)s. Microbially 

derived SMs, particularly those from actinobacteria, have historically been rich sources of antibiotics,10, 20-

21 and over 60 %, around 14000, of identified bioactive microbial compounds have shown antimicrobial 

activity . Actinobacteria have been known to produce a diverse array SMs clinically relevant antibiotics 

from many classes including β-lactams, macrolides, polyketides, aminoglycosides, and peptides  SM 

production is often facilitated by large enzyme complexes which are encoded by readily identifiable 

biosynthetic gene clusters (BGC)s within the genomes of producing organisms. SM biosynthetic potential 

can be rapidly estimated from genomic sequence data via automated bioinformatics platforms capable of 

comparing sequenced BGCs to previously sequenced microorganisms and inferring putative structures of 

SMs by biosynthetic inference.22-23 Recent reviews from Ziemert, Moammad and Weber,29-34 and Medema 

and Fischbach have described several computational tools for BGC analysis. Though these actinobacteria 

and other natural sources have been extensively mined over the past several decades, genomic 

sequencing of both cultivated microorganisms and uncultivated microbiomes has revealed that most of 

the biosynthetic potential of microorganisms remains inaccessible to date. Even genomes of extensively 

studied microorganisms contain a large fraction BGCs for which NPs have not been identified. It is 

estimated that the products of greater than 90% of NP BGCs are either not sufficiently produced under 

standard laboratory growth conditions and/or their products are difficult to identify within extracted 

metabolomes. Recent studies indicate that in many cases these presumedly ‘silent’ BGCs are actually 

transcribed in levels that should be sufficient to observe produced SMs. In these cases, the main factor 

impeding NP discovery may be the ability to identify produced NPs from complex biological extracts. NPs 

play crucial roles in the chemical ecology of their producing organisms, and these roles often correlate 

translationally into applications in human medicine. Therefore, solving the linked problems of NP 
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biosynthesis and the identification of NPs within metabolomic inventories have become central efforts in 

the field of NP discovery.  

 

Strategies to access novel natural products 

 Increasingly sophisticated methodologies have been developed to activate production of NPs from 

orphan BGCs with no known products. These methodologies can be subdivided into heterologous and 

native approaches. Heterologous strategies endeavour to recapitulate functional secondary metabolic 

BGCs in surrogate producers. Gene clusters may be cloned, and/or synthesized and refactored into 

alternate organisms with the aim of detecting newly produced metabolites in comparison to a clean 

background.39 The success of heterologous expression is dependent upon functional expression within 

the host organism, which is a function of successful transcription, translation, and precursor availability 

as discussed in other reviews.43-44 Given the phylogenetic diversity of microbial SM producers, a number 

of hurdles must be addressed to successfully identify constructs for functional expression. In addition to 

optimizing genetic regulatory elements for heterologous expression, differences in protein stability, post-

translational modification of biosynthetic enzymes, and precursor availability must be addressed. 

Alternatively, native expression methods endeavour to activate SM production from within the native 

producer. In addition to refactoring BGCs via genome editing, several chemical and biological stimuli have 

been reported over the past few decades that activate SM expression. The concept of exposing a 

producing organism to an array of growth conditions, One Strain MAny Compounds (OSMAC), is relatively 

old and several activation stimuli have been reviewed. For example, microbial SM producers have shown 

responses to subinhibitory antibiotic exposure, vertically acquired antibiotic resistance mutations, rare 

earth metal exposure,51 and mixed culture with competing organisms. The central hypothesis of the works 

presented in this dissertation is that Taken together these phenomenon suggest that SMs are produced 

by microorganisms to respond to environmental stimuli68 and this is supported by the apparent BGC 
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activation selectivity of various stimulatory methods as well as the intrinsically complex nature of SM gene 

cluster regulation.69-70 

 Regardless, all categories of genome-prioritized NP discovery require a means of measuring the 

modulation of SM production within the extracted metabolome of native or heterologous producers, and 

metabolomics methods have been continually adapted to this task. Metabolomics is often defined as the 

comprehensive study of small molecules within a biological system and provides a direct measure of 

detectable SM production within an organism of interest. Currently there are two analytical platforms to 

facilitate metabolome profiling for NP discovery. Nuclear magnetic resonance (NMR) based metabolomic 

analyses, reviewed elsewhere,71 are not biased by molecular class and provide enhanced structural 

information for metabolites but are limited by the inherently low sensitivity of NMR. In contrast, the 

metabolomic analyses through mass spectrometry (MS), which are most relevant to the work presented 

in this dissertation, are exceptionally sensitive but are exclusively biased towards ionisable metabolites. 

The structural diversity of SMs, which span a broad range of functionality, molecular weight, and 

ionization efficiency, renders comprehensive detection of all metabolites through MS a challenging 

endeavour, and there is no universal approach for bioanalytical detection. For this reason, the 

development of metabolomics methods with MS strategies necessitates a discussion of contemporary 

practices and advances in analytical instrumentation.  

 As the product of the central dogma, the metabolome also contains information regarding a wide 

variety of cellular processes unrelated, or indirectly related to secondary metabolism. Correspondingly, 

metabolomics information may encode insights into how SM producing organisms respond to chemical 

and biological stimuli and may also provide a means of investigating the biological mechanisms of newly 

isolated NPs, antibiotics, and chemotherapeutics, from the metabolomic changes engendered within 

treated organisms. SMs are generally biosynthetic end-products and unlike primary metabolites, they 

accumulate at higher levels than the fluxes observed in central metabolism. Hence, comparatively 
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abundant SMs are well suited for comparative metabolomics work-flows. The central hypothesis of the 

works presented in this dissertation is that SM are used to respond to environmental stimuli and can be 

prioritized from comparative metabolomic analyses of stimulated culture extracts. The remainder of this 

chapter will describe the analytical tools and methods used in comparative metabolomics analyses for NP 

discovery, many of which are employed in Chapters 2-4. 

 

Methods of Generating Inventories of Microbial Metabolites  

 A variety of MS techniques are available to acquire metabolomics data with corresponding advantages 

and challenges depending on the analytical descriptor(s) that is/are desired. In each method, the end 

result of the analysis is a set of metabolomic ‘features’, ions with a determined mass-to-charge ratio (m/z) 

and potentially additional descriptive information. This additional information may include descriptors 

such as mass accuracy, chromatographic retention time, isotopic envelope, size and shape information, 

fragmentation data, and topological distribution, among others. A summary of key descriptors and the 

information they provide in SM characterization is provided in Table 1-1. As the dimensionality of feature 

characterization has an impact upon subsequent effectiveness of comparative metabolomics analyses, we 

will briefly discuss in this section commonly utilized methods for MS acquisition and highlight several of 

these key molecular characteristics that can be obtained with MS. 
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Mass measurement accuracy  

 The mass-to-charge ratio (m/z) of detected metabolites is the most useful property used to initiate 

the process of dereplication. For more than a decade mass analyzers have been able to determine mass 

accuracy with an error of under 1 ppm.72 This level of mass accuracy allows for the determination of 

elemental composition boundaries for compounds under 600 Da75 when coupled with isotopic mass 

ratios.77 While advances in Fourier Transform ion cyclotron resonance MS can now routinely perform at 

sub-ppm mass errors, typical instrumentation provides mass errors in the range of 1 to 10 ppm (e.g. time-

of-flight MS). Unfortunately, this alone is insufficient to confidently dereplicate features, because of the 

Table 1-1: Overview of analytical descriptors for metabolomics-based NP discovery  Reproduced from 
Nat. Prod. Rep. 2017, 34, 6-241 with permission from the Royal Society of Chemistry 

 

 

 

 

Analytical 
Descriptor Description Analytical technique 

Mass accuracy 

Deviation of the experimentally determined m/z from 
the true m/z. Expressed as the mass error (e.g. ppm), 
with sufficiently small error an exact chemical formula 
can be determined. 

Mass analyzer 
• Space-dispersive (e.g. ion trap, 

quadrupole)  
• Time-dispersive (e.g. Time of flight) 

Isotopic 
modeling 

Comparison of the abundances of specific isotopes in 
the molecular isotopic envelope. Can provide rapid 
indication of amount and identity of heteroatoms. 

Chemometrics 
• Theoretical isotope calculators 
• Mass defect analysis 
• Quantitation 

Chromatographic 
retention time 

 

Time required for fluid-solid phase partitioning across a 
column. Provides separation on the basis of a 
differentiating characteristic orthogonal to mass. 

Chromatography 
• Hydropathy (e.g. Liquid 

chromatography) 
• Volatility (e.g. Gas Chromatography) 
• Size and charge (e.g. Size exclusion, 

Charge exclusion, Ion capture) 

Ion mobility drift 
time 

Gas-phase electrophoretic separation based on size 
and shape of the metabolite as ions pass through a gas 
filled drift tube. 

Ion drift tube  
• Time-dispersive (e.g. Drift time ion 

mobility, Traveling-wave ion 
mobility)  

• Space-dispersive (e.g. Field-
asymmetric ion mobility) 

Fragmentation 

Tandem MS using ion activation to provide 
characteristic fragment species. Provides metabolite 
structural information to prioritize which of multiple 
isomers are the likely identity for a given elemental 
formula. 

Ion activation 
• Collisional (e.g. Collision induced 

dissociation, and Surface induced 
dissociation) 

• Electron (e.g. Electron transfer 
dissociation and  Electron capture 
dissociation) 

• Photoactivation (e.g. Infrared 
multiphoton dissociation and 
Wavelength-Tunable Ultraviolet 
Photodissociation) 
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extensive number of potential isomers for a given elemental composition.78-80 Early compound 

dereplication is thereby often dependent on obtaining additional distinguishing characteristics such as 

those listed in Table 1-1, or via additional characteristic such as UV/Vis spectrum and biological activity. It 

is also noteworthy that MS analysis is predicated on the ability to generate ions of the species of interest. 

Neutral or poorly ionizing species are transparent to MS, and because of this the number of detectable 

compounds from a metabolomic extract will vary depending on the analytical methods used during 

acquisition, in particular the specific ionization source and ionization conditions that are used. 

 

Isotopic modeling 

 The isotopic envelope, comprised of both the major and minor isotopic contributions to the elemental 

formula, provides several opportunities for enhanced characterization information,81 including: (i) the 

presence of heteroatoms,82 and (ii) isotopic enrichment strategies for relative and absolute quantitation 

of the abundance of the SM.83 The MS analysis of most biological molecules is typically concerning 

elemental formula comprising C, H, O, and N. The shared characteristic of these elements is that the 

monoisotopic peak also corresponds to the lowest mass isotope and thus, the lowest mass peak in the 

envelope is also the highest abundance. However, the vast majority of the periodic table is characterized 

by isotopic abundances that are somewhat varied from lightest to heaviest mass isotope and their isotopic 

signatures are oftentimes used in MS-based atomic analyses for identification purposes. The presence of 

heteroatoms, such as chlorine or bromine, are readily discernable in their contribution to the isotopic 

abundance observed for SMs and their stoichiometric contribution can be quickly verified through the use 

of isotopic calculator algorithms.84-85 Furthermore, these approaches are equally well suited by the 

addition of non-natural isotopic enrichment or depletion for determining the relative or absolute 

abundance of the SM that is expressed. One such approach termed stable isotope labeling in cell culture 

(SILAC) has been demonstrated as a facile tool for incorporating enrichment or depletion in experimental 
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protocols. Finally, genomic-based structural predictions, implying biosynthetic precursors, can be 

combined with stable isotope studies to identify targeted metabolites within organisms. 86 

 

Chromatographic retention time 

 Liquid chromatography (LC) is one of the most commonly used approaches to separate individual 

constituents of complex NP extracts, and various LC methods and their applications have been previously 

reviewed. For NP separations, reversed phase LC, and hydrophobic interaction chromatography are most 

commonly employed with a water-acetonitrile, or water-methanol gradient. This is typically performed 

on the basis of hydropathy, where reversed phase LC (RPLC) and hydrophobic interaction chromatography 

(HILIC) are most commonly utilized, and column retention will be affected by the ionization of these 

groups. Mobile phase pH can thereby significantly affect the separation efficiency for NP extracts. Due to 

the dependence of compound retention on pH, and to assist ionization, mobile phases are commonly 

buffered with either acetic acid, trifluoroacetic acid, or formic acid to protonate acidic sites and facilitate 

retention. However, as low pH may suppress detection of negatively charged species in switched scanning 

modalities, neutral volatile buffers are often preferred.  

 Liquid chromatography-mass spectrometry (LC-MS) acquisition can take minutes to hours per 

chromatographic separation, and environmental changes throughout the course of the sample set 

(column conditioning, instrumental sensitivity and accuracy drift, etc.) can affect the quality of the data. 

Consequently, for multiple extract samples analysed in a sequential fashion, conditional changes between 

the start and end of analysis could lead to significant artefactual differences in group metabolomes, which 

complicate interpretation of subsequent comparative analyses. While challenging, recent reviews have 

outlined metabolomic experimental design strategies to accommodate these technical problems.  

 



9 
 

Size and shape by ion mobility 

 Additional metabolomic feature information can be obtained by using gas-phase ion mobility-mass 

spectrometry (IM-MS), without significantly increasing analysis time over MS-alone.92 The mechanism and 

utility of IM-MS has been the topic of several recent reviews.93 Briefly, in time-dispersive IM-MS, a uniform 

weak electric field is applied to a post-ionization ion drift tube containing an inert gas, where the ion 

velocity through the chamber is dependent upon thermal collisions with the background gas and its charge 

state. The number of collisions ions make as they traverse the drift cell are proportional to their collision 

cross-sectional area, providing distinguishing information regarding an ion’s shape and/or conformation 

in the gas phase.96-100 The separations in IM are very low energy in comparison with collisions used for 

fragmentation analysis, where in IM the ions experience approximately 104 to 106 collisions across a size 

separation versus 1 or several high energy collisions in collision induced dissociation (CID), respectively. 

Typical drift tube resolving power of IM-MS is sufficient such that conformationally restricted or extended 

metabolites, such as cyclic peptides, polycyclic polyketides, and polyenes often possess distinct ion 

mobility profiles that are obtained over the course of micro to milliseconds. IM-MS is often coupled with 

time-of-flight (TOF) MS that can rapidly acquire the m/z ratios for ions eluting from the IM-MS cell in a 

few microseconds. The frequency of data collection allows for sufficient time sampling across 

chromatographic peaks, which occur over the course of minutes, to be coupled to IM-TOFMS. When 

applied to microbial metabolomics the enhanced separation and sensitivity provided by IM-MS has been 

beneficial for identifying known SMs, dereplication, and prioritizing features. Our laboratory has 

previously used IM-MS to help obtain high quality fragmentation data (IM-MS/MS) for all detected ions 

from crude extracts while comparing the differences between antibiotic resistant and wild-type NF. This 

facilitated the putative identification of several metabolites over-produced in mutant strains. IM-MS has 

been applied to differentiate halogenated NPs in cyanobacteria as well as peptide NPs from cave 

actinomycetes. IM-MS has also been applied to investigate the 3-dimensional structures of lasso peptides, 
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interlocked microbial peptides with a range of bioactivities, and this will likely find other useful 

applications to NP discovery as the technology becomes more widely available.  

 

Ion fragmentation for structural information 

 Both time-dispersive (e.g. TOFMS) and scanning mass spectrometers (e.g. liner quadrupole MS and 

ion trap MS) can be used to acquire both precursor and fragment ion information (i.e. tandem MS), which 

can provide a wealth of highly specific structural information that can be used to help identify and 

dereplicate metabolites.102 In metabolomics-driven NP discovery workflows, fragmentation data is 

commonly collected via an automated data-dependent acquisition method in which the most abundant 

ions within a scanning cycle are automatically selected for fragmentation. Fragmentation data analysis 

facilitates NP dereplication which, as will be discussed in more detail below, is a critical step in the process 

of NP discovery. There are a variety of methods applied to activate and induce dissociation of target ions, 

primarily categorized on the basis of how the ion is activated, collisionally, electron attachment, or 

through photon absorption, where the observed fragment ions will vary based on the method and 

parameters selected for fragmentation. For small molecules, collision induced dissociation (CID), and 

surface induced dissociation (SID) are commonly utilized. The degree of fragmentation observed using 

these methods depends on the number and degree of scissile bonds within a given molecule as well as 

the resulting internal ion energies used for analysis. In automated data-dependent tandem mass 

spectrometric fragmentation analysis, a given single set of dissociation parameters may not be 

appropriate for every feature of interest within a sample, requiring multiple experiments to determine 

optimal fragmentation parameters, and to effectively capture fragmentation data for a broad cross 

section of molecular classes. Ultimately, these methods provide characteristic fragmentation spectra that 

can be compared to established libraries of SM fragmentation data to identify known SMs within the 

experimental sample. Additionally, tandem mass spectrometric data are useful for elucidating the 
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structures of peptide NPs and have been used in ‘peptidogenomics’ strategies to link ribosomal and non-

ribosomal peptide NPs to their cognate BGCs.110-116  

 

Leveraging spatiotemporal metabolomics inventories to capture inter-organism interactions 

 SM producing microorganisms can be cultivated on agar medium or in planktonic liquid culture 

medium, and several methods have been developed to extract and chromatographically separate 

resulting metabolomes.123 However, microorganisms cultivated as monocultures or mixed cultures on 

agar may display planar metabolite distributions containing valuable information about chemical 

pleiotropism, nutrient dependence, and chemical ecology, and bulk liquid extractions discard the spatial 

metabolomic feature differentiation that could otherwise be observed.51, 127 Correspondingly, imaging 

mass spectrometry (IMS) methods have been developed for agar cultivated126, 130 and environmental124, 

131-136 microbial samples to provide a second distinguishing ion characteristic, spatial localization. In IMS 

experiments, the area of a sample is divided into pixels which are individually analysed by the mass 

spectrometer. Matrix assisted laser desorption ionization (MALDI) is a commonly used ionization 

technique for IMS. MALDI requires the application of an ionization matrix to facilitate ionization of cell 

and agar embedded metabolites. This ablative technique has been applied to visualize spatial temporal 

distributions of SM production in marine cyanobacteria and to elucidate microbial producers responsible 

for observed SM biosynthesis. MALDI-IMS has also be used to visualize metabolic exchange between 

interacting organisms and identify novel antibiotic production in Streptomyces.143 The efficiency of MALDI 

ionization is matrix dependent, and varies across metabolite classes. Correspondingly, desorption 

electrospray ionization and secondary ion mass spectrometry, which do not require the addition of an 

ionizing matrix, have also been applied to visualize NP distribution through IMS144 among others.149 

Determining the spatial distribution of produced SMs can be useful in NP research, and as these IMS 

technologies continue to develop they are expected to become an integral component of metabolomic 
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investigations into microbial SMs.150 Metabolomic features generated via IMS consist of m/z and its 

corresponding Cartesian coordinate in agar culture. 

 

Preparation of High Content Mass Spectral Data for Metabolomics Studies 

 

Strategies for formatting data for effective comparative analysis 

In a general metabolomics experiment (Figure 1-1) LC-MS analysis of extracted metabolites results in 

thousands of detectable features characterized by m/z, and retention time, as well as potentially ion 

mobility and fragmentation. Unbiased manual comparison of features between samples is challenging, 

especially when analysing a large number of samples. Therefore, it is necessary to automate feature 

collection from the acquired data in several processing steps that will facilitate data analysis. There are a 

variety of non-compatible vendor-specific data file formats for mass spectrometric data which originally 

impeded the development of universal processing software. To address this issue the Protein Standards 

Initiative group developed a standardized format, mzData, to facilitate data exchange.155-156 An additional 

format, mzXML, was developed by Pedrioli et.al.to serve as a standard format for MS and MS/MS data 

processing.157-159 While both of these formats were popular, the scientific community pushed for a unified 

standard format to simplify software development. A new format mzML was released to replace both 

mzXML and mzData formats, however, all of these are still commonly used for metabolomics data. 

Correspondingly, one of the first steps in metabolomics data processing is to convert the data files from a 

vendor-specific format into one of the appropriate standard formats listed above for the processing 

software. One common utility for this is ProteoWizard’s MSconvert,161 which also has the ability to pre-

filter the data with user defined parameters. 
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Methods and considerations for metabolite peak detection and alignment 

 After data format conversion, metabolite peaks must be identified and extracted from the data and 

aligned for all samples. A number of reviews have covered and compared the various processing packages 

and their algorithms.162 In this section we highlight a few of the common computational methods 

employed NP discovery-based metabolomics. The initial peak identification can be fairly challenging, as 

LC-MS ionization methods typically generate high levels of background chemical noise largely from mobile 

 

 

Figure 1-1: General metabolomics workflow.  Metabolites are extracted from experimental conditions 
and detected through MS analysis. MS data is then formatted and processed before undergoing 
statistical analyses to determine important metabolomic changes between the sample groups. These 
results may then be used to direct new experiments to optimize SM production or test biological 
hypotheses generated from the initial experiment. Reproduced from Nat. Prod. Rep. 2017, 34, 6-241 
with permission from the Royal Society of Chemistry 
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phases and buffers. Therefore, the automated processing methods must be able to identify genuine 

sample features while omitting detected chemical background and instrumental noise, and there have 

been several algorithms developed to accomplish this task Vectorized peak detection algorithms identify 

data points above a set intensity threshold in both the m/z and retention time dimensions.166-167 There 

are also a number of 1-dimensional LC-MS processing algorithms commonly used for peptide analysis 

which detect peaks by using the isotope patterns in the m/z dimension.161, 168 Another of the more 

common methods involves separating the LC-MS data into extracted ion chromatograms (EIC), each 

covering a very narrow m/z range. This process is called binning and, while fast and generally effective, 

this can lead to problems if the bin size is too large or too small. A matched filter170-176 is commonly applied 

to EICs to select for m/z peak shapes in the chromatographic time domain, and if features are split 

between multiple bins due to inappropriate sizing, they can be excluded by the algorithm resulting in false 

negatives. The traditional XCMS peak detection algorithm, a widely used LC-MS processing software 

package, sections off 0.1 Dalton wide EICs and then applies a second derivative Gaussian filter that aids in 

the discrimination of authentic peaks from noise along with a 10:1 signal to noise intensity threshold. An 

alternative to the binning approach for high resolution MS data is the centWave algorithm which identifies 

ion dense regions of interest in centroid data. Peaks are detected along these regions using a continuous 

wavelet transform, which allows for a much more dynamic range of peak shapes. The quality and 

validation of peak detection from increasingly complex datasets remains an area of intense research 

efforts. 

 Another consideration in data processing is the tendency for retention times of features to vary 

between multiple injections due to changes in chromatographic conditions discussed previously. It is 

therefore necessary to match mass features between samples of an experiment and align the retention 

times of matched peaks to generate a discrete feature list. Originally, internal reference standards were 

used to adjust retention times of each sample.177 However, retention time drifts throughout an acquisition 
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are often not linear,179-180 and this also required additional sample preparation steps to incorporate the 

standards. A variety of algorithms have been developed to align features between sample runs without 

the use of internal standards. The original XCMS alignment algorithm identified hundreds to thousands of 

peak groups that are present in a large number of samples. These “well behaved” groups are used as 

markers to align the remaining detected features. Typically, the number of these markers identified from 

metabolome extracts is sufficient to cover the chromatographic profile of samples and correctly align the 

nonlinear retention time drifts. Local regression, LOESS,181-182 is then used to approximate drifts for 

regions without sufficient peak markers. Several alignment algorithms have been developed to process 

LC-MS data, and in a comparative study of six freely available retention time alignment methods the XCMS 

algorithm was shown to be the best for processing metabolomics data.189 However, it was noted that the 

appropriate selection of parameters used for the methods could have a large impact on the data output, 

such that the apparent success of any particular method is dependent upon the user’s experience. A 

software package, Isotopologue Parameter Optimization (IPO), was recently released to automatically 

optimize XCMS parameter settings using natural C13 isotopic peaks.39-40, 190-191 This software applies to a 

variety of different sample types, chromatographic strategies, and instrument methods and aids to 

simplify and systematize method development while optimizing metabolomics processing for non-experts.  

 After peak alignment it is common for several mass/retention time features to possess few or even 

no matches between samples. This may be because some peaks are entirely unique to a subset of 

experimental samples but can also stem from errors in peak detection due to inappropriate parameter 

settings, noisy data, etc. Gap-filling is commonly used to ensure these are not false negatives and provide 

a non-zero value for subsequent statistical analyses. In the absence of a detectable peak, the values 

obtained through gap filling reflect noise within the region peaks that were detected in other samples. 

For low abundance features, the integrated noise level over the peak region may be similar to the value 

determined for the feature, and this can lead to the observation of a metabolite ion that statistically 
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correlates with a single condition while its lower abundance isotopes show no correlations in subsequent 

statistical analyses.  

 

Analysis of metabolomics data in the context of secondary metabolites 

 The next stage of metabolomics analysis consists of applying one or more methods to compare 

metabolomics datasets, some of which are outlined in . Depending on the objectives of a given study, 

several complementary methods may be applied. In the following discussion we review extant methods 

for comparative metabolomics analysis. To illustrate the application of these methods, we apply them to 

the analysis of a metabolomics dataset focused on the cytotoxic macrolide producing organism, 

Nocardiopsis sp FU40 (NF), and its exposure to multiple competing organism in mixed culture. In selected 

mixed culture conditions, this organism increased production of the SMs called ciromicins, which we 

highlight throughout data analyses.  

Table 1-2: Overview of methods for metabolomic data analysis Reproduced from Nat. Prod. Rep. 2017, 34, 6-241 
with permission from the Royal Society of Chemistry. 

Method Description Applications Disadvantages 

Principle component 

analysis and Projections 

to latent structures  

MVSA to identify significant 

covariance within data 

• Identifying data outliers 

• Strain prioritization 

• Grouping samples 

• Compound prioritization 

• Less effective with large 

datasets 

Self-organizing Maps 

Organizes features into a 2-

dimensional map based on feature 

response trends across a variety of 

experimental conditions 

• Grouping samples 

• Compound prioritization 

• Comparing large numbers 

of experimental conditions 

 

• Less effective with small 

numbers of conditions 

 

Molecular networking 

Organizes features into a 

connectivity network based on 

similarities in molecular 

  

• Compound prioritization 

• Compound dereplication 

• Fragmentation can vary 

with instrument parameters 
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Multivariate statistical analysis for identification of abundant covarying metabolites 

 Subsequent to pre-processing, metabolomics data can be analysed through multivariate statistical 

analyses (MVSA) which simplify and identify significant correlations within the data. Two common 

methods for metabolomics data analysis are partial least squares (PLS), or projections to latent structures, 

regression methods and principal component analyses (PCA) reviewed in more detail elsewhere. Briefly, 

PLS methods assume that changes within the data are largely driven by a subset of latent variables, which 

are not themselves measured within the data but are more abstract, such as experimental 

treatments/stimulants or conditions. With this assumption, a PLS analysis will identify latent vectors 

within the data that describe the maximal covariance between user defined groups. Alternatively, PCA 

makes no assumptions about the data and identifies the sources of the highest variance across the 

samples to distinguish the samples from one another. The fundamental difference between these two 

analyses is that PLS are supervised with user defined groups while PCA are unsupervised variable 

reduction methods. Orthogonal signal corrections can be applied to PLS regressions to improve separation 

between predictive and non-predictive variation. The product of these analyses are scoresplots, or 

projections of samples onto a hyperplane within the data describing sample covariance, from PCA and PLS 

analyses. Interpretation of scoresplots show the separation of samples based on feature variance to 

determine which samples are similar (nearby in Cartesian space) and dissimilar (far away) with regards to 

their most significantly varying features. Replicate analyses of the same sample should cluster within the 

scoresplot, and in this way scoresplots are a useful means of identifying errors in sample acquisition or 

data pre-processing. Additionally, a control comprised of pooled samples should locate close to the origin 

of a PCA plot. Another useful product of the PCA analyses are loadings plots, which show correlations 

between variables in the data and summarize these variables’ impacts on the scoresplot. Nearby features 
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are positively correlated, while distant features are negatively correlated, and features in the same region 

as samples in the scoresplot will be more abundantly or uniquely present in those samples.  

 One approach to the discovery of new NPs has been to prioritize organisms distinguished as 

metabolically unique through a PCA analysis. There is often a great deal of redundancy in the compounds 

identified through microbial NP screening endeavours, and this redundancy can be reduced through the 

selection of metabolomically diverse microbial strains. Under the hypothesis that organisms with similar 

secondary metabolic potential would cluster in PCA space, Hou et al. analysed 47 microbial strains to 

 

Figure 1-2: Using a PCA scores plot to prioritize microbial producers. A panel of actinomycetes including 
Microbiospora, Streptomyces, and Nonomurea genera. In this analysis, 14 strains grown under 
identical conditions were compared and PCA was used to display metabolomic feature variance 
between the strains. Principal component 1 primarily groups Streptomyces from other strains, and 
component 2 further distinguishes Nocardiopsis sp. FU40 as metabolomically unique compared to 
other tested strains. Percentages shown in parentheses correspond to the variance between the 
samples contained within the specific component. Reproduced from Nat. Prod. Rep. 2017, 34, 6-24 
with permission from the Royal Society of Chemistry. 
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demonstrate how MVSA could prioritize strains with diverse secondary metabolic potential.50, 192-194 

Similarly, PCA has been used to prioritize marine microbial symbionts as well as phylogenetically similar 

Streptomyces for NP isolation. Figure 1-2 demonstrates how metabolically unique organisms are 

distinguishable along the principal component vectors of the PCA scoresplot. This method may also be 

useful for identifying new classes of bioactive microbial compounds as has been done for plant extracts. 

However, caveats to this approach include (1) that the correlating features responsible for PCA 

prioritization of a subset of organisms from a library may not be SMs, which are generally present in 

relatively low abundance within crude extracts, and (2) that low abundant SMs, will not be emphasized 

by these methods. 

 One important application of PCA and PLS metabolomics for NP discovery is to prioritize 

induced SMs in comparative analyses between chemically and/or biologically stimulated and 

control conditions. SM production can be activated in microorganisms through a variety of 

chemical and environmental stimulation,195 and PCA and PLS are commonly applied to identify 

abundantly produced features in these conditions.201-202 Binary comparisons using S-plots can be 

a used to identify group specific features of a PLS model. These graphs separate features by their 

covariance along the x-axis and their correlation to user defined groups on the y-axis. More simply, 

more abundant features are farther from the origin on the x-axis, and features with correlations 

closer to 1 or -1 are likely to be unique or specific to one group or the other. Volcano plots have 

also recently been used to identify significantly covarying metabolites in binary comparisons of NP 

extracts. Volcano plots show each features’ statistical significance, p-value, on the y-axis and fold 

change along the x-axis. Similarly, PCA loadings plots can be used to visualize significant feature 

differences between sample sets. Figure 1-3 demonstrates how S-plots, volcano plots, and loadings 

plots can distinguish induced metabolomic features in a case study with the ciromicin producer, 
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Nocardiopsis FU40 (NF), described in more detail in Chapter 3 . The loadings plot tripartite 

comparison identifies features that correlate with either the NF or Rhodococcus sp. BBSNAI13 (RW) 

monocultures or a mixed culture where the two compete for nutrients. In this plot the induced 

cytotoxic macrolactam ciromicin is clearly distinguishable as positively correlated with the mixed 

culture extract. Similarly, ciromicin was clearly identified through the S-plot and volcano plot 

comparisons between the NF monoculture and the mixed culture. These methods can be very 

powerful, and freely available online metabolomics packages, such as XCMS Online and 

 

Figure 1-3: MVSA S-, Loadings, and Volcano plots to identify induced features. (a) The scoresplot 
reveals group separation between the Nocardiopsis monoculture (NF), the Rhodococcus wratis 
competitor monoculture (RW), and the mixed culture (RW&NF). (b) S-plot shows ciromicin significantly 
correlates (p < 0.1) to the mixed culture group in a binary comparison vs the Nocardiopsis monoculture. 
(c) Loadings plot of features shows ciromicin contributes significantly to group differentiation on the 
PCA scoresplot. (d) Volcano plot also prioritizes ciromicin ions which have a high correlation (low p-
value) on the y-axis and high fold change on the x-axis. Shading in panels a and c are used to highlight 
the data corresponding to the different sample subtypes. Reproduced from Nat. Prod. Rep. 2017, 34, 
6-249 with permission from the Royal Society of Chemistry. 
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Metaboanalyst can perform some routine MVSA data analyses in addition to data pre-processing. 

An alternative and fairly unique comparative analysis available through XCMS Online is the cloud 

plot.206 These plots convey feature fold changes, m/z, retention time, and statistical distribution 

in the same Figure, and can perform both binary and multigroup comparisons. 

 

Discovering molecular inventories of microbial responses via self-organizing map analytics 

 A strength in MVSA analysis of metabolomics datasets is the identification of the most unique 

and abundant features between small numbers of treatment conditions. However, these methods 

are limited to displaying data in two or three dimensions and are biased towards the largest 

differences within the entire dataset. Therefore, the utility of MVSA to represent an experiment 

diminishes as the number and diversity of samples increases. For instance, it is common to screen 

a target organism under dozens of stimulus conditions to optimize compound production, or to 

induce silent BGCs, and in these cases we have previously demonstrated that an alternative 

method utilizing Kohonen self-organizing map (SOM) analytics can be more effective at 

representing multiplexed stimuli data than PCA. As discussed above, metabolomic acquisition via 

LC-MS results in the acquisition of thousands of detectable features. Through SOM analyses these 

features are organized using an artificial neural network into a 2-dimensional grid based on 

feature response patterns across all experimental conditions. Features that share similar trend 

patterns are grouped in nearby nodes of the map as shown in Figure 1-5. Through multiple 

iterations, typically several hundred, this organization is improved ultimately resulting in a feature 

map where features in this case correspond to clusters of similar response trends. Unlike MVSA, 

SOM analyses improve with increasing amount of data and response conditions (e.g. stimuli), as 

this leads to more varied response trends which in turn enhances feature organization. A 

metabolomics workflow – molecular expression dynamics inspector (MEDI), provides an open 
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access methodology for SOM analysis from MS data and is readily applicable to microbial 

metabolomics.208 In MEDI, each tile, or node, of the grid is colored based on the centroid intensity 

of its features to generate heatmaps. Difference maps can be generated by subtractive analysis 

(e.g. control and stimulus conditions) to readily prioritize abundant and treatment-specific 

metabolomic features into regions of interest. For our first applications of these SOM analytics, 

described in Chapter 2 we mapped stimuli-induced metabolomic responses from 23 distinct 

 

Figure 1-4: Feature organization within a SOM. Feature abundance profiles are illustrated for each 
feature as a response trend across all experimental conditions shown in the upper right. These 
trends are organized for similarity as shown on the bottom left. These organized data serve as the 
basis for visual heatmap representations of the observed metabolomic content of experimental 
cultures. Reproduced from Nat. Prod. Rep. 2017, 34, 6-241 with permission from the Royal Society 
of Chemistry. 
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conditions in Streptomyces coelicolor A(3).209 In our NF case study several metabolites, including 

the ciromicins, are readily prioritized as unique to mixed culture conditions (Figure 1-5). 

Additionally, the single SOM analysis recapitulates the results of multiple MVSA analyses. In Figure 

1-5 three PCA loadings plots are compared with three SOM heatmaps from the NF mixed culture 

 

Figure 1-5: Three example comparisons of prioritized features through PCA and SOM analyses on 
mixed cultures with Nocardiopsis FU40 (NF), Rhodococcus wratis (RW), Tsukamurella pulmonis (TP), 
and Bacillus subtilis (BS). Features prioritized within SOM regions of interest recapitulate PCA tripartite 
analyses when sorted by abundance, or percentage of the region of interest (% ROI). Shading in scores 
and loadings plots used to highlight the data corresponding to the different sample subtypes. 
Reproduced from Nat. Prod. Rep. 2017, 34, 6-246 with permission from the Royal Society of Chemistry. 
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example study. When the features held within regions of interest on the SOM maps are sorted by 

abundance they are highly consistent with the loadings plots from PCA analyses. Indeed, there is 

correspondence between PCA and the neural networks used for MEDI analysis. As the data and/or 

conditions become sparser, the SOM heatmap begins to decompose into a similar functional form 

as PCA. 

 

Molecular networking to reveal structurally related ions 

 Microorganisms have been extensively mined for NPs throughout much of the past century in 

the search for new pharmaceuticals, and the rediscovery of known compounds or known families 

of compounds is quite common. Identifying and removing these rediscovered NPs, a process 

known as dereplication, is both critical and challenging.98, 210 Typically accurate masses or 

determined molecular formula of extracted compounds are used to search databases of known 

NPs. However, the large number of isobaric compounds complicate dereplication. UV/Vis 

absorbance205 spectra and chromatographic retention times can be used to further match 

extracted features to database compounds, and as technologies and databases improve, it is likely 

that ion mobility will play a role in NP dereplication as well. Fragmentation spectra acquired 

through tandem MS is another useful property for dereplication. Metabolite fragmentation 

patterns observed through MS/MS analysis can be matched to those in databases like PubChem, 

METLIN213 and MassBank214 to putatively identify MS features. Kernel based machine learning 

algorithms have recently been applied to dereplicate metabolites using multiple levels of tandem 

MS, and while this works well for primary metabolites, public databases for microbial SMs with 

fragmentation spectra encompass only a small fraction of known NPs. For example, GNPS: Global 
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Natural Products Social Molecular Networking, the largest NP public database with MS/MS spectra, 

contains more than 140,000 NPs, and there are an estimated 600,000 published natural 

compounds.  

 

Figure 1-6: Applications of molecular networking to explore data. Comparisons of acquired 
fragmentation spectra to established databases facilitates putative feature identification. Connectivity 
between features shown with blue lines relates structural similarities. Reference compounds seeded 
into the network can identify structural analogs. Feature distributions between experimental conditions 
are indicated by node coloring, red for mixed culture specific, and grey for features detected within the 
monoculture. Reproduced from Nat. Prod. Rep. 2017, 34, 6-243-5 with permission from the Royal Society 
of Chemistry. 
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 Computational methods to generate theoretical fragmentation spectra have been employed 

to compensate for the lack of experimental data on NPs. These in-silico MS/MS spectral databases 

can further facilitate NP dereplication when coupled with molecular networking, and as both 

experimental and in-silico database coverage improves, comparisons of fragmentation spectra 

may become the most useful method of NP dereplication. In addition to matching fragmentation 

spectra with database compounds, fragmentation data can be used to cluster related classes of 

molecules by fragment similarity. Molecular networking analyses cluster families of molecules 

through vector correlations between fragment ions. Yang et al. demonstrated the utility of this 

approach for NP discovery by dereplicating 58 NPs from marine and terrestrial microorganisms.220-

222 Molecular networking in this study also identified a number of novel analogs to known 

compounds, which are more difficult to obtain through other dereplication methods. In Figure 6 

we have applied molecular networking to our NF example dataset. Using the network visualizer in 

the GNPS: Global NPs Social Molecular Networking website, fragmentation spectra for each object 

in the network can be easily viewed and compared to matched reference spectra from the GNPS 

library. The features in the network can also be colored by the user-defined group or condition to 

which they are correlated. In Figure 6 we have highlighted features unique to mixed culture 

conditions in red. As shown, molecular networking identifies unique features which is unbiased 

by compound abundance. Several features of this dataset share no significant fragment similarity 

with the network and are isolated as “self-loops”. In fact, ciromicin A is among these uniquely 

fragmenting features, and this in itself may be another useful means to prioritize leads, as outlying 

features may be more structurally unique. Molecular networking analysis can be enhanced by 

combining additional metabolomics techniques. Klitgaard et al. used a combination of molecular 

networking and stable isotope labelling to identify novel analogs of nidulanin A and fungisporin in 

the well-studied fungus Aspergillus nidulans. Fragment based clustering in this manner can also 
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be used to identify modified NPs stemming from interactions between organisms. Moree et al. 

used molecular networking with IMS to investigate the interkingdom interactions between 

Pseudomonas and Aspergillus and observed a variety of biotransformed metabolites arising from 

this microbial competition. Similarly, Briand et al. applied molecular networking to identify new 

compounds and analogs arising from intraspecific interactions between algae.226 The application 

of molecular networking for the NF mixed culture data shown in Figure 6 links a number features 

found in the NF monoculture with similarly fragmenting features only detectable in mixed culture. 

These may represent compounds made by NF that are stimulated or modified in some way by the 

competitor TP.  

 Molecular networking can also prioritize features by linking observed NPs to their cognate BGCs 

and gene cluster families227-228 when used in conjunction with genomic sequence analysis. This can 

be an advantageous means of prioritizing metabolite leads as demonstrated by the work from 

Kleigrewe et al. where molecular networking was combined with genomic sequence analysis to 

identify a novel group of acyl amides, termed columbamides, from marine cyanobacteria.229-232 

The Crawford lab has recently employed ‘pathway-targeted’ molecular network analyses to 

identify metabolites from the colibactin gene cluster, which had been linked to increased virulence 

in E. coli. As previously discussed, heterologous hosts are often used for the production of 

microbial SMs, and molecular networking is a useful tool for comparative metabolomics to 

visualize the output of these heterologous hosts. Schorn et al. used molecular networking to 

identify novel eponemycin congeners produced through heterologous expression in Streptomyces 

albus J1046.49, 233 Molecular networking has even been applied to identify virulence factors in 

pathogenic organisms,234-237 and this method will become more beneficial for NP discovery as 

databases and technologies improve. 
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Investigations of secondary metabolite bioactivity 

 NPs are intrinsically biologically active; however, the clinical relevance of this activity may not 

always be discernible. Typically, NP structure and mode of action are determined fairly late in the 

NP discovery pipeline, which contributes to high rediscovery rates. Therefore, prioritizing NP leads 

by deep profiling of pharmacologically relevant biological activities would expedite NP-based drug 

discovery. NP extracts are commonly divided into multiple fractions which are then screened to 

identify the components underlying the desired biological activity. However, low abundance 

compounds can often be overlooked in complex extracts, and recently MVSA have been utilized 

to help link observed fraction bioactivity to detectable features from metabolomic analyses.238 

Even after correlating metabolites with biological activity, determining the mode of action for 

active compounds can be difficult and expensive.239-240 One approach has been developed that 

uses the antibiotic spectrum of activities across different organisms, mode of action profiles 

(BioMAP), to group similar antibiotics. This method was effectively able to cluster antibiotics of 

the same compound class and led to the identification of a novel naphthoquinone antibiotic, 

arromycin. Gene expression profiling with either the entire transcriptome or a subset of reporter 

genes has also been used to predict modes of action for NPs. However, because these 

transcriptomic screens are still relatively costly, there is a great interest in applying metabolomics 

analyses to predict NP modes of action using either NP extracts or purified compounds.250 Vincent 

et al. have recently shown untargeted metabolomics can effectively identify compound modes of 

action when specific metabolic pathways are the primary drug target.254-255 Metabolomic 

consequences of drug combinations may additionally be able to identify synergism, or antagonism 

between coadministered drug therapies.256 In a study with M. smegmatis, Halouska et al. observed 

that antibiotics which share similar biological targets engender similar metabolomic changes and 

are grouped together through MVSA.257 The group additionally applied their metabolomic 
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methods to investigate antibiotics with unknown biological targets and found them to group with 

membrane disrupting antibiotics, ampicillin, D-cycloserine, and vancomycin.257 This methodology 

could prove very useful to prioritize compounds for isolation. Antimicrobial extracts which 

separate themselves metabolomically through MVSA or other analyses may exert their activity 

through a novel biological target or mechanism. In this way, pharmaceutically relevant NPs could 

be prioritized for isolation. These metabolomic analyses have even been applied to investigate the 

underlying methods by which known antibiotics kill pathogens.242 Another approach, cytological 

profiling, uses automated image and microscopy analyses to identify phenotypic changes induced 

from bioactive compounds,14, 258-262 and this method has been used to classify biologically active 

compounds by their respective modes of action even within more complex marine derived 

bacterial extracts. A combined approach integrating these phenotypic screens with untargeted 

metabolomics has recently been developed to predict the modes of action for complex libraries 

of NPs and prioritize unique bioactive components. Applying this method, Compound Activity 

Mapping, on data from 234 NP extracts led to the discovery of the quinocinnolinomycins, a new 

family of NPs implicated to induce endoplasmic reticulum stress based on further cytological 

profile clustering. Ultimately, these multi-omic combinatorial methods may become the preferred 

means of predicting molecular modes of action. Integrating the phenotypic data from cytological 

profiling and the transcriptomic functional signature ontologies with metabolomics data using one 

or combinations of the powerful analytical platforms discussed previously, SOMs, molecular 

networking, MVSA, etc., could provide new insights into the modes of action of bioactive 

compounds and greatly facilitate novel drug discovery.  
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Conclusions 

 Metabolomic analyses are powerful tools for NP discovery. However, while metabolomics can 

provide a wealth of information regarding the activity and responses of microorganisms, with 

current technologies it is practically impossible to analyze the entire metabolome of an organism 

comprehensively due to variations in ionization efficiency and limitations in detection across wide 

concentration dynamic range. Instead, only detectable metabolites, which make up a fraction of 

the total metabolites present, are used to draw conclusions from current studies. While the full 

transcriptomic and proteomic potential of an organism can be determined through modern 

genome sequencing, there is no readily discernible limit to the number of metabolites present 

within organisms, so it is difficult to predict the number of metabolites omitted by current analyses. 

Due to these limitations, extra care must be taken when drawing conclusions from metabolomics 

datasets. Nonetheless, metabolomics analyses benefit microbial NP discovery pipelines in a 

variety of ways as described in this report. These can be used to prioritize organisms, identify 

activated compounds from stimuli exposure, prioritize features through bioactivity spectrums or 

molecular class, and even dereplicate prioritized SMs. The metabolomics methods described 

herein may also facilitate investigations into the fundamental purpose behind SM production 

within microbial communities. It is largely unclear how the production of SMs is regulated in situ 

as well as which ecological stimuli trigger secondary metabolic production. Such studies would 

benefit NP discovery endeavors by facilitating predictions of stimuli to induce SM production 

within the endogenous producer and could additionally provide insight into human health and 

wellness. Microbial SMs have a significant impact on human health by means of both isolated 

pharmaceuticals and compounds produced in situ from within human microbiomes, and 

metabolomics may be able to offer insights into how these organisms modulate their secondary 

metabolism in response to diet, medicine, and endogenous host factors.  
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 Comparative metabolomics methods are aiding in unleashing the repressed and/or hidden 

wealth of microbial secondary metabolism predicted by whole genome sequencing. The 

combination of complimentary methods (e.g. SOM and molecular networking) has the potential 

provide new tools to accelerate discovery by comparison. Ultimately, the purpose of these efforts 

is to identify biological roles for SMs, be they biochemical, chemical ecological, or translational in 

human medicine. We feel that the next era in SM discovery and application will be facilitated by 

methods that combine high content biological activity data measurements for metabolites within 

metabolomes with corresponding multidimensional metabolomic data to illuminate effectors of 

natural small molecule interactions, and their roles in biological systems.  
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Dissertation Statement and Chapter Contributions 

 

Dissertation Statement 
 
 There is an urgent need for novel antibiotic and chemotherapeutic compounds, and 

traditionally NPs have been important sources for these therapeutics. At present most clinically 

relevant antibiotics and chemotherapeutics are either NPs themselves or NP derivatives,1 with 

many of these produced by microorganisms from soil environments. Through advances in genome 

sequencing we recognize only a small fraction of the total arsenal of microbial NPs has been 
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accessed in a large part due to poor productivity in lab cultivated strains. Several methods exist to 

boost NP production within cultured strains,3-4 but detection of NPs from complex culture extracts 

remains very challenging. In this dissertation work we endeavored to apply (1) established 

methods to boost NP production within actinomycetes and (2) comparative metabolomics to 

prioritize NPs from their response to stimuli. In the works presented in this dissertation we 

demonstrate that the combination of stimuli and comparative metabolomic analyses can increase 

production of NPs and prioritize NPs by their response to applied stimuli.  

 

My contributions to works presented in each chapter 

 For Chapter 2, I worked with Dr. Ruth McNees and Dagmara Derewacz to culture and extract 

Streptomyces coelicolor A3(2) grown under a battery of stimuli conditions including mixed culture, 

and rare earth metal exposure with Sc and La. I also worked with Dr. Cody Goodwin to analyze the 

metabolomic changes engendered through stimulation conditions using self-organizing map 

analytics. For Chapter 3, I acquired the data using UPLC-IM-MS on a Waters SYNAPT G2 and 

performed all of the metabolomic analyses comparing mixed cultures of Nocardiopsis FU40 with 

Rhodococcus sp BBSNAI13, Tsukamurella pulmonis, Bacillus subtilis, and Escherichia coli, to 

monoculture conditions. For Chapter 4 I participated in the isolation and 16S rDNA sequencing of 

several of the cave derived actinomycetes. I cultured and extracted the 20 selected cave 

actinomycetes under 6 different stimuli conditions with assistance from a student worker, Zac 

Hilton. I acquired data for all extracts on a TSQ Thermo Quantum Access Max and performed 

comparative metabolomics analyses. I isolated and identified all described NPs including the novel 

compound funisamine. I determined the structure of funisamine using accurate mass 

measurements and multidimensional NMR analyses. I additionally performed bioinformatic 
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analyses to identify the funisamine BGC from the genome of the producer, Streptosporangium sp. 

KDCAGE35.  
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Chapter 2  Prioritization of secondary metabolites in Streptomyces coelicolor A3(2) with self-

organizing maps 

 

The work presented in this chapter is adapted from a journal article written by Cody R. Goodwin, Brett C. 

Covington, Dagmara K. Derewacz, C. Ruth McNees, John P. Wikswo, John A. McLean, and Brian O. 

Bachmann, first published in Chem. Biol. 2015, 22, 661-6706-9 

 

Introduction 

 Chapter 1 introduced the concepts of using MS-based comparative metabolomics to identify NPs from 

complex microbial extracts by their responses to stimuli. In this chapter we discuss our applications of 

these comparative metabolomics methods to analyze SM inventories from extracts of stimulated cultures 

of genomically characterized organisms, Streptomyces coelicolor A3(2) (SC). SC is a model Streptomycete 

with more than 20 putative SM producing gene clusters and a significant number of regulatory genes likely 

used to govern responses to stimuli. With this model strain we demonstrated for the first time the utility 

of SOM analytics to prioritize SMs by their abundance profiles across a range of stimuli conditions 

including metal exposure, antibiotic resistance, and mixed culture. The observed overproduction of NPs 

from stimuli conditions is consistent with SMs governing adaptive organismal responses to environmental 

stimuli. Identifying SMs and associating them to gene clusters that are linked to discrete chemical and 

biological stimuli can provide insight into the chemical ecological role of SMs. Moreover, the ability to 

selectively stimulate native expression of secondary metabolic gene clusters via chemical or biological 

stimuli and detect their corresponding products without resorting to genetic recombinant methods, 

would greatly expedite microbial SM discovery.  

 The work presented in this chapter was centred on the hypothesis that both SM regulation has 

adapted to selectively respond to chemical and biological stimuli may be identifiable within metabolomes 
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by possessing characteristic abundance trends across multiplexed stimulus conditions. To investigate this 

hypothesis and enable SM discovery, we assessed the potential for stimulus-mediated production of SMs 

in the native microbe by multiplexed chemical and biological stimulation. To access a broad spectrum of 

responses, a battery of 23 perturbations in a single growth medium was utilized from three reported 

categories of activating conditions for SC. The resulting collected sum of detectable metabolomic 

response inventories was analysed by ultra-performance liquid chromatography-ion mobility-mass 

spectrometric analysis (UPLC-IM-MS). To structure and categorize the response-specificity of metabolic 

features within these data, we developed and implemented a SOM analysis, described in Chapter 1, for 

the identification and prioritization of increased metabolite production resulting from the multiplexed 

perturbations. SOM analysis converted the collected metabolomes into a navigable topological response 

phenotype map and efficiently identified specific primary and SMs that are produced at increased levels 

in response to stimuli. For example, in primary metabolism, we identified discrete changes in guanosine 

and phenylalanine pools on lanthanide exposure and evidence of unique adaptive cell wall remodelling in 

several conditions. Notably, a large fraction (16 total SMs) of detected SMs was prioritized via this 

workflow as the most intense response-specific features, providing insight into the roles secondary 

metabolism plays in adapting to chemical stimuli and microbial interactions. The combination of 

multiplexed stimulation of native expression and structuring of the resulting metabolomic responses 

comprise a generalizable method for activating and detecting products of natively regulated primary and 

secondary metabolism. 
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Results 

 

Multiplexing stimuli of secondary metabolism 

 SC was cultivated under a battery of processes known to potentiate secondary metabolism. SC was 

selected as a model microorganism because it has been extensively mined for SMs,5, 10-12 methods for 

native gene cluster activation have been most commonly developed for this organism, and the majority 

of SMs isolated from this strain have been correlated to a gene cluster.14 

 We selected three known categories of activating stimuli: eliciting spontaneous resistance to 

transcription or translation-targeting antibiotics, exposure to rare earth elements, and cultivation in the 

presence of competing microorganisms. Using a single growth medium (International Streptomyces 

Protocol 2, ISP2), we cultivated (1) liquid cultures in the presence and absence of five separate scandium 

or five lanthanum concentrations, (2) liquid cultures of ten different spontaneous rifampicin or 

streptomycin resistance mutants, and (3) mixed cultures with three different challenge organisms, 

Micrococcus luteus (ML), (RW), or Tsukamurella pulmonis (TP). These mixed cultures were prepared using 

a custom designed apparatus (Figure 2-1) which allowed SC and competitors to grow in a ‘checkerboard’ 

pattern on the agar plate to maximize contact between competing colonies. Hence, we generated a total 

of 25 conditions, including controls, spanning these three methodologies. 

 Total cellular extracts were generated from fermentations via methanol extraction, concentrated, and 

processed for reverse phase UPLC analysis. Technical triplicates of extracts were analysed in a randomized 

sequence using UPLC-IM-MS (Waters Synapt G2, Milford, MA) with lock mass correction to provide 

accurate mass measurements. During each spectral acquisition, an intact and fragmentation spectrum 

was taken for all ions present (herein referred to as MSE analysis15). Fragmentation was performed 
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subsequent to IM separation, which allowed for the correlation of product ions to precursor origins 

through matched mobility. 

 Raw data were converted to distinct m/z and retention time pairs termed ‘features’, and aligned 

across all samples.4 The resultant data matrix of discrete features, or ions, and associated intensities for 

each condition were averaged across technical replicates and subjected to MVSA and SOM. 

 

Identifying products of multiplexed stimulation through MVSA 

 The identification of new metabolites with characteristic responses from multiplexed microbial stimuli 

requires methods for comparing and classifying covarying ions in the response inventories. Previously, 

we17 and others12 have presented MVSA approaches for identifying the most abundant new ions resulting 

from individual stimulating microbial metabolic perturbations. MVSA methods for data analysis are 

powerful tools for identifying distinguishing features of small data sets (2 – 3 conditions) or extracting 

information regarding global sample grouping and which metabolites contribute to coarse trends. 

However, MVSA methods are not ideal for similar prioritization of metabolites in multiplexed 

 

Figure 2-1: Solid agar mixed culture apparatus Left, apparatus used for co-culture on agar plates 
generating heat maps for co-culture panel in Figure 3. A guide rail permits the ‘checkerboard’ 
application of two organisms. Right, Streptomyces coelicolor A3(2), grown in monoculture on the left, 
was co-cultured with Rhodococcus wratislaviensis, Micrococcus leuteus, and Tsukamurella pulmonis. 
Upper and lower sets show growth and phenotype after incubation for 3 and 7 days respectively. 
Reproduced from Chem. Biol. 2015, 22, 661-6701 with permission from Cell Press. 
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perturbations, as MVSA is inherently biased for the largest differences amongst perturbations and is 

limited in the ability to reflect multiple stimuli in two- or three-dimensional space. Therefore, it omits the 

lower abundance or minorly covarying, yet still unique, metabolic reflexes (i.e., changes in metabolism 

resulting from a stimulus). In applying our previously described MSVA workflow5 to the 25 conditions, as 

shown in Figure 2-3A, we can visualize the gross distinctions of metabolomic profiles that exist amongst 

different stimuli. When each perturbation is analysed in isolation (Figure 2-3B-D), the distinct differences 

in global metabolism shifts are seen. A loading plot analysis can be used to determine which ions 

 

Figure 2-2: (A) Loadings plot for Figure 2-3A. The locations of identified SMs are annotate in Figure 3. 
Differential self-organizing map depictions of (B) lanthanum, (C) scandium, (D) rifampicin-resistant, (E) 
streptomycin resistant, (F) mixed fermentation, and (G) Streptomyces coelicolor A3 grown on ISP2 
agar. Reproduced from Chem. Biol. 2015, 22, 661-670 with permission from Cell Press. 
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contribute to sample distinction, as seen in Figure 2-2. For comparison, detected SMs are annotated, 

which highlights a significant shortcoming of MVSA-based prioritization for a large number of culturing 

conditions: the largest contributors to sample differences are highlighted, but feature selection in MVSA 

can be subjective and requires a cumbersome process of filtering through adducts and in-source 

fragments. To garner conditionally distinct differences, experimental subsets (see Figure 2-3B-D), or even 

 

Figure 2-3: PCA of metabolomic inventories. A. PCA of all cultures. B. Co-culture of S. coelicolor with 
ML, RW, and TP. C. Metabolomic profiles in response to rare earth metals. D. Comparison of antibiotic 
resistant mutants selected by plating on rifampicin and streptomycin. Reproduced from Chem. Biol. 
2015, 22, 661-6701 with permission from Cell Press. 
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smaller subsets (e.g., a single co-culture versus monocultures, or PLS approaches) can be analysed. 

However, for 25 conditions, pairwise analysis of multiple iterations of stimulus conditions for prioritization 

purposes becomes a time-intensive and subjective method of prioritizing SMs from extracts. As a result, 

we have developed and applied SOM-based methods to ion association and filtering. 

 

Identifying products of multiplexed stimulation by self-organizing maps 

 Assessing trends in a large number of biochemical or biological conditions requires methods for the 

rapid visualization and organization of distinct differences in metabolic profiles across many perturbations 

to sort ions in a response-dependent manner. To address this, we developed a SOM-based approach to 

sort the complete inventory of ions across all growth conditions into regions based upon similarities in 

abundance profiles across experiments. This method is particularly well-suited for SM prioritization, as 

SMs are the end products of biochemical pathways and accumulate during fermentation. Differentially 

expressed, high abundance ions may be ranked subsequent to SOM analysis using the percent 

contribution of an ion to a region of interest (ROI) on the MEDI map. These ROIs exclusively contain 

features that respond specifically to a particular perturbation, while other loosely regulated metabolites 

will cluster outside of these prioritized regions. This method then prioritizes metabolites in a response-

specific manner.  

 Figure 2-4 demonstrates the general workflow of the SOM-based approach, as applied to multiple 

perturbing conditions. Experimental and control conditions are processed by UPLC-IM-MS (Step 1), 

significant m/z retention time features are identified, and integrated intensity trends lines are generated 

for each feature. SOM analysis of these feature trends is performed using the open-source Gene 
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Expression Dynamics Investigator (GEDI) software (Step 2) 19. Detected ion abundance trends are first 

randomly seeded into a user-defined asymmetric grid (Step 3). The coordinates of the grid are only 

meaningful in relation to other grid locations and have no associated dimensions. Feature intensity trends 

are then iteratively organized based upon intensity similarities across experiments in a competitive-

cooperative process in a process analogous to a tile puzzle (Step 4) 20. As a result, metabolites that are 

produced as similar responses to the experimental conditions occupy the same or close coordinates in the 

grid. This sorts ions in a data-driven manner into regions of interconnected ions (Step 5).  

 The presumed correspondence of SM expression profiles to responses is premised on the hypothesis 

 

Figure 2-4: General self-organizing map (SOM)-based approach to feature prioritization.  (1) This 
method begins with extracts from cultures of an organism cultivated under a battery of perturbing 
conditions. (2) Extracts are analyzed using UPLC-IM-MSE (or other feature-producing methodology) 
and converted into a matrix of discrete, aligned peaks with associated intensities for each culturing 
condition. (3-5) These features are then organized based upon intensity trends across culturing 
conditions. (6) Subsequently, extracts are represented as heat maps based upon the sum abundance 
of each organized metabolite in a region. (7) Differential analysis comparing data from perturbed 
cultures to controls allows generation of regions of interest. Reproduced from Chem. Biol. 2015, 22, 
661-67010 with permission from Cell Press. 
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that microorganisms use SMs to respond to discrete external stimuli (e.g., antibiotic challenge, 

competition, and metal exposure). The metabolic profile of each sample or experimental condition is then 

depicted as a topological heat map, which is a function of the intensity of each ion in that sample (Step 

6). Ions occupying the same coordinates in the SOM are summed. These heat maps (Figure 2-5), or 

metabolic profiles, are then differentially compared with unperturbed metabolic profiles, resulting in heat 

maps with prioritized ROIs, indicating metabolic responses to experimental conditions (Step 7). Each pixel 

or node within the heat maps contains m/z-retention time feature lists, which are used for subsequent 

feature identifications. We selected six ROIs based on visual comparison of the differential phenotype 

heat maps, generated tables of covarying features via summing islands of high intensity within the heat 

maps and ranked features by percentage. The ions occupying these regions of interest are then prioritized 

 

Figure 2-5: Differential metabolic phenotype heat maps representing increased production/decreased 
consumption of molecules using a single growth medium. Representative extracts from each culturing 
condition are shown above, with regions of interest boxed and labelled. Corresponding putative 
identifications and structures for each region of interest (ROI) are labelled, and comprehensive 
catalogues of inhabiting features for each region, including relative abundance and percent 
contribution to total ROI intensity, are presented in the ESI. Reproduced from Chem. Biol. 2015, 22, 
661-6708 with permission from Cell Press. 
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for further identification using accurate mass and fragmentation data acquired using MSE technology. A 

given ROI may comprise only one or numerous ions. To rank within a given ROI, percent contributions of 

each ion to the total ROI intensity may be determined. For example, if 100 ions are grouped into an ROI, 

the summed relative intensity of all these ions can be used to determine the percent contribution of a 

given small molecule. Through self-organization, features corresponding to fragment ions, adducts, and 

isotopes are also all clustered for rapid triage. The determination of molecular identity of features is 

facilitated by the untargeted fragmentation acquisition, accurate mass measurements, retention time, 

and other fragmentation interpretation afforded by the ion mobility separation dimension.  

 Figure 2-5 demonstrates the utility of the SOM-based approach for molecular prioritization using this 

workflow across the multiplexed inducing conditions reported for enhanced SM production. Each heat 

map is representative of 2154 detected features (including detected isotopologs) observed in SC grown 

with a unique perturbation or condition, following subtraction of the unperturbed culture extract. In the 

case of monoclonal cultures (i.e., streptomycin- and rifampicin-selected point mutations, rare element 

exposure), this baseline subtraction is simply subtraction of the ISP2 unperturbed culture metabolic 

profile. In co-culturing conditions, metabolic profiles from both wild type SC and competing organism 

monoculture were subtracted. Six dominant ROIs are indicated as boxed regions in Figure 2-5, and 

identified ions that occupy these regions are annotated. A majority of the annotated ions correspond to 

SMs SC is known to produce.21 However, we gain additional biological insight into the microbial response 

to the various stimuli by observing the other biochemical results which are sorted with these SMs (e.g., 

deoxyguanosine, phenylalanine).  

 

Measuring and structuring metabolic perturbations 

 Each inducing condition provoked unique metabolic responses, as observed in the differential profiles 

in Figure 2-5. In total, of the 2154 significant features detected, 1318 were found to be either undetected 
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or produced in at least two-fold abundance in at least one perturbed system relative to control. This 

corresponds to induced overproduction of ~61 % of all detected ions. For the subset of known SMs, 16 

were observed in at least one SC expression condition (<20 ppm mass accuracy), and increased production 

was observed for all of these in at least one stimulated culture relative to the unperturbed control. The 

magnitude of amplification is shown in Table 2-1. In certain cases, a nearly 22-fold increase in production 

was found (i.e. undecylprodigiosin).  

 

Response profile analysis 

 SM BGCs in microorganisms are often organized into operons, and within a given organism gene 

 

Table 2-1: Maximum resultant metabolite production abundances compared to matched control 
cultures in ISP2 medium. Color scale: 0% (red); 100% (yellow); 200% (green). Heavy metal and 
antibiotic resistance performed in liquid cultures and co-culture performed on agar medium. 
Reproduced from Chem. Biol. 2015, 22, 661-6702 with permission from Cell Press.  

 

 

Metabolite Heavy 
Metals 

Antibiotic 
Resistance Co-culture 

Undecylprodigiosin 98% 470% 2200% 
Germidicidin A 120% 180% 130% 
Germicidin B 140% 250% 140% 
Germicidin D 250% 480% 84% 
Methylenomycin A 110% 170% 98% 
N-Acetylhistidinol 130% 220% 18% 
Juglomycin D 160% 200% 20% 
2-O-α-D-Mannopyranosyl 
-myo-inositol 300% 200% 62% 

Streptorubin B 250% 110% 1300% 
Coelichelin 100% 150% 16% 
γ-Actinorhodin 170% 500% 29% 
ε-Actinorhodin 100% 120% 61% 
Antibiotic CDA 4A 130% 330% 87% 
Ferrioxamine E 50% 150% 120% 
Desferrioxamine B 280% 130% 220% 
Indole-3-lactic acid 4600% 3400% 84% 
Ectoine 250% 290% 240% 
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clusters share common regulatory elements programmed to respond to specific cellular states (e.g. 

pleiotropic signals).18 Correspondingly, we hypothesize that SM features that are differentially produced 

as a result of multiplexed chemical and biological stimuli will structure into grouped regions in a SOM of 

metabolites based on similarity of production response profiles. In this chapter, we describe and 

demonstrate the application of this approach, which ameliorates the limitations of an MVSA-based 

analytics for multiplexed stimuli data interpretation. One practical advantage of the SOM approach is that 

dozens of chemical, biochemical, or genetic perturbations may be analysed using a single computation (in 

this case 25 x 3 analyses, comprising >780,000 spectra, in excess of 58 gigabytes of data, spanning three 

classes of stimuli), resulting in the generation of sets of simple and easily navigable metabolic phenotype 

graphical representations. Additionally, though features within an ROI can be ranked by abundance, SOM 

organizes features by intensity trends, so low intensity features can also be identified. 

 At least 22 gene clusters within the SC genome have been assigned involvement in SM production.10 

Of these 22 clusters, SOM maps prioritized metabolites associated with 8 of the 22 gene clusters, which 

are listed in Table 2-2, of which all display elevated SM production in some capacity as a result of the 

introduction of challenges (Table 2-1). The analytical strategy presented prioritizes SMs generated from 

these gene clusters from within the metabolomic pool, yet this begs the question as to the biological 

rationale of these lower abundance, yet overproduced ions. Significantly, an increase in the production of 

 

Table 2-2: Gene clusters correlated to SM production  (shown in Figure 2-5) in Streptomyces coelicolor 
(A3). Reproduced from Chem. Biol. 2015, 22, 661-6701 with permission from Cell Press.  
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germicidins (Figure 2-5, ROIs 5 & 6) was observed in both mixed-fermentation conditions and select 

antibiotic resistant strains. Metabolomic analysis indicated that the process of culturing SC on agar versus 

the liquid cultures affected the production of germicidins. However, germicidins A and B were present in 

higher concentrations in the mixed fermentation cultures versus the monoclonal cultures grown on agar, 

in addition to all germicidins observed in increased abundances in many of the antibiotic resistant 

cultures. The production of germicidins inhibits spore germination and is a self-regulatory mechanism in 

the production response to high population densities. Additionally, mixed fermentation resulted in the 

enhanced production of undecylprodigiosin (22-fold increase when co-cultured) and streptorubin B (13-

fold increase when co-cultured) (Figure 2-5, ROI 3), known SMs of SC with antimicrobial and other clinically 

relevant properties.22 This is consistent with previous studies, which linked undecylprodigiosin and 

streptorubin B production to external factors, including mixed fermentation with Bacillus subtilis (BS)23 

and salt-stress.15 Within this same ROI, we observe the enhanced production of siderophores functioning 

as an iron scavenger for nutrient acquisition in all perturbed conditions.24 This response is likely a 

concerted rebuttal to the microbial competition encountered in the mixed fermentation environment. A 

variant of calcium-dependent antibiotic production was observed to be upregulated (3.3-fold increase) 

specifically in agar culturing and co-culturing conditions with TP. This Gram-positive targeting metabolite 

may be attributed to TP production of mycolic acid, which activates SM production in once assumedly 

silent clusters22, 26-27 and underpins the necessity of multi-conditional culturing. We also observed altered 

production of potentially exo-polysaccharides (Figure 2-5, ROI 4) as a result of these persistent resistant 

mutations. Furthermore, 2-O-α-D-mannopyranosyl-myo-inositol (3-fold increase in rare element 

exposure) was observed in increased abundance in mutant- and rare element-exposed cultures (Figure 

2-5, ROI 2), the production of which has been demonstrated previously in liquid culture, supported by the 

absence in mixed fermentation conditions. Elevated production of ectoine (2.8-fold increase) was 

observed as a general response to perturbations and is consistent with previous results we have observed 
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within rifampicin- and streptomycin-resistant mutants in NF. This osmoprotectant has been shown to 

provide enzyme activity stabilizing effects,28-29 and stimulate growth in osmotically inhibitory 

environments. 

 

Discussion 

 Microbial genome sequencing has revealed a vast reservoir of SM-encoding gene clusters, suggesting 

largely untapped molecular diversity with potential biomedical application. Advances in sequencing have 

outpaced the developments of the requisite steps to produce, study, and ultimately purify the encoded 

metabolites: gene cluster expression and translation, identification and purification of the resulting 

produced metabolites, and structure elucidation. Two complementary strategies for addressing the 

expression component of these processes consist of refactoring targeted gene clusters for increased 

expression, typically in heterologous hosts,15, 30-31 or expression of gene clusters in their native hosts using 

non-recombinant chemical or biochemical methods to stimulate native expression 1. In either case, the 

analysis of the resulting metabolomes for upregulated or otherwise perturbed metabolites potentially 

becomes the next rate-limiting step. Rapid unbiased identification and prioritization of newly produced 

metabolites is an essential prerequisite for what remain the most labour-intensive steps of SM discovery: 

purification, isolation, and structure elucidation.  

 In this chapter we analyse three categories of microbial stimulus (antibiotic induced resistance, heavy 

metal exposure, and co-culture) on a single metabolomic platform. To convert the microbial metabolomic 

responses from 25 distinct conditions spanning these three perturbations into navigable phenotypic 

maps, we developed and implemented, for the first time to our knowledge, SOM analytics for multiplexed 

responses to microbial metabolomics. This approach localizes metabolomic features that covary across 

conditions into ROIs that can be used to identify metabolic features that are similarly regulated, or that 

respond similarly to challenge. SMs are the end products of metabolic pathways, accumulate, and are 
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slowly degraded. As a result, they are well suited for the application of SOM analytics that not only 

prioritize features, but also illuminate trends in similarly responding metabolites. Previous studies of 

biological, biochemical, and chemical microbial challenge are consistent with our central hypothesis that 

the upregulation of secondary metabolism may be an adaptive response to challenge stimuli.1. Moreover, 

the work presented in this chapter provides additional support for the broad reaching effects of chemical 

and biological stimulus and a new means for identification of important microbial response chemicals. 

 From a “genome mining” perspective, we observed substantial metabolomic expansion of the 

biomolecular inventory of SC grown in a single medium using multiplexed chemical and biochemical 

induction methods. Of the nearly 2200 total detected molecular features, 61% were found to be either 

undetected in control cultures or produced in at least two-fold greater amounts, relative to control, in at 

least one culture challenge. Indeed, using these methodologically simple and rapid non-recombinant 

techniques, we have observed the increased production of all 16 of the detected SMs, comprising 

products of up to 8 out of 22 annotated gene clusters in at least one unique culturing condition and 

prioritizing eight NPs within ROIs. These results challenge the notion of “silent” gene clusters in native 

hosts and support the potential of systematic induction of native secondary metabolism as a method of 

accessing the hidden reservoirs of secondary metabolic diversity in microorganisms. Indeed, with a 

comparatively small set of stimuli in simple culture media, which can be generated and analysed in less 

than a month, the majority of known secondary metabolism was activated. This work indicates much of 

the unknown NP potential may be accessible from the native producer through the applications of 

chemical or biological elicitors and comparative metabolomics analyses. 

 

Materials and Methods 

 All reagents were obtained from the Sigma-Aldrich Chemical company unless otherwise specified. SC 

was obtained from the John Innes Center, TP from the American Type Culture Collection (ATCC700081), 
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and RW was obtained via dilution plating from hypogean sediments. 

 

Eliciting antibiotic resistance and fermentations  

 To generate antibiotic resistant mutants, the spore inoculum of SC was uniformly spread on GYM 

(glucose 0.4 %, yeast extract 0.4 %, malt extract 1 %, peptone 0.1 %, sodium chloride 0.2 %, agar 2 %) agar 

plates containing streptomycin at one of two concentrations (100 μg/mL, 300 μg/mL) or rifampicin at 

either 200 μg/mL or 400 μg/mL (concentrations of antibiotics were chosen so they exceed the minimum 

inhibitory concentration for SC on GYM medium). After two weeks of incubation at 30 °C, the agar plates 

were inspected for the presence of resistant colonies, which were then aseptically transferred to 

antibiotic-free ISP2 (glucose 0.4%, yeast extract 0.4 %, malt extract 1 %, agar 2 %) plates. Each S. coelicolor 

mutant was then inoculated to 20 mL ISP2 liquid seed culture, incubated for 7 days, and from seed culture 

to 50 mL liquid ISP2 fermentation culture for 7 days of incubation at 30 °C. Progenitor SC was incubated 

under the same conditions to generate the control culture. 

 

Rare earth element fermentations  

 For rare element additives, the spore suspension of S. coelicolor was inoculated on ISP2 agar plates 

for incubation at 30 °C for 7 days, then inoculated from plates into 20 mL liquid seed culture and from 

seed culture to 50 mL liquid ISP2 production cultures containing various concentrations of scandium 

chloride (20 μM, 50μM, 100 μM, 200 μM, 500 μM) or lanthanum chloride (1500 μM, 1700 μM, 1900 μM, 

2100 μM, 2500 μM) for 7-day incubations at 30°C. To generate a control, S. coelicolor was incubated in 50 

mL additives-free ISP2 medium under the same conditions. 

 

Extraction of liquid fermentations 

 Total culture metabolite extracts from liquid cultures were generated by adding 50mL of methanol to 
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each fermentation flask and shaking the flasks on a rotary shaker for 1 h. Mycelia were then separated on 

a centrifuge, and supernatants were dried in vacuo to yield crude extracts. 

 

Co-culture generation 

 Co-culture plates were prepared by addition of 40 mL of sterile ISP2 medium to a one well OmniTray 

plate. Cryogenic spore suspensions of S. coelicolor were cultivated on agar plates (100 x 15 mm) containing 

30mL of ISP2 medium and incubated at 30°C until the production of spores occurred. The spores were 

removed from the surface of the plate using a sterile loop and suspended in 25 mL of ISP2 liquid medium 

at a concentration of approximately 108 spores/mL as determined via hemocytometer. This suspension 

was homogenized and decanted into a one well plate as a reservoir. The pins of a 96 well replicator were 

submerged into the spore solution and applied to the surface of the solid support within the previously 

prepared one well OmniTray plate without puncturing the surface (Figure 2-1). The plates were incubated 

for 24 hours at 30°C. Cryogenically stored M. luteus was inoculated into 5 mL of sterile ISP2 medium 8 h 

prior to application to the co-culture plate. Rhodococcus wratislaviensis stock was inoculated into 5 mL of 

sterile ISP2medium 24 h prior to application to the co-culture plate. Cryogenically stored TP stock was 

inoculated into 5 mL of sterile heart infusion medium 24 h prior to application to the co-culture plate. For 

all competing organisms, once an OD 600 of ~1 was achieved, the 5 mL sample was diluted into 30 mL of 

medium in separate one well plate reservoirs. The pins of a 96 well replicator were submerged into the 

solution and applied to the surface of the solid support within the one well OmniTray plate without 

puncturing the surface in an offset manner relative to the previously inoculated actinomycete. After7 

days, co-culture plates were cut into 1 x 1 cm segments and extracted with equal volumes of methanol by 

shaking for 3 h at 170 rpm and 30 °C. The apparatus shown in Figure 2-1 was used to make solid agar 

mixed culture plates. A guiderail permits the ‘checkerboard’ application of two organisms.  
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UPLC-IM-MS Data Acquisition and Processing 

 Extract samples were resuspended in methanol at a concentration of200 mg/mL. UPLC-IM-MSE data 

acquisition was performed analysis on a Synapt G2 HDMS platform (Waters Corporation, Milford, MA) 

with a 25 min gradient. Mobile phase A consisted of H2O with 0.1 % formic acid, and mobile phase B 

consisted of acetonitrile with 0.1 % formic acid. A 1x100 mm 1.7 μm particle BEH-T3 C18 column (Waters 

Corporation, Milford, MA) was used for chromatographic separations with a flow rate of 75 μL/min and a 

column temperature of 40 °C. An autosampler with a loop size of 5 μL held at 4 °C was used for sample 

injection. The initial solvent composition was100 % A, which was held for 1 min and ramped to 0% A over 

the next 11 min, held at 0 % A for 2 min, and returned to 100% A over a 0.1 min period. The gradient was 

held at 100 % A for the next 10.9 min for equilibration. Prior to analysis of the sample queue, ten 

sequential column-load injections were performed with 5 μL of the quality control. This protocol increases 

retention time stability and is critical to reproducible analyses. Quality control injections were then 

performed after every 10 sample injections to ensure instrument stability. Quality controls were 

comprised of pooled equal aliquots of all samples analysed. 

 IM-MSE spectra were acquired at a rate of 2 Hz from 50-2000 Da in positive ion mode for the duration 

of each sample. The instrument was calibrated to less than 1 ppm mass accuracy using sodium formate 

clusters prior to analysis. A two-point internal standard of leucine enkephalin was infused in parallel to 

the sample at a flow rate of 7 μL/min, and data were acquired every 10 s. This was used for post-processing 

determination of accurate mass for prioritized ions. The source capillary was held at 110 °C and 3.0 kV, 

with a desolvation gas flow of 400 L/h and a temperature of 150 °C. The sampling cone was held at a 

setting of 35.0, with the extraction cone at a setting of 5.0. In the MSE configuration, low and high energy 

spectra were acquired for each scan. High energy data provided a collision energy profile from 10-30 eV 

in the transfer region, providing post-mobility fragmentation. Ion mobility separations were performed 

with a wave velocity of 550 m/s, a wave height of 40.0 V, and a nitrogen gas flow of 90 mL/min, with the 
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helium cell flow rate at 180 mL/min. Internal calibrant correction was performed in real time.  

Data were converted to mzXML format using the msconvert tool from the ProteoWizard package.1 Peak 

picking and alignment were performed using XCMS in R.2. The resulting data matrix contained 2154 

detected features and was formatted for analysis using both GEDI and Umetrics. Formatting for GEDI is 

outlined below, formatting for Umetrics was performed by extracting and transposing the sample-feature 

intensity matrix generated from XCMS and importing it into Umetrics software. Prior to GEDI and MVSA, 

analytical triplicates were averaged. For GEDI analysis, a grid of 25 x 26 was generated. Software specific 

parameters include: 100 first phase training iterations with an initial training radius of 10.0, a learning 

factor of 0.5, a neighborhood block size of 20, and a conscience of 5.0, and 160 second phase training 

iterations with a neighborhood radius of 1.0, learning factor of 0.05, neighbourhood block size of 2, and 

conscience of 2.0. A random seed of 10 with a Pearson’s correlation distance metric and random selection 

initialization was used.  

 Metabolite identifications were performed using accurate mass measurements and fragmentation 

spectra extracted from IM-MSE data. Utilizing drift time correlations, product ions were correlated 

appropriately to precursors for extraction of high energy spectra. 

 

Mass spectrometry data processing workflow 

(1) To begin, data are converted from vendor-specific formats to open source mzXML formats. For Waters 

data, msconvert was used for conversion purposes through the command prompt: 

> msconvert [input file] --mzXML –filter “sortByScanTime” –o [output location]  

 

(2) The msconvert utility is included in the ProteoWizard package1, which can be download at: 

http://proteowizard.sourceforge.net/. To perform feature detection, xcms was used within R. The 

download and a fantastic tutorial are available on the METLIN website:(http://metlin.scripps.edu/xcms/)  

http://proteowizard.sourceforge.net/
http://metlin.scripps.edu/xcms/
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(3) The resulting output from xcms analysis (report.tsv) was then used for further analysis. Technical 

replicates were averaged within any available spreadsheet software and formatted for GEDI analysis. 

Formatting and download can be found at: 

(http://apps.childrenshospital.org/clinical/research/ingber/GEDI/GEDI_Help.htm) 

 

(4) Regions of interest were first generated through differential analysis within GEDI. These regions were 

then given defined boundaries. This was done manually, though boundary recognition algorithms are 

being investigated. 

 

(5) Within GEDI, metabolite locations were exported through: 

>File>Export Results>Save Gene Assignments List 

This generated a list of the SOM locations of all metabolites, which were then compiled into lists 

corresponding to ROIs. Using the original data matrix, intensities for all features within an ROI were 

summed, and the percent contribution of each determined for prioritization purposes. 

 

(6) Metabolite identification then began, with the only notable caveat being the extraction of 

fragmentation spectra using post-mobility fragmentation, which allowed untargeted fragmentation with 

relatively contaminant-free spectra. Retention time and drift time occurrences were also used to 

determine if certain features were in-source fragments. Retention times were similar, and the product ion 

appeared both at a drift time unique to the in-source fragment within the intact spectrum and as a product 

ion with the same drift time as the precursor within the fragmentation spectrum. 

 

(7) Monoisotopic peaks were used for database searching, with candidate molecules compared to 

http://apps.childrenshospital.org/clinical/research/ingber/GEDI/GEDI_Help.htm
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fragmentation data and retention time occurrence. 
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Chapter 3  Discovery of the ciromicins from Nocardiopsis FU40 

 

This section was adapted with permission from the American Chemical Society from an article written by 

Dagmara K. Derewacz, Brett C. Covington, John A. McLean, and Brian O. Bachmann first published in ACS 

Chem Biol, 2015, 10, 1998-2006.1 

 

Introduction 

 In this chapter we continue our discussion on the utility and in some cases redundancies of SOM 

analytics for comparative metabolomics analyses relative to other MVSA. After establishing SOM analytics 

with the model strain, SC, we then applied comparative metabolomics to prioritize metabolite responses 

from a genetically modified NF, exposed to mixed culture. NF is known for production of apoptosis 

inducing macrolides, apoptolidins, and genome sequencing of this strain identified a minimum of 20 

putative gene clusters related to secondary metabolism including six putative polyketide synthase 

encoding gene clusters.2 Two of these, encoding type-I (reduced) polyketides, are relevant to this work. 

One encodes the cytotoxic macrolide apoptolidin, and the other an orphan polyene macrolactam with 

predicted structural relatedness to vicenistatin3 and incednine,4 via translated sequence similarity across 

the clusters. In order to obtain clean background for genome mining of new SMs from this strain, we have 

previously deactivated the BGC for the production of apoptolidins by replacing the terminal polyketide 

synthase ApoS8 with an apramycin resistance cassette.2 Exposure of NF ΔApoS8 to low inoculum 

competing Escherichia coli (EC), Bacillus subtilis (BS), TP, and RW strains elicits significant metabolomic 

responses. A primary observation is that the metabolic inventory of co-culture is far greater than the sum 

of its monocultures. Exposure of NF to challenger strains stimulated the production of approximately 314 

/ 2288 (14%) detected metabolomic features not present in monocultures and revealed the production 

of complex photochemically reactive macrolactam polyenes, ciromicin A (1) and its product ciromicin B 
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(2). In addition to facilitating discovery, comprehensively analyzing the consequences of bipartite 

interactions provide a basis for understanding the effects of multipartite interactions present in more 

complex microbiomes relevant to human biology and medicine5.  

 

Results 

 

Self-organizing maps to reveal consequences of mixed culture 

 In the previous chapter we discussed our adaption of SOM analytics for the study of microbial 

secondary metabolism and demonstrated how this method can prioritize features and reveal trends in 

metabolite expression. The product of these SOM analyses are visually interpretable heat maps in which 

features are localized with regards to their intensity profile across experimental conditions, and tiles are 

colored by the centroid integrated intensity of features they contain.6 When applied to NP discovery, 

MEDI has the added benefit of allowing users to rapidly screen sample conditions and identify stimuli 

which elicited the most profound metabolomic responses, even when the total abundance of the 

response may not be the most contributing factors to differences in variance as often highlighted in PCA. 

In this work we use both complementary tools to answer two distinct questions. Firstly, what is the broad 

scale metabolic response to challenge for all components, irrespective of their abundances that is 

identifiable using MEDI. Secondly, we use MVSA strategies (PCA) to rapidly identify the most abundant 

response changes for isolation. These two approaches were found to have some degree of redundancy 

and cross validate when MEDI results are ranked by intensity.  

 The results of the entire UPLC/IM-MS dataset of mono- and co-cultures, comprising 22.5 gigabytes of 

raw data in total, were converted into features via XCMS and processed in a single SOM analysis, and are 



87 
 

displayed in Figure 3-1. Visual inspection of heat maps reveals the differences and similarities in organized 

metabolomic phenotypes within microbial genera. Of interest, mixed culture plots reveal that the mixed 

metabolomic phenotype is dominated by the NF culture, as expected due to low inoculum concentration 

of challenger organism. However, examination of the difference maps, which are generated by subtracting 

monoculture feature maps from co-cultures, reveals that mixed fermentations with TP and RW lead to 

significant metabolic activation, while competition with BS and EC elicits a lower new feature response 

 
 

Figure 3-1 Metabolomic analysis of mono- and co-cultures. Self-organizing maps of features (m/z, retention 
time pairs) were generated from averaged UPLC/IM-MS chromatograms from four co-cultures and five 
monocultures and analyzed together using the MEDI algorithm. From left to right: column highlighted in 
blue contains metabolic heat maps from co-cultures of Nocardiopsis with a competitor; monocultures of 
competing organisms RW, TP, BS, and EC are highlighted in yellow; heat maps from NF monocultures are 
highlighted in brown. Difference maps show co-cultures after the subtraction of respective monocultures 
to identify unique and upregulated features. Hot spots are designated as regions of interest 1-6. 
Reproduced from ACS Chem Biol, 2015, 10, 1998-200611-17 with permissions from the American Chemistry 
Society. 
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from NF. Apparent ‘hot spots’ within difference maps were designated as ROIs and contained several 

features upregulated in co-cultures relative to monocultures. Ranking features within these ROI by 

intensity prioritized many new and abundant features with high agreement to prioritization via PCA (vide 

supra).  

 

Mixed culture induces large metabolomic changes  

 To assess the magnitude of changes in extracted microbial metabolomes, UPLC/IM-MS data were 

processed via XCMS and Meta-XCMS to align chromatograms and identify feature commonalities and 

differences across samples. This comparative analysis revealed significant changes between the 

metabolomes of monoculture of NF and low inoculum challenger co-cultures. A total of 469 features out 

of 2288 detected (ca. 20%) were upregulated 2-fold or greater in at least one mixed fermentation in 

comparison to monocultures, and a great majority of these co-culture specific features (nearly 14% of the 

entire dataset) were not detectable in significant quantities in the monocultures, representing new 

metabolic features elicited by bipartite interactions. Venn diagrams of tripartite comparisons illustrate 

that for each co-culture, a large fraction of features appears in higher concentrations (Figure 3-2 a-d). 

While some features are generally upregulated across mixed culture there are a large number of features 

unique to a singular co-culture interaction (Figure 3-2 e). For instance, of the 469 newly produced or 

upregulated features 52% were specific to a single co-culture condition, while 21% were shared by 3 or 

more of the co-cultures. Taken together, the demonstrated generic selectivity of microbial responses 

suggests that features accumulating in response to co-culture are not due solely to factors such as nutrient 

availability, but also to biochemical cues arising from discrete intergeneric interactions.  
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Response features identified by comparative metabolomics.  

 PCA, described in Chapter 1 , functions to identify a subset of linear combinations of variables which 

summarize the entire dataset by identifying principal components that capture the majority of data 

variance. A PCA comparison of all features (Figure 3-2 f) shows that each generic condition elicits a unique 

set of extracted metabolomes clearly separable via unsupervised distribution along the first and second 

principal components. The analysis of co-culture data via PCA (Figure 3-3 a) demonstrates qualitatively 

how the extracted metabolomes of stationary phase co-cultures differ from their constituent organisms 

in monoculture. Mixed culture with RW demonstrated the largest degree of differences via MEDI analysis 

and we next evaluated these differences via exploring features contained within ROI (Figure 3-3 b). 

 
 
 

Figure 3-2 Distribution of metabolomics features between cocultures.  (a–d) Venn diagrams depicting the 
distribution of features separated by 2-fold intensity differences with the underlined number representing 
the total number of detected features from the multipartite analysis. (e) Composite Venn diagram 
showing the distributions between different cocultures of the 469 total 2-fold or greater upregulated 
features. (f) PCA plot shows separation of cocultures relative to monoculture Nocardiopsis (NF) along PC1 
and PC2, which reflect 68% of data variance (51% for PC 1 and 17% for PC 2). Reproduced from ACS Chem 
Biol, 2015, 10, 1998-20067 with permissions from the American Chemistry Society. 
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Ranking features within ROI by intensity reveals metabolites that are most detectably increasing as a 

result of co-culture. These rankings were cross-validated by principal component loadings analysis, and 

confirmed via inspection of extracted ion chromatograms of those abundant features which were 

predicted to be most unique to the co-cultures (Figure 3-3 c-d) 

 

A polyene prioritized for structure elucidation 

 Considering the strong genomic evidence for a polyene macrolactam type polyketide, intensity ranked 

lead features prioritized in ROI were searched for expected extended chromophores. One of the features 

identified, a new apparent polyene (with a strong λmax of 290 nm) with an accurate mass of 515.275 Da) 

was upregulated in all mixed cultures and most highly upregulated in co-cultures with RW and TP. Also 

noted was an isobaric species with a different retention time but lacking the characteristic polyene 

 
 

Figure 3-3 Comparison of PCA and MEDI analyses for feature prioritization.  (a) PCA plots reveal group 
separation of co-cultures shown in blue from their respective monocultures with EC, BS, TP, and RW 
shown in yellow, and NF shown in brown. The first and second principal components are aligned along 
the x-axis and y-axis respectively. (b) Comparison of principal component loadings plot vectors and their 
corresponding two regions of interest from MEDI analysis show similar results. Features aligned on the 
blue vector of the loadings plot are uniquely produced in mixed culture, while the grey vector holds 
features upregulated in the co-culture, but also present in NF monoculture. The distance from the origin 
reflects relative ion abundance as can be seen in the bar graphs in figure (c), which shows averaged 
integrated intensities of multiple co-culture specific features across all co-culture conditions to indicate 
competitor selectivity for metabolic activation in NF. (d) Extracted ion chromatograms of m/z: 515 from 
RW and Nocardiopsis co and monocultures colored in the manner of the PCA plots. Reproduced from ACS 
Chem Biol, 2015, 10, 1998-2006 with permissions from the American Chemistry Society. 
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structure. The NF & RW co-culture fermentation was scaled 20-fold (20 x 50 mL), and combined extracts 

were pre-fractionated by size exclusion chromatography in methanol followed by isolation using a 

water/acetonitrile gradient on C18 HPLC. Compound 1, which we named ciromicin A (after the Latin 

irregular verb for war), was isolated as a pale-yellow solid with UV spectrum showing maxima at 207 and 

290 nm. High resolution MS identified the m/z of 515.275 [M+H] and indicated, along with NMR spectral 

data, a molecular formula of C28H38N2O7. Three partial structures of compound 1 were derived from COSY, 

TOCSY, HSQC, and HMBC spectral data (Appendix A) with two poly-unsaturated chains with three and four 

double bonds respectively and the residual spin system an unusual five carbon amino sugar. HMBC 

correlations from proton H-9 to quaternary carbon C-8 and from methylene protons H-21 to carbon C-1 

merged the linear polyene substructures to form a cyclic polyene (Figure 3-4a, compound 1). Interestingly, 

the HMBC correlation from proton H-18 to carbon C-1, which was observed only in elevated temperature 
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Figure 3-4 Structures of ciromicins A (1) and B (2). (a) Stuctures were generated from analysis of COSY, 
HSQC and HMBC spectral data. Ciromicin A (1) undergoes cyclization when exposed to ambient light 
yielding ciromicin B (2). (b) Major NOESY correlations and relative stereochemistry of ciromicins. 
Reproduced from ACS Chem Biol, 2015, 10, 1998-20061 with permissions from the American Chemistry 
Society. 
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(50 °C), confirmed the presence of an unusual pyrrolidinol moiety which we previously proposed on the 

basis of COSY and HSQC data. Finally, the HMBC correlation from proton H-1’ to carbon C-9 linked the 

amino sugar to aglycone yielding the complete structure of ciromicin A (1) (Figure 3-4a). Ciromicin B (2), 

an isobar of ciromicin A (1) with a different retention time was originally observed in crude extract along 

with compound 1 however, due to a low level of abundance we were unable to obtain 2D NMR spectral 

data. Surprisingly, we later observed that pure ciromicin A (1) in methanol solution under ambient 

conditions, converted to a chromatographically distinct compound, which overlapped in retention time, 

UV and mass spectral data with ciromicin B (2). Isolating environmental variables, we observed that this 

isomerization was entirely dependent upon exposure to ambient visible light, and when ciromicin A (1) 

was exposed to ambient sunlight in a borosilicate glass tube for 2 hours, we observed almost full 

conversion to ciromicin B (2). Subsequently, we determined the wavelength dependence of the 

conversion of ciromicin A (1) via monochromatic UV/VIS exposure of varying wavelengths and analyzing 

for conversion via LC-MS. This further confirmed photochemical dependency and demonstrated 

wavelength dependency on product formation. Visible light (400 nm) yielded ciromicin B (2) as the major 

product. Maximum conversion to ciromicin B (2) was observed at 300 nm but lead to the formation of 

additional isomers. Isolation, structure elucidation and analysis of these ciromicins will be described in a 

subsequent study. Ciromicin B (2) was isolated as pale-yellow solid with UV spectrum showing maxima at 

209 and 230 nm. The high-resolution MS yielded an m/z of 515.275 [M+H], identical to m/z of compound 

1, indicating the same molecular formula of C28H38N2O7. By comparing the HSQC spectral data of 

compound 2 to compound 1, we noticed the presence of four additional methines and the absence of two 

double bonds. On the basis of COSY, TOCSY and HMBC correlations, one big encompassing spin system 

was assembled and linked to the quaternary carbons C-8 and C-1 yielding a structure of ciromicin B (2) 

which possess an unusual pyrrolizidinone moiety (Figure 3-4a, compound 2). 
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 The relative stereochemistry of ciromicins was determined on the basis of proton coupling constants 

combined with careful evaluation of 2D NOESY NMR (Figure 3-4b). Stereochemical analysis was facilitated 

by the conformationally restrained tetracycle of ciromicin B (2). The geometry of double bonds was 

elucidated by analysis of proton coupling constants and further confirmed by NOESY experiment. The 

large couplings of J3,4 = 15 Hz, J5,6 = 15 Hz, J13,14 = 15.7 Hz and J15,16 = 16.2 Hz reveal a likely 3E, 5E, 13E and 

15E geometry. The remaining double bond showed overlap in proton resonances but the presence of six- 

membered ring system strongly suggests a Z geometry, which was further confirmed by the NOE 

correlation between protons H-10 and H-11. The relative stereochemistry of the 9 chiral centers of 

aglycone was established on the basis of NOESY correlations. Starting with cyclohexenyl ring, we observed 

strong NOE from the 23-CH3 to H-6, H-9 and H-12 but not H-7 and NOE from H-7 to H-5 and H-13. This 

suggested a trans relative orientation of H-7 and H-12. For the hexahydro-3H-pyrrolizin-3-one moiety, we 

observed NOE correlations from H-2 to H-4 and H-17, and from H-17 to H-16 indicating that they were on 

the same face of the cyclic system with H-2 and H-17 in cis relative orientation (Figure 3-4b). NOE 

correlations from the methine proton H-18 to H-3, H-15, H-19 and 22-methyl placed them all on the 

opposite face of the cyclic system. We then attempted to relate the stereocenters in one end of the 

molecule to the stereocenters in the other end. Starting with proton H-2 and knowing that protons H-2 

and H-4 were on the same face of the cyclic system and that the geometry of the double bonds was 

determined to be 3E, 5E, we deduced that protons H-2 and H-7 were on the opposite face of the cyclic 

system. The same thing was done to relate the stereocenters C-12 and C-17. Starting with proton H-12 

and knowing that protons H-12 and H-14 were on the same face of the cyclic system and double bonds 

showed 13E and 15E geometry, we determined that protons H-12 and H-17 were on the same face of the 

cyclic system. Taken together these data suggest the relative stereochemistry of ciromicin B (2) to be 2S, 

7S, 8R, 9S, 12R, 17R, 18R, 19R, 20S. Since ciromicin B (2) is the product of chemical conversion of ciromicin 

A (1), the stereochemistries of five chiral methine centers of ciromicin A (1) were assumed to be the same: 
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8R, 9S, 18R, 19R, 20S. This was further confirmed by NOESY correlations, in which we observed NOE 

interactions from the 23-CH3 to the H-9 methine and H-7 double bond, placing them on the same face of 

the macrocyclic system. Furthermore, NOE from H-18 to H-19 and 22-methyl and from H-20 to H-17 

supported previously proposed stereochemistry in these positions. The geometry of the double bonds for 

ciromicin A (1) was determined by the analysis of proton coupling constants and 2D NOESY NMR. The 

large couplings of J2,3 = 15 Hz, J4,5 = 15 Hz, J6,7 = 15 Hz, J12,13 = 15 Hz and J14,15 = 15 Hz revealed 2E, 4E, 6E, 

12E, and 14E geometry for corresponding double bonds. For the remaining double bonds, due to partial 

overlap of proton resonances, we were unable to establish definite geometry, therefore we performed 

an additional NMR experiment in CD3OD, where the desired proton resonances fully separated. The 

coupling constants of J10,11 = 10 Hz and J16,17 = 10.5 Hz indicated 10Z and 16Z geometry in these positions. 

The stereochemistry of the amino sugar present in both ciromicins was deduced from the couplings 

extracted from the proton NMR of compound 2 due to less overlap in proton resonances. Large coupling 

constants of J1’,2’ = 8.5 Hz, J2’,3’ = 9 Hz, J3’,4’ = 9 Hz indicated that the connected carbon, nitrogen and oxygen 

were all likely equatorial. Moreover, NOE from H-1’ to H-9 of the aglycon suggested 1’R relative 

stereochemistry. Due to unsuccessful attempts to generate crystals of ciromicins for the x-ray analysis, 

the absolute stereochemistry of C-9 was putatively proposed by inference from analysis of the polyketide 

synthase (vide infra).  

 

Ciromicin biosynthesis  

 Bioinformatics has been widely used by the scientific community to identify SM gene clusters and 

connect them to their corresponding compounds.7-8 We applied these methods9 to the whole genome 

sequence of NF and proposed the gene cluster predicted to encode ciromicin. The putative gene cluster 

encoding ciromicin biosynthesis was refined by closing sequencing gaps via PCR amplification (Figure 3-5). 

The analysis of putative open reading frames reveals a cluster similar to biosynthetic relative vicenistatin 
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and wholly consistent with the proposed biosynthesis of ciromicin. A complete set of genes for the 

biosynthesis of starter unit 3-amino-2-methylpropionate activated onto peptidyl carrier protein (CirA7) 

and coupling to the characteristic L-alanine, which is unique to polyene macrolactams and serves as a 

biosynthetic ‘protective group’ that is cleaved prior to macrocyclization.10 CirX2 possesses 62% identity 

with VinJ, the analogous peptidase in vicenistatin. The translated polyketide sequence differs substantially 

and predicts nine active homologations, predominantly resulting in polyene extension, with only module 

6 (CirP2) lacking a dehydratase domain and terminating catalytically with a ketoreductase (KR6), and 

thereby encoding the hydroxyl group at C-9, with a predicted ‘B-type’ (S, in this case) stereochemistry 

based on analysis of conserved amino acids in the ketoreductase catalytic site.11-12 Of the acyltranferase 

domains, only AT6 is predicted to activate methylmalonate, and is responsible for methyl substitution at 

C-8. An additional module directly upstream of the thioesterase is predicted to be nonfunctional as it lacks 

conserved active site residues in both AT and DH domains and is missing a KR domain. The resulting 

heptaene polyketide sequence predicts a structure bearing comparison to incednine13 and vicenistatin,14 

and is entirely consistent with the 22-membered polyene macrolactam scaffold observed herein. Coupling 

 

Figure 3-5 Genetic organization of ciromicin gene cluster in NF  Reproduced from ACS Chem Biol, 2015, 10, 
1998-20061 with permissions from the American Chemistry Society. 
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of the macrolactam amide to C-18 may occur via addition to an epoxide precursor, which is speculative, 

but partially supported by the polyketide domain sequence, which predicts a double bond at C-18/19 in 

the biosynthetic precursor. An additional oxidation is required at C-8, likely mediated by a cytochrome 

P450 (CirO1). Finally, a cassette of genes, CirS1/2/3, with high sequence similarity to IdnS1/2/3, encodes 

the biosynthesis of the appending sugar UDP-xylosamine from UDP-N-acetyl-D-glucosamine. CirG2, with 

35% identity to VinC from vicenistatin, encodes the likely glycosyltranferase.  

 Ciromicins A (1) and B (2) were tested for their in vitro cytotoxicity and showed activity against MV-4-

11 human leukemia cell line with IC50 of 8.1 µM for compound 1 and 9.3 µM for compound 2. No 

antibacterial or antifungal activity was detected when tested against Bacillus, E. coli or Saccharomyces.  

To the best of our knowledge, the pyrrolidinol substructure found in ciromicin A (1) has not been 

previously reported in the peer reviewed literature. However, a similar truncated tetracyclic 

cyclohexene/hexahydro-3H-pyrrolizin-3-one scaffold in ciromicin B (2) is found in one other reported SM, 

heronamide A, which is co-purified with a putative biosynthetic progenitor heronamide C,15 a 20-

membered polyene macrolactam likely biosynthetically divergent from incednine and vicenistain.16 Raju 

and coworkers propose a biosynthetic relationship between heronamide C and A via a conrotatory 4 π + 

6 π electrocyclic rearrangement. The observation of wavelength-dependent chemical conversion of 

ciromicin A (1) to B (2), suggests that the mechanism of rearrangement of heronamides may be purely 

photochemical via a previously unreported labile pyrrolidinol-functional biosynthetic intermediate. 

Photochemical rearrangements of up to 8- π electrons in NPs are rare but not unknown.17 Notable 

examples include the 8 π [4 + 4] conversion of alteramide A18 and the 8 π – 6 π electrocyclization cascade 

implicated in enandrianic acid biosynthesis.19-20 However, while the overall mechanism of photochemical 

conversion of ciromicin A (1) remains to be determined, the intriguing diastereoselective visible light-

triggered 12-π rearrangement of ciromicin A (1) to B (2) appears to be unprecedented at this time. 
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Discussion 

 Extrapolation of the costs of de novo genome sequencing suggests that sequence data for all potential 

SM producers will become available soon,21-22 and genome mining efforts will be fully potentiated from a 

genomic supply data perspective. However, generalizable tools to convert gene clusters of SMs of interest 

into molecules remain underdeveloped. Exciting progress is being made in expressing cryptic secondary 

metabolic gene clusters in heterologous hosts and/or endogenous refactoring of native regulatory 

elements.23-25 These powerful techniques use recombinant genetic manipulation, cloning, and/or gene 

synthesis to facilitate NP discovery and will continue to be important methods to unlock repressed gene 

clusters of interest as technology continues to advance. In this chapter we demonstrate that utilization of 

native expression mechanisms and enabling them with tools in comparative metabolomics such as SOM 

response analytics has the potential to release a large fraction of native biosynthesis and fuel new 

molecular diversity generation for drug discovery efforts. Notably, while this study used genomic 

prescience of a polyene macrolactam to guide prioritization of feature response data for isolation, a wide 

variety of analytical techniques can be joined with stimulus response mapping to improve prioritization 

including molecular networking,26-27 which is used to identify expected and precedented structural 

subclasses, in addition to other tandem mass spectrometric methods such as peptidogenomics,28-29 which 

identifies predicted peptidic SMs via molecular networking and MS/MS analysis. 

 The complex problem of decoupling the chemical basis for microbial interactions within ecological 

contexts is now of increasing interest, and progress in this area is dependent upon the development of 

innovative new analytical techniques.30-31 Herein, the analysis of a panel of biological stimuli arising from 

defined coculture was facilitated by SOM analysis, which efficiently identified unique patterns in microbial 

metabolomics responses engendered from specific intergeneric interactions (Figure 3-1). The 

identification of RW as a productive coculture strain was cross-validated via comparative metabolomics 

(Figure 3-2). Isolation and elucidation campaigns are labor-intensive and narrowing to RW resulted in 
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identification of a productive system from which several new and upregulated response products were 

isolated. The output of SOM analysis is distinct from MVSA and molecular networking in that difference 

maps capture all responding peaks, irrespective of intensity, and organize them not by molecular similarity 

but by intensity profiles across multiple stimuli and provide a quick assessment and organization of 

metabolites resulting from stimulus. Whereas PCA analysis of each condition is difficult to distinguish 

(Figure 3-3a), MEDI shows discernible phenotypes. However, as demonstrated here, when SOM 

prioritized peaks within ROI are further ranked by intensity (Figure 3-3b), they recapitulate PCA loadings 

analysis, and it is expected that MS/MS generated fragmentation data should cluster with parent ions into 

nodes if they are included in the SOM matrix. Notable in this study, the challenger organisms were 

introduced at low inoculum levels after the NF was well established and were present at undetectable 

levels after 6 days, highlighting how minor constituents of a microbial ecosystem can have large effects 

on its observable chemical ecology and how those changes can be mapped and explored by SOM analytics. 

 There are several categories of potential intergeneric interactions that ultimately arise from the 

interaction of colocalized microorganisms. Chemical interactions may result from the diffusion of small 

molecules including organic and inorganic nutrients and byproducts or toxins, signaling molecules, SMs 

(e.g., pleiotropic factors or antibiotics), pH, or other chemical exchange. Biochemical or biological 

interactions may result from the action of extracellular enzymes (e.g., lipases) or biochemical recognition 

of cell wall or membranes (e.g., mycolic acids).32 These stimuli trigger an array of potential responses 

including via regulatory networks and/or biochemical pathways. Previously, we have demonstrated and 

characterized the degree of metabolomic expansion in NF that is induced by developing resistance to 

rifampicin and streptomycin and determined the structure of a new family of aromatic polyketides 

induced by adaptive mutations in RNA polymerase.33 Notably, the single nucleotide changes engendered 

by this vertically acquired antibiotic resistance resulted in large global changes in measured metabolites. 

The acquisition of resistance to antibiotic SMs may be considered an intergeneric interaction response. 
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Similarly, the current study reveals how a small change in the biology of a system, in this case via a low 

inoculum of a challenger organism, can have large effects on the metabolomic output, of which SMs again 

play a featuring role. The SOM stimulus-response identification workflow provides a tool to begin 

examining how these interactions excite changes in microbiological communities intergenerically and can 

potentially be used to provide insight into more complex interkingdom interactions in eukaryotic systems. 

 

Materials and Methods 

 

Fermentation conditions 

 Seed culture (1mL) of NF in ISP2 broth was inoculated into 25 mL of R4 fermentation medium and 

incubated in a rotary shaker at 30 °C. At the same time seed cultures of EC and BS, TP and RW were 

prepared and incubated for 24 hours prior to addition to NF fermentation flasks. A 200 µL inoculum of 

each competing organism was added to already established NF cultures and also to flasks containing 

sterile R4 medium. A total of 4 different co-cultures and a total of 5 monocultures (one for NF and one for 

each competitor) were then incubated in a rotary shaker at 30 °C for another 6 days. At the time of 

inoculation, cultures contained 7 x 107 cfu/mL of NF and 3 x 106, 3 x 105, 2 x 106, 7 x 106 cfu/mL of RW, TP, 

BS, and EC respectively, corresponding to a NF/challenger ratio ranging from 10:1 (EC) to 200:1 (TP) at the 

beginning of mixed culture. At six days, dilution plating of co-cultures only resulted in NF colonies, further 

emphasizing the excess population of this strain in culture conditions. For scaled fermentation, the 

number of 25 mL culture flasks was multiplied up to a total of 500 mL of fermentation volume. Also, only 

one competing organism (RW) was picked as an activator since it seemed to be the most effective in 

stimulating ciromicin production in an initial experiment. 
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Culture extractions  

 For extraction, 25 mL of methanol was added to each mixed and monoculture and shaken for 1 hour. 

Mycelia were separated from broth by centrifugation and supernatants were dried in vacuo and subjected 

to UPLC/IM-MS analysis. For scaled fermentation, the same methanol extraction of each 25 mL culture 

was performed but supernatants were first combined and then dried in vacuo for the isolation of 

ciromicins. 

 

Ciromicin purification 

 Crude extract containing predominantly ciromicin A (1) and some ciromicin B (2) was first separated 

on a preparative RP-HPLC using linear gradient of water/acetonitrile containing 0.1 % of formic acid. 

Fractions with UV indicative of ciromicins were then combined and applied on size exclusion Sephadex 

LH-20 column for a gravity run in methanol. The final yields of purified ciromicin A (1) and B (2) were 5 mg 

and 0.5 mg respectively. 

 

Photochemical conversion of ciromicin 

 For photochemical reaction experiment, we dissolved 6 mg of purified ciromicin A (1) in 5 mL of 

methanol and split it into 10 samples, 500 µL each. We then exposed each sample to a different 

wavelength light for 30 min starting with visible light of 700 nm, through the long and medium wave UV 

and ending with short wave UV of 150 nm. The experiment was performed in the dark room using ORIEL 

Illuminator equipped with 1000 W Hg(Xe) ozone free arc lamp and 450-1000W universal arc lamp power 

supply. We monitored the progress of conversion via LC-MS analysis.  
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UPLC/IM-MS Data Acquisition 

 Sample extracts were resuspended at a concentration of 200 mg/mL in mobile phase A (see below). 

UPLC/IM-MS-MS (MSE) data acquisition was performed on a SYNAPT G2 HDMS (Waters Corp., Milford, 

MA) with a 30 min gradient. Mobile phase A consisted of 95 % H2O and 5 % acetonitrile with 10 mM 

ammonium acetate, and mobile phase B consisted of 95 % acetonitrile and 5 % water with 10 mM 

ammonium acetate. A 1x100 mm 1.7 μm particle BEH-T3 C18 column (Waters Corp.) was used for 

chromatographic separations with a flow rate of 75 μL/min and a column temperature of 40°C. An 

autosampler with a loop size of 5 μL held at 4 °C was used for sample injection. The initial solvent 

composition was 100 % A, which was held for 1 min and ramped to 0 % A over the next 15 min, held at 

0 % A for 2 min, and returned to 100 % A over a 0.1 min period. The gradient was held at 100 % A for the 

next 10.9 min for equilibration. Prior to analysis of the sample queue, ten sequential column-load 

injections were performed with 5 μL of the quality control. Samples were analyzed in triplicate with the 

order of injection randomized.  

 IM-MSE spectra were acquired at a rate of 2 Hz from 50-2000 Da in positive ion mode for the duration 

of each sample analysis. The instrument was calibrated to less than 1 ppm mass accuracy using sodium 

formate clusters prior to analysis. A two-point internal standard of leucine enkephalin was infused in 

parallel to the sample at a flow rate of 7 μL/min, and data were acquired every 10 s. The source capillary 

was held at 110 °C and 3.0 kV, with a desolvation gas flow of 400 L/h and a temperature of 150 °C. The 

sampling cone was held at a setting of 35.0, with the extraction cone at a setting of 5.0. In the MSE 

configuration, low and high energy spectra were acquired for each scan. High energy data provided a 

collision energy profile from 10-30 eV in the transfer region, providing post-mobility fragmentation. Ion 

mobility separations were performed with a wave velocity of 550 m/s, a wave height of 40.0 V, and a 

nitrogen gas flow of 90 mL/min, with the helium cell flow rate at 180 mL/min. Internal calibrant correction 

was performed in real time. 
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Metabolomic analysis 

 Data files were converted from .raw to mzXML using the msconvert tool from ProteoWizard 3.0.5759. 

Each mixed fermentation was treated as a separate experiment, and samples were grouped into 4 sets, 

each containing monoculture NF, monoculture competing organism, and NF & competing organism. Peak 

picking and alignment were then performed using XCMS in R10 for each group, and the 4 resultant XCMS 

datasets were combined using meta-XCMS. The combined dataset was then manually inspected. This 

method was found to give better results than performing a single XCMS analysis on the entire dataset. 

Processed data were then normalized by total ion count, and low intensity features were checked against 

the raw data to ensure legitimacy. Features not discernable from noise and features after 15 minutes 

were removed from the dataset. Feature intensities from each co-culture were compared to their 

respective monocultures and sorted by fold change to select for up and down regulated features.  

 Multivariate statistical analyses were performed using Umetrics extended statistics software EZinfo 

version 2.0.0.0 (Waters, Milford, MA). For MEDI analyses, triplicate injections from the XCMS readout 

were averaged, and data were formatted for GEDI input. GEDI software allows users to adjust sorting 

parameters. A grid of 25 x 26 nodes was selected, with 1st and 2nd phase training iterations of 80 and 100 

respectively.  
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Chapter 4  Prioritization of natural products from hypogean actinomycetes 

 

This chapter was adapted with permission from the American Society of Microbiology from an article 

written by Brett C. Covington, Jeffery M. Spraggins , Audrey E. Ynigez-Gutierrez , Zachary B Hylton , and 

Brian O. Bachmann, first published in Applied and Environmental Microbiology.  

 

Introduction 

 Chapters 2 and 3 described our applications of comparative metabolomics and MVSA to prioritize NPs 

from stimulated, genomically characterized organisms. In this chapter we describe further applications of 

environmental stimuli to Streptomyces and rare actinobacteria isolated from cave sediments. As 

previously mentioned, inspection of microbial genomes reveals that the products of a large portion of the 

genetically encoded SMs remain unidentified in culture extracts.1 This discrepancy between the potential 

and isolable SM production may stem from low expression and/or translation of SM biosynthetic genes 

and limitations in our methods of detection via abundance or biological activity.2 So called ‘brothological’ 

methods (such as OSMAC)3 that vary cultivation parameters, such as media composition, pH, aeration, 

and temperature, can effectively increase the observable SM output from microbial producers. These 

general approaches may increase SM production by altering precursor levels, biosynthetic enzyme 

activity/stability, or through changes in gene regulation, microbial metabolism, and growth phase timing. 

In the previous chapters we have described our alternative strategy, which employs defined chemical or 

biological agents in a single growth medium that model ecological and environmental stimuli. The finding 

that these variations in discrete chemical and biological stimuli can alter SM production are consistent 

with our central hypothesis that most NPs are used to respond to environmental interactions.  

 Regardless of the means of stimulating SM production, the identification of the often low-abundant 

SMs of interest within the observable metabolome remains a substantial challenge. The application of 
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comparative metabolomics methods described in Chapter 1 such as MVSA and/or molecular networking4-

6 has superseded the ‘stare and compare’ approach, providing unbiased assessments of metabolite 

covariance across samples. In previous chapters we have demonstrated that combining comparative 

metabolomics with the application of discrete stimuli can effectively prioritize SMs for isolation. However, 

while the combination of chemical/biological stimuli and comparative metabolomics has led to the 

activation, production, and identification of NPs from actinomycetes of the genus Streptomyces7-10 and 

less commonly other actinomycetes,5, 11-13 these strategies have not been thoroughly evaluated across 

other actinobacterial genera. Cave environments are in many ways unique compared to surface habitats. 

The lack of sunlight, temperature stability, high humidity, and limited nutrients likely foster specialized 

communities of microorganisms within these isolated environments. Hypogean bacteria may be an 

important source of chemical novelty, but it was unclear how SM production from these microorganisms 

will respond to current activation methods. In this chapter we discuss the isolation of bacteria from cave 

sediments and the stimulation of cultured hypogean actinomycetes to induce NP production. We 

demonstrate the applicability of subinhibitory antibiotic exposure, rare earth metal exposure, and 

microbial competition activation strategies to activate secondary metabolism across a phylogenetically 

diverse selection of cave-derived actinomycetes. We also show that comparative metabolomics analyses 

of stimulated cultures prioritize SMs from crude extracts. This work revealed large changes in the 

observed metabolomes and overproduction of SMs in response to environmental stimuli. We isolated a 

subset of metabolites prioritized through comparative metabolomics analyses and identified members of 

the actinomycin, hypogeamycin, tetarimycin, aloesaponarin, and propeptin classes as well as a novel 

linear polyketide (funisamine) produced by a rare Streptosporangium strain under mixed culture stimuli 

conditions.  
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Results 

 

Phylogenetically diverse actinomycetes isolated from hypogean environments.  

 Phylogenetically diverse bacteria from unique unexplored environments have a strong track record of 

revealing useful chemical diversity14-15. Hypogean sediments are unique environments that have been 

shown to be replete with bacterial diversity16-18 but not extensively explored for SM producing organisms. 

Caves maintain microbial habitats distinct from epigean (surface) ecosystems. Limestone caves in the 

central United States are generally isothermal year round (~13 °C), highly oligotrophic,19 and completely 

aphotic. Formed millions of years ago by chemical and biological20 dissolution of limestone, they are often 

highly humid due to hydrological activity, and therefore present vast, wet, highly oxygenated surface 

areas for maintaining microbial biofilms competing for allochthonous dissolved organic matter. Based on 

these unique environmental parameters, we selected actinomycetes sourced from cave environs for 

stimulus-response mapping.  

 To investigate the secondary metabolic responses of cave-derived actinomycetes to environmental 

stimuli, environmental samples were acquired from Hardin’s (Ashland City), Snail Shell (Rockvale), and 

Cagle’s Chasm (South Pittsburg) caves in Tennessee by aseptically collecting cave sediments and swabbing 

cave formations. These formations (speleothems) included flowstone, stalactites, stalagmites, wall 

coralloids, and columns. To provide a basis for comparison of cultivatable diversity to studies of 

actinomycetes from surface environments we used established actinobacterial isolation procedures.21 

After collection, cave sediment samples were dried and used 100-fold diluted International Streptomyces 

Protocol 2 (ISP2) agar through dilution plating, while swabs were suspended and directly applied to agar 

plates without prior desiccation. Hundreds of individual bacterial colonies were isolated using this 
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approach, and 16S rDNA sequences were acquired for 155 strains. The majority of these (58 %) were most 

 

Figure 4-1 Phylogenetic tree of cave organisms. Images from (A) Cagle’s chasm and (B) Snail shell caves. 
(C) Phylogenetic tree constructed using MEGA7 with maximum likelihood analysis from 16S sequence 
alignment of the 20 strains selected for stimulus exposure studies and 11 type strains for reference. 
Bootstrap values based on 1000 pseudoreplicates are shown next to the branch points. Initial tree for 
the heuristic search was obtained automatically by applying Neighbor-Join and BioNJ algorithms to a 
matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and 
then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch 
lengths measured in the number of substitutions per site. Isolation frequency of genera in our study is 
calculated as the number of strains of a given genus identified divided by the total number (155) of 
sequenced isolates. Resubmitted from ASM with permissions from the American Society for 
Microbiology 
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closely related to actinomycetes of the genus Streptomyces; however, a number of rare actinomycetes 

were isolated (Table B-1), which are important sources of novel SMs 22. A group of 20 cave strains from 

this sequenced collection was selected for this study, consisting of four Streptomyces species and 16 less 

commonly described actinomycetes with high 16S rDNA sequence similarity to the genera: Microbispora, 

Micromonospora, Streptosporangium, Saccharothrix, Nonomuraea, Pseudonocardia, Nocardioides, 

Nocardia, Kribella, and Paenarthrobacter (Figure 4-1).  

 

Stimuli increase natural product biosynthesis across actinomycete genera. 

 Selected strains were exposed to six different stimuli previously reported to activate SM production 

in actinomycetes: sub-inhibitory antibiotic concentrations (1/10 MIC) of either rifampicin or streptomycin 

23, rare earth metal exposure with lanthanum or scandium,24 and microbial competition with mycolic acid 

containing bacteria TP or RW.10 All organisms were cultured in ISP2 media, a benchmark defined media, 

and metabolites were extracted after seven days. These total cell extracts were then analyzed through 

HPLC-ESI-MS in both positive and negative ionization modes. In this study, combined positive and negative 

ESI data for all extracts were prepared for initial comparative analysis. The metabolomic platform XCMS25 

was used to process datasets, providing peak detection, retention-time correction, and chromatogram 

alignment to generate a combined list of ~19,000 features - ions with distinct m/z and retention times. 

Feature ion abundances from technical replicates were averaged, and pairwise comparisons were 

performed between each stimuli condition and respective controls to determine the number of features 

with increased production through stimuli exposure.  

 The overall responses to stimuli were measured by the number of features with ≥10-fold increased 

ion abundance compared to control conditions. Responses varied between genera (Figure B-1-Figure B-4), 

and even phylogenetically similar isolates displayed markedly differing metabolomic response patterns. 

For instance, of the two Kribella isolates, one (BBHARD14) responded most strongly to metal exposure 
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while the other (BBSNAI08) responded most strongly to mixed culture. Of the four Micromonospora 

isolates, two responded most strongly to mixed culture (BCCAGE23 and BBHARD28), while two responded 

most strongly to metal exposure (BBHARD22 and BBHARD29). Interestingly, across strains there was 

relatively little overlap of overproduced features between stimuli of the same type. For example, within 

the antibiotic category, rifampicin and streptomycin treatment generally led to accumulation of different 

metabolites (Figure B-2). Similar results were observed for metal and mixed culture exposure (Figure B-3, 

B-4), with the exception of two Nocardioides isolates (BBSNAI19 and BBSNAI23) which exhibited a high 

degree of overlap between responses to lanthanum and scandium exposure conditions. The four 

Streptomyces isolates demonstrated relatively fewer responses, suggesting that rare actinomycetes are 

particularly sensitive to applications of stimuli.  

 At least eight families of NPs were identified within the extracts (vide infra), and increased production 

was observed for seven of these in at least one stimulus condition. Two of these NP families, an 

unidentified polyene NP and a novel aminopolyol funisamine, were detectable only under stimuli 

conditions, and others, like tetarimycin, were barely detectable in control conditions and would have been 

overlooked if not for enhanced production under stimuli conditions (Table B-2). The unidentified polyene 

was activated in a cave isolate Nonomuraea sp. BCCAGE42 under antibiotic exposure conditions, and 

funisamine was produced by a Streptosporangium sp. KDCAGE35 under mixed culture conditions. 

Interestingly, while exposure to either rifampicin or streptomycin elicited comparatively few bulk 

metabolomic responses across strains relative to mixed culture and metal stimuli, antibiotic exposure 

demonstrated a substantial effect on the accumulation of individual NP features, which were conspicuous 

in pairwise analysis. Of 23 putative NP features with abundances ≥10-fold in stimuli conditions vs controls, 

17 were observed in greater abundance under sub-inhibitory antibiotic exposure conditions (Figure B5). 
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Comparative metabolomics prioritizes secondary metabolites from stimuli exposure.  

 Two multivariate statistical analysis methods were used to prioritize metabolomic features for 

isolation and dereplication, volcano plots and S-plots (Figure 4-2). Volcano plots organize features on the 

y-axis by the probability of observing such a fold change under the null hypothesis of no-change (p-value) 

and by relative ion abundance fold change on the x-axis, but not by feature ion abundance. By comparison, 

S-plots organize features on the y-axis by their Pearson correlation coefficient, a measure of their linear 

correlation, and on the x-axis by their component coefficients, a measure of a feature’s contribution to 

the total variance between conditions, which is influenced by feature ion abundance. It is also important 

to note that the relative intensities of ions from a mixture of small molecules as detected by MS do not 

necessarily correlate with the relative concentration of those compounds, due to varying ionization 

efficiencies. While these analyses aid in prioritizing a number of features, the practical isolability of 

compounds from an extract is limited by many factors, including abundance, chromatographic properties, 

and chemical stability. Both MS and UV/Vis absorption spectroscopy were utilized to characterize culture 

extracts, and the absorption spectra aided in determining the abundance and isolability of prioritized 

features. 

 Comparative metabolomics analyses of extracts from the cave isolate Micromonospora sp. BBHARD22 

revealed a number of abundant features increased under scandium supplemented conditions (Figure 4-2, 

Table B-2, B-3). Overlaying extracted ion chromatograms for S-plot prioritized features onto the total ion 

and UV/Vis chromatograms indicated one feature was readily isolable based on abundance in both MS 

and UV/Vis detection as well elution in a non-complex region of the chromatogram. The production of 

this feature was increased six-fold under scandium metal exposure conditions and was ultimately 

identified by NMR spectroscopy to be the known anthraquinone NP, aloesaponarin II, originally isolated 
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from the plant Aloe saponaria26 but also previously observed in extracts of both marine27 and terrestrial28 

 

 

Figure 4-2 Prioritization of natural products from comparative metabolomics. Volcano and S-plot 
prioritization of (A) aloesaponarins (ESI -) from Micromonospora sp. BBHARD22 exposed to scandium 
(Sc), (B) hypogeamicins (ESI +) from Nonomuraea sp. BBHARD 23 exposed to scandium (Sc), and (C) 
tetarimycins (ESI +) from Microbispora sp. BCCAGE54 exposed to streptomycin (Str). Circles are colored 
for features outside (gray) and within (blue) 0.8 Pearson correlation coefficient thresholds for S-plots 
and 0.8 probability value, 5-fold change thresholds for volcano plots. Features corresponding to (A) 
aloesaponarin, (B) hypogeamicin, and (C) tetarimycin are colored red in volcano and S-plots and are 
additionally distinguished by red arrows in volcano and S-plots as well as the UV/Vis and MS 
chromatograms. Overlays of TIC chromatograms, total absorption spectrums, and extracted ion 
chromatograms for abundant features prioritized through S-plot analyses. Within each row the color of 
the peak corresponds to the color of the circle in the volcano and S-plots. The fold change of the 
highlighted NP in stimuli conditions relative to the controls are shown tables over the S-plots for 
rifampicin (Rif), streptomycin (Str), lanthanum (La), scandium (Sc), TP, and RW conditions. Resubmitted 
from ASM with permissions from the American Society for Microbiology 
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Streptomyces sp. Another abundant feature prioritized from scandium exposure culture extracts was 

additionally identified as the anthraquinone okicenone.29 In addition to these confirmed anthraquinones, 

seven additional features were identified across multiply applied stimuli that were assigned as likely SMs 

based on their MS, MS/MS, and UV (Figure B-12) spectra in comparison to compounds isolated and 

characterized from this strain. Notably, these putative SMs, likely congeners of aloesaponarin and 

okicenone, vary in concentration across stimuli, with discrete stimuli facilitating increased production of 

individual congeners. 

 Analysis of the cave isolate Nonomuraea sp. BBHARD23 under stimuli conditions prioritized several 

features with enhanced production under scandium metal exposure conditions (Figure 4-2B). Under these 

conditions the production of the pyronapthoquinones hypogeamicins A, B, and C, were increased and 

these SMs were prioritized through comparative metabolomics; the most abundant of these was 

identified as hypogeamicin B.30 Additionally, several unidentified features were prioritized with similar 

m/z and UV absorbance spectra as the identified hypogeamicins, but with distinct chromatographic 

retention times. These putative hypogeamicin analogs were increased under mixed culture conditions, 

with production increased almost 600-fold under exposure to competition with Rhodococcus sp. In both 

of these examples, the highlighted SM classes had very high ion abundance relative to other prioritized 

metabolites. Again, individual characterized and putative hypogeamicin congeners vary across stimuli 

(Table B-2, B-3). For example, the production of hypogeamicin C and four other putative analogs could be 

elicited by administration of sub-inhibitory streptomycin, whereas hypogeamicin A could not. Scandium 

exposure led to a ~2, 110, and 6-fold increase in hypogeamycin A, B, and C respectively, but resulted in a 

decrease in the abundance of some putative hypogeamycin analogs. 

 Comparative analysis of resulting stimuli extracts from Microbispora sp. BCCAGE54 revealed increased 

production of a large number of metabolites. Volcano and S-plot analyses of sub-inhibitory streptomycin 

exposure prioritized 295 features, but the features with the highest ion intensity co-eluted in a crowded 
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region of the chromatogram and eluded isolation attempts (Figure 4-2C). By comparison, one prioritized 

feature with relatively low ion abundance, yet a 33-fold increased production under antibiotic exposure 

conditions eluted in a chromatographically tractable region and was correlated with a relatively large 

UV/Vis absorption peak. This induced feature was identified as tetarimycin B, a polyketide SM recently 

discovered by Kallifidas et al. via the heterologous expression of an environmentally-derived type II 

polyketide synthase (PKS) gene cluster.31 Sequence homology searches have indicated that tetarimycin 

encoding gene clusters may be widespread in the environment, and the lack of identified tetarimycins 

from culture based screens indicates the difficult to detect nature of this SM family.31 Indeed, while 

tetarimycin B was produced in detectable levels within our unstimulated Microbispora cultures, the low 

abundance ions detected in these conditions would likely have been overlooked entirely without 

prioritization through comparative metabolomics. As in previous examples, production of several putative 

new tetarimycin analogs was elicited in multiple stimuli, along with several features displaying properties 

of SMs with high molecular weight, extended UV/VIS chromophores, and responses profiles matching 

tetarimycins (Figure B20). During the isolation of tetarimycin, an additional pair of metabolites were 

isolated from large scale culture extracts and identified as propeptin 1 and 2. The relative abundances of 

these two congeners varied subtly but consistently across stimuli classes with mixed culture and antibiotic 

exposure conditions resulting in higher ratios of propeptin 1 and metal exposure conditions resulting in 

higher ratios of propeptin 2 (Table B-2). 

 As noted, volcano and S-plots emphasize different m/z features within the data. Features with 

significant fold-changes are prioritized by volcano plots whereas those with significant differences in 

abundance are prioritized by S-plots. The chromatogram overlays in Figure 4-2 show features emphasized 

through S-plot analyses, which were found to be the most reliable method for prioritizing features for 

isolation. Similar overlays for features prioritized by volcano plot thresholds are available in Appendix B 

(Figure B-6). Tables of observed SM fold change across stimuli conditions (Table B-2, B3) along with 
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extracted ion (Figure B-7 - Figure B-11) and UV (Figure B-12 - Figure B-22) chromatograms for prioritized 

metabolites and NMR spectra of identified metabolites (Figure B-23 - Figure B-29) are provided in 

Appendix B.  

 

Novel polyketide produced from interactions between rare Streptosporangium and microbial co-

culture 

 A cave isolate, Streptosporangium sp. KDCAGE35 with close 16S sequence similarity to 

Streptosporangium corydalis (99.6 % identity), hereafter referred to as Streptosporangium caverna (from 

the Latin noun for cave, caverna), was shown to be highly responsive to mixed culture stimulus with ~16 % 

of the total detected features displaying increased ion intensity at 10-fold or higher levels under these 

conditions. While the production of many features under mixed culture conditions were increased relative 

to unstimulated cultures, most remained insufficiently abundant for isolation. Further mixed culture 

screens were performed with S. caverna using EC, Bacillus sp. KDCAGE13 (BK) (99.9 % 16S similarity to 

Bacillus simplex), and BS in addition to the previously screened RW and TP. Volcano and S-plot analyses 

comparing mixed cultures with Bacillus strains and S. caverna monocultures identified a metabolite with 

a mass of 1176.6 Da that eluted in a tractable region of the chromatogram. This mass was correlated with 

a UV spectrum (λ-max: 370, 389, and 413 nm) characteristic of conjugated polyene systems (e.g. 

heptaenes). The production of this feature was also induced in screens with TP, but the significantly 

enhanced production under BS competition stimulus conditions (~70-fold increase) enabled isolation and 

identification. Comparisons of production yields of this prioritized feature from co-cultivation of different 

species with S. caverna are shown in Figure 4-3F. The target compound was isolated as a bright yellow 

solid from several small scale mixed cultures (totaling 2 L) of the S. caverna and BS mixed culture using a 

combination of adsorbent resin, size exclusion chromatography, and reverse phase chromatography. 

Electrospray Fourier-transform ion cyclotron resonance MS of the isolated compound yielded an accurate 
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mass of 1176.6507 [M-H]- (calcd. for C62H98NO18S-, 1176.6510, 0.25 ppm), which in combination with 

formula constraints from NMR data and isotope analyses suggested a molecular formula of C62H99NO18S. 

The full structure was derived from COSY, TOCSY, HSQC, HMBC, and NOESY NMR spectroscopy (Figure 

B-29 - Figure B-41), which identified two conjugated systems assignable to four and seven double bonds, 

respectively (Figure 4-3H). The structure was separated into three spin systems by two quaternary carbons 

at C-14 and C-31. Fig. 3H shows important HMBC correlations which facilitated connections across these 

 

Figure 4-3 Activation of funisamine biosynthesis through mixed culture. (A, B, C, D) Volcano and S-plot 
comparisons between S. caverna & BK mixed (+BK) and mono (Con) cultures and S. caverna & BS mixed 
(+BS) and mono (Con) cultures (ESI -). Circles are colored for features outside (gray) and within (blue) 0.8 
Pearson correlation coefficient thresholds for S-plots and 0.8 probability value, 5-fold change thresholds 
for volcano plots. Feature corresponding to funisamine is enlarged colored red. (E, G) Overlays of total ion 
chromatograms, total absorption spectrums, and extracted ion chromatograms for funisamine (m/z: 
1176.6) and other features prioritized from S. caverna mixed cultures with BS and BK. (F) Fold change of 
funisamine production in mixed cultures with RW, EC, TP, BK, and BS vs control quantified by UV 
absorption at 413 nm. (H) Proposed structure of funisamine generated from HSQC, COSY, TOCSY, HMBC 
and NOESY spectra. Major COSY and HMBC correlations shown. Stereochemical configurations of 
substituent groups and double bonds inferred from bioinformatic analysis. Resubmitted from ASM with 
permissions from the American Society for Microbiology 
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spin systems. HMBC correlations show interactions from the proton at position CH-13 and methyl protons 

CH3-59 to the C-14 quaternary carbon and to CH-15 of the next spin system. Methyl protons at CH3-59 

also showed HMBC correlations with CH-13 and long-range coupling in the COSY spectra with the proton 

at CH-15. The second quaternary carbon, a ketone at C-31, was bridged by HMBC correlations from 

protons at CH-30, CH-32, CH3-57, and CH3-58 to the C-31 carbon. NOESY correlations between methine 

protons CH-29, CH-30, CH-32, and CH-33 to methyl protons CH3-57, and CH3-58 confirmed connectivity in 

these spin systems. A shift of 4.61 ppm for the proton at CH-29 was consistent with a sulfate group at C29. 

This is additionally supported by the identification of a fragment consistent with the loss of a sulfate group 

by MS (Figure B-42 - Figure B-44, Table B-5). We named this compound funisamine, (from the Latin noun 

for rope, funis). 

 Co-cultivated elicitor strains E. coli and B. subtilis had similar growth rates and doubling times under 

the culture conditions (Figure B-46) yet had differing impacts on funisamine compound production (Figure 

4-3). The mechanism and factors governing the apparent Bacillus species selectivity of this activation 

remain unknown, though there appears to be no correlation to elicitor strain growth rate. While some 

related aminopolyols do have reported antimicrobial properties against Bacillus strains,32 funisamine 

exhibited antimicrobial activity only at very high concentrations, ~25 times the levels produced under 

mixed culture conditions. Microtiter plate antibacterial assays with S. aureus, E. coli, and C. albicans 

yielded MIC values of ~1 mM. Funisamine (and perhaps other long chain aminopolyols) may also serve a 

role other than as an antibiotic in the producer’s natural environment.  

 An issue with mixed culture stimulus approaches is the uncertainty of which organism(s) within the 

culture are ultimately responsible for producing compounds observed within an extract. Funisamine was 

produced in mixed culture conditions with the S. caverna and three separate co-cultivated species, 

strongly suggesting that S. caverna was likely responsible for the production of funisamine. Another 

prioritized and isolable metabolite was observed to be entirely unique to BS and S. caverna mixed cultures 
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(Figure B-45). This feature was isolated and identified through NMR spectroscopy to be the antibiotic, 

amicoumacin B, which is known to be produced by Bacillus strains and appears to be produced in response 

to S. caverna. To test if amicoumacin induced funisamine production, we added purified amicoumacin to 

monocultures of S. caverna and did not detect funisamine production (data not shown).  

 

Investigating funisamine biosynthesis 

 To understand the biosynthesis of funisamine, we endeavored to identify the cognate BGC within S. 

caverna. The genome of S. caverna was determined using a combination of Pacific Biosciences RSII and 

Illumina sequencing to reveal a chromosome of 11,340,955 bps. Potential SM gene clusters were then 

identified using the antibiotics and SM analysis shell algorithm (antiSMASH, v. 4).33 This analysis identified 

22 putative SM producing gene clusters (Table B-6), including: 6 terpenes, 5 nonribosomal peptide 

synthetases, 3 lantipeptides, 2 bacteriocins, 1 lasso peptide, and 3 PKS gene clusters. One of these PKS 

gene clusters, a type I PKS consisting of 26 modules (GenBank accession number: MH128143), contained 

modular organization of catalytic domains consistent with the determined structure of funisamine. The 

modular PKS diagram of this cluster is shown in Figure 4-4, and gene descriptions as well as a genetic 

organization are provided in the supplementary material (Table B-7). While the stereochemistry of 

substituent hydroxyl and methyl groups have not been experimentally validated, analysis of the 

ketoreductase (KR) domains within each module (Figure B-47) facilitated the estimation of the 

stereochemistry of the hydroxyl and methyl substituents in the structure based on the amino acids 

present in six distinguishing positions along the loop and catalytic regions of the KR as described by 

Keatinge-Clay.34 Predicted stereochemical configurations of products for each polyketide synthase 

module in funisamine biosynthesis are shown in Figure B-48. Methyl groups at positions C14, C30, and 

C32 were consistent with antiSMASH methylmalonyl extender unit predictions based on acyltransferase 

(AT) sequences for modules at those positions. The AT for the module predicted to activate the precursor 
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at position C12 was predicted to use a modified malonyl (ethylmalonyl) CoA unit for polyketide extension, 

consistent with the propyl group at this position. 

 The proposed 4-aminobutyryl-CoA starter precursor unit is likely derived from arginine through the 

unusual pathway described by Leadlay and coworkers (Figure 4-4).35 Genes encoding the essential 

arginine monooxygenase (funA1), 4-guanidinylbutanoate-CoA ligase (funA2), agmatinase (funA3), and 4-

aminobutyryl-CoA-ACP acyltransferase (funA4) were all evident within the gene cluster. A putative 

sulfotransferase, encoded by (funS1), likely catalyzes the sulfation at C29. FunS1 is similar yet distinct in 

 

Figure 4-4 Proposed biosynthesis of funisamine. Biosynthesis of the 4-aminobutanoyl-CoA starter unit 
from arginine and loading of the polyketide synthase shown on the bottom left. Propylmalonyl-CoA 
biosynthesis via beta-oxidation of odd-chain fatty acid pentanoate shown on the bottom right. 
Stereochemical assignment of funisamine structure shown at the top was inferred based on 
ketoreductase type and geometry indicated as A1, A2, B1, B2, C1, or C2, as previously described. Sulfation 
by putative sulfotransferase FunS1 and PAPS cofactor shown at the top. The modular organization of 
funisamine polyketide synthase genes (FunP1-FunP8) in S. caverna is shown in the center. The layout of 
catalytic domains: ketosynthase (KS), acyltransferase (AT), ketoreductase (KR), dehydratase (DH), 
enoylreductase (ER), and thioesterase (TE) present within the polyketide synthases are shown with 
inactive domains colored grey. A-type and B-type KR domains are colored orange and green respectively. 
Acyltransferase domains predicted to use methyl or propylmalonyl extender units are colored yellow. Acyl 
carrier proteins are colored light blue, and docking domains are purple. Stereochemical configurations of 
substituent groups and double bonds inferred from bioinformatic analysis. Resubmitted from ASM with 
permissions from the American Society for Microbiology 
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sequence to other observed sulfotransferase enzymes involved in the biosynthesis of aminopolyol 

polyketides, such as MedB (BAW35627.1, 47 % identical, 60 % similar) and SMALA2697 (WP_099013767.1, 

44 % identical, 59 % similar) which facilitate the sulfation of mediomycin and clethramycin. Production of 

the evident propyl-malonyl-CoA unit added at this position most likely derives from a 3-hydroxypentyl-

CoA by dehydrogenase and carboxylase enzymes encoded by funB1 and funB2 observed within the cluster. 

Expanded versions of Figure 4-4 showing all thioester intermediates are included in Appendix B (Figure 

B-49 - Figure B-51).  

 

Discussion 

 Despite the oligotrophic, relatively cold, and aphotic nature of hypogean ecosystems, caves have been 

demonstrated to harbor rich, stable, and diverse communities of microorganisms. Metagenomic36-37 and 

metatranscriptomic38 studies indicate that hypogean bacteria are primarily heterotrophic but include 

some autotrophic bacteria, which may be more represented in regions more remote from allochthonous 

energy inputs. Actinobacteria have been noted as one of the most abundant phyla associated with 

hypogean ecosystems,39 have been found associated with speleothems,40 and constitute some of the first 

studied hypogean microbial families due to their association with degradation of prehistoric cave 

paintings.41 Herein we confirm that actinomycetes are abundant in the three oligotrophic cave locations 

we sampled using standard actinomycete protocols, and that the actinobacterial generic distribution we 

observed mirrors what is found on epigean ecosystems.  

 We selected 20 diverse hypogean actinobacteria for analysis of their secondary metabolism using a 

stimulus-response paradigm in a single growth medium. The organism set was biased for less commonly 

described actinobacterial genera including several from which few or no SMs have been previously 

reported. Overall response data from stimulated culture extracts indicate that stimuli exposure, even for 

stimuli within the same class, leads to distinct changes in the metabolic inventories of exposed strains. 
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This global trend is also evident within the response of identified and putative NP features, which largely 

demonstrate responsiveness to a specific stimulus rather than to a class of stimuli. Previous studies have 

indicated that the production of some classes of SMs may be induced by general bacterial stressors such 

as oxidative stress42 and ppGpp43-44 or by master regulators such as ScmR in Burkholderia.45 However, the 

trends observed within our dataset, particularly the variations in congener abundance across stimuli, 

suggest that the increased abundance of NPs under stimulated conditions stem largely from results of 

specific interactions with a given stimulus rather than a general response to stress.  

 Analysis of abundant and covarying metabolites along with manual inspections of HPLC-MS 

chromatograms identified ~58 putative SMs from an estimated 13 classes based upon MS and UV analysis, 

spectroscopic similarity to validated congeners isolated in producing strains, and the matching of 

productive response of putative metabolites to multiplexed stimuli conditions. The isolation of a subset 

of SMs from these candidates for structural identification was biased towards abundant compounds 

found in more isolable chromatographic regions with regard to reversed phase HPLC techniques. In all, 

the subset of isolated compounds revealed 12 identified SMs within eight classes of compounds, seven of 

which have been previously isolated from epigean ecosystems. One, funisamine, represents a new SM 

based on its carbon framework, though it bears similarity to a class of giant linear polyenes isolated from 

other actinobacteria.46-48 This subset of isolated structurally validated compounds revealed a moderate 

NP rediscovery rate, with one of eight compound families representing a new carbon scaffold. However, 

we note that focusing on abundant chromatographically tractable compounds may have biased our 

campaign towards rediscovery, and that the products of a significant portion of putative SMs identified 

using this workflow remain to be isolated and characterized. 

 The conservation of core structural elements within the aminopolyol class of SMs suggests they serve 

important functions for producing strains within their natural environment and the evolution49 and 

ecological role50 of aminopolyol NPs have recently been investigated. This class of NPs commonly exhibit 
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antibiotic and/or antifungal activity. The linearmycins were found to inhibit the growth of several gram-

positive bacteria and lyse Bacillus species by directly targeting the cytoplasmic membrane.51 A role in 

vesical biogenesis within producing Streptomyces has also been suggested for linearmycins.50 To our 

knowledge, funisamine is the only known long chain aminopolyol produced by a Streptosporangium, and 

phylogenetic analyses reveal that many of the ketosynthase (KS) and acyltransferase (AT) sequences 

within the funisamine PKS are divergent from domains observed in Streptomyces-derived aminopolyol 

gene clusters. Thus, while funisamine is structurally similar to other known aminopolyols, low sequence 

similarity of the funisamine gene cluster from S. caverna to Streptomyces gene clusters suggests a 

substantial amount of evolutionary distance. 

 Genome mining methods have empowered the development of a variety of complementary methods 

to expedite the labor-intensive process of NP discovery. For example, native and heterologous expression 

technologies, using BGCs obtained from genetically ‘interesting’ producers or environmental DNA, 

identify SMs via comparative analysis between an expressing strain and the non-expressing host strain. 

Herein, we demonstrate that comparisons of metabolite responses to multiple stimuli conditions can 

highlight low abundance SMs, in this case across a wide variety of actinobacterial genera. In comparison 

to bioactivity-based approaches, the advantage of comparative metabolomics approaches is that they are 

not constrained by specificity of a given bioassay and permit the discovery of compounds active against a 

broader array of targets. Indeed, nearly all of the compounds of this study identified solely via comparative 

metabolomics are reported to possess a variety of useful biological activities.  

 However, one disadvantage of prioritization of metabolites by comparative metabolomics is that it is 

a ‘shoot first, ask questions later’ proposition. There is no guarantee that compounds identified possess 

therapeutically relevant biological activity. This study highlights a critical need for prioritization in 

discovery. In addition to the discovery of a new scaffold, within the known compound classes we identified 

herein, we observed stimulus-dependent amplification of multiple individual congeners of compounds 
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that were previously not described. These were not prioritized for isolation based on comparative 

metabolomics covariance ranking as they represented analogs of known compounds, and we had no 

knowledge of beneficial activity. Thus, a potential future avenue for these techniques is to combine 

bioactivity measurements with comparative metabolomics data sets. Examples of this combined 

approach include overlaying bioactivity to molecular networking 52 and our own multiplexed activity 

metabolomics (MAM) approach.53 In both cases, these methods enable estimation of activity of unknown 

compounds and structure-activity relationships within compound families prior to compound isolation 

using activity metabolomics techniques.52-53  

 

Materials and methods 

 

Reagents and strains 

 All reagents were obtained from the Sigma-Aldrich chemical company unless otherwise specified. 

Mixed culture strains TP, BS, and EC were obtained from the American Type Culture Collection (ATCC 

700081, ATCC 23857, and ATCC 10536), and RW and BK were obtained via dilution plating from hypogean 

sediments (as described below) and taxonomically assigned by 16S rDNA analysis.  

 

Cave strain isolation and identification 

 Desiccated cave sediments from Hardin’s (Ashland City), Snail Shell (Rockvale), and Cagle’s Chasm 

(South Pittsburg) caves in Tennessee collected between 2010 and 2015 were vortexed in sterile water 

(100 mg/mL), and supernatants were serially diluted (10-100-1000 fold) and plated on minimal media agar 

plates (ISP2 medium /100-fold diluted, 1.5 % agar). Plates were then incubated at 30 °C, and colonies were 

picked over a 3-week period. DNA isolations for purified colonies were performed with a commercial kit 

(Wizard DNA isolation kit, Promega Inc.). The 16S rRNA genes for these were then amplified with universal 
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primers 27F (AGA GTT TGA TCC TGG CTC AG) and 1525R (AAG GAG GTG ATC CAG CCG CA) and the use of 

high fidelity DNA polymerase (Phusion, Thermo Inc). The PCR thermocycler conditions were: (1) initial 

incubation at 98 °C for 1 min and 30 cycles of (2) denaturation at 98 °C for 0.5 min, (3) annealing at 59 °C 

for 1 min, and (4) extension at 72 °C for 1.5 min. The final extension step was conducted at 72 °C for 10 

min. Target 16S rRNA amplicons were purified using a gel extraction kit (QIAquick gel extraction kit). 

Purified PCR products were directly sequenced from both the 5′ and 3′ ends, and these sequences were 

combined to give the near full-length 16S rDNA sequences. Preliminary genus identifications were 

determined by comparison of 16S rDNA sequences to type strains in the EZBioCloud database (30). 

 

Microbial stimulation and culture conditions 

 For all conditions, a spore suspension of the selected strain was inoculated on ISP2 agar plates from 

frozen stocks and cultured for 7 days at 30 °C. These plates were then used to inoculate 25 mL (in 250 mL 

Erlenmeyer flasks) ISP2 liquid seed cultures which were also cultured for 7 days at 30 °C on a rotary shaker 

at 180 rpm. For sub-inhibitory antibiotic exposure fermentations, 1.25 mL of the seed culture was 

transferred into 25 mL (5 % inoculum) ISP2 media experimental cultures containing either rifampicin (120 

nM) or streptomycin (170 nM). For rare earth metal fermentations, 1.25 mL of the seed culture was 

transferred into 25 mL (5 % inoculum) ISP2 media experimental cultures containing either scandium 

chloride (200 µM) or lanthanum chloride (1500 µM). For mixed culture fermentations, 1.25 mL of the seed 

culture was transferred into 25 mL (5 % inoculum) ISP2 media experimental cultures. After 24 hrs, 250 µL 

(1 %) of either TP or RW overnight cultures were added to the actinomycete culture. The controls were 

prepared by inoculating 1.25 mL (5 %) of seed cultures into 25 mL of ISP2 without additives. All cultures 

were allowed to ferment at 30 °C, 180 rpm for 7 days before extraction.  
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Extraction of liquid fermentations 

 Whole culture metabolite extracts were generated by adding equal volume of methanol (25 mL) to 

each culture. These were then shaken on a rotary shaker for 1 h before the extractions were centrifuged 

at 3750 rpm. Supernatants were dried in vacuo (Genevac) to yield crude extracts.  

 

LCMS Data Acquisition and Processing 

 Extract samples were resuspended in 50:50 methanol:water at a concentration of 200 mg/mL and 

centrifuged at 13,000 rpm and the supernatant was transferred to a fresh vial to remove insoluble extract 

components. LC-MS data acquisition was performed with a 30-min gradient. Mobile phase A consisted of 

95 % water and 5 % acetonitrile with 10 mM ammonium acetate, and mobile phase B consisted of 95 % 

acetonitrile and 5 % water with 10 mM ammonium acetate. A Luna 4.6 × 250 mm 5 µm particle C18 100 

A column (Phenomenex) was used for chromatographic separations with a flow rate of 1 mL/min and a 

column temperature of 25 °C. An autosampler with a loop size of 20 µL was used for sample injection. The 

solvent composition began at 100 % A, which was held for 1 min and ramped linearly to 100 % B over the 

next 29 min, held at 100 % B for 15 min, and returned to 100 % A over a 1 min period. The gradient was 

held at 100 % A for the next 10 min for equilibration. The flow was split 3:1 using a flow splitter, with 750 

µL/min directed through a Surveyor PDA Plus detector and 250 µL/min diverted to the mass spectrometer. 

Mass spectra were acquired at a rate of 1 Hz from 150–2000 Da in both positive and negative ion mode 

for the duration of each sample analysis on a TSQ H-ESI mass spectrometer (Thermo scientific). The source 

capillary was held at 350 °C and 3.0 kV, with a desolvation gas flow of 35 L/h with a vaporizer temperature 

of 300 °C. Data were converted to mzXML format using the msconvert tool from the ProteoWizard 

package (31). Peak picking and alignment were performed using XCMS in R (21). See supplementary 

section A.1 for details and package locations. The resulting data matrices were formatted in Microsoft 

Excel. Data were filtered by abundance to remove features with a maximal intensity of less than 1 x 105 
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and features eluting after the 30 min gradient (i.e. wash) were removed. TIC for each injection was 

normalized to a total value of 10,000 such that feature abundance values of 100 represent 1 % of the total 

abundance for that injection. Principal component and S-plot analyses were performed using Umetrics 

(Waters Corp.), and formatting for Umetrics was performed by transposing the XCMS generated feature 

intensity matrix into the Umetrics software. Volcano plots were generated in Excel using p-values 

determined by the pairwise XCMS analysis of LC-MS data of selected stimulus conditions versus runs with 

ISP2 medium without stimulus. Fold change calculations for each feature were performed in Excel after 

data normalization.  

 

Funisamine Isolation 

A spore suspension of S. caverna was inoculated on ISP2 agar plates from frozen stocks and cultured for 

7 days at 30 °C. Plate cultures were then used to inoculate 25 mL ISP2 liquid seed cultures which were 

also cultured for 7 days (30 °C, 180 rpm). These were then used to inoculate 50 mL (250 mL Erlenmeyer 

flasks) production cultures (5 % inoculum) in ISP2 media totaling 2 L. After 24 hrs, 500 µL (1 % inoculum) 

of overnight B. subtilis culture were added to the production culture. After 7 days the cultures were 

combined and extracted with Diaion HP-20 resin (50 g/L) at 30 °C for 3 h to allow for compound partition 

within the resin. Resin and mycelia were then isolated via centrifugation and extracted with methanol for 

1 hr at room temperature. Methanol extract was separated from resin and mycelia via centrifugation and 

concentrated in vacuo. Funisamine was then purified from this concentrated extract by following its m/z 

and UV elution through (1) size exclusion chromatography on Sephadex LH-20 column (2 cm dia, x 100 cm 

length) in methanol (2) preparative C-18 HPLC with a linear gradient of water/acetonitrile buffered with 

10 mM ammonium acetate (3) Sephadex LH-20 column (2 cm dia, 50 cm length) in methanol to yield 3 mg 

of pure funisamine. 
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High Resolution Mass Spectrometry 

 Mass accuracy and fragmentation measurements were performed using an electrospray 15T solariX 

Fourier Transform Ion Cyclotron Resonance mass spectrometer (Bruker Daltonics, Billerica, MA, USA). 

External mass calibration was performed prior to analysis (ESI-L Tuning Mix, Agilent Technologies, Santa 

Clara, CA). Funisamine was detected in negative mode as the doubly ([M-2H]2-: m/z 587.8220, Resolving 

Power: 497,566) and singly charged ion ([M-H]-: m/z 1176.6507, Resolving Power: 250,639) by ESI. The 

calculated m/z for C62H98NO18S- was 1176.6510, yielding an error of 0.25 ppm. For fragmentation 

experiments, the singly charged ion was isolated in the source region of the instrument (quadrupole 

isolation window: 5.0 Da), accumulated in the collisional hexapole (20 s), and fragmented by sustained 

off-resonance irradiation collision induced dissociation (SORI-CID) in the ICR cell using pulsed argon (pulse 

length: 0.25 s, frequency offset: 500 Hz, SORI Power: 2.5%). 

 

Genome Sequencing of Streptosporangium caverna 

 High molecular weight genomic DNA was isolated from Streptosporangium caverna using 

cetyltrimethylammonium bromide.54 Whole genome sequencing was performed using a PacBio RS II 

platform with >40X coverage by Novogene Inc. followed by short-read Illumina sequencing by the 

Vanderbilt Vantage sequencing core facility. Illumina reads were trimmed using FaQCs to remove Illumina 

adapters and trim at minimum quality.55 PacBio sequences and trimmed Illumina reads were then 

assembled using SPAdes genome assembler v3.11.156 using default settings and the careful flag. Resulting 

assembled scaffolds were polished by using the same trimmed Illumina reads using Pilon version 1.2257 

with default settings. The Bam file required for pilon was generated using BWA mem.58 
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Chapter 5  Dissertation summary and future directions 

 

Dissertation Summary 

 Microbial SMs are often structurally elaborate molecules that have been in a sense ‘engineered’ over 

billions of years by ever evolving microorganisms through competition in complex communities. While 

the ecological roles of most SM classes are uncertain and sometimes debated, the enhanced fitness many 

of these compounds provide likely stem from direct interactions with macromolecules (DNA, RNA, protein, 

etc.) from other environmental co-inhabitants. These highly selective interactions predispose SMs for 

therapeutic use, and their therapeutic potential is evident in the history of successful SM, or SM derived 

drug compounds.1-4 Despite these successes, many drug companies moved away from NPs in favor of 

synthetic molecules due in part to poor scalability, challenging molecular modifications, and increasing 

difficulties with novel SM discovery. While synthetic small molecules are certainly more easily produced 

and modified, they lack much of the structural diversity commonly seen in SM libraries as well as any 

predisposition for enhanced binding to important molecular targets, and these synthetic libraries have 

been much less successful at turning out approved therapeutics.5 Much of the current research in the NP 

field endeavors to improve methods of SM modification and discovery, and the continuing advancements 

in these areas, including the works discussed in this dissertation, may ultimately put microbial SMs back 

in the central focus of drug discovery efforts.  

 The field of microbial SM discovery has significantly changed since the genome analysis of SC revealed 

many SM producing BGCs with uncorrelated SMs.6 This and other analyses of microbial genome 

sequences led to the realization that the products for a majority of SM producing BGCs are unidentified, 

and the discrepancies between observed SM potential and realized output are increasing as BGC 

prediction methods improve.7 Many classes of BGCs responsible for SM production can now be readily 

observed within genomic sequence data through automated bioinformatics analyses which can also 
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provide predictions of the structural framework of emanant SMs.8-13 Several strategies have been 

developed to obtain SMs from observed but unproductive (or undetectably productive) BGCs. As 

described previously, these include stimulating production within the native producer 4, 14, cloning and 

forcibly expressing the BGCs in a heterologous host,15-16 and even bypassing the culturing step altogether 

and chemically synthesizing structures predicted through bioinformatic sequence analyses.17 In recent 

years, advancements and applications of these methodologies have enabled the discovery of several novel 

SMs,18-20 including some described in this dissertation. The works described herein center on prioritization 

and discovery of SMs through applications of rationally selected environmental stimuli and comparative 

metabolomics analyses. We hypothesized that a significant portion of SMs are used to respond to 

environmental cues and can be prioritized from comparative analyses of stimulated culture extracts. Our 

works applying established activation stimuli on cultured actinomycetes and analyzing resultant culture 

extracts through LC-MC based metabolomics analyses support this hypothesis. The majority of readily 

isolable metabolite features prioritized through these applications have been identified as SMs. We 

demonstrated that these methods were effective at highlighting SMs from complex culture extracts from 

a model organism, Streptomyces coelicolor A3(2), through a novel implementation of SOM analytics 

(Chapter 2 ). We further demonstrated the effectiveness of comparative analyses of stimulated culture 

extracts to prioritize SM through our identifications of the ciromicins from NF (Chapter 3 ), funisamine 

from Streptosporangium caverna, and several known SMs from isolated cave actinomycetes (Chapter 4 ). 

Not only have these contributions demonstrated the utility of comparative metabolomics for SM 

discovery but have also revealed significant metabolomic changes accompanying applications of stimuli. 

We have shown that stimuli exposure results in largely distinct metabolomic and SM responses even 

within stimuli of the same apparent class (metals, antibiotics, or mixed culture). These trends suggest that 

the increased abundance of SMs within stimulated cultures result from specific interactions with a given 

stimulus and the cultured organism rather than a general response from a stressor as previous studies 
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have indicated.21-23 This is an important observation that advocates future research to better understand 

these interactions between stimuli and SM producing organisms. The apparent selectivity of SM responses 

suggests that orphan BGCs within microorganisms lacked required small molecule component(s) and that 

larger arsenals of SM elicitors will be needed to fully access the SM potential of microbial producers. The 

works presented in this dissertation demonstrate the ability of comparative metabolomics analyses to 

prioritize SMs from stimulated microbial cultures. Once large arrays of established elicitors are available, 

these applications should be very effective at accessing much of the currently unavailable SM arsenal in 

observed microorganisms. 

 

Future directions 

 Despite the numerous recent advances to potentiate microbial SM discovery there remain many 

challenges that need to be addressed. In much of the work presented here the genomic sequences of 

stimulated microorganisms were unknown, such that we are unable to discuss the degree to which our 

elicitors enabled observation of SMs from otherwise orphan BGCs. We also do not know the mechanisms 

through which stimuli exposure ultimately resulted in the enhanced SM production. While it is often 

assumed that many ‘orphan’ BGCs with no known products are transcriptionally inactive,24-25 recent 

studies indicate more downstream regulation or inhibition may be involved. Comparative transcriptomics 

analyses revealed that the majority of presumed silent BGCs within a marine actinomycete Salinispora 

were transcribed at levels which should have enabled detection of cognate SMs.26 The lack of detected 

products from a large portion of microbial BGCs may then stem from more downstream regulation, 

precursor/cofactor availability, or even instrument limitations (MS ionization efficiencies, 

chromatographic resolvability, etc.). Going forward, it will be important to understand how the various 

SM elicitors function to increase SM production. Some of these may enhance BGC transcription or 

translation of cognate biosynthetic genes, while others may alter the activity of functionally translated 
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SM biosynthetic complexes. A better understanding of these processes may enable synergistic 

applications of stimuli that enhance SM production at multiple regulatory levels. More potent SM elicitors 

or synergistic combinations of applied elicitors may be important for many of the low abundance SMs 

which may otherwise be only barely detectable against the complex background of a typical culture 

extract. In the work described in Chapter 4 many prioritized features were not isolable due to their low 

abundance, and efforts to understand and improve methods of SM elicitation could greatly increase the 

success of NP discovery from both the endogenous efforts, such as those described herein, as well as 

efforts involving heterologous expression of targeted BGCs. 

 Another practical consideration for future work is the therapeutic value of targeted SMs. The NP 

discovery approach described herein prioritizes SMs by their responses to stimuli and not by biological 

activity. NP discovery efforts focused on biological activity likely would not have identified funisamine 

which exhibited little observed activity in human, fungal, or bacterial cell lines. A large portion of NP 

discovery endeavors have been activity-driven, so activity independent screens may have better chances 

of identifying novel SMs. In our works identifying compounds of therapeutic values has been secondary 

to establishing methods to prioritize SMs from culture extracts. However, future endeavors will benefit 

from the combination of both stimuli-response and bioactivity data to prioritize potential SM leads. The 

Bachmann lab has recently developed a multiplexed activity metabolomics (MAM) approach which can 

screen a large number of compounds for multiple markers of differing bioeffectors classes within several 

distinct cell lineages all in the same experiment.27 This could potentially be multiplexed further such that 

all stimulated culture extracts for a given producing organism could be screened at the same time. Other 

metabolomic methods of NP prioritization have already been shown to benefit from the addition of 

biological activity data, such as bioactivity-based molecular networking.28-29 Coupling MAM with our 

established stimuli-response analysis methods should also potentiate the discovery of novel and 

therapeutically relevant SMs. 
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 We have demonstrated the power of comparative metabolomics analyses to prioritize SMs from 

complex extracts of stimulated microbial producers. Future work to (1) increase the effectiveness of SM 

eliciting stimuli either through the discovery of novel and potent SM elicitors or through the combination 

of synergistic stimuli and (2) correlate MAM bioeffector and stimuli-response data could result in a 

powerful pipeline for novel and active SMs. Additionally, these works would even be useful for 

repurposing known SMs by identifying new biological activities for old NPs. This future research could 

make significant contributions to reinvigorate NP drug discovery efforts and result in the discovery of 

much needed, novel therapeutic compounds.  
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Appendix A Supporting data for Chapter 3 

Table A-1 NMR correlation table of ciromicin A (1) in DMSO-d6 

O

NH2
HO

HO

N

O

HO
Me

O
Me

OH

12
3

4
5

6
7

8
9

10 11
12

13 14

15 16 17
1819

21

20

1'2'
3'

4' 5'

22

23

 
 
 
Pos. 13C 1H HMBC NOESY 
1 165.4    
2 123.9 6.09, 1H, d, (15 Hz) 1, 4 15, 18 
3 138.9 6.83, 1H, dd (11, 15 Hz) 1, 5 5 
4 128.6 6.04, 1H, dd (10.5, 15 Hz) 6 5 
5 135.8 6.26, 1H, overlap 7 3, 4 
6 125.1 6.01, 1H, overlap 4, 8 7 
7 140.2 5.81, 1H, d (15 Hz) 5, 8, 23 5, 6, 9, 12, 23 
8 77    
9 81.2 4.40, 1H, d (9.5 Hz) 10, 11, 1’ 7,12 
10 133.2 5.41, 1H, dd (9.5, 10 Hz)   11 
11 127.7 5.99, 1H, dd (11 Hz) 9 10, 13 
12 130.8 6.60, 1H, dd (11, 15 Hz) 14 6 (tiny), 7, 9, 13, 14 
13 132.6 6.32, 1H, dd (11, 15 Hz) 11, 14 11, 12 (small), 15 
14 135.5 6.51, 1H, dd (11, 15 Hz) 12 12, 16 
15 128.4 6.82, 1H, dd (11, 15 Hz) 13 2, 13, 18 
16 130.2 6.28, 1H, overlap 14, 18 14, 17 
17 129.5 5.43, 1H, dd (10.5, 11 Hz) 15 16, 20 
18 57.6 4.86, 1H, dd (7.5, 11 Hz) 1, 16, 19, 20, 21 2, 15, 19  
19 77.3 3.77, 1H, dd (7.5, 9 Hz) 17, 20, 22 18, 22 
20 36.2 2.12, 1H, m 19, 21, 22 17, 21, 22 
21 50.2 2.89, 1H, dd (11, 12 Hz) 

3.55, 1H, dd (8, 12 Hz) 
20, 22 
19, 20 

21, 22 
20, 21 

22 15.4 1.02, 3H, d (6 Hz) 19, 20, 21 19, 20, 21 
23 26.2 1.36, 3H, s 7, 8, 9 7, 9, 1’ 
1’ 106.2 4.14, 1H, d (7.5 Hz) 9, 2’, 3’, 5’ 9, 12, 5’ 
2’ 58.2 2.49, 1H, under solvent 1’, 3’  
3’ 76.7 2.99, 1H, overlap 2’, 4’, 5’ 1’ 
4’ 69.9 3.26, 1H, ddd (5.5, 9, 10.5 Hz) 3’, 5’ 3’, 5’ 
5’ 66.4 2.98, 1H, overlap 

3.66, 1H, dd (6, 11 Hz) 
3’ 
1’, 3’, 4’ 

1’, 5’ 
4’, 5’ 
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Table A-2 NMR correlation table of ciromicin A (1) in CD3OD. 
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Pos. 13C 1H HMBC NOESY 
1 167.0    
2 122.8 6.21, 1H, d, (15 Hz) 1, 4 3, 18 
3 139.6 6.95, 1H, dd (10, 15.2 Hz) 1 5 
4 128.9 6.19, 1H, overlap 2, 5, 6 5 
5 135.4 6.33, 1H, dd (8, 15 Hz) 3 3, 4 
6 126.2 6.14, 1H, overlap 4, 8 7 
7 138.0 5.86, 1H, d (15 Hz) 5, 8 6, 9 
8 76.8    
9 80.7 4.61, 1H, d (9.5 Hz) 10, 11, 1’ 7,12 
10 130.4 5.53, 1H, dd (9.5, 10 Hz)   11 
11 128.6 6.15, 1H, overlap 9 10, 13 
12 130.1 6.58, 1H, dd (11, 15 Hz) 14  9, 11 
13 133.0 6.39, 1H, dd (11, 15 Hz) 11, 14 11 
14 135.5 6.54, 1H, dd (11, 15 Hz) 12 12, 16 
15 127.7 6.84, 1H, dd (11, 15 Hz) 13 13, 14, 18 
16 131.0 6.41, 1H, dd (10.5, 11 Hz) 18 15, 17 
17 126.8 5.47, 1H, dd (10.5, 11 Hz) 15 16, 18, 20 
18 58.3 5.01, 1H, dd (7.5, 11 Hz) 1, 16, 19, 20, 21 2, 15, 17, 19  
19 77.1 3.91, 1H, dd (7.5, 9 Hz) 17, 20, 22 18, 22 
20 35.7 2.27, 1H, m 19, 21, 22 17, 21, 22 
21 49.7 3.03, 1H, dd (11, 12 Hz) 

3.74, 1H, dd (8, 12 Hz) 
20, 22 
19, 20 

20, 21 
21 

22 13.9 1.15, 3H, d (6 Hz) 19, 20, 21 19, 20 
23 24.4 1.44, 3H, s 7, 8, 9  
1’ 101.8 4.59, 1H, d (7.5 Hz) 9, 2’, 3’, 5’  
2’ 56.6 2.84, 1H, broad 1’, 3’  
3’ 73.5 3.42, 1H, broad 2’, 4’, 5’  
4’ 69.9 3.53, 1H, broad 3’, 5’  
5’ 65.6 3.25, 1H, overlap 

3.92, 1H, overlap 
3’ 
1’, 3’, 4’ 
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Table A-3 NMR correlation table of ciromicin B (2) in CD3OD. 
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Pos. 13C 1H HMBC NOESY 
1 175.2    
2 58.4 3.39, 1H, dd, (7.5, 10.5 Hz) 1, 3, 4, 18 4, 17 
3 129.1 5.25, 1H, dd (11 Hz)  5, 15 
4 136.6 5.90, 1H, dd (10.5, 15 Hz) 2 2 
5 138.9 5.88, 1H, dd (10.5 Hz) 7 7 
6 129.3 5.32, 1H, dd (10.5, 15 Hz) 4 4, 12, 23 
7 53.2 2.54, 1H, br dd (9.6, 11 Hz) 5, 6, 8, 12, 23 5, 13 
8 72.4    
9 81.1 3.75, 1H, d (6 Hz) 10, 11, 1’ 10, 23, 1’ 
10 126.7 5.83, 1H, overlap  9 9 
11 131.9 5.82, 1H, overlap  6, 7, 12 12, 13 
12 49.8 2.71, 1H, br dd (8, 10 Hz) 7, 13, 14 11, 23 
13 131.3 5.08, 1H, dd (10, 15.7 Hz) 12, 15 7, 11, 15 
14 138.1 5.80, 1H, dd (10.5, 15.7 Hz) 12,15, 16 12, 16 
15 132.5 6.04, 1H, dd (10.5, 16.2 Hz) 13, 14, 17 3, 18 
16 129.5 5.26, 1H, dd (6, 16.2 Hz) 14, 17, 18 2, 14, 17 
17 43.3 3.68, 1H, br ddd 15, 16, 18 16 
18 62.7 4.41, 1H, dd (3.7, 9.5 Hz)  3,15,19, 22,  
19 73.4 3.77, 1H, dd (1.4, 3.7 Hz)  18, 22 
20 43.9 2.49, 1H, m 19, 22 21, 22 
21 46.1 2.79, 1H, dd (2.4, 11.7 Hz) 

3.74, 1H, dd (7.5, 11.7 Hz) 
22 
1, 22 

21, 22 
20, 21 

22 17.1 1.15, 3H, d (7.5 Hz) 19, 20, 21 18, 19, 20, 21 
23 18.5 1.22, 3H, s 7, 8, 9 6, 9, 12 
1’ 105.5 4.47, 1H, d (8.5 Hz) 9 9, 5’ 
2’ 57.2 2.57, 1H, br dd, (8.5, 9 Hz) 1’, 3’  
3’ 76.2 3.22, 1H, dd, (9 Hz) 2’, 4’ 1’ 
4’ 69.9 3.47, 1H, ddd (5.4, 9, 10 Hz)  2’, 5’ 
5’ 65.8 3.23, 1H, dd (10, 11.5 Hz) 

3.89, 1H, dd (5.4, 11.5 Hz) 
 
3’, 4’ 

5’ 
4’, 5’ 
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Figure A-1 1H proton NMR spectrum of ciromicin A (1) in DMSO-d6 

 
 

Figure A-2 13C carbon NMR spectrum of ciromicin A (1) in DMSO-d6.  
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Figure A-3 2D COSY NMR spectrum of ciromicin A (1) in DMSO-d6. 

 
 

Figure A-4 2D HSQC NMR spectrum of ciromicin A (1) in DMSO-d6. 
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Figure A-5 2D HMBC NMR spectrum of ciromicin A (1) in DMSO-d6. 

 
 

Figure A-6 2D TOCSY NMR spectrum of ciromicin A (1) in DMSO-d6. 
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Figure A-7 2D NOESY NMR spectrum of ciromicin A (1) in DMSO-d6. 

 
 

Figure A-8 1H proton NMR spectrum of ciromicin A (1) in CD3OD. 
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Figure A-9 13C carbon NMR spectrum of ciromicin A (1) in CD3OD. 

 

 

Figure A-10 2D COSY NMR spectrum of ciromicin A (1) in CD3OD. 
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Figure A-11 2D HSQC NMR spectrum of ciromicin A (1) in CD3OD. 

 

 

Figure A-12 2D HMBC NMR spectrum of ciromicin A (1) in CD3OD. 
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Figure A-13 2D TOCSY NMR spectrum of ciromicin A (1) in CD3OD. 

 

 

Figure A-14 2D NOESY NMR spectrum of ciromicin A (1) in CD3OD. 
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Figure A-15 1H proton NMR spectrum of ciromicin B (2) in CD3OD. 

 

 

Figure A-16 13C carbon NMR spectrum of ciromicin B (2) in CD3OD. 
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Figure A-17 2D COSY NMR spectrum of ciromicin B (2) in CD3OD. 

 
Figure A-18 2D HSQC NMR spectrum of ciromicin B (2) in CD3OD. 

 

 
  



157 
 

Figure A-19 2D HMBC NMR spectrum of ciromicin B (2) in CD3OD. 

 
Figure A-20 2D TOCSY NMR spectrum of ciromicin B (2) in CD3OD. 
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Figure A-21 2D NOESY NMR spectrum of ciromicin B (2) in CD3OD. 
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Figure A-22: Heatmaps and density map for Nocardiopsis mixed culture screen  The density map shows 
the distribution of features across heat map. Here the number of features in each node is indicated by the 
color of the node in accordance with the scale. Uncolored areas of the density map represent nodes with 
no features. For clarification, this distribution is the same across all experimental conditions (every map 
in the analysis is consistent with respect to feature distribution). 
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Tables A4-A12 show the averaged and normalized intensity values for features MxxxTxxx, where the 
numbers following M and T are mass to charge and retention time respectively, in the description (DESC) 
column across the various experimental conditions. These feature descriptions are sorted by their 
contribution to the region of interest (shown as a percentage in % ROI). Highlighted experimental 
condition columns have features significantly more abundant than in the control (Noc mono) condition. 

 

Table A-4 Features within ROI 1 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M415T959 536.8 508.2 7.0 7.5 881.7 4.4 385.5 2.4 643.4 82% 
M437T959 44.5 41.5 0.7 0.8 68.7 0.7 31.2 0.5 48.5 7% 
M214T259 12.6 19.9 6.6 2.2 19.9 5.4 20.8 0.9 17.4 3% 
M301T259 5.4 9.5 5.7 1.6 15.1 3.7 15.2 1.1 8.0 2% 
M438T959 9.4 9.1 0.3 0.3 14.6 0.3 6.8 0.2 10.3 1% 
M204T345 3.2 5.2 1.0 0.8 5.6 1.4 6.6 0.7 4.9 1% 
M103T347 3.1 4.7 0.5 0.8 5.1 1.8 6.1 0.9 4.5 1% 
M248T345 2.7 4.9 2.6 0.8 5.1 1.2 5.2 0.6 4.7 1% 
M369T346 1.1 2.5 0.7 0.6 3.7 0.6 4.0 0.4 2.5 0% 
M170T259 1.9 3.0 0.7 0.9 3.7 2.6 4.2 0.7 2.7 1% 
M141T958 2.2 1.8 0.2 0.3 3.8 0.4 1.6 0.3 2.4 0% 
M453T959 1.9 2.0 0.2 0.4 2.8 1.2 1.5 0.4 2.1 0% 
M439T960 1.8 1.9 0.2 0.4 2.1 0.4 1.5 1.1 1.7 0% 
M158T958 1.2 1.0 0.1 0.3 2.1 0.3 1.1 0.2 1.3 0% 
M77T346 0.7 1.2 0.4 0.3 1.2 0.4 1.7 0.2 1.2 0% 
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Table A-5 Features within ROI 2 from MEDI Analysis 
DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 

M397T958 207.9 178.0 6.4 12.3 402.9 12.6 136.7 14.6 244.3 32% 
M416T958 155.0 134.4 1.6 1.9 338.4 1.2 96.8 1.0 187.3 24% 
M398T958 59.5 48.7 0.8 3.1 122.0 3.5 36.4 3.7 69.0 9% 
M379T958 52.1 43.3 0.7 1.5 112.4 1.0 25.3 0.6 60.8 8% 
M115T958 47.8 41.1 0.7 1.0 106.3 1.9 33.4 0.5 62.0 8% 
M417T958 20.2 17.0 0.3 0.5 46.0 0.4 12.3 0.4 24.5 3% 
M312T209 5.5 6.4 46.1 6.5 5.8 4.1 6.9 4.1 11.0 3% 
M380T958 12.6 10.4 0.5 0.7 26.9 0.7 8.1 0.7 14.6 2% 
M296T206 3.1 4.2 37.5 3.0 2.9 3.4 4.9 1.8 6.9 2% 
M70T958 9.1 7.7 0.3 0.3 21.6 0.3 6.6 0.2 11.9 2% 
M399T958 7.3 5.7 1.1 0.8 14.9 0.8 5.2 5.2 8.8 1% 
M234T821 6.3 6.3 12.4 1.2 7.0 0.9 4.2 0.8 9.8 1% 
M387T875 7.0 3.9 1.0 1.7 11.4 1.9 4.2 1.1 7.4 1% 
M361T958 4.2 3.8 0.2 0.5 9.3 0.5 2.9 0.3 5.0 1% 
M565T436 2.8 4.3 1.1 1.5 6.5 1.4 1.4 1.3 4.6 1% 
M116T958 3.8 3.3 0.1 0.3 8.3 0.2 2.8 0.1 4.9 1% 
M205T638 2.2 2.1 3.2 1.6 2.1 2.2 2.0 0.7 3.5 1% 
M441T650 0.7 0.9 11.6 0.7 2.1 0.0 0.0 0.6 2.3 0% 
M369T875 2.9 1.8 0.4 0.8 4.6 0.6 1.9 0.6 3.0 0% 
M298T687 0.5 0.8 7.2 0.6 2.6 0.0 0.0 0.5 3.3 0% 
M418T958 2.0 1.7 0.2 0.3 3.8 0.2 1.5 0.3 2.1 0% 
M133T958 2.0 1.7 0.3 0.5 3.8 0.0 0.0 0.4 2.1 0% 
M388T875 1.6 1.0 0.3 0.5 2.6 1.3 1.1 0.4 1.7 0% 
M504T753 1.7 0.9 0.2 0.8 2.6 0.5 1.4 0.5 1.7 0% 
M157T958 1.4 1.3 0.2 0.3 2.7 0.4 1.4 0.3 1.5 0% 
M362T958 1.2 1.2 0.2 0.3 2.4 0.3 0.9 0.2 1.4 0% 
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Table A-6: Features within ROI 3 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M376T896 0.2 0.0 0.0 0.2 281.8 0.0 0.0 0.3 253.6 19% 
M384T609 0.7 9.4 16.9 1.0 142.6 0.8 5.4 0.9 56.2 8% 
M549T472 0.9 4.9 1.2 1.8 74.8 1.4 4.2 1.3 41.7 5% 
M377T896 0.3 0.0 0.0 0.4 69.8 0.0 0.0 0.4 57.6 5% 
M563T514 1.6 2.0 0.7 1.4 61.8 0.6 1.9 1.2 47.6 4% 
M515T602 0.5 5.1 1.2 0.4 34.2 0.8 2.8 0.8 31.7 3% 
M225T851 3.8 0.0 0.0 4.3 65.6 0.0 0.0 0.0 0.0 3% 
M843T649 4.0 12.6 0.3 0.7 18.6 0.8 11.0 0.8 22.5 3% 
M400T480 1.2 3.4 2.0 1.5 32.3 0.9 2.7 2.4 21.5 2% 
M432T536 1.0 0.0 0.0 1.3 35.1 0.0 0.0 1.2 25.6 2% 
M418T475 0.9 0.0 0.0 1.3 36.5 0.0 0.0 1.1 22.6 2% 
M366T545 1.6 2.3 1.2 1.0 28.8 0.4 1.5 0.8 15.3 2% 
M564T545 9.9 0.0 0.0 1.5 22.3 0.0 0.0 1.2 13.4 2% 
M382T512 1.1 0.0 0.0 1.3 24.9 0.0 0.0 1.1 17.9 2% 
M531T481 1.3 0.0 0.0 2.6 19.9 0.0 0.0 1.8 12.8 1% 
M550T472 0.8 0.0 0.0 1.6 20.8 0.0 0.0 1.2 12.1 1% 
M567T607 0.6 0.0 0.0 0.7 20.6 0.0 0.0 1.1 12.2 1% 
M844T649 2.1 5.5 0.3 0.7 11.9 0.5 5.3 0.8 10.0 1% 
M385T608 0.8 0.0 0.0 1.1 31.4 0.0 0.0 0.0 0.0 1% 
M414T538 1.0 0.0 0.0 1.2 16.0 0.0 0.0 1.2 11.5 1% 
M564T589 6.8 2.8 1.8 2.9 7.8 3.2 2.0 1.5 2.2 1% 
M712T436 0.5 7.4 0.4 1.0 4.4 0.0 0.0 0.6 16.1 1% 
M377T506 1.4 3.9 1.2 1.1 8.6 1.5 3.7 1.2 7.2 1% 
M487T396 1.6 2.5 1.0 1.5 8.6 1.0 2.7 0.9 7.9 1% 
M419T477 1.5 0.0 0.0 1.3 9.2 3.1 3.0 1.7 6.9 1% 
M318T531 2.1 3.5 1.9 1.1 4.3 2.8 2.3 1.0 6.5 1% 
M516T655 0.3 0.0 0.0 0.4 9.9 0.0 0.0 0.4 13.4 1% 
M569T589 1.0 2.0 1.8 1.3 7.2 2.9 1.6 2.2 4.1 1% 
M234T544 3.2 5.5 2.5 2.3 5.1 0.0 0.0 3.0 1.8 1% 
M348T649 0.5 0.0 0.0 0.8 12.5 0.0 0.0 0.5 8.8 1% 
M433T535 1.2 0.0 0.0 1.5 9.1 0.0 0.0 1.4 6.9 1% 
M434T439 0.8 1.6 2.2 1.5 6.6 0.0 0.0 1.0 4.6 1% 
M436T616 0.5 0.0 0.0 0.5 10.0 0.0 0.0 0.6 6.7 1% 
M565T546 3.0 1.1 2.0 1.0 4.0 2.4 0.8 0.9 2.4 1% 
M434T897 0.2 0.0 0.0 0.2 7.0 0.0 0.0 0.2 7.9 1% 
M378T896 0.3 0.0 0.0 0.4 7.7 0.0 0.0 0.4 6.7 1% 
M393T896 1.3 0.0 0.0 1.0 6.3 0.0 0.0 1.2 5.5 1% 
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Table A-7: Features within ROI 3 from MEDI Analysis  

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M567T535 0.8 0.0 0.0 1.1 13.0 0.0 0.0 0.0 0.0 1% 
M452T409 0.8 0.0 0.0 1.3 7.3 0.0 0.0 1.0 4.1 1% 
M499T673 0.4 0.0 0.0 0.5 10.4 0.0 0.0 0.8 2.3 1% 
M865T649 0.7 2.1 0.2 0.7 4.2 0.5 1.5 0.6 3.6 1% 
M568T601 0.5 0.0 0.0 0.6 5.7 0.0 0.0 3.3 3.7 0% 
M497T661 0.4 0.0 0.0 0.4 8.3 0.0 0.0 0.4 4.3 0% 
M435T437 0.9 2.9 1.1 1.4 2.4 0.0 0.0 2.8 1.7 0% 
M367T561 0.6 0.0 0.0 0.9 6.8 0.0 0.0 0.8 3.8 0% 
M806T499 1.5 1.1 0.7 1.7 4.1 0.9 0.5 1.3 1.0 0% 
M537T664 0.3 0.0 0.0 0.3 5.6 0.0 0.0 0.4 5.5 0% 
M713T437 1.1 2.4 0.4 1.0 1.6 0.0 0.0 0.7 4.7 0% 
M415T542 1.7 2.3 1.3 1.5 4.7 0.0 0.0 0.0 0.0 0% 
M350T654 1.7 2.7 0.9 0.7 5.3 0.0 0.0 0.0 0.0 0% 
M436T544 0.8 0.0 0.0 0.9 4.7 0.0 0.0 0.8 4.1 0% 
M585T548 1.4 0.0 0.0 2.0 7.7 0.0 0.0 0.0 0.0 0% 
M368T744 0.4 0.0 0.0 0.6 5.8 0.0 0.0 0.4 3.8 0% 
M107T890 0.7 1.9 0.3 0.5 2.7 0.0 0.0 1.3 2.8 0% 
M728T421 0.5 0.0 0.0 0.9 4.0 0.0 0.0 0.9 2.7 0% 
M513T692 0.4 0.0 0.0 0.5 3.4 0.0 0.0 0.3 4.3 0% 
M293T897 1.2 0.0 0.0 0.8 2.7 0.0 0.0 1.0 2.5 0% 
M678T478 0.6 0.0 0.0 1.2 2.7 0.0 0.0 0.8 2.7 0% 
M348T561 0.7 0.0 0.0 2.2 5.1 0.0 0.0 0.0 0.0 0% 
M438T616 0.7 0.0 0.0 0.6 3.5 0.0 0.0 0.6 2.5 0% 
M521T663 0.4 0.0 0.0 1.8 5.5 0.0 0.0 0.0 0.0 0% 
M97T959 1.5 0.0 0.0 0.4 2.8 0.0 0.0 0.6 2.0 0% 
M304T258 1.0 1.8 0.6 1.3 2.5 0.0 0.0 0.0 0.0 0% 
M675T474 1.5 0.0 0.0 2.2 3.5 0.0 0.0 0.0 0.0 0% 
M302T897 0.3 0.0 0.0 0.3 3.1 0.0 0.0 0.4 2.9 0% 
M569T535 0.8 0.0 0.0 1.3 4.9 0.0 0.0 0.0 0.0 0% 
M329T676 0.5 0.0 0.0 0.8 3.3 0.0 0.0 0.6 1.5 0% 
M499T744 0.3 0.0 0.0 0.4 3.4 0.0 0.0 0.2 2.2 0% 
M448T450 0.9 0.0 0.0 1.6 4.0 0.0 0.0 0.0 0.0 0% 
M551T473 0.7 0.0 0.0 1.7 4.0 0.0 0.0 0.0 0.0 0% 
M866T648 0.5 0.0 0.0 0.7 2.2 0.0 0.0 0.8 2.0 0% 
M526T674 0.4 0.0 0.0 0.5 3.4 0.0 0.0 0.4 1.6 0% 
M349T632 0.7 0.0 0.0 1.1 4.4 0.0 0.0 0.0 0.0 0% 
M396T540 0.9 0.0 0.0 1.0 4.2 0.0 0.0 0.0 0.0 0% 
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Table A-8: Features within ROI 3 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M511T780 1.1 0.0 0.0 0.9 2.2 0.0 0.0 0.5 1.3 0% 
M292T896 0.4 0.0 0.0 0.4 2.5 0.0 0.0 0.4 2.2 0% 
M589T616 0.5 0.0 0.0 0.6 2.6 0.0 0.0 0.7 1.6 0% 
M568T535 0.7 0.0 0.0 1.0 3.9 0.0 0.0 0.0 0.0 0% 
M338T560 1.9 0.0 0.0 0.9 2.7 0.0 0.0 0.0 0.0 0% 

M1177T678 0.1 0.0 0.0 0.8 2.0 0.0 0.0 0.6 2.0 0% 
M314T531 0.9 0.0 0.0 1.2 3.4 0.0 0.0 0.0 0.0 0% 
M317T940 0.3 0.0 0.0 0.6 3.2 0.0 0.0 0.3 1.1 0% 
M441T996 0.3 0.0 0.0 1.0 2.5 0.0 0.0 0.4 1.3 0% 
M414T959 1.3 0.0 0.0 0.2 2.2 0.0 0.0 0.4 1.3 0% 

M1137T677 0.2 0.0 0.0 0.9 1.8 0.0 0.0 0.6 1.8 0% 
M435T897 0.3 0.0 0.0 0.4 1.8 0.0 0.0 0.3 2.1 0% 
M545T525 0.7 0.0 0.0 1.2 3.0 0.0 0.0 0.0 0.0 0% 
M351T876 1.1 0.0 0.0 0.4 1.6 0.0 0.0 0.5 1.2 0% 
M376T648 0.5 1.1 0.1 0.1 1.3 0.0 0.0 0.1 1.5 0% 
M160T471 0.8 0.0 0.0 1.0 2.9 0.0 0.0 0.0 0.0 0% 
M361T347 1.0 0.0 0.0 0.5 1.4 0.0 0.0 0.3 1.2 0% 
M570T602 1.7 0.0 0.0 0.6 2.1 0.0 0.0 0.0 0.0 0% 
M520T897 0.2 0.0 0.0 0.2 1.6 0.0 0.0 0.5 1.7 0% 
M400T947 0.7 0.0 0.0 0.2 1.6 0.0 0.0 1.1 0.7 0% 
M241T767 0.5 0.0 0.0 1.6 2.2 0.0 0.0 0.0 0.0 0% 
M233T821 0.8 0.0 0.0 0.5 1.1 0.0 0.0 0.3 1.4 0% 
M153T392 1.1 0.0 0.0 0.8 2.1 0.0 0.0 0.0 0.0 0% 
M460T896 0.2 0.0 0.0 0.2 1.6 0.0 0.0 0.1 1.6 0% 
M402T365 1.4 0.0 0.0 0.7 1.6 0.0 0.0 0.0 0.0 0% 
M730T421 0.5 0.0 0.0 1.3 1.9 0.0 0.0 0.0 0.0 0% 
M743T440 0.7 0.0 0.0 1.0 1.8 0.0 0.0 0.0 0.0 0% 
M913T679 0.7 0.0 0.0 1.1 1.6 0.0 0.0 0.0 0.0 0% 
M504T336 0.2 0.0 0.0 0.4 1.0 0.0 0.0 0.3 1.5 0% 
M893T681 0.4 0.0 0.0 1.1 1.7 0.0 0.0 0.0 0.0 0% 
M541T750 1.3 0.0 0.0 0.4 1.5 0.0 0.0 0.0 0.0 0% 
M392T896 0.2 0.0 0.0 0.4 1.2 0.0 0.0 0.2 1.2 0% 

M1012T678 0.3 0.0 0.0 1.2 1.7 0.0 0.0 0.0 0.0 0% 
M1181T678 0.2 0.0 0.0 1.0 1.5 0.0 0.0 0.0 0.0 0% 
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Table A-9: Features within ROI 4 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M273T644 19.6 61.9 23.9 33.1 16.8 12.4 21.0 15.3 36.3 16% 
M331T710 13.7 38.4 20.1 25.3 13.3 7.9 27.7 20.1 33.4 14% 
M270T446 20.0 26.8 11.0 26.0 17.2 18.7 17.8 20.1 31.7 13% 
M229T494 7.4 38.0 11.2 4.3 9.6 11.1 18.7 4.2 17.8 8% 
M272T513 4.8 5.9 4.3 7.1 4.6 4.4 4.9 4.7 6.4 3% 
M526T200 4.3 9.3 3.0 6.8 3.4 5.0 6.0 5.1 3.8 3% 
M254T522 4.7 5.9 6.1 6.3 3.8 4.1 4.3 4.6 5.8 3% 
M662T440 1.4 17.3 0.8 1.6 7.0 1.4 5.4 1.6 6.0 3% 
M447T821 3.3 7.5 2.4 2.7 2.2 1.9 7.3 2.9 7.5 3% 
M818T535 1.5 19.2 0.3 0.8 3.1 0.0 0.0 0.6 8.3 2% 
M285T598 3.8 4.7 2.7 4.6 3.2 3.7 3.9 3.2 3.6 2% 
M274T643 2.3 6.9 4.2 4.0 2.6 2.1 3.2 1.9 4.5 2% 
M332T710 2.0 5.5 3.1 3.8 1.9 1.4 4.1 2.9 4.7 2% 
M739T475 0.7 9.7 0.7 1.3 2.8 1.0 5.4 1.3 5.8 2% 
M152T623 2.4 3.1 2.6 3.2 2.4 2.5 2.3 2.4 3.3 2% 
M249T468 2.5 8.1 1.4 5.1 2.1 0.0 0.0 2.0 2.9 2% 
M547T490 1.0 17.4 0.6 1.1 3.9 0.0 0.0 0.0 0.0 2% 
M350T493 2.1 7.6 1.2 0.0 0.0 1.4 4.3 1.5 3.9 1% 
M307T514 2.0 2.8 1.5 4.1 2.2 1.4 2.3 1.6 3.1 1% 
M390T769 1.5 3.2 1.4 1.7 1.3 0.9 3.3 1.9 3.4 1% 
M425T465 1.6 8.8 1.1 1.2 0.6 0.7 0.5 0.7 1.9 1% 
M298T603 1.5 2.2 1.9 1.9 1.4 1.6 1.7 1.3 1.7 1% 
M506T430 2.5 4.4 2.8 2.7 2.1 0.0 0.0 0.0 0.0 1% 
M461T645 1.4 3.6 0.8 0.7 0.7 0.6 2.0 0.7 2.8 1% 
M632T428 1.3 2.1 0.9 1.4 0.9 1.2 1.6 1.3 1.7 1% 
M674T998 0.9 1.8 0.7 1.2 0.7 0.7 2.0 1.2 1.8 1% 
M592T484 0.9 5.3 1.2 0.0 0.0 0.0 0.0 2.4 1.1 1% 
M361T387 1.1 4.9 0.9 0.4 1.5 0.0 0.0 0.3 1.6 1% 
M423T427 1.2 3.9 1.5 1.5 2.6 0.0 0.0 0.0 0.0 1% 
M819T519 1.0 5.3 0.4 0.0 0.0 0.0 0.0 0.6 3.0 1% 
M575T488 0.5 5.8 0.5 0.0 0.0 0.0 0.0 0.7 2.6 1% 
M649T422 0.8 4.5 0.9 0.0 0.0 0.0 0.0 1.1 1.9 1% 
M417T374 0.5 2.5 1.1 2.1 0.6 0.0 0.0 1.5 0.7 1% 
M769T509 1.0 3.8 0.8 1.4 1.4 0.0 0.0 0.0 0.0 1% 
M675T411 0.5 4.2 0.9 0.0 0.0 0.0 0.0 0.7 1.8 1% 
M624T501 0.5 3.4 1.1 0.0 0.0 0.0 0.0 0.4 1.3 0% 
M759T417 0.4 2.4 0.7 1.3 1.6 0.0 0.0 0.0 0.0 0% 
M645T451 1.4 3.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0% 
M521T777 0.5 1.4 0.4 0.0 0.0 0.4 1.2 0.4 1.8 0% 
M798T533 0.9 3.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0% 
M447T620 0.9 3.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0% 
M757T518 1.0 2.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0% 
M674T778 0.2 1.5 0.1 0.0 0.0 0.0 0.0 0.2 1.6 0% 
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Table A-10: Features within ROI 5 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M239T542 269.2 295.9 9.5 459.2 284.4 371.8 270.2 187.5 365.0 71% 
M225T463 98.3 131.8 8.9 181.8 96.4 103.7 104.8 71.3 128.2 26% 
M226T464 11.1 15.6 1.3 22.1 11.2 11.9 11.6 9.0 16.0 3% 

 

 

Table A-11: Features within ROI 6 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M244T394 7.4 49.4 2.5 37.8 58.2 19.7 50.0 5.6 69.7 14% 
M284T394 5.3 36.1 1.6 37.3 38.9 1.3 57.8 1.1 39.0 10% 
M268T336 14.2 27.7 1.9 16.8 19.4 6.7 21.7 11.2 37.1 7% 
M152T244 22.3 6.4 14.0 17.6 3.5 4.0 31.7 2.4 29.9 6% 
M208T394 3.1 19.5 1.4 13.5 21.0 2.7 26.2 1.2 25.0 5% 
M529T711 7.1 0.0 0.0 22.4 8.3 7.1 42.5 0.0 0.0 4% 
M484T500 1.3 14.1 2.9 1.5 14.5 0.8 19.2 0.6 25.1 4% 
M226T394 2.3 11.5 1.3 10.1 14.0 1.2 17.0 1.3 16.5 4% 
M180T388 11.3 7.9 2.4 2.2 9.1 2.0 13.2 2.5 18.8 3% 
M512T509 0.9 12.0 3.4 1.4 5.5 1.2 8.3 2.7 22.6 3% 
M321T203 3.4 9.1 2.8 6.3 6.0 5.3 9.0 2.7 9.8 3% 
M337T203 4.0 8.0 2.8 5.8 5.9 5.6 8.6 1.7 8.9 2% 
M304T444 5.0 6.5 2.0 4.1 4.5 3.2 5.4 4.4 9.5 2% 
M268T439 3.9 3.8 3.2 3.3 4.7 1.4 5.6 1.7 8.5 2% 
M448T200 5.6 5.6 2.2 3.5 1.6 2.5 7.8 2.6 1.6 2% 
M209T439 3.2 5.5 2.7 3.0 4.0 2.3 4.3 1.4 6.3 2% 
M371T383 2.0 0.0 0.0 4.9 6.3 5.1 8.5 0.7 4.0 1% 
M532T202 2.2 4.2 1.9 5.1 2.9 3.2 4.9 1.9 4.0 1% 
M285T395 1.4 4.4 1.2 4.4 4.3 1.1 6.3 1.0 4.4 1% 
M419T204 2.2 3.8 1.9 4.3 3.0 2.9 4.4 1.9 3.2 1% 
M325T641 2.1 4.7 0.7 0.4 2.8 4.0 4.2 0.6 6.3 1% 
M288T333 2.1 0.0 0.0 2.6 4.7 1.1 6.2 1.2 7.5 1% 
M534T483 1.1 0.0 0.0 0.0 0.0 1.6 12.2 1.3 9.0 1% 
M485T500 1.0 3.6 1.4 1.5 3.4 1.1 4.7 1.1 5.7 1% 
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Table A-12: Features within ROI 6 from MEDI Analysis 

DESC Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc % ROI 
M290T438 2.7 2.5 1.2 3.1 2.9 1.1 3.6 1.6 4.4 1% 
M100T395 1.2 3.1 0.6 2.9 3.1 1.3 4.4 1.8 4.6 1% 
M168T260 2.4 3.6 0.7 3.4 3.5 1.2 3.8 1.0 3.3 1% 
M387T204 2.3 2.1 1.6 3.1 1.9 2.7 4.0 2.2 2.9 1% 
M442T478 1.0 3.0 1.4 1.3 3.9 1.1 3.0 1.2 6.4 1% 
M170T205 2.4 2.7 1.1 2.1 2.4 1.8 3.5 1.6 4.1 1% 
M556T489 1.2 0.0 0.0 0.0 0.0 1.6 8.9 3.1 6.9 1% 
M760T493 0.9 4.0 0.8 1.4 5.0 0.9 3.4 1.1 3.4 1% 
M84T396 1.6 3.3 1.8 2.3 2.6 1.6 2.8 1.1 3.3 1% 

M513T509 0.7 3.5 1.2 0.9 1.3 1.2 2.6 1.0 5.7 1% 
M518T648 0.9 2.3 0.5 2.2 2.5 0.2 1.9 0.5 3.2 1% 
M307T641 1.5 2.4 0.9 0.7 1.6 0.7 2.4 0.6 3.1 1% 
M817T201 1.2 1.9 0.8 1.7 1.4 1.5 2.2 1.1 1.7 1% 
M405T678 1.2 2.2 1.0 0.9 1.3 0.8 2.1 0.7 2.5 1% 
M653T424 0.6 0.0 0.0 1.5 1.7 1.1 7.5 0.0 0.0 1% 
M631T648 0.7 1.8 0.5 0.2 2.1 1.2 1.6 0.2 2.5 1% 
M542T436 0.8 0.0 0.0 1.3 1.5 1.2 2.1 1.2 2.0 0% 
M483T403 0.7 0.0 0.0 1.3 1.5 1.2 3.7 0.0 0.0 0% 
M500T381 0.5 0.0 0.0 0.8 2.0 0.7 2.2 0.6 1.5 0% 
M353T346 0.7 0.0 0.0 0.6 2.2 0.4 2.2 0.3 1.7 0% 
M406T387 0.5 0.0 0.0 1.2 1.6 0.7 2.2 0.0 0.0 0% 
M752T432 0.4 0.0 0.0 1.1 1.1 0.8 2.3 0.0 0.0 0% 
M625T343 0.5 0.0 0.0 0.0 0.0 0.2 1.8 0.2 1.9 0% 
M762T984 0.2 0.0 0.0 0.0 0.0 0.3 1.4 0.4 1.7 0% 
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Table A-13: Tentatively identified features from MEDI regions of interest. Criteria for identification were 
as follows. Mass difference was less than 30 ppm, and compound was of microbial origin. When multiple 
possible identifications were possible the lower ppm match was selected. All matched were made using 
the Metlin database with the exception of the ciromicins which were experimentally identified. Only 
features > 1% of the ROI were selected for tentative identification. 

Accurate mass Noc Mono BS&Noc BS Mono RW Mono RW&Noc EC Mono EC&Noc TP Mono TP&Noc Tentative ID ∆ppm ROI 
415.3553 536.8 508.2 7.0 7.5 881.7 4.4 385.5 2.4 643.4 hexacosadienoic acid 1 1 
214.1111 12.6 19.9 6.6 2.2 19.9 5.4 20.8 0.9 17.4 N-Acyl homoserine lactone 17 1 
397.3489 207.9 178.0 6.4 12.3 402.9 12.6 136.7 14.6 244.3 hopanoid 6 2 
376.2832 0.2 0.0 0.0 0.2 281.8 0.0 0.0 0.3 253.6 N-acyl amide 2 3 
384.2170 0.7 9.4 16.9 1.0 142.6 0.8 5.4 0.9 56.2 ciromicin aglycone na 3 
515.2740 0.5 5.1 1.2 0.4 34.2 0.8 2.8 0.8 31.7 Ciromicins na 3 
563.2980 1.6 2.0 0.7 1.4 61.8 0.6 1.9 1.2 47.6 His-Ile-Phe-Phe 0 3 
273.1669 19.6 61.9 23.9 33.1 16.8 12.4 21.0 15.3 36.3 Dimethylallyltryptophan 26 4 
331.2116 13.7 38.4 20.1 25.3 13.3 7.9 27.7 20.1 33.4 Gly Val Arg tripeptide 8 4 
229.1582 7.4 38.0 11.2 4.3 9.6 11.1 18.7 4.2 17.8 Pro Leu 15 4 
662.3517 1.4 17.3 0.8 1.6 7.0 1.4 5.4 1.6 6.0 Moxidectin 22 4 
447.2904 3.3 7.5 2.4 2.7 2.2 1.9 7.3 2.9 7.5 Lys Lys Ala Thr 4 4 
239.1760 269.2 295.9 9.5 459.2 284.4 371.8 270.2 187.5 365.0 sesquiterpenoid 4 5 
225.1600 98.3 131.8 8.9 181.8 96.4 103.7 104.8 71.3 128.2 sesqueterpenoid 6 5 
152.0610 22.3 6.4 14.0 17.6 3.5 4.0 31.7 2.4 29.9 Guanine 28 6 
268.1053 14.2 27.7 1.9 16.8 19.4 6.7 21.7 11.2 37.1 Deoxyguanosine 4 6 
208.0979 3.1 19.5 1.4 13.5 21.0 2.7 26.2 1.2 25.0 N-Acetyl-phenylalanine 5 6 
284.1093 5.3 36.1 1.6 37.3 38.9 1.3 57.8 1.1 39.0 Glutamyl-Histidine 7 6 
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XCMS, meta XCMS and MEDI processing workflow 

XCMS Processing 

ProteoWizard converted mzXML files were divided into two folders, “control” and “test”. Monoculture 

NF extracts were placed in the control, while bicultures and competitor monocultures were placed in 

the test folder. These two folders were placed inside another folder which was designated as the 

directory for XCMS processing in R. 

The following commands were used in the XCMS processing and alignment: 

 

> library (xcms) 

> xset<-xcmsSet() 

> xset<-group(xset) 

> xset2<-retcor(xset, family=”s”, plottype=”m”) 

> xset2<-group(xset2, bw=30) 

> xset3<-fillPeaks(xset2) 

> reporttab<-diffreport(xset3, “control”, “test”, 10, metlin=0.15) 
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Meta XCMS Processing 

 

Output files from XCMS for each co-culture experiment were imported into MetaXCMS 0.1.20 

Figure A-23: MetaXCMS screenshot of imported files. Practically all features were retained through the 
selection of highly lenient filter criteria. 
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Figure A-24: MetaXCMS filtering parameters. m/z tolerance of 0.1 and retention time tolerance of 60 sec 
was imposed for combining feature lists. 
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Figure A-25: MetaXCMS alignment parameters 

 

 

A detailed table was then exported and edited in excel. Features not present in samples are designated 

as n/a after exporting. These were changed to 1 such that they would not cause errors during 

mathematical, statistical processing steps. It should be noted that this value becomes very small after 

normalization. Features were normalized by a total ion count on 10,000, and low intensity features were 

checked against the raw data to ensure legitimacy. Features not discernible from noise and features after 

1000 seconds (during column wash and re-equilibration) were removed from the dataset. Feature 

intensities from each biculture were compared to their respective monocultures and sorted by fold 

change to select for up and down regulated features. 
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MEDI Analysis 

 The combined dataset contained 1693 features after filtering. The dataset was formatted for MEDI 

analysis as shown in supporting data tables: MEDI input format. This was then saved as a Text (Tab 

delineated) file and uploaded into the GEDI software. A grid of 25 x 26 nodes was selected, with 1st and 

2nd phase training iterations of 80 and 100 respectively. Advanced GEDI parameters are shown in figure 

below. 

Figure A-26: MEDI advanced parameters 

 

 Using GEDI software the monoculture conditions were subtracted out from the bicultures to yield the 

difference maps shown in the manuscript. Regions of interest were selected from the difference maps as 

indicated in Figure 1 of the manuscript and section A.1. of the supporting. Features from these regions 

were extracted into excel, and each features contribution to the ROI was determined by calculating the 

total intensity of the ROI and dividing the total intensity of a feature across all conditions by the total 

feature intensity of the ROI. Features were then sorted by their contributions to the ROI, or % ROI to give 

Tables S1 to S9 shown above. 
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Extracted ion chromatograms 

 The following are extracted ion chromatograms from the raw data for selected abundant features 

prioritized in regions of interest from the MEDI analysis. These reveal that the features are indeed more 

abundant in the conditions specified. This is especially apparent in features from ROI 3 where we see that 

several prioritized m/z peaks (including the ciromicin peaks with m/z 515 and 384) are only detectable in 

the coculture conditions and not in any of the monocultures. 
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Appendix B Supporting data for Chapter 4  

 
Figure B-1 Metabolomic response to environmental stimuli. Venn diagrams show the distribution of 
features with at least 10-fold higher abundance in stimuli vs control conditions with a minimum feature 
value set to 0.01 % of the total ion count. Distribution shown as a percentage of the total number of 
features detected within that strain. The genus, based on the nearest 16S relative, is shown above, and 
the isolate ID is given in parenthesis. Sections ≥ 5% are colored red.  

 

 
Table B-1: Table of identified actinomycete genera isolated from hypogean samples 
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Genus List Number isolated 

Streptomyces 91 

Micromomospora 9 

Pseudomonas 6 

Kribella 5 

Nocardiodes 5 

Bacillus 4 

Micrococcus 4 

Microbispora 3 

Nonomuraea 3 

Rhodococcus  3 

Arthrobacter 2 

Flavobacterium 2 
Pseudoduganella 2 

Streptosporangium 2 

Variovorax 2 

Agromyces 1 

Azobacter 1 

Catellatospora 1 

Dactylosporangium 1 

Massilia 1 

Methylobacterium 1 

Nocardia 1 

Oerskovia 1 

Pseudonocardia 1 

Stenotrophomonas 1 

Williamsia 1 

Saccharothrix 1 
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Figure B-2: Metabolomic response from antibiotic exposure. Stacked bar graph shows the percentage of 
detected features per strain with increased production of at least 10-fold in rifampicin (red), streptomycin 
(yellow), and both (gray) stimuli vs control conditions. Below each bar is shown the isolate identifier and 
the genus based on the nearest 16S rDNA relative. 
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Figure B-3: Metabolomic response from rare earth metal exposure. Stacked bar graph shows the 
percentage of detected features per strain with increased production of at least 10-fold in lanthanum 
(blue), scandium (black), and both (gray) stimuli vs control conditions. Below each bar is shown the isolate 
identifier and the genus based on the nearest 16S rDNA relative. 
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Figure B-4: Metabolomic responses from mixed culture exposures. Stacked bar graph shows the 
percentage of detected features per strain with increased production of at least 10-fold in mixed culture 
with TP (orange), RW (green), and both (gray) stimuli vs control conditions. Below each bar is shown the 
isolate identifier and the genus based on the nearest 16S rDNA relative. 
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Table B-2: Table of identified NP responses across stimuli conditions of subinhibitory concentrations of 
rifampicin (Rif) and streptomycin (Str), rare earth metal exposure of lanthanum (La) and scandium (Sc), 
and mixed culture conditions with TP and RW. "Con” values represent averaged, manually integrated peak 
intensities for features in the control conditions. Values for stimuli columns represent fold change vs 
control calculated by dividing the integrated abundance for features of each stimuli condition by the Con 
value. The heatmap was colored using excels conditional formatting with fold change values of 0.1 set as 
red, 1 set as white, and 10 as green. Speculative ID provided in parenthesis under description when 
available.   
 

 

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Micromonospora 
(BBHARD22) 

M257.7T17.2 Okicenone 4E+06 1.3 0.7 0.8 6.0 1.1 2.1 
M253.6T24.6 Aloesaponarin II 2E+07 1.4 0.8 0.3 5.4 0.6 1.2 

Nonomuraea 
(BBHARD23)    

M785.1T21.5 Hypogeamicin A 7E+05 0.5 0.2 0.0 2.3 1.1 2.8 
M376T21.1 Hypogeamicin B 6E+05 1.4 0.4 0.2 110.2 10.2 2.0 
M394T15.8 Hypogeamicin C 5E+06 1.4 3.5 0.0 6.2 5.8 5.2 

Streptomyces 
(BCCAGE06) M1269.6T25.4 Actinomycin C2 2E+07 0.8 1.0 1.5 0.7 3.4 2.0 

Microbispora 
(BCCAGE54) 

M1056.4T14 Propeptin 1 7E+05 3.2 1.3 0.1 0.7 1.9 2.9 
M1146.9T14.6 Propeptin 2 2E+06 0.8 0.0 0.6 1.9 0.5 0.9 

M369.3T17 Tetarimycin B 1E+06 16.1 32.8 0.5 6.2 0.4 23.0 
Streptosporangium 

(KDCAGE35) M1178.3T15.6  Funisamine A 7E+03 4.3 6.4 1.3 1.4 31.2 1.4 
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Table B-3:: Table of putative NP responses across stimuli conditions of subinhibitory concentrations of 
rifampicin (Rif) and streptomycin (Str), rare earth metal exposure of lanthanum (La) and scandium (Sc), 
and mixed culture conditions with TP and RW. Features were assigned as putative NPs based on MS, and 
MS/MS changes in comparison to known compounds, UV spectrum, and response to stimuli. “Con” values 
represent averaged, manually integrated peak intensities for features in the control conditions. Values for 
stimuli columns represent fold change vs control calculated by dividing the integrated abundance for 
features of each stimuli condition by the Con value. The heatmap was colored using excels conditional 
formatting with fold change values of 0.1 set as red, 1 set as white, and 10 as green. Speculative ID 
provided in parenthesis under description when available.   

 
 
 

Strain DESC Description (speculative ID) Con Rif Str La Sc TP Rw 

Micromonospora 
(BBHARD22) 

M256.8T9.9 Unident. NP 1 3E+05 0.8 0.5 0.9 0.4 0.3 0.6 
M233.8T11.1 Unident. NP 2 6E+06 2.4 1.0 0.4 2.4 0.9 2.5 
M283.6T13.1 Unident. Anthraquinone 1 3E+05 12.5 1.0 0.9 19.5 6.3 7.6 

M297.5T14.3 
Unident. Anthraquinone 2 

(DMAC) 
4E+07 1.0 1.0 0.4 2.6 1.3 1.3 

M238.7T20.8 
Unident. Anthraquinone 3 
(Dihydroxyanthraquinone) 

4E+05 0.6 0.6 3.4 41.7 0.1 0.3 

M241.7T22 Unident. Anthraquinone 4 6E+05 2.9 0.8 0.5 6.8 1.9 4.0 

M269.6T25.4 
Unident. Anthraquinone 5 
(Hydroxyaloesaponarin II) 

4E+06 1.5 0.6 0.2 9.0 0.1 1.5 

Nonomuraea 
(BBHARD23)    

M605.1T14.7 Unident. Hygogeamicin 1 3E+06 0.8 0.3 0.0 0.5 0.3 1.9 
M410T15.1 Unident. Hygogeamicin 2 1E+06 0.4 0.6 0.0 0.0 0.7 3.9 
M833.2T21 Unident. Hygogeamicin 3 3E+04 0.9 1.4 0.2 1.0 8.1 590.3 

M818.1T21.2 Unident. Hygogeamicin 4 1E+06 1.4 5.1 0.0 1.3 4.7 3.5 

Streptomyces 
(BCCAGE06) 

 

M1271.6T22.6 Unident. Actinomycin 1 (Y5) 5E+06 0.8 0.3 1.1 0.6 3.6 2.7 

M1287.5T25.4 Unident. Actinomycin 2 (Y3) 5E+05 0.3 0.3 1.5 0.4 2.3 11.9 
M1293.6T25.4 Unident. Actinomycin 3 (G2) 5E+05 4.0 1.6 3.7 3.2 4.6 4.4 
M1257.7T25.4 Unident. Actinomycin 4 (F4) 9E+05 8.6 1.5 1.0 3.4 9.4 1.8 
M1307.5T25.4 Unident. Actinomycin 5 (Y2) 1E+06 0.3 1.3 0.7 0.7 3.3 3.8 
M1255.6T25.4 Unident. Actinomycin 6 (D) 7E+06 5.4 0.8 0.8 2.7 5.2 2.5 
M1327.7T25.4 Unident. Actinomycin 7 4E+05 1.7 1.3 2.5 1.1 11.1 5.0 
M1313.6T25.4 Unident. Actinomycin 8 1E+05 29.4 3.9 2.9 7.4 28.7 15.1 
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Strain DESC Description (speculative ID) Con Rif Str La Sc TP Rw 

Streptomyces 
glauciniger 
(BCCAGE31) 

M311.4T8.3 Unident. NP 3 2E+07 0.3 0.7 1.2 0.6 1.1 1.0 
M287.5T9.5 Unident. NP 4 2E+07 0.8 1.1 1.2 0.7 0.3 0.0 

M634.9T12.5 Unident. NP 5 3E+06 0.1 0.5 0.9 0.3 1.0 0.5 

M295.5T12.9 Unident. NP 6 4E+06 1.2 1.0 1.4 0.5 1.3 1.0 
M707.1T16.2 Unident. NP 7 1E+05 0.9 0.7 0.7 0.4 0.0 0.5 
M311.4T16.6 Unident. NP 8 6E+06 0.8 0.8 1.2 0.6 1.5 0.9 

M253.6T26.3 Unident. NP 9 (Aloesaponarin II) 3E+06 1.1 0.4 1.3 0.2 0.3 0.3 

Nonomuraea 
(BCCAGE42) 

M411.4T12 Unident. NP 10 5E+05 3.5 0.8 0.1 0.6 0.0 0.0 
M628.1T12.7 Unident. Polyene 1 1E+05 14.5 0.1 1.5 0.6 0.0 0.2 
M628.1T13.3 Unident. Polyene 2 2E+04 49.9 0.6 3.8 1.6 0.1 0.0 
548.3T15.4 Unident. Polyene 3 6E+03 140.6 0.0 4.6 2.6 4.0 2.9 
548.3T16.2 Unident. Polyene 4 1E+04 80.9 0.0 1.1 1.0 1.0 1.7 

Streptomyces 
(BCCAGE18) 

M900.2T17.1 Unident. NP. 11 1E+06 1.9 0.7 0.7 1.4 0.3 0.3 
M895.2T17.9 Unident. NP. 12 6E+06 2.7 0.7 1.1 2.2 1.0 0.9 

Saccharothrix 
(BBHARD27)  

M398.4T13.5 Unident. NP. 13 1E+07 1.3 0.0 0.0 1.9 0.8 1.1 
M247.8T15.2 Unident. NP. 14 1E+07 1.1 0.0 0.1 1.0 0.6 1.0 
M365.6T24.5 Unident. NP. 15 2E+07 1.0 0.0 0.0 1.1 0.7 1.6 

Kribella 
(BBSNAI08) 

M732.4T20 Unident. Polyene 5 2E+07 0.2 0.9 0.0 0.0 0.4 0.0 

Microbispora 
(BCCAGE54) 

M689.2T10.5 Unident. NP. 16 1E+05 80.5 79.4 0.2 1.1 0.6 48.8 

M561.1T10.7 Unident. NP. 17 1E+06 17.0 21.1 0.5 0.5 0.6 52.9 
M575.2T11.5 Unident. NP. 18 4E+05 120.1 142.2 0.2 0.8 1.0 268.0 
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Strain DESC Description (speculative ID) Con Rif Str La Sc TP Rw 

Microbispora 
(BCCAGE54) 

M717.2T11.6 Unident. NP. 19 5E+05 16.4 26.4 0.0 0.6 0.3 15.6 
M731.3T12.1 Unident. NP. 20 6E+05 13.9 27.5 0.1 0.6 0.0 14.9 
M355.4T13 Unident. NP. 21 (Arromycin) 8E+04 25.6 52.5 0.0 1.0 2.2 38.8 

M393.2T13.7 Unident. NP. 22 (Linfuranone A) 6E+05 4.8 6.0 0.2 0.4 0.0 4.7 
M385.2T14.7 Unident. Tetarimycin 1 3E+04 72.3 98.0 1.3 15.8 3.9 80.7 
M399.2T16.1 Unident. Tetarimycin 2 2E+05 23.0 39.5 0.5 4.4 0.7 20.2 
M406.3T17.5 Unident. Tetarimycin 3 2E+04 8.8 92.5 0.0 3.5 2.4 19.6 
M395.2T19.5 Unident. Tetarimycin 4 3E+04 53.9 49.0 0.8 3.1 1.0 49.8 
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Figure B-5: Distribution of isolated and putative NPs from Tables S2-3 with ≥10-fold changes in antibiotic 
exposure (anti), metal exposure (metal), or mixed culture (mixed) stimuli conditions relative to the control.  
 

  



216 
 

Figure B-6: Analysis of volcano plot-prioritized features with chromatogram overlays. (A) Binary volcano 
plot comparison between Microbispora BCCAGE54 control and streptomycin antibiotic exposure 
conditions. Features below 0.8 significance 5-fold change thresholds colored grey. Features over 
thresholds colored by retention time brackets: <10 min (purple), between 10-15 min (yellow), and >15 
min (green). (B) Volcano plot of features above thresholds and eluting before 10 min. (C) Volcano plot of 
features above thresholds and eluting between 10 and 15 min. (D) Volcano plot of features above 
thresholds and eluting after 15 min. Overlays of extracted ion, total ion, and UV/Vis chromatograms for 
features eluting after 15 min are shown in (E) for streptomycin exposed and (F) control Microbispora 
BCCAGE54 extracts. Red arrows highlight tetarimycin B peak in the EICs and PDA.  
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Figure B-7: EICs of (A) okicenone and (C) aloesaponarin II from control (black) and Sc treated (red) 
Micromonospora BBHARD22 extracts and mass spectral data for (B) okicenone and (D) aloesaponarin II. 
Structures shown on right. 

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Micromonospora 
(BBHARD22) 

M257.7T17.2 okicenone 4E+06 1.3 0.7 0.8 6.0 1.1 2.1 
M253.6T24.6 aloesaponarin II 2E+07 1.4 0.8 0.3 5.4 0.6 1.2 
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Figure B-8: EICs of (A) hypogeamicin A, (C) hypogeamicin B, and (E) hypogeamicin C from control (black) 
and Sc treated (red) Nonomuraea BBHARD23 extracts and mass spectral data for (B) hypogeamicin A, (D) 
hypogeamicin B, and (F) hypogeamicin C. Structures shown on right. 

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Nonomuraea 
(BBHARD23)    

M785.1T21.5 hypogeamicin A 7E+05 0.5 0.2 0.0 2.3 1.1 2.8 
M376T21.1 hypogeamicin B 6E+05 1.4 0.4 0.2 110.2 10.2 2.0 
M394T15.8 hypogeamicin C 5E+06 1.4 3.5 0.0 6.2 5.8 5.2 
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Figure B-9: EICs of (A) actinomycin C2 from control (black) and TP treated (red) Streptomyces BCCAGE06 
extracts and mass spectral data for (B) actinomycin C2. The structure of actinomycin C2 is shown below.  

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Streptomyces 
(BCCAGE06) M1269.6T25.4 actinomycin C2 2E+07 0.8 1.0 1.5 0.7 3.4 2.0 
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Figure B-10: EICs of (A) propeptin 1, (C) propeptin 2, and (D) tetarimycin B from control (black) and Rif (a), 
La (b), and Str (c) treated (red) Microbispora BCCAGE54 extracts and mass spectral data for (B) propeptin 
1, (D) propeptin 2, and (F) tetarimycin B. Structures shown on right. 

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Microbispora 
(BCCAGE54) 

M1056.4T14 propeptin 1 7E+05 3.2 1.3 0.1 0.7 1.9 2.9 
M1146.9T14.6 propeptin 2 5E+05 0.6 0.0 2.0 1.5 0.5 0.7 

M369.3T17 tetarimycin B 1E+06 16.1 32.8 0.5 6.2 0.4 23.0 
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Figure B-11: EICs of (A) funisamine from control (black) and TP treated (red) Microbispora BCCAGE54 
extracts and mass spectral data for (B) funisamine. The structure of funisamine is shown below. 
 

Strain (Isolate) DESC ID Con Rif Str La Sc TP Rw 

Streptosporangium 
caverna 

(KDCAGE35) 
M1178.3T15.6  funisamine A 7E+03 4.3 6.4 1.3 1.4 31.2 1.4 
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Figure B-12: Mass spectral data for Micromonospora BBHARD22 features  (A) unident. NP 1 (M256.8T9.9), 
(B) unident. NP 2 (M233.8T11.1), (C) unident. anthraquinone 1 (M283.6T13.1), (D) unident. 
anthraquinone 2 (M297.5T14.3, DMAC), (E) okicenone (M257.7T17.2), (F) unident. anthraquinone 3 
(M238.7T20.8, dihydroxyanthraquinone), (G) unident. anthraquinone 4 (M241.7T22), (H) aloesaponarin II 
(M253.6T24.6), and (I) unident. anthraquinone 5 (M269.6T25.4, Hydroxyaloesaponarin II) in 
Micromonospora BBHARD22 
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Figure B-13: UV spectrum of Micromonospora BBHARD22 features (A) unident. NP 1 (M256.8T9.9), (B) 
unident. NP 2 (M233.8T11.1), (C) unident. anthraquinone 1 (M283.6T13.1), (D) unident. anthraquinone 2 
(M297.5T14.3, DMAC), (E) okicenone (M257.7T17.2), (F) unident. anthraquinone 3 (M238.7T20.8, 
dihydroxyanthraquinone), (G) unident. anthraquinone 4 (M241.7T22), (H) aloesaponarin II (M253.6T24.6), 
and (I) unident. anthraquinone 5 (M269.6T25.4, Hydroxyaloesaponarin II) in Micromonospora BBHARD22 
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Figure B-14: UV spectrum of Nonomuraea BBHARD23 features (A) unident. hypogeamicin 4 
(M605.1T14.7), (B) unident. hypogeamicin 3 (M410T15.1) in Nonomuraea (BBHARD23) unident. 
hypogeamicin 3 (M809.1T15.8), (C) hypogeamicin C (M394T15.8), (D) hypogeamicin B (M376T21.1), (E) 
unident. hypogeamicin 1 (M833.2T21), (F) unident. hypogeamicin 2 (M818.1T21.2), and (G) hypogeamicin 
A (M785.1T21.5) in Nonomuraea BBHARD23 extracts. 
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Figure B-15: UV spectrum of features from Streptomyces BCCAGE06 (A) unident. actinomycin 1 (Y5) 
(M1271.6T22.6), and (B) actinomycin C2 (M1270.6T25.4), unident. actinomycin 2 (M1287.5T25.4, 
actinomycin Y3), unident. actinomycin 3 (M1293.6T25.4, actinomycin G2), unident. actinomycin 4 
(M1257.7T25.4, actinomycin F4), unident. actinomycin 5 (M1307.5T25.4, actinomycin Y2), unident. 
actinomycin 6 (M1255.6T25.4, actinomycin D), unident. actinomycin 7 (M1327.7T25.4), and unident. 
actinomycin 8 (M1313.7T25.4) in Streptomyces BCCAGE06 
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Figure B-16: UV spectrum of features from Streptomyces BCCAGE31 (A) unident. NP 3 (M311.4T8.3), (B) 
unident. NP 4 (M287.5T9.5), (C) unident. NP 5 (M634.9T12.5), (D) unident. NP 6 (M295.5T12.9), (E) 
unident. NP 7-8 (M707.1T16.2, M311.4T16.6), and (F) and unident. NP 9 (M253.6T26.3, aloesaponarin II) 
in Streptomyces BCCAGE31. 
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Figure B-17: UV spectrum of features from Nonomuraea BCCAGE42 (A) unident. NP 10 (M411.4T12), (B) 
unident. Polyene 1 (M628.1T12.7), (C) unident. Polyene 2 (M628.1T13.3), (D) unident. Polyene 3 
(548.3T15.4), and (E) unident. Polyene 4 (548.3T16.2) in Nonomuraea BCCAGE42 extracts. 
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Figure B-18: UV spectrum of features from Streptomyces BCCAGE18 (A) unident. NP. 11-12 (M900.2T17.1, 
M895.2T17.9) in Streptomyces BCCAGE18 extracts. 
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Figure B-19: UV spectrum of features from Saccharothrix BBHARD27 (A) unident. NP 13 (M398.4T13.5), 
(B) unident. NP. 14 (M247.8T15.2), and (C) unident. NP. 15 (M257.8T24.2) from Saccharothrix BBHARD27 
extracts. 
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Figure B-20: UV spectrum of features from Kribella BBSNAI08 (A) unident. Polyene 5 (M730.2T20.3) from 
Kribella BBSNAI08 extracts.  
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Figure B-21: UV spectrum of features from Microbispora BCCAGE54 (A) unident. NP. 16 and 17 
(M689.2T10.5, M561.1T10.7), (B) unident. NP. 18 and 19 (M575.2T11.5, M717.2T11.6), (C) unident. NP. 
20 (M731.3T12.1), (D) unident. NP. 21 (M355.4T13, Arromycin), (E) unident. NP. 22 (M393.2T13.7, 
Linfuranone A), (F) propeptin 1 (M1056.4T14), (G) propeptin 2 (M1146.9T14.6), (H) unident. tetarimycin 
1 (M385.2T14.7), (I) unident. tetarimycin 2 (M399.2T16.1), (J) tetarimycin B (M369.3T17), (K), unident. 
tetarimycin 3 (M406.3T17.5) and (L) unident. tetarimycin 4 (M395.2T19.5) from Microbispora BCCAGE54 
extracts. 
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Figure B-22: UV spectrum of funisamine from Streptosporangium KDCAGE35 
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Figure B-23: H-NMR spectrum of aloesaponarin II from Nonomuraea BBHARD22 in Acetone-d6 

 
 
Figure B-24: Expanded H-NMR spectrum of aloesaponarin II from Nonomuraea BBHARD22 in Acetone-d6 
showing the aromatic region. 
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Figure B-25: H-NMR spectrum partially purified okicenone from Nonomuraea BBHARD22 in Methanol-d4. 
Peaks corresponding to okicenone indicated by (*).  

 
 
Figure B-26: H-NMR spectrum of tetarimycin B from Microbispora BCCAGE54 in Methanol-d4 
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Figure B-27: H-NMR spectrum of hypogeamicin B from Nonomuraea BBHARD23 in Methanol-d4 

 
 
Figure B-28: H-NMR spectrum of actinomycin C from Streptomyces BCCAGE06 in Chloroform-d1 
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Table B-4: NMR data for funisamine 

Pos. δC δH HMBC NOESY 

1 172.6       
2 125.1 5.88, 1H, d (15.2 Hz) 4   
3 141.7 7.13, 1H, dd (11.7, 15.2 Hz) 1, 4, 5 5 
4 129.9 6.32, 1H, dd (11.7, 14.5 Hz)     
5 138.9 6.53, 1H, dd (11, 14.5 Hz) 3 3, 7 
6 130.0 6.22, 1H, dd (11, 14.8 Hz)     
7 136.2 6.35, 1H, dd (10.1, 14.8 Hz) 5, 6, 9 5 
8 130.7 6.12, 1H, dd (10.1, 14.9 Hz) 10   
9 137.0 5.78, 1H, (dt (7.5, 14.9 Hz) 7, 10   

10 29.7 2.13, 2H, dd (7.2 Hz) 8, 9, 10, 12  8, 11, 12, 13 
11 29.5 1.30, 1.41, 2H 8, 9, 10, 12, 13   
12 39.9 1.57, 1H     
13 78.3 3.93, 1H, d 10, 12, 59, 60 15 
14 140.2       
15 126.1 6.13, 1H, d (10.5 Hz) 13, 59 17 
16 128.7 6.52, 1H, dd (11.6, 14.5 Hz) 18   
17 133.2 6.26, 1H, overlap     
18 133.5 6.37, 1H, overlap     
19 133.5 6.37, 1H, overlap     
20 133.5 6.37, 1H, overlap     
21 133.5 6.37, 1H, overlap     
22 133.5 6.37, 1H, overlap     
23 133.0 6.36, 1H, overlap     
24 132.9 6.3, 1H, overlap     
25 131.8 6.25, 1H, overlap     
26 133.5 6.2, 1H, overlap     
27 129.8 5.82, 1H, dt (7.4, 14.7 Hz) 28, 29   
28 35.1 2.45, 2.62, 2H, overlap 26, 27, 29, 30   
29 79.0 4.61, 1H, dd (5.6 Hz) 27, 30, 31, 58    
30 47.5 3.2, 1H 28, 29, 31, 58   
31 215.5       
32 50.8 2.91, 1H, 31, 57   
33 66.7 4.01, 1H      
34 41.3 1.56, 1.71 2H  39   
35 70.9 4.25, 1H, q (6.8 Hz) 34, 36, 37   
36 135.0 5.53, 1H, dd (7.3, 15.3 Hz) 35, 38   
37 127.7 5.72, 1H, dt (7.2, 15.3 Hz) 35, 38   
38 40.1 2.24, 2H, multiplet 36, 37, 39, 40,    
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Pos. δC δH HMBC NOESY 

39 69.7 3.84, 1H      
40 43.1 1.56, 1.67, 2H      
41 68.6 3.99, 1H    38, 39 
42 43.0 1.6, 2H   
43 66.8 4.04, 1H  45   
44 43.0 1.6, 2H   
45 64.5 4.1, 1H      
46 43.0 1.6. 2H   
47 69.0 4, 1H   
48 43.2 1.6, 2H   
49 69.0 4, 1H     
50 44.3 1.6, 2H      
51 68.6 3.96, 1H     
52 44.7 1.53, 2H   
53 68.9 3.81, 1H      
54 33.5 1.47, 1.62, 2H  53   
55 23.7 1.76, 1.81, 2H  53, 54, 56   
56 39.4 2.95, 2H  54, 55   

57 10.1 1.1, 3H, d (7 Hz) 31, 32 29, 30, 32, 33, 
35 

58 12.2 1.14, 3H, d (7 Hz) 29, 30, 31 28, 29, 30, 32, 
33 

59 11.8 1.74, 3H, s 13, 14, 15, 16   
60 30.7 1.26, 1.47 2H      

61 19.5 1.25, 1.42, 2H 9 8, 10, 11, 13, 
60, 62 

62 13.4 0.9, 3H, t (7.1 Hz)   61 
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Figure B-29: H-NMR (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 

 
Figure B-30: C-NMR (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 
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Figure B-31: COSY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 
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Figure B-32: Expanded COSY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in 
Methanol-d4 enlarged to show aromatic couplings. 
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Figure B-33: Expanded COSY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in 
Methanol-d4 enlarged to methylene and hydroxy-methine couplings. 
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Figure B-34: TOCSY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 
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Figure B-35: TOCSY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 enlarged to show upfield couplings. 
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Figure B-36: TOCSY (600 MHz) spectrum of funisamine  from Streptosporangium KDCAGE35 in Methanol-
d4 enlarged to show downfield couplings. 
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Figure B-37: HSQC (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 
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Figure B-38: HSQC (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 enlarged to show downfield couplings. 
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Figure B-39: HSQC (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-
d4 enlarged to show upfield couplings. 
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Figure B-40: HMBC (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-d4 

 
Figure B-41: NOESY (600 MHz) spectrum of funisamine from Streptosporangium KDCAGE35 in Methanol-d4 
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Figure B-42: High-Res mass spectrum for purified funisamine acquired in negative mode on a 15T solariX 
Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer (Bruker Daltonics, Billerica, MA, 
USA) 
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Table B-5: Table of ions detected through fragmentation analysis of purified funisamine  
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Figure B-43: Fragmentation spectra of isolated funisamine 

 

 
 
 

Figure B-44: Fragmentation assignments for funisamine 
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Figure B-45: (A) S-plot prioritization of amicoumacin B and funisamine from mixed culture extract with 
Streptosporangium KDCAGE35 and B. subtilis. Extracted ion chromatograms for labeled features are 
shown overlaid on the total ion chromatogram.  
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Figure B-46: Mixed culture competitor growth curves for TP, RW, EC, BS, and BK in international 
Streptomyces protocol 2 (ISP2) broth. Doubling times in hours were calculated to be: 1.8 (TP), 2.8 (RW), 
1.5 (EC), 1.5 (BS), and 1.0 (BK). 
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Table B-6: Table of putative BGCs identified by antiSMASH in the genome of Streptosporangium 
KDCAGE35 

 

 
  

Cluster Type Most similar known cluster from antiSMASH

Cluster 1 Lassopeptide -
Cluster 2 Nrps Daptomycin_biosynthetic_gene_cluster (4% of genes show similarity)
Cluster 3 Nrps Landomycin_biosynthetic_gene_cluster (9% of genes show similarity)
Cluster 4 Nrps Naphthyridinomycin_biosynthetic_gene_cluster (17% of genes show similarity)
Cluster 5 Terpene Chlortetracycline_biosynthetic_gene_cluster (5% of genes show similarity)
Cluster 6 T3pks Alkylresorcinol_biosynthetic_gene_cluster (100% of genes show similarity)
Cluster 7 Nrps Scabichelin_biosynthetic_gene_cluster (100% of genes show similarity)
Cluster 8 Bacteriocin Hedamycin_biosynthetic_gene_cluster (6% of genes show similarity)
Cluster 9 Terpene Spinosad_biosynthetic_gene_cluster (8% of genes show similarity)

Cluster 10 T3pks-T1pks Kendomycin_biosynthetic_gene_cluster (55% of genes show similarity)
Cluster 11 Terpene Sioxanthin_biosynthetic_gene_cluster (40% of genes show similarity)
Cluster 12 Lantipeptide -
Cluster 13 Terpene Griseobactin_biosynthetic_gene_cluster (11% of genes show similarity)
Cluster 14 Other Monensin_biosynthetic_gene_cluster (5% of genes show similarity)
Cluster 15 Lantipeptide Catenulipeptin_biosynthetic_gene_cluster (60% of genes show similarity)
Cluster 16 Terpene-Nrps -
Cluster 17 T1pks Concanamycin_A_biosynthetic_gene_cluster (42% of genes show similarity)
Cluster 18 Terpene 9-methylstreptimidone_biosynthetic_gene_cluster (9% of genes show similarity)
Cluster 19 Terpene Hopene_biosynthetic_gene_cluster (46% of genes show similarity)
Cluster 20 Siderophore -
Cluster 21 Bacteriocin -
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Table B-7: Genetic organization of putative funisamine BGC in Streptosporangium KDCAGE35. 

 

 
 

GenBank 
accession 

# 
Start/Stop (bp) Protein Size 

(AAs) Proposed function Protein Homolog I / S (%) Accession 
Number 

 
2-679 FunU1 225 unknown Nucleoprotein TPR (Xenopus laevis) 38 / 44 Q5EE04.1 

 
1239-40 FunU2 399 hypothetical protein Hypothetical protein (Streptomyces sp. PCS3-

D2) 58 / 63 EYU65272.1 

 
250-1275 FunU3 343 hydrolase Epoxide hydrolase B (Mycobacterium 

tuberculosis CDC1551) 39 / 51 P95276.2 

 
219-1817 FunU4 532 hypothetical protein --- ---- --- 

 

2356-1277 FunU5 359 transporter Uncharacterized transporter YcbK (Bacillus 
subtilis subsp. subtilis str. 168) 27 / 43 P42243.1 

 
1295-3595  FunU6 766 hypothetical protein --- ---- --- 

 

2418-3335 FunU7 305 regulator HTH-type transcriptional regulator GltC 
(Bacillus subtilis subsp. subtilis str. 168) 27 / 46 P20668.3 

 

3599-2832  FunU8 255 regulator LysR family transcriptional regulator 
(Nonomuraea jiangxiensis) 41 / 52 WP_090940

584.1 

 
4339-3608  FunU9 243 hypothetical protein Hypothetical protein (Ralstonia 

mannitolilytica) 40 / 58 AJW47704.1 

 
3702-5567 FunU10 621 phosphatase Alkaline phosphatase D (Bacillus subtilis 

subsp. subtilis str. 168) 45 / 60 P42251.3 

 
4817-3750  FunU11 355 hypothetical protein --- ---- --- 

 
4823-7591  FunU12 922 galactosidase alpha-galactosidase (Streptomyces alboflavus) 45 / 58 

WP_087883
000.1 

 
5675-4848  FunU13 275 unknown hypothetical protein STAWA0001_0347 

(Staphylococcus warneri L37603) 
42 / 47 EEQ79474.1 

 

7555-5483  FunU14 690 hypothetical protein Hypothetical protein SCLAV_2787 
[Streptomyces clavuligerus ATCC 27064] 39 / 45 EFG07859.1 

 

5698-6303 FunU15 201 kinase 
4-diphosphocytidyl-2-C-methyl-D-erythritol 
kinase (Photorhabdus luminescens subsp. 
laumondii TTO1) 

32 / 50 Q7N589.1 

 
8036-8707  FunU16 223 monooxygenase Pyrimidine monooxygenase RutA 

(Bradyrhizobium sp. BTAi1) 41 / 59 A5EB33.1 

 
10043-8868  FunU17 391 hypothetical protein --- ---- --- 

https://www.ncbi.nlm.nih.gov/protein/Q5EE04.1?report=genbank&log$=prottop&blast_rank=1&RID=CZNHM21D01R
https://www.ncbi.nlm.nih.gov/protein/EYU65272.1?report=genbank&log$=prottop&blast_rank=1&RID=CZNTG2S601R
https://www.ncbi.nlm.nih.gov/protein/P95276.2?report=genbank&log$=prottop&blast_rank=1&RID=CZNSE4K001R
https://www.ncbi.nlm.nih.gov/protein/P42243.1?report=genbank&log$=prottop&blast_rank=1&RID=CZNT5ENG01R
https://www.ncbi.nlm.nih.gov/protein/P20668.3?report=genbank&log$=prottop&blast_rank=1&RID=CZPAMT3H01R
https://www.ncbi.nlm.nih.gov/protein/AJW47704.1?report=genbank&log$=prottop&blast_rank=1&RID=CZPHH0Z101R
https://www.ncbi.nlm.nih.gov/protein/P42251.3?report=genbank&log$=prottop&blast_rank=1&RID=CZPHMKAN01R
https://www.ncbi.nlm.nih.gov/protein/WP_087883000?report=genbank&log$=protalign&blast_rank=12&RID=D2CSZ3SB014
https://www.ncbi.nlm.nih.gov/protein/WP_087883000?report=genbank&log$=protalign&blast_rank=12&RID=D2CSZ3SB014
https://www.ncbi.nlm.nih.gov/protein/EEQ79474?report=genbank&log$=protalign&blast_rank=1&RID=D2C27BFP014
https://www.ncbi.nlm.nih.gov/protein/EFG07859.1?report=genbank&log$=prottop&blast_rank=1&RID=CZR9BK9D01R
https://www.ncbi.nlm.nih.gov/protein/Q7N589.1?report=genbank&log$=prottop&blast_rank=1&RID=CZPZX81X01R
https://www.ncbi.nlm.nih.gov/protein/A5EB33.1?report=genbank&log$=prottop&blast_rank=1&RID=CZR0JA2G01R
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10707-9010  FunC1 565 tRNA ligase Cysteine--tRNA ligase (Salmonella enterica 
subsp. arizonae serovar) 29 / 43 A9MLA7.1 

 

9112-11118 FunC2 668 
4'-
phosphopantetheinyl 
transferase 

4'-phosphopantetheinyl transferase AcpS 
(Dechloromonas aromatica RCB) 52 / 62 Q47EF3.1 

 
9285-10616 FunJ1 443 hypothetical protein --- ---- --- 

 
12099 - 12629 FunR1 176 RNA polymerase 

sigma-F factor 
RNA polymerase sigma-F factor (Bacillus 
megaterium) 54 / 75 P35145.1 

 

14530-12644 FunC3 628 Phospholipase Non-hemolytic phospholipase C (Burkholderia 
pseudomallei K96243) 37 / 48 Q9RGS8.2 

 

15321-15016 FunR2 101 regulator Outer membrane protein assembly factor 
BamA (Helicobacter pylori 26695) 43 / 60 O25369.1 

 

16441-15506 FunC4 311 dehydrogenase Sterol-4-alpha-carboxylate 3-dehydrogenase, 
decarboxylating (Dictyostelium discoideum) 29 / 44 Q54L85.1 

 
17220-16597 FunC5 207 reductase    

 
18172-17438 FunC6 244 oxidoreductase oxidoreductase YkvO (Bacillus subtilis subsp. 

subtilis str. 168) 51 / 70 O31680.1 

 

18436 - 19335 FunR3 299 regulator Hca operon transcriptional activator HcaR 
(Escherichia coli K-12) 40 / 55 Q47141.2 

 
21794-19701 FunR4 697 elongation factor G Elongation factor G (Streptomyces coelicolor 

A3(2)) 81 / 87 O87844.1 

 

23211-22279 FunB1 310 3-hydroxypentyl-CoA 
dehydrogenase 

3-hydroxybutyryl-CoA dehydrogenase 
(Mycobacterium tuberculosis CDC1551) 56 / 72 P9WNP6.1 

 
24197-23208 FunC7 329 ketoacyl-ACP synthase 

III 
Acetoacetyl CoA synthase NphT7 
(Streptomyces sp. CL190) 52 / 65 D7URV0.1 

 
25546-24200 FunB2 448 2-pentenyl-CoA 

carboxylase/reductase 
Crotonyl-CoA reductase (Streptomyces 
collinus) 52 / 65 Q53865.1 

 

26373-25579 FunR5 264 regulator 
Sugar fermentation stimulation protein 
homolog (Pyrobaculum calidifontis JCM 
11548) 

60 / 72 A3MSH9.1 

 

27129-26458 FunC8 223 
4'-
phosphopantetheinyl 
transferase 

4'-phosphopantetheinyl transferase Npt 
(Nocardia iowensis) 49 /62 A1YCA5.1 

 

28178-27129 FunS1 349 sulfotransferase sulfotransferase associated with clethramycin 
BGC (Streptomyces malaysiensis) 44 / 59 ATL82931.1 

 
28945-28175 FunC9 256 Thioesterase Thioesterase PikA5 (Streptomyces venezuelae) 52 / 66 Q9ZGI1.1 

 
34875-28942 FunP8 1977 funisamine PKS 8 --- ---- --- 

 
56330-34905 FunP7 7181 funisamine PKS 7 --- ---- --- 

 
66246-56476 FunP6 3256 funisamine PKS 6 --- ---- --- 

 
86928-66277 FunP5 6883 funisamine PKS 5 --- ---- --- 

 
101612-86958 FunP4 4884 funisamine PKS 4 --- ---- --- 

 
110910-101770 FunP3 3046 funisamine PKS 3 --- ---- --- 

 
115796-111198 FunP2 1532 funisamine PKS 2 --- ---- --- 

https://www.ncbi.nlm.nih.gov/protein/A9MLA7.1?report=genbank&log$=prottop&blast_rank=1&RID=CZR2HXF301R
https://www.ncbi.nlm.nih.gov/protein/Q47EF3.1?report=genbank&log$=prottop&blast_rank=1&RID=CZR4564X01R
https://www.ncbi.nlm.nih.gov/protein/P35145.1?report=genbank&log$=prottop&blast_rank=1&RID=D030S1AK015
https://www.ncbi.nlm.nih.gov/protein/Q9RGS8.2?report=genbank&log$=prottop&blast_rank=1&RID=D030XTPU015
https://www.ncbi.nlm.nih.gov/protein/O25369.1?report=genbank&log$=prottop&blast_rank=1&RID=D03ZHE70015
https://www.ncbi.nlm.nih.gov/protein/Q54L85.1?report=genbank&log$=prottop&blast_rank=3&RID=D047X07T014
https://www.ncbi.nlm.nih.gov/protein/O31680.1?report=genbank&log$=prottop&blast_rank=1&RID=D04U46GC015
https://www.ncbi.nlm.nih.gov/protein/Q47141.2?report=genbank&log$=prottop&blast_rank=1&RID=D04U5R28015
https://www.ncbi.nlm.nih.gov/protein/O87844.1?report=genbank&log$=prottop&blast_rank=1&RID=D053HXEG014
https://www.ncbi.nlm.nih.gov/protein/P9WNP6.1?report=genbank&log$=prottop&blast_rank=1&RID=D0544E2V015
https://www.ncbi.nlm.nih.gov/protein/D7URV0.1?report=genbank&log$=prottop&blast_rank=1&RID=D05K2ABT014
https://www.ncbi.nlm.nih.gov/protein/Q53865?report=genbank&log$=protalign&blast_rank=1&RID=D05K4RTH014
https://www.ncbi.nlm.nih.gov/protein/A3MSH9.1?report=genbank&log$=prottop&blast_rank=1&RID=D05K6C0F015
https://www.ncbi.nlm.nih.gov/protein/A1YCA5?report=genbank&log$=protalign&blast_rank=1&RID=D05N9F90015
https://www.ncbi.nlm.nih.gov/protein/Q9ZGI1.1?report=genbank&log$=prottop&blast_rank=1&RID=D05N5SB4014
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158396-116280 FunP1 14038 funisamine PKS 1 --- ---- --- 

 

160153-158831 FunC10 440 FAD-dependent 
monooxygenase 

FAD-dependent monooxygenase cctM 
(Talaromyces islandicus) 27 / 40 A0A0U1LQD

9.1 

 

160696-160202 FunR6 164 
PadR family 
transcriptional 
regulator 

Transcriptional regulator PadR-like family 
protein (Nonomuraea jiangxiensis) 89 / 96 SDK84512.1 

 

162531-160984 FunM1 515 membrane protein UPF0699 transmembrane protein YdbT 
(Bacillus subtilis subsp. subtilis str. 168) 16 / 39 A7RHG8.1 

 

162953-162528 FunM2 141 membrane protein UPF0699 transmembrane protein YdbS 
(Bacillus subtilis subsp. subtilis str. 168) 32 / 52 P96615.1 

 
163265-164947 FunA1 560 arginine 2-

monooxygenase 
arginine 2-monooxygenase (Streptomyces 
malaysiensis) 67 / 75  ATL82933.1 

 

165743-165120 FunR7 207 regulator 
Response regulator protein VraR 
(Staphylococcus aureus subsp. aureus 
MSSA476) 

44 / 65 Q6G850.1 

 
166951-165740 FunR8 403 signal transduction 

histidine kinase 
Sensor histidine kinase LiaS (Bacillus subtilis 
subsp. subtilis str. 168) 30 / 49 O32198.1 

 
167778-166909 FunT1 289 transport permease transport permease ycf38 (Porphyra 

purpurea) 27 / 47 P51321.1 

 

168620-167775 FunT2 281 ABC transporter ATP-
binding protein  

ABC transporter ATP-binding protein YvfR 
(Bacillus subtilis subsp. subtilis str. 168) 38 / 56 O07016.1 

 
168756-169583 FunJ2 275 hypothetical protein hypothetical protein STAWA0001_0347 

(Staphylococcus warneri L37603) 42 / 47 EEQ79474.1 

 

172413-169660 FunR9 917 transcriptional 
regulator 

HTH-type transcriptional regulator MalT 
(Vibrio campbellii ATCC BAA-1116) 25 / 41 A7N5N6.1 

 
173031-174149 FunA3 372 agmatinase agmatinase (Streptomyces sp. Mg1) 34 / 52 AKL64821.1 

 
174191-175633 FunA2 480 4-guanidinobutanoate 

CoA ligase 
4-guanidinobutanoate:CoA ligase 
(Streptomyces malaysiensis) 61 / 73 ATL87716.1 

 

175630-176556 FunA4 308 
4-guanidinobutanoyl-
CoA:ACP 
acyltransferase 

4-guanidinobutanoyl-CoA:ACP acyltransferase 
(Streptomyces malaysiensis) 48 / 65  ATL87717.1 

 

177375-176761 FunR10 204 
TetR family 
transcriptional 
regulator 

Tetracycline repressor protein class E 
(Escherichia coli) 25 / 44 P21337.1 

 
177445-178020 FunC11 191 alkyl hydroperoxide 

reductase 
alkyl hydroperoxide reductase (Streptomyces 
violaceusniger Tu 4113) 

70 / 79 
AEM81606.1 

 
178215-178826 FunC12 203 dehydrogenase Malate dehydrogenase (Bacillus cytotoxicus 

NVH 391-98) 30 / 44 A7GQI9.1 

  178877-178080 FunJ3 265 hypothetical protein --- ---- --- 

  178197-178826 FunC13 209 dehydrogenase Malate dehydrogenase (Geobacillus sp. 
WCH70) 29 / 51 C5DAE0.1 

  179363-180136 FunR11 257 regulator HTH-type transcriptional regulator CueR 
(Escherichia coli O157:H7) 33 / 55 Q8XD09.1 

  181146-180160 FunJ4 328 hypothetical protein --- ---- --- 

  181118-180276 FunT3 280 transporter ABC-2 family transporter protein 
(Streptosporangium subroseum) 94 / 96 SNT45499.1 

  182104-181115 FunT4 329 transporter ABC transporter ATP-binding protein YhcH 
(Bacillus subtilis subsp. subtilis str. 168) 35 / 55 P54592.1 

  181118-182110 FunJ5 330 hypothetical protein hypothetical protein STEPF1_06867 
(Streptomyces sp. F-1) 39 / 49 SFY53584.1 

  181188-181880 FunJ6 230 hypothetical protein hypothetical protein BJF79_17010 
(Actinomadura sp. CNU-125) 57 / 65 OLT19263.1 

https://www.ncbi.nlm.nih.gov/protein/A0A0U1LQD9.1?report=genbank&log$=prottop&blast_rank=1&RID=D076CBFB015
https://www.ncbi.nlm.nih.gov/protein/A0A0U1LQD9.1?report=genbank&log$=prottop&blast_rank=1&RID=D076CBFB015
https://www.ncbi.nlm.nih.gov/protein/SDK84512.1?report=genbank&log$=prottop&blast_rank=1&RID=D1JC70H9014
https://www.ncbi.nlm.nih.gov/protein/A7RHG8?report=genbank&log$=protalign&blast_rank=2&RID=D076MZXB014
https://www.ncbi.nlm.nih.gov/protein/P96615.1?report=genbank&log$=prottop&blast_rank=1&RID=D0853RX8014
https://www.ncbi.nlm.nih.gov/protein/1266919895
https://www.ncbi.nlm.nih.gov/protein/Q6G850.1?report=genbank&log$=prottop&blast_rank=1&RID=D0915P5E014
https://www.ncbi.nlm.nih.gov/protein/O32198.1?report=genbank&log$=prottop&blast_rank=1&RID=D09170AD014
https://www.ncbi.nlm.nih.gov/protein/P51321.1?report=genbank&log$=prottop&blast_rank=2&RID=D0919J7H014
https://www.ncbi.nlm.nih.gov/protein/O07016?report=genbank&log$=protalign&blast_rank=2&RID=D091B5GK014
https://www.ncbi.nlm.nih.gov/protein/A7N5N6?report=genbank&log$=protalign&blast_rank=1&RID=D0BA4A2E015
https://www.ncbi.nlm.nih.gov/protein/1266924678
https://www.ncbi.nlm.nih.gov/protein/1266924679
https://www.ncbi.nlm.nih.gov/protein/P21337.1?report=genbank&log$=prottop&blast_rank=1&RID=D0BA6406015
https://www.ncbi.nlm.nih.gov/protein/AEM81606?report=genbank&log$=protalign&blast_rank=17&RID=D2D2D96R014
https://www.ncbi.nlm.nih.gov/protein/A7GQI9?report=genbank&log$=protalign&blast_rank=1&RID=D0BMNG4B015
https://www.ncbi.nlm.nih.gov/protein/C5DAE0.1?report=genbank&log$=prottop&blast_rank=1&RID=CZSCP7G5014
https://www.ncbi.nlm.nih.gov/protein/Q8XD09.1?report=genbank&log$=prottop&blast_rank=1&RID=CZSDCAYE014
https://www.ncbi.nlm.nih.gov/protein/SNT45499.1?report=genbank&log$=prottop&blast_rank=1&RID=CZSTSRBT014
https://www.ncbi.nlm.nih.gov/protein/P54592.1?report=genbank&log$=prottop&blast_rank=1&RID=CZSPCS1S014
https://www.ncbi.nlm.nih.gov/protein/SFY53584.1?report=genbank&log$=prottop&blast_rank=1&RID=CZSVG0FV014
https://www.ncbi.nlm.nih.gov/protein/OLT19263.1?report=genbank&log$=prottop&blast_rank=1&RID=CZT37Y42015


258 
 

  183592-182798 FunC14 264 ketoreductase Beta-ketoacyl-ACP reductase (Vibrio cholerae 
O1 biovar El Tor str. N16961) 36 / 52 Q9KQH7.2 

  183770-184417 FunR12 215 regulator HTH-type transcriptional regulator YhgD 
(Bacillus subtilis subsp. subtilis str. 168) 38 / 59 P32398.1 

  184483-183782 FunD1 233 hypothetical protein --- ---- --- 

  185811-184630 FunD2 393 methylase Serine methylase (Thermus thermophilus 
HB27) 26 / 45 Q72IH2.2 

  184870-185931 FunD3 353 phosphoribosyltransfe
rase 

anthranilate phosphoribosyltransferase 
(Streptomyces sp. M1013) 29 / 47 WP_076976

541.1 

  187265-186549 FunD4 238 peptide hydrolase ATP-dependent Clp protease proteolytic 
subunit 1 (Nocardia farcinica IFM 10152) 73/ 86 Q5Z0M4.1 

  187822-187136 FunD5 228 peptide hydrolase ATP-dependent Clp protease proteolytic 
subunit 3 (Streptomyces coelicolor A3(2)) 48 / 66 Q9X7R9.1 

  188692-188066 FunD6 208 hypothetical protein --- ---- --- 

  188726-190639 FunD7 637 hypothetical protein --- ---- --- 

  191317-188747 FunD8 856 Membrane protein Outer membrane protein assembly factor 
BamB (Vibrio fischeri ES114) 31 / 45 Q5E769.1 

  189953-189270 FunD9 227 hypothetical protein --- ---- --- 

  191234-190353 FunD10 293 Iron permease putative iron permease FTR1 [Mycobacterium 
abscessus 47J26] 40 / 49 EHB98808.1 

  

https://www.ncbi.nlm.nih.gov/protein/Q9KQH7.2?report=genbank&log$=prottop&blast_rank=1&RID=CZTFWVGB015
https://www.ncbi.nlm.nih.gov/protein/P32398.1?report=genbank&log$=prottop&blast_rank=1&RID=CZT5CD6U015
https://www.ncbi.nlm.nih.gov/protein/Q72IH2.2?report=genbank&log$=prottop&blast_rank=1&RID=CZT73CK5015
https://www.ncbi.nlm.nih.gov/protein/WP_076976541.1?report=genbank&log$=prottop&blast_rank=1&RID=CZTS4XKW015
https://www.ncbi.nlm.nih.gov/protein/WP_076976541.1?report=genbank&log$=prottop&blast_rank=1&RID=CZTS4XKW015
https://www.ncbi.nlm.nih.gov/protein/Q5Z0M4.1?report=genbank&log$=prottop&blast_rank=1&RID=CZT8JZ0H015
https://www.ncbi.nlm.nih.gov/protein/Q9X7R9.1?report=genbank&log$=prottop&blast_rank=1&RID=CZT9D9KZ015
https://www.ncbi.nlm.nih.gov/protein/Q5E769.1?report=genbank&log$=prottop&blast_rank=1&RID=CZTC5A4U014
https://www.ncbi.nlm.nih.gov/protein/EHB98808.1?report=genbank&log$=prottop&blast_rank=1&RID=CZU23F31015
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Figure B-47: Multiple sequence alignment of ketoreductase domains within the funisamine BGC to 
designate KR-type for stereochemistry predictions. The KR-types are distinguished in accordance with the 
five highlighted columns showing the ‘fingerprint’ amino acids. Group A1 is distinguished by no LDD in 
column 1, W in column 2, and no H in column 3. Group A2 is distinguished by no LDD in 1, W in 2, and H 
in 3. Group B1 is distinguished by LDD in 1 and no P in 5. Group B2 is distinguished by LDD in 1 and P in 5. 
Group C1 is distinguished by no Y in 4, and group C2 is distinguished by N in 6.  

                     1 
Fun1e   CDLTDRSAVATLVREFDGEP---DLAIVHAAGVLDDGVIAGLDPARLDAVLASKAGAAWQ 112 
Fun3a   CDLADRAAVEALLASV-----GTVDAVVHAAGVGANVPFDQTDVALVERLLAGKVAGAVN 114 
Fun2a   CDLSDRSAVEALLADV-----GEVDAVVHAAGVSQDVPLAAEDADHLRAVAAGKVDGAAH 110 
Fun1f   CDLADRSAVEALLDTV-----GDVDAVVHAAGIVEDVPLADADQAHLDRVIRGKVDGALH 110 
Fun1c   CDLADRSAVEALLATI-----GQVNAVVHAAGVGEDVALVDADEEHLRRVVGGKVDGALH 110 
Fun1g   CDLADRSAVEGLLATI-----GQVNAVVHAAGVSEHAALTDVDEEHLRRVVVGKVDGALH 110 
Fun1d   CDLADPSAVEGLLATI-----GQVDAVVHAAGVAEDAELVDADAAHLNRVLSGKVDGALY 110 
Fun1h   CDLADRSAVEGLLATI-----GQVNAVVHAAGVAEDVELVDADAAHLNRVLSGKVDGALH 110 
Fun1a   CDLADRSAVEALLAVV-----GAVDAVVHAAGVGEDAELVEADAAHLNRVLSGKVDGASH 110 
Fun12   CDLADRSAVEALLAVV-----GAVDAVVHAAGVAADVPLRDADEAHFRTVLSGKVDGALH 110 
Fun6b   CDTADRAQVAALLAGL----PEPVTAVVHAAGTLTPVLLADSTPEELADVRSGKVEGAVH 115 
Fun3b   CDLADRDQVAALVADL----PADLTAVVHAAGVAQDTPIADLTTAETAAVTGARVTGTLL 115 
Fun4a   TDLADRDAVAALLKEATADPEAPLTAVVHAAGIAHSAPLADLDAAGLASVLAGKTTGALH 119 
Fun1i   ADVADRAALASVLAEIPA--EHPLTAVVHTAGVLADGIVERMTPDQLDRVMRPKVDGALH 114 
Fun7a   CDVADRDDLDRVLD------GVDVRAVVHVAGVLDDTVLTGLTPDRLDAVLRAKVDAVVN 114 
Fun5d   CDLADPAAVQRLIG------PVEVGAVLHAAGSTDDAMLTSLTPDRLASVLAAKVDAAVN 114 
Fun6a   CDVTDPEAVEAALR------GVTVSAVFHTAGVLDDGLLADLTPDRLDAVLRPKADAVWN 104 
Fun7b   CDLADAGAVAGALR------DEPVTAVIHAAGVLDDALLTDLTPERLRAVFRAKVDAAVN 110 
Fun4b   CDLSDAGAVMAALR------DEPVSAVVHAAGVIDDGLLTDLTPERLDTVFRAKVDAARN 104 
Fun4c   CDVSDADALTAALR------DEPVTAVIHAAGVLDDGTLESLTPERLDAVFRAKVDAARN 108 
Fun8a   CDVADAAALTAALR------DEPVTAVIHVAGVLDDGLLTDLTPARLDTVFRAKVDAARN 108 
Fun5c   CDVADAGAVTEALR------GESVSAVIHAAGVLDDGMIESLTPERLDTVFRAKIDAVRA 104 
Fun7c   CDVADAGAVAEALR------GESVSAVVHAAGVLDDALLADLTPERLDTVFRAKVDAARN 104 
Fun7d   CDVADAGAVAEALR------GEPVSAVIHAAGVLDDALLADLTPERLDTVFRAKIDAARN 108 
Fun5a   CDVADAGAVAAALR------DEPVTAVIHAAGVLDDGTLESLTPERLDTVFRAKVDAARN 108 
Fun5b   CDVSDAVAVTAALR------DESVSAVIHAAGVLDDALLADLTPERLRTVFRAKVDAARN 108 
 
 
 
              2    3  4 5 6 
Fun1e   LHELTEHRPLSAFVLFSSTAGVFGNPGQANYAAANAALDALAEYRKVLGLPATSIAWGPW 172 
Fun3a   LDALVGD--VDAFVTFSSLSGVWGSQSHAAYAVANAALDALAEQRRARGGAMTAIAWGSW 172 
Fun2a   LDALLPD--VP-LIVFSSIAGVWGSAEQAAYAAANAALDALIARRRARGRPGTAVAWGPW 167 
Fun1f   LDALVGD--VDAFVVFSSISATWGSGRQAAYGAANTALDGLILRRRAAGLPGTSIAWGPW 168 
Fun1c   LDALVGD--VDAFVVFSSISGIWGSAEQTAYGAANAALDALIARRRASGLPGTAVAWGPW 168 
Fun1g   LDALVGD--VDAFVVFSSISGIWGSAEQAAYGAANAALDALIARRRASGLPGTAVAWGPW 168 
Fun1d   LDALVGD--VDAFVVFSSISGIWGSAEQAAYGAANAALDALIARRRASGLPGTAVAWGPW 168 
Fun1h   LDALVGD--VDAFVVFSSISGIWGSAEQTAYGAANAALDALIARRRASGLPGTAVAWGPW 168 
Fun1a   LDALVGD--VDAFVVFSSISGVWGSRGQAAYGAANAALDALVERRRAAGRPGTAIAWGPW 168 
Fun12   LDALVGD--VDAFVVFSSISGVWGSGEQAAYGAANAALDGLVARRRAHGLPGTAVAWGPW 168 
Fun6b   LLDLLDPAHLEQVVLFSSNAGVWGSARQGTYGAANAALDALAEQARERGLPVTSVAWGLW 175 
Fun3b   LDELLADVELDAFVVFSSVAGVWGTARHPAYAAADAFLDAFAGWRRAQGRPATAIAWSPW 175 
Fun4a   LDELLGDTDLDAFVLFSSIAATWGSGWGGAYAAANAGLDALAQRRRARGLAGTSLAWGPW 179 
Fun1i   LHELTRDLDLSAFVLFSSASAIFGTPGQANYAAANAFLDALAQHRRALGLPGQALAWGPW 174 
Fun7a   LHEATAGADLDAFVLYSSVAGLFGTPGQGNYAAANAFLDAFAAARRSRGLPGTSLAWGAW 174 
Fun5d   LRAATADRPLSAFVLFSSVAGLLGSAGQANYAAANTFLDAYAARLRAEGVPATSLAWGLW 174 
Fun6a   LHAATADRPLAAFVLFSSAAGLLGNAGQANYAAANTFTDAFAAFRRAQGLPATSLAWGLW 164 
Fun7b   LRAATADHRLSAFVLYSSAAGLFGNAGQANYAAANAFLDAYAAQLRAEGVPATSLAWGLW 170 
Fun4b   LAAATEDRPLSAFVLYSSASGLFGSAGQANYAAANAFLDAYATQLRAQGVPATSLAWGLW 164 
Fun4c   LAAATKDRPLRAFVLYSSASGLFGNAGQANYAAANTFLDAYATRLRGEGVPATSLAWGLW 168 
Fun8a   LAAATKDRPLRAFVLYSSVAGIFGNPGQANYAAANAFLDAYATQLRAQGVPATSLAWGLW 168 
Fun5c   LRAATADQPLTAFVLYSSVAGLFGNAGQANYAAANAFLDAYATQLRGQGVPATSLAWGLW 164 
Fun7c   LAAATADQPLTAFVLYSSAAGVFGNAGQANYAAANAFLDAYATQLRGQGVPATSLAWGLW 164 
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Fun7d   LAAATADQPLAAFVLYSSAAGLFGNAGQANYAAANAFLDAYATQLREQGVPATSLAWGLW 168 
Fun5a   LVAATKDQPLTAFVLYSSAAGVFGNAGQANYAAANAFLDAYATQLRGQGVPATSLAWGLW 168 
Fun5b   LVAATKDQPLTAFVLYSSAAGLFGNAGQANYAAANAFLDAYATQLHAQGIPATSLAWGLW 168 
 
 
Figure B-48: Predicted stereochemical configurations of products for each polyketide synthase module in 
funisamine biosynthesis. 
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Figure B-49: Expanded biosynthesis of funisamine from FunP1. The layout of catalytic domains: 
ketosynthase (KS), acyltransferase (AT), ketoreductase (KR), dehydratase (DH), enoylreductase (ER), and 
thioesterase (TE) present within the polyketide synthases are shown with inactive domains colored grey. 
A-type and B-type KR domains are colored orange and green respectively. Acyltransferase domains 
predicted to use methyl or propylmalonyl extender units are colored yellow. Acyl carrier proteins are 
colored light blue, and docking domains are purple.  
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Figure B-50: Expanded biosynthesis of funisamine from FunP2 - FunP4. The layout of catalytic domains: 
ketosynthase (KS), acyltransferase (AT), ketoreductase (KR), dehydratase (DH), enoylreductase (ER), and 
thioesterase (TE) present within the polyketide synthases are shown with inactive domains colored grey. 
A-type and B-type KR domains are colored orange and green respectively. Acyltransferase domains 
predicted to use methyl or propylmalonyl extender units are colored yellow. Acyl carrier proteins are 
colored light blue, and docking domains are purple.  
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Figure B-51: Expanded biosynthesis of funisamine from FunP5 - FunP8. The layout of catalytic domains: 
ketosynthase (KS), acyltransferase (AT), ketoreductase (KR), dehydratase (DH), enoylreductase (ER), and 
thioesterase (TE) present within the polyketide synthases are shown with inactive domains colored grey. 
A-type and B-type KR domains are colored orange and green respectively. Acyltransferase domains 
predicted to use methyl or propylmalonyl extender units are colored yellow. Acyl carrier proteins are 
colored light blue, and docking domains are purple.  
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