To my Mother, who always encouraged me to do my best.

To my Father, who inspires me to pursue all my goals.

And to my Brother, who is my best friend.

ACKNOWLEDGEMENTS

I would like to thank my mentors, Dr. Timothy L. Cover and Dr. Andrzej M. Krezel for giving me the opportunity to work in their labs. Working with knowledgeable and exceptionally kind teachers like you has been one of the best experiences of my academic career, and a privilege. And while I am still mastering my transition from "Dr. Cover and Dr. Krezel" to "Tim and Andrzej", I can say with utmost certainty that I have the greatest lab parents in the whole world.

Tim, I joined your laboratory just a few days after meeting you, but from our first conversation on, you made me feel comfortable and secure about my future in your lab. I will always be grateful to you for taking a chance on me and giving me the opportunity to work with you. From the very beginning you have been very involved in my academic training, from teaching me to think critically to cultivating my scientific writing skills. Thank you for your constant support, your cheerful demeanor, and your endless patience—I know I have tested it in the past few weeks! You are one of the kindest people I have had the honor of knowing and I will always appreciate having an approachable and caring mentor to look up to in you.

Andrzej, it has been my honor to be a part of your lab and to have you as my mentor. Your congenial disposition and positive attitude make working with you a pleasure. You are always there for me when I have any questions and I feel fortunate to have a mentor as knowledgeable and helpful as you. I admire and strive to emulate your drive to keep up with current knowledge in scientific fields and your proficiency in a range of laboratory techniques. Throughout my training, you have always been available for conversations on matters in science to matters in politics. I have enjoyed every moment of being a part of your lab, and learned so much from you. Dziękuję za wszystko.

I am very grateful to the members of my Dissertation Committee (Dr. Erik Skaar, Dr. Earl Ruley, and Dr. Gerald Stubbs). Thank you for furthering my graduate education with your

suggestions and critiques. You always pushed me to analyze my data critically and design experiments while maintaining perspective of the big picture. You were generous in giving commendations and always encouraging me in my scientific endeavors. Thank you for providing me with a supportive and an amiable environment to develop my scientific skills. I would especially like to thank the Chair of my Committee, Dr. Skaar, who was always approachable and who guided my research with my best interests in mind.

In the Cover lab, I was surrounded by a very friendly and supportive group of peers. I want to thank John Loh for all our conversations regarding research and Nashville eateries. John, thank you for sharing your expertise with me and helping me with my experiments. I would also like to thank Susan Ivie, my fellow graduate student in the lab who shares with me a passion for walking and who indulged my eccentricities on our various scientific travels. I would also like to thank Mark McClain for his help with designing experimental protocols. Thank you Mark, Holly, and Victor for listening to my practice talks countless times and for all your suggestions, which have improved my scientific presentation skills. I would also like to thank Beverly, Ping, Valerie, Johnna, Christian, Carrie, Jana, and Feng for the opportunity to work with them and engage in scientific discussions.

In the Krezel lab, I had the opportunity to work with Brendan Borin. Brendan was like an older brother to me. Sharing similar political views, we bonded early, and even though we had our bouts of 'sibling altercations', I have always admired his dedication to science. Brendan, thank you for showing me the ropes around the Krezel lab, and for constantly encouraging me to work hard.

In addition to members of the lab, I had the help of colleagues from other labs as well. Thank you Don Stec, Markus Voehler, and Young-Tae Lee for all your help with my NMR experiments and data analyses. I would also like to thank Dr. Hassane Mchaourab and Derek Claxton in the Mchaourab lab for their help with my EPR experiments.

I want to thank the Department of Microbiology and Immunology for providing my academic training and for helping me develop skills in scientific thinking, public speaking, and leadership. Thank you Dr. Jacek Hawiger for your encouraging comments over the past four years. I would like to thank Jean Tidwell, Donna Marcell, Pat Gannon, Roz Johnson and Helen Chomicki for making various procedures of my graduate training painless experiences.

I would like to thank the Vanderbilt Medical Scientist Training Program (MSTP) for their endless support and guidance. A special thank you to Dr. Terry Dermody, Dr. Michelle Grundy and Dr. Jim Bills for your advice during my graduate training. I would also like to thank my many professors throughout the course of my undergraduate and graduate training who fostered my interest in science. I would also like to acknowledge Mr. Mickey Butler, my biology teacher at Independence High School who helped me recognize my desire to participate in scientific research.

In addition to my scientific colleagues, I have been fortunate to have the love and support of an amazing group of friends. My MSTP colleagues—Ana, Kel Vin, Chris, Daniel, Jennifer, Leslie, Walter, Kelly and Angela—have been a constant source of support and encouragement. Ana and Kel Vin, your friendship and support mean more to me than I can ever express in words. I will always look up to you both for your kind hearts and sincere desire to help others. I would also like to thank Jai, Dan, Ayan, Abbas, Padma, Vivian, Usha, Milica, Deepa, Tahira, Jim, Nabiha, Ana, Gaurav, Christine, Christa, Davin, Doel, Michelle, Susan, Leanne, Rohan and Sonal for their dear friendship. Each and every one of you has encouraged me and helped me be where I am today, and I will always consider myself very lucky to have you in my life. Jai, Padma, Vivian, Deepa, Tahira, and Nabiha—thank you for your kind and motivating words that gave me the strength to pursue my goals. Dan, thank you for your patience and encouragement over the past year.

I would like to thank my family whose love and support drives me to work hard and follow my dreams. My parents have always been a constant source of love and encouragement and I owe everything to them. They have always been role models for me, molding my principles and teaching me to appreciate all the good things in my life. My mother always encouraged my academic and extra-curricular interests and always pushed me to do my best. I will always be grateful to her for encouraging me to pursue my dreams with dedication, and to always do the right thing. My father has always motivated me to overcome any obstacles while pursuing my goals. He has excelled at all the tasks that he assumes and his inexhaustible pursuit of higher learning is inspiring. Mummy and Papa, Thank you, and I love you both very much. My grandparents, and Mama and Masi have played an important role in shaping who I am today. Nana and Mama, thank you for all your love and encouragement. Nana, you are my favorite poet. Nani and Masi, thank you for staying up late into the nights with me during finals. You have trained me to pull all-nighters effortlessly. Finally, I would like to thank my brother for always being there for me. He is my most reliable friend, and the best brother that any sister could have. Sameer, I am so happy for all your success, and proud to be your sister. I love you, poopyhead.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xii
CHAPTERS	
I. INTRODUCTION	1
Helicobacter pylori infection in humans	1
H. pylori and its ability to colonize the human stomach	2
Two component systems	5
H. pylori and two component systems	9
ArsRS two component system	11
ArsRS regulon	12
Research significance and specific aims	14
Aim 1: Characterize the biochemical features of ArsR	14
Aim 2: Determine the structure of ArsR	15
Aim 3: Characterize the ArsR regulon	15
II. EXPRESSION OF HELICOBACTER PYLORI RESPONSE REGULATORS AND BIOCHEMICAL CHARACTERIZATION OF ARSR AND ITS DNA-BINDING	1.6
DOMAIN, ARSR-DBD	
Introduction	
Methods	
Results	
Expression of H. pylori response regulators in E. coli	23
The structure of isolated ArsR-DBD is similar to that of the domain in full-length ArsR	22
Purified ArsR is not phosphorylated	
ArsR and ArsR-DBD behave as monomers in solution	
Discussion	
Discussion	33
III. STRUCTURAL ANALYSIS OF ARSR-DBD	
Introduction	
Methods	
Results	
ArsR-DBD structural determination	
Structural comparison of ArsR-DRD with related structures	49

Comparison of ArsR with closely related orthologs	53
Discussion	55
IV. CHARACTERIZATION OF THE ARSRS REGULON	62
Introduction	62
Methods	69
Results	73
Binding of full length ArsR protein to promoter regions of specific genes	
previously reported to be members of the ArsRS regulon	73
Binding of ArsR-DBD to promoter regions of specific genes previously reported	
to be members of the ArsRS regulon	75
ArsR-DBD binding to promoter regions of specific genes identifies novel	
members of the ArsRS regulon	75
Discussion	81
V. CONCLUSIONS AND FUTURE DIRECTIONS	85
Conclusions	85
Future directions	90
How does phosphorylation alter the DNA-binding activity of ArsR	98
APPENDICES	
A. LIST OF PUBLICATIONS	104
B. NUCLEOTIDE AND AMINOACID SEQUENCES OF SELECTED RESPONSE	
REGULATORS AND CORRESPONSING DNA-BINDING DOMAINS	105
RIBLIOGRAPHY	116

LIST OF TABLES

Table		Page
I-1.	Open reading frames in the <i>H. pylori</i> genome encoding putative TCS proteins	
	that are most likely involved in transcriptional regulation	10
II-1.	Response regulators of <i>H. pylori</i> overexpressed in <i>E. coli</i> as His ₆ -tagged	
	recombinant proteins	19
II-2.	Oligonucleotide primers used to amplify RR genes of interest from H. pylori	
	strain J99	20
III-1.	Structural statistics of the final ensemble of 20 energy minimized structures of	
	ArsR-DBD	43
IV-1.	Comparison of protein expression patterns in WT H. pylori stain J99 and an	
	isogenic arsS mutant strain	67
IV-2.	Oligonucleotide primers used for the generation of promoter fragments of genes	
	of interest from <i>H. pylori</i> strain J99 for EMSA assays	70

LIST OF FIGURES

Figure	e	Page
I-1.	H. pylori and gastric acidity	4
I-2.	Two component signal transduction system	6
I-3.	Structure of DrrD, an example of an RR	8
II-1.	Overexpression of full length RRs from H. pylori	24
II-1.	Overexpression of DNA-binding domains of RRs from <i>H. pylori</i>	25
II-3.	One-dimensional ¹ H NMR spectra of ArsR showing amide and aliphatic peaks	26
II-4.	One-dimensional ¹ H NMR spectra of ArsR-DBD showing amide and aliphatic peaks	27
II-5.	Two-dimensional ¹ H- ¹⁵ N NMR spectra of ArsR and ArsR-DBD	28
II-6.	One-dimensional ³¹ P NMR spectra of inorganic phosphate and ArsR	30
II-7.	Size exclusion chromatography of ArsR and ArsR-DBD	32
III-1.	Two-dimensional ¹ H- ¹⁵ N NMR spectrum of ArsR-DBD	42
III-2.	Ensemble of 20 structures of ArsR-DBD	44
III-3.	Ramachandran plot for the residues belonging to the 20 structures of the	
	ArsR-DBD	45
III-4.	Structure of ArsR-DBD	46
III-5.	Electrostatic surface potential maps of ArsR-DBD	48
III-6.	Sequence comparison of ArsR-DBD with related proteins	50
III-7.	Conserved core hydrophobic residues of ArsR-DBD and related proteins	51
III-8.	Structural comparison of the DBDs of ArsR and PhoB	52
III-9.	Conserved surface-exposed residues in the wHTH of ArsR-DBD and related	
	proteins	54

III-10.	Analysis of HSQC spectra of ArsR-DBD alone and ArsR-DBD combined with	
	a 13 bp dsDNA fragment derived from the promoter region of an ArsR target	
	gene (hp1408)	57
III-11.	Modeling of the ArsR-DBD-DNA interaction: tandem binding to a direct-repeat	
	DNA sequence	58
III-12.	Modeling of the ArsR-DBD-DNA interaction: symmetric binding to an	
	inverted-repeat DNA sequence	59
IV-1.	2D-DIGE analysis of WT and arsS mutant H. pylori J99 strains	64
IV-2.	Principal component analysis of protein expression patterns in WT and arsS	
	mutant H. pylori J99 strains grown at pH 5.0 and 7.0	66
IV-3.	Binding of ArsR to control DNA promoter probes	74
IV-4.	Binding of ArsR-DBD to control DNA promoter probes in a concentration	
	dependent manner	76
IV-5.	Binding of ArsR-DBD to control DNA promoter probes	77
IV-6.	Binding of ArsR-DBD to DNA promoter probes corresponding to differentially	
	expressed proteins	78
IV-7.	Specificity in the binding of ArsR-DBD to target DNA sequences	79
V-1.	Experimental design to generate an <i>H. pylori</i> strain J99 mutant expressing	
	ArsR-DBD alone	95
V-2.	EPR based approach to study protein-protein interactions	100
V-3.	EPR analysis of ArsR	101
V-4.	Analysis of protein-protein interactions by EPR: a putative model of the	
	ArsR-DBD-DNA interaction	103

LIST OF ABBREVIATIONS

arsR Acid responsive signaling (Response) Regulator (gene)

ArsR Acid responsive signaling (Response) Regulator (protein)

arsS Acid responsive signaling Sensor (gene)

ArsS Acid responsive signaling Sensor (protein)

BeF₃ Beryllium fluoride

B-PER Bacterial protein extraction reagent

DBD DNA-binding domain

DIGE Difference gel electrophoresis

EMSA Electrophoretic mobility shift assay

EPR Electron paramagnetic resonance

HK Histidine kinase

HSQC Heteronuclear single quantum coherence

IPTG Isopropyl-β-thiogalactopyranoside

kDa Kilodaltons

MALT Mucosa-associated lymphoid tissue

MWCO Molecular weight cut-off

NMR Nuclear magnetic resonance

NOESY Nuclear Overhauser Enhancement Spectroscopy

NTD N-terminal domain

ORF Open reading frame

PCA Principal component analysis

PCR Polymerase chain reaction

PDB Protein data bank

PMSF Phenylmethylsulfonylfluoride

R. M. S. D. Root mean square deviation

Reagent (I) (1-oxy-2,2,5,5-tetramethylpyrrolinyl-3-methyl)methanethiosulfonate

RR Response regulator

SDSL Site directed spin labeling

SDS-PAGE Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis

SNR Signal to noise ratio

TCEP Tris(2-carboxyethyl)phosphine

TCS Two component system

wHTH Winged helix-turn-helix