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Chapter 1 

 

Introduction 

  

1.1 Motivation 

In recent years, the U.S. Army has embarked upon developing a rapidly deployable protective armor system 

made of a high-strength, cementitious material for the soldiers combating asymmetric terrorist threats. Recent 

shifts towards combating nontraditional threats and tactics from terrorists have presented new challenges to 

providing protection for U.S. troops in foreign theaters of operation. In typical operations, a significant threat to 

the U.S. warfighter was direct and indirect fire weapons such as mortars, artillery, shoulder-fired rockets, 

suicide bombings, and small-arms fire. Physical protection for the warfighter was traditionally provided by 

hardened structures, large soil-filled revetment walls, or concrete barriers. These protective measurements 

offered protection, simply put, through mass. Figure 1.1 shows some examples of these types of protective 

structures. 

 

Although this has been a proven protective solution, the typical approach is often not practical or desirable, as it 

requires significant time, manpower, equipment, and other valuable resources. Furthermore, constructing 

massive concrete structures with limited, or at best, poor quality, in situ construction materials often results in 

having to transport better quality raw material from neighboring countries or from the U.S. This presents many 

logistical challenges and is often not cost effective. Accessibility of required heavy construction equipment in 

remote terrains is questionable. In addition, U.S. troops operating in close-engagement conditions such as 

contingency outposts and outside-the-wire construction or repair operations are often left vulnerable to terrorist 

attacks. In this typical scenario, the warfighter may occupy an area for very short periods of time—typically 

hours or days, rather than months or years—until the task is completed. Hardened structures and massive walls 

or barriers are not practical for such conditions [15].  

 

Given this scenario, recent Army research programs are focused on developing ultra-high strength concrete 

(UHSC) mixtures and lightweight, rapidly deployable protective structures. A goal of these research programs 
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is to develop protective options that depend more on system ductility or enhanced material properties to provide 

protection from blast and weapon fragmentation, rather than mass alone [15]. Examples of such research 

programs include the “Modular Protective System for Future Force Assets” (MPS) and “Defeat of Emerging 

Adaptive Threats” (DEFEAT). For the MPS program, a primary objective was to develop a lightweight 

structure that could be rapidly constructed and positioned without heavy equipment or significant manpower 

while providing the required level of protection from specific threats [34]. The lightweight structure was clad 

with multiple layers of thin UHSC panels that were prefabricated at a U.S. manufacturing facility and shipped 

to the war site. A typical MPS structure after construction and during a small mortar test can be seen in Figure 

1.2. The panels were developed to provide protection from blast and weapon fragmentation at a considerably 

reduced thickness than that required by a more traditional concrete mixture, thus reducing mass. Full-scale field 

experiments validated the prototype and showed initial success of the approach. To build on this success, further 

development of a similar UHSC mixture has been initiated at the Geotechnical and Structures Laboratory (GSL) 

of the DOD’s Engineering Research and Development Center (ERDC) at Vicksburg, Mississippi. As part of this 

effort, a thorough multi-scale material property characterization effort to better understand and improve similar 

cementitious composites is being undertaken [15].  

 

The armor panels used in the MPS system is required to be lightweight, inexpensive to manufacture, easily and 

rapidly deployable, and capable of providing effective protection against bomb blast, shock, and high-velocity 

impact. The nature of high-velocity impact is a problem of high complexity. The applications for such studies, 

particularly concerning brittle cementitious materials, have been researched extensively by both civil and 

military organizations. In the experimental research effort being currently undertaken at the ERDC as part of the 

effort, requires many concrete panels to be cast and tested against numerous projectile types and sizes at various 

impact velocities, as well as shock tube tests to simulate air blast. This is time consuming, expensive, and often 

will leave many warfare situations unchecked. To be able to predict the behavior of the myriad possibilities, 

modeling and simulation by some discrete numerical method like finite element method (FEM) and smoothed 

particle hydrodynamics (SPH) may be the sensible alternative provided the material model can be properly 

defined and associated parameters can be accurately characterized.  
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Figure 1.1 Soil-filled barrier construction (left) and precast concrete barrier construction (right) 
 

  

Figure 1.2 Rendering of a typical MPS system (left) and small mortar test of MPS system (right) 

 

The primary purpose of this research is to ultimately simulate high-rate ballistic impact events of small, 

deformable projectiles on thin, UHSC panel structures as well as uniform blast loads on similar panel structures 

reinforced with randomly distributed and oriented reinforcing short fibers. This must be accomplished with a 

high degree of accuracy when compared to ballistic experiments.  To do this, the physics of these scenarios are 

described in greater detail in Chapter 2. Here, dynamic loads are characterized and their effects on cementitious 

materials are described. A literature survey of the most prominent material models used to simulate concrete 

under high-rate, high-strain, high-pressure loading is described in Chapter 3. A superior model for the 

applications in this work is described in Chapter 4 along with implementation details. The parametric 

identification of the material model constants for two high-strength cementitious materials is given in Chapter 5. 

An introduction to the modeling and simulation strategies used in this work is presented in Chapter 6, where 

traditional finite element analysis is compared to the smoothed particle hydrodynamics method. Chapter 7 gives 
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a number of ballistic impact applications of the aforementioned model and material parameters with validating 

experimental results. Here, the two modeling methods are compared against each other, merits and demerits are 

identified, and ultimately compared against the experimental results. Finally Chapter 8 introduces the 

complexities of modeling UHSC reinforced with randomly dispersed and oriented short-fibers. A multi-scale 

approach is proposed and validated analytically in a one-dimensional case, and validated experimentally in a 

three-dimensional case. This approach is used to create a homogenized model of a reinforced UHSC panel that 

is subjected to a blast load and the model is validated experimentally.  
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Chapter 2 

 

Impact & Blast Effects on Cementitious Materials 

 

2.1 Introduction 

The response of a target under high-rate loading, like blast or impact, will depend on numerous variables. 

Target geometry, structural support system, material, and energy of the impact (or blast) all drastically change 

the behavior of the system. A clear understanding of the response characteristics of concrete to blast and 

ballistic impact is crucial in order to effectively protect the defenses. Significant advancements in 

phenomenological and experimental characterization of complex materials, numerical modeling and simulation 

techniques, and computational speed capabilities of modern computers, are enabling analysts to more accurately 

study the dynamic response of different structures subjected to blast and high-velocity impact. Reliable 

simulation of structural response to these dynamic loads is an incredibly useful way to reduce the required 

number of experiments and, hence, the overall research costs. 

 

2.2 Characterization of Dynamic Loads 

 

2.2.1 Impact 

The inclusion of high-velocity impact dynamics in engineering practice allows analysts to account for the 

effects of penetrating fragments, accidental loads, and collisions. Moreover, it allows for a more thorough 

design of lightweight protective structures for civil and military use. Depending upon the type and velocity of 

the impacting bodies, the structural response of a target can vary from recoverable elastic deformation to 

material rupture with local material state transitions. If a material is stressed by ballistic impact, shock waves 

are generated, and such waves are capable of creating pressures of a magnitude which can far exceed the 

material’s peak strength. In these circumstances, a solid material at the early stages of the impact event can be 

considered as a compressible fluid, with strength effects appearing later [56].  
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The response of a structure to an intense, impulsive loading is very complex. Over the years, sophisticated 

mathematical solutions have been put forward for various loading conditions, but most are for semi-infinite 

bodies. When a projectile or blast wave impacts a solid target (normal to the surface), the governing equations 

for both bodies are: (1) conservation of mass, (2) conservation of momentum, and (3) conservation of energy. 

These equations are commonly summarized as Rankine-Hugoniot relations and are commonly known as 

“jump” equations, which do not describe a property of a specific material, but instead relate the change in 

response variables across a shock front. The final pressure and relative volume reached depend on the initial 

conditions present when the shock arrives [13].  

 

This situation can be summarized by a uniform pressure P1 suddenly applied to one face of a plate of 

compressible material which is initially at pressure P0. This pulse propagates as a wave of velocity Us. 

Application of P1 compresses the material to a new density 1 and at the same time accelerates the compressed 

material to a velocity Up. A segment of the material (of unit cross sectional area) normal to the direction of 

wave travel is considered in Figure 2.1. The position of the shock front at some instant of time is indicated by 

the line AA. An elemental time dt later, the shock front has advanced to BB while the matter initially at AA has 

moved to CC. Across the shock front, mass, momentum, and energy is conserved [57]. 

 

 

Figure 2.1 Progress of a plane shock wave 
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Using the assumption of steady-state flow, the basis of Rankine-Hugoniot conditions is determined by the one-

dimensional Euler equations of mass, momentum, and energy, as depicted by Eqs. (2.1)-(2.3) [2]. 

 

0
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By balancing the mass in front (state of the material on the right side of line BB in Figure 2.1) and behind (state 

of the material on the left side of line AA in Figure 2.1), the shock wave gives 

 

1100 vv  
.      (2.4) 

 

From Figure 2.1 it can be concluded that v0 = Us (line BB) and v1 = Us – Up (line CC). Substituting the terms in 

Eq. (2.4) gives the first Rankine-Hugoniot condition. Essentially, conservation of mass across the shock front is 

being expressed by ensuring that the mass of material encompassed by the shock wave (0Usdt) ends up 

occupying the volume (Us – Up)dt at density 1. Therefore, 

 

 pss UUU  10  .             (2.5) 

 

The steady-state equation for the conservation of momentum can be defined in one-dimension as 
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On balancing Eq. (2.6) on both sides yields 

 

 211

2

00 pss UUpUp   .     (2.7) 

 

Rewriting of Eq. (2.7) leads to 

 

 21

2

001 pss UUUpp   .                (2.8) 

 

By substituting Eq. (2.5) into Eq. (2.8) and by noting that the rate of change of momentum of a mass of material 

0Usdt in time dt is accelerated to a velocity Up by a net force p1 – p0, the conservation of momentum can be 

expressed as 

 

psUUpp 001  .       (2.9) 

The steady-state equation for conservation of energy can be defined in one-dimension as 
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On balancing the energy on two sides of the shock gives 
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Reordering and substituting Eqs. (2.5) and (2.9) into Eq. (2.11) shows that the expression for conservation of 

energy across the shock front is obtained by equating the work done by the shock wave with the sum of the 

increase of both kinetic and internal energy of the system, given by 
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where E
’
0 and E

’
1 are the specific internal energy in front and behind the shock front, respectively [2]. If it is 

assumed that 0, P0, and E0
’
 are known, then three equations with five unknowns remain. By eliminating Us and 

Up from the energy equation, Eq. (2.11) can be rewritten as 
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By eliminating Us and Up and using Eqs. (2.5) and (2.9), the resulting equation is known as the Rankine-

Hugoniot relation: 
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As a projectile impacts a target at a high strain-rate, there is no time for heat to be conducted away from the 

impact region. Therefore the impact process becomes adiabatic and no entropy is generated so that cpV 

applies. The Rankine-Hugoniot relation can therefore be reduced to: 
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2.2.2 Blast Scenarios 

A very simplistic definition of a blast load is a violent burst of wind, or the effect or accompaniment of such a 

burst. This violent effect consists of a shock front accompanied by an instantaneous increase in ambient 

atmospheric pressure followed by a monotonic decrease in pressure below the ambient atmospheric pressure. 
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This creates a loading profile similar to that shown in Figure 2. Along with the drastic changes in pressure that 

are associated with shock waves are the similarly dramatic changes in temperature and density. A blast is 

usually a result of a sudden expansion of some energy source. The key parts of this definition are the words 

“sudden expansion”. It is therefore not only the large amount of pressure build-up that makes an explosion 

dangerous, but also the presence of a large impulse (the area under the pressure-time curve). So whether the 

contributory energy source is the mundane popping of a balloon or a bare charge of TNT, the common feature 

in all explosions is that a very sudden expansion occurs [5].  

 

Explosions can be characterized on the basis of their nature as physical, chemical, or nuclear events. In a 

physical explosion, energy may be released from the catastrophic failure of a container of compressed gas or the 

ignition of explosive material. Explosive materials can be classified by their physical state as solids, liquids, or 

gases. Solid explosives are primarily high explosives for which blast effects are best known. They can also be 

classified on the basis of their sensitivity to ignition as secondary or primary explosive. Examples of primary 

explosives are materials like mercury fulminate and lead azide. Secondary explosives when detonated create a 

shock wave which can result in widespread, catastrophic damage to the surroundings. Examples of secondary 

explosives are trinitrotoluene (TNT) and ammonium nitrate/fuel oil (ANFO).  

 

The detonation of a condensed high explosive generates hot gases under pressure up to 30 GPa and a 

temperature up to 3000-4000
o
C. The hot gas expands forcing out the volume it occupies. As a result, a layer of 

compressed air (the blast wave) forms in front of this expanding gas volume containing most of the energy 

released in the explosion. This blast wave instantaneously increases to a value of pressure above the ambient 

atmospheric pressure. This is referred to as the “side-on overpressure” that decays as the shock wave expands 

outward from the explosion source. After a short time, the pressure behind the front may drop below the 

ambient pressure as shown in Figure 2.2. During such a negative phase of pressure, a partial vacuum is created 

and the air is sucked inward. This is also accompanied by high suction winds that carry the debris for long 

distances away from the explosion source [35]. Typically when discussing air blasts, the speed of the shock 

front is approximately equivalent to the speed of sound (~340 m/s). 
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Figure 2.2 Typical blast wave pressure-time history 

 

The incident peak overpressures are also amplified by a reflection factor as the shock wave encounters an object 

or structure in its path. These reflection factors are typically greatest for normal incidence and diminish with the 

angle of obliquity or angular position relative to the source. Reflection factors are variable and depend on the 

intensity of the shock wave. Figure 2.3 illustrates the phenomenon of incident and reflected shock waves in the 

case of an aboveground explosion with epicenter, W, reflected shock, R, incident shock, I, and the Mach stem 

measured from the triple point of the leading waves.  

 

 

Figure 2.3 Illustration of incident and reflected shock waves through time 
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Throughout the pressure-time history, two main phases are observed; the portion above ambient pressure is the 

positive phase of duration td, while the portion below ambient pressure is the negative phase of duration td
-
. The 

negative phase is longer and of a lower magnitude of pressure than the positive phase. As the range (or stand-off 

distance) increases, the duration of the positive phase increases, which results in lower peak amplitude and 

longer duration shock pulse. Therefore, explosive charges situated extremely close to a target impose a highly 

impulsive, high intensity pressure load over a localized region of the target structure; charges situated farther 

away produce a lower-intensity, longer-duration uniform pressure distribution over the entire structure. 

Eventually, the entire structure is immersed within the shock wave, with reflection and diffraction effects 

creating focusing and shadow zones in a complex pattern around the structure. During the negative phase, the 

already weakened structure may be subjected to impact by debris that may cause additional damage [35]. An 

illustration of the relationship between peak reflected pressure and the standoff distance of the target is shown 

in Figure 2.4. Note that in both cases, the relationship is shown in a logarithmic scale.  

 

 

Figure 2.4 Blast wave attenuation away from explosion 
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2.3 Nature of Cementitious Materials under Dynamic Effects 

Analytical and theoretical studies of the nonlinear response of reinforced concrete structures have been, for the 

most part, focused on the behavior of isolated, simple structural elements like columns and beams. As 

quantitative data on the failure processes of concrete developed and the number crunching power of computers 

increased, the scope of nonlinear analysis has expanded. Although finite-element software packages now have a 

wide range of application in many areas of mechanical stress analysis, inadequate material models is a major 

stumbling block in limiting structural analysis. This is increasingly true for problems involving brittle, geologic 

materials like concrete and ceramics. There are general material models available that can reasonably describe 

the elastic-plastic behavior of reinforced or unreinforced concrete in simple, quasi-static loading conditions. 

However as advances in concrete and ceramic mixes are made and new materials are developed to improve 

performance, the generally accepted constitutive equations that describe the basic characteristics of concrete no 

longer apply [9].  

 

In the idealized case of a target which tends to be elastic/semi-infinite, and the projectile is relatively of small 

size, the impact energy is primarily propagated as compression (P-waves), shear (S-waves) and Rayleigh waves 

through the body, emanating from the location of impact.  The P- and S-waves will have spherical fronts and 

Rayleigh wave will have components parallel and normal to the surface dying off exponentially away from the 

free surface.  The P-wave carries least amount of energy; whereas Rayleigh waves carry almost two-third of the 

impact energy.  As P-waves are faster than S-waves, compressive effects will dominate at early times.  In the 

few micro-seconds after impact, the tensile relief waves from the reflected free surface as well as S-waves will 

become active causing failure in a material which is weak in tension, creating a crater surrounding the impact 

region.  In the meantime the P-wave continues to travel radially, dissipating its energy as heat energy. The 

velocities of propagation for these two types of disturbances are given as 
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where E is the elastic modulus,  is Poisson’s ratio,  is material density,  and  are Lamé parameters, G is the 

shear modulus, the subscripts L and S represent longitudinal and shear and U and B represent unbounded and 

bounded. Compression waves can be generated in liquids as well as solids because the energy travels through 

the atomic structure by a series of compressions and expansion (rarefaction) phenomena. Shear waves require 

an acoustically solid material for effective propagation, and therefore, are not effectively propagated in liquids 

or gases. Shear waves are relatively weak when compared to longitudinal waves. In fact, shear waves are 

usually generated in materials using some of the energy from longitudinal waves. 

 

More to the relevance of the present research is the topic of shock waves. Traditionally, work on shock waves 

has been done with plate-like geometries. Plate impact situations generate a state of local uniaxial strain but 

three-dimensional stress. A traditional, uniaxial stress-strain curve, as determined from one-dimensional 

material testing (in tension or compression), does not sufficiently represent the state of stress and strain to which 

a material is subjected under shock loading. Therefore the material constants associated with such curves (i.e. 

elastic modulus, yield strength, ultimate strength, and elongation) are not by themselves sufficient in 

characterizing the relative behavior of materials. If we were to visualize a situation where deformation was 

restricted to one dimension, as in the case of plane waves propagating through a material (lateral strains are 

zero), the characteristic stress strain curve takes on the form shown in Figure 2.5.  
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Figure 2.5 Typical stress-strain curve for uniaxial strain 

 

With very high pressures, the pressure-compressibility curve of the above figure, also known as the Hugoniot 

curve, is the only one that is considered to describe the behavior of a material. At lower pressures, such as those 

generated by conventional impacts, substantial deviation from the Hugoniot curves occur.  

 

The uniaxial strain curve corresponding to the uniaxial stress condition for an elastic, perfectly plastic material 

is shown in Figure 2.6 with the following characteristic features: (1) increase in the modulus by a factor of 

       121/1 , (2) the Hugoniot elastic limit is HEL  (the maximum stress for one-dimensional 

elastic wave propagation in uniaxial strain), and (3) a constant deviation of the stress from the Hugoniot by 

3/2 oY , where Yo is the static yield strength. If the yield strength were to change in a strain hardening material, 

so will the difference between the 1 and P curves [57].  
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Figure 2.6 Uniaxial strain curve for elastic, perfectly plastic material 

 

If the magnitude of the applied stress pulse is above HEL, two waves will propagate through the medium, the 

elastic wave moving with speed 
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followed by a plastic wave moving with speed 
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.     (2.21) 

 

As previously described, the scenarios encountered by a structure due to blast are innumerable. To simplify this 

phenomenon, only cases where the stand-off distance of the structure is sufficiently large so that the blast wave 

can be treated as uniform over the exposed area will need to be considered. In this case, the loading mechanism 
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is simple and an appropriate material model needs only be able to handle high-rate and high-pressure effects. 

Theoretically any constitutive model that can successfully simulate high-rate impact and penetration events can 

handle aforementioned types of blast simulations. For the present work, problems of material failure near a free 

surface some distance from the localized area of application of an impulsive load have been studied extensively. 

In the case of ceramics or cementitious materials that have high compressive strengths but relatively weak 

tensile strengths, spalling at the free surfaces is a phenomenon to be expected due to reflection of incident-

compressive impulses generated by high-velocity ballistic impact. Figure 2.7 illustrates the progressive effects 

that take place during an impact and penetration event of a thin panel during high velocities. In the first few 

microseconds of impact, local material cratering takes place. Directly in front of the projectile, the material then 

undergoes local material compaction and, due to the high rate of loading, Poisson effects do not have time to 

take place, which would normally allow for some of the material in front of the projectile to expand outward 

radially. Therefore, this effect is reminiscent of radially confined compression. As described later, this is the 

motivation for applying a material model that has been calibrated using the results of triaxial compression 

experiments. As all these events are in progress, the strong compressive shock wave has already weakened as it 

traversed through the plate thickness and is reflected off the back surface. This shock wave reflection in turn 

generates a tensile shock wave, which when interacting with the compressive waves, will lead to cracking on 

the rear face of the panel and cause fragmentation (or spalling) of the material [48]. 
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Figure 2.7 Physical characteristics of high-velocity penetration of a brittle target 

 

2.4 Fiber Reinforcement of Concrete for Improved Blast Performance 

Concrete and other cementitious materials have always been partnered well with reinforcement. Reinforcement 

can come in the form of rebar, prestressed strands, general long fibers, woven fibers, and short fibers. In 

discussing reinforcement of a cementitious or concrete composite, the brittle material is typically referred to as 

the matrix and the reinforcement as the fiber. These reinforcing fibers have typically been made of metals like 

steel, but new research into alternatives has shown the efficacy of polymeric fibers like polypropylene. The 

main purpose of reinforcement is to improve the composite’s ductility—an important material property for 

protection against the stresses caused by blast and impact effects. Generally, the increase in a material’s 

ductility will increase the material’s toughness, or the potential for energy dissipation. This material property 

has been found experimentally to be much more important in blast resistance than impact. The phenomena 

associated with impact are highly localized and so reinforcing fibers have little to no effect in improving the 

impact resistance of a structure.  
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In a UHSC material with a brittle matrix, maximum ductility is achieved through an optimized selection of fiber 

reinforcement. For thin panels as described in section 2.3, the preferred method for UHSC reinforcement is 

randomly distributed short fibers, because conventional continuous reinforcement is not practical for thin 

panels. Due to the extremely low tensile strength of the brittle matrix, appropriate fibers must be selected 

carefully to optimally bridge matrix cracks [15]. When the cementitious composite is designed properly, 

additional loading energy is absorbed as a fiber partially pulls out of the matrix before arresting crack growth, 

causing another crack to form and propagate, and this process repeats. But in order for this progressive cracking 

condition to exist, a balanced design between the fiber, matrix, and bond (interface) is required [28].  

 

When modeling short-fiber reinforced UHSC, there are several mechanics-based issues that must be overcome. 

The first is that since the manufacturing process of this composite, whether in the lab or in the field, will lead to 

a random distribution of fibers at similarly random orientations. This randomness is somewhat affected by the 

shape of the structure since concrete uses molds in order to take shape during curing and fibers cannot exceed a 

mold boundary. These fibers can also touch but cannot physically intersect one another (i.e. occupy the same 

three-dimensional space). Both of these issues require a statistical approach when creating a model that can 

accurately replicate the seemingly random distribution and orientation of fibers.  

 

Another difficulty arises from the simple fact that fibers create material discontinuities within the matrix 

material and, therefore, cause crack-like stress concentrations in the stress fields of the matrix itself. This causes 

internal cracking to occur in a composite that makes modeling challenging, especially since a model of this type 

of composite requires certain finesse in the finite element meshing.  

 

The final complication is related to the bond between fiber and matrix. Many modeling efforts over the past 50 

years regularly assume a perfect bond between geometric inclusions and matrix material (i.e. share nodes at the 

interface boundary). It wasn’t until the earliest publication on the application of the finite element method to the 

analysis of reinforced concrete structures was presented by Ngo and Scordelis in 1967 [36]. In their initial 

study, simple beam structures were analyzed using a special “bond-link” element that connected steel to 

concrete to describe the bond-slip effect. This bond-link element essentially consisted of two orthogonal 
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(imaginary) springs with no physical dimensions that can connect and transmit shear and normal forces between 

a reinforcing steel node and an adjacent concrete node [27]. Similar techniques are used today to transmit these 

bond forces, but additional complexities are added when the degradation of bond stiffness is considered due to 

fiber-pullout. It is complex at a modeling level, but even more so experimentally. All the difficulties just 

outlined are described and solved in much greater detail in Chapter 8. 
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Chapter 3 

 

Significant Constitutive Models for Cementitious Materials under High-Rate Loading 

 

3.1 Introduction 

Over the past few years, a number of material models have been put forward by Johnson, Holmquist, and their 

coworkers to describe the behavior of concrete and other brittle geologic materials under large strain, high-

strain rate, and high-pressure impacting conditions. Three of these models, the HJC model [18], the JHB/JH-1 

model [17], and the JH-2 model [23], are particularly noteworthy. It has also been found that a similar material 

behavior can be customized using a combination of the Drucker-Prager plasticity model and an equation of state 

[46]. Each of these models contain the same three basic elements: (1) an equation of state (EOS) for the 

pressure-volume relation that includes the nonlinear effects of compaction, (2) a representation of the deviatoric 

strength of the intact and fractured material in the form of a pressure-dependent yield surface, and (3) a damage 

model that transitions the material from the intact state to the fractured state. These basic elements will now be 

outlined and discussed in detail 

 

3.2 Holmquist-Johnson-Cook (HJC) Model 

 

3.2.1 Pressure 

The pressure-volume response of this model is shown schematically in Figure 3.1. The pressure is given as a 

function of the measure of volumetric strain 

 

1
0





       (3.1) 

 

where  is the current density and 0  is the reference density. In compression the response is divided into 

three regions. In the first region the pressure increases linearly with  from zero to crushP , which corresponds 
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to the onset of crushing (compaction) when crush  . The second region, or the transition region, is 

associated with the crushing behavior of concrete. Unloading in this region occurs along a modified path that is 

interpolated from the adjacent regions. In this region the material accumulates plastic volumetric strain,
pl , 

until the air voids are fully compressed, corresponding to the point  locklock P, . Beyond this point, in the third 

region, the material is assumed to be fully dense (i.e. all air voids have been completely removed) with the 

pressure given by the nonlinear elastic relation 
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21  KKKP       (3.2) 

where K1, K2, and K3 are material constants, and the modified volumetric strain   is defined as 
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The modified volumetric strain is used so that K1, K2, and K3 are equivalent to those used in material with no 

voids [18]. 

 

 

Figure 3.1 Pressure-volume response for the HJC concrete model [18] 
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3.2.2 Strength 

The HJC model assumed that the normalized strength of the material can be expressed as functions of the 

pressure and strain rate as 

 

   *ln1*1*  CBPDA N  .    (3.4) 

 

The normalized strength of the material is defined as 
'/* cf   where  is the von Mises equivalent stress 

and fc
’
 is the uniaxial compressive strength under quasi-static loading. In Eq. (3.4), A, B, N, and C are material 

constants; D is the scalar damage variable (defined in the next section), where 0 ≤ D ≤ 1 (D = 0 corresponding 

to fully intact material and D = 1 corresponding to fractured material);
'* / cfPP   is the normalized pressure, 

and 0/*   pl  is the dimensionless strain rate, where 
pl  is the equivalent plastic strain rate and 0  is the 

reference strain rate. Plastic flow is assumed to be isochoric following a Mises flow surface. The evolution of 

the plastic strain tensor is given as 
plpl    n, where n is the normal to the Mises flow surface [18].  

 

3.2.3 Damage 

The scalar damage variable accumulates both with equivalent plastic strain and volumetric plastic (or 

compaction) strain according to 
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Here 
pl  is the increment in equivalent plastic strain; 

pl is the increment in the volumetric compaction 

strain;  *Ppl  is the equivalent plastic strain to fracture under constant pressure; 
'* / cfTT  is the 

normalized maximum tensile hydrostatic stress; and D1 and D2 are material constants. The model also offers the 
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optional parameters 
pl

f min, and
pl

f max, , which are provided for additional flexibility to limit the minimum and 

maximum values of the fracture strain [18].  

 

3.3 Johnson-Holmquist-Beissel (JHB/JH-1) Model 

The JHB model is similar to the JH-1 model except that it has an analytic description for the strength of the 

intact and fractured material, an analytic function for the failure strain, and has the capability to include a 

pressure-driven phase change. Therefore these models are presented here together. 

 

3.3.1 Pressure 

In the absence of a phase change, the pressure-volume relationship is assumed to be given by an equation of 

state of the form 
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where  is as in Eq. (3.1) and K1, K2, and K3 are material constants. The model also includes the effects of 

dilation (or bulking) that occurs when brittle materials fail by including an additional pressure increment, P, 

such that 

 

  UKKKP ff  1

2

11 2   (3.7) 

 

where f is the current value of  at the time of failure and  is the fraction of the elastic energy loss converted 

to potential hydrostatic energy (0 ≤  ≤ 1). The bulking pressure is computed only for failure under compression 

(f >0) [17].  
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The pressure-volume relationships become more complex during unloading, especially in the presence of 

hysteresis. A hysteresis parameter h is provided to specify the amount of hysteresis. Different unloading 

behaviors are illustrated in Figure 3.2 for the cases with no hysteresis (h = 0), maximum hysteresis (h = 1), and 

partial hysteresis (h = 0.5) [17]. 

 

 

Figure 3.2 Hysteresis model for JHB/JH-1 model [17] 

 

3.3.2 Strength 

The strength of the material is expressed in terms of the von Mises equivalent stress, , and is a function of the 

pressure, P, the dimensionless equivalent strain rate, 0/  pl  (where 
pl  is the equivalent plastic strain 

rate and 0  is the reference strain rate), and the scalar damage variable D (0 ≤ D ≤ 1). For the intact 

(undamaged) material, D = 0, whereas for the fully damaged material, D = 1. For a dimensionless strain rate of 

0.1* , the strength of the intact material (D = 0) takes the form 
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where    TPiiiii   max/ . In the equations above, Pi, T, i, and i
max

 are material parameters. 

The strength of the fractured material (D = 1) is given by 
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where   fffff P  max/ . In the equations above, Pf, f, and f
max

 are material parameters. The 

intact and fractured strengths shown above are for a dimensionless strain rate of 0.1* . The strength at other 

strain rates is computed using a Johnson-Cook strain-rate dependence law of the form 

 

 *

0 ln1  C      (3.10) 

where 0 is the strength for 0.1* , and C is a material parameter (strain rate constant). Plastic flow is 

assumed to be isochoric using a Mises flow surface. The evolution of the plastic strain tensor is again given as 

plpl    n, where n is the normal to the Mises flow surface [17].  

 

3.3.3 Damage 

The model uses a damage accumulation criterion that is similar to that in the Johnson-Cook fracture model. The 

damage initiation parameter, , accumulates with plastic strain according to 

 

 





P
pl

f

pl




 .     (3.11) 

 

Here   ̅   is the increment in equivalent plastic strain and  Ppl

f  is the equivalent plastic strain to fracture 

under constant pressure, defined as 
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f TPD max,min,
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   (3.12) 

 

where D1 and D2 are material constants and P
*
 = P/i

max
 and T

*
 = T/i

max
. The model also offers the optional 

parameters   ̅    
  

 and   ̅    
  

 which are provided for additional flexibility to limit the minimum and maximum 

values of the fracture strain. The JHB model assumes that the material fails instantateously, D = 1, when  = 1. 

For other values of  < 1, there is no damage (D = 0) and the material preserves its intact strength [17].  

 

3.4 Johnson-Holmquist (JH-2) Model 

 

3.4.1 Pressure 

The pressure-volume relationship is assumed to be given by an equation of state of the form 
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  (3.13) 

 

where  is defined as in Eq. (3.1) and K1, K2, and K3 are material constants (K1 is the initial bulk modulus). The 

model includes the effects of dilation (or bulking) that occur when brittle materials fail by including an 

additional pressure increment, P, such that 

 

PKKKP  3

3

2

21      (3.14) 

 

The pressure increment is determined from energy considerations. The decrease in strength when the material 

undergoes damage (as it goes from an intact state to a failed state) produces a decrease in the deviatoric elastic 

energy, U. This loss of elastic energy is converted into potential hydrostatic energy by incrementally 

increasing P according to 
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  UKPKKP ttttttt   1

2

11 2    (3.15) 

 

where   is the fraction of the elastic energy loss converted to potential hydrostatic energy (0   1). 

 

An important experimental data point commonly used for determining the intact strength is the Hugoniot Elastic 

limit, or HEL. The HEL is the net compressive stress (containing both pressure and deviatoric stress 

components) at which a one-dimensional (uniaxial strain) shock wave exceeds the elastic limit of the material. 

Thus 

 

HELHELPHEL 
3
2          (3.16) 

 

This expression can be expanded using the above pressure-density relation and the elastic relations for uniaxial 

strain conditions to obtain 
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where      is the volumetric strain at the HEL. This expression can be used to compute      from HEL and 

then substitute back in the pressure-density relation to obtain      [23]. 

 

3.4.2 Strength 

The strength of the material is expressed in terms of the normalized von Mises equivalent stress as 

 

 ****

fii D        (3.18) 

 

where i
*
 is the normalized intact equivalent stress, f

*
 is the normalized fractured equivalent stress, and D is 

the damage variable (defined in the next section). The normalized equivalent stresses      
   and   

  have the 
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general form           , where σ is the actual von Mises equivalent stress and      is the equivalent stress 

at the Hugoniot elastic limit (HEL), at which a one-dimensional (uniaxial strain) shock wave exceeds the elastic 

limit of the material. The model assumes that the normalized intact and fractured stresses can be expressed as 

functions of the pressure and strain rate as 

 

    max**** ln1 i

N

i CTPA   
    (3.19) 

 

     max*** ln1 f

M

f CPB        (3.20) 

 

The material parameters are A, B, C, M, and N, and the optional limits for the strengths   
    and   

   . The 

normalized pressure is defined as          , where P is the actual pressure and PHEL is the pressure at the 

HEL. Similarly, the normalized maximum tensile hydrostatic pressure           , where T is the maximum 

tensile pressure that the material can withstand. Rate effects are included using the Johnson-Cook strain-rate 

dependence criterion. The dimensionless strain rate is given as  ̇    ̅̇     ̇, where  ̅̇   is the equivalent plastic 

strain rate and is the reference (or threshold) strain rate. Plastic flow is again assumed to be isochoric (volume 

preserving) using a von Mises flow surface. The evolution of the plastic strain tensor is given as  ̇    ̅̇   n 

where n is the normal to the von Mises flow surface [23]. 

 

3.4.3 Damage 

The model uses a damage accumulation criterion that is similar to that in the Johnson-Cook fracture model. The 

damage initiation parameter,  , accumulates with plastic strain according to 
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Here   ̅   is the increment in equivalent plastic strain and   ̅
  
    is the equivalent plastic strain to fracture 

under constant pressure, and D1 and D2 are material constants. The optional parameters   ̅    
  

 and   ̅    
  

 are 

provided for additional flexibility to limit the minimum and maximum values of the fracture strain. The JH-2 

model assumes that the damage variable increases progressively with plastic deformation by setting D = . In 

an earlier version of the model (the JH-1 model), the material was assumed to fail instantaneously by setting D 

= 1 when    1. The different damage models are summarized in the table below [23].  

 

Table 3.1 Damage evolution laws for two JH models 

Damage Evolution 

JHB/JH-1 JH-2 

D = 0 if  < 1 

D = 1 if  = 1 

D =  

 

3.5 Drucker-Prager Model 

The Drucker-Prager (DP) plasticity model is a yield criterion that is traditionally used to deal with the plastic 

deformation of soils, rock, concrete, polymers, foams, and other pressure-dependent materials. By using a 

combination of the DP plasticity model and an equation of state, a model can be created that somewhat 

replicates the behavior of the JH-2 model. In this way, a model is not confined to follow the specific 

expressions outlined in the JH-2 model and subsequently those material parameters. This allows for the 

advantage of “generality” of the DP plasticity model and the different available equations of state. To conform 

with the above JH models, also it is possible to cast the description with three components for the DP plasticity 

model as well.  

 

3.5.1 Equation of State 

The Mie-Grüneisen equation of state (MG-EOS) describes the relation between the pressure and the volume of 

a solid at a given temperature. It is often used to determine the pressure in a shock-compressed solid. The MG-

EOS is linear in energy and the most common form is 
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 HmH EEpp   ,    (3.22) 

 

where pH and EH are the Hugoniot pressure and specific energy (per unit mass) and are functions of density 

only, and  is the Grüneisen ratio defined as 

 



0
0 ,      (3.23) 

 

where 0 is a material constant and 0 is the reference density. The Hugoniot energy, EH, is related to the 

Hugoniot pressure by 

 

02

H
H

p
E  ,      (3.24) 

 

where  /1 0 is the nominal volumetric compressive strain. Elimination of  and EH from the above 

equations yields 
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      (3.25) 

 

The equation of state and the energy equation represent coupled equations for pressure and internal energy. The 

material model solves these equations simultaneously at each material point. A common fit to the Hugoniot data 

is given by the linear ps UU  Hugoniot form 
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32 

 

 

where 0c  and s define the linear relationship between the linear shock velocity, sU , and the particle velocity, 

pU (variables also seen in Eq. (2.5) ), given by 

 

ps sUcU  0  .     (3.27) 

 

So by taking Eq. (3.27) and rewriting Eq. (3.25) it follows 
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where 0c0
2
 is equivalent to the elastic bulk modulus at small nominal strains [54]. Without the energy 

contribution (0 = 0.0), the pressure from Eq. (3.28) can now be expressed as 

 

 2
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1 
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 .      (3.29) 

 

This means that based on the curve fit for a uniaxial strain compressive test (used to determine the K1, K2, and 

K3 in the JHB, and JH-2 models above), we can determine the parameters 0c  and s. This is done by fitting a 

curve through the experimental data based on Eqs. (3.2) and (3.6) to find K1 and K2. Using a Taylor expansion 

with respect to , the linear and quadratic coefficients of the polynomial can be identified as K1 and K2 in the 

pressure density relation for Eqs. (3.2) and (3.6) [46]. This gives 

 

2

001 cK  , and     (3.30) 

 

 122

002  scK  .     (3.31) 
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3.5.2 Strength 

The yield criteria for this class of models are based on the shape of the yield surface in the meridional plane. 

The yield surface for D-P models can have a linear form, a hyperbolic form, or a general exponent form. These 

surfaces are illustrated below in Figure 3.3. The equations for the linear, hyperbolic, and general exponent 

forms of the D-P models, respectively, are as follows: 

 

Linear: 0tan  dptF  ,      (3.32) 

 

Hyperbolic:   0'tantan||' 22

00  dpqpdF t  ,  (3.33) 

 

General Exponent: 0 t

b ppaqF ,     (3.34) 
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 is the slope of the linear yield surface in the p-t stress plane and is commonly referred to as the friction angle 

of the material, d is the cohesion of the material, and K is the ratio of the yield stress in triaxial tension to the 

yield stress in triaxial compression (therefore controlling the dependence of the yield surface on the value of the 

intermediate principal stress). 

 

The yield stress surface uses two invariants, defined as the equivalent pressure stress, p = -(1/3)trace(), and the 

Mises equivalent stress,   SSq :2/3 , where S is the stress deviator defined as pIS  . In 

addition, only the linear model also uses the third invariant of the deviatoric stress, defined as

  3/1

2
9 : SSSr  .  
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(a) Linear     (b) Hyperbolic 

 

(c) General Exponent 

Figure 3.3 Yield surface forms for D-P model 

 

Due to the common shapes of the failure surfaces of cementitious materials, the general exponent model is 

chosen to be the best-fit representation for most material models. To fit a general exponent curve to 

experimental data, the following procedure must be completed. A cylindrical test specimen is subjected to some 

constant confining pressure, 21   , and an increasing axial load, 3 , as shown in Figure 3.4 (negative signs 

shown are to denote compressive pressures whereas positive would imply tensile pressures.  
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Figure 3.4 (a) Triaxial test schematic (b) Axial stress vs. axial strain plots at various confining pressures 

 

To determine the failure surface data, the following system of equations must be solved 

 

 313
1 2  p

     (3.35) 

 

31  q
      (3.36) 

 

One stress data point from each stress-strain curve at different levels of confinement is plotted in the meridional 

plane (p-q plane for the general exponent model). This technique calibrates the shape and position of the yield 

surface, as shown in Figure 3.3(c) and is adequate to define a model if it is to be used as a failure surface 

(perfect plasticity). So using Eq. (3.34) and rewriting to be in the form of a failure surface, it follows 

 

  b

tb
PP

a

/1

/1

1
 ,     (3.37) 

 

where a, b, and tP  are the only material constants required to define the failure surface. A least-squares fit 

which minimizes the relative error in stress should be used to obtain the “best fit” values for these constants. 
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3.5.3 Damage 

To define damage initiation and evolution in conjunction with a D-P model the “ductile damage” model is 

calibrated to reproduce the damage criterion in one of the JH models. The ductile criterion requires the 

specification of the equivalent plastic strain at the onset of damage,
pl

D , as a function of stress triaxiality, 

qp / and effective plastic strain rate. The criterion for damage initiation is met when the following 

condition is satisfied: 
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where D  is a state variable that increases monotonically with plastic deformation. To define this behavior, the 

uniaxial strain values for the yield surface points in Figure 3.4(b) are translated into values of equivalent plastic 

strain at the onset of damage, 
pl

D , and the corresponding values of p and q are found for those points based on 

Eqs. (3.35) and (3.36) in order to determine stress triaxiality, 
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Chapter 4 

 

Development of Improved Constitutive Model 

 

4.1 Introduction 

The proposed constitutive model makes use of certain aspects of the previously mentioned models, but 

improves upon them in certain respects.  Outlined below are the same three principal components of our 

material model and the equations that they use. This model is based on the initial pioneering efforts of the 

Advanced Fundamental Concrete (AFC) model proposed by Adley and coworkers [3] and was first 

implemented into Abaqus by Sherburn [48]. The model simulates irreversible hydrostatic crushing, material 

yielding, plastic flow, and damage evolution. The model has a non-linear pressure-volume relationship, a linear 

shear relationship (constant shear modulus, G), and includes a failure surface that is strain-rate dependent. As 

with most of the simplistic models for geomaterials, the present model separates the hydrostatic and deviatoric 

responses; they are uncoupled, so that no volumetric strain due to purely deviatoric loading may develop. 

 

For the HJC, JHB/JH-1, and JH-2 models, the hydrostatic and deviatoric behaviors are decoupled and therefore 

independent from each other. As a result, the hydrostatic (pressure-volume relation) part of the model is a 

function of the first invariant of the stress tensor. The shear behavior is a function of the second invariant of the 

stress tensor. Therefore, a failure surface can be completely defined for a material by these two invariants only. 

However, it can be argued that the failure surface for rock-like materials (concrete) should be dependent on the 

third invariant of the stress tensor as well. To illustrate this point, Figure 4.1 shows that the ultimate 

compressive strength for a given pressure can be greater than the ultimate extension (tensile strength) at the 

same pressure. As can be seen, the failure surface is not symmetric in the octahedral plane (triaxial extension 

strength is less than the triaxial compression strength) and thus shows a dependence on the third invariant. This 

failure surface has a hydrostatic axis,   3/321   ,  is the Lode angle which is a function of the 

second and third invariants of the deviatoric stress tensor, and c  and t are the maximum values of deviatoric 

stress components in compression and tension, respectively. This asymmetry has been ignored in the HJC-type 
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models, which assume a circular failure surface in the octahedral plane, and therefore no dependence on the 

third invariant of the stress tensor. This difference is very elusive, and HJC-type models are traditionally 

satisfactory for simulating many projectile penetration events. However, when the cementitious targets are 

panels and are relatively thin (enough so that tensile spalling should occur prior to the projectile exiting the 

panel), or impact velocities become higher and therefore the expected exit velocities are also higher, this 

dependence on the third invariant becomes more pronounced. Any non-dependence on the third invariant would 

suggest that the material is just as strong in tension as it would be in compression at high confining pressures. 

This leads impact simulations to predict a stronger material in tension than it would be in practice, and therefore 

projectile exit velocities (in the case of thin panels) are consistently under predicted [12]. 

 

 

Figure 4.1 Hypothetical failure surface shape for constitutive model: (a) isometric view in 3D stress space (b) 

view in -plane 

 

Outlined in the following sections are the same three principal components of the failure surface utilized in the 

previous models: (1) an equation of state (EOS) for the pressure-volume relation that includes the nonlinear 

effects of compaction, (2) a representation of the deviatoric strength of the intact and fractured material in the 

form of a pressure- and strain-rate-dependent yield surface, and (3) a damage model that transitions the material 

from the intact state to the fractured state. 

 

 



39 

 

4.2 Pressure – Equation of State 

First the pressure-volume behavior of the model is described, which includes a non-linear bulk modulus and 

irreversible volumetric crushing that contributes to material damage. Specifically, the compressive behavior can 

be separated into three distinct regions: (1) an initial elastic zone, followed by (2) an irreversible crushing 

response where air voids begin to be collapsed, and finally (3) an elastic locking region corresponding to a fully 

dense material where all of the air voids have been crushed out. In this model initial loading, unloading, and 

reloading are treated differently. An illustration of the resulting pressure-volume behavior can be seen in Figure 

4.2. 

 

 

Figure 4.2 Pressure-volume relation model 

 

The initial elastic zone for the model can only occur for volumetric strains below the crushing volumetric strain, 

crush . Initial loading, unloading, and reloading in the elastic zone all follow a linear-elastic behavior defined 

by the elastic bulk modulus, crushcrushe PK / , where crushP  is the maximum attainable pressure for the 

initial elastic zone. 

 

The irreversible crushing response occurs when the volumetric strain exceeds the crushing volumetric strain, 

crush , but has not yet exceeded the locking volumetric strain value, lock . The crushing region is defined by 
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letting the origin of the crushing response coincide with the point in pressure-volume space that is the end of the 

initial elastic zone  crushcrush P, . The crushing region is characterized by permanent volumetric compaction 

and follows the third-order polynomial equation 

 

3

3

2

21  KKKP              (4.1) 

 

where 1K , 2K , and 3K  are material constants, P is the mean normal stress (pressure), and  is the measure of 

volumetric strain that is equal to the ratio of the difference of the initial and current volume to the current 

volume. In this equation, soil mechanics sign convention is used (compression > 0, tension < 0), which means 

that P as computed by Eq. (4.1) is equal to the first invariant of the stress tensor, 1I , multiplied by -1  PI 1   

In the crushing region, unloading and reloading are non-linear with the bulk modulus varying linearly between 

eK  and lockK  as  varies between crush  
and lock . However, it should be noted that since the change in  

during a typical unload-reload cycle in the crush zone is generally only a small percentage of the value of

crushlock   , the response is nearly linear in most cases. 

 

Finally the linear elastic locking region in the model is defined by a locking bulk modulus, lockK , and occurs for 

volumetric strain above the locking value of volumetric strain, lock . Unloading and reloading in the locking 

region are purely linear elastic and also follow the locking bulk modulus, lockK . 

 

4.3 Strength – Failure Surface 

Now the shear behavior of the model is described, which includes plastic flow, material yielding, and damage 

initiation and evolution. Engineering mechanics sign convention is used here, where the mean normal stress 

values less than zero denote compression. The yield surface is represented by two equations, depending on 

whether the state of stress is in compression (Eq. (4.2)) or tension (Eq. (4.3)) 
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   142121max
1 ICeDCCCC

IAn      (4.2) 

 

     max1max2121max /TITDCCCC  ,   (4.3) 

 

where 
1C , 2C , 4C , and nA are constants that are greater than or equal to zero, D is the scalar damage parameter 

that varies between 0 (intact) and 1 (damaged),  is the strain rate, maxT  is the maximum allowable tensile 

pressure, and the value of max  is restricted to values that are greater than or equal to zero. 

 

The third invariant dependence of the failure surface is computed using the Lode angle,  [8]. If the state of 

stress is tensile, then the failure surface value is computed using Eq. (4.3). In that case, the Lode factor, which is 

a function of the third invariant of the deviatoric stress tensor, is computed independently. More specifically, 

the Lode angle, , is first computed and subsequently the Lode angle factor is computed by evaluating the 

William-Warnke Lode function [11]. Using the cylindrical coordinate system of the Haigh-Westergaard 

representation of the William-Warnke yield criterion, the failure surface is a function   ,,f  , where  is 

the hydrostatic axis, 3/1I ,  is the cylindrical radius, 22J , and  is the Lode angle, which is dependent 

on second and third invariants of the deviatoric stress tensor as 
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where 2J and 3J are the second and third invariants of the deviatoric part of the stress tensor, respectively, and 

they are defined as 
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where Sx, Sy, Sz, Sxy, Syz, and Sxz are the components of the deviatoric stress tensor [12]. Once the Lode angle is 

calculated, the Lode angle factor is used to calculate a new reduced failure surface. The William-Warnke Lode 

function is defined as 
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where  is the strength or failure surface in compression, and  is a material property that describes the strength 

ratio between triaxial tension and triaxial compression. Figure 4.3 shows the William-Warnke Lode function in 

the octahedral plane for different values of  For  equal to 1.0, the function is symmetric and circular in the 

octahedral plane, and the value of the Lode angle as determined by J2 and J3 is not important. However, when  

is 0.7, the function takes a form that becomes asymmetric in the octahedral plane and is 70% less along the 

tension axis as compared with the compression axis. Therefore, Eq. (4.7) explicitly determines the reduced 

strength that will be seen in the modified material behavior [12]. 
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Figure 4.3 William-Warnke Lode function for two different values of  as defined by Eq. (4.7) 

 

4.4 Damage Criterion 

This model also accounts for material damage that develops incrementally during the course of stress loading 

histories. This characterization of material damage effectively leads to a reduced failure surface resulting from 

excessive plastic shear strain as well as hydrostatic crushing (plastic volumetric strain). Damage due to plastic 

volumetric strain is included because concrete tends to be depleted of its cohesive strength during the 

progressive collapse of air voids, though under most circumstances, majority of damage results from equivalent 

plastic strain [17]. Though there are several modes of fracture and failure of concrete under quasi-static loads, it 

is recognized that the primary cause of damage in high-velocity impact is dues to pressures (both compressive 

and tensile) that are orders of magnitude higher than the inherent strength of the material. These pressures result 

from localized direct impact of the fast-moving projectile or from the faster-moving shock front undergoing 

expansion, reflection, and magnification as it traverses the target. It is for this very reason that the value of 

material damage is quantified by a scalar damage parameter, D, which is essentially defined as  

 

 






 





f

p

f

p
D








      (4.8) 



44 

 

 

where p  is an increment in the effective deviatoric plastic strain, p  is an increment of volumetric plastic 

strain,
f  is the equivalent deviatoric strain to fracture, and

f is the equivalent volumetric strain to fracture 

(under the current conditions of strain rate, temperature, pressure and equivalent stress). Fracture is then 

allowed to propagate when D = 1. By plotting
f as a function of mean normal stress, a linear trend was 

observed. This led to the relationship 11DIf  , where 1D  is a constant greater than zero. Since, as per 

standard notations, compressive stress is negative, the relationship becomes 11DIf  . Again, the majority 

of damage is accrued from effective deviatoric plastic strain, but some damage will also accumulate from 

plastic volumetric strain. Radial strain measurements made from UXC tests showed that noticeable plastic 

volumetric strain can accumulate up to 50% above the locking volumetric strain, lock . Therefore the scalar 

damage parameter can be re-expressed as 
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Here, values of  11DI are restricted to values greater than 0.01 and lock  is the locking volumetric strain 

described in section 4.2. The damage parameter, D, is also included in the failure surfaces for Eqs. (4.2) and 

(4.3), and is specifically needed at low pressures with the material showing brittle behavior. At extremely high 

pressures, however, the material behaves in a more ductile fashion and, as expected, inclusion of the effects of 

damage is practically unnoticeable [12]. Since damage values that are greater than or equal to one are assumed 

to correspond to a fully damaged material, and Eqs. (4.2) and (4.3) require that damage values be less than or 

equal to one, the computed values of D are simply reset to a value of one if this value is exceeded. Eq. (4.9) 

suggests a linear transition from undamaged (D = 0) to damaged (D = 1) material. Previous material models 

have had a nonlinear dependence, usually by means of an exponent constant. The experimental results for the 

materials discussed here do not show a distinctly nonlinear trend, so this relationship between effective plastic 

strain and mean normal stress should be sufficient.  
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4.5 Strain-Rate Law 

The original AFC model proposed a generic Johnson-Cook strain-rate law in the failure surface, but it has been 

shown that many materials, including brittle materials like concrete and ceramics, show nonlinear behavior in 

the logarithmic scale of the strain rate [44], [45]. For this reason, the adaption of the Huh-Kang strain-rate law 

in the equation below provides a significant improvement with no significant decrease in computational 

efficiency [19] 

 

    2

1131   LnCLnC       (4.10) 

 

where 3C  and 11C  are non-zero constants and  ̇ is the strain rate. This strain rate law is used as a dynamic 

increase factor, multiplied by the failure surface (both compressive and tensile).  
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Chapter 5 

 

Parametric Identification 

 

5.1 Introduction 

The constitutive model proposed in Chapter 4 was implemented within the commercial finite element software 

program Abaqus, specifically as a dynamic user-defined material model (VUMAT). The relationships outlined 

in Sections 4.2, 4.3, 4.4, and 4.5 were programmed as a FORTRAN code to be called upon by Abaqus during a 

simulation of an UHSC material under high-rate, high-pressure loading. This chapter deals with the problem of 

characterization of the material constants in these equations. In many studies that use the HJC, JHB/JH-1, and 

JH-2 type material models, the investigators would always use material constants from the original publications 

by Holmquist, Johnson, and coauthors, irrespective of the material used. This was done because high-fidelity 

material characterization experiments are difficult, extremely costly and time consuming. Even some of the 

experimental data used in the original papers proposing these models was previously used by other authors [17]. 

It has also been observed that in cases where simulations did not match experiments exactly, iterative 

adjustments to the material constants were purposely made to achieve the desired accuracy in the , supposedly, 

predicted results. In the present study, raw data of high-fidelity material characterization experiments was used 

exclusively to determine the appropriate material constants for the model described previously and no further 

adjustments were made to modify the predictions. A flow diagram of the VUMAT processes used is given in 

Figure 5.1 below. 
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Figure 5.1 Flow chart of VUMAT used for impact and blast simulations 
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5.2 Optimization of Model Material Parameters 

This problem can be cast in the form of a constrained optimization problem. Explicitly, a fitting algorithm was 

developed that was used to minimize the sum of the deviations squared from a given set of experimental data, 

taking the form 
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n
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2222
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2

1 ...    (5.1) 

 

where id is the deviation (or error) from each data point, (x,y), x is the independent variable, y is the dependent 

variable, and f(x) is the fitting curve. The constitutive material model equations were fitted using actual 

laboratory material property data for two baseline UHSC’s. These materials will be referred to as UHSC-1 and 

Ashcrete, representing two rapid-set, high-strength cementitious composites. The mechanical property tests 

included hydrostatic compression (HC), unconfined compression (UC), triaxial compression (TXC), unconfined 

direct tension (DT), uniaxial compressive strain (UXC), Kolsky Bar (KB), and uniaxial strain load/constant 

volume strain loading tests [52] These difficult tests were specifically undertaken by a researcher colleague and 

fellow doctoral student (William F. Heard) for use in the simulations like the ones presented herein.  

 

The first part of the VUMAT deals with defining the failure meridian in both compression and tension, as 

outlined in Eqs. (4.2) and (4.3). To find these constants, the experimental data for TXC, UC, and KB must be 

fitted by these equations. TXC experimental results for UHSC-1 are shown in Figure 5.2. Each curve shown 

represents a different confining pressure, from 10-300 MPa. For the failure surfaces, the peak value of each 

curve in Figure 5.2 corresponds to a data point on the failure surface. The relationships between mean normal 

stress (p), principal stress difference (q), axial stress ( 1 ) and radial stress ( 3 ) are given in Eqs. (3.35) and 

(3.36). The parameters 114321 ,,,, CCCCC , and nA  are optimized to fit this data using the relationship of Eq. 

(5.1). TXC experimental results for Ashcrete are shown in Figure 5.3. Each curve shown represents a different 

confining pressure, from 25-300 MPa. Figure 5.4 shows the experimental and the simulation data for the 

UHSC-1 failure surface. Figure 5.5 shows the experimental and the simulation data for the Ashcrete failure 
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surface. The experimental data in Figure 5.4 and Figure 5.5 show two data point clusters because two 

experiments were conducted for each confining pressure. Only one curve is shown for each confining pressure 

in Figure 5.4 and Figure 5.5 to make it easier to comprehend the changes in behavior. There is also one 

additional set of data points in both figures. These are the first set of data points nearest to the origin 

representing the UC test data when no confinement was used. The DT test must also be done to determine maxT , 

which is used in the tensile part of the failure surface described in Eq. (4.3). 

 

 

Figure 5.2 TXC Experimental Data for UHSC-1 
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Figure 5.3 TXC Experimental Data for Ashcrete 

 

Figure 5.4 Failure Surface for UHSC-1 
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Figure 5.5 Failure Surface for Ashcrete 

 

Next, the VUMAT must compute the pressure at each material point. To do this, the parameters ,, 21 KK and 

3K  must be optimized for Eq. (4.1) to fit the experimental data from the HC and UXC tests. Figure 5.6 shows 

the experimental data for UHSC-1 and Figure 5.7 shows the experimental data for Ashcrete. Furthermore, the 

model parameters crush  and crushP  are determined directly from the experimental data to define the end of the 

linear elastic region of the model and the beginning of the crushing region. Finally, the model parameters 

locklock P,  and lockK  are determined directly from the experimental data to define the final locking phase of 

the fully dense material. For the UXC, a cylindrical specimen was loaded in compression while maintaining 

zero radial strain. In the experiment, once the material reached the peak locking pressure, lockP , the specimen 

was unloaded to determine the locking modulus, lockK .  

 

In previous constitutive models, some authors use HC tests to define the pressure-volume relation. Because HC 
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radial expansion, whereas in the UXC test the radial pressure is increased to allow no radial expansion. This 

leads to higher states of pressure in the UXC tests than the HC tests. This is a critical distinction that previous 

researchers failed to identify [18], [23]. This is important because in characterizing the behavior of brittle 

material during an impact event, it should be apparent that there is no time for radial expansion of the material 

to take place directly in front of the projectile’s path. The material in the direct vicinity of the footprint of 

impacting projectile should be simulated using material constants calibrated from UXC tests. This difference is 

illustrated in Figure 2.5 and Figure 2.6. It is immediately apparent that the nonlinear behavior of the material 

under uniaxial strain is stronger than the hydrostatic behavior. However, this is not necessarily the case in 

regions of the material not in close vicinity of the projectile footprint. This brings up the possibility of 

partitioning the model such that the material near the point of impact and in front of the projectile path is 

modeled using UXC parameters and the material everywhere else modeled using HC data. This leads to many 

problems involving selecting the partition location and associated stress-state jumps at the interfaces that are not 

yet fully tractable. Therefore, only UXC data is used to define the pressure-volume relation since the local 

behavior of the target is considerably more important than the global behavior. 

 

 

Figure 5.6 Experimental pressure-volume relation for UHSC-1 (UXC) 
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Figure 5.7 Experimental pressure-volume relation for Ashcrete (UXC) 

 

Finally, for the damage portion of the VUMAT, the same data points used for the failure surface are converted 

to data points in terms of effective plastic strain as a function of mean normal stress. This data is used to find 

the parameter 
1D  as seen in Eq. (4.8). 

 

5.3 Determination of Parameters from Experimental Data 
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parameters, a least-squares optimization algorithm implemented in MATLAB was used. As described 

previously, the three main components of the constitutive model are the pressure-volume relation, the failure 

surface, and the damage evolution.  

 

For the pressure-volume relation, the experimental data for the first two material phases was input into the 

program; that is, all the data until the point  locklock P, . Once input, the program prompts the user to define 

the end of the linear elastic region,  crushcrush P, . This requires some discretion on the part of the user since 

some experimental data has a much more gradual transition from linear to non-linear behavior. Once this data 

point is known, the program redefines the data with the origin at  locklock P, . Thereafter, Eq. (4.1) is fitted and 

the parameters ,, 21 KK and 3K are optimized. For the locking region (phase 3), the experimental data can 

simply be plotted by any graphing software and a linear trend-line fit of the data can be used, with the slope of 

the line representing lockK . Figure 5.8 shows the MATLAB output of both the experimental input data and the 

model fit for Ashcrete. UHSC-1 shows a similar agreement. The units for pressure in Figure 5.8 are MPa. 
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Figure 5.8 MATLAB output for optimized pressure-volume relation for Ashcrete 

 

For the failure surface, the experimental data points shown in Figure 5.4 and Figure 5.5 are input into the 
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undamaged material point. Figure 5.9 shows the MATLAB output of both the experimental input data and the 

model fit for Ashcrete. UHSC-1 shows similar agreement. The units for both mean normal stress and principal 

stress difference are MPa.  
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Figure 5.9 MATLAB output for optimized failure surface for Ashcrete 

 

For the damage calculation, the experimental data points as shown in Figure 5.4 and Figure 5.5 are plotted in 

the form of effective plastic strain vs. mean normal stress. Since Eq. (4.8) suggests a linear relationship between 

the incremental effective plastic strain and mean normal stress, a simple linear fit is used to determine 1D . 

Figure 5.10 shows the MATLAB output of both the experimental input data and the model fit for Ashcrete. 

UHSC-1 shows a similar agreement. The units for mean normal stress are MPa. 
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Figure 5.10 MATLAB output for optimized damage behavior for Ashcrete 
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the constitutive model. 
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Table 5.1 Material constants for UHSC-1 and Ashcrete 

Variable Description UHSC-1 Ashcrete Units 

 Density 2.5557E-09 2.2763E-09 Tonne/mm
3
 

G Shear Modulus 18,457 18,457 MPa 

C1 Failure Surface Constant 1,016.30 125.85 MPa 

C2 Failure Surface Constant 908.65 102.00 MPa 

C3 Strain Rate Law Constant 0.01209 0.01209 

 
C4 Failure Surface Constant 0.10382 1.0 

 
C11 Strain Rate Law Constant -0.0006275 -0.0006275 

 
An Failure Surface Constant 0.0017345 0.00754125 

 
Tmax Maximum Allowable Tensile Pressure 6.8946 4.3780 MPa 

Plock Equation of State Constant 792.88 640.46 MPa 

lock Damage Constant 0.10094 0.13814 

 
Klock Equation of State Constant 45039 18364 MPa 

Pcrush Equation of State Constant 172.37 60.60 MPa 

crush Equation of State Constant 0.00781 0.00683811 

 
K1 Equation of State Constant 7,919.2 6,429.9 MPa 

K2 Equation of State Constant -29,206 -47,138.6 MPa 

K3 Equation of State Constant 187,100 255,724.2 MPa 

D1 Damage Constant 0.00040598 0.000311742 

  Extension Failure Surface Constant 0.625 0.625 

 
pl

max Maximum Effective Plastic Strain 2.5 2.5   

 

Both the TXC and UXC models used the same parts and mesh and only the radial boundary conditions were 

changed between them. To reduce computation time, two-way symmetry was also utilized. A simple description 

of the loading scenarios is shown in Figure 3.4(a). For the TXC model, a displacement-controlled boundary 

condition was applied in place of 3 . This replicated the actual loading process of the experiments most 

closely. For the UXC models, a radial displacement boundary condition ( 0ru ) was used on the outer curved 

surface in place of 1 and 2 to ensure the purely uniaxial strain condition. Conversely, for TXC models, a 

constant, uniform pressure load on the radial surface to replicate the confining pressure of the triaxial 

experiments ( 321   ) was used. In both models, a low-fidelity mesh with 1189 linear hexahedral 

elements (type C3D8R) was used, by applying the sweep technique and the medial axis meshing algorithm. 

Figure 5.11 shows the model assembly and mesh used for both UXC and TXC models. 
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Figure 5.11 UXC and TXC model assembly (left) and mesh (right) 

 

For the pressure-volume relation calibration model (UXC), a peak pressure load corresponding to over 1000 

MPa was used to ensure that the specimen went through all the three regions, as shown in Figure 4.2. The 

results of this calibration model for Ashcrete are shown in Figure 5.12 giving excellent agreement with the 

experimental data. The UHSC-1 calibration model showed similar agreement. In the actual experiment, once 

the material reached the peak locking pressure, lockP , the specimen was unloaded to determine the locking 

modulus, lockK . The calibration model was loaded beyond this point to see if the fully-dense region followed 

the same slope, which it did very well.  
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Figure 5.12 Pressure-volume relation from calibration model of Ashcrete 

 

For the failure surface calibration model (TXC), two confining pressures were chosen to verify the appropriate 

failure points: 50 MPa and 200 MPa. Figure 5.13 and Figure 5.14 show the principal stress difference as a 

function of the axial strain for two TXC experiments and one calibration model corresponding to the 

corresponding level of confining pressure. The calculated peak values were then converted to points on the 

failure surface. These peak values are plotted against the experimental failure surface points and compared in 

Figure 5.15. The calculated peak values showed excellent agreement, however the corresponding volumetric 

strain for these points only showed fair agreement. This distinction is made more apparent at higher levels of 

confinement. This is a common trait in failure surface models when simulating brittle materials [3].  
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Figure 5.13 TXC calibration model and two experiments for Ashcrete (50 MPa confinement) 

 

 

Figure 5.14 TXC calibration model and two experiments for Ashcrete (200 MPa confinement) 
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Figure 5.15 Experimental failure surface and calibration model for ASHCRETE 

 

Given the calibration model results shown in the above figures, the material constants determined from the 

optimization algorithm developed are considered as suitable for simulating the behavior of UHSC-1 and 

Ashcrete and all simulations presented in Chapter 7 use these constants.  
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Chapter 6 

 

Modeling & Simulation Strategies 

 

6.1 Introduction 

Static and quasi-static models have successfully been used to simulate micro- and macro-mechanics structural 

analysis. But for the majority, these models are insufficient in handling the dynamic fracture of solids. This is 

because of the fundamental differences between static/quasi-static and dynamic deformation. For a quasi-static 

deformation, at any particular instance, a condition of static equilibrium holds, implying that the sum of the 

forces acting on any element in the material body is zero. Conversely, in a dynamic deformation situation, when 

high strain-rate loading is applied to the boundary of the body such as a blast wave or impact, wave propagation 

of the stress occurs and a sequence of states of equilibrium defined by the well-established equations of 

mechanics of materials (sum of forces equal to zero, sum of moments equal to zero, compatibility of strain, 

constitutive relations, etc.) are no longer sufficient [50].  

 

The current state of the art of methods for dynamic fracture simulation at macroscopic levels is divided into two 

categories: continuum mechanics based models such as Finite Element Analysis (FEA) and discrete element 

based models (like smoothed particle hydrodynamics). Methods like FEA are well known to have limitations in 

fracture and fragmentation predictions. When simulating material fracture or fragmentation, the lack of 

continuity conditions of the material being fractured hinders the effective use of FEA. These limitations of FEA 

come from the fundamental principle that FEA treats the material as a continuum. This means that the global 

element assembly technique in FEA follows the compatibility condition which states that the interior nodes still 

must remain connected after deformation (i.e. must have the same nodal displacement) [43]. Therefore once the 

continuity of the material is broken due to fracture or fragmentation, re-meshing is required to distinguish the 

interior and boundary nodes in need of correct element assembly at a new evolving state of geometry for the 

next computation iteration. FEA has been continually developed to meet these requirements and though many 

re-meshing techniques have been established and embedded into FEA in the context of Lagrange, Euler, or 
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Arbitrary Lagrange Euler implementations [42], it is still not well suited to predict multi-cracking of materials, 

let alone fragmentation [50].  

 

In the discrete element models, specifically SPH, the material is usually treated as an assembly of mass 

particles. The constitutive equations are selected to properly define the interactions among the discrete 

neighboring particles. SPH does not suffer from either the mesh tangling problem encountered when using a 

Lagrangian mesh or even the flux conservation problem when using an Eulerian mesh. This situation naturally 

leads one to SPH due to in its robustness in solving material discontinuity problems.  

 

Under extreme loading, UHSC panels experience various stress states that lead to complex failure modes. In the 

worst case scenario for a single projectile impact event, which corresponds to an impact orientation normal to 

the surface, it has been observed that a crater is formed in the front surface followed by a strong compressive 

shock wave. This wave weakens as it traverses through the plate thickness and is eventually reflected off the 

free back surface [38]. This compressive shock wave reflection generates a tensile shock wave, which if large 

enough in magnitude, can lead to fracture on the rear face of the panel accompanied by spalling of the material 

behind the point of impact. Since the speed of shock waves propagating these materials can approach over 4000 

m/s, this fracture takes place before a projectile can even penetrate through the target panel. Even blast loads on 

UHSC panels, which typically have a more uniform application of pressure on the front surface, can still cause 

abrupt catastrophic failure at the points of highest stress. Typically, a line along the rear of the panel will 

fracture causing it to break in half, but fragmentation will still occur along the line of fracture.  

 

Such fracture and spalling phenomena in brittle materials becomes problematic when using the traditional 

Lagrangian finite elements available in commercial codes. By using a dynamic user-defined material model and 

coupling it with an element deletion scheme, these elements can handle the large strains and large strain rate 

conditions without computational bottlenecks. However, it has been found that to efficiently use an element 

deletion scheme without loss of accuracy or increase in computational time, very large strains can still be 

experienced in the model [39]. The resulting model can accurately predict the exit velocity of the penetrating 

projectile, but cannot track the free-flying fragmented pieces of the target which may be, especially, important 
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when the fragments impinge a secondary target. The SPH numerical method has received considerable 

theoretical support since its inception. Beginning with the same material model and associated parameters as for 

a traditional finite element model, an SPH model can easily handle the complex failure states that occur during 

an impact event, and more accurately handle the fragmentation process in a more natural way [47]. 

 

6.2 Finite Element Analysis (FEA) 

As mentioned previously, traditional FEA has many advantages when coupled with a dynamic user-defined 

material model. The model used in this study is very efficient and quick when used in FEA simulation. Models 

of this type have no issues with contact between a target and projectile or high-rate pressure loading from a 

blast wave. These models can easily handle the behavior of elements during damage initiation and evolution 

and the stress wave propagation that results from complex geometries and boundary conditions. Chapter 7 will 

more thoroughly discuss these advantages using multiple example problems. 

 

The drawbacks to FEA simulations come in the form of particularly large strains inherent in extreme loads of 

brittle materials. For decades the high-strain, high strain rate modeling of ductile metals has been accurately 

simulated using the simplistic Johnson-Cook plasticity and damage models [21], [22]. These models use a 

similar failure surface (at least in formulation), damage scheme, strain rate law, and equation of state. The 

distinct difference that ductile materials under impact or blast rarely fragment to the degree that brittle materials 

do, though obvious, is the leading decision factor for what type of modeling scheme to use. When dealing with 

the extreme failure of ductile metals, an element deletion scheme is often used to allow for the complete 

penetration of a projectile (or the catastrophic fracture caused by blast). This is not optimal when dealing with 

brittle materials because a significantly larger portion of the damaged elements would need to be removed in 

order to accurately simulate the events. This would bring in errors when dealing with the conservation of mass. 

This removal of elements would also have to take place fairly early in the analysis in order to show the 

appropriate failure scenario, leading to the model simulating a weaker target than in real life and significantly 

increase the computation time. Chapter 7 will more thoroughly throw light on these difficulties with multiple 

example problems. 
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6.3 Smoothed Particle Hydrodynamics (SPH) 

The smoothed particle hydrodynamics (SPH) method was first developed for problems related to astrophysics 

[14], with the important advance being a method for the calculation of derivatives without the mesh associated 

with the traditional finite element method. In the conventional SPH method the time-dependent partial 

differential equations, which describe conservation of mass, momentum, and energy and together with a 

constitutive equation describe the motion of a continuum, are discretized in space using kernel interpolation 

[50]. This method is based on a kernel interpolation which uses distributed interpolation points, with no fixed 

connectivity, to approximate field variables and their spatial derivatives. In SPH, spatial derivatives are 

calculated by analytical differentiation of the kernel function. For illustrative purposes, consider a continuum 

represented by a set of interacting particles as seen in Figure 6.1. Each particle i interacts with all surrounding 

neighbor particles within a given distance (traditionally 30-50 nearest particles). The smoothing length r 

controls this distance and all particles within r of the i particle are neighbor particles. The interaction between i 

and a neighbor particle is weighted by the kernel function, Wij, where j represents the neighboring particle. 

Using this principle, the value of a continuous function can be approximated at any location within the domain 

based on known values at neighboring particles, j [50].  

 

Over the past few decades, the application of SPH to solid mechanics, specifically for high-velocity impact, has 

been evolving for the last few decades. In this Lagrangian formulation variable element connectivity is used to 

allow for severe distortions. This Lagrangian representation is favored because it allows the grid to be 

embedded in the material and thus reduces some of the material interface problems associated with Eulerian 

codes. The ability of SPH to handle severe distortions allows it to be applied even to problems that have been 

specifically been reserved for Eulerian approaches [25]. The SPH technique was first introduced by Lucy and 

Gringold and Monaghan in 1977 [31], [14]. Thereafter, SPH nodes were linked to finite elements by Johnson et 

al. in 1993 [24], [20].  

 

SPH is a numerical method that is part of the larger family of meshless methods. Instead of defining nodes and 

elements, one only needs a collection of points to represent a given body. In SPH, these points are commonly 

referred to as particles (mass points). The SPH methods used in this study are a fully Lagrangian modeling 
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scheme that permits the discretization of a prescribed set of continuum equations by interpolating the properties 

directly at a discrete set of points distributed over the solution domain without the need of a traditional spatial 

mesh [25]. The difficulties associated with fragmentation and free-flying motion of spalled particles coupled 

with very large deformations of free surfaces are resolved in a comparatively natural way. Moreover, in a case 

where there is interest in the secondary impact of fragmented particles against some second target a certain 

distance away from the first target, SPH has no additional computational cost associated with tracking these 

fragments through a large empty volume (as would be prohibitively expensive with a coupled Eulerian-

Lagrangian scheme). 

 

 

Figure 6.1 The SPH kernel function [28] 

 

SPH is a method of estimating function values and gradients when the function values are known for a set of 

disordered points (not necessarily in a traditional, gridded finite element mesh). Following Monaghan [33], the 

value of an arbitrary function F at a particle i is approximated as 

 


i

ijjji WFVF      (6.1) 

 

where the kernel W is a function of the smoothing length h and the distance between particle i and its neighbor j. 

The volume assigned to each particle, V, is usually expressed in terms of density and particle mass as 
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The gradient of F can be found by taking the gradient of the kernel 

 

 
j

ijjji WFVF      (6.3) 

 

The governing equations of solid mechanics are modeled using Eq. (6.3) to compute required gradients [28]. 

Typical SPH kernel functions satisfy the normalization condition that the integral of the kernel over its region of 

influence should equal unity [33]. However, this condition is not generally satisfied in the discrete summation 

form as applied in SPH. As a result, SPH cannot properly evaluate the values or gradients of a constant 

function. Belytschko introduced the definition of consistency order from the finite element method as the “order 

of polynomial that can be represented exactly” [6]. Traditional SPH doesn’t achieve 0 order consistency and 

this lack of consistency leads to significant error when the particle spacing is not uniform [28]. This creates 

computational difficulty when trying to simulate large objects where SPH is only necessary in a highly localized 

region in the model.  

 

The SPH scheme used in this work includes a virtual artifact as the “domain.” This is a rectangular region 

computed at the beginning of the analysis as the bounding box within which the particles are tracked. This fixed 

rectangular box is 10% larger than the overall dimensions of the whole model and is centered at the geometric 

center of the model. As the analysis progresses, if a particle moves outside the domain, then it behaves like a 

free-flying point mass and no longer contributes to the SPH calculations. As mentioned earlier, SPH 

interpolates the properties of each particle. This is done using what is called a “smoothing length calculation”. 

Even though particle elements are defined in each model using one node per element, the SPH method 

computes contributions from each element based on adjacent particles that are within a sphere of influence. This 

smoothing length governs the interpolation basis of the method. For every increment, this local connectivity is 
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recalculated internally and the kinematic quantities like normal and shear strains as well as deformation 

gradients are computed [47]. 

 

However there are some limitations inherent with SPH models that are not present in FEA models. In regions of 

the model where deformations are not too large and elements are not highly distorted, the SPH analyses are 

found to be less accurate in general than Lagrangian finite element analyses. Another large problem that has 

been identified is that of tensile instability. When the material is in a state of tensile stress, the particle motion 

may become unstable. This instability is strictly related to the interpolation technique of the standard smoothed 

particle dynamic method. Because of this instability, particles tend to clump together and show numerical 

fracture-like behavior and artificial voids. The underlying cause has been shown to be a lack of formal 

consistency in SPH. It cannot reproduce exactly any class of functions on a defined set of points. Because of 

this drawback, a numerical clumping instability manifests itself when nodes are mutually attracted. More 

specifically, the SPH kernel function is unable to keep the nodes apart once they are sufficiently close to each 

other [32]. 

 

Yet another limitation inherent to the SPH functionality currently implemented in Abaqus is that bodies 

modeled with particles that were not defined with the same material cannot interact with each other. Therefore, 

SPH cannot be used to model the mixing of bodies with dissimilar materials. This limits one to model only the 

brittle target panel with particles; whereas, the projectile model must use traditional finite elements. The new 

functionality of Abaqus version 6.12 has incorporated the automatic conversion of finite elements to SPH 

particles. This eliminated many of the limitations associated with applying loads directly to bodies that could, 

eventually, become particles. But this functionality has the limitation that once the elements are converted to 

particles, whether by time-, stress-, or strain-based criterion, they are free-flying particles which no longer obey 

symmetric boundary conditions. This leads to inaccurate fragmentation patterns if a user wishes to take 

advantage of the symmetry in the problem. 

 

Within this study, all simulations using SPH functionality are built the same way as the FEA models. In all 

simulations, the panel (brittle) is meshed using particles. To do this, the panel is meshed in the exact same way 
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as the FEA models. Once the mesh is assigned, a set of all the nodes within the panel mesh is made, which is 

then converted manually within the input file to particles. Figure 6.2 illustrates the process of meshing a part 

and then converting to particles. 

 

 

  

Figure 6.2 Particle meshing process in SPH models 
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Chapter 7 

 

Numerical Simulations 

 

7.1 Introduction 

In the study of impact phenomena, many problems of the low-velocity regime (< 250 m/s) fall in the area of 

structural dynamics. As the impact velocity increases to the range of 500-2000 m/s, the response of the structure 

becomes secondary to the behavior of the material within a small zone (typically 2-3 times the projectile 

diameter) of the impact area [57]. As discussed, the mechanics of ballistic impact on plates is a problem of high 

complexity. The nature of response is determined by material type as well as nature and dimensions of the 

target, namely, semi-infinite or finite. Moreover, the shape, size, material type, velocity, and angle of impact of 

the projectile are important contributory factors. In order to validate the material model described in this paper, 

actual tests were undertaken in the laboratory at ERDC on USHC panels for both UHSC-1 and Ashcrete. One of 

the main concerns in the study of impact phenomena is the determination of a velocity below which an object 

will fail to perforate a protective barrier. This determination is of utmost importance in the design of protective 

structures or for the evaluation of the effectiveness of military armors. This velocity is referred to commonly as 

the ballistic limit. There are two approaches for finding this limit: deterministic and probabilistic. In the former, 

the ballistic limit is determined from physical principles, but due to the complexity of the governing partial 

differential equations, simplifications and assumptions are introduced that generally require empirical 

determination of one of two constants. In the probabilistic approach, models are built relying on a substantial 

base of data consisting of the object’s striking velocity and its residual velocity. 

 

The deterministic approach to ballistic limits is a history of attempts to determine projectile performance during 

penetration through development of models based on conservation laws and assumptions about the mechanical 

behavior of the system. One of the major simplifications is assuming that the projectile is rigid and uniform in 

shape. The corresponding takes the form 
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where rV  is the projectile residual velocity, sV  is the projectile striking velocity, and lV  is the limit velocity.  

 

For rigid projectiles, p = 2 and , lV  are empirical parameters determined from a regression analysis. Limit-

velocity curves, as shown in Figure 7.1, define boundaries with a sharpness that is unreal. Near these 

boundaries, terminal behavior tends to be probabilistic in nature, rather than deterministic. Figure 7.2 is a 

typical plot of the probability of complete penetration as a function of velocity for a certain projectile and target 

combination. This plot was obtained by firing a great number of rounds so as to obtain a statistically significant 

sample. Any velocity in the range of mixed results can be used as a limit velocity. For example, the V10 and V90 

limit velocities are those velocities at which there is a 10% and 90% probability of a complete penetration, 

respectively. Usually the V50 limit velocity is used to represent the ballistic limit. Near V50, the slope of the 

probability curve is greatest and, thus, the V50 can be located with greatest precision. 

 

 

Figure 7.1 Limit-velocity curve 
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Figure 7.2 Typical penetration-probability curve 

 

Another primary concern for military design engineers is the response of protective armor panels to fragments 

from mortars and other improvised explosives. A mortar is an indirect fire weapon that fires explosive 

projectiles known as mortar bombs at low velocities, short ranges, and high-arcing ballistic trajectories. These 

are considered small-arms weapons, i.e. capable of being transported by personnel without vehicle assistance.  

The danger of mortars is that it hurtles fragments of shrapnel radially outward from the explosive at 

significantly higher velocities than traditional bullets. Whereas the typical range of velocities for bullets from 

guns seen in war environments are somewhere between 300-500 m/s, mortar fragments can reach velocities 

greater than 1000 m/s. These hypervelocity speeds coupled with the unknown shape makes impact from these 

fragments extremely difficult to predict. To tackle this problem, laboratory tests at ERDC used a fragment 

simulating projectile (FSP) at velocities greater than 1000 m/s.  

 

For these two types of tests (ballistic limit and fragment simulating), different panel materials and projectiles 

were used. For the ballistic limit tests, 20 panels of UHSC-1 were shot with a spherical projectile. For the 

fragment simulating tests, several panels of Ashcrete were shot with a steel FSP. The fragment simulating tests 

were also done for single panel cases as well as stacked panels, where two of the same dimension and material 

panels were stacked back-to-back to improve the impact resistance. In all experiments, the same ballistic testing 
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facility and test setup was used. A diagram of the experimental setup is shown in Figure 7.3. A universal 

receiver and 0.50 caliber test barrel fired the projectile first through a blast panel, which is essentially a steel 

plate with a small hole cut out for the projectile to pass. This panel prevented any powder or other particles to 

be picked up by the first set of chronograph screens (which determine the impact velocity, Vi). The projectile 

penetrates the specimen and passes through a witness panel, which is used to stop any spalled material from 

passing through the second set of chronograph screens used to determine the residual velocity, Vr. 

 

 

Figure 7.3 Typical experimental setup for ballistic performance evaluation tests 

 

These experiments and their corresponding simulations are discussed in the following three sections. 

Simulations using both FEA and SPH have been completed and compared. All simulations were completed on 

an AMD Phenom
TM

 II X6 1075T Processor (3.00 GHz).  

 

7.2 Application of Model to Ballistic Limit Test 

For this study, UHSC-1 target was used to validate the modeling schemes. This UHSC had a compressive 

strength of fc’ = 216 MPa. Actual ballistic impact laboratory experiments to determine the ballistic limit were 

undertaken for comparison of traditional element models to SPH models. The panels tested were of size 305 

mm x 305 mm x 27 mm and clamped on all four sides as shown in Figure 7.4. The projectile was a 12.7 mm 

diameter sphere made of AISI Type S2 Tool Steel and was fired at the target panels at speeds between 350 m/s 

to 500 m/s, the range of ballistic limit for this panel material. The material parameters used to simulate the 

elastic-plastic behavior of the steel projectile are listed in Table 7.1. To model this experiment, two-way 

symmetry was utilized requiring only one quarter of the panel and projectile to be simulated. Appropriate 
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symmetric boundary conditions were implemented along the axes of symmetry and the periphery of the panel 

enforced fixed boundary conditions. Figure 7.5 shows an isometric view of the model configuration and mesh. 

The projectile, as shown in the enlarged view on the right, has been initiated with a predefined field to induce an 

initial velocity of Vi = 483 m/s at the instant of impact in the positive Z direction. In both FEA and SPH models, 

187,272 degrees of freedom were used in the panel while 848 linear tetrahedral elements were used in the 

projectile. 

 

 

Figure 7.4 Target panel in test setup (exit side, before impact) 

 

Table 7.1 Type S2 Tool Steel Material Constants (Spherical Projectile) 

Variable Description Value Units 

 Density 7.79E-09 Tonne/mm
3
 

E Young's Modulus 190,000 MPa 

 Poisson's Ratio 0.25 

 
y Yield Stress 2,000 MPa 

pl Plastic Strain 0.0105   
 

Clamp 

Panel 
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Figure 7.5 - Model assembly and mesh for ballistic limit test 

 

Twenty ballistic impact experiments were undertaken to validate the models built for this purpose. Views from 

one such experiment is shown in Figure 7.6. As seen on the left (the front side of the panel), the hole created by 

the projectile is only slightly larger than the diameter of the projectile itself (13 mm). However, the crater 

formed is approximately five times that size (63 mm). It is noted that for some of the experiments, a few large 

cracks emanated from the impact site and followed the shortest path to the periphery. But in majority of the 

experiments, damage was found to be highly localized and no significant cracking occurred away from the 

damaged region. For the experiment shown in Figure 7.6, the impact velocity was 483 m/s and the residual 

velocity was 88 m/s. Figure 7.7 shows images from high-speed video taken of the same experiment and at a 

similar viewing angle as in Figure 7.4. As shown, the damage is highly local, but there is extremely large 

amounts of fragmentation taking place relatively early in the impact event.  

 

Projectile 

Panel 
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Figure 7.6 Target panel test setup (front side and exit side, after impact) 

 

 

   

   

Figure 7.7 Exit side of UHSC-1 target panel at increasing instances of time (a) through (f) 

 

The model presented relies heavily on the calculation of plastic strain for use in the damage evolution model. 

Figure 7.8 below shows the results of the model once a constant velocity is achieved, signifying that the 

projectile continues penetrating the panel with no further resistance. The residual velocity of the projectile for 

the FEA model was 92 m/s. The FEA model was found to be very good at predicting the exit velocity as well as 

(a) (b) (c) 

(d) (e) (f) 
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the approximate failure pattern, but as shown by the cross sectional view of the panel the elements in front of 

the projectile path were heavily distorted. Eventually the analysis stopped when the distortions became 

excessive. A brief study was undertaken incorporating the element deletion option using effective plastic strain 

as a metric for removing excessively distorted elements from the mesh. The resulting outcome will be discussed 

in detail in the next section. The total analysis time of the run was 22 minutes, 21 seconds.  

 

 

 

 

Figure 7.8 Effective plastic strain contours of FEA model 

 

An identical model to the FEA model shown in Figure 7.5 was created, but SPH was used instead. The same 

VUMAT, material properties, boundary conditions, and number of elements as the FEA model were used. This 

allowed for a direct comparison of the performance of FEA and SPH models. Figure 7.9 illustrates the results of 

the SPH model. The residual velocity of the projectile from the SPH model was 138 m/s. This is significantly 

higher than the velocity predicted by the FEA model as well as the experimental results. Additionally, the SPH 

model took longer to run. This can be attributed to the smoothing length calculation that is undertaken at each 

increment, for each particle. However, enabling the excessively strained particles to become free-flying point 

masses is highly advantageous. This eliminates the complications associated with excessive distortion, element 

Effective Plastic 

Strain 
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deletion, and secondary impact. The failure pattern predicted by the SPH model is highly accurate as is the 

spalled behavior of the fragmented UHSC material directly in front of the projectile. The total analysis time was 

1 hour, 40 minutes, 20 seconds, which is more than four times longer than needed with the FEA model, and can 

be viewed as a significant drawback for SPH.  

 

The traditional FEA model performed significantly better in predicting the exit velocities of the projectile than a 

comparable SPH model. The FEA model is also faster to run. Figure 7.10 shows the impact velocity vs. the 

residual velocity of the twenty experiments, the FEA model, and the SPH model. Figure 7.11 shows the velocity 

vs. time for both models compared to the experimental value. These results suggest that the SPH model predicts 

a relatively weaker panel than the equivalent FEA model without element deletion.  

 

 

 

Figure 7.9 Effective plastic strain contours of SPH model 

Effective Plastic 

Strain 
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Figure 7.10 Impact vs. residual velocity of ballistic limit experiment and models 

 

 

Figure 7.11 Velocity vs. time of FEA and SPH models compared to experiment 
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7.3 Application of Model to Single Panel 

In this study, Ashcrete panels were tested in the laboratory. They were approximately 304.8 x 304.8 x 11.9 mm 

and clamped at the periphery. The projectile used was a MIL-P-46593A Standard FSP. It is a 0.50 caliber, 207 

grain FSP made of 4340-H Steel with a Rockwell Hardness of C = 30±1.  Multiple tests were performed with 

impact velocities varying between 1067 m/s and 1097 m/s with the impact angle oriented normal to the plate 

surface. A picture of the FSP is shown in Figure 7.12 as well as the projectile model and mesh used for all 

simulations discussed in this paper. The projectile model contained 584 linear hexahedral elements (C3D8R) 

and the panel elements varied depending on the individual simulation. All initial shots were fired eccentrically 

with respect to the center of the panel, namely, closer to a corner. The purpose of this was to re-mount a 

damaged panel and fire at an opposite corner to test the ballistic resistance of a damaged panel. For this study, 

only the first projectile is simulated. The problem of a multiply impacted panel is a problem of high complexity 

and deserves future study.  

 

 

Figure 7.12 MIL-P-46593A Standard 0.50 Caliber FSP (left) and model (right) 

 

For the projectile, the Johnson-Cook plasticity and damage models were used. The model constants for 4340-H 

steel are given in Table 7.2. For the projectile, the Johnson-Cook plasticity and damage models were used. Eqs. 

(7.1) and (7.2) give the failure surface (von Mises tensile flow stress, σ) and the general expression for the strain 

at fracture (ε f), respectively. The constants were taken directly from two studies completed by Johnson and 

Cook [21], [22]. Figure 7.13 shows a test plate target on the left (impact side). A steel-frame clamp constrains 

the plate at the periphery. On the right is the same test plate after impact. The hole in the panel is only slightly 

larger than 1 inch, but the crater on the entrance side is roughly 2 inches in diameter. Only one significant crack 
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propagates from the impact region. Also, two larger cracks developed at the lower-left and upper right corners. 

Repeated experiments at such high impact velocities showed that the effects of damage were mostly localized. 

This fact was further supported by simulations, as discussed in the following. Figure 7.14 successively shows 

the damage process on the exit side of the test plate target at time instants of 110 s, 310 s, and 510 s after 

firing of the FSP. These high-speed video frames show large amounts of fragmentation, but again, a relatively 

small damaged region. 

 

     mn TCBA ** 1ln1        (7.1) 

 

     *

5

*

4

*

21 1ln13 TDDeDD
Df        (7.2) 

 

Table 7.2 4340-H steel material constants for Johnson-Cook Material Model 

Variable Description Value Units 

 Density of material 7.83E-09 Tonne/mm
3
 

E Elastic modulus 205,000 MPa 

 Poisson's Ratio 0.29 

 A Johnson-Cook Plasticity Constant 792 MPa 

B Johnson-Cook Plasticity Constant 510 MPa 

n Johnson-Cook Plasticity Constant 0.26 
 

m Johnson-Cook Plasticity Constant 1.03 
 

melt Melting Temperature 1793 K 

trans. Transition Temperature 293 K 

C Strain Rate Constant 0.014 
 

  ̇ Reference Strain Rate 0.002 
 

D1 Johnson-Cook Damage Constant 0.05 
 

D2 Johnson-Cook Damage Constant 3.44 
 

D3 Johnson-Cook Damage Constant -2.12 
 

D4 Johnson-Cook Damage Constant 0.002 
 

D5 Johnson-Cook Damage Constant 0.61   

 

 



83 

 

   

Figure 7.13 Ashcrete target panel before (left) and after (right) impact 

 

  

 

Figure 7.14 Exit side of target panel at (a) 110 s, (b) 310 s, and (c) 510 s after firing of FSP 

 

As stated previously (and illustrated in Figure 7.13), the FSP impacted the panel eccentrically so as to reuse the 

panel for a second shot. This raised the concern that the location of the impact closer to the boundary condition 

would affect the performance of the panel. To test this, two cases of a single panel FSP simulation were 

(a) (b) 

(c) 
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completed: (1) the centric impact case and (2) the eccentric impact case. These were done within the FEA 

framework only. Figure 7.15 shows an isometric view of the model configuration and mesh. The projectile, as 

shown in the enlarged view on the right, initiated with a predefined field to induce an initial velocity ( iV ) at the 

instant of impact in the positive Z-direction. To replicate the experimental setup as closely as possible, fixed 

boundary conditions were enforced at target’s peripheral surfaces. The impact velocity, iV , was 1076.8 m/s and 

the result showed a residual velocity of 784.2 m/s. Figure 7.15 shows the scalar damage value, D, of the front 

and rear of the panel after impact. A value of 0 signifies an undamaged element whereas a value of 1 signifies a 

fully damaged element. As part of this exercise, a brief study of the effect of element deletion was undertaken. 

In order to increase the speed of calculation, a highly distorted element was deleted when its effective plastic 

strain value, pl , reached a predefined maximum value, 
max

pl . This, supposedly, allowed for more efficient 

computation by removing highly distorted elements that were no longer appreciably contributing to the results. 

A note of caution is that the process of element deletion happens to be separate from the damage evolution 

process within an element. 

 

   

Figure 7.15 Assembly and mesh of Ashcrete FSP model (Centric Case) 

 

Vi 
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Figure 7.16 Simulation results of Ashcrete panel with scalar damage parameter (Centric Case) 

 

Figure 7.18 shows an isometric view of the model configuration and mesh for the eccentric case (the model 

replicating the actual experiment as seen in Figure 7.13 and Figure 7.14). As in the centric case, the projectile, 

as shown in the enlarged view on the right, was activated with a predefined field to induce an initial velocity, 

iV , at the instant of impact in the positive Z-direction. To replicate the experimental setup as closely as 

possible, as before, fixed boundary conditions were enforced at the panel’s peripheral surfaces. A convergence 

study was undertaken to determine the appropriate mesh density for accurately predicting the residual velocity. 

The final panel mesh consisted of 2,334,784 degrees of freedom. No further refinement was used because the 

change in residual velocity prediction between the previous mesh refinement (1,618,400 degrees of freedom) 

and the final mesh refinement (2,334,784 degrees of freedom) was less than 0.7% but with a significant increase 

in computation time. Figure 7.17 shows the results of the convergence study, illustrating both the convergence 

to the actual solution and the exponential increase in computation time. 
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Figure 7.17 Mesh refinement study results 
 

In all cases, the Abaqus simulation was continued until the projectile reached a constant residual velocity, 

signifying that the projectile had escaped the target after full penetration.  In Figure 7.19 the velocity as a 

function of time for both the cases, centric and eccentric impact, is shown. The results suggest that at such high 

velocities, projectile impact location is irrelevant. However, as the value of 
max

pl  was decreased, the value of 

velocity over time increased, implying that the removal of the distorted elements leads to a weaker target, 

accompanied by an increase in the time to complete the simulation. In the cases shown, that is when 
max

pl  is 

equal to 2.5, 1.5, and 1.0 (or 250%, 150%, and 100%), the simulation times were 9 minutes, 64 minutes, and 

104 minutes, respectively. Previous studies into element deletion have suggested that a value of 150% for pl
max

 

is sufficient to achieve computational efficiency without sacrificing accuracy [12]. 

 

Majority of models and codes for impact and penetration of brittle composites use the scalar quantity of 

effective plastic strain as a metric to evaluate the damage or failure in a material.  The present model also relies 

heavily on the calculation of plastic strain for use in the damage evolution model. Specifically, attention is 

focused on the panel being impacted at an initial velocity of 1076.8 m/s. Figure 7.20 shows snapshots, from the 

impact side as well as the cross section, of damage at 10, 20, 30, and 40 s.  
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Figure 7.18 Assembly and mesh of Ashcrete FSP model (Eccentric Case) 

 



88 

 

 

Figure 7.19 Velocity vs. time of Ashcrete FSP models for both centric and eccentric models 

 

Now the performance of the FEA and SPH models are evaluated and compared. Two metrics were used to 

compare the performance of the two models with respect to the experimental result. The first metric is the 

residual velocity of the FSP after full penetration. The second metric is the damage pattern seen in the panel. 

Due to the heterogeneous nature of Ashcrete, there was a wide range of values that were seen in the 

experiments. The average exit velocity seen in the experiments was 829 m/s. The exit velocity seen in the FEA 

model was 824 m/s and the exit velocity in the SPH model was 832 m/s. These values have an error that is only 

0.67% off and 0.28% off of the average experimental value, respectively. The velocity histories of both models 

are compared in Figure 7.21 with the baseline experimental average shown in the dotted line. 
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Figure 7.20 FEA simulation of Ashcrete panel with scalar damage parameter at (a) 10 s, (b) 20 s, (c) 30 s, 

and (d) 40 s (Eccentric Case) 

 

(c) (d) 
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Figure 7.21 Velocity vs. time of Ashcrete FSP models for both FEA and SPH 

 

Figure 7.22 shows the damage pattern in the models, both front (entrance) and back (exit) sides, in comparison 

with the experiment. It can be seen that the failure pattern in both models show a similar damage behavior. The 

hole in the panel was slightly larger than the FSP, and a slightly larger crater on the front and back sides. There 

was peripheral cracking occurring near the supports directly above and below the impact location. It is 

important to note that the peripheral cracks in both models do not traverse the entire depth of the panel, but 

rather show several smaller cracks extending through the thickness. The SPH model not only has a more 

accurate exit velocity for the FSP, but it also has a slightly more concentrated crater. Figure 7.23 shows 

temporal snapshots, from the impact side as well as the cross section, of damage at time instants of 10, 20, 30, 

and 40 s. Figure 7.23(e) shows an isometric view of the panel from the impact side to illustrate that the 

damage near the bottom periphery of the panel does not traverse the entire depth. Damage of this type is more 

indicative of smaller cracks. 
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Figure 7.22 Single panel: FEA model (top row), SPH model (middle row), and test panels (bottom row) 
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Figure 7.23 Abaqus simulation of Ashcrete panel with scalar damage parameter at at (a) 10 s, (b) 20 s, (c) 30 

s, (d) 40 s, and (e) isometric view at 40 s (Eccentric Case) 
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As shown in the FSP simulation, the SPH model has advantage over the FEA model in residual velocity 

prediction. In addition, an important aspect of modeling high-rate impact of a brittle target is the issue of 

spalling and fragmentation. It was shown in Section 7.2 that FEA models are good at predicting exit velocities 

of projectiles if the impact velocity is near the ballistic limit of the target, but without an element deletion 

scheme, the elements will continue to deform until excessive distortion causes instability in the model. The 

standard metric for element deletion is effective plastic strain, 
max

pl . The previous article showed that deleting 

an element when 
max

pl  is below 1.5 (150% strain) causes both inaccuracies in the model as well as large 

increases in computation time [39]. But a value this large negates the model’s ability to show accurate spalling 

behavior. To illustrate the spalling phenomena, Figure 7.24 compares zoomed-in cross sectional views of both 

the FEA and SPH single panel models, stepped through time. 

 

The other metric for comparison between these two models is the propagation of a compressive (and 

subsequently, tensile) shock wave. This phenomena is better seen through time in the single panel case due to 

the highly localized damage pattern (stress cannot pass through fully damaged elements/particles). Figure 7.25 

shows the von Mises stress contours through time on the entrance side of single panel models. For easier 

viewing, only stress values between zero and 150 MPa are shown since much higher stress states are reached in 

the much stiffer FSP.  
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Figure 7.24 Cross section of Ashcrete panel showing effective plastic strain for both FEA (left) and SPH (right) 

through time 

 

As illustrated, both models perform well in predicting the regions of largest effective plastic strain, but only the 

SPH model can handle the transition of particles from being part of the original target to being free flying 

fragments. As shown in the FEA model in Figure 7.24, at around 80 s much higher plastic strains develop in 

the target elements surrounding the projectile. An element deletion scheme can handle this issue, but it still will 

not give results as seen in the SPH models. This behavior becomes even more pronounced in the stacked panel 

case. While the SPH model does show an appropriate fragmentation and spalled behavior, some local grouping 

of particles near the rear free surface was observed. This may be a result of the presence of tensile instability 
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noted in SPH formulations. In addition to accuracy, there is also the issue of computation time. While the FEA 

simulation took 8 hours, 11 minutes, and 27 seconds to run, the SPH simulation took 20 hours, 10 minutes, and 

48 seconds to complete. Like the UHSC-1 simulations in Section 7.2, SPH shows a significant increase in 

computation cost over traditional FEA. 

 

Figure 7.27 gives an overall comparison of all the Ashcrete FSP experiments compared to the FEA and SPH 

models. Note that the impact velocities are over a range of only 50 m/s. 

 

An additional study was undertaken to see the effects of boundary conditions on the local and global damage 

responses. Since the experimental panels were clamped at the periphery and part of the clamp material overlaps 

the plate by about 0.5” in the front and back at the panel edges (as seen in Figure 7.13), the model shown in 

Figure 7.18 was analyzed again by simulating this boundary condition. This essentially caused no change in the 

residual velocity and local damage pattern, though the computation time did increase by over 20%. However, 

the secondary or global damage away from the area of impact closely resembled the experimental results, with 

much less damage occurring at the periphery, mostly in the form of smaller surface cracks. Figure 7.26 shows 

the front, back, cross-section, and isometric views of the damage at 40 s (as in Figure 7.23(d) and (e)). 
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Figure 7.25 Stress contours of single Ashcrete panel models,  FEA (left) and SPH (right) through time 
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Figure 7.26 Abaqus simulation of Ashcrete panel with scalar damage parameter at 40 s (a) front view, (b) back 

view, (c) cross sectional view, and (d) isometric view (clamped boundary condition) 
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Figure 7.27 Impact vs. residual velocity of single panel Ashcrete FSP experiment and models 

 

7.4 Application of Model to Stacked Panels 

A more complex problem to solve is the case in which two of the panels simulated in Section 7.3 are stacked 

back to back. This is a very important problem for the military since force protection can be greatly increased 

by stacking armor panels. In this section, two Ashcrete panels were stacked back to back and simulated at an 

impact velocity of 1074 m/s, fired eccentrically as in the previous example. FEA and SPH models are built, 

analyzed, and compared. Both models are identical in assembly, boundary conditions, and material properties. 

However, due to the memory constraints on the available computers, the SPH model could not attain a similar 

mesh refinement. Due to the smoothing length calculations required by SPH, an incredibly large amount of 

computer memory is required to complete these analyses. For the FEA model, 4,645,152 elements were used 

while the SPH model could only achieve a mesh refinement of 1,561,184 elements.  For the SPH model, all 

elements were converted to particles prior to running the model. Figure 7.28 shows the assembly and mesh of 

the model, with a zoomed-in view to see the projectile and stacked assembly of the panels. To ensure that no 
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problems ensued in the SPH model as a result of the particles in contact with each other from opposing panels 

occupying the same 3D space, the panels were placed a distance of 0.75 mm apart, which corresponds to the 

characteristic length of the particles. For consistency, the FEA model also had a gap of 0.75 mm between the 

two target panels. 

 

 

Figure 7.28 Assembly and mesh of Ashcrete FSP stacked model 

 

A number of such pairs of test panels were shot and the models are compared to the average result of the tests. 

Similar to the results in Section 7.3, the same two metrics are used in comparing the performance of the two 

models with the experimental result. The average exit velocity seen in the experiments was 637 m/s. The exit 

velocity seen in the FEA model was 539 m/s and the exit velocity in the SPH model was 540 m/s. These values 

have an error that is 15.5% off and 15.4% off of the average experimental value, respectively. The velocity 

histories of both models are compared in Figure 7.29 with the baseline experimental average shown by the 

dotted line.  
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Figure 7.29 Velocity vs. time for FEA and SPH models compared to experiment (stacked panels) 

 

Figure 7.30 shows the damage pattern in the models of the stacked panels, both the front (entrance) and back 

(exit), as compared to the experiment. It can be seen that the failure pattern in both models show a large amount 

of damage in the corner of the panel close to where the projectile hit. The experiment indicates not only a large 

damaged region, but long cracks that traverse the entire panel to the periphery in every direction. Because of the 

large amount of damage both near the region of impact and at the periphery, it is difficult to directly compare 

the two models purely based on damage, D. Based on the FSP residual velocity, the SPH model seems to show 

similar accuracy to that of the FEA model, however the cap on computer memory has truncated the mesh 

refinement and therefore it can be theorized that with an appropriate particle size, the SPH model would indeed 

give superior results over the FEA model. 
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Figure 7.30 Stacked panels: FEA model (top row), SPH model (middle row), and test panels (bottom row) 

 

Similar to the comparison of FEA and SPH for the single panel case as shown in Figure 7.24, a direct 

comparison of the effective plastic strain contours through the zoomed-in cross section of both the models, 

stepped through time, is shown in Figure 7.31.  
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Figure 7.31 Cross section of stacked panels showing effective plastic strain for both FEA (left) and SPH (right) 

through time 

 

As was seen in Section 7.3, there was a distinct difference in analysis time between the FEA model and the SPH 

model. Since the number of degrees of freedom for the stacked case nearly doubled (only for the FEA model), 

the analysis time is expected to increase. For the FEA model, the analysis time was 31 hours, 23 minutes, and 
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19 seconds. For the SPH model, the analysis time was 19 hours, 32 minutes, 59 seconds. So for all model 

scenarios outlined in sections 7.2 and 7.3, the SPH models took more than 4.5 times the computation time than 

the comparable FEA model. This comparison could not be made for the stacked panel FSP test since different 

mesh refinements were used. A summary of all the model analyses times and degrees of freedom are 

summarized in Table 7.3.  

 

Table 7.3 Computation time and size of all models 

      Analysis Time DOFs 

Model 

Panel 

Material 

Projectile 

Material (HH:MM:SS) Panel Projectile 

Ballistic Limit Test (FEA) UHSC-1 S2 Tool Steel 00:22:21 187,272 848 

Ballistic Limit Test (SPH) UHSC-1 S2 Tool Steel 01:40:20 187,272 848 

Single Panel FSP Test (FEA) Ashcrete 4340-H Steel 08:11:27 2,177,415 584 

Single Panel FSP Test (SPH) Ashcrete 4340-H Steel 20:10:48 2,177,415 584 

Stacked Panel FSP Test (FEA) Ashcrete 4340-H Steel 31:23:19 4,645,152 584 

Stacked Panel FSP Test (SPH) Ashcrete 4340-H Steel 19:32:59 1,561,184 584 

 

 

Another major difference noted in the performance of the two model types is the deformation of the FSP. 

Though the projectiles go through relatively little permanent deformation (given the extremely high rate of 

impact), the deformed shape between the two models are very distinct. Figure 7.32 shows the undeformed and 

deformed shapes of the FSP for the FEA and SPH stacked models. As seen by the FSP on the left, the FEA 

model seems to give a more smoothed deformed shape, while the SPH model causes jagged edges on the 

projectile nose, likely caused by the nature of contact experienced between the regular finite elements of the 

FSP and the particles of the target. This difference in the failure pattern of the projectile may be responsible for 

the difference in residual velocity, since permanent plastic strain in the projectile is a form of dissipation of 

kinetic energy. It can be expected that, since the prediction of residual velocity decreased in accuracy from the 

single panel case to the stacked panel case, additional decrease in accuracy can be expected in simulations 

involving more stacked panels. Figure 7.33 gives an overall comparison of all the stacked panel Ashcrete FSP 

experiments and the FEA and SPH model predictions. Note that the impact velocities are clustered over an 

interval of 50 m/s only. A summary of results for all the impact models is shown in Table 7.4. 



104 

 

 

 

Figure 7.32 FSP before (top) and after (bottom) impact of ASHCRETE panels 

 

 

Figure 7.33 Impact vs. residual velocity of stacked panel Ashcrete FSP experiment and models 
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Table 7.4 Summary of impact models and experiments 

   Impact 

Velocity 

(m/s) 

Exit Velocity (m/s) 

Test 

Panel 

Material Exp. (Average) FEA SPH 

Ballistic Limit Test UHSC-1 483 88 92 138 

Single Panel FSP Test Ashcrete 1076.8 829 824 832 

Stacked Panel FSP Test Ashcrete 1074 637 539 540 

 

The last impact scenario considered is that of two stacked panels that are not back to back, but separated by 

some distance. The idea of separating panels is to allow the fragmented particles from the first panel to disperse 

and spread their impact energy over the surface of the second panel. This will cause much more widespread 

damage, but ultimately should decrease the residual velocity of the projectile more. Since this problem is highly 

dependent on both fragmentation as well as secondary impact, only SPH is used for the simulation. In this 

scenario, two 1-inch thick Ashcrete panels are separated by a distance of 12 inches. The same FSP as in the 

previous example has an initial velocity of 1076.8 m/s at an impact orientation normal to the face of the panel 

and the panels are assumed to be fixed at the periphery. To achieve a similar mesh density as the previous 

stacked panel case while minimizing computation time, quarter symmetry was utilized. The model used a total 

of 383,319 degrees of freedom and was analyzed over a total time of 1.0 msec.  

 

Figure 7.34 shows a cross sectional view of the model over increments of time throughout the impact event. The 

figure shows a highly localized damaged region during the penetration of the first panel, but the dispersion of 

the fragmented particles causes majority of the second panel to be damaged in the second penetration event. The 

total analysis time for this run was 59 hours, 54 minutes, 51 seconds. The drastic increase in computation time 

is due to the significantly larger total time (1000 sec) over the previous SPH models (100 sec). This increase 

in time was needed in order to track all the fragmented particles through empty space prior to the secondary 

impact. The velocity of the FSP over time is shown in Figure 7.35. The graph shows an initial residual velocity 

of 458 m/s after penetration of the first panel and a final residual velocity of 152 m/s after impact of the second 

panel.  
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Figure 7.34 Stacked panel simulation at 12-inch separation through increments of time 
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Figure 7.35 Velocity vs. time of stacked panel simulation at 12-inch separation 

 

7.5 Conclusions 

The robust and efficient constitutive model proposed in Chapter 4 and implemented in Chapter 5 has been 

successfully applied and validated against several actual ballistic impact experiments. Based on the findings in 

Sections 7.2-7.4, the following conclusions can be drawn: 

[1] When simulating UHSC-1, an FEA model is significantly better at predicting the exit velocity of the 

projectile. This may be due to the fact that it is close to the ballistic limit of the panel  

[2] For simulating Ashcrete, the SPH model seems to be slightly better at predicting the exit velocity of 

the projectile impacting a single panel.  

[3] For simulating Ashcrete, an SPH model is definitely better at predicting the exit velocity of the 

projectile impacting stacked panels, but it can be assumed that based on the mesh convergence study 

illustrated in Figure 7.17, a more refined mesh for the SPH model would likely improve the solution 

significantly. 

[4] Conclusions (2) and (3) may be attributed to the fact that the velocities simulated are significantly 

higher than the ballistic limit, which supports the theory that SPH is not as accurate for lower values 

of strains, as would be seen in lower velocity impact range. 

[5] SPH models are significantly more computationally expensive than FEA models. 

[6] SPH models can simulate fragmentation of brittle armor panels very realistically 
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[7] The same material model works seamlessly for both FEA and SPH models 

[8] Predicted damage patterns agree with test results very well 
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Chapter 8 

 

Multi-Scale Treatment of the Ductility of Short-Fiber Reinforcement 

 

8.1 Introduction 

The armor panels described and analyzed in Chapter 7 are undergoing continuous refinement to ensure that they 

are lightweight, inexpensive to manufacture, rapidly deployable, and capable of providing effective protection 

against bomb blast and projectile impact. An important recent improvement to the cementitious armor panel 

system is the addition of short-fiber reinforcement to improve the ductility of the panels, leading to enhanced 

energy dissipation capacity under impact and shock loads. The matrix material in the panels is still UHSC, 

enabling the attainment of high compressive strength in a matter of days. Short fiber-reinforced UHSC is a 

composite material of two components: matrix and short fibers. The matrix material is brittle, whereas the fiber 

component can be a ductile, high modulus material such as steel, or a ductile, low modulus material such as 

polypropylene. The choice of fiber material and geometry (i.e. fiber length, diameter, and surface treatment) is 

based primarily on the fiber-matrix interaction that will yield the highest overall ductility in the composite. The 

yield and failure strain of the various fibers is invariably greater than the yield and failure strain of the matrix 

material. As a crack appears in the matrix, short fibers are pulled out after progressive bond failure. Longer 

fibers or fibers of low strength would break instead. In either case, fibers serve as crack bridges and arrestors. 

The volume of fibers will typically range from 0.5 to three percent by volume of the matrix [15]. 

 

To reduce the cost while maximizing efficiency, the reinforcing short fibers are simply added to the matrix 

mixture before casting the panels, and therefore, the fibers would be randomly dispersed and oriented. Since 

fibers typically used range in length from 1-1.5 inches (which is often more than the panel thickness), it is 

expected that local constitutive properties over a panel would vary depending on fiber distribution and 

orientations. This leads to the conclusion that the traditional approach of using a representative volume element 

(RVE) for homogenization would not be appropriate due to the lack of any periodicity. Because of this, an 

alternative approach is followed in this study, as discussed in Section 8.4.  
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8.2 Nature of Matrix-Fiber Bond Interaction 

In fiber-reinforced composite problems, the most influential parameters are the fiber material (typically, steel or 

polypropylene), fiber geometry (length, diameter, surface treatments, if any), matrix material properties, 

interfacial bond characteristics between fiber and matrix, fiber locations or distributions, fiber orientations, and 

total volume percentage of fibers in the composite. The respective material properties of fiber and matrix, 

coupled with the bond behavior between the two have been challenging issued for recent researchers.  

 

In modeling the interfacial bond between the reinforcing fibers and the cementitious matrix, the consideration 

for surface-based cohesive interactions between the two phases are essential. These interactions are intended for 

bonded interfaces with negligibly small interface thickness, as in the present case. These surface-based 

interactions use a traction-separation behavior, based on a pure master-slave formulation where constraints are 

enforced at the slave nodes, and do not add mass to the model (as element-based cohesive interactions would). 

Surface-based cohesion uses what is called a “bond-link” element, first proposed by Ngo and Scordelis (1967) 

who were the earliest publishers on the application of the finite element method to the analysis of reinforced 

concrete structures [36]. To account for the bond-slip behavior of reinforcing steel, these bond-link elements are 

placed between the adjacent nodes of matrix and fiber [27]. This link has no physical dimensions; therefore two 

connected nodes would occupy the same coordinates. These bond-links constitute three, fictitious orthogonal 

spring elements connecting adjacent nodes and transmitting shear and normal forces between the two phases, 

that is, fibers and matrix. In addition to cohesive behavior, which is linearly elastic, the damage evolution of the 

bond is specified as well.  

 

A contact pair formulation was used to identify all the internal surfaces in the composite (i.e. the surfaces of the 

fibers in contact with the corresponding matrix surface). For simulating the interaction with an elastic bond 

behavior as well as a degraded post-failure behavior, the model uses a traction-separation behavior that is 

initially linearly elastic, followed by the initiation and evolution of damage. The initial elastic behavior is 

written in terms of an elastic constitutive matrix that relates the normal and shear stresses to normal and shear 

separations across the interface. The nominal traction stress vector t


consists of three components in a three-

dimensional model: ,, sn tt and tt  which represent the normal and the two shear tractions, respectively. The 
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corresponding separations are denoted by ,, sn  and t . Such elastic behavior can be summarized by the 

equation 
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where ,, ssnn KK and ttK  are the elastic stiffness values assigned to the normal, and local 1- and 2- direction 

fictitious shear springs, respectively. Due to the uncoupled traction-separation behavior, the  ⃑⃑  matrix in Eq. 

(8.1) simplifies to a diagonal matrix.  

 

At some point during the fiber pullout process, the bond begins to fail. Damage modeling allows the simulation 

of the associated progressive degradation process and eventual failure of the bond. This failure mechanism 

consists of the damage initiation criterion and a damage evolution law. The bond response prior to failure is 

linear, as discussed above. But once the damage initiation criterion is met, damage evolves according to a user-

defined law. Damage initiation refers to the beginning of degradation of the cohesive response at a contact 

point. For the models presented, degradation begins when contact separation satisfies the criteria specified. 

Figure 8.1 shows the full behavior of the bond from elastic stage to damage initiation, to damage evolution, and 

culmination to total bond failure. 

 

The damage evolution law, which governs the rate at which the cohesive stiffness is degraded, gets mobilized 

after the corresponding initiation criterion has been reached. During this process, a scalar damage variable, D, 

represents the overall damage at an interfacial contact point. Initially, D has a value of 0, which monotonically 

evolves from 0 to 1 on further loading after the initiation of damage [6]. The contact stress components, ,, sn tt

and tt are affected by the damage according to: 
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Figure 8.1 Typical traction-separation response of cohesive bond with nonlinear damage evolution 

 

In the experiment conducted at ERDC, bunched polypropylene fibers were selected and one example of which 

is shown in Figure 8.2. The matrix material used was Ashcrete and no more than 2% fibers by volume were 

used. To properly characterize the fiber and bond behavior of one such fiber cast in Ashcrete, single fiber direct 

tension tests and single fiber pullout tests (at various embedment lengths) were undertaken at ERDC. A view of 

the single fiber pullout test is shown in Figure 8.3 and the results of the direct tension and pullout tests are 

shown in Figure 8.4. 

 

 

Figure 8.2 Bundled polypropylene fiber [16] 
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Figure 8.3 Single fiber pullout test of polypropylene bundled fiber embedded in Ashcrete 

 

 

Figure 8.4 Single fiber tension test and single fiber pullout tests for various embedment lengths [16] 

 

Tension 

Clamp 

Fiber 

Ashcrete 



114 

 

The results of fiber pullout test given in Figure 8.4 for embedment depths of 7 mm to 20 mm suggest that the 

post-failure criterion did not show linear damage evolution. Therefore, damage evolution is based on the 

experimental data, and the value of the damage parameter D is defined by the following relationship 
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where  is a non-dimensional parameter that defines the rate of damage evolution, 
f

m  is the effective 

separation at complete failure, 
o

m is the effective separation at damage initiation, 
max

m is the maximum value 

of the effective separation attained during the loading history [47]. 

 

An additional facet to the bond behavior is that of mode-mix failure. Due to the random orientations of the 

reinforcing fibers, the load transfer mechanisms are always likely to be in some combination of shear (in two 

tangential directions) and normal forces. During simulations, the relative proportions of normal and shear 

separations at a contact point define the mode mix at that point. The form of mode mix measurement used in 

this study, as in the cases of damage initiation and total failure, is based on traction components. The definitions 

of the mode mix based on these traction components are  
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where (2/) is an angular normalizing factor. The angular measures 1 and 2 are illustrated in Figure 8.5.  
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Figure 8.5 Mode-mix measurements based on tractions [47] 

 

Since a direct tension single fiber pullout experiment gives the full behavior curve as shown in Figure 8.4, the 

model parameters for bond stiffness, K, are easily determined. The pre-failure behavior must be linear elastic, so 

these terms are determined based on the peak values. Due to the geometry of the fibers, only the local shear in 

the 1- direction (along the fiber length) will allow any substantial transfer of force. However, it should be noted 

that because there is no agreement in the literature on how to experimentally determine the local shear 2- or 

normal bond parameters of reinforcing fibers, it is assumed in this research that it is equivalent to the local shear 

1- parameters. Realistically this is unlikely to be true, but for this particular experiment, which is direct tension 

and thus mobilizes almost entirely shear forces only, this assumption is considered to be adequate.  

 

To achieve the desired bond behavior as seen in Figure 8.1, there are four bond behavior components that must 

be implemented in the model: (1) tangential behavior, (2) normal behavior, (3) surface-based cohesive 

interaction, and (4) damage evolution. The tangential behavior defines the friction coefficient which would only 

become useful after a bond has failed but the contacting surfaces may still transfer shear stresses. The normal 

behavior uses a “hard” contact relationship that minimizes the penetration of the slave surface into the master 

surface at the constraint locations and does not allow for the transfer of tensile stresses across the interface. The 

Shear 1 

Shear 2 

Normal 
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cohesive interaction coupled with the damage evolution law is what defines the relationship seen in Figure 8.1. 

A summary of all the constants used to achieve the results shown in Figure 8.6 is given in Table 8.1. 

 

Table 8.1 Parameters for surface-based cohesive bond 

Bond Component Description Constant Value 

Tangential Behavior Coefficient of Friction  0.45 

Normal Behavior “Hard” Contact   

Cohesive Behavior 

Stiffness in Shear 1  Kss 8990 lb/in 

Stiffness in Shear 2 Ktt 8990 lb/in 

Stiffness in Normal  Knn 8990 lb/in 

Damage Behavior 

Max Separation for Damage Initiation o 0.137 in 

Max Separation for Failure of Bond f 0.630 in 

Damage Parameter D 1.4 

Mode Mix 1 
 0.6 

Mode Mix 2  0.5 

 

The final, calibrated model results for the fiber pullout experiment of a fiber at 20 mm embedment is shown in 

Figure 8.6, plotted along with the experimental results for comparison. Although minimal discrepancy is noted 

in the plots, the critical element of comparison is the energy dissipated due to failure, G
C
. This value is 

equivalent to the area under the traction-separation curve. With respect to G
C
, the model given in Figure 8.6 is 

within 2% of the experimental results. 

 

 

Figure 8.6 Single fiber pullout experiment and calibrated model results 
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For the sake of simplicity, a concrete material model available in Abaqus was used to simulate the behavior of 

the cementitious matrix. The concrete damaged plasticity (CDP) model uses concepts of isotropic damaged 

elasticity along with isotropic tensile and compressive plasticity to represent the inelastic behavior of the matrix. 

Since it has the capability of smearing the effect of reinforcement, it is an ideal candidate for the homogenized 

macro model as well. It is generally accepted that Hillerborg’s (1976) fracture energy proposal is adequate to 

allay any concerns of mesh sensitivities in models of concrete where there is no reinforcement in large regions 

of the model [47]. Hillerborg defined the energy required to open a unit area of crack, fG , as a material 

parameter, using brittle fracture concepts. Since the primary principles of blast center on energy absorption, this 

fracture energy, fG , is directly related to the composite’s eventual blast resistance. By performing a direct 

uniaxial tension test of unreinforced Ashcrete, the necessary material parameters to calibrate a CDP material 

model were found. The relationship between fracture energy, fG , failure stress, 0t , and cracking 

displacement, 0tu , is shown in Eq. (8.5) and Figure 8.7. 

 

00 /2 tft Gu 
      (8.5) 

 

 

Figure 8.7 Post-failure stress-fracture energy curve 

 

It should be noted that the implementation of this stress-displacement concept in a FE model requires the 

definition of a characteristic crack length associated with an integration point and is based on the element 
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geometry. This definition of characteristic crack length is used and necessary because the direction in which 

cracking occurs is not known prior to the analysis. This means that elements with large aspect ratios will have a 

different behavior depending in which direction the cracking occurs. Therefore, some mesh sensitivities remain 

because of this bias to aspect ratio. To avoid these issues, meshes were created with as many elements as 

possible having aspect ratios close to one.  

 

To characterize the tensile response of the unreinforced Ashcrete matrix material, direct tension (DT) 

experiments were undertaken at ERDC. The sample geometry used in this study is shown in Figure 8.8 and the 

corresponding test setup is shown in Figure 8.9. Due to the shape of the specimen, this particular geometry is 

referred to as a dog-bone (DB) specimen. In the literature, there appears to be little consensus on the 

recommended procedure for testing concrete in direct uniaxial tension [16], [54]. Some researchers have 

attempted creating a uniform sample geometry with various epoxy bonded end designs to transfer the load from 

the grips of the universal testing machine (UTM) to the sample. However this approach requires tedious sample 

preparation and allows the potential for slippage due to insufficient epoxy strength. Moreover, this method has a 

tendency to induce significant clamping forces on the sample area held within the grips of the testing 

equipment. 

 

The alternative approach used in this study was to use a variation in sample geometry near the ends to enable 

load transfer through friction grips. With this approach, stress concentrations are unavoidable at the change in 

sample geometry, but a low angle of change can minimize this local effect [16]. The experimental setup also 

included the proper rotational degrees of freedom, so nearly identical boundary conditions could be applied in 

the model. As this specimen was created in a lab by use of molds, the randomly oriented fibers contained within 

the matrix material are confined within the boundaries of the mold. All fibers are whole, and for simplification 

in the model, assumed to be straight. Computer tomography (CT) scans of actual specimens were undertaken to 

view the internal layout of all the fibers and the assumption that the fibers remain straight was found to be valid. 
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Figure 8.8 Dimensions for direct tension DB specimen 

 

An example of the experimental results of direct uniaxial tension is shown in Figure 8.10. The CDP constants 

that give this response are shown below in Table 8.2. The widely dispersed data points are a result of high 

sensitivity of the displacement-controlled universal testing machine (UTM) as well as the magnification of the 

rather small magnitude of displacements being applied. A simple model of the dimensions in Figure 8.8 was 

built and analyzed iteratively to determine the appropriate fG  value for Ashcrete. The model results are also 

plotted on Figure 8.10. 

 

Table 8.2 Material parameters for unreinforced Ashcrete 

Material Model Description Value 

Concrete Damaged Plasticity 

Dilation Angle,  31 

Eccentricity,  0.1 

b0/c0 1.16 

K 0.667 

Viscosity,  0 

Compression 
Yield Stress 21,000 psi 

Inelastic Strain 0.001 

Tension 
Yield Stress 600 psi 

Fracture Energy 0.3 lb/in 

Elasticity 
Young’s Modulus 5,500,000 psi 

Poisson’s Ratio 0.15 
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Figure 8.9 Experimental setup of direct tension test of Ashcrete DB specimen [16] 

 

 

Figure 8.10 Direct uniaxial tension of unreinforced Ashcrete 

 

The results in Figure 8.10 show good agreement between the model and the experiment used to calibrate it. The 

fracture energy, fG , failure stress, 0t , and cracking displacement, 0tu , used in this calibration are used in all 
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the subsequent simulations using this matrix material. Any further changes in the material of interest would 

require this particular test and calibration methodology for the model to be applied appropriately. 

 

The calibration for the material model used for the polypropylene fibers also involved a direct uniaxial tension 

experiment (Figure 8.4). A simple elastic-plastic material model was used to define the behavior. The helical 

twisting of the bundled fibers created a modeling challenge. As the exact number of monofilaments varies from 

fiber to fiber, ideal rectangular-cubic geometry was assumed in order to reduce computation time and simplify 

the meshing algorithms. As long as the approximate cross section and surface area remained more or less 

equivalent, no large scale discrepancies were noticed. 

 

8.3 Random Dispersion and Orientation of Short Fibers 

The random distribution and orientation of fibers in the present composite allows for ease of manufacture in the 

field, but presents new challenges in modeling. Preliminary modeling studies showed that while slight 

variations in fiber orientations do not largely affect the composite’s ductility, the fiber locations have a major 

influence in energy absorption. Although majority of the fiber dispersions and orientations are random, certain 

outside influences can affect these parameters. For example, in casting the direct tension DB specimens, the 

molds used have a minimum web width that is smaller than the fiber length. A similar behavior would be 

observed in casting reinforced panels where the thickness of the panels is less than the fiber length. This causes 

the orientations in the web to be less random. Orientations near any mold barrier are likewise affected. To 

handle this phenomenon, a MATLAB script was written to encompass the semi-random dispersion and 

orientations of fibers in a short-fiber reinforced composite structure. Given the length and number of fibers and 

rectangular mold geometry, the program randomly generates a number of fiber midpoint coordinates in three-

dimensional space and two orientation angles (one angle in the local x-y plane, and a second angle into the z-

dimension). Based on these parameters, the fiber endpoints are then computed. If any of these endpoints cross 

the boundary, they are deleted and new fibers are generated. Once the proper number of fibers is generated, a 

minimum distance check is performed. This is because the MATLAB script treats these fibers as lines with no 

finite thickness orthogonal to the axis. In order to avoid fibers overlapping each other, a minimum distance is 
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assigned (typically the diameter of a fiber) and each fiber is checked against all others to ensure that none 

overlap. Figure 8.11 gives the flow diagram of the algorithm developed for the purpose. 

 

 

Figure 8.11 Flow chart of MATLAB program for random fiber generation 
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For the DB model, a 2% volume percentage of fibers gave 386 total fibers. Using the program above, the entire 

DB model was assembled. Figure 8.12(a) and (b) below shows the final assembly in plan view and side view, 

respectively. 

 

 

Figure 8.12 (a) Plan view of DB assembly (b) side view of DB assembly 

 

8.4 Multi-Scale Approach 

The short-fiber reinforced cementitious material used in this study is essentially heterogeneous and for 

computational efficiency requires multiscale treatment. Here two scales are being considered: (a) mesoscale, to 

characterize the interaction between the randomly distributed short fibers and the matrix material, and (b) 

macroscale, based on homogenized physical properties disclosed by the local analysis. The concept of 

numerical multiscale modeling to represent the effect of microscopic structure of a material at the macroscopic 

level originated from the pioneering efforts of Babuska [4], Aboudi [1], and others. This concept is in a state of 

flux and a number of basic schemes with multitudes of variations have been put forward [1]. It is now well 

recognized that in characterizing these materials, some kind of asymptotic or volume averaging technique is 

necessary. The more popular homogenized macroscale model essentially works with smeared local variations in 

the physical parameters arrived at by undertaking localized analysis at sub-macro levels [4]. On the other hand, 

the asymptotic expansion of u(x,y,z,t) can be treated as macro-level response appended by first, second, and 

higher order terms of the scale factor, , as 
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Here, the scale factor applied to physical coordinates, , is a small parameter representing the wave length of a 

periodic function. In the homogenization scheme, the macroscale properties are linked to the mesoscale 

response based on analysis performed on representative sample(s) of the material through Hill-Mandel type 

relationships applied through Cauchy stress and deformation gradients at the mesoscale to the Piola-Kirchoff 

stress and deformation gradients at the macroscale [26]. 

 

In the material of current study, heterogeneity is caused by the cementitious matrix material as well as short-

fiber reinforcement. It is necessary to account for these in arriving at the constitutive properties to be used at the 

macroscale. The random distribution of fibers in terms of minimum distance between fibers, spatial 

orientations, as well as the total number of fibers present in a given volume makes this problem very complex. 

Due to the lack of any identifiable global periodicity, the traditional approach based on the identification of a 

Representative Volume Element (RVE) cannot be justified here and a different strategy needs to be formulated. 

The random distribution and orientation of fibers is determined from probabilistic considerations programmed 

in the MATLAB script developed for the purpose and the number of fibers determined from the volumetric 

ratio of interest. The first step was to establish the random fiber configuration for the problem domain under 

consideration (as in Figure 8.12). The problem domain is then partitioned into subdomains of suitable size(s). 

Each such subdomain is being termed as a Characteristic Volume Element (CVE). Due to the random nature of 

fiber distribution, a number of such CVEs are required to be considered in the investigative stage of the study. 

The selection of CVE is based on considerations like statistical representation of homogenized behavior, 

characteristic dimensions of the structural components, size of the fibers, and the ability to accurately detect the 

effects of localized damage characteristics. In order to economize computational effort without undue sacrifice 

of accuracy, smaller CVEs can be used in areas around the expected position of local damage with high stress 

gradients and larger ones in non-critical regions away from it. Moreover, in areas away from the region of 

particular interest, the minimal number of typical CVEs (say, one) can be considered. In some situations, a more 

efficient approach will be to stick with initial homogenized representation in non-critical regions; whereas the 

critical region is subjected to multi-scale treatment.  
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In the present study, homogenization has been based on CVE properties determined at the mesoscopic level, 

primarily to account for the two material phases: the matrix material and the fibers (including bond behavior 

between the two) as well as any accumulated damage caused by the loading process. The proposed scheme does 

allow inclusion of damage behavior of the matrix material at the mesoscale, because from a series of laboratory 

tests, it was found that for the domain dimensions considered, as long as the maximum aggregate size is less 

than 10 mm, the microstructure has little bearing on the response. The CVEs are identified and the constitutive 

relationships are obtained at the macroscale by the Hill-Mandel macrohomogeneity criterion. The influence of 

all the CVEs at a point of interest in the domain can be accounted for by probabilistic data fitting based on 

Ordinary Kriging [37]. 

 

A two-scale analysis scheme based on these considerations is shown in Figure 8.13. The scheme is essentially 

based on the solution of two nested boundary value problems, one at the mesoscale and the other at the 

macroscale. The scheme can be modified to include second-order behaviors like material and geometric 

nonlinearities. In order to develop a clear understanding of the homogenization scheme, a few example 

problems in the one-dimensional space were defined and the stated homogenization process was applied using 

finite element software. These examples included (1) an elastic bar with periodic material properties, (2) an 

elastic bar with non-periodic material properties, (3) an elastic-plastic bar with periodic material properties, and 

(4) an elastic-plastic bar with non-periodic material properties. The first three examples were completed to 

validate the approach. Only the fourth example will be presented here. Once the methodology is validated, it 

gives a clear path for applying this scheme to the three-dimensional problem of multi-scale CVE treatment of 

the reinforced Ashcrete DB specimen.  
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Figure 8.13 Multi-scale homogenization scheme for two-scale analysis 

 

The one-dimensional example presented here considers an axial bar as shown in Figure 8.14. The support 

conditions are u(0) = u(L) = 0. The cross sectional area, A, is kept at a constant value of 0.1 throughout the 

length, L = 10 and u1 = u2 = 0.05 (in directions shown in Figure 8.14).  Identical displacement boundary 

conditions (in opposite directions) are applied at 3L/8 from each end. The elastic material properties for the 

entire bar have a constant value of E = 10,000 and  = 0.3. However, the plastic material properties vary for the 
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tensile region of the bar, allowing for multi-scale treatment. Table 8.3 summarizes the elastic-plastic material 

properties of the CVEs. The material properties given are yield stress, y , ultimate stress, u , modulus of 

elasticity, E, yield strain, y , ultimate strain, u , and plastic strain, 
pl . As shown, each CVE is comprised of 

four different materials. The variation in the stress vs. strain curves of the four different materials in CVE 1 take 

the form as shown in Figure 8.15. The materials in CVE 2 and 3 would have a similar behavior. The variation of 

yield stress over the length of the bar is shown in Figure 8.16. 

 

 

Figure 8.14 Schematic of one-dimensional validation example 

 

Table 8.3 Elastic-plastic material properties for CVE parts 

CVE 1 

Material y u E y  u  pl
  

1 70 100 10,000 0.007 0.011286 0.0012857 

2 60 100 10,000 0.006 0.012667 0.0026667 

3 50 100 10,000 0.005 0.015000 0.0050000 

4 40 100 10,000 0.004 0.019000 0.0090000 

CVE 2 

Material y u E y  u  pl
  

5 90 100 10,000 0.009 0.010111 0.0001111 

6 70 100 10,000 0.007 0.011286 0.0012857 

7 50 100 10,000 0.005 0.015000 0.0050000 

8 30 100 10,000 0.003 0.026333 0.0163333 

CVE 3 

Material y u E y  u  pl
  

9 60 100 10,000 0.0060 0.012667 0.0026667 

10 57 100 10,000 0.0057 0.013244 0.0032439 

11 53 100 10,000 0.0053 0.014168 0.0041679 

12 50 100 10,000 0.0050 0.015000 0.0050000 
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Figure 8.15 Stress vs. strain curves for materials 1-4 

 

 

Figure 8.16 Variation of plastic material properties along bar length, L 

 

Each CVE consists of 12 parts (therefore 12 linear elements), so the material sequence for CVE 1 would follow: 

1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4 (and similarly for CVE 2 and 3). Using the elastic-plastic material data from Table 

8.3, stress-strain curves can be generated for each material similar to that of Figure 8.15. Following the scheme 
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outlined in Figure 8.13, the first step was to determine the initial constitutive properties of the bar at the 

macroscale. In arriving at the initial homogenized constitutive properties shown in Figure 8.16, the finite 

element analysis was first based on averaged plasticity values for each CVE. The mesoscale model for each 

CVE was analyzed thereafter using a 12 element model and applying the deformations disclosed by the first 

analysis as boundary conditions. The Hill-Mandel macro homogeneity criterion was invoked thereafter to arrive 

at the improved plasticity values for the CVEs. These improved values were used in the first iterative cycle, a 5 

element model (one element for the two elastic ends and one homogenized element for each CVE) and 

compared to a full meso-scale model (the “actual” solution), also a 38 element model. The full iterative 

homogenization process results as well as the full meso-scale solution are summarized in Figure 8.17 as the 

stress vs. strain response. As is shown by the results in Figure 8.17, after one iteration of the homogenization 

scheme, the improved homogenized constitutive properties give a response that is within 1.0% of the full meso-

scale model. 

 

 

Figure 8.17 Stress vs. strain curves for CVE-homogenized axial bar compared to full meso-scale model 
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The previous example problem validates the multi-scale scheme proposed analytically to the extent of one-

dimensional problems accounting for elasticity, plasticity, and local variations of material properties and 

geometry. Using the same scheme as outlined in Figure 8.13, this scheme can now be extended to a three-

dimensional case. 

 

Before a model can be validated experimentally, the issue of CVE size must be addressed. Since the reinforcing 

fibers are random in their dispersions and orientation, no periodic boundaries can be used. The hypothesis put 

forward is that the appropriate size of a CVE should be loosely based upon the length of a reinforcing fiber. The 

major contributory factor of reinforcement is through the transfer of stresses by means of the cohesive bond 

between matrix and fiber. This stress transfer is maximized when the entire fiber length is utilized. To test this 

theory, a large CVE of short-fiber reinforced Ashcrete was built in 3D and subjected to uniaxial tension. This 

CVE has two constant dimensions (say, depth and height) and one variable dimension (say, length). The 

purpose of varying length is to determine if the constitutive relations of each CVE of differing length are 

likewise different, thereby suggesting that there is an ideal CVE size, or if the CVE size is independent of 

constitutive properties. This strategy will become more apparent later. 

 

First, a rectangular, prismatic CVE was created that was 1 in x 1 in x 2 in. The fibers were also rectangular 

prisms of dimensions 0.04 in x 0.04 in x 1.6 in. To assign 2% fibers by volume, 13 fibers were needed. Using 

the MATLAB program described in Figure 8.11, random disposition of the fibers inside the CVE were 

assigned. Then the CVE was partitioned into eight equal segments, each 0.25” in length. The assembly of the 

CVE, fibers, and partitions are shown below in Figure 8.18. To create each smaller CVE (of variable length), 

the remaining fibers and matrix on the opposite side of the partition were removed. Figure 8.19 shows the fiber 

configurations for 0.5 in, 0.75 in, and 1 in CVEs. The boundary conditions in this model were applied to the left 

and right faces of each subsequent CVE as oriented in Figure 8.19. The boundary conditions were displacement 

gradients extracted from an initial homogenous elastic model of just the matrix material as shown in Figure 

8.18, and therefore each CVE had a slightly different boundary condition. The mesh consisted of a global seed 

size of 0.08 in with an internal edge seed of 0.02 around the fiber-matrix interfaces. Linear, tetrahedral elements 

were used for the matrix while linear, hexahedral elements were used for the fibers.  
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Figure 8.18 Assembly of CVE, fibers, and partitions 

 

  

 

Figure 8.19 Assembly of CVEs of length (a) 0.5 in, (b) 0.75 in, and (c) 1.0 in 

(a) (b) 

(c) 
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Next CVEs are subjected to mesoscale analysis to determine homogenized material properties for a macroscale 

model. The methods used in the literature for bridging the scales in this branch of multiscale modeling vary 

greatly. A commonly used method for bridging the scales is the Hill-Mandel principle of macrohomogeneity, 

which establishes the energy consistency between the macro and mesoscale. The general statement of this 

principle is that the macroscopic stress power equals the volume average of the microscopic stress power over 

the CVE [26]. To achieve this, the general procedure involves equating the strain energy densities between the 

scales. In doing so, a post-failure criterion from the mesoscale was able to define the homogeneous macroscale 

material behavior. First, the mesoscale analysis was decomposed into the elastic and plastic strain components, 

in the form 

 

p

ij

e

ijij ddd   ,                 (8.7) 

 

where ij  is the total strain, 
e

ij  is the elastic strain component, and 
p

ij  is the plastic strain component. By 

Hooke’s Law, 
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where G is the shear modulus, ij  is the stress,  is Poisson’s ratio, and p is the mean stress, and in terms of 

deviatoric stress, ps ijijij   , 

 

 dsd ij

p

ij  .             (8.9) 

 

Once the incremental strain components are computed, the increment in plastic work per unit volume is arrived 

at by using 
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 dsddW ijij

p

ijijp  ,         (8.10) 

 

and the increment in strain energy per unit volume is 

 

dpddUdUddU DV  ,   (8.11) 

 

where VU  and DU  are the dilatational and distortional strain energies, respectively, and  (= ij ) is the 

volumetric strain. So from the mesoscale output, two output variables are tracked at predetermined seed points 

around the CVE: (1) elastic strain energy density,
elW , and (2) plastic dissipation energy density,

plW . Eqs. 

(8.12) and (8.13) give the relationships between energy density, stress, and strain. 

 

dtW el
t

el  :
0 ,     (8.12) 


t

plpl dtW
0

: 
.     (8.13) 

 

These variables were then plotted against the local principle strain values  332211 ,,  at each grid point. 

Figure 8.20 shows one such set of plots at one particular grid point for one particular strain component. 
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Figure 8.20 Elastic and plastic strain energy densities at grid point as a function of principal strain 

 

The stress vs. strain constitutive relationships were determined by using the relationships in Eqs. (8.12) and 

(8.13). Since each seed point gives a different constitutive response with certain oscillatory behavior (from 

small developments of plastic strain, simulating cracking behavior), it is prudent to idealize the response to take 

the form 

 

 ie
 

 max ,     (8.14) 

 

where max  is the peak tensile stress, i  is the strain at initial fracture, and  is an exponential parameter that 

describes how quickly the residual strength of the CVE degrades. Given this relationship, each seed point 

should yield a constitutive relationship that shows the general behavior shown in Figure 8.21. Using this 

generalized behavior, a simple comparison of these three constants   ,,max i allows for a broad statement 

regarding CVE size.  
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Figure 8.21 General form of constitutive relationship for CVEs in direct tension 
 

To determine whether the length of a CVE was sufficient, the average values of i ,max and  were evaluated 

over a CVE and compared to the CVEs of differing lengths. The average values are compared below in Table 

8.4. As shown, the averages vary little when changing the total CVE length by as much as 12.5-25%. Shown 

next to the averages are the ranges of these values over the CVE. As expected, the seed points closest to fibers 

show the lowest  value, indicating a much lower degradation of material strength at that point. Since the  

value controls the degradation of the strength of a material point, it can be concluded that the close proximity of 

the average  values over each individual CVE indicates a similar behavior. This is illustrated graphically in 

Figure 8.22.  

 

Table 8.4 Generalized constitutive properties for CVEs of various lengths in direct tension 

CVE Length (Range) i (Range) max (Range) (psi) 

0.5 in 26.46 (10.31-45.83) 0.0019 (0.000203-0.01530) 746.18 (601.19-1128.48) 

0.75 in 28.09 (8.74-47.09) 0.0025 (0.000195-0.000935) 723.79 (578.80-971.76) 

1.0 in 22.78 (7.65-44.89) 0.0023 (0.000111-0.02581) 710.27 (544.18-922.63) 
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Figure 8.22 General constitutive behavior of CVEs of differing sizes 

 

The final comparison is to determine if this model is representative of actual experimental behavior. To validate 

the multi-scale homogenization scheme proposed experimentally, it has been applied to the DT experiment 

conducted on a reinforced Ashcrete DB specimen at ERDC. The first step was to perform the simple analysis of 

a linear-elastic macroscale model, with 34,579 linear tetrahedral elements (hereafter referred to as the Macro 0 

model), to determine the displacement values at the CVE boundaries.  The Macro 0 model was partitioned into 

the CVEs with size considerations based on the consideration of statistically representative homogenized 

behavior, characteristic dimensions of the structural components, size of the fibers, and the ability to accurately 

detect the effects of localized damage characteristics. The Macro 0 model geometry is shown in Figure 8.23. 

Boundary conditions (BC) are located in the same location as in the experimental setup with proper rotational 

degrees of freedom to avoid introducing support moments. Since the experiment used a displacement-controlled 

UTM, the analysis is quasi-static with a displacement boundary condition ( 1u ) located at one end to mobilize 

the uniaxial tension in the specimen. To reiterate, the purpose of the Macro 0 model is to find appropriate 

displacement boundary conditions for CVE 1 (shown in Figure 8.23, with the analysis hereafter referred to as 

the Meso 1 model) that reflect the specimen geometry and its effect on the displacement fields throughout the 

analysis. 
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Figure 8.23 Macro 0 model assembly 

 

Next, the principal components of the displacement vectors at the two boundary surfaces of CVE 1 were 

extracted from the Macro 0 model. This gave a total of six boundary conditions to apply to the Meso 1 model 

(two interior surfaces, three principal directions). To build the Meso 1 model, the assembly shown in Figure 

8.12 was partitioned in the same locations as those shown in Figure 8.23. The final assembly of the Meso 1 

model is shown in Figure 8.24(a)--(d). There were a total of 27 fibers in the CVE, nine of which were whole 

fibers completely enclosed within the CVE boundary, and 18 of which extended beyond the cut surfaces. These 

projecting fibers were trimmed off the cut boundary surfaces. 
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Figure 8.24 Meso 1 assembly of CVE 1 in (a) x-y view, (b) z-y view, (c) x-z view, and (d) isometric view 

 

As shown in Figure 8.13, the first step in the presented multi-scale scheme is to assume some linear elastic, 

homogeneous material property values for the macroscale, and analyze it. This allows for the determination of 

the displacement values at the shared CVE boundaries based on the macroscale geometrical configuration. 

However, since the meshes for macro CVE and meso CVE are of differing sizes, and unlike the one-

dimensional examples, the displacements along the interfaces vary spatially, and some processing of the result 

is necessary. A simple nonlinear regression analysis was performed in order to model the spatial variation of 

displacement on any given boundary surface. 
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For the present purpose, a simple quadratic regression was considered to be adequate to approximate the spatial 

variation. Accordingly, the following quadratic polynomial is used to define the surface: 

 

yCxCxyCyCxCCyxu 654

2

3

2

21),(  ,            (8.15) 

 

where u(x, y) is the displacement component as a function of the x-y position on the surface and iC  are the 

needed constants. In all the macroscale models, the boundary of each CVE is covered with a grid of evenly 

spaced points in a local x- and y-direction. At each of these, say, n grid points with coordinates ( ii yx , ) there is 

an observed displacement value, iu .To solve for these constants, the following equation was used: 
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where, with the form {C} = [A]
-1

{u}, [A] is an n by six matrix, and {u} is a column matrix of dimension one by 

n. This set of equations is solved three times: once corresponding to each principal direction. This yields three 

boundary conditions for each CVE interior surface. Figure 8.25 shows the spatial variation of 1u for the CVE 

located in the web of the DB specimen, on the interior surface. 
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Figure 8.25 Quadratic regression of spatially varying displacement (u1) on CVE boundary 

 

The boundary conditions taken from the Macro 0 model and applied to the two end surfaces of the Meso 1 

model all take the functional form of Eq. (8.7). Table 8.5 shows the constants, iC , for these boundary 

conditions, given the interior CVE surface, and the principal displacement direction, U.  

 

Table 8.5 Constants for surface-function regression for Meso 1 boundary conditions 

 

Boundary Condition 

  (Surface 1) (Surface 2) 

Constant 1U  2U  3U  
1U     2U     3U  

C1 6.383E-03 -1.061E-04 5.448E-04 1.500E-02 4.370E-04 4.988E-04 

C2 -1.424E-03 2.930E-06 4.146E-06 3.348E-08 1.031E-06 4.341E-07 

C3 1.944E-05 -8.198E-07 1.319E-07 -2.060E-08 -1.593E-07 -8.114E-08 

C4 -2.243E-06 -2.728E-06 -9.304E-07 5.411E-08 -3.883E-07 7.521E-07 

C5 1.706E-03 1.411E-04 -2.017E-05 4.615E-07 -8.005E-04 -9.882E-06 

C6 -5.614E-05 8.882E-06 -3.829E-04 -1.744E-06 4.279E-06 -3.433E-04 

 

The Meso 1 model consisted of 873,899 linear tetrahedral elements and the full analysis took roughly 167 hours 

to complete. The results of the analysis show that, while a fully homogenized model would crack at the corner 

(surface highlighted in Figure 8.25), the presence of fibers has changed the crack location.  
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Strain energy density values were determined at 12 grid points around the CVE as shown in Figure 8.26. From 

these grid points, the Ordinary Kriging method outlined in Section 8.5 was used to determine the smoothed and 

interpolated constitutive properties of 16 cubic Sub-CVEs. The resulting interpolated properties are shown in 

Figure 8.27. The results shown indicate a wide array of constitutive properties depending on the proximity to 

reinforcing fibers and the associated orientations. For comparison with experimental data, three curves were 

chosen to show the highest, lowest, and average constitutive properties for the homogenized models and is 

shown in Figure 8.28. As shown, the general behavioral trends of the homogenized material properties align 

very well with the experiment values. The high model aligns the best in the latter part of the model, but 

overestimates the peak strength of the composite, while the low model is very close to the peak strength, but 

underestimates the softening behavior. The average model has fairly good agreement with the experiment in an 

average sense. It is to be expected that the peak values of each should not align perfectly given that no two 

experiments will yield the same result due to the randomness of the reinforcement. 

 

 

Figure 8.26 CVE 1 with grid points shown for extraction of strain energy density data 

Grid Points 
Grid Points 
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Figure 8.27 Constitutive properties for the 16 Sub-CVEs 

 

 

Figure 8.28 Constitutive properties for DT experiment compared to high and low range models and average 

homogenized model 
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8.5 Ordinary Kriging Homogenization 

A point of interest for this study is the local variation of geometric and material properties caused by the 

heterogeneity of reinforcing fibers. As shown by the one-dimensional example results in Section 8.4, local 

errors can be caused by abrupt changes in the material properties. In order to reduce these errors, a smoothing 

technique is necessary to ensure some level of material continuity at the macroscale. The essential tool for most 

geostatistical data analysis is the variogram, used to examine the spatial continuity of the data [53]. The 

mathematical definition of variogram, 2(h), is given by 

 

       2

2
1 ,, yxuyyxxuEh 

,   (8.17) 

 

where (h) is often referred to as the semi-variogram, u(x, y) is the value of the variable of interest at location (x, 

y), and E[ ] is the statistical expectation operator. Note that the variogram, 2(h), is a function of the separation 

between points, h (
22 yx  ), not a function of the specific location (x, y). The semi-variogram can also 

be expressed as 
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where n is equal to the number of pairs of values for which the separation distance is equal to h. It is obvious 

that for h = 0, the value of the variogram is strictly equal to zero [41]. On the other hand, as h increases, the (h) 

also increases up to a point beyond which it reaches a plateau. This value of separation distance at which the 

plateau is reached is called the range, a. In this study, with material and geometric anisotropy, variations may be 

noticed beyond this distance [10]. 

 

Ordinary Kriging (OK) is very convenient as a prediction technique due to its simplicity and reliability. This 

technique allows prediction of an unsampled location based on neighboring data values [30]: 
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where i are the weights assigned to the available data and neighbor data  ii yxu ,  in the proximity of the 

unsampled location  00 , yx . In OK the weights add up to unity to ensure that the estimate is unbiased: 
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The Kriging variance associated to an OK estimate is called the minimum variance unbiased estimator, since 

the constraint condition defined in Eq. (8.19) should be applied to minimize the variance of prediction errors. 

This can be represented as Eq. (8.20).  
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where  jiij uuCov ,2  . Using Lagrange multiplier, Eq. (8.20) may be expressed as 
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where L( ) is the Lagrange objective function, and  is the Lagrange multiplier. Minimization of the objective 

function can be carried out by finding the partial derivatives with respect to i and  such that: 
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Eqs. (8.22a) and (8.22b) can be rearranged as Eq. (8.23), yielding the final form of the matrix equation in Eq. 

(8.24), based on OK estimates. The weight factors are determined by solving the linear matrix form in Eq. 

(8.24) where 
2

ol represents the estimation variance between the expected value  00 , yxu  at the unsampled 

location  00 , yx  and known values  ixu  at the sampled location  ii yx ,  [53]. 
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A program was written in MATLAB to perform OK interpolation of the strain energy curves at observed 

locations in the mesoscale CVEs. These interpolated curves were the basis of the homogenization process to 

bridge the mesoscale and macroscale models in Section 8.4.  
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8.6 Multi-Scale Treatment of Fiber-Reinforced Panel under Blast 

The next and final portion of this study is to apply the multi-scale approach outlined and demonstrated in 

Section 8.4 to a fiber-reinforced armor panel under blast load. It has been found through experiments that 

reinforcing fibers do not play any substantial role in local impact resistance of brittle armors. The damage in 

that scenario is too localized. However, it has been found that in the case of a uniform blast pressure, the 

damage is global and reinforcing fibers assist in absorbing significant amounts of blast energy through 

deformation, yielding, and debonding. The amount of fragmentation caused along large fracture lines is also 

mitigated, thereby protecting warfighters from fragments that can become projectiles themselves.  

 

There are several crucial differences between the three-dimensional example in Section 8.4 and this proposed 

task. First is the issue of material modeling. The improved material model outlined in Chapter 4 and 

implemented in Chapter 7 can handle blast loading quite easily, and does not require the use of SPH due to the 

lack of fragmenting. The second critical difference is the issue of loading rate. The examples outlined in Section 

8.4 are static models simulating a quasi-static test. To handle this, experiments have been undertaken at ERDC 

[16] to determine the rate effects of the fiber-matrix bond. It was determined that the bond resistance 

experienced little change with a loading rate up to 10,000 in/min (the fastest loading rate possible with available 

equipment).  

 

The blast problem considered is applied to an arch panel made of reinforced Ashcrete and the homogenized 

material properties used are shown as the average in Figure 8.28. The actual test panel used in the experiment 

used a fiber-reinforced polymer (FRP) casing and foam support blocks that are used to cast the arch panel, but 

do not provide any significant structural support. Therefore, the model simulates only the arch panel. The panel 

was tested in a shock tube by the Blast Effects Group at BakerRisk, San Antonio, TX. The primary 

measurements made were of centerline deflection and reaction force at the top and bottom supports (seen as the 

left and right supports in the figure below). Figure 8.29 shows a schematic of the arch panel dimensions and 

boundary conditions. Two-way symmetry was used to reduce the computation time. The loading condition was 

a 10 psi (0.0689 MPa) uniform pressure load applied to the arch surface. The peak pressure occurred at 0.76 

msec and lasted for 200 msec.  
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Figure 8.29 Blast arch panel schematic (a) side view (b) plan view 

 

The results of the experiment show very clear data in terms of the reaction forces, but the centerline deflection 

was measured using a laser gauge which can only measure the outside of the wall (which is encased in FRP). It 

is for this reason that the deflections measured are expected to be significantly higher than that of the UHSC 

arch panel inside of it. Figure 8.30 shows two images from the high-speed video taken at the centerline of the 

panel on the back face. The left image shows the panel prior to the shock wave and the right image is at 13 msec 

(time at greatest centerline deflection). As shown, very little difference can be seen from the two frames. Model 

prediction of deflection for the bare Ashcrete arch was 0.94 mm; whereas the value recorded during the test was 

10.65 mm, a value badly affected by many sources of error, including the deformation and vibration of low-

strength encasing of the tested arch. More reliable values could not be obtained as the expensive test could not 

be repeated.  
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Figure 8.30 High-speed video frames from UHSC-1 arch blast panel (centerline view) 

 

The data that is easiest to validate with high confidence is the reaction force at the supports. Figure 8.31 shows 

the experimental data for the reaction forces at the top and bottom supports plotted against the model. As 

illustrated, the model shows the secondary vibrations in the reaction force that is purely due to the reflection of 

the shock wave from free surfaces within the panel. Once the data is processed using locally weighted 

scatterplot smoothing, it sits on top of the experimental results fairly well. This would indicate however that 

designs based on model data would need to smooth out any reaction force data.  

 

 

Figure 8.31 Reaction force at supports of arch panel for both experiments and model 
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The final use for the model would be in measures to predict damage. This given loading scenario was not high 

enough to fracture this arch in any locations, but the beginnings of damage can be seen in Figure 8.32. The joint 

where the arch meets the top and bottom blocks has begun to accumulate damage on a small scale, but larger 

peak pressures would rapidly increase this damage.  

 

             

Figure 8.32 Back face of arch panel (left) and zoomed-in view of corner damage initiation (right) 
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Chapter 9 

 

Summary & Conclusions 

 

The physics of impact and blast loads on brittle structures has been described in detail as they pertain to the 

ongoing work by the U.S. Army to develop protective armors for war environments. For this task, numerical 

simulation by means of the finite element method was chosen as a suitable alternative to costly and time 

consuming experiments to improve the performance of such inherently brittle materials, the experiments being 

undertaken, primarily, to validate the simulation model. A critical review of the most prominent and widely 

used constitutive models for simulating concrete (and other brittle materials) to high-rate, high-pressure loads 

has been completed. These models were evaluated and weaknesses were identified. The underlying theme 

identified is that most of the existing prominent models used are dependent only on the first and second 

invariants of the deviatoric stress tensor and not on the third. This implies that the failure surface is symmetric 

in the deviatoric plane (-plane) and, therefore, the material is simulated to be just as strong in tension as it is in 

compression. This may only be a passable assumption in brittle materials when the target is sufficiently deep 

(tending to be semi-infinite) and tensile stresses are not induced widely. If, on the other hand, a thin panel target 

is impacted, the stress wave reflects off the free surfaces rapidly and creates a tensile wave that causes extensive 

local fracture and fragmentation before the projectile is even sufficiently deep within the target.  

 

An improved material model has been described influenced by the initial findings of the AFC model (which laid 

the foundation for a non-symmetric failure surface that is third invariant dependent). A large number of 

material-characterizing experiments were undertaken under the auspices of the ERDC and used to successfully 

optimize the material parameters in the three-invariants based model for two UHSC materials: UHSC-1 and 

Ashcrete. Both continuum mechanics based methods (Lagrangian finite element analysis) and discrete element 

based models (smoothed particle hydrodynamics) have been investigated as modeling tools for simulating high-

rate ballistic impact and blast.  
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A number of impact experiments were conducted for UHSC-1 and Ashcrete. Both FEA and SPH analyses were 

conducted on ballistic limit tests of UHSC-1 and fragment simulation tests of Ashcrete (for both single and 

stacked panel configuration). The results of these models suggest that for UHSC-1 at impact velocities near the 

ballistic limit of the panel, FEA models are more accurate at predicting the exit velocity of the projectile. 

However, the SPH models are superior in predicting fracture patterns and fragmentation.  The results of the 

Ashcrete models suggest that at high impact velocities (>1000 m/s), SPH models are slightly better at predicting 

exit velocities as well as fracture patterns and fragmentation in a single thin panel case, and significantly better 

in a stacked panel case. In all cases, FEA models are computationally less expensive, both in data handling and 

time. The average increase in computation time to do an SPH model was 4.5 times that for a comparable FEA 

model of identical situations (and DOFs).  

 

A study of the effects of randomly distributed and oriented reinforcing short fibers on blast resistance has also 

been discussed. Due to the randomness of the fibers and their large size with respect to panel depth, a multi-

scale homogenization scheme needs to be used. The traditional multi-scale RVE homogenization approach was 

deemed inappropriate due to this lack of periodicity. An alternative CVE-based approach has been proposed 

with both one- and three-dimensional examples shown to validate it. The extension of this multi-scale scheme 

to a dynamic, three-dimensional blast problem has been validated against a blast experiment on an arch panel 

with satisfactory results.  

 

Further studies are required to be undertaken in the area of multiscale modeling to extend or modify the 

approach presented to improve efficiency and accuracy. More extensive studies are also required to be 

undertaken in the area of blast response of other types of cementitious armors and their support systems.  

Another important area requiring attention is the combined blast and ballistic impact effects, single or multiple. 

Finally, the highly complex problem of prediction of the behavior of explosive-laden structures is an area of 

special interest. 
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