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CHAPTER I

INTRODUCTION

One of the main challenges of robotics is the production of intelligent behavior in

complex domains [Fulton and Pransky, 2004]. Many approaches to this end have been

developed, from subsumption architectures to reinforcement learning techniques. The

success of these approaches, however, has been limited by the inherent complexity of

interaction with the real world – such approaches work relatively well until a new

situation or unrecognized stimulus is encountered. At that point, irrational behavior is

often encountered.

Another facet of artificial intelligence that has met with limited success is that of

the emulation of human cognitive performance by a computer system for real-world tasks

in complex domains. 

For example, the Digital Aristotle project [Friedland et al., 2004] has attempted to

develop a system that is able to pass a chemistry test given over 70 pages of material at

the high school level. Many resources have been spent on this highly domain-specific

system, and only three out of five of the expert systems developed were determined to

have the capacity to match human performance on high school AP Chemistry tests. These

evaluations required that the engineers who developed the system change the format of

the questions from English to a system-specific format. In other words, in a relatively

restricted environment, with specially designed systems and at a cost of over $10,000 a

page, the developed systems met with limited success.
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Given the weaknesses of these approaches when dealing with complex, dynamic

environments, perhaps a valid alternative lies in the development of embodied cognitive

systems. Such systems, inspired by human psychological and neuroscientific

performance, have the capability of learning effective and dynamic behaviors in complex

domains in which more rigidly designed techniques fail.

These systems also have the capability to enhance the artificial intelligence

techniques used to build them through the concept of embodiment [Brooks, 1991].

Because the system is able to learn from and interact with its environment, it is able to

actively learn instead of merely attempting to fit percepts with preprogrammed rules as is

seen in the Digital Aristotle system. This embodiment is an important characteristic in the

development of social, intelligent systems [Mataric, 1997].

One crucial consideration when creating a cognitive system is the design of the

memory system. The memory of the cognitive system empowers the system to learn from

its environment and, more importantly, from past experience. As such, the memory

system must be carefully designed in order to maximize the potential of the cognitive

system. It is important that the memory system not only be able to recall information that

will likely be needed in the everyday operation of the system, but also that the system do

so in a timely manner. Because the system is embodied, it must interact with a dynamic

environment sometimes requiring that responses are timely in order to be relevant.

The following document details the design of such a memory system for a robotic

system. The memory is based on the memory system of a human, with both short-term,

which holds percepts of the robot, and long-term, which holds information obtained from

past experience, memory systems. The long term memory is further divided into three

sections: Procedural Memory, which holds information needed to execute movements by
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the robot, Semantic Memory, which contains factual information not associated with a

particular time and place, and Episodic Memory, which stores specific experiences of the

system. A Working Memory System is also designed to hold task-relevant information

from the long-term memories.

Similar divisions in human memory are generally accepted in the field of

Psychology [Tulving, 1985], with some contention on the difference in classification

between Short-Term and Working Memory. For the purposes of this Thesis, it is assumed

that Working Memory is an active storage space containing task-relevant information

while the Short-Term Memory holds information representing the current percepts of the

system.

In this thesis, the term Working Memory System is meant to denote the complete

system that retrieves memories from the memory stores based on the current context. The

individual working memory systems are denoted by Memory Name – Working Memory,

for example Procedural Memory – Working Memory.

Objectives

The objective of this work is to create a memory system modeled on the above

division from human psychology for application to a humanoid robot named ISAC which

is located in the Center for Intelligent Systems at Vanderbilt University.

This memory system should be flexible enough to represent information needed

for solving problems in ISAC's daily operation, learning solutions to tasks from humans,

generating movement commands to move ISAC's actuators, and perceiving objects that

might be used to achieve tasks in ISAC's operation.
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The memory systems should balance this flexibility to be specific enough so that

retrieval can be accomplished in a sufficiently accurate and timely manner. The Working

Memory System of ISAC should function in a manner that is relatively automatic from

the perspective of the systems that manage goals, plans, and task execution. This requires

that each memory system have some method of evaluating the current context for

retrieval of correct memories, and that these memories be designed in a manner that

facilitates this evaluation.

Significance of Work

This work is significant because it details the creation of a system of the three

major human memory classifications and application to a robotic system. The creation of

the Episodic Memory System is especially significant because the creation of a general

purpose Episodic Memory and Episodic Memory retrieval system has been relatively

ignored in the symbolic AI community [Nuxoll and Laird, 2004]. As such, the application

of this type of memory to a cognitive robotic AI system is novel.

Also, the development of a separate adaptive working memory system that acts

semi-autonomously to retrieve appropriate memories based on the current context is a

relatively novel concept within a symbolic cognitive system.

Summary and Organization

Chapter II details background information on several cognitive systems with their

respective memory systems, adaptive working memory, and ISAC's cognitive system.

This chapter is intended to give a survey of appropriate literature as well as an overview

of the system into which the topics of the following chapters will be integrated. Chapter

4



III discusses the Procedural Memory system for generating movement on ISAC. Chapter

IV talks about ISAC's Semantic Memory, while Chapter V discusses the Episodic

Memory. Chapter VI details the experimental setup for experiments to test the memory

systems described in Chapters III-V, and Chapter VII discusses the results of these

experiments and their implications for the design and use of memory systems. Chapter

VIII gives some directions in which this research may be taken.
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CHAPTER II

BACKGROUND MATERIAL AND PREVIOUS WORK

Robotics researchers have attempted to apply many different Artificial

Intelligence (AI) techniques to robotic control and learning. Numerous attempts at

achieving human-like intelligence through the use of both traditional and probabilistic AI

have revealed the limitations inherent in each approach. One recent approach to the

problem of generating dynamic, robust robotic behavior has been that of combining

traditional AI with computational neuroscience and psychological research to produce a

system that more closely attempts to emulate human performance on tasks.

The following section details several systems designed by cognitive theorists

attempting to recreate human mental performance either in the context of interactions

with the real world or in a laboratory in order to test psychological theories. These

systems attempt to recreate human cognition and are often called “cognitive systems” or

“cognitive architectures”. The term “cognitive agent”, on the other hand, is intended to

denote a cognitive architecture that is embodied and exhibits goals and desires in its

interactions with its environment, while the phrase “cognitive robot” is used to describe a

cognitive agent that is intended to be implemented within a robotic system. Two systems

that are designed to be directly implemented on a cognitive robots are detailed in the

“Cognitive Agent” section, and two more general purpose architectures are detailed in the

“Cognitive Architectures” section.

The two systems described in the Cognitive Architectures section, SOAR and

ACT-R,  were selected over other systems because they are the most widespread
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cognitive systems intended for research in existence. The two systems described in the

Cognitive Agent section, IDA and Haikonen's architecture, are chosen to reflect two very

different methods of attempting to apply a model of human cognition to the control of an

embodied agent. Haikonen's method uses statistical AI while Franklin's IDA employs a

more symbolic approach.

Cognitive Systems and Memory

Cognition in humans is exhibited through the characteristics of “short and long

term memory, categorizing and conceptualizing, reasoning, planning, problem solving,

learning, [and] creativity” [Franklin and Graesser, 1997]. A cognitive system employs a

combination of some or all such characteristics listed above within a structure derived

from cognitive psychology and computational neuroscience.

“An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, over time, in pursuit of its own agenda and so

as to effect what it senses in the future” [Franklin and Graesser, 1997]. A cognitive agent

or cognitive machine is an embodied autonomous agent that exhibits the characteristics of

a cognitive system. Figure 1 shows the structure of a generic cognitive agent as defined

by Franklin.
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Figure 1. Conceptual Diagram of a Cognitive Agent with Learning [Franklin, 1997]

Figure 1 shows a representation of Franklin's view of a generic cognitive agent

based on the action selection paradigm of mind, in which the function of the cognitive

system is to produce an action based on perceptions from the environment. The action

selection paradigm of mind dictates that the mind is an aggregate of many simple

processes that have the end goal of selecting the next action for an organism [Franklin,

1997]. When implemented into a cognitive agent, this theory may be conceptualized as a

system like that shown in Figure 1. 

An important characteristic of such a cognitive agent is embodiment. The agent

must be able to both perceive and act, or be “structurally coupled”, in an environment in

order to produce cognitive behavior. This is because, in the action selection paradigm of

mind, the function of a cognitive system is to generate actions based on perceptions from

the environment. Without embodiment, the agent can neither perceive the environment or

act on that environment..
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Haikonen, on the other hand, suggests a somewhat different definition of a

cognitive machine, a term meaning a physically embodied cognitive agent. According to

him, a cognitive machine should exhibit several cognitive processes shown by humans in

addition to characteristics such as those listed by Franklin. These include the capacity to

sense its environment, contain a properly-grounded flow of inner speech and imagery,

and display the effects of attention [Haikonen, 2000a]. Although these concepts are not

identical to Franklin's definition, they are complementary. This may be seen by analyzing

Figure 1, which incorporates all three characteristics -- inner speech and imagery would

be contained within the deliberative processes and workspace.

The developers of Soar, a common cognitive architecture used for modeling

human psychological performance, define a cognitive architecture to be “a theory about

the fixed computational structure of cognition” [International Encyclopedia of the Social

and Behavioral Sciences, 2005]. Soar consists of a flexible architecture for computational

psychology as opposed to a monolithic system built for a specific purpose.

The creators of ACT-R, another flexible cognitive architecture designed for use

with computational psychology, state that a cognitive architecture is a “theory about how

human cognition works” [Budiu, 2005]. ACT-R was created on the theory that an

integrated cognitive system is far more valuable for developing an understanding of the

human mind than a system intended to perform a specific psychological task [Anderson et

al., 2004]. ACT-R appears to the user as a programming language, but is actually a model

based on human psychological experiments and assumptions about human cognition.

Finally, the Foresight Project, a project in the UK intended in part to research

cognitive systems, puts forth perhaps the broadest definition of a cognitive system:

“Cognitive systems are natural or artificial information processing systems, including
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those responsible for perception, learning, reasoning, decision-making, communication

and action” [Foresight, 2005]. This definition equates cognitive systems with artificial

intelligence, however the definition proposed by [Franklin, 1997] will be used in this

thesis.

General Purpose Cognitive Systems

The cognitive systems discussed in the following section are primarily designed to

explain human psychological phenomena. While they are not specifically designed for

inclusion on embodied agents such as robots, much can be learned from these

architectures that emulate humans. One of the main uses for these architectures has been

to model and conduct psychological experiments. Everything from human memory

learning techniques [Pavlik and Anderson, 2004] to language performance [Budiu and

Anderson, 2003] has been evaluated with these systems. This shows the flexibility of the

system, however this flexibility comes at the cost of specialization of components,

including memory structure.

One striking characteristic of Soar and ACT-R when compared with the more

specialized cognitive agents is the lack of recognizable memory structure. Both systems

use production rules and predicates to produce desired behavior, and neither employs a

rigid memory hierarchy. Memory design is left to the designer of the system, as long as

certain system-level restrictions are followed.

Soar Cognitive Architecture

The first architecture to be discussed is Soar. Soar is a general purpose

architecture that has been implemented to solve problems from psychological analysis to
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robotic control. It is important to note, however, that the Soar system is a framework and

not a specific system designed for a particular task.

The Soar cognitive architecture was designed to be a flexible framework that

could serve many purposes for the simulation of human cognitive activities. All

operations in Soar consist of applying operators to states in pursuit of some goal using

problem space search. Regarding the structure of Soar: “Together, the task-

implementation and search-control functions are sufficient for problem space search to

occur. The quality and efficiency of the problem solving will depend on the nature of the

selected functions." [Laird et al., 1987]. In other words, the system is competent for

solving problems, however it is only as good as the information that is made available to

it and rules provided to it.

Figure 2 shows the structure of the Soar Cognitive Architecture. Soar's Long Term

Memory is entirely composed of production rules. These rules require a pattern of

preconditions from the Working Memory system and a set of actions to perform when the

production's preconditions are fulfilled. For example, a simple rule might be: “If a person

is identified, then greet them.” The precondition to this rule would be the identification of

a person in the agent's environment. The action to be performed would be the greeting

action. Perceptions are posted to a Working Memory storage space, managed by the

preference system. This storage system is of indefinite size, and grows with the problem

since production rules can post results to working memory in the hopes of satisfying more

preconditions for actions. 
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Figure 2. Soar Cognitive Architecture [modified from Wray et al., 2005]

Soar has two phases of operation: elaboration and decision [Wray et al., 2005].

During the elaboration phase, the contents of the Working Memory are matched with

production rules so every possible match is asserted. The rules are then fired in parallel,

and the only action a fired rule can take is to add a value-attribute pair to the Preference

Memory. The rules keep firing until no more firing is possible.

Superficially, it may be seen that Soar contains two types of memories, rules and

attributes or values that can satisfy and affect rules. Without discussing systems built on

top of Soar, several parallels may be drawn from Soar to the human memory division

discussed in Chapter I.
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The Working Memory of Soar is different than the working memory described in

detail in this thesis. In Soar, the working memory holds all information in the current

problem space, while the working memory discussed in this thesis holds only current task

and context-relevant information. The working memory in both cases does, however,

hold information that is being considered for use when producing actions or changes in

internal state.

Semantic memory can be attributed to all attributes and values. These represent

independent facts, and are used to produce action within the system. These memory units

are not necessarily derived from perceptions, but can also be produced by the firing of

rules.

Procedural memory, in turn, can be linked to the production rules in Soar's

Recognition Memory. These rules exist to change either the internal state of Soar or the

state of the environment. Regardless, these rules accomplish actions and may be likened

to the procedural memory discussed in Chapter I.

Although episodic memory systems have been built under Soar's architecture

[Nuxoll and Laird, 2004], episodic information is not readily obtained from Soar's base

system. In particular, no memory units are associated with a specific time and place, or

are represented in a format exhibiting characteristics attributed to episodic memory.

ACT-R Cognitive Architecture

ACT-R is similar to Soar in terms of memory design. Production rules are

contained within a procedural memory system, while semantic memories are used for

matching, and then firing, productions.
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ACT-R stands for the Adaptive Character of Thought – Rational. ACT-R is a

cognitive system used extensively in psychology for analysis of human performance on

various psychological tasks, although it draws much of its inspiration from observations

about rational behavior (rationality in a human-like genetically-based system is defined as

the action that maximizes an organism's chance of reproducing).

ACT-R consists of three basic components: modules, buffers, and a pattern

matcher [Budiu, 2005]. These components are combined to produce a system intended to

be analogous to certain aspects of the human brain – namely those aspects in which the

experimenter is interested.

Figure 3: Functional Structure of ACT-R [Budiu, 2005]

There are two types of modules: perceptual-motor and memory. As the name

suggests, perceptual-motor modules interact with the real world by generating percepts or

actions. 
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The memory modules are subdivided into two categories: declarative and

procedural. The declarative memory holds declarative facts. The procedural memory

holds productions that are used to pursue actions. These productions hold the same IF-

THEN form of the SOAR production rules. An example of a production rule would be

“IF the red beanbag is on the table, THEN pick it up.” These modules are used by the

system shown in Figure 3 and are the atomic components that are passed around the

system when working towards a specific goal.

Buffers hold declarative memory modules to be used by the system, and are

somewhat analogous to human working memory systems [Anderson et al., 2004]. The

state of the system can be shown by the content of the buffers, allowing for easy system

debugging and design.

The final major component of the ACT-R system is the pattern matcher. This

analyzes the contents of the buffers and attempts to match a production rule to them.

Unlike Soar, only one production rule can be fired in each time step, allowing the system

to work in an easily traceable manner. Although the execution of a Soar task may be

retraced by recording all fired rules, if the system executes one action ever time step it is

easier to apply a case-based reasoning model to a record of task execution stored in a

structure analogous to episodic memory.

The system described so far is the symbolic component of the ACT-R system.

There is another layer that is used for learning and conflict resolution called the

subsymbolic system. The subsymbolic system runs in parallel with the symbolic system.

Many facets of the subsymbolic system run in parallel to influence the performance of the

symbolic system. 
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The subsymbolic system implements a complex set of formulas that do things like

judge the cost to the system of firing a certain production to evaluate multiple satisfied

productions, or associating costs and time delays with the retrieval of memory contents.

For example, if lifting the blue box has a 10% chance of disabling  an actuator, but lifting

the red box has no chance of destroying the actuator, firing the rule that lifts the blue box

would be undesirable. This level of desire or cost could be implemented in the

subsymbolic system to influence the behavior of the system without having to create

explicit production rules or preconditions. The subsymbolic system provides the designer

of the system with an extra level of control in the reproduction of human behavior.

Figure 4. ACT-R and Human Brain Correlates [Anderson et al., 2004]

Figure 4 shows the structure of the ACT-R architecture when compared with the

human brain. The areas of the brain thought to be responsible for each element of ACT-R
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are given in parenthesis beneath the module name. By drawing such correlates, ACT-R

gives researchers a powerful tool to use when evaluating human performance on tasks. It

also allows for the subsymbolic layer to be adjusted to match neurological data available

for specific functions and physical structures.

Many of the same comparisons that were drawn between Soar and the memory

types discussed in Chapter I may be drawn between ACT-R and these same memory

classes.

For example, the Procedural Memory in ACT-R is intended to be analogous to the

procedural memory class of a human. Similarly, the Declarative Memory unit of ACT-R

is similar in function to the semantic memory store in a human.

The buffer contents of the system represent a sort of working memory system,

although they do not hold any reference to the sub-symbolic system, which influences

task execution a great deal. It is important to note that the contents of the buffer system

are those that influence the firing of Procedural Memory rules, just as the contents of the

working memory of a cognitive system influence the conscious reasoning process of that

system. 

Cognitive Agents

The following cognitive system architectures are designed to be embodied

cognitive systems, or cognitive machines, and are meant to interact intelligently with their

environments in a robust, adaptive manner. These two systems were selected for review

because they are embodied systems intended for implementation in specific

environments, similar to ISAC's cognitive system. Franklin's IDA was selected for its

various memory structures as well as its use of symbolic memory structures.
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These architectures could be successfully integrated onto a robotic platform due to

their robust design, and are labeled embodied cognitive systems to separate them from

more general-purpose cognitive architectures such as Soar or ACT-R which are intended

to be adapted to a wide range of applications, from testing psychological theories to

controlling complex systems.

IDA: A Cognitive Agent Architecture

A system of interest to the design of symbolic memory structures for an embodied

cognitive system is IDA, an embodied cognitive agent using several different types of

symbolic memory structures. IDA was designed to reassign sailors in the United States

Navy to jobs based on their own requirements and the needs of the navy. This architecture

is intended to demonstrate the utility of a software cognitive agent, and was intended to

replace the Navy's $20 million/year human-based system [Franklin et al., 1998].

Figure 5 shows the system architecture of IDA. It is a specific implementation of

the generalized cognitive agent framework detailed in Figure 1. IDA is intended to

implement a theory of consciousness called “Global Workspace Theory” and developed

by Baars [Baars, 1988]. Perception is carried out by semantic networks called slipnets, the

Behavior Net selects actions, and a knowledge base handles the deliberative aspect of a

cognitive machine.
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Figure 5. Architecture of IDA, a Cognitive Agent [Franklin et al., 1998]

The slipnets and Behavior Net consist of systems of codelets, or processes, that

each perform a simple task. The codelets are activated by a spreading activation network,

and post their results in a global workspace [Franklin, 1995]. While the spreading

activation network is hard-coded, the workspace holding the current percepts or plan of

action is fluid. Codelets can also post activation to the spreading activation network. This

allows the system to adapt to changing situations and maintain an internal activation flow.

Even though the application for IDA is limited to billet assignment, it has already

proved to be a valuable tool for analysis of human cognition and consciousness [Baars

and Franklin, 2003] [Franklin, 1999]. A current implementation of IDA is running

successfully for assigning billets to sailors [Franklin and Graesser, 2001], although it does

not contain those elements needed for implementation of Baars' theory of consciousness.
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IDA has four types of memory: associative, offer, template, and intermediate. The

associative memory attempts to associate sensory inputs with actions, and is modeled

after Kanerva's sparse distributed memory [Kanerva, 1988]. Offer memory keeps track of

offers given to sailors, and is implemented with a traditional database. The template

memory stores various templates needed to interface with email systems, databases, etc.

Intermediate memory serves as an intermediate-term case-based episodic memory system,

and serves to store the emotional output of the system, the content of the perception

registers, and the action taken [Franklin et al., 1998].

The Focus is a memory cache that stores a single input from each perception and

memory system to which it is connected. This memory store serves as a bottleneck to

simplify the interface to the Behavior Net and memory stores, and to make the system

function in a step-wise fashion. In this manner, it simplifies the interfacing of the system

by reducing complexity in time and information.

Although this system does not directly parallel the psychological division of

memory detailed in Chapter I, several parallels can be drawn between its memory

structures and those that were outlined.

Perhaps the most obvious similarity is that IDA's Intermediate memory can be

compared with the Episodic Memory of a human. The Intermediate memory stores

perceptions, actions, and a representation of the internal state – the emotional output of

the system. Although it is used to provide context to a particular transaction, in a more

complex domain perhaps such a memory could be extended to allow for case-based

reasoning, or comparison of separate experiences through recorded episodes.

The Offer and Associative memories are Semantic in nature. Although they

represent facts, those facts are disassociated from a particular time or place, or at least a
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specific sequence of experiences undertaken at a particular time or place in the case that

the database entry had a timestamp. The Associative Memory is implemented with a

reconstructive retrieval process that attempts to recreate memories based on a cue instead

of directly retrieving them from a database using Kanerva's Sparse Distributed Memory

technique [Kanerva, 1998]. This process maps the memory to a large binary vector.

Memories are then retrieved by a technique that recursively retrieves and reconstructs

values until a steady result is reached. If the cue is within the attractor basin for a given

memory, that memory will eventually be retrieved.

The Template memory could be considered to be comparable to Procedural

Memory. The system interacts with its environment, turning some sort of internal

representation into the action taken by the system. In this case, the internal action is hard-

coded in the behavior network, while the translation of this command to an external

action is characterized by the contents of this memory network.

Franklin's Focus offers some of the same advantages as a working memory system

(See the Working Memory section in Chapter II). It streamlines the operation of the

executive components of the system by preventing those elements from having to sort

through massive amounts of information. It also allows for an easy method of simplifying

the debugging and analysis of a system built for such a specific, critical purpose. 

Another way to view the Focus is as a sort of Short-Term memory, albeit a limited

one. The Focus receives input from the perceptual elements of the system (shown to the

right of the Focus in Figure 5) and represents the most important perception from the

environment of this agent. Percepts must travel through the focus before they can

influence behavior.
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One important observation that one can draw from this viewpoint is the similarity

between the function of hard-coded aspects of the system and the memory units that they

employ. For example, the behavior network is hard-coded, but the links between its units

could be viewed as a static example of a Procedural Memory. The decision of encoding

parts of the system in dynamic memory units and others in static programs is a choice

made by the system designer when balancing the need for that particular function of the

system to evolve with experience and the requirement that the system be stable and

efficient.

Haikonen's Neural Cognitive System Model

The second cognitive agent to be analyzed is Haikonen's general cognitive agent

architecture. Although this architecture does not use symbolic AI memory units, it does

contain some characteristics that show how a more statistical approach to cognitive

system design can produce memory divisions similar to those listed in Chapter I.

Haikonen's architecture is described in the cognitive agent section due to its inherently

embodied nature.

Haikonen takes a somewhat different approach to building an embodied cognitive

architecture. Instead of building specialized systems based on explicitly-programmed

blocks, Haikonen developed a recurrent neural-network building-block that can be

generalized to produce a cognitive machine [Haikonen, 2000b].
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Figure 6. Haikonen's Perception/Response Reentrant Loop [Haikonen, 2000a]

Figure 6 shows the main building block of Haikonen's cognitive architecture

[Haikonen, 2000a]. The sensory input contains sensory information from a specific

modality. It is fed through the feedback neuron group, which combines attentional input

from the association groups with perceptual information from the preprocessing network.

The output from the feedback neuron group contains the percept of the perceptual block,

which is the main output of the loop and is transmitted to the association blocks of the

rest of the system. The sensory m/mm/n signal shows if the percept matches the output of

the association group (m), mis-matches the association output (mm), or is a novel

stimulus (n). In a similar way, the associative m/mm output contains information on

whether the percept matches the output of other reentrant loops. Finally, a winner-take-all

system selects the dominant output from the association neurons and sends it to the

feedback neuron group.

Motor commands may be executed by sending the percept of the group to a motor

command unit. In this case, the sensory input is proprioceptive information, so a feedback

motor loop is created [Haikonen, 2003].
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Figure 7. Cognitive System by Haikonen [Haikonen, 2000b]

Figure 7 shows a cognitive machine using five reentrant perception loops (one

auditory, three visual, and one controlling gaze) and one reentrant system evaluation loop.

A system such as this could be used for identifying stimuli and context. The m/mm/n

system is intended to coordinate responses based on stimuli, system state, and percepts.

The p/dp block associates emotional salience with percepts and changes the motor output

of the system [Haikonen, 2000b]. Haikonen's emotion system is discussed more in

Chapter V.

Due to the highly modular architecture of Haikonen's cognitive systems, the

architecture is easily adaptable to a wide variety of applications. The architecture also
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dictates that sensors are closely tied with the reward estimation and action execution

system, so perception becomes intrinsically tied with cognition.

Like IDA, several characteristics of this system contain parallels to the memory

division discussed in Chapter I. Each of these memory types is represented by the weights

of the connections within the neural networks in each block of Figure 7.

Short-term memory could be contained within the output of the preprocessing

block. These memories represent the current percept of the system and are transient in

nature – they disappear once the stimulus leaves the perceptual field of the system.

The reentrant loop within each perceptual block represents a sort of working

memory for the system. This loop contains an internal representation of relevant

information within the system, and can be influenced by the other perceptual blocks as

well as the reward systems. It also could be thought of as a short-term memory in certain

circumstances, such as when the output of another perceptual block produces the pattern

of activation representing the other block's perception.

Procedural memory is represented by the connection weights within the visual

motor block that sends commands to the outside world.

The Semantic Memory of the system could be attributed to the association

strengths between a particular block and the perceptual output of other blocks, the

pleasure/displeasure and novelty systems, or even the preprocessing block and the

perceptual loop itself. The semantic memory in this case serves to associate certain

patterns with others, producing a “fact” of relation.
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There is no episodic memory that can be attributed to this system, other than

recurrent activation patterns. The reason the associations between a perceptual block and

the pleasure/displeasure system can not be compared to an episodic memory system is

that the connections are not associated with a particular time and place.

Discussion of Memory in Cognitive Systems

Several similarities have been drawn between the memory structures within these

cognitive systems and those present in humans. One glaring hole, however, is the lack of

an episodic memory system for general system-level recording and learning. IDA

contains some episodic memory capability, however its treatment of episodic memory

disregards many of the purposes for which humans use episodic memory.

One important difference between IDA's Intermediate memory and the episodic

memory of a human is that the Intermediate memory is not stored past a particular

interaction with a sailor. One of the main purposes of human episodic memory is to recall

episodes that happened outside the current timeframe to remember relevant information

about the present. For example, episodic memory might be used to string together

landmarks used to navigate when visiting a novel city or to recall the place where one lost

a credit card in a night around town. Neither of these tasks would be possible were

episodic memory discarded after the current task was finished. As such, Franklin

disregards retrieval or evaluation of Intermediate memory for context.

Another useful characteristic of the memory parallels drawn in the previous

sections is that the short-term and semantic memories share a similar representation. Even

in Haikonen's model, the short-term memory was transferred into a semantic memory as

soon as it was perceived. For the semantic memory system detailed in Chapter IV,
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semantic memory units are created by perceptual algorithms, and passed around the short-

term and episodic memories as a common internal representation. This keeps the

representations of memories consistent, and allows the system to derive statistics useful

for memory retrieval and formation from these common units of knowledge.

Working Memory In Cognitive Systems

Working memory is a limited-capacity memory store that actively selects and

holds the most task-relevant information in a cognitive system [Skubic et al., 2004].

Psychological and neurological studies provide much evidence for the existence of a

working memory in humans [Baddeley, 1986][Goldmann-Rakic, 1987][Cowan, 2001].

Such a system could provide many advantages to cognition in both humans and artificial

cognitive systems.

For the purpose of creating artificial cognitive systems, the most useful

characteristic of working memory is that it automatically provides task-related focus.

Since the environment is filtered and only task-related information is allowed to pass

through to the cognitive processes, conscious resources are not wasted actively searching

for relevant information but are reserved for task execution and monitoring. Working

memory also enhances cognitive ability by reducing the complexity of the task-related

space to several “chunks” that are needed for immediate decision making in the current

context. The most relevant task-related information is selected, producing a vastly-

simplified space in which the cognitive system pursues goals.

A “chunk” is the memory unit that is used by the working memory. This could be

a single number, the relationship of a chess piece to others on the board, the location of

an object, or a formative plan. The design of the working memory system and that of the
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memory systems that provide the working memory system with data dictates the content

of a “chunk” in an artificial cognitive system.

In humans, neurons of the prefrontal cortex are thought to be involved in the

selection and maintenance of working memory contents [Rainer et al., 1998]. It has been

suggested that dopaminergic cells projecting to the prefrontal cortex predict temporal

difference (TD) error in primates and regulate the contents of working memory [Braver

and Cohen, 2000]. These projections would allow the prefrontal cortex to select

memories based on characteristics of other memories that have provided reward in the

past. For example, if a driver involved in a hit and run accident did not remember the

license plate of the other car, they would be punished by not receiving liability insurance

money. The next time they were hit in such an accident, this information would be more

likely to be retained as relevant to the task of fixing the car.

The TD-error is the difference between expected and actual reward discounted for

the length of time in the future in which the reward is expected. The discounting dictates

that a predicted reward in the distant future would be weighted less than the same reward

in the immediate future. When the agent reaches the time at which it expects a reward but

receives none, the error in expected reward is used to adjust the algorithm used for

predicting future reward.

Since the TD-Learning algorithm used in reinforcement learning applications in

computer science requires only reward information to learn useful knowledge about the

environment, a TD-Learning-based system could provide a powerful, relatively automatic

method for associating features in a system's environment with reward, therefore allowing

the working memory system to select features resulting in higher reward. A generalized

toolkit for selecting appropriate “chunks” has been developed using a TD-learning system
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implemented with neural networks [Skubic et al., 2004], and it is planned to use this tool

in Procedural Memory behavior generation as detailed in Chapter III [Ratanaswasd et al.,

2005a].

In addition to learning to predict reward given by the environment to judge

appropriate memory units for inclusion in the working memory contents, several other

informational inputs could be used. For example, the system could judge a candidate

chunk's context based on the other contents of the working memory system. Other

information, such as an internally generated emotional salience signal or the novelty of a

given memory chunk could be used to judge the most appropriate chunk for a given

situation.

The ability to massively reduce the amount of information available to the

cognitive system makes a working memory very useful for artificial cognitive systems.

Relevant information is automatically presented to the cognitive system, allowing the

system to concentrate on task execution instead of memory parsing and retrieval.

One criticism of the idea of a working memory as an active filter in an artificial

cognitive system could be that the work of sorting through the environment for relevant

information must still be done – the name of the process that performs this task is the

only change with the introduction of a working memory system. This argument has two

flaws.

First, extracting this element from the executive processes of the system allows

for easy distribution of the work among multiple physical systems in the implementation

of the cognitive system. The only data that need to be passed between cognitive processes

and the working memory system are reward information and working memory contents,

both of which are relatively low-bandwidth when compared to the massive amounts of
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data required to sort through a large memory system looking for ideal chunks for

placement in the working memory system. This also prevents the system from having to

expend resources searching memory that could be spent planning or executing actions in

pursuit of a goal.

Frequent memory searches are costly to the cognitive system, with traditional

searches having time cost related to the size of the database by O(N) or O(log N).

Although domain-specific heuristic search methods can be used to shorten this search

process, the cost of searching a large database will not fall below that of searching a

small, constantly-sized working memory system. If the working memory system were to

have difficulty retrieving the specific element needed by the cognitive system, the system

could then fall back to searching the raw database. Even this hybrid search strategy would

drastically lower the cost of memory retrieval when compared to a system that had to

search through a memory database for every desired element.

By extracting the working memory from the executive processes of the cognitive

system, the executive processes can be designed with the assumption that the most

relevant information is in the working memory. The ability to make this assertion

dramatically simplifies the design of the cognitive system by reducing the amount of

planning needed for correct memory retrieval.

The second flaw in the argument that a working memory system does not reduce

the work performed by the cognitive system is that, by creating a specialized memory

retrieval component, the retrieval of memory units may be maintained and learned over

time. When thinking of an architecture that does not employ such a specialized memory

retrieval system, the memory retrieval of the system would probably be performed by the

generation of a new query and search every search request. Such a system would perform
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similarly on the first and fiftieth searches. The separation of the working memory system,

however, allows for the learning of characteristics of memory units that aid in retrieval,

or, in the case of a generalized working memory system known as the Working Memory

Toolkit, it allows for improvement of the results.

A program called the Working Memory Toolkit has been developed for the

purpose of selecting arbitrary memory units with which to populate a working memory

system [Phillips and Noelle, 2005]. The memory units and current state of the system are

encoded into vectors. These vectors are then combined and compared with the use of a

neural network that attempts to predict the future reward generated by selecting each

candidate memory unit.

The toolkit is implemented in ANSI C++, and functions for encoding the system

state and candidate memory units into vectors are supplied by the user. Because these

functions are user-defined, the system is portable to a variety of working memory

applications.

In the following sections, a strategy for the creation of a working memory system

will be detailed. This system is heterogeneous because of the complex nature of the

memory structures with which it operates, however so are many theories of human

working memory [Baddeley, 1986].

ISAC: A Cognitive Robotic System

ISAC, or Intelligent Soft Arm Control, is a humanoid robot equipped with air-

powered actuators designed to work safely with humans [Kawamura et al., 2000]. ISAC

is equipped with two arms with position encoders for proprioception, two pan-tilt

cameras for vision, IR proximity sensors for human detection, touch sensors on its hands,
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a voice recognition system, and a sound-localization microphone array system. ISAC is

able to interact with the outside world through arm movement, speech generation, and

displays on its stomach screen. 

ISAC was originally designed to safely feed disabled humans, but has been

expanded to a research platform for human-humanoid robotic interaction and robotic

embodied cognitive systems [Kawamura et al., 1995]. Figure 8 shows the ISAC robotic

platform.

Figure 8. ISAC, a Humanoid Robot

Computation on ISAC takes place within the framework of the Intelligent

Machine Architecture (IMA). IMA is a true multi-agent system designed to promote

code-reuse [Alford, 1999]. Within IMA, “Atomic Agents” perform simple tasks, like

Minsky's mental agents [Minsky, 1995], instead of containing goals, desires, and

intentions like more complex agents [Franklin and Graesser, 1997]. In IMA, there are two

“compound agents” that are aggregates of simple agents and function as a single agent:
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the Human Agent and the Self Agent. Data is shared transparently between agents, and

agents can be redesigned without changing the design of the rest of the system [Olivares,

2003].

IMA physically runs on multiple computers running the Windows operating

system – multiple agents communicate using Microsoft's DCOM technology. Individual

mechanisms that perform individual algorithms are programmed using C++ or Visual

Basic, and then combined in a graphical environment to form agents. For example, the

eye movement agent contains algorithms that both saccade to and smooth-track targets.

These algorithms are combined within a single agent with the use of a state machine to

change algorithms at appropriate times. Multiple agents are then aggregated to form

ISAC's cognitive robot architecture.

ISAC's Cognitive Robot Architecture

ISAC's cognitive robot architecture is designed to learn to interact with humans in

a complex environment without using explicitly programmed rules other than the initial

knowledge needed to learn new rules. In other words, the system should be able to learn

appropriate behavior through interaction with its environment without a programmer

having to program the behavior (other than behavior needed for learning new behaviors).

To accomplish this, a cognitive system has been created with the structure depicted in

Figure 9 [Kawamura et al., 2004]
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Figure 9: ISAC's Cognitive Robot Architecture

Figure 9 shows the components of ISAC's cognitive robot architecture. This

system is embodied in ISAC – it interacts with the world through ISAC's actuators, voice,

and computer display systems, and receives information about the world from ISAC's

sensors.

ISAC's Perceptual System

Sensor input is processed by several perception agents. Each agent performs a

single type of analysis such as color segmentation, voice localization and recognition,

motion detection, or face recognition [Rojas, 2004]. Any number of agents can run

simultaneously, posting their results to the SES Manager, the gateway to ISAC's short-

term memory system. The SES is ISAC's short-term memory structure and is discussed in
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more detail later in this chapter. Figure 10 shows the data-flow structure of the perceptual

system.

Figure 10. Perception System Detail

The agents can interface directly with the motor actuator agents, for both reflexive

action and purposeful behavior such as scanning the environment or color following. The

perception agents send percepts onward to cognitive elements of the system through the

SES Manager. Perceptual elements can receive top-down attentional information from

cognitive elements of the system, and can store and retrieve perceptual data from the

Semantic Memory system (covered in Chapter IV).

ISAC's Memory Structure

ISAC's memory structure is divided into three classes: Short-Term Memory

(STM), Long-Term Memory (LTM), and the Working Memory System (WMS). The
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STM holds information about the current environment while the LTM holds learned

behaviors (in the Procedural Memory or PM), semantic and perceptual knowledge (in the

Semantic Memory or SM), and past experience (in the Episodic Memory or EM). The

WMS holds task-specific STM and LTM information and streamlines the information

flow to the cognitive processes during the task as detailed in the previous section.

ISAC's sense of self is represented in a compound agent (an agent consisting of

several atomic agents) called the Self Agent. The Self Agent is the location of ISAC's

planning system, executive control, self-monitoring, task selection, and other functions

attributed to human cognition (see Chapter II).

A component of the Self Agent called the Central Executive Agent retrieves

information from the memory systems through an active memory storage daemon called

the Working Memory System. The Central Executive Agent is also responsible for

executive functions such as setting tasks and goals, dealing with conflicting goals, and

planning [Ratanaswasd et.al., 2005b].

The Working Memory System monitors the needs of the Central Executive Agent,

the contents of the memory systems, and the output of the perceptual system to populate

itself with the most relevant data pieces, or “chunks”. Each type of memory has a

different method of chunk retrieval and its own limited-capacity Working Memory.

Because the Working Memory is automatically populated with a limited number of

chunks, the executive functions within the Central Executive Agent do not have to sort

through massive amounts of information.

A structure called the Sensory EgoSphere (SES) holds STM data. The SES is a

data structure inspired by the egosphere concept as defined by Albus [Albus, 1991] and

serves as a spatio-temporal short-term memory for a robot [Kawamura et al., 2004]. The
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SES is structured as a geodesic sphere that is centered at a robot's origin and is indexed by

azimuth and elevation. In ISAC's case, the SES (as shown in Figure 11) is centered

between the cameras.

The objective of the SES is to temporarily store percepts produced by the sensory

processing modules operating on the robot. Each vertex of the geodesic sphere contains a

database node detailing a detected stimulus at the corresponding angle.

Figure 11. Structure of the Sensory EgoSphere [Achim, 2005].

Memories in the SES can be retrieved by angle, stimulus content, or time of

posting. This flexibility in searching allows for easy memory management, posting, and

retrieval. The memories in the SES also decay if they are not accessed, ensuring that only

current and relevant data remains.
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The Sensory EgoSphere can facilitate the direction of attention to external sensory

events. Because sensory processors report all exteroceptive events to the SES, an

attention network is able to search the SES for both task-relevant sensory data and

unexpected yet salient sensory data and registers them to the ST-WM [Hambuchen,

1996]. 

As multiple events are registered in a common area, activation increases around a

central node. Nodes that receive registration from task- or context-related events have

their activations increased by the attention network. The attention network selects the

node with the highest activation as the focus of attention. Sensory events that contributed

to this activation are selected and those that fall within a specified time range of each

other are passed into the WMS.

ISAC's LTM is divided into three types: Procedural Memory, Episodic Memory,

and Semantic Memory. Like that in a human brain, the LTM stores information such as

skills learned and experiences gained in the long term for future retrieval. 

The part of the LTM called the Procedural Memory (PM) [Erol, 2003] holds

motion primitives and behaviors needed for movement, such as how to reach to a point.

Behaviors are derived using the spatio-temporal Isomap method proposed by Jenkins and

Mataríc [2003].

To produce PM units, motion data are collected from the teleoperation of ISAC.

The motion streams collected are then segmented into a set of motion primitives. The

central idea in the derivation of behaviors from motion segments is to discover the spatio-

temporal structure of a motion stream. This structure can be estimated by extending a

nonlinear dimension reduction method called Isomap [Jenkins and Mataric, 2003] to

handle motion data. Spatio-temporal Isomap dimension reduction, clustering and
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interpolation methods are applied to the motion segments to produce Motion Primitives

(Figure 12). Behaviors are formed by further application of the spatio-temporal Isomap

method and linking Motion Primitives with transitions [Erol, 2003]. In other words,

Behaviors consist of linked lists of Motion Primitives, which are small stereotypic motion

segments.

 

Figure 12. Derivation of Procedural Memory through a human-guided motion stream.

Motion skills for each behavior must be interpolated in order to be used in

specific situations. In other words, the original recorded motion that produced the

behavior must be altered to produce a desired motion to a different point. The

interpolation method used is the Verbs and Adverbs method developed in [Rose et al.,

1998]. This technique describes a motion (verb) in terms of its parameters (adverbs) that

allow ISAC to generate a new movement based on the similarity of stored motions. These
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values are used to interpolate a new motion after a behavior is deemed relevant and

retrieved to the P-WM.

 

Figure 13. Structure of Procedural Memory data unit.

Figure 13 depicts a current representation of the PM data structure.  At the top of

this structure, behavior descriptions will be stored allowing the system to identify what

each behavior can contribute to solving a given motor task. Each entry in the behavior

table contains pointers to the underlying motion primitives, which are linked to the actual

segmented data constituting that particular motion primitive. The memory formation and

retrieval process is described in more detail in Chapter III.

The Episodic Memory (EM) system holds records of past experiences in a time-

indexed format. The Episodic Memory daemon records the contents of the Working

Memory System along with reward information from the emotion system (for more

details on ISAC's emotion system design, see Chapter V) for the duration of a single task

and posts this information to an EM data unit. EM units decay at a rate related to the

output of the emotion agent for the duration of the recorded task, and are retrieved using a

method inspired by human memory performance (See Chapter V).
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The Semantic Memory (SM) is a data structure containing information about

objects in the environment. It details perceptual and semantic information, and is intended

to allow the cognitive systems to reason about and plan with objects as well as to allow

for the combination of sensor information to form a single concept of an object through

the perceptual processes. In other words, a single semantic memory unit should represent

a fire alarm recognized by both beeping noise and flashing light, even though the

recognition process involved in interpreting these two stimuli is probably performed by

separate perceptual agents.

Figure 14. Logical Function of the Working Memory System.
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Figure 14 shows the function of various parts of the WMS. The multiple lines

represent links where multiple memory units are actively maintained and transferred,

while the single lines represent the feedback between the CEA and memory systems

through perceptual direction and attention. The arrows surrounding the WMS are meant

to show that it is an adaptive, changing system that adapts to the contents and situation of

both the memory banks and the CEA.

The design of the LT-WM takes many different forms. The S-WM holds the

Semantic Memory information needed to complete the task and is implemented by a

simple keyword search as described in Chapter IV. The E-WM is populated by an agent

that selects EM units based on similarity to the current situation and emotional salience.

For example, if ISAC were attempting to place the red bag in the box but had never

attempted this task before, the E-WM would retrieve episodes in which ISAC had

performed similar tasks or tasks within the same environment. EM units themselves are

generated by the contents of the whole WMS during task execution. The EM generation

and E-WM population algorithms are described in more detail in Chapter V. The P-WM

holds behaviors needed to complete the current task, and serves to reduce the complexity

of real-time error-driven execution of behaviors. These behaviors are selected through a

reinforcement learning algorithm that attempts to predict each behavior's use to the

current movement task as discussed in Chapter III. Each memory type is tested and

analyzed with techniques outlined in Chapter VI.
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The Compound Agents

ISAC's cognitive architecture contains two compound agents: the Self Agent and

the Human Agent. The Human Agent handles human interaction, while the Self Agent is

intended to represent ISAC's sense of self [Kawamura et al., 2005].

The Human Agent (HA) is responsible for ISAC's human interaction [Rogers,

2003]. The HA detects, tracks, identifies, models, parses the speech of, deciphers the

gestures of, and speaks and gestures to humans. The Human Agent communicates directly

with the Self Agent, allowing humans to interact closely with ISAC's cognitive system.

Figure 15. The Structure of the Self Agent [Kawamura et al., 2005]

Figure 15 shows the structure of the Self Agent (SA). The SA represents ISAC's

sense of self by monitoring task execution, system health, and the robot's internal state.
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Currently, the Description Agent, the Intention Agent, and the Pronoun Agent have been

implemented. The Central Executive Agent and the Emotion Agent are under

development [Dodd et al., 2005] [Ratanaswasd et al., 2005b]. The Emotion Agent is of

paramount importance to the correct operation of the Episodic Memory, as is discussed in

Chapter V.

The emotion agent was simulated for the memory experiments because of its

incomplete state. Chapter VII, however, discusses how the Episodic Memory system may

be tuned to resolve any inconsistencies between the outputs of the actual implementation

of the Emotion Agent and its simulation.
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CHAPTER III

PROCEDURAL MEMORY AND PROCEDURAL WORKING MEMORY

The Procedural Memory (PM) holds information needed for the generation of

ISAC's movements [Erol, 2003]. The system is best understood by following a single

movement, from the teaching process to movement execution by the robot. The

contribution made by this thesis is the design of the database node to hold and retrieve the

information output by the following process.

First, ISAC's arm is moved along the path of the behavior. The arm can either be

moved by a person standing next to ISAC and moving the arm, or by a computer

controller issuing commands to move the arm. The movement trajectory is called a

behavior exemplar, and forms the base information of the higher-level behavior data

structure. Note that the output of the control system can be recorded to expand the

behavior library, allowing for multiple procedural memories to be combined into a single

behavior for future applications. This sort of memory re-encoding and combination may

be seen in the human brain [Fuster, 2000].

The behavior exemplar is fed through the ST-ISOMAP system, which combines

several exemplars of the same behavior and breaks the combined information into several

temporal sections, or Motion Primitives (MPs). For example, a 20 second reaching

motion might have a 5 second segment where the shoulder moves, followed by a 7

second segment of quick motion by the elbow. These two segments would be MPs.

The Procedural Memory system stores the output of the ST-ISOMAP system in

three database nodes, each nesting several of the next: Behaviors, MPs, and
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ExampleNodes. Currently the ST-ISOMAP system outputs a text file containing the name

of the behavior, the location of several behavior examplar files, and the positions of the

MPs within the exemplar files. This data is parsed and encoded in the correct structures.

The ST-ISOMAP algorithm segments data at boundaries where characteristics of

the data change dramatically. The segments between these boundaries constitute the MPs,

which are stored in the data structures described in the following section.

Procedural Memory Storage Implementation

The Procedural Memory system is stored in the cross-platform open-source

MySQL database system. All memory storage and retrieval scripts are written in the Perl

language, and the modular controller detailed at the end of this chapter is written in C++.

The PM data unit is encoded into a linked database in the structure of Figure 16.

The arrows denote links to data nodes. There are three types of nodes in the database,

from highest level of abstraction to lowest: Behavior Nodes, MP Nodes, and Exemplar

Nodes.
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Figure 16: PM Database Structure

The highest level of the PM database hierarchy is the behavior node. This is the

node that is retrieved when interpolating a new motion for action execution. This node

may be seen in Figure 16, and is labeled “Behavior1”.

Table 1. PM Behavior Node Structure

Field Name Description Example Data

id Unique identifier, used for retrieval and
tracking

Behavior 1

name Set by user, used for feedback to humans Reach out

lengthInMPs Length of Behavior in Motion Primitives 3

MPs Forward Links to MP nodes MP 32, MP 24, MP
53

timestamp Datestamp of Behavior formation and access 3:30 PM, July 2,
2005

description Used for system debugging and to allow for
contextual information to be associated with
memory units for future implementation with
the Working Memory Toolkit

<blank>
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Table 1 shows the structure of the Behavior node. The “MPs” field contains links

to all the Motion Primitive nodes that contribute to the particular behavior. As is shown

in Figure 16, the links are an ordered list of all MP nodes constituting a single behavior.

The timestamp field is updated each time the behavior is updated or accessed, and can be

used for memory pruning and consolidation. “Description” is not currently used, but can

hold textual descriptions of the behavior or information needed for converting the

behavior to chunks for the working memory system.

Table 2. PM Motion Primitive Node Structure

Field Name Description Example Data

id Unique identifier for MP, used when referencing
MP from Behavior node

MP 1

RawData Link to id of Exemplar nodes associated with the
MP

Exemplar 24

ReverseDeps Behavior nodes containing links to this MP, used
for housekeeping

Behavior 2,
Behavior 5

Statistics Holds semantic information for future memory
consolidation

<blank>

Table 2 describes the implementation of the PM node. In Figure 16 the MP data

nodes are circular. The “RawData” field holds links to Examplar Nodes containing

sample data for this particular Motion Primitive. These links are in no particular order,

and multiple examples may be specified for each Motion Primitive. The “Statistics” field

could be used for more intelligent consolidation (consolidation by similarity), or to hold

statistical information for converting behaviors to chunks in the working memory system.

“ReverseDeps” holds reverse links to all behaviors that are partially composed by a
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particular Motion Primitive, and is used to find orphan nodes when deleting behaviors

from the memory database.

Table 3. PM Exemplar Node Structure

Field Name Description Example Data

id Unique identifier Exemplar 3

data Raw data constituting MP units <joint data>

InstanceOf Reverse links to MP nodes linking to this node, used
for housekeeping

MP 2

Table 3 details the implementation of the Exemplar Node structure. In Figure 16,

the Exemplar Nodes are the rectangles on the bottom and hold the raw data in Motion

Primitive number 35. “data” holds the raw data found in the examples, while

“InstanceOf” holds the id number of the Motion Primitive node of which the Exemplar

node is an instance. The “InstanceOf” field is used for housekeeping and consolidation.

For all three nodes, forward and reverse-links are maintained both for

housekeeping and data retrieval. All links refer to a node's “id”, which is configured using

MySQL's Primary Key functionality to achieve minimal search time when retrieving a

node.

Procedural Memory Decay

Removal of Behavior Nodes is performed by timestamp-pruning. Behaviors that

are not retrieved frequently are logically the ones that the system does not use. The

Modular Controller, the system that uses the Procedural Memory units, currently contains

a reinforcement learning system that attempts to evaluate the utility of each of the PM

units in memory. Because the reinforcement learning system evaluates these units, units
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that are unlikely to be used by any motion command may be found by calculating the set

of all behaviors that will not be retrieved by any motion command (motion commands are

discussed in Chapter IV). This pruning is important for correct operation of the Modular

Controller system as discussed in Chapter VII.

Procedural Memory Retrieval & System Integration

Robust control of motion is essential for robotic applications in which the robot

must complete tasks and learn from experience within a complex environment. It is of no

use to plan a complex solution to a task that the robot is incapable of executing, just as it

is useful to be able to automatically learn which behaviors are appropriate based on the

context of the task.

The contribution made to the following system through this thesis is the design of

the algorithm that selects PM units for use in the modular controller. More details about

this system may be found in [Ratanaswasd et al., 2005a].

ISAC's Modular Controller is a system which learns both which behaviors to

select before motion execution and the best path to take during motion execution. To do

this, it combines the concept of working memory with behavior interpolation and error-

driven execution [Ratanaswasd et al., 2005a]. Figure 17 shows how the system combines

existing behaviors (shown in solid lines) to interpolate a new movement (shown by the

dotted line).
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Figure 17. Behaviors are Combined for ISAC's Movement [Ratanaswasd et al., 2005a]

The mechanism used to accomplish this interpolation across behaviors is called

the Modular Controller. Figure 18 shows the structure of the modular controller from a

functional standpoint.
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Figure 18. Modular Controller Functional Structure [Ratanaswasd et al., 2005a]

Figure 18 shows the functional structure of the Modular Controller. Behaviors are

held within the Procedural Memory which is a section of ISAC's Long-Term Memory.

These behaviors are selected by a reinforcement learning process within the Central

Executive Agent that evaluates the expected reward provided by a given behavior. The

selected behaviors are stored within a structure called the Procedural – Working Memory

and are then combined in an error-driven manner to produce the desired behavior. After a

movement is generated, reward is calculated for the set of selected behaviors so the

system can better predict how a given behavior set will function in the future.

Figure 19 shows the implementation of the modular controller. The mechanisms

that select the PM units for placement in the P-WM are contained within the Central

Executive Agent. After interpolation, each behavior contains the information needed to

estimate the current state within the context of that behavior and to predict the next state
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produced if that behavior is followed. In other words, when the motion is executed, each

behavior contains information needed to determine the weighting of the behaviors at the

next step in behavior execution.

Figure 19. Implementation of the Modular Controller [Ratanaswasd et al., 2005a]

It may be seen in Figure 19 that behaviors are weighted and summed in order to

produce motion. The formula that the Central Executive Agent uses to compute these

weights may be found in [Ratanaswasd et al., 2005a]. The contribution of this thesis is

the system that selects behaviors for inclusion in the P-WM and adjusts predicted reward

based on the performance of those behaviors.

The Procedural Memory – Working Memory System (P-WM) holds a set of three

behaviors that are to be used to accomplish the movement task. The working memory

size was set to three to allow the system to achieve a high sampling time when executing

behaviors in an error driven manner while retaining the benefits of combining several
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behaviors to produce novel motions. The calculations that find the relevancy of each

behavior for the next motion execution time step are fairly complex, requiring a limited

number of behaviors for which these calculations need be made. By selecting this limited

number of behaviors for placement in the P-WM, the time required to make these

calculations is reduced and the sampling time for movement execution may be raised.

These behaviors are currently selected by a reinforcement-learning technique

based on TD-Learning. The behaviors are selected before the movement execution time,

and reward is supplied after the movement is executed to provide the selection system

with feedback.

The role of the reinforcement learning system is to select the behaviors that will

be appropriate for the current movement task. A new reward is calculated for each set of

behaviors after attempting the task. The reward is equal to the average relevancies (or

weights) of behaviors within the set over the time it took to complete the task, discounted

by the task completion time. For more information on the specifics of these calculations,

see [Ratanaswasd et al., 2005a]. In this manner the system attempts to select behaviors

that are both fast and useful for a given task. No reward is given if the system fails to

achieve the goal state.

Thus, the set of behaviors that complete the task most quickly with the most

precision will be rewarded and are likely to be selected in the future. ISAC learns which

set of behaviors to select for each task. New, similar tasks can be built on the learned

values. 

Currently the reinforcement learning system is implemented by a simple look-up

table that attempts to estimate the utility of each PM unit and is used to select the top

three behaviors for the task. This selection system is also configured to conduct a random
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exploration for a small percentage of task attempts in order to prevent initially explored

modules from “hogging” activation, and to guarantee that the system will converge on a

usable, reasonably explored state. This approach has drawbacks, however, as detailed in

Chapter VII. Changes to this behavior selection process are also described.

This system attempts to estimate the reward for each behavior in the system, with

a simple weighted averaging technique used to adapt the values stored in the estimator to

match the utility function of the behaviors to the Modular Controller and movement task.

In the future, the working memory toolkit [Phillips and Noelle, 2005] will be integrated

into the system to replace the current, table based system. This neural-network based

system will be more robust than the current selection mechanism to changes in task

context, as is discussed in Chapter VIII.

After the behaviors are loaded into the P-WM, each one is interpolated as close as

it can to the destination location using the Verbs and Adverbs interpolation technique

[Rose et al., 1998]. The motion is then executed, combining the behaviors with different

relevancies during execution to reduce error in the trajectory path (for more information

on this process see [Ratanaswasd et al., 2005a]). Finally, reward information is calculated

to evaluate the PM chunk selection using the formula discussed above.

The Procedural – Working Memory prevents the system from having to

interpolate a trajectory for each behavior in memory. It also significantly lessens the

resources needed for real-time error-driven control by reducing the number of behaviors

to be combined.  The savings produced by this reduction change the cost of executing a

motion from hundreds of calculations per movement time-step to three relevancy

calculations. This intuitively results in smoother motion generation with many available

behaviors because the sampling time for behavior generation is increased.
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CHAPTER IV

SEMANTIC MEMORY AND THE SEMANTIC WORKING MEMORY

The Semantic Memory (SM) currently holds information about objects in ISAC's

environment. It holds both information for perceptual systems on how to recognize

individual objects and information for cognitive systems that can be used for reasoning

about these objects. The Semantic Memory can not be queried directly from the CEA, but

is queried through links to SM units contained within Episodic and Short-Term Memory

structures.

Figure 20 shows the Semantic Memory information flow from sensors to the

CEA.

Figure 20. Semantic Memory Information Flow Through Perception
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Figure 20 shows how information from the perceptual system of ISAC travels to

the Central Executive Agent (CEA). Links to SM nodes are communicated through the

Short Term Memory (STM) and the STM-Working Memory System as is shown in the

top path of Figure 20. The second way that links to SM units are communicated to the

CEA is through the Episodic Memory, which records the contents of the ST-WM and the

S-WM. For clarity, Figure 20 does not detail this process. It is, however, discussed in

Chapter V. 

The method through which the CEA can retrieve more detailed knowledge of a

Semantic Memory node is through direct query from the CEA to the Semantic Memory

Working Memory System. Within this system, the CEA requests SM nodes about which

it needs more information. For example, the CEA could request the retrieval of memory

nodes from the S-WM after retrieving an episode from the Episodic Memory that

contained a crucial SM unit. Note that the CEA is not permitted to search for memory

units within the S-WM, but can only look for elements referenced in the SES or an

Episodic Memory unit.

Figure 20 shows the pathway through which percepts (links to SM nodes) make

their way to the CEA. When an object is perceived, a link to that object's SM unit is

posted to the SES. If that node is selected to pass through the attentional network and into

the ST-WM, the CEA has access to the SM contents that denote the object and its

physical location..

Semantic Memory Encoding

Memories in the Semantic Memory are directly generated by the perceptual

system. A sample perceptual system that generates SM nodes is detailed in Chapter VI.
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There must be some initial knowledge that is encoded into the Semantic Memory

system before ISAC's cognitive system can function. Such initial knowledge should

include information on how to recognize objects and how to learn what the identity of

objects are in order to build new knowledge about objects. For example, the ability for a

perceptual system to detect novel objects is useless if ISAC's system can not understand a

human telling it the identity of the new objects. 

Perceptual agents should be created that impose some initial knowledge into

ISAC's SM system, as well, without explicitly endowing ISAC with specific SM units.

For example, a perceptual agent that specifically identifies the location of a human's

pointing finger would be useful for many human interaction tasks in which ISAC might

participate, however it is the creation of the agent running a given algorithm that allows

the system to identify this crucial knowledge, not a preexisting SM unit.

Another example would be an agent that can identify brightly colored objects. The

initial knowledge contained within this agent would be the ability to identify the objects,

but the SM information generated by this agent would be specific to  observations made.

Figure 21 details the hierarchy of the Semantic Memory system and shows how

the “Barney” object would be represented within this structure. The main SM node is the

Object node. This node is referenced within the Short-Term Memory and Episodic

Memory systems, and forms the atomic unit of information that is passed around within

these systems. 
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Figure 21. Structure of the Barney SM Node

Figure 21 shows the structure of a specific SM node representing the Barney doll

object in ISAC's environment. The numbers in the Object Recognition Node in the lower

right side of this diagram represent the recognition coefficients for a given perceptual

process, while the picture in the Exemplar Node on the right side of the image represents

the sensor data that caused the perceptual process to identify the stimulus as Barney.

The Object node is created by a perceptual process, and represents a distinct

(known or novel) percept that the perceptual process identified within the environment.

After the perceptual process identifies a novel object, it creates a corresponding object

recognition node that holds all information that the perceptual process needs to identify

that object in the future. 

A single object may have multiple object recognition nodes in order to allow

multiple perceptual processes to use the same SM node, representing the target object in a

more robust manner. For example, the Object node in Figure 21 represents the Barney
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doll. This node would have been created by a perceptual process that identified a novel

characteristic in its particular modality. 

The perceptual process would have then created a new node, and stored the

information that it needed to identify the object (the Object Recognition node) and the

sensor data that prompted the identification in the first place (the Exemplar node). If the

perceptual process recognized objects based on color, it would have stored the numbers

representing the color purple in the Object Recognition node, and a small picture of

Barney in the Exemplar node as seen in Figure 21.

The Exemplar node holds the raw sensor data that was translated to the percept

represented by the Object node by perceptual processes. The Exemplar node is used for

such purposes as: training new perceptual algorithms on old data without having to show

each object in turn, displaying objects in GUI applications for user feedback (i.e. the SES

display program), and allowing the system to interact with humans more naturally (for

example, by asking a human what a particular image is if ISAC didn't recognize an object

identified by a novelty detector in the perceptual agent). 

These applications are possible because the recorded sensor data is the same as

sensor data that is perceived in real time. Training an algorithm or displaying this data

can be done from memory the same as if it were performed using current sensor data.

For example, a tone identification agent, upon identifying a novel sound

frequency, would generate an Object Recognition node containing the frequency of the

new tone. The Exemplar node would contain a recording of the tone.
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Semantic Memory Consolidation and Decay

Semantic Memory units should decay when they have no use to either the

cognitive system or to perceptual agents. This can be performed through a pruning of the

Object Recognition node particular to a given perceptual agent upon the loss of relevance,

followed by a general database sweep pruning Object nodes that do not reference Object

Recognition nodes.

Although this approach requires the cognitive system to generate an Object

Recognition node when it finds a given Semantic Memory unit useful, this pruning may

be achieved through a single database command.

Semantic Memory Retrieval

SM Memory units are retrieved through separate methods for perceptual and

cognitive processes. Perceptual processes retrieve SM information through direct search

of the Recognition nodes for relevant object recognition information. The perceptual

processes need to be able to look for a wide variety of objects in the environment, and

have access to the entire database of Semantic Memory Nodes. Search methods are left to

the perceptual agents.

The cognitive processes retrieve data through the S-WM, a memory store that

holds the several most relevant Semantic Memory nodes currently being used. This

working memory is populated by queries for single memories that have pointers

contained within the active Episodic Memory nodes.
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Semantic Memory Implementation

The Semantic Memory system is implemented as a location and platform-

independent MySQL database [Dubois, 2003]. Active components of the system, such as

the components that prune unreferenced SM nodes, are implemented as scripts,

interpreted text files that run like programs. All scripts are implemented in the similarly

platform-independent Perl language, allowing the memory systems to run in a distributed

manner.

Perl was selected due to its compatibility with the MySQL database, as well as its

power to parse and translate between complex data types of different formats.

Table 4. Object SM Node Structure

Field Name Description Example Data

id Unique identifier Object 1

Name String identifier of object Barney

Type Type of object Doll

RecInfo Links to RecInfo nodes containing
information needed by perceptual
processes to identify the object

RecInfo 3, RecInfo 5

SampleData Links to SampleData node containing the
raw sensor data from which the object
was recognized

SampleData 2

Characteristics Holds semantic information used for
human feedback and future reasoning

Soft, plush, brightly
colored

Refs Number of Episodic Memory units
referencing this Object (See Chapter V) 4

EpisodeLinks Links to those Episodic Memory units EM 3, EM 5, EM 7

 

Table 4 details the structure of the top-level SM node, the Object node. This node

holds semantic information in the “Characteristics” section, as well as links to the input
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data that prompted the recognition of the object (SampleData node) and the recognition

information specific to the perceptual algorithm used to identify the object and create the

Object Node (RecInfo node). The “Characteristics” section can hold any text, and is

intended to hold supplementary information needed for planning or human feedback

about specific objects. This information will be set by the CEA, and allows the SM

system to be extended in the future. The “Refs” value denotes the number of Episodic

Memory nodes that reference the Object structure, and is used for finding SM nodes that

are safe to delete because they are not referenced by any EM units.

Table 5. RecInfo SM Node Structure

Field Name Description Example Data

id Unique identifier RecInfo 14

InstanceOf Links to object that
references this node

Object 3

Method Contains name of the
perceptual agent that uses
this node

RGB Color Segmentation

Data Information needed to
identify object (used by
perceptual algorithms)

R=3, G=60, B=128

The RecInfo node, as seen in Table 5, holds information on how to recognize

objects. This node is linked to by the RecInfo field in the Object table shown in Table 4.

Multiple RecInfo nodes may be linked to within a single Object node in order to allow for

multiple sensor modalities to identify a single object. 

The RecInfo node is implementation dependent, any coefficients or recognition

information can be placed in the “Data” field, and a particular perceptual engine running
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a recognition algorithm can query the database for nodes using a particular recognition

method for its own use. 

For example, the colorOvuloid perceptual system (as discussed in Chapter VIII)

could query the database for all colorOvuloid Data fields containing a certain value.

 

Table 6. Example SM Node Structure

Field Name Description Example Data

id Unique identifier Example 3

Modality Sensor from which data was
drawn

Right Camera

Data Sensor data from which
object was identified

<image of Barney>

InstanceOf Reverse link to Object node
referencing this node

Object 1

Table 6 shows the Example SM Node structure. This node holds an example of

the stimulus recorded from the stated modality. For example, it would hold a picture of

the Barney for Barney recognition or a recording of Dr. Kawamura's voice for

recognizing Dr. Kawamura through voice. It is linked to in the SampleData field of the

Object Node seen in Table 4. The Data field holds the raw sensor data, while the

Modality field holds the sensor modality that provided the data.

Semantic Memory Decay

The Semantic Memory consolidation and decay system is implemented by a

simple script that prunes Object nodes not linked to any Object Recognition nodes.
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Semantic Memory Retrieval

Because retrieval of Semantic Memory units for perception is performed directly

by the perceptual processes, there are no explicit scripts that handle the retrieval of SM

for the purpose of perception. 

Each perceptual process should directly search the database in a manner

appropriate for its own purposes. The “Method” field of the RecInfo node as seen in

Table 5 allows perceptual processes to retrieve all relevant recognition information with a

single query, and to search through the “Data” fields within this set of nodes to find the

appropriate recognition information.

The purpose of the S-WM is to hold information needed for task execution by the

Central Executive Agent. The Central Executive Agent should specify which SM units

about which it needs more information, and should populate the S-WM through direct

query. As such, it does not require an independent script for S-WM population.
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CHAPTER V

EPISODIC MEMORY AND THE EPISODIC WORKING MEMORY

The purpose of an Episodic Memory system is to allow the learning and

representation of episodes, or temporally sequenced records of specific events that

occurred to the cognitive agent [Nuxoll and Laird, 2004] [Tulving, 1985]. Within the

computational neuroscience community there is a theory that there are two mutually

exclusive goals of long-term memory: learning interleaved, generalized representations of

behaviors and perceptions and learning isolated, one-shot episodes [McClelland et al.,

1995]. The former memory formation type is generally attributed to densely activated

neuronal firing patterns, or codes, within the human neocortex, while the latter is

achieved through sparse coding in the human hippocampus [Norman, 2003].

An effectively designed episodic memory system must accomplish the task of

retrieving the correct episodes for a given situation. In the following section, we will

outline how ISAC's episodic memory system is designed to store and retrieve the relevant

memory using memory context and emotion.

Episodic Memory: Storage, Retrieval, and Decay

As stated earlier, the EM system holds records of specific, temporally-based past

experiences, or episodes. An episode is defined as a period of task execution of the robot

during which the goal of the robot does not change. The Episodic Memory (EM) is

intended to provide cognitive processes with the ability to evaluate and learn from past

task performances. It holds a record of the contents of the SM and ST-WM as well as
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task-related information from the Self Agent for the duration of the task. This data is

stored alongside the output from the Emotion Agent, which is used to determine the

decay of the episode.

Figure 22. Episodic Memory Formation [Dodd et al., 2005]

As seen in Figure 22, each episode contains links to the entire contents of the

Working Memory System and Self Agent as well as the output of the Emotion Agent for
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the duration of the task. All constituent links point to Semantic Memory units, so

statistics may be calculated about the frequency of use for each SM.

The task of the EM retrieval system is to automatically populate the Episodic

Memory Working Memory System (E-WM) with the correct episodes for a given

situation. The correct episode is the one that provides the information needed by the

executive system for planning or task execution. Because the correct episode could

provide the location of a lost object, a plan for a task to be used in case-based reasoning,

or even a clue as to why some percept in the environment is associated with such strong

emotion that it warrants a goal change, the “correctness” of an episode is very difficult to

judge.

The relevance measurement for comparing a given episode with the current

situation is defined as consisting of five major criteria that serve to highlight several

scenarios in which an episodic memory unit would be used.

● The retrieved episode should contain common SM units to the current situation.

● Recent, commonly accessed episodes are more useful than older, less used episodes.

● Novel similar percepts or goals should score higher than common similar percepts or

goals within episodes.

● The CEA should be able to shift attention to desired aspects of a target episode.

● Emotionally salient memories should score higher than those producing little emotion.

The first two criteria are obvious: if the cue (the forming episode) contains a

specific task or object, the resulting memory needs to contain common elements to be
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relevant to the current situation, and recently formed memories are more likely to contain

applicable information. 

The third criterion is used to enhance the score of cues that are rare over those that

are commonly seen. This serves to enhance those aspects of a cue that differentiate it

from others. For example, if ISAC's environment contained a red bean bag with which it

interacted many times a day and a black box with which it had interacted only once

before, it would be beneficial to retrieve the episode detailing the context of the box for a

possible goal change.

The fourth criterion allows the Central Executive Agent to weight aspects of a cue

that are important to the current context. For example, if the system needed to know the

last place it placed a particular object, it would need to heavily weight the memory

structure representing that object. 

Lastly, a machine emotion system [Haikonen, 2003] may be used to interject

personal significance to an episode. If the robot were strongly rewarded after performing

a task in a certain manner, it makes sense to recall that episode over a task execution in

which little feedback was given. This emotional salience allows for personal reward

calculation as well as reward calculation for 

The method in which EM memories are retrieved is based on the work of John

Anderson [Anderson, 1990]. In this book, Anderson demonstrated that a rational

approach to memory retrieval applies to many domains, from human memory to library

databases. This approach demonstrates that the “rational” approach to memory design is

that which maximizes the benefits of considering a memory unit for retrieval considering

the cost of this consideration. Having to consider a large number of memories to find the
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desired one, therefore, would be strongly discouraged. The first equation used for ISAC's

Episodic Memory retrieval is the cost equation [Anderson, 1990]: 

pG≥C                                                                 (5.1)

This equation states that the probability that a given memory unit is the correct

memory unit times the reward of reaching the goal should always be greater than or equal

to the cost of retrieval. This characteristic is implemented in the Episodic Memory system

through the use of a threshold for acceptable retrieval success. In other words, the system

operates in a fuzzy manner to retrieve those elements that are likely to be the correct ones

and not to waste resources considering memory units that are unlikely to be useful. It is

also implemented by pruning nodes that can not exceed the cost of retrieval.

The retrieval of episodes is accomplished through an algorithm that takes the

currently forming episode and selects several stored episodes for placement in the E-WM.

As (more generally) stated by Anderson [Anderson, 1990], the probability that a memory

is relevant is calculated through the combination of two independent factors: a history

component P(A|H) and a contextual component P(A|Q) [Anderson, 1990].

                                             (5.2)

The contextual component P(A|Q), or the probability that the memory denoted as

A is suitable given only the cue denoted as Q, is calculated by measuring the importance

of each constituent SM unit in the formative EM and comparing it with the relative

importance of the same SM in the candidate EM units. This is similar to comparing
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common elements of a collection of data to determine the importance of individual

elements. A memory histogram is computed by taking the percentage of time that each

SM spends in the Episodic Memory divided by the the total size of that memory. The

histogram is then altered to reflect the influence of contextual information from the CEA

and frequency of occurrence information about the constituent SM unit. This process will

be described in more detail shortly (Figure 25 shows this process in detail).

The history component, , is insensitive to the current context. It is

determined by the emotional salience and age of the episode. The rationale behind this

design is that, if an episode contains high emotional salience, it is likely to be important

to the cognitive agent. For example, if ISAC were punished the last time it ignored a

certain percept, it would be beneficial to retrieve the episode of that punishment the next

time that stimulus was encountered.

The retrieved episodes will be used to generate future actions through a planning

system within the CEA. Because the size of the E-WM is relatively small, episodes can

be linked together to chain behaviors in a tractable fashion, even if brute force methods

are applied. The E-WM is populated continuously, so the episodes available to the

planner change as new situations arise. This allows the system to generate plans as new

problems are encountered.

The process for generating plans could be considered a form of case-based

reasoning [Leake, 1996]. This approach could provide the system with a way to learn

from experience and generate plans without having to generate a complicated statistical

model to generalize over multiple experiences. 

EM units can also be used for the extraction of information linking a particular

SM to a particular time and place. An example of this type of extraction is a person
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remembering the location of the car they parked an hour previously, or when they last

spoke with a friend.

The search that populates the E-WM is performed in a top-down manner – the list

of SM units in the search cue (created by calculating the fingerprint of the forming

episode) are ordered by importance as shown in Figure 25. EM units containing each SM

unit are found through the use of a hash, and each candidate EM unit is assigned a score

by multiplying the importance of the SM unit to the candidate unit with the importance of

the SM unit to the cue. The list of SM units in the cue is traversed in order, and candidate

EM units are pruned as it is no longer possible for them to enter the list. When the list of

candidate units equals the size of the E-WM, the search is successful because it is not

possible for any other episodes to enter the list. The search is analyzed in Chapter VII,

and psuedocode of the search process is given later in this chapter.

This search method has several characteristics that are advantageous to its

application in ISAC's cognitive system:

● It prunes irrelevant information from memory during the course of a search, reducing

memory requirements.

● It weights less common constituent SM units more than others, so the search space is

naturally constrained.

● It requires only a simple hash, reducing resources needed for keeping track of complex

data structures.

● The search will return the best possible results at any given time during execution

because the search traverses the fingerprint of the forming episode in descending

order.
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The history component of Equation 5.2, or the probability that memory A is

appropriate given its history, is calculated by the equation [Anderson, 1990]:

                                         (5.3) 

In Equation 5.3, v and b are constants and shape the decay curve and are set to 1

and 3 by [Anderson, 1990] although they can be altered to tune the memory system, M(t)

represents the integral of the decay function r(t) (defined in equation 5.4), and n is the

number of times that particular EM unit has been accessed and brought into the E-WM.

Equation 5.4 shows the decay function of the EM unit, where α represents the

emotional salience of the EM unit (adapted from [Anderson, 1990]).

r t =αe−α∗t                                                       (5.4)

Figure 23 shows sample decay curves for several emotional saliences. Those

memories stored with lower alpha coefficients do not decay as quickly as those with

higher alpha. The alpha is therefore set to be inversely proportional to the salience of a

given memory term. The salience term is important for the selection of correct episodic

memory units – the robot should strongly retrieve episodes that resulted in extreme

reward or punishment, and it should remember those highly salient episodes well into the

future.
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Figure 23. Sample decay curves for various alpha

The plots in Figure 23 show the decay of memories that are not accessed. When a

memory is accessed, its history probability increases because of “n” in Equation 5.3. This

helps offset the decay for a memory that proves to be useful in several situations.

Humans may be seen to exhibit this quality of remembering emotionally salient

events as well in what are called “flashbulb memories” [Conway, 1995]. For example, a

person will remember (or have the impression of remembering) the moment when they

heard traumatic or extremely good news. In ISAC, the salience of a memory is calculated

through a transformation of the emotional salience scalar that is the output from the

Emotion Agent during the formation of the episodic memory. The generation of this

scalar is discussed more in the next section.
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The history component of this value is independent of the current context, and

therefore may be computed independently. A memory is removed from the system when

its history value decays past a cutoff point because the probability that the memory will

be relevant to the current situation given its history value is less than the approximated

cost of considering it for retrieval. Every memory that is considered in the search causes

the space and time complexity of the search to increase, causing the performance of the

cognitive system (which must either wait for results or cut the search off early and settle

for inaccurate results) to drop.

ISAC's Emotion System

ISAC's Emotion system interjects personal meaning to the Episodes and is used to

calculate the salience of a given Episodic Memory. The emotions are computed using a

method based on that proposed by Haikonen [Haikonen, 2003]. 

It is important to note that ISAC's emotion system is currently under development.

This section details the view proposed in [Dodd et al., 2005] for generating emotional

scalar values, and is included in this thesis to clarify the Episodic Memory search process.

Figure 24 shows the structure of ISAC's Emotion System.
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Figure 24. Structure of ISAC's Emotion System [Dodd et al., 2005]

The lowest level of ISAC's emotion system is Elementary Sensation. This could

be such a thing as associating bright light shone in the cameras as bad or extension of a

joint to its limit as pain. Another elementary sensation might be that the successful

completion of a task is good. It is important to note that not all sensors need be external

sensors; some sensors could be situated within the CEA to provide feedback on the state

of the system. These elementary sensations are then mapped to system reactions, that

provide ISAC with a base impetus on which to derive actions.

The system reactions are then combined to form a larger emotion vector

representing the emotional state of the whole system through a mapping function that

links system reactions with their corresponding emotions. This emotional signal is sent to

the CEA and is recorded within the Episodic Memory in order to provide ISAC's

emotional state to future task executions.

The emotion vector is condensed to form a measure of the emotional salience of

the current system state through a measurement of magnitude. This is a scalar and is used
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to generate the alpha decay values of Episodic Memory units. Because the decay speed of

an episode is inversely related to the strength of its emotional salience, the alpha value is

calculated from the salience s (which has a range of [0,1]) by Equation 5.5.

α=1−s                                                                 (5.5)

This causes Episodic Memories that are emotionally salient to decay much slower

than those that do not evoke strong emotion.

It is important to note that ISAC's Emotion System is not currently implemented,

so all EM retrieval results are derived from simulation of this system. This simulation

was conducted through direct generation of salience values as listed in Appendix B.

Because the mapping from emotion vector to salience value is formulated to provide the

Episodic Memory with the correct saliences, it may be tweaked to produce the desired

values for a given situation.

Implementation of Episodic Memory

The EM itself is contained within a MySQL database; each EM unit is a flat data

structure containing all the information detailed in Figure 22.

The context value, meanwhile, relies solely on the contents of the current memory

unit. In order to negate temporal issues regarding the comparison of different segments of

an EM unit or different temporal sections of a single task, each EM unit is reduced to a

“fingerprint” consisting of its constituent SM units and how much they each add to the

EM unit as a whole. 
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The term “fingerprint” is used to denote the characteristics of the data structure

representing the importance of the constituent SM units within the forming episode. The

current system state and context of the state can be characterized by this data structure.

The occurrence of a given SM unit x may be defined as:

αx =c  x  /n                                                            (5.6)

In Equation 5.6,  αx  is the xth element of the occurrence vector, n is the total

number of SM units in the episode, and c(x) is the count of SM unit x in that particular

EM unit. The αx vector is therefore a measurement of the frequency of SM units within

an EM.

The W vector for each SM unit X is defined as:

W x =B /c SM                                                        (5.7)

In Equation 5.6, B is a weight that can be used for placing more emphasis on

important SM units like goals and human commands. The B values are adjusted to fit the

retrieval needs of the cognitive system. For example, if the system is looking for a

particular object, attention should be directed toward that object, while if the system is

trying to develop a plan to accomplish a task, the system should be tuned to retrieve based

more on task similarity. c(SM) is the total occurrence of the SM unit, and is a measure of

how common it is within other EM units. In other words, it is a reference count. If c(SM)

= 0, W is set to equal 0 for that SM unit and a signal is sent to the cognitive system that
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the detected SM unit is novel to the episodic memory and should perhaps be provided

with semantic knowledge.

The alpha vector is multiplied elementwise by the weight vector, to produce a

weighted “fingerprint” vector F. This vector consists of tuples containing the SM id of the

constituent parts as well as the weighted fingerprint values. The fingerprint is then

normalized and the vector is sorted by fingerprint values. We will call this vector “L”.

The entire process is illustrated in Figure 25.

Figure 25. Fingerprint Formation Process
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It is important to note that the retrieval process uses the EM-SM Frequency table

for candidate EM episodes. This table may be pre-calculated during memory encoding

and formation.

The retrieval algorithm follows:

1. Take L 0 , the first element of the sorted L vector, and look up the hash corresponding

to that particular SM unit.

2. Calculate scores for each of the EM units in the hash by multiplying the fingerprint

value for the SM unit in question within that EM unit, the history factor of that EM

unit, and L 0 .

3. Push scores from EM units in the hash onto a result vector R, summing scores of the

same EM units if they are already on R.

4. Sort R by score.

5. For threshold t equal to the next element of L – tolerance  where tolerance represents

the degree to which the search may be cut short to conserve time, discard all values x

in R where R wmsize−R x > t . 

6. Set t = t/[EM History Value] for each unit and repeat step 5 to remove any episodes

that cannot move up in the list any more than they already are.

7. If size(R) = wmsize, return all EM pointers from R as the WM contents.

8. Otherwise, shift L and return to step 1.
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Episodic Memory Pruning Implementation

Memory pruning is closely tied with retrieval. When a memory is not reasonably

considered for retrieval due to decay, it is discarded to keep the database clean. This is

accomplished through the use of a decay process running in the background that deletes a

given EM node when it decays beyond a certain point. The point should be derived

experimentally based on the performance of the system in the real world.

This may be justified by Equation 5.1. The cost of retrieving a memory must be

balanced with the probability that the memory will be useful. Memories that will probably

not be useful may be discarded.
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CHAPTER VI

EXPERIMENTAL DESIGN

The experiments detailed in this chapter are intended to analyze the future

performance of ISAC's cognitive system by testing each of the three memory systems

(Procedural, Semantic, and Episodic) individually. The Procedural Memory experiment

differs from the experiments for the other two because it involves output of action from

the CEA and the interaction of the CEA with the P-WM. The other two memory systems

are tested to ensure that the creation and WMS retrieval processes operate without

interaction with the CEA. These memory experiments and analysis are intended to

demonstrate how the memory systems will fit into ISAC's cognitive system as a whole.

Results and discussion are presented in Chapter VII.

Procedural Memory Experiment

The PM experiment is meant to determine the efficacy of the Procedural Memory

system in generating movement behaviors to accomplish a certain task. A library of

behaviors is to be generated to demonstrate the PM encoding process, and the correct

operation of the memory encoding and retrieval systems are shown.

Procedural Memory Experiment 1

The first experiment is designed to show the correct operation of the modular

controller. A set of five behaviors is generated by moving the arm in a sample motion and

recording the motion. The number five is chosen to ensure that none of the behaviors
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were redundant, and none could interpolate to the target point. These behaviors are

manually loaded into the Procedural Memory system, and are segmented into Motion

Primitive exemplar segments using a MATLAB implementation of ST-ISOMAP. Then,

the behaviors are stored in the Procedural Memory as discussed in Chapter III.

The Modular Controller (Chapter III) is then signaled to reach to a point that was

not able to be reached to through the use of any single behavior. This point is chosen to

ensure that the system has to combine behaviors in order to generate the desired motion.

Correct behaviors are selected based on each one's estimated reward, and motions to that

point are interpolated using the Verbs and Adverbs technique. It is important to note that

the Reinforcement Learning system starts in an essentially random state, and requires a

period of time in which it learns which behaviors provide good reward. After selection,

the motion is executed using the method discussed in the modular control section of

Chapter III.

Error is calculated after the motion is executed, and the performance of the

Working Memory System at generating the desired motion is analyzed over several runs

to show how it is learning. The experiment will be run on the PISAC simulator, a

simulation of ISAC's hardware that allows for the testing of control algorithms

[Ratanaswasd et al., 2005a]. The simulator also provides an error-free environment for

testing the control, behavior selection, and reward calculation algorithms (described in

Chapter III) without the necessity of designing filters to smooth the system input.

This experiment therefore tests two main functions of the Procedural Memory:

encoding and retrieval. If the experiment can be performed at all, the encoding system is

judged to be functional because the system is using the behaviors stored within the PM to
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generate a motion. If the rate of successes rises over time, the retrieval process in which

chunks are selected for the working memory system is judged to be working correctly.

Procedural Memory Experiment 2

The second PM experiment is intended to test the response of the retrieval

mechanisms to an increase in the database size. The first experiment will be repeated with

two additional behaviors added to the library. The added behaviors are designed to be

useless to the generated motion, so the robustness of the performance of the selection

system to additional candidate behaviors is measured. Both behaviors involve cyclic

movement at waist-height, while the target point is set near the upper chest. The

robustness of the behavior selection system is estimated through measurement of the

decrease in performance.

Semantic Memory Experiment

The Semantic Memory experiment demonstrates the correct implementation of a

perceptual agent that operates with the Semantic Memory system outlined in Chapter IV.

The system will be shown to recognize objects in different locations with different

recognition coefficients (recognition coefficients are generated by the perceptual

algorithm being demonstrated), and the recognition linked to in the Semantic Memory

Object nodes will be shown to evolve as more exemplars are recognized. This provides

the perceptual system with a way to generalize over multiple perceptions of a given

object.
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Semantic Memory Experiment 1

This experiment will test the operation of the retrieval of Semantic Memory units

by perceptual processes for object identification. It will also show the creation of new SM

units for novel percepts. Figure 26 shows the components that are tested by this

experiment.

Figure 26. Semantic Memory Information Flow for Experiment

The S-WM is retrieved through an id-based query. This process is similar to the

one that is used by the perceptual process to retrieve memory units in that the database is

essentially accessed directly, so the process for populating the S-WM is demonstrated

through this experiment. Several sample queries will be generated to show the

functionality of the S-WM with respect to ISAC's executive processes as detailed in

Chapter VII.
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The SM consolidation technique of pruning SM units without Object Recognition

nodes will not be examined since it is able to be accomplished by a single database query.

Semantic Memory Experiment 2

The second Semantic Memory experiment is intended to detail the process

involved with novelty detection. This analysis will detail which stimuli, exactly, the

novelty detection in ISAC's perceptual processes should return a positive value. This

process is detailed in Figure 27.

Figure 27. Novelty Detection Decision Process for SM Experiment 2

Episodic Memory Experiment

Several sample Episodic Memories will be generated, and it will be shown how

the system will perform given a set of percepts. The Episodic Memory can not be tested

on-line in real situations due to the lack of Central Executive and Emotion Agents,
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however, it is important to demonstrate the performance of the system in a variety of

circumstances for future system integration. Four experiments in particular will be

discussed to highlight the contribution of several elements of the algorithm.

The decay process of the memories will be simulated as well and some acceptable

values for constants in the system will be derived for use when the Episodic Memory

system is put on-line.

Experiments 2-4 require a corpus of candidate episodes, full details of which are

given in Appendix B. 

Episodic Memory Experiment 1

The Episodic Memory approach will be contrasted with existing computer science

approaches to database design and retrieval. Various aspects of the system will be

simulated and discussed in detail.

In other words, the current approach for EM retrieval will be contrasted with a

more traditional approach of storing all experiences into a large database and retrieving

using a tree-based search with O(log N) retrieval time. In this case, as in the later

descriptions containing big O notation, N represents the number of units unless otherwise

specified.

This comparison will be accomplished through analysis of the EM retrieval

method's space and time complexity versus that of a traditional database system operating

in an environment in which memories are formed at a linear rate.
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Episodic Memory Experiment 2

The second Episodic Memory Experiment will show how the EM retrieval

algorithm performs when confronted with a situation in which the desired episode gives

information about a stimulus that was encountered far in the past, but was remembered

due to its rarity and emotional significance. 

Distractions to this search include more recently formed episodes and episodes

sharing more semantic memory units with the present situation.

Episodic Memory Experiment 3

Episodic Memory Experiment 3 is designed to show how the Episodic Memory

system performs when the Central Executive Agent needs to know the location of a

recently lost object. This shows how the Episodic Memory system is able to retrieve a

memory that is important because of its temporal relation to the stimulus instead of its

emotional salience or relative scarcity. 

Distractions to this search include other, less recent nodes sharing more SM units

in common with the current situation and nodes with lower decay values.

Episodic Memory Experiment 4

The fourth Episodic Memory experiment shows how ISAC is able to retrieve an

episode based on its utility to the Central Executive Agent. For example, if the CEA

requires a previous plan execution, it should be able to guide the E-WM system to

retrieve an episode in which that plan was executed with less consideration given to the

current environment. This shows how the Episodic Memory system is able to act based

solely on executive context supplied by the CEA.
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Distractions to this search include more recently formed nodes, nodes with more

emotional salience, and nodes with as many or more common SM units.
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CHAPTER VII

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter details the results of the experiments proposed in the previous

chapter for testing and analyzing the performance of three memory systems proposed for

ISAC's cognitive architecture. It also contains an analysis of the results.

Procedural Memory Experiment 1

For the first experiment, the Procedural Memory (PM) was tested through a

simple run of the modular controller (Chapter III) under a simulation of ISAC's hardware

system. The objective of this experiment is to test how ISAC can point to a location not

accessible by interpolation of any one of the behaviors stored in the PM. Thus the

modular controller is forced to realize a motion through the combination of several

behaviors.

The Procedural Memory system for this experiment contains five dissimilar

behaviors: reach out, reach up, swing arm, wave, and handshake. ISAC was then given

the task of pointing to a location that could not be reached through the interpolation of

any one of the stored behaviors. Reaching to the point requires the interpolation of any of

several combinations of all three behaviors. The system must find one in which the three

behaviors are shared, and in which the reward for each behavior is sufficiently high.

The movement was executed within the PISAC simulator, a static simulator

designed to test ISAC's movements.
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Encoding and retrieval of PM units are tested in this experiment. If the system

executes the requested movement from stored behaviors, it logically follows that the

retrieval and combination of PM units is correctly implemented. This encoding has also

been tested through comparison of data within the database and the text files that are

parsed to populate the database with movement coefficients.

As discussed in Chapter III, the retrieval of PM units is accomplished through a

simple reinforcement learning technique. It is important to note that this reinforcement

learning technique starts in a random state and takes several iterations to stabilize to an

appropriate prediction of expected reward. This causes a period of unsuccessful task

executions where the reinforcement learning system adapts to the reward function and

learns which behaviors provide good reward.

If the system learns to select appropriate behaviors over several executions of the

task, then the behavior selection mechanism has learned to approximate the reward

provided by the feedback from the modular controller. Table 7 shows how the system

performed in this behavior selection over several trials.

Table 7 shows the performance of the behavior selection system over several

trials. A successful trial is defined as one in which ISAC successfully pointed to the target

location.
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Table 7. Evolution of the Modular Controller Behavior Selector [Ratanaswasd et al.,
2005a]

Trial # 1. ReachOut 2. ReachUp 3. Swing 4. Wave 5. Handshake Result
1 0.45 0.46 0.55 0.48 0.45 Success
2 0.45 0.50 0.49 0.37 0.45 Failure
3 0.34 0.38 0.37 0.37 0.45 Failure
4 0.34 0.28 0.37 0.28 0.34 Success
5 0.29 0.28 0.41 0.28 0.34 Success
6 0.25 0.28 0.43 0.28 0.33 Failure
7 0.25 0.21 0.33 0.28 0.25 Failure
8 0.19 0.21 0.24 0.21 0.25 Failure
9 0.19 0.16 0.18 0.21 0.19 Failure

10 0.14 0.16 0.18 0.16 0.14 Failure
11 0.14 0.12 0.14 0.12 0.14 Success
12 0.14 0.12 0.23 0.12 0.19 Success
13 0.15 0.12 0.31 0.12 0.22 Success
14 0.15 0.12 0.36 0.12 0.25 Success
15 0.15 0.12 0.40 0.12 0.27 Success
16 0.15 0.12 0.43 0.12 0.28 Success
17 0.15 0.12 0.45 0.12 0.30 Success
18 0.15 0.12 0.47 0.12 0.30 Success
19 0.15 0.12 0.48 0.12 0.31 Success
20 0.15 0.12 0.49 0.12 0.31 Success

Table 7 shows how the system evolved over the number of trials executed. The

numbers listed beside the trials indicate the predicted relevancy of each behavior. The

behaviors in red (or light gray if viewed in monochrome) are the ones selected for

inclusion in the P-WM.

At first, before the reinforcement learning system has adapted to correctly

estimate the reward function, the system could not consistently execute the pointing task.

After the tenth trial, however, the system learned how to successfully point to the

assigned location, and the reward predictor settled into a steady state.

Table 7 also shows that the reward system functions correctly. As discussed in

Chapter III, the reward is calculated by the average usefulness of the behavior during the

execution of a task. Figure 28 shows how different behaviors are combined during the

execution of the task, a process which leads to the calculation of the reward.
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Figure 28. Change in Behavior Weights During Trial Execution [Ratanaswasd et al.,
2005a]

Figure 28 shows how the weight, or relevancy, of each behavior changed over the

course of a single successful pointing task execution. For example, the Swing behavior

was used almost completely at the end of the reaching task, meaning that the target was

on a path moving from a combination of the first two motions to the end of the swing

motion. All three behaviors are used and combined at different times during the execution

of a task. This indicates that each behavior has a certain section in which it is the best for

the pointing movement.
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Procedural Memory Experiment 2

The second Procedural Memory experiment is intended to show the effect of the

addition of more behaviors to the retrieval system for the P-WM. The results of this

experiment are detailed in Table 8.

Table 8. Results of PM Experiment with 7 Candidate Behaviors

Trial # 1. ReachOut 2. ReachUp 3. Swing 4. Wave 5. Handshake 6. Shrug 7. Skiing Result
1 0.51 0.48 0.46 0.45 0.43 0.52 0.56 Failure
2 0.38 0.48 0.46 0.45 0.43 0.39 0.42 Success
3 0.38 0.52 0.42 0.35 0.43 0.39 0.42 Failure
4 0.38 0.39 0.32 0.35 0.32 0.39 0.42 Failure
5 0.38 0.29 0.32 0.35 0.32 0.29 0.32 Failure
6 0.29 0.29 0.32 0.26 0.24 0.29 0.32 Failure
7 0.29 0.29 0.24 0.26 0.24 0.22 0.24 Success
8 0.22 0.22 0.24 0.20 0.24 0.22 0.24 Failure
9 0.22 0.22 0.36 0.20 0.25 0.22 0.18 Success

10 0.22 0.22 0.27 0.20 0.19 0.16 0.18 Success
11 0.21 0.31 0.26 0.20 0.19 0.16 0.18 Failure
12 0.20 0.38 0.25 0.20 0.19 0.16 0.18 Failure
13 0.20 0.29 0.19 0.15 0.19 0.16 0.18 Failure
14 0.15 0.22 0.14 0.15 0.19 0.16 0.18 Failure
15 0.15 0.16 0.14 0.15 0.14 0.16 0.13 Success
16 0.15 0.12 0.14 0.11 0.14 0.12 0.13 Success
17 0.15 0.12 0.24 0.11 0.19 0.12 0.13 Success
18 0.15 0.12 0.31 0.11 0.22 0.12 0.13 Success
19 0.15 0.12 0.36 0.11 0.25 0.12 0.13 Success
20 0.15 0.12 0.40 0.11 0.27 0.12 0.13 Success
21 0.15 0.12 0.43 0.11 0.28 0.12 0.13 Success
22 0.15 0.12 0.45 0.11 0.30 0.12 0.13 Success
23 0.15 0.12 0.47 0.11 0.30 0.12 0.13 Success
24 0.15 0.12 0.48 0.11 0.31 0.12 0.13 Success
25 0.15 0.12 0.49 0.11 0.31 0.12 0.13 Success

For the second PM experiment, two new behaviors were added: moving the arm

in the motion one would make when skiing with a pole, and swinging the shoulder

laterally. Both movements were cyclic and at a vertical level well beneath the target point.

The addition of these two behaviors to the five with which the first experiment was

executed caused the settling time for the system to jump from approximately 10 trials to
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15 – with the addition of two behaviors, five trials were added to the settling time of the

system.

In other words, the addition of more behaviors causes the performance of the

behavior selection system to degrade as the system must learn which behaviors to select

based on trial and error.

It is important to note that in the results from both of these experiments there were

instances where the same behaviors were selected for inclusion in the P-WM when the

result was different (success and fail). These result from small irregularities in the arm

kinematics, and indicate that the result of the reaching motion was on the edge of the

region considered to be a movement success. Although undesirable, the effect that this

has is of lowering the reward of behavior sets that are on the border of successful task

completion.

This result indicates the need for a behavior selection system that is able to

generalize between movement tasks to prevent the system from starting randomly for

each movement task. One solution to this problem is the implementation of the Working

Memory Toolkit [Skubic et al., 2004], which allows for the encoding of current state in

the memory selection process. A difficulty encountered in this implementation is the

encoding of both memory chunks and states into (preferably) binary vectors for use with

the neural networks. This will be discussed more in Chapter VIII.

Semantic Memory Experiment 1

Because the Semantic Memory system design is simple, the analysis of the SM

consists of a demonstration of an operational perceptual system using the SM to identify

objects. The first experiment with the SM consists of a sample perceptual module that

95



attempts to detect brightly colored objects in ISAC's workspace and identify them based

on information stored in the SM database.

Figure 29. Image of ISAC's Workspace Taken From Head Camera

The first step in the perceptual process is the acquisition of an image from ISAC's

camera head. A sample image is seen in Figure 29. This perceptual algorithm is

monocular, however the perceptual algorithm could be executed with images from both

cameras at any given time to enhance its accuracy by consolidating parameters of

multiple object identifications. This combination of camera data would also be useful for

estimating the depth of an object for executing tasks interacting with that object. After the

image was captured, it was saved to a file and the perceptual program was called. 

The first filter applied to the image looks for pixels with saturations or values over

a certain threshold in the HSV color space. The saturation of a pixel represents its amount
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of color while the value represents that pixel's intensity. Therefore, this first filter

segments out objects that are both bright and colorful. 

The second filter removes pixels that are below a certain brightness threshold.

Both of the thresholds were chosen by trial and error using sample images of ISAC's

environment to be values maximizing the amount of pixels in objects that pass through

the filter, while minimizing the amount of noise that is passed.

The third filter attempts to eliminate noise by removing all objects smaller than  a

size threshold. It accomplishes this through the use of a recursive “tainting” function that

counts adjacent pixels as belonging to an object if they are within two pixels of a pixel

already belonging to that object.

Figure 30. Segmented Objects
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Figure 30 shows the three objects found in the picture in Figure 29. The object

images are used as a mask over the original image to derive statistics about the object

image data.

Figure 31. Object Color Contents

Figure 31 shows the color contents of the three objects that were identified in this

experiment. These are the data that are used to find statistical coefficients that will be

used to identify objects as discussed in SM Experiment 2.

These three objects are relatively distinct from each other, and obviously contain

very different values representing these colors. As such, color-based recognition should

produce effective object recognition for this set of objects.
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Figure 32. Sample Histogram of LUV Color Values [Barille, 1997]

The L*U*V* color space contains two chromaticity values (U and V) and a

luminance value (L). These values are dimensionless, but represent a color when

combined. The space was designed to model the human color visual system

independently of the lighting conditions in the environment. Figure 32 shows a sample

histogram of an object in the U*V* color space [Barille, 1997]. The cluster formed by the

histogram is statistically modeled and stored in the RecNode SM structures in this

perceptual system.
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Figure 33. Color Ellipse Parameter Diagram [Barille, 1997]

After the objects were identified, they were processed to identify their U*V* color

ellipses in the L*U*V* space as defined in [Barille, 1997]. Figure 33 shows an example

ellipse. The U*V* color ellipse parameters are the data that was stored in the RecNode

structure (See Chapter IV for more information on SM structure). As seen in Figure 32,

the color information from relatively homogeneously colored objects is closely packed in

a region of U*V* space. This makes the color ovuloid an effective representation of an

object's coloration for recognition.

Finally, a third program takes the LUV values from the object recognition

program for all objects in the picture and compares them with existing U*V* oval

recognition nodes to find matches. Parameters are compared using Cartesian distance. If

the oval parameters are closer than a stated threshold, the values are averaged in with the

existing node (the existing data is weighted with the number of recognitions in that

access, so the color weights are averaged through all exposures over time to generate a

generic U*V* oval). This process is covered in greater detail in the second experiment.
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With preexisting knowledge of the above three objects, the system correctly

identified all three objects and averaged their oval parameters together. This identification

shows that the system could generalize between images to identify objects based on color.

It also shows that the system was able to pull interesting objects from a visual image of

ISAC's environment for identification by the more detailed color analysis algorithm.

Table 9. Results from SM Experimental Trials

Object Name Trial 1 Trial 2 Distance

Barney

53.4795, 27.5378,

24.9307, 22.5021,

2.62362

53.3927, 25.8128,

22.3735, 23.1116,

2.66371

3.0648

Red Bag

76.2444, 14.0745,

16.4845, 6.13151,

-10.6122

67.5693, 13.4827,

15.6148, 6.61452,

-8.81723

8.9007

Yellow Bag

1.30762, 15.617,

1.92123, 18.9472,

-0.536968

0.996797, 12.5957,

1.71894, 18.8267,

-0.361276

3.1559

Table 9 shows the results of the object recognition experiment. Trial 1 is the color

ovuloid information stored for the initial recognition of the objects. The first two values

represent the centroid of the ovuloid, the next two represent the length of the axes, and

the last represents the tilt angle of the ovuloid in radians.

This information is that which was stored for each of the objects in the initial SM

nodes that were created for each object. Trial 2 shows the color ovuloid parameters

calculated for each object in another image when the objects were in different positions.
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When the Euclidean difference is taken from the first image to the second, the values in

the Distance column are generated. It can be seen that these values are very close for a 5-

dimensional space, where the values for distance range well over a hundred and those for

angle are in the range of -pi to pi.

The retrieval processes involved in populating the S-WM were also evaluated

through a demonstration of function. The node representing Barney was requested from

the S-WM by a simulated CEA, which could have received a pointer to the SM unit

through the E-WM or ST-WM. The S-WM system then returned the contents of the

correct node. In summary, the Barney SM node was created by an independent perceptual

process and retrieved through the S-WM system to the simulated CEA. 

The detailed perceptual system will obviously not operate in situations for which

it was not designed, for example the identification of an object under a colored light. The

system also will not recognize an object that is outside of its threshold as described in the

next experiment.

This reliance on color does not provide the sort of perception that is desired in a

humanoid robotic system. There are many objects that are multi-colored, and many others

that are colored similarly to mundane objects such as desks and chairs in ISAC's

environment. For the time being, however, ISAC can make do with color information.

There are enough brightly colored objects in ISAC's environment to create goals and

interaction tasks without having to recognize objects through other modalities.
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Semantic Memory Experiment 2

The second SM experiment shows how the system evaluates novelty in the

environment. The generic process used to achieve such detection is detailed in Figure 27

and mentioned in the discussion of the first experiment.

The first step a perceptual agent must perform when detecting novel objects in

ISAC's environment is that of attempting to identify objects in the environment that fit the

description of objects that the perceptual system was created to identify. In the specific

example shown in SM Experiment 1, the system identifies bright, saturated objects from

an image. Figure 34 shows the output of the perceptual system for a camera input of

ISAC's table.

Figure 34. Parsed Image from ISAC's Camera for Initial Set of Objects

Figure 34 shows the parsed image from ISAC's environment showing three

objects to be identified by the perceptual system. The frame in the top-middle shows the

output of the color filter. The bottom left frame is the output of the color filter passed
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through the size filter. Finally, the frame in the bottom middle of the figure shows the

output of the object-segmenting algorithm.

Assuming the system does not have any initial knowledge of the identity of these

objects, each of the three objects would be identified as unknown to the system. A human

would then queried for the identity of each of the objects, or each object would be left

nameless, to be recognized in the future as the same memory structure, but without

context such as the object's name supplied by a human.

In this experiment, none of the three objects was known to the perceptual

algorithm, so each object was identified as unknown to the system. The human was then

queried for the identity of each found object using the information in the Exemplar Node

for the newly created object (Chapter IV details the function of the Exemplar Node).

Figure 35 shows the perceptual program querying a human operator for the identity of the

unknown Barney doll shown in the scene in Figure 34.

Figure 35. Unrecognized Object Node Creation
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In the detailed perceptual system, if the color oval parameters are not similar to

those in any existing node then a new Object node is created and populated with an image

of the object placed into the ExampleData node. The oval parameters are then placed into

a RecInfo node.

Figure 35 shows the SM node creation user query. This process only occurs when

the recognized object does not fit any object previously in the database. In other words, it

occurs when novelty is detected. In future design of perceptual processes, the process

could instead create a “stub” node in the STM so cognitive processes could query the user

to identify an unknown object.

Figure 36. Parsed Image from ISAC's Camera for Second Set of Objects

Figure 36 shows a scene similar to that in Figure 34 with similar objects placed in

different locations. The novelty system should detect that each of these objects has been

seen before and recognize each one as being associated with a particular SM node. This
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node would then be posted to the Sensory EgoSphere. If one of the objects had not been

seen before, the process for creating a SM node would be executed once more as

discussed about Figure 35.

In the experiment, the system was able to correctly identify all three objects, and

associate them with their corresponding SM units for posting to the SES.

The specific method through which this experiment accomplished this

categorization task was through comparison of the Color Ovuloid parameters. If the

Cartesian distance between the parameters of the object to be identified and those of any

other SM node in the database is above a threshold, then the detected object is said to be

dissimilar enough to existing nodes to warrant the creation of a new object node. 

The setting of such a threshold should be carefully considered in production, as it

defines the regions of similarity and tolerance for sensor error for each object in ISAC's

environment. It is probably best to set the threshold to the smallest value that gives

accurate results, because ISAC is located in a sealed laboratory with fixed lighting to

preserve the object recognition values. 

Table 9 details typical distance values one would see for the detailed perceptual

system in normal operation with ISAC. A threshold value of 15 was set for the

experiment, although the maximum deviation for like objects over the course of several

image parses was around 10, the distance between the parameters of unlike objects was

above 50. 15 is therefore a reasonable value for setting the cutoff, erring on the side of

safety in avoiding misclassification, which could skew the recognition parameters of a

particular SM node.

In the perceptual process detailed above, found objects have their parameters

averaged together to produce a more generalized object. The tolerance for such averaged
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objects is then increased in order to provide a greater chance of categorization of common

objects under non-standard lighting conditions or with sensor error. 

The exact process for this perceptual classification problem, however, is highly

domain-specific and should be determined for each modality. For example, the sort of

deviation due to environmental conditions that one would find when identifying objects

by color is different than that found when attempting to identify objects by shape.

Another caveat to this approach is that of perceptual algorithms that can identify

the same object with more than one recognition node. For example, the Barney could be

identified by either the color of its deep purple coat or its sea-foam green stomach. It

would not make sense to average these two modalities together, nor would it make sense

to use a simple threshold to identify the Barney if both indicators were required. Great

care must be taken to account for these types of circumstances, and perceptual algorithms

should be designed to match ISAC's environment – just as human perceptual processes

evolved to fit our environment.

One way to turn this weakness into a strength is to provide a communications

interface between the perceptual agents so that they may request identification of objects

by other agents that own an Object Recognition node on the same object. In addition to

allowing for more robust object recognition through collaboratively identifying the same

object, this technique could allow for averaging of the percepts generated by the

perceptual agents, allowing the system to identify similar objects through an aggregate of

results.
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Once ISAC's full system is operational, the experience of learning the identity of

objects will be contained within an Episodic Memory unit. Each of the newly learned

Semantic Memory units will provide a new atomic unit for the composition of Episodic

Memory units.

Episodic Memory Experiment 1

The first analysis to be detailed about the Episodic Working Memory is the setting

of the history constants v and b, and the derivation of the decay constant alpha from

emotional salience. These constants affect the retrieval performance of the system

because they are linked to both the likelihood of retrieval of a particular memory and the

total size of the memory database.

As stated in Chapter V, the history component is defined as:

                         (5.3, Chapter V)

In Equation 5.3, v and b are constants, n is the number of accesses, and the decay

equation, r(t), is defined by an exponential decay containing the alpha decay constant set

by the emotional salience of the memory. The decay formula r(t) is:

r t =αe−α∗t                                      (5.4, Chapter V)

The history component of Episodic Memory for a variety of decay constants may

be seen in Figure 23 in Chapter V. This figure shows how a single Episodic Memory unit
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would decay with different alpha decay constants representing different emotional

saliences and no accesses during the decay process. Memories with low decay constants

decay at a much slower rate than those with high constants, with marked differences at

higher time values. Episodic Memories with high emotional content, therefore, should

have low Alpha values. To accomplish this relationship, alpha is set to be the salience

subtracted from one where the salience is a value within the range of zero to one. 

Setting the decay to equal this formula will allow for intuitive generation of the

salience value because a higher salience value indicates higher importance, and simple

debugging of the link between Episodic Memory and Emotion because there is a linear

relationship between a memory's salience and its decay constant.

Figure 37. Episodic Memory Decay with Memory Access

109



Figure 37 shows the same decay process with one access to the memory every 2

time units. It may be seen that access of a memory significantly prolongs its historical

relevance, especially when the memory is stored with a high salience value. This means

that important memories that are accessed frequently will last almost indefinitely,

especially so if many tasks are performed per time step, raising the probability that a

given memory will be selected.

The next task in honing the decay formula is setting the constants v and b. These

constants dictate the shape of the curve, and should be set in order to tune the system to

the desired performance.

Figure 38. The Effects on EM Decay of Altering b and v

As may be seen in Figure 38, b and v effect the curvature of the decay function.

Alpha and n are constant for this figure (alpha = .1 and n = 0). Heightening b and v causes
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the curve to flatten out, while lowering them causes a greater drop in memory relevance

due to history. For simplicity, v and b will be set at 1 for the following demonstrations. In

the future, however, these values may be tweaked to cause memory decay to more

appropriately match the environment of the robot.

After the coefficients of the decay process are set, the performance of the system

may be measured in order to compare the system with other, more traditional database

systems. The first performance metric to be measured is the growth of the size of the

Episodic Memory system through time. As memories are formed in a linear fashion, the

size of a traditional database increases linearly. The size of the Episodic Memory

database, however, will increase at a smaller rate due to memory decay.

Figure 39. Episodic Memory Size vs. Time

111



The crucial value that influences the size of the Episodic Memory database is that

of the memory cutoff. Any memory with a history that falls below this value is removed

from the system. Figure 39 shows how the memory size increases with one memory

formation per unit time. Figure 41 shows how different cutoff values affect this change in

memory size.

Figure 40. EM Decay with Varying Salience

Figure 40 details the decay time generated by several memory salience values. It is

important to note that the rising salience of a memory prevents it from decaying for many

time units. A uniform distribution of saliences between 0 and 1 was assumed for the

following EM database size experiments, however any statistical distribution centered at .

5 would produce similar results because of statistical averaging. 
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Figure 41 shows the growth of the size of the Episodic Memory system with

linear memory formation (one memory is formed per time step). At each time step, the

likelihood of the decay of a memory formed at each time n is calculated, and that

probability is summed to find the average value of the memory at any given time. The

decay was calculated for a uniform distribution of salience values – for each time step for

each memory formed at an earlier time the salience value causing that memory to decay

was found. The probability that the salience of that memory is higher than the calculated

value was then calculated. This probability is the probability that the memory in question

is still in the database. For different distributions of the salience, the resulting asymptote

is similar but the initial growth curve differs.

As may be seen in Figure 41, the memory size approaches an asymptote, and

stabilizes due to the decay rate offsetting the memory formation rate. The total growth of

the memory is logarithmic.
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Figure 41. Memory Size Increase with Different Cutoff Values

Figure 41 shows the increase in size of the memory for several different cutoff

values. The cutoff value is inversely related to the final size of the database. It is

desirable, therefore, to set the cutoff value to be as high as possible without discarding a

significant number of useful memories. This may be accomplished by measuring the

history components of each retrieved memory during the normal operation of the system,

and tracking the lowest number. With significant experience, this number may be

determined empirically. It is important to note that this value should be calculated and set

after significant experience is acquired – otherwise the cutoff would rise continuously and

prune all episodes.

Finally, the performance of the system may be estimated and compared to the

performance of a more traditional database system that stores all information and uses a

powerful O(log n) search technique to find the desired values. Because the size
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complexity of the database does not increase linearly with n, but remains at O(log n), the

EM search algorithm is comparable in complexity to the more traditional technique with

linear memory search time. This time is probably better than linear, however. 

An analysis of the EM retrieval algorithm shows that, in the worst case, for each

cue x, n episodes may be considered. This produces a search complexity of O(x*n),

where x is the number of SM units and n is the number of EM units. The SM size is

necessarily linearly related to the EM size (because SM units are pruned when they are

not connected with any EM units), therefore the complexity becomes O(n²), where the

size of n is O(log n). In reality, therefore, the worst-case complexity of this search then

becomes O(n), larger than the O(log n) of a more traditional method of storing all

information.

This analysis has some fundamental flaws, however. The two terms that affect the

complexity of this algorithm are the average number of SM units contained within the

memory cue, this number will be called m in this analysis, and the average number of EM

units containing a given SM unit, which will be called p. The worst case complexity in

this scenario is constant for the system with O(m*p). p, however is very likely

proportional to the number of EM units in the database, n, which should produce an

algorithm that operates in O(n). This would produce results similar to those with a more

traditional approach, with the benefit of allowing the system to return results that exhibit

desirable characteristics as seen in EM experiments 2-4.

Because episodes tend to contain a small number of important SM units that stay

with the cognitive system for the duration of a goal completion, m and p rely on the

environment of the system. If ISAC is situated within a rich environment with many SM

units, the performance of the Episodic Memory retrieval system will increase due to a
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smaller p because there are more SM units that have a chance of inclusion in any EM

unit, so the probability that a given SM unit is contained within any EM unit is smaller.

It is important to note that the memory formation time in this technique is O(m)

because back-references must be added to all SM units that constitute the EM unit being

stored. The memory formation time in the tree-based search method is O(log n). Although

episode formation does not occur with great frequency, this does represent a small

performance gain over traditional tree-based search techniques.

The second part of the analysis of the Episodic Memory system is to show

examples in which the capabilities of the Episodic Memory retrieval system are

highlighted. Three scenarios are proposed to demonstrate the operation of the Episodic

Memory and to demonstrate the reasoning behind including each factor used for the

retrieval process resulting in E-WM population.

Episodic Memory Retrieval Experiments

EM experiments 2-4 detail how the system is designed to retrieve the correct

episode in a variety of circumstances that ISAC might encounter.

Table 10. Elements of EM Retrieval Tested by EM Experiments

EM
Experiment

#

Rarity of SM
Constituents

Contextual
Relevance

Executive
Attention

EM Salience Recency of
Formation

2 X X

3 X X

4 X X
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Table 10 shows which aspects of the EM retrieval are most important for the

following experiments. Each of these cues that tell the system how relevant a memory

might be are described in turn with the analysis of their individual experiment.

Episodic Memory Experiment 2

The second proposed EM experiment demonstrates how the Episodic Memory

system uses the history component (which conveys the emotional content of an episode)

to return a highly emotionally salient episode. This experiment demonstrates how the

episodic memory system selects highly salient episodes over episodes that are less salient.

The cognitive control experiment as discussed in [Kawamura et al., 2005] can be

summarized as follows. ISAC performs a simple task (such as following a moving object

around the room with its cameras). A person enters the room, and yells “Fire!”. ISAC

must retrieve the episode associating the current situation with a highly emotionally

salient past experience, and must then switch tasks to warn the experimenters to leave the

room based on this past experience.

The specific question to be answered by the segment of this cognitive control

experiment detailed in this section is: “How does the Episodic Memory system know to

retrieve the correct, highly salient episode, and how does the salience of the appropriate

episode change over time?” In other words, this experiment is intended to show how the

emotional salience of a memory influences its retrieval process, and how the salience

could be important to selecting the appropriate memory for a given context.

As a precondition of the experiment, ISAC's Episodic Memory banks were loaded

with a number of episodes, both salient and non-salient, relevant and non-relevant

(Appendix B). These Episodes approximate tasks that ISAC might actually come across,
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such as locating or learning an object, playing a game with a human experimenter,

learning new movement commands or tasks, or greeting humans. Thirty-two sample

episodes were stored in ISAC's EM system, and the task of the EM-WM system is to

select the three most relevant episodes to the current situation. The target episode was a

previous encounter with the “Fire!” stimulus, in which ISAC was taught with high

emotional salience that humans should leave the room.

ISAC's task was then to retrieve the target episode based on the contextual

relevance supplied by the relatively rare “Fire!” stimulus augmented by the strong

emotional salience associated with the target stimulus.

Figure 42. Effect of Number of References to SM Relevance to EM Retrieval

Figure 42 shows the influence of the count of a particular SM unit to that unit's

relevance when selecting EM units. The simulation detailed in Figure 42 was run with
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three SM units in the SM frequency vector of the forming EM. SM unit 1 had a frequency

importance of .1, SM unit 2's importance was .4, and the importance of SM unit 3 was .5.

The access count for SM units 2 and 3 was set to 10, while the access count for the first

was varied from 1 to 10 to produce the graph above. When compared to the other two SM

units, the relevance of SM unit 1 to memory retrieval is dramatically increased from its

original value.

Figure 43. Effect of Number of References to SM Relevance when Square Root of
Reference Count is Used

Figure 43 shows a method of reducing the influence of SM Count to the EM

Fingerprint calculation. In this simulation the same contextual relevances are used as in

Figure 42, however, when calculating the effect of the rarity of a SM unit to the forming

fingerprint, the square root of the access count is used instead of the raw access count

itself. This causes the variation between memories to drop considerably, and could be
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useful in the future depending on the variance of SM count within the EM in the context

of ISAC's environment and the system as a whole.

Figure 44. Effect of Rarity of SM Units of Similar Relevance 

Figure 44 shows the effect of the SM rarity term on SM units with similar

contextual importances. The count of SM unit 2 is held constant at ten, while the count of

SM unit 1 is varied. One may see that this rarity term allows for a SM unit to hold a

major advantage over the other SM units for calculation of relevance.

The cue for the memory consists of a simulated episode in which ISAC performs

a task and is interrupted by a person giving the “Fire!” stimulus. The fingerprint produced

by the cue shows how the system operates to retrieve the target memory. Even though the

“Fire!” stimulus represented a small fraction of the forming EM unit, its rarity caused it to

be weighted more than the other constituent SM units because the fingerprint weight of a
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given SM unit decreases as its usage increases. The strength of the “Fire!” stimulus in the

cue was then enhanced because of the strong emotion displayed during the previous

exposure to “Fire!”.

Figure 45. Comparison of Decays for EM Experiment 2

Figure 45 shows how the initial salience of the “Fire!” memory causes it to remain

relevant as time progresses. The solid line shows the decay of the “Fire!” memory as

detailed in Appendix B. The dotted line is the decay curve for the main group of corpus

memories (with saliences of .5). This factor alone gives the “Fire!” memory an important

advantage over the other memories. At the age of 3 time units, the “Fire!” memory has an

approximate historical relevance of .4, while that of the other memories is near .3.

The following demonstration of the effective retrieval of the memory units was

generated with the Episodic Memory corpus listed in Appendix B. The history component

of the memories is set to .3 and .4 as shown in figure 45.
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An example cue for the Fire! experiment can be described as:

Table 11. Cue for EM Experiment 2

Goal Subject S-WM ST-WM

Visually Track Red Bag rb, visually track,
Fire!

Fire!, rb, Person 1

This cue is derived from the description of the environment of the experiment as

discussed earlier. In the above table, rb represents the semantic memory node for the red

bag. ISAC is performing the task of visually tracking an object (in this case the red bag)

and is interrupted by the “Fire!” stimulus. 

This cue is translated into the following histogram by the process shown in Figure

25.

Table 12. SM Frequency List for EM Experiment 2

SM Node % Constituent

Visually track 25

Red Bag 37.5

Fire! 25

Person 1 12.5

After weighting for rarity and cognitive weighting, the fingerprint shown in Table

12 is created. Since cognitive weighting does not take part in this EM experiment, the

value of this term is set to one for all calculations. The rarity of each SM node was

calculated through the use of the Episodic Memory table listed in Appendix B.
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Table 13. Unnormalized Fingerprint for EM Experiment 2

SM Node Score (% importance unnormalized)

Fire! 25 * 1 * 1 = 25

Person 1 12.5 * .33 * 1 = 14.17

Red Bag 37.5 * .25 * 1 = 9.375

Visually track 25 * .25 * 1 = 6.25

After normalization, the final fingerprint is obtained:

Table 14. Normalized Fingerprint for EM Experiment 2

SM Node Score (% importance)

Fire! 45.6

Person 1 25.8

Red Bag 17.1

Visually track 11.5

The “Fire!” SM node is the most important in this fingerprint due to its relative

scarcity. The weighting system that uses the full occurrence of a Semantic Memory unit

instead of a root of the count for that unit was used in this experiment.

If the cognitive system were to provide attention to the “Fire!” stimulus (as might

happen in a real situation in which a rare stimulus was encountered), the score for the

Fire! SM node could be higher.

The following table lists the performance of the target “Fire!” episode matched

against the Visual Tracking of Person 1 (VTP1) episode. Both episodes are described in

Appendix B in more detail, and the technique described in Chapter V was used to

calculate the score for each episode.
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The VTP1 episode was selected for this demonstration because it has the next

highest score from the training corpus. It is able to receive relevance from both the Visual

Tracking goal and the Person 1 semantic memory unit.

Table 15. Calculation of EM Scores for EM Experiment 2

Episode Fingerprint Occurrence History Score

“Fire!” 0.456 0.200 0.400 0.036

VTP1 (P1 cue) 0.258 0.250 0.300 0.019

VTP1 (VT cue) 0.115 0.125 0.300 0.004

The final score for the “Fire!” episode was .036. The final score for the VTP1

episode was the sum of its scores, .023. Because of the rarity of the “Fire!” SM unit, the

“Fire!” episode would be selected even if its history values were equal to those of the

VTP1 episode.

It is also important to note that this algorithm returns the top n episodes, where n

is the size of the E-WM. If the retrieval of the “Fire!” stimulus were erroneous, relevant

episodes such as VTP1 or the Visually Track the Red Bag episode would still be returned

for use by the cognitive system.

This scenario shows how the system was able to draw attention to information

that was both rare and salient. If the target EM had been formed with a low amount of

emotion, it would have decayed quickly by Equation 5.2 and would not be retrieved. The

emotional information therefore allows the system to remember both recent information

that was not very salient but was recently formed and information in the distant past that

was extremely salient. This characteristic could be useful for both locating a recently seen

object or retrieving old but important information. 
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In this task the correct memory contained rare elements and was emotionally

salient, but was not recently formed or relevant to the current situation in terms of total

similarity in constituent SM units.

The retrieval of this episode could fail under a variety of circumstances. First, if

the emotion agent miscalculated the salience of the initial episode, the search would fail

in almost all situations due to its decay.

Assuming correct salience generation, the memory could fail by a variety of other

means. If there were other episodes with which the cue shared many common SM units,

the episode that was relevant but distant in the past might be ignored for more recent

episodes. Similarly, if many episodes contained the “Fire!” stimulus, the stimulus would

not be as important and might be discounted extensively.

These potential failures, however, are not failures at all. The retrieval algorithm is

a mathematical formula with ample opportunity for adjustment to the environment of the

cognitive system. If the influence of the age of a memory should not cause the memory to

decay as quickly, one needs only to adjust the index terms or salience calculation to fit the

needs of the CEA. If the reference count for a SM unit is not terribly important to

retrieval, adjust the fingerprint calculation function to take the square-root of the

occurrence. 

In short, the Episodic Memory system will retrieve only those episodes that it was

tuned to retrieve.

Episodic Memory Experiment 3

The third scenario, or the “Lost Object” scenario, details how a recent EM unit is

retrieved to accomplish a task. In this experiment, ISAC observed an experimenter
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occluding an object, a process that was simulated and stored in Episodic Memory. ISAC

was later queried for the location of the object, under the scenario that the episode must

contain the information needed to glean the location of the object so ISAC could point to

it. The correct episode must therefore be retrieved through contextual similarity and

executive attention as well as recency of formation. The retrieved episode is not

especially salient, nor does the recorded episode contain the same goal as the memory

cue.

Figure 46. Effect of Executive Attention on SM Importance

Figure 46 shows the effect that attention from the Central Executive has on the

importance of memory retrieval. In this case, the contextual importance of SM 1 and 2

was set to be .3, while the importance of SM 3 was .4. The effect of the executive

attention was linear on the importance of a memory. This is an important observation,
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because the executive attention has the same effect on SM importance as does the

contextual relevance of the SM unit.

The importance of executive attention will be demonstrated through an analysis of

the retrieval of a memory based on its relevance to the cognitive system.

An example cue for this experiment can be described as:

Table 16. Cue for EM Experiment 3

Goal Subject S-WM ST-WM

Pick up Blue Bag bb, Pick up, Person 1 yb, rb, Person 1

This cue is derived from the description of the environment of the experiment as

discussed earlier in Chapter VI. In the above table, rb represents the semantic memory

node for the red bag, yb is the yellow bag, and bb is the blue bag. ISAC is performing the

task of picking up an object (in this case the blue bag) that is not currently visible. ISAC

must find the “lost” blue bag by retrieving a recently formed Blue Bag memory as

discussed in Appendix B.

This cue is translated into the following histogram through the process shown in

Figure 25.

Table 17. SM Frequency List for EM Experiment 3

SM Node % Constituent

Pick up 25

Blue Bag 25

Person 1 25

Yellow Bag 12.5

Red Bag 12.5
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After weighting for rarity and cognitive weighting, the fingerprint shown in Table

17 is created. The rarity of each SM node was calculated through the use of the Episodic

Memory table listed in Appendix B.

Table 18. Unnormalized Fingerprint for EM Experiment 3

SM Node Score (% importance unnormalized)

Pick up 25 * .25 * 1 = 6.25

Blue Bag 25 * .2 * 1.5 = 7.5

Person 1 25 * .2 * 1 = 5

Red Bag 12.5 * .25 * 1 = 3.125

Yellow Bag 12.5 * .25 * 1 = 3.125

After normalization, the final fingerprint is obtained.

Table 19. Normalized Fingerprint for EM Experiment 3

SM Node Score (% importance)

Blue Bag 30

Pick up 25

Person 1 20

Red Bag 12.5

Yellow Bag 12.5

The Blue Bag SM unit is the most important to this scenario due to the cognitive

weighting. The Pick up SM node is the next most important, while the Blue Bag is the

most relevant SM unit that occurs alongside the “Pick up” goal. Tasks involving picking

up the blue bag will therefore be the most likely to be retrieved in this scenario. The Pick
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up the Blue Bag (PUBB) episode is contrasted with the recently formed Visually Track

Blue Bag (VTBB) experiment.

The history term for a memory with an age of 1 is defined as 1. This is also shown

in Figure 45.

Table 20. Calculation of Scores for EM Experiment 3

Episode Fingerprint Occurrence History Score

VTBB 0.300 0.250 1.000 0.075

PUBB (BB) 0.300 0.250 0.300 0.023

PUBB (PU) 0.250 0.125 0.300 0.009

The final score for the VTBB episode was .075. The score for the PUBB episode

was determined to be .031. This means that the history factor for the VTBB episode could

decay to a value of .413 before it relinquished the top slot in the working memory. This

would take approximately .7 time units.

. A quick analysis can show if the situation would be different were executive

attention not used.

Table 21. Unnormalized Fingerprint for EM Experiment 3 Without Executive Attention

SM Node Score (% importance unnormalized)

Pick up 25 * .25 * 1 = 6.25

Blue Bag 25 * .2 * 1 = 5

Person 1 25 * .2 * 1 = 5

Red Bag 12.5 * .25 * 1 = 3.125

Yellow Bag 12.5 * .25 * 1 = 3.125
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After normalization, the final fingerprint is obtained.

Table 22. Normalized Fingerprint for EM Experiment 3 Without Executive Attention

SM Node Score (% importance)

Blue Bag 22

Pick up 28

Person 1 22

Red Bag 14

Yellow Bag 14

The Pick up task has now become the most important semantic memory unit. The

Pick up the Blue Bag (PUBB) episode is once more contrasted with the recently formed

Visually Track Blue Bag (VTBB) experiment.

Table 23. Calculation of EM Scores for EM Experiment 3 Without Executive Attention

Episode Fingerprint Occurrence History Score

VTBB 0.220 0.250 1.000 0.055

PUBB (BB) 0.220 0.250 0.300 0.017

PUBB (PU) 0.280 0.125 0.300 0.011

Once again, the VTBB episode remains in front, however it only would have to

decay halfway to begin to fade. This process would take on the order of half a time unit,

significantly less than the time it would have taken with executive attention factored in.

As in Experiment 2, this experiment was conducted under the conditions listed in

Appendix B, and the target memory was retrieved successfully.
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Episodic Memory Experiment 4

Finally, ISAC was asked to perform a similar movement task to one that it

performed earlier. The cue was “Pick up the orange bag”, a task that ISAC had never

before performed, while the target episode was one that contained a different “pick up”

experience, such as “Pick up the blue bag” or “Pick up the Barney”. To retrieve this target

episode that held little similarity to the current environment, ISAC had to use attention,

which would be provided by the CEA in a fully integrated system, to enhance the

importance of the task (see Chapter V for more information on this process).

Figure 46 shows the impact that the executive attention has on a SM unit when

calculating the importance of that unit for retrieval. This influence is the same as that of

contextual relevance, so both these factors combine to produce the correct retrieval in this

experiment.

The cue for this experiment is very similar to that of EM Experiment 3, except an

unknown Orange Bag is referenced.

Table 24. SM Frequency List for EM Experiment 4

SM Node % Constituent

Pick up 25

Orange Bag 25

Person 1 25

Yellow Bag 12.5

Red Bag 12.5

After weighting for rarity and cognitive weighting, the fingerprint shown in Table

25 is created. Because the CEA is interested in retrieving an episode similar in task, the
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Pick up goal is highlighted by cognitive attention. The rarity of each SM node was

calculated through the use of the Episodic Memory table listed in Appendix B.

Table 25. Unnormalized Fingerprint for EM Experiment 4

SM Node Score (% importance unnormalized)

Pick up 25 * .25 * 1.5 = 9.375

Orange Bag 25 * 1 * 1 = 25

Person 1 25 * .2 * 1 = 5

Red Bag 12.5 * .25 * 1 = 3.125

Yellow Bag 12.5 * .25 * 1 = 3.125

After normalization, the final fingerprint is obtained.

Table 26. Normalized Fingerprint for EM Experiment 2

SM Node Score (% importance)

Orange Bag 55

Pick up 21

Person 1 10

Red Bag 7

Yellow Bag 7

It can be seen that the Pick up semantic memory unit is far more important than

any of the others. The Orange Bag is excluded from retrieval because it is by definition

not referenced by any episodic memory units that could be considered for retrieval. It is

fairly obvious that a memory containing the task of Picking up the Red Bag would be

retrieved given the corpus in Appendix B.
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If there had been an episode containing information about the Orange Bag, its

importance would have diminished greatly. The following fingerprint is generated with

only two references to the Orange Bag:

Table 27. Fingerprint Generated with References to Orange Bag in EM Experiment 4

SM Node Score (% importance)

Orange Bag 38

Pick up 28

Person 1 16

Red Bag 9

Yellow Bag 9

It can be seen that the difference between the Orange Bag and Pick up is not as

drastic as in the first fingerprint generation, however the orange bag episodes have a

strong chance of inclusion in the E-WM. This could cause failure of the retrieval system

due to a relatively novel percept outweighing the task-related Pick up SM unit. 

This could be combated through incremental increases in executive attention until

the correct memory was retrieved. It is dangerous to automatically increase the executive

attention to a high level upon directed memory query, however, because it prevents the E-

WM from retrieving information that might be used for changing goals based on an

environmental percept.

In this case, the goal SM unit and executive attention outweigh any of the factors

outlined in the previous two examples, causing several episodes involving a “Pick Up”

task to be retrieved. This experiment was successfully conducted using the preconditions

listed in Appendix B.
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EM Experiment Discussion

These three examples (EM Experiments 2-4) show how each of the elements that

enters into the retrieval of a target EM unit combine to help perform the correct retrieval.

Each of these situations is similar to one that ISAC could encounter during routine use,

and the EM retrieval algorithm retrieves the correct memory in each case.

Several assumptions are made in the retrieval process. First, it is assumed that the

more a memory constitutes an episode, the more important it is within the context of that

episode. This assumption is valid because the stated purpose of the working memory

system is to select those memories that are relevant to the current situation. A second

assumption made by the retrieval process is that the emotion agent performs rationally

with respect to the desired performance of the Episodic Memory, and generates salience

values that make sense to task execution in ISAC's environment. If this assumption is

invalid, the retrieval system will decay memories at rates that are not appropriate to their

future importance to the cognitive system, and the Episodic Memory system will not

function like it should.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

The creation of a memory system for a cognitive robot has been detailed. Several

different types of memory systems have been outlined and implemented within the

framework of ISAC's cognitive system.

A Procedural Memory was created to allow ISAC to store behaviors. This PM

accepts processed behaviors from the ST-ISOMAP dimensionality reduction system, and

stores them for later retrieval by the Modular Controller. Within the Modular Controller,

the TD-Learning system attempts to predict the expected reward provided by each PM

unit to the movement command, and loads the P-WM accordingly.

The Semantic Memory provides a way to represent semantic facts in a consistent

manner throughout the system. A perceptual process was detailed that showed how the

Semantic Memory could be used to recognize and represent objects. The S-WM is

populated by direct search. 

An Episodic Memory system was shown that recorded the state of the system

during the execution of a task. A retrieval technique was developed for the EM system

that allowed for the inclusion of several factors important for retrieval of the correct

memory into the E-WM.

Although memory design is important, ultimately the performance of the system

reduces to those acts that the system performs with the memories. With this in mind,

several future research topics hold potential as a beneficial place to build from the

memory systems.
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The first is the adoption of the Working Memory Toolkit mentioned in Chapter 3

for use in the Modular Controller. This Toolkit is much more dynamic than the system

currently implemented, and holds promise to help ISAC generalize over different motions

instead of having to learn motions independently.

There are three main advantages to the implementation of the WM Toolkit to

ISAC's Procedural Memory selection.

The first is that it can generalize between similar movement commands provided

by the CEA so the system does not have to relearn which behaviors are appropriate for

movements that are similar in function. 

The second is that the WM Toolkit is able to judge PM units based on their

characteristics. Similar PM units would be associated within this framework. In other

words, characteristics of these PM units could serve to provide the system with a method

of judging candidate PM units instead of the current method of blindly guessing which

PM units are suitable. 

Thirdly, the use of the WM Toolkit would also allow for easy expansion. Because

memories and movement commands are judged based on characteristics, the addition of a

new memory or movement command would not cause a disturbance in the system. If the

expected reward provided by the system to a new PM unit were to be assigned randomly,

as it currently is, the new unit might take several iterations to settle to a usable state.

Because of their extremely specialized nature, the other Long Term Memory

Working Memory systems are not particularly suited to the application of the Working

Memory Toolkit. However, should the attentional network of the SES not function as it

should, the Working Memory Toolkit would be ideal for populating the Short Term

Working Memory. 
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The main obstacle to this implementation is encoding the system state and

candidate Semantic Memory units into appropriate feature vectors. Feature vectors that

are nearly binary in nature must be generated from these candidate memories, and the

aspects of the memories that should be used when comparing them with others for

inclusion in the Short Term Working Memory need to be considered in detail when

contemplating encoding methods.

A second area of future research is the creation of Semantic Memory units via

perceptual processes. Although a sample perceptual module was presented, many must be

developed to harness different computational methods of identifying objects. The

perceptual process must act independently, and must be able to recognize novelty. The

addition of any new perceptual process adds to the robustness of ISAC's perceptual

system, and therefore to ISAC's interaction with the world.

Another area of work that is needed for the SM system is the inclusion of

perceptual data from psychology with the vision research. Much work has been

performed analyzing how humans classify objects based on various characteristics, and

this work could be applied to a perceptual algorithm for classification that is superior to

the Cartesian method described.

Finally, methods to translate Episodic Memory traces to schema for planning and

control should be investigated. Episodes are essentially filled-in plans, methods must be

developed for general extraction of schema from these records, and the execution of such

schema for task solving. If this is accomplished, ISAC would be able to learn from

example and build on experience.

Episodes could also be used to generate a more general problem solving strategy,

in which plans are combined over time to generate permanent schema contained within
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the CEA. This could be accomplished through employing a statistical method such as a

Bayesian model or a Hidden Markov Model.

After the cognitive system as a whole is implemented, the various coefficients

should be adjusted in order to maximize the performance of the memory systems within

their new context. These coefficients include the time unit used for EM decay, the

mapping from salience to the decay constant Alpha, and the mapping from emotion

vector to emotional salience scalar. It is impossible to know what values will work in

advance or what ISAC's environment is going to contain, so these values must be set

when the system is integrated.
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APPENDIX A

SOFTWARE USER AND IMPLEMENTATION GUIDE

This Appendix describes the correct use and configuration of the software, and

details some of the database information needed in case of total data loss.

MySQL Database

The MySQL Database is designed to run under a single database. The following

dump of the database will allow for contextual reference of the programs written in

pursuance of this thesis as well as future recreation of the database upon loss of the

backup files.

-- MySQL dump 9.11

--

-- Host: localhost    Database: isac

CREATE TABLE EM_Episodes (

  id bigint(20) unsigned NOT NULL auto_increment,

  startTime datetime default NULL,

  endTime datetime default NULL,

  accessTime datetime default NULL,

  goal text,

  STMLog text,

  DMLog text,
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  EmotionLog text,

  HALog text,

  SALog text,

  AccessCount int(11) default NULL,

  alpha decimal(40,30) default NULL,

  Salience int(11) default NULL,

  Fingerprint text,

  History text,

  PRIMARY KEY  (id)

) TYPE=MyISAM;

CREATE TABLE EM_WMS (

  handle text,

  WMSize int(10) default NULL

) TYPE=MyISAM;

CREATE TABLE EM_fingerprint (

  fingerprint text

) TYPE=MyISAM;

CREATE TABLE PM_Behaviors (

  id int(11) NOT NULL default '0',

  name varchar(64) default NULL,

  lengthInMPs int(11) default NULL,

  MPs text,

  timestamp datetime default NULL,

  description text
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) TYPE=MyISAM;

CREATE TABLE PM_MPs (

  id int(11) NOT NULL auto_increment,

  RawData text,

  ReverseDeps text,

  Statistics text,

  PRIMARY KEY  (id)

) TYPE=MyISAM;

CREATE TABLE PM_RawData (

  id int(11) NOT NULL default '0',

  data text,

  InstanceOf int(11) default NULL

) TYPE=MyISAM;

CREATE TABLE SA_WMS (

  handle text,

  emotion text,

  emotionScalar float default NULL,

  WMSize int(10) default NULL,

  FormingEMFingerprint text,

  FormingEM text,

  goal text,

  movement text,

  Focus text

) TYPE=MyISAM;
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CREATE TABLE SES_WMS (

  handle text,

  WMSize int(10) default NULL

) TYPE=MyISAM;

CREATE TABLE SM_ExampleNode (

  id int(11) NOT NULL default '0',

  Modality varchar(32) default NULL,

  Data blob,

  InstanceOf int(11) default NULL

) TYPE=MyISAM;

CREATE TABLE SM_Objects (

  id bigint(20) unsigned NOT NULL auto_increment,

  Name varchar(32) default NULL,

  Type varchar(32) default NULL,

  RecInfo text,

  SampleData text,

  Characteristics text,

  Refs int(11) default NULL,

  Class varchar(32) default NULL,

  EM_hash text,

  PRIMARY KEY  (id)

) TYPE=MyISAM;

CREATE TABLE SM_RecNode (

  id int(11) NOT NULL default '0',

142



  InstanceOf int(11) default NULL,

  Method varchar(32) default NULL,

  Data text

) TYPE=MyISAM;

CREATE TABLE SM_WMS (

  handle text,

  WMSize int(10) default NULL

) TYPE=MyISAM;

Each Perl file that accesses the database contains the following code near the start

of the file:

my $server = 'localhost';

my $db = 'DM';

my $username = 'username';

my $password = 'password';

Obviously, these values will have to be changed to fit the environment in which

the program is to be run. Each Perl file also contains uses the DBI module, available from

CPAN at http://www.cpan.org. Get your system administrator to install them, as root

access is required. Note that the Perl files are location-independent and may be run at any

location on the network as long as the MySQL database IP is known and the database is

configured to allow remote connections.
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Procedural Memory

PMComplianceChecker.perl

PMComplianceChecker parses the text files and ensures that they are compatible

with the format. It will print diagnostics so the user can tell which data is being read

incorrectly.

The program is called with the command “./PMComplianceChecker.perl

<filename>”.

The text files are in the format:

1 format0

2 Behavior2

3 .24 .32 .58

4 4 2

5 ./example1.txt

6 ./example2.txt

Line 1 allows for expansion of the parsing program for multiple formats. For

example, with a change in the system, the value format1 could be specified.

Line 2 specifies the name of the behavior. This string is stored in the “name” field

of the PM_Behaviors data field.

Line 3  tells the database where the motion primitives start and stop. For example,

the first motion primitive runs from 0% to 24% of the example files, and the second

motion primitive runs from 24% to 32% of the example files. This allows the example

files to have different sampling times.
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Line 4 tells the number of KeyTimes and the number of example files separated

by a space. The number of KeyTimes is redundant with line 3, however it was included

for compatibility with other programs.

Lines 5 and up list the filenames containing the example data. These files take on

the following format:

1 3 7

2 1 .24 .35 .387 .2034 .11934 .1694

3 2 .25 .35 .382 .2024 .140934 .1594

4 3 .27 .35 .381 .2044 .150934 .1494

Line 1 contains the number of rows and the number of columns in the data file

separated by a tab character. The following lines contain the data, separated by tabs.

PMBehaviorMaker.perl

PMBehaviorMaker populates the database with the behaviors contained within the

files on which it is called. It is called by the command “./PMBehaviorMaker.perl

<filename>”.

PMClearTables.perl

PMClearTables.perl clears the Procedural Memory Database of all records. Do

not run this program unless you would like to delete the entire database.
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Semantic Memory

The perceptual program contains two components: the C++ program that parses

the camera images and generates the color ovuloids for the objects it finds, and the Perl

program that compares the color ovuloids generated by the C++ program to those

contained within the database for existing objects and determines if the detected object is

novel. These two components are intended to be run from a script, which should be

created according to the system running the perceptual processes.

The C++ program is run by the command “./Vision <imagefile.jpg>”. The perl

program is then run by the simple command “./PopulateSM.perl”. This program will

proceed along the perceptual process detailed in Chapter VII. There are immediate plans

to port this program to run automatically with ISAC's cameras, more immediate

incantations will be stored on the CIS server under the “Demos” directory.

Episodic Memory

The Episodic Memory daemon is split into three parts: the formation daemon, the

EWM population daemon, and the EM decay script. All three programs are, while

commented, extremely dense perl code, so care should be taken when editing, backups of

versions should be made regularly, and helper functions (especially in the decay program)

may be reused in the case that rewriting is preferable to debugging my code. Remember,

“There's more than one way to do it.”

The formation daemon is meant to be run continually during robot execution. It

was not placed into a looping script because the execution cycle of the CEA is not

known. For example, if the CEA executes goals sporadically, one does not want to record

the periods between goals into an EM unit. Once the CEA is designed, perhaps a “NULL”
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goal should be placed in the S-WM database and the formation daemon could poll until a

different goal were placed in the database.

The formation daemon is called by the command: “./EM-Formation-Daemon.pl”.

It requires the installation of the Data::Dumper module from CPAN (see end of MySQL

section).

The EWM population daemon should not harm anything by looping continuously.

This could be accomplished by a simple bash script that sleeps between script calls, or its

execution could be tied to the execution of the CEA by a method similar to the one

described in the EM Formation script. The EWM population daemon is run by calling the

file “./EM-WMS-Populate.pl”.

The EM History update script should be run infrequently as it loops through the

entire database, updating history values and pruning memories as is warranted. It should

be called by a system cron job once an hour (or once a day if resources are valuable). The

script currently uses days as its unit of time. To change this value, change the code “$dur-

>in_units('days');” to indicate your unit of choice. This code is contained in the middle of

the file, a placement that could not be avoided due to the sequence of execution.

The history update script requires the CPAN modules DateTime and

DateTime::Format::MySQL. To run the history update daemon, issue the command

“./EM-History-Update.pl”.

The program EMClearEpisodes.perl deletes all EM records in the database. Use at

your own risk.

The three Octave files (EM-Analysis.m and EM-DBSize.m) are included within

the codebase for future system analysis, and to provide implementations of the EM decay

function in code that may be used for broader system analysis in the future. For example,
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an analysis of the total space complexity of ISAC's cognitive system as a whole may be

required in the future, and these files may be used to produce appropriate values for the

EM.

ISAC Simulation Programs

Two programs were written to simulate simultaneously the operation of ISAC's

WMS and CEA. These were written for use in creating Episodic Memory units for testing

the EM and EWM, however they will be of use when building and debugging any

application that requires memory access, such as the CEA or the Emotion Agent.

The first program, the ISAC cognitive simulator, reads all SM units from the

memory database, and allows the user to move these units to the WMS and Self Agent

WMS. It also allows the user to view the contents of the forming Episodic Memory unit.

Figure 47. ISAC Cognitive Simulator
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Figure 47 shows the user interface of this program. Appropriate SM units should

be selected from the lists of available SM units. Upon selection of the appropriate units

and entry of the emotion information, the “Submit WMS Contents” button should be

pressed. If the user wishes to see the exact units that are highlighted, the button to the

right of the lists may be pressed, however this merely displays user feedback and should

be ignored if timing is required. This program (and the next) requires the installation of

the Tk graphical toolkit and the Tk perl module from CPAN. The ISAC Cognitive

Simulator may be started with the command “./ISAC-Simulator.pl”.

The second program allows the user to easily create SM units. Although the

information contained within the SM unit may not be manipulated within this program, it

is useful for debugging the way in which memory systems pass around this information

and use the description field of the SM unit.

Figure 48. SM Creation Program

Figure 48 shows the interface of the SM creation program. The “Submit SM”

button should be clicked when the fields are filled out correctly.
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APPENDIX B

DETAILED EPISODIC MEMORY EXPERIMENTAL SETUP AND

WALKTHROUGH

The Episodic Memory system was populated with 32 episodes, representing tasks

that ISAC might encounter in normal operation:

Table 28. Contents of EM Database for EM Experiments

Goal Subject Age Salience

Pick up Red Bag 2 0.5

Pick up Blue Bag 2 0.5

Pick up Yellow Bag 2 0.5

Pick up Barney Doll 2 0.5

Place in box Red Bag 2 0.5

Place in box Blue Bag 2 0.5

Place in box Yellow Bag 2 0.5

Place in box Barney Doll 2 0.5

Visually track Red Bag 2 0.5

Visually track Blue Bag 2 0.5

Visually track Yellow Bag 2 0.5

Visually track Barney Doll 2 0.5

Point to Red Bag 2 0.5

Point to Blue Bag 2 0.5

Point to Yellow Bag 2 0.5

Point to Barney Doll 2 0.5

Greet Person 1 2 0.5

Greet Person 2 2 0.5

Greet Person 3 2 0.5

Greet Person 4 2 0.5
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Goal Subject Age Salience

Handshake Person 1 2 0.5

Handshake Person 2 2 0.5

Handshake Person 3 2 0.5

Handshake Person 4 2 0.5

Visually track Person 1 2 0.5

Visually track Person 2 2 0.5

Visually track Person 3 2 0.5

Visually track Person 4 2 0.5

Wave at Person 1 2 0.5

Wave at Person 2 2 0.5

Wave at Person 3 2 0.5

Wave at Person 4 2 0.5

Figure 25 shows the formation process for Episodic Memory units in detail. This

process must be simulated by passing links to Semantic Memories directly into the

Episodic Memory. The simulation of the state of the cognitive system is performed by a

simulator written in Perl with the graphics toolkit Tk. This program is pictured in Figure

47.

It is important to remember that each episode contains many Semantic Memory

units in a sequence. For example, the Pick Up the Red Bag task might produce the

following episode:

(bb = blue bag, rb = red bag, ba = barney, pu-rb = pick up red bag, r = reach, ch = close

hand, la = lift arm, s = successful execution)
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Table 29. Sample EM Unit Composition

t S-WM S-WM Movement Goal

1 bb, rb, ba rb, pu-rb, r r pu-rb

2 bb, rb, ba rb, pu-rb, ch ch pu-rb

3 bb, rb, ba rb, pu-rb, la la pu-rb

4 bb, rb, ba rb, pu-rb, s s pu-rb

The salience of the emotion rises throughout the episode because more subgoals

are accomplished (such as having the red bag in hand, or holding the red bag over the

table). The ST-WM would also have positional information for each unit, this was

omitted from the table for clarity.

Two target EM units were then added to the database for use in the experiments as

described in Chapter V. The two episodes are described as follows:

Table 30. Target EM Episodes Added to EM Database Contents for EM Experiments 2-4

Goal Subject Age Salience

Visually track Blue Bag 1 0.5

Visually track Red Bag 3 1

The second described episode contains the “Fire!” stimulus and information. The

original goal of this task was to visually track an object – learning the implications of the

“Fire!” experiment took place within this episode after the stimulus was presented.

One cue was then created for each of the three scenarios. This cue is like one that

would be seen at the start of the described task.
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