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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction to carbon nanomaterials 

The study of nanomaterials has quickly spread around the world since the starting 

of the 21st century. It opens a new era in science and all of a sudden, it becomes a fashion 

and researchers in all fields try to dig out the hidden treasure in this unknown continent. 

So why is nanomaterial so fascinating? Nanomaterial refers to the materials with 

morphological features with the metric length of 10-9 m. Comparing to traditional 

materials, such materials could be significantly influenced by quantum size effect and 

exhibit some superior electrical, mechanical and optical properties. 

Among all the nanomaterials, the carbon nanomaterials are indubitably the most 

popular members. They have been the topics for thousands of studies in all fields 

including physics, chemistry, engineering, and medicine, which have lead to the winning 

of three major science awards so far. Richard Smalley, Sir Harold Kroto, and Robert Curl 

won the Nobel Prize in chemistry in 1996 for the discovery of C60 buckyballs (first row in 

Figure 1.1). Sumio Iijima won the Kavli Prize in nanoscience in 2008 for carbon 

nanotube (CNT) characterizations (second row in Figure 1.1). Recently, Andre Geim and 

Konstantin Novoselov developed a feasible technique to obtain high quality pristine 

graphene which led to the research booming of this two dimensional material (third row 



2 

 

in Figure 1.1). They won the Nobel Prize in Physics in 2010 for their contributions to 

graphene. 

________________________________________________________________________ 

 

Figure 1.1 Carbon nanomaterials and their discoverers. First row: C60 buckyball 

(www.godunov.com) and Richard Smalley, Sir Harold Kroto, Robert Curl; Second row: 

CNT (davemark.com) and Sumio Iijima; Third row: graphene (i.telegraph.co.uk) and 

Andre Geim, Konstantin Novoselov. 

________________________________________________________________________ 
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The reason why nano-carbon family is so intriguing is that they are all allotropes 

of carbon but with different ways of folding (Figure 1.2), which gives them unique and 

extraordinary properties. C60 buckyball is a spherical fullerene molecule with a size of 

few nanometers. It is hence considered as a zero dimensional system. Though small, the 

nanoscale “soccer ball” has bound large numbers of hydrogen atoms within a single 

molecule, showing a great potential to be the medium of accessible hydrogen fuel2.  

Instead of folding into a sphere, when the single graphitic plane was curled up into a tube 

with a diameter in nanometers, we could obtain a one-dimensional system called CNTs. 

Figure 1.2 Three typical forms of carbon nanomaterials1 

__________________________________________________________________ 

__________________________________________________________________ 
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Compared to buckyballs, CNTs show great potential in many application fields due to 

their superior electrical, optical and mechanical properties that exceed the conventional 

materials. The single graphitic plane itself makes another carbon allotrope referred as 

graphene. Graphene also exhibits appealing electrical, optical and mechanical properties. 

The versatile and integratable nature of this two dimensional material makes it a more 

feasible option for future electronics.  This thesis is devoted to explore the optoelectronic 

potentials of carbon nanomaterials. Thus CNTs and graphene will be the main topics. 

More details about the structures and properties of these two carbon nanomaterials will 

be introduced in this chapter.  

 

1.2 Carbon nanotubes (CNTs) 

CNTs are one-dimensional materials with cylindrical nanostructures. The 

diameter of a typical CNT is normally in the nanometer scale, but the length of the CNT 

could go to the centimeter scale3. As hollow cylinders made from single graphene sheet, 

CNTs have presented tremendous surface-to-volume ratio. CNTs also exhibit excellent 

mechanical, optical and electrical properties, which make them a very promising material 

in many application fields, such as energy storage, sensing, future very-large-scale 

integration (VLSI), etc.4-7  

 

1.2.1 Structure of CNTs 

A single-walled CNT could be visualized as a rolled-up single atomic layer of 

graphite. The way how the carbon atoms arrange themselves along the circumference of 
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the CNT is described by chirality. The vector, along which the single layer graphite 

(graphene) is rolled, is called the chiral vector Ch. As illustrated in Figure 1.3 A, the 

chiral vector is usually specified by two lattice vectors of graphene in real space, that is, 

Ch = na1 + ma2.  

________________________________________________________________________ 

 

Figure 1.3 (A) the naming scheme for CNTs; T denotes the tube axis, a1 and a2 are the 

unit vector of graphene in real space8. (B) the lattice structure of a unrolled CNT, or 

graphene, in both real space and K space9. In the real-space lattice, the lattice vectors  

a1 = (
𝑎√3

2
,

𝑎

2
), a2 = (

𝑎√3

2
, −

𝑎

2
). The corresponding lattice vectors in K-space b1 = (

2𝜋

𝑎√3
,

2𝜋

𝑎
), 

b2 = (
2𝜋

𝑎√3
, −

2𝜋

𝑎
). The shaded area shows the first Brillouin zone. 

________________________________________________________________________ 
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Generally, a single-walled CNT is named by a pair of indices (n,m). For instance, 

when m = 0, the resulting structure is named as zigzag; similarly, the armchair structure 

refers to the circumstance where n = m. The values of the (n,m) indices are very 

important parameters for CNTs. They not only specify the structure of a CNT, but also 

determine whether a CNT is semiconducting or metallic. By applying the periodic 

boundary conditions, we obtain that if the wavevector k (the component of the 

momentum along the circumference of the CNT) passes the K point of graphene (Figure 

1.1 B), where the conduction band meets the valence band, the following equation could 

be drawn 

𝑪𝒉 ∙ 𝒌𝑲 = 2𝜋 (
2

3
𝑛 +

1

3
𝑚) = 0 𝑚𝑜𝑑 2𝜋                                         (1) 

Once equation (1) is satisfied, the resulting CNTs will be metallic. Otherwise, we will 

have semiconducting CNTs. 

 

1.2.2 Physical properties of CNTs 

The one-dimensional nature of CNTs strongly affects their electrical properties. 

Electrons in CNTs are confined in the direction perpendicular to the tube axis and can 

only propagate along the tube axis. The electron mobility of CNTs exhibits an 

extraordinary value of more than 100,000 cm2/V∙s at room temperature10. In theory, if 

quantum resistance is the only resistance considered, the electron transport in CNTs 

could be ballistic.  
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As previously introduced, the type of CNTs depends on the structure of the CNTs 

and how they arrange themselves along the tube axis. Once the chiral vector is known, 

the type of the nanotube and its diameter is determined. In another word, the physical 

properties of CNTs are strongly related with their diameters. According to the theoretical 

calculation, the band gap energy of a semiconducting nanotube could be expressed as: 

𝐸𝑔 = 2𝛾0𝑎𝑐−𝑐/𝑑                                                       (2) 

where 𝛾0  is the nearest-neighbor overlap integral and 𝑎𝑐−𝑐  is the lattice constant of a 

graphene layer.11 This result was experimentally proved in 1998,12 where both the chiral 

angles and the tube diameters were precisely measured by high resolution scanning 

tunneling microscopy to determine the chiral vector (n,m). By linking the correlations 

between atomic structures of CNTs and their electronic properties, they found a good 

agreement with the theoretical calculations. The correlation between the diameter and the 

band gap energy makes semiconducting nanotubes a very promising material in 

electronic applications, since their band gaps are highly modifiable if the chiral numbers 

of as-grown CNTs can be controlled as desired. Although controlling the chirality of 

CNTs remains to a very difficult topic, the recent success regarding the highly 

preferential growth of CNTs with certain chiral indices shines a light in the future 

study.13, 14  

Recently the researchers at Cornell University found that in a CNT photodiode, a 

single photon was able to excite multiple electron-hole pairs at low temperature, 

exhibiting unprecedented photo-conversion efficiency.15 In their work, a PN junction was 

created within a single CNT transistor by inserting the split-gate beneath the tube which  
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________________________________________________________________________ 

 

Figure 1.4 Extremely efficient electron-hole generation in carbon nanotube 

photodiodes15. (A) Schematic diagram for the carbon nanotube photodiode and the 

energy diagram for the mechanism of possible pathways for electron-hole generation; (B) 

I-Vsd behaviors at T = 60K at different photon energies; (C) The Vsd spacing for 

nanotubes with different diameters. 

________________________________________________________________________ 
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could electrostatically dope the nanotube transistor (Figure 1.4 A). They found that the I-

Vsd curve of the nanotube photodiode exhibited distinct behaviors with various photon 

energies at reverse bias, which indicated that multiple electron-hole pairs were generated 

during the process (Figure 1.4 B). This phenomenon was further found to be related with 

the tube diameters (Figure 1.4 C), a strong evidence to link the excitation with the band 

gap energies. This new discovery has broken the standard limit in photovoltaic devices 

established by Shockley and Queisser16, where they demonstrated that only one electron-

hole pair could be generated by one photon. This physical potential of CNTs may lead to 

the development of next-generation ultra-efficient photovoltaic devices. 

 

1.2.3 CNT growth 

The first successful synthesis of CNTs can be dated back to 1991, when they were 

observed after an arc discharge process using graphite as the carbon source. Since then, a 

number of studies have been conducted systematically, and many techniques have risen 

to produce CNTs in highly controllable manners. Large quantities of CNTs can be 

synthesized through these methods, which make them a commercially viable carbon 

nanomaterial. Among all the synthesis techniques, chemical vapor deposition (CVD) is a 

very commonly used method for CNT growth in many research groups and commercial 

companies, because of its simplicity and high repeatability. CVD is also one of the best 

methods to produce nanotubes with minimal defects and mass production. Therefore, 

CVD is the growth method that we mainly focus on in this thesis. 
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The CVD growth of CNTs is usually considered as an in-situ growth because the 

resulting nanotubes are synthesized exactly on the intended sites. Shown in Figure 1.5 are 

two widely accepted CNT growth mechanisms: tip-growth and base-growth.17 During a 

typical growth process, the carbon containing gases, also referred as the precursor, will 

decompose into carbon and hydrogen species at high temperature. With the help of the 

catalysts, which are normally metal nanoparticles, the carbon will dissolve into the metal 

and further precipitate into cylindrical carbon networks. The growth process will continue 

unless the catalysts get deactivated. 

________________________________________________________________________ 

 

Figure 1.5 Widely accepted models for CNT growth mechanism17 

________________________________________________________________________ 
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Many parameters could influence the outcome during a typical CVD growth 

process. One important parameter is the precursor, which acts as the carbon source during 

the growth. The common precursors used in the CVD process are normally carbon 

containing vapors, including methane, acetylene, ethylene, carbon monoxide, benzene, 

etc. However, inert gases through carbon containing liquid bubblers (such as ethanol, 

methanol) could also serve as alternative precursors. Different precursors may result in 

different amount of by-products after the CVD process. For instance, acetylene is always 

a tricky precursor to control since it easily brings along high amorphous carbon 

contaminations after the growth, while ethanol is known as a clean carbon source that 

produces nanotubes free of amorphous carbon18. Besides, recent studies have also shown 

that the molecular structures of the precursors may also determine the resulting 

morphologies of CNTs19, suggesting that a more prudent choice of precursors should be 

made depending on what kind of nanotubes is wanted for the growth. In 2004, it was 

found that by introducing water during the CVD process, the growth efficiency could be 

significantly increased to an unprecedented level20. This water-assisted high efficient 

growth is also known as the “super-growth”. Water plays as a growth enhancer in this 

process to selectively etch the amorphous carbon and extend the lifetime of catalyst. 

Other compounds such as carbon dioxide and acetone could also act as the growth 

enhancer.21 

Catalyst is another important issue for CNT growth. It could be related with the 

morphology, diameter, and distribution of the resulting CNTs. The diameter of the CNTs 

highly depends on the size of the catalysts, or the thickness of catalyst films. Figure 1.6 

lists the commonly used CNT catalysts, including Fe, Fe-Mo, Ni, Cu, Pb, etc. Although  
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CNTs are able to be grown by these catalysts, the density and the level of alignment of 

resulting CNTs vary from one to another. Among all the catalysts, Fe and Fe-Mo are 

most widely used due to their high efficiency and easy preparation. Cu is another 

important catalyst since it exhibits a superior ability to grow single-walled CNTs. The 

carbon solubility on Cu is low, which greatly reduces the chances of multi-walled CNTs 

________________________________________________________________________ 

 

Figure 1.6 SEM images of horizontally aligned single-walled CNTs on ST-cut quartz22 

by different catalyst: (A) Co; (B) Ni; (C) Pt; (D) Pd; (E) Mn; (F) Mo; (G) Cr; (H) Sn; (I) 

Au. 

________________________________________________________________________ 
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and amorphous carbon. However, the weak catalyst activity of Cu also leads to a low 

efficiency of growth. Pb is also an efficient catalyst for growing single-walled CNTs. The 

solubility of carbon in Pb is very similar to that of Cu. More importantly, it has been 

shown that the single-walled CNTs grown by Pb are free of metal contaminants, which 

could be attributed to quick evaporation of Pb nanoparticles during the synthesis 

process.23 

 

1.3 Graphene 

Graphene is a two dimensional material that consists of a single layer of tightly 

bonded carbon atoms in hexagonal patterns. Due to the exceptional electrical, optical and 

mechanical properties, graphene has quickly become one of the most popular materials in 

science and engineering fields. Its potential applications currently being studied range 

from next-generation electronics24, supercapacitors25, to biomedical uses26. In this 

section, we will introduce the basic structures and optoelectronic properties of graphene 

and review the general methods to obtain graphene. 

 

1.3.1 Structure of graphene 

In graphene, carbon atoms are bonded in honeycomb structures with sp2 

hybridization. The monolayer carbon structure with honeycomb lattice is actually the 

basic building block for other carbon allotropes. The 1D CNTs and 3D graphite all 

originate from the 2D single layer graphene. As illustrated in Figure 1.7 A, each carbon  
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________________________________________________________________________ 

 

Figure 1.7 (A) The carbon atom arrangement in graphene27; (B) The band structure of 

graphene in k-space28. 

________________________________________________________________________ 
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atom in graphene has three covalent bonds, with a separation of 1.42 angstrom in the x-y 

plane. The covalent C-C bonds are the second strongest carbon bonds, nearly equivalent 

to the covalent bonds that hold carbon atoms together in diamond, which is known to be 

one of the hardest materials in nature. The fourth valence electron of each carbon atom 

that does not participate in the covalent bonding binds with the nearest neighbors to form 

the π orbitals, which make graphene conducting.  

Graphene is normally considered as semi-metal, since the conduction band and 

valence band meets at certain points in the k-space. Figure 1.7 B shows band structure 

obtained by tight binding-approximation. The points where the conduction band and 

valence band meets are referred as the Dirac points, or the K points. The band structures 

near the Dirac points disperse linearly as cones, which are very similar to the energy 

dispersion of massless photons.  

 

1.3.2 Physical properties of graphene 

The unique band structure of graphene provides an ideal platform for electron 

transport. Unlike traditional materials, where the charge carriers become immobile at low 

temperature as a result of the low density, the carrier mobility in graphene remains high 

and has been reported to reach 200,000 cm2 V-1 s-1 due to the reduced scattering.29  

The 2D nature and zero band gap property of graphene also affect its optical 

properties. As shown in Figure 1.8, the optical transmission of single and double layer 

graphene was measured accordingly.30 Although graphene is only one atom layer thick, it 

was found to absorb a significant fraction of light. The exactly same amount of white 
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light was absorbed by each layer. The optical absorption (A) was found to be solely 

defined by the fine structure constant and follow a simply relation: 

𝐴 = 𝜋𝛼 = 2.3%                                                       (3) 

where the fine structure constant α = 1/137. The strong interaction with light is also the 

reason why graphene is visible on silicon chips. 

________________________________________________________________________ 

 

Figure 1.8 The light transmittance through the one layer thick, and two layer thick 

suspended graphene. Each layer absorbs 2.3% of the light30.  

________________________________________________________________________ 

 



17 

 

1.3.3 Graphene synthesis 

Although early studies relevant to graphene date back to the 1960s31, the 

extensive studies towards graphene did not begin until the facile technique for isolating 

graphene from bulk graphite was developed in 200432. The idea for this technique is 

simple. Highly ordered pyrolytic graphite (HOPG) is usually used as the source for 

graphene, and is rubbed onto Scotch tapes. The remaining HOPG fragments on tapes are 

then cleaved repetitively until thin films of graphene are found under the microscope. 

This Scotch tape technique, also referred as the mechanical exfoliation method, is very 

easy to achieve and could provide high purity graphene. However, the size of the 

graphene provided by this method is limited in micrometer scale, and the positions of 

good graphene membranes are also arbitrarily scattered on the substrate. 

________________________________________________________________________ 

 

Figure 1.9 (A) Mechanical exfoliation method to cleave graphene by Scotch tapes33; (B) 

SEM image for CVD grown graphene with a scale bar of 5 µm. 

________________________________________________________________________ 

The CVD method, which could produce graphene in larger scale, was developed a 

few years later34, 35. The resulting graphene through CVD could reach the centimeter 
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scale. The CVD method normally involves the use of carbon-containing gases and 

catalytic substrates. Depending on the conditions, CVD could produce either single-layer 

or few-layer graphene. Compared to the classic Scotch method, CVD is more advanced 

in aspects of large scale production, stability and controllability. However, due to the 

potential chemical contaminations, the quality of graphene from CVD may not be as 

good as that from the Scotch tape method. 

1.3.4 Graphene transfer after growth 

After the growth, we have to get graphene off the copper foils and transfer it to 

the desired substrates. Several groups have developed reliable transfer techniques to 

facilitate this process. A common method is the wet transfer technique, in which a 

PMMA layer is deposited on top of graphene/copper foil to hold the graphene while the 

copper foild is hence etched away by the copper etchant.  

The basic steps are illustrated in Figure 1.10. Graphene was grown on top of the 

copper foils after the CVD process. Then the graphene/copper foil would be cut again 

into the desired size for each use (normally 1 cm squares). We spin-coated a thin layer of 

PMMA on the top of graphene/copper foil which applied good adhesion with graphene. 

The copper was hence etched away by soaking the sample in ion nitride solution for 1 

hour. During this process, graphene was kept intact by the thin PMMA film. The 

PMMA/graphene film would be scooped up and tranferred to water baths and kept at 

least 5 minutes for rinsing, which was repeated for at least 3 times to completely clean 

the film. After rinsing, PMMA/graphene was floated to the desired substrate and dried in 
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Figure 1.10 Graphene transfer process (A) Graphene sample after growth; (B) Graphene 

sample with a thin PMMA film coated on; (C) Wet etching to remove copper beneath 

graphene; (D) Water baths to clean the sample; (E) The target substrate to transfer 

graphene onto. 

________________________________________________________________________ 

 

air. PMMA could be removed by either annealing in furnace at 400 °C, or soaking in 

acetone for 30 minutes. 

 

1.3.5 Raman characterization 

Raman spectroscopy is a laser-based spectroscopic technique to collect the 

information about vibration modes in the material system. By shining the laser with the 

proper wavelength on the material, Raman spectroscopy is able to detect the shift of the 

laser energy induced by the interaction between the the laser light and molecular 
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vibrations in the material. It could reveal plenty of intrinsic properties of graphene, such 

as the quality and the layer number. Generally, for pristine single layer graphene, the D 

peak at ~1350 cm-1 is nearly invisible. The shape of 2D peak at ~2700 cm-1 is very sharp. 

When compared with the G peak at ~1580 cm-1, whose height increases significantly 

with the the layer number of graphene, 2D/G ratio is greater than 1 for single layer 

graphene.  

________________________________________________________________________ 

 

Figure 1.11 A typical Raman spectrum of graphene after the transfer process 

________________________________________________________________________ 

In order to inspect the qualify of the CVD grown graphene, Raman spectroscopy 

has been performed for post-transfer characterization of graphene. A 532 nm excitation 

laser was focused by a 100X, 0.9 NA objective to provide a 1 µm diameter diffraction-
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limited laser spot. As shown in Figure 1.11, the presence of the D peak indicates that 

there exists some degree of disorder, which is probably owing to the contaminations from 

the remaining residues of chemical solvents during the transfer process.  

 

1.4 Outline of thesis 

This chapter has presented an introduction to the properties, background and 

research motivations of carbon nanomaterials. The objective of the thesis is to combine 

synthesis, fabrication techniques and various characterization tools to investigate the 

optoelectronic properties of carbon nanomaterials, and explore their potential future 

applications. The main content consists of two topics, CNT and graphene. The synthesis 

and fabrication techniques are studied in order to produce high-quality and controllable 

devices, and potential application in optoelectronics is further investigated. 

The first topic we discuss is CNTs. Chapter 2 describes the synthesis techniques 

that we developed to control the growth morphology and density of CNTs by CVD. Two 

different strategies are demonstrated to grow single-walled CNTs from suspended bridges 

to upright forest. Based on the synthesis techniques, we further build a platform to create 

CNT biosensors in Chapter 3. Suspended CNT transistors are used as nanoscale 

optoelectronic probes to investigate the electrical and optical processes in biological 

systems.  

The second topic we study is graphene. In Chapter 4, we demonstrate a facile and 

reliable method to engineer the CVD-grown graphene membrane and change its 

morphology. The resulting curled graphene ribbons (CGRs) have exhibited distinct 
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optoelectronic properties compared with pristine graphene. Different factors that 

influence the formation of CGRs have been systematically studied to produce this novel 

structure in a controllable way. In Chapter 5, we further look into the optoelectronic 

properties of the new graphene structure. CGR based transistors have been fabricated and 

various characterization tools, such as Raman microscopy, SEM, gate-dependent 

scanning photocurrent microscopy, etc., have been utilized to investigate the mechanism 

of the photocurrent generation in CGR devices. The curling of graphene has been found 

to enhance the photocurrent response by two orders of magnitude. Unlike common 

optoelectronic devices, the photocurrent generation in CGRs is significantly influenced 

by the photothermoelectric effect.  
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CHAPTER 2  

 

CONTROLLING GROWTH MORPHOLOGY OF CNTS 

 

2.1 Overview 

Over the years, many techniques have been developed for CNT growth, such as 

arc discharge36, laser ablation37, and chemical vapor deposition (CVD)38. Among them, 

CVD has been widely used for CNT synthesis due to the low cost and the essence of 

simplicity for wafer-scale production. During a typical CVD process, a sample with 

catalyst, mostly iron or nickel, will be put in a furnace and heated up to the desired 

temperature with the presence of carbon-containing gases. Depending on the conditions 

and the substrate used, the resulting CNTs could be in different forms, as shown in Figure 

2.1. 

________________________________________________________________________ 

 

Figure 2.1 (A) randomly grown CNT surface network; (B) vertically-aligned CNT forest; 

(C) horizontally-aligned CNT arrays. Credit Roel Flores. 

________________________________________________________________________ 
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Various forms of CNTs grown by CVD have been reported to meet the usage for 

different purposes. For instance, surface growth of CNTs has been investigated and 

normally utilized to fabricate nanoscale biosensors or suspended CNT transistors which 

are promising for future electronics;39-41 Water-assisted and plasma-enhanced CVD 

methods have been developed to produce vertically-aligned CNTs,42-44 also known as 

CNT forests or CNT carpets, which are intriguing for their potentials in large varieties of 

electronic applications such as supercapacitors, touch screens and building blocks of 

integrated circuits.45-47 All-CNT field-effect transistor devices that assemble both 

horizontally- and vertically-grown CNTs in complex three-dimensional structures have 

also been reported, in which horizontal CNT arrays and vertical CNT forests were 

prepared through two different growth procedures.48 Nevertheless, few studies have been 

done regarding the integration of various growth morphology in a controllable way. 

In this chapter, we present two different strategies to control the growth tendancy 

of CNTs and thus to provide various forms of CNT growth with the same catalyst 

preparation. We have observed the CNTs evolving from surface growth to forest growth 

by changing the acetylene pulse introduced at the beginning of growth, or by adjusting 

the growth temperature. We have also managed to produce CNT surface growth and 

forest growth simultaneously within a single growth procedure. In addition, Raman 

spectroscopy has been performed to characterize the properties of as-grown CNTs under 

different conditions. On the basis of Raman spectroscopic results, the effect of the two 

growth strategies on CNT quality has been investigated and the correlated growth 

mechanisms have also been discussed.  
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2.2 Materials and methods 

2.2.1 Device fabrication 

For the preparation, catalyst pads that consist of 0.4 nm Fe catalytic nanoparticles 

and a 10 nm intermediate layer of Al2O3 were deposited on top of Pt electrodes by e-

beam evaporation. The presence of Al2O3 will lead to more nucleation sites hence 

improve the efficiency of catalytic nanoparticles during the growth.41 In order to 

investigate the capability of horizontal growth for CNTs and rule out the substrate 

interference, a trench was etched between the catalyst pads.49 CNTs will be synthesized 

on the catalyst pads in terms of either surface growth or forest growth.  

 

2.2.2 CVD synthesis of CNTs 

The CNT growth was implemented via “fast-heating” CVD process under 

atmospheric pressure in a quartz tube in a horizontal furnace system.50 After purging the 

system with argon, the sample was heated up to 700 °C and treated for 10 minutes with 

water vapor introduced by passing argon (100 sccm Ar) through a water bubbler in order 

to oxidize Fe catalysts and to eliminate potential contaminants. The annealing procedure 

was then performed for 15 minutes under a hydrogen atmosphere (200 sccm H2) at the 

same temperature to reduce the oxidized catalysts to a proper state for subsequent CNT 

growth procedure. After the annealing, the sample was taken out for cooling at room 

temperature and the furnace was ramped up to the growth temperature. The fast-heating 

step was achieved by rapidly inserting the sample into the center of the furnace when the 
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desired growth temperature was reached. From here, two different growth strategies 

would be used. A short pulse of acetylene (0.5 sccm C2H2) was added at the beginning of 

the growth under the growth temperature of 865 °C for the first strategy, while the second 

strategy only changed the growth temperature from 865 °C to 1015 °C with a constant 

flow of acetylene (0.5 sccm C2H2). For both strategies, a constant methane-hydrogen 

mixture (800 sccm CH4, 200 sccm H2) were introduced into the system throughout the 

growth procedure. The samples were rapidly cooled down to the room temperature after 

the growth. 

 

2.3 Results and discussion  

2.3.1 The influence of acetylene pulse 

Samples prepared by CVD process have been imaged under scanning electron 

microscopy (SEM). In the first strategy, the growth temperature was set at 865 °C and an 

acetylene pulse was introduced at the beginning of the growth process. During a typical 

CVD process without acetylene pulse, CNTs were grown on surface with the length of 

micron size (Figure 2.2A) at a low yield. However, when a short pulse of acetylene was 

introduced into the system, the yield of CNTs would be considerably enhanced (Figure 

2.2B and 2.2C). This can be attributed to the much higher carbon feeding rate provided 

by acetylene than that of methane. Acetylene has been known to be able to decompose in 

a single collision reaction and provide direct pathway to carbon incorporation during 

CNT growth.51 Consequently, it is more capable to activate catalytic nanoparticles during 



27 

 

________________________________________________________________________  

 

Figure 2.2 SEM images with samples under different gas feeding conditions at 865 °C, 

as indicated in corresponding insets. (A) CH4 only for 20 min; (B) 5 s C2H2 pulse and 

constant CH4 for 20 min; (C) 10 s C2H2 pulse and constant CH4 for 20 min; (D) Constant 

C2H2 and CH4 for 5 s; (E) C2H2 only for 20 min; (F) Constant C2H2 and CH4 for 20 min. 

________________________________________________________________________ 
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the nucleation stage, which has been generally considered to be critical for the growth 

initialization.52-55 As a result, the introduction of a short-time acetylene pulse would 

significantly affect the following growth stage, and boost the yield of CNT growth. This 

idea is positively illustrated by Figure 2.2D, where acetylene and methane have been 

applied together for a short growth time of 5 s, which is roughly the nucleation time. 

Though only short CNTs have been found, the high density distribution indicates the 

successful activation of large numbers of catalytic nanoparticles. However, we found that 

if acetylene was serving as the only carbon feeding source applied into the system during 

growth, CNT forest growth in absence of length would take place (Figure 2.2E). As 

shown in Figure 2.2F, where dense CNT forests were formed by introducing both 

acetylene and methane as carbon feeding source for the entire growth process, it is 

obvious that though much less effective in terms of activating catalytic nanoparticles, 

methane is efficient to extend the length of CNTs.  

 

2.3.2 Fabricating suspended CNT transistor through pulse controlled strategy 

We have also investigated the probability of growing suspended CNT transistors 

through this C2H2 pulse controlled strategy. A simple design has been made to prepare 

the acetylene pulse of 5 s many CNTs grow across the trench bridging two metal contacts 

underneath the catalyst pads (Figure 2.3 B). The electrical measurements that determine 

whether the two metal contacts are connected by CNT bridges have shown an average 

yield above 60% of conductive devices, exhibiting excellent efficiency of producing 
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Figure 2.3 (A) Top view of a pre-treatment device intended for the growth of suspended 

CNT transistors. (B) Zoom-in trench view shows horizontal CNT-bridge structures 

(pointed by white arrows) with 5 s C2H2 pulse and constant CH4 for 20 min; (C) Zoom-in 

trench view with 10 s C2H2 pulse and constant CH4 for 20 min, no horizontal CNT-bridge 

structure is observed. 

________________________________________________________________________ 

 

suspended CNT transistors. The yield of horizontal CNT transistors substantially 

degraded when the acetylene pulse time was extended to 10 s (Figure 2.3 C), owing to the 

increasing yield of vertically-aligned CNTs. Furthermore, from previous observations we 

have found that if the acetylene pulse is introduced together with methane for the entire 

growth procedure, it will result in full CNT forest growth instead of surface growth. 

These experiments have elucidated that the growth tendency and morphology of CNTs 

can be changed after a considerable dose of acetylene is involved into the growth process. 
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2.3.3 The role of temperature during growth 

________________________________________________________________________ 

 

Figure 2.4 SEM images with samples under (A) 865 °C; (B) 915 °C; (C) 965 °C; (D) 

1015 °C. 

________________________________________________________________________ 

Our second strategy focuses on investigating the effect of growth temperature. It 

has been well-established that the growth temperature is a significant parameter of CNT 

synthesis, since it could affect both diameter distributions and growth duration time of 

CNTs during CVD process, and hence influence the final growth outcome.56-59 In order to 



31 

 

explore the temperature dependency for CNT growth, we introduced acetylene along with 

methane for the entire growth procedure, which was able to produce high-density CNT 

forest growth at 865 °C (Figure 2.4 A), and then increased the growth temperature with 

an increasing interval of 50 °C up to 1015 °C (Figure 2.4 B,C,D). The results have shown 

that both the yield and length of CNTs have been compromised when the growth 

temperature goes up. Interestingly, as the length of CNTs shrank, the surface growth 

started to appear, along with the horizontal CNT-bridge structure that went across the 

trench (Figure 2.4 C). This indicates a transition from high-density forest growth to low-

density surface growth. No forest growth was found when the temperature was ramped to 

1015 °C. Instead, all the CNTs turned out to grow along the surface. Therefore, it is also 

possible to control the growth tendency and morphology of CNTs by adjusting the 

growth temperature only. In a reasonable growth temperature range, the lower 

temperature tends to produce high-density CNT forest while the higher temperature 

would result in low-density CNT surface growth.  

 

2.3.4 Raman characterization and related analysis 

Raman spectroscopy has been proven to be a powerful tool for revealing 

structural details and some optoelectronic properties of CNTs.60-63 The radial breathing 

mode (RBM) could be used to tell the diameter of CNTs, while the disorder-induced D 

peak could help to determine the tube quality. In our Raman inspection, the spectra and 

images were obtained with 532 nm excitation under a 100X, 0.9 NA objective which 

provides a 1 µm spot size.  
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Figure 2.5 Raman spectral evolutions of as-grown CNTs prepared from different 

acetylene pulse time at 865 °C: CH4 only for 20 min (Black); 5 s C2H2 pulse and constant 

CH4 for 20 min (Red); 10 s C2H2 pulse and constant CH4 for 20 min (Green); constant 

C2H2 and CH4 for 20 min (Blue); and C2H2 only for 20 min (Cyan), respectively; The 

insets on the left of each figure are  zoom-in RBM spectra.  

________________________________________________________________________ 

 

As illustrated in Figure 2.5, the evolutions of Raman spectra for as-grown CNTs 

under different synthesis conditions have been observed. The rising of the D peak could 

be seen when the acetylene pulse time was increased (Figure 2.5 A). This suggests a 

significant increase of disorder in as-grown CNTs. When no acetylene was used and 
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methane was the only carbon feeding source, the D peak was almost invisible which 

indicated the growth of high quality nanotubes. The D peak intensity stayed unchanged 

when only 5 s of acetylene pulse was added at the beginning of the growth. However, 

when the pulse time of acetylene was increased to 10 s, a considerable increase of D peak 

could be noticed. The disorder became severe when acetylene was introduced for the 

entire 20 min growth procedure, where the G/D ratio nearly equaled to 1. Moreover, the 

D peak rose higher than the G peak when the CNTs were grown by acetylene only. The 

increase of the D peak may result from two causes, one is the increasing number of multi-

walled CNTs, and the other is the contamination brought by amorphous carbon. As the 

acetylene pulse time increases, the resulting carbon flux to the catalyst may exceed the 

diffusion flux to nanotubes, which will lead to the formation of more disordered 

multiwalls. Besides, the excessive carbon may also deposit into amorphous carbon, 

introducing unnecessary contaminations into the system. Therefore, though acetylene 

appears to be useful to enhance the yield of CNT growth, it might compromise the tube 

quality.  

We have also investigated the diamter distribution of as-grown CNTs via their 

RBM spectra. When no acetylene was added, the major absorption peak was between 160 

and 190 cm-1 (Figure 2.5 A), indicating that the diameters were between 1.31 to 1.55 nm 

for the majority of CNTs. This feature stayed still when a very short pulse of acetylene (5 

s) was introduced. However, the absorption peak became weaker and nearly invisible 

when 10 s and 20 min acetylene pulse were introduced respectively. We noticed that the 

major absorption peak reappeared but shifted to 97.5 cm-1 when acetylene was the only 

carbon feeding source used for the growth. The evolution of RBM spectra indicates that 
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the diameters of as-grown CNTs will increase if more dose (pulse time) of acetylene is 

introduced during the growth. Besides, because the tube deterioration has not shown up 

until the pulse time of acetylene is increased to 10 s, before which the major absorption 

peak of RBM spectra also stayed unchanged, we may consider the first 5 s of acetylene 

pulse time as a “clean boost”. After that, there will be extra amount of acetylene which 

leads to substantially more disorder by bringing in either multi-walled CNTs or 

amorphous carbon contamination. Therefore, there may be a higher demand of acetylene 

for the nucleation stage than the subsequent growth stage. Keeping the acetylene pulse at 

a constant flowing rate for long would harm the tube quality. It is possible that taking a 

real-time control of the acetylene pulse, which starts with higher dose and ends with 

lower dose, will extend the time of “clean boost”, promoting the yield of CNTs without 

compromising the tube quality. 

By observing the Raman spectroscopic results for CNTs grown under different 

temperatures, where both acetylene and methane were used together as the carbon 

feeding source, we found a similar trend for the change of D peak. When the growth 

temperature decreased, the D peak substantially went up (Figure 2.6 B), suggesting the 

presence of multi-walled nanotubes or amorphous carbon contamination. Apparently, 

though high temperature could only produce CNTs with a low yield, it turned out to be 

effective in terms of producing high quality CNTs. This could be attributed to the better 

balance between the carbon flux to the catalyst and the diffusion flux to nanotubes under 

high temperature. The absorption peaks of RBM spectra showed a diameter distribution 

of 1.48 to 1.77 nm when the temperature was higher than 915 °C. However, the peaks 

became dispersed when the temperature dropped below that, indicating a wider diameter  
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Figure 2.6 Raman spectral evolutions of as-grown CNTs prepared from different growth 

temperature under the same carbon feeding environment (constant C2H2 and CH4 for 20 

min): 865 °C (Navy); 915 °C (Purple); 965 °C (Pink); and 1015 °C (Grey), respectively. 

The insets on the left of each figure are  zoom-in RBM spectra.  

________________________________________________________________________ 

 

distribution. Similarly, a real-time growth temperature control, which starts with a 

relatively low temperature and ends with a high temperature, is possible to produce high 

quality CNTs with a great yield. 
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Figure 2.7 (A) SEM image of the sample treated with constant C2H2 and CH4 for 20 min 

under 965 °C. Besides CNT forests, a suspended CNT-bridge structure has also been 
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observed (in red square), the insets enlarges the target areas; (B) G peak Raman mapping; 

and (C) G/D ratio Raman mapping. Different color scales have been used for the zoom-in 

pictures, as indicated at the bottom of each picture. 

________________________________________________________________________ 

 

To monitor the quality change of CNTs, the Raman mapping has been performed 

for the sample prepared under 965 °C with both acetylene and methane as carbon feeding 

source. CNT forests as well as a suspended CNT-bridge, where a CNT rope splits into 

two CNT branches,  have been obeserved (Figure 2.7 A). During the G peak mapping, a 

bright spot appeared in the middle of the trench, and the corresponding zoom-in picture 

showed a Y shape (Figure 2.7 B). This matches both the location and the structure of the 

CNT-bridge. Furthermore, through the G/D ratio mapping, we found that the G/D 

intensity gradually diminished from point a to point c, similarly from point a to point b 

(Figure 2.7 C), suggesting that the tube quality degrades as growing. This result agrees 

with our previous hypothesis that there might be different demands of carbon feeding 

gases and temperatures during different growth phases. At the initial stage, the current 

conditions were appropriate and high-quality CNTs were produced. When it went further 

into the growth stage, the demand for carbon feeding gases may be decreased and the 

ideal growth temperature may also be shifted. Consequently, for a typical growth 

procedure with constant parameters, there may be excessive resource that would bring 

disorder into the system either through the formation of multi-walled CNTs or the 

introduction of amorphus carbon. 
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2.4 Conclusion 

In summary, we have managed to control the growth tendency and morphology of 

CNTs to produce CNTs from surface growth to forest growth either by adding the 

acetylene pulse at the beginning of the growth or adjusting the growth temperature while 

flowing acetylene and methane together. Though acetylene could activate more catalyst 

nanoparticles thus boost the yield, Raman spectrocopy shows an increasing D peak as the 

acetylene pulse is prolonged, which may arise from the contamination of amorphous 

carbon as well as the increasing amount of multi-walled CNTs. In addition, the increase 

of growth temperature also turns out to be effective to control the CNT morphology. 

Specifically, higher growth temperature tends to produce nanotubes with higher quality. 

Though further effort will be required to understand the potentially different demand 

between nucleation stage and growth stage in order to optimize CNT growth, the 

controllable CNT growth strategies in our study have already shown the efficiency to 

synthesize CNT forests, high yield suspended CNT-bridges, and combinations of both 

CNT-bridges and forests. The elaborate descriptions and analysis presented could provide 

insightful understanding for each strategy and help to further design efficient growth 

strategies with specific intentions. 
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CHAPTER 3  

 

NANOSCALE CNT BIOMOLECULE SENSORS 

 

3.1 Overview 

Due to the ultra-high charge carrier mobility and large surface-to-volume ratio, 

CNTs have been considered to have great potential for biological and chemical sensing. 

As a matter of fact, the following intensive research proved that CNTs were versatile 

sensors for various sorts of molecules.62-65  

The common technique is to coat CNT transistors with the solution of the target 

molecules and monitor the change of the gating curve. Figure 3.1 shows examples using 

CNT transistors for molecule sensing. We can find that CNT transistors are very sensitive 

to the electrostatic changes in the environment. The threshold gate voltage would shift 

once the molecule was introduced into the system. The sensing mechanism was mainly 

attributed to the charge transfer between CNTs and testing molecules. Besides, Star et al., 

also showed that this shift of the gate voltage could be reversed after the target molecule 

(starch) was removed (Figure 1.2 C), which indicated that CNT sensors had excellent 

electrochemical stability. The interactions between CNTs and biomolecules have been 

studied since 200664, when DNA was dried on top of a CNT transistor after spin-coating 

to observe the changes of conductance and gating voltage. The following work performed 

by Sorgenfrei et al., used a point defect in a CNT to probe DNA sequence65. Two-level 
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fluctuations in the conductance of the CNT were successfully measured in presence of a 

complementary DNA target. However, neither of the studies could guarantee high 

precision manipulation at a single-molecule level, which is important for the 

understanding of the fundamental process between CNTs and DNA. 

________________________________________________________________________ 

 

Figure 3.1 CNT transistors used for molecule sensing. The response from CNT sensors is 

shown for (A) redox-active polyaniline66, (B) streptavidin67, (C) starch and a starch-

degrading enzyme68, (D) a cell membrane69. 

________________________________________________________________________ 
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In this chapter, suspended CNT transistors have been fabricated to explore the 

local electrostatic changes in a liquid environment. Scanning photocurrent has been 

utilized to image and locate the position of suspended CNTs in solution, and the 

optoelectronic behaviors of the CNT transistors have been systematically studied. The 

CNT’s relation with the electrostatic potential in solution has shown its great capability 

for biomolecule sensing. Taking advantage of the local photocurrent response, CNT 

sensors are estimated to reach single-electron-charge sensitivity. 

 

3.2 Materials and methods 

3.2.1 Device fabrication 

As shown in Figure 3.2, the device was pre-patterned by photolithography. In 

order to make suspended CNT transistors, a trench (5 μm wide and 5 μm deep) was 

etched into a 170 μm thick fused silica double side polished substrate by the Oxford 

Plasmalab 80+ RIE system. E-beam evaporation was utilized to deposit the source and 

drain electrodes (2 nm Ti, 40 nm Pt), which were separated by 7 μm. Similar process was 

used to deposit the catalyst pads (10 nm of Al2O3, 0.2 nm of Fe) on the top of metal 

electrodes. After the photolithography patterning, suspended CNTs can be directly grown 

to bridge between source and drain electrodes by CVD process. The pulse controlled 

strategy described in Chapter 2 is an efficient method to growth suspended CNT bridges. 

The recipe of suspended bridges listed in Appendix A is also an alternative. 
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________________________________________________________________________ 

 

Figure 3.2 CNT transistors as biomolecule sensors (A) the schematic diagram of CNT 

biosensors; (B) Top-view for the CNT sensor by SEM. 

________________________________________________________________________ 

3.3.2 Scanning Photocurrent measurements 

A spatially scanned CW laser was used to measure the devices through a 

microscopic system. A collimated laser beam (λ = 785 nm) was expanded and focused to 

a diffraction-limited laser spot (< 500 nm) by a 60x IR enhanced water immersion 
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Olympus objective (NA = 1.2). Incident laser power was changed by a continuous neutral 

density filter. The laser beam was scanned over CNT transistors by a two-axis scanning 

mirror with nanometer spatial resolution. The responding current signal was collected by 

a preamplifier. 

________________________________________________________________________ 

 

Figure 3.3 Mechanism of photocurrent imaging. The band diagram on top shows the 

band curvatures for the CNT transistor lying in the middle. When a laser shines on the 

CNT transistor, its photocurrent response can be detected by our optical setup, showing a 

series of dots. 

________________________________________________________________________ 



44 

 

Figure 3.3 illustrates the schematics of the mechanism of photocurrent generation. 

A CVD-grown single-walled CNT transistor usually comes along with defects, which 

will lead to the bending of the band structure for the single-walled CNT transistor. As a 

result of the carrier diffusion to reach the equilibrium of Fermi levels, built-in electric 

fields are formed at the band curvatures. When the single-walled CNT transistor is 

illuminated with laser, the electron-hole pairs will be generated and accelerated by the 

built-in electric fields to form the photocurrent, which can be detected and observed by 

our photocurrent measurement setup.    

 

3.3 Results and discussion 

3.3.1 Photocurrent of CNT sensors 

In order to obtain the instant information of a CNT sensor during the biomolecule 

sensing in solution, a proper imaging tool is necessary. Common optical microscopes do 

not have the resolution to observe CNTs. Although SEM is powerful enough to reveal the 

details of CNT sensors, the high energy electron beam used during the imaging will also 

produce carbonaceous contaminations and defects on CNT bridges, resulting in the 

degradation of the sensor property. We thus developed an alternative method, the 

scanning photocurrent measurement, to achieve the instant imaging of CNT sensors. As 

shown in Figure 3.4 A, when the diffraction-limited laser spot was scanning over a 

suspended semiconducting CNT, the generated photocurrent could be detected by the 

preamplifier, and mapped in the scanning area. 
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________________________________________________________________________ 

 

Figure 3.4 Photocurrent imaging of CNT transistors. (A) The photocurrent response is 

shown for a suspended CNT transistor. A 785 nm laser is used with a power of 200 µW. 

The color bar represents a range of nA. Strong signals were observed at the metal 

contacts. (B) The reflection image of the same device collected simultaneously with the 

photocurrent image in false color. The distance between the electrodes is 8 µm, between 

which lies a 5 µm trench, as specified by the green dotted lines. (C) By overlaying with 
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the reflection image, we are able to find the exact location of the CNT transistor and 

measure its position relative to the edges of the electrode pads. All scale bars are 10 µm. 

________________________________________________________________________ 

 

The strong signals on the edges of the electrodes could be ascribed to the 

formation of the Schottky barriers between Pt and the CNT transistor. Due to the 

curvatures in the energy bands along the suspended CNT, the photo-excited carriers in 

different local spots would tend to flow in different directions, which led to a series of 

spots with different colors, revealing the physical shape of the CNT sensor. In the 

meantime, the reflected light was being collected by the Si photodetector. Since most of 

the reflected light came from the more reflective metal electrodes, the reflection image 

could be utilized to locate the position of the electrodes (Figure 3.4 B). Therefore, by 

overlaying the reflection image with the photocurrent image, we were able to identify the 

location of the CNT sensor relative to the contact edges (Figure 3.4 C). 

Figure 3.5 shows two examples of devices with more than one CNT. An ideal 

device for biomolecule sensing would be the one with single CNT in order to observe the 

biological interaction at single molecule level without interference. Besides, the 

manipulation of biomolecules requires certain operating space. The presence of nearby 

CNTs will limit the degree of freedom for the biomolecule molecules when moving along 

the trench, which substantially increases the difficulty of the manipulation. Another 

reason could be ascribed to the variances of the gating curve between different CNTs. It 

will be difficult to tune the sensor through the electrolyte gate if CNTs with different 

threshold gating voltages are found on the same device. 
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________________________________________________________________________ 

 

Figure 3.5 Photocurrent imaging of devices with (A) two CNTs and (B) multiple CNTs. 

The photocurrent intensities are in nA range. The scale bars for both images are 3 µm. 

________________________________________________________________________ 

 

3.3.2 Electrolyte gating measurements 

Gating measurement is an important method to characterize the CNT transistor 

and directly determine whether the CNT transistor is semiconducting. Semiconducting 

CNTs are more suitable for molecular sensing due to their high sensitivity to ambient 

changes. It is important to use semiconducting CNTs in biomolecule sensing since their 

optoelectronic properties could be changed by tuning the gate. Although the number of 

the spots from the photocurrent response could be used to infer whether or not the CNT is 

semiconducting, no conclusion would be drawn without gating measurement, where the 

conductivity of semiconducting CNTs will change while the gating voltage varies. 
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________________________________________________________________________ 

 

Figure 3.6 (A) the gating curve for a semiconducting CNT transistor, where VT ≈ ­0.2V; 

(B) the corresponding photocurrent image. A 785 nm laser is used with a power of 200 

µW. The dotted lines show the edges of the electrode. 

________________________________________________________________________ 

Since the most biomolecules demand to be in aqueous environment, where the 

back gate is strongly screened by the solution and becomes ineffective, we have adopted 

the electrolyte gate to perform the gate characterization.70 Shown in Figure 3.6 are the 

gating curve and the corresponding photocurrent image for a semiconducting CNT 

transistor. Due to the long channel length and the presence of defects, the on/off ratio for 

our CNT sensors is below 104. In the corresponding photocurrent image, multiple spots 

can be observed due to the curvatures in the band structure of the CNT transistor. We 

also found that the photocurrent response from semiconducting CNTs could be changed 

when an external voltage was applied through the electrolyte gate. When we introduced a 

gating voltage to the semiconducting CNT device in Figure 3.6, it exhibited distinct 

photocurrent behaviors. 
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________________________________________________________________________ 

 

Figure 3.7 Photocurrent images of the semiconducting CNT sensor at (A) Vg = -0.9 V; 

(B) Vg= -0.6 V; (C) Vg= -0.3V; (D) Vg= 0V; (E) Vg= 0.3V; (F) Vg= 0.6V. The contacts 

between the nanotube and the metal electrodes are specified with purple arrows. 

________________________________________________________________________ 

 

As illustrated in Figure 3.7, prominent photocurrent response was observed at  

Vg = -0.9 V (similarly at Vg = 0.6 V). However, when |Vg – VT| decreased, the 

corresponding photocurrent response became weaker and the CNT sensor was barely 

seen (Figures 3.7 B, C, D, E). We found that the strength of the photocurrent at the 

Schottky contacts was enhanced monotonically when the bias between gate voltage and 

threshold voltage (Vg ≈ 0.2 V) was increasing. Furthermore, the photocurrent switched 

signs when the gating voltage was tuning the CNT from p-type to n-type regime, 

indicating a significant influence from the photovoltaic effect.  
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3.3.3 Estimate of the electrical sensitivity of CNT optoelectronic sensors  

As previously shown in Figure 3.7, the photocurrent is measured as a function of 

position, typically producing a series of spots along a CNT, wherever disorder, contacts, 

or substrate interactions produce strong carrier separation. The center of the spots 

corresponds to the location of the CNT, which can be measured with precision much 

greater than the diffraction limit. The root-mean-square of the spatial fluctuation is about 

10 nm,71 which theoretically allows us to use a 10-nm-long segment of the CNT as a 

local optoelectronic nanosensor. Compared with the entire length of the CNT (~ 10 µm), 

the charge sensitivity can be enhanced by 1000 times. Considering that in our biological 

sensing system with an electrolyte gate, the electrical double layer will be formed by the 

ions and counterions in the aqueous solution. The capacitance across the double layer in 

the PBS solution at room temperature is given by 

𝐶[𝐹/𝑚2] = 2.3√𝐶0[𝑀] cosh(19.5∅0[𝑉])                                 (4) 

where C0 is the concentration of PBS solution, Φ0 is the infinite charged plane of 

potential used in the double layer model.72 By applying the model adjustment proposed 

by Bockris et al.,73 we are able to yield an approximate value of 0.1 F/m2. Thus, for a 

typical CNT with the diameter of 1 nm, the capacitance Cseg is equal to 

𝐶𝑠𝑒𝑔 = 𝜋 ∙ 𝑑 [𝑛𝑚] ∙ 𝐶[𝐹/𝑚2] ≈ 0.3 𝑓𝐹/𝜇𝑚                               (5) 

When a biomolecule gets in close proximity with a CNT sensor, it may act as a 

local gate on the semiconducting CNT. One electron charge in the biomolecule can shift 

the electrostatic potential of the 10-nm-long CNT segment by ~53 mV, which 
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corresponds to the photocurrent change of ~800 pA according to the gate-dependent 

photocurrent behavior in Figure 3.8. This current change is at least one order of 

magnitude larger than the electric measurement noise level of our newly-developed 

optoelectronic probing system. 

________________________________________________________________________ 

 

Figure 3.8 Gate-dependent photocurrent behavior for a local spot. (A) The photocurrent 

image for the CNT sensor. The dotted lines specify the edges of the trench. (B) 

Photocurrent response from the local spot (as pointed by the red arrow) while Vg sweeps 

from -0.9 V to 0.6 V. 

________________________________________________________________________ 
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3.4 Conclusion 

In summary, we have fabricated suspended semiconducting CNT transistors and 

investigated their optoelectronic properties in an aqueous system. Through the scanning 

photocurrent measurement, CNT transistors have exhibited high sensitivities with the 

local electrostatic changes, showing great potential as biomolecule sensors. A theoretical 

calculation indicates that CNT optoelectronic sensors are estimated to reach single-

electron-charge sensitivity. 
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CHAPTER 4  

 

ENGINEERING THE STRUCTURES OF GRAPHENE RIBBONS 

 

In Chapter 2, we systematically investigated the methods to control the growth 

morphology of CNTs, which could be produced in forms of surface growth, or vertically-

aligned growth. Here we present the method to engineer the structures of graphene, 

another promising carbon nanomaterials, and explore its potentials in optoelectronic 

applications. Since the first report of CVD synthesis of graphene, the mechanisms of 

graphene growth have been intensively studied. Unlike CNTs, graphene will only be 

grown in the form of atomic films with one or few layers thick. However, we found that 

the single layer graphene ribbons could be engineered during the annealing process, 

where the evaporation of poly methyl methacrylate (PMMA) would curl the graphene 

ribbons, and thus lead to the formation of unique graphene structures. Compared to 

regular graphene ribbons, this new structure present high efficiency in terms of photon-

induced photoresponse. 

 

4.1 Overview 

Graphene, a two dimensional material composed of a single atomic layer of 

carbon, has attracted significant attention due to its superb electrical, optical and 

mechanical properties.1, 32, 74-76 However, the fact that graphene is inherently a zero band-
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gap semi-metal has limited its implementation in potential electronic applications. A 

large number of theoretical and experimental studies have suggested that by modifying 

the morphology of graphene, it is possible to enhance certain physical properties of 

graphene and thus make it a more appealing building block for future electronics and 

photonics.77-83 An intensive research effort has been dedicated to modify graphene 

morphology, leading to the rise of two feasible methods. The first method is to confine 

the lateral dimension of graphene ribbons in nanometers.77-79 This method, however, is 

bottlenecked by the complexity of the high-precision fabrication and limited control of 

edge chirality. The second method usually employs three-dimensional deformations in 

graphene, which is less complicated and normally easy to control.80-83 Many novel 

structures have been derived from this method, such as collapsed graphene wrinkles80, 

folded graphene membranes81, and crumpled graphene82, all of which exhibit intriguing 

but distinct properties compared with pristine graphene. 

In this chapter, we develop a facile method to alter the graphene morphology and 

further change its optoelectronic behaviors. By utilizing the distortion generated from the 

thermal degradation of poly-methyl methacrylate (PMMA), we are able to make curled 

graphene ribbons (CGRs) which exhibit remarkable optoelectronic response through the 

spatially resolved scanning photocurrent microscopy. By controlling the annealing 

temperature, thickness of the graphene and type of PMMA, we are able to systematically 

change graphene structures from free-standing ribbons to CGRs. 
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4.2 Materials and methods 

4.2.1 Synthesis of graphene 

Following the recipe of Li et al.,34 we used Alfa Aesar 0.025 mm, 99.8% pure 

copper foils for the graphene growth. The copper foils with the grain size of ~100 µm 

were cut into stripes of ~1 cm in width. To prepare the foils for the growth of high quality 

graphene, acetone (10 seconds), IPA (10 seconds), and DI water were used successively 

to clean the copper foils to eliminate the contamination. Then silicon flatteners were used 

to flatten the foils. During the entire growth and subsequent transfer process, the copper 

foils have to be kept as flat as possible, since the wrinkles may result in cracks in 

graphene.  

For the growth, we loaded copper foils onto a quartz boat, which was hence 

transferred to a horizontal furnace system. After the system was pumped down to 10 

millitorr, we increased the temperature to 1000 °C and started to flow 100 sccm Ar along 

with 10 sccm hydrogen to anneal for 1 hour. Once the annealing was done, Ar was 

terminated and a mixed gas of H2/CH4 (5~20 sccm /100 sccm) was introduced into the 

furnace and stayed for 30 min. The growth of graphene was conducted at 1000 °C ~ 1050 

°C. After the growth, the sample was taken out of the furnace for fast-cooling. 

 

4.2.2 Three-step wet solvent baths 

The samples annealed under low temperatures (< 350 °C) usually end up with 

PMMA residue, which may potentially compromise the properties of graphene. Those 
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residues could be well removed by overnight soaking in chloroform, which has high 

dissolvability for PMMA. Since the suspended graphene structures are very fragile and 

hardly survive from the direct drying of chloroform. Thus we use an additional two steps 

of wet solvent baths to preserve the structures. After the chloroform cleaning, samples 

have to go through a 10 min ethanol bath followed by another 10 min bath in 

hexamethyldisilazane (HMDS), which can be quickly dried in air and produce little 

surface tension during the process. 

 

4.3 Results and discussion 

4.3.1 Forming the curled structure through thermal annealing 

Figure 4.1 shows the schematics of the device. The Pt electrodes were patterned 

on fused silica/oxidized silicon wafers by photolithography and deposited by e-beam 

evaporation. The source and drain electrode pads were separated by 8 μm, between which 

a 4-μm-deep trench was etched by RIE. Graphene was synthesized through chemical 

vapor deposition (CVD) on cleaned copper foils (25 µm thick) with reaction gas mixtures 

of CH4/H2=20/100 sccm at 1000 °C. After graphene growth, an ultra-thin PMMA layer 

was spin-coated on top of the graphene/copper-foil stack. Then the PMMA/graphene film 

was transferred to the desired substrate after the underlying copper was removed by a wet 

etching process.  
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________________________________________________________________________ 

 

Figure 4.1 Schematic view of a typical CGR device. (A) The SEM image of a typical 

CGR structure. The scale bar is 1 µm. The beam accelerating voltage was set below 5 kV 

to prevent potential damage to the CGRs. (B), (C), and (D) represent the zoomed-in 

images of the different sections of the structure, as specified by the red arrows. All the 

scale bars in those zoomed-in figures are 200 nm. (E) The device geometry for a pre-

annealed sample. 40 nm Pt was used as for source and drain electrodes. Graphene was 

transferred to cover the overall trench area with a length of ~ 8 mm on a die, which 

consisted of 30 device patterns. 

________________________________________________________________________ 
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Thermal annealing process was then used to remove the PMMA and to form 

CGRs. The sample was vacuum annealed (base pressure < 1 mTorr) at 440 °C for 30 min 

in the presence of 200 sccm Ar and 20 sccm H2, allowing for complete evaporation of the 

PMMA84, 85. No further lithographic patterning was performed, and the separation of each 

device was achieved by physical scratching after the formation of CGRs. As illustrated in 

Figure 4.1 (A), after this annealing process, the suspended graphene membrane tended to 

form a curled structure. Wrinkles were also found in the edge regions of the suspended 

graphene ribbon [Figures 4.1 (B), (C), (D)], which may result from the difference 

between the thermal expansion coefficients of graphene and the PMMA.86 The suspended 

region of the graphene membrane was susceptible to the distortion induced by the 

evaporation of the PMMA and was becoming curled and wrapped, while the supported 

graphene membrane stuck well to the substrate due to the ultrastrong adhesion between 

graphene and SiO2
87, resulting in the observed morphology variance of the graphene. 

This unique graphene structure has been found to substantially enhance the 

photoresponse of graphene, showing a great potential for optoelectronic applications. In 

order to produce these structures in a controllable way and to understand the formation of 

CGRs in an experimental point of view, the roles of the different related parameters have 

been investigated thoroughly. 

 

4.3.2 Influence of annealing temperature 

Realizing that the annealing temperature could directly affect the thermal 

degradation of PMMA, we investigated the influence of temperature on the formation of 

CGRs. Besides the optimal annealing temperature of 440 °C, two lower temperatures of 
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340 °C and 240 °C were also tested. We found that the annealing temperature was the 

key parameter that influences the morphology variance for CGRs. Other annealing 

parameters such as annealing time and heating rate did not result in significant changes. 

As shown in Figure 4.2 (A), when other annealing conditions were held constant during 

the process, we formed distinct graphene structures at each temperature. At 240 °C, all 

graphene structures formed were flat free-standing ribbons. PMMA was found to degrade 

inefficiently at this temperature,84, 85, 88 indicating that there may not be enough 

distortions during the annealing to initiate the curling of graphene. But once the annealing 

temperature was increased to 340 °C, the percentage of free-standing ribbons diminished 

significantly while the CGRs predominated. When the annealing temperature was further 

increased to 440 °C, CGRs were the dominant graphene structures while flat ribbons 

were hardly found.  

 

In order to compare the photoresponse of graphene structures with differing 

morphologies, we performed spatially resolved scanning photocurrent measurements. For 

samples annealed under low temperatures (< 350 °C), chloroform was used to remove 

potential PMMA residues and the graphene structures were preserved by utilizing critical 

point drying. As shown in Figures 4.2 (B) and (C), the photocurrent response from a 

graphene ribbon was usually weak, with intensity less than 1 nA in the present 

experimental setup. The generation of the photocurrent mostly came from the interface 

between the graphene and metal electrodes, which may result from potential barriers at 

the contacts induced by the Fermi-level alignment.89, 90 Weak photocurrent was also 

observed at the edge of the trench, indicating the presence of a potential-step at the 

suspension interface. When the temperature was increased to 340 °C, the curling of the  
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________________________________________________________________________ 

 

Figure 4.2 SEM and photocurrent images of CGRs at different annealing temperatures. 

(A) The percentage of graphene structures at different annealing temperatures. The 
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statistical results were obtained from a pool of over 50 graphene structures for each 

temperature. (B) A graphene ribbon annealed at 240 °C. (C) The corresponding 

photocurrent image for the graphene ribbon annealed at 240 °C. A diffraction-limited 

laser spot (< 500 nm) transmits from the transparent substrate to scan over the suspended 

graphene structures. The laser power was 1.2 mW for all photocurrent images. The 

electrode areas are specified by black dotted lines. The trench is marked by yellow dotted 

lines. (D) A typical CGR structure annealed at 340 °C. (E) The corresponding 

photocurrent image for the CGR annealed at 340 °C. (F) A typical CGR structure at 440 

°C. (G) The corresponding photocurrent image for the CGR annealed at 440 °C. All the 

scale bars are 2 µm. 

________________________________________________________________________ 

graphene membrane started to appear [Figure 4.2 (C)]. Unlike graphene ribbons, whose 

photocurrent can only be found for the ribbons between electrodes, strong photocurrent 

response was observed in CGRs even without metal contacts. As shown in Figure 4.2 (E), 

the suspended CGR structure exhibited a pronounced photocurrent with intensity in nA, 

which was substantially stronger than that detected in the graphene ribbon. The 

enhancement of photocurrent might be attributed to the interlayer interactions among 

tightly stacked graphene layers in the CGR, which may enhance the electron-electron 

interaction and further influence the intrinsic optoelectronic properties of graphene. Once 

we increased the annealing temperature to 440 °C, CGRs were found to become even 

narrower, possible due to the higher degradation rate and more sufficient evaporation of 

PMMA at this temperature.84, 85, 88 The photoresponse from CGRs was further enhanced, 

showing prominent photocurrent in the range of tens of nA [Figure 4.2 (G)]. 
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4.3.3 Influence of graphene thickness 

Besides the annealing temperature, the graphene thickness was found to be 

another important factor that influences the formation of CGRs. As discussed before, 

when the annealing temperature was increased to 440 °C, most structures we obtained 

were CGRs. However, a few structures (< 5%) still turned out to be flat freestanding 

ribbons after the annealing process.  

Figure 4.3 shows a typical graphene ribbon obtained after thermal annealing at 

440 °C. We found that the graphene ribbon was a part of a darker stripe easily 

distinguished from other regions on the substrate [Figure 4.3 (A)]. Raman spectroscopy 

was performed to characterize the device, since it is a non-destructive and effective tool 

to fingerprint for single and multi- layer graphene. As illustrated in the G mapping in 

Figure 4.3 (B), the Raman intensity of G band was substantially higher in the stripe than 

in the other substrate regions. This was indicative of thicker graphene layers in the stripe 

area, since the G-band intensity would increase with the number of layers in  

graphene.91, 92 Individual spots were also taken on different regions of the device. As 

shown in Figure 4.3 (C), two prominent peaks could be observed in the corresponding 

Raman spectra, where the G peaks were normalized to show better comparisons with 2D 

peaks. In contrast to other surface regions, where I(2D)/I(G) ratio was ~ 2, the I(2D)/I(G) 

ratio significantly decreased to ~ 0.5 at the freestanding graphene ribbon as well as the 

other regions of the stripe, indicating the presence of multi-layer graphene which agreed 

with the observation from G-band mapping. These results suggested that the presence of 

multi-layer graphene might prevent the graphene membrane from curling into a CGR. 
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________________________________________________________________________ 

 

Figure 4.3 Raman spectra for the graphene ribbon annealed at 440 °C. (A) The SEM 

image for the graphene ribbon with a scale bar of 5 µm. (B) The corresponding G band 

mapping at 1587 cm-1. The trench is marked by red dotted lines. (C) Raman spectra (at 

λ=532 nm) with normalized G peak taken at different locations from the device. The laser 

power was 5 mW. 

________________________________________________________________________ 
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________________________________________________________________________ 

 

Figure 4.4 The structure yield for graphene with different number of layers. The left 

column shows the Raman resonance for the graphene that was used for annealing. The 

right column shows the percentage of different structures for the corresponding graphene. 

________________________________________________________________________ 
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In order to further investigate the influence of graphene layer number on the 

formation of CGRs, single-layer, bilayer and few-layer graphene were each transferred to 

separate dies and annealed under the same annealing conditions at 440 °C. Figure 4.4 

illustrates the yield of graphene structures for different layer numbers of graphene. We 

found that CGRs were the dominant structures when the graphene source was single layer 

(I(2D)/I(G) > 2). The bilayer graphene with comparable 2D and G peaks resulted in a 

considerably higher proportion of graphene ribbons, despite the fact that CGRs were still 

the main graphene structure. The overall morphology transition occurred when few-layer 

graphene was used, leading to an overwhelming yield of graphene ribbons. This 

correlation with graphene layer number may result from the difference of the thickness 

for the graphene films. Graphene with higher layer number may be less vulnerable to the 

distortion brought by PMMA evaporation, thus have less chance to form the curled 

structure. 

 

4.3.4 Influence of PMMA 

Table 4.1 Specifications of the PMMA and the resulting graphene structures. 

PMMA 
Molecular 

weight 

Solids 

content 

Film thickness 

after spinning 

(nm) 

Percentage 

of CGRs 

Average yield of the 

graphene structures 

per die 

495K A2 
495,000 

2% 60 96% 41 

495K A6 6% 320 89% 7 

950K A2 950,000 2% 70 80% 27 

 

Note: All the graphene structures over the trench (on or off the device pattern) were 

accounted for in the statistics. The same spin-coat recipe with 4000 rpm and 45 s was 

applied. 
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There is still another important factor that is indispensable for the formation of the 

CGR structures, the PMMA, which acts as a sacrificial support layer during the transfer 

process to guarantee the intactness of the graphene, and is the origin of the distortion 

leading to the morphology change of graphene during thermal annealing. Considering the 

wide variety of available PMMA solvents, it is important to study how PMMA with 

differing molecular weights and concentrations in anisole could affect CGR yield. We 

thus investigated how results differed between samples that used PMMA 495K A2, 495K 

A6 and 950K A2 that were annealed at 440 °C with single layer graphene. As specified in 

Table 4.1, all types of PMMA led to the dominant percentage of CGRs in the graphene 

structures obtained. However, there was a major difference in the average yield of 

graphene structures per die between different types of PMMA. For PMMA of the same 

solids content, 950K A2 with its higher molecular weight tended to break the suspended 

structures more easily and yield less graphene structures compared with 495 A2. A much 

bigger drop was found when the solids content increased. Since the thermal degradation 

rate constant of PMMA was independent of polymer concentration88, the significant 

decrease of yield may be attributed to the increasing thickness of PMMA film resulting 

from the higher viscosity for 495K A6, which inevitably increased the amount of PMMA 

polymers that created distortions during the thermal annealing.  

 

4.4 Conclusion 

As a conclusion, we have demonstrated a simple method to curl the graphene 

ribbon and enhance the photocurrent response. The annealing temperature, thickness of 

graphene and the type of PMMA support layer have shown to be the key factors that 
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influence the formation of CGRs. The curling of graphene tends to take place in single 

layer graphene and requires relatively high annealing temperature. Besides, ultra-thin 

PMMA has also been shown to be necessary to obtain a decent yield of CGRs. These 

results have presented important progress toward the modification of graphene 

morphology and the production of appealing structures for optoelectronic applications. 
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CHAPTER 5  

 

STUDY OF MECHANISMS OF THE PHOTORESPONSE IN CGRS 

 

5.1 Overview 

Graphene optoelectronics has become an attractive field to both theoretical and 

experimental researchers. The extremely high charge-carrier mobility, optical 

transparency, ultrafast photoluminescence, broadband absorption, and enormous tensile 

strength make graphene an ideal candidate for the future optoelectronic devices1, 5, 29, 75, 93-

102. Enhancing the photon-to-electron conversion rate in graphene is the next step towards 

an efficient energy harvesting technology. Recent studies have shown that hot carriers 

can enhance the photocurrent response in graphene p-n junctions by the 

photothermoelectric effect (PTE)99-101. Moreover, this novel nonlocal hot-carrier-assisted 

transport regime is expected to increase power conversion efficiency in graphene-based 

energy-harvesting devices99. It is, therefore, desirable to synthesize graphene 

nanostructures with intrinsic PTE-induced photocurrent response.  

Molecular dynamics (MD) simulations indicate that twisting a graphene 

nanoribbon leads to a tunable modification of the electrical structure of graphene103-107.  

The ability to change the physical properties of graphene simply by varying its 

morphology is an attractive option that makes the move to graphene-based photovoltaic 

technology more viable. Various graphene structures, such as stacked graphene 



69 

 

membranes81, crumpled graphene films82, and carbon nanoscrolls83, 108, have been 

fabricated and have displayed distinct properties from pristine graphene. However, none 

of the above has demonstrated enhanced photocurrent response, a key component for 

future photovoltaics.   

In Chapter 4, we have demonstrated a facile method to obtain a unique graphene 

structure which exhibits enhanced photoresponse. In this chapter, we further explore the 

optoelectronic properties of CGRs. Outstanding photocurrent enhancement has been 

observed, which is about two orders of magnitude greater than the photocurrent generated 

at the contact areas in flat graphene ribbon devices. We also investigated the nature of 

photoresponse in free-standing CGRs via gate-dependent scanning photocurrent 

microscopy.  Our experimental results show that the enhanced photocurrent response in 

CGRs mainly originates from the PTE, while significant infrared emission may result 

from thermal radiation.  

 

5.2 Materials and methods 

5.2.1 Fabrication of CGR transistors 

All the graphene used to fabricate the CGR devices in this chapter was all single 

layer graphene (SLG). SLG was grown on copper foils at 1000 °C in the presence of 20 

sccm of methane and 100 sccm of hydrogen following the similar CVD process as 

presented in the previous chapter. Then a PMMA layer of 495K A2 was spin-coated on 

top of the graphene film that was grown on the top of the copper foil to hold the graphene 
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film. The copper foil was later removed through the wet etching in iron chloride solution, 

and then the PMMA-graphene film was transferred onto the pre-patterned chip, where 5-

μm-wide and 5-μm-deep trenches were etched on 170-μm-thick transparent fused silica 

substrates via an Oxford 80 RIE and source and drain electrodes were deposited with 5 

nm of Ti and 40 nm of Pt via an e-beam evaporator. After the device was dried in air, The 

sample was heated up to 440 °C under vacuum with a base pressure < 1 mTorr for 30 min 

in the presence of 200 sccm Ar and 20 sccm H2, which led to a complete evaporation of 

the PMMA109, 110. During the evaporation, the non-suspended graphene adhered to the 

substrate due to the van de Waals interaction with the substrate, while the suspended part 

became wrinkled and crumpled, then shrank and curled into a CGR. We then separated 

each device by physically scratching between the electrodes with sharp needles. 

5.2.2 TEM imaging  

In order to fully understand the structures of CGRs, SLG was directly transferred 

onto TEM grids coated with lacey carbon films and similar annealing process was 

adopted to form CGRs.  Bright-field TEM imaging was performed on an FEI Technai 

20T operated at 80 kV. No obvious damage or structural transformation was observed on 

the CGRs under this voltage.  

5.2.3 Scanning Photocurrent Measurements 

The photocurrent measurement was performed through a microscope system with 

a spatially scanned CW laser. During the photocurrent measurements, the signals were 
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obtained using a preamplifier with the highest sensitivity within the measurement range. 

The reflection of the incident laser beam was simultaneously recorded by a Si detector. 

By overlapping the reflection image with the photocurrent image, the position of the 

sample was located. The photocurrent intensity of a CGR was analyzed by accumulating 

photocurrent signals in the center region of the CGR’s spatial photocurrent mapping, for 

each incident laser power respectively.  

 

5.3 Results and discussion 

5.3.1 Structural details of CGRs and MD simulations 

To explore the process of CGR formation, we collaborated with Dr. Pantelides’ 

group in department of Physics and Astronomy at Vanderbilt University, who performed 

MD simulations on a 1-µm-long and 0.1-µm-wide graphene ribbon containing 3,840,000 

C atoms. Each end (~ 10 nm) of the ribbon (shown in blue in Fig. 5.1B left) was kept flat 

with a restoring elastic force 𝐹 = 𝑘𝑥, according to the experimental conditions. Random 

momenta were given to a randomly selected group of atoms (shown in red dots in Fig. 

5.1B left) to simulate the impulses given by PMMA thermal desorption, while the total 

momentum remained zero. The calculated morphology is in good agreement with the 

TEM image of a CGR, where we found that the CGR shows single-layer near the edge 

area (Fig. 5.1C) and has a multi-layer structure in the center region (Fig. 5.1C inset). The 

MD simulation results indicate that random momenta produced during the simulated 

PMMA evaporation process induce the formation of CGRs. 
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________________________________________________________________________ 

 

Figure 5.1 Structures and Raman Spectra of CGRs. (A) SEM image of a CGR device 

after annealing. The CGR was suspended across a 5-µm-wide and 5-µm-deep trench on a 

170-µm-thick transparent fused silica substrate. The red arrows specify the spots where 

Raman spectroscopy was performed. The scale bar is 1 µm. (B) MD simulation cell with 

a restoring elastic force 𝑭 = 𝒌𝒙 at each end and random momenta given to randomly 

selected regions (red dots) along the ribbon (left) and a CGR (right) resulted from the 
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ribbon on the left side. Credit Yevgeniy S. Puzyrev. (C) TEM image of a CGR. The scale 

bar is 200 nm. The inset shows a close-up image of the curled area with a scale bar of 50 

nm.  Credit Junhao Lin. (D) Raman spectra of six different regions along the CGR in (A) 

at 532 nm. The 2D-to-G intensity ratios are larger than 1 in the regions R1, R2, R5 and R6, 

indicating the presence of single layer graphene membrane. The broad 2D bands in the 

regions R3 and R4 may result from the interlayer interaction between different graphene 

layers within the CGR. 

________________________________________________________________________ 

Raman spectroscopy was performed to inspect the resonance from the curled 

structure. We focused the 532 nm laser on six different spots (Fig. 5.1A), from the  

non-suspended to the suspended regions, to observe the Raman evolution while  

graphene became curled. As shown in Figure 5.1D, intense features could be found  

at ~ 1590 cm-1and ~2680 cm-1, corresponding to the G mode and 2D mode, respectively. 

We could identify the presence of single layer graphene from the sharp and symmetric 

shape of the 2D peak, as well as the 2D-to-G intensity ratio (>1) at the non-suspended 

regions (R1, R6). The CGR device still showed a similar behavior at R2 and R5 except a 

subtle shift of peak positions, possibly induced by the wrinkled and crumpled structures 

in these regions. As we moved further into the regions R3 and R4, where the graphene 

curled structure was formed, the 2D-to-G intensity ratio decreased substantially. The 2D 

bands also became broadened and asymmetrical, indicating that more scattering cycles 

were involved during second-order double resonance, which results from the interlayer 

interaction between different graphene layers within the CGR.  
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5.3.2 Enhanced photocurrent from CGR transistors 

________________________________________________________________________ 

 

 

Figure 5.2 Optoelectronic response comparison between a CGR and a flat graphene 

ribbon. (A) Schematic diagram of the device geometry. A CGR is suspended cross a 5-

µm-deep and 5-µm-wide trench on a 170-µm-thick transparent fused silica substrate. 
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Source and drain electrodes are used to apply a voltage across the CGR and the third 

electrode is used as an electrolyte gate. A diffraction-limited laser spot (< 500 nm) 

transmits from the transparent substrate to scan over the suspended CGR. SEM images of 

a suspended SLG device (B) and a suspended CGR device (C), respectively. The laser 

power was 1.2 mW for both images. The corresponding photocurrent images of the 

suspended SLG device (D) and the suspended CGR device (E), respectively. The scale 

bars represent 5 µm. Blue and black dashed lines are the edges of the electrodes. 

________________________________________________________________________ 

To evaluate the photon-to-electron conversion efficiency of CGRs, we performed 

spatially resolved scanning photocurrent measurements on a suspended CGR via SPPM 

(Fig. 5.2A) in comparison with a flat graphene ribbon.  Figure 5.2A presents a schematic 

diagram of a CGR device used in this study. When a diffraction-limited continuous-wave 

laser spot (1.2 mW, 785 nm) scans over a CGR transistor suspended on the top of a 170-

µm-thick transparent fused silica substrate, the photocurrent signals are collected via a 

preamplifier and the refection image is recorded through a photodetector. As shown in 

Figure 5.2E, the photocurrent generated along a CGR is in the range of tens of nA, about 

two orders of magnitude greater than that generated at graphene-metal contacts in a 

suspended flat graphene ribbon transistor (Fig. 5.2D) and in non-suspended flat graphene 

ribbon transistors reported previously99. The intensity, sign, and symmetries of the 

photocurrent depend on the local morphology of CGRs. 
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5.3.3 Mechanisms of photocurrent generations in CGRs 

In order to investigate the photocurrent generation mechanisms in CGRs, we 

performed gate-dependent scanning photocurrent measurements on CGR transistors. A 

free-standing CGR was sealed into a microfluidic chamber filled with 1.5 mM PBS 

solution and a gold electrode was used to change the electrochemical potential of the 

system. The chamber was kept in a steady stream to ensure a homogeneous concentration 

of ions. Figure 5.3A displays the SEM image of a CGR projected on its corresponding 

reflection image; the photocurrent image of this CGR is shown in Figure 5.3B, which was 

taken at a zero source-drain bias with a gate voltage Vg = 1.9 V. By sweeping the gate 

voltage from a value smaller than Vdirac (Vdirac = 1.62 V represents the Dirac point of this 

device) to larger than Vdirac while recording the photocurrent along the CGR, we obtained 

the gate-dependent scanning photocurrent map (Fig. 5.3C). 

Three regions (R1, R2, and R3) along the CGR were selected to study their 

photovoltage signal (𝑉𝑝𝑐 = 𝐼𝑝𝑐𝑅) evolution as a function of the sweeping gate voltage. As 

shown in Figure 5.3D, the photovoltage signals in the region R3 (R1) exhibit strong non-

monotonic gate voltage dependence and have a similar pattern to the calculated 

thermoelectric power (S), which may result from the PTE. However, the photovoltage 

response in the region R2 shows monotonic gate voltage dependence, indicating that the 

photovoltaic effect (PVE), resulting from the built-in electric field, plays an important 

role in its photovoltage generation. It is therefore necessary to consider both PVE and 

PTE in the photovoltaic generation in CGRs, which can be expressed as  

𝑉𝑃𝐶 = 𝑉𝑃𝑉𝐸 + 𝑉𝑃𝑇𝐸 = ∫(−
𝜂

𝜎(𝑛)
𝑛𝑥e ∂𝑉 + 𝑆(𝑥) ∂𝑇𝑒(𝑥)) 𝑑𝑥                       (6)  
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________________________________________________________________________ 

 

Figure 5.3 Photocurrent responses of a CGR device. (A) An SEM image of a CGR 

device projected on the corresponding reflection image. The scale bar is 1 µm. (B) The 
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corresponding photocurrent image at Vg = 1.9 V and a zero source-drain bias. The laser 

scanning position is indicated by the green dotted line. (C) The gate-dependent scanning 

photocurrent image as Vg varying from 1.4 V to 2.0 V. (D) The horizontal cuts along the 

dotted lines for different regions (R1, R2, and R3) in the CGR as specified in the 

photocurrent images. The bottom curve shows the calculated Seebeck coefficient in the 

R3 region. (E) Conductance measurement of the CGR device as a function of Vg. The 

flowing directions for different major carriers are illustrated in the inset diagrams. 

________________________________________________________________________ 

where 𝜎(𝑛) is the local conductivity at the curled area, 𝑇𝑒 is electron temperature, 𝜂 and 

𝑛𝑥 are the mobility and the density of the photoexcited carriers, respectively, and 𝑆 is the 

Seebeck coefficient. According to the Mott relation, 

𝑆 = −
𝜋2𝑘𝑏

2𝑇𝑒

3𝑒

𝑑(𝑙𝑛𝜎)

𝑑𝑉𝑔

𝑑𝑉𝑔

𝑑𝐸
|𝐸=𝐸𝐹

                                                 (7) 

where 𝑘𝑏is the Boltzmann constant, e is the electron charge, and 𝐸𝐹 is the Fermi energy. 

𝑑(𝑙𝑛𝜎)/𝑑𝑉𝑔  derived from the conductance measurement plays a key role in the 

photovoltage generated from the PTE, whereas the contribution of PVE largely depends 

on the local potential gradient ∆𝑉. The detailed calculations for the carrier mobility and 

Seebeck coefficient in CGR are specified in Appendix D. 

As discussed previously, the relatively-low 2D-to-G intensity ratio and the broad 

2D bands in the curled regions (Fig. 5.1D) may result from the interlayer interactions 

between graphene planes. This interlayer interaction may lead to an increase of the 

density of states (DOS) in the curled multi-layer region of a CGR, since the interlayer 
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interaction can induce a parabolic dispersion of the energy bands in multi-layer graphene 

as compared to a linear dispersion of the energy bands in SLG111-113. As a result of the 

Fermi level alignment, the Dirac point of a CGR is higher than that of a SLG, leading to 

the formation of a built-in electric field. As illustrated in Figure 5.3E, for the n-doped 

graphene, the photoexcited electrons flow from the CGR to the SLG due to the built-in 

electric field. However, according to the second law of thermodynamics, the hot carriers 

induced by PTE tend to diffuse to the regions with larger DOS to maximize the entropy, 

leading to electron flow from the SLG to the CGR. In the region R1 (R3), electrons flow 

from the SLG to the CGR and produce a negative (positive) photocurrent, which mainly 

results from the PTE. In the highly curled region R2, the contribution of PVE increases, 

which overwhelms the PTE-induced electron flow and produces a negative current with 

the present experimental setup. This may indicate that the photocurrent generation 

depends on the local morphology of a graphene structure. 

To better understand the physics behind the photocurrent generation in CGR 

devices, more CGR samples were fabricated and tested according for comparisons and 

further analysis. In order to eliminate the interference from the electrodes, we picked 

CGRs located far away from the electrodes (SLG hence acted as the interconnections 

between CGRs and electrodes). The SLG membranes used in the experiments were 

shown to be p-doped after growth and transfer processes.  

We found that a significant slope located at the T/R2 interface, which might be 

caused by the high local potential gradient. The PTE effect could be substantially 

enhanced at the T/R2 interface due to the high steepness of the local potential gradient, 

which resulted in the overwhelming flow of photo-excited holes from the curled area to  
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R2. Although counterbalanced by the diffusion of holes from the curled area into the T/R1 

interface, where lower potential gradient might be formed, the net photocurrent in the 

curled area would still be dominated by the negative current. Compared to PVE, the 

________________________________________________________________________ 

 

Figure 5.4 Photocurrent response of CGRs66.  (A) and (D) SEM images of suspended 

CGRs. The scale bars are 1 µm. (B) and (E) the corresponding photocurrent images of 

CGRs. (C) and (F) Line-cuts from the photocurrent images along the CGR devices as 

marked in the red dotted lines. The solid arrows and the dotted arrows refer to the 

contributions from PVE and PTE respectively. Blue color represents the negative current 

in the present experimental setup and red color corresponds to the positive current.  

________________________________________________________________________  
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influence from PTE was relatively weaker in the curled area, but stronger in both SLG 

sides. The PTE induced photocurrent might be responsible for the positive current in R2, 

resulting from the hole injection from the SLG side to the curled area in the middle. 

Meanwhile, since PVE induced photocurrent was weaker at the R1/T interface due to the 

smoother local potential gradient, PTE might be also responsible for the negative current 

shown in R1, which could be attributed to the flow of holes from the SLG side to the 

curled area.  

Besides, we also observed different photo-responses from another CGR device as 

shown in Figure 5.4 E. Two comparable colors could be seen in the photocurrent image. 

For this device, a narrow curled area was found to locate at the middle of the CGR 

device. Unlike the previous device, the symmetric current changes shown in Figure 5.4 E 

indicated that this CGR device might not have steep changes in terms of potential 

gradient. As a result, the photocurrent in the curled was mostly neutralized, and the net 

current at interfaces of R3/T and T/R4 was slightly overwhelmed by the PTE induced 

photocurrent. 

5.4 Conclusions 

In conclusion, the enhanced photoresponse from the free-standing CGRs has been 

further investigated. Gate-dependent photocurrent measurements indicate that the 

photocurrent signals mainly result from the PTE effect, which may be attributed to the 

interlayer interactions in the curled area. The experimental results provide useful insights 

for understanding the opto- and thermo- electronic properties of graphene based 

transistors.  
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CHAPTER 6  

 

CONCLUSIONS 

 

In this dissertation, the electronic and optical properties of two appealing carbon 

nanomaterials, CNTs and graphene, have been thoroughly studied, allowing us to get a 

glimpse of the fascinating nature of CNTs and graphene. This chapter will summarize the 

results we observed and discuss future directions for CNTs and graphene. 

 

6.1 Research summary and future directions for CNTs 

The study of material synthesis is important to the understanding of the growth 

mechanism. In Chapter 2, we aimed to control the growth morphology of CNTs in order 

to produce CNTs that can meet the requirements of different applications. Two different 

strategies were developed to change the growth morphology of CNTs from the  

low-density surface growth to the high-density forest growth. The first strategy employed 

a short acetylene pulse which was introduced at the beginning of the growth. We 

observed that by extending the acetylene pulse time, the density of as-grown CNTs could 

be significantly enhanced, accompanied by a morphology transition from surface growth 

to forest growth. However, Raman spectroscopy indicated that the quality of as-grown 

CNTs might be compromised when the acetylene pulse increased. In the second strategy, 

we showed that the growth morphology of CNTs could also be controlled by adjusting 
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the growth temperature. Higher temperatures tended to produce CNTs in the form of 

surface growth. Besides, through the Raman inspection, we also found that the quality of 

as-grown CNTs could be improved when the temperature increased. 

CNT biosensors were developed in Chapter 3. In order to potentially observe the 

interaction between CNTs and biomolecules at the single molecule level, suspended 

semiconducting CNT transistors were fabricated and investigated in an aqueous 

environment where most biomolecules could survive. Scanning photocurrent 

measurements were employed to image and locate the position of suspended CNTs in 

solution. During gate-dependent photocurrent measurements, semiconducting CNTs 

exhibited excellent sensitivity to the environment potential changes. The photocurrent 

response of the CNT showed distinct behaviors at different local spots, indicating the 

possibility of using small segments of the CNT as local optoelectronic sensors. Through 

the theoretical calculation, the photocurrent change of the local sensor was in the order of 

hundreds of pA when a single electron was introduced into the system, which was two 

orders of magnitude greater than the minimum current we can measure. 

There are a few interesting topics for continued exploration. In the study of the 

morphology control of CNTs, we have shown the possibility to produce CNTs with 

different morphologies within a single growth procedure (Fig. 2.4 C). Further 

investigations may focus on combining the surface growth with the forest growth, and 

potentially developing a simple method to grow all-CNT field-effect transistors that 

assemble both horizontally- and vertically-grown CNTs in three-dimensional structures. 

Besides, as we have already identified, the first 5 s of acetylene pulse time is able to 

promote the yield of CNTs without compromising the tube quality. A possible reason 
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may be due to the higher demand of acetylene for the nucleation stage than the following 

growth stage. This effect of “clean boost” should be further studied. It may be possible to 

use an acetylene pulse that decreases over time to provide high quality CNTs in any 

desired morphology. As demonstrated in Chapter 3, we have successfully developed a 

highly sensitive CNT biosensor. Exciting opportunities exist for using the CNT 

biosensors to observe the interactions between CNTs and different biomolecules. 

Currently, we have already built a dual-trap optical tweezer which is able to manipulate 

single biomolecules. However, it remains to be difficult to observe the single-molecule 

interaction due to the nanoscale Debye screening length in our system. 

 

6.2 Research summary and future directions for graphene 

Despite the extraordinary electron mobility, the optoelectronic properties of 

graphene are highly limited by its zero band-gap nature. In Chapter 4, we developed a 

simple method to enhance the photoresponse in graphene by curling the graphene ribbons 

through thermal annealing. The resulting graphene structures, CGRs, exhibited 

remarkable optoelectronic response. The photocurrent generated in CGRs was observed 

to be much great than that generated in flat graphene ribbons. Through the further study 

of different factors that influence the formation of CGRs, we found that the curling of 

graphene favored single layer graphene and required relatively high annealing 

temperature. Also, ultrathin PMMA was necessary to obtain a high yield of CGRs.  

The following study in Chapter 5 further investigated the optoelectronic 

properties of this unique graphene structure. The TEM imaging and Raman inspection 



85 

 

indicated that the enhanced photoresponse might be attributed to the interlayer interaction 

between tightly stacked graphene layers within CGRs. During the photocurrent 

measurement, we observed that electrons tended to flow from the single layer graphene to 

the CGR, indicating a significant influence from the PTE effect. We further investigated 

the mechanism of the photocurrent generation in CGRs by gate-dependent photocurrent 

measurements. The observed photovoltage at the interfaces between CGRs and single 

layer graphene was in good agreement with the calculated Seebeck coefficient, indicating 

that the enhanced photocurrent response in CGRs mainly originated from the PTE effect. 

The study of optoelectronic properties of CGRs in this thesis is just a beginning. 

Future investigations about the optoelectronics of CGRs can be conducted to tune their 

photoresponse by controlling the morphology of CGRs. We have showed in Figure 5.4 

that the photoresponse of CGRs may be correlated with their local morphologies. It may 

be possible to make CGRs with desired photoresponse if the curling of graphene could be 

better controlled. A potential approach is to utilize e-beam lithography to design different 

patterns of graphene ribbons, such as triangular shapes and rectangular shapes, which 

may lead to different curling strategies and form CGRs with distinct morphologies. 
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Appendix A  

 

CARBON NANOTUBE SYNTHESIS 

 

A.1 Recipe for suspended CNT bridges 

1. Check that the gas cylinders have plenty of gas (the pressure inside a full cylinder 

is about 2000 psi) 

2. Connect flow channels at the left side of the furnace (be sure to check for gas leak 

with bubble solution) 

3. Open the furnace lid 

4. Put sample into the quartz boat and use the magnetic stir bar to slide the boat into 

the center of the furnace 

5. Mark the correct final position of the quartz boat by drawing a line at the edge of 

the magnetic stir bar 

6. Slide the boat out carefully until the sample rests ~ 1-2” outside the furnace 

7. Start flowing Ar = 0.8 SLM 

8. Check that the water is bubbling to ensure the gas flow 

9. Connect the right end of the glass tube with the exhaust system 

10. Close the furnace lid 

11. Turn on the furnace and set the temperature to 600 °C  
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12. When the furnace reaches 600 °C (~ 5min), turn on H2O=0.1 SLM, leaving the Ar 

on. Slide the boat into the marked position quickly (fast heating to avoid 

aggregation) and treat the sample for 10 min. 

13. Turn off H2O and turn on H2=0.2 SLM, leaving the Ar on. Let H2 flow for 15 min 

for thermal annealing. 

14. Slide the boat carefully out until the sample rests 1-2” outside the furnace 

15. Turn off the flow of H2, leaving the Ar on 

16. Raise the furnace setpoint to 815 °C and wait until the gases are stabilized (~4 

min) 

17. Turn on all the gases, Ar=0.8 SLM, H2=0.2 SLM, CH4=0.8 SLM, and C2H2=0.2 

SCCM. Let the gases to stabilize for 3-4 min. The role of H2 at this step is to re-

activate the catalyst during the growth process. However, since H2 might etch 

CNTs under high temperature, the dose should not exceed H2=0.2 SLM. 

18. Turn off the Ar and wait for at least 2 min. Then slide the boat to the marked 

position to start the growth. 

19. Allow at least 20 min for CNTs to grow 

20. Slide the boat carefully out until the sample rests 1-2” outside the furnace 

21. Turn on Ar= 0.8 SLM and wait for 1 minute 

22. Turn off all other gases. 

23. Decease the temperature of furnace to 0 °C, and prop the lid open with the metal 

block to speed up the cooling process 

24. At 500 °C, we can completely open the furnace lid to further speed up the cooling 

process 
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25. At 100 °C, we can open the right end of the tube and remove the sample 

26. Turn off Ar and disconnect flow channels 

27. Close gas tanks 

28. Check if the tube or the boat is dirty (if it is, disconnect the glass tube with the gas 

tubing. Allow the room air to flow into the tube. Set furnace temperature to 950 

°C, and clean the tube/boat for 15 minutes. If the tube/boat is too dirty to be 

cleaned by air, try 200 SCCM Ar through water bubbler) 

 

A.2 Recipe for upright forest growth 

1. Check that the gas cylinders have plenty of gas (the pressure inside a full cylinder 

is about 2000 psi) 

2. Connect flow channels at the left side of the furnace (be sure to check for gas leak 

with bubble solution) 

3. Open the furnace lid 

4. Put the sample into the quartz boat and use the magnetic stir bar to slide the boat 

into the center of the furnace 

5. Mark the correct final position of the quartz boat by drawing a line at the edge of 

the magnetic stir bar 

6. Slide the boat out carefully until the samples rests ~ 1-2” outside the furnace 

7. Make sure the valve to the vacuum pump is off (on the right side of the setup)  

8. Start flowing Ar=0.8 SLM 

9. Check that the water is bubbling to ensure the gas flow 
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10.  Connect the right end of the glass tube with the exhaust system 

11. Close the furnace lid 

12. Turn on the furnace and set the temperature to 600 °C 

13. Turn on H2O=0.1 SLM, leaving the Ar on. Slide the boat into the marked position 

and treat the sample for 10 min. 

14. Turn off H2O and turn on H2=0.2 SLM, leaving the Ar on. Let H2 flow for 15 min 

for thermal annealing. 

15. Slide the boat carefully out until the sample rests 1-2” outside the furnace 

16. Turn off H2, leaving Ar on 

17. Raise the temperature setpoint of the furnace to 765 °C and wait until the gases 

are stabilized (~4 min)  

18. Turn on all gases (Ar=0.8 SLM, H2=0.2 SLM, CH4=0.8 SLM and C2H2=1.2 

SCCM) and stay for 3-4 min to stabilize 

19. Turn off Ar and wait for at least 2 min. Then slide the boat to the marked position 

20. Allow at least 30 min for CNT-forest growth 

21. Slide the boat carefully out until the sample rests 1-2” outside the furnace 

22. Turn on Ar= 0.8 SLM and wait for 1 minute 

23. Turn off all other gases. 

24. Decrease the furnace temperature to 0 °C and prop the lid open with the metal 

block to speed up the cooling process 

25. At 500 °C, we can completely open the furnace lid to further speed up the cooling 

process 

26. At 100 °C, we can open the right end of the tube and remove the sample 
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27. Turn off Ar and disconnect flow channels 

28. Close gas tanks 

 

A.3 Recipe for hot-filament forest growth 

1. Check if we have plenty of gas, connect the tube properly. Make sure the C2H2 

gauge is below the red line. 

2. Put the sample on the boat and insert it to the appropriate position in the chamber 

(about 1 inch away from the filament), then mark the position of the tube. Slide 

the boat out the sample rests 5~10’’ outside the furnace. 

3. Purge the system with 0.2 SLM Ar for 5 min. Turn off Ar and pump the system 

down to 7~8 millitorrs.  

4. Turn on H2 = 0.2 SLM. 

5. Turn on the hot filament. Gradually increase the voltage and current until the 

filament shines brightly.  

6. Turn on C2H2 = 2.7 sccm. The filament will now become a little dimmer. Try to 

increase both current and voltage a little bit. 

7. Turn on CH4 = 80 sccm. Wait for 5 min until the gases mix well. 

8. Turn on the furnace and heat the chamber to 650 °C. 

9.  Slide the boat into the chamber and let CNTs grow for 20 min. 

10. Slide the boat carefully out until the sample rests 1-2” outside the furnace.  

11. Turn off the hot filament. The voltage and current should be zeroed before turn 

off the power. 



91 

 

12. Turn off all the gases.  

13. Turn off the furnace and cool down the system. 

14. Turn off the power of pumping machine before loose the speedivalve. (The 

pumping machine would be broken if the pressure of the system goes beyond 10 

Torr. So under any circumstances, it’s best to make sure the pressure is below 8 

Torr.) Turn off the pressure gauge. 
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Appendix B  

 

Photolithography fabrication 

 

The CNT devices contain four layers of fabrication. Most fabrications were performed at 

Cornell Nanoscale Science & Technology Facility (CNF). Please follow the recipe layer 

by layer, step by step. This recipe is also able to provide devices for graphene. 

 

B.1 Preparations of the wafers and masks 

Start with a clean 4-inch wafer. This recipe has been developed for silicon wafers 

with a 200–1000 nm oxide or for 170–500 μm-thick fused silica wafers. With Si/SiO2 

wafers (from Nova Electronics), it is useful to check the thickness of the oxide layer 

using the Leitz MVSP Spectrophotometer before beginning any processing. With fused 

silica wafers (from Mark Optics), there is no film to measure (and one cannot use an 

interferometer anyway), but since both sides of the wafer look transparent and highly 

identical, it is useful to make a small scratch on one side to keep track of which side is 

up. 

To create masks for each photolithography step, the steps listed below should be 

followed. Extra cautions have to be taken since all the mistakes made at this level will 

reflect to the fabrication products. Patterning errors should be avoided and the masks 

should be kept as clean as possible when not in use: 
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1. Design masks using L-Edit. Refer to the 5x Stepper manual on the CNF website 

for size limitations and instructions on alignment marks. Differentiate different 

fabrication layers with different colors. 

2. Expose patterns on a new 5-inch photomask (glass coated with a thin layer of 

chrome and photoresist) in the GCA/MANN 3600F Optical Pattern Generator 

(also named PG Mask Writer). This instrument is almost always sufficient to 

write masks intended for 5X or 10X GCA steppers. The mask writing rate is 

roughly 2000 exposures/hour. Check the flash points before writing the mask. For 

tasks with sophisticated patterning or large workload (> 4000 flash points, usually 

happens for the mask intended for the contact aligner), please refer to the 

Heidelberg DWL66 Laser writer. 

3. After the exposure, put the mask in the Hamatech Mask Plate Processor to 

develop (Program 2) and etch (Program 1) the mask. Strip remaining resist in the 

hot strip baths in the resist room for 10 min per bath (2 strip baths and 1 rinse 

bath). Then run through the spin rinse dryer. 

 

B.2 Trench and GCA key: 

GCA keys are the marks for the alignment of the following layers. Thus they must 

be added in the first lithographic step so that subsequent layers can be aligned to this first 

layer. To make suspended nanotubes, the trenches can be etched at this step as well. 

Besides, for Si/SiO2 wafers, it is also convenient to etch holes through the SiO2 layer to 
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make back-gate pads at this step. The following steps illustrate the fabrication of the first 

layer.  

1. Prime the wafer with P20, wait at least 20s before spinning. Then spin at 4000 

rpm, 1000 acceleration, for 30s. The P20 primer makes the wafer hydrophobic so 

that the photoresist can easily stick on it. 

2. Spin coat a photoresist layer above the primer. Use SPR 220 – 3.0 resist and spin 

at 2000 rpm, 1000 acceleration, for 30s. 

3.  Soft-bake the wafer at 115 C for 90s. Then cool it on the heat sink. 

4. Expose the wafer using autostepper, the exposure time is ~0.35s, focus is 0. 

5. Post-bake the wafer at 115 C for 90s. 

6. Develop the wafer in MIF300 for 90s, rinse with DI water, and blow dry with 

compressed N2. For Si/SiO2 wafers, the Hamatech-Steag Wafer Processor can be 

used to automatically develop the wafer. 

7. Check the patterns under microscope. Make sure the trench and GCA key are well 

defined. Incomplete exposures will result in trenches with insufficient width 

during RIE etching.   

8. Check the thickness of the resist using P10 profilometer. 

9. Use Oxford 81 with the recipe CHF3/O2 to etch the trench on fused silica wafers. 

Before etching, make sure to do the oxygen clean using the default recipe. For 

Si/SiO2 wafers, etch through the oxide layer with the recipe CHF3/O2, and then 

etch into the Si substrate for 5 min with CH4 or SF6 plasma. 

10. Clean the chamber with oxygen plasma every one hour. During this time, take out 

the wafer and use P10 to check the thickness of the remaining resist, as well as the 
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depth of arrow regions. Then estimate the etching ratio. Make sure there is 

enough photoresist remaining before each etching cycle. Over etching the wafer 

will lead to the formation of complex polymers that do not dissolve or react with 

any known acid/base/organic solvent in the clean room. 

11. Keep etching until the remaining resist is less than 1 um thick, which happens 

normally after 2 – 2.5 hours of etching. Clean the residues with oxygen plasma. 

12. Check the patterns under microscope. 

 

B.3 Electrode 

Metal electrodes are patterned on the surface to make contact with both ends of 

the CNTs and, on Si/SiO2 substrates, to make contact with the Si back gate. If the CNTs 

are grown over trenches, electrodes must be defined before growth, or the CNTs will no 

longer be suspended; otherwise, the electrodes may be deposited after growth. If 

electrodes are deposited before growing nanotubes, the electrode metal must be platinum 

to survive the CNT growth temperature. 

1. Dehydrate the wafer at 180 C for at least 5 min. 

2. Prime the wafer with P20, wait at least 20s before spinning. Then spin at 4000 

rpm, 1000 acceleration, for 30s. 

3. Spin coat a LOR resist layer above the primer. Use LOR 5A and spin at 4000 

rpm, 1000 acceleration, for 30s. The LOR resist is an ultra-thin resist that helps to 

make a better undercutting during the exposure, and hence make it easier for the 
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lift-off process. Compared to the image reversal method, LOR resist is more 

reliable and efficient. 

4. Bake the wafer at 180 C for 5 – 10 min. 

5. Spin coat a photoresist layer above LOR. Use SPR 700 – 1.2 resists and spin at 

4000 rpm, 1000 acceleration, for 30s. 

6. Soft-bake the wafer at 115 C for 60s. Then cool it on the heat sink. 

7. Expose the wafer using autostepper, the exposure time is 0.27s, focus is 0. 

Remember to change the Y offset from -3.000 to -2.999. The LOR resist does not 

require additional exposure dose.  

8. Post-bake the wafer at 115 C for 60s. 

9. Develop the wafer in MIF300 for 90s. Then blow it dry. 

10. Check the patterns under microscope. Make sure the trench is sitting between the 

electrodes. 

11.  (Optional) Use Oxford 81 to descum the wafer for 30s by oxygen plasma. 

12. Use the odd hour evaporator to deposit 5 nm Ti followed by 40 nm Pt. The 

evaporation speed should be maintained between ~ 0.7 A/s and 2 A/s to obtain 

high quality electrodes. 

13. Lift-off the photoresist and unnecessary metal in acetone for 1 – 4 hours. 

14. Lift-off the residues and LOR resist in 1165 for 1 – 4 hours (overnight soaking is 

preferred). 

15. Rinse the wafer with DI water and blow it dry.  
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B.4 Catalyst 

Catalysts are patterned on top of the electrodes to grow CNTs. Although this layer 

can be finished by regular photoresist only, it’s recommended to use LOR resist for better 

patterning. To use LOR resist, please refer to steps 1-4 on B.3 of Appendix B. 

1. Prime the wafer with P20, wait at least 20s before spinning. Then spin at 4000 

rpm, 1000 acceleration, for 30s 

2. Spin coat a photoresist layer above the primer. Use SPR 700 – 1.2 resist and spin 

at 4000 rpm, 1000 acceleration, for 30s 

3. Soft-bake the wafer at 115 C for 60s. Then cool it on the heat sink. 

4. Expose the wafer using autostepper, the exposure time is 0.27s, focus is 0. Keep 

the Y offset at -2.999. 

5. Post-bake the wafer at 115 C for 60s. 

6. Develop the wafer in MIF300 for 90s. Then blow it dry. 

7. Check the patterns under microscope. Make sure the catalyst pads aligned well on 

electrodes and do not cross into the trench. 

8.  (Optional) Use Oxford 81 to descum the wafer for 30s by oxygen plasma. 

9. Use the even hour evaporator to deposit 10 nm Al2O3 followed by 3 A Fe. The 

evaporation speed of Fe should be ~ 0.3 A/s. The film thickness of Fe should be 

as accurate as possible to ensure the growth of single-walled CNTs. 

10. Lift-off the photoresist and unnecessary residues in 1165 for 4 – 8 hours 

(overnight soaking is preferred). 

11. Rinse the wafer with DI water and blow it dry.  
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B.5 Insulation layer 

This layer is optional. The insulation layer is used to cover most of electrode bars and 

protect them from circuit short in the aqueous solution with electrolyte. 

1. Dehydrate the wafer at 180 C for at least 5 min. 

2. Prime the wafer with P20, wait at least 20s before spinning. Then spin at 4000 

rpm, 1000 acceleration, for 30s. 

3. Spin coat a LOR resist layer above the primer. Use LOR 5A and spin at 4000 

rpm, 1000 acceleration, for 30s. 

4. Bake the wafer at 180 C for 5 – 10 min. 

5. Spin coat a photoresist layer above LOR. Use SPR 700 – 1.2 and spin at 4000 

rpm, 1000 acceleration, for 30s. 

6. Softbake the wafer at 115 C for 60s. Then cool it on the heat sink. 

7. Expose the wafer using autostepper, the exposure time is 0.27s, focus is 0. Keep 

the Y offset at -2.999 

8. Postbake the wafer at 115 C for 60s. 

9. Develop the wafer in MIF300 for 90s. Then blow it dry. 

10. Check the patterns under microscope. Make sure all electrode bars are covered by 

the patterns. 

11.  (Optional) Use Oxford 81 to descum the wafer for 30s by oxygen plasma. 

12. Use the even hour evaporator to deposit 30 nm Al2O3. 

13. Lift-off the residues and LOR resist in 1165 for 4 – 8 hours. (Overnight soaking is 

preferred) 

14. Rinse the wafer with DI water and blow it dry. 
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B.6 Dice the wafers 

Since fused silica wafers have no crystal axes, it is necessary to dice them using 

the K&S 7100 Dicing Saw. It is also good to dice Si/SiO2 wafers to avoid the device 

damage during manual clipping. Using the dicing saw is much messier than dicing by 

hand, this tool much be well practiced with dummy wafers.  

1. Fused silica wafers can only be cut with the all-purpose blade. Si/SiO2 wafers can 

be diced with any saws. Schedule accordingly before using the dicing saw. 

2. Before dicing the wafer, spin a photoresist coating to protect the features made 

already.  

3. Use UV tapes to hold fused silica wafers with the dicing frame. Use regular blue 

tapes to hold Si/SiO2 wafers.  

4. Fused silica wafers can only be cut with the all-purpose blade. Schedule 

accordingly before using the dicing saw. 

5. Load the dicing frame into the tool. Enter the desired parameters of wafer 

thickness (170 µm for fused silica wafers, 500 µm for Si/SiO2 wafers), cutting 

depth, cutting schemes for 0/90 degree. 

6. Align the blade for each cutting angle and starting dicing. 

7. Expose the wafers under UV lamp for 10 min to remove the UV tape. Si/SiO2 

chips can be directly stripped away from the blue tape. 

8. Clean each chip in 1165 for 10 min and rinse with DI water. 
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Appendix C 

 

GRAPHENE SYNTHESIS AND PREPARATION 

 

C.1 Recipe for Graphene growth 

1. Prepare Cu foils for graphene CVD growth. Cut the Cu foil into the desired size, 

and flatten the foil if necessary. 

2. Treat the Cu foil with acetone for at least 10 min, followed by 10 seconds of IPA 

and 10 seconds of H2O. Then blow the foil dry gently with the nitrogen gun. In 

order to grow high quality graphene, the Cu foil may need to be as clean as 

possible. For this case, an extra cleaning step by sonication may be added after 

soaking in acetone. Noted that although the sonication may improve graphene 

quality, it also makes numerous wrinkles in Cu foil, which may limit the grain 

size of graphene. 

3. Wipe down the quartz boat with acetone, and place the Cu foil into the quartz 

tube. Carefully load the boat into the tube, and use the magnetic stir bar to transfer 

the Cu foil to the center of the tube 

4. Connect the left end of the tube with the flow line, right end with the pump and 

vacuum flange using clamps. 

5. Turn on the pump, wait 1 minute. Turn on the pressure gauge. 

6. Slowly open the speedivalve to pump down the system. Purge the gas lines with 

argon, methane, and hydrogen respectively.  
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7. Wait until the pressure gets below 10 millitorr. 

8. If the desired level of vacuum can’t be achieved, use ethanol to check seals; the 

leak will lead to an obvious pressure change. 

9. Before starting the growth, record the base pressure and humidity. Flow Ar (100 

SCCM). The current pressure should be ~3.4 * 10-1 Torr. 

10. Start to flow 10 SCCM of H2. 

11. Set the furnace temperature to 900 °C and annealing the sample for 1 hour.  

12. After annealing, raise the temperature to 950 °C. Once the desired temperature is 

reached, turn off Ar and change the flow of H2 to 100 SCCM. Meanwhile, start to 

flow 20 SCCM of CH4. Adjusting the parameters at this step could result in 

graphene growth with different layer numbers as needed. Usually, with the 

present furnace system, 20 sccm CH4 : 100 sccm H2 at 950 °C could produce high 

quality single layer graphene; 20 sccm CH4 : 100 sccm H2 at 900 °C could 

produce high quality double layer graphene; 50 sccm CH4 : 15 sccm H2 at 900 °C 

could produce multi-layer graphene. 

13. After 30 minutes of growth, set the temperature to zero and move the quartz boat 

out of the hot zone for fast cooling. Turn off H2 and CH4. Leave Ar flow to purge 

the system. 

14. Restart the heater to monitor the temperature. Prop the furnace open with the 

metal disk. 

15. When the temperature reaches 450° C, open the furnace completely. 

16. Wait until the system is completely cooled down.  
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17. Disconnect the clamp on the right side. Slowly close the speed valve and turn off 

the pump. Wait until the system is fully re-pressurized by Ar. 

18. Open the system and take out the boat carefully using magnetic stir bar.  

19. Close all cylinders and valves, and turn off the temperature controller. 

 

C.2 Recipe for Graphene transfer 

1. Cut the graphene/Cu foil into the desired size. Flatten the graphene/Cu film and 

spin coat a PMMA layer at the speed of 4000 rpm for 45 s. 

2. Treat the back side of graphene/Cu film by O2 Plasma (optional). Use one piece 

of PDMS to cover the sides of the sample with PMMA. Turn on the vacuum for 

about a minute, then open 1/8 turn of the vacuum to let the oxygen in. Turn on the 

plasma and treat the sample for 5 s.  

3. Put the PMMA/graphene/Cu film into copper etchant bath for 24 hours.  

4. Transfer the PMMA/graphene film (should look clean and completely transparent) 

into 10% HCL bath for 2 hours to eliminate stubborn residues (optional).  

5. Use 3 water baths to clean the PMMA/graphene films.  

6. Transferring the graphene onto the desired substrate, leave them dry in air. An 

additional soft baking on hot plate at 120 °C for 30 min could help to enhance the 

adhesion between graphene and the substrate. 

7. Remove PMMA by either wet baths (acetone/IPA) or thermal annealing beyond 

440 °C. 

All the water used in this recipe is DI water. 
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Appendix D 

 

CALCULATIONS RELATED WITH CGR DEVICES 

 

D.1 Calculation for the mobility: 

The gate capacitance of graphene devices obeys a linear fit drawn from the equation 

below, 114  

𝑪𝒈 =
𝑛(𝑉𝑔)𝑒

𝑉𝑔−𝑉𝐷𝑖𝑟𝑎𝑐
                                                 (8) 

Thus we obtain 

𝒏(𝑽𝒈) =
𝐶𝑔(𝑉𝑔−𝑉𝐷𝑖𝑟𝑎𝑐)

𝑒
                                                (9) 

We could determine the mobility by 

𝝁 =
1

𝑛𝑒𝜌𝑥𝑥
=

1

𝐶𝑔(𝑉𝑔−𝑉𝐷𝑖𝑟𝑎𝑐)𝜌𝑥𝑥
                                           (10) 

where 𝜌𝑥𝑥 is the sheet resistivity of the device, which could be calculated as  

𝝆𝒙𝒙 = 𝑅𝑥𝑥(𝑊
𝐿⁄ )                                                 (11) 

Noticing that the capacitance could be calculated based on the ionic layers 

𝑪 =
2𝜖0𝜅

𝑑
                                                           (12) 

where d is the thickness of the ionic layer. For 0.01X PBS, d is around 7.746 nm. 

In the calculation, the permittivity of water was used, 𝜅 = 79, W/L was estimated as  

500 nm/7 µm = 1/14. At Vg = 2 V, Rxx = 7000 Ω. 

As a result, the approximate value for the mobility is 450 cm2 V-1 s-1. 
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D.2 Calculation for Seebeck coefficient (conventional method): 

𝑺 =
𝜋2𝑘𝑏

2𝑇

−3𝑒

1

𝐺

𝑑𝐺

𝑑𝑉𝑔

𝑑𝑉𝑔

𝑑𝐸
|𝐸=𝐸𝐹

                                      (13) 

We can derive from equation (8) that 

𝐝𝐕𝐠 =  
e

Cg
dn                                                    (14) 

Thus we obtain 

 𝑺 =
𝜋2𝑘𝑏

2𝑇

−3Cg

𝑑(𝑙𝑛𝐺)

𝑑𝑉𝑔

𝑑𝑛

𝑑𝐸
|𝐸=𝐸𝐹

                                          (15) 

 

For single layer graphene 

EF = ℏvF√πn                                                   (16) 

For double layer graphene 

EF =
1

2
√(2ℏvF)2πn + 2γ1

2 − 2γ1√(2ℏvF)2πn + γ1
2                 (17) 

where 

 ℏ = 6.582 × 10−16eV ∙ s, vF = 1 × 106m ∙ s−1, n = 4.464 × 1016m−2, γ1 = 0.39 eV 

The calculations show that 

For single layer graphene, 
𝑑𝑛

𝑑𝐸
|𝐸=𝐸𝐹

=  3.623 × 1017eV−1 ∙ m−2 

For double layer graphene, 
𝑑𝑛

𝑑𝐸
|𝐸=𝐸𝐹

=  3.92 eV−1 ∙ m−2 

Based on these calculation results, the maximum of the Seebeck coefficient 

difference is around 5 µV/K. But considering that we can not exactly separate the gating 

curve of single layer graphene from that of double layer graphene, the Seebeck 

coefficient drawn by this method may not be accurate. 
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D3. Alternative method to estimate the Seebeck coefficient: 

From equation (7), we could obtain the maximum of the Seebeck coefficient difference 

as: 

|𝑺𝟏 − 𝑺𝟐| =
𝜋2𝑘𝑏

2𝑇

3𝑒
∙

1

Δ
                                                 (18) 

At T = 400 K and using an estimate for the charge neutrality width Δ = 33mV 

(This value was obtained by directly reading from the raw file of the conductance 

measurement. The width was estimated by reading the gating range where all the values 

stay within 5% variance compare with the minimum point), we are able to obtain a value 

of 125 µV/K. 
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