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SUMMARY

Breast cancer is the most common cancer in women and the second highest cause of cancer related

deaths among women in the United States. A woman has a 1-in-8 lifetime risk of developing breast

cancer and a 1-in-35 lifetime risk of dying from the disease [14]. Most breast cancers are treated by

some form of surgical intervention. Mastectomies remove the entire breast and were the gold standard

for breast cancer surgery for almost 100 years. Eventually, surgeons began to gradually remove less and

less breast tissue while achieving the same survival rates. Today, many women are eligible for breast

conservation therapy, which is meant to preserve breast shape and structure by removing only the tu-

mor and a small margin of surrounding non-cancerous tissue (known as a lumpectomy). An immense

amount of evidence shows that there is no difference in overall survival rates between lumpectomy and

the much more radical option of mastectomy, provided that complete tumor removal is achieved. A

successful lumpectomy, therefore, includes negative margins (meaning that there are no cancer cells at

the edges of the excised tissue) and an acceptable cosmetic outcome. Unfortunately, women eligible

for breast conservation therapy may elect for a mastectomy due to surgical uncertainties. This is well

founded considering a majority of studies report that positive margins occur in 16.5-40% [15, 16] of pa-

tients undergoing lumpectomy, resulting in an unacceptable rate of second surgeries and mastectomies.

Surgical difficulties arise due to the inability to visualize the tumor in the operating room. Images of

the tumor taken before surgery are acquired with the patient lying prone or standing up, while surgery

is performed with the patient lying on her back. There can be drastic shape and location changes of the

tumor between these two anatomical positions. A recent study published in the New England Journal of

Medicine captures this backdrop well referring to breast cancer re-excision rates as “The Other Breast

Cancer Epidemic”[17]. Reoperations cause patient pain, depression, anxiety, poor cosmetic outcomes,

and an overall decrease in quality of life. Furthermore, reoperations are estimated to cost $53.7 mil-

lion a year in surgical costs alone (Appendix A). This does not include hospital operational costs or

outpatient costs.

This thesis addresses the need for improved surgical tools to localize tumors intraoperatively with

the ultimate goal of reducing the number of reoperations associated with lumpectomy surgeries. The

localization approach developed herein utilizes volumetric images of the breast taken prior to surgery

and digitization technology to map patient images to the surgical space. Patient-specific tissue prop-
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erties and biomechanical models are incorporated to correct the deformation that occurs between the

breast geometry acquired by preoperative imaging and the breast geometry observed in the surgical

setup. Once the preoperative images are corrected and co-registered to the patient in the operating

room, surgeons can effectively navigate to tumors by using the co-registered preoperative images as

patient-specific maps. The development of this image-guidance system for breast cancer surgery is

detailed within this thesis, with chapters focusing on relevant background material, important research

methods, initial assessment of tools and methods needed for an image guidance system, registration

approaches, validation frameworks, the creation and integration of patient specific models, and a look

into future studies to be performed.
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CHAPTER I

Introduction

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer related deaths

among females worldwide [18]. In the United States, breast cancer is the second most commonly diag-

nosed cancer among women and a leading cause of cancer related deaths, second only to lung cancer

[14]. Approximately 249,260 new cases of invasive breast cancer were diagnosed in the U.S. in the year

2016. In addition, approximately 61,000 new diagnosed cases of in situ breast cancers were estimated

to occur in 2016 [14]. Breast cancer is a complex and heterogeneous disease with multi-modal ap-

proaches for treatment. Initial treatment of primary breast tumors is usually surgical. Surgical options

include mastectomy (total removal of the breast) and breast conservation therapy (BCT). BCT consists

of removal of the tumor with a margin of normal tissue combined with radiation therapy. Mastectomy

was the procedure of choice for newly diagnosed breast cancer patients until the 1980s when studies

revealed that lumpectomy, the far less disfiguring option, was shown to have the same 10 year survival

rate as mastectomy [19]. Since this time, breast conservation therapy (BCT) has become the preferred

treatment choice for women diagnosed with early stage breast cancer. An investigation into costs and

complications of local therapies for early stage breast cancer found that mastectomy followed by breast

reconstruction was associated with twice the risk of complications and higher cost when compared to

BCT [20]. BCT involves a lumpectomy (removal of the cancerous lesion with a small margin of sur-

rounding healthy tissue) coupled with radiation therapy. A lumpectomy is considered successful when

negative margins (no cancer cells on margin of the excised tissue) are obtained along with a favorable

cosmetic result.

Unfortunately, the current re-excision rates due to positive margins average 16.5-40% [15, 16, 21].

The European Union of Breast Cancer Specialists (EUSOMA) endorse a minimum standard of 80%

and a target of 90% success rate of first time surgeries as a quality of care metric [22]. Second and

third operations reported in breast surgery are disproportionately high compared with other general

surgery practices [23]. Reoperations cause a host of problems including emotional and financial stress

on the patient as well as an increase in the public healthcare burden. The cost of re-excisions was

estimated to be $53.7 million per year in surgical costs alone (Appendix A). Other consequences of
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failing to achieve negative margins during the initial surgery include delay of postoperative radiation

treatment and chemotherapy, increase risk for local recurrence, compromises in the cosmetic outcome,

and an overall reduction in the value of BCT over mastectomy plus reconstruction. Thus, reducing

the rate of second and third operations for margin re-excision or full mastectomy has benefits that are

patient-centered and cost-effective.

Avoiding reoperations due to positive margins can be difficult. The challenge in determining sur-

gical margins intraoperatively is that geometric and spatial cues are quickly lost in the surgical presen-

tation. The inability to accurately locate tumor boundaries intraoperatively is a significant contributor

to these high re-excision rates. Several methods have been proposed to improve intraoperative tumor

localization including wire-guided localization [24], intraoperative ultrasound [25], radio guided occult

lesion localization [26], and various seed localization strategies [27–29]. There has also been extensive

work directed at real time identification of residual disease following tumor removal [30–39]. Wire

guide localization, the most common approach for clinically occult lesions, has been criticized in the

last several years due to the inexact nature of the procedure and high rates of positive margins (38-

43%) [21, 40]. While intraoperative ultrasound has shown to improve breast conservation surgeries,

ultrasound has a limited capability of only visualizing 50% of non-palpable tumors [41]. Advances

and shortcomings of tools developed for intraoperative tumor localization and margin assessment is

expanded upon in sections II.3.3 and II.3.2.

Preoperative imaging has limited utility as a surgical guidance tool because images are acquired

in significantly different orientations than the typical patient setup for surgery, resulting in anatomical

shifts that are no longer representative of the intraoperative breast. Preoperative magnetic resonance

imaging (MRI) is performed in the prone position with pendant breasts and mammography is performed

in a standing position with the breast compressed between two plates, while surgery is conducted

in the supine position. While MRI has superior sensitivity and ability to characterize disease extent

when compared with other common breast imaging modalities [42–44], the diagnostic scans are not

particularly useful in the context of surgical planning and guidance. Several studies have measured

and reported significant displacements in breast tumors between the prone and supine positions on

the order of 18-60 mm [45–48]. An example of this challenge is displayed in Figure IV.7, where the

breast undergoes significant shape change between the prone and supine positions causing the tumor to

deform and change location.

4



(a) Prone MR image of breast (b) OR presentation (c) supine MR image of breast

Figure I.1: Demonstration of the challenge of using preoperative images for surgical guidance. (a) and
(c) are axial slices of T1-weighted THRIVE sequence MR images in the prone and supine positions
with red ovals designating the same tumor in the same axial slice. Changes in patient setup cause the
tumor to move, yielding the diagnostic scan in (a) less valuable for locating the tumor in the surgical
setup, shown in (b).

These relatively large displacements render diagnostic images sub-optimal for use in surgical plan-

ning and navigation, which may contribute to studies finding little to no benefit of preoperative MRI

for surgical use. The motivation of this work lies in the need to improve lumpectomy procedures to

decrease reoperation rates. Superior ability to localize tumors and delineate borders intraoperatively

has the potential to decrease the incidence of positive margins. Currently, the under-utilization of MR

data in the operating room (OR) could be remedied by acquiring supine MR images that more closely

represent surgical orientation and registering them to patient space. Therefore, the development of an

image guidance system using supine MRI to guide lumpectomy procedures could address the need for

superior localization strategies. Due to these realizations, preliminary investigations towards the use of

supine MRI for surgical guidance have been forthcoming to remedy the under-utilization of MR data

in the operating room [49–52]. Exploratory frameworks for image guidance systems in breast cancer

surgery [46, 53–55] show qualitative promise towards the use of supine MRI in a surgical guidance

system, however, there have been no descriptions of a comprehensive, patient-specific platform nor a

robust evaluation of such a platform for image guided breast cancer surgery.

I hypothesize that an image guidance system consisting of preoperative supine MR images, digiti-

zation technology, and patient specific biomechanical models can provide an intraoperative localization

tool for breast conserving surgeries. Furthermore, I expect that creating a truly patient-specific image

guidance system by incorporating patient-specific mechanical properties into the nonrigid registration
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procedure can increase the overall accuracy of the system. Towards this end, the specific aims of this

thesis are as follows:

• Perform a survey of measurement techniques for image guided breast surgery, quantify defor-

mation that occurs between preoperative imaging and surgery, and create validation tools for the

image guidance system.

• Integrate image guidance system components for breast cancer surgery and develop a nonrigid

preoperative image correction framework.

• Create a novel framework for the determination of patient-specific mechanical breast tissue prop-

erties to be implemented in the image guided breast surgery system.

Reported in the following chapters is the first description of a comprehensive image guidance plat-

form for breast cancer surgeries that has been tested and evaluated under appropriate clinical conditions.

The future application of this guidance system will provide superior tumor localization in the operat-

ing room, especially for tumors poorly visualized by ultrasound. Ch. II begins with a background of

relevant breast anatomy and a brief introduction to breast cancer diagnosis and treatment is provided.

Next, details of breast conserving surgery and an introduction to image guided surgery is discussed

with a focus on biomechanical breast models and biomechanical properties of breast tissue. In Ch. III,

a comprehensive review of the research methods used throughout the dissertation is provided.

Ch. IV contains studies detailing a survey of data collection techniques for IGBS (Image Guided

Breast Surgery) to evaluate potential components of the final IGBS system. Included in Ch. IV is an

initial integration of the following components for IGBS: optical digitization methods, intraoperative

ultrasound, preoperative magnetic resonance images, and biomechanical models. Work performed in

Ch. IV established and tested the first comprehensive framework of system components involved in

a surgical guidance system for breast cancer surgery, with the following novel components: a) use of

intraoperative ultrasound to measure subsurface registration accuracy in the context of image guided

breast surgery is first reported here, b) the use of a novel biomechanical model based nonrigid registra-

tion to correct preoperative patient specific models and images to better match the surgical presentation

of the breast, and c) this work is the first to incorporate the chest wall as a rigid feature to improve align-

ment. These novel components are presented and validated on human study participants with breast

cancer.
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Ch. V establishes a novel quantitative breast tissue stiffness estimation framework amenable to

clinical workflows associated with interventional/surgical image-guided environments. With this sin-

gle additional scan, we created an ability to develop patient-specific breast geometric models with

appropriate quantitative stiffness estimates for use within novel image guided-breast surgery systems

with no specialized equipment and using standard imaging sequences available on traditional clinical

MR scanners. The first in vivo reproducibility studies of a gravity-based stiffness estimation method

are reported here.

Ch. VI works towards incorporating the breast tissue stiffness estimation framework created in Ch.

V into IGBS systems by introducing optimization procedures into the methodology. Due to inevitable

differences in patient breast size, fibroglandular content, deformation levels, and stiffness values, we

opted to test a variety of optimization methods to determine the most appropriate method to use going

forward in the context of image-guided breast surgery. Ch. VI contains this investigation work involv-

ing the use of various optimization routines to reconstruct the values of patient specific breast tissue

stiffness. This chapter is especially important for making the IGBS system truly patient-specific.

In Ch. VII, work towards the creation of validation frameworks is discussed. These validation

methods include the development of a mock-phantom setup and MR image volumes that represent

preoperative-pseudo-intraoperative datasets. Work on the quantification of breast tissue deformation

between preoperative and intraoperative setups is also discussed. Finally, avenues for future work are

explored and summarized.
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CHAPTER II

Background

In the following sections, relevant clinical background will provide a review on the current manage-

ment of breast disease and the state of surgical treatment. This begins with a short review on the breast

anatomy, highlighting important tissue types and medical terms that will be used throughout the disser-

tation. Next, a general overview of breast diagnosis with more specific detail directed at breast imaging

is discussed. A section on the surgical management of breast cancer will provide a detailed review

on the current limitations in breast conserving surgery including margin assessment and intraopera-

tive tumor targeting techniques. Finally, a background in image guided procedures is provided with

special detail to image-to-physical space registration methods and biomechanical model deformation

correction strategies.

II.1 Relevant Breast Anatomy

The breast is comprised of specialized tissue that produce milk (glandular tissue) as well as fatty tis-

sue (adipose). Connective tissue and ligaments provide support and are responsible for breast shape.

Female breast tissue is sensitive to cyclic hormone levels as well as age. Fluctuations in estrogen and

progesterone concentrations prior to and following menopause result in atrophic changes to glandular

and connective tissue [56]. Therefore, younger women might have denser and less fatty breast tissue

than do older women that have gone through menopause. The breast lies on top of the pectoralis major

and pectoralis minor muscles. In this text, the pectoralis muscles and intercostal muscles are referred

to as the ”chest wall”, which is located beneath the base of the breast. Figure II.1a(right) shows the

chest wall and remaining breast structures.

The lymphatic drainage of the breast is of great clinical importance. About 95% of lymph from

the breast drains towards the axilla [56]. Patients with invasive breast cancer undergo some form of

axillary surgery to assess lymph node involvement. The axilla is a compartment between the arm and

chest wall, close to the underarm. Figure II.1a (left) shows the lymphatics throughout the breast.

There are four quadrants of the breast known as the upper outer, lower outer, upper inner, and lower

inner. Locations of features within the breast are often described using these quadrants as well as radial
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(a) (b)

Figure II.1: (a) Anatomy of the female breast (reprinted with permission from [5]) showing chest wall
area as well as lymphatics, lobules, ducts, and fatty tissue. (b) Breast tissue structures as visualized by
MRI (top) and b-mode ultrasound (bottom).

clock positions. Figure II.2a shows how the breast is broken up into four quadrants as well as the 12,

3, 6, and 9 o’clock positions. Other anatomical descriptions of the breast and its surrounding tissue

include medial, lateral, inferior, and superior. Figure II.2 shows these positions along with a review of

the anatomical planes used to describe the body (Figure II.2b).

Numerous imaging modalities are used to view the anatomical structures in the breast. Each modal-

ity has a unique contrast mechanism for the various breast structures. The main modalities used in this

text are magnetic resonance images and b-mode ultrasound images. Therefore, the ability to identify

certain breast structures in these images is important. Figure II.1b (top) is an axial slice of a healthy

supine breast produced by magnetic resonance imaging and II.1b (bottom) is a b-mode ultrasound im-

age of a healthy breast. The main tissue types of the breast: muscle, adipose, and glandular are depicted

in each modality.

II.2 Breast Cancer Diagnosis

Concern over a possible breast lump and/or a suspicious screening mammogram are the most common

presentations of disease at breast clinics [56]. Breast cancer may be treated differently depending on the

type of tissue from which the cancer originates. Carcinomas, which consist of tumors that originate in
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(a) (b)

Figure II.2: (a) Quadrants and anatomical descriptions of the right breast (image redrawn from [6]), (b)
anatomical planes (image reprinted from [7])

mammary epithelial cells, represent a majority of breast cancers. Cancers that originate in muscle, fat,

or connective tissue are referred to as sarcomas. Carcinomas are classified as non-invasive, commonly

called ductal carcinoma in situ (DCIS), when cancerous cells have not invaded through the walls of

the ducts into the surrounding tissue. The most commonly diagnosed breast cancer is invasive ductal

carcinoma, where cancer cells have invaded through the wall of the duct and infiltrated surrounding

tissue. Invasive lobular carcinomas originate in milk producing glands and are more difficult to detect

than invasive ductal carcinoma 1.

Traditionally, assessment of the breast involves three key components: clinical exam, imaging, and

histology. Histological assessment includes a core needle biopsy and/or fine needle aspiration cytology.

The clinical breast exam involves a palpation inspection of the breast, axilla, and chest wall while also

considering breast symmetry, nipple inversion, and skin changes. Mammography and ultrasound are

recommended for palpable and significant radiological abnormalities. Once a cancer diagnosis has been

1Descriptions of cancer types referenced from www.breastcancer.org
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confirmed, the extent of the disease is next to be determined. Staging of breast cancer looks at tumor

size, lymph node involvement, and the presence of distant metastasis. Multifocality and multicentricity

are common descriptors used to characterize breast cancer. Two or more foci of cancer within the

same breast quadrant are multifocal where two or more foci of cancer in separate breast quadrants are

defined as multicentric. Further histological assessments and imaging may be performed for staging

purposes.

The acquisition methods, strengths, and limitations of each imaging modality used to acquire breast

images are of particular importance in this dissertation. The following section provides more detail on

the common imaging modalities used in breast cancer screening and diagnosis.

Breast Imaging

Mammography, ultrasound, and magnetic resonance imaging (MRI) are the most commonly used imag-

ing modalities in breast cancer screening, diagnosis and staging. Magnetic resonance imaging has been

increasingly used for screening high risk patients, determining tumor extent, identifying contralateral

breast cancers, and assessing the response to neoadjuvant chemotherapy.

Mammography uses low energy x-rays to create shadowgrams of the breast to screen for and di-

agnose breast cancers. Mammographic signals are a result from the different attenuation of x-rays

passing through structures in the breast. A mammogram is performed with the patient in a standing

position with the breast compressed between two plates and can be uncomfortable for the patient. Fig-

ure II.3a shows a typical setup for acquiring a mammographic image and Figure II.3b shows a typical

shadowgram of a breast produced by mammography. The American Cancer Society recommends that

all women undergo mammographic screening for breast cancer starting at age 45 [57]. This screening

exam allows physicians to establish a baseline for further annual screening of the patient breast tissue.

Screening mammograms are usually acquired in two views of the breast. Mammography detects mass

lesions, areas of parenchyma distortion, and microcalcifications that could be indicators of breast dis-

ease. Mammography is generally not performed in patients under the age of 35 because their breasts are

more radiographically dense (less fat, more glandular tissue). Diagnostic mammograms are performed

when a suspicious lump or mass is palpable or has been identified on the screening mammogram. Di-

agnostic mammogram exams consist of taking multiple angled images of the breast along with some

concentrated imaging on suspicious areas. Mammograms are sometimes used to guide needle biop-
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(a) (b)

Figure II.3: (a) Mammogram configuration with breast compressed between two plates (reprinted from
[8]), (b) Image of breast produced by mammography (reprinted from [9])

sies and place wire guides for intraoperative tumor localization. Although there are several benefits to

mammography, not all cancers can be visualized on screening mammograms.

Ultrasound is usually used to supplement mammography to evaluate high risk patients or women

with dense breasts [58]. Ultrasound images are produced using high-frequency sound waves that pass

through breast tissue and create acoustic reflections that are detected by an ultrasound transducer. Fig-

ure II.4a shows a typical setup for an ultrasound exam and Figure II.4b shows an image produced by

b-mode ultrasound containing a breast tumor. Ultrasound is used to assess tumor size, location, and the

presence of lymph node metastases. Ultrasound is also used to guide biopsy procedures and has been

shown to lower re-excision rates when used intraoperatively during breast conservation therapy [25].

However, ultrasound cannot image most cases of ductal carcinoma in situ (DCIS) [59] and is limited

in detecting multifocality, bilateral breast cancers, and intraductal spread characteristics of invasive

cancers.

Both ultrasound and mammography tend to underestimate tumor size [60]. Compared with mam-

mography, MRI has a higher sensitivity for the detection of breast cancer and is not limited by breast

density [59]. MRI is considered the most accurate imaging modality in the context of breast cancer

[61, 62]. However, the limited specificity of MRI provides controversy, with some contending that
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(a) (b)

Figure II.4: (a) Ultrasound exam configuration (reprinted from [10]), (b) Image of breast produced by
b-mode ultrasound. The spherical dark shadow shows an invasive carcinoma mass.

MRI causes over treatment [63, 64]. The clinical uses of breast MRI include screening of high risk

patients (family history, genetic predisposition), screening newly diagnosed patients for contralateral

breast cancer, screening women with breast implants, evaluating the extent of disease (multicentric-

ity, multifocality, chest wall invasion), and evaluating treatment response [65]. Figure II.5 shows the

typical patient setup for a breast MRI scan.

Attempts to improve MRI specificity are being made that identify imaging parameters that can act

as biomarkers to distinguish invasive vs. benign disease. Dynamic Contrast Enhanced (DCE) MRI

quantifies the uptake and washout rate of contrast material injected intravenously. The most com-

mon parameter extracted from DCE exams is the kinetic curve (time signal intensity curve) [66]. In

general, when the uptake of contrast is high in a suspicious region followed by a decrease in enhance-

ment (washout), there is a strong indicator of malignancy with an 87% positive predictive value [66].

Other parameters that can be extracted from DCE imaging and analyzed for cancer detection include

enhancement patterns and breast vascularity. Further studies to improve the ability to quantify parame-

ters from MR images to reflect physiological and anatomical information about the lesion are ongoing

[67–70]. Pharmacokinetic modeling analyzes contrast enhancement characteristics and patterns of tis-

sue perfusion to enable quantifiable assessments of treatment response in the setting of neoadjuvant

chemotherapy [67, 68]. Diffusion weighted imaging (DWI) is another MR technique that has shown
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Figure II.5: Patient setup for an MRI scan of the breast with the subject lying in the prone position with
free pendant breasts (image reprinted with permission from [11]).

to provide quantifiable differences between benign and malignant breast lesions [71–75]. DWI is sen-

sitive to changes in the diffusion of water in the extracellular and intracellular spaces. Differences

between the apparent diffusion coefficient (ADC) can be used to discern malignant and benign lesions

as well as provide functional and metabolic information that can be used to assess treatment response

of neoadjuvant chemotherapy [73–75].

Breast MRI is commonly used in a clinical setting due to its high sensitivity and accuracy, im-

proved specificity, and emerging functional information that can all be obtained volumetrically without

ionizing radiation. Breast MRI is an excellent tool for lesion characterization and assessment of treat-

ment response. However, the use of MRI for presurgical evaluation and guidance has historically been

controversial. The use of MRI for surgical navigation will be expanded upon in section II.7. Once a

breast cancer patient is diagnosed and staged, a plan for treatment is put into place.
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II.3 Surgical Management of Breast Cancer

Treatment of breast cancer is a multimodal platform with a customized approach for each new patient.

Standard treatment of breast cancer includes varying types of surgery, with or without radiation therapy,

with or without chemotherapy, hormonal therapies, and targeted therapies. These treatment strategies

address the following components: a) local treatment of the primary breast cancer, b) treatment of

the draining lymph nodes, and c) systemic treatments to eradicate disease outside the breast. Surgical

treatment of primary tumors is the focus of this dissertation. Therefore, other types of treatment will

not be discussed in depth. Surgical options include mastectomy and breast conservation therapy.

II.3.1 Mastectomy and Breast Conservation Therapy

For decades, radical mastectomy was the gold standard for local breast cancer until 1977, when the

National Surgical Adjuvant Breast and Bowel Project (NSABP) trial concluded that there are no ap-

preciable survival differences between radical mastectomy and total mastectomies [76]. A radical

mastectomy consists of removal of the breast, overlying skin, pectoral muscle, and axillary lymph

nodes [77], whereas a total mastectomy involves removal of the breast only, leaving the chest wall

muscles intact. This trial represented a shift in breast cancer treatment towards less radical surgery and

a more multimodal approach. In 1984, a randomized prospective study comparing total mastectomies

to lumpectomies with axillary lymph node dissection with or without breast radiation in patients with

tumors equal to or less than 4 cm revealed that there was no statistical differences in overall survival,

disease free survival, and distant disease free survival between the two groups [19]. This trial estab-

lished the acceptance of breast conservation therapy (breast conservation surgery with radiation) as the

preferred treatment for early stage breast cancers [76, 78]. Two 20-year follow-up studies comparing

breast conservation therapy to total mastectomy and radical mastectomy had the same outcomes: no

difference in survival between the two groups [79, 80]. Further studies concluded that BCT was also a

viable option for non invasive cancers [76, 81, 82].

Mass breast cancer screenings with mammography has resulted in women being diagnosed at ear-

lier stages with smaller tumors allowing for a majority of women to be eligible for BCT [83]. Factors

affecting patient eligibility for BCT include tumor size to breast volume ratio, location of tumor, mul-

ticentricity, ability to achieve negative margins, ability to undergo radiation therapy, and ability to

achieve an acceptable cosmetic result [84]. Multicentric tumors, persistent positive margins, diffuse
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microcalcifications on preoperative mammogram, and a history of breast radiation are situations not

amenable to BCT. Approximately 80% of newly diagnosed breast cancer patients are eligible for BCT

[85, 86]. However, there has been an increasing trend in patients choosing mastectomy over BCT de-

spite the equal survival benefit [87]. Studies report that 25-50% [41, 88–90] of eligible BCT patients

will choose mastectomy. There have been several suggested explanations for increased mastectomy

rates. Adkisson et al. attest that younger patients are more likely to pursue mastectomy compared to

older women [91]. Preoperative genetic testing affects surgical decision making with women found to

have a higher genetic susceptibility to breast cancer choosing to undergo mastectomy and even bilateral

mastectomy to prevent recurrence [92]. Other factors contributing to the recent increase in mastectomy

rates include findings during preoperative MRI, patient involvement in the decision, and an increased

awareness about breast reconstruction [93, 94]. Another underlying motivator for choosing mastec-

tomy is patient fear of recurrence and perceived survival benefit [88]. Improved surgical techniques

for lumpectomy may decrease patient related fears and anxieties. Two complementary approaches to

improving lumpectomy techniques with the goal of lowering reoperation rates include accurate tumor

localization and real time or near real time margin assessment. Simply put, we want to know where the

tumor is and then make sure that it has been completely removed. Current and emerging methods for

margin assessment and intraoperative tumor localization are expanded upon in the next sections.

II.3.2 Margin Assessment

A reoperation is necessary when tumor cells are found on the borders of the tissue removed during the

lumpectomy procedure. The surgical goal is to remove a volume of tissue that centrally contains the

tumor with a small margin of surrounding healthy tissue. In order to confirm a successful lumpectomy,

tumor margin assessment must be performed. The most common practice for tumor margin assessment

is pathological assessment. Once excised, the specimen is inked using various colors or sutured to

designate the anatomical orientation of the specimen and analyzed for positive margin status. If cancer

cells are found on the margin, the color of the ink is used to help the surgeon determine the anatomical

location that needs further resection. Negative margins, defined as “no tumor on ink”, minimizes the

risk of ipsilateral breast tumor recurrence, with wider margin widths not significantly lowering this risk

[95]. The American Society of Breast Cancer Surgeons recently came to an agreement that surgeons

should be generally satisfied with “no tumor on ink” for invasive cancers and a 2 mm margin for DCIS
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[96]. Since the adoption of the “no tumor on ink” standard, the positive margin resection rate has

decreased to about 16.5% [16]. Although pathological analysis provides definitive margin status, it is

unable to provide real time information on the presence of residual tumor. Therefore, intraoperative

margin assessment strategies have been suggested.

Frozen section analysis has been used as an attempt to confirm negative margin status at the time of

operation. In this procedure, the specimen is frozen, sliced, and analyzed under a microscope. Frozen

section analysis has a reported sensitivity and specificity of 90 and 100% [97]. However, this tech-

nique takes on average 30 minutes to complete and is labor intensive, increasing surgical time, which

often limits its use. Intraoperative touch prep or imprint cytology is a quicker alternative in which the

surfaces of the specimen are touched to a glass slide. The slide is then screened with the assumption

that malignant cells will stick to the slides and benign or healthy cells will not. This method has a

sensitivity of 63-90.9%, specificity of 98.5-100%, and diagnostic accuracy of 96% [98, 99]. Intraoper-

ative specimen radiology is another method of assessing surgical margins. This technique uses x-ray

radiography to look for biopsy clips and microcalcifications close to the edges of the specimen. How-

ever, sensitivity and specificity are relatively low (49% and 77%) for this method [100]. One recent,

promising approach is the practice of cavity shaving, a technique that resects a portion of the breast

parenchyma immediately after the lumpectomy on margin cavities. In [101], a retrospective review of

976 cases showed that the cavity shave margins group (n=812) had 98.2% clear margins where 74.4%

of the simple lumpectomy group (n=164) had clear margins. Thus, the cavity shave margins technique

was shown to significantly reduce reexcisions when compared to a simple lumpectomy. Future direc-

tions in intraoperative margin assessment include optical methods such as Raman spectroscopy, optical

coherence tomography, and near-infrared fluorescence optical imaging [34, 36, 38, 39]. While margin

assessment techniques are needed to confirm that the tumor has been successfully removed, they are of

minimal use in localizing the tumor for resection. In the next section, tumor localization strategies are

introduced.

II.3.3 Intraoperative Tumor Localization Strategies

Historically, wire guided localization has been the standard technique for localizing non-palpable or

clinically occult breast lesions intraoperatively. Wire guide localization consists of introducing a wire

into the tumor under the guidance of mammography, ultrasound, or MRI. The wire consists of an an-
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chor located at the distal end to avoid dislodging the wire during the time between wire placement and

surgery. This wire then protrudes out from the breast surface until the patient is taken into the operating

room. Once there, the surgeon identifies the wire trajectory using the preoperative mammogram or

intraoperative ultrasound. A plan is then made to resect tissue along the trajectory of the wire stop-

ping 1-2 cm before the distal end. Once here, the surgeon will change direction to resect around the

wire tip while taking care to avoid penetrating into the cancerous lesion. Once excised, the specimen

should contain the wire tip, biopsy clip, calcifications, and tumor with a surrounding margin of healthy

tissue. Figure II.6a is an example of the guide wire placement protruding from the breast surface and

Figure II.6b shows two mammographic views of the wire placement. These images are made available

intraoperatively to help guide the surgeon.

(a) (b)

Figure II.6: (a) Patient in surgical setup showing the protruding wire guide designated by the red arrow.
(b) Mammographic images of the wire guide placement.

This technique has been criticized in the last several years due to the inexact nature of the proce-

dure and high rates of positive margins (38-43%) [24, 102]. An obstacle surrounding the use of wire

guide localization is that the guide wire does not provide a 3D perspective of the tumor and therefore

cannot delineate tumor borders. In some cases, the trajectory of the wire is dictated by mammographic

guidance and can represent inefficient surgical routes to the target which would direct the surgeon to

navigate through excessive amounts of tissue or require the surgeon to make a visual estimation of a

better route, both potentially leading to poor outcomes in regards to cosmesis and a clean excision.
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Other problems that occur with wire guide localization include off target placement of the wire and

dislodgement/movement of the wire prior to or during the surgical procedure due to specimen manipu-

lation.

Intraoperative ultrasound is commonly used and has shown to improve BCT [25]. However, the use

of intraoperative ultrasound is limited by the fact that only 50% of non-palpable tumors are visible by

ultrasound in the breast [41]. Radioguided occult lesion localization (ROLL) and radio-guided seed lo-

calization (RSL) have shown promise to improve localization of clinically occult lesions. Specifically,

ROLL has shown to reduce the incidence of positive margins when compared to wire guide localiza-

tions [26]. The ROLL technique injects a radioisotope into the tumor under stereotactic or ultrasound

guidance. The location of the tumor can then be found using a hand-held gamma probe. The gamma

probe can also be used to locate areas of higher radioactivity following excision of the tumor to identify

potential remnant tumor cells. The shortcomings of radio-guided occult lesion localization is that the

radioisotope must be accurately placed into the tumor and diffusion of the radiotracer into surrounding

tissue decreases accuracy of the tumor location [26]. RSL is similar to ROLL except for a radioactive

seed is introduced into the tumor prior to surgery. Similar seed based approaches have also been sug-

gested using ultrasound visible markers (HydroMark,[27]) and using an implantable, infra-red activated

electromagnetic wave reflector [28]. RSL and other seed-based approaches cannot provide a 3D delin-

eation of tumor borders. Both ROLL and seed-based methods rely upon accurate injection/placement

of the radioisotope under image guidance. While used in many breast cancer centers, seed-based and

ROLL techniques have yet to be widely adopted. Therefore, there still exists a need for intraoperative

tumor localization techniques. In the next sections, the field of image guided procedures is introduced

as a novel strategy to address these localization needs.

II.4 Image Guided Procedures

Image guided surgery (IGS) is performed by placing pre-surgical images into the same 3D coordinate

system as the operating room. The fundamental idea for IGS is to track the surgical position and

display this location on the preoperative image. Placing preoperative images into the physical space

of the operating room is done by an image processing technique known as registration. Corresponding

landmarks visible in each space (both in the image and in the operating room) are used to transform

images to surgical space by calculating a transformation that includes a rigid displacement and rotation.
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The main components necessary for an IGS system include: a 3D physical space localizer to create a

3D coordinate system of the operating room, a preoperative image, a registration technique, and a

screen with software to display the image and tracked locations. An example of such a setup is shown

in Figure II.7. To initiate an image guidance system for breast cancer surgery, the integration of these

components is necessary to begin preliminary testing of feasibility.

Figure II.7: Example of an image guided surgery setup showing an optical tracking system, tracked
tools, and preoperative images displayed on a computer screen (image adapted from [12]).

Image guided surgery was first adopted for brain procedures. Registration between image and

physical space is more readily facilitated for rigid structures, such as the skull. For procedures involving

soft tissue, such as the breast, deformation between the preoperative image and operating room position

is inevitable; the preoperative images no longer match the surgical reality. Research in nonrigid image

to physical space registration has allowed for image guided procedures to be adapted for soft tissue

applications, such as in the brain and abdomen [103–110].

A contribution of this dissertation to the field of image guided procedures involves the creation

of novel image-to-physical space registration techniques and creation of a comprehensive guidance
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system for breast cancer surgeries with an emphasis in patient specificity. Central to IGS techniques is

the process of image-to-physical registration. In following sections, we discuss the foundations of this

process. Then, a review the current state of surgical guidance using MRI in breast cancer surgery is

provided.

Rigid Registration

Rigid registration can be used to establish a correspondence between the spatial information in the

preoperative image volume and the operating room. Features visible in both spaces are used to perform

such registrations. Two methods commonly used are point based registration techniques and surface

based methods.

In point based registration, corresponding points are identified in the preoperative and intraop-

erative spaces. Points used for point based registrations include anatomical landmarks or synthetic

fiducials adhered to the patient. An optimal translation and rotation is found that minimizes the root

mean squared distances between the corresponding points. Closed form solutions for these problems

exist that take advantage of singular value decomposition factorization [111]. This method relies on

the assumption that for every point in the preoperative space, the exact corresponding point for the in-

traoperative space is known. These methods are also subjected to fiducial localization errors, or errors

due to noise or uncertainty in the identification of fiducial position.

Determining corresponding surfaces rather than corresponding points between preoperative images

and the operating room is another approach to calculating rigid transformations. In order to match the

surface geometry in the preoperative image to the surface geometry of the patient in physical space,

surface based techniques have relied on information from organ surfaces [112, 113], blood vessels

[114, 115], and subsurface features extracted from ultrasound images [114, 116, 117]. Most rigid

registration methods that rely on surface information are iterative in nature. That is, they search for

an optimal transformation matrix that minimizes some disparity function. A method known as the

iterative closest point algorithm (ICP) reduces this general nonlinear minimization problem to a series

of point-based registration solves [118]. Several variants of the ICP method have been established to

improve speed and increase its ability to find a global minimum [119]. The difficulty in finding true

correspondence using traditional ICP methods stems from the fact that there is not enough information

available to differentiate points within close physical proximity of each other. In order to address this
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limitation, other techniques have been proposed. For example, areas of more reliable correspondence

can be weighted to improve the registration accuracy [120]. Clements et al. weighted reliably identified

salient features higher in their ICP algorithm to improve image-to-physical space registrations in image

guided liver surgery [121]. Other image intensity and image texture based registration methods are

used for image-to-image registration, but not discussed here as have only sparsely been applied to

image-to-physical space registrations.

For procedures involving soft tissue, rigid registrations may not be sufficient due to nonrigid defor-

mations that occur between the preoperative image and the operating room representation. In the next

section, mechanics based nonrigid registration methods are introduced followed by a background on

the biomechanical breast model used in this thesis.

Mechanics Based Nonrigid Registration

Biomechanical models to simulate this tissue movement have been applied in conjunction with rigid

techniques to improve registration accuracy in deformable tissue. These models transform the preop-

erative images by simulating the physical behavior of the tissue. Data collected intraoperatively can

be used to drive and constrain these models. Displacements of the tissue of interest can usually be

measured intraoperatively and used to establish boundary conditions.

Biomechanically-assisted nonrigid image registration techniques have been developed for many

applications. Methods for soft tissue correction of brain shift caused by changes in intracranial pressure

after opening of the dura matter have been proposed to increase the accuracy of image guidance systems

for neurosurgery [106–109]. Modeling of tissue retraction and resection has also been employed to

update images for IGS [122]. Other avenues of soft tissue IGS application are in abdominal procedures,

such as the liver and kidney [103, 105, 123], prostate [124], and in rudimentary breast applications

[53]. The next section reviews the biomechanical model used in this dissertation to simulate breast

tissue deformation.

II.5 Biomechanical Modeling of the Breast

The set of equations governing linear elastic deformations of the breast is shown here:

∇ · (G∇u)+∇(
G

1−2ν
(∇ ·u))+β = 0 (II.1)
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where υ is Poisson’s ratio, G is the shear modulus of elasticity (G = E / 2(1+ν)), u is the 3D displace-

ment vector, and β is a body force. Solving these Navier-Cauchy equations generates a displacement

field for soft tissue deformation correction. The finite element method (FEM), a method used to obtain

a numerical solution to these partial differential equations, was employed. Due to the ability of FEM

to handle complex geometries, the FEM is often used for applying biomechanical models to the breast

and other soft tissue organs. A geometric representation of the domain must first be established in or-

der to apply biomechanical models. This is usually done by segmenting an image volume, designating

the organ of interest from surrounding structures or air and also labeling particular tissues of interest

within the organ. The next step is discretization (meshing) of the organ into usually many thousands of

nodal points and connecting elements that form a volumetric mesh representation of the organ. Note

that standard tetrahedral elements were used in this thesis. Then application of a field quantity, such as

displacement, can be applied at a node which is then interpolated across the connecting elements using

polynomials [125]. A set of equations can then be established for each node and an exact solution to

the approximate problem can be obtained.

The discretization process was performed using the Galerkin method of weighted residuals and

begins with weighting and volumetric integration of equation II.1:

〈φi∇ ·G∇u〉+ 〈φi∇
G

1−2ν
(∇ ·u)〉+ 〈βφi〉= 0 (II.2)

where 〈〉 represents a problem domain integration. Here, φi is a scalar spatial weighting function at

the ith position. After integrating by parts and application of the divergence theorem, equation II.2

becomes:

〈G∇u ·∇φi〉+ 〈
G

1−2ν
(∇ ·u)∇φi〉+ 〈βφi〉=

∮
Gn̂ ·∇uφids+

∮ G
1−2ν

n̂(∇ ·u)φids (II.3)

In this work, C0 local Lagrange polynomials were used for the weighting and basis functions. These

basis functions are used to expand the unknown displacement vector as follows:

u(x,y,z) = ∑
j

u jφ j(x,y,z) (II.4)
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Following weighting, volume integration, and substitution of the basis function, the algebraic system

expressed as local coordinates at the ith equation and jth set of displacement coefficients is given by:

[Ki, j]u j = bi (II.5)

where [Ki, j] =


G〈2(1−ν)

1−2ν
∂xx +∂yy +∂zz〉 G〈 2ν

1−2ν
∂yx +∂xy〉 G〈 2ν

1−2ν
∂zx +∂xz〉

G〈 2ν

1−2ν
∂xy +∂yx〉 G〈∂xx +

2(1−ν)
1−2ν

∂yy +∂zz〉 G〈 2ν

1−2ν
∂zy +∂yz〉

G〈 2ν

1−2ν
∂xz +∂zx〉 G〈 2ν

1−2ν
∂yz +∂zy〉 G〈∂xx +∂yy +

2(1−ν)
1−2ν

∂zz〉



u j =


u j

v j

w j


bi =


−〈x̂ ·βφi〉+ x̂ ·

∮
σs · n̂φids

−〈ŷ ·βφi〉+ ŷ ·
∮

σs · n̂φids

−〈ẑ ·βφi〉+ ẑ ·
∮

σs · n̂φids


where b contains body force contributions and boundary conditions. A global stiffness matrix, K,

is constructed from the contributions of each tetrahedral element. In this thesis, two types of boundary

conditions are generally applied. Type I, or Dirichlet boundary conditions specify the displacement

vector, u. Type II, or Neumann boundary conditions where stress is specified. The global equation,

[K]u = b, can then be solved to resolve the unknown displacement coefficients.

Corotational Finite Element Method: In this model, we neglect the quadratic terms in the Green

Lagrange strain tensor and use a linear approximation (or small strain). Due to the nature of motion

and deformation in our system, strain calculations are compromised by the introduction of large rigid

body rotations and translations when neglecting the nonlinear terms of the strain tensor (i.e. the linear

approximation to the strain tensor is not invariant to rotation). This introduces ghost forces and dis-

tortions into the model solution. Therefore, in these cases, we employ a nonlinear corotational FEM

formulation [126], which represents a compromise in terms of computational burden and accuracy be-

tween the full nonlinear strain tensor and the linear approximation. Corotational FEM models have

been widely used within the soft-tissue large deformation mechanics literature [126–128]. In the coro-
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tational model, large local rigid body movements are accounted for and the remaining shape change

is handled by linear elastic mechanics. In the tetrahedral mesh, every element has an associated stiff-

ness matrix Ke that is linear with respect to u. In the corotational formulation, each elemental stiffness

matrix is rotated (K̃e = ReKeRT
e ) so rigid body motions are eliminated before being deposited into the

global stiffness matrix. Here, the elemental deformation gradient (∇u+ I) is used to extract the local

element rigid body rotation, Re. Re is calculated on each element through a polar decomposition of

the deformation gradient, based on an assumption of the deformation field. At zero displacement (the

initial assumption), a standard linear system is solved. An iterative approach is then used to solve and

refine the displacement field guess. This process continues until the solution stops changing. It should

be noted that in this thesis, three forward-solve iterations were used to compute Re. Further implemen-

tation details of a biomechanical model for breast deformation as it relates to this dissertation can be

found in Chapter III.

Biomechanical models of the breast employing the use of the finite element method have been de-

veloped to predict deformations during biopsy procedures [129], for modeling compression that occurs

during x-ray mammography to facilitate registration between mammographic images and MR images

[130–132], for reconstructing breast properties in elastography [133, 134], and for prone to supine

image registration of MR images [53, 135–140]. Accurate applications of stress-strain relationships

of tissue within the breast can improve the accuracy of biomechanical models that attempt to simu-

late breast movements. In the next section, biomechanical properties of the breast and measurement

techniques to estimate these properties are reviewed.

II.6 Biomechanical Properties of Breast Tissue

The state of biological tissue can be represented by defining characteristics such as the material stiff-

ness, compressibility, viscosity, anisotropy, nonlinearity, etc [141]. For linear elastic materials (an

assumption commonly made to approximate breast tissue), the important mechanical parameters are

the Young’s modulus (also called elastic modulus), E, and Poisson’s ratio, ν . E describes the mate-

rial stiffness and ν represents the compressibility of a material. The elastic modulus is sensitive to

transformations in tissue structure associated with pathological and physiological changes [141, 142].

Therefore, Young’s modulus has been used as a contrast mechanism between healthy and diseased

tissue.
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Tissue stiffness interrogation is fundamental to breast cancer diagnosis and treatment. Furthermore,

the stiffness of a material is an important variable in biomechanical models attempting to simulate soft

tissue deformations. Biomechanical breast models have been employed in medical image analysis [143]

for computer aided diagnostics [144], nonrigid registration for tumor tracking and data fusion [145,

146], and nonrigid registration for validation purposes[147]. Mechanical models for breast deformation

have also been created for needle path and biopsy planning [148, 149], breast augmentation planning

and simulation [150–152], radiation therapy targeting [153], and image guidance for breast cancer

surgeries and biopsies [140, 154]. Within these applications, various material constitutive models have

been used. Breast tissue has been modeled as nonlinear or linear elastic, isotropic or anisotropic, and

homogeneous or heterogeneous depending on their applications, deformation magnitude, and desired

accuracy. Ultimately, the stiffness of a material must be defined and the accuracy of this estimation

directly impacts the overall performance of the model. Therefore, incorporating material properties

of breast tissue into cancer diagnosis and biomechanical models can be beneficial. Young’s modulus

values have been estimated using ex vivo samples and in vivo elastography measurements for breast

tissue, prostate tissue [2], liver [155, 156], muscle [157], bone, brain [158], cardiac tissue [159] and

beyond. The range of Young’s modulus in biological tissue is quite large, with softer adipose tissue on

the order to 102 Pa and bone on the order of 107 Pa or greater [160].

Specifically within breast tissue, ex vivo measurements of Young’s modulus vary greatly within

the breast itself, especially for cancerous tissue. A recent review of the biomechanical properties of

breast tissue [161] reported a large variation in the mechanical properties for glandular, adipose, ductal

carcinoma in situ, and invasive ductal carcinomas. Variations in reported stiffness properties are mainly

due to differences in testing methodologies, continuum assumptions, measurement errors, and natural

inter and intra patient differences in tissue elasticity. Measurement methods for in vivo and ex vivo

breast tissue mechanical properties are discussed in further detail below.

Ex Vivo

As illustrated in table II.1, there is a large variation in the reported material properties in ex vivo samples

for glandular, adipose, DCIS, and invasive ductal carcinomas. Ex vivo testing is generally performed

using small samples, therefore connective tissue that may play a role in bulk deformability may be ig-

nored. It is also reasonable to expect that these ex vivo specimens are heterogeneous and small samples
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may not reflect the entire tissue if there is variation. Furthermore, ex vivo tissue samples are likely to

exhibit different mechanical behaviors than in vivo samples due to many factors including tissue hydra-

tion, fixation, stress relaxation and hysteresis, and tissue degeneration, among others. Most importantly,

breast material properties vary greatly between subjects so generalized applications of material prop-

erties in biomechanical models used for clinical guidance is not ideal. Variations in between subject

material properties can be attributed to age (more adipose, less glandular tissue [162] and breakdown

of connective tissue), genetics, and hormonal changes [163]. Therefore, for procedure planning and

guidance purposes, patient specific in vivo material property estimation is likely to result in improved

accuracy.

In Vivo

In-vivo determination of material properties is generally performed using a technique known as elas-

tography. Elastography methods rely on information gathered in images to determine tissue stiffness

by capturing tissue response to a mechanical excitation and reconstructing the material properties re-

sponsible for the observed deformation. There are three main components of elastography systems:

a) method of tissue excitation b) method of measuring tissue response c) and method of mechanical

property estimation. Modalities used to measure the response of tissue to a mechanical excitation

source include ultrasound [164], optical imaging [165], magnetic resonance imaging (MRI) [160], and

computer tomography (CT) [166]. In general, tissue stimulation can be static/quasi-static or dynamic.

Static excitations visualize the displacement induced within tissue under externally applied compres-

sions or other mechanical sources [167, 168]. Dynamic excitations include harmonic and transient

elastography methods that visualize the amplitude and phase, axial displacements, or wave velocity

[160, 169, 170]. The underlying equations of motion for each approach dictates how the material prop-

erties are estimated. The method of mechanical property estimation usually reports values of tissue

stiffness expressed as Young’s modulus, E, (quantitative) or contrast ratios between tissue types (qual-

itative). Magnetic resonance elastography (MRE) uses dynamic mechanical excitation by introducing

small amplitude shear waves into the tissue. These waves are then visualized by a specialized MR im-

age sequence that has been synchronized to the mechanical excitation. The shear modulus can then be

determined using mathematical inversion algorithms based on equations of motion [160]. In MRE, the

shear modulus, G, is commonly reported, which for most incompressible tissue is related to Young’s
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modulus by E = 3G.

Ultrasound strain imaging [171], provides relative values of stiffness by estimating the strain through

measurements of local displacements by compressing the tissue with the ultrasound transducer. Shear

wave ultrasound elastography can provide quantitative elastic property values. Instead of compressing

the tissue with the ultrasound probe, shear wave ultrasound techniques use acoustic radiation force im-

pulses (ARFI) to cause localized displacements in the tissue [172]. Conventional b-mode imaging is

used to capture the displacement of the tissue that ultimately relates to stiffness. Virtual Touch [173]

quantification provides numerical values (shear wave-velocity values) of tissue stiffness. A limitation

of ultrasound is that estimation of strain is confined to the ultrasound image plane. Depending on the

application, quantitative stiffness values may be desirable. Measuring tumor response to therapy, be-

tween subject tissue stiffness comparison, characterization of different tissue types, and finite element

biomechanical models that use type II boundary conditions are examples of scenarios which benefit

from quantitative stiffness values.

Dynamic stiffnesses (such as determined in shear wave MRE) can be useful in diagnostic contexts

as a contrast mechanism between diseased and healthy tissue, but less important for clinical procedures

that involve quasi-static loading. Biological tissue properties are known to exhibit complex behavior,

especially when different mechanical excitation sources are applied. It has been well documented that

large compressive forces and high frequency shear waves result in higher observed stiffness values

[161, 174]. While diagnostic imaging is often performed under compression with the patient standing

(x-ray mammography) or lying prone with freely hanging breasts (MRI) , a majority of therapeutic

interventions are performed in the supine position (tumor removal and breast augmentation surgery,

radiation therapy, biopsy, etc). In summary, gravitation loading and compressive forces applied in

diagnostic exams are not representative of the surgical patient presentation.

Mechanical property estimations using patient specific biomechanical models with “known” bound-

ary conditions have been previously developed to represent stiffness properties under deformations

seen in specific applications (such as mammographic compression or prone-supine registration). These

methods rely on creating a patient specific biomechanical model of the breast in one configuration,

applying known boundary conditions, and adjusting material parameters until the model deformed data

matches the experimentally acquired deformed breast configuration. In this context, loading conditions

are either gravity induced or compressive in nature.
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In [167, 175], a new approach to elasticity imaging was described using compressive forces, biome-

chanical modeling, and principles of nonrigid registration. The technique, known as modality indepen-

dent elastography (MIE), uses image volumes before and after an externally applied deformation. A

deformable image registration algorithm [176] is performed to generate a deformation field between the

undeformed and deformed breast surfaces. A biomechanical model that makes isotropic and Hookean

linear elasticity assumptions is used to simulate breast deformations between the undeformed and de-

formed image volumes. Displacement boundary conditions are prescribed on the whole breast surface

using the displacement map generated in the nonrigid image registration step. A distribution of relative

elasticity values is reconstructed by minimizing an image volume similarity metric. The method has

been investigated in simulation [166, 167, 177], gel phantoms [178], and murine models [179]. Clinical

applications of the approach have been applied in breast [180–182], liver [183], and dermoscopy [184]

contexts. In [185], a similar framework to MIE was used to estimate relative breast tissue properties

for use in simulating large breast deformations. Due to the use of displacement boundary conditions,

MIE and other similar methods result in qualitative stiffness values.

II.7 Breast Cancer Surgical Navigation with Preoperative MRI

The use of preoperative MR images for surgical planning has historically been controversial. Previous

studies report that retrospective data and randomized trials have not shown preoperative MRI to reduce

re-excisions, lower recurrence rates, or improve survival benefits [186–191]. Many argue that preoper-

ative MRI is associated with an increase in the use of mastectomy, delay in treatment, and an increase

in the number of additional biopsies [63, 64, 188] and therefore should not be routinely used for preop-

erative planning purposes. Alternatively, several studies have disputed these claims arguing that MRI

provides invaluable information regarding the extent of disease. A recent prospective, randomized,

multicenter study reports a significant decrease in reoperation rates between women who received a

preoperative staging MRI vs. women who did not receive an MRI prior to lumpectomy [192]. Sung

et al. published a retrospective analysis that concluded that reoperation rates among BCT patients were

lower for women who received a preoperative MRI [193]. Several other studies report positive findings

for improved preoperative staging using MRI [192–196]. Overall, the argument surrounding the value

of preoperative MRI remains inconclusive. However, it is generally agreed upon that MRI provides the

most accurate delineation of the size and extent of cancer and offers the highest sensitivity for intraduc-
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tal extensions involved in invasive cancers. One confounding factor involved with the use preoperative

MRIs are how the images are presented to the surgeon for guidance. As previously discussed, preoper-

ative MR images are acquired in the prone position with pendulous breasts while surgery is performed

with the patient lying supine. Several studies have reported significant displacements in breast tumors

between the prone and supine positions on the order of 18-60 mm [46–48]. These relatively large dis-

placements render prone MR images sub-optimal for use in surgical planning and navigation, which

may contribute to studies finding little to no benefit of preoperative MRI.

Due to these realizations, several groups have investigated the use of preoperative MR images

rendered in positions that more closely represent the surgical orientation. Prone-to-supine registration

methods of MR images for use in image guided breast surgery have been developed [53, 135–140] . A

more direct approach is to use supine MR images to direct surgery, which has been explored by several

groups. Tozaki and Fukuda reported that acquiring preoperative supine MR images may be useful for

the planning of breast conservation therapy [49]. An approach to breast conserving surgery that uses

a projection technique to reproduce an outline of the lesion on the breast surface using the location of

the tumor based on the preoperative supine MRI was described in [50]. Yamashiro et al. presented a

technique that uses supine MRI to modify resection lines for tumors with unclear margins by ultrasound

[51]. Abe et al. made use of a thermoplastic shell to reproduce the preoperative breast shape in the OR

to mark the location of the tumor based on the preoperative supine MRI [52]. Intraoperative MRI for

breast cancer surgery was evaluated by [197, 198]. However, intraoperative MRI surgical suites are not

present in most hospitals across the U.S.

Registration of preoperative supine MR images to physical space in the operating room for MRI

navigated breast surgery has been another avenue of development. Frameworks using prone-to-supine

registration followed by supine image to physical space registration have been described [53, 138].

Alderliesten et al. used preoperative supine MR images and optical tracking technology to quantify

needle tip position uncertainty for radioactive seed localization procedures and demonstrated that using

preoperative supine MR to demarcate breast cancer in the operating room is feasible [54]. Alignment

of pre-surgical supine MR images to surgically oriented MR images using surface markers has been

shown to be feasible [55]. Preoperative supine MR images rigidly registered using surface markers

coupled with an intraoperative optical scan of the breast has also demonstrated qualitative alignment

value [46]. While developments in image guided surgical systems for breast cancer surgeries have been
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encouraging, the integration of supine MR images, optical tracking and digitization technology, patient

specific biomechanical models for nonrigid registration, and tracked ultrasound for subsurface feature

localization have yet to be realized as a surgical guidance platform for breast conserving surgery.
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CHAPTER III

Research Methods

This section outlines the methods used to collect preoperative data and intraoperative measurements.

Also detailed here is the generation of patient specific finite element meshes from preoperative images,

the processing of ultrasound images, the general approach to rigid registration using adhesive fiducial

markers, and the biomechanical model employed in nonrigid deformation correction. Finally, a variety

of validation and error metrics is described.

III.1 Preoperative Measurements

Magnetic Resonance Imaging

Magnetic resonance images (MRI) of the breast are typically acquired with a dedicated breast coil

with the patient lying in the prone position with freely hanging breasts. However, supine MR images

are also desirable because they more closely represent the surgical position. For each orientation, the

patient is carefully positioned in a closed bore 3T Achieva MR scanner (Philips, Healthcare, Best, The

Netherlands).

Prone MRI

For the prone images, the subject is placed on a MammoTrack table with a 16-channel receive double-

breast coil (Philips Healthcare, Best, The Netherlands). A THRIVE (T1-weighted, high resolution

isotropic volume excitation) sequence with fat suppression is used to acquire high resolution anatomical

scans of the breast. The following MR parameters are typically used with these scans: repetition time

(TR) = 6.5 ms, echo time (TE)= 3.4 ms, field of view (FOV)= 192 mm × 192 mm × 160 mm, matrix

size = 384 x 383, scan time (mm:ss) = 02:48, and number of signal averages (NSA)=1.

Supine MRI

A 16-channel sensitivity encoding torso coil (SENSE XL Torso Coil, Philips Healthcare) is situated

carefully as to not deform the breast, and the ipsilateral arm is placed above the patient’s head to more

closely replicate the surgical presentation. Supine image volumes are acquired with: TR=7.422 ms,
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TE=3.91 ms, and flip angle= 10 degrees using SENSE parallel imaging (acceleration factor = 2). High

resolution anatomical images are acquired with a T1-weighted, 3D turbo field echo sequence with fat

suppression, a field of view of 200 mm × 200 mm × 160 mm, and a reconstructed voxel size of 0.391

mm × 0.391 mm × 1 mm. The duration of each image volume acquisition was 120.6 seconds.

To facilitate accurate tumor segmentation when imaging breast cancer patients, contrast enhanced

images can be obtained. The basic procedure for obtaining contrast enhanced images include taking a

baseline image, injecting an intravenous contrast agent, followed by another image acquisition. More

specifically, a catheter placed within an antecubital vein delivers 0.1 mmol/kg of Magnevist at a rate

of 2 mL/s after the acquisition of the baseline image. After a 90 second wait period, another image is

obtained. The pre and post contrast images are post processed to obtain an objective segmentation of

the tumor based on increased signal intensity due to contrast. The enhancement in the tumor region can

be quantified as percentage enhancement, calculated as:

SIpost −SIpre

SIpre
×100 (III.1)

where SIpre is the signal intensity in the region of interest in the pre-contrast enhanced image and SIpost

is the signal intensity in the region of interest in the post-contrast enhanced image. Figure III.1 shows

a preliminary acquisition of a contrast enhanced supine MRI. Figure III.1a shows an axial slice prior

to contrast injection. From this image, it is difficult to distinguish between glandular tissue and tumor

(both with brighter signal). In the post contrast image (Fig III.1b), the tumor signal is higher than

the glandular tissue. Figure III.1c shows an overlay of the enhanced tumor as a hot colormap. Figure

III.1d shows the 3D segmentation of the tumor. The percent enhancement in the tumor region for this

particular acquisition was 160%.

Building Patient Specific Models from MRI Volumes

Segmentation of the MR volume into breast tissue, tumor, and chest wall is performed using the Insight

Registration and Segmentation Toolkit (ITK-SNAP) [199] or Analyze 9.0 (Mayo Clinic Rochester, MN,

USA). Figure IV.10c illustrates the segmentation of a preoperative supine MRI of a patient volunteer.

In this step, various features of the breast can be designated for use in future registration steps and

registration accuracy measurements. The location of the fiducial marker centers in the images are
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Figure III.1: Axial slices of supine MRI of patient volunteer using ”Supine MRI” imaging parameters
from section III.1. (a) pre-contrast anatomical image, (b) post contrast anatomical image, (c) shows an
overlay of the enhanced tumor as a hot colormap, and (d) shows a 3D segmentation of the tumor in
magenta.

(a) (b) (c)

Figure III.2: Segmentation of preoperative supine MR images: (a) segmentation of glandular tissue in
green, chest wall in blue, and tumor in red. (b) is a volume rendering of the supine MR image, and (c)
is the preoperative mesh showing locations of fiducial centers in white.

determined manually and recorded. Following segmentation, a binary mask of the whole breast can be

used to generate an isosurface using a standard marching cubes algorithm [200]. The marching cubes

algorithm has been implemented using the Visualization Toolkit (VTK) [201], a collection of open

source c++ libraries. Once a surface has been generated, it is smoothed with a radial basis function

using the FastRBF Toolbox (Farfield Technologies, Christchurch, New England). A volumetric finite

element mesh is created from this surface using a custom mesh generator [202]. An example mesh is

shown in Figure IV.10 with white points representing fiducial marker centers. The adhesive fiducial

markers can be seen in the volume render of a supine MR image shown in Fig IV.10b.
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III.2 Intraoperative Measurements

Establishing a 3D Coordinate System within the Operating Room

To establish a 3 dimensional coordinate system within the operating room, a spatial localizer that

determines the pose (location and orientation) of selected rigid objects is needed. In this work, a passive

optical tracking system is used due to its large field of view, high measurement accuracy (0.3 mm

RMS 1), and compatibility with most operating suites. A Polaris Spectra (Northern Digital, Waterloo,

ON, Canada) is used to make all geometric measurements. This optical tracking system detects the

location of retro-reflective spheres by emitting infrared light and detecting the reflections off of the

spheres. Figure III.3a (top) shows a Polaris Spectra and Figure III.3b shows its working volume.

Figure III.3a (bottom) shows various tools that can be tracked by localizing the reflective spheres.

Varying geometries of the reflective spheres allows tracking of several different objects at once. The

limitation of using passive optical tracking is that a direct line of sight is needed to track an object. The

interface software used to obtain and save geometric measurements include NDI ToolBox 2, NDI 6D

Architect3, and custom software developed at Vanderbilt by the Biomedical Modeling Lab and Surgical

Navigation and Aparatus Research Lab.

Digitization of the Breast Surface

The geometric position of the breast surface in the operating room is likely different than the breast

position in the preoperative images. Therefore, robust measurement of the breast surface in the intraop-

erative state is necessary to facilitate image to physical space registration. Breast surface measurements

can drive registration, provide boundary conditions for biomechanical models, and assess surface fit

between the preoperative and intraoperative surface following registration. A summary of the surface

digitization methods that have been surveyed using phantoms, healthy volunteers, and breast cancer

patients is provided. A tracked pen probe (Figure III.4a) can be used to digitize points on the breast

surface such as fiducial markers that are used in point based registration. The pen probe can also create

a sparse sampling of the breast surface by swabbing the probe over the surface while tracking the probe

1More information on Polaris Spectra technology can be obtained at http://www.ndigital.com/medical/products/
polaris-family

2Northern Digital, Waterloo, ON, Canada. More information on this software can be found at www.ndigital.com/medical/
wp-content/uploads/sites/4/2013/09/nditoolbox.pdf

3Northern Digital, Waterloo, ON, Canada. More information on this software can be found at www.ndigital.com/medical/
wp-content/uploads/sites/4/2013/09/devkit 6da web.pdf
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(a) Polaris (Top). Pen probe digitizer, reference body, laser range scanner, ultrasound probe (Bottom- from
left to right).

(b) Working volume of Polaris Spectra

Figure III.3: (a) Polaris spectra with examples of tracked tools. (b) Working volume (NDI Medical,
www.ndigital.com/medical/products/polaris-family/features/measurement-volume)
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location. Fig III.4a (bottom) shows the results of a pen probe swab on a volunteer. A dense 3D point

cloud with operating room coordinates and texture information can be obtained using a tracked laser

range scanner (LRS). The LRS works by sweeping a laser line over the surface of the breast while a

camera captures the shape of the laser line. A textured 3D point cloud is formed by triangulation of

the locations of the laser line and mapping color information captured by the camera to each point in

the point cloud. The use of a tracked LRS is desirable because it can acquire the breast surface with a

relatively fast, dense sampling and without tissue deformation caused by contact. The overall accuracy

of our custom built laser range scanner was tested in [203] and was reported to be approximately 2 mm.

Figure III.4b shows the LRS and also a textured 3D point cloud that has been registered and overlaid

on the transparent breast model built from the preoperative MR volume of a volunteer. Another way

to obtain surface shape is by swabbing the breast with a tracked ultrasound transducer. This produces

a slightly denser sampling than the pen probe, but is undesirable due to compression of the breast

surface by application of the ultrasound transducer. This can be seen in Figure III.4c where the green

points show the measurements made by tracked ultrasound and are located slightly below the registered

preoperative breast.

Subsurface Digitization

Subsurface features such as tumor, glandular tissue, cysts, and chest wall muscle can be digitized by

tracked ultrasound. Figure III.5 shows b-mode ultrasound images of chest wall muscle, tumor, and

cyst, and a strain image of a tumor. Ultrasound data is tracked in the operating room by synchronizing

the ultrasound video as displayed by the ultrasound machine and tracking data captured by the optical

tracking system discussed in section III.2. A passive rigid body with retro-reflective spheres was firmly

attached to the ultrasound probe to make pose measurements. The tracked ultrasound was calibrated

using a method developed by [204] that takes multiple b-mode ultrasound images of a tracked stylus

tip in the imaging plane to develop a rigid transformation between the image plane and physical space.

Once calibrated, all pixels in each image have a 3D coordinate and orientation. All ultrasound images

were acquired using an Acuson Antares ultrasound machine (Siemens, Munich, Germany) using a

VFX13-5 linear array probe set at 10 MHz. Strain images can also be captured using the eSie Touch

elasticity software in the ultrasound unit.

38



(a) Tracked pen probe (b) Tracked laser range scanner (c) Tracked ultrasound probe

Figure III.4: Surface digitization tools are shown in the top panels. Each tool has a different geometry
of retro-reflective spheres for tool differentiation during simultaneous tracking. The lower panels show
example points collected from each tool. Each set of points is overlaid onto a co-registered 3D mesh
of a volunteer with benign cysts. (a) The top panel shows the tracked pen probe and the lower panel
shows the sparse data points (red) that can be collected while swabbing the breast surface with the
pen probe. (b) The top panel shows the tracked laser range scanner and the bottom image shows the
dense 3D textured point cloud that is obtained by scanning the breast surface with the LRS. (c) The top
panel shows the tracked ultrasound probe and the bottom panel shows the points (green) collected from
swabbing the surface of the breast with the tracked ultrasound transducer.
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Figure III.5: This figure represents a panel of images that can be collected by our ultrasound machine.
Features of interest in this proposal are shown in these images such as: chest wall (red arrow), tumor
in b-mode (blue arrow), tumor in a strain image (green arrow), and a benign cyst (purple arrow).

Ultrasound Image Processing

Features in the ultrasound images, such as those shown in Fig III.5, can be segmented to obtain feature

contours. Segmentation of ultrasound images is performed by a custom implementation of the Livewire

technique [205]. Livewire segmentation is a semi-automatic segmentation method that automatically

contours an image based off three or more control points.

Figure III.6: Example simulation of displacement
caused by the ultrasound transducer. The color bar
indicates the magnitude of displacement with larger
displacements shown in red. An area of larger
displacement is shown on the mesh indicating the
position of the co-registered ultrasound probe and
amount of applied compression.

Compression of the breast tissue by the ul-

trasound transducer leads to incorrect measure-

ments of tumor size and location. In this work,

a previously developed biomechanical model

based correction scheme [206] is implemented to

compensate for the compression of the target by

the ultrasound transducer. The method utilizes

the position of the tracked ultrasound probe to

measure 3D displacements to drive a linear elas-

tic model. The relative positions of the probe sur-

face can be used to estimate the displacement of

the breast tissue. Once a registration is made be-

tween the patient specific MR mesh and physical
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space, the ultrasound probe is now in the same space as the mesh. The probe surface will be located

slightly below the surface of the mesh, depending on the compression of the tissue by the user. The

pose of the probe surface provides displacement boundary conditions for a forward linear elastic model

that deforms the patient specific mesh to the compressed state exerted by the probe. A deformed mesh

showing displacements caused by ultrasound probe compression is shown in Fig III.6. The deforma-

tion field generated by this model is then applied in reverse manner to deform/correct the ultrasound

slices and the segmented tumor contours such that they are correctly rendered in the uncompressed state

associated with the pre-procedural supine MR orientation. Figure III.7 provides a visual overview of

Figure III.7: Steps involved in processing tracked intraoperative ultrasound data. The ultrasound im-
ages are first corrected for tissue compression exerted by the ultrasound transducer. The tumor contour
is then segmented in each 2D slice. Lastly, all contours are appended to form a 3D representation of
the intraoperative tumor.

the processing steps involved in acquiring tracked ultrasound data of an intraoperative tumor volume.

Contours of the tumor are created for each 2D b-mode image and are then corrected for probe deforma-

tion. All of the corrected contours are then appended to create a 3D representation of the intraoperative

tumor geometry as a point cloud set.
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III.3 Breast Tissue Stiffness Estimation

In this section, an additional piece of data is added to the IGBS framework. Beyond anatomical im-

age volumes, highly resolved meshes, and contrast enhanced image data, the elastic properties of the

patient’s breast are quantified and incorporated into the IGBS arsenal. Here, an image-derived com-

putational framework to obtain quantitative, patient specific stiffness properties was developed to in-

corporate patient specific stiffness parameters into the nonrigid registration framework. The method

uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechan-

ical properties to a biomechanical breast model. First, the change in gravitational loading is quantified

between a baseline and gravity-induced deformation image. This gravity-induced deformation results

from slightly rotating the volunteer along the longitudinal axis of the body by placing a support wedge

posterior to the breast being imaged. After the change in gravitational loading is quantified, a biome-

chanical model is used to deform the gravity-induced image until it matches the baseline image. This

can be done through a systematic parameter sweep or using an optimization procedure to minimize the

residual error between the model-deformed image and baseline images.

This section outlines the pre-processing steps required to obtain the patient specific stiffness val-

ues. The chest wall is assumed to be a reliably rigid structure in relation to breast tissue. Therefore,

rigid alignment using chest wall intensity information is performed to extract the relative rotation that

occurred between the baseline configuration and the torso rotated image configuration. The following

image processing steps were performed to extract the geometric change of the breast relative to the

direction of gravity:

1. Segment the chest wall muscles in each image:

The chest wall is semi-automatically segmented in each image using ITK-SNAP’s implementa-

tion of the Snake’s algorithm [207].

2. Rigidly register the baseline and gravity-induced images:

A standard rigid registration [208] is performed using image contrast patterns of the chest walls

in the two image volumes to transform the baseline image (Ig1) into the gravity-induced con-

figuration space (Ig2). Fig. III.8 displays a representative result of such a registration. Ig1 and

Ig2 chest wall image masks are highlighted to show the driving components of the registration

(Fig. III.8a,III.8b). The transformation matrix (containing translation, t and rotation, R) is used
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to rigidly align the baseline image to the gravity-induced configuration image (Fig. III.8c). An

overlay of the gravity-induced (Ig2) and registered baseline images (Ig1→g2) are shown in Fig.

III.8d and visually confirms that the chest wall muscle beneath the breast rigidly aligns compared

to the breast tissue above that has deformed due to the difference in gravitational loading. Once

aligned, rigid translational components are accounted for and the remaining tissue dissimilarity

is due to rotational components that arise from gravity-induced deformations.

3. Extract gravity differential vector:

The gravity differential vector can be extracted from the rotation matrix using (III.2):

∆ĝ = ĝ1−R∗ ĝ1 (III.2)

β = 9.8
m
s2 ρ ∆ĝ (III.3)

where ĝ1 is assumed to be unit vector normal to the MR table. In (III.3) , β is subsequently

applied as a body force of tissue weight in the biomechanical model (II.1). The tissue density, ρ

is assumed to be uniform and approximately equal to water,1000 kg/m3. The model nodes asso-

ciated with the chest wall are fixed in the x, y, and z directions, i.e. applied Dirichlet boundary

conditions set to zero.

The stiffness estimation process involves generating an eroded binary mask of the torso-rotated

image volume for the purpose of designating zones in which to compute an image similarity metric

between the model deformed image and the chest wall aligned baseline image. The Youngs modulus

values for adipose and fibroglandular tissue are then estimated by either performing an exhaustive

search of the parameter space or by using an optimization procedure to minimize the image similarity

metric defined by eq. (III.4).

S = (1−CC) (III.4)

where S is the similarity metric to be minimized and CC is the image correlation coefficient defined

by equation III.9 in the following section. Once completed, a set of patient specific stiffness properties

have been obtained prior to surgery. These properties are to be incorporated to increase the accuracy

of the mechanics-based nonrigid image-to-physical space algorithm. In the next section, error analysis
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Figure III.8: Representation of the rigid alignment procedure. Central axial slices are shown of the
(a) baseline configuration image, and (b) gravity-deformed configuration with overlays of chest wall
regions used in initial alignment. The transformation matrix extracted from the rigid registration is used
to align the chest walls in the baseline configuration and the gravity-deformed configuration so that the
resulting misalignment of breast tissue is due to deformations caused by the change in gravitational
loading. In (c), we see the aligned baseline to the gravity-induced reference frame, and (d) contains
image masks of the rigidly aligned baseline image (Ig1→g2) (red) and gravity deformed image (Ig2)
(blue). It is clear that the chest wall is relatively rigid compared to the mismatch in breast tissue
structures due to gravity induced nonrigid deformation.

metrics for quantifying registration accuracy and image volume alignment are discussed.

III.4 Error Metrics

Signed Closest Point Distance Maps

The fit between two co-registered surfaces can be reported as a signed closest point distance map. Posi-

tive values indicate areas where the intraoperative surface lies on top of the co-registered patient specific

mesh. Negative values represent points that lie beneath the co-registered mesh surface. A colormap

representing the signed closest point distances overlaid onto the co-registered mesh can highlight areas
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of poor alignment. An example of such a map is shown in Figure III.9.

Figure III.9: Example of a signed closest point distance map. The blue surface is a finite element
mesh built from a preoperative MR image volume of a patient volunteer. A patch of co-registered
intraoperative surface (digitized by the laser range scan) was used to calculate the signed closest point
distances between the two surfaces.

Modified Hausdorff Distance (MHD)

The subsurface tumor registration accuracy can be measured by comparing the location of the tumor

contour in the compression corrected ultrasound image and the tumor contour in the MR volume. The

segmented MR tumor is re-sliced to provide a co-planar MR slice according to the 3D location and

orientation of the co-registered ultrasound slice. Measurements made between the MR contour and the

US contours are planar (2D). The modified Hausdorff distance (MHD) [209] between the MR tumor

contour and the US image contour is defined for two contours, A and B in accordance with equations

IV.2 and IV.3.

d(A,B) =
1

Na
∑ aεAminbεB(||a−b||) (III.5)

MHD = max(d(A,B),d(B,A)); (III.6)

The mean closest point distance d(A,B) is calculated in the direction from A to B, and then again from

B to A. MHD is the maximum mean closest point between the two contours. This method was used in

section IV.2.
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Centroid Distances

Comparisons between the mapped preoperative and tracked ultrasound digitized intraoperative tumor

contours can be made in 2D or 3D. For 2D calculations, the centroid location of a co-planar MR slice

tumor contour is compared to the centroid location of the co-registered ultrasound slice tumor contour.

Several ultrasound slices can be analyzed in this manor. This method was used in section IV.2. For

3D comparisons, the centroid location of the mapped preoperative segmented tumor is compared to the

centroid location of the appended 3D tracked iUS tumor contours (processed as shown in Fig. IV.12).

This method was used in section IV.3.

The centroid of a finite number of points is computed as follows:

C = [Cx,Cy,Cz] =
∑

k
i=1[Pix,Piy,Piz]

k
(III.7)

where k is the number of points in the domain and Pi is a point in space. Using equation IV.7, The

Euclidean distance (l2− norm) between the intraoperative tumor centroid (Cintraop) and preoperative

tumor centroid (Cpreop) was used to measure target registration error: Centroid Difference= ||Cintraop−

Cpreop||.

Dice Similarity Coefficient (DSC)

The Dice Similarity Coefficient (DSC) [210] is a measurement of region overlap and can be used to

measure the agreement between the mapped preoperative tumor location and the intraoperative tumor

location. The DSC is defined by the union of two sets of points divided by the average size of the two

point sets:

DSC =
2N(A∩B)

N(A)+N(B)
(III.8)

In equation III.8, N represents the number of points enclosed in each set. A and B represent the tumor

point sets in the intraoperative space and preoperative space, respectively.

Image Similarity: Correlation Coefficient (CC) and Mutual Information

The image correlation coefficient is a measure of image similarity in which the intensity in I1i and I2i
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is assumed to be linearly related.

CC =
∑i(I2i− Ī2)(I1i− Ī1)√

∑i(I2i− Ī2)
√

∑i(I1i− Ī1)
(III.9)

where I2i and I1i are the intensity values at pixel i for the model deformed and chest wall aligned

baseline images, respectively. Ī2 and Ī1 are the mean intensity values of the model deformed and chest

wall aligned baseline images. CC has a value of 1 if two images are absolutely identical and a value of

zero if completely uncorrelated.

Mutual information (MI) [208] is a measure of dependence between image A and image B with the

relationship according to (III.10):

MI(A,B) = ∑
a,b

pABlog
pAB

pA · pB
(III.10)

where pAB represents the joint probability distribution, and pA, pB are the marginal probability distri-

butions. Maximization of MI is used to register images and is especially useful for registering images

of different modalities.
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CHAPTER IV

Framework for Image Guided Breast Surgery

IV.1 Summary and Contributions

The intent of this chapter was to survey the data collection techniques that are available for integration

into the guidance system and to identify the components that when integrated provide the best overall

performance and accuracy. The following sections describe the development of an image guidance

system that integrates supine MR images, optical tracking and digitization technology, patient specific

biomechanical models for non-rigid registration, tracked ultrasound for subsurface validation, and per-

forms initial validation on breast cancer patient data. The work herein contains the first comprehensive

description of system components involved in a surgical guidance system for breast cancer surgery.

The extent of available data that can be incorporated into registration frameworks for image guided

breast surgery is also reported. The use of intraoperative ultrasound to measure subsurface registration

accuracy in the context of image guided breast surgery is also first reported here. Finally, preliminary

studies on breast cancer patients under appropriate clinical conditions demonstrating system feasibility

are presented.

In section IV.2, a preliminary study was performed on one patient using only rigid registration to

judge the feasibility of using supine magnetic resonance images to guide surgical procedures for breast

cancer. This study served as an initial attempt to align intraoperative data and preoperative data for

breast conserving surgery. A very important methodology for the rest of this thesis work was developed

in this study: the novel use of tracked intraoperative ultrasound digitized tumors to measure subsurface

registration errors in the context of image guided breast surgery (see Figure IV.6).

In section IV.3, a study that builds upon the work completed in section IV.2 explores the importance

of including nonrigid methods into the registration framework. Here we present two patient subjects

as an initial investigation towards the realization of a biomechanical model assisted surgical platform.

This section employs the use of a novel biomechanical model based nonrigid registration to correct

preoperative patient specific models and images to better match the surgical presentation of the breast.

The model presented in this chapter was purposefully designed to be work-flow friendly and establish

a baseline understanding of the capability of a model-based correction technique. The significance
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of this work is that it is the first full description and implementation of a comprehensive system for

image guided resection of breast tumors. This work is the first to incorporate the chest wall as a rigid

feature to improve alignment. In this study, we identified several areas of future investigation. For

example, based off of the two patient cases reported here, significant variances in breast deformation

can occur between patients of different breast sizes and of different mechanical properties(see Figure

IV.15). Therefore, we identified a need to observe the deformation of the breast as it correlates to breast

size, patient age, and breast density. We also found that the next obvious progression of this work is

to improve the model approach for nonrigid correction by incorporating patient-specific stiffness prop-

erties into the biomechanical model, incorporating more intraoperative measurements, and employing

an optimization procedure to reconstruct the displacements or forces responsible for deformation to

generalize this model to all patient cases.
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IV.2 Image to physical space registration of supine breast MRI for image guided breast surgery

The work in this section appears in:

R. H. Conley, I. M. Meszoely, T. S. Pheiffer, J. A. Weis, T. E. Yankeelov, and M. I. Miga, “Image to

physical space registration of supine breast MRI for image guided breast surgery”, SPIE 2014 Medical

Imaging: Image-guided Procedures, Robotic Interventions, and Modeling Conference, Vol. 9036, San

Diego, CA, April 2014

Abstract

Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage

breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of

eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of

excised tissue are cancer free). Determining surgical margins intraoperatively is difficult and achieving

negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastec-

tomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents,

however diagnostic images are acquired in a fundamentally different patient presentation than that used

in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breasts

are not optimal for use in surgical planning/guidance due to the drastic shape change between preop-

erative images and the common supine surgical position. This work proposes to investigate the value

of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraop-

erative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data

were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a

tracked laser range scan of the patient’s breast surface, tracked center points of MR visible fiducials on

the patient’s breast, and tracked B-mode ultrasound images. The preoperative data included a supine

MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to

their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS)

fiducial registration error using the tracked markers was 7.5 mm. Following registration, the average

closest point distance between the MR generated surface nodes and the LRS point cloud was 1.76 +/-

0.502 mm
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IV.2.1 Introduction

Due to mass breast cancer screenings, women are being diagnosed at earlier stages with smaller tu-

mors. Therefore, breast conserving therapy (BCT) is a viable option for many women with early

stage breast cancer, provided that negative margins (no cancer cells present on resected specimen) and

acceptable cosmetic outcomes can be achieved. Breast conserving therapy involves a lumpectomy

(removal of tumor with a margin of surrounding healthy tissue) followed by radiation therapy. For

decades, BCT has shown to have the same survival rate as mastectomy (removal of the whole breast)

[80, 211, 212] in properly selected patients. However, there is an increasing trend toward choosing

mastectomy over BCT due to surgical uncertainties [213], despite recent research showing BCT to

have improved disease-specific survival over mastectomy [214].

The hesitation to choose BCT over mastectomy derives from the fact that determining surgical tu-

mor margins intraoperatively is very difficult and negative margins are not always achieved, resulting in

the need for a second surgery or salvage mastectomy. Positive margins are often a result of an inability

to visualize tumor location. Current techniques to localize breast lesions in the operating room include

wire-guide localization and intraoperative ultrasound. Intraoperative ultrasound guidance is often in-

effective for non-palpable breast tumors as approximately only half of these tumors can be visualized

with ultrasonography [41]. The standard technique for intraoperative tumor localization is wire-guided

localization in which a radiologist inserts a wire into the tumor with guidance of ultrasound or mam-

mography prior to entering the operating room. The surgeon will follow the trajectory of the wire to

a distance in close proximity to the tumor and then begin circumferential dissection through presumed

normal breast tissue. The shortcomings of this approach is that the guide wire does not provide a 3D

perspective of the tumor and therefore cannot delineate tumor boundaries, which contributes to an un-

acceptable high rate of positive margins [215]. In addition, often the trajectory of the wire is dictated

by mammographic guidance and can at times represent an inefficient surgical route to the target which

would direct the surgeon to navigate through excessive amounts of tissue, or would require the surgeon

to make a visual estimation of a better route, both potentially leading to navigational errors.

Magnetic resonance (MR) imaging is the preferred imaging modality for preoperative clinical as-

sessment and planning [215]. However, preoperative planning images are acquired in the prone position

with breast pendant, while surgery is performed in the supine position with arm extended. The breast

undergoes significant deformation and shape change between the two positions. While prone breast
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MR images have superior image quality, they are not particularly valuable for surgical planning. Prone

to supine image registration of breast MRI for aid in surgical planning has previously been proposed

[53, 137, 138, 216]. Alternatively, in the work presented here, we propose to register supine MR im-

ages to physical space for intraoperative tumor localization. This approach has clear advantages: (1)

the breast anatomy within the image volume is in a presentation that is representative of the opera-

tive setting, (2) tumor volume changes as it deforms under the breast’s weight are captured better and

should reflect better correlation between pathology reports and intraoperative observations, and (3)

image-to-physical registration methods will be facilitated more readily.

Mock intraoperative data and preoperative data were collected from a patient scheduled for lumpec-

tomy. The mock intraoperative data represents the localization of the patient’s breast in physical space

via multiple digitization methods (optically tracked laser range scan, stylus, and ultrasound imaging).

Preoperative data includes MR images of the breast containing the lesion acquired in the supine ori-

entation with MR-visible markers attached. Image to physical space registration was performed using

landmarks visible in both the MR images and in physical space. The fiducial registration error (FRE),

a measure of overall landmark misalignment, is reported as well as the closest point distance map of

the registered preoperative and intraoperative surface. Subsurface registration accuracy was assessed

by comparing the registered MR tumor contours to their intraoperative counterparts as digitized by

tracked ultrasound.

IV.2.2 Methods

Preoperative data collection and patient specific modeling

In the imaging phase of the experiments, adhesive MR visible fiducial markers (IZI Medical Products,

Owing Mills, MD) were distributed across the surface of the breast prior to imaging. The patient was

placed in the supine position within a closed bore 3T Philips scanner. T1-weighted, 3D turbo field echo

(TFE) with fat suppression images were acquired using a torso coil carefully placed as to not deform

the breast surface. The acquired image volume was 512 mm× 512 mm× 160 mm with a reconstructed

voxel size of 0.391 mm × 0.391 mm × 1 mm. The breast and pectoral muscle were segmented using

a semi-automatic active contour technique by ITK-SNAP’s [199] implementation of the Snakes [207]

algorithm. The tumor was manually segmented and exported as a mesh from ITK-SNAP. A standard

marching cubes algorithm [200] was used to create an isosurface of the breast and pectoral muscle and
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(a) (b)

Figure IV.1: (a) Volume render of supine breast MRI. (b) Patient specific finite element mesh. Green
points are manually selected fiducial centers.

was further smoothed using FastRBF Toolbox (Farfield Technologies, Christchurch, New Zealand).

From this surface, a tetrahedral mesh was generated using a custom mesh generator [202]. A volume

render of the breast surface and the mesh generated by the MR volume is shown in Figure IV.1. The

green points in Figure IV.1b indicate the centers of the markers and were manually determined using

Analyze 9.0 (Mayo Clinic, Rochester, MN, USA).

Mock intraoperative data collection

In our mock intraoperative setup, the patient was placed in a typical surgical orientation by a surgical

oncologist to accurately depict operating room positioning. An optically tracked laser range scanner

was used to scan the breast surface, providing a textured point cloud of the breast surface with known

3D coordinates. An optically tracked pen probe was used to collect the location of the centers of

each of the fiducial markers. Finally, tracked ultrasound images were collected to provide the physical

location of the tumor with respect to the breast surface. In this experiment, ultrasound images were

acquired using the Acuson Antares system (Siemens Medical Solutions USA, inc, Mountain View, CA)

using a VFX13-5 linear array probe with a depth of 6 cm and frequency of 10 MHz. The ultrasound

images were tracked in 3D by collecting synchronized video and tracking data on a host PC with the

utilization of software based on the Visualization Toolkit (VTK). The ultrasound images were calibrated
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Figure IV.2: (a) Laser range scanner with rigid bodies for tracking. (b) Ultrasound transducer with
rigid body for tracking. (c) Tracked pen probe. (d) Textured point cloud produced by tracked laser
range scanner with known 3D coordinates. The green rings are MR visible adhesive fiducial markers.
(e) Example of a 2D ultrasound slice of a breast tumor (dark shadow shown by red arrow).

to physical space using a method [204] based on the relationship between an optically tracked pointer

and an optically tacked ultrasound transducer. Image to physical space registration between points

located in the ultrasound image plane and their physical space counterparts determined by the tracked

pen probe was performed to transform an ultrasound image into physical space. Following calibration,

the compression of tissue caused by the ultrasound transducer was compensated for using a model

based correction technique [206].

Registration technique

MR-digitized marker locations were rigidly registered to the mock intraoperative tracked stylus points

using a 3D point-based singular value decomposition registration algorithm [217], yielding a 4 × 4

transformation matrix. The fiducial registration error (FRE), a measure of overall landmark misalign-

ment, is reported according to equation IV.1.

FRE =

√
1
N

N

∑
i=1

(R(xi +∆xi))+ t− (yi +∆yi) (IV.1)

where xi and yi are 3×1 vectors of corresponding points in two spaces, ∆xi and ∆yi are the fiducial

localization errors for each point in the two spaces, N is the total number of fiducials, R is a 3×3
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rotation matrix and t is a 3×1 vector containing displacements. With respect to surface fit assessment,

the closest point distance map between the LRS point cloud and the MR generated mesh is reported.

Subsurface validation and ultrasound image processing

Compression of the breast tissue by the ultrasound transducer leads to incorrect measurements of tu-

mor size and location. In this paper, we utilize a previously developed model based correction scheme

developed by Phieffer et al [206] to compensate for the compression of the target by the ultrasound

transducer. The method utilizes the position of the tracked ultrasound probe to measure 3D displace-

ments to drive a linear elastic correction model. The relative positions of the probe surface can be

used to estimate the displacement of the breast tissue. Once a registration is made between the patient

specific MR mesh and physical space, the ultrasound probe is now in the same space as the mesh. The

probe surface will be located slightly below the surface of the mesh, depending on the compression

of the tissue by the user. The pose of the probe surface provides Dirichlet boundary conditions for a

forward linear elastic model that deforms the patient specific mesh to the compressed state exerted by

the probe. The deformation field generated by this model is then applied in reverse manner to deform/-

correct the ultrasound slices and the segmented tumor contours such that they are correctly rendered in

the uncompressed state associated with the pre-procedural supine MR orientation.

The subsurface tumor registration accuracy was measured by comparing the location of the tumor

contour in the compression corrected ultrasound image and the tumor contour in the MR volume. The

distance between the centroid of the US tumor and the MR tumor is reported. The modified Hausdorff

distance (MHD) [209] between the MR tumor contour and the US image contour is reported for seven

ultrasound slices. The MHD is defined for two contours, A and B in accordance with equations IV.2

and IV.3.

d(A,B) =
1

Na
∑ aεAminbεB(||a−b||) (IV.2)

MHD = max(d(A,B),d(B,A)); (IV.3)

The mean closest point distance d(A,B) is calculated in the direction from A to B, and then again

from B to A. MHD is the maximum mean closest point between the two contours.
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IV.2.3 Results

The digitized breast surface acquired by the tracked laser range scanner was registered to the patient

specific mesh using corresponding landmarks. The digitized breast surface is shown registered to the

patient mesh in Figure IV.3a. The fiducial registration error was 7.4 mm. Figure IV.3b shows the

Figure IV.3: (a) Registered digitized breast surface overlaid onto MR generated mesh. (b) MR fiducial
center points (green) with registered physical space fiducial center points (red) overlaid onto patient
specific mesh surface nodes. (d) Two orthogonal views of a textured point cloud of the breast with
calibrated ultrasound slices showing tumor location in physical space.

mesh and MR fiducial center points with the registered physical space fiducial centers. The surface

alignment was inspected by calculating the signed closest point distances between the point cloud and

mesh surface nodes. The average closest point distance was 1.76+/- 0.502 mm. A signed closest point

distance map is shown in Figure IV.3c. Figure IV.3d shows how tumor location can be viewed in respect
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Figure IV.4: Left: Uncorrected ultrasound slice with uncorrected ultrasound tumor contour (blue) and
MR contour (red). Right: corrected ultrasound slice with ultrasound tumor contour (blue) and MR
contour (red).

to the breast surface by superimposing the LRS point cloud with select ultrasound slices.

Following registration, the ultrasound slices and their corresponding tumor contours are corrected

to compensate for the tissue compression applied by the ultrasound transducer. Figure IV.4 shows an

uncorrected and a corrected ultrasound slice. The blue outline is the ultrasound tumor contour while

the red outline is the registered MR tumor contour. The average MHD value for the seven uncorrected

US tumor contours was 2.68 +/- 0.6846 mm. The average MHD value for the seven corrected US tumor

contours was 2.0814 +/- 0.4454 mm. The average distance from the centroid of the uncorrected US

tumor contour and the MR tumor centroid was 3.93 +/- 1.2795 mm, while the centroid distance from

the corrected US contours was 3.212 +/- 0.985 mm. Figure IV.5 shows two plots, one of the MHD

values for the corrected and uncorrected tumor contours and the centroid distances for the corrected

and uncorrected tumor contours. In each case, the corrected ultrasound contours yielded a smaller

average distance than the uncorrected ultrasound contours. Figure IV.6 shows three out of the seven

slices processed and show the corrected ultrasound slices overlaid onto their corresponding MR slices.

The right hand column of Figure IV.6 shows US (blue) and MR (red) tumor contours as well as the
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Figure IV.5: Tumor alignment errors for the corrected and uncorrected ultrasound slices. The modified
hausdorff distance (MHD) between the co-aligned MR tumor contours and the US tumor contours are
reported for the uncorrected and model corrected ultrasound slices. The distance between the MR
tumor centroid and the US tumor centroids are also reported. The red line inside the box represent the
mean and the edge of the boxes represent the 25th and 75th percentiles, and the lines extend to the most
extreme observation points not considered as outliers.

reported MHD value between the two contours.

IV.2.4 Discussion

The results of the overall surface alignment are on average less than 2 mm. However, multiple inspi-

ration and expiration events happen over the 20-40 seconds that it takes for the laser range scanner

to pass across the whole surface of the breast. This causes a rippling effect to be present in the point

cloud collected by the LRS. This is evident in the bottom image in Fig. IV.3d. The rippling due to

respiratory motion increases a mismatch between the point cloud and mesh surface. This is propagated

to the closest point distance map shown in Fig. IV.3c where the largest error (10 mm) is at the location

of the largest inspiration peak on the point cloud. These respiratory affects can be diminished by using

a faster scanner or a different digitization device, such as a stereo vision camera system, where capture

of the breast surface occurs at the speed of the camera frame rate (usually <1 second).

The model corrected ultrasound slices produced a better average alignment with the MR tumor

contours than the uncorrected tumor contours. A Wilcoxon signed rank test was performed to test

for differences between the corrected and uncorrected MHD values (significance at p-value < 0.05).

There was a significant improvement in tumor alignment when using the model corrected ultrasound
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Figure IV.6: column (a) is three supine MR slices, Column (b) shows three different registered ultra-
sound slices overlaid on the corresponding MR slice. The third column shows MR contours (red) and
corrected US contours (blue) as well as the MHD values for the two contours.

slices (p=0.015). There was not a significant difference (p-value=0.078) between the corrected and

uncorrected tumor centroid distances, although a trend was identified with lower errors associated with

corrected tumor contours. More study is needed to provide a statistically significant result. Sources

of variability that may have contributed to the error is the uncertainty of manual segmentation of the

tumor borders in the ultrasound and MR images. Ideally, in the future we will acquire pre and post

contrast enhanced magnetic resonance images to get a concrete and user independent tumor border

in the MR images. It should also be noted that multiple sources of error may have contributed to

the final misalignment of the US and MR tumor contours. Errors associated with the optical tracking

equipment, tracked ultrasound calibration, and ability to accurately localize the fiducial center points

may be related and not necessarily additive leading to an uncertainty of how the noises of the system

propagate. This uncertainty is characteristic of any realistic guidance platform.

While we are pleased that the surface of the LRS and the surface of the patient mesh were ade-

quately aligned, our real concern is the accuracy of the subsurface features, particularly the cancerous

lesion located within the fibroglandular tissue. Fig. IV.6 shows successful alignment between the ultra-

sound images to the MR slices, with especially promising correspondence between the pectoral muscle
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and fibroglandular tissue in the MR and US images. The average MHD and centroid distance values of

the model corrected ultrasound slices and the MR tumors were around 2-3 mm. A surgical oncologist

typically aims to remove 5 mm of surrounding healthy tissue, so a 2-3 mm error is acceptable for this

surgical domain.

IV.2.5 Conclusion

In this work we present a workflow for the acquisition of data, processing of images, creation of patient

specific models, and validation for an image based guidance system for the removal of cancerous

breast lesions. We collected preoperative images and mock intraoperative data from a breast cancer

patient scheduled for a lumpectomy to survey our ability to register and validate our alignment accuracy.

With our subsurface alignment errors being on average less than 5 mm, we are encouraged to further

investigate the potential of utilizing the combination of supine magnetic resonance images, patient

specific biomechanical models, and intraoperative tracked ultrasound as a framework for an image

guidance system for breast conservation surgeries.

60



IV.3 Realization of a biomechanical model assisted image guidance system for breast cancer

surgery using supine MRI

The work in this section appears in:

Conley, R. H., Meszoely, I. M., Weis, J. A., Pheiffer, T. S., Arlinghaus, L. R., Yankeelov, T. E., and

Miga, M. I. (2015). “Realization of a biomechanical model-assisted image guidance system for breast

cancer surgery using supine MRI. International journal of computer assisted radiology and surgery”,

10(12), 1985-1996.

Abstract

Purpose: Unfortunately, the current re-excision rates for breast conserving surgeries due to positive

margins average 20-40%. The high re-excision rates arise from difficulty in localizing tumor bound-

aries intraoperatively and lack of real time information on the presence of residual disease. The work

presented here introduces the use of supine magnetic resonance (MR) images, digitization technology,

and biomechanical models to investigate the capability of using an image guidance system to localize

tumors intraoperatively.

Methods: Preoperative supine MR images were used to create patient specific biomechanical models of

the breast tissue, chest wall, and tumor. In a mock intraoperative setup, a laser range scanner was used

to digitize the breast surface and tracked ultrasound was used to digitize the chest wall and tumor. Rigid

registration combined with a novel nonrigid registration routine was used to align the preoperative and

intraoperative patient breast and tumor. The registration framework is driven by breast surface data

(laser range scan of visible surface), ultrasound chest wall surface, and MR-visible fiducials. Tumor

localizations by tracked ultrasound were only used to evaluate the fidelity of aligning preoperative MR

tumor contours to physical patient space. The use of tracked ultrasound to digitize subsurface features

to constrain our nonrigid registration approach and to assess the fidelity of our framework makes this

work unique. Two patient subjects were analyzed as a preliminary investigation towards the realization

of this supine image guided approach.

Results: An initial rigid registration was performed using adhesive MR-visible fiducial markers for two

patients scheduled for a lumpectomy. For patient 1, the rigid registration resulted in a root mean square

fiducial registration error (FRE) of 7.5 mm and the difference between the intraoperative tumor centroid

as visualized with tracked ultrasound imaging and the registered preoperative MR counterpart was 6.5
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mm. Nonrigid correction resulted in a decrease in FRE to 2.9 mm and tumor centroid difference to 5.5

mm. For patient 2, rigid registration resulted in a FRE of 8.8 mm and a 3D tumor centroid difference

of 12.5 mm. Following nonrigid correction for patient 2, the FRE was reduced to 7.4 mm and the 3D

tumor centroid difference was reduced to 5.3 mm.

Conclusion: Using our prototype image guided surgery platform, we were able to align intraoperative

data with preoperative patient specific models with clinically relevant accuracy; i.e., tumor centroid

localizations of approximately 5.3 -5.5 mm.

IV.3.1 Introduction

Breast cancer is the most frequently diagnosed cancer in women and is also the leading cause of cancer

related deaths among women worldwide, with 1.7 million new cases being diagnosed and more than

500,000 deaths occurring in 2012 [218]. Breast cancer treatment is dependent upon multimodal therapy

with surgery being a primary component, especially for early stage cancers. Mastectomy (total removal

of the breast) was the most common procedure choice for newly diagnosed breast cancer patients

until the 1980s when studies revealed that lumpectomy, the far less disfiguring option, was shown to

have the same 10 year survival rate as mastectomy [19]. Despite this fact, approximately 25-50%

of patients eligible for breast conservation therapy (BCT) will choose mastectomy over lumpectomy

[219, 220]. A substantial concern of BCT patients is whether or not negative margins will be obtained

in the initial surgery. Negative margins are achieved when no cancer cells are present on or near

(usually within 5-10 mm) the border of the excised tissue and are considered necessary for a successful

lumpectomy. Unfortunately, the current re-excision rates due to positive margins average 20-40% [21].

Failure to achieve negative margins can result in the delay of radiation treatment, increase risk for local

recurrence, cause psychological and physical stress on the patient, compromise cosmetic results, and

increase cost.

The high re-excision rates arise from the difficulty in localizing tumor boundaries intraoperatively

and lack of real time information on the presence of residual disease [215]. The challenge in determin-

ing surgical margins intraoperatively is that geometric and spatial cues are quickly lost in the surgical

presentation. Equally confounding is that valuable diagnostic images are acquired in a significantly dif-

ferent breast presentation than the typical surgical setup. Diagnostic and biopsy information are driven

by mammography and preoperative MR images in which the patient is standing or lying prone with
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(a) Prone MR image of breast (b) OR presentation (c) supine MR image of breast

Figure IV.7: Demonstration of the challenge of using preoperative images for surgical guidance. (a)
and (c) are axial slices of T1-weighted THRIVE sequence MR images in the prone and supine positions
with red ovals designating the same tumor in the same axial slice. Changes in patient setup cause the
tumor to move, yielding the diagnostic scan in (a) less valuable for locating the tumor in the surgical
setup, shown in (b).

pendant breasts, while surgical presentation is in the supine position. An example of this challenge

is displayed in Fig. IV.7, where the breast undergoes significant shape change between the prone and

supine positions causing the tumor to deform and change location.

Current localization strategies used in the operating room (OR) include intraoperative ultrasound,

wire guided approaches, and radio-guided occult lesion localization. Prospective studies report that

wire guide localization results in positive margins in 38-43% of patients undergoing BCT [24, 102].

Intraoperative ultrasound (iUS) has been shown to improve BCT [25]. However, iUS is limited by the

fact that only 50% of non-palpable tumors are visible by ultrasound in the breast [215]. The short-

comings of radio-guided occult lesion localization is that the radioisotope must be accurately placed

into the tumor and diffusion of the radiotracer into surrounding tissue decreases accuracy of the tumor

location [215].

Due to the current limitations of intraoperative tumor localization approaches, the efficacy of using

MR data alignment strategies has been investigated but challenges in surgical presentation have been

identified. There is little doubt that the use of MR data to influence surgical planning has important im-

plications in the surgical management of patients [196, 221]. We believe that better image-to-physical

data alignment strategies can be used more directly for better surgical management. To achieve this,

methods using biomechanical models for prone-to-supine registration of MR images have been sug-

gested [53, 222] . Recently, utilization of supine MR images for surgical guidance have been consid-
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ered in frameworks for image guided breast surgery [54, 223, 224]. Alignment of pre-surgical supine

MR images to surgically oriented MR images using surface markers has also been shown to be feasible

[55]. Preoperative supine MR images registered using surface markers coupled with an intraoperative

optical scan of the breast has also demonstrated qualitative alignment value [46]. While encourag-

ing, the integration of supine MR images, optical tracking and digitization technology, patient specific

biomechanical models for nonrigid registration, and tracked ultrasound for subsurface feature localiza-

tion has yet to be realized as a surgical guidance platform for breast conserving surgery. This paper

integrates these components and reports preliminary experiences with this surgical platform in two pa-

tient cases. In addition, subsurface target accuracy is assessed independently using tracked ultrasound

imaging of echogenic tumors in both cases.

IV.3.2 Methods

Two breast cancer patients scheduled for surgery were selected in a Vanderbilt IRB approved bystander

study to evaluate the feasibility and accuracy of our image guidance platform. In Fig.IV.8, a schematic

overview demonstrates the structure of the proposed system with required data inputs and generalized

outputs at each step. Both subjects had ultrasound visible tumors. While our guidance platform does

not require ultrasound visible tumors, their echogenic visibility in this study was particularly useful for

evaluating the subsurface alignment accuracy of our registration approach.

IV.3.2.1 Preoperative Data Collection

Supine MR Imaging

Preoperative supine MR images were acquired for each patient and were used to create patient specific

biomechanical models of the breast tissue, chest wall, and tumor. MR visible adhesive skin fiducial

markers (IZI Medical Products, Owing Mills, MD) were placed over ink markings distributed across

the breast surface. The patient was carefully positioned in a closed bore 3T Achieva MR scanner

(Philips Healthcare, Best, The Netherlands). A 16-channel sensitivity encoding (SENSE) torso coil

was situated carefully as to not deform the breast, and the ipsilateral arm was placed above the patient’s

head to more closely replicate surgical presentation. High resolution anatomical images were acquired

with a T1-weighted, 3D turbo field echo sequence with fat suppression, a field of view of 200×200×160

mm3, and a reconstructed voxel size of 0.391×0.391×1 mm3. Recently, we have achieved successful
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Figure IV.8: Overview of surgical guidance platform and validation framework. The preoperative
(preOp) and intraoperative (intraOp) data panels summarize the important information gathered at each
step. This information is then systematically incorporated into an intraOP registration framework.
The final outcome is a preoperative tumor mapped to physical space which can then be quantitatively
compared to the location of the tumor in the OR.
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Figure IV.9: Axial slices of supine MRI of patient volunteer with (a) pre-contrast, (b) post-contrast
injection,(c) contrast-enhanced image with colored overlay showing tumor, and (d) 3D segmentation
of tumor (magenta).

(a) (b) (c)

Figure IV.10: Segmentation of preoperative supine MR images: (a) segmentation of glandular tissue
in green, chest wall in blue, and tumor in red. (b) is a volume render of the supine MR image, (c)
preoperative mesh showing location of fiducial centers in white.

acquisitions of contrast enhanced supine images, an example of a contrast enhanced image volume of a

patient volunteer is shown in Fig. IV.9. For the patient subjects studied herein, tumors were identified

from the diagnostic MR supine images and were segmented semi-automatically.

Patient Specific Model

The supine image volume from each patient was segmented into breast tissue, tumor, and chest wall

(pectoral muscle) using a semi-automatic segmentation technique by Insight Registration and Segmen-

tation Toolkit (ITK)-SNAP [199]. Fig. IV.10a illustrates the segmentation step for patient 1. The

locations of the synthetic fiducial center points were manually determined and recorded (Fig. IV.10b).

Following segmentation, a binary mask of the whole breast was used to generate an isosurface using a
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(a) (b)

Figure IV.11: (a) Top: LRS scan of patient 2 breast. Bottom left: compression corrected ultrasound
image with tumor contour in white. Bottom right: ultrasound image with chest wall contour in blue.
(b) Fusion display of tracked intraoperative data containing a textured point cloud, adhesive fiducial
markers, tracked ultrasound images, tumor contour (white), and chest wall contours (blue).

standard marching cubes algorithm [200]. The isosurface was then smoothed with a radial basis func-

tion using FastRBF Toolbox (Farfield Technologies, Christchurch, New England). From this surface,

a finite element tetrahedral mesh was generated using a custom mesh generator [202] with a mesh

edge-length resolution of approximately 3 mm (Fig. IV.10c).

IV.3.2.2 Mock Intraoperative Data Collection

As an initial investigation, a mock intraoperative setup to collect simulated intraoperative data was

performed for each patient. In this study, mock intraoperative data was collected to avoid workflow

disruptions in the OR and was performed on the same day as preoperative imaging to minimize patient

volunteer time. The true intraoperative scenario would involve intraoperative data, such as that shown

in Fig. IV.11, to be collected during surgery. To address realistic patient conditions in the mock

setup, positioning was performed by a surgical oncologist, to accurately depict OR positioning. Once

complete, skin fiducials are digitized with an optical stylus, a laser range data is acquired, and an

ultrasound examination is performed. In the following subsections, the extent of this data and its

integration is explained.
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Surface and Feature Digitization

A custom-built, optically tracked laser range scanner (Pathfinder Technologies, Inc, Nashville, TN,

USA) was used to digitize the breast surface by sweeping a laser line over the breast surface and

recording geometric points along with color information of the visible field (Fig. IV.11a top, Fig.

IV.11b), yielding a textured point cloud with known 3D coordinates in physical space. The physical

space points corresponding to the MR visible fiducial center points are determined by the black ink

markings that were placed on the patient’s skin prior to adhering the MR visible fiducials. An optically

tracked stylus was used to collect the location of the ink markings. The textured point cloud was used to

confirm the location of the fiducial points by comparing the coordinates collected by the tracked stylus

with the field of view color texture information collected from the laser range scanner. All geometric

measurements were made with a Polaris Spectra (Northern Digital, Waterloo, ON, Canada) optical

tracking system.

Ultrasound Exam

The ultrasound portion of this study was performed in two parts: (1) target B-mode imaging of tumor

and (2) chest wall swabbing. Fig. IV.11a bottom left and Fig. IV.11a bottom right show representative

contours of each, respectively. Ultrasound images were acquired using an Acuson Antares ultrasound

machine (Siemens, Munich, Germany) using a VFX13-5 linear array probe set at 10 MHz. The depth

was set at 6 cm to maintain visibility of the chest wall throughout the exam. A passive optically tracked

rigid body was attached to the ultrasound transducer. The tracked ultrasound was calibrated using the

method developed by Muratore and Galloway Jr [204] that takes multiple b-mode ultrasound images of

a tracked stylus tip in the imaging plane to develop a rigid transformation between the image plane and

physical space. Once calibrated, all pixels in the ultrasound plane have a corresponding 3D coordinate

in physical space.

In addition to optical tracking for determining the location of ultrasound visualized structures, it

is also important to correct the localization data of structures that are affected by ultrasound probe

compression, namely the tumor (chest wall was assumed rigid). More specifically, since preoperative

supine MR images are acquired without this compression, a correction scheme to account for deforma-

tion induced by the probe itself is needed in all ultrasound images of the echogenic tumor. Reported in

[206], the fidelity of the method we utilized demonstrated reduced subsurface localization errors due to
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Figure IV.12: Steps involved in processing tracked intraoperative ultrasound data. The ultrasound im-
ages are first corrected for tissue compression exerted by the ultrasound transducer. The tumor contour
is then segmented in each 2D slice. Lastly, all contours are appended to form a 3D representation of
the intraoperative tumor.

ultrasound probe compression by 67.8% and 51.6% in phantom and clinical experiments respectively.

For the work reported in this study, it was particularly important to utilize these methods as tumor

localization was serving as the primary means for accuracy evaluation of our platform.

Fig. IV.12 provides a visual overview of the processing steps involved in acquiring tracked ul-

trasound data of the intraoperative tumor volume. Tumor borders are semi-automatically segmented

using a custom implementation of the Livewire technique [205]. The acquired tumor ultrasound im-

age/contour is then corrected for probe deformation and each is appended, yielding a 3D point cloud

set. Similar steps are performed for the chest wall but probe deformation compensation is not necessary.

Fig. IV.11b shows a comprehensive representation of all digitization data rendered consistently within

physical space; textured point cloud, synthetic fiducial landmarks, and tracked ultrasound images of

both probe-corrected tumor and chest wall ultrasound slices with segmented contours.
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Figure IV.13: Overview of the registration process beginning with rigid initialization and concluding
with full nonrigid model compensation.

IV.3.2.3 Registration Method

The entirety of our registration approach is captured in Fig. IV.13. Briefly described, an initial rigid

alignment is performed using the synthetic fiducials adhered to the breast. Once complete, a series

of steps is conducted to estimate the influence of gravity-induced and ipsilateral arm position changes

between supine imaging and surgical configurations. The influence of these variables is realized as

a gravitational inducing body force and boundary conditions which are applied to a biomechanical

model of the breast. Once complete, the combined rigid and nonrigid transformation provides a means

to map preoperative tumor locations into physical space which can then be subsequently compared with

a separate independent ultrasound identified tumor localization.

Rigid Alignment

An initial rigid alignment was performed by registering the MR-digitized marker locations to their

intraoperative counterparts using a traditional 3D point based singular value decomposition registration

algorithm [217]. The point based registration algorithm finds the optimal translation and rotation to

70



minimize the fiducial registration error (FRE) as defined by:

FRE =

√
1
N

N

∑
i=1

(R(xi +∆xi))+ t− (yi +∆yi) (IV.4)

where xi and yi are 3×1 vectors of corresponding points in two spaces, ∆xi and ∆yi are the fiducial

localization errors for each point in the two spaces, N is the total number of fiducials, R is a 3×3 rotation

matrix and t is a 3×1 vector containing displacements. The resulting translation vector and rotation

matrix are applied to the preoperative data to provide an initial alignment with the intraoperative space.

Quantification of Gravity-induced Deformations

Based on initial studies investigating the use of point-based registration of skin fiducials, it was found

that significant rotation of the breast occurs relative to the chest wall between supine imaging and intra-

operative presentation in some cases. This results in a body force based deformation whereby the breast

becomes free to move under the influence of gravity. To estimate this change, we have elected a novel

strategy. The chest wall is designated from the preoperative supine images during our breast model

building process (Section IV.3.2.1). In addition, chest wall contours are also identified and segmented

from our tracked ultrasound examination (Section IV.3.2.2). Using the fiducial-based registration (Sec-

tion IV.3.2.3) as an initial configuration, a traditional iterative closest point (ICP) registration [118]

was employed between the transformed preoperative chest wall points and the intraoperative chest wall

contours as digitized by tracked iUS. The rotation matrix resulting from the ICP registration is applied

to the intraoperative gravity vector (assumed to be in the direction normal to the patient’s bed). Details

of this approach are outlined in Algorithm 1.

Algorithm 1 Algorithm for finding gravity-induced deformations using ICP registration

1. Initialize by transforming preoperative chest wall contours to intraoperative space using transfor-
mation from IV.3.2.3

2. Perform an ICP registration between MR chest-wall surface and iUS chest wall contours

3. Extract the rotation matrix from the final transformation and apply to the gravity vector in intra-
operative space

∆g = R∗gintraop (IV.5)

where gintraop is a 3×1 vector containing the unit direction normal to the patient bed in intraop-
erative space
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Mechanics-based Nonrigid Correction

Deformations due to gravity-induced changes derived from Algorithm 1 and tissue migration of the

breast due to ipsilateral arm movement are estimated using a 3D linear elastic model. The model

employs the Navier-Cauchy equations and generates a displacement field for correction and is shown

here:

∇ · (G∇u)+∇(
G

1−2ν
(∇ ·u))+ρ(∆g) = 0 (IV.6)

where υ is Poisson’s ratio, G is the shear modulus of elasticity (G = E / 2(1+ν)), u is the 3D displace-

ment vector, ρ is the tissue density, and ∆g is the change in gravitational acceleration constant with

respect to imaging and surgical presentations. Equation IV.6 was solved using the Galerkin Method

of Weighted Residuals with linear Lagrange polynomials defined locally on the tetrahedral elements

as the supporting basis and weighting functions. Solving this system results in displacement vectors

defined at each node that satisfy static equilibrium conditions. The displacements are then applied to

deform the preoperative mesh. In this work, an elastic modulus (E) of 1 kPa, tissue density of 1000

kg/m3, and Poisson’s ratio of 0.485 were applied for the whole breast volume.

1st Model Solve- Application of Gravity-induced Deformations

Gravity induced deformations were simulated by supplying the elastic model with a body force of tissue

weight based on the change in acting gravity direction as determined in Section IV.3.2.3. We again

assume that the chest wall is a rigid fixed structure. Therefore, the boundary conditions applied to this

model solve imposed fixed chest wall nodes (zero displacement) with stress-free boundary conditions

elsewhere. The displacements generated from this model solve were applied to the preoperative mesh

and used to estimate the remaining positional error of fiducial targets.

Final Model Solve

Nonrigid deformations of the breast due to ipsilateral arm movement were accounted for by applying

Dirichlet boundary conditions at control surfaces along the inferior-superior surfaces of the model mesh

based on preoperative imaging data. The nodes corresponding to the interior chest wall and the medial

breast surface were fixed. The medial breast face was fixed because negligible movement occurs in

the vicinity of the patient’s sternum. The remainder of the breast surface; i.e., the visible breast during

presentation, was designated as stress free.
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The locations, direction and magnitude of the applied Dirichlet boundary conditions for the inferior-

superior surfaces were determined by analyzing the misalignment between the co-registered surface

fiducials after gravity-induced changes were taken into account. In both patient cases, a reduced stretch-

ing of the breast between preoperative and intraoperative states was observed and used to determine

model displacement boundary conditions at the inferior-superior surfaces. This reduced stretching phe-

nomenon is shown in Fig. IV.14(a,c) where the preoperative intra-fiducial distances (red arrows) are

larger than the intraoperative intra-fiducial distances (blue arrows). One relatively simple approach to

correction is to perform a principal component analysis (PCA) on the difference vector between the co-

registered fiducial points to determine the direction in which the largest deformation has occurred. PCA

is performed after the displacement field from the first model solve (Section IV.3.2.3) has been applied

to the preoperative FE mesh and re-registered using the new locations of the preoperative fiducials. The

largest distance vector between the gravity transformed preoperative and intraoperative intra-fiducial

locations was used to approximate the magnitude of stretching/compression. Being consistent with

a simple deployment strategy, the approximated displacement application was then distributed evenly

among two control surfaces, as can be seen in Fig. IV.14(b,d). The proposed registration method re-

quires only two model solves, providing a fast correction strategy that can be readily adapted in the

operating room. Given the nature of breast deformation and the reduced domain of the breast ana-

lyzed, this initial realization is purposefully designed to be work-flow friendly, operationally robust,

and constrained to establish a baseline understanding of efficacy. In the discussion below, avenues for

improvement are suggested.

IV.3.2.4 Registration Assessment

Surface markers were used to quantify registration accuracy by calculating the root mean square fidu-

cial registration error (FRE). FRE is a measure of overall misalignment between fiducials and captures

fiducial localization errors as well as nonrigid movements. It is important to note that fiducial lo-

cation differences between image and physical space were not used as direct displacement boundary

conditions in the model, but only as a measure of fit with respect to applied deformations from gravity-

induced changes and inferior-superior control surfaces. With respect to subsurface targeting accuracy,

tracked ultrasound image contours of the tumor were compared to their registered preoperative coun-

terpart. More specifically, the centroid location of the preoperative segmented tumor is mapped by the
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Figure IV.14: (a,c) preoperative mesh with arrows showing preoperative (red) and intraoperative (blue)
intra-fiducial distances, (b,d) green arrows point to direction of applied boundary conditions to inferior
(I) and superior(S) breast faces highlighted in green.
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process shown in Fig. IV.13 and compared to the centroid location of the appended 3D tracked iUS

tumor contours as shown in Fig. IV.12. The centroid of a finite number of points was computed as

follows:

C = [Cx,Cy,Cz] =
∑

k
i=1[Pix,Piy,Piz]

k
(IV.7)

where k is the number of points in the domain and Pi is a point in space. Using equation IV.7, The

Euclidean distance (l2− norm) between the intraoperative tumor centroid (Cintraop) and preoperative

tumor centroid (Cpreop) was used to measure target registration error: Centroid Difference= ||Cintraop−

Cpreop||.

IV.3.3 Results

Patient 1

The initial rigid alignment of the synthetic skin fiducials for patient 1 yielded an FRE 7.5 mm. Fig-

ure IV.15(a-c) show results from the rigid registration. The tumor centroid difference between the

mapped preoperative and intraoperative states before ultrasound probe compression correction of the

intraoperative tumor was 7.5 mm. After probe-to-tissue compression compensation, the tumor centroid

difference was 6.5 mm. The iterative closest point registration of the intraoperative and preoperative

chest-walls revealed that negligible rotation of the torso occurred for patient 1. Therefore, a gravitation

body force was not applied. Principal component analysis of the difference in preoperative and intra-

operative fiducial locations revealed a vector supporting approximately 20 mm maximum intra-fiducial

distance which its largest component reflective of deformation was along the inferior-superior axis.

The difference in intra-fiducial distances can be visualized in Fig. IV.14a where the red arrows point

to preoperative fiducials and blue arrows point to intraoperative fiducials. This maximum intra-fiducial

distance difference was distributed evenly among the two control surfaces. A 10 mm displacement vec-

tor was applied to each node on the inferior and superior breast surfaces (green surface shown in Fig.

IV.14b). The green arrows in Fig. IV.14b show the direction of the applied displacements. Using these

boundary conditions to drive the elastic model, the nonrigid corrected FRE was 2.9 mm and the defor-

mation corrected tumor centroid difference was 5.5 mm. In Fig. IV.15d, we can observe the improved

alignment between the MR-rendered tumor and an ultrasound-visible counterpart (white contour) for

patient 1.
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Patient 1 Patient 2

Figure IV.15: Patient 1(a-d) and Patient 2 (e-h). (a,e) co-registered textured point cloud and preop-
erative mesh. (b,f) co-registered preoperative fiducials (red) and intraoperative fiducials (blue). (c,g)
intraoperative ultrasound image with white tumor contour overlaid on preoperative rigid aligned tu-
mors in red. (d,h) intraoperative ultrasound image with white tumor contour overlaid on preoperative
nonrigid corrected tumors in green.
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Patient 2

Initial rigid alignment of the synthetic skin fiducials for patient subject 2 returned an FRE of 8.8 mm.

Fig. IV.15(e-g) shows results from the rigid registration. The tumor centroid distance between mapped

preoperative and intraoperative states before ultrasound compression compensation of the tumor con-

tours was 14.7 mm. The tumor centroid distance after probe-to-tissue compensation was 12.5 mm.

Following gravitational direction correction, the FRE improved negligibly to 8.5 mm and with a more

considerable correction to the tumor centroid distance decreasing to 8.4 mm. As anticipated, principal

component analysis following gravity-induced deformation compensation revealed that the largest de-

formations occurred along the patient’s inferior-superior axis. The largest difference in the intra-fiducial

distances was 50 mm. Red and blue arrows in Fig. IV.14c show the largest difference in preoperative

and intraoperative intra-fiducial distances, respectively. The maximum intra-fiducial distance differ-

ence was distributed evenly among the two control surfaces. The green arrows in Fig. IV.14d point to

the direction of applied displacement boundary conditions with a 25 mm displacement applied at each

breast face (highlighted green surface in Fig. IV.14d). The nonrigid correction resulted in an FRE of

7.4 mm and tumor centroid distance of 5.4 mm. In Fig. IV.15h, we can observe the improved alignment

between MR-rendered tumor and the ultrasound-visible counterpart (white contour) for patient 2.

IV.3.4 Discussion

We have presented two patient subjects as an initial investigation towards the realization of a supine im-

age guided surgical platform. In general, the results show that initial rigid alignments are not sufficient

and a nonrigid correction is necessary to obtain a clinically relevant image-to-physical alignment. In

each case, arm movement between the preoperative and intraoperative patient setups caused a change

in stretch to the breast tissue along the patient’s inferior-superior axis. Tissue deformation exerted by

the ultrasound probe required correction to improve the fidelity of using tracked ultrasound images of

the tumor as a means to assess subsurface target registration error. In this study, a somewhat“open-

loop”, i.e. non-iterative, correction strategy was used in that an initial fiducial registration error was

analyzed, body forces and boundary condition were derived, a model was executed, and finally a non-

rigid correction was provided. While arguably a coarse nonrigid deformation correction approach, the

results are encouraging and speak to the promise of supine image-guided breast surgery. In the future,

an iterative optimization strategy will be developed to find the best correction possible driven by all of
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the information available intraoperatively. Options for additional data already exist. The corrections

shown in Fig. IV.15 are driven by synthetic fiducial error. This is an admittedly sparse source of data to

drive the correction process and other possibilities exist in our approach. For example, while not used

in this work, the laser range data shown in Fig. IV.11 could serve within a shape conformity metric and

employed as a constraint to the nonrigid registration framework.

Several sources of error may contribute to the reported registration inaccuracy. The tracking error

of our system has been reported as sub-millimetric for passively tracked rigid stylus bodies [225].

However, multiple reference targets were attached on range-based targeting devices (laser range scanner

and ultrasound). Our tracked laser range scanner has been characterized previously at 2.2 +/- 1.0 mm

[203] although its use in this particular work was minimal. With respect to the tracked ultrasound

imaging, in studies not reported here we have found our average target registration error to be 1.5-2.5

mm in typical tracking experiments [206]. It is difficult to predict how these errors will combine due

to the nature of the registration process. More specifically, our registration approach samples both far-

field (chest wall) and near-field (synthetic fiducials) structures which likely constrains internal target

error; more study is needed.

Other sources of error between MR-localized fiducial and co-localized ink markings in physical

space could be present. While some compensation for iUS error was performed, the validation metrics

themselves still have some error. The contour digitization of the tumor using tracked ultrasound may

not represent a comprehensive digitization of tumor volume and as a result could produce discrepancies

of the tumor volume centroid as compared to its preoperative counterpart. In this study, care was taken

to acquire ultrasound images of the tumor in orthogonal planes and at multiple angles to best digitize

the whole tumor volume. Despite this care, it is unlikely that the measurement is as rigorous as its

tomographic counterpart in MR. Another source of error is our use of a linear elastic model for the

nonrigid correction of breast tissue. While small-strain approximations are likely violated, we have

found linear models to behave reasonably well in such gross nonrigid alignment procedures. In other

work [226] , we have compared linear and nonlinear approaches (linear vs co-rotational finite element

approaches) with similar registration problems. The observed differences between these models usually

have been quite modest when compared to gross misalignments and instrument error. While all of these

errors need further characterization, the results in Fig. IV.15 are difficult to discount. In each we see a

marked improvement in alignment between ultrasound-visualized intraoperative tumor contour and the
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preoperative tumor.

IV.3.5 Conclusion

The work reported herein establishes a preliminary realization of an image guided breast surgery ap-

proach using supine MR images. A workflow friendly alignment procedure using rigid and nonrigid

registration methods is proposed and preliminary data in two patients is reported. The two cases repre-

sent a reasonable extent of the configurations possible during image-guided lumpectomy with the first

patient (small breast volume) not experiencing gross volumetric misalignment after rigid registration,

and the second (large breast volume) showing large shifts of the subsurface tumor target. In each, our

investigational correction methodology showed considerable improvement in alignment both in quanti-

tative metrics as well as visual overlays. To our knowledge, this work represents the first comprehensive

image guided breast surgery platform using supine MR and nonrigid model-based registration methods

that has been tested under appropriate in vivo clinical conditions with subsurface target registration

errors being reported using echogenic tumors. The results are very encouraging at this early stage and

many avenues for future work to improve guidance alignment are possible.
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CHAPTER V

Quantification of Patient Specific Mechanical Properties

V.1 Summary and Contributions

In this chapter, a novel method to quantify patient specific breast tissue stiffness was developed. As

noted in II.6, the literature reported biomechanical properties for breast tissue vary greatly. For exam-

ple, ex vivo testing reports a range of 0.69 - 20 kPa for adipose tissue and 0.73-271 kPa for glandular

tissue (see table II.1). For in vivo, elastography-based approaches, the range of reported values are also

unacceptably large (0.41-25 kPa for adipose, 0.9-45 kPa for glandular [161]). Variations in reported

stiffness properties are mainly due to differences in testing methodologies, continuum assumptions,

measurement errors, and natural inter and intra patient differences in tissue elasticity. The use of liter-

ature values of breast tissue stiffness to populate patient-specific biomechanical models is inadequate

due to these discrepancies in reported stiffness values. Furthermore, breast mechanical properties vary

greatly between subjects so generalized applications of mechanical properties in biomechanical mod-

els used for clinical guidance is not ideal. The term patient-specific often implies that highly resolved

geometric models are created from individual patient anatomy. In an extension to this broad definition,

we have developed a method to further incorporate patient specific mechanical property parameters

by estimating the stiffness of the underlying breast tissue to improve the accuracy of these models.

Focus was placed on creating a framework to be implemented within an image guided breast surgery

workflow.

In this stiffness estimation framework, only a single additional two minute MR scan is required

beyond the current preoperative image guided breast surgery framework and is driven by two supine

gravity loaded configurations of the breast. The method takes advantage of image registration princi-

ples to capture the driving deformation source (i.e. a change in the direction of gravitational loading).

In this study, we demonstrate feasibility of this approach in humans using ten unique stiffness estimates

of fibroglandular and adipose tissue in healthy volunteers and measure reproducibility in five test retest

datasets. To our knowledge, we are the first to perform in vivo reproducibility studies of a gravity-based

stiffness estimation method. From this work, we established a comprehensive stiffness estimation pro-

cedure using deformations representative of supine breast cancer interventions. Using our unique tissue
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excitation technique and novel calculation of the driving gravity induced body forces, we produced ab-

solute stiffness parameter estimates for ten unique image volumes which to our knowledge has never

been studied as extensively. In addition, the methodology we have investigated is completely com-

patible with a supine breast image-guided surgery methodology. This study also reports important

observations regarding the resolution of mechanical properties with respect to displacement extent and

image intensity feature volumes. Overall, the results are very encouraging, demonstrating that absolute

and reproducible measures are possible and an investigation towards optimization methods to adapt this

method towards inverse heterogeneous mechanical property reconstruction remain as future work.
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V.2 Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation

The work in this chapter appears in:

Griesenauer, R. H., Weis, J. A., Arlinghaus, L. R., Meszoely, I. M., and Miga, M. I. “Breast tissue

stiffness estimation for surgical guidance using gravity-induced excitation.”, Physics in Medicine and

Biology 62.12 (2017): 4756.

Abstract

Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore,

biomechanical models for predicting breast deformations have been created for several breast can-

cer applications. Within these applications, constitutive mechanical properties must be defined and

the accuracy of this estimation directly impacts the overall performance of the model. In this study,

we present an image-derived computational framework to obtain quantitative, patient specific stiffness

properties for application in image-guided breast cancer surgery and interventions. The method uses

two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical

properties to a biomechanical breast model. A reproducibility assessment of the method was performed

in a test-retest study using healthy volunteers and was further characterized in simulation. In five human

data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass corre-

lation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness.

In simulation, fibroglandular content and deformation magnitude were shown to have significant effects

on the shape and convexity of the objective function defined by image similarity. These observations

provide an important step forward in characterizing the use of nonrigid image registration method-

ologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results

suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be

implemented in breast cancer surgery/intervention workflows.

V.2.1 Introduction

Tissue stiffness interrogation plays a critical role in breast cancer from self-examinations and tumor

staging to palpation guided biopsies and surgery. Unfortunately, not all clinically relevant breast lesions

are palpable. For example, ductal carcinoma in situs are rarely palpable and are usually diagnosed by

microcalcifications seen in x-ray mammography [227]. These early stage cancers and other clinically
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occult breast lesions make tumor localization difficult for biopsies and surgical tumor removal [215].

These localization complications directly contribute to unacceptably high reoperation rates for breast

conserving surgery (20-40% [21]). For this reason, enhanced tumor localization strategies have been

suggested and include using image guidance systems that rely on patient specific biomechanical breast

models to predict tumor locations for biopsies and surgical removal [104, 154]. Image guided breast

surgery (IGBS) is performed by registering pre-surgical images to the same 3D coordinate space as the

operating room. The fundamental concept of IGBS is to track the position of surgical instruments using

optical or electromagnetic sensors and determine their location with respect to the physical position of

the tumor as determined by registered preoperative imaging data, i.e. an image-to-physical registration.

For procedures involving soft tissue, such as the breast, deformation between the preoperative image

and the operating room position is inevitable; the preoperative images no longer match the surgical

reality. For this reason, IGBS relies on a nonrigid alignment between image and patient. One such

methodology relies on patient specific biomechanical models to deform the preoperative data to match

the geometric configuration of the breast in the operating room. The term patient-specific often implies

that highly resolved geometric models are created from individual patient anatomy. In an extension to

this broad definition, we have developed a method to further incorporate patient specific mechanical

property parameters by estimating the stiffness of the underlying breast tissue to improve the accuracy

of these models.

Mechanical models for breast deformation have also been created for needle path and biopsy plan-

ning [148, 228] breast augmentation planning and simulation [150–152] and radiation therapy targeting

[153]. Within these applications, various material constitutive models have been employed. For exam-

ple, breast tissue has been modeled as nonlinear or linear elastic, isotropic or anisotropic, and homoge-

neous or heterogeneous depending on the application, deformation magnitude, and desired accuracy.

With respect to applications, many biomechanical models have been used for predicting breast

deformation in biopsy and simulating mammographic compressions. These applications are usually

driven by displacement boundary conditions that compress the breast into biopsy and/or mammogram

geometries [229]. An estimate of relative stiffness for different breast tissue types is usually sufficient

for these applications due to the indeterminate nature of displacement boundary conditions. However,

when contact forces or gravitational loading conditions are applied, absolute material property values

are required. There are several models that incorporate gravitational loading and/or contact forces for
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applications in aligning prone and supine images [153], modeling mammographic compressions [146],

and performing image-to-physical space registration of preoperative breast image volumes for use in

guiding surgery [154]. In many of these studies, the material properties are estimated using literature

values and are not patient specific. In addition, a recent review of the biomechanical properties of breast

tissue [161] reported a large variation in stiffness properties for fibroglandular, adipose, ductal carci-

noma in situ, and invasive ductal carcinomas. Variations in reported stiffness properties are mainly due

to differences in testing methodologies, continuum assumptions, measurement errors, and natural inter

and intra patient differences in tissue elasticity. Breast material properties vary greatly between subjects

so generalized applications of mechanical properties in biomechanical models used for clinical guid-

ance is not ideal. For example, variations in material properties among subjects have been attributed to

age (more adipose, less fibroglandular tissue [162] and breakdown of connective tissue), genetic fac-

tors, and hormonal changes [163]. Therefore, for procedure planning and guidance purposes, patient

specific in-vivo mechanical property estimation is likely to result in improved accuracy.

In most conventional techniques to estimate absolute stiffness properties, a known force or pressure

must be applied followed by an observed measurement of tissue deformation. In the methodology de-

scribed in this study, changes in the direction of gravitational loading are used as the known excitation

force and magnetic resonance imaging (MRI) is used to quantify tissue deformation. One advantage

to the methodology is that breast mechanical properties are being determined in a testing configuration

that is extremely close to its surgical counterpart. Others have also made similar investigations. In

Chung et al. [145], a method is reported that estimates material properties using gravity induced defor-

mations within the context of modeling mammographic compression. With that work, a gel phantom

with a simplistic breast shape was imaged in two gravity loaded configurations (0 and 10.5 inclines

off the superior-inferior axis). A single optimal material parameter was found by minimizing the root

mean square (RMS) distance error between model predicted and experientially acquired surface points.

In similar work, the concept of using multiple gravity-loaded configurations to estimate mechanical

properties was further reported in Gamage et al. [230] using a two-layered gel cantilever beam. In vivo

realizations of generating stiffness estimates by fitting model parameters to observed deformations due

to changes in gravitational loading have been performed [143, 151, 231] . In del Palomar et al. [151]

, a single material constant was iteratively adjusted to minimize residual errors of 7 surface landmarks

between supine and standing breast configurations. In Rajagopal et al. [143] , MR image volumes of
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the prone breast submerged in water were used to represent a gravity-free mechanical reference state.

In this configuration, buoyancy forces were estimated to counteract the effects of gravity. Neutral buoy-

ancy images (gravity-free) and prone images (gravity-loaded) were used to estimate a single material

property. A similar study using submerged and unsubmerged prone breast images reproduced this tech-

nique [231] , except individual stiffness properties for fibroglandular and adipose tissue were used as

opposed to a single material definition for the whole breast. In Rajagopal et al. [143], the purpose was

to validate a computational approach for estimating the gravity-free reference state of the breast for

applications in prone to supine registration. In both studies, the authors concede that submerging the

breast in water during the MRI exam is not clinically practical for routine study.

While mechanical property estimations using gravity induced deformations have been performed

in gel phantoms, there is a lack of data showing feasibility of this concept in human subjects in terms

of reliable tissue stiffness identification with techniques amenable to clinical settings. In [143, 231]

, the gravity-induced excitation (submerged/unsubmerged prone breasts) is not clinically feasible. In

[151] , errors induced by nonlinearity and gravitational pre-stress may have been compounded by very

large deformations between supine and standing breast configurations. Overall, while estimates of me-

chanical properties in vivo have been produced using gravitational excitation, they represent only a

feasibility sampling of one to two subjects with no sense of methodological repeatability and repro-

ducibility [143, 151, 231] . We address these limitations and challenges in this paper by developing a

stiffness estimation framework that is based on two supine gravity loaded configurations of the breast.

Our method takes advantage of image registration principles to capture the driving deformation source

(i.e. a change in the direction of gravitational loading). We use rich image similarity data rather than

spare point displacement errors used in all previously reported gravity-based stiffness estimation meth-

ods. Validation work has been performed in phantoms using image similarity to drive mechanical

property estimation [179, 182, 232] . In [232] , stiffness ratios as determined by mechanical testing

of the phantom material were compared with stiffness ratios as determined by an in vivo stiffness es-

timation that relies on the same image similarity parameters used in this current study. The percent

errors between the mechanical testing ratios and image-derived stiffness estimations were 8-12%. In

this study, we demonstrate feasibility of this approach in humans using ten unique stiffness estimates

of fibroglandular and adipose tissue in healthy volunteers and measure reproducibility in five test-retest

datasets. To our knowledge, we are the first to perform in vivo reproducibility studies of a gravity-based
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stiffness estimation method.

V.2.2 Methods

Theory

Before describing each component of our novel stiffness estimation algorithm, an overview is outlined

in Fig. V.1, beginning with the acquisition of two supine volumetric images. The first image is acquired

with the subject in the supine position. The subject is then slightly rotated along the longitudinal axis

of the body by placing a support wedge posterior to the breast and imaged again. Gravity-induced

deformations occur due to a change in tissue weight distribution. A biomechanical model is used to

simulate breast deformations that occur between the two image acquisitions. The forward model is

solved with a range of stiffness properties for each tissue type. An image similarity metric is used to

calculate the residual error between the model deformed and experimentally acquired image. Patient

specific stiffness property values are selected by optimizing the image similarity metric.

Image Acquisition and Preprocessing

Magnetic resonance (MR) images of the breast are typically acquired using a dedicated breast coil with

the patient lying in the prone position with freely hanging breasts. However, supine MR images are

desirable within the context of surgical navigation because they more closely represent the surgical

position. This position also readily allows for gravity induced deformations amenable to the proposed

stiffness estimation method. After informed written consent in an IRB approved study, the study vol-

unteer was positioned in a 3T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). A

16-channel sensitivity encoding torso coil (SENSE XL Torso Coil, Philips Healthcare) was situated

carefully as to not induce unnatural deformations to the breast. The ipsilateral arm was placed above

the volunteers head as to not deform or provide external support to the breast (somewhat similar to the

lateral arm extension that occurs during lumpectomy procedures). The healthy subject image data was

acquired with: TR=7.422 ms, TE=3.91 ms, and flip angle= 10 degrees using SENSE parallel imaging

(acceleration factor = 2). High resolution anatomical images were acquired with a T1-weighted, 3D

turbo field echo sequence with fat suppression, a field of view of 200 mm × 200 mm × 160 mm, and

a reconstructed voxel size of 0.391 mm × 0.391 mm × 1 mm. The duration of each image volume

acquisition was 120.6 seconds.
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Figure V.1: The stiffness estimation framework begins with the acquisition of two gravity loaded image
volumes (see Fig. V.2). A rigid alignment between the two configurations is performed using only chest
wall intensity information. The rigid registration procedure results in a translation, t, and rotation, R,
that is used to transform Ig1 to be rigidly aligned with the chest wall in Ig2 (see Fig. V.4). Also from
R, a change in gravitational loading is quantified. A FEM mesh and biomechanical model is built from
Ig2 . A displacement field is generated from solving the biomechanical model and is used to deform
Ig2 . An image similarity metric is calculated between the model deformed image (I′g2 ) and the rigidly
aligned baseline image (Ig1→g2 ). Stiffness properties are extracted when the calculated image similarity
is optimized. An optimization procedure can be employed to iteratively update the material properties
until the image similarity metric is minimized.
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Image volumes were acquired before and after a gravity-induced excitation for each volunteer. The

mechanical excitation for this method involves slightly rotating the subject along the longitudinal axis

of the body by placing a 15◦ foam support wedge posterior to the torso side with the breast being

imaged. The torso rotation causes a change in the baseline patient configuration with respect to the

acting direction of gravity. Gravity induced deformations occur as a result of changes in tissue weight

distributions with the rotating torso. Central axial image slices of the baseline and gravity-induced

excitation configurations are shown for a representative subject in Fig. V.2.

Figure V.2: Two representative gravity loaded configurations used as input images in the stiffness
estimation method. (a) represents the baseline configuration (Ig1) while (b) represents the breast after a
gravity induced excitation (Ig2).

For computational efficiency, image volumes were downsampled to 256 × 256 × 160 with voxel

sizes of 0.78 mm × 0.78 mm × 1 mm. The breast (excluding chest wall muscles) was segmented from

the gravity-induced configuration (Ig2) using ITK-SNAP [199]. A region based segmentation method

was used to automatically classify breast tissue into two types: adipose and fibroglandular. The Markov

Random Field (MRF)-based algorithm, implemented using The Insight Toolkit (ITK) [233], assumes

that adjacent pixels likely belong to the same tissue type or class and performs segmentation using

intensity similarity between adjacent pixels. Following segmentation, a binary mask of the whole breast

was used to generate a boundary surface using a marching cubes algorithm [200], implemented with the

Visualization Toolkit (VTK) [201]. Following surface generation, radial basis function smoothing was

applied using the FastRBFToolbox (Farfield Technologies, Christchurch, New Zealand). A volumetric

tetrahedral finite element mesh with a nominal edge length of 3 mm was created from this surface using

a custom mesh generator [202]. Fig. V.3a shows two orthogonal slices of a segmented supine breast
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classified into adipose (white) and fibroglandular tissue (red) with the FE mesh overlaid in black.

Figure V.3: (a) Tetrahedral mesh built from a representative gravity-induced configuration image (Ig2).
The black wire outline shows surface elements of the mesh. Two orthogonal cuts of the segmented
image volume along the axial and sagittal planes are shown with adipose represented in white and
fibroglandular in red. Sagittal (b) and axial (c) slices of the Ig2 image volume are shown with the mesh
overlaid in blue. The green nodal spheres in (b, c) correspond to fixed boundary conditions along the
chest wall. The rest of the mesh moves freely according to the applied body forces.

Biomechanical Model

In this study, we use a mechanics based computational model to simulate breast deformation. The

partial differential equation that expresses a static stress distribution in a material in response to a

known body force is shown in V.1.

∇ ·σ = β (V.1)

where σ is the stress tensor and β represents a body force. The stress-strain relationship according to

Hooke’s law is

σ =Cε (V.2)
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where C represents the stiffness tensor of a material and ε is a strain tensor. Biological tissue is often

represented using linear strain elements depending upon the application, desired accuracy, and com-

putational requirements. The full nonlinear formulation, known as Greens strain tensor, results in a

nonlinear algebraic system that is computationally expensive while the linear approximation to Greens

tensor (Cauchy tensor) often mishandles larger deformations. In this study, we employ a nonlinear

corotational FEM formulation [126], which represents a compromise in terms of computational burden

and accuracy between the full nonlinear strain tensor and the linear approximation. In the corotational

model, large local rigid body movements are accounted for and the remaining shape change is handled

by linear elastic mechanics (i.e. neglecting quadratic terms in Greens tensor). While not a nonlinear

constitutive relationship per se, accounting for large local tissue rigid motion does not require an itera-

tive nonlinear approach. Corotational FEM models have been widely used within the soft-tissue large

deformation mechanics literature [126–128].With respect to constitutive behavior, the conventional

stress-strain relationship, Hookes Law, requires two material property constants to describe any given

tissue, namely, ν (Poissons ratio) and E (Youngs modulus). Youngs modulus represents the stiffness

of a material and is optimized during the stiffness estimation process. Poissons ratio is the negative

ratio of lateral to longitudinal strain in an axially loaded material and represents a characterization of

compressibility. Since biological soft tissue is generally quite hydrated, we assume breast tissue to be

slightly to nearly incompressible. Largely due to the challenge in soft-tissue material testing, there is

sparse data on ν for breast tissue. As a result, ν was added as another degree of freedom in the model

varying over the range of = 0.40 0.47. Equation V.3 shows the stress-strain relationship for a linear

elastic, isotropic material.


σ1
σ2
σ3
σ23
σ13
σ12

= E
(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


(V.3)

Furthermore, the relationship between strain and displacement is εi, j = 1/2(ui, j +u j,i) where u defines

a three-dimensional displacement field. Using linear basis functions defined on tetrahedral finite ele-

ments, we performed the Galerkin Method of Weighted Residuals to obtain a system of equations to

90



resolve the unknown displacement coefficients. Ultimately, we are interested in finding the mechani-

cal properties of breast tissue that produce a displacement field that when used to deform the gravity

excited image (Ig2) matches the baseline configuration image (Ig1→g2).

Boundary Conditions

In our model, the chest wall is assumed to be a reliably rigid structure in relation to breast tissue.

Therefore, rigid alignment using chest wall intensity information was performed to extract the relative

rotation that occurred between the baseline configuration and the torso rotated image configuration.

The following image processing steps were performed to extract the geometric change of the breast

relative to the direction of gravity:

1. Segment the chest wall muscles in each image:

The chest wall was semi-automatically segmented in each image using ITK-SNAP’s implemen-

tation of the Snake’s algorithm [207].

2. Rigidly register the baseline and gravity-induced images:

A standard rigid registration [208] was performed using image contrast patterns of the chest

walls in the two image volumes to transform the baseline image (Ig1) into the gravity-induced

configuration space (Ig2). Fig. V.4 displays a representative result of such a registration. Ig1 and

Ig2 chest wall image masks are highlighted to show the driving components of the registration

(Fig. V.4a,V.4b). The transformation matrix (containing translation, t and rotation, R) is used

to rigidly align the baseline image to the gravity-induced configuration image (Fig. V.4c). An

overlay of the gravity-induced (Ig2) and registered baseline images (Ig1→g2) are shown in Fig.

V.4d and visually confirms that the chest wall muscle beneath the breast rigidly aligns compared

to the breast tissue above that has deformed due to the difference in gravitational loading. Once

aligned, rigid translational components are accounted for and the remaining tissue dissimilarity

is due to rotational components that arise from gravity-induced deformations.

3. Extract gravity differential vector:

The gravity differential vector can be extracted from the rotation matrix using (V.4):

∆ĝ = ĝ1−R∗ ĝ1 (V.4)
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β = 9.8
m
s2 ρ ∆ĝ (V.5)

where ĝ1 is assumed to be unit vector normal to the MR table. In (V.5) , β is subsequently ap-

plied as a body force of tissue weight in the biomechanical model (V.1). The tissue density, ρ is

assumed to be uniform and approximately equal to water,1000 kg/m3. The model nodes asso-

ciated with the chest wall are fixed in the x, y, and z directions, i.e. applied Dirichlet boundary

conditions set to zero. Fig. V.3b and V.3c show central sagittal and axial image slices with the

volumetric mesh overlaid in blue. The green spherical nodes represent the fixed posterior surface

along the chest wall.

Figure V.4: Representation of the rigid alignment procedure described in Section V.2.2. Central axial
slices are shown of the (a) baseline configuration image, and (b) gravity-deformed configuration with
overlays of chest wall regions used in initial alignment. The transformation matrix extracted from the
rigid registration is used to align the chest walls in the baseline configuration and the gravity-deformed
configuration so that the resulting misalignment of breast tissue is due to deformations caused by the
change in gravitational loading. In (c), we see the aligned baseline to the gravity-induced reference
frame, and (d) contains image masks of the rigidly aligned baseline image (Ig1→g2) (red) and gravity
deformed image (Ig2) (blue). It is clear that the chest wall is relatively rigid compared to the mismatch
in breast tissue structures due to gravity induced nonrigid deformation.

92



Stiffness Estimation

The stiffness estimation process first begins with generating an eroded binary mask of the torso-rotated

image volume for the purpose of designating a zone in which to compute an image similarity metric

between the model deformed image and the chest wall aligned baseline image. The Youngs modulus

values for adipose and fibroglandular tissue were then estimated by performing an exhaustive search

of the parameter space and selecting the set of properties that optimized the image similarity metric

defined by eq. (V.6)

S = (1−CC) (V.6)

where S is the similarity metric to be minimized and CC is the image correlation coefficient defined by

eq. (V.7).

CC =
∑i(I′|g2|i− Ī′|g2|)(I|g1→g2|i− Ī|g1→g2|)√

∑i(I′|g2|i− Ī′|g2|)
√

∑i(I|g1→g2|i− Ī|g1→g2|)
(V.7)

where I′|g2|i and I|g1→g2|i are the intensity values at pixel i for the model deformed and chest wall aligned

baseline images, respectively. Ī′|g2| and Ī|g1→g2| are the mean intensity values of the model deformed

and chest wall aligned baseline images. CC has a value of 1 if two images are absolutely identical and

a value of zero if completely uncorrelated.

Experiments

Test-retest reproducibility in human subjects

In an IRB approved study with informed written consent, healthy female volunteers over the age of 18

without evidence of pregnancy were recruited for a test-retest study to measure the reproducibility of

this stiffness estimation technique. The five test-retest datasets are comprised of three healthy volun-

teers ages 21-36, with the left and right breasts of two volunteers and the left breast of a third volunteer.

Due to differences in right/left breast volumes, fibroglandular content [234], tissue hydration levels

[235], and a lack of data to suggest symmetry in material properties [236] we consider each breast

to be an individual dataset. Therefore, this work presents a total of ten stiffness estimates and five

test-retest datasets to determine method reproducibility. A reproducibility assessment was performed

using a test-retest approach in which volunteers were scanned in a baseline position and re-set between

the two-consecutive gravity-loaded configuration scans. Independent stiffness estimations were then

performed for each baseline-gravity-deformed dataset using the methodology described above. The
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parameter search space used in human subjects is summarized in Table V.1. The lower and upper

bounds of the parameter search space for each tissue type was determined by encompassing the range

of previously reported tissue stiffness values in quasi-static/low frequency shear wave MRE studies

[161, 237–239].

Table V.1: Parameter space used in human subjects study:

Tissue Type Lower Bound Upper Bound Step Size

Adipose 0.05 kPa 2.5 kPa 0.05 kPa

Fibroglandular 0.05 kPa 12 kPa 0.05 kPa

Poisson’s Ratio 0.40 0.47 0.01

The test-retest variability was calculated as the absolute value of the difference between test-retest

stiffness values expressed as a percentage of the mean of both stiffness values:

∆E(%) =
|E1−E2|

(E1 +E2)/2
×100 (V.8)

where E1 and E2 are the test and retest stiffness estimations, respectively. Test-retest variability was

calculated for each tissue type and is commonly reported in quantitative imaging studies [240, 241]

as a measure of standardized variability in measurement errors across subjects. The mean test-retest

variability across all datasets is reported as m∆E. The between subject standard deviation (SD) and

within subject standard deviation (wSD) was reported to further assess variability and reproducibility.

The wSD was calculated according to [242] as follows:

wSD =

√
∑

n
i=1(E1i−E2i)2

n√
2

(V.9)

where n represents the number of test-retest datasets. The coefficient of variation (CV) and within

subject coefficient of variation (wCV) was calculated by dividing SD and wSD by the overall parameter

mean for each tissue type. We calculated the intraclass correlation coefficient (ICC) [243], which relates

the magnitude of measurement error to the inherent variability between subjects using equation V.10.

High ICC values indicate that the measurement errors are low in comparison to the true difference

between subjects and takes a value between 0 and 1.
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ICC =
(SD)2

(SD)2 +(wSD)2 (V.10)

Simulation

Simulations were performed to investigate the sensitivity of the objective function to two aspects of the

testing framework, (1) adipose-to-fibroglandular tissue volume content, and (2) torso rotation extent. In

the simulation framework, a model with known material properties, boundary conditions, and gravity-

induced excitation was used to create model-deformed images from baseline image volumes. Material

properties for adipose and fibroglandular tissue were selected using the approximate average stiffness

values from the human subjects study (adipose and fibroglandular stiffness of 0.25 kPa and 2 kPa,

respectively were used as ground truth). For each subsequent simulation set, stiffness property values

were incrementally assigned based on the parameter search space with bounds described in Table V.2, a

forward corotational linear elastic model was solved to obtain the displacement field, and the field was

interpolated onto the baseline image to create a simulated gravity-deformed image. The image-intensity

similarity metric described by Eq. V.7 was then calculated between the baseline and model-deformed

image volumes. In addition to similarity, a displacement error metric (Eq. V.11), was also calculated

as a measure of difference.

RMS Displacement Error =
1
N

N

∑
i=1
|dtrue,i−dmodel,i|2 (V.11)

where N is the number of nodes in the FEM mesh, dtrue,i are the true nodal displacements provided by

the FEM simulation in this case, and dmodel,i are the FEM nodal displacements generated by the current

mechanical property model parameters.

Table V.2: Parameter space used in simulation study:

Ground truth is 0.25 kPa and 2 kPa for adipose and fibroglandular, respectively
Tissue Type Lower Bound Upper Bound Step Size

Adipose 0.1 kPa 0.5 kPa 0.05 kPa

Fibroglandular 1 kPa 4 kPa 0.05 kPa

To study the effect of adipose-to-fibroglandular tissue volume, baseline image volumes from four

healthy volunteers were chosen to represent breasts with low (12%), moderate (24%), and high (33
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& 39%) fibroglandular contents. A parameter sweep was performed for each simulation set with an

applied body force generated from an approximate 30◦ rotation about the longitudinal axis of the body.

Investigations on the extent of torso-rotation were performed using the moderate level fibroglandular

content image volume. The effect of gravity induced deformation magnitude was explored by perform-

ing simulation parameter estimations using three angles of rotation corresponding to approximately

15◦, 30◦, and 45◦ rotations along the longitudinal axis.

V.2.3 Results

Healthy Volunteers

A representative summary of the parameter sweep search results are shown in Fig. V.5 for two test-

retest datasets. A central axial slice of the baseline image is shown in Fig. V.5 (a) for each stiffness

estimation procedure. Masked overlays of the baseline image (gray), gravity-induced configuration im-

age (blue), and model-optimized image (red) are shown to the right of the anatomical baseline image.

While single axial image slices are shown for display purposes, property estimations and error calcula-

tions were volumetric. Qualitative assessment of these images show a significant improvement in image

alignment when stiffness properties are optimized. Below each image set are the image similarity error

maps (d). The contour plots show the value of the image similarity metric for each adipose (x-axis) fi-

broglandular (y-axis) combination sampled. Each has an elongated minimum region suggesting greater

sensitivity to adipose value contrast.

Quantitatively, the method provides reliable stiffness values for both adipose and fibroglandular

tissue. The demographic information and test-retest stiffness estimations are summarized in Table V.3.

The optimal Youngs modulus values for adipose and fibroglandular tissue were determined by selecting

the parameters responsible for producing the best image similarity metric. Among the five test-retest

datasets, the highest stiffness properties came from the youngest volunteer (Sets 1 and 2). The ratio of

adipose tissue between the left (Set 1) and right (Set 2) breasts ranged from 1.16 to 1.8. The ratio of

fibroglandular tissue between the left (Set 1) and right (Set 2) breasts ranged from 4.5-6.2. Set 3 and

Set 4 also represent the left and right breasts from the same subject with adipose ratios ranging from 2

to 2.5 and fibroglandular ratios ranging from 1.4-4.2.

Reproducibility and variability statistics for the five test-retest datasets are summarized in Table

V.4. Test-retest statistics were calculated for the optimal stiffness parameters. The wCV for fibrog-
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Figure V.5: Summary of the stiffness estimation results for Set 1 and Set 5. Image alignment compar-
isons are displayed in panels (a-c) for each test-retest set. In (a), axial anatomical image slices are shown
for the baseline configurations. (b) contains masked versions of the baseline configuration image (gray)
and gravity-induced configuration image (blue). In (c), masked image slices of the model-deformed
configuration with optimized stiffness values are shown in red overlaid with the baseline configuration
(gray). Qualitatively, there is significant improvement in the baseline image alignment when model-
optimized stiffness parameters are used. Similarity metric maps are shown in (d) where the diamond
in each map represents the minimum value of the contour plot (i.e. the optimal stiffness parameters).
Contours represent the error in image similarity for each adipose-glandular value sampled.
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Figure V.6: Simulation results investigating the effect of fibroglandular content on the form of the
similarity metric. Baseline images are shown from subjects with fibroglandular tissue volume contents
of (a) 12%, (b) 24%, (c) 33%, (d) 39%. Using a 30◦ change in the gravitational unit vector and Youngs
modulus values of 0.25 kPa (adipose) and 2 kPa (fibroglandular), simulated gravity-deformed images
were created for each baseline image shown in the top panel. The bottom panel shows the resulting
similarity error contour maps. The diamond represents the error map minimum.

landular tissue was 10.7% with respect to optimal parameter selection. The wCV for adipose tissue

was 17.6%. A high reliability parameter (ICC) was observed for fibroglandular tissue at 0.994 and

adipose at 0.91 using optimal properties. Overall, the wCV and ICC values combine to show reliable

parameter estimates and indicate that the measurement error was substantially low compared to the true

difference between subject breast tissue stiffness properties. We note that the Poissons ratio selected for

optimal stiffness property determination used the full range (shown in Table V.1) in the best fit process.

Given that we did not explicitly fit ν within each tissue type, allowing to float among a limited range

of possible values tended to regularize the inverse problem.

Simulations

Effect of fibroglandular tissue

Fibroglandular content affects the shape of the similarity metric map. As shown in Fig. V.6, low

fibroglandular content results in poor contrast in resolving fibroglandular tissue as evidenced by a lack

of objective function gradient across varying values of fibroglandular stiffness. In contrast, the dramatic

objective function gradients across varying adipose tissue values speak to considerable contrast. To

some degree expected, we see a shift in convexity of the objective function with better contrast in the

fibroglandular tissue with increased fibroglandular content along with a more dramatic gradient.
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Table V.3: Stiffness estimation results for each test/retest dataset.

Demographics for each set:
Breast Fibroglandular

Age Volume (cm3) Content(%)

Set 1 21 85 12

Set 2 21 84 16

Set 3 35 69 27

Set 4 35 61 22

Set 5 36 42 21

Test/Retest Results: Optimal Young’s Modulus values (kPa) for adipose and fibroglandular tissue are
reported for all 5 test/retest datasets. θ is the angle of rotational about the longitudinal axis of the
body calculated from ∆ĝ)

Optimal Optimal
∆ĝ Adipose (kPa) Fibroglandular (kPa)

Set 1
Test 15.5 0.35 2.25

Retest 6.9 0.45 1.65

Set 2
Test 9.2 0.30 10.30

Retest 8.6 0.25 10.15

Set 3
Test 14.3 0.20 0.55

Retest 8.0 0.25 1.05

Set 4
Test 18.9 0.10 0.25

Retest 13.2 0.10 0.35

Set 5
Test 18.3 0.10 0.40

Retest 17.2 0.10 0.90
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Table V.4: Reliability and variability statistics for adipose and fibroglandular tissue:The mean stiffness
values are reported in kPa, SD and CV are the between subject standard deviation and coefficient of
variation, wSD and wCV are the within subject standard deviation and coefficient of variation. m∆E
is reported as the percent mean m∆E across all test/retest datasets and ICC is the intraclass correlation
coefficient. n= 5 test/retest datasets.

Tissue Type Mean SD(CV) wSD(wCV) m∆E ICC

Adipose 0.22 0.123(0.559) 0.0387 (0.176) 13.08 0.91

Fibroglandular 2.785 3.97(1.426) 0.2987(0.107) 41 0.994

Effect of gravity-induced deformation magnitude

Amplification of the gravity induced deformation via increased torso rotation directly impacts the con-

vexity of the similarity metric as well as the shape of the RMS displacement error. In Fig. V.7, the

three panels show an increase in deformation magnitude from left to right. Gray masks of a central

axial slice of the baseline image are overlaid with magenta masks of the (a) 15◦, (b) 30◦, and (c) 45◦ ro-

tated simulation images. Below each masked overlay are the image similarity metric and displacement

error maps for each rotation. The displacement error maps are marked to indicate the contour levels

that approximate the full (0.8 mm) and half (0.4 mm) in-plane voxel sizes.

As the deformation magnitude increases, the convexity of the error metrics increases. The average

and maximum deformation magnitude caused by the simulated excitation was 2.8 (max = 6.3) mm,

5.7 (max = 12.9) mm, and 8.1 (max=18.6) mm for the 15◦, 30◦, and 45◦ rotation levels, respectively.

Contour levels far below the voxel size indicate a limit in stiffness property resolution as changes

in the image similarity cannot be detected below these levels. Elongation of the image similarity

objective function maps is observed when compared to the RMS displacement error maps (which is

a representation of true error). This observation may be attributed to the non-exact nature of feature

comparison when using image similarity, image downsampling, partial volume effects, smoothing, and

edge effects.

V.2.4 Discussion

In this study, we established a comprehensive stiffness estimation procedure using deformations repre-

sentative of supine breast cancer interventions. Using our unique tissue excitation technique and novel

calculation of the driving gravity induced body forces, we produced absolute stiffness parameter esti-
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Figure V.7: Simulation results investigating the effect of deformation magnitude on the form of the error
metrics. 15 (a), 30 (b), and 45 (c) degree changes in gravitational loading conditions with Youngs mod-
ulus values of 0.25 kPa (adipose) and 2 kPa (fibroglandular) were used to simulate gravity-deformed
images with increasing (from left to right) deformation magnitudes. Contour plots of the image-based
similarity metric are shown above the nodal displacement error contour maps for each rotation level.
The displacement error maps are marked to indicate the contour levels that approximate the full (0.8
mm) and half (0.4) in-plane voxel sizes. The diamonds indicate the minimum value in each contour
plot.
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mates for 10 unique image volumes which to our knowledge has never been studied as extensively. In

addition, the methodology we have investigated is completely compatible with a supine breast image-

guided surgery methodology previously reported [154]. This clinically amenable workflow requires

no complicated motion-sensitive imaging sequences or highly specialized equipment to induce and

measure tissue deformations. This study reports important observations regarding the resolution of me-

chanical properties with respect to displacement extent and image intensity feature volumes. Overall,

the results are very encouraging, demonstrating that absolute and reproducible measures are possible

and an investigation towards optimal imaging sequences to ensure satisfactory resolution of the objec-

tive function are suggested for future work.

While MR images were used in this work, the method has been shown to be somewhat modality

independent [167], as its estimates mechanical properties using image similarity metrics rather than

relying on displacement measurement techniques inherent to a specific imaging modality (the method

has been used previously with CT images and optical images [166, 184]). However, this work goes

further than the closely-related investigations of the elastography method called Modality Independent

Elastography (MIE) [166, 167, 176, 182, 184, 232]. More specifically, previous MIE investigations

were only successful in predicting soft-tissue stiffness ratios between adipose, fibroglandular, and tu-

mor due to the use of indeterminate displacement boundary conditions. In this study, we deploy an

adaptation that uses gravitational body forces for excitation, which as equation III.8 shows, transforms

the approach to generating absolute quantitative stiffness tissue values.

To our knowledge, this study reports the first test-retest reproducibility assessment of an MRI- de-

rived, absolute quantitative breast tissue stiffness estimation method using gravity-induced excitations.

Our test-retest wCV (wCV-10.7% and 17.6% for fibroglandular and adipose, respectively) and ICC

(ICC- 0.994 and 0.91 fibroglandular and adipose, respectively) values are comparable to other quanti-

tative imaging reproducibility studies. In Weis et al. [232], the reproducibility of the MIE method in

murine breast cancer models was studied. The wCV ranged from 13% at the bulk level to 32% at the

voxel level. The ICC values reported in [232] ranged from 0.70-0.99. Due to our modest sample size,

robust statistical analysis for true significance is limited; however, this work is suggestive and quite

encouraging.

From the perspective of clinical workflow, this work suggests various improvements to the image

acquisition and mechanical excitation procedure that can be adapted to improve the performance of
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the method. The shifts in convexity of the similarity objective function maps shown in Fig. V.6 and

Fig. V.7 was a significant finding in the simulation studies. These results indicate that a lack of signal

(or decreased image volume texture) in either tissue type will cause the objective function to provide

less contrasting gradients with respect to the tissue-type of decreasing signal content. In future studies,

weighting schemes and adjustment of image acquisition sequences will need to be studied to further

investigate this observation and perhaps develop novel image acquisition frameworks to maximize con-

trast performance. For example, in previous MIE studies, simultaneous MRI acquisitions of fat-only

and water-only images were performed using a commercially available Dixon sequence [183]. We can

utilize these image sequences to improve objective function sensitivity depending on tissue-type con-

tent. Similarly, we also observed in this study that amplifying the deformation magnitude by increased

torso rotation will better condition the objective function for future inverse property reconstruction

methods. The degree of rotation in the volunteer study overall best corresponds to the 15◦ rotation in

the simulation study. We experimentally observed that increased torso rotations are particularly impor-

tant for small and/or stiff breast volumes. Therefore, we can customize our image acquisition protocol

to accommodate breast density. Lastly, all of these observations will be particularly important as we use

this information to advance the performance of inverse reconstruction procedures based on similarity

(e.g. MIE).

With respect to limitations of this work, in addition to our modest sample sizes, the average volun-

teer age was 30, which is relatively young compared to the average breast cancer patient. It is likely

that additional work would be needed to resolve aspects that vary with age. Across all subject types, it

is likely that more advanced nonlinear constitutive relationships will be needed in the future to further

improve accuracy of such methods. Similarly, quasi-static excitation neglects a potentially rich source

of time-varying viscoelastic effects that may be important for interactive IGBS systems. Additionally,

we also need to consider the accuracy of boundary conditions. While the model accounts for gravity in-

duced deformations, it ignores contributions from Coopers ligaments, pectoral muscle forces, and rigid

registration errors during the initial alignment procedure. Understanding the impact of these missing

factors and sources of error is an important direction for improving performance. Clearly, another lim-

itation is that we prescribe the tissue types as isotropic and homogeneous. In future work, spatially

discretized region-based mechanical property reconstructions, similar to that of the MIE methodology,

may be needed to create better geometric maps of tissue stiffness. With this last item, these capabilities
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tend to be goals within diagnostic elastography applications. In terms of image acquisition protocols,

there are areas to be improved. The image acquisition methods performed in this study were adapted

from an existing prone imaging protocol [244]. For a healthy volunteer, the signal to noise ratio (SNR)

calculated according to [245] was measured in a prone and supine setup using the image parameters

defined in Section 2.2. In the prone acquisition, a dedicated breast coil (16-channel receive double-

breast coil, Philips Healthcare, Best, The Netherlands) was used. The SNR in the prone images was

55.8 while the supine image SNR was 27.2. The reduced SNR in the supine images is due to respira-

tory and motion artifacts while also compounded by the fact that the torso coil used in the study is not

optimized for breast imaging. An avenue worth pursuing in the future is to use respiratory-triggered

MR acquisitions, which have been shown to improve the SNR of supine breast images [245].

As the work moves forward, we must establish which features are most important for the accurate

execution of IGBS. Nevertheless, it is encouraging that our preliminary stiffness values are within

range of low frequency, minimal pre-compression elastography methods. For example, in Chen et al.

[237], a non-compressive elastography system with relatively low frequency shear waves (40 Hz) was

tested in 7 healthy subjects. The stiffness range for adipose tissue was 0.25 0.41 kPa and 0.46 0.9

kPa for fibroglandular tissue. In Lorenzen et al. [239], MR elastography values for 20 patients and 15

healthy volunteers were reported with 0.5 - 4 kPa (median = 1.7 kPa) for adipose tissue and 1-15 kPa

(median = 2.5 kPa) for fibroglandular tissue. Traditionally, magnetic resonance elastography studies

report stiffness values in terms of shear modulus (G), which can be approximated to Youngs modulus

by E = 3G. With our quasi-static study herein, we report mean stiffness values of adipose tissue to be

0.2 +/- 0.1 kPa and 2.8 +/- 4.0 for fibroglandular tissue. As breast tissue properties have shown to be

frequency dependent (increased reported stiffness values with increased frequency and precompression

[161], [174], [164]), we obtained lower stiffness values in this study than measured by dynamic based

excitation methods.

V.2.5 Conclusion

In summary, we have established a novel quantitative breast tissue stiffness estimation framework

amenable to clinical workflows associated with interventional/surgical image-guided environments. We

characterized the performance of the method in simulation and established the test-retest reproducibil-

ity of the resulting stiffness values in vivo in healthy volunteers. The feasibility and reproducibility
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of the stiffness estimation method presented here is encouraging and several future opportunities for

improvement and implementation into other applications exist. The framework suggested in this work

can be seamlessly integrated and adds only a single additional two minute scan to a supine imaging

procedure. With this single additional scan, we realize an ability to develop patient-specific breast

geometric models with appropriate quantitative stiffness estimates for use within novel image guided-

breast surgery systems with no specialized equipment and using standard imaging sequences available

on traditional clinical MR scanners.
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CHAPTER VI

Incorporation of Patient Specific Parameters for Image Guided Breast Surgery

VI.1 Summary and Contributions

In Chapter V, a gravity-based stiffness estimation method was introduced. Here, parameter sweeps

were performed, sampling stiffness values for adipose and fibroglandular tissue. A biomechanical

model was solved for each adipose-fibroglandular stiffness value. The displacement field generated by

the model was then used to deform the gravity-induced excitation image. A measure of image simi-

larity was then calculated between the model-deformed image and baseline image for each adipose-

fibroglandular stiffness value set. The minimal value of this similarity map was chosen to obtain the

optimal stiffness values. While the framework for the stiffness estimation method was tested, and

shown to be promising for work in image-guided breast surgery, performing a parameter sweep on a

sufficient search space with acceptable discretization of said search space is extremely time consuming.

Therefore, in this study, we perform an investigation into the use of optimization routines to reconstruct

the values of patient specific breast tissue stiffness. An interesting set of observations were reported

in [246] that prompted this investigation. For example, the shape of the objective function changes

according to the fibroglandular content of the breast and the magnitude of deformation induced during

gravity-excitation. Due to inevitable differences in patient breast size, fibroglandular content, defor-

mation levels, and stiffness values, we opted to test a variety of optimization methods to determine the

most appropriate method to use going forward in the context of image-guided breast surgery.

In this study, we reduced the computation time to obtain the optimal stiffness values (i.e. find the

similarity error minimum) by two to three orders of magnitude when compared with the parameter

sweep method used in Ch. V. All eight unique breast stiffness calculations converged to the minimum

with less than 20% errors (when compared to the parameter sweep minimum). Furthermore, the opti-

mization routine employed found a lower minimum than the parameter sweep method approximately

two-thirds of the time. Finally, an investigation towards heterogeneous elastic property reconstruction

was performed. Heterogeneous property reconstruction is not feasible using parameter sweep methods

as the number of model solves required would be too burdensome. However, with the optimization

routine developed in this study, heterogeneous property reconstruction becomes feasible. This feasi-
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bility study moves our novel stiffness method towards becoming an elastography technique. While the

need to obtain homogeneous properties for applications in image guided breast surgery was addressed

in this study, the step towards an elastographic approach has several avenues for future exploration.
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VI.2 Towards quantitative quasi-static elastography with a gravity-induced deformation source

The work in this chapter appears in:

• R. H. Griesenauer, J. A. Weis, L. R. Arlinghaus, I. M. Meszoely, and M. I. Miga, “Towards

quantitative quasi-static elastography with a gravity-induced deformation source”, SPIE Medi-

cal Imaging: Image-guided Procedures, Robotic Interventions, and Modeling Conference, Vol.

10135, 2017

• Griesenauer, R. H., Weis, J. A., Arlinghaus, L. R., Meszoely, I. M., and Miga, M. I. “To-

wards quantitative quasi-static elastography with a gravity-induced deformation source for Image

Guided Breast Surgery.” Journal of Medical Imaging. In preparation.

Abstract

Biomechanical breast models have been employed for applications in image registration and analysis,

breast augmentation simulation, and for surgical and biopsy guidance. Accurate applications of stress-

strain relationships of tissue within the breast can improve the accuracy of biomechanical models that

attempt to simulate breast movements. Reported stiffness values for adipose, glandular, and cancerous

tissue types vary greatly. Variations in reported stiffness properties are mainly due to differences in

testing methodologies and assumptions, measurement errors, and natural inter patient differences in

tissue elasticity. Therefore, patient specific, in vivo determination of breast tissue properties is ideal

for these procedural applications. Many in vivo elastography methods are not quantitative and/or do

not measure material properties under deformation conditions that are representative of the procedure

being simulated in the model. In this study, we developed an elasticity estimation method that is per-

formed using deformations representative of supine therapeutic procedures. Reconstruction of material

properties was performed by iteratively fitting two anatomical images before and after tissue stimula-

tion. The method proposed is work flow friendly, quantitative, and uses a non-contact, gravity-induced

deformation source.

VI.2.1 Introduction

Breast cancer imaging modalities include x-ray mammography, ultrasound, and magnetic resonance

imaging (MRI). In each modality, unique patient positioning confounds the use of diagnostic images
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for surgical guidance. In x-ray mammography, the patient stands erect with the breasts compressed

between two plates. During ultrasound exams, the patient is positioned supine with the ipsilateral arm

placed above the patients head. MRI exams of the breast are typically performed with the patient

lying prone with breasts pendant in the MRI coil chambers. During surgery, the patient is positioned

supine with the ipsilateral arm placed perpendicular to the body. Each modality has unique benefits for

the screening, diagnosis, and staging of breast cancer. However, there is limited utility in the use of

diagnostic images for localizing tumors during surgery. For breast conserving therapy (BCT), which

consists of a lumpectomy (removal of tumor and small amount of surrounding healthy tissue) followed

by radiation therapy, localization of the tumor during surgery can be difficult. Reoperations due to

the presence of residual tumor after an initial resection average 20-40% [21]. Furthermore, ductal

carcinoma in situ (DCIS) is associated with a 3-fold increase in reoperation rates when compared to

invasive carcinomas [15]. DCIS lesions have diffuse growth patterns and ill-defined margins when

compared to invasive breast cancers [247]. Furthermore, DCIS extensions into intraductal tissue can be

difficult to determine. Due to the mainstream usage of screening mammography, an increasing number

of patients are being diagnosed with DCIS and early stage cancers. Therefore, precise strategies to

localize the non-palpable DCIS lesions are needed. While intraoperative ultrasound has been shown to

reduce the need for re-excisions [248], ultrasound cannot image most cases of ductal carcinoma in situ

(DCIS) and is limited in detecting multifocal disease, bilateral breast cancers, and intraductal spread

characteristics [59].

While MRI is considered the most sensitive and accurate imaging modality in the context of breast

cancer [61, 62], the limited specificity of MRI provides some areas of improvement. There is some

evidence that preoperative MRI causes overtreatment and is associated with an increase in the use of

mastectomy, delay in treatment, and an increase in the number of additional biopsies [63, 64, 188].

Alternatively, several studies have disputed these claims arguing that MRI provides invaluable infor-

mation regarding the extent of disease. In a prospective, randomized, multicenter study, a significant

decrease in reoperation rates was reported between women who received a preoperative staging MRI

vs. women who did not receive an MRI prior to lumpectomy [192]. Sung et al. published a retrospec-

tive analysis that concluded that reoperation rates among BCT patients were lower for women who

received a preoperative MRI [193]. Several other studies report positive findings for improved preoper-

ative staging using MRI [192–195, 249] . Overall, the argument surrounding the value of preoperative
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MRI remains somewhat unclear. However, it is generally agreed upon that MRI provides the most

accurate delineation of the size and extent of cancer and offers the highest sensitivity for intraductal

extension involved in breast cancers [60, 250, 251].

Regardless, these diagnostic MR images are not particularly useful in the context of surgical plan-

ning and guidance. As previously discussed, preoperative MR images are acquired in the prone position

with pendant breasts while surgery is performed with the patient lying supine. Several studies have re-

ported significant displacements in breast tumors between the prone and supine positions on the order

18-60 mm [46–48]. These relatively large displacements render diagnostic images sub-optimal for

use in surgical planning and navigation, which may contribute to studies finding little to no benefit

of preoperative MRI for surgical use. Due to these realizations, several groups have investigated the

use of preoperative MR images rendered in positions that more closely represent the surgical orienta-

tion. Prone-to-supine registration methods of MR images for use in guiding breast surgery have been

developed [135, 136]. A more direct approach is to use MR images taken in the supine position to

guide surgery. Supine breast imaging has been a topic of interest in several studies [223, 252, 253].

Furthermore, the use of supine breast MRI in the context of image guided breast surgery (IGBS) has

been suggested in several frameworks [46, 54, 154, 224]. In the context of IGBS, preoperative supine

breast images are registered to the physical space of the operating room to act as patient specific maps

to assist surgeons in localizing discrete breast lesions. The patient specific aspect of these systems

involves the creation of biomechanical computational models to correct for deformation that naturally

occurs between the preoperative image and surgical space breast geometries.

In this study, we developed a method to further optimize the patient specific parameters of IGBS

systems. In Fig. VI.1 the basic steps for IGBS is shown. The process begins with preoperative imaging

of the breast in the supine position. Anatomical and morphological images are obtained at this step.

Pre-processing of these images include segmentation of the breast tissue into adipose, fibroglandular,

chest wall muscle, and tumor. From here, a FEM model is created to simulate breast tissue deformation

during the intraoperative registration step. In the Intraoperative Registration step, the surface of the

breast is digitized by an optical tracking system and a biomechanically assisted nonrigid registration

is performed to render the preoperative data into the physical space of the operating room. Once this

registration is complete, a guidance display of the co-registered preoperative image data is used to

localize tumors and map out surgical plans. The extra step we are proposing to add and that will
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Figure VI.1: General framework for image-guided breast surgery. The process begins with preoperative
imaging of the patient breast in the supine position. The Preoperative Imaging panel shows a represen-
tative MR volume rendering of a contrast-enhanced supine breast of a patient with breast cancer. The
rendering shows a tumor with elevated image intensity and ring-shaped adhesive surface fiducials used
during the Intraoperative Registration step. Pre-processing is performed after imaging, prior to surgery.
At this step, patient specific stiffness properties are extracted to optimize the patient specific model. In-
traoperative Registration is performed to transform the preoperative image and patient specific model
into surgical space. Finally, the Guidance Display is used by the surgical team to localize tumors.

be elaborated upon in this study is during the pre-processing step. Here, we estimate the material

properties of the patients breast tissue to be incorporated into the biomechanical model for improved

accuracy.

An IGBS compatible stiffness estimation method was recently introduced [246] that relies on grav-

ity induced deformations of the breast captured in an additional two-minute MRI scan. Here, parameter

sweeps were performed, sampling stiffness values for adipose and fibroglandular tissue. A biomechan-

ical model was solved for each adipose-fibroglandular stiffness value. The displacement field gen-

erated by the model was then used to deform the gravity-induced excitation image. A measure of

image similarity was then calculated between the model-deformed image and baseline image for each

adipose-fibroglandular stiffness value set. While the framework for the stiffness estimation method was

tested, and shown to be promising for work in image-guided breast surgery, performing a parameter

sweep on a sufficient search space with acceptable discretization of said search space is extremely time

consuming. Therefore, in this study, we perform an investigation into the use of optimization routines

to reconstruct the values of patient specific breast tissue stiffness. An interesting set of observations

were reported in [246] that prompted this investigation. For example, the shape of the objective func-

tion changes according to the fibroglandular content of the breast and the magnitude of deformation

induced during gravity-excitation. Due to inevitable differences in patient breast size, fibroglandular
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content, deformation levels, and stiffness values, we opted to test optimization methods to determine

the most appropriate method to use going forward in the context of image-guided breast surgery. In this

study, simulation data was generated and human data was collected to test optimization performance.

Furthermore, an exploration of the stiffness method for reconstructing a heterogeneous distribution of

properties within the breast was performed.

VI.2.2 Methods

Overview of Stiffness Estimation Method

Optimization of patient specific breast tissue stiffness begins with acquisition of two gravity-loaded

supine breast MR images. The baseline image is acquired with the patient lying supine with the ipsilat-

eral arm placed above her head. Gravity excitation is administered by placing a foam wedge posterior

to the breast being imaged. This causes a rotation about the longitudinal axis of the body which results

in tissue deformation due to a change in tissue weight distributions with respect to gravity. From the

gravity-excited image, an FEM model is created. In this framework, the chest wall is assumed to be

a reliably rigid structure and is used to align the baseline and gravity-excited images. The chest wall

in each image is segmented and a rigid registration is performed by maximizing the image similarity

between the chest walls in each space. The transformation matrix yielded by this chest wall registration

is used to transform the baseline image into the gravity-excited space. Now, the chest walls in each

space are aligned and the resulting misalignment of the breast tissue is due to the nonrigid deformation

caused by differences in gravitational loading. Also from the chest wall alignment, the differences in

gravitational loading are quantified by using the rotational component of the transformation matrix to

calculate the relative change in the acting gravity direction. The rotated gravity vector is applied as

a body force of tissue weight in the biomechanical model. A biomechanical model is then solved to

obtain a displacement field. The displacement field is interpolated onto the gravity-excited image to

create a model-deformed image. Material properties are iteratively updated until the model-deformed

image matches the chest wall-aligned baseline image. A visual representation of this process is shown

in Fig. VI.2. and more descriptive detail of the framework can be found in [246].
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Figure VI.2: Overview of the process to optimize patient specific material properties. The algorithm
estimates tissue elasticity by fitting two acquired anatomical images by minimizing a similarity metric
between an experimentally acquired image and a model deformed image.

Human Volunteer Data

With IRB approval and informed consent, five healthy volunteers were enrolled to participate in this

imaging study. The left and right breasts of three volunteers were scanned in a separate imaging setup

to comprise a total of eight datasets. Furthermore, the left breast of the first volunteer was scanned

twice in a test-retest setup to evaluate the reproducibility of a heterogeneous property reconstruction.

With a lack of evidence to suggest otherwise, the quantitative stiffness of each breast was assumed to

be unique. A baseline and gravity excited image was acquired in a Philips 3T Achieva MR scanner

using a SENSE XL Torso Coil (Philips Healthcare, Best, Netherlands) with the following parameters:

T1-weighted, 3D turbo field echo sequence with fat suppression, a field of view of 200 mm × 200 mm

× 160 mm, reconstructed voxel size of 0.391 mm × 0.391 mm × 1 mm, TR/TE = 7.422 ms / 3.91 ms,

and flip angle = 20 degrees using SENSE parallel imaging (acceleration factor=2).

A FEM tetrahedral mesh was created from the gravity excited image (edge length = 3 mm).

The difference in gravitational loading was approximated by calculating a gravity vector: grotated =

gbaseline−R× gbaseline, where gbaseline was assumed to be unit vector normal to the MR table and R

is the rotation matrix generated from the rigid chest wall alignment registration. A body force of tis-

sue weight, [9.8m/s2×grotated×ρ], was applied in a biomechanical model that assumes isotropic and
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Hookean linear elastic behavior. Tissue density, ρ , was estimated as 1000 kg/m3. Nodal positions cor-

responding to the chest wall were prescribed a fixed Dirichlet boundary condition with the assumption

that the chest wall remains relatively static between the two configurations. Using these parameters, a

forward biomechanical model with an FEM corotational formulation [126] was solved to obtain a dis-

placement field. The displacement field was used to deform the gravity-excited image. An optimization

procedure iteratively updates the stiffness properties of the breast tissue until the model-deformed im-

age matches the baseline image. An expanded description of the methods involved in this approach can

be found in [246].

Simulation Data

A simulation study was performed to assess the performance of the optimization methods with min-

imal noise contributions and to determine a representative true form of the objective function using

similar clinical parameters. Model parameters were selected to form a representative simulated clinical

dataset. These parameters include: 500 and 2000 Pa for the stiffness of adipose and glandular tissue,

respectively, a Poissons ratio of 0.45, tissue density of 1000 kg/m3, and a rotation relative to the initial

direction of gravity (grotated) of 15 degrees. Using baseline images from five healthy volunteers with

a range of fibroglandular content (8%,12%, 20%, 30%, and 40%), a forward model was solved with

these simulation parameters and the resulting displacement field was interpolated onto the baseline im-

age to create a simulated gravity-excited image. Fig. VI.3 shows representative baseline and simulation

images and the corresponding deformation that drives the stiffness estimation procedure.

Optimization Procedures

Two optimization methods were studied along with a fine parameter sweep to identify the best methods

to obtain patient-specific stiffness properties of breast tissue. Here, a conjugate gradient (CG) and a

Levenberg-Marquardt (LM) algorithm were tested. A very brief overview of each method is given.

The steepest descent method reduces the sum of the squared errors by updating the optimization

parameters in the direction of the greatest reduction of the least squares objective. The steepest descent

method is a line search method that takes an initial guess, calculates the function gradient at this point,

which finds the vector pointing in the direction of the steepest descent. Gradient descent methods are

slow to converge especially when close to the minimum. The conjugate gradient method [254, 255]
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Figure VI.3: Representative images used in simulation study. The top row contains axial, sagittal,
and coronal views of a baseline image. The middle row shows the same three orthogonal slices of
the simulated gravity-induced configuration image. The third row (overlay 1) displays the simulated
gravity-induced image as a red mask and baseline image as a gray mask. The fourth row (overlay
2) displays the simulated gravity-induced configuration and model deformed image using optimized
reconstructed properties. Overlay 1 demonstrates the type of deformation yielded from the gravity
induced excitation used in this method.
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improves the method of steepest descent by reducing repetitious iteration steps. The CG method takes

orthogonal steps to the function minimum which reduces step redundancies. Due to the reduction in

iterations needed, CG methods are valuable for large dimension optimization problems. In this study,

the gradient was calculated using a central-difference approximation and was performed using a custom

implementation of the algorithm.

In the Levenberg-Marquardt [256, 257] method, a sum of squares is minimized from the zone-based

image correlation coefficients. The LM method takes advantage of the gradient descent and the Gauss-

Newton optimization methods. When close to the optimal, Gauss-Newton, a quadratically convergent

fixed point method is the basis for the optimization procedure. The Gauss-Newton algorithm may not

converge if the initial guess is far from the optimal. Therefore, if the procedure is far from the optimal,

the optimization method follows a steepest descent basis. In this study, the Jacobian was calculated

using a forward-difference gradient calculation (requiring one model solve per optimization variable).

The LM method was implemented using the MATLAB R2015 (The Mathworks Inc., Natick, MA)

lsqnonlin function.

To observe material property optimization performance, a parameter sweep was first performed on

a moderate search space to obtain an objective function map. The objective function was determined

using an image similarity metric calculated in five discrete zones within the image volume. The sim-

ilarity metric is calculated from S = |1−CC|2, where CC is the image correlation coefficient. The

correlation coefficient takes a value of 1 if the two images are the same and a value of zero if the two

images are completely uncorrelated. The root mean squared (RMS) nodal displacement error was also

calculated during the simulation parameter sweep. The RMS nodal displacement errors were not avail-

able during the in vivo human subject parameter sweep because the known correspondence of tissue

features is ambiguous. In the simulation study, the search space for the parameter sweeps was 100-1000

Pa for adipose tissue and 100-4000 Pa for glandular tissue. The step size for each tissue type was 50 Pa

for adipose tissue and 50 Pa for glandular tissue. In the human volunteer study, the parameter search

space was 100-1000 Pa for adipose tissue and 100-10000 Pa for glandular tissue with step sizes of 25

Pa for adipose and 50 Pa for glandular.

After the parameter sweep was performed, an estimation of the true minimum was obtained by

taking the minimum value of the objective function map. Due to large variations in breast stiffness,

volume, and fibroglandular content, a range of initial guesses were used for the optimization procedures
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to maximize successful convergence despite differences in the shape of objective function maps. The

initial guesses were distributed around the ground truth values for the simulation data. For the human

datasets, the following starting points were used as initial guesses: (1) 2000 Pa for adipose, 2000 Pa for

glandular, (2) 500 Pa for adipose, 500 Pa for glandular, (3) 500 Pa for adipose, 2000 Pa for glandular,

and (4) 100 Pa for adipose and 4000 Pa for glandular.

VI.2.3 Results

Simulation Data

The average solve time for the simulation data was 112.6 +/- 63.8 seconds. The solve time was defined

as the total time it takes to perform one forward model solve (with three corotational iterations), deform

the image, and calculate the objective function. From this, the average time to perform a parameter

sweep was estimated. For the simulation parameter sweep performed in this study, a total of 1482

solves were executed. This translates to 46.3 hours if solved in series. If the search space were to be

expanded (such as in the human case) or if the step size were to be decreased for a more resolved error

map, the number of model solves required to create the map would increase. This fact illustrates the

importance of performing an optimization procedure to obtain the objective function minimum. All

but one of the initial guess values converged to the minimum for the simulation data for both the LM

and CG methods. Table VI.1 shows the average and standard deviation of the converged reconstructed

values in simulation for each case. Fig. VI.4 shows visually the tissue stiffness reconstruction results

for the simulation data using the LM method. In Fig. VI.4(e), the initial guess starting at 500 for

glandular and 500 for adipose did not converge to the minimum using the LM method, but did converge

using the CG method. Fig. VI.5 shows the RMS nodal displacement error maps for the 12% and 20%

fibroglandular simulation datasets. These error maps represent a true form of the objective function as

they were calculated with absolute knowledge of point correspondences.

Human Data

The average solve time for the human data sets was 107.8 +/- 26 seconds. From this, the average time to

perform a parameter sweep was estimated. The total number of solves for the human data set parameter

sweep was 7722. Therefore, if the objective function error map were to be created in series, the total

solve time for the parameter sweep would be 231.2 hours. This again illustrates the importance of an
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Figure VI.4: Tissue stiffness reconstruction results for simulation data. Each plot represents a simula-
tion data set with a range of fibroglandular content (a) 8%, (b) 12%, (c) 20%, (d) 30%, and (e) 40 %.
The black contour map is the objective function error map created from the parameter sweep. The con-
tour values represent the objective function value at each adipose-glandular combination solved. The
colored lines show the optimization iterations and results for the Levenberg-Marquardt (LM) method.
Convergence sensitivity of the optimization was tested using a range of initial guesses (depicted as
different colored lines overlaid on the error maps.)
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Table VI.1: Reconstruction results for simulation data. Mean (standard deviation) values are reported
in Pa for each simulation case.

LM CG

Adipose Glandular Adipose Glandular

8% Glandular Tissue 500.2 (0.81) 1992.0 (35.5) 501.2 (5.5) 1998.2 (127.8)

12% Glandular Tissue 499.9 (0.53) 2002.7 (11.1) 499.2 (1.7) 2006.0 (27.7)

20% Glandular Tissue 500.6 (1.48) 1989.3 (24.4) 501.25 (1.5) 1976 (29.1)

30% Glandular Tissue 500.1 (0.33) 1999.9 (0.81) 500 (0) 1999.3 (0.26)

40% Glandular Tissue 499.5 (0.58) 2000.8 (2.17) 499.5 (0.99) 1999.35 (3.42)

optimization procedure to find the optimal set of stiffness values.

Fig. VI.6 shows three representative results for the human data reconstruction. Fig. VI.6(a,d)

corresponds to case 1, VI.6 (b,e) represents case 4, and VI.6 (c,f) corresponds to case 5. Here, two

representative optimization initial guesses are shown for each case (initial guesses at (500,500) and

(2000,2000)). The objective function value per iteration is shown in Fig. VI.6 (d,e,f), while the down-

ward path taken by the optimization procedure is shown overlaid on the parameter sweep error maps in

Fig. VI.6 (a,b,c). For the human datasets, the minimum objective function value was selected out of all

initial guess optimization runs. This minimum objective function and corresponding stiffness values

were used to populate Table VI.2. The parameter sweep and optimization results for the 8 unique breast

datasets are shown in Table VI.2. For each case, the global optimal properties were selected based on

the overall minimum objective function value. These optimal properties are highlighted in green in

Table VI.2. The CG method outperformed the LM method in most cases, with the parameter sweep

maintaining the minimum for three cases. For all cases, the CG optimization achieved less than a 20%

error when compared to the parameter sweep minimums. In six cases, the CG optimization found a

lower minimum than the parameter sweep. In the three cases in which the CG method did not find a

lower minimum, the percent errors from the true value ranged from 0.8% to 11.5% for adipose tissue

and 13% to 18.3% for fibroglandular tissue.

An elastographic approach to stiffness estimation

A step towards heterogeneous determination of breast tissue mechanical properties was performed.

Here, the breast was discretized into 20 unique regions. Each region was introduced as a degree of
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(a) 12% fibroglandular tissue content (b) 20% fibroglandular tissue content

Figure VI.5: RMS nodal displacement errors for simulation parameter sweep for (a) 12% fibroglandular
tissue and (b) 20% fibroglandular tissue. The x-axis contains the range of stiffness values sampled for
adipose tissue. The y-axis is the range of stiffness values sampled for glandular tissue. The contour
levels represent the nodal displacement error at that adipose-glandular combination. The contour map
also shows the 0.4 mm and 0.8 mm contour levels which roughly corresponds to the half and full
voxel sizes of the image volumes used in this study. The diamond shows the location of the minimum
displacement error (i.e. the true properties))

freedom in the optimization routine. The optimization minimizes an objective function consisting of

10 zone-based correlation coefficients within the image volume that represents residual error between

the model deformed image and the acquired baseline image. A conjugate gradient algorithm was used

here due to the superior performance of the method in the human datasets. Similar to [232], spatial

prior constraints were utilized that rely on image intensity knowledge to designate similar tissue types.

This anatomical knowledge is used as a soft constraint in the optimization routine, which penalizes

large variations among tissue types and acts to constrain stiffness values designated as the same tissue

type to remain somewhat similar. Following reconstruction, the output is a volumetric distribution of

absolute stiffness in each of the 20 regions. Cases 1 and 2 were used as a test-retest dataset, as they

are both the left breast of the same subject. The test-retest dataset was acquired by reproducing the

baseline and gravity-excited image in two imaging exams. Therefore, this data is totally unique to one

another, but is of the same breast.

Fig. VI.7 shows the test-retest elastography results. The top panel contains central axial MR slices

of the gravity-excited image for the test (left) and retest (right) cases. The middle panel shows the

discretization of the breast as 20 regions (10 regions for each tissue type). The bottom panel in Fig.
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Figure VI.6: Summary of human data stiffness property reconstruction results for three datasets. (a,b,c)
contain objective function contour plots demonstrating the shape of the objective function for three
datasets. Overlaid onto these contour plots are optimization results for two starting points using the CG
algorithm. The starting points shown here are (2000,2000) and (500,500). In (d,e,f), the value of the
objective function at each iteration is shown for each starting initial guess.
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Table VI.2: Reconstruction results for human data. Table containing parameter sweep and optimization
results for the human datasets. All adipose and glandular values are reported in Pa. Note that cases 1
and 2 are of the same breast, acquired in a test-retest setup. The highlighted green cells represent the
set of fibroglandular-adipose values that resulted in the overall minimal objective function.The solve
time was defined as the total time it takes to perform one forward model solve (with three corotational
iterations), deform the image, and calculate the objective function.

Parameter Sweep LM CG

Solve Time (s) Adipose Glandular Adipose Glandular Adipose Glandular

1* 127.9 350 1650 356.5 1477.5 347.1 1780

2* 104.4 475 1600 448.3 1971.7 465 1824.9

3 94.2 650 6800 705.1 4165.2 687 5885

4 105.9 125 250 116.4 285.9 143.2 266.5

5 120.3 75 1300 73.1 1451.8 74.2 1576.8

6 155.1 200 2350 198.7 2016.4 201.7 1983.1

7 167.2 275 4950 274.9 6581.8 273.9 4000.2

8 101.7 675 5550 1248 6293 753.7 6533.6

9 59.9 100 450 108.2 372.8 96.2 412.7

VI.7 shows the reconstructed elastic property values for each region overlaid on a mask of the gravity-

excited images. The average reconstructed values for fibroglandular tissue was 1783 Pa for the first test

(case 1) and 2196 Pa for the retest set (case 2). The average test/retest values for adipose tissue were

336 Pa/450 Pa. The ratio of average fibroglandular tissue to average adipose tissue for the test/retest

sets were 5.2/4.9. The retest case showed a larger variation in stiffness values within tissue types than

the first test case.

VI.2.4 Discussion

In simulation, reconstructed stiffness properties converged at the global minimum despite initial guess.

In clinical data, noise is introduced into the system, resulting in convergence of material properties into

local minimums. However, with the introduction of four different starting points (initial guesses), an

acceptable optimization (less than 20% error) was obtained in all cases. Fig. VI.6 (c,f) shows how one

initial guess might find a global minimum while another gets caught in a local minimum.

We believe an error of less than 20% is acceptable for use with image guided surgery. As shown

in Fig. VI.5, these errors are within an acceptable range as they introduce less than a 1 mm error into
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Figure VI.7: Test-retest elastography results of case 1 (left) and case 2 (right). The top figures show
central axial slices of the gravity-excited anatomical MR image. The middle panels show the breast
discretized into 20 unique regions. The bottom row shows the reconstructed property results for each
set. The ratio of fibroglandular tissue to adipose tissue was 5.2 for the test set and 4.9 for the retest set.
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the system. This can be seen from Fig. VI.5 where displacement errors between 1600 to 2400 Pa for

glandular ( +/- 20% of true glandular value) and 400 and 600 Pa for adipose (+/- 20% of true adipose

value) lie approximately within the 0.8 mm contour level. The percent fibroglandular content of our

clinical datasets was 18.3 +/- 8.7 (min = 7.7%, max = 32%). Furthermore, a study looking at the breast

density of 230 women ages 32-77 reported a range of 7% to 28% for fibroglandular tissue content

[258]. Therefore, the 12% and 20% glandular simulation datasets were the most representative of the

human data.

Overall, reconstructing patient-specific stiffness parameters was successful using the conjugate-

gradient algorithm. The number of iterations required to obtain a minimum in the human datasets

using the CG method was 14.7 +/- 5.6 (min = 8, max =23). Therefore, the CG method can be used

to obtain patient specific breast tissue properties with drastically less model solves than in a parameter

sweep (recall the number of model solves in the parameter sweep was 7722). Despite the fact that each

iteration in the CG method requires two model solves per optimization variable to evaluate the gradient,

the total number of model solves needed to obtain an optimum is two to three orders of magnitude less

than what is required during the parameter sweep.

The error maps associated with human subject data are more noisy than their simulation data coun-

terparts. Furthermore, human data is subject to errors associated with arm-placement induced breast

deformations that are not captured by the gravity-based reconstruction model. While care was taken to

reproduce the same arm positioning in the baseline and gravity-induced images, further analysis will

be performed to investigate the influences of arm position differences. In addition, noise and artifact

reduction techniques during the MR image-acquisition phase will be explored.

A step towards heterogeneous property reconstruction was performed using a test-retest dataset.

The ratio of fibroglandular tissue to adipose tissue was 5.2 for the test set and 4.9 for the retest set. As

shown in Fig. VI.7, in reconstructing 10 regions for adipose tissue and 10 regions for glandular tissue,

little heterogeneity within tissue types was found. While moving to this elastography approach was

shown to be feasible, a finer amount of discretization (i.e. more regions) is currently under investigation

to resolve stiffness differences within tissue types. Beyond the levels of discretization, the number of

zones used during the image similarity calculation and level of spatial prior weighting should be studied

to obtain optimal reconstruction behavior.
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VI.2.5 Conclusion

In this study, a method to obtain patient specific homogeneous and heterogeneous breast tissue me-

chanical properties was tested. In the homogeneous tissue reconstruction setting, which was developed

for use in image guided breast surgery applications, optimization convergence errors were found to in-

troduce less than a 1 mm error into the guidance system. We demonstrated that the novel gravity-based

stiffness estimation method is also capable of reconstructing heterogeneous stiffness properties with

several avenues existing for future applications.
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CHAPTER VII

Future Directions and Conclusions

VII.1 Establishing a validation framework for image guided breast surgery

In this section, work regarding the establishment of mock surgical setups and validation frameworks for

IGBS is discussed. Two validation approaches were developed, a breast phantom surgical setup and the

collection of mock intraoperative-preoperative datasets via MR imaging. Each of the approaches have

unique benefits that will be outlined in their respective sections. In each section, quantitative analysis

of the nature and extent of breast deformation between preoperative and intraoperative settings was

performed to ensure that the mock-testing and validation frameworks were representative of the surgical

problem domain. Assumptions were made that rely on estimating the main sources of deformation

between the preoperative and intraoperative breast geometries. For example, the preoperative state

is associated with the patient in the supine position with the ipsilateral arm placed above her head.

The intraoperative state is the result of the patient lying in the supine position with the ipsilateral arm

placed out perpendicular from the body. The arm placement in each space is estimated to be a main

cause of breast deformation. Another estimated source of deformation is variances in the angle between

the patient’s coronal plane and the surgical or MR table. As seen in Chapters V and VI, even small

rotations of the patient along the longitudinal axis of the body can have gravity-induced deformation

effects.

Phantom Setup for IGBS

The motivation for this work was that in order to properly validate non-rigid correction algorithms and

image guidance techniques, there is a need to take quantitative measurements in a controlled manner.

Furthermore, individual differences in the clinical setting limit reproducibility, which is an issue that

can be remedied by the use of a phantom. A phantom setup was developed for validating image-guided

breast surgery registration algorithms. Initial work to develop this phantom setup was performed by

purchasing a commercially available breast phantom (Breast Probe, SIMULAB Corporation, Seattle,

WA). While the shape of this phantom was anatomically representative of the breast geometry, the

phantom material was uncharacteristically stiff. Therefore, alternative materials were experimented
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with, including silicone gel (Ecoflex, Smooth-On, PA) and Poly(vinyl)alcohol (PVA). While both ma-

terials were less stiff than the commercial breast phantom, PVA was selected for further study due to its

ultrasound-compatible properties. This phantom set-up is capable of representing breast adipose tissue,

parenchyma, and breast tumors. A study was then designed to assess the breast phantom setup’s ability

to reproduce similar breast deformations as seen in clinical pre/post operative breast measurements.

In a preliminary study, adhesive fiducial markers were distributed across the breast surface of a

healthy volunteer. Fiducial marker locations were recorded and a laser range scan was acquired for

two arm positions, i.e. preoperative and intraoperative setups. Figure VII.1 shows the resulting dis-

placements in the x,y, and z directions along with the overall magnitude of displacement overlaid on

a textured 3D pointcloud of the breast in the arm-above-head position. From this preliminary explo-

ration, it is evident that deformations of the breast occur on the orders of 18-28 mm over the whole

breast surface in a nonrigid manor. The magnitude of displacement was shown to be larger on the

lateral side of the breast, which is expected as it is closer to the source of deformation.

A follow-on study, found in Appendix C, was prompted from this preliminary dataset. Breast

deformations that occur clinically from the preoperative state to the intraoperative state were character-

ized by analyzing deformations seen in three patients scheduled for a lumpectomy and in four healthy

volunteers in mock surgical setups. The data from patients and healthy subjects were acquired under

an Institutional Review Board (IRB) approved study. Fiducial markers were used to calculate fiducial

registration error (FRE), a measure of overall landmark misalignment, and an intrafiducial (IF) distance

distribution, used to determine both magnitude and direction of clinical deformation. The differences

in FRE and IF distance distribution between the two positions were reported to establish a non-rigid

surface deformation characterization. Analysis of non-rigid deformation between the supine MR im-

ages and mock intraoperative breast configuration yielded a positive correlation between breast volume

and the amount of deformation. The fiducial registration error (FRE), was calculated for all cases. FRE

indirectly captures an estimate of non-rigid changes by looking at changes with respect to breast vol-

ume. The assumption is that fiducial localization error (FLE) is similar among women with different

breast volumes but that soft tissue changes due to arm motion would be exacerbated with larger breast

women. More specifically, the effects of chest wall attachments would inhibit deformation in smaller

breast women.

Also of note, in a qualitative comparison of the maximum IF distance distribution differences,
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Figure VII.1: In a volunteer study, fiducials were distributed across the breast. Fiducial points were
digitized and a laser range scan was obtained with the ipsilateral arm placed above the subjects head.
The subjects arm was then placed perpendicular to the body and the fiducial centers were re-digitized.
The images in this figure show the x,y,z and total magnitude of the displacement of the fiducial points
between the two arm setups overlaid on the textured point cloud produced from the laser range scan of
the arm-above-head position. It can be seen that most movement occurred along the X and Y axis. The
magnitude of displacement is also shown with movements on the orders of 1.8-2.7 cm
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Figure VII.2: The phantoms presented here closely resemble surface anatomy, mimicking not only the
shape of the breast itself, but the surrounding tissue ipsilateral arm region as well. A deformation ap-
paratus was created with four manipulators able to induce and hold compressive forces on the breast.
All four manipulators can be deployed at once, individually, or in some unique configuration. The base
of the deformation frame contains a 1 cm depression machined to have the same contour as the breast
phantom mold. This allows the breast phantom to sit flush in the base and hold applied deformations
while minimizing slip. It should be noted that the deformation apparatus only provides compressional
forces on the phantom; however, the clinical deformation can still be reproduced, based on the re-
sults from the principle component analysis which showed that primary deformation occurs along the
patients superior-inferior axis, and secondary deformation occurring along the medial-lateral axis.

most deformation occurred along the subjects inferior-superior axis, with minor deformations occur-

ring along the subjects medial-lateral axis. The clinical deformation analysis was used to characterize

the directions and magnitude of deformation between the supine MR imaging environment and the

supine intraoperative state. This analysis was then used as a guideline to develop the phantom and fine

tune its material properties. The study found that the phantom setup quantitatively mimicked clinical

deformation in terms of magnitude, direction, and location of movement between the two states. Figure

VII.2 shows the commercial breast phantom and device used to induce phantom deformations.

A limit in terms of experimental procedure is the poor stability of the PVA gel once removed from

the low storing temperature and exposed to room temperatures for an extended period of time. The

phantom starts to essentially disintegrate. Investigating the phantom created in [259] is recommended.
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Here, the PVA “slime” is enclosed within a soft latex shell. This latex shell could mimic the support

and elasticity of skin over the much softer and more fluid breast tissue.

Image volume datasets in preoperative and pseudo-intraoperative patient setups

Figure VII.3: Representative MR volume renders
used to quantify breast deformation. (a) Shows the
preoperative position in which the patient is posi-
tioned supine with the ipsilateral arm placed above
her head. (b) Shows the pseudo-intraoperative
breast geometry with the arm placed parallel to the
body.

True breast deformation is difficult to repro-

duce in a laboratory setting due to the influences

of pectoral muscles and cooper’s ligaments as

well as breast stiffness and fibroglandular content

variations among women. To obtain a more real-

istic set of data that represents the preoperative

and intraoperative breast geometries, an IRB ap-

proved study was performed to acquire two MR

image volumes of six healthy volunteers and one

patient volunteer. Analysis of breast deformation

between preoperative and intraoperative breast

geometries was performed to quantify the mag-

nitude and directional patterns of breast deforma-

tion to inform the development of biomechanical

model assisted nonrigid image-to-physical space

registration algorithms. While traditional mag-

netic resonance imaging (MRI) of the breast in-

volves a dedicated breast coil with the patient

lying in the supine position, our proposed im-

age guidance system adapts MR breast imaging

protocols to be performed in the supine position.

While supine MR images of the breast are more

representative of the surgical state, significant de-

formation occurs due to changes in patient posi-

tioning and ipsilateral arm placement. During breast conserving surgery, the ipsilateral arm is placed

perpendicular to the body. Due to the geometric constraints within a close-bore MR scanner, the ipsi-

130



lateral arm is placed above the patients head. Therefore, the motivation of this work was to quantify

breast tissue movement between preoperative and intraoperative positioning and to identify whether or

not the deformation on the surface of the breast is coupled with deformations within the subsurface

breast structures. Determination of this coupling is important as nonrigid registration algorithms have

historically relied on surface measurements to drive registration.

Due to our interest in subsurface feature deformation, volumetric images of the breast were taken

in the preoperative (Fig. VII.3(a)) position and a pseudo-intraoperative position (Fig. VII.3(b)). The

pseudo-intraoperative position was represented by placing the ipsilateral arm parallel to the body. This

position was estimated to induce slightly larger deformations than the surgical position (i.e. arm out

perpendicular from the body), but allowed for the calculation of upper limits on how much deformation

can be expected to occur between preoperative imaging and surgery. Twelve individual breast image

datasets (preoperative-pseudo-intraoperative sets) were acquired. The dataset encompasses the left and

right breasts from five healthy volunteers, the left breast of a sixth volunteer, and the right breast of

a breast cancer patient. Corresponding surface and subsurface breast features were selected for each

dataset. Analysis of these features were performed to measure deformation magnitude, locate common

areas of large deformation, and quantify deformation patterns. Fig. VII.4 shows the average magnitude

of deformation between the preoperative and pseudo-intraoperative breast geometries as measured by

differences in intra-feature differences.The surface and subsurface deformation magnitudes are shown

for each case and indicate that surface and subsurface breast tissue deform at similar magnitudes. Over

all 12 datasets, the average surface feature deformation was 7.5 +/- 2.8 mm while the average subsurface

feature deformation was 7.13+/- 3.1 mm. In a paired t-test, no difference was found between the

surface and subsurface feature deformation. The Pearson Correlation coefficient between the surface

and subsurface features was 0.934. From this analysis, we can conclude that the level of deformation on

the surface of the breast is coupled with the magnitude of deformation in the subsurface breast tissue.

Fig. VII.5 shows the results of the deformation pattern analysis. Principle component analysis

(PCA) of the intra-feature distance differences revealed that most deformation occurs along the pa-

tients superior-inferior axis for both surface and subsurface features. Fig. VII.5 shows the direction

of feature movement and is visualized along the subjects superior-inferior, medial-lateral, and anterior-

posterior axis, respectively. The principal components as shown (blue-primary, green-secondary, and

red-tertiary) express the average amount of variance within preoperative and pseudo-intraoperative
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Figure VII.4: Average surface and subsurface magnitudes as defined by intra-feature distance differ-
ences for each dataset.

breast tissue deformation. The blue primary vectors point roughly in the same direction for each corre-

sponding view point showing similar movements between surface and subsurface features. Overall, the

analysis shows that the magnitude and pattern of deformation measured on the surface is predictive of

subsurface deformation characteristics. Therefore, the analysis supports the assumption to use surface

data to drive nonrigid registration procedures. In future work, biomechanical model-assisted image-

to-physical space registration algorithms will be tested using the same 12-case dataset. The benefit of

using this dataset for algorithmic testing (rather than preoperative image volumes and intraoperative

surface data alone) is that subsurface targets are available in each space that provide the critical ability

to quantify subsurface target registration errors.

VII.2 Future Study Recommendations

Image Guided Breast Surgery

To generalize the nonrigid correction strategy, an iterative optimization driven by the available intraop-

erative data (such as that available in Figure VII.6) should be employed. The preliminary results from

Chapter IV show that initial rigid alignments are not sufficient, especially for larger breast volumes.

Chapter IV presents an arguably coarse nonrigid deformation correction approach that has been ap-

plied to two patient subjects. The model was driven by synthetic fiducial error, which is an admittedly
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Figure VII.5: Results of a principal component analysis on the intra-feature distance differences for (a)
surface features and (b) subsurface features. The blue, red, and green vectors represent the primary,
secondary, and tertiary principal components respectively. Vector magnitudes are expressed as voxels.
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(a) (b)

Figure VII.6: (a) Top: LRS scan of patient 2 breast. Bottom left: compression corrected ultrasound
image with tumor contour in white. Bottom right: ultrasound image with chest wall contour in blue.
(b) Fusion display of tracked intraoperative data containing a textured point cloud, adhesive fiducial
markers, tracked ultrasound images, tumor contour (white), and chest wall contours (blue).

sparse source to drive the correction process. One recommendation would be to develop a closed loop

optimization strategy driven by data available intraoperatively to provide a more robust and work flow

friendly approach for nonrigid correction. Another suggestion would be to perform an investigation

into the use of various objective functions and model approaches to create a fast and accurate non rigid

correction strategy for image guided breast surgery. To test this model correction approach, data should

be collected from phantoms and validating the algorithm with the preoperative-pseudo-intraoperative

patient setups. An optimal nonrigid correction strategy for intraoperative registration would include

the following characteristics: generalizable to patients of different breast sizes and age, provide fast

corrections for intraoperative registration, and consistently obtains clinically relevant accuracy. In our

studies, we estimate that clinically relevant accuracy include 5 mm or less because margins of healthy

tissue beyond this value could result in unfavorable cosmetic outcomes. A workflow friendly nonrigid

correction technique will include as much pre-calculation and intraoperative automation as possible.

Therefore, building models, designating boundary conditions, and performing as many pre-calculations

(such as patient-specific breast tissue stiffness) as possible before entering the operating room should

be the goal as the non rigid method is developed. However, compromises on speed may be made to
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(a) (b) (c)

Figure VII.7: (a) Top: Ultrasound images of the chest wall with chest wall contours shown in blue
rendered below the LRS in physical space. Bottom: transparent overlay of the LRS showing ultra-
sound contours of the chest wall in blue. (b) Segmentation of the preoperative chestwall from the MR
image volume. (c) Rigid registration of the preoperative chestwall (red) to the intraoperative tracked
ultrasound digitized chest wall contours (blue)

assure that the nonrigid corrections are accurate.

Another recommendation would be to investigate a variety of objective function configurations.

There is a high value for known correspondence of points on the breast to drive registration. Also, ini-

tializing the registration with a chest wall alignment may prove beneficial (see Fig. VII.7 for chest wall

data examples). Intraoperative data such as the 3D point cloud from the tracked LRS, digitized fiducial

points, and digitized chest wall contours should be evaluated as ways to measure the intraoperative data

to preoperative model fit. Overall, the objective function could have this basic form:

ψ
2 = α1(Y − [S]Ŷ )2

LRS +α2(Y − [S]Ŷ )2
f iducial +α3(Y − [S]Ŷ )2

chest (VII.1)

where Y contains a vector of points in the intraoperative space, Ŷ is a vector of points extracted from

the preoperative model after being updated by {u}, [S] is a sampling matrix that acts upon Ŷ to obtain

points that correspond to the measurements in Y , the α values represent weighting parameters.

As far as the treatment of boundary conditions, preliminary investigations indicate that arm move-

ments and gravity induced changes are the main physical causes for breast deformations between the

preoperative and intraoperative states. Boundary conditions and body forces that model these defor-

mations should then be applied to simulate this behavior. Overall, the groundwork has been performed

and there are tools and preliminary data available to begin testing of an improved nonrigid registration
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algorithm.

Breast Tissue Stiffness Reconstruction

There are several avenues worth exploration for the supine breast tissue stiffness method developed

in this thesis. Performing a larger study encompassing breast cancer patients to further validate this

approach is recommended Specific investigations for future consideration include:

1. Investigation into more advanced nonlinear constitutive relationships to improve the accuracy of

the stiffness estimation method. This may be especially important with the addition of breast

cancer patients.

2. Investigation into time-vary viscoelastic effects of breast tissue that may be important for tool-

tissue interaction models for image guided breast surgery.

3. Exploration of the force contributions from Coopers ligaments, pectoral muscle forces, and dif-

ferences in arm-placement between the baseline and gravity-excited images.

4. Methods for reducing noise and image artifacts during the MRI acquisition of the supine images.

For example, respiratory gating has been shown to improve the signal-to-noise ratio of supine

breast images.

5. An investigation into the effects of image resolution should be performed. Currently, the im-

ages are acquired with voxel sizes of 0.391 mm × 0.391 mm × 1 mm and are downsampled

to 0.78 mm × 0.78 mm × 1 mm for computational efficiency. It would be interesting to inves-

tigate whether or not accuracy could be improved if the images were not downsampled. Since

optimization of patient properties is meant to be performed in the preoperative setting, increased

computation times could be permissible.

6. Further analysis on an elastography extension of this approach. There are several factors that

can be explored here including: discretization levels (number of regions to designate a unique

property), number of zones for image similarity computation, level of spatial prior weighting,

weighting of glandular tissue during reconstruction, and starting values for optimization.

A prone elastography method was also studied (see Appendix B) that provides alternative methods for

obtaining patient specific mechanical properties. Overall, the immediate need for stiffness properties
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for IGBS has been addressed in this thesis. However, several opportunities exist to expand and better

understand this stiffness estimation process.

VII.3 Thesis Conclusion

The groundwork for an image guidance system for breast cancer surgery has been laid. This is the first

surgical guidance system to incorporate not only patient specific anatomy via high resolution contrast

enhanced image volumes, but also patient specific physical parameters through a novel stiffness estima-

tion framework. Building upon this framework will ultimately lead to a superior tumor localization tool

for breast cancer surgery and a reduction in the amount of reoperations caused by incomplete tumor

removal.
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Appendix A

Lumpectomy Re-excision Cost Analysis

A.1 Introduction

To estimate the financial burden of lumpectomy re-excisions in the United States, a decision model tree

was modified from [13]. A decision tree is a graphical representation of decisions and their possible

consequences. In this analysis, the probability of re-excision was altered to calculate the costs associ-

ated with surgical re-excisions for breast conserving therapy. In Fig. A.1, the decision tree determined

in Abe et al. [13] was reproduced. Here, the model assumed a population of 140,000 patients under-

going breast conserving surgery in a year. This estimate assumes that of 230,000 new breast cancer

cases each year, approximately 60% of these patients will undergo breast conserving therapy. Another

assumption is that only one additional surgery was required to achieve a negative margin. Finally,

the cost model assumes that for local recurrence cases, a mastectomy is performed and that all BCT

patients undergo a sentinel lymph node biopsy.

Patients receiving an initial lumpectomy were classified into three groups: negative margin, close

margin, and positive margin. From here, the decision tree branched these groups into candidates re-

ceiving a second surgery for margin re-excision and patients who did not undergo margin re-excision.

For accurate cost analysis, the re-excision vs. no re-excision groups were then stratified by whether

or not local recurrence occurs (causing an increase in treatment cost). Reimbursement rates from the

2013 Center for Medicare and Medicaid Services (CMS) were used to estimate surgical costs. Prob-

abilities of margin status and local recurrence rates come from the weighted average of 10 published

studies (n=5639 patients) between 1990 and 2015. Data from two studies (n=697 patients) were used

to estimate the probability of re-excision. These studies can be found in [13].

To estimate the differences between treatment costs for negative and positive (or close) margins,

the probabilities from Fig. A.1 were altered to reflect a re-excision rate of 100% for close or positive

margins. Fig. A.2 shows the new adjusted probabilities and the new treatment cost. Fig. A.3 shows the

decision tree that estimates treatment costs when no re-excisions are performed. Taking the difference

between the treatment costs in Fig. A.2 and A.3, we can estimate the cost associated with margin

re-excision.
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A.2 Summary Statement

The addition surgical cost of re-excisions in the close and positive margin groups is $53 million. The

analysis underestimates the total cost associated with lumpectomy re-excision rates as it does not in-

clude facility-based costs, outpatient costs, or adjuvant therapies. It also assumes that only one addi-

tional surgery will be required to obtain a negative margin. Furthermore, the use of CMS reimbursement

rates underestimates true costs as private payers typically reimburse up to 20-30% higher than CMS.

Figure A.1: Decision Tree with Probabilities Estimated From Abe et al. [13]

140



Figure A.2: Decision Tree for Re-excisions for Positive and Close Margins
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Figure A.3: Decision Tree for No Re-excisions for Positive and Close Margins
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Appendix B

Alternative and expanded methods for patient specific mechanical properties

B.1 The Modality Independent Elastography Method

Modality Independent Elastography (MIE) [167], patented in 2007 (US7257244B2), is a method that

is capable of measuring patient specific, in vivo, mechanical properties of underlying breast structures.

Although this method does not rely on a specific imaging modality, magnetic resonance images (MRI)

were used in preliminary studies due to their high resolution and clinical adaptability into breast cancer

workflows. In general, MIE works by imaging an organ or tissue of interest in an undeformed and

deformed state. Next, reconstruction of mechanical properties is performed by iteratively deforming

the undeformed image using a biomechanical model until an image similarity metric is met. The output

of the MIE algorithm is a relative elasticity map.

Magnetic resonance image volumes are pre-processed by removing background structures and des-

ignating tissue types as glandular, tumor, or adipose. Next, a finite element mesh is generated. A

demons non-rigid registration is performed between the deformed and undeformed images to obtain a

displacement field that maps the undeformed image to the deformed state. A more in depth description

of this process is described in [176]. This displacement field is extracted and automatically applied as

displacement boundary conditions on the surface of the finite element mesh. Deformation between the

undeformed and deformed states are then simulated using a computational mechanical model. Distri-

butions of mechanical elasticity are iteratively reconstructed using a conjugate gradient algorithm with

an adjoint method evaluation of the gradient. This optimization minimizes an objective function con-

sisting of image volume zone-based correlation coefficients that represent the residual error between

the model simulated deformed image and the acquired deformed image. Following reconstruction, the

output of the algorithm is a volumetric distribution of relative elasticity. Figures B.1 and B.2 contain

the input images and relative elasticity map that resulted from a healthy volunteer and breast cancer

patient, respectively.
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Figure B.1: MIE result for a healthy volunteer. The far left panel contains volume renderings of the
volunteer breast, the middle panel displays T1−weighted structural images of the breast. The top two
images represent the undeformed (or fixed) state while the bottom two images represent the deformed
(or moving) state. The far right image shows an elasticity map containing the resulting elasticity ratios.
The average fibroglandular-to-adipose ratio was 2.

Figure B.2: MIE result for a patient volunteer. The far left panel contains volume renderings of the
volunteer breast, the middle panel displays T1−weighted structural images of the breast. The top two
images represent the undeformed (or fixed) state while the bottom two images represent the deformed
(or moving) state. The far right image shows an elasticity map containing the resulting elasticity ratios.
The average tumor-to-adipose ratio was 4.
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B.2 Device Design

Design Criteria

Design criteria for the inflation device for human subjects include: compatibility with MR and CT

scanners, reliable for repeat setups, stable in the magnet, generalized for patients of all breast size, and

able to control inflation outside of the imaging scan room. Generalization of the device for all patients

requires a low profile design and capable of applying similar deformations to all breast shapes and

sizes. Furthermore, the device must accommodate existing breast imaging setups. For example, MR

images of the breast are typically acquired with a dedicated breast coil with the patient lying in the

prone position with freely hanging breasts. Breast coils used in MR imaging have either an open or

closed coil design. Figure B.3 shows an example of an open B.3a and closed B.3b coil design. When

a closed coil is used, the breast cannot be accessed from the side, which was a major consideration in

the device design.

(a) (b)

Figure B.3: MR coil design examples: (a) open coil setup where the breast is accessible from the side.
(b) closed coil set up.

Breast Deformation Device

The device primarily consists of two plates, a base plate and an upper plate, which are connected by

three or four upright guide-rods which are located symmetrically about the periphery of plates in a cir-

cular fashion. The upper plate can glide in a vertical fashion along the guide-rods above the base plate.
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The base plate Fig. B.4a) is beveled on the bottom to better conform to the curved bottom of the coil.

The upper plate (Fig. B.4b) is shelled out in order to allow for the guide-rod motion when the device is

in compression. The guide-rods (Fig. B.5) have a small head at the upper end, which acts as a backstop

for the upper plate when it is in extension, preventing the device from overextending/overcompressing.

The guide-rods have threads on the lower end that secure it to the base plate. Finally, a top plate (Fig.

B.4b) covers the upper plate to prevent contact of the patient with the guide-rods and provide a surface

off which to compress. The guide-rods are placed through the upper plate and screwed into the base

plate to its corresponding hole. The remaining screws are installed in a similar fashion. The top plate

is then secured to the upper plate with four very small screws. These screws are recessed as to prevent

contact with the patient. An actuation device, such as an air bladder, can be placed centrally between

the plates. The air bladder is attached to a 30 ft air hose that is fed through a small slot in the scanning

room to make it available for outside control. The hose is then attached to a pump with a valve to

hold or release air. The deformation device compresses the breast from the bottom of the breast coil

towards the patient’s chest wall, allowing for reproducible compression of the breast and subsurface

tissue targets.

B.3 In Vivo Results

The subject was placed on a MammoTrack table with a 16-channel receive double-breast coil (Philips

Healthcare, Best, The Netherlands). A THRIVE (T1-weighted, high resolution isotropic volume excitation)

sequence with fat suppression is used to acquire high resolution anatomical scans of the breast. The

MR parameters typically used in these scans are included in table B.1

Table B.1: MRI Parameters for Prone Breast Imaging

Repetition
Time
(TR)

Echo
Time
(TE)

Field of View (FOV) Matrix
Size

Scan
Time
(mm:ss)

Number of Signal
Averages (NSA)

6.4 ms 3.4 ms 192 × 192 × 160 mm3 384 x 383 02:48 1

In a test-retest setup, the right breast of a volunteer was scanned four times. The first scan produced

an “undeformed” image (Fig. B.7a) where the device was in contact with the breast but remained

uncompressed. The second scan produced a “deformed” image (Fig. B.7b) by fully inflating the air
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(a)

(b)

Figure B.4: Design measurements for the base plate (a) and the upper plate (b). The upper plate glides
in a vertical fashion along guide-rods attached to the base plate. All measurements are in mm.
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Figure B.5: Design and measurements for the guide-rods. The guide-rods shown allow the upper plate
to move vertically towards or away from the base plate. The guide-rods have a small head at the upper
end, which acts as a backstop for the upper plate when in extension. This prevents the device from
over-extending. All measurements are in mm.
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(a)

(b)

Figure B.6: (a) Shows how the upper plate, base plate, and guided rods are assembled. (b) is the final
machined device with a rectangular air bladder between the base plate and upper plate. When inflated,
the upper plate extends away from the base plate.
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(a) Undeformed (b) Deformed

Figure B.7: Undeformed and deformed images produced using deformation device described in Chap-
ter B.2. The red arrow in (b) shows the location and direction of deformation.

bladder from outside the imaging suite. The full inflation guarantees that the device will raise approx-

imately 2 cm. The volunteer was then removed from the scanner and the device was re-set. The third

and fourth scans were obtained to measure how well the device can reproduce similar deformations in

the breast in repeat setups. The third scan was a retest of the “undeformed” image and the fourth scan

was a retest of the “deformed” image. Figure B.8 show the test-retest results of our compression de-

vice induced deformation. The maximum difference in induced deformations was 1.25 mm, which can

be seen in the coronal views. Overall, the setup was extremely repeatable, with average deformation

differences being 0.42 mm. A resulting elastogram is shown in Fig. B.9.

B.4 Conclusion

The MIE method has been refined in several publications with applications in breast elastography

[134, 167, 177, 260]. Opportunities to include MIE in assessing and predicting response to neoadjuvant

chemotherapy have been discussed [181]. Recently, the reliability and reproducibility of MIE in a

murine model of breast cancer has been reported [232]. However, the reliability of MIE in a clinical

setting has not been robustly tested. A device to create reproducible breast deformations is crucial to

the testing and development of MIE in clinical settings. It will also make possible the first study to
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Figure B.8: Test-retest deformation results. Top panel contains the deformed image (black) and un-
deformed image (white) overlaid for the first test. The bottom panel contain the images produced
in the second test (Retest). The top and bottom panels show (from left to right) axial, sagittal, and
coronal views of the breast. The measurements (in pixels) shown on each image comparison are
the differences between the deformed and undeformed breast surface. Reconstructed voxel sizes are
[0.391mm3×0.391mm3×1mm3] for all images.
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Figure B.9: Resulting elastogram using the MIE method and deformation device. Areas associated
with glandular tissue are on average 30% stiffer than adipose areas.
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perform a robust analysis on repeatability and reproducibility of elasticity values produced by MIE in

human subjects.
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Appendix C

Characterization of a Phantom Setup for Breast Conserving Cancer Surgery

C.1 Summary and Contributions

This study introduces a phantom setup for breast conserving surgery. We quantitatively analyzed breast

surface deformation between preoperative and intraoperative breast states using breast cancer patients

and healthy volunteers in the supine imaging-to-intraoperative positioning. Using this analysis, we

designed a breast-mimicking phantom capable of realistic breast deformation as a way to test and val-

idate platforms for image guided breast surgery. This manuscript was constructed by Jacob Chadwell,

an undergraduate researcher under my direction in the lab. My specific contributions to this manuscript

are as follows: I designed the study and acquired all human data for this manuscript, created the design

goals for the phantom manipulation device, researched and selected the commercial breast phantom,

developed the PVA breast phantom protocol, directed the acquisition of phantom data, outlined the data

analysis methods, and wrote significant portions of this manuscript. While I am not the primary author

of this manuscript, I have included it as an appendix due to my significant contributions along with the

relevance of the phantom setup to this thesis. This manuscript appears in:

• J. T. Chadwell, R. H. Conley, J. A. Collins, I. M. Meszoely, and M. I. Miga, ’Characterization

of a phantom setup for breast conserving cancer surgery’, SPIE 2016 Medical Imaging: Image-

Guided Procedures, Robotic Interventions, Vol. 9786, 2016

Abstract

The purpose of this work is to develop an anatomically and mechanically representative breast phan-

tom for the validation of breast conserving surgical therapies, specifically, in this case, image guided

surgeries. Using three patients scheduled for lumpectomy and four healthy volunteers in mock surgical

presentations, the magnitude, direction, and location of breast deformations was analyzed. A phantom

setup was then designed to approximate such deformations in a mock surgical environment. Specifi-

cally, commercially available and custom-built polyvinyl alcohol (PVA) phantoms were used to mimic

breast tissue during surgery. A custom designed deformation apparatus was then created to reproduce

deformations seen in typical clinical setups of the pre- and intra-operative breast geometry. Quantita-
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tive analysis of the human subjects yielded a positive correlation between breast volume and amount

of breast deformation. Phantom results reflected similar behavior with the custom-built PVA phantom

outperforming the commercial phantom.

C.2 Introduction

Treatment for early stage breast cancer usually involves a lumpectomy and radiation treatment, together

known as breast conservation therapy (BCT). BCT has the risk of reoperation due to difficulty in deter-

mining tumor borders intraoperatively. A comprehensive framework for image- guided breast surgery

using supine magnetic resonance (MR) images, patient specific biomechanical models, and intraoper-

ative ultrasound has been proposed [154, 224] as a superior intraoperative tumor localization strategy.

A mock surgical setup that could be used to evaluate data acquisition and registration methods for such

surgical systems would be of great value. Therefore, in this study, a phantom setup with realistic breast

geometry and elasticity is described along with a custom deformation apparatus designed to repro-

duce breast tissue deformation seen between preoperative images of the breast and the intraoperative

configuration of the breast.

The preoperative state within the imaging unit is associated with the subject in the supine position

with the ipsilateral arm placed above her head. The intraoperative state involves the subject in the supine

position with the ipsilateral arm placed out approximately perpendicular from the body. The breast

deforms considerably between the two states. Ebrahimi et al. report the tumor center of mass difference

between two supine setups in [55]; one with the arm parallel to the body, and one with the arm above

the patients head. The center of mass difference of the tumor between these two arm positions averaged

2.78 cm and ranged between 1 and 4.6 cm. This study indicates that significant deformation occurs due

to differences in ipsilateral arm placement. The motivation for the work presented here is that in order

to properly validate non-rigid correction algorithms and image guidance techniques, there is a need

to take quantitative measurements in a controlled manner. Furthermore, individual differences in the

clinical setting limit reproducibility, which is an issue that can be remedied by the use of a phantom.

Commercial breast phantoms are available, such as the Breast Probe (SIMULAB Corporation, Seattle,

WA) and the Complex Breast Phantom (SynDaver Labs, Tampa, FL), and while they do represent

surface anatomy, they do not represent physiologic elasticities and deformation characteristics.
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C.3 Methods

Analysis of Clinical Breast Deformation

Breast deformations that occur clinically from the preoperative state to the intraoperative state were

characterized by analyzing deformations seen in three patients scheduled for a lumpectomy and in four

healthy volunteers in mock surgical setups. The data from patients and healthy subjects were acquired

under an Institutional Review Board (IRB) approved study. In the fourth volunteer, MR images and

mock intraoperative data was acquired for both breasts, yielding seven total data sets. The magnitude

and direction of breast surface deformation was measured using MR-visible fiducial markers, as seen

in Fig. C.1 (IZI Medical Products, Owing Mills, MD). MR images of the breast in the supine con-

figuration were acquired using a 16- channel sensitivity encoding (SENSE) torso coil. The coil was

situated as to not apply any unnatural deformations to the breast. High resolution anatomical images

were acquired using a T1-weighted sequence with fat suppression. Fiducial center points in the MR im-

ages were manually determined. In the mock surgical setup, the geometric coordinates of the synthetic

surface fiducials were acquired using an optically tracked stylus and NDI Polaris Spectra (Northern

Digital, Waterloo, ON, Canada). The fiducial markers were used to calculate fiducial registration error

(FRE), a measure of overall landmark misalignment, and an intrafiducial (IF) distance distribution, used

to determine both magnitude and direction of clinical deformation. The differences in FRE and IF dis-

tance distribution between the two positions were reported to establish a non-rigid surface deformation

characterization. Breast volume for each subject was also determined by semi-automatic segmentation

of the breast tissue.

The differences in intrafiducial distances between the preoperative imaging environment and intra-

operative configuration represent the magnitude of non-rigid deformation occurring between the two

states. A covariance matrix of these values was computed, and used to find the principle axes of de-

formation by solving for the eigenvalues and eigenvectors. These eigenvectors provide a quantitative

representation of the anatomically-relevant directions of principle deformation associated between the

two presentation states. By registering all physical space fiducials in the surgical presentation to the

MR counterparts, trends among the principal directions can be compared and correlated to standard

anatomical directions due to the uniformity of MR patient imaging.
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Figure C.1: Volume render of breast in supine position with synthetic, MR-visible fiducial markers

Phantom Design

Poly(vinyl) alcohol (PVA), a synthetic polymer commonly used for approximating soft tissue [261],

was used to simulate breast tissue. The phantoms were developed with the ability to include features

such as elastically-representative fibroglandular tissue and tumors. This setup has been used previously

in breast phantoms used for sonographic validation within microwave imaging systems [262]. However,

the phantoms presented here are able to be used without a shell encasement, a limitation commonly

associated with many existing phantoms for sonographic use [263–265]. This makes the setup well-

suited for validation of intraoperative surgical guidance methods and tomographic imaging, regardless

of whether the phantoms are used in the supine or pendant position. We should also note that the

phantoms presented here closely resemble surface anatomy, mimicking not only the shape of the breast

itself, but the surrounding tissue ipsilateral arm region as well.

Phantom Preparation

The mold for the breast phantom was similar to the one shown in Fig. C.2a which is the Breast Probe

phantom from SIMULAB Corporation (Seattle, WA). The phantom mold was coated with small beads

for tracking. These beads became embedded in the surface of the phantom upon freezing. Beads were

used because adhesive fiducial markers do not adhere well to the phantom surface. Each phantom was

prepared by combining water and 7% by mass of (poly)vinyl-alcohol (Sigma Aldrich 341584), which
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(a) a (b) b

Figure C.2: (a) SimuLab Breast Probe, and (b) PVA phantom in deformation apparatus. Green lines
illustrate directions compression can be applied to phantom

was then heated to 80 degrees C. 10% by volume of glycerin was added (Sigma Aldrich G7893), then

placed on a stirring stand until significantly cooled (this cooling is not explicitly necessary, but assisted

in keeping beads in place while pouring). The solution was carefully poured into the molds and left

uncovered in the freezer for at least 14 hours, then thawed for another 14 hours. It was discovered that

leaving the phantoms uncovered in the mold is crucial to achieving the proper stiffness, due to the rate

the phantoms dry while freezing/thawing.

Deformation Apparatus

A deformation apparatus was created with four manipulators able to induce and hold compressive

forces on the breast (Fig. C.2a, C.2b). All four manipulators can be deployed at once, individually, or

in some unique configuration. The base of the deformation frame contains a 1 cm depression machined

to have the same contour as the breast phantom mold. This allows the breast phantom to sit flush in

the base and hold applied deformations while minimizing slip. It should be noted that the deforma-

tion apparatus only provides compressional forces on the phantom; however, the clinical deformation

can still be reproduced, based on the results from the principle component analysis which showed

that primary deformation occurs along the patients superior-inferior axis, and secondary deformation

occurring along the medial-lateral axis.
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Measuring Phantom Deformation

Two phantom materials were compared in this phantom setup. The first material was a commercially

available breast phantom with realistic synthetic tissue (SIMULAB Corporation, Seattle, WA Fig.

C.2a). The second analysis was done using the PVA gel described above. Each phantom was placed in

the deformation base and markers were dispersed on each surface. Surface markers were digitized for

the baseline (undeformed) and deformed state using an optically tracked stylus. FRE and IF distance

distribution differences were calculated for each phantom and compared to the clinical data sets.

C.4 Results

Clinical Breast Deformation

Analysis of non-rigid deformation between the supine MR images and mock intraoperative breast con-

figuration yielded a positive correlation between breast volume and the amount of deformation. The

fiducial registration error (FRE), was calculated for all cases. FRE indirectly captures an estimate of

non-rigid changes by looking at changes with respect to breast volume. The assumption is that fidu-

cial localization error (FLE) is similar among women with different breast volumes but that soft tissue

changes due to arm motion would be exacerbated with larger breast women. More specifically, the

effects of chest wall attachments would inhibit deformation effects in smaller breast women. Fig C.3a

is a graph showing the correlation between breast volume and FRE for the 7 human subjects. The

correlation coefficient between volume and FRE is 0.93. Fig. C.3b shows the maximum IF distance

distribution difference between preoperative and intraoperative states also as a function of subject breast

volume.

While not as strong a correlation as FRE, the maximum IF distance distribution difference corre-

lated with volume with a 0.74 correlation coefficient. Across the subject population the FRE average,

and maximum IF average was 6.0 +/- 2.1 mm, and 13.8 +/- 6.5 mm, respectively. Also of note, in

a qualitative comparison of the maximum IF distance distribution differences, most deformation oc-

curred along the subjects inferior-superior axis, with minor deformations occurring along the subjects

medial-lateral axis.

The principle component analysis performed on the seven human cases confirmed this quantita-

tively. Fig. C.4 shows the three principle components of deformation for each case with the average

also shown. Analyzing the breast fiducials from the supine MR preoperative state to the supine intra-
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Figure C.3: The relationship between breast volume and (a) fiducial registration error, and (b) and
maximum intrafiducial distance differences associated with the tracked adhesive fiducial markers dis-
tributed on the breast surface.

operative state, the largest motion is approximately in the superior-inferior direction, and the second

largest is approximately in the medial-lateral direction. Based on the PCA analysis, the motion in the

superior-inferior direction is approximately 2.3 times greater than medial-lateral motion, and 6.2 times

greater than anterior-posterior motion on average.

Phantom Deformation

Each phantom (Breast Probe, and our molded PVA-gel) had a volume of 7.2 105 mm3. The FRE

between mock preoperative and intraoperative states for the commercial phantom and PVA gel phantom

was 3.8 mm, and 5.05 mm, respectively. When comparing that to the clinical results of Fig. C.3a, the

FRE value for the PVA phantom more closely matched the expected value for this breast volume (5.2

mm in Fig. C.3a) than the commercial phantom. The maximum IF distance distribution difference

between mock preoperative and intraoperative states for the commercial and PVA gel phantom was

8.31 mm, and 13.28 mm, respectively. When comparing to Fig C.3b, the PVA gel phantom provided

deformations closer to those seen clinically (11.95 mm in Fig C.3b).

The clinical deformation analysis was used to characterize the directions and magnitude of defor-

mation between the supine MR imaging environment and the supine intraoperative state. This analysis

was then used as a guideline to develop the phantom and fine tune its material properties. It should

be noted that supine MR imaging was used for its more accurate representation of the breast during
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Figure C.4: Results from principle component analysis of breast deformations reveal primary (blue
lines), secondary (green lines), and tertiary (red lines) principle components for each of 7 cases. The
asterisk designated lines represent the average principal component directions over all 7 cases. Note,
vector magnitudes are expressed in voxels.
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the lumpectomy procedure [224]. As noted earlier, the deformation apparatus applies compressional

forces on the phantom. While this force does not mimic the physiological counterpart with respect to

the deformation, it does embody the effects of those sources of deformation in terms of magnitude,

direction, and location of movement between the two states.

C.5 Conclusion

In this study, we quantitatively analyzed breast surface deformation between preoperative and intra-

operative breast states using breast cancer patients and healthy volunteers in the supine imaging-to-

intraoperative positioning. Using this analysis, we designed a breast-mimicking phantom capable of

realistic breast deformation as a way to test and validate platforms for image guided breast surgery.

The representative PVA breast phantom was shown to be a viable option for the use in evaluating

image guidance systems for breast surgery.
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tian Lorenz, GM Newstead, Hiroyuki Abe, Mohammed Keshtgar, et al. Biomechanically guided
prone-to-supine image registration of breast mri using an estimated reference state. In Biomedi-
cal Imaging (ISBI), 2013 IEEE 10th International Symposium on, pages 214–217. IEEE, 2013.

[138] Timothy J Carter, Christine Tanner, William R Crum, Nicolas Beechey-Newman, and David J
Hawkes. A framework for image-guided breast surgery. In Medical Imaging and Augmented
Reality, pages 203–210. Springer, 2006.

[139] Vijay Rajagopal, Martyn P Nash, Ralph P Highnam, and Poul MF Nielsen. The breast biome-
chanics reference state for multi-modal image analysis. In Digital Mammography, pages 385–
392. Springer, 2008.

[140] TJ Carter, C Tanner, WR Crum, and DJ Hawkes. Biomechanical model initialized non-rigid
registration for image-guided breast surgery. Computational biomechanics for medicine, page
104, 2006.

[141] Armen Sarvazyan, Timothy J Hall, Matthew W Urban, Mostafa Fatemi, Salavat R Aglyamov,
and Brian S Garra. An overview of elastography-an emerging branch of medical imaging. Cur-
rent medical imaging reviews, 7(4):255–282, 2011.

[142] Vinay Swaminathan, Karthikeyan Mythreye, E Tim O’Brien, Andrew Berchuck, Gerard C
Blobe, and Richard Superfine. Mechanical stiffness grades metastatic potential in patient tu-
mor cells and in cancer cell lines. Cancer research, 71(15):5075–5080, 2011.

[143] Vijay Rajagopal, Angela Lee, Jae-Hoon Chung, Ruth Warren, Ralph P Highnam, Martyn P
Nash, and Poul MF Nielsen. Creating individual-specific biomechanical models of the breast for
medical image analysis. Academic Radiology, 15(11):1425–1436, 2008.

[144] M Kuhlmann, EC Fear, A Ramirez-Serrano, and S Federico. Mechanical model of the breast for
the prediction of deformation during imaging. Medical engineering & physics, 35(4):470–478,
2013.

[145] JH Chung, V Rajagopal, P MF Nielsen, and MP Nash. A biomechanical model of mammo-
graphic compressions. Biomechanics and modeling in mechanobiology, 7(1):43–52, 2008.

[146] Jae-Hoon Chung, Vijay Rajagopal, Tod A Laursen, Poul MF Nielsen, and Martyn P Nash. Fric-
tional contact mechanics methods for soft materials: application to tracking breast cancers. Jour-
nal of biomechanics, 41(1):69–77, 2008.

174



[147] Julia A Schnabel, Christine Tanner, Andy D Castellano-Smith, Andreas Degenhard, Martin O
Leach, D Rodney Hose, Derek LG Hill, and David J Hawkes. Validation of nonrigid image
registration using finite-element methods: application to breast mr images. IEEE transactions
on medical imaging, 22(2):238–247, 2003.

[148] Sarthak Misra, KT Ramesh, and Allison M Okamura. Modeling of tool-tissue interactions for
computer-based surgical simulation: A literature review. Presence: Teleoperators and Virtual
Environments, 17(5):463–491, 2008.

[149] Laurence Vancamberg, Anis Sahbani, Serge Muller, and Guillaume Morel. Needle path plan-
ning method for digital breast tomosynthesis biopsy based on probabilistic techniques. Digital
Mammography, pages 15–22, 2010.
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