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CHAPTER I 

 

INTRODUCTION TO THE PRIMATE AUDITORY PATHWAYS AND NECESSARY 
BACKGROUND CONSIDERATIONS  

 
 
 

Excerpts of this chapter were submitted in: C.R. Camalier and J. Kaas. Functional 
organization of primate auditory pathway and interactions with pathways of reward. In: 
Sensation and Reward, ed. Jay A. Gottfried.  
 
 
 
1.1 Introduction 
 

From the wail of an ambulance to the soothing melody of a Mozart sonata, it is 

clear that sound in our environment carries enormous meaning. We are able to process 

sounds rapidly and accurately in daily life, yet the mechanisms that underlie the ability to 

do this remain largely mysterious. In mammals, one logical place to investigate the 

mechanisms of sound processing is in the auditory cortex. The basic organization and 

function of the areas contained in auditory cortex, an organization sometimes referred to 

as the ‘primate model’, is still under active investigation. The studies contained in this 

dissertation aim to test and refine current hypotheses about processing flow. To give 

some necessary background for this, this chapter will start with some perspective on the 

evolution of primate auditory cortex, review basic properties of sound that we will 

concern ourselves with, and also cover some ethological considerations in sound 

processing.  The auditory cortex evolved to process sound within the constraints of the 

surrounding environment; an understanding of this background is useful to provide 

context for hypotheses about sound processing in cortex. Later this chapter introduces the 
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general organization and major pathways of the auditory system, with a particular focus 

on primates. Due to the incomplete nature of primate literature, conclusions based on data 

from other species will be discussed. Insights from other mammalian species (i.e., cats, 

ferrets, rats) can be used to shape hypotheses, but it is worth noting that important species 

differences may exist, even within primates. Lastly, this chapter discusses objectives and 

aims of this dissertation that relate to better understanding of the functional organization 

of primate auditory cortex.   

 

1.2 Origins of Auditory Cortex: A Comparative Perspective 

 

Sound has a necessarily complex role in guiding behavior, and the systems that 

subserve auditory processing have had a long time to develop. To give some context for 

understanding the function of the auditory system, we will first briefly cover the 

evolutionary development of this system in mammals, particularly primates. The part of 

the auditory system that is most varied in mammals is the auditory cortex (for review, 

see: Hackett, 2008). While reptiles have a dorsal cortex that is homologous to neocortex, 

this dorsal cortex does not have auditory inputs. Instead, the projections of the auditory 

thalamus are subcortical. Yet, all studied mammals have a region of temporal cortex that 

gets inputs from the auditory thalamus and is responsive to auditory stimuli. Thus, early 

mammals or the ancestors of mammals somehow acquired direct thalamic auditory 

projection to cortex. Most studied mammals have several areas of auditory cortex, 

including two or three primary or primary-like areas that are characterized by direct 

inputs from the tonotopically organized ventral nucleus of the medial geniculate complex, 
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MGv, and are in turn also tonotopically organized. In addition, these primary fields are 

surrounded by a belt of secondary auditory areas, and additional, higher-level areas of 

auditory or multisensory processing may be present. For now, conclusions about how 

auditory cortex varies in organization across mammals need to be limited, as species in 

some of the major branches of mammalian evolution have not been studied, and studies 

have been few and incomplete for species in other major branches.  

More progress has been made in studies of carnivores (cats, dogs, ferrets) where 

at least two primary areas exist, an anterior auditory field (AAF) and the classical 

primary field (A1). A posterior field (P or PAF) has some of the characteristics of a 

primary field, and seven or eight secondary fields have been described. With more than 

one field having primary area features, identifying the same (homologous) areas across 

members of different orders of mammals has been challenging. Primates also have at 

least two primary fields, a posterior A1 and an anterior “rostral” area, R. The more 

anterior rostrotemporal area, RT, has some of the characteristics of a primary area. Given 

these uncertainties about the identities of primary areas and the limited comparative 

evidence, there is little understanding of what secondary areas may be homologous, if 

any, across mammalian taxa. For now, we can surmise that early mammals had at least 

one primary area and a bordering secondary area or areas, and this organization has been 

partly retained, but variously elaborated in the major lines leading to extent mammals.  

 

1.3 Properties of Sound 

To define some basic properties of sound that we will refer to, consider a 

marmoset monkey twittering a “love song” to its mate in the dense tree cover of a 
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Brazilian rain forest. It is plausible to suggest that this call is a meaningful stimulus worth 

processing, and it serves as a useful example. The first important question one has to ask 

(if one is a marmoset): Who is she? Identity cues can include frequency structure (i.e., 

which frequencies are in the call) and temporal modulation rates (i.e., how the strength of 

the frequencies change in time). These frequency and temporal modulation cues end up 

giving rise to complex percepts such as rhythm, pitch, and harmonicity. These percepts, 

combined with other systems such as emotion and memory systems, in turn can give rise 

to meaning and speaker identity (Moore, 1997).  

The second important question is: Where is she? Location cues can include 

loudness (is she getting louder?), frequency structure (the outer ear, or pinna, filters 

sound in particular ways depending on the vertical location of the source), and 

differences between the two ears in intensity (interaural intensity differences: IID) and 

time (interaural time differences: ITD). These properties give rise to cues about the 

direction of motion, and vertical and horizontal location, respectively. Spatial percepts 

about the location of the sound source, combined with other systems that subserve 

interpersonal space can help guide action, such as the marmoset properly orienting to its 

mate. Note that both object identity and location rely on partially overlapping sets of 

acoustic cues.  

 

1.4 Ethological Considerations in Sound Transmission and Implications for Perception 

 

No animal processes sound outside of the confines of the environment it is 

surrounded by. Any forest, grassland, or classroom is like an auditory hall of mirrors, 
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absorbing, reflecting, and distorting sound in characteristic ways (reviewed in: Hauser, 

1996; Fitch, 2002). The acoustic environment presents numerous challenges to the 

detection and discrimination of sounds. First is the degradation of sounds as they 

propagate through space – sounds will be subject to frequency dependent attenuation, 

reverberation, and irregular amplitude fluctuations due to inhomogeneities in the air 

temperature or velocity (i.e. atmospheric effects). Also affecting sound detection and 

discrimination are the levels and quality of ambient noise in the surroundings.  

These transmission hurdles affect sound in different environments differently. For 

example in forest biome, reverberation off of objects such as trees is more severe than  in 

an open habitat, and this reverberation is worse for higher modulation frequencies. Thus 

the higher frequencies of amplitude modulated sounds and rapid repetitive frequency 

modulation will be masked in a closed environment. In contrast, in open environments 

amplitude fluctuations from atmospheric inhomogeneities are more likely to be a factor. 

These inhomogeneities are generally less than 50 Hz, and so will affect low frequencies 

of modulation of the sound (reviewed in: Wiley and Richards, 1978; Brown and 

Handford, 2000). In both environments, frequency dependent degradation gets worse 

with increasing frequency, but for the forest environments, there appears to be a low 

frequency window (200 Hz in Brown 1986, 700-1200 Hz in Morton 1975). This may be 

due to lower frequency sound bouncing off of the canopy or the thermal gradient that the 

canopy creates during certain times of day.  Thus, open environments propagate sound 

best with relative low spectral frequencies and  high frequency modulation and closed 

environmennts propagate sound best that contain low spectral frequencies (especially in 

the window) with slower rates of modulation. Ground attenuation is also a factor, and is 
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similar for both environments. At 1 M above the earth, sounds in the range of 300-3000 

Hx are attenuated the greatest, and the higher the transmitter is, the less attenuation 

occurs, especially at higher frequencies (Wiley and Richards, 1978). Lastly the source 

and frequency content of background noise is different for different habitats (Brown and 

Waser, 1988).  

It has been pointed out that not all degradation is necessarily harmful, and that 

sound transmission is more than just long distance propagation.  Since different cues (i.e. 

spectral frequency, modulation frequency) degrade at different rates and in different 

ways, weighing the relative degradation of a signal may tell a receiving organism 

something about the transmitter’s location or environment (Wiley and Richards 1978}. 

This hypothesis necessarily relies on a transmitter signaling a highly stereotyped call.  

To what extent can ethological considerations bear on constraints of the vocal 

behavior (and auditory perception) of primates? An influential hypothesis is that animals 

that are communicating over long distances and do not have a complex social structure 

will communicate in a nongraded system, one with a large feature distance between 

exemplars which makes it easier to distinguish between calls, even degraded ones 

(Marler, 1975).  In contrast, animals that have close contact and easy visual access, such 

as in a grassland, will develop graded vocalizations schema, where the calls have 

variability in a given exemplar and there may be little difference between different calls. 

This hypothesis also makes a second prediction that most long-range communication 

calls should exhibit a graded structure due to transmission difficulties.  

Certain species of primate such as macaques have what are termed graded 

vocalizations, where there are only graded distinctions between individuals and call 
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types. Even long range calls, such as shrill barks, are graded when they should be 

nongraded (Fischer et al., 2001). However, macaques live in highly variable habitat, from 

forest to semidesert, and many live in villages and towns. Clearly a communication 

system highly adapted to a particular ecology would be maladaptive for such a diversified 

animal. We can conclude that ecological acoustics are not a primary factor in the 

evolution of acoustical processing to production of the macaque vocal repertoire. 

However, just because macaque calls do not follow Marler’s predictions does not mean 

there is at least one example where macaque calls to appear to be optimized for long 

range communication. ‘Lost’ calls in toque macaques come in two basic types one that is 

long duration (0.3-0.7 sec) and low frequency (500-1800 Hz), better for long distance 

propagation, and the other that is higher frequency (3.5-5Khz), with shorter with 

repetitions, better to transmit location cues based on differences between the two ears  

(Dittus, 1988). Also, studies have shown that calls from forest primates are more robust 

when played in an arboreal environment as compares to savanna dwelling calls in their 

native habitat, suggesting that these forest vocalizations have been subject to greater 

acoustic selection pressure for preservation of long distance communication (Brown et 

al., 1995).   

Given the difficulties in ambiguous transmission in a graded repertoire, why the 

shift to such a system? Graded repertoires may instead be able to carry more information 

(Hauser, 1996). It appears that graded differences between similar calls are often the 

mark of individual voices (Hammerschmidt and Todt, 1995). For example, spectral peak 

patterns or differences in spectral composition in certain vocalizations (coos) help 

identify individual voices (Hauser and Fowler, 1992; Rendall et al., 1996; Rendall et al., 
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1998) (but not screams). These are likened to human vocal tract resonances and are 

supposed to cue individual identity and morphology (i.e. size, gender) (Ghazanfar et al., 

2007).   

In contrast, marmosets do have a set ecology. Due in part to extremely high 

predation pressures, they are primarily arboreal in nature. As per the laws described 

above, a prediction would be made that their vocal communication would be lower 

frequency with low modulation frequencies. Indeed this is the case for modulation 

frequency – most of the modulations in a marmoset vocalization are in the range of 7-15 

Hz (Epple, 1968).   However it does not appear to be the case for frequencies – most 

spectra energy is concentrated in the range of 5-15 kHz (Epple, 1968). Perhaps due to the 

high predation pressures it is instead adaptive to communicate in frequency ranges that 

quickly degrade over space. Also counter to Marler’s hypothesis, it has been shown that 

some marmoset vocalizations are graded (Schrader and Todt, 1993).  

Thus for primates with and without a set biome, it appear that Marler’s 

predictions are of limited usefulness for prediction. This is true for other species of 

primates, both old word monkeys such as alarm calls in baboons (Fischer et al., 2001),  

and for other new world arboreal species such as squirrel moneys and tamarins (Hauser, 

1996).  

If one ascribes to the school of thought developed by Barlow (Barlow, 1961) the 

auditory system evolved to process behaviorally relevant sound, and limiting factors in 

the auditory environment would serve to limit the kinds of sounds that an organism 

would need to process. Thus, these ethological considerations have strong implications 

for the cortical coding of auditory signals. Consider the coding of temporal modulation 
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frequencies. It is interesting that though subcortical temporal tuning of these stimuli is up 

to hundreds of Hz (reviewed in: Langner, 1992),  tuning in cortical structures of 

marmoset,  such as A1,  is concentrated in the lower modulation frequencies (Lu et al., 

2001; Liang et al., 2002; Kajikawa et al., 2005; Bendor and Wang, 2008).  It could be 

argued that the shift in cortical tuning to low frequencies is to reflect these lower 

frequencies that transmit better in the arboreal environment (X. Wang, personal 

communication).  However, the similarities emerging between macaque and marmoset 

tuning seem to suggest that this tuning is not driven by a specific ecological niche, but 

instead reflects encoding common to primates, possibly as a result of timing and 

integration constraints placed on it by cortical processing (this is discussed in more detail 

in Chapter III). Low modulation frequencies predominate in both macaque and marmoset 

vocalizations so the shift towards low frequencies in cortex may also be due to selection 

pressure to be able to efficiently process conspecific vocalizations.  

To understand the mechanisms by which we process complex sounds to guide 

optimal behavior, a natural place to start is by understanding the neural mechanisms of 

sound processing. From the earlier marmoset example we can see that both auditory 

object identity and location rely on partially overlapping sets of cues. The frequency 

structure of the sound is important for both, and the changes of amplitude and frequency 

content over time are important for both. Because auditory cues are so time dependent, a 

strong characteristic of the auditory system is its highly parallel nature. Auditory 

processing is characterized by multiple interacting streams even at its earliest levels. 

Also, context plays a large role in the relative importance of processing identity or space. 

Sometimes you need to know if it is your mate. At other times it is more important to 
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know that an object is on a collision path with you than to specifically identify what it is 

you are dodging!  

In the next two sections, the main features and pathways of the auditory cortical 

system are reviewed in order to provide a foundation for the other chapters. It describes 

auditory processing as sound waves hit the cochlea, travels up through the nuclei of the 

brainstem, further disseminates in multiple cortical streams, and finally arrives at 

associative areas such as the prefrontal and orbitofrontal cortices. Processing streams that 

have been identified anatomically are described, and physiological properties and 

possible functions are described where data are available.  

.  

1.5 Early Auditory Processing Streams and Pathways: The Path to Cortex 

 

Cochlea to the Inferior Colliculus 

The most obvious and possibly most fundamental organizing principle of the 

auditory system is tonotopy, an orderly representation of sound frequency across a one-

dimensional space. Tonotopy is first established at the level of the sensory epithelium 

(the cochlea). When sound waves hit the spiraled structure of the cochlea, the nature of 

the basilar membrane in the cochlea splits up the sound into its frequency components. 

The basilar membrane has graded stiffness along its length, so wave amplitude changes in 

a frequency-dependent manner as it is propagated along the basilar membrane.  Higher 

frequencies stimulate inner hair cells at the closest portion of the membrane (the base),  
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Figure 1-1. Major ascending connections of the subcortical auditory system  
Selected ascending pathways from the cochlea to auditory cortex, major pathways are 
shown in thick lines. Divisions of subcortical nuclei are indicated in text.  
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and lower frequencies stimulate inner hair cells at the farthest portion (the apex).  In 

mammals, the length of the basilar membrane is related to the length of the range of 

frequencies an animal can hear (West, 1985). Thus, the cochlea establishes tonotopy; an 

organizational principle preserved though the levels of auditory processing through 

auditory cortex.  

Responses from the cochlea project via the eighth nerve to the cochlear nucleus. 

The cochlear nucleus projects to structures in the superior olivary complex (SOC) such as 

the medial superior olive (MSO), the lateral superior olive (LSO) and the medial nucleus 

of the trapezoid body (MNTB) (figure 1-1) (reviewed in: Pickles, 1988; Rouiller, 1997).  

It also projects to the nuclei of the lateral lemniscus. Again, each of these structures 

maintains a basic tonotopy established by the cochlea. 

Response properties of these structures show that neurons still faithfully represent 

sound by encoding spatial frequency at very high resolution.  Neurons in these structures 

also demonstrate temporal tuning (or how fast the neuron can synchronize with the 

temporal structure of the sound) at high rates (see Langner, 1992). Nuclei of the superior 

olivary complex are especially important for the encoding of sound location, as they are 

the first place where ascending information from the two ears is combined (for review, 

see: Kelly et al., 2002).  From these structures and nuclei of the lateral lemniscus, 

responses reach the inferior colliculus of the midbrain. The inferior colliculus can be 

divided into two major portions, the central and external nuclei. Investigators also 

commonly distinguish the dorsal cortex, the dorsoventral nucleus, and the pericentral 

nucleus of the inferior colliculus. 
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The central nucleus (ICc) is considered to be the main relay nucleus of the inferior 

colliculus. It is tonotopically organized and receives a direct projection from the lateral 

lemniscus. Responses are tightly tuned to tones, modulation rate encoding shows 

synchronization up up to 120 Hz and response latencies are generally short (Ryan and 

Miller, 1978; Langner and Schreiner, 1988; Schreiner and Langner, 1988). In contrast, 

the external nucleus (ICx) is not tonotopically organized, neurons have longer latencies, 

and they receive most of inputs from sources other than the lateral lemniscus. Thus 

begins two pathways: a fast, direct, tonotopically organized pathway (lemniscal pathway 

through the ICc) and a slower, indirect, nontonotopically organized pathway 

(nonlemniscal pathways through the ICx).  

When compared to other sensory systems, the proliferation of brainstem nuclei in 

the auditory system is striking. The exact meaning of this is not well understood, but it 

may allow for greater and faster stimulus processing early in the stream to transform a 

simple one-dimensional representation of tone frequency in time into complex percepts in 

space and time. This element of parallel processing is one of the highlights of the 

auditory system, and is best suited to processing stimuli that occur on a very fast 

timescale, as in audition.  

 

The Auditory Thalamus 

Lying just medial and posterior to the lateral geniculate of the visual system, the 

medial geniculate complex (MGC) is a small and heterogeneous thalamic structure. There 

are other auditory-responsive nuclei in the thalamus (see below), but the MGC is 

characterized as the primary feedforward auditory division because its inputs are 



 14

dominated by the inferior colliculus (Winer et al., 1992; Jones, 2003).  There is a 

multiplicity of pathways from the cochlea to the thalamus, but the MGC is an obligatory 

relay of auditory information into auditory cortex.  Thus, it is useful to spend some time 

describing the organization and response properties of neurons in the MGC, since cortical 

responses can best be understood in the light of their thalamic inputs. 

While the functional organization of the MGC has not been extensively explored, 

especially in primates, a general picture based on connectivity and microelectrode studies 

is emerging (reviewed in: de Ribaupierre, 1997). The MGC of primates consists of at 

least three main divisions: ventral (MGv), dorsal (MGd), and medial (MGm). Based 

partly on the paucity of data, the nature and specialization of these divisions has been a 

matter of speculation for some time. For example Poljak (Poljak, 1926) posited that the 

ventral division pathway aided in localization, and the MGd division was involved in the 

discrimination of sounds. Later, Evans (Evans, 1974) put forth a similar idea, that the 

MGv was involved in localization and the MGd was involved in pattern recognition. The 

current understanding of the MGC is that the divisions perhaps do not divide function so 

cleanly. What has become clear is that these divisions have different input connections 

and internal architecture, leading to neurons with different frequency tuning properties, 

modulation rate tuning, response latencies, and sometimes multisensory properties.  

One division of the MGB, the MGv, receives tonotopically organized projections 

from both the ipsi- and contralateral ICc, but ipsilateral input is stronger. This leads to a 

structure that is itself tonotopically organized. Neurons respond well to pure tones, and 

are generally narrowly tuned to tone frequency - they respond best to a small range of 

frequencies even at high intensities, perhaps only a quarter of an octave (Allon et al., 
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1981; Calford, 1983). Response latencies are quite short. In addition, temporal envelope 

tuning indicates that the responses of these neurons can follow and distinguish very rapid 

rates of stimulation (Allon et al., 1981; Wang et al., 2008). In terms of selectivity to 

sound identity or location, the majority are primarily excited by sound coming from the 

contralateral ear, and sensitive to difference cues such as interaural intensity and time 

differences (Starr and Don, 1972; Calford, 1983; Barone et al., 1996).  These MGv 

neurons are not selective for particular vocal stimuli either (Symmes et al., 1980), 

evidence that complex sound identity cues, such as call type, are not distinguished at this 

level.  

A second division of the auditory thalamus is the MGd. It receives most of its 

input from noncentral portions of the inferior colliculus. There is no evidence of tonotopy 

in MGd and its neurons are generally poorly responsive to pure tones, with broad or 

multi-peaked frequency tuning. These neurons have long response latencies, consistent 

with their inputs from noncentral collicular nuclei. However, MGd neurons exhibit robust 

responses to complex sounds (Allon et al., 1981; Calford, 1983; He and Hu, 2002). An 

important caveat is that MGd can be further subdivided. It has been suggested that this 

region has two divisions in primates, an anterior (MGad) and a posterior (MGpd) division 

(reviewed in: Jones, 2003). It is possible that the response properties differ between the 

two subdivisions, and it is suspected that the anterior portion of the dorsal division 

(MGad) may in fact be tonotopically organized and have neurons with short latencies, 

thus resembling MGv neurons (Imig and Morel, 1984, 1985a, b).  

A third division of the auditory thalamus is the MGm. This nucleus receives 

inputs from both the central and external divisions of the inferior colliculus. MGm also 
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receives significant projections from vestibular nuclei, spinal cord, and superior 

colliculus (SC) (Calford and Aitkin, 1983; Rouiller et al., 1991; Winer et al., 1992; 

Rouiller, 1997). Connectivity of neurons within this nucleus may be highly variable, as 

MGm neurons project to all three core belt and parabelt regions of auditory cortex (see 

below), as well as other regions. MGm has not been extensively studied but there is 

evidence that different cell classes within MGm project to different cortical layers 

(Hashikawa et al., 1995). There may be tonotopy in the rostral division of the MGm 

(Rouiller et al., 1989), but for the most part tonotopy through the entire structure is 

lacking. Much like the MGd, neurons are broadly tuned and are often multi-peaked to 

tone stimuli. Response latencies are also variable (Allon et al., 1981; Calford and Aitkin, 

1983), and consistent with its heterogeneous inputs, there is evidence for neurons with 

multisensory responses in at least some nonprimate species (e.g. Calford and Aitkin, 

1983; LeDoux et al., 1987; Rouiller et al., 1989).  

There are other auditory related areas in the primate thalamus, but their primary 

inputs are from structures such as cortical and nonprimary subcortical auditory structures, 

and cortical multisensory and brainstem nuclei. These include the posterior nuclear group 

(PO), the medial pulvinar (PM), suprageniculate (SG), and limitans (Lim) (de 

Ribaupierre, 1997; Rouiller and Durif, 2004; de la Mothe et al., 2006a).  The 

posterolateral section of the thalamic reticular nucleus is heavily implicated in mediating 

feedback cortical efferents. The posterior nuclear group lies dorsal and medial to the 

MGC. The medial pulvinar is the auditory-responsive region of the pulvinar and receives 

inputs from the superior coliculus, but whether it receives inputs from the inferior 

colliculus is not known. The medial pulvinar projects broadly to temporal, frontal, and 
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cingulate cortex (Gutierrez et al., 2000).  The thalamic reticular nucleus can be broken 

down into three parts, an anterior division that responds primarily to somatosensory 

inputs, a dorsal part that responds primarily to visual inputs, and a ventral part that 

responds primarily to auditory inputs. Neurons in the auditory sector are broadly tuned to 

tones, but can act in a frequency-specific manner mediated by connections with the MGC 

(Crabtree, 1998).  

The importance of the MGC cannot be overestimated in understanding auditory 

cortical processing: it is an obligatory relay to the cortex. In primates the 3-4 divisions of 

the MGC each transform and modulate auditory neural responses in different ways. 

These divisions project to different parts of auditory cortex in different degrees (see 

figure 1-4), creating the firmament of the organization and response properties seen there.  

 

Auditory Cortex 

Auditory cortex includes cortex that gets preferential projections from the MGC 

and is responsive to auditory stimuli. In humans, auditory cortex corresponds to 

Brodmann’s areas 41 and 42 located in the vicinity of Heschl’s gyrus on the superior 

temporal plane (Hackett et al., 2001; Hackett, 2008). In macaques, auditory cortex is 

located on caudal portion of the lower bank of the lateral sulcus and the superior temporal 

gyrus (see figure 1-2). Since only a small portion is visible on the surface of this macaque 

brain (upper brain), the parietal cortex has been ‘cut’ away to reveal the areas of auditory 

cortex hidden deep in the lateral and circular sulcus (lower brain). From the figure, it is 

easy to appreciate one difficulty of studying auditory cortex: it is almost completely  
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Figure 1-2. Location of primate auditory cortex (macaque).   
Upper figure: location of auditory cortex in macaque. Note that only the parabelt (blue: 
RPB, CPB) is exposed on the surface of the brain. Lower figure: the parietal and frontal 
cortices have been graphically cut away to reveal approximate location of core and belt 
(red and yellow). Abbreviations: LS lateral sulcus, STS superior temporal sulcus, AS 
arcuate sulcus, CS central sulcus, STG superior temporal gyrus, STS superior temporal 
sulcus, CIS circular sulcus, INS insula, LuS lunate sulcus.  
 
 

covered by the parietal lobe in Old World primates such as macaques, chimpanzees, and 

humans.   

In this chapter, we emphasize a model of auditory cortical organization that is 

based on decades of anatomical and physiological research (Kaas and Hackett, 1998, 

2000; Hackett, 2010). According to this working model, auditory cortex is first divided  



 19

 

 
 

 
 
 
Figure 1-3. Organization of primate auditory cortex. 
A schematic of primate auditory cortex showing core, belt, and parabelt regions with 
areal subdivisions, and some short range connections.  For clarity, medial belt projections 
to parabelt are not pictured.  
 
 

into three regions, which can be thought of as levels of processing (see figure 1-3). These 

regions are further subdivided into twelve areas. In short, regions are subdivisions of 

auditory cortex, and areas are subdivisions of regions. Subdivisions are distinguished 

based on three things: connections (i.e., from thalamus and to other cortical areas), the 

cellular and histochemical architecture of cortical tissue, and functional organization, 

presumably reflected by specificity of neural response properties (such as patterns of 

tonotopic organization and the differences in response properties). The anatomical 

differences in connections and architecture are thought to subserve the differences in 
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function between regions and between areas. In the following section, we will first 

describe general regional characteristics, and then fill in the details, where known, of 

areal characteristics.  

In auditory cortex, three major regions are defined: core, a belt that wraps around 

this, and a parabelt region lying lateral to the belt. Distinguishing architectonic features 

of auditory cortex can include markers for differences in cellular and molecular features 

such as cytochrome oxidase (CO), acetylcholinesterase (AChE), parvalbumin, the 

vesicular glutamate transporter 2 (vGluT2), and density of myelination. These markers 

change roughly stepwise as one progresses from medial to lateral according regional 

distinctions (de la Mothe et al., 2006b; Hackett and de la Mothe, 2009).  

The core region receives its primary input from the MGv, and also receives a 

projection from the MGm (figure 1-4). The core has a broad layer IV that is densely 

myelinated and exhibits a high expression of CO, AChE, parvalbumin and vGluT2, all 

consistent with receiving a dense and rapidly conducting projection from the thalamus 

(de la Mothe et al., 2006a, b). This core region is densely connected within and across 

divisions of the core region, and with the divisions in the adjoining belt region, but not to 

the parabelt (we will come back to this later). Compared to other regions, neurons in the 

core tend to have short response latencies (though this varies across areas, see below), 

with narrow tone frequency tuning functions, and relatively fast modulation frequency 

tuning (e.g. Merzenich and Brugge, 1973; Vaadia et al., 1982; Steinschneider et al., 1992; 

Bieser and Muller-Preuss, 1996; Bieser, 1998; Recanzone, 2000a; Cheung et al., 2001; 

Kajikawa et al., 2005; Lakatos et al., 2005; Philibert et al., 2005; Bendor and Wang,  
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Figure 1-4. Connections of the medial geniculate complex with regions of auditory cortex 
A schematic of connections of the three subdivisions of the MGC (MGv, MGd, MGm) 
with the three regions of auditory cortex (core, belt, parabelt). For simplicity, only major 
connections are shown. Arrow type denotes different thalamic sources, not quantity of 
projections.  
 
 

2008; Kajikawa et al., 2008; Oshurkova et al., 2008; Kusmierek and Rauschecker, 2009; 

Crum et al., submitted).  

The belt region receives thalamic projections from the MGd and MGm, but not 

MGv (figure 1-4). The belt has a less pronounced layer IV than core, and it is also less 

myelinated and exhibits reduced expressions of the markers described above, consistent 

with a less robust projection from the MGC. The belt is divided into a medial and a 

lateral region, relative to its position to the core. The medial belt region is most connected 

within itself and the adjoining core regions (figure 1-3). The lateral belt is most 
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connected within itself, adjoining core and adjoining parabelt. The belt has been less well 

studied electrophysiologically than core because most of the region responds poorly 

under anesthesia. Compared to core, belt neurons appear to have wider tuning functions, 

often with broad or multipeaked frequency tuning, and respond well to complex 

sounds(Vaadia et al., 1982; Rauschecker and Tian, 2004; Tian and Rauschecker, 2004; 

Kajikawa et al., 2008; Recanzone, 2008; Kusmierek and Rauschecker, 2009; Crum et al., 

submitted). Belt neurons also exhibit longer latencies and do not entrain as well to 

temporal stimuli (Bieser, 1995; Crum et al., submitted) stimuli may be encoded by firing 

rate (see: Wang et al., 2008).  

The third region, the parabelt, also receives thalamic projections from the MGd 

and MGm (figure 1-4). The parabelt has a less pronounced layer IV than core or belt, 

which is also less myelinated and exhibits further reduced expression of the markers 

described above, consistent with an even less robust projection from the MGC (Hackett et 

al., 1998b; de la Mothe et al., 2006b; Hackett and de la Mothe, 2009). The parabelt region 

is most connected within itself and with the adjoining lateral belt region (figure 1-3). It 

may have a weak feedback projection to core (de la Mothe et al., 2006b), but no direct 

projection from it. The response properties of parabelt neurons have not been well studied 

(but see: Crum et al., submitted), but based on patterns of connections and responses 

known thus far, parabelt neurons are expected to exhibit long latencies and respond 

extremely poorly to tones, with wide and probably complex frequency tuning functions. 

This region will probably be more responsive to sounds that are both spectrally and 

temporally complex, such as vocalizations over pure tones or even wideband noise.  
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While the distinctions between regions is roughly stepwise in a medial to lateral 

direction, it is also important to note that superimposed on these regions is a rostral to 

caudal gradient of the same molecular markers described above (i.e markers for 

differences in cellular and molecular features such as cytochrome oxidase (CO), 

acetylcholinesterase (AChE), parvalbumin, the vesicular glutamate transporter 2 

(vGluT2), and density of myelination). In general, these features change gradually, but 

the strongest expression of these markers in a given region is caudally and the weakest 

expression is rostrally (de la Mothe et al., 2006a, b; Hackett and de la Mothe, 2009) 

Upon this regional organization, these regions are divided into areas (see figure  

1-3 and 4) (Kaas and Hackett, 1998, 2000). The core region contains three areas (from 

caudal to rostral): the ‘primary’ area A1, the rostral area R, and the rostral temporal area 

RT. The medial belt contains four areas, also named by location: the caudal medial area 

CM, the middle medial area MM, the rostral medial area RM, and the rostrotemporal 

medial area RTM. The lateral belt also has four areas: the caudal lateral area CL, the 

medial lateral ML, the anterolateral area AL, and the rostrotemporal lateral area RTL. 

Lastly, the parabelt has at least two areas: the caudal parabelt area CPB and the rostral 

parabelt area RPB. At least most of these areas have its own, often crude, tonotopic map 

which flips representational order along caudorostral borders (for most complete map, see 

Petkov et al., 2006). Distinctions of connections, architecture and functional 

characteristics between areas within a region are less pronounced than distinctions 

between regions, but these weaker differences allow us to further subdivide regions into 

areas. The function of any of these areas has not been fully elucidated, partly because 

they must be interpreted in the context of the functions of the others. However, we do 
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know something about specificities of neural responses in some areas, and can make 

educated predictions about the rest.  

Given these subdivisions of regions and areas, how does auditory information 

flow between and across regions and areas? A picture of graded hierarchy of 

informational flow between regions is emerging from both connectional anatomy and 

physiology. Given that only the MGv has demonstrated strong tonotopy, the tonotopy 

exhibited in the belt and parabelt (which do not receive projections from the MGv)  is 

considered to be inherited from the core (Rauschecker et al., 1997; Kaas and Hackett, 

2000). Additionally, there is no direct projection from core to parabelt, further suggesting 

a degree of serial, hierarchical processing from core to belt to parabelt.  There is a 

convergence of inputs from each region to the next, which presumably leads to the wider 

frequency tuning and altered response specificity as one progresses across levels.  

In further support of this direction of flow, latencies increase from core to lateral 

belt at the same rostrocaudal level (Vaadia et al., 1982; Bieser and Muller-Preuss, 1996; 

Recanzone, 2000a; Crum et al., submitted). For example, latencies in A1 are shorter than 

those in ML. Other support comes from rate level functions. At lower levels, loudness is 

encoded as a  monotonic function: as sound level rises, so does neural firing rate.  As one 

ascends the hierarchy of sound processing, one sees more complex, non-monotonic cells, 

where cells reach peak firing at a certain sound level, and then have less robust firing 

rates at higher sound levels. As one progresses from core to belt, neural response 

thresholds for lowest amplitude to elicit a response get higher. Tuning widths for tone 

frequencies also become wider for neurons from core to belt, presumably reflecting 

convergence of more tightly tuned inputs originating at earlier levels (i.e. core) (Bieser 
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and Muller-Preuss, 1996; Recanzone, 2000a; Rauschecker and Tian, 2004; Kusmierek 

and Rauschecker, 2009; Crum et al., submitted). Peak temporal modulation tuning also 

progressively decreases, thought to be due to imprecisions in timing of activations 

introduced by successive synaptic delays (Crum et al., submitted). A nonsynchronized 

firing rate code for modulation rate also emerges at the level of auditory cortex (reviewed 

in Wang et al., 2008). It is worth distinguishing that while information flow may be 

roughly serial, informational processing is not thought to occur in a strictly staged 

process. Instead, many perceptual processes are occurring in parallel with each other.   

Bear in mind that informational flow across regions is not strictly serial, or strictly 

in parallel within a region. As mentioned before, the regions express dramatic medial to 

lateral stepwise changes in architecture and connectivity described above. Within each 

region, the architecture and response properties follow a less dramatic, but distinct caudal 

to rostral decrease in molecular marker expression and MGC connectivity. Also, 

connectivity within a region seems to have a preferential caudal to rostral feedforward 

characteristics (Fitzpatrick and Imig, 1980; Galaburda and Pandya, 1983; de la Mothe et 

al., 2006b). In support of this, latencies have also been seen to increase in a caudorostral 

direction (Bieser and Muller-Preuss, 1996; Bendor and Wang, 2008; Kusmierek and 

Rauschecker, 2009).  

Caudorostral changes in architecture and differences in connectivity indicate that 

each area within a region has a unique profile of architecture and connectivity, 

presumably subserving differences in functions between areas. For example, the caudal 

most core area (A1) is more myelinated than the most rostral portion of the core (i.e. de la 

Mothe et al., 2006b) and demonstrates faster latencies (Bendor and Wang, 2008). Current 
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evidence suggests that most of the belt areas exhibit slower latencies than the core area 

corresponding to that caudorostral level (i.e. A1 slower than ML). However, due to this 

caudorostral gradient it is not as easy to make predictions of response latencies between 

regions that do not correspond to the same caudorostral level. There is growing evidence 

that the most caudal belt region, CM, has many neurons with response latencies that are 

as fast or faster than those in the most caudal core region, A1 (Rauschecker and Tian, 

2004; Kajikawa et al., 2005; Lakatos et al., 2005; Oshurkova et al., 2008). However, CM 

(and caudal belt in general) receives its MGd inputs from the MGad nucleus, which as 

discussed earlier may exhibit tonotopy and fast latencies. Yet, physiological and lesion 

evidence seems to suggest that CM appears to depend completely on A1 inputs for its 

tone responses (Rauschecker et al., 1997). Clearly these and other findings are presenting 

challenges to the present model in terms of information flow within auditory cortex.  

As discussed previously, auditory object location and identity share partially 

overlapping cues, the coding of which are described above. To date, there has been little 

evidence of strong feature identity selectivity (e.g. for different calls) for neurons in core 

and belt areas of auditory cortex (Wang et al., 1995; Recanzone, 2008; Kusmierek and 

Rauschecker, 2009). Currently there is a bias for recording in the larger and more 

accessible caudal core and belt areas, so the lack of selectivity found thus far may be 

simply due to this. One aspect of object identity is the subjective perception of pitch 

(irrespective if whether the frequency is actually present). A module of neurons that 

appears to be selective for pitch has been described on the lateral low frequency border of 

A1 with RT (Bendor and Wang, 2005, 2010), and there seems to be converging evidence 

for a similar processing zone in core auditory cortex from fMRI evidence in humans, 
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thought it is often not as tightly localized (reviewed by: Bendor and Wang, 2006; but see: 

Hall and Plack, 2009).  

The coding of object location in auditory cortex has been an area of intense 

interest.  Many neurons appear to be spatially selective for free-field sounds as well as 

interaural intensity and time differences (IID and ITD) have been demonstrated, 

especially in the caudal belt fields (Ahissar et al., 1992; Recanzone, 2000b; Woods et al., 

2006; Scott et al., 2007; Miller and Recanzone, 2009). How this spatial selectivity is 

propagated has still not been well elucidated, as spatial selectivity in the MCG is virtually 

unknown. There has been little evidence for an ordered spatiotopic map in auditory 

cortex - instead, location in space is represented across a distributed population of 

neurons (Miller and Recanzone, 2009). A co-registration of auditory information within 

an ordered spatiotopic map could occur in lower layers of the superior colliculus (SC), 

which have significant inputs from auditory and multisensory areas of neocortex (Huerta 

and Harting, 1984; Morel and Kaas, 1992; Collins et al., 2005). Higher order spatial 

perception such as the perception of auditory motion is also poorly understood, but belt 

areas have been shown to be sensitive to the presentation of approaching ‘looming’ 

stimuli (Maier and Ghazanfar, 2007).  

 

1.6 Auditory-Responsive Cortex Beyond Classical Auditory Cortex: Superior Temporal 
Gyrus, Prefrontal and Insular Cortices, and Corticofugal Pathways 
 
 

Superior Temporal Gyrus 

 Areas of the superior temporal sulcus (STS) include Ts1, Ts2, the superior 

temporal polysensory region (STP) and Tpt. These areas have been shown to have dense 
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reciprocal  connections with belt and parabelt (figure 1-5), as well some exhibit weaker 

auditory thalamic inputs from the MGC and multisensory nuclei of he posterior thalamus 

(PO, SG, etc. ) (Trojanowski and Jacobson, 1975; Galaburda and Pandya, 1983; 

Markowitsch et al., 1985; Pandya and Rosene, 1993; Pandya et al., 1994; Kosmal et al., 

1997; Hackett et al., 1998a, b; Hackett et al., 2007). These regions have not been well 

explored electrophysiologically, but evidence from fMRI and PET studies in primates 

responsiveness to auditory stimuli, as well as other modalities (Poremba et al., 2003; 

Poremba et al., 2004; Gil-da-Costa et al., 2006; Petkov et al., 2008). Rostral STS has 

been shown to be responsive to vocalizations, and there is growing evidence for a voice 

identity processing area in the superior temporal region  – one that responds 

preferentially to the vocal identity of particular callers (Poremba et al., 2004; Petkov et 

al., 2008; see also review of human literature by Belin, 2006).  

 

Prefrontal Cortex 

Auditory cortical belt and parabelt project to areas in the prefrontal cortex, 

orbitofrontal cortex and cingulate cortices in a topographic manner, in that the caudal 

parabelt primarily projects to dorsal prefrontal cortex and ventral parabelt primarily 

projects to ventral prefrontal cortex (fgure 1-5). Auditory-related areas on the STG 

described above project in a similar topographic manner (Pandya et al., 1969; Hackett et 

al., 1999; Romanski et al., 1999a; Romanski et al., 1999b; Cavada et al., 2000; Petrides 

and Pandya, 2002; Morecraft et al., 2004; Barbas et al., 2005; Barbas, 2007; Kayser et al., 

2007; Petrides and Pandya, 2007; Roberts et al., 2007; Saleem et al., 2008; Gerbella et 

al., 2010). These areas can show auditory responsiveness to complex stimuli such as 
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vocalizations or in a task specific manner (Ito, 1982; Azuma and Suzuki, 1984; Bodner et 

al., 1996; Fuster et al., 2000; Kikuchi-Yorioka and Sawaguchi, 2000; Romanski and  

 

 

 
Figure 1-5. Auditory cortical projections to prefrontal, limbic structures 
Long-range connections of auditory and auditory-related cortical fields to prefrontal and 
limbic structures projected on a macaque brain. Note the dorsoventral topography. For 
clarity, projections from core and belt of auditory cortex, insular cortex, basal ganglia, 
and basal nuclei projections are not shown. 
 
 

Goldman-Rakic, 2002; Gifford et al., 2005; Romanski et al., 2005; Cohen et al., 2006; 

Sugihara et al., 2006; Artchakov et al., 2007; Cohen et al., 2007; Romanski, 2007; Lemus 

et al., 2009). For example, the dorsal most portion of the frontal eye field responds to 

auditory stimuli, and it is thought to mediate auditory-guided saccades. This is consistent 

with projection patterns described above showing a caudal projection from the caudal belt 

and adjoining association cortices to the portion of the frontal cortex containing the 

frontal eye fields. Auditory responsiveness has also been explored in the ventrolateral 

prefrontal cortex. Neurons in this part of cortex are responsive to vocalizations, but not 

responsive to tones or noise, and have been shown to discriminate between different 
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vocalizations (Romanski and Goldman-Rakic, 2002; Romanski et al., 2005; Cohen et al., 

2006; Cohen et al., 2007; Russ et al., 2008; Lemus et al., 2009; reviewed in Romanski 

and Averbeck, 2009).   

This dorsoventral topography of auditory belt and parabelt projections to frontal 

cortex has led to the proposal that there exists a domain specificity of auditory processing 

in auditory cortex (Romanski et al., 1999a; Romanski et al., 1999b; but see: Recanzone 

and Cohen, 2009), much like the domain specificity described in the visual or 

somatosensory cortices (Mishkin, 1979; Ungerleider and Mishkin, 1982; Disbrow et al., 

2003).  It is hypothesized that the dorsal prefrontal cortex receive projections from the 

dorsocaudal ‘where’ stream of auditory processing and the ventral prefrontal cortex 

receives projections from the ventrocaudal ‘what’ stream of auditory processing along the 

temporal lobe (Romanski et al., 1999b), which translates to functional specialization 

prefrontal and auditory cortices (e.g. Rauschecker and Tian, 2000; Tian et al., 2001; 

Romanski and Goldman-Rakic, 2002).  

 

Insular Cortex 

 Another auditory-responsive region is insular cortex, lying just medial to the 

medial belt of auditory cortex. This area is connected to the auditory areas of the medial 

belt, and to a lesser extent lateral belt and parabelt, as well as areas of the superior 

temporal gyrus and prefrontal cortex (de la Mothe et al., 2006b; Smiley et al., 2007). 

Early studies indicated its responsiveness to both simple auditory stimuli, such as tones 

and clicks, and more complex stimuli such as vocalizations in single unit studies 

(Sudakov et al., 1971; Bieser and Muller-Preuss, 1996; Bieser, 1998; see also Remedios 
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et al., 2009). Insular cortex has also been implicated in auditory functions in both human 

and primate imaging studies (Zatorre et al., 1994; Griffiths et al., 1997), lending further 

support to the idea that it is another region of auditory cortical processing. In a recent 

study, insular neurons responded preferentially to conspecific vocalizations over sounds 

with similar spectral or envelope structure, indicating that they are responding 

preferentially to the vocalization (Remedios et al., 2009). Their vocalization selectivity 

was not more than neurons in the ventrolateral prefrontal cortex, discussed above. How 

insular cortex fits into the ‘what versus where’ stream hypothesis has yet to be 

determined. 

 

Corticofugal Projections  

There are extensive corticalfugal projections from auditory and auditory related 

cortex (reviewed in Winer, 2005), presumed to play a major role in top down modulatory 

effects as well as possibly learning effects.  These connections have been most 

extensively demonstrated in cats, but have been demonstrated in primates as well 

(FitzPatrick and Imig, 1978; Luethke et al., 1989; Morel and Kaas, 1992; de la Mothe et 

al., 2006a). These projections target primarily ipsilateral nuclei and structures. There are 

massive projections to the MGC (Winer et al., 2002; de la Mothe et al., 2006a), inferior 

colliculus (mostly outside of the central nucleus) (Winer et al., 1998), superior olivary 

complex (SOC), cochlear nucleus (CoN), pons (Brodal, 1972) and basal ganglia (Reale 

and Imig, 1983). Input to claustrum and entopeduncular nucleus also arises from areas of 

auditory cortex (Beneyto and Prieto, 2001). The dorsal putamen and caudate nucleus  

receive topographic projections from tonotopic areas of auditory cortex (Reale and Imig, 
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1983), and appear to have a role in sensory processing by affecting threshold and 

frequency responses (Sun et al., 1996). Motor behavior could be modulated by inputs 

from auditory cortex to the basal ganglia (Beneyto and Prieto, 2001). Auditory cortex is 

also positioned to affect autonomic function via the projections to amygdala (e.g. 

Romanski and LeDoux, 1993) and central gray (Winer et al., 1998). Other inputs to the 

amygdala come directly from the auditory thalamus, at least in rats (Iwata et al., 1986).  

  

1.7 Objective  

 

Our long term aim is to further define the functional organization of primate 

auditory cortex, and relate anatomical structure to neural processing of sound.  By 

incorporating the results from a number of studies, a working model of primate auditory 

cortex has emerged (Kaas and Hackett, 2000; Hackett, 2002, 2010). As discussed 

previously in this chapter, the current working model is comprised of three levels of 

processing involving three cortical regions: core, belt, and parabelt. These regions can be 

divided into approximately thirteen different areas, distinguished by a unique set of 

anatomical and physiological properties that overlap in some dimensions and differ in 

others (reviewed in: Hackett, 2010). The current working model predicts a hierarchy of 

processing in two directions. The first is a strict serial processing from the core to belt to 

parabelt, with successive integration between levels due to converging inputs. In addition 

to this, there is evidence of a hierarchy of flow from caudal to rostral areas within a 

region.  
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In addition to testing the predictions made about direction of flow reviewed 

earlier, we are also interested in understanding the physiological signature of the many 

shared converging and diverging inputs in cortex. Work in anesthetized cats suggest that 

neuron pairs within different areas of auditory cortex have spike timing that is weakly yet 

similarly correlated (reviewed in: Eggermont, 2000, 2007). Though there are similarities 

between the auditory cortex of primates and cats (reviewed in: Hackett, 2010), 

correlations within and between areas are not a formal part of the primate model yet. To 

do this, this work needs to be extended to multiple areas of the awake primate. If the 

results can also be applied to the primate model, we predict that pairwise correlations will 

be similar for neurons within an area, irrespective of regional or caudorostal level. 

Additionally, we predict that overall correlation values of neuron pairs between different 

areas will be smaller, but also similar, irrespective of regional or caudorostal level. 

Timelags of cross-area peak correlations can also be used to indicate direction of flow 

between areas.  

In this series of studies, we examine response latencies, temporal tuning 

measures, and pairwise spike correlations in multiple areas in core, belt, and parabelt of 

the auditory cortex of the awake macaque. Our aims are to examine physiological 

evidence for serial processing and integration of inputs along the hypothesized axes of 

information flow in the auditory cortex. By studying multiple areas in the same animal 

under the same experimental conditions, we are better able to compare responses between 

areas to better evaluate these aims.  
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1.8 Organization of the Dissertation 

 

This chapter (Chapter I) serves as an introduction to primate auditory cortex and 

the cortical encoding of sound by reviewing auditory pathways and neural response 

properties. Chapter II addresses hypotheses about the timing of information flow in 

auditory cortex by examining neural response latencies to auditory stimuli in ten different 

areas across core, belt, and parabelt. As an additional and complementary measure, LFP 

latencies are also examined for evidence of the same trends. Chapter III addresses 

hypotheses about flow and convergence in auditory cortex by examining changes in 

temporal modulation tuning in five areas across core, belt, and parabelt. LFP tuning is 

also examined for evidence of the same trends. Chapter IV also addresses flow and 

convergence by examining correlations from pairs of neurons within seven areas and 

pairs of neurons across three sets of different areas. Evidence for correlations within and 

across areas may be attributed to common inputs, and as evidence for across-area 

correlations that have nonzero lag may be attributable to the direct driving influence of 

one area on another.  Chapter V reviews the main findings, and synthesizes them in the 

context of their implications for auditory cortex and auditory information processing.  It 

also discusses limitations and future directions of study. Lastly, in the course of the 

studies it became apparent that there was no tested standard to determine neural latency 

in auditory cortex, as popular methods used in anesthetized cortex were inappropriate. 

Thus, the appendix is a comparison of five different latency measures in awake auditory 

cortex, which was necessary preparation for Chapter II. Each chapter is written as an 

independent article, as some of them have been or are currently being prepared for 
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submission. However, references to other chapters are made where appropriate to avoid 

repetition of figures or method details.  
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CHAPTER II 

 

AUDITORY RESPONSE LATENCIES ACROSS MACAQUE AUDITORY CORTEX 

 

2.1 Abstract 

 

Anatomical connections between regions and areas of the primate auditory cortex 

suggest a hierarchy of processing, but the precise timing of responses across regions and 

areas has yet to be fully determined. To do so, we compare distributions of response 

latencies from ten different areas from three regions of macaque auditory cortex. For both 

neurons and local field potentials (LFPs), latencies increase with regional level and also 

along the caudal to rostral axis within a region. Neural spiking latency differences are 

partially, but not completely, accounted for by similar differences in LFP latencies, which 

suggests that longer neuron latencies are a product of both slower inputs as well as longer 

integration time. These response differences are similar across multiple stimuli. Though 

these results show clear regional and caudorostral trends in the timing of flow, there is 

great overlap in the latency distributions, an indication of the strongly parallel nature of 

processing in auditory cortex.  

 

2.2 Introduction 

 

Current models propose that primate auditory cortex contains three regions: core, 

belt, and parabelt (see figure 2-1). These regions, which can be thought of as levels of  
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Figure 2-1. Schematic of primate auditory cortex (left hemisphere). The three areas that 
constitute the core region (A1, R, RT) are in light gray, the eight areas that constitute the 
belt region (CM, MM, RM, RTM, CL, ML, AL, RTL) are in medium gray, and the two 
areas that constitute the parabelt (CPB, RPB) are in dark gray. Arrows at the bottom right 
indicate dorsal and caudal directions.  
 

 

processing, can be subdivided into approximately thirteen different areas, where each 

area is distinguished by a unique anatomical and physiological profile (Kaas and Hackett, 

2000; Hackett, 2010). Although detailed studies of connections are lacking, evidence 

from connectivity patterns suggest both serial and parallel processing in auditory cortex 

(see figure 2-2).  For example, the parabelt region receives inputs from the belt region, 

but not the core (Hackett et al., 1998b), suggesting that information processing between 

regions proceeds serially from core to belt to parabelt. In contrast, there are multiple 

parallel streams of input from the thalamic medial geniculate complex (MGC). Thalamic  
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Figure 2-2. Schematic of MGC inputs by region and major feedforward ipsilateral 
cortical connections by region.  The MGd has been further subdivided into the anterior 
and posterior divisions (MGad and MGpd respectively). Parallel projections from the 
MGC  are indicated by different line conventions. Serial feedforward projections within 
cortex are shown with black arrows. While there are connections from core to belt, and 
from belt to parabelt, there are no substantial feedforward projections from core to 
parabelt (denoted by the red X).  For comparison, known (or presumed) relative latencies 
for neurons in each MGC nucleus are indicated at the bottom. 
 
 
 
input to the core mainly comes from the ventral division (MGv), input to the belt and 

parabelt comes from the anterior and posterior divisions of the dorsal division (MGad and 

MGpd), and all three regions receive input from the medial division (MGm) (Burton and 

Jones, 1976; Jones and Burton, 1976; Molinari et al., 1995). 

To better understand the constraints under which sound is processed, it is 

important to characterize the direction(s) and timing of information flow in auditory 

cortex. Tuning and selectivity of auditory cortical neurons has been previously used to 

make useful predictions about direction of information flow (Rauschecker et al., 1995; 
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Rauschecker et al., 1997; Kaas and Hackett, 2000; Recanzone, 2000), but cannot address 

timing. To determine the relative timing of stimulus-related cortical activation, measures 

of neural onset response latency across multiple areas are quite powerful (for examples in 

the visual system, see: Schmolesky et al., 1998; Schroeder et al., 1998).  

Based on known patterns of connectivity in the auditory cortex, what timing of 

cortical activation would be predicted? Serial cortical connections imply a regional flow 

from core to belt to parabelt, so latencies of parabelt neurons should be slower than core 

neurons. Corticocortical laminar projection patterns appear to favor a caudal to rostral 

feedforward pattern (Fitzpatrick and Imig, 1980; Galaburda and Pandya, 1983; de la 

Mothe et al., 2006b; reviewed in Hackett, 2010). Thus these patterns suggest that within a 

region neurons in caudal areas should have faster latencies than neurons in rostral areas. 

Estimating cortical activation timing using known cortical and thalamic connections is 

complicated by the incomplete characterization of the primate MGC. From work in 

primates and cats, it is generally believed that neurons in the MGv respond quickly, while 

neurons in the MGd respond slowly and more variably (Allon et al., 1981; Calford, 

1983), but there is evidence from cats that neurons in the MGad subdivision may respond 

quickly (Imig and Morel, 1984, 1985a, b). Further complicating latency predictions is 

that the MGm is heterogeneous and appears to have quite variable latencies (Allon et al., 

1981; Hashikawa et al., 1995).  

Consistent with these predictions a comparison of  latencies between core A1 and 

lateral belt ML reported neural response latencies in belt longer than core, (Recanzone, 

2000; Crum et al., submitted).  In the medial belt areas CM, MM, and RM, however, 

latencies have been found to be the same or shorter than in adjoining core (Recanzone, 
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2000; Kajikawa et al., 2005; Lakatos et al., 2005; Kusmierek and Rauschecker, 2009; but 

see Bieser and Muller-Preuss, 1996). Belt latencies that are the same or faster than core 

pose a problem for serial flow and suggest that parallel inputs arising outside of A1 may 

be contributing to this short latency activity in portions of the belt (Kajikawa et al., 2005). 

There is also increasing evidence that latencies increase within a region in a caudal to 

rostral direction, both in core and in medial belt (Bieser and Muller-Preuss, 1996; Bendor 

and Wang, 2008; Kusmierek and Rauschecker, 2009).  

 While some intriguing patterns are emerging, drawing meaningful cross-area and 

cross-region comparisons across studies is difficult due to the differences in species, 

stimuli, methods, and anesthetic state. Our understanding of timing also remains 

incomplete because many areas of auditory cortex have not been characterized 

physiologically.  This study aims to cohesively study response latencies of neurons across 

multiple areas in the same species and under the same conditions. Specifically, we aim to 

evaluate whether latencies increase along the proposed core-belt-parabelt processing 

hierarchy, as well as whether latencies increase within a region in a caudal to rostral 

direction. As a complement to latencies derived from the unit activity, we also analyze 

latencies of the evoked local field potential (LFP). Initial poststimulus deflection of the 

LFP can be used as an estimate of the timing of incoming activity, as it is a measure of 

the initial current flux of the local area. By comparing patterns of neural spiking and LFP 

onset latencies, we generate a picture of input-output relationships across regions and 

areas of the majority of the macaque auditory cortex, building a more complete 

characterization of response timing to auditory stimuli across primate auditory cortex.  
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In this study, we compare distributions of response latencies from ten different 

areas covering all three regions of macaque auditory cortex. For both neurons and LFPs, 

latencies increase mediolaterally with regional level and also along the caudal to rostral 

axis within a region. Neural spiking latency differences are partially, but not completely, 

accounted for by similar differences in LFP latencies, which suggests that longer neuron 

latencies are a product of both slower inputs as well as longer integration time. Though 

these results show clear regional and caudorostral trends in the timing of flow, there is 

great overlap in the latency distributions, an indication of the strongly parallel nature of 

processing in auditory cortex.  

 

2.3 Materials and Methods 

 

Animal subjects  

Three adult macaque monkeys PJ, SP, and DY were used for neural recordings 

(PJ-female bonnet macaque (Macaca radiata) 5.0 kg, SP-male bonnet macaque 10.0 kg, 

and DY-female rhesus macaque (Macaca mulatta) 7.0 kg). Animals were housed in an 

AAALAC-accredited facility under supervision of laboratory and veterinary staff. All 

animal care and experimental procedures were in accordance with the U.S. National 

Institutes of Health Guide for the care and use of laboratory animals, under a protocol 

approved by the Vanderbilt Institutional Animal Care and Use Committee.  
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Surgical procedure 

 After completing training to enter a primate chair and initial acclimatization, a 

headpost (in-house design) was implanted under aseptic conditions. The monkey was 

initially tranquilized with Ketamine (10-30 mg/kg IM) and Robinul (0.015 mg/kg IM) for 

intubation, catheterization and scrubbing, and premedicated with antibiotic (Cefazolin, 

2.2 mg/kg IM). Through the duration of the procedure, anesthesia was maintained with 

inhalation Isofluorane in O2 (2-4%). Respiration was maintained with a mechanical 

ventilator and body temperature was maintained at 37°C. Heart rate, blood pressure, 

expiratory CO2, and peripheral oxygen levels were monitored as well. After 4-8 weeks of 

acclimatization to the headpost and further training to sit tranquilly in a primate chair 

with insert earphones, a second surgery was performed. In this surgery (details above) we 

implanted a recording chamber (22 mm wide; Crist Instruments, Hagerstown MD), 

oriented vertically over caudal auditory cortex (stereotaxic coordinates of the center of 

the chamber were approximately A7: L23 mm from earbar zero). For consistency, data 

was collected exclusively from the left hemisphere of each monkey. A craniotomy 

slightly smaller than the chamber was also made at this time to allow access to cortex. 

 

Stimulus generation and neurophysiological acquisition  

Stimulus generation and delivery. Recording sessions were conducted in a double 

walled chamber (Industrial Acoustics Corp, NY). Acoustic stimuli were generated by 

Tucker-Davis technologies (TDT, Gainesville, FL) System II hardware and software 

(SigGen), controlled by a custom software interface between the stimulus generation and 

acquisition setups. Stimuli were delivered using Beyer DT911 insert earphones (range 
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0.1-25.0 kHz), coupled to custom earmolds in both ears. These earmolds were made 

individually for each monkey by constructing a silicon mold of the concha and first few 

millimeters of the ear canal of each ear to completely seal the ear canal. A stainless steel 

tube (inner diameter ~ 1mm) passed through the ear mold to protrude 2-3 mm into the ear 

canal. The transducer tube interfaced to the mold tube to form a sealed system. Stimuli 

were calibrated for intensity using a ¼ inch microphone (Model 7017; ACO Pacific, CA), 

pistonphone (Bruel and Kjaer type 4220) and custom software (TDT, SigCal). Amplitude 

corrections were saved in a data file and applied to each stimulus to preequalize the 

response of each earphone independently.  

Stimuli. All stimuli were delivered diotically with a jittered interonset interval of 

approximately 1000 ms, randomly interleaved with other stimulus types in the battery. 

Clicks. The duration of these diphasic clicks was 0.25 ms. They were calibrated to 60 dB 

SPL and presented 30 times.  

Wideband noise. The duration of these Gaussian white noise bands was 200 ms, with a 5 

ms cosine2 ramp at onset and offset. They were calibrated to 60 dB SPL and presented 30 

times.  

Tones.  The center frequency of these pure tones ranged from 0.3-21.0 kHz in 1/3 octave 

steps. Four intensities were used, ranging from 15-60 dB SPL in 15 dB steps. Stimulus 

duration was 50 ms with a 5 ms cosine2 ramp at onset and offset. Each frequency-

intensity combination was presented in random order 10 times. Here, we present latencies 

derived from the 60 dB tones.  

Electrophysiological recording. Electrode penetrations were made through a 

recording grid 15 mm wide with 1 mm spacing which fit over the implanted chamber 



 56

(Crist Instruments, Hagerstown MD). This ensured a replicable and roughly 

perpendicular trajectory through most parts of the superior temporal plane corresponding 

to caudal two-thirds of auditory cortex. After a local anesthetic (0.13% bupivacaine and 

0.50% lidocaine in sterile saline) was topically applied and then removed, a sharpened 

stainless steel guide tube was inserted to puncture the dura. The use of a guide tube also 

ensured that the penetration ran parallel to the recording chamber. One to two tungsten 

microelectrodes (2-4 MOhm, FHC, Bowdoin, MA) aligned mediolaterally were advanced 

through the guide tube through parietal cortex and into auditory cortex using manual 

microdrives (Narishige, Tokyo, Japan). Somatosensory mapping of primary and 

secondary somatosensory cortices was performed in order to establish maps to guide 

subsequent electrode penetrations. For all three monkeys, maps of the SII/PV border 

areas showed a caudal to rostral receptive field map of leg to hand to mouth. This map 

corresponded to maps of somatotopy derived from anesthetized animals in these areas, 

though the receptive fields we found appeared to be much larger (Robinson and Burton, 

1980a, b; Krubitzer et al., 1995; Disbrow et al., 2003; Coq et al., 2004). However, though 

the somatotopic map is consistent between monkeys, somatotopic borders do not 

precisely correspond to areal borders in auditory cortex and cannot be used as a guide.   

From the first auditory responses until the end of auditory-responsive cortex, all 

isolated neurons, irrespective of apparent responsiveness, were tested with all or most of 

the stimulus battery to avoid biasing the sample. In between isolations the microdrives 

were moved at least 200 μm to avoid resampling units. For most runs, we recorded 

through all layers until the white matter was reached. We assigned a relative cortical 

depth to each penetration by normalizing the recording depth with respect to the first 
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auditory responses, presumably from the first layer or two of auditory cortex. While 

unequivocal laminar depths cannot be established, it is likely that the majority of 

recorded neurons are coming from the middle and upper layers, consistent with the 

cytoarchitecture of auditory cortex (Hackett, 2010). During recording sessions the 

monkey was continuously monitored via closed-circuit television for alertness. 

Multichannel spike and local field potential (LFP) recordings were acquired with 

a 64 channel system that controls amplification, filtering and related parameters (Many 

Neuron Acquisition Processor, Plexon Inc, Dallas, TX). Both signals were referenced to 

ground. Spike signals were amplified (100x), filtered (150-8800 Hz), and digitized at 40 

kHz. The signal was further DC-offset corrected with a low-cut filter (0.7 Hz). Spikes 

were initially sorted online for all channels using real-time window discrimination. 

Digitized waveforms and timestamps of stimulus events were also saved for final offline 

analysis and final sorting (Plexon offline sorter), and graded according to isolation 

quality (single or multi units). Single and multi units were analyzed separately. Since the 

patterns of results were similar, results from both single and multi units were included in 

the results. The LFP signals were acquired simultaneously with the spike data. These 

were amplified (500x), filtered (3.3-89.0 Hz), and digitized at 1 kHz. Again, the signal 

was further DC-offset corrected by with a low-cut filter (0.7 Hz). To investigate the 

possible effect of phase shifts introduced by the preamp and DC-correction filter (see 

Nelson et al., 2008), the LFP was analyzed two ways: with and without offline phase 

correction using custom software (Plexon FPAlign, v1.3.1). As the phase shifts did not 

affect results, the LFP results are presented without phase correction. To ensure timing 

precision, the Plexon acquisition software interfaced with the stimulus delivery system 
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(Tucker Davis Technologies) and both systems were controlled by custom software 

(SGPlay, TDT, provided by Peter Yang).  

 

Histology and identification of cortical areas  

Since electrophysiological signatures have yet to be determined for the majority 

of auditory cortex, it was necessary to anatomically reconstruct cortex for precision in the 

determining electrode locations. At the end of the electrophysiological recording, lesions 

were made in representative grid sites to facilitate reconstruction. Additionally, best-

frequency matched sites were identified and 2-3 tracer injections were placed for a 

parallel anatomical study of auditory cortex. After a 12-14 day tracer transport period, the 

monkey was initially tranquilized with Ketamine and a lethal dose of Euthasol (120 

mg/kg) was administered. Just after cardiac arrest, the monkey was perfused with 4ºC 

0.1M phosphate buffered saline containing heparin (10 units/ml) , followed by 4ºC 

paraformaldehyde (4%) dissolved in 0.1M phosphate buffer (pH 7.4). Immediately after 

perfusion, the head was placed in a stereotaxic apparatus to for precise measurement of 

chamber placement and electrode angles. The brain was removed from the skull and 

photographed. The cerebral hemispheres, thalamus and brainstem were blocked and 

placed in 30% sucrose for 1-3 days. To facilitate reconstruction, the left hemisphere was 

cut at an approximately vertical angle (angle of the electrode) in 40 μm sections. 

Alternating series of sections were stained for Nissl substance with thionin, cytochrome 

oxidase (Wong-Riley, 1979), acetylcholinesterase (Geneser-Jensen and Blackstad, 1971), 

myelinated fibers (Gallyas, 1979), and processed for neuronal tracers. Figure 2-3 shows 

the cytoarchitecture (Nissl stain) and laminar organization unique to each of the 13 areas  
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Figure 2-3. Sections of the macaque monkey superior temporal cortex stained for Nissl 
substance to reveal differences in cytoarchitecture and laminar patterns between areas. 
Top row: areas of the core and medial belt regions, arranged in a caudal to rostral 
direction. Bottom row: areas of the lateral belt and parabelt regions, arranged in a caudal 
to rostral direction. Roman numerals denote cortical layer, delimited by black lines, and 
wm denotes white matter.  
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of macaque auditory cortex. Areas were identified by architectonic criteria established in 

previous studies (Hackett et al., 1998a; Hackett et al., 2001; Hackett and de la Mothe, 

2009). Using information from the lesions, electrode tracks, and histological 

reconstruction of areas, areal locations of electrodes were determined and confirmed by 

electrophysiological properties.  

 

Neurophysiological data analysis 

All analyses described below were done using in-house Matlab scripts 

(MathWorks, Natick, MA), confirmed when possible by analyses in Neuroexplorer 

v3.021 (Nex Technologies, Littleton, MA). Spike times were binned at 1 ms and no 

smoothing was used to maintain precision of timing. 

Unit response onset latencies. Response onset latency of each neuron was 

obtained in a similar way for multiple stimulus conditions (e.g. tones, clicks, noise). 

Response onset latency was determined using the Gaussian standard deviation algorithm 

(see Appendix for discussion). This algorithm is based on the averaged neural response in 

the form of a peristimulus time histogram (PSTH). The neural onset latency is the first 

bin after stimulus presentation to cross a response threshold and remain there for some 

number of bins (here, 3 bins). The algorithm defines a response threshold as 3 Gaussian 

standard deviations of the spontaneous rate above the mean spontaneous firing rate. 

Spontaneous firing rate measures are derived from the period 200-0 ms before stimulus 

onset.  

LFP response onset latencies. LFP signals are an estimate of the summed 

transmembrane currents in a local cortical area, possibly as discrete as 250 μm (Katzner 
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et al., 2009). To provide consistency between the unit and LFP analysis, response onset 

latency of the LFP was calculated using a similar measure. Onset latency was the first of 

three bins which exceeded 4 Gaussian standard deviations above or below baseline (SD 

derived from the variance of the absolute value of the LFP in the window from 200-0 ms 

before stimulus onset).  

Best tone frequency (BF). For tones, latencies were derived from the group of 

three frequencies that produced the best response (similar to Recanzone, 2000). This 

reduced noise in the determination of the BF and had the additional benefit of 

normalizing the number of stimulus presentations to 30 for all three kinds of stimuli in 

this study. For units, the BF was derived by analyzing firing rates in two different 

windows: 1) 10-100 ms poststimulus onset and 2) from response onset latency to 100 ms 

after onset latency. Regardless of the analysis window, tuning was similar from each 

frequency + the neighboring frequencies (edge frequencies had only 1 neighbor and were 

normalized appropriately). At 60 dB, no neurons exhibited sideband inhibition at 

frequencies directly neighboring the BF. A similar method was used to determine BF for 

the LFP, except peak deflection was used to determine best response. As expected, BF 

for units and BF for LFPs were concordant (Kayser et al., 2007).  

 

2.4 Results  

 

 Overall 1656, 1335, and 1583 units across cortex were analyzed for click, noise, 

and tone responses respectively. LFPs from 504, 511 and 425 sites were analyzed for 

click, noise and tone responses. Table 2-1 shows neuron counts, means and median 
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latencies for each area for all three stimulus types. These neurons and LFPs were 

distributed across three regions and ten areas. Except for area CM, each area contains 

neurons from at least two monkeys. Results between monkeys were qualitatively similar 

and could be combined. Due to the size of the grid, some auditory cortical areas were not 

covered by the grids. These included the rostral-most areas RTM, RT, RTL and the 

rostral tip of RPB.  

 

Table 2-1. Counts of neurons and LFP sites analyzed and responsive for all areas and all 
stimulus conditions examined, divided by regional level (columns) and stimulus type 
(rows). For comparison, means and medians of distributions are also listed.  

 

 

Click Latencies 

 Figure 2-4A shows a boxplot of the response onset latencies for clicks across the 

three regions and ten areas. Boxplots were chosen over simple means because it is a more 
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compete description of the distribution. However for reference, means are listed in table 

2-1. For ease of comparison, the y-axis is the same for all unit and LFP latencies for all 

three stimuli. Each region is separated by a vertical line (the belt is separated into medial 

and lateral sub-regions), and the areas within are arranged from caudal to rostral level left 

to right. To ease comparison of areas across regions, the shadowing of the boxplot 

indicates relative caudorostral level (e.g. all the light-gray are A1, MM, ML and CPB). 

Given predictions about axis of flow, it is most straightforward to compare latencies from 

areas at the same caudorostral level. Note that there is no core region that corresponds to 

the caudorostral level of belt CM and CL. Also, since CPB receives projections from belt 

areas at both the first and second caudorostral level, for visualization purposes it is placed 

in between the tick marks. To be conservative in the statistical analysis, CPB was put in 

the first caudorostral level, the same as MM and ML. Overall the experimental design 

was a two factor with three regional levels (1-core, 2-belt, and 3-parabelt) and three 

caudorostral levels (1-level of CM/CL, 2-level of MM/A1/ML/CPB, 3-level of 

RM/R/AL/RPB).  Before selecting these groupings, we additionally demonstrated that the 

medial and lateral belt subregions were not different and could be combined. This was 

done separately for each stimulus and was true for each comparison (results below). 

 In examining figure 2-4A, a number of trends become evident. First, the medial 

and lateral belt areas do not appear to be different from each other. A separate planned 

ANOVA also did not demonstrate differences between the subregions (2x3 subregion x 

caudorostral level ANOVA, subregion p > 0.05). Secondly, upon examination of all of 

the areas, we can examine two additional trends.  The first trend is that indeed, latencies 

increase with increasing hierarchical region. For example latencies in A1 are faster than  
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Figure 2-4. Click latencies.  A. Boxplots of unit latencies per area. Each region is 
separated by a vertical line (the belt is separated into medial and lateral subregions), and 
the areas within each region are arranged in a caudal to rostral direction. The color of the 
boxplot indicates relative caudorostral level. The box denotes the upper quartile, median, 
and lower quartile of the distribution. Whiskers denote the extent of the rest of the data. 
Notches indicate an estimate of the uncertainty about the median. If notches do not 
overlap, the medians differ at the α level of p< 0.05.  B. Boxplots of LFP latencies per 
area. Conventions as in part A.  C. Boxplots of ‘transformation time’: Unit latency-LFP 
latency. Conventions as in part A. 
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MM latencies, which are approximately equal to those in ML, which are faster than those 

in CPB. The second striking result is that latencies increase with increasing rostral level.  

These results were confirmed by a two factor 3x3 region x caudorostral level ANOVA 

(region p<0.05; caudorostral level p<0.05).  

Figure 2-4B shows a boxplot of the response onset latencies for LFPs across the 

three regions and ten areas, conventions are the same as for part A. Note that generally 

LFP latencies are faster than unit latencies, consistent with the interpretation that they 

indicate input activity. Again, the medial and lateral belt areas do not appear to be 

different from each other. A separate planned ANOVA also did not demonstrate 

differences between the subregions (2x3 subregion x caudorostral level ANOVA, 

subregion p > 0.05). Secondly, upon examination of all of the areas, we found two 

additional trends.  In contrast to the units, LFP latencies do not increase with increasing 

hierarchical region. Similar to the units, LFP latencies do increase with increasing rostral 

level.  There results were confirmed by a two factor 3x3 region x caudorostral level 

ANOVA (region p>0.05; caudorostral level p<0.05). 

To get a more precise estimate of the differences in LFP and spike timing, we 

took each unit’s latency and subtracted the simultaneous recorded LFP latency. For 

example, if a recording site yielded three neurons, it has 1 LFP and yields three different 

unit-LFP difference values. This difference in latency is the time between the onset of the 

LFP and onset of the neural response, and can roughly be considered to be 

‘transformation time’. An important caveat is that since cell bodies and their related 

dendritic arborization can be hundreds of micrometers apart, this subtraction indicates the 

input-output timing of a discrete piece of cortex a few hundred microns in diameter 
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(Katzner et al., 2009), not the input-output timing of a given neuron. However, this 

method is more precise than collapsing across different penetrations since it compares 

measures with the same behavioral state and areal location. Figure 2-4C shows a boxplot 

of the transformation times across the three regions and ten areas, conventions are the 

same as for part A. A number of trends are worth noting. Note that at a single neuron 

level, generally LFPs are shorter than unit latencies, but not always. Again, the medial 

and lateral belt areas do not appear to be different from each other. A separate planned 

ANOVA also did not demonstrate differences between the subregions (2x3 subregion x 

caudorostral level ANOVA, subregion p >0.05). Upon examination of all of the areas, we 

can examine two additional trends.  The first trend is that indeed, transformation time 

increases with increasing hierarchical region. The second trend, though weaker, is that 

transformation time increases with increasing rostral level.  These results were confirmed 

by a two factor 3x3 region x caudorostral level ANOVA (region p<0.05; caudorostral 

level p<0.10).  

 

Noise Latencies 

 Figure 2-5A shows a boxplot of the response onset latencies for broadband noise 

across the three regions and ten areas. As with the clicks, a number of trends become 

evident. First, the medial and lateral belt areas do not appear to be different from each 

other. A separate planned ANOVA also did not demonstrate differences between the 

subregions (2x3 subregion x caudorostral level ANOVA, subregion p >0.05). Secondly, 

upon examination of all of the areas revealed two additional trends. Again, latencies 

increase with increasing hierarchical region and latencies increase with increasing rostral  
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Figure 2-5. Noise latencies.  A. Boxplots of unit latencies per area. Conventions as in 
figure 2-4.  B. Boxplots of LFP latencies per area.  C. Boxplots of ‘transformation time’: 
Unit latency-LFP latency. 
 
 

level.  These results were confirmed by a two factor 3x3 region x caudorostral level 

ANOVA (region  p<0.05; caudorostral level p<0.05).  
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Figure 2-5B shows a boxplot of the response onset latencies for LFPs. Again, the 

medial and lateral belt areas do not appear to be different from each other. A separate 

planned ANOVA also did not demonstrate differences between the subregions (2x3 

subregion x caudorostral level ANOVA, subregion p >0.05). Secondly, upon examination 

of all of the areas, we found two additional trends.  Consistent with the units, latencies 

increase with increasing hierarchical region and increase with increasing rostral level.  

There results were confirmed by a two factor 3x3 region x caudorostral level ANOVA 

(region p<0.05; caudorostral level p<0.05). 

Again, we took each unit’s latency and subtracted the simultaneous recorded LFP 

latency to show transformation times in figure 2-5C. This time, a separate planned 

ANOVA showed differences between the medial and lateral belt subregions (2x3 

subregion x caudorostral level ANOVA, subregion p =0.04), probably due to the different 

patterns. However, since the medial and lateral belt areas displayed no difference 

between each other for the majority of tests, so this difference is probably artifactual, and 

so we continued to collapse latencies across the caudorostral levels of medial and lateral 

belt.  

We can examine two additional trends using all of the areas. The first trend is that 

indeed, transformation time increases with increasing hierarchical region. However, 

transformation time does not increase with increasing rostral level.  These results were 

confirmed by a two factor 3x3 region x caudorostral level ANOVA (region p<0.05; 

caudorostral level p>0.05).  
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Tone Latencies 

 Figure 2-6A shows a boxplot of the response onset latencies for broadband noise 

across the three regions and ten areas. As with the clicks, a number of trends become 

evident. First, the medial and lateral belt areas do not appear to be different from each 

other. A separate planned ANOVA also did not demonstrate differences between the 

subregions (2x3 subregion x caudorostral level ANOVA, subregion p >0.05). Secondly, 

we can examine two additional trends across all of the areas,. In this case, latencies do 

not increase with increasing hierarchical region. However, consistent with the results 

testing latencies to stimuli, latencies increase with increasing rostral level.  These results 

were confirmed by a two factor 3x3 region x caudorostral level ANOVA (region p=0.12; 

caudorostral level p<0.05).  

Figure 2-6B shows a boxplot of the response onset latencies for LFPs. Again, the 

medial and lateral belt areas do not appear to be different from each other. A separate 

planned ANOVA also did not demonstrate differences between the subregions (2x3 

subregion x caudorostral level ANOVA, subregion p >0.05). Secondly, upon examination 

of all of the areas, we can examine two additional trends.  Consistent with the units, 

latencies increase with increasing hierarchical region and also increase with increasing 

rostral level.  These results were confirmed by a two factor 3x3 region x caudorostral 

level ANOVA (region p<0.05; caudorostral level p<0.05). 

Again, we took each unit’s latency and subtracted the simultaneous recorded LFP 

latency to show transformation times in figure 2-6C. As for tones, a separate planned 

ANOVA showed differences between the medial and lateral belt subregions  
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Figure 2-6. Tone latencies at BF + neighboring frequencies.  A. Boxplots of unit latencies 
per area. Conventions as in figure 2-4.  B. Boxplots of LFP latencies per area.  C. 
Boxplots of ‘transformation time’: Unit latency-LFP latency.  
 
 

(2x3 subregion x caudorostral level ANOVA, subregion p >0.05), but since this 

difference was the exception we continued to collapse latencies across the caudorostral 

levels of medial and lateral belt.  Upon examination of all of the areas, we noted  two 
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additional trends.  The first trend is that, different from the other stimuli, transformation 

time does not appear to increase with increasing hierarchical region. However, 

transformation time does increase with increasing rostral level.  These results were 

confirmed by a two factor 3x3 region x caudorostral level ANOVA (region p>0.05; 

caudorostral level p<0.05).  

 

Responsiveness 

A further question is whether units’ general responsiveness decreases with region 

and caudorostral level. Overall, responsiveness does differ with stimulus type. Noise 

elicits the most responses, then clicks, and then tones (see table 2-1). However, for most 

stimuli percent responsiveness does not appear to change with regional or caudorostral 

level. The sole exception was for click responsiveness, which varied with caudorostral 

level (two factor 3x3 region x caudorostral level ANOVA; caudorostral level p<0.05). 

 

2.5 Discussion 

 

In a survey of ten areas across three regions of the primate auditory cortex, we 

find that both neuron (single- and multi-unit) and LFP latencies generally increase as a 

function of both regional level and caudorostral level, regardless of stimulus type. The 

LFP differences are not as strong, as confirmed by the unit-LFP difference analysis, 

which indicates that the unit latency differences are incompletely accounted for by the 

LFP differences. This suggests that these rostral areas with longer unit latencies may also 

have a longer integration time window. Other than absolute latencies, there are few 



 72

differences between results from broadband (click, noise) and pure tone responses, 

despite differences in envelope, duration and bandwidth. This indicated that our results 

are probably generally reflective of timing information for the majority of ethologically 

relevant stimuli. Given the proposed differences in the way that tone information is 

propagated compared to broadband information, this may be surprising. However, at 

these suprathreshold levels, often narrowly tuned neurons respond to a broad range of 

frequencies, so it is not surprising that pure tones and broadband noise activate the same 

sequence of pathways. 

Comparisons of latencies between studies is difficult due to the differences in 

species, stimuli, methods, and anesthetic state - all of these factors can affect absolute 

latency reported (reviewed in the Appendix). For example primate A1 latency estimates 

range from 10-40 ms depending on the study (Vaadia et al., 1982; Steinschneider et al., 

1992; Bieser and Muller-Preuss, 1996; Recanzone, 2000; Cheung et al., 2001; Kajikawa 

et al., 2005; Bendor and Wang, 2008; Oshurkova et al., 2008; Kusmierek and 

Rauschecker, 2009; Crum et al., submitted). With that caveat, results from this study fit 

both absolute latencies of similar studies and patterns of latency differences in unit 

activity found between areas (Recanzone, 2000; Cheung et al., 2001; Kajikawa et al., 

2005; Lakatos et al., 2005; Philibert et al., 2005; Bendor and Wang, 2008; Kusmierek and 

Rauschecker, 2009; Crum et al., submitted). Studies have shown that neurons in belt 

areas adjacent to A1 have later responses  (Vaadia et al., 1982; Bieser and Muller-Preuss, 

1996; Recanzone, 2000; Crum et al., submitted). An important exception to this core-

belt-parabelt hierarchy  is that we found latencies in the caudal most portion of belt (CM, 

CL) that are are as fast or faster than latencies of neurons in A1, even in response to 
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tones. The functional implications of this are discussed below. One study of core and 

medial belt did not show that medial belt latencies (MM and RM) were slower than core 

at the same caudorostral level (Kusmierek and Rauschecker, 2009). The difference 

between this study and our results may be that the latency reported in that study was the 

fastest latency from either tone or noise. The results here are from a single stimulus type, 

so differences between latencies to tone and noise may explain the differences between 

studies.  Reports of parabelt latencies are rare in the literature, but a recent study finds 

that parabelt (probably CPB) is also slower than core (Crum et al., submitted). An even 

more striking trend is that rostral areas are indeed slower than caudal areas within the 

same region, consistent with results of neural latencies from both the core and medial belt 

(Bieser and Muller-Preuss, 1996; Bendor and Wang, 2008; Kusmierek and Rauschecker, 

2009).  

Reports of LFP latencies in auditory cortex are also rare, but one study also finds 

that LFPs are faster than unit activity (Crum et al., submitted). That study also reports 

that parabelt latencies are slower, but found no difference between core and lateral belt. 

Latencies have also been reported from a continuous measure of ‘multi-unit activity’ 

(MUA) (Steinschneider et al., 1992; Lakatos et al., 2005). The MUA is not derived from 

spikes, but is a high-frequency rectified LFP. Similar to the LFP, MUA latencies are 

extremely fast.  However, Lakatos 2005 reported a dissociation of tone and noise based 

latencies, where belt neurons respond faster and less variably than A1 to broadband 

noise. Their stimuli were also delivered at levels well above threshold, so it is unclear 

why we do not see this dissociation in our study. Further interpretation is complicated 

because the area of the lateral belt they were recording from is unclear.  
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Limitations to the current study include that the interpretation of the local field 

potential should be done with caution. Some latency differences in the LFP between areas 

could be due to the differential cytoarchitecture between areas. This is unlikely given the 

strong correlation between units and LFP patterns. Additionally, area CM had a low 

number of units sampled, as recordings from this area came from only one monkey. 

However, we included it in this study because CM has been characterized in a number of 

studies (Recanzone, 2000; Kajikawa et al., 2005; Oshurkova et al., 2008) and our results 

are consistent with the upper end of the absolute latency values, and more importantly, 

consistent with relative latency differences with A1.  

Click stimulation provides some unique advantages in the assay of latencies 

across areas. First, it is broadband and activates neurons well. Second, because it has a 

sharp and quick onset and offset, long latency responses will not be complicated by offset 

responses. A similar reasoning was applied to the choice of visual stimuli in studies 

investigating response latencies across the visual system (Schmolesky et al., 1998; 

Schroeder et al., 1998), and in the auditory potentials in cortex (Steinschneider et al., 

1992; Inui et al., 2006). For this reason, the click latencies are probably most 

representative of the lower limits of how fast information can reach various areas across 

auditory cortex.   

How do these results fit with anatomical predictions made for cortical activation 

timing? Thalmocortical and corticocortical connectivity predicts core, belt, and parabelt 

latency differences. We indeed observed the predicted latency differences with regional 

level. This is consistent with the chemoarchitectural gradients with regional level (e.g. 

Hackett and de la Mothe, 2009). Cytochrome oxidase expression, a marker of metabolic 
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activity often seen in fast cortices and pathways, is most dense in core and least dense in 

parabelt. Additionally, consistent with anatomical predictions, we also see almost no 

differences in the timing of cortical activation between medial and lateral belt, supporting 

the notion that they are subparts of the same regional level. 

Are the latency differences seen with regional level evidence for truly strict serial 

flow? Studies based in the cortical visual system concluded that serial interareal transfer 

time should be approximately 10 ms (reviewed in Nowak and Bullier, 1997). In the 

auditory cortex, latency differences between regions do not appear to be of such 

magnitude. However, neural onset latencies in the belt and parabelt are in response to a 

mix of inputs from separate cortical but overlapping thalamic sources. Given the 

numerous parallel pathways from the MGC, the more parallel timing of processing in 

cortex is perhaps unsurprising.    

A significant challenge to the core-belt-parabelt direction of flow are the 

extremely fast latencies seen in caudal belt CM and CL compared to neighboring core 

A1. Fast latencies have previously been demonstrated in CM (Recanzone, 2000; 

Kajikawa et al., 2005; Oshurkova et al., 2008). A resolution may lay in closer 

examination of the topography of thalamic inputs. Caudal belt, particularly CM and CL, 

receive projections from an anterior portion of the MGd, the MGad. This region has not 

been well characterized in primates, but a possibly corresponding structure in cats 

exhibits fast latencies much like the MGv (Imig and Morel, 1984, 1985a, b). Projections 

from the MGad to both the medial and lateral belt decrease in strength as one progresses 

rostrally and are almost absent at the level of RM (de la Mothe et al., 2006a; Hackett et 

al., 2007), which is then characterized by a dense projection from the MGpd. Thus it is 
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possible that the belt receives some of its inputs serially, but that the fastest latencies in 

the caudal-most portion may be driven by this extremely fast direct thalamic input from 

MGad. The connections and response properties of the divisions of the MGC need to be 

better characterized.   

Another striking pattern in this study is that within the same region, rostral 

latencies are slower than caudal latencies. This result is not immediately predicted by 

known thalamocortical connectivity patterns. However, the patterns of laminar 

connectivity are still being elucidated, and quantitative studies of thalamocortical 

connectivity are also lacking (for example, does A1 receive more MGv input than R?). 

While the thalamocortical connections do not immediately account for these caudorostral 

latency trends, the chemoarchitecture of the caudal areas indicates that these areas should 

be very fast. Caudal areas are marked by being cytochrome oxidase dense, a marker of 

metabolic activity often seen in fast cortices and pathways (e.g. Hackett and de la Mothe, 

2009). Additionally, corticocortical connectivity of some areas is suggestive of 

feedforward activity in the rostral direction (connections to layer 4) (Fitzpatrick and Imig, 

1980; Galaburda and Pandya, 1983), but his has not been demonstrated conclusively for 

all areas (see  de la Mothe et al., 2006b). Our finding that the differences between LFP 

and unit latencies are more pronounced in rostral than caudal areas appear to help resolve 

some of the apparent discrepancy between the anatomical predictions and physiological 

timing. In rostral areas neuron latencies are much later (compared to caudal areas) than 

the corresponding LFP latency , indicating that the units in these area may have a longer 

integration time window to generate a response, which will result in longer unit latencies 

in the rostral areas.  
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Almost 20 years ago, known connections were used to make predictions about the 

processing hierarchy of another sensory system, the visual system (Felleman and Van 

Essen, 1991). This work identified levels of hierarchy and divided processing into 

dorsal/ventral streams. Based on known connectivity at the time (primarily  Galaburda 

and Pandya, 1983), it also attempted to extend reasoning to the auditory system. They 

noted suggestions of a hierarchy between core and belt, as well as a caudal to rostral 

flow, but noted that root (medial belt) connectivity did not fit into an ‘internally 

consistent hierarchy’. In the intervening decades, work from many labs is filling in these 

gaps, indicating that there is flow from core to belt to parabelt (Vaadia et al., 1982; Bieser 

and Muller-Preuss, 1996; Recanzone, 2000; Crum et al., submitted), as well as a 

caudorostral flow (Bieser and Muller-Preuss, 1996; Bendor and Wang, 2008; Kusmierek 

and Rauschecker, 2009). Based on the topography of prefrontal cortical projections from 

auditory cortex, it has been suggested that there is functional correspondence between the 

dorsal/ventral streams of the visual system and proposed caudal/rostral streams in the 

auditory system (e.g. Romanski et al., 1999; Rauschecker and Tian, 2000). It is striking 

that areas of the putative caudal ‘what’ stream in auditory cortex have a distinct temporal 

advantage, similar to the fast latencies found in the dorsal ‘what’ streams of the visual 

system (e.g. Schroeder et al., 1998). However, functional correspondence between the 

streams of the visual system and the auditory system remains to be determined.  

Through comparison of both units and LFP latencies, we are able to develop a 

broad schema of timing of information flow. However, the hierarchy of auditory 

processing is still indeterminate. What is perhaps most striking is that though there are 

clear regional and caudorostral trends in the flow of information, there is enormous 
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overlap in the latency distributions. This is no doubt indicative of the massively parallel 

inputs coming in from the subdivisions of the primary thalamic nuclei.  Because of the 

ongoing nature of sound, auditory stimuli must be processed very rapidly. A system that 

is wired to process information in many streams at once is best suited for fast processing. 

The auditory cortical system processes in serial, but its stunning feature is massively 

parallel processing. We would argue that this is a hallmark of the auditory system, 

imposed by timing constraints on the processing of auditory stimuli. 

Never before has auditory cortical timing from so many areas been compared 

using identical conditions, but we are still far from determining the existence of hierarchy 

in the auditory system. Though it is expected that they will follow the same trends, we 

need data from more rostral areas RTM, RT, and RTL for a more complete picture. 

Clearly, there is a need for more studies characterizing laminar patterns of connectivity 

and timing, and characterization of response specificity in different areas to understand 

mechanisms for auditory processing. Only through combining information from 

connectivity (the how?), tuning properties (the what?), and response latencies (the 

when?) can we build a picture of how auditory information reaches and flows though 

cortex to form the basis of auditory perception.  
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CHAPTER III 

 

MODULATION FREQUENCY TUNING IN AUDITORY CORTEX OF THE ALERT 
MACAQUE: EVIDENCE FOR HIERARCHICAL PROCESSING AND 

IMPLICATIONS FOR STIMULUS ENCODING 
 
 
 

3.1 Abstract 

 

The current working model of primate auditory cortex designates three 

interconnected regions which in turn can be subdivided into multiple areas, distinguished 

by unique anatomical and physiological profiles. Though regions are generally 

considered to be levels of processing, the direction and flow of information within 

primate auditory cortex remains an active area of study. An influential hypothesis is that 

modulation frequency tuning can imply flow:  as the stimulus-related neural response 

ascends the auditory hierarchy, entrainment-based (i.e. temporal) modulation frequency 

tuning decreases due to variability introduced by successive synaptic delays. To evaluate 

temporal tuning, we collected neural responses from five areas in core, lateral belt, and 

parabelt to amplitude modulated noise in the awake macaque. Temporal best tuning was 

lower in lateral belt and parabelt than in core for both units and the LFP. This decrease in 

temporal tuning provides support for hierarchical processing in a regional direction. In 

addition, we see that for all areas a rate based code covers all the modulation frequencies 

tested, showing that a rate code is sufficient to encode the modulation frequencies that 

cannot be accounted for by temporal measures, particularly at later levels of processing.  
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3.2 Introduction 

 

The current working model of primate auditory cortex designates three 

interconnected regions (core, belt, and parabelt) which are thought to represent different 

levels of processing. Each region is subdivided into multiple areas, distinguished by 

unique anatomical and physiological profiles (see figure 2-1, chapter 2). The direction 

and flow of information within and between regions and areas remains an active area of 

study. Patterns of connectivity from the ventral division of the medial geniculate (MGv) 

and the absence of significant connections from core to parabelt suggest a serial flow of 

information from core to belt to parabelt (Rauschecker et al., 1997; Kaas and Hackett, 

2000; Hackett, 2010). However, there are strong elements of parallel processing both 

from other medial geniculate complex (MGC) inputs as well as within regions (reviewed 

in chapter 1 and 2). In this study, we seek to evaluate tuning to temporally modulated 

sounds in neurons across multiple areas of core, belt, and parabelt. We have two separate 

but complementary aims. The first is to characterize modulation frequency tuning across 

multiple areas of auditory cortex. The second is to evaluate the implications of those 

findings for hierarchical flow between regions and areas in auditory cortex of the primate.  

Temporally modulated sounds are sounds for which the waveform envelope is 

subject to repeated amplitude modulation. Temporal envelope modulations are common, 

especially in vocalizations; hence detection of temporally modulated sound is critical for 

communication and survival. Perception of temporal modulation appears to be dependent 

on an intact auditory cortex (Whitfield, 1980; Heffner and Heffner, 1986; Zatorre, 1988; 

Phillips and Farmer, 1990; Kelly et al., 1996; Griffiths, 1999). Given its obvious 



 85

importance, the encoding of modulated sounds in the primate cortex has been under 

active investigation in a variety of primate species, particularly in core area A1 (Sudakov 

et al., 1971; Bieser, 1995; Bieser and Muller-Preuss, 1996; Steinschneider et al., 1998; 

Fishman et al., 2000a, b; Lu et al., 2001a, b; Liang et al., 2002; Tian and Rauschecker, 

2004; Bendor and Wang, 2007; Malone et al., 2007; Phan and Recanzone, 2007; Bendor 

and Wang, 2008; Kajikawa et al., 2008; Oshurkova et al., 2008; Bendor and Wang, 2010; 

Crum et al., submitted). Studies suggest that the frequency of modulated sound (temporal 

frequency) can be encoded in two ways in cortex (e.g. Schreiner and Urbas, 1986; Lu et 

al., 2001a).  

The first, which we will refer to as temporal tuning, is a measure of how phase-

locked, or entrained, the neuronal response is with respect to particular features of the 

envelope of the stimulus. Temporal tuning is additionally of interest because it can be 

used to infer processing hierarchy in the auditory system. A prominent hypothesis is that 

as the stimulus-related neural response ascends the auditory hierarchy, entrainment-based 

(i.e. temporal) modulation frequency tuning decreases as a consequence of variability 

introduced by successive synaptic delays (Joris et al., 2004). This has been observed 

through the subcortical processing stream in mammals (reviewed in: Langner, 1992), 

including the transition from medial geniculate to A1 in primates (Wang et al., 2008). 

The connectivity between areas in the primate auditory cortex suggests that temporal 

tuning may be a useful physiological signature of hierarchical position. Based on both 

connectivity and physiological studies, it is hypothesized that information flows both in a 

regional (core-belt-parabelt) and caudorostral direction (Hackett 2010). If this is true, 



 86

then we should see gradients or shifts in temporal modulation frequencies along both 

axes.  

To represent the modulation frequencies that can no longer be encoded by 

entrainment, it has been proposed that another type of code emerges (e.g. Bendor and 

Wang, 2007; Wang et al., 2008). This second type of code, called rate coding, is a 

measure of the firing rate evoked by a given modulation frequency. Rate based codes for 

modulation frequency tuning have been observed in mammalian subcortical structures 

such as the inferior colliculus and medial geniculate complex (e.g. Langner and 

Schreiner, 1988; Schreiner and Langner, 1988; Bartlett and Wang, 2007), as well as in 

primate cortex (Liang et al., 2002; Bendor and Wang, 2007; Phan and Recanzone, 2007; 

Bendor and Wang, 2008; Oshurkova et al., 2008; Crum et al., submitted). Although 

temporal and rate based codes had originally been proposed to be two wholly separate 

codes in primate cortex (Bendor and Wang, 2007), it has been increasingly accepted that 

a single neuron can encode modulation frequencies in both temporal and rate based ways 

(Phan and Recanzone, 2007; Bendor and Wang, 2008, 2010). Neurons in cortex can 

encode in a rate based way regardless of high modulation frequency, and it is expected 

that, concomitant with limitations that may be imposed by the processing hierarchy, a 

rate based code will be increasingly used at later processing stages. This has been seen in 

many mammalian species (reviewed in Langner, 1992; Wang et al., 2008). We are 

interested in evaluating rate-based modulation frequency tuning across multiple areas and 

regions of macaque cortex.   

This study aims to better characterize modulation frequency tuning across regions 

and areas using the same stimuli, as well as to look for evidence of processing flow in the 
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form of differences in temporal tuning . Measures of entrainment limitations (tMAX) 

should be particularly sensitive to differences in stimulus-locked synchronization ability 

between areas. As an additional measure of temporal tuning, LFPs are presumed to be the 

summed dendritic input over a local area, and have been shown to exhibit tuning. Local 

field potential (LFP) tuning measures have been explored previously in both human and 

nonhuman primate (Rees et al., 1986; Steinschneider et al., 1998; Fishman et al., 2000a, 

b; Liegeois-Chauvel et al., 2004; Brugge et al., 2009; Crum et al., submitted). We are 

interested in examining temporal tuning of the LFP as an additional measure to evaluate 

processing flow in the primate auditory cortex.   

In this study, we collected neural responses from five areas in core, lateral belt, 

and parabelt to amplitude modulated noise in the awake macaque.  Modulation rates from 

3.1-957 Hz were evaluated. Entrainment based best tuning was mainly 13 Hz and below 

in core. In lateral belt and parabelt, best modulation tuning is lower.  This decrease in 

entrainment based modulation frequency tuning provides support for hierarchical 

processing in a regional direction. Temporal tuning measures derived from the LFP 

support the same patterns. In addition, we see that for all areas a rate based code covers 

all the modulation frequencies tested in a parauniform way. This shows that a rate code is 

sufficient to encode the modulation frequencies that cannot be accounted for by temporal 

measures, particularly at later levels of processing.  
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3.3 Materials and Methods 

 

General surgical procedures, histological processing, anatomical reconstruction, 

and experimental methods have been reported previously (see chapter 2), but details 

pertinent to this investigation are included below.  

 

Animal subjects  

Two adult macaque monkeys SP and DY were used for neural recordings (SP 

male bonnet macaque (Macaca radiata) 10.0 kg, and DY female rhesus macaque 

(Macaca mulatta) 7.0 kg). Animals were housed in an AAALAC-accredited facility 

under supervision of laboratory and veterinary staff. All animal care and experimental 

procedures were in accordance with the U.S. National Institutes of Health Guide for the 

care and use of laboratory animals, under a protocol approved by the Vanderbilt 

Institutional Animal Care and Use Committee.  

 

Stimulus generation and neurophysiological acquisition  

Stimulus generation and delivery. Recording sessions were conducted in a double 

walled chamber (Industrial Acoustics Corp, NY) that attenuated sounds, particularly at 

the mid to high frequencies. Acoustic stimuli were generated by Tucker-Davis 

technologies (TDT, Gainesville, FL) System II hardware and software (SigGen), 

controlled by a custom software interface between the stimulus generation and 

acquisition setups. Stimuli were delivered using Beyer DT911 insert earphones (range 

0.10-25 kHz), coupled to custom earmolds in both ears. Stimuli were calibrated for 
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intensity using a ¼ inch microphone (Model 7017; ACO Pacific, CA), pistonphone 

(Bruel and Kjaer type 4220) and custom software (TDT, SigCal). Amplitude corrections 

were saved in a data file and applied to each stimulus to pre-equalize the response of each 

earphone independently.  

Stimuli: Amplitude modulated noise.  AM noise was constructed using Gaussian 

white noise convolved with a sine wave of 100% depth, yielding sinusoidally amplitude 

modulated white noise. Other studies have used pure tones as carriers, but for this study, 

the choice of white noise as a carrier yields threefold benefit. First, amplitude modulation 

of pure tones creates spectral sidebands which are nonconstant at different modulation 

frequencies and may introduce spectral cues unrelated to modulation frequency tuning.  

In contrast modulated white noise yields an essentially flat frequency spectrum 

irrespective of modulation frequency. Second, this study was designed to examine 

differences between areas and regions known to have different spectral tuning functions. 

Despite differences in best tuning frequency and width, all regions respond robustly to 

wideband noise. Thus it is the best carrier to use when one is aiming to compare across 

areas and regions. Third, wideband noise has a spectrum more similar to ethologically 

relevant sounds that are often wideband in character and is thus useful for assaying the 

encoding of more generalized stimuli. 

Temporal modulation frequencies ranged from 3.1-957 Hz. Each stimulus type 

had a duration of 1000 ms, was calibrated to 50 dB SPL, and each modulation frequency 

was presented diotically 10 times with a jittered interonset interval of approximately 3000 

ms, randomly interleaved with other stimulus types in the battery (e.g. clicks, noise). 

These stimuli contain a 5 ms cosine2 ramp at onset and offset. The modulation rates were 
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chosen to be the closest prime to roughly equal steps between 3 and 100 Hz, and four 

faster modulation frequencies, also primes, to cover much higher modulation frequencies 

(251, 503, 751, 957).  Prime frequencies are computationally useful because they do not 

contain common multiples with each other or with 60 Hz (e.g. AC line noise). This 

avoids spurious vector strength due to entrainment or power sources at lower multiples.   

Electrophysiological recording. Electrode penetrations were made through a 

recording grid 15 mm wide with 1 mm spacing which fit over the implanted chamber 

(Crist Instruments, Hagerstown MD). This ensured a replicable and roughly 

perpendicular trajectory through most parts of the superior temporal plane corresponding 

to the caudal two-thirds of auditory cortex. After a local anesthetic (0.13% bupivacaine 

and 0.5% lidocaine in sterile saline) was topically applied and then removed, a sharpened 

stainless steel guide tube was used to puncture through the dura. The use of a guide tube 

also ensured that the penetration ran parallel to the recording chamber. One to two 

tungsten microelectrodes (2-4 MOhm, FHC, Bowdoin, MA) aligned mediolaterally were 

advanced through somatosensory cortices and into auditory cortex using manual 

microdrives (Narishige, Tokyo, Japan).  

From the first auditory responses until the end of auditory-responsive cortex, all 

isolated neurons, irrespective of responsiveness, were tested with all or most of the 

stimulus battery. This avoids introducing bias to our sample. In between isolations the 

microdrives were moved at least 200 μm to avoid resampling units. For most runs, we 

recorded through all layers until the white matter was reached. We assigned a relative 

cortical depth to each penetration by normalizing the recording depth with respect to the 

first auditory responses, presumably from the first layer or two of auditory cortex. While 
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unequivocal laminar depths cannot be established, it is likely that the majority of 

recorded neurons are coming from the middle and upper layers, consistent with the 

cytoarchitecture of auditory cortex (see Hackett, 2010). During recording sessions the 

monkey was continuously monitored for alertness via closed-circuit television. 

Multichannel spike and local field potential (LFP) recordings were acquired with 

a 64-channel system that controls amplification, filtering and related parameters (Many 

Neuron Acquisition Processor, Plexon Inc, Dallas, TX). Both signals were referenced to 

ground. Spike signals were amplified (100x), filtered (150-8800 Hz), and digitized at 40 

kHz. The signal was further DC-offset corrected with a low-cut filter (0.7Hz). Spikes 

were sorted online for all channels using real-time window discrimination. Digitized 

waveforms and timestamps of stimulus events were also saved for final offline analysis 

and sorting (Plexon offline sorter), and graded according to isolation quality (single or 

multi units). Single and multi units were analyzed separately and the tuning results and 

patterns across areas were qualitatively and quantitatively indistinguishable. Thus both 

single and multi units were included in this study. The LFP signals were acquired 

simultaneously with the spike data. These were amplified (500x), filtered (3.3-89.0 Hz), 

and digitized at 1 kHz. Again, the signals were further DC-offset corrected by with a low-

cut filter (0.7 Hz). To ensure timing precision, the Plexon acquisition software interfaced 

with the stimulus delivery system (Tucker Davis Technologies) and both systems were 

controlled by custom software (SGPlay, provided by Peter Yang).  
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Neurophysiological data analysis 

All analyses described below were performed using in-house Matlab scripts 

(MathWorks, Natick, MA).   

Unit: Rate and temporal modulation transfer functions (rMTF and tMTF), best 

modulation frequencies (rBMF and tBMF), and maximum temporal entrainment 

frequency (tMAX). From responses to AM noise, two measures were used to calculate a 

unit’s modulation frequency tuning: the rate and temporal modulation transfer functions 

(rMTF and tMTF respectively). Figure 3-1 shows the steps involved in calculating these 

measures. An enduring question is whether stimulus onset response should be removed. 

On the one hand, onset response is similar for many neurons irrespective of modulation 

frequency and does not reliably indicate tuning (e.g. neuron in figure 3-1). On the other 

hand, the onset is an integral part of the response and it is difficult to imagine a cortical 

mechanism by which it is ignored. Thus, for thoroughness, we analyzed responses both 

ways. Tuning and trends between areas did not change when the onset was included, 

perhaps because our stimuli were sufficiently long. Since the results were similar, for 

brevity we present results from responses with the onset removed.  

The peristimulus time histogram (PSTH) of an exemplar response is shown on the 

left side of figure 3-1. To remove the onset, the first ~100 ms of response was removed 

(specifically, the closest number of whole cycles in 100 ms), and then averaged responses 

per period were calculated. Each response was divided into 20 bins to create the cycle 

histogram from which the rate and temporal tuning measures were derived. Note that 

each period was a different duration (x-axis); for improved visualization the lengths were 

normalized.  
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Figure 3-1. Unit: Derivation of rate and temporal tuning measures. Left side, peristimulus 
time histogram of responses for each of the 20 modulation frequencies presented. To the 
right of this is the cycle histogram, the average response per cycle (timebase is one period 
long). Vertical bars on the cycle histogram indicate where the vector strength was 
significant and at what part of the phase. Horizontal lines indicate the average firing rate. 
Top right, derivation of the rate modulation transfer function (rMTF) and rate best 
modulation frequency (rBMF). Circles indicate firing rates that are significantly elevated 
from baseline firing rate (dotted line). Bottom right, derivation of the vector strength-
based temporal modulation transfer function (tMTF), temporal best modulation frequency 
(tBMF), and temporal maximum entrainment frequency (tMAX). Circles indicate vector 
strengths that are significant.  
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The rate modulation transfer function (rMTF), shown in the top right of figure    

3-1, measured the firing rate of a neuron in response to a given modulation frequency, 

plotted as a solid line. Spontaneous firing rate was plotted as a dashed line. Significance 

of response was determined by a t-test with an α level of p < 0.05. Each significant 

response is denoted with a solid circle. Only a minority of neurons showed significant 

inhibition at all or a portion of the modulation frequencies tested, so inhibitory tuning 

was not included in this analysis. The best rate-based modulation frequency (rBMF) was 

defined as the highest significant value of the rMTF (arrow on figure).  

The temporal modulation transfer function (tMTF), shown in the bottom right of 

figure 3-1, was a measure of the strength of phase-locking of the neuron at different 

modulation frequencies. A common measure of entrainment is vector strength (but see 

Kajikawa and Hackett, 2005). This vector strength measure quantified the magnitude of 

regularity in phase-locking to cyclic stimulation (Goldberg and Brown, 1969; Batschelet, 

1981). The tMTF is the relationship between the modulation rate of the AM noise 

stimulus and the vector strength.  Significance of vector strength was determined by the 

Rayleigh test at the α level of p <0.001. As before, each significant response is denoted 

with a circle. The best temporal-based modulation frequency (tBMF) was defined as the 

highest significant value of the tMTF (arrow on figure). The maximum entrainment 

frequency (tMAX) was defined as the highest modulation frequency at which the vector 

strength was significant (arrow on figure).   

LFP: Temporal modulation transfer function (tMTF), best modulation frequency 

(tBMF), and maximum temporal entrainment frequency (tMAX). As an additional way to 

test our hypotheses about hierarchical organization of primate auditory cortex, we  
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Figure 3-2. LFP: Derivation of temporal tuning measure. Left side, stimulus locked 
averaged evoked LFP for each of the 14 modulation frequencies analyzed. Top right, 
thick lines indicate ‘evoked power’ power spectral density at that modulation frequency 
for that stimulus. Thin lines indicate the ‘expected power’ (see methods for details).  
Error bars are the significance criteria. Bottom right, temporal modulation transfer 
functions derived for the subtraction of the expected power from the evoked power. 
Anything that is greater than zero indicates a significant evoked power (circle). For this 
LFP site, the temporal best modulation frequency (tBMF), and temporal maximum 
entrainment frequency (tMAX) are the same value.  
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analyzed the local field potential for temporal tuning. A restricted range of modulation 

frequencies (5.3-87.0) was used due to cutoffs from the LFP filter settings. Thus it was 

not possible to directly compare unit and LFP tuning at all frequencies, but any patterns 

within the LFP could be compared to patterns within the units. Again, for thoroughness, 

we performed all of the analyses with and without onset. Tuning and trends between 

areas did not change when the onset was included. An exemplar LFP response is shown 

in figure 3-2 to illustrate calculation of temporal tuning. The leftmost graph shows across 

trial averaged evoked potential aligned on stimulus onset for each modulation frequency 

analyzed.  

To preserve similarity with the unit calculation, the first 100 ms of onset response 

was removed (specifically, the closest number of whole cycles that was at least 100 ms). 

The following analysis was inspired by methods developed using depth electrodes in 

human auditory cortex (Rees et al., 1986; Liegeois-Chauvel et al., 2004), with some 

important modifications listed below. To calculate the tMTF, LFPs were analyzed for 

stimulus-locked modulation by first characterizing the power spectral density for a given 

modulation frequency. In the top right graph, the thick line indicates ‘evoked power’, or 

the power spectral density at that modulation frequency for that stimulus (e.g. power at 

5.3 Hz when the stimulus presented is 5.3 Hz). For comparison, the thin line indicates the 

estimate of the ‘expected power’, or the averaged power spectral density at that 

modulation frequency for all other stimuli (e.g. average power at 5.3 Hz when the 

stimulus is any other frequency besides 5.3 Hz). Error bars are the significance criterion, 

here 1.5 times the standard deviation of the ‘expected power’ estimate.  If the evoked 
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power was greater than the criteria developed from the expected power, the stimulus 

locked modulation was determined to be significant.   

The bottom right graph of figure 3-2 shows the derived tMTF, which is the power 

difference between the evoked power and the criterion. Values greater than zero indicate 

a significant evoked power (circles). tBMF and tMAX are derived analogously to the unit 

data, and for this LFP site, the temporal best modulation frequency (tBMF), and temporal 

maximum synchronization frequency (tMAX) are the same value. 

 

LFP method development: Welch modification and choice of criterion   

This method is similar to methods used in human depth electrodes (Rees et al., 

1986; Liegeois-Chauvel et al., 2004; Brugge et al., 2009) but, because it normalizes 

power within modulation frequencies, it avoids an overemphasis of low powers that may 

simply be an artifact of the 1/f power spectrum falloff common to stochastic signals. 

When characterizing the power at a given frequency, the power spectral density (PSD) is 

a commonly used metric. The PSD is simply the Fourier transform of the square of the 

signal.   However, since PSD estimation using just the Fourier transform is known to be 

both biased and inconsistent (neither mean nor variance improves with sample size 

increase (Allen and Mills, 2004) ), a modification using the Welch method was adopted. 

This is another nonparametric method which allows the fast Fourier transform time 

domain windows to overlap. During method development, a subset of LFP data were 

analyzed separately using both the Fourier transform and Welch methods. It became 

apparent that PSDs generated by the Fourier transform method were noisier than those 

generated by the Welch method. Power curves do show differences, yielding differences 
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in tuning curves. The two methods did not commonly yield different best tuning 

estimates (only 2/57 LFPs had different BMFs). However, since the Welch modification 

addresses some of the problems of biased and inconsistent estimation, the Welch was 

adopted for further analyses (details of method described in Camalier and Hackett, 2008).   

Additionally, when determining significance criterion for the expected power 

when calculating the tMTF, we used both 95% confidence bounds, bootstrapped 95% 

confidence bounds, and 1.5 times the standard deviation of the expected power values. 

Tuning measures of tBMF did not change with significance criterion. As expected, the 

values for tMAX do change with strictness of criteria: the stricter the criteria, the closer 

the tMAX is to tBMF. Importantly however, tuning trends between areas do not change 

with choice of criterion.  

 

3.4 Results  

 

Yield and cortical location 

In total, 728 units from five different areas from two core (A1 and R), the two 

adjacent lateral belt areas (ML and AL), and the adjacent rostral parabelt (RPB) were 

included. 182 LFPs from four different areas were included in this analysis from the core 

and belt areas above. There was an insufficient yield of LFP sites to include RPB in the 

LFP analyses. The numbers of collected and analyzed units and LFPs for each area are 

summarized in table 3-1.   
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Table 3-1. Neuron  and LFP counts (total, rate-, and temporal-responsive) for each 
cortical area examined.  

 
 

Temporal tuning: evidence for decreased entrainment 

Figure 3-3 shows temporal maximum entrainment distributions of units for the 

five areas examined. For ease of comparison across regions, the caudal-most areas (A1 

and ML) and the rostral areas (R, AL, and RPB) were plotted together in separate panels. 

For each plot, areas within a region are plotted using the same conventions (i.e. 

distributions from A1 and R are both thick solid lines). For the caudal areas, maximum 

entrainment (tMAX) indeed decreases from core to belt: the mode of the A1 distribution 

is at a faster modulation frequency than the mode of the ML distribution. To infer 

differences we found that measures of medians and means (i.e. Wilcoxon rank sum) were 

insensitive to these subtle but important differences in the distributions, so we chose to 

examine modes of the distribution. For the rostral areas, the same is true: the mode of R 

is at a faster modulation frequency than the mode of the adjacent lateral belt area AL. The 

mode of the parabelt area RBP is the same as AL, thought it proportionally contains more 

units synchronized to the slowest modulation frequency. While tMAX decreases with 

regional level, it does not appear to decrease with rostrocaudal level: the core areas have 

the same mode and the belt areas have the same mode.  
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Figure 3-3. Distribution of temporal maximum (tMAX) values: units. Top graph, core 
and lateral belt: A1 and ML. Bottom graph, next-most rostral level of core, lateral belt 
and parabelt: R, Al, and RPB. For ease of comparison, areas of the core region are 
indicated by thick lines, areas of the belt region are indicated by thin lines and the area of 
the parabelt region is indicated by a dashed line.  
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As a further test of decreased entrainment, figure 3-4 shows distributions of 

temporal best modulation frequencies (tBMF) of units in the five areas, conventions 

preserved from figure 3-3. For all areas, tBMFs were clustered at the lowest frequency 

(3.1 Hz) and drop off by 13 Hz. Modes for all distributions were clustered at 3.3 or 5.3, 

the lowest frequencies tested. These tuning curves were very similar; there was no trend 

either as a function of regional level or rostrocaudal level.  

  Next, we examined entrainment and tuning of the LFP from four areas (core A1 

and R, and lateral belt ML and AL) for evidence of decreasing entrainment. Figure 3-5 

shows distributions of tMAX of LFPs for these areas. Similar to the units, there was 

evidence for decreased entrainment from core to belt. A1 and ML had the same mode, 

but ML had proportionately more units whose maximum synchrony was at lower 

frequencies. R had a mode at a higher modulation frequency than AL. In a caudorostral 

direction, both core areas had a distribution mode that occurred around 11 Hz, whereas 

the belt areas’ mode is lower at 7. Similar to the units, there as no difference in modes for 

core areas in a caudorostral dimension, but ML had a higher mode than AL. 

Figure 3-6 shows distributions of tBMF for the LFPs. Along the regional axis, A1 

and ML had the same mode, but R had a mode at a higher modulation frequency than 

AL. In a caudorostral direction, for both core areas the mode of the distribution occurs 

around 11 Hz, whereas ML’s mode is slightly higher than the mode at AL, possibly 

indicating a weak decrease in entrainment.  
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Figure 3-4. Distribution of temporal best modulation frequency (tBMF) values: units. 
Conventions are preserved from figure 3-3.  
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Figure 3-5. Distribution of temporal maximum (tMAX) values: LFP. Top graph, caudal 
levels of core and lateral belt: A1 and ML. Bottom graph, next-most rostral level of core 
and lateral belt: R, Al. All other conventions preserved from figure 3-3. 
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Figure 3-6. Distribution of temporal best modulation frequency (tBMF) values: LFP. 
Conventions preserved from figure 3-5. 
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Rate based tuning of units and relative responsiveness in a temporal versus rate code 

Figure 3-7 shows distributions of best modulation tuning in a rate based manner 

(rBMFs) for units in the five areas examined. Distributions are similar for all areas, and 

are relatively flat. Modulation frequencies appear to be coded in a uniform way with a 

slight overrepresentation of frequencies < 23 Hz. The distribution appears to increase at 

the highest modulation frequencies (> 100). Above 60 Hz, however, the bin sizes are also 

increasing, consequently this finding may be an artifact of larger bin size.  

 

 

 
Figure 3-7. Distribution of rate best modulation frequency (rBMF) values: units. 
Conventions are preserved from figure 3-3. 
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To examine how many units are responding in a rate or temporal manner, figure 

3-8 shows the percent rate, or temporal responsiveness for each area. A unit was 

considered responsive in a rate or temporal code if it exhibited at least one modulation 

frequency with a significantly elevated firing rate or vector strength. Also plotted is the 

percent of units that exhibited responsiveness in both a rate and temporal code. There are 

no consistent trends as a function of regional level or a rostrocaudal level. For areas 

examined, more of the units respond in a temporal code than a rate based code, but many 

of the neurons are coding in both ways.  

 

  

Figure 3-8. Probability of responding in a firing rate or temporal code, or in both ways. 
For each area, line graphs show the probability of a neuron having at least one 
modulation frequency with a significant rate or temporal response, or with both kinds of 
significant responses. For ease of comparison, lines connect areas from core, belt, or 
parabelt regions across the same caudorostral level. Error bars denote 95% binomial 
confidence intervals.  
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3.5 Discussion 

 

Temporal tuning: evidence for processing hierarchy 

 In conclusion, we examined tuning of both units and LFPs to different modulation 

frequencies to look for evidence for a decrease in temporal entrainment that would be 

predicted by hierarchical processing (Joris et al., 2004). Unit responses from five areas 

were considered in core A1 and R, lateral belt ML and AL, and parabelt RPB. We found 

evidence for decreased entrainment from core to belt at both caudorostral levels 

examined, but only for tMAX, not tBMF. A maximum synchrony measure is most 

sensitive to changes in entrainment capacity among areas, since the limits of entrainment 

are where desynchronization will have the most effect.  

For LFP tuning, we found evidence for decreased entrainment from core to belt, 

both for tMAX and tBMF. Additionally, there was evidence for decreased entrainment in 

a caudorostral direction, but it was only for the belt areas. Given that the belt areas had 

the least number of LFPs analyzed, and this result is not consistent either with core LFP 

trends or core or belt unit trends, evidence for decreased entrainment in a caudorostral 

direction in this dataset is weak.  

Our estimates of A1 unit tuning are similar to other studies examining responses 

to amplitude modulation or click trains in a variety of primate species. Studies find that 

tBMFs of A1 usually cluster at frequencies 16 Hz or lower in squirrel monkeys, 

marmoset and macaques (Sudakov et al., 1971; Bieser, 1995; Bieser and Muller-Preuss, 

1996; Liang et al., 2002; Malone et al., 2007; Bendor and Wang, 2008; Oshurkova et al., 

2008; Crum et al., submitted).  Studies comparing responses across regions are rarer, but 
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there is evidence for decreased tBMF and tMAX from A1 to belt CM (Oshurkova et al., 

2008), and a recent study comparing A1, ML, and CPB found that vector strength 

generally decreases with increasing regional level, though tuning measures were not 

discussed (Crum et al., submitted). Lower vector strength and tuning are due to 

variability in inputs, either longer, more variable latencies, variability introduced by 

successive synaptic delays, or variability introduced by convergence of inputs 

(Eggermont and Smith, 1995; Wang and Sachs, 1995; Joris et al., 2004). Thus, these 

decreases in entrainment rates and vector strengths in belt and parabelt are consistent 

with both the increased synaptic delays introduced in belt and parabelt as well as the 

convergence of inputs from cortical (core, belt) and thalamocortical  (MGd) sources that 

belt and parabelt share. There appears to be decrease in measures of entrainment after the 

core level, consistent with the Joris hypothesis.   

In our dataset, peak tMAX and tBMF measures do not indicate decreased 

entrainment in parabelt RPB compared to adjacent lateral belt AL, as would be expected. 

However, RPB has proportionately more of its tMAX and tBMF distributions at the 

lowest modulation frequencies tested, which could indicate a preference towards lower 

modulation frequencies. Because the degree of convergence would not be expected to 

differ in the belt and parabelt, just in the number of synaptic delays from core, belt-

parabelt differences in entrainment would consequently not be expected to be as large as 

core-belt differences.  

Previous estimates of LFP tuning report that neurons in A1 entrain to very high 

modulation frequencies, as high or higher than 100 Hz (Steinschneider et al., 1998; 

Fishman et al., 2000b; Crum et al., submitted). These tMAX estimates are higher than our 
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tMAX estimates, but may be due to methodological differences, since the stricter the 

criterion for significance, the closer tMAX will be to tBMF (and lower). Distributions of 

LFP-derived tBMF are generally not reported in earlier studies, which limits comparisons 

that can be made. Again, studies comparing regions are rare, but Crum et al (Crum et al., 

submitted) report that mean tMAX values do decrease in a regional manner from A1 to 

ML to CPB.  

Contrary to expectations, there was little evidence for hierarchical processing in a 

caudorostral direction for both units and LFPs. This is surprising given that some early 

studies have shown differences in distributions and median tBMF between A1 and R in 

squirrel monkey cortex (Sudakov et al., 1971; Bieser, 1995; Bieser and Muller-Preuss, 

1996). These earlier studies use tones as the carrier for the amplitude modulations, so it 

may be a methodological difference. Additionally, differences in tBMF between the areas 

were slight in some later marmoset studies (median of 12 Hz in A1 and 11 Hz in R for 

Bendor and Wang, 2008) so it is possible that the effect size in this direction is smaller 

than the effect size along the regional axis. For example, tBMF distributions between 

adjoining core areas A1 and R show no significant differences in that study, but 

differences are seen between nonadjacent core A1 and RT (Bendor and Wang, 2008). 

Differences in tMAX are seen between A1 and R, but only when a specific subset of 

synchronized neurons was examined, and modal values of the tMAX distributions are 

slightly lower by one step-size in R than A1 (Bendor and Wang, 2008). If these patterns 

are valid, why would the effect size be smaller in the rostrocaudal direction? One would 

expect lower entrainment rates because latencies are longer in the rostral direction, and it 

is possible that there may be more convergence in rostral areas due to feedforward 
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projections from caudal areas (i.e. A1 onto R). However, the difference in the amount of 

convergence is probably not as large as from core to belt. To test for differences in 

entrainment that may not be reflected in tBMF and tMAX distributions, one might look at 

magnitude of VS with modulation frequency (e.g. Bendor and Wang, 2008; Crum et al., 

submitted).  

 

Implications for stimulus encoding: rate and temporal codes 

Given that tBMFs were generally quite low in all areas examined, how are higher 

modulation frequencies encoded? Across all five areas, we found that BMFs in a rate 

based code covered all of the modulation frequencies examined in an approximately 

uniform fashion. The distributions were remarkably similar across regional level and 

caudorostral direction. These findings are consistent with the hypothesis that a rate code 

emerges to encode modulation frequencies that are too high to be temporally encoded by 

cortex (Lu et al., 2001a; Wang et al., 2008). This predicts that a rate code represents 

proportionally more of the modulation frequency tuning as areas lose the ability to 

encode it in a temporal fashion. This effect has been reported previously in a caudorostral 

direction in marmoset cortex between core A1 and the undifferentiated R/RT fields 

(Bendor and Wang, 2007) as well as in a regional direction between core A1 and parabelt 

CPB (Crum et al., submitted). We did not see strong differences in the differential rate vs 

temporal responsiveness with regional or caudorostral area, but his is probably because 

our lowest modulation frequency presented is quite slow and many neurons can still 

temporally entrain to it, which elevates estimates of temporal responsiveness. If a set of 



 111

higher modulation frequencies were examined (as in Bendor and Wang, 2007), we would 

expect to see these trends.  

Consistent with our findings, other studies have found that rate based distributions 

are not different between A1 and R, or between core and belt regions in awake squirrel 

monkey (Bieser and Muller-Preuss, 1996) and marmoset (Bendor and Wang, 2008). In 

many other studies examining rBMFs, distributions are not shown, so it is more difficult 

to determine if the distributions show the same characteristics (Lu et al., 2001a; Liang et 

al., 2002; Bendor and Wang, 2007; Crum et al., submitted).  One study in macaques does 

not show uniform distributions of core A1 or belt CM, but it was performed in the 

anesthetized preparation (Oshurkova et al., 2008) which tends to reflect different 

dynamics for sustained responses (Wang et al., 2005).  

The percept of a given modulation frequency can vary with rate. Low frequencies 

(< 20 Hz) correspond to perception of rhythm, mid frequencies (~10-50 Hz) correspond 

to roughness/flutter and higher frequencies correspond to pitch percepts (~> 50-3000 Hz) 

(Miller and Taylor, 1948; Terhardt, 1974; Krumbholtz et al., 2000). Strict perceptual 

frequency boundaries are approximate, as they can differ with carrier type and individual 

differences, but appear to be similar for humans and primates (Moody and Stebbins, 

1989). Though different, these distinct percepts can all be encoded with the rate code.  

Though the rate based distributions are approximately uniform, there may be a 

slight overrepresentation of lower modulation frequencies (i.e. < 20 Hz). Given the 

emphasis on the lower frequencies in the temporal code, there is an overrepresentation of 

modulation frequencies less than 20 Hz. This may be epiphenomenal, but it is striking 

that these are also the frequencies common to communication sounds in Old and New 
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World primates (macaque < 20 Hz (Hammerschmidt and Todt, 1995; Hammerschmidt 

and Fischer, 1998; Hauser et al., 1998; Rendall et al., 1998), squirrel monkey 6-46 Hz 

(Schott, 1975) , marmoset 7-15 Hz (Epple, 1968)).  

Despite differences in evolutionary history and ecological niche, there appears to 

be a common primate schema for processing modulated sounds. Strikingly, results from 

this study and others suggest that modulation frequency tuning appears to be similar for 

marmoset, squirrel monkey, and macaque. These similarities across Old and New world 

primate species suggests that frequency tuning is not a function of ethological niche, but 

appears to reflect a general primate schema that is probably more subject to the bounds 

put on it by a common primate organization. This modulation frequency tuning decrease 

also has been demonstrated in humans (fMRI: Giraud et al., 2000;  depth electrode: 

Brugge et al., 2009). Additionally, the temporal cues in human speech are critical for its 

comprehension (e.g. Shannon et al., 1995; Ahissar et al., 2001) and are limited to similar 

low modulation frequencies. It is likely that the temporal specializations necessary for 

language processing also develop under similar structural constraints.  

Clearly, neurons respond to more than just the frequency in the context of 

temporal envelope frequency tuning,  and are also responsive to other aspects. such as 

envelope shape (Malone et al., 2007; Zheng and Escabi, 2008).  It is known that neural 

responses are especially sensitive to depth and periodicity, so whether these tuning curves 

generalize to other stimulus types is being currently explored ( see Camalier et al., 2008; 

Bendor and Wang, 2010). More studies that look at coding in the awake behaving animal 

are needed to better understand the neural correlates of modulation frequency perception 

and discrimination. For example, in a pitch discrimination study of ferrets, it was 
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concluded that a spike count code was sufficiently fast to describe pitch discrimination 

performance, but that an ensemble code is required (Bizley et al., 2010). This emphasis 

on ensemble coding is consistent with a theoretical analysis that also suggests ensembles 

are necessary (Gourevitch and Eggermont, 2009). One limitation is that both of these 

studies were performed in A1 only. Another set of recent flutter discrimination studies in 

macaques suggest that firing rates in A1 neurons are sufficient to predict performance 

behavior (Lemus et al., 2009b), but that A1 responses are limited to the sensory encoding 

and that higher order decision and working memory components are encoded in the 

ventral premotor cortex (Lemus et al., 2009a). Belt and parabelt are located between A1 

and prefrontal cortex – perhaps there is more to be learned about the sensory-motor 

transformations necessary for behavior in the investigation of the higher order cortices. 

Clearly more work is needed in higher levels and more areas of auditory cortex. 

Ultimately, information about tuning must be combined with behavioral studies to inform 

what aspects of the stimulus are most important for perceptions of modulated sounds 

such as communication.  
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CHAPTER IV 
 
 
 

A COMPARISON OF CORRELATED NEURAL ACTIVITY WITHIN AND ACROSS 
MULTIPLE AREAS OF AUDITORY CORTEX IN THE AWAKE MACAQUE 

 
 

4.1 Abstract 

 

In order to refine and extend current theories of primate auditory cortical 

organization, there is a need to characterize neural synchrony, or correlations, between 

pairs of neurons both within and across areas. Such pairwise correlations are often 

interpreted as a measure of ‘effective’ connectivity. In this study, we measured 

correlations in seven areas of auditory cortex in core, belt and parabelt, and find that 

correlation measures in within-area pairs do not differ with area, even for areas at 

different regional levels. We measured correlation in three sets of across-area pairs and 

find that they are lower than those measured between areas, but are not different from 

each other. Additionally, correlation strength does not generally change from 

spontaneous to stimulation conditions, except for tone stimulation. Correlation lags of 

within-area pairs were all zero, as was the core-core across-area pair. Additionally, there 

was only weak evidence for a bias towards nonzero lags in the two sets of core-belt 

across-area pairs. Awake macaque auditory cortex appears to be weakly, yet isotopically 

correlated, observations which support previous studies of functional assemblies in the 

auditory cortex of the anesthetized cat.  

 
4.2 Introduction 
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The current working model of primate auditory cortex designates three 

interconnected regions (core, belt, and parabelt) which are thought to represent different 

levels of processing. Each region is subdivided into multiple areas, distinguished by 

unique anatomical and physiological profiles (for schematic, see figure 2-1 of chapter 2). 

We are interested in characterizing the direction and flow of information within and 

between regions and areas to better understand auditory cortical processing of sounds. 

One important aspect of this is the characterization of neural synchrony, or correlations, 

between pairs of neurons both within and across areas. Such pairwise correlations are 

often interpreted as a measure of  ‘effective’ connectivity (e.g Dickson and Gerstein, 

1974; Toyama et al., 1981a, b; Frostig et al., 1983; Ts'o et al., 1986; Aertsen et al., 1989; 

Stevenson et al., 2008).  Correlations in auditory cortex have been best described in the 

anesthetized cat, where both within and across area correlations have been measured 

(Dickson and Gerstein, 1974; Frostig et al., 1983; Espinosa and Gerstein, 1988; 

Eggermont, 1992; Eggermont et al., 1993; Eggermont, 1994; Eggermont and Smith, 

1995; Brosch and Schreiner, 1999; Eggermont, 2000; Miller et al., 2001b; Miller et al., 

2001a; Valentine and Eggermont, 2001; Tomita and Eggermont, 2005; Eggermont, 

2006). In the primate, a few studies have looked at correlation in A1 (Vaadia and Abeles, 

1987; Ahissar et al., 1992; deCharms and Merzenich, 1996; Ahissar et al., 1998; Bieser, 

1998; Brosch et al., 2002; Brosch and Scheich, 2002), but there is an incomplete 

understanding of the correlation within other areas and between different areas of primate 

auditory cortex, especially in the cortex of awake animals  (Brosch and Scheich, 2002).  
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 Thus, in an effort to better understand the interactions between multiple areas of 

awake primate auditory cortex, we characterize correlations of pairs of neurons both 

under different kinds of stimulation (tones, noise, temporally modulated noise) and under 

silence (spontaneous). We are interested in whether within-area correlations differ 

between areas and between regions.  Also, we are interested in whether these correlations 

within areas are stronger than between areas, and whether they are affected by stimulus 

condition or presence. Lastly, we look for any evidence of correlation lags in across-

region pairs (i.e. adjacent core-belt). Correlation lags are often interpreted as flow from 

one area to another (reviewed in: Ts'o et al., 1986; see also: Perkel et al., 1967a, b; Moore 

et al., 1970; Bryant et al., 1973; Miller et al., 2001b) and would be supporting evidence 

for a processing hierarchy.  

We measured correlations in seven areas of auditory cortex in core, belt and 

parabelt, and find that correlation measures in within-area pairs do not differ with area, 

even for areas at different regional levels. We measured correlation in three sets of 

across-area pairs and find that they are lower than those measured between areas, but are 

not different from each other. Additionally, correlation strength does not generally 

change from spontaneous to stimulation conditions, except for tone stimulation. 

Correlation lags of within-area pairs were all zero, as was the core-core across-area pair. 

Additionally, there was only weak evidence for a bias towards nonzero lags in the two 

sets of core-belt across-area pairs.  
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4.3 Materials and Methods 

 

General surgical procedures, histological processing, anatomical reconstruction, 

and experimental methods have been reported previously (see chapter 2), but details 

pertinent to this investigation are included below.  

 

Animal subjects  

Two adult macaque monkeys SP and DY were used for neural recordings (SP 

male bonnet macaque (Macaca radiata) 10.0 kg, and DY female rhesus macaque 

(Macaca mulatta) 7.0 kg). Animals were housed in an AAALAC-accredited facility 

under supervision of laboratory and veterinary staff. All animal care and experimental 

procedures were in accordance with the U.S. National Institutes of Health Guide for the 

care and use of laboratory animals, under a protocol approved by the Vanderbilt 

Institutional Animal Care and Use Committee.  

 

Stimulus generation and neurophysiological acquisition  

Stimulus generation and delivery. Recording sessions were conducted in a double 

walled chamber (Industrial Acoustics Corp, NY) that attenuated sounds, particularly at 

the mid to high frequencies. Acoustic stimuli were generated by Tucker-Davis 

technologies (TDT, Gainesville, FL) System II hardware and software (SigGen), 

controlled by a custom software interface between the stimulus generation and 

acquisition systems. Stimuli were delivered using Beyer DT911 insert earphones (range 

0.1-25.0 kHz) coupled to custom earmolds in both ears.  



 123

Stimuli. All stimuli were delivered diotically. Descriptions are below:  

Tones.  Pure tones of 50 ms duration had a 5 ms cosine2 ramp at onset and offset, and 

were calibrated to 60 dB SPL. The center frequency of these tones ranged from 0.3-21.0 

kHz in 1/3 octave steps (24 frequencies). Each frequency was presented in random order 

10 times, interleaved with other stimuli (e.g. clicks, noise, 45dB SPL tones) with a 

jittered interonset interval of approximately 1000 ms.  

Wideband noise. Gaussian white noise bands of 250 ms duration had a 5 ms cosine2 ramp 

at onset and offset, and were calibrated to 60 dB SPL. They were presented 30 times, 

interleaved with other stimuli, with a jittered interonset interval of approximately 1000 

ms.  

Amplitude modulated noise. AM noise was constructed using Gaussian white noise 

convolved with a sine wave of 100% depth, yielding sinusoidally amplitude modulated 

white noise. Twenty temporal modulation frequencies ranged from 3.1-957 Hz. The 

duration of these stimuli was 1000 ms, calibrated to 50 dB SPL, with a 5 ms cosine2 ramp 

at onset and offset. Each modulation frequency was presented 10 times with a jittered 

interonset interval of approximately 3000 ms, randomly interleaved with other stimulus 

types in the battery.   

Spontaneous. To measure spontaneous correlation, approximately 1 minute of neural 

activity recorded in silence was divided into 35 ‘trials’ of 1000 ms. 

Electrophysiological recording. Electrode penetrations were made through a 

recording grid 15 mm wide with 1 mm spacing which fit over the implanted chamber 

(Crist Instruments, Hagerstown MD). This ensured a replicable and roughly 

perpendicular trajectory through most parts of the superior temporal plane corresponding 
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to the caudal two-thirds of auditory cortex. After a local anesthetic (0.13% bupivacaine 

and 0.5% lidocaine in sterile saline) was topically applied and then removed, a sharpened 

stainless steel guide tube was used to puncture through the dura. The use of a guide tube 

also ensured that the penetration ran parallel to the recording chamber. One to two 

tungsten microelectrodes (2-4 MOhm, FHC, Bowdoin, MA) aligned roughly 

mediolaterally were advanced through somatosensory cortices and into auditory cortex 

using manual microdrives (Narishige, Tokyo, Japan).  

From the first auditory responses until the end of auditory-responsive cortex, all 

isolated neurons, irrespective of responsiveness, were tested with all or most of the 

stimulus battery to avoid biasing the sample. In between isolations, the microdrives were 

moved at least 200 μm to avoid resampling units. For most runs, we recorded through all 

layers until the white matter was reached. We assigned a relative cortical depth to each 

penetration by normalizing the recording depth with respect to the first auditory 

responsive hash, presumably from the first layer or two of auditory cortex. While 

unequivocal laminar depths cannot be established, it is likely that the majority of 

recorded neurons came from the middle and upper layers, consistent with the 

cytoarchitecture of auditory cortex (Hackett, 2010). During recording sessions the 

monkey sat quietly alert and was continuously monitored via closed-circuit television. 

Multichannel spike and local field potential (LFP) recordings were acquired with a 64-

channel system that controls amplification, filtering and related parameters (Many 

Neuron Acquisition Processor, Plexon Inc, Dallas, TX). Both signals were referenced to 

ground. Spike signals were amplified (100x), filtered (150-8800 Hz), and digitized at 40 

kHz. The signal was further DC-offset corrected with a low-cut filter (0.7 Hz). To ensure 
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timing precision between stimulus delivery and data acquisition, the Plexon software 

interfaced with the stimulus delivery system (Tucker Davis Technologies) and both 

systems were controlled by custom software (SGPlay, provided by Peter Yang).  

Spikes were sorted online for all channels using real-time window discrimination. 

Digitized waveforms and timestamps of stimulus events were also saved for final offline 

analysis and sorting (Plexon offline sorter), and graded according to isolation quality 

(single or multi units). Neural pairs that contained single or multi units, or both, were 

analyzed in this study. Multi units often show higher correlation values than single units, 

but multi unit and single unit correlations are themselves positively correlated (but not in 

a linear fashion; Eggermont, 2000; Tomita and Eggermont, 2005; Eggermont, 2007). 

Thus we chose to combine pairs across both single and multi units. We also replicated the 

analyses restricted to only single unit pairs and found that correlation values and 

percentages were only slightly lower, and all the trends were preserved (see results).  

 

Histology and identification of cortical areas 

Since electrophysiological signatures have yet to be determined for the majority 

of auditory cortex, it was necessary to anatomically reconstruct cortex for precision in 

determining electrode locations. Using information from the lesions, electrode tracks, and 

histological reconstruction of areas, areal locations of electrodes were determined and 

confirmed by electrophysiological properties.  
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Neurophysiological data analysis 

Analysis code to calculate the joint peristimulus time histogram (JPSTH) was a 

set of Matlab scripts (MathWorks, Natick, MA) provided by Pierre Pouget of the Schall 

Laboratory (Vanderbilt University).  All other analyses were done using in-house Matlab 

scripts.  

Pairwise spike correlation measured via the joint peristimulus time histogram 

(JPSTH).  Correlation between two spike trains was measured using the joint 

peristimulus time histogram (JPSTH) (Aertsen et al., 1989). This method has been 

described in detail before (Aertsen et al., 1989; Brody, 1999a), and has been used to 

study auditory cortical correlations in awake macaque (Ahissar et al., 1992) and 

anesthetized cat (Eggermont, 1994). In brief, this method determines bin by bin 

covariance of two spike trains, with bins ranging over all possible temporal offsets (lags) 

of the spike trains. Each element in this covariance matrix is then normalized by the 

product of the standard deviations of each spike train from that bin to produce the 

normalized JPSTH matrix, whose values can be treated as a coefficient of correlation and 

range from -1 to +1 (see figure 4-1). Two measures can be taken from this: the 

coincidence histogram and the crosscorrelogram. The coincidence histogram is the sum 

from lag -5 to +5 on either side of the lag 0 bin diagonal, and measures the correlation 

over trial time. We did not formally analyze correlation time course in this study, but 

used it to corroborate that, regardless of stimulation, correlations are present at many time 

points through the length of the trial. The crosscorrelogram is the average correlation 

value for each lag summed along all timepoints of the trial. Peak correlation was the 

highest value in a window between +/-50 ms of lag zero. This time window was chosen 
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because the width of the correlation in auditory cortex is reported to rarely be more than 

+/-50 ms (Ahissar et al., 1998).  

  To correct for increases in correlation due to concomitant increases in firing rate 

we used a shuffle correction. In this, we repeated the JPSTH with a shuffled trial order 

for one of the neurons. Significance of the crosscorrelogram peak (peak correlation) was 

determined twofold. Only pairs whose peak that was both 1) 2 SD above the average 

shuffled crosscorrelogram in the time window +/- 50 ms (e.g. Reed et al., 2008; Ghoshal 

et al., 2009) and 2) 2 SD above zero in the time window +/- 50 ms were considered 

significant (Brody, 1999a). The time at which this peak correlation occurred is the time 

lag, which relates the timing of the correlated activity. In the example in figure 4-1, 

neuron 1 generally fires before neuron 2, giving a time lag of -5 ms. It is important to 

note that regardless of the methods of correction, correlation measures are not conclusive 

evidence for nonrandom associations of activity, and a number of corrections measures 

have been proposed (e.g. Perkel et al., 1967b; Gerstein and Perkel, 1969, 1972; Brody, 

1999a, b; Smith and Kohn, 2008). On the other hand, it has been argued that no 

correction should be used since it is neurally implausible (Eggermont, 2007). For our 

purposes, we choose to use the normalized, shuffle corrected JPSTH in these experiments 

since it corrects for correlations due to stimulus locked firing rate increases and also 

allows for an evaluation of correlation over time.  

For all stimuli, the spike trains were analyzed from stimulus onset to 150 ms after 

stimulus offset. This window allowed for the end of the response for even sluggish 

neurons. These spike trains were binned by 5 ms, a bin size that is sufficiently small to 

examine correlations over short time scales. Smaller and larger bin sizes were examined  
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Figure 4-1. The calculation of the JPSTH: an illustrative example (see methods). PSTHs 
of neuron 1 and neuron 2 are the gray histograms in the x and y axis respectively. The 
normalized JPSTH matrix is the color plot between the PSTHs, where red values are 
positive correlation and blue are negative correlations (color scalebar of correlation 
values to the right). The crosscorrelogram, calculated by collapsing across all timebins of 
the trial from lag -50 to +50, is shown to the top right, with x-axis expanded to show 
detail. Normalized crosscorrelogram is in red (thick line) and shuffled is superimposed in 
blue (thin line).  Here, the peak correlation of 0.09 is significant and is located at lag -5 
ms, where neuron 1 firing leads neuron 2 by about 5 ms. 
 

 

(2 ms and 10 ms bins); while the magnitude of peak correlation values covary with 

binsize, the percent that are deemed significant does not change, and trends across areas 
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do not change. Similar trends of correlation values with bin size have been previously 

described  (Eggermont, 1992). In this study we only analyze positive correlations, as 

negative correlations were rare.    

 

4.4 Results 

 

 In total, within-area correlations from 7 areas were examined. These included 

pairs of neurons from core A1 and R, medial belt MM, lateral belt ML and AL, and 

parabelt CPB and RPB. The vast majority of these within-area pairs were from the same 

electrode. In addition, three types of across-area correlations were examined: one within 

core A1-R, and two from core to lateral belt A1-ML and R-AL. These were all collected 

from two different electrodes spaced between 3-7 mm apart. Data from other areal 

combinations did not yield enough pairs to be included in the analyses. Total pair counts 

and yield of the number of significant pairs examined are listed in table 4-1. For 

convenience, number of single unit only pairs is also listed.  

 Figure 4-2 shows the percent significant correlation and mean correlation values 

for the within and cross area pairs under spontaneous conditions (silence). A number of  

trends are evident. First, there was a difference between the within-area pairs and the 

across-area pairs. The probability of significance for the within-area pairs (left side) is 

generally higher than the across-area pairs (right side). This is true for the spontaneous 

condition as well as for all three stimulation conditions (noise, tones, and AM noise), 

confirmed by a t-test (p<0.01 for all four conditions). Within-area correlation strength  

(mean correlation) is also higher for the within-area pairs than the across-area pairs. 
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Table 4-1. Counts of pairs analyzed and significant for all areas and all stimulus 
conditions examined. For reference, counts of single unit only pairs are also listed.  
 

 

 

Again, this is true for the spontaneous, noise, and AM noise conditions (t-test p< 0.01 for 

these three conditions). Though similar trends were evident in the tone condition, 

statistical significance was not met. Second, there was not a difference in within-area 

probability of significance or correlation strength by region or caudorostral level (two 

3x2 region x caudorostral level ANOVA, p >0.05 both factors). Third, there was not a 

difference in across-area correlation probability of significance or strength between the 

across-area pairs from within a region (core A1-R) and the across-area pairs between  

regions (core-belt A1-ML and R-AL) (two t-tests, p > 0.05).  Figure 4-3 shows results for 

the spontaneous condition where the pairs are restricted to single units only. Note that the 

trends are still very similar. This is true for the other stimulation conditions as well (not 

shown). 

 To examine the effects of stimulus type on percent and correlation strength we  
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Figure 4-2. Correlation measures (probability of significance and mean correlation) by 
for the within-area pairs (left side) and across-area pairs (right side). For ease of 
comparison, shading denotes areas within a regional level or similar cross regional type 
(e.g. core-belt A1-ML and R-AL).  Asterisks above groups indicate comparisons that 
were different at p <0.01.  
 
 

looked at measures of correlation with stimulus type, separated by within-area and 

across-area pairs. The left side of figure 4-4 shows the probability of significant 

correlation and mean correlation values for the within-area pairs. Since the within-area 

effects were consistent for all areas, we could collapse across them. The spontaneous 

condition showed the most pairs with a significant correlation, with slightly less for AM 

noise, less still for noise and the least number of significant pairs for pure tone 

stimulation. With regard to strength of correlation, the tones showed the highest strength 

of correlation, while the others had approximately equal magnitudes. Only the tones were 

different than spontaneous (multiple t-test, Bonferonni corrected p < 0.05).  
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Figure 4-3. Correlation measures (probability of significance and mean correlation) for 
the within-area pairs (left side) and across-area pairs (right side), restricted to single unit 
pairs. Conventions preserved from figure 4-2. Asterisks above groups indicate 
comparisons that were different at p <0.01. 
 
 

The right side of figure 4-4 shows the probability of significant correlation and 

mean correlation values for the across-area pairs. Since the across-area effects were 

consistent for all comparisons, we could collapse across them. Similar to the within-area 

pairs, the spontaneous condition showed the most pairs with a significant correlation, 

with slightly less for AM noise, slightly less for wideband noise and the least pairs for 

pure tone stimulation. With regard to strength of correlation, again the tones showed the 

highest strength of correlation, and the others had approximately the same strengths. Only  
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Figure 4-4. Correlation measures by stimulation type. Left side, probability of 
significance and mean correlation for the within-area pairs. Right side, probability of 
significance and mean correlation for the across-area pairs. For ease of comparison each 
stimulation type is shaded differently. Asterisks above groups indicate comparisons that 
were different at p <0.01. 
 
 
 
the tones were different than spontaneous (multiple t-test, Bonferonni corrected p < 0.05). 

When restricted to single units only the same trends were seen (data not shown). 

Correlation strength patterns also remain the same if the significance criteria is lifted, so 

these patterns are not due to the corrections used. Correlation strength patterns are also 

not due to firing rate differences among the stimuli: the overall firing rates for noise tend 

to be equal to or greater then overall firing rates for tones (data not shown).  

Lastly, we looked at the distribution of the lag time of peak correlation 

coefficients of the within-area pairs and the across-area pairs. The left side of figure 4-5  
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Figure 4-5. Boxplots of peak correlation lag distributions for the within-area pairs (left 
side) and across-area pairs (right side). The box denotes the upper quartile, median, and 
lower quartile of the distribution. Whiskers denote the extent of the rest of the data. 
Notches indicate an estimate of the uncertainty about the median. For ease of 
comparison, conventions preserved from figure 4-2. Asterisks above groups indicate 
comparisons that were different at p <0.01. 
 
 
 
shows distributions of time lags of the within-area pairs for the spontaneous condition. 

The distributions of peak correlation coefficients for the within-area pairs were centered 

around zero and were not different than zero. This was true for all four conditions 

(spontaneous, tones, noise, and AM noise: t-test for all area-condition pairs, p <0.01). 

The across-area pairs are shown in the right side of figure 4-5. Due to small numbers of 

pairs, lags for only the spontaneous and noise burst conditions could be examined. The 

distribution of lags for the within-region pairs (core A1-R) was not different than zero (t-

test p <0.01); this was also true for the noise condition. For the pairs that cross regions 

the results were more mixed. In the spontaneous condition, there was a tendency for 

neurons in the belt areas to fire after neurons in the adjacent core areas, but only the 

distribution of A1-ML lags was significantly different from zero (t-test, p< 0.01). This 

effect was not consistent, however. In the noise condition both distributions tended 
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towards the opposite effect (not shown), where neurons in the belt areas led the adjacent 

core area, but this trend was not significant at the p< 0.01 level. 

 

4.5 Discussion 

 

We measured pairwise correlations across seven areas of auditory cortex in core, 

belt and parabelt, and find that, despite known areal differences in neurophysiological 

responses and source of thalamic and cortical inputs (see earlier chapters, also reviewed 

in Hackett, 2010), correlation measures do not differ for within-area pairs, even between 

areas at different regional levels or caudorostral levels. We measured correlation in three 

sets of across-area pairs and found that they are lower than those measured within areas, 

but were not different from each other. These findings are consistent with what has been 

found in auditory cortex of anesthetized cats (Eggermont, 2000), who also found that 

correlation strength did not differ for within-area pairs from different areas. Similar to our 

study, Eggermont also found that correlation was generally stronger in the within-area, 

pairs recorded from the same electrode than in the across-area pairs. Additionally, this 

pattern held true even for within-area pairs recorded from different electrodes, though 

correlation strength was weaker than for same electrode pairs. Thus, the weaker 

correlation in the across-area pairs seen in this study is not simply an artifact of recording 

from separate electrodes, though distance does have an effect on correlation.  

Additionally, mean correlation strength does not generally change from 

spontaneous to stimulation conditions for most stimuli, except for an increase in mean 

correlation during tone stimulation. Tones are also the least probable to show a 
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significant correlation (see figure 4-4).  The increase during tone stimulation is not due to 

higher firing rates in this condition or the use of significance criteria. This seems to 

suggest that during tone stimulation a small percentage of neurons are highly correlated 

compared to the spontaneous or noise conditions, where a higher percentage is more 

weakly correlated. It is unclear exactly why this is true, but the trend holds across all 

areas and regional levels and even for the across-area pairs. The tones are also the 

shortest duration stimulus used, but stimulus duration is an unlikely explanation given 

that the noise is a shorter stimulus than the AM noise and they exhibit similar correlation 

measures. Further analyses examining the time course of the correlation (i.e. coincidence 

histogram) or restricting the correlation measures to a shorter window for other stimuli 

may help resolve this. If robust, these results suggest that functionally connected 

networks in auditory cortex can behave differently for different stimuli, as has been 

suggested by a number of studies (Dickson and Gerstein, 1974; Espinosa and Gerstein, 

1988; Ahissar et al., 1992; Eggermont, 1994; Brosch and Schreiner, 1999; Eggermont, 

2006), and even behavioral state (Vaadia and Abeles, 1987). It may be surprising that 

measures of average correlation in the spontaneous condition were not different from 

those for the wideband stimulus conditions. However, evidence for this is mixed:  

spontaneous conditions has been shown to have both higher (especially for widely 

separated pairs) (Eggermont, 1994, 2000) and lower (Brosch and Schreiner, 1999) 

correlation strength than stimulation conditions.  

In the present study, the distribution of correlation lags of within-area pairs are 

centered around zero. This is consistent with what has been seen previously for within-

area pairs, particularly when recorded from the same electrode (Dickson and Gerstein, 
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1974; Frostig et al., 1983; Eggermont, 1992, 1994; Brosch and Schreiner, 1999; 

Eggermont, 2000; Brosch et al., 2002; Brosch and Scheich, 2002). This may indicate that 

most within-area correlations are driven by common inputs whose origin could be either 

thalamic or cortical (see Smith and Kohn, 2008).  This explanation is consistent with the 

zero-centered lags within core, where the members of the across-area (A1-R) pair both 

receive inputs from the same thalamic nuclei, though this explanation cannot account for 

the latency results that suggest that input and neural response timing may be different 

between A1 and R (see Chapter II).  

Based on anatomical and physiological evidence of information flow along the 

caudorostral and core-belt-parabelt axes, a reasonable prediction would be that 

correlation lags would also be observed between areas at different hierarchical levels. 

Such lags have been identified previously between the MGC and A1 in the cat, and used 

to infer inheritance of features (Miller et al., 2001b; Miller et al., 2001a). We found 

inconsistent evidence for a bias towards nonzero lags in the two sets of core-belt across-

area pairs. This may be consistent with the fact that pairs showing clear evidence of 

unidirectional functional connectivity are infrequent in the literature  (Frostig et al., 1983; 

Vaadia and Abeles, 1987; Eggermont, 1992; Brosch et al., 2002; Brosch and Scheich, 

2002). This may be ascribed to the effects of thalamocortical convergence on auditory 

cortex, where a greater effect of common inputs could mask direct driving corticocortical 

peaks in the crosscorrelograms.   All areas of auditory cortex receive projections from at 

least two different medial geniculate nuclei, and any two areas are receiving common 

input from at least one, and possibly multiple medial geniculate and other thalamic 

nuclei.  
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It is generally agreed that common inputs (stimulation or neural) or synaptic 

interactions can give rise to correlated activity (e.g. Aertsen et al., 1989; Usrey and Reid, 

1999). Functional connections based on correlations should be distinguished from 

anatomical connections, though they are often interpreted as supporting evidence. For 

example, crosscorrelograms have commonly been interpreted as evidence for synaptic 

coupling if they have a narrow peak, or for common input if they have a broader peak 

(Perkel et al., 1967a, b; Moore et al., 1970; see also Bryant et al., 1973; reviewed in: Ts'o 

et al., 1986).  There are important caveats to this interpretation. Correlations are biased 

and are more sensitive to excitatory than inhibitory effects (Aertsen and Gerstein, 1985). 

Even with corrections (Perkel et al., 1967b; Brody, 1999b; Smith and Kohn, 2008), it is 

possible to get correlations without synchrony from trial to trial covariations in latency or 

excitability (Brody, 1999a). Lastly, even with shared connections between a neuron pair, 

it is possible to get no correlation (Renart et al., 2010). Instead of assuming that 

correlations necessarily reflect connectivity, functional connections based on correlation 

are better thought of as reflecting at least some portion of the dynamic statistical efficacy 

of neural coupling. This coupling is no doubt predicated on some kind of anatomical 

connectivity. Our focus in this study has been on implications of correlation for the 

functional connectivity of auditory cortex, but note that correlation is thought to have 

important implications for stimulus coding and processing (Malsberg, 1981; Abbott and 

Dayan, 1999; Gray, 1999; Shadlen and Movshon, 1999; Salinas and Sejnowski, 2001; 

Rolls et al., 2003; Johnson, 2004; Tabareau et al., 2010; but see Shadlen and Movshon, 

1999) and synchrony is also purported to underlie oscillations (Averbeck and Lee, 2004). 
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In summary, in this study we present evidence that across a large portion of 

primate auditory cortex, neurons are consistently but weakly connected within areas, and 

consistently but even more weakly connected across areas. This effective connectivity 

appears to vary somewhat with simulation condition. Thus, awake macaque auditory 

cortex appears to be weakly yet isotopically correlated, supporting what has been found 

in the auditory cortex of the anesthetized cat (Eggermont, 2000, 2006). Though there are 

important caveats to the interpretation of correlations, this suggests that there are large 

weakly correlated assemblies both within and across areas of auditory cortex (Eggermont, 

2006). The weak synchronization of these assemblies allows for independence of 

processing, but an imbalance in this synchronization is thought to underlie clinical 

conditions such as tinnitus and even epilepsy (Eggermont and Roberts, 2004; Eggermont, 

2007). However, within reasonable ranges, these assemblies may dynamically change, 

allowing for flexible stimulus processing using population codes over distinct but 

overlapping neural assemblies within and across the same areas.  Further anatomical and 

physiological studies are needed to evaluate this and shed light on the source and network 

architecture that could underlie these assemblies.   
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CHAPTER V 

 

DISCUSSION: OVERVIEW OF RESULTS, IMPLICATIONS, AND FUTURE 
DIRECTIONS 

 
 
 
5.1 Overview of Main Findings  

Our long term aim is to further define the functional organization of primate 

auditory cortex, and relate anatomical structure and pathways to neural processing and 

information flow.  In this series of studies, we examined response latencies, temporal 

tuning measures, and pairwise spike correlations in multiple areas in core, belt, and 

parabelt of the auditory cortex of the awake macaque. The current working model of 

primate auditory cortex predicts a hierarchy of processing in two directions:  along 

regional level (core to belt to parabelt) and along a caudorostral direction (within a 

region). In addition to the questions about direction of flow, we were also interested in 

extending the primate model to include effective connectivity (measured by correlation 

strength) within and between areas of auditory cortex.  

 

Differences in auditory response latencies across areas of primate auditory cortex 

 The first study (Chapter II) investigated latency increases to evaluate hierarchy of 

flow. Given their obvious significance, areal latencies in primate have been reported and 

compared between areas before (Vaadia et al., 1982; Bieser and Muller-Preuss, 1996; 

Recanzone, 2000; Cheung et al., 2001; Kajikawa et al., 2005; Lakatos et al., 2005; 

Philibert et al., 2005; Bendor and Wang, 2008; Oshurkova et al., 2008; Kusmierek and 

Rauschecker, 2009; Crum et al., submitted). However, this study represents the first time 
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that so many areas representing multiple caudorostral levels and all three regional levels 

have been compared simultaneously, and is the first report of latencies from CL, AL, and 

RPB, as well as the first report of LFP latencies for RM, MM, R, Al, CL, and RPB. In a 

survey of ten areas across three regions of the primate auditory cortex, we found that both 

unit and LFP latencies generally increased as a function of both regional level and 

caudorostral level, regardless of stimulus type. 

It was interesting that the LFP differences between areas, especially along the 

caudorostral axis, were not as robust as the unit latency differences, as confirmed by a 

unit-LFP difference analysis, which indicated that the unit latency differences are 

incompletely accounted for by LFP ‘input’ differences. This suggested that the rostral 

areas that have longer unit latencies may also have a longer integration time window to 

respond. Other than absolute latencies, there were few differences between results from 

broadband and pure tone responses, despite differences in envelope, duration and 

bandwidth. This indicated that our results were probably generally reflective of timing 

information for many ethologically relevant stimuli.  

 

Differences in tuning to temporally modulated sound across areas of primate auditory 
cortex 
 
 The second study (Chapter III) investigated tuning to temporally modulated 

sounds in neurons across auditory cortex. We collected neural responses from five areas 

in core, lateral belt, and parabelt to amplitude modulated noise in the awake macaque for 

two aims. The first was to better characterize modulation frequency tuning across 

multiple areas of auditory cortex. The second was to evaluate the implications of tuning 

for hierarchical flow between regions and areas in auditory cortex of the primate. An 
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influential hypothesis states that temporal modulation frequency tuning decreases as a 

consequence of variability introduced by successive synaptic delays along the auditory 

hierarchy (Joris et al., 2004). In primate auditory cortex, such decreases have been 

reported in samples of areas along a regional level axis (Bieser and Muller-Preuss, 1996; 

Crum et al., submitted) and weaker trends have been reported along the rostrocaudal axis 

(Sudakov et al., 1971; Bieser, 1995; Bieser and Muller-Preuss, 1996; Bendor and Wang, 

2008), but this study represents one of the first times that tuning measures could be 

directly compared among so many areas, as well as the first time that LFP tuning was 

analyzed in R, Al, and RPB.  

Entrainment based maximum synchronization and tuning rates were lower in 

lateral belt and parabelt than in core. This decrease in temporal modulation frequency 

tuning provides support for hierarchical processing in a regional direction. Surprisingly, 

we did not see a decrease in tuning measures in a caudorostral direction, the possible 

reasons for which are discussed below.  Temporal tuning measures derived from the LFP 

support the same patterns. In addition, we saw that for all areas a rate based code covered 

all the modulation frequencies, demonstrating that a rate code was sufficient to encode 

the modulation frequencies that cannot be accounted for by temporal measures, 

particularly at later levels of processing.  

 

Effective connectivity within and across areas of primate auditory cortex  

 The third study in the series (Chapter IV) characterized correlations of pairs of 

neurons within and across areas both under different kinds of stimulation (tones, noise, 

temporally modulated noise) and under no stimulation (spontaneous). Correlations in 
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auditory cortex have been best described in the anesthetized cat, where both within and 

across area correlations have been measured (Dickson and Gerstein, 1974; Frostig et al., 

1983; Espinosa and Gerstein, 1988; Eggermont, 1992; Eggermont et al., 1993; 

Eggermont, 1994; Eggermont and Smith, 1995; Brosch and Schreiner, 1999; Eggermont, 

2000; Miller et al., 2001b; Miller et al., 2001a; Valentine and Eggermont, 2001; Tomita 

and Eggermont, 2005; Eggermont, 2006). In the primate, a few studies have looked at 

correlation in A1 in either awake or anesthetized states (Vaadia and Abeles, 1987; 

Ahissar et al., 1992; deCharms and Merzenich, 1996; Ahissar et al., 1998; Bieser, 1998; 

Brosch et al., 2002; Brosch and Scheich, 2002), but correlation within other areas outside 

of A1 and between different areas and regions of primate auditory cortex, has been rarely 

studied (except for one notable, but unfortunately nonquantitative, study examining A1-

CM correlations (Brosch and Scheich, 2002)).  

We measured correlations in seven areas of auditory cortex in core, belt, and 

parabelt, and found that correlation measures of pairs within the same area do not differ 

as a function of area, even between areas at different regional levels, despite known 

differences in response properties, architecture, and connectivity (Hackett, 2010). We 

measured correlation in three sets of cross area pairs and find that they were lower than 

those measured between areas, but were not different from each other. Additionally, 

correlation strength did not generally change from spontaneous to stimulation conditions, 

except for tone stimulation. Correlation lags of within area pairs were all zero, as was the 

core-core cross area pair, and there was only weak evidence for a bias towards nonzero 

lags in the two sets of core-belt cross-area pairs. These results support the conclusions 
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based in results from cats (Eggermont, 2000, 2007) that auditory cortex is a weakly yet 

isotopically effectively connected network.  

 

5.2 Implications for the Primate Model and Future Directions 

 

Evidence for flow along the core-belt-parabelt regional axis 

 What do these results suggest about flow in the primate model? Along the 

regional core-belt-parabelt axis, there is evidence from both latency differences and 

temporal tuning to modulation frequencies that suggest a flow of information across core-

belt-parabelt regional level. These results are consistent with other studies comparing 

latencies across levels (Vaadia et al., 1982; Recanzone, 2000; Crum et al., submitted). 

Though we saw some evidence of flow with nonzero correlation lags in core-belt, 

correlation peaks whose lag indicated that core led belt were not consistent across stimuli. 

However, given the different cortical and thalamic inputs to core and belt, it is perhaps 

unsurprising that we did not consistently see correlation lags that imply core-belt 

synchronous firing with core leading. These results supplement cortical connectivity 

patterns that also suggest the serial nature of processing along regional levels (reviewed 

in introduction).  

The notable exception to this core-belt-parabelt flow appears to be the caudal belt 

areas CM and CL, where latencies were as fast as or faster than neighboring core area 

A1. This is similar to studies showing that CM latencies were as fast or faster than A1 

latencies (Recanzone, 2000; Kajikawa et al., 2005; Lakatos et al., 2005; Oshurkova et al., 

2008). Though temporal tuning was not examined in CM and CL in this study, evidence 



 149

from marmosets and squirrel monkeys suggest that CM has temporal tuning similar to A1 

(Bieser and Muller-Preuss, 1996; Lakatos et al., 2005; Kajikawa et al., 2008) (but see 

Oshurkova et al., 2008).  

A resolution to this apparent paradox may lay in closer examination of the 

topography of thalamic inputs. Caudal belt, particularly CM and CL, receive projections 

from an anterior portion of the MGd, the MGad. This region has not been well 

characterized in primates, but a possibly corresponding structure in cats (see Hackett, 

2010) exhibits fast latencies much like the MGv (Imig and Morel, 1984, 1985a, b). 

Projections from the MGad to both the medial and lateral belt decrease in strength as one 

progresses rostrally and are almost absent at the level of RM (de la Mothe et al., 2006a; 

Hackett et al., 2007), which is then characterized by a dense projection from the MGpd. 

Thus it is possible that the belt receives some of its inputs serially, but that the fastest 

latencies in the caudal-most portion may be driven by this extremely fast direct thalamic 

input from MGad. The connections and response properties of the divisions of the MGC 

need to be better characterized.  We suggest that it is the hypothesized lemniscal nature of 

the MGad input to caudal belt that makes responses in these areas so similar to core A1. 

However, the existence of a fast and possibly tonotopic parallel input to caudal 

belt is difficult to reconcile with an influential lesion study that showed abolishment of 

tone responses in CM following ablation of A1 (Rauschecker et al., 1997). It is also 

difficult to reconcile with the wider spectral tuning seen in this area (Rauschecker et al., 

1997; Kajikawa et al., 2005; Lakatos et al., 2005), though this may be a function of 

convergence of narrowly tuned inputs from the core. Clearly more studies are needed to 

understand the nature of information flow between A1 and caudal belt CM and CL. Also, 
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more information is needed about the physiological characteristics (i.e. latency) of the 

different MGC nuclei, and about the specificity and topography of the projections from 

neurons in these nuclei to different areas of auditory cortex.  

How do these results fit with anatomical predictions made for cortical activation 

timing? Thalamocortical and corticocortical connectivity predicts core, belt, and parabelt 

latency differences. We indeed observed the predicted latency differences with regional 

level. This is consistent with the chemoarchitectural gradients with regional level (e.g. 

Hackett and de la Mothe, 2009). Cytochrome oxidase expression, a marker of metabolic 

activity often seen in fast cortices and pathways, is most dense in core and least dense in 

parabelt.  

 Thus, these decreases in entrainment rates and vector strengths in belt and 

parabelt are consistent with both the increased synaptic delays introduced in belt and 

parabelt as well as the convergence of inputs from cortical (core, belt) and 

thalamocortical  (MGd) sources that belt and parabelt share. Because the degree of 

convergence would not be expected to differ in the belt and parabelt, just in the number 

of synaptic delays from core, belt-parabelt differences in entrainment would consequently 

not be expected to be as large as core-belt differences. 

 

Evidence for flow along the caudal to rostral axis 

Another striking pattern in this study is that within the same region, rostral 

latencies are slower than caudal latencies. These latency differences suggest a second 

axis of flow, in a caudal to rostral direction. These findings are supported by earlier 

evidence of latency differences along this axis (Bieser and Muller-Preuss, 1996; Bendor 
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and Wang, 2008; Kusmierek and Rauschecker, 2009).  Despite the striking differences in 

latencies, we did not see temporal tuning differences along this gradient. Though early 

studies have shown differences in tuning along this axis in squirrel monkey (Sudakov et 

al., 1971; Bieser, 1995; Bieser and Muller-Preuss, 1996), the differences seen were slight 

in a later marmoset studies (Bendor and Wang, 2008). It is possible that there may be a 

gradient for temporal information, but the effect size in this direction is much smaller 

than the effect size along the regional axis. Additionally, lags for correlated activity A1-R 

pairs were consistently centered around zero, a result that is also not consistent with 

direct driving flow in this direction.  

Our results suggest that latency differences along this axis appear to be even 

larger than latency differences along the regional level axis. This result is not 

immediately predicted by known thalamocortical connectivity patterns. However,  

chemoarchitecture of the caudal areas indicates that these areas should be very fast. 

Caudal areas are marked by high myelin density and cytochrome oxidase density, a 

marker of metabolic activity often seen in fast cortices and pathways (e.g. Hackett and de 

la Mothe, 2009). Additionally, corticocortical connectivity of some areas is suggestive of 

feedforward activity in the rostral direction (connections to layer 4) (Fitzpatrick and Imig, 

1980; Galaburda and Pandya, 1983), but his has not been demonstrated conclusively for 

all areas (see de la Mothe et al., 2006b).  

Our finding that the differences between LFP and unit latencies are more 

pronounced in rostral than caudal areas appear to help resolve some of the apparent 

discrepancy between the anatomical predictions and physiological timing. In rostral areas 

neuron latencies are much later (compared to caudal areas) than the corresponding LFP 
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latency , indicating that the units in these area may have a longer integration time window 

to generate a response, which will result in longer unit latencies in the rostral areas.  

The latency and modulation tuning results appear to provide conflicting evidence 

for a caudorostral flow, but these results can be resolved by a closer examination of what 

is driving each measure. Decreases in modulation frequency tuning can be due to 

increases in variability, which can be due to convergence or variability in input timing 

(i.e. introduced by synaptic delays). Differences in unit latency can be due to input timing 

or time constants of integration. Within a region, caudal areas appear to be receiving 

inputs slower than rostral neighbors, and are also slower to generate a response. 

However, they do not differ dramatically in the amount of convergence and/or variability 

in their inputs, so changes in temporal tuning measures in the caudorostral direction are 

more subtle, if detected at all. Similar convergence from MGC nuclei also explains why 

measures of temporal tuning do not appear to be markedly different between belt and 

parabelt. These results supplement cortical connectivity patterns that also suggest a flow 

of processing in the caudorostral direction (reviewed in chapter II).  

Predictions about the nature and basis of the caudorostral flow lead to more 

questions. How does one explain the difference in unit-LFP ‘integration time’ along the 

caudorostral direction? More connectional studies need to be done to determine the extent 

and specificity of the proposed corticocortical within-region feedforward rostral to caudal 

connections. Additionally, quantitative studies of thalamocortical connectivity are also 

lacking. Within a region (i.e. core), do these thalamocortical projections differ in the 

number of inputs, or the location and efficacy of synapses on neural targets?  What is the 

topographic nature of the thamocortical connections within a region? It is already known 
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that caudal portions of the MGC project to rostral portions of cortex and vice versa (see: 

Hackett, 2010); does a latency difference exist within a given nucleus of the MGC? It is 

presently unclear whether the caudorostral latency gradient is due to the nature and 

specificity of the thalamic inputs from the MGv, cortical properties (local network 

properties combined with feedforward cortico-cortical convergence), or both. Current 

work in our lab is actively trying to characterize the neurochemical signatures of the 

thalamocortical network in an effort to better characterize this system and answer these 

outstanding questions (Hackett and de la Mothe, 2009).  

 

Effective connectivity in primate auditory cortex and implications for population coding 
 

Despite known areal differences in neurophysiological responses and sources of 

their thalamic and cortical inputs (see earlier chapters, also reviewed in Hackett, 2010), 

correlation measures are similar for all within-area pairs examined here, though weak. 

Weak correlations have been seen in studies of primate A1 (Vaadia and Abeles, 1987; 

Ahissar et al., 1992; deCharms and Merzenich, 1996; Ahissar et al., 1998; Bieser, 1998; 

Brosch et al., 2002; Brosch and Scheich, 2002), and these results extend this finding, 

suggesting that correlations in the awake primate cortex were similar to what has been 

found in within-area and across-area pairs of the anesthetized cat  (Dickson and Gerstein, 

1974; Frostig et al., 1983; Espinosa and Gerstein, 1988; Eggermont, 1992; Eggermont et 

al., 1993; Eggermont, 1994; Eggermont and Smith, 1995; Brosch and Schreiner, 1999; 

Eggermont, 2000; Miller et al., 2001b; Miller et al., 2001a; Valentine and Eggermont, 

2001; Tomita and Eggermont, 2005; Eggermont, 2006). 
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Crosscorrelograms have commonly been interpreted as evidence for synaptic 

coupling if they have a narrow peak, or for common input if they have a broader peak 

(Perkel et al., 1967a, b; Moore et al., 1970;  see also Bryant et al., 1973; reviewed in: Ts'o 

et al., 1986).  There are important caveats to this interpretation. Correlations are biased 

and are more sensitive to excitatory than inhibitory effects (Aertsen and Gerstein, 1985). 

Even with corrections (Perkel et al., 1967b; Brody, 1999b; Smith and Kohn, 2008), it is 

possible to get correlations without synchrony from trial to trial covariations in latency or 

excitability (Brody, 1999a). Lastly, even with shared connections between a neuron pair, 

it is possible to get no correlation (Renart et al., 2010). Functional connections based on 

correlations should be distinguished from anatomical connections, though they are often 

interpreted as supporting evidence. Instead of assuming that correlations necessarily 

reflect connectivity, functional connections based on correlation are better thought of as 

reflecting at least some portion of the dynamic statistical efficacy of neural coupling. 

With these caveats in mind, these results suggest that auditory cortex is weakly 

‘functionally’ connected within an area, and even more weakly connected between areas. 

Converging evidence for this comes from anatomical studies of intrinsic connectivity that 

also suggest there are more connections within an area than to other areas (Lee and 

Winer, 2005; de la Mothe et al., 2006b; Lee and Winer, 2008). This study suggests that 

the functional connectivity aspects of the cat model (such as the similarity to a scale-free 

network) may be applied to the primate model. Characterizing the spatial scale of 

correlation should help evaluate hypothetical sources of correlated activity, such as 

common inputs, since thalamic inputs are supposed to operate on a different spatial scale 

than cortical inputs (for review see: Eggermont, 2007). More studies examining dual 
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electrode correlations within an area (beyond A1) are needed to understand how 

correlations may change with spatial proximity.   

This weak but isotopic connectivity is interpreted as being able to create 

functional assemblies both within and across areas of auditory cortex (Eggermont, 2006) 

that subserve flexible population coding. The weak synchronization of these assemblies 

allows for dynamic change in effective connectivity within a network, allowing for 

flexible stimulus processing using population codes over distinct but overlapping neural 

assemblies within and across the same areas. Functionally connected networks in 

auditory cortex can behave differently for different stimuli, as has been suggested by a 

number of studies (Dickson and Gerstein, 1974; Espinosa and Gerstein, 1988; Ahissar et 

al., 1992; Eggermont, 1994; Brosch and Schreiner, 1999; Eggermont, 2006), and even 

behavioral state (Vaadia and Abeles, 1987). Thus, does the architecture of these networks 

change with stimulus type or behavioral state? Clearly, more task-based studies are 

needed to fully evaluate this claim. Evidence for functional assemblies also has important 

clinical relevance, as correlated activity outside of the normal dynamic range is thought 

to underlie clinical conditions such as tinnitus and even epilepsy (Eggermont and 

Roberts, 2004; Eggermont, 2007).  

 

Implications for the model of primate auditory cortex 

This series of studies adds to a growing body of evidence that suggest that 

auditory cortex can be thought of as a weakly connected network that receives thalamic 

input from the MGC in four distinct but overlapping parallel streams.  Superimposed on 

this are two gradients of flow within auditory cortex: one in a roughly medial to lateral 
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direction between regional levels and the other in a caudorostral direction. Auditory 

cortex is also characterized by neurochemical gradients (Hackett and de la Mothe, 2009) 

whose functional significance is an active area of study. However, these gradients seem 

to correspond to at least some aspects of flow, in both a medial to lateral and caudal to 

rostral direction.  Adjacent areas still appear to process sound in very close timescale to 

each other, so the highly parallel nature of processing in auditory cortex must also be 

stressed. In short, the proposed bidirectional flow of information in primate model holds, 

but in the context of highly parallel processing. 

Given this evidence for two axes of processing, a question remains: what is the 

nature and functional importance of these streams? Though we have focused on latencies 

and temporal tuning in these studies, Evidence from spectral integration also suggests 

regional flow. Compared to the core, neurons in the belt respond better to sounds with 

greater spectral complexity such as noise or FM sweeps (Merzenich and Brugge, 1973; 

Kosaki et al., 1997; Recanzone, 2000; Poremba et al., 2003; Rauschecker and Tian, 2004; 

Bendor and Wang, 2005; Kajikawa et al., 2005). This is consistent with increased 

spectral integration, as neurons in the belt areas are thought to receive inputs from a 

larger set of frequencies, presumably from the core (Rauschecker and Tian, 2004), 

although thalamic inputs could also contribute to broad tuning.  

To better understand the possible function importance of these bidirectional 

streams, figure 5.1 shows a schematic of primate auditory cortex (panel A) and summary 

of sources of information about auditory pathways. Pathways implied by results from  

response latencies are in panel B, spectral tuning in panel C, and temporal tuning in panel 

D. The regional flow seem to be marked by spectral and temporal integration, whereas  
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Figure 5.1 Schematic of primate auditory cortex and summary of sources of information 
about auditory pathways. A. Schematic of auditory cortex. B. Pathways implied by 
results from response latencies, where arrows with question marks indicate directions 
where flow is uncertain. Wider arrow indicates the gradient is stronger in this direction. 
Bidirectional arrows indicates that there is evidence for both directions.  C. Pathways 
implied by results investigating spectral tuning. D.  Pathways implied by results 
investigating temporal tuning. Gradient along the caudorostral axis is denoted as a dotted 
line to indicate relative weakness/uncertainty.  
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the caudorostral flow seems to be marked not by feature integration, but by latency 

differences. This is pure speculation, but perhaps the caudorostral axis has a gradient not 

in the precision or kind of information that is encoded, but in length of integration 

window. Perhaps integrating over longer windows allows for the ability to encode not 

just simple features, but features that change in time such as higher-order envelope shape 

or dynamic spectral cues. That the auditory system would need to do this seems 

reasonable given the dynamic time-based nature of sound.  Given the speculative nature 

of this, more comparative studies in coding complex stimuli would help test this 

hypothesis. Additionally, there are a number of places denoted by question marks where 

processing flow and integration needs to be better characterized.  

Figure 5.2 A shows a recent proposed revision to the model (Bendor and Wang, 

2008). This proposal ascribes the bidirectional flow to separate spectral and temporal 

processing pathways in primate auditory cortex. Here they suggest that temporal 

processing is along the caudorostral axis and spectral processing is along the 

mediolateral/regional axis. Additionally, windows of temporal integration increase along 

the former axis and windows of spectral integration increase along the latter axes. The 

revisions were based primarily on latency differences seen in the caudal to rostral axis of 

core, and they note that their predictions that temporal tuning does not change in the 

medial to lateral direction were untested. This prediction has been tested, both in their lab 

(Crum et al., submitted) and ours, and it appears that this intriguing model incompletely 

accounts for response patterns seen in primate auditory cortex. For comparison figure 5.2 

B shows an alternative proposal (from above) for the nature of the dual streams of 

information processing in auditory cortex.  
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Figure 5.2.  A. Bendor and Wang’s 2008 proposed model of spectral and temporal 
processing pathways in primate auditory cortex. Temporal processing is along the 
caudorostral axis and spectral processing is along the mediolateral/regional axis. In this 
model, temporal windows of integration increase along the former (denoted by red lines 
and larger boxes) and spectral window of integration increase along the latter (denoted by 
green lines and larger boxes) axes. Here, f is frequency and t is time. (Figure and 
description from 2008 paper) B. For comparison, the figure from that paper has been 
altered to reflect an alternate view of the nature of the dual streams consistent with 
current data. Here, both spectral and temporal integration occur in the regional direction 
and the temporal window of analysis changes in the rostrocaudal direction.  
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Processing streams in auditory cortex are dominated by parallel processing 

Almost 20 years ago, known connections were used to make predictions about the 

processing hierarchy of another sensory system, the visual system (Felleman and Van 

Essen, 1991). This work identified levels of hierarchy and divided processing into 

dorsal/ventral streams. Based on known connectivity at the time (primarily  Galaburda 

and Pandya, 1983), it also attempted to extend reasoning to the auditory system. They 

noted suggestions of a hierarchy between core and belt, as well as a caudal to rostral 

flow, but noted that root (medial belt) connectivity did not fit into an ‘internally 

consistent hierarchy’. In the intervening decades, work from many labs is filling in these 

gaps, indicating that there is flow from core to belt to parabelt (Vaadia et al., 1982; Bieser 

and Muller-Preuss, 1996; Recanzone, 2000; Crum et al., submitted), as well as a 

caudorostral flow (Bieser and Muller-Preuss, 1996; Bendor and Wang, 2008; Kusmierek 

and Rauschecker, 2009).  

Is this flow serial? Studies based in the cortical visual system concluded that 

serial across-areal transfer time should be approximately 10 ms (reviewed in Nowak and 

Bullier, 1997). In the auditory cortex, latency differences between regions do not appear 

to be of such magnitude. However, neural onset latencies in the belt and parabelt are in 

response to a mix of inputs from separate cortical but overlapping thalamic sources. 

Given the numerous parallel pathways from the MGC, the lack of evidence for strict 

serial processing and the more parallel timing of processing in cortex is perhaps 

unsurprising.    

What is perhaps most striking is that though there are clear regional and 

caudorostral trends in the flow of information, there is enormous overlap in the latency 
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distributions. This is no doubt indicative of the massively parallel inputs coming in from 

the subdivisions of the primary thalamic nuclei.  Because of the ongoing nature of sound, 

auditory stimuli must be processed very rapidly. A system that is wired to process 

information in many streams at once is best suited for fast processing. The auditory 

cortical system processes in serial, probably in a graded manner, but its stunning feature 

is massively parallel processing.  

 

Implications of flow for sound processing: ‘what’ versus ‘where’ streams hypothesis 

In the broader context of cortical processing of sound, what are the implications 

of the primate model? Based on the topography of prefrontal cortical projections from 

auditory cortex, it has been suggested that there is functional correspondence between the 

dorsal/ventral streams of the visual system and proposed caudal/rostral streams in the 

auditory system (e.g. Romanski et al., 1999; Rauschecker and Tian, 2000). Dorsal 

prefrontal areas are targets of the caudal auditory areas and ventral prefrontal areas are 

targets of more rostral areas, which has commonly been interpreted as evidence for the 

‘where’ and ‘what’ streams (reviewed in introduction). 

Our data indicate that there is a caudal advantage in latencies. Because caudal 

areas are faster, dorsal ‘where’ prefrontal targets also presumably receive information 

faster than the ventral prefrontal targets. A similar dorsal temporal advantage in latencies 

for the ‘where’ stream has also been observed in the visual system (see: Schroeder et al., 

1998), so this topography in latency differences may be a common crossmodal 

processing schema of the primate brain. As discussed in the introduction, processing of 

auditory object location and identity rely on an overlapping set of spectral and temporal 
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cues, so the lack of low-level differences that we see in tuning along the rostrocaudal 

gradient is perfectly consistent with the what/where streams. However, functional 

correspondence between the streams of the visual system and the auditory system 

remains to be determined, and studies contained in this paper do not evaluate the 

what/where stream hypothesis in auditory cortex. 

 

Implications of common primate schema for encoding of temporally modulated sound 
 

Perception of temporal modulation appears to be dependent on an intact auditory 

cortex (Whitfield, 1980; Heffner and Heffner, 1986; Zatorre, 1988; Phillips and Farmer, 

1990; Kelly et al., 1996; Griffiths, 1999). Recall from the introduction that the 

propagation of amplitude modulated sound is dependent on the environment (reviewed 

in: Wiley and Richards, 1978; Brown and Handford, 2000). However, despite differences 

in evolutionary history and ecological niche, results from this study and others suggest 

that temporal modulation frequency tuning in auditory cortex appears to be quite similar 

across both Old and New World primate species, (Sudakov et al., 1971; Bieser, 1995; 

Bieser and Muller-Preuss, 1996; Liang et al., 2002; Malone et al., 2007; Bendor and 

Wang, 2008; Oshurkova et al., 2008; Crum et al., submitted).   

This may suggest that temporal modulation frequency tuning is less driven by 

ethological niche, and more by the constraints put on it by flow in a common primate 

organization. Additionally, there may be a slight overrepresentation of lower modulation 

frequencies less than 20 Hz with the temporal and rate codes. This may be 

epiphenomenal, but it is striking that these are also the frequencies common to 

communication sounds in Old and New World primates (macaque < 20 Hz 
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(Hammerschmidt and Todt, 1995; Hammerschmidt and Fischer, 1998; Hauser et al., 

1998; Rendall et al., 1998), squirrel monkey 6-46 Hz (Schott, 1975) , marmoset 7-15 Hz 

(Epple, 1968)).  

 

The analysis of the LFP is important to connect results across methods and species 

Lastly, a note is needed to motivate the collection and analysis of the LFP that we 

used here. LFPs are an estimate of the summed transmembrane currents in a local cortical 

area as discrete as 250 μm (Katzner et al., 2009). Especially for the initial volley of 

activity (the “evoked” component) the poststimulus deflection of the LFP is indicative of 

the initial current flow into a local area and is an estimate of the timing of incoming 

activity. Even for sustained stimuli, the LFP has amplitude dependent and time locked 

components useful for interpreting stimulus processing (e.g. Steinschneider et al., 1998; 

Brosch et al., 2002; Norena and Eggermont, 2002). We agree that the interpretation of 

this signal can be complicated, since the LFP is a mesotopic signal that can’t be tied to 

the activity of a single unit (Logothetis et al., 2001), but they (and their derivative the 

current source density (CSD)) can be used to infer laminar processing through 

identification of local membrane sources and sinks ( e.g. Steinschneider et al., 1998). 

Additionally, the LFP is considered to be a better marker of the population activity that 

underlies EEG or the BOLD signal in fMRI. This latter method has enjoyed increasing 

popularity for studying the organization of macaque auditory cortex at high fields (i.e. 

Petkov et al., 2006). Additionally noninvasive measures such as fMRI and EEG are 

among the few measures available for studying stimulus processing in human auditory 

cortex in nonclincial populations. If we are to meaningfully connect results across species 
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(including humans) that are derived from heterogeneous measures, consideration of the 

LFP is a necessary step.   

 

5.3 In Closing  

 

As we refine the primate model using a multiplicity of approaches, there are still 

many fundamental questions left to be answered on the nature of auditory processing 

within the primate auditory cortex, and how it applies to processing in the human brain. 

In the course of primate evolution, the brain underwent dramatic expansion, and the 

auditory cortices are no exception (Hackett et al., 2001). Comparing evidence from 

different primates such as squirrel monkeys, marmosets, macaques, and humans inspires 

a search for similarities and differences between species. Any differences seen may be 

due to evolutionary selection pressures in their specific ecological niche, or due to 

common constraints to minimize the metabolic cost and connection length of a larger 

brain, such as lateralization of function (reviewed in: Kaas, 2000). Clearly, more studies 

are needed for a more complete understanding of the anatomical and physiological 

underpinnings of cortical processing of sound, especially in close human relatives.  

This is indeed an exciting time to be studying the auditory system (despite, or 

perhaps because of, the inefficiencies of working in a developing field, such as needing to 

establish and refine analyses appropriate for auditory stimuli, as in Chapter III or the 

Appendix).  Advances in methods allow for better characterization of multiple areas at 

once, as well as a more precise understanding of the chemical and structural aspects of 

the neural networks that give rise to activity. We are in the privileged position of being 
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able to draw from previous advances in the visual system to inform hypotheses (King and 

Nelken, 2009), and ultimately, any differences that we see between systems are 

informative about the specialized nature of the systems that evolved to process our 

auditory environment.  
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APPENDIX 

 

ESTIMATION OF NEURAL RESPONSE LATENCY IN THE AUDITORY CORTEX 
OF AWAKE PRIMATES: A COMPARISON OF COMMON METHODS 

 

This chapter has been submitted for publication as: Camalier, C.R. and T.A. Hackett. The 
estimation of neural response latency in awake primate auditory cortex: a comparison of 
common methods. Other than format changes necessary for the dissertation, the content 
has not been altered.  
 
 
 
A.1 Abstract 

 

Latency is an important parameter of neural responses, but selecting the most 

appropriate method to express latency is an enduring issue. Often, the sensitivity of a 

given latency method is somewhat dependent on the dynamics of the neural response, and 

given the increasing popularity of the awake preparation to understand cortical responses, 

it is increasingly important to examine latency methods in the context of a conscious 

animal. In this study we compared five established methods for determining the onset 

latency of neural responses in the auditory cortex of the alert macaque. The comparison 

of methods on the same dataset allows us to systematically examine latency and hit/miss 

differences between methods to identify a method that is maximally reliable. The five 

methods included are Gaussian Standard Deviation, Poisson Standard Deviation, Poisson 

Fit, Poisson Surprise Index, and Beginning of Activation. Our results indicate that the 

Gaussian Standard Deviation method outperforms the other methods both in reliability 

and realistic latencies. Given the differences between the results from the methods 
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examined here, care should be taken both in choosing a method for a specific study, as 

well as when deriving conclusions from latencies derived from different methods.   

 

A.2 Introduction 

 

The onset latency of a neural response is a measure of when incoming 

information (e.g. a stimulus) first affects a neuron’s firing. The order and time frame of 

these onset latencies between and across regions of the brain is often used to predict 

functional connectivity (e.g. Schmolesky et al., 1998; Schroeder et al., 1998). Since the 

advent of computational approaches to study neural activity, numerous methods have 

been used to determine the onset of neural activity. In this study, we are interested in 

determining a robust and reliable measure of latencies in awake primate auditory cortex. 

Certain methods, such as first spike latency, have been useful and popular in the 

anesthetized preparation (e.g. Cheung et al., 2001; Philibert et al., 2005), where cells 

show low spontaneous firing, with a preference toward phasic onset response responses 

(see Wang et al., 2005). However the awake brain is often characterized by high levels of 

spontaneous activity. Under these conditions it cannot be assumed that the first action 

potential after stimulus onset is a stimulus driven spike, so first spike analysis may be 

unreliable.  

 The question of what algorithm is most sensitive for estimating onset latency has 

been addressed previously, but often these studies are of limited applicability because 

they use simulated data or data for which the latency is visually obvious (e.g. Friedman 

and Priebe, 1998; Berenyi et al., 2007). The sensitivity of a given latency method is 
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somewhat dependent on the data it is applied on.   For example, a previous study 

comparing latency methods to determine latency across different areas of frontal cortex 

shows almost no differences between the methods (Pouget et al., 2005), even though 

modeling results would predict differences (Friedman and Priebe, 1998). We are 

interested in response latency as an index of signal flow through auditory cortex.  Thus, it 

seems important to evaluate latency methods specifically in the context of real neural 

responses in the cortex of awake animals, in particular for awake auditory cortex.  

Here, we choose five established methods for determining neural onset latency to 

compare results derived from the same dataset. These are not an exhaustive selection of 

methods, but include the primary ones used in previous studies of awake primate auditory 

cortex (Recanzone et al., 2000; Bendor and Wang, 2008; Kusmierek and Rauschecker, 

2009), as well as some that are not currently applied to auditory cortex, but are 

commonly used in other fields (see methods Legendy and Salcman, 1985; Maunsell and 

Gibson, 1992; Hanes et al., 1995; Azzopardi et al., 2003). These particular methods were 

chosen to guide our own choice of latency analyses, as well as to directly illustrate how 

differences in choice of methods can influence estimates of latency reported in the 

literature. If systematic differences are found even when the same dataset is used, this 

understanding will aid in the interpretation and comparison of results derived with 

different methods.  

In addition to estimating the onset time of a response, we are also interested in 

how well a latency measure reliably predicts a response. We also investigated the degree 

to which these measures were correlated with a significant elevation of firing rate over 

spontaneous activity. This study uses these comparisons to identify a latency method for 
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awake auditory cortex that both describes a large percentage of the data and produces 

latencies that are realistic and coincide with what seems reasonable based on visual 

inspection of the data. We find that, though no method tested is infallible, the Gaussian 

Standard Deviation method is overall most reliable and produces realistic latencies. 

 

A.3 Materials and Methods 

 

Animal subjects  

Two adult macaque monkeys SP and DY were used for neural recordings (SP 

male bonnet macaque (Macaca radiata) 10.0 kg; and DY female rhesus macaque 

(Macaca mulatta) 7.0 kg). Animals were housed in an AAALAC-accredited facility 

under supervision of laboratory and veterinary staff. All animal care and experimental 

procedures were in accordance with the U.S. National Institutes of Health Guide for the 

care and use of laboratory animals, under a protocol approved by the Vanderbilt 

Institutional Animal Care and Use Committee.  

 

Surgical procedure 

 After completing training to enter a primate chair and initial acclimatization, a 

headpost (in-house design) was implanted under aseptic conditions. The monkey was 

initially tranquilized with Ketamine (10-30 mg/kg IM) and Robinul (0.015 mg/kg IM) for 

intubation, catheterization and scrubbing, and premedicated with Cefazolin (2.2 mg/kg 

IM). Through the duration of the procedure, anesthesia was maintained with inhalation 

Isofluorane in O2 (2-4%). Respiration was maintained with a mechanical ventilator and 
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body temperature was maintained at 37°C. Heart rate, blood pressure, expiratory CO2, 

and peripheral oxygen levels were monitored as well. After 4-8 weeks of acclimatization 

of the monkey to the headpost, and training to sit tranquilly in a primate chair with insert 

earphones, a second surgery was performed. In this surgery (details above) we implanted 

a recording chamber (22 mm wide; Crist Instruments, Hagerstown MD), oriented 

vertically over the left caudal auditory cortex (sterotaxic coordinates of the center of the 

chamber were approximately A7: L23 mm from earbar zero). A craniotomy slightly 

smaller than the chamber was also made at this time. 

 

Stimulus generation and neurophysiological acquisition  

Stimulus generation and delivery. Recording sessions were conducted in a double 

walled chamber (Industrial Acoustics Corp, NY) that attenuated sounds, particularly at 

the mid to high frequencies. Acoustic stimuli were generated by Tucker-Davis 

technologies (TDT, Gainesville, FL) System II hardware and software (SigGen), 

controlled by a custom software interface between the stimulus generation and 

acquisition setups. Stimuli were delivered using Beyer DT911 insert earphones (range 

0.10-25 kHz), coupled to custom earmolds in both ears. These earmolds were made 

individually for each monkey by constructing a silicon mold of the concha and first few 

millimeters of the ear canal of each ear to completely seal the ear canal. A stainless steel 

tube (inner diameter ~1 mm) passed through the ear mold to protrude 2-3 mm into the ear 

canal. The transducer tube interfaced to the mold tube to form a sealed system. Stimuli 

were calibrated for intensity using a ¼ inch microphone (Model 7017; ACO Pacific, CA), 

pistonphone (Bruel and Kjaer type 4220) and custom software (TDT, SigCal). Amplitude 
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corrections are saved in a data file and applied to each stimulus to pre-equalize the 

response of each earphone independently. All stimuli were delivered diotically 30 times, 

randomly interleaved with other stimuli (e.g. tones, clicks, noise) with a jittered inter-

onset interval between 700-1100 ms, sufficient time for cortical activity to return to 

baseline.  

Stimuli. We used two different kinds of wideband stimuli for these investigations: 

biphasic 0.25 ms clicks and 250 ms Gaussian frozen white noise with a 5 ms cos2 onset 

and offset ramp, both calibrated to 60 dB SPL. Both stimuli reliably evoked responses 

from many neurons. The stimuli also have different onset shapes and durations, and can 

evoke different dynamics of responses, from quick and phasic to sustained in the awake 

animal. The inclusion of two different stimulus shapes was to ensure that the results from 

this study could generalize to broader stimulus batteries.  

Electrophysiological recording. Electrode penetrations were made through a 

recording grid 15 mm wide with 1 mm spacing which fit over the implanted chamber 

(Crist Instruments, Hagerstown MD). This ensured a roughly perpendicular trajectory 

through most parts of the superior temporal plane corresponding to the caudal two-thirds 

of auditory cortex. After a local anesthetic (0.13% bupivicaine and 0.5% lidocaine in 

sterile saline) was topically applied and then removed, a sharpened stainless steel guide 

tube was inserted to puncture the dura. The use of a guide tube also ensured that the 

penetration ran parallel to the recording chamber. One to two tungsten microelectrodes 

(2-4 MOhm, FHC, Bowdoin, MA) aligned mediolaterally were advanced through the 

guide tube to somatosensory cortices and into auditory cortex using manual microdrives 

(Narishige, Tokyo, Japan).  
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From the first auditory-responsive hash until the end of auditory-responsive 

cortex, all isolated neurons, irrespective of responsiveness, were tested with all or most of 

the stimulus battery to avoid biasing the sample. In between isolations the microdrives 

were moved at least 200 μm to avoid resampling units. For most runs, we recorded 

through all layers until the white matter was reached. We assigned a relative cortical 

depth to each penetration by normalizing the recording depth with respect to the first 

auditory responses, presumably from the first layer or two of auditory cortex. While 

unequivocal laminar depths cannot be established, it is likely that the majority of 

recorded neurons are coming from the middle and upper layers, consistent with the 

cytoarchitecture of auditory cortex (see Hackett, 2010). During recording sessions the 

monkey sat quietly alert and was visually monitored via closed-circuit television.  

Multichannel spike recordings were acquired with a 64 channel system that 

controls amplification, filtering and related parameters (Many Neuron Acquisition 

Processor, Plexon Inc, Dallas, TX). Both signals were referenced to ground. Spike signals 

were amplified (100x), filtered (150-8800 Hz), and digitized at 40 kHz. The signal was 

further DC-offset corrected with a low-cut filter (0.7 Hz). Spikes were sorted online for 

all channels using real-time window discrimination. Digitized waveforms and timestamps 

of stimulus events were also saved for final offline analysis and sorting (Plexon offline 

sorter), and graded according to isolation quality (single or multi units). Since we were 

interested in finding a method that worked for both single and multi units, we present 

results combined across unit types. We also analyzed them separately, but since results 

for each method were the same regardless of isolation, we combined across single and 

multi units.  To ensure timing precision, the Plexon acquisition software interfaced with 
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the stimulus delivery system (Tucker Davis Technologies) and both systems were 

controlled by custom software (SGPlay, TDT).  

 

Histology and identification of cortical areas 

At the end of the electrophysiological recording, lesions were made in 

representative grid sites to facilitate reconstruction. Additionally, best-frequency matched 

sites were identified and 2-3 tracer injections were placed for a parallel anatomical study 

of auditory cortex. After a 12-14 day tracer transport period, the monkey was initially 

tranquilized with Ketamine and a lethal dose of Euthasol (120mg/kg) was administered. 

Just after cardiac arrest, the monkey was perfused with 4ºC 0.1M phosphate 

buffered saline containing heparin (10 units/ml) , followed by 4ºC paraformaldehyde 

(4%) dissolved in 0.1M phosphate buffer (pH 7.4). Immediately after perfusion, the head 

was placed in a sterotaxic apparatus to for precise measurement of chamber placement 

and electrode angles. The brain was removed from the skull and photographed. The 

cerebral hemispheres were separated from the thalamus and brainstem, blocked, and 

placed in 30% sucrose for 1-3 days. To facilitate reconstruction, the left hemisphere was 

cut at a stereotaxic vertical angle (angle of the electrode) in 40 μm sections. Alternating 

series of sections were stained for Nissl substance with thionin, cytochrome oxidase 

(Wong-Riley, 1979), acetylcholinesterase (Geneser-Jensen and Blackstad, 1971), 

myelinated fibers (Gallyas, 1979), and the stains appropriate for the neuronal tracers (not 

shown here). Using information from the lesions, electrode tracks, and histological 

reconstruction of areas, areal locations of electrodes were determined and confirmed by 

electrophysiological properties. Neurons came from multiple areas from the caudal two-
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thirds of auditory cortex, identified by architectonic criteria established in previous 

studies (Hackett et al., 1998; Hackett et al., 2001; Hackett and de la Mothe, 2009). Since 

we were interested in identifying a method that generalizes across auditory cortex, 

neurons from all areas were included in this analysis.  

 

Data analysis 

For the click stimulus, we analyzed responses from a total of 1364 single and 

multi units from the caudal portion of auditory cortex of two alert macaque monkeys (622 

from monkey S and 742 from monkey D). For the noise stimulus, we analyzed responses 

from a total of 1295 units, (452 from monkey S and 813 from monkey D).  No systematic 

differences were seen between monkeys, so the results were amalgamated.  

Five different excitatory latency analysis methods were chosen. The Poisson 

Surprise analysis (Legendy and Salcman, 1985; Hanes et al., 1995) and related Beginning 

of Activation (Hanes et al., 1995) methods have not been extensively used in primate 

auditory cortex, but have been applied usefully in other sensory systems. In particular, the 

Poisson Surprise analysis was used in two studies comparing latencies from different 

areas of the visual system (Schmolesky et al., 1998; Pouget et al., 2005), and one study of 

latency measures concludes that the Poisson Surprise method is the most frequently used 

method (Berenyi et al., 2007).  The Poisson Fit method (Maunsell and Gibson, 1992), is 

also popular in analyzing visual system latencies. We also included Gaussian Standard 

Deviation, used in the auditory system of awake primates (Recanzone et al., 2000; 

Bendor and Wang, 2008; Kusmierek and Rauschecker, 2009), and Poisson Standard 

Deviation (Azzopardi et al., 2003). All analyses were coded using in-house Matlab 
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scripts (MathWorks, Natick, MA). Spike times were binned at 1 ms to preserve precision 

in the response. Certain methods, such as Poisson Surprise and Beginning of Activation 

are performed on spike times of a single trial, thus smoothing is irrelevant. For the rest of 

the analyses, no smoothing was used to maintain precision of timing. The five methods 

used are described in detail below: 

1. GAUSSIAN STANDARD DEVIATION (GAUSSIAN SD) (e.g. Recanzone et al., 

2000; Bendor and Wang, 2008; Kusmierek and Rauschecker, 2009). This algorithm is 

based on the averaged neural response in the form of a peristimulus time histogram 

(PSTH). The neural latency was the first bin after stimulus presentation to cross a 

response threshold and remain there for a minimum number of bins (here, 3 bins).  The 

algorithm defined a response threshold as 3 Gaussian standard deviations of the 

spontaneous rate above the mean spontaneous firing rate. 

2. POISSON STANDARD DEVIATION (POISSON SD) (Azzopardi et al., 2003). This 

algorithm is similar to the Gaussian Standard Deviation method, but this variant is 

sometimes used since it is commonly assumed that firing rate is approximately Poisson 

distributed. Thus, a Poisson-based standard deviation may be a better descriptor of 

variability in the PSTH. As above, the neural latency was defined as the first bin after 

stimulus presentation to cross a response threshold and remain there for 3 bins. The 

algorithm defined a response threshold as 3 Poisson standard deviations of the 

spontaneous rate above the mean spontaneous firing rate. 

3. POISSON FIT (Maunsell and Gibson, 1992). This algorithm defines latency as the first 

of three bins containing a number of spikes more than what would be expected from a 

Poisson process. The mean of the Poisson process is defined as the spontaneous rate and 
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the α threshold must be at the level of p < 0.01 for the first and p < 0.05 for the second 

and third bins.  

4. POISSON SPIKE TRAIN ANALYSIS (POISSON SURPRISE) (Legendy and 

Salcman, 1985; Hanes et al., 1995). This algorithm is derived from a method to search for 

bursts of spikes in continuous spike trains (Legendy and Salcman, 1985). On a single trial 

basis, the method detected post-stimulus intervals where there is a burst, defined as an 

interval where the number of spikes exceeds the number (at the p < 0.05 level) that would 

be expected from a Poisson process whose mean is defined as the firing rate of the entire 

trial period. The surprise index quantified the amount by which the observed number of 

spikes exceeds the number that would be expected. Overall latency was the median of all 

the single trial values. Since it is generated on a trial by trial basis, this method had the 

added advantage that it also generates a measure of latency variability.   

5. BEGINNING OF ACTIVATION (BOA) (Hanes et al., 1995).  This method is a 

variant of the Poisson surprise. It was developed for cells whose beginning of activation 

may not be defined by a burst (Hanes et al., 1995). It followed all the steps described 

above to detect bursts. After the beginning and end of the first burst was determined (see 

above), spikes from the original train were added to the beginning of the burst and the 

surprise index was calculated each time. The point at which the surprise index fell below 

the desired significance level (p < 0.05) is defined as the beginning of activation.  

 For each unit, each method was used to determine latency. Parameters for each of 

these methods were preserved from the original presentation in the literature as much as 

possible. Thus, for these data, spontaneous activity for Gaussian SD, Poisson SD, and 

Poisson Fit was defined as the first 200 ms immediately preceding stimulus onset, 
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consistent with previous uses of these methods (see above). For Poisson Surprise and 

Beginning of Activation, the mean spike rate was derived from the entire trial, consistent 

with previous definitions of these methods (see above).  

As an independent measure of response, we performed a one-tailed paired t-test (α 

threshold at p <0.05) comparing the firing rates of spontaneous firing 200 ms 

immediately preceding stimulus onset to the evoked activity within 100 ms after stimulus 

onset on individual trials. A small window was used for evoked activity to increase the 

chance that brief phasic responses were properly categorized. If the firing rates were 

significantly elevated, it was classified to have a significant response.  

 

A.4 Results 

 

Latency estimates as a measure of significant response 

 An exemplar raster and PSTH for a click response is shown in figure A-1. For this 

unit, the evoked activity met the criterion for a significant response, and each latency 

method generated a value, though the exact latency value varied by method. On these 

plots, the level of spontaneous is shown as the dashed line, and thresholds for Gaussian 

and Poisson SD are shown as black and gray solid lines, respectively. Note that the 

Poisson SD threshold was lower than the Gaussian SD threshold; this is generally true of 

all cells.  From visual inspection of a cell like that shown in figure A-1, it is clear why the 

first spike method is not universally appropriate for cells with high level of spontaneous 

(e.g. awake cortex). On a given trial, the first spike after the stimulus is ambiguous and 

often fell earlier than the actual response onset.   
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Figure A-1. Exemplar raster, PSTH, and latency values from each method for a click 
response.  Raster, top panel, where each trial is a row. Bottom panel, PSTH with time on 
the x axis and firing rate on the y axis. Horizontal gray dashed line is spontaneous firing 
rate, solid gray and black lines are thresholds for Poisson and Gaussian SD methods, 
respectively (labeled). Latencies for each method are shown in dotted vertical lines, 
labeled for each method. Here the latencies estimated by the Poisson SD and Poisson Fit 
methods are the same, and are earlier then that estimated by the Gaussian SD. Also, 
shows Poisson Surprise and Beginning of Activation measures falling later than Gaussian 
SD measure. 
 
 
 

Our first aim was to determine how well-correlated a given latency measure is 

with an independent measure of response. For a given unit, a latency was classified as a 

“correct hit” if the latency was measured and it also had a significant response, or if no 

latency was measured and it did not have a significant response (also termed “correct 

rejection”). For all methods, the latency in figure A-1 would be classified as a correct hit. 

A cell was classified as a “false hit” if the method determined a latency but it did not 

have a significant response, and as a “false rejection” if the method did not determine a 
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latency though the response was significant.  Figure A-2 shows the classification 

percentage of responses for each estimation method. Regardless of whether the response 

was from a click or noise stimulus, the Gaussian SD method outperformed the other 

methods in correct classification by at least 10%.  It had slightly more false hits (1-5%) 

than the Poisson Surprise or Beginning of Activation methods (especially for the noise 

stimulus), but much less than the Poisson SD or Poisson Fit measures. The Gaussian SD 

method had slightly more false rejections (2-5%) than the Poisson SD or Poisson Fit, but 

much less than the Poisson Surprise and Beginning of Activation methods.  

Due to the algorithmic similarities underlying the Poisson Surprise and Beginning 

of Activation methods, the numbers of hits, false hits, and false rejections are quite 

similar for these measures. The same is true for the results from the Poisson Fit and 

Poisson SD measures.  

 

Reliability of latency estimates  

Our second aim was to establish the reliability of these latency estimates. 

Specifically, we were interested both in how similar estimates were to each other, as well 

as whether these estimates provide physiologically realistic latencies for cortex. Figure 

A-3A shows the distributions of latencies in response to clicks from all of the estimates, 

regardless of whether the response was classified as significant.  

 For the click stimulus, latencies derived from each method followed the 

following pattern: estimates from the Poisson Fit were the earliest, followed by those 

derived from Poisson SD, Gaussian SD, Beginning of Activation, and Poisson Surprise 

was the latest. This pattern can also be seen at the unit level in figure A-1. All differences  



 187

 
 

 
 
 
Figure A-2. Response classification percentage for each latency method. Percentage of 
hits (i.e. correct classification or rejection), false hits, or false rejections for each method. 
Click responses are shown in panel A and noise responses are shown in panel B. 
 
 
 
except between latencies derived from the Poisson Surprise and Beginning of Activation 

are statistically significant (two-tailed t-test, p< 0.05, Bonferonni corrected for multiple 

comparisons).  

Latency estimates in response to the noise stimulus are in figure A-3B. The noise 

latencies show the same pattern as the click stimulus, however, they are generally longer 

than to the click, probably due to the slower onset ramp. Again, all differences except for  
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Figure A-3. Distribution of latency estimates: all latencies. A and B. Boxplots of latency 
estimates for each stimulus type (click and noise) and each latency method. C and D. 
Differences from Gaussian SD measure for other estimates calculated on a per neuron 
basis. The box denotes the upper quartile, median, and lower quartile of the distribution. 
Whiskers denote the extent of the rest of the data. Notches indicate an estimate of the 
uncertainty about the median. (If notches do not overlap, the medians differ at the level of 
p< 0.05). 
 
 

the Poisson Surprise and Beginning of Activation are statistically significant (two-tailed 

t-test, p< 0.05, Bonferonni corrected for multiple comparisons). 

Note that these plots (figure A-3A and A-B) show population measures. A more 

precise comparison is to directly compare the latencies derived from different methods on 
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the same unit (assuming a latency from both methods exist for that unit). Since the 

Gaussian SD method tended to correctly classify a higher percentage of units (figure     

A-2), for comparison we subtracted each latency from the latency derived from the 

Gaussian SD. These differences are shown in parts C and D of figure A-3.  Similar to the 

population measures, the Poisson Fit method tends to generate the earliest latencies 

compared to the estimate from the Gaussian SD by about 15 ms. The Poisson SD also 

generally underestimates latencies relative to the Gaussian SD by about 10 ms (although 

it is very often close to the  Gaussian SD). The Poisson Surprise and Beginning of 

Activation latencies are both later than the Gaussian SD by about 10 ms. For latencies 

taken from the same unit, all measures are significantly different from each other (paired 

two-tailed t-test, p< 0.05, Bonferonni corrected for multiple comparisons).  

Because some of the latencies are from responses that are not classified as a 

significant and may not measure a true response, we performed the same analysis 

restricted to statistically significant responses. The overall pattern of latency measures is 

almost the same. The population results are shown in figure A-4A and B for clicks and 

noise, respectively. In this case, no statistically significant difference can be found 

between the Poisson Surprise and Beginning of Activation, or between the Poisson Fit 

and Poisson SD methods. On an individual unit level, differences relative to Gaussian SD 

are again shown in parts C and D of figure A-4. Here, all measures are significantly  

different from each other (paired two-tailed t-test, p< 0.05, Bonferonni corrected for 

multiple comparisons).  

A comparison of figure A-3 and figure A-4 shows that, regardless of the latency 

method and stimulus type, means are slightly earlier and distributions slightly less 
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Figure A-4. Distribution of latency estimates: significant responses only. Conventions as 
in figure A-2. A and B. Boxplots of latency estimates for each stimulus type and each 
latency method. C and D. Differences from Gaussian SD measure for other estimates 
calculated on a per neuron basis. 
 
 
 
variable when one only considers significant responses. We can conclude that latency 

values classified as false hits tend to be later than values in the middle of the distribution. 

However, the trends seen between methods are completely consistent between figures A-

3 and 4.  
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Certain methods produce a high percentage of latencies that are 5 ms or less in 

this dataset. For this dataset in cortex, it is probably unrealistic to have many latencies 

this short. These very short latencies are produced more from the Poisson Fit method 

(about 24% of the time) and to a lesser extent the Poisson SD method (7-8% of the time). 

The incidence of very fast latencies is lowest using the Gaussian SD method (0.7%). 

Incidence of short latencies in both the Poisson Surprise and Beginning of Activation 

measures is about 2%, even though these methods tend to estimate longer latencies than 

the Gaussian SD.  

As a last analysis there are few neurons whose responses are clear and are 

significant, but so sparse and phasic that none of the methods generate a latency. As an 

example of one of these false rejections, see figure A-5. If one was to visually estimate 

latency from the PSTH (a trivial process, though time consuming) and add these missing 

latencies, would the latency estimates change significantly from the estimates derived for 

a purely automatic method, such as Gaussian SD? Overall, about 10% of the missed 

responses changed to have a latency, but the population-level change is very small. The  

population including visually-corrected click latencies is on average 2.4 ms slower than 

the original latencies. Corrected noise latencies are 0.5 ms faster than the original 

latencies.  If we only consider significant responses, then the differences are even 

smaller. Corrected click latencies are on average 0.01 ms faster than the automatic 

latencies. Hand-corrected noise latencies are 1.8 ms slower than the automatically  

derived latency. While it is useful to visually inspect latency estimates to confirm results, 

these analyses suggest that correction for “missed” latencies may not have a major effect 

on the estimates of population level responses.  
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Figure A-5. Example of a click response where the response is significant and visually 
obvious, but sparse. Conventions are the same for figure A-1.  No method examined here 
is able to estimate this latency. 
 
 

A.5 Discussion 

 

In this study, we used five different methods to derive latency from the same 

dataset collected across caudal areas of auditory cortex in the awake macaque. Even 

though the stimuli we chose had different onset shapes and sound envelopes, which could 

generate different kinds of responses, results from the different methods generalized 

across stimuli. This analysis is designed to look at these latency methods using real data 

in auditory cortex of awake animals. An objective measure of true latency is unavailable 

for this and all high background datasets - - thus a comparison to the ‘true’ latency is 

irrelevant. Instead, we looked for a measure that described a large percentage of the data 

and produced latencies that are realistic and coincide with what seems reasonable based 

on visual inspection of the data. We found that the Gaussian SD method was most likely 
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to give a latency when a response was actually present (i.e. significant), and also gave 

latency estimates that were more physiologically realistic than the other methods tested. 

Other methods, such as Poisson SD and Poisson Fit, were more likely to falsely generate 

latencies when there was not a significant response. They also tended to generate 

latencies that were too short to be realistic (i.e., 5 ms or less). The other two methods 

tested here, the Poisson Surprise and related Beginning of Activation, were less likely to 

generate a response onset latency even if the response was significant, and also reported 

many latencies that were too short.  

In terms of the actual latency values, noise latencies tended to be about 10 ms 

later than click latencies. This difference can be at least partially attributed to the 5 ms 

onset ramp of the noise. Regardless, a consistent trend was seen across stimuli. 

Population latencies derived from the Poisson Fit and Poisson SD tended to be the 

earliest, latencies from the Gaussian SD method were later, and latencies from the 

Poisson Surprise and Beginning of Activation tended to be the latest. This was true both 

at a population and single-neuron level.  

What is the basis of the differences seen between methods? Both the Poisson SD 

and Poisson Fit tended to report many early false positive latencies. On visual inspection 

of the dataset, these methods tended to be oversensitive to post-stimulus fluctuations in 

baseline that were not part of the response. The thresholds of the Poisson SD were much 

lower than those of Gaussian SD.  These thresholds are based on standard deviation of 

the baseline rate. We can explain this trend because the standard deviation of a Poisson 

process is approximated by the square root of the mean, and is thus limited to never more 

than the mean, unlike the Gaussian standard deviation which can be greater than the 
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mean. Though not formally examined here, note that the first spike latency method is the 

most extreme example of a low-threshold method, as any post-stimulus action potential is 

counted as a response. Thus, it would also be expected to have many false positive early 

latencies.  

Conversely, the Poisson Surprise and Beginning of Activation methods tended to 

have many false negatives (significant responses with no latency) and the latencies they 

reported tended to be later. For many of the very phasic or weak responses, an individual 

spike train rarely reached criteria for a burst. It could be argued that the Poisson Surprise 

and Beginning of Activation methods are later than others because the expected firing 

rate for these measures is defined as the mean rate over the whole train, not just a pre-

stimulus baseline. Using this reasoning, a robust response will increase the “spontaneous” 

mean rate, leading to an increase in the threshold criteria for response, resulting in 

generally later responses.  However, this is unlikely to completely account for the false 

negatives and late responses since it is obvious that phasic responses add very little to the 

average firing rate and criteria would not be changed significantly.  Therefore, the 

Gaussian SD method appears to be sufficiently sensitive to catch weak responses that 

may not be robust on every trial, but not so sensitive that post-stimulus fluctuations create 

false positives.  

Based on the high percentage of hits, the Gaussian SD measure described more of 

the significant responses in this dataset. The Gaussian SD measure also tends to report 

more latencies that are within a physiologically relevant range. Lastly, visual inspection 

of each cell in the dataset confirms that the Gaussian SD measure consistently 

corresponds to a subjective estimate of the onset of the neural response.  



 195

The question of what makes an appropriate latency estimator has been addressed 

previously, but these studies often necessarily use simulated data or restrict neural 

responses only to where a latency is visually obvious (e.g. Friedman and Priebe, 1998; 

Berenyi et al., 2007). In previous studies of latencies the Poisson Surprise method was 

found to be a biased estimator and tended to overestimate responses (Berenyi et al., 

2007). This is similar to what we found. Another study found that in simulated data, the 

Poisson Fit method was biased and tended to overestimate latencies, particularly when 

initial responses are weak (Friedman and Priebe, 1998). They also reported a high 

proportion of false rejections. We saw the opposite effect, perhaps because our PSTHs 

were noisier than simulated data. Additionally, they analyze this method on responses from 

two neurons in awake macaque V1 and report that Poisson Fit falsely rejects both responses. 

We also saw an elevated false rejection rate in the Poisson Fit, but since the sample size 

was so small, it is difficult to draw a comparison.  

When applied to real data, the sensitivity of the latency method seems dependent 

on the dynamics of the response.  For example, a previous study comparing latency 

methods to determine latency in three areas of frontal cortex shows almost no differences 

between the Poisson SD, Poisson Fit, and Poisson Surprise methods (Pouget et al., 2005). 

We did see a difference between methods. This may be due in part that activity from 

those areas was during a decision task and is characterized by a relatively slow rise to 

activation. Sensory responses such as these data tend to be more discrete. We do not 

conclude that results that are inappropriate for the awake auditory cortex are universally 

inappropriate for all other areas of cortex and all other tasks. Instead, it is clear that the 

method used must be chosen with care. Bear in mind that no method has been shown to 
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be completely robust across all areas of cortex and all response types - visual 

corroboration of the latency with the raster and PSTH is critical.   

Latency is an important indicator of timing in the brain, and is often used to test 

hypotheses about flow and hierarchy. Given the latency and sensitivity differences due to 

method that we report here, these results have important implications for interpreting 

latencies across studies. When one aims to compare latencies clearly it is best to use the 

same method. When that is not available (as in when comparing reported latencies 

between studies), these results can be used to estimate a correction factor. Since the 

trends seen in these data hold up across different wideband stimulus types used here, it is 

likely general trends will be preserved across more than just these stimuli. To determine a 

correction factor between papers using different methods, parts A and B of figures A-3 

and 4 are most useful (parts C and D only included units that had latencies from both 

methods and does not account for population-level changes). Thus, means derived from 

Gaussian SD will be ~5-10 ms later than those from Poisson SD and Poisson Fit. Means 

derived from Gaussian SD will be ~15 ms earlier than those derived from Poisson 

Surprise and Beginning of Activation methods. 

Turning to awake auditory cortex, an overview of the current literature reveals 

differences in latency estimates even from a single area (Recanzone et al., 2000; Bendor 

and Wang, 2008; Kusmierek and Rauschecker, 2009; Crum et al., submitted). What are 

calculation factors that affect the differences in latency measures? Clearly one factor is 

choice of onset latency calculation method. The majority of the studies use Gaussian SD 

based measures, so the methods are comparable.  Some papers additionally report the 

latency of the peak response, which generally falls ~ 20 ms after minimum latency, but 
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individual values vary with response dynamics (Recanzone et al., 2000; Bendor and 

Wang, 2008). A second factor is choice of stimuli, as noticed in this dataset; the onset 

latency of clicks is faster than noise. Stimulus choice is complicated by the fact that areas 

may respond differently to tones versus wideband stimuli depending on cortical region 

(Rauschecker and Tian, 2004; Kusmierek and Rauschecker, 2009). Thus, tone and noise 

latencies often cannot be directly compared if taken from different regions. A third factor 

is the composition of the PSTH, as averaging responses across both optimal and 

suboptimal stimuli will lower the maximum of the PSTH, likely lengthening latencies.  A 

fourth factor is choice of bin size and smoothing function, which will also increase or 

decrease latencies slightly.  A fifth factor particular to the auditory domain is choice of 

free-field versus headphone sound delivery. Free-field stimuli necessarily have nontrivial 

travel time because of the relative slowness of the speed of sound (~340 m/s) that should 

be considered. For example, placing speakers 1.7 m away from the monkey creates a 

transport delay of 5ms (Kusmierek and Rauschecker, 2009), which was accounted for by 

subtracting that value from the response. Due to these numerous factors affecting latency 

reported, care should be taken when comparing latencies between studies.  

In summary, we find that the Gaussian SD measure is a robust estimator of neural 

latencies, especially if it is also coupled with an additional criterion of response 

significance to eliminate longer latency false hits. Of the five methods considered, it is 

the most likely to give a latency when there actually is a significant response, and is most 

likely to provide latencies that are both physiologically realistic and consistent with what 

seems visually appropriate.  While certain methods may be more appropriate for auditory 

cortex (i.e. Gaussian SD), no method is completely foolproof. Care must be taken when 
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comparing across studies since not only the differences in method described here, but 

also differences in stimuli, PSTH composition, smoothing, and sound delivery method 

will also affect reported latency values. To really address current questions of 

information flow in the auditory cortex, it would be best to have latencies from multiple 

areas taken from the same animal under the same conditions and using the same methods.  
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