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CHAPTER I 

AN IMPLANTABLE ELECTRICAL INTERFACE FOR IN VIVO, CHRONIC 

STUDIES OF ELECTROMYOGRAPHY IN LARYNX FOLLOWING RECURRENT 

LARYNGEAL NERVE INJURY 

 

INTRODUCTION	

	

Normal laryngeal physiology requires complex interactions involving multiple 

components.  These include both sensory and motor pathways for controlling coordinated 

muscle actions during voicing, airway protection and respiration.  The posterior 

cricoarytenoid (PCA) muscle situated on the posterior larynx is the major abductor of the 

vocal fold. Contraction of this muscle enlarges the glottic area for inhalation. The 

thyroarytenoid (TA) muscle is the major adductor of the vocal fold to close the glottic 

airway during voicing and airway protection. Both abductor and adductor muscles are 

innervated by motor fibers in the recurrent laryngeal nerve (RLN). The abductor and 

adductor muscles are distinguished with respect to their motor unit composition [1, 2]. 

The PCA muscle exclusively contains inspiratory motor units that increase firing during 

hypercapnic or hypoxic conditions [3]. In stark contrast, the TA muscle and its synergists 

exclusively contain reflex glottic closure (RGC) motor units. They close the glottis 

reflexly upon activation of sensory receptors within the laryngeal mucosa. The afferent 

fibers of sensory receptors in the larynx are carried by the internal branch of the superior 

laryngeal nerve (SLN) [4].  

 

Vocal fold paralysis (VFP) that results from injury to laryngeal motor axons in the RLN 

is a common, yet complicated clinical problem [1, 5, 6]. Damage to the RLN 

compromises both abducting and adducting functions as a consequence of laryngeal 

muscle denervation. In the majority of these patients, misdirected regeneration of neural 
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fibers in the RLN or collateral reinnervation from adjacent nerves (e.g. SLN, contralateral 

RLN) leads to a synkinetic larynx, where contraction of abductor and adductor 

antagonists produces ineffective, unsynchronized or even opposite movement of the 

vocal folds [1, 7, 8].  If the incomplete reinnervation or synkinesis is bilateral, the loss of 

vocal fold abduction on both sides results in a severe airway embarrassment that can be 

life threatening. There is currently no clinical intervention that will reliably prevent 

synkinesis or restore physiologic movement to the paralyzed vocal fold. Although 

evidence has indicated that electrical stimulation (ES) of the denervated PCA muscle 

with a low frequency may promote selective reinnervation by its original inspiratory 

motoneurons and reduce synkinetic vocal fold motion, the mechanism remains unknown 

[9].  

 

Electromyography (EMG) plays an important role in exploring the mechanisms of 

selective reinnervation. In fact, laryngeal EMG has been applied in the studies on ES to 

provide important information regarding the innervation status of abductor and adductor 

muscles [2, 9]. However, recording of spontaneous and evoked EMG potentials was 

limited to the terminal session on each animal using invasive electrodes [9]. If a 

chronically implantable system was used, EMG recordings could be obtained repeatedly 

over time to provide chronological information regarding the reinnervation status of 

laryngeal muscles.  The system would include nerve stimulation cuffs, muscle EMG 

electrodes, and an interface plug to make connections to external recording and 

stimulation equipment. Such an implantable system has been designed and used for 

canine laryngeal studies, but the interface plug was affixed to the skull and was 

susceptible to infection [2]. Possibly a better location for the interface plug would be on 

the skin, as demonstrated in studies of chronic EMG recording in rat hind limb muscles 

[10].  

 

The purpose of the present study was to develop and test a simple, inexpensive, 

implantable system that could be used for repeated, temporary electrical connections 

between implanted components and external equipment for recording EMG from the 

canine larynx. This system could be used to record signals that reflect the innervation 
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status of target laryngeal muscles throughout the entire study with minimal risk of 

implant damage by the animal or infection.  

 

MATERIALS AND METHODS 

	

Description of the implant 

	

This implantable EMG system consisted of two RLN bipolar nerve stimulus cuffs, two 

SLN bipolar nerve stimulus cuffs, two PCA EMG recording electrodes, two TA EMG 

recording electrodes, and an interface plug that permitted connection between each lead 

terminal and external equipment. Figure 1 shows a schematic of the components. A nerve 

stimulus cuff had two Teflon-coated stainless steel wires whose tips were deinsulated and 

attached to the interior surface of a silicon tube. Two 6-0 non-absorbable sutures were 

embedded into its wall for securing the cuff onto the nerve after installation. The 

recording electrodes were made of the same Teflon-coated stainless steel wires with 

hook-wire deinsulated tips. Attached to the TA recording electrode was a Dacron patch 

for additional electrode stabilization through suture fixation to the thyroid cartilage. All 

the Teflon-coated wires were coiled in order to provide spring-like motion of the leads 

during body movement to prevent breakage.  A small metal female pin was attached at 

the other end of each electrode wire. During the implant surgery, all of the pins were 

inserted into the holes of a plug, which served as the interface for connection between all 

implanted electrodes and the external equipment.  
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An important application of this implantable EMG system was to obtain chronological 

EMG recordings from both the PCA and the TA muscle in animals undergoing bilateral 

RLN transection. In addition, a second implantable system was employed to chronically 

stimulate the PCA muscles to potentially effect the pattern of their subsequent 

reinnervation. This system consisted of two deep-brain-stimulation (DBS) electrodes 

Figure 1. Stimulation and recording implant system. (A): From left to right is shown 
the stimulus cuff, the TA recording electrode, the PCA recording electrode, and the 
skin interface plug. Each Teflon-coated stainless steel lead wire was deinsulated 0.8 
cm at the tip to form a hook-shape electrode for muscle recording (E). At the end of 
each wire was attached a female pin (D), which was inserted into a hole of the skin 
plug (B) during the surgery. The plug had Dacron attached on its sidewalls, which was 
designed to fix the plug in position by connective tissue anchorage to the mesh pores 
(C). Two 6-0 suture wires were embedded into the silicon tube of the bipolar nerve 
stimulus cuff (F).	
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which were interfaced with an implantable pulse generator (IPG, EonC, St. Jude Medical 

Inc., St Paul, MN, USA). A detailed description of this implantable conditioning system 

will be presented in the second chapter of this dissertation. The PCA hook-wire recording 

electrode was inserted through the DBS electrode tip and fixed in position by Silicon gel 

(Figure 2, round inset).	 	

	

Implant surgery 

	

This study was approved by the Institutional Animal Care and Use Committee (IACUC) 

of Vanderbilt University and conducted in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. Eight adult canines weighing 

20–25 kg were implanted with the device. They were mongrel hound strain obtained from 

Marshall farms (North Rose, NY, USA). Each dog was housed individually in an 87” x 

42.5” cage with enrichment toys as well as normal food and water supply. These cages 

were located in an IACUC-approved animal housing facility with good ventilation and 

Figure 2.  Schematic of implant in the larynx. Bipolar stimulus cuffs were implanted 
onto bilateral recurrent laryngeal nerves and internal branches of superior laryngeal 
nerves; hook wire recording electrodes were implanted in bilateral TA muscles and 
PCA muscles. 	
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12/12-hour light-dark cycle.  Three of them (Dog #1 to #3) served as acute implant 

models in which their RLN nerves were left intact; the other five (Dog #4 to #8) were 

long-term animals with bilateral RLNs sectioned and anastomosed. Each animal was 

anesthetized with 2 mg to 4 mg/kg Telazol (Wyeth, Inc., Madison, WI) intravenously 

followed by 3% Isoflurane in oxygen through intubation. All procedures were performed 

under aseptic conditions. The animal was placed in a supine position and a midline neck 

incision was made from the thyroid notch to the manubrium. The trachea was dissected 

free from the esophagus, and the inferior border of the cricoid cartilage was exposed. The 

stimulus cuffs were positioned onto the SLNs and RLNs bilaterally and the lips of each 

cuff sutured for closure. A cartilage window was made by a biopsy punch at the anterior 

surface of the thyroid cartilage on each side and both TA muscles were exposed. The 

EMG recording electrodes were inserted into the TA muscles using a 23-gauge needle. 

Sutures were made between the electrode Dacron patch and cartilage. The DBS electrode 

along with the hook-wire EMG recording electrode was placed underneath the PCA 

muscle on each side (Figure 2). After endoscopic confirmation that stimulation produced 

vocal fold abduction for each channel, the DBS electrodes were anchored to the cricoid 

cartilage by 4-0 silk. All the wire leads of the EMG system were connected to the 

interface plug and pinched into holes with an insertion tool fashioned from a hemostat. 

Bone cement (Zimmer, Warsaw, IN) was used to seal the inferior side of the plug to 

insulate lead-pin junctions. The plug was placed at the rostral end of the midline incision 

through the skin and was sutured to subcutaneous tissues and skin. The two DBS leads 

were connected to the IPG which was positioned underneath the trapezius muscle on the 

left side of the neck.  For the long-term animals, a second surgery was performed to 

transect and anastomose the RLNs 9 to 16 days after the first implant surgery. Baseline 

recordings could be obtained between the two surgeries while the nerves were intact. 

Each animal was closely monitored postoperatively until full recovery from the surgery.  

Buprenorphine was given twice a day for up to 3 days postoperatively to minimize any 

discomfort or pain. Tranquilizers or antibiotics were used when necessary. To allow 

normal wound healing and stabilization of implanted devices, each animal was restricted 

from exercise for a period of 10 days.  
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EMG recording during physiology session	

	

Following implantation, each animal was brought to the laboratory every 2-3 days in the 

first week and then once a week thereafter. The animal was anesthetized with Telazol 

(initial loading dose 2–4 mg/kg i.v., then maintained with 0.4 mg/kg per hour) and 

maintained in a moderate plane of anesthesia in a supine position. A zero degree 

endoscope (Karl Storz, Germany) with an attached Sony CCD (Sony Corp., Tokyo, 

Japan) video camera was inserted through a laryngoscope to visualize vocal fold motion 

at the level of the glottis. An external plug similar to the interface plug but smaller and 

integrated with male pins connected the muscle electrode leads to external preamplifiers 

for EMG recording (Grass P5 Preamplifiers, Grass Products, RI, USA, Figure 3).  

Individual male pins were used to connect the nerve stimulation electrodes to a pulse 

generator (Grass S88 stimulator, Grass Products, RI, USA).  The outputs from the 

preamplifiers were connected to two sets of recording equipment: The first set consisted 

of two oscilloscopes (Digital Recording Oscilloscope 1604  & Fast Recording Scope 

7200, Gould Electronics, USA) that were configured differently to record and analyze 

peak-to-peak values (DRO 1604) and rectified and integrated areas (FRS 7200) of EMG 

signals; The second set was PowerLab 16/35 (ADInstruments, Inc, CO, USA) that served 

as analog-to-digital hardware, it was connected to a laptop where EMG data was 

displayed and stored for off-line analysis.  

First, to start data collection, evoked EMG responses were recorded from TA and PCA 

muscles following RLN stimulation. Since the RLN contains nerve fibers of both 

inspiratory and RGC motor units, stimulation of RLN resulted in firing of both types of 

units. Therefore, the evoked EMG response recorded from the PCA and TA muscles gave 

a good index of the overall magnitude of their innervation or reinnervation, irrespective 

of motor unit type.  Evoked EMG motor unit activity was rectified and integrated over a 

20-ms window. 

Second, the internal branch of the superior laryngeal nerve was stimulated. Sensory-

elicited motor unit activity was recorded from the PCA and TA muscles. Recorded RGC 
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unit activity was quantified by rectification and integration over a 20-ms window, 

positioned in time to capture the entire RGC waveform. As only the RGC units were 

recruited by stimulation of the SLN, the recorded muscle activity gave an estimate of 

incorrect reinnervation of the PCA muscle and correct reinnervation of the TA muscle.		

 

 

 

Finally, spontaneous EMG activity was recorded from PCA and TA muscles when 

respiratory drive was maximized by administration of CO2 mixed with room air. 

Exposure was limited to 1 minute during which time maximum inspiratory motor unit 

recruitment occurred. Recordings were amplified, rectified, and integrated over an 8-

second time interval. Normally, inspiratory motor units were involved in abducting the 

Figure 3. The interface plug on the skin of the anterior neck (A) and connections that 
were established for nerve stimulation and EMG recording in the experiment (B). 
Dummy male pins were put inserted into the female pins of the plug to keep them free 
of debris between recording sessions.  
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vocal cord at maximal inspiratory effort; such spontaneous EMG activity provided a good 

estimate of the magnitude of appropriate PCA muscle reinnervation by its original 

inspiratory motoneurons.  Likewise, the inspiratory EMG activity recorded from the TA 

gave an index of the incorrect or synkinetic reinnervation of this muscle. 

 

RESULTS 

		

Device compatibility 

The duration of the study ranged from 7 to 10 weeks (9±1.7, Mean±SD) for the short 

term animals, and from 6 to 41 weeks (32±14) for the long term animals. One long-term 

animal (Dog #6) was removed from the study at 6 weeks because of failure of the IPG, 

his EMG recording system remained intact and functional. Seven of the eight canines 

tolerated the implants well throughout the study. Only the first short term implant (Dog 

#1) showed signs of infection by the end of the study, as demonstrated by skin irritation 

and purulent discharge around the interface plug. For the rest of the animals, the skin 

around the interface plug appeared healthy and the sutures securing the plug remained 

intact (Figure 3A).  

 

Post-mortem examination revealed that the inferior part of the interface plug was 

typically encapsulated by connective tissues. Such encapsulation not only fixed the skin 

plug in position, but also helped stop bacteria tracking down leads and causing infection 

in deeper tissues. Similar encapsulation occurred around implanted leads and electrodes 

but it did not interfere with the function of the system. 

 

No sign of degradation or erosion was evident in any wire lead, electrode, or the plug.  

The nerve stimulus cuffs remained in position and functional in most cases except for 

one, in which a suture on the cuff became loose and part of the nerve slipped out of the 

slit. Generally, the size of the cuff was large enough to prevent neuropraxia from 
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postoperative edema, yet small enough to permit nerve excitation.  All the lead wires 

remained intact and coiled. All recording electrodes were kept in position and remained 

functional.  

 

Nerve trauma was seen in one acute implant case (Dog #3), as evidenced by the lack of 

evoked response from both PCA and TA muscles during RLN stimulation on the same 

side. This was probably due to iatrogenic injury during dissection of the RLN, as the 

cuffs and electrodes were found to be anatomically in position and intact during autopsy. 

EMG potentials could not be recorded from a PCA muscle in one case, and autopsy 

showed the hook-wire recording electrode had been inserted into the perichondrium of 

the cricoid cartilage.  

 

Although these problems were encountered in short-term implant animals, they were all 

resolved in long-term animals after gaining sufficient experience and skill in 

postoperative care and surgical technique.		

	

EMG recordings 

EMG signals were successfully recorded from the PCA and TA muscles in almost all 

animals. The shape and the amplitude of the potentials were comparable to what we 

recorded previously [2]. Stimulus artifact was minimal and did not impact the evoked 

muscle signal.  

 

In the normally innervated larynx, the PCA or TA response evoked by stimulation of the 

RLN (Figure 4A, large peak) had a shorter latency than the TA response evoked by 

stimulation of the SLN (Figure 4B, largest peak(b)) because the former involved a 

monosynaptic pathway while the latter involved a reflex polysynaptic pathway. Further, 

the direct response due to activation of motor fibers in the RLN was distinguished in the 

consistency of its EMG waveform across stimulus trials in contrast to the indirect 

variable response of RGC motor units recruited by SLN stimulation. After the occurrence 

of stimulus artifacts (arrows), laryngeal muscle potentials appeared.  The potential (a) 
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immediately following the stimulus artifact in Figure 4B was a direct response from the 

cricothyroid muscle, since this muscle was also innervated by the SLN.  The cricothyroid 

potential was recorded by the TA electrode since this muscle was located near the TA 

muscle. Previous studies have shown that the cricothyroid component of the SLN 

response can be selectively abolished by sectioning the external branch of the SLN 

(Zealear, unpublished observations).  

 

Spontaneous EMG signal from the PCA muscles manifested phasic inspiratory 

discharges followed by minimal expiratory activity during each respiratory cycle at rest. 

(Figure 4C) Upon CO2 delivery through the mouth, an increase in muscle activity was 

typically observed within 20 seconds after the start of a CO2 trial, indicating contraction 

of the abductor muscle to open the vocal fold during hypercapnic breathing. (Figure 4D). 

The amplitude of an individual evoked EMG signal was measured in the form of a 

rectified/integrated (R/I) area over a 20-ms window. Table 1 summarizes the amplitude 

of all EMG signals recorded when the nerves were intact. A typical EMG signal recorded 

from the PCA muscle in response to the RLN stimulation ranged from 8 to 14 µV*s 

which was marginally smaller than the response of TA muscle by RLN stimulation (15-

23 µV*s). In contrast, only the TA muscle showed response to the SLN stimulation 

because the RGC units exclusively innervate adductor muscles. The amplitude of TA 

responses ranged from 7 to 13 µV*s, averaging 10.5 µV*s, while the PCA amplitude 

following SLN stimulation did not differ from the background noise level.  During CO2 

breathing, the PCA muscle was exclusively activated to abduct the vocal folds and 

enlarge the glottis. This was accompanied by a large increase in EMG activity over 

baseline levels, averaging 0.8 mV*s for an 8-second rectification-integration period. This 

was significantly larger than the EMG noise level of the TA muscle, which averaged only 

0.2mV*s. 
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Canine	
RLN	 SLN	 CO2	

PCA	 TA	 PCA	 TA	 PCA	 TA	
#1	 14.7±3.1	 14.7±3.0	 0.9±0.3	 7.9±2.0	 0.9±0.2	 0.2±0.1	
#2	 10.6±1.8	 19.4±5.0	 1.8±0.7	 7.6±2.0	 0.6±0.1	 0.2±0.1	
#3	 N/A	 23.3±2.9	 3.3±0.5	 13.0±3.1	 1.0±0.2	 0.3±0.1	
#4	 8.4±2.6	 14.0±5.4	 1.9±0.6	 9.7±3.6	 0.7±0.1	 0.2±0.1	
#5	 13.8±1.6	 18.9±2.0	 1.8±0.6	 10.0±2.0	 0.9±0.3	 0.1±0.1	
#6	 11.0±2.7	 17.6±3.7	 1.2±0.5	 13.4±3.0	 0.7±0.1	 0.1±0.1	
#7	 9.6±1.8	 16.4±2.5	 1.5±0.3	 13.0±1.9	 0.6±0.2	 0.2±0.1	
#8	 11.4±4.9	 16.8±2.2	 2.0±0.4	 9.4±1.1	 0.9±0.2	 0.2±0.1	

Mean	 11.5±3.4	 17.7±4.3	 1.7±0.8	 10.4±3.1	 0.8±0.2	 0.2±0.1	

Figure	4.	EMG Recordings from laryngeal muscles. A: evoked electromyography 
(EEMG) from PCA muscle following RLN stimulation. B: response of TA muscle 
RGC motor units activated polysynaptically via SLN stimulation. C: normal 
spontaneous inspiratory activity recorded from PCA muscles. D. EMG activity from 
PCA muscle throughout the course of CO2/air delivery. 	
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Following RLN nerve section and repair, the overall level of PCA and TA muscle 

reinnervation could be quantified by the amplitude of their EMG potentials evoked by 

RLN stimulation (Figure 5). In 4 chronic animals, substantial EMG responses were 

recorded in both PCA and TA muscles preoperatively. Following RLN transection, 

responses from both muscles were at noise level during the first two months. The EMG 

signal typically reappeared in both PCA and TA muscles after 2 months and reached a 

plateau by 5-6 months. All four TA muscles regained substantial magnitude of 

reinnervation by the end of the study, as their EMG responses was comparable to their 

preoperative baseline levels (14-21µV*s). Similarly, the PCA muscles in two animals (#4 

and #8) had considerable overall reinnervation while the other two (#5 and #7) had 

substantially less.  

Table 1. Amplitude of evoked and spontaneous EMG responses recorded from 
laryngeal muscles when RLNs were intact. All values were shown in the form of mean 
± standard deviation. Abbreviation: RLN-Recurrent Laryngeal Nerve; SLN-Superior 
Laryngeal Nerve; PCA- Posterior cricoarytenoid muscle; TA- Thyroarytenoid muscle.	

Figure	5.	Chronological recordings of potentials evoked by RLN stimulation from 
four long-term nerve-sectioned animals. 	
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The level of incorrect reinnervation of the PCA muscle and correct reinnervation of TA 

muscles by RGC motor units can be indexed by the relative responses evoked by SLN 

stimulation. Figure 6 shows chronological recordings of potentials evoked by SLN 

stimulation (i.e. the RGC response) from 4 long-term nerve-sectioned animals. Before 

nerve section (time 0), RGC responses were only recorded from the TA muscles. The 

PCA amplitudes were at noise level. Thus RGC motor units exclusively comprised the 

TA muscle. Following nerve section, the RGC response typically reappeared in the TA 

muscles in about 2 months, and reached a plateau by 5-6 months. In three animals (i.e. 

Dog #4, #5 and #7), reinnervation of the PCA muscles by foreign RGC motoneurons was 

inhibited. In contrast, the fourth animal (i.e. Dog #8) showed synkinetic reinnervation of 

the PCA muscle. 

 

 

 

Figure 6. Chronological recordings of potentials evoked by SLN stimulation (i.e. the 
RGC response) from four long-term nerve-sectioned animals. 	
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DISCUSSION 

 

This chapter presented a chronic EMG implant method and system that was simple and 

capable of obtaining stable EMG recordings from both abductor and adductor muscles in 

the canine’s larynx for up to 41 weeks. Several advantages were observed: The design of 

the skin interface plug was uncomplicated and compact, but sufficient for its purpose. 

Temporary electrical connection to external equipment could be easily established by 

inserting wire containing male pins into the female pins of the skin plug. The Dacron 

attached on the sidewalls helped to fix the plug in position by connective tissue 

anchorage to the mesh pores.  The small size of the plug and its location on the anterior 

neck prevented device breakage by an animal’s activity while not causing discomfort to 

the animal. Use of hook wire tips increased the stability of the EMG electrodes in the 

muscle. Coiling lead wires provided additional flexibility and prevented leads from 

breaking during bending movement. The procedure of tunneling the wires 

subcutaneously added stability to the implant as the fascia bonded well to the wires’ 

insulation. Risk of infection was minimized by several procedures: (1) After insertion of 

the female pins into the holes of the skin plug, the subcutaneous surface of the plug was 

sealed by bone cement, which helped to keep bacteria tracking down from the external 

surface; (2) The surgical wound was flushed with gentamycin and postoperative 

antibiotics were also given orally to all the animals for at least three days; (3) The skin 

plug was cleaned daily with Nolvasan solution (Fort Dodge, Overland Park, KS), 

removing any debris that could have caused instability of electrical connection. (4) In 

addition, dummy male pins were positioned into the holes of the skin plug at all times 

except during the EMG recording sessions. This maneuver kept the female pins free of 

debris, which allowed competent connections to be made by the interface cable.  Trauma 

and edema were minimized as well. The dogs were able to perform behavioral tasks 

within a few days of the surgery. Necropsy showed adequate encapsulation of all the 

implants. Dissection along the course of the wires showed no evidence of inflammation. 

All of these advantages made this implant system more preferable to the skull mounting 

plug, which was prone to infection.   
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Several problems were encountered in this study. First, infection was observed in the first 

implant. It was probably due to inadequate cleaning of the skin plug, since the infection 

started from the skin in about two months after the implant surgery and necropsy showed 

no sign of infection in deeper tissues. The plug was cleaned 2-3 times per week in this 

animal.  In subsequent animals the plugs were cleaned daily and there was no sign of 

infection throughout the duration of the study in these animals.  Second, iatrogenic injury 

was observed in another acute implant case, in which RLN was injured by extensive 

dissection. As operative skill and postoperative care improved, no infection or iatrogenic 

injury was encountered in the long-term animals.   

 

The positions of the recording electrodes for both the PCA and the TA muscles were 

confirmed by post-mortem microdissection of the larynx. There was no sign of any 

electrode migration in any long term animal. Thus the absence of an EMG response from 

a muscle in these long term animals likely resulted from little, if any, reinnervation of the 

muscle, instead of electrode migration. 

  

On the whole, this implantable system was simple, economical and functional, which 

made it a reliable platform for EMG measurement in any research application where 

chronological recordings need to be made over long periods of time.  It could be applied 

to other neuromuscular studies where neural stimulation and/or chronic EMG recording 

are required, such as investigations of swallowing and facial paralysis. In this regard, the 

technology as described is being used to study tongue plasticity through hypoglossal 

nerve stimulation in the awake chronically implanted aging rat [10]. It should also be 

mentioned that this implantable system could be combined with remote recording 

technology (e.g. telemetry) to provide a means for EMG recording in freely moving 

animals. As such, it could be viewed as a platform technology for long-term 

intramuscular recording. We have demonstrated the functionality and reliability of the 

system in electrophysiological studies of laryngeal muscles in both short term and long 



	

	 17	

term animals for up to 41 weeks. Clinical experience with implantation indicated minimal 

surgical difficulty and postoperative complications.  Future research will include 

evaluation of this system in an animal model for examining the effect of electrical 

stimulation on selective reinnervation of paralyzed facial muscles.  

 	

CONCLUSION 

	

A simple, inexpensive implantable system was developed for long-term EMG recordings 

from the canine’s larynx. Use of this device could record reliable EMG signals that 

reflected the innervation status of the target laryngeal muscles throughout the entire study 

with minimal risk of device breakage, trauma or infection.  
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CHAPTER II 

ELECTROSTIMULATION OF DENERVATED LARYNGEAL MUSCLES TO 

PROMOTE SELECTIVE REINNERVATION 

	

INTRODUCTION 

	

The term vocal fold paralysis conjures the image of a motionless larynx. The 

symptomatology of VFP depends upon whether the damage to the nerve is unilateral or 

bilateral. Patients with long-standing unilateral vocal fold paralysis (UVFP) typically 

present with a fairly sudden onset of breathy, weak, low-pitched dysphonia. Some of 

these patients may report shortness of breath or a feeling of running out of air, due to the 

glottal incompetence during speech. UVFP may also be associated with dysphagia or 

aspiration. As a result, vocal fold injection or thyroplasty may be provided to patients 

with UVFP to improve vocal quality by restoring glottal competence and to improve 

swallowing function [11-13]. Compared to UVFP, where normal ventilation can be 

relatively spared with only one vocal fold paralyzed, the classical presentation of patients 

with bilateral vocal fold paralysis (BVFP) is reduction of glottal area. Airway obstruction 

with distressing, persistent, high-pitched stridor is usually severe enough to warrant 

tracheotomy. In many patients, clinical intervention is required in the form of an 

emergent tracheotomy followed by a partial resection of the vocal fold to enlarge the 

airway (e.g cordotomy, arytenoidectomy) and return breathing through the mouth.  

Unfortunately, this procedure sacrifices voice and compromises the ability to swallow 

without aspiration [6].  

	

Neither of these airway enlargement procedures can restore both major functions of the 

larynx—enlargement of the airway for respiration and reduction for vocalization. For 

either type of VFP, especially BVFP, an ideal treatment approach would be to allow 

nerve regeneration following injury to restore natural reinnervation of muscles and avoid 
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synkinetic paralysis altogether. Since Horsley’s original report of successful restoration 

of vocal fold mobility after RLN anastomosis [14], some investigators have attempted to 

reinnervate the paralyzed larynx using a variety of approaches in animal experiments and 

limited clinical trials [15-18]. However, results of procedures by RLN anastomosis have 

not been favorable in terms of restoring the spontaneous and/or voluntary motility of the 

larynx [19]. Poor functional outcomes following repair of peripheral nerve lesions can be 

attributed to two main factors: (1) decreased magnitude of reinnervation to the target 

organ in face of tissue atrophy, and more importantly (2) misdirected regenerating axons 

into the wrong distal pathways and inappropriate target reinnervation [20, 21]. 

 

Electrical stimulation (ES) has emerged as a potential therapeutic measure following 

peripheral nerve injury to prevent muscle atrophy and enhance nerve regeneration. It has 

been shown that ES to the denervated muscle prevents loss of muscle mass and strength 

and may improve function in hind limbs [22-25], larynx [26, 27], face [25] and hands 

[28]. Recent evidence showed that ES to the muscle significantly reduced the expression 

of muscle-specific ubiquitin ligase - muscle RING finger 1 (MuRF-1), which is normally 

overexpressed in atrophied muscles [29]. In addition, ES applied to the nerve may also 

promote functional recovery of the muscle after denervation [2, 30-33]. Al-Majed et.al. 

demonstrated that ES to the nerve accelerates axon outgrowth by mediating the 

expression of brain-derived neurotrophic factor (BDNF) and its specific receptor trkB at 

the level of neuron cell body [34]. The up-regulation of both BDNF and trkB is crucially 

involved in the up-regulation of regeneration-associated genes such as Tα1-tubulin and 

growth-associated protein 43 (GAP-43). These genes are also implicated in the 

subsequent acceleration of axonal elongation [35].  All this evidence indicated that ES 

contributed to functional recovery of the denervated muscles by accelerating axon 

regeneration and reinnervation of muscle before significant atrophy had occurred [20]. 

 

On the other hand, the effect of ES on the specificity of reinnervation is less well 

understood. In the rat hind limb, Brushart et. al. demonstrated that motoneurons 

preferentially regenerate down the motor branch at a motor-sensory bifurcation pathway 

[36]. This process is believed to be triggered by Schwann cell neurotrophins and directed 
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by motoneuron cell bodies. Specifically, ES applied briefly to motoneurons was found to 

accelerate the speed and accuracy of regeneration down a motor pathway [20, 37].  

However, preferential motoneuron regeneration down one muscle pathway versus 

another does not appear to occur naturally following lesion of a common nerve composed 

of mixed efferents. Indeed, inappropriate muscle reinnervation is prominent following 

injury to such nerves as the facial or recurrent laryngeal nerves.  Regarding the latter, 

synkinesis could be avoided only by stimulating the muscle or its reconnecting 

motoneurons as shown by Zealear et. al. [2]. In this study, there was quantitative 

evidence that low frequency stimulation of the PCA muscle repressed reconnection by 

foreign RGC motoneurons and promoted reinnervation by native inspiratory 

motoneurons. The hypothesis for the mechanism through which ES enhances the 

specificity of reinnervation was postulated: ES modulates not only contractile protein 

synthesis and muscle fiber properties, but also receptivity of the endplate for a particular 

motoneuron type.  

 

Although the mechanism for ES underlying selective reinnervation is not known, these 

previous findings should encourage further investigations of ES to enhance selective 

reinnervation by stimulating the PCA muscle during a critical period of reinnervation 

following RLN injury, which may lead to a preferable and natural approach to treatment 

of synkinetic VFP. Further, the application of ES to other motor systems could provide 

benefit if synkinetic paralysis is commonly manifested.  For example, Bell’s palsy may 

also be treated with ES once the mechanism underlying selective reinnervation is fully 

discovered in the canine laryngeal model. 

 

A particular ES paradigm can be defined through its frequency, pulse duration, duty 

cycle, amplitude, ramp time, pulse waveform, train duration, train frequency, etc. [38]. If 

ES of the muscle can promote selective reinnervation by its original motoneurons, it will 

be interesting to find out whether this effect varies when using different stimulus 

paradigms. To design a study to answer this question, we’d like to focus on those 

parameters that are most likely to have an impact on the pattern of reinnervation.  
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To find out what parameters are critical, it is important to understand the properties of 

motoneurons and muscle fibers, as well as their relationship. As a matter of fact, it has 

long been realized that there is a fundamental relationship between an α-motoneuron and 

the muscle fibers it innervates, for which the term motor unit was coined [39]. A motor 

unit is made up of a motoneuron and the skeletal muscle fibers innervated by that 

motoneuron's axonal terminals [40]. Motor units can be categorized based upon their 

response characteristics, or more specifically, their contraction speeds. Generally, there 

are two types of motor units based on this classification: slow and fast. The motoneurons 

of slow motor units exhibit tonic activity at low firing frequencies, and slow muscle 

contraction speed with low force. In contrast, the motoneurons of fast motor units 

typically exhibit phasic activity at high firing rates and fast muscle contraction speed with 

high force [41]. The most distinctive feature of these types of motoneurons is their firing 

frequencies. 

 

The pioneering study of Buller et.al. was the first to establish that muscle fiber 

physiological properties were correlated with those of their motoneurons [42]. Since then, 

many studies have been done to investigate the role of motor innervation in maintaining 

or changing muscle properties using various methods such as denervation, cross-

reinnervation and ES. It is well established that muscle physiological properties and 

chemistry are under the control of the electrical impulse pattern mediated by its nerve 

supply [43-49]. Moreover, ES of denervated muscle at frequencies that mimic normal 

slow-twitch or fast-twitch motor unit activities result in transformation of the muscle to 

each type, respectively [43, 45, 48-50]. In sum, ES takes advantage of a muscle’s 

inherent plasticity by modulating the contractile protein synthesis and muscle fiber 

properties. With this knowledge, it has been postulated that the receptivity of the endplate 

for a particular motoneuron type can also be modulated by varying the pattern of ES 

conditioning of the muscle [2]. That is, it is hypothesized that the induced activity affects 

the pattern of reinnervation as well as the muscle’s contractile properties in a way largely 

determined by the frequency of stimulation [45, 46].  
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As mentioned earlier, the abductor (PCA) and adductor (TA) muscles are distinguished 

with respect to their motor unit composition.  The PCA muscle exclusively contains 

inspiratory motor units which typically have slow firing rates and increase firing during 

hypercapnic or hypoxic conditions [3].  In contrast, the TA muscle and its synergists 

exclusively contain fast-firing motor units and close the glottis reflexively by activation 

of sensory receptors within the laryngeal mucosa [21]. According to the hypothesis, the 

type of neurons that reconnect with the PCA muscle may depend upon the type of 

activity presented during the conditioning period. The goal of this study was to determine 

if low frequency stimulation, characteristic of slow motoneurons such as PCA inspiratory 

neurons, would lead to a more appropriate PCA muscle reinnervation and better glottic 

airway compared to high frequency stimulation. The long term EMG recording technique 

described in the first chapter was used to accomplish this aim. 

 

MATERIALS AND METHODS 

 

Experimental design and stimulus paradigm 

 

This study was performed in accordance with the PHS Policy on Humane Care and Use 

of Laboratory Animals, the NIH Guide for the Care and Use of Laboratory Animals, and 

the Animal Welfare Act (7 U.S.C. et seq.). The animal use protocol was approved by the 

Institutional Animal Care and Use Committee of Vanderbilt University. Eleven canines 

(body weight 21-26 kg) were entered into the study and randomly assigned to four groups 

to assess the effect of different stimulus paradigms on reinnervation quality and degree of 

functional recovery: 1) non-stimulated control 2) 10Hz 3) 20Hz 4) 40Hz train (Table 2).  

Stimuli were applied to the PCA muscles during the denervation/regeneration period of 

90 days using a totally implantable system.  In the stimulation groups, the left PCA was 

stimulated continuously and the right PCA once a week in all except one animal (#940).  

Only a small number of animals could be studied because of the long duration required to 
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assess reinnervation and functional outcome. Preoperative testing of animals with intact 

RLNs was performed to obtain normal data for comparison with postoperative data 

during endoscopy and treadmill testing.  In addition, a separate control group with intact 

RLNs was added for comparison of PCA and TA EMG data following nerve section and 

reinnervation.  

 

Grouping 
(Stimulus 
frequency) 

Non-
stimulation 10Hz 20Hz 40Hz 

Animal number 510 858 575 753 940 824 874 345 688 509 36 
Study duration 

(months) 10 8 12 12 9 10 7 20 10 14 8 

Stimulus 
paradigm 
applied to 
the PCA 
muscle 

Continu
ous No 

stimulation 
until 

respiratory 
impairment 

L L R L L L L L L 
Two 

hours, 
once 
per 

week 

R R L R R R R R R 

 

Implant	surgery	

 

Each animal was anesthetized with 2–4 mg/kg Telazol (Wyeth, Inc., Madison, WI) 

intravenously followed by 3% Isofluorane in oxygen through intubation. All procedures 

were performed under aseptic conditions. The animal was placed in a supine position and 

a midline neck incision made from the thyroid notch to the manubrium. The trachea was 

dissected free from the esophagus, and the inferior border of the cricoid cartilage was 

exposed. On each side, a submuscular pocket was created between the PCA muscle and 

the underlying cricoid cartilage using a periosteal elevator. A deep brain stimulation 

(DBS) electrode was inserted 14.5 mm into each pocket halfway between the point of 

RLN entry and the median raphe, with a trajectory parallel to the midline (Figure 7, right 

PCA electrode inserted). After endoscopic confirmation that stimulation produced vocal 

fold abduction for each channel, the electrodes were anchored to the cricoid cartilage by 

Table 2.  Animal Groupings and stimulus paradigms. Pulse trains were delivered to 
animals’ PCA muscles in different frequencies with 4-sec on/ 4-sec off duty cycle; L-
Left; R-Right	
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4-0 silk. The channels were numbered 1 to 4 on the left side and 5 to 8 on the right side 

from tip to base of each electrode. The electrode leads were interfaced with the 

implantable pulse generator (IPG) which was positioned in a submuscular pocket beneath 

the trapezius muscle within another lateral incision.  After implantation, IPG stimulus 

parameters could be changed transcutaneously with an external programmer through a 

radio frequency link.  The RLNs were transected 5 cm from the cricoid bilaterally and 

anastomosed using 6-0 Prolene suture (Ethicon Inc., Somerville, NJ). The neck incision 

was closed and antibiotics were administered for 4 days perorally. In four of the eleven 

animals, the EMG system described in 

Chapter 1 was also implanted to obtain 

chronological data regarding the selective 

reinnervation status in these animals. Nerve 

transection was delayed for approximately 10 

days and performed in a second surgery so 

that normative EMG data could be obtained in 

each animal. Because of the risk of 

ventilatory compromise and aspiration 

following nerve section, the animals were 

periodically monitored and given soft food by 

hand for 7 days postoperatively. Chest x-ray 

and videofluoroscopy with barium swallow 

were performed preoperatively and at regular 

postoperative intervals [GE-OEC 9900 Elite 

Mobile X-ray C-arm system (General Electric 

Healthcare, Inc, Piscataway, NY)].   

 

Endoscopic sessions 

 

Endoscopic sessions were conducted on each animal every 2 weeks during the period of 

denervation and the dynamic phase of reinnervation (first 6 months) and monthly 

Figure 7. Posterior view of the 
canine larynx display the deep brain 
stimulation electrode inserted into the 
submuscular pocket of the right PCA 
muscle.	
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thereafter under Telazol anesthesia (initial loading dose 2–4 mg/kg i.v., then maintained 

with 0.4 mg/kg per hour). With the animal in a supine position, an endoscope with an 

attached Sony CCD (Sony Corp., Tokyo, Japan) video camera was inserted to visualize 

and record vocal fold motion at the level of the glottis.  Spontaneous motion induced by 

hypercapnia was recorded, digitized, and saved on a hard disk for off-line analysis.   

Because the magnification of each image varied with endoscopic position, a 3-mm ruler 

was placed on the vocal fold for calibration. Selected still frame images indicative of the 

passive and hypercapnic airway were analyzed with computer software (Photoshop CS6, 

Adobe System Inc, San Jose, CA). The numbers of pixels within the circumscribed whole 

glottal areas were counted for each image. To compensate for size differences in the 

larynges across animals, we used the value of a normalized glottic area (NGA). This was 

defined as the measured glottal area divided by the square of the distance between the 

anterior and posterior commissures of the non-stimulated larynx, and expressed as a 

percent (*100%). In the four animals implanted with an EMG system, electrophysiologic 

data was also obtained during these endoscopic sessions.  

 

CO2 administration trial 

 

To assess any return of vocal fold motion with reinnervation in an anesthetized animal, 

carbon dioxide mixed with room air was administered to boost respiration toward that 

which might occur in the awake, exercising animal.  A plethysmographic belt transducer 

was positioned around the chest wall to monitor recordings of chest wall expansion with 

respiration on an oscilloscope.  The oscilloscope trace was monitored by video and the 

image was superimposed on the endoscope CCD image using a digital AV mixer.  The 

split-screen television imaging allowed inspiratory and expiratory chest movements to be 

compared with spontaneous opening or closing of the glottis.  Carbon dioxide mixed with 

room air was administered orally at a rate of 5 L/min for 60 seconds. The split-screen 

video recordings were taken during the CO2 delivery and for an additional 120 seconds to 

allow full return to baseline respiration.  For computer measurement and analysis of 

whole glottal area, digitized still frame images were obtained every 10 seconds at peak 
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inspiration and peak expiration. The results from preoperative CO2 trials were used for 

normal data. 

 

Treadmill test 

 

Before implant surgery, each canine was acclimated to run on the treadmill over the 

course of eight trials during baseline data collection. A sensor was placed on the tail to 

measure blood hemoglobin oxygen saturation and heart rate with a pulse oximeter (Ultra 

cap N- 6000, Nellcor Puritan Bennett, LLC, Pleasanton, CA). The tail was carefully 

shaved the day before each treadmill test to enhance detection of the sensor infrared 

signal.  A relatively strenuous exercise protocol was adopted to distinguish animals with 

normal exercise tolerance from those that were deficient.  The full treadmill test 

comprised a 12-minute course of 3-minute runs at four levels of sequentially increasing 

speed (4, 5.3, 6.7, and 8 mph).  If the hemoglobin oxygen saturation level dropped below 

90% or the animal developed stridor at any time over the course, the treadmill was 

stopped and the exercise time recorded to obtain the endpoint of tolerance. Animals were 

tested with the stimulator off.  

 

Electromyography  

 

In the terminal session on seven animals, a midline incision was made and both SLNs and 

thyroid alae exposed in the anesthetized animal.  Nerve stimulation cuffs were placed on 

the internal branch of the SLNs to evoke RGC responses from the PCA and TA muscles.  

A thyroplasty window was made on each side and hook wire EMG electrodes inserted 

into each TA muscle. The DBS electrodes were detached from the IPG and interfaced 

with a preamplifier to record EMG responses from the PCA muscles.  EMG responses 

were rectified and integrated during stimulation of one of the SLNs and displayed on an 

oscilloscope. The value obtained for each muscle reflected the magnitude of each EMG 

response. In the four animals implanted with chronic EMG systems, the responses evoked 
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in the final five sessions were averaged to obtain an index of final reinnervation status of 

the PCA and TA muscles.  

	

Statistics 

	

All longitudinal data (passive and dynamic airway, exercise tolerance, EMG) were 

analyzed using a growth curve modeling method [51] to find out if the group effect for 

each outcome measure was significant. This analysis method, implemented in the R 

mixed effect modeling function lmer [52], treated the time as a continuous variable and 

provided a way to handle missing data at some time points. In this growth curve model, 

the factor of experimental groups, which represented different stimulus frequencies, was 

treated as a fixed effect. Individual growth function was treated as a random effect, which 

indicated the growth curve for each canine in a group varied randomly from the average 

growth curve of that group with a mean difference of zero. Growth curve modeling was 

performed with second- or third-order polynomial functions. The model parameters 

indicated whether the groups differed in initial post-intervention baseline value, in end-

point asymptotic value and in the average value throughout the study period. Statistical 

significance (p-value) for individual parameter estimates was assessed using the normal 

approximation. The level of significance was set at 0.05. If a significance was obtained 

for the group effect, pairwise comparisons were further performed. A two-way analysis 

of variance (ANOVA) with repeated measures was performed to test if the differences in 

preoperative passive and dynamic airway among 4 groups were significant. For the 

terminal EMG data, a non-parametric Kruskal-Wallis test was performed to test whether 

the data had the same distribution across groups. All statistical analyses were performed 

using RStudio [Version 0.99.902. RStudio Team (2015). RStudio: Integrated 

Development for R. RStudio, Inc., Boston, MA http://www.rstudio.com/ ], which is a 

full-featured, user-friendly, integrated development environment for R [Version 3.3.0, R 

Core Team (2016). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ ]. 
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To allow for better growth curve modeling, all longitudinal data were analyzed in the 

form of post-operative monthly time bins. Specifically, the data obtained between day 0 

and day 15 were collapsed and averaged for Month 0 for each individual animal; those 

obtained from day 16 to day 45 were for Month 1, and so on. The data obtained after day 

225 were highly asymptotic and therefore collapsed for Month 8 and beyond (Month 8). 

The selection of time bin at a monthly interval was based on the consideration of 

obtaining a trade-off balance between statistical power, which required more data and 

therefore a larger time window, and temporal resolution, which required a smaller time 

window but decreased the statistical power. In addition, the scientific rationale that the 

RLN regenerated relatively slow in canines and the outcome measures only varied 

minimally within a monthly time window has lent strong support to the selection of 

monthly time bins. 

 

RESULTS 

Endoscopy 

	

a. Preoperative findings 

	

Before nerve section, endoscopic measurements of the glottal airway during a 60 second 

exposure to CO2 showed a dramatic increase (Figure 8). NGA increased from a passive 

airway (i.e. area of glottal opening at 0 second) of about 22% to a dynamic airway (i.e. 

area of glottal opening at 60 seconds) of about 38% due to the recruitment of PCA 

inspiratory motoneurons in response to hypercapnia. There was no significant difference 

(p=0.16) among the 4 groups, which indicated all the canines started with the same level 

of passive and dynamic airway preoperatively.  

 

b. Post-operative passive airway 
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Following nerve transection and anastomosis, there was an immediate decrease in 

passive airway in all animals due to denervation. As reinnervation took place in abductor 

and adductor muscles, the passive airway was subject to further change depending on the 

severity of synkinesis. The passive airway of each experimental group and model curve 

fits were plotted against post-operative time (Figure 9). There was a significant effect on 

the average passive airway between the 10Hz group and the rest of the three groups 

(10Hz vs 20Hz: p=0.048, 10Hz vs 40Hz: p<0.001, and 10Hz vs Non-stimulated: 

p<0.001). This indicated the 10Hz group had an overall larger passive airway compared 

to the other three groups throughout the entire study. Further pairwise comparisons did 

not show any significant difference in the average passive airway among the 20Hz, the 

40Hz and the non-stimulated animals. In addition, there was significant difference in the 

end-point passive airway (i.e. mean passive airway at 8 months and beyond). The end-

point passive airway of the 10Hz group was significantly greater than the 40Hz group 

(p<0.001) and the non-stimulated group (p<0.001), but not significantly different from 

Figure 8. Glottal opening as a function of time following exposure of CO2 mixed with 
room air in four groups of animals before RLN transection. 	
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the 20Hz group (p=0.08). Again, no significant difference in the end-point passive 

airway was obtained among the 20Hz, the 40Hz and the non-stimulated group. 

Interestingly, the 10Hz animals also had significantly greater baseline passive airway at 

Month 0 than the 40Hz (p<0.001) and the non-stimulated group (p<0.001).  

 

c. Post-operative dynamic airway 

 

The dynamic airway of each experimental group and model curve fits were plotted in 

Figure 10. Similar to the findings in passive airway, the average dynamic airway of the 

10Hz group was significantly greater compared to the 20Hz (p=0.001), the 40Hz 

(p<0.001) and the non-stimulated group (p<0.001). The latter three groups did not have 

significantly different average dynamic airway compared to each other. In addition, the 

10Hz group had a significantly greater end-point dynamic airway than the 20Hz 

Figure 9. The passive airway and model curve fit for each group following RLN 
section and anastomoses. All the symbols and corresponding error bars represent the 
means and standard errors, respectively. A third-order polynomial was applied for 
growth curve modeling.  
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(p=0.006), the 40Hz (p<0.001) and the non-stimulated group (p<0.001). No significant 

difference in the end-point dynamic airway was obtained among the latter three groups. 

The 10Hz group also differed in the baseline dynamic airway at Month 0 compared to the 

other three groups. 

 

d. The active component of the glottal airway change 

 

As synkinetic reinnervation of the TA muscle and other adductors occurred by 	

inspiratory motoneurons, a dynamic decrease in the airway occurred with CO2 

administration in all groups. The magnitude of the dynamic airway could reflect the level 

of synkinetic reinnervation of the adductor muscles by inspiratory motoneurons. 

However, although these groups differed in the level of their dynamic airways, they also 

Figure 10. The dynamic airway and model fit for each group following RLN section 
and anastomoses. The data were shown in the form of mean (symbols) and standard 
errors (error bars). A third-order polynomial was applied for growth curve modeling. 	
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differed in their passive airways. Thus, one could argue that the differences in dynamic 

airways may have simply reflected the differences in their starting passive airways. For 

this reason, an estimate of the active component of glottal closure due to synkinetic 

inspiratory drive was developed. The passive NGA component was subtracted from the 

dynamic NGA component and expressed as a percent of the passive NGA. This 

percentage reflected the airway change relative to the starting passive airway. It gave an 

index of the relative forces generated by the inspiratory motoneurons in the adductor 

muscles versus the abductor muscle. The results are shown in Figure 11. Specifically, a 

positive change indicated active enlargement of the airway by administration of CO2, 

while a negative change indicated the level of active closure of the airway. It can be 

noted that there was an active closure in all groups. The average percentage airway 

closure of the 10Hz group over the entire study was significantly smaller than the non-

stimulated group (p=0.03), but it was marginally different from the 20Hz (p=0.05) and 

the 40Hz group (p=0.07). However, as the majority of synkinetic reinnervation actually 

Figure 11. The percentage change of dynamic airway in relative to the passive airway 
over time [i.e. Percentage change = (Dynamic airway - Passive Airway)/Passive 
Airway * 100%]. 	
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occurred after 3 months, a more appropriate indication of the level of synkinesis was the 

end-point percentage airway change. At greater than 8 months when the synkinesis 

became stabilized and the airway change reached an asymptote, the 10Hz group 

demonstrated significantly smaller percentage airway change than the 20Hz (p=0.04), the 

40Hz (p=0.04) and the non-stimulated group (p=0.004). These results indicated that the 

10Hz group not only had a greater passive airway and dynamic airway, but also had less 

synkinetic inspiratory reinnervation of the adductor muscles compared to the other three 

groups. It also indicated that the significantly greater dynamic airway in the 10Hz group 

was not simply a reflection of its greater passive airway, but a level of more appropriate 

reinnervation of the laryngeal muscles. Finally, it can be noted that there was no 

significant difference in baseline percentage NGA change across all groups of animals at 

Month 0 before any reinnervation had occurred. The changes in all 4 groups were not 

different from 0 (p>0.5).   

 

These findings were exemplified by individual glottal photos from each animal in Figure 

12. Images of the typical glottal airway after the final stage of reinnervation are shown at 

rest (i.e. passive airway, top frames) and at the end of CO2 administration (i.e. dynamic 

airway, bottom frames). All three 10Hz stimulated animals had greater passive and 

dynamic airways.  

	

Treadmill 

	

Both the graphical and pictorial endoscopy data together suggested that the level of 

physical activity that an awake animal could tolerate would differ among the study 

groups. Exercise tolerance was only minimally impaired or not impaired initially 
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following denervation. In the early reinnervation phase, most animals were still able to 

finish a 12-minute test. After significant reinnervation occurred, the narrowing of the 

passive airway combined with the tendency for dynamic closure from hypercapnia (or 

hypoxia) presented as dyspnea and impaired treadmill performance in most animals. In 

all the 20Hz, 40Hz and non-stimulated control animals, exercise tolerance eventually 

dropped below 4 minutes while walking at the minimum treadmill speed. Strikingly, only 

two animals of the 10Hz group were able to run the entire treadmill course for almost all 

tests throughout the study period for as long as 20 months. The third 10Hz animal (#940) 

Figure 12. Images of the glottal airway for each animal at rest and following CO2 
administration. All these images represented the glottal openings that reached a stable 
level after significant reinnervation occurred in each animal.  All three 10Hz animals 
had greater passive and dynamic airways.	
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failed exercise tests beginning at 180 days despite having an adequate dynamic airway. 

There was a 20 Hz animal (#874) that appeared unhealthy and failed to run greater than 3 

minutes at any postoperative test. This animal expired in the cage without any noticeable 

cause. Autopsy showed epicardial and pulmonary hemorrhage. Undoubtedly, his 

deficient pulmonary function impaired his treadmill performance, despite a moderate 

passive airway and dynamic airway upon CO2 administration. Therefore, the statistical 

analysis was performed after removing the treadmill data of this animal.  

 

Figure 13 shows the treadmill performance and model curve fits for each group. A 

logistic function, instead of polynomials, was applied for growth curve modeling for the 

treadmill data. This was because the non-linear logistic regression is a better way to 

capture the asymptotic patterns due to the data boundaries that resulted from the nature of 

the task and measurement (a.k.a. the floor and ceiling effects) [51]. In this case, all 

treadmill performances were between 0 and 12 minutes because of the experimental 

Figure 13. Exercise tolerance evaluated by treadmill performance after RLN 
transection and model curve fits.  
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design, not canines’ actual physical limit. The 10Hz group had a better end-point 

asymptotic treadmill tolerance than the 20Hz (p=0.04), the 40Hz (p=0.008) and the non-

stimulated group (p=0.01). The latter three groups did not show any significant difference 

in their treadmill performance at greater than 8 months. Their treadmill performances 

were consistent with the results from endoscopy.   

Electromyography	

	

In the terminal session, rectified/integrated EMG recordings were obtained from the PCA 

and TA muscles in the anesthetized animal. Recordings were obtained during superior 

laryngeal nerve stimulation to index reinnervation by RGC motoneurons. A partial set of 

data was successively obtained, from the three 10Hz animals, both 20Hz animals, one 

non-stimulated animal, and two 40Hz animals (Table 3). For comparison, evoked 

response data were also obtained from 6 un-operated control animals with intact nerves. 

The RGC value was much larger in the TA than PCA muscles in the control animals. 

Since the PCA muscle in normally innervated animals has no contribution from RGC 

motor units, the value of 1.22 µVs represented the noise level in the recording. On the 

other hand, the TA value of 6.84 µVs in control animals reflected the strong innervation 

of adductor muscles by RGC neurons. All three 10Hz animals had PCA versus TA values 

that mimicked the un-operated controls, demonstrating little if any foreign RGC 

reinnervation of the PCA muscles and normal reinnervation of the adductors by these 

neurons. In stark contrast, the non-stimulated animal showed a complete switch in EMG 

values between the PCA and TA muscles on both sides. The two 40Hz animals also 

showed near complete crossover in PCA-TA reinnervation on the both sides. The 20Hz 

animals both showed a mixed pattern of appropriate reinnervation on one side and 

inappropriate on the other.  
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Normal 

innervated 
animals 

#575 
(10Hz) 

#753 
(10Hz) 

#940 
(10Hz)  

Evoked SLN 
(Intermittent 
stimulation 

side) 

PCA: 
1.218±0.128 

TA: 
6.839±0.213 

(Mean±SEM, 
µVs-20ms 

window, the 
same below) 

No reliable 
data 

PCA: 
3.747±0.264 

TA: 
8.497±0.235 

PCA: 
2.516±0.310 

TA: 
8.033±0.168 

 

Evoked SLN 
(Continuous 
stimulation 

side) 

PCA: 
1.225±0.159 

TA: 
9.289±0.547 

PCA: 
3.682±0.539 

TA: 
8.258±0.118 

PCA: 
2.078±0.395 

TA: 
10.489±0.486 

 

 #858 
(Non-stim) 

#824 
(20Hz) 

#874 
(20Hz) 

#509 
(40Hz) 

#36 
(40Hz) 

Evoked SLN 
(Intermittent 
stimulation 

side) 

PCA: 
9.543±0.364 

TA: 
3.894±0.113 

PCA: 
3.719±0.471 

TA: 
2.843±0.229 

PCA: 
2.918±0.146 

TA: 
5.157±0.411 

PCA: 
7.205±0.286 

TA: 
3.841±0.197 

PCA: 
7.529±0.241 

TA: 
6.089±0.270 

Evoked SLN 
(Continuous 
stimulation 

side) 

PCA: 
8.315±0.06 

TA: 
1.452±0.323 

PCA: 
1.979±0.495 

TA: 
5.158±0.813 

PCA: 
3.024±0.322 

TA: 
1.192±0.217 

PCA: 
5.748±0.581 

TA: 
3.419±0.160 

PCA: 
3.977±0.222 

TA: 
4.231±0.231 

 

In view of the small sample size, non-parametric statistics were used to analyze the data. 

To determine the degree of correct reinnervation of the TA muscle, the percentage RGC 

response in the TA muscle divided by the total response of the TA plus PCA muscles 

from the same side was calculated. Figure 14A shows the percentage TA response for 

each group. The data is displayed separately with respect to the muscle conditioning 

paradigm used (i.e. continuous stimulation versus intermittent stimulation). The 

conditioning paradigm had no significant effect on outcome (p=0.81), indicating that both 

continuous and intermittent stimulation had the same impact on muscle reinnervation by 

RGC motoneurons. When the data of both paradigms were pooled together (Figure 14B), 

the percentage TA response of the 10Hz group was not significantly different from the 

Table 3. Mean RGC recordings from the PCA and TA muscles of the three 10Hz 
stimulated animals, two 20Hz animals, two 40Hz animals, one non-stimulated animal, 
and un-operated control animals. Evoked EMG recordings of all the 10Hz animals 
showed little if any reinnervation of the PCA muscles by foreign RGC motoneurons, 
similar to the innervated controls. The amount of crossover increased from 10Hz, to 
20Hz, to 40Hz, to non-stimulated. 
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un-operated control group, but was significantly greater than all other experimental 

groups (p<0.001).  
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In addition to recording in the terminal session, chronological RGC data were also 

successfully obtained in 4 long-term animals using the implantable EMG recording 

system that was described in Chapter 1. There were two 20Hz, one 10Hz and one 40Hz 

animals. Figure 15 shows the percentage TA responses and model curve fits by group. In 

animals with intact RLN (i.e. un-operated control and pre-nerve-transection animals), 

RGC responses were exclusively recorded in the TA muscle, and the amplitude of PCA 

Figure 15. The chronological percentage RGC response recorded in the TA muscle in 
4 animals, including one 10Hz, two 20Hz and one 40Hz animals. As reinnervation 
occurred after RLN transection and became stabilized by 8 months’, the 10Hz animals 
had greater asymptotic percentage of TA response than the 20Hz and 40Hz animals. 	

Figure 14. A (Top): The percentage RGC response recorded in the TA muscle for 
each group, shown separately in two stimulus paradigms. Specifically, TA% = TA 
amplitude / (TA amplitude + PCA amplitude). The higher the TA percentage response 
indicated the more correct reinnervation by RGC motoneurons. Continuous 
stimulation did not differ from intermittent stimulation in terms of appropriateness of 
RGC reinnervation. B (Bottom): The 10Hz animals showed the same percentage of 
TA response as the un-operated, normally-innervated animals, and significantly higher 
percentage of TA response compared to the other three groups.  
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muscle was at noise level. Therefore, the percentage of TA response was typically 

between 80%-90% before nerve transection. As reinnervation occurred following RLN 

transection, a significantly greater level of appropriate RGC reinnervation of the TA 

muscle was seen in the 10Hz animal. The 10Hz animal had a greater percentage of TA 

response at greater than 8 months than the 20Hz (p<0.001) animals and the 40Hz animal 

(p=0.005). The end-point TA response in the 20Hz animals did not differ significantly 

from the 40Hz animal (p=0.87).  

 

Figure 16 shows an example of the rectified RGC response recorded with SLN 

stimulation in an un-operated normally innervated animal, a 10Hz, a 20Hz, a 40Hz and a 

non-stimulated animal. In the un-operated control TA muscle, the RGC response (filled 

circle) appeared approximately 30ms following the stimulus artifact (vertical spike). As 

expected, there was no RGC response recorded from the normal PCA (open circle). Only 

the 10Hz group showed a normal pattern of low PCA and high TA reinnervation by RGC 

motoneurons. At higher frequencies and non-stimulation, the relative RGC responses 

between the two muscles changed. In fact, the non-stimulated animal showed complete 

crossover of the RGC reinnervation of the PCA muscle.  

 

 

Figure 16. Example of rectified RGC recordings obtained from all five groups of 
animals in Table 3.  
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DISCUSSION 

 

Overall, these data suggested electrical stimulation of the denervated PCA muscle with a 

low frequency, which is characteristic of the intrinsic activity of the PCA muscle, 

promoted selective reinnervation by its original inspiratory motoneurons. The significant 

difference obtained between the 10Hz group and the other three groups across all 

outcome measures consolidates the reliability of the results despite the small sample size 

in this study. 

 

The glottal airway measured by endoscopy was a direct reflection of the balance of forces 

generated by abductor versus adductor muscles across the arytenoid joint. The passive 

airway was an indication of such balance of forces when the animal breathed at a normal 

rate, during which only a small amount of inspiratory motoneurons were active. When 

the inspiratory drive was boosted up by hypercapnia, additional inspiratory motoneurons 

were recruited until the maximal inspiratory effort was reached. As synkinetic 

reinnervation occurred in all animals, the difference in their passive airway or dynamic 

airway may partially indicate the degree of appropriate versus aberrant reinnervation by 

inspiratory motoneurons. However, such difference may also have reflected the 

individual variation in the anatomical structure of the glottis, as demonstrated by the 

baseline difference in their passive airways and dynamic airways at Month 0, when no 

reinnervation could have occurred at such early stage of the study based on previous 

findings in our laboratory. The variation in glottal anatomy may include size, vertical 

angle and anterior-posterior asymmetry of the vocal folds. Use of normalized glottal area 

could offset some variation, such as the difference in size of glottis and endoscope 

magnification. However, it is unclear to what extent the vertical angel and anterior-

posterior asymmetry may have impacted the measure of the glottal opening. As a matter 

of fact, the preoperative endoscopic measure (Figure 8) did not show any significant 

time*group interaction on the normalized glottal area, indicating that these factors 

affected both the passive airway and the dynamic airway to the same extent. Therefore, 

use of active component (i.e. percentage change in NGA) provided a strategy to cancel 
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out any variation in anatomical structure between animals. Thus it gave an accurate index 

of the level of appropriate reinnervation by inspiratory motoneurons. As reinnervation 

occurred in both the PCA and the TA muscles, the 10Hz animals demonstrated not only 

greater passive airway and dynamic airway, but more importantly, smaller percentage of 

synkinetic glottal closure than the other three groups of animals in asymptotic levels. 

Altogether, these results suggested electrical stimulation of the denervated PCA muscle 

with low frequency enhanced reinnervation of the muscle by its original inspiratory 

motoneurons and inhibited subsequent synkinetic reinnervation of the TA muscle by the 

inspiratory motoneurons.  

 

Use of the active component also addressed the concern of any difference in glottal 

opening due to incomplete nerve injury. As shown in Figure 11, there was no baseline 

difference in the percentage airway change at Month 0, and all animals had zero percent 

airway change. Therefore, it indicated that no vocal fold abduction or adduction was 

observed immediately after RLN transection. Denervation in all animals was complete.     

 

Notably, in the early reinnervation period (< 2 months), the growth curve model 

demonstrated a small increase in both the passive airway and the dynamic airway in all 

groups of animals. The increase in dynamic airway presumably reflected the PCA muscle 

reinnervation by inspiratory motoneurons, before these motoneurons reached the TA 

muscle. The increase in passive airway, on the other hand, could have reflected the PCA 

muscle hypertrophy due to electrical stimulation combined with TA muscle atrophy. 

Alternatively, it may have reflected early PCA muscle reinnervation by tonically active 

motoneurons. As significant reinnervation occurred in both the PCA and the TA muscles, 

synkinesis was present in all animals, starting from approximately three months after 

RLN injury. All endoscopic measures had reached asymptotes by approximately 7 

months. Therefore, the critical period of reinnervation was between 2 and 7 months after 

RLN injury. In this sense, any intervention taken to prevent synkinesis and to promote 

selective reinnervation should be performed mainly during this period of time.  

 



	

	 43	

The endoscopic findings correlated well with the treadmill performances. Overall, the 

10Hz group had a better exercise tolerance than the other three groups. Compared to the 

endoscopic measure of glottal opening, which was a reliable indicator of ventilatory 

function as well as muscle reinnervation, the results of treadmill performance were 

subject to the impact from some other factors, such as the animal’s physical condition. 

For instance, one of the 20Hz canines (#874) failed all treadmill tests except one despite 

an adequate dynamic airway shown by endoscopy. His final autopsy report showed 

severely impaired cardiac and pulmonary function, which justified removal of his data 

from statistical analysis. In addition, unlike the case of endoscopy data, the growth curve 

analysis with polynomials may not be appropriate in fitting the treadmill data, which had 

a boundary due to the nature of the assessment [51]. Therefore, proper analysis should be 

carefully chosen for these data.           

 

Results of both endoscopy and treadmill provided good estimates of the correct versus 

incorrect reinnervation by inspiratory motoneurons. EMG responses by stimulation of 

SLN, on the other hand, showed the correct versus incorrect reinnervation by RGC 

motoneurons. Again, the 10Hz group displayed a normal pattern of RGC reinnervation, 

which was comparable to the un-operated control. They also significantly differed from 

the other three groups, which showed differing degrees of aberrant reinnervation of the 

PCA muscle by RGC motoneurons. The findings in terminal EMG sessions correlated 

well with the chronological RGC recordings from 4 animals. Therefore, the 10Hz group 

not only had more appropriate reinnervation of the PCA muscle by the inspiratory 

motoneurons, but also had more appropriate reinnervation of the TA muscle by the RGC 

motoneurons. Interestingly, the continuous stimulation did not differ from the intermittent 

stimulation in terms of inducing proper RGC reinnervation. Although the mechanism is 

unknown, it suggests that patients may only need to receive the stimulation of the target 

muscle once or twice a week to promote appropriate reinnervation and to improve 

functional outcome.  

 

As mentioned in the introduction of this chapter, one underlying hypothesis of this study 

was that activity dependent muscle plasticity that controls the contractile speed and 



	

	 44	

histochemistry of a muscle may extend to include the muscle’s receptor preference for 

certain types of motoneurons. These results have proved the prediction that selective 

reinnervation of the PCA muscle occurred if the imposed activity simulated that of its 

native inspiratory neurons (10Hz).  In addition, if no activity or stimulus activity more 

characteristic of antagonist RGC motoneurons (40 Hz) was used, the abductor muscle 

became occupied by foreign RGC motoneurons in abundance. This was not unexpected 

since RGC motoneurons are four times more plentiful than the inspiratory motoneurons 

as stated previously. It was difficult to tell if stimulation with a frequency that was more 

characteristic of antagonist motoneurons (40Hz) would exacerbate the synkinesis 

compared to no stimulation. All the above findings again support the notion that there 

was a specific range of activity that maintained a denervated muscle’s genetic expression, 

chemistry, and selective reconnection at the neuromuscular junction in the adult injured 

nervous system. There was a trend in all outcome measures that the 20Hz group had 

better, although not significantly, group averages than the 40Hz and the non-stimulated 

control animals. The non-significance of the 20Hz animal data may have reflected the 

small sample size. If our hypothesis is right, it would be expected that the 20Hz animals 

would show significantly better outcome measures than the 40Hz and non-stimulated 

animals. Similarly, significantly different outcome measures between the 40Hz and the 

non-stimulated group would be expected with a larger sample size. 

 

The mechanism of selective reinnervation at a molecular and genetic level is yet to be 

investigated. A possible explanation is that activity-dependent genetic expression 

influences the affinity of muscle endplates for particular regenerating motoneurons. 

Muscle stimulation could increase the release of neurotrophic factors, which then 

promote regeneration of inspiratory motoneurons down the endoneurial tubes at the 

anastomotic site [9].  Another possibility is that activation with a frequency intrinsic to 

the muscle prevents the formation of extrajunctional receptors that are non-selective with 

respect to reconnecting motoneurons.  

 

In the future, ES could be applied to improve muscle integrity and voluntary function by 

inducing physiologic or genetic changes that are retained after the stimulation is 
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discontinued. In case of laryngeal paralysis, irrespective of unilateral type or bilateral 

type, the natural laryngeal functions (i.e. voicing, breathing, and swallowing) could be 

restored through neuromuscular modulation of the abductor and/or adductor muscles, so 

that further long-term intervention may not even be necessary. Stimulation applied during 

a critical period of regeneration may lead to a postsynaptic platform that is receptive to 

the original motoneurons and regain appropriate neuromuscular connections. In essence, 

the goal would be to cure rather than to treat paralysis [9].  

   

CONCLUSION 

 

Electrical stimulation of the denervated PCA muscle with a low frequency, characteristic 

of the intrinsic activity of PCA inspiratory motoneurons, inhibited synkinetic 

reinnervation by RGC motoneurons, promoted selective reinnervation by its original 

inspiratory motoneurons, and improved functional recovery. 
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