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CHAPTER I

INTRODUCTION

The goal of this thesis is to evaluate the suitability of the Verbs and Adverbs interpolation

algorithm in the context of motion generation for humanoid robotic systems. The Verbs

and Adverbs algorithm, as will be presented in greater depth in later sections, was originally

devised as a method for generating realistic animated figures by attempting to generalize

example motions within a defined Adverb space. These examples were then used to re-create

similar motions with a near infinite degree of variability.

History of Robotics

The first use of the term “robot“, in its modern context, was in a 1921 play entitled “Rossum’s

Universal Robots“ (R.U.R.) by Czechoslovakian playwright Carel Kapek. The play depicted

mechanical servants who, once endowed with emotion, destroyed their master. Despite the

fact that robotics was not a recognized field until a later date, there are many recorded

examples of what would later be considered robots created prior to R.U.R.. These examples

include a patent filed with the US Patent Office in 1893 for a mechanical, steam-powered

horse and a demonstration of a remote-controlled submersible boat by Nikola Tesla in Madi-

son Square Garden at the World’s Fair in 1898.

The next major recorded innovations in the field occurred during one of the most tumul-

tuous times in this world’s history. During the Manhattan Project, in 1942, scientists devised
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the “telemanipulator“ in an attempt to distance themselves from the dangerous radiation of

the materials they were using. The telemanipulator consisted of a series of mechanical link-

ages that translated the motions of the operator to a crude manipulator while the operator

remained at a safe distance. The telemanipulator left much to be desired when compared

to modern robotic manipulators. For one, the motion resulting from the operator’s com-

mands was often unintuitive. The operational difficulty of the telemanipulator was further

complicated by a severe lack of tactile feedback.

Another important event that occurred in 1942 was the publication of “Runaround“ writ-

ten by Isaac Asimov who would become known as the “father of robotics“. In this story he

published the famous Three Laws of robotics [3]:

1. A Robot may not injure a human being or, through inaction, allow a human being to
come to harm.

2. A Robot must obey orders given it by human beings except where such orders would
conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

Later, as Asimov’s fictional robots evolved and gained responsibility over human soci-

ety, it became necessary to include the Zeroth Law which stated A Robot may not injure

humanity, or, through inaction, allow humanity to come to harm.

Soon after the appearance of Asimov’s first story, the field of robotics began to explode

in the form of articles, books, applications, and research into the paradigms and architec-

tures being employed. The creations and theories developed during this period led to the

introduction of the industrial manipulator in the mid-1950’s. Driven largely by the work of
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Norbert Weiner, one of the pioneers of modern control theory, these robots could perform

a pre-determined operation many times with a higher reliability and accuracy than their

human counterparts.

. . . it has long been clear to me that the modern ultra-rapid computing machine
was in principle an ideal central nervous system to an apparatus for automatic

control; and its input and output need not be in the form of number or diagrams, but
might very well be, respectively, the readings of artificial sensors such as photoelectric

cells or thermometers, and the performance of motors or solenoids.

- Norbert Weiner, Electronics, 1949

Also during this period, the first Artificial Intelligence (AI) robot,“Shakey“, was devel-

oped at Stanford by Nils Nilssen and Charles Rosen. The research conducted during the

development of “Shakey“ resulted in the formalized Hierarchical Paradigm that was com-

monly used until the late 1980’s.

Hierarchical Paradigm

The Hierarchical Paradigm proved a major milestone in the development of robotics. This

architecture, also known as the SENSE-PLAN-ACT (SPA) architecture was the first formal-

ized architecture that allowed robots to determine the appropriate action to perform based

on its internal goals, external percepts, and known capabilities. This paradigm, however, was

not without its downside. The sensing and planning phases required a stable environment.

This precluded the robot from performing any actions while the environment was being

sensed and a plan being formed. This is actually why “Shakey“ got it’s name. The robot

would perform a simple action and then quickly stop to begin sensing what changed and
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planning the next course of action. The robot was rather tall and top-heavy and tended to

shake when it abruptly stopped. As stated previously, despite its shortcomings this paradigm

was in regular use until the idea of the Reactive Paradigm took hold in the late-1980’s.

Reactive Paradigm

As the robots continued to grow in complexity, researchers began to become very dissatisfied

by the limitations of the Hierarchical Paradigm and began to explore methods to improve on

the robot’s ability to act in a more dynamic environment. Similarly, recent advances in the

field of ethology (the study of animal behavior) suggested that many behaviors are almost

reflexive in nature. This led robotic researchers in the late 1980’s to formalize the Reactive

Paradigm still commonly used in simple systems. The Reactive Paradigm is based on the

idea that in many cases, the performed action is directly related to the perceived state of

the environment. This tightly coupled sense-act paradigm is easily observed in nature. Any

person that has ever accidentally placed their hand on a hot stove knows that through no

conscious effort, their body commands them to pull their hand away. This clearly indicates

a very tight relationship between the sensation created by the hot stove and your body’s

reflex of removing your hand.

Rodney Brook’s seminal paper “Intelligence Without Representation“ [7], published in

1991, proposed an extension of this concept in which higher level behaviors can amplify or

suppress the action of lower level behaviors. By organizing the behaviors in vertical layers

of increasing complexity, he believed that while the individual behaviors in each level do

not contain any significant intelligence in and of themselves, the action performed by the
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constructive and destructive interference of the layers would create seemingly intelligent be-

haviors. This architecture is often referred to as the “Subsumption Architecture“. While, in

many cases, a reactive paradigm such as the Subsumption Architecture can prove sufficient

and significantly more responsive to a dynamic environment than the SPA architecture, this

methodology is not without its drawbacks.

Figure 1: Increasing Complexity

As shown in Figure 1, as the number of behaviors increases, the number of intercon-

nections required to connect all the components increases by n!
2!(n−2)!

. Additionally, it was

determined that the coefficients used for determining the constructive and destructive nature

of the interaction between behaviors was extremely subjective. Due to these problems, re-
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searchers began looking for a suitable compromise between planning and acting. Additional

information on the behavior-based architecture can be found in [2].

Hybrid Hierarchical-Reactive Paradigm

The quest to re-integrate the planning phase of the SPA architecture eventually led to the

development of the aptly named Hybrid Paradigm in the late 1990’s. This paradigm at-

tempted to give the robot a basic vocabulary of behaviors that could act either indepen-

dently or through constructive or destructive interference as determined by a higher-level

process. This process typically involved the more deliberative functions of robotic systems

such as planning, map-making, localization, etc. While much work is still on-going in this

paradigm, most architectures allow the planning process to override the reflexive behaviors

or activate them in a sequence to achieve a desired goal. The architecture used in this thesis

is based on a hybrid design and will be discussed more in Section II. Additional historical

background on robotics can be found in [16], [28], [14], and [10].

Organization of this Document

So far this work has introduced the primary goals of this thesis and introduced some historical

background to further familiarize the reader with the context in which this document is

written. Additional terms that apply to the more specific nature of the test platform and

the larger goals of the lab will be introduced and explained as necessary. In the next section,

the goals and platform will be introduced in detail along with brief synopses of other on-

going work. The relevance of this work will be made clear in those terms. Section III will
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also describe the Verbs and Adverbs algorithm and the particulars of this implementation.

Section IV will focus on the experimental setup and attempt to identify the potential

sources of error and the justification for the approach taken. Four example motions will be

used in the experimental data set and the justification for the examples and the number of

exemplars used will be presented. The results from each experiment will also be presented.
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CHAPTER II

RELATED THEORY AND RESEARCH

Intelligent systems should possess the ability to learn, record learned information, represent

its environment, “focus“ on task related information, and perform tasks on self-generated

motions. “Focus“ is the ability to select from the world and from learned information what

is important for a given basic task. Albus [1] proposed the necessity of having a world model,

short-term and long-term memory, and task planners. The CIS has made a concerted effort

over the last few years to develop an architecture that integrates some of the emerging

ideas from neuroscience. The following sections will present some of these ideas as well as

information regarding the implementation in use by the CIS.

Memory Models

Current Research suggests that humans have three primary types of memory storage: Long-

Term Memory (LTM), Short-Term Memory (STM), and Working Memory (WM). These

memory models are each further divided into different types of memory. The following

sections will address each type of memory, its memory subcategories, and how they fit into

the current ongoing research. Additional, more in-depth information regarding the various

human memory models can be found in [27], [24], [23], [19], and [11].
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Long-Term Memory (LTM)

Long Term Memory (LTM) is where humans store information that is persistent. While

research suggests that information stored in LTM is almost permanent in nature, the ability

to easily retrieve that information is dependent on how often it is used. A common expression

in neuroscience states ”Neurons that fire together, wire together”. Every time a pair of

neurons fire together, the connection between them is reinforced. Similarly, the connections

can degrade over time making the associated memories more resistant to retrieval. The

LTM stores three types of memory, Procedural Memory (PM), Semantic Memory (SM), and

Episodic Memory (EM). Each of these memories encodes different types of information.

Procedural Memory encodes information concerning actions and tasks that we perform.

The memory is further divided into two categories: Motion Primitives (MP) and Behaviors.

Motion Primitives encode the most basic motions that we, as humans, can perform. They

are almost instinctual in nature and can be performed without any significant conscious

thought. Behaviors, on the other hand, encode much more complicated types of motions.

The simplest way to describe Behaviors is that they encode sequences and combinations of

MPs in order to accomplish a task. There is no limit in the number or manner of MPs that

are encoded in a behavior.

Behaviors also typically require a more significant level of thought relative to MPs. For

example, a MP may be grasping an object on a counter (not reaching to the object, simply

grasping it), while a Behavior would be playing the piano. Again however, ”neurons that

fire together, wire together”; the more a Behavior is performed, the more strongly encoded

that sequence of MPs becomes. It will eventually approach a near MP level. Tying your
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shoes is a great example of this. At a very young age, learning to tie your shoes is a very

difficult, thought-intensive process. However, after tying your shoes every morning for your

entire life, it eventually gets to the point where you don’t even have to pay attention to what

you are doing.

Episodic Memory (EM) is very different from Procedural Memory in that it encodes

events. For example, your 10th birthday party would be encoded in Episodic memory.

Everything from the smell of the cake and candles, the color of the wrapping paper, to your

friends and family singing you “Happy Birthday“. One way of describing this is that it is a

time-series of sensory information of the important events in our lives. It takes more than

an event just occurring to make it important enough to encode in LTM. For instance, you

probably don’t remember the specifics of your last commute to work. However, you probably

remember the last time someone rear-ended your car or you witnessed an accident during

your last commute to or from work. This is because the extra emotion of those extraordinary

events make the event significant enough for your brain to encode it in long term memory.

Semantic Memory (SM) is yet another beast in and of itself. Semantic memory encodes

hard facts about the world in which we live. Semantic memory is what tells us that trees

are green, the sky is blue, and the sun is bright. These memories are encoded every time we

interact with a new place, a new object, a new person, or see something we don’t recognize.

One way to describe semantic memory is that it contains data structures with all sensory

information relative to things and people we perceive. Unlike EM, there is no time context

associated with SM.
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Short-Term Memory (STM)

The human Short Term Memory (STM) is very similar to the LTM except it is not persis-

tent. Short term memory uses the senses to store information regarding both the properties

and relative orientation of objects in our environment. The sensory information could be

words, colors, shapes, smells, etc. This encoding process begins when a human perceives a

stimulus. It is retained in this stage for a short period of time before being passed to STM.

At this stage, the determination as to whether or not the information should be passed into

the STM is made based on attention. Information in the STM can be further transitioned

to the LTM via repetition. This process is depicted in Figure 2.

Figure 2: STM Encoding Process [4]
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Working Memory (WM) and the Central Executive (CE)

Working Memory (WM) is a very unique and complex type of memory. It is defined as a

limited-capacity store for retaining information over the sort-term and of performing mental

processes on the contents of this store [12]. Working memory only contains a few discreet

“chunks“ of memory at any given point. Early research suggested the size of this store is

seven (7) chunks plus or minus two (2) [21] while more recent research has placed the number

closer to four (4) [9]. While this may seem limited, WM is what gives humans the ability to

focus on a specific task.

Closely associated with the WM is a mechanism called the Central Executive (CE) [5]

that, among other tasks, determines which pieces of information from LTM and STM are

relevant to the current task and should be brought into the WM. The CE must also be

capable of generating plans and monitoring their process, maintaining and updating goal in-

formation, inhibiting distractions, shifting between different levels of cognition ranging from

unique actions to complex deliberation, and learning new responses to novel situations [22].

According to some research, the CE consists of two pieces: the phonological loop, which

is responsible for the storage and processing of linguistic information, and the visuo-spatial

scratch-pad, which stores and processes information about objects in our environment rela-

tive to each other and to ourselves. This functionality is depicted in Figure 3. As we are

presented with new tasks, this CE must learn which pieces of information are needed in the

WM. In humans, this learning process is believed to be performed, in part, by dopamine

projections into the Dorsolateral Prefrontal Cortex (DL-PFC). Other related work in the CIS

is attempting to mimic this process using Temporal-Difference Learning (TD-Learning) and
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Neural Networks. TD-Learning is a reinforcement learning technique that makes decisions

based on expected reward in the future [13].

Figure 3: Baddely’s Model of Working Memory

Now that a basic understanding of human memory models has been presented, it is

important to explain the role of the Verbs and Adverbs alogrithm in this context. The Verbs

and Adverbs algorithm will act as a tool for the encoding, generation, and manipulation of

motion primitives in the LTM. Once a “library“ of motion primitives has been created, it

becomes a relatively simple task to string a series of motion primitives together to create

behaviors. Behaviors that are used multiple times could also potentially be stored to create

more complex MPs if so desired.

CIS Platform and Architecture

At the Vanderbilt University Center for Intelligent Systems (CIS), an upper-torso humanoid

robot named ISAC (Intelligent Soft Arm Control) was used for our experimentation. ISAC

incorporates a head with two pen-cameras for stereo imaging, microphones for stereo sound

pickups, and two arms with basic hand-shaped manipulators. The underlying control archi-

tecture used is an in-house architecture called the Intelligent Machine Architecture (IMA).
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The following sections will discuss both the platform, ISAC, and the architecture, in further

detail.

Intelligent Soft-Arm Control (ISAC)

ISAC, shown in Figure 4, is an acronym for Intelligent Soft Arm Control and was originally

developed in 1992 as an aid for the elderly and handicapped.

Figure 4: ISAC

In an attempt to develop a safer system for this demographic, ISAC was designed to use

pneumatic muscles in its arms that allow the arms to flex upon collision thereby minimizing

damage or injury. While this does allow for a safer robot, the highly non-linear McKibben

actuators have proven very difficult to model and control. While the CIS has developed
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a control-law for the arms, creating smooth natural-looking motions has proven a difficult

challenge through traditional inverse-kinematic techniques. At the end of each arm is a three-

fingered hand with an opposable thumb. At the palm of each hand is a simple touch sensor

which denotes contact with an object. Additional sensors include 6 encoders on each arm for

feedback control and data logging. As previously mentioned, ISAC also has two microphones

on either side that can determine the direction of a noise. Finally, ISAC incorporates two

pen-cameras that are capable of tracking objects in the environment.

IMA

The underlying control software for ISAC is the Intelligent Machine Architecture, IMA, de-

veloped in-house. During the mid-1980s, Behavior-Based robotics was at a peak. However,

many researchers were having difficulty developing large, complex systems. At the same

time, the field of Computer Science was undergoing the Object-Oriented Programming revo-

lution. These two technologies turned out to be a perfect mate for each other. The principles

and technologies of Object Oriented Programming were specifically designed to address the

the problems encountered when developing a large, complex, system. As such, some revolu-

tionizing technologies were starting to emerge in order to facilitate development using this

new programming model. More specifically, Microsoft’s Common Object Model (COM) and

Object Linking and Emedding (OLE) tools were designed to address the need for integra-

tion and design. Additionally, the Common Object Request Broker Architecture (CORBA)

was gaining popularity among the open-source Linux community. Structured programming

was also being formalized by Carnegie Mellon in the form of the Capability Maturity Model
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(CMM). IMA was designed to incorporate these technologies using Microsoft’s Visual Studio

and C++ programming languages. IMA supports the creation, communication, and reuse

of agents. In this context, the word agent means simply something that acts [26]. In IMA,

this can take the form of almost anything from a high-level agent for social interaction to

an agent that computes the distance to an object in the environment based on a perceived

sound or image. IMA provides a template for the agents the lab designs as well as defining

the form and transmission protocol of the data that can be communicated between them.

IMA is an ongoing project that continues to evolve and support additional tools for agent

design, testing, and development. Additionally, the lab has been exploring ways to cross

the operating system divide and incorporate other platforms into the IMA network. This

could potentially mean the inclusion of Linux and other Unix-like operating systems that

are sometimes more cost-effective in an academic lab environment.

The CIS has been developing a Cognitive Robot Architecture, using IMA that incorpo-

rates many of the ideals presented in the previous sections. Agent representations of many

of the memory models presented here have been develop as part of their on-going research.

Figure 5 shows a conceptual view of how theses ideas all fit together.
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Figure 5: IMA Based Cognitive Architeture for ISAC
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CHAPTER III

VERBS AND ADVERBS

In 1998, Doctors Charles Rose, Bobby Bodenheimer, and Michael F. Cohen published a new

technique for computer animation called Verbs and Adverbs. In their work, “verbs“ represent

the behaviors and have associated “adverbs“. Similar to grammatical adverbs, the adverbs in

this technique are used to parameterize a motion. In practice, this algorithm has proved to be

a very accurate [8] and fast non-linear interpolation technique. The algorithm, as presented

here, has been slightly modified to better suit the nature of the work being conducted in

the CIS although the basic components have remained the same. Basically, the technique

encodes a set of example motions into a set of linear and non-linear coefficients based on

their associated adverbs. In this work the encoding process is split into two steps and the

interpolation process is split into an additional two steps. Basic methods and techniques

used in the Verbs and Adverbs algorithm can be found in [15], [6], and [20]. Table 1 defines

the symbols used throughout the following sections.

Motion Segmentation and KeyTimes

The first phase of the encoding process centers around identifying a motion’s KeyTimes and

segmenting and normalizing the motion about those KeyTimes. A KeyTime, in this context,

is defined as a critical structural element in the motion’s trajectory that is common to all

motions of that type. In other words, a set of examples for a given motion should all have
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Table 1: Important Symbols
Symbol Name Description
NumDOF Number of Degrees of Freedom in the trajectory
NumAdverbs Number of Adverbs that parameterize the motion
NumExamples The number of example motions
NumPoints Total number of data points in the trajectory
NumKeyTimes Number of KeyTimes
k k ∈ Znonneg < NumKeyT imes, the KeyTime Number
KT point in the resample trajectory corresponding to a keytime
A Adverb matrix, independent variable in a least squares fitting
B Trajectory matrix, dependent variable in a least squares fitting
B̄ error matrix after least squares fitting
B̃ least squares approximation of trajectory
x matrix of linear coefficients
r matrix of radial-basis function coefficients
D matrix of gaussians
tt time index

similar KeyTimes that occur at different instances during the trajectories. While the exact

location and magnitude of the KeyTimes may vary, the number and structural significance

of the KeyTimes should be the same. A graphical depiction of this relationship is in Figure

6.

For the purposes of this work, a technique called Kinematic Centroid Segmentation, from

[17] and [18], was used to identify the KeyTimes. This method computes the center of the

robotic manipulator’s trajectory relative to the base and then finds the KeyTimes by looking

for the local maxima. This is a relatively simple process that uses the Davenitt-Hartenburg

parameters of the manipulator with the recorded trajectory to compute the end-effector’s

position in terms of (X, Y, Z). The distance from the home position, (assumed to be the

first point in the trajectory), is computed and divided in half, thus identifying the kinematic

centroid of the trajectory. This calculation is presented graphically in Figure 7. A window-

ing process is then used to find the local maxima with constraints on t he minimum distance
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between maxima. The first and last points of the trajectory are automatically denoted as

KeyTimes.

Figure 6: Example Set

Figure 7: Computation of the Kinematic Centroid

Once the KeyTimes for a motion have been identified, it is necessary to resample the

segments bounded by the KeyTimes. The goal is to align the KeyTimes so that they occur
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at even intervals along the trajectory. If, for example, the motions are resampled to a fixed

total length of NumPoints points, and there are five KeyTimes (NumKeyT imes = 5), the

KeyTimes will be points at 0, b (NumPoints−1)
NumKeyT imes−1

+ .5c, b2∗(NumPoints−1)
NumKeyT imes−1

+ .5c, b3∗(NumPoints−1)
NumKeyT imes−1

+

.5c, and (NumPoints − 1). This placement is given by Equation 1 where k ∈ Znonneg <

NumKeyT imes. The resampling is computed using a simple point-wise linear interpolation

algorithm.

KT = b k

NumKeyT imes− 1
× (NumPoints− 1) + 0.5c (1)

A side-effect of this process is that some motions in the example set may be discarded

because either too many or too few KeyTimes are discovered during this process. The

algorithm, as implemented for this work, looks at the number of KeyTimes found in each

example motion and keeps the most examples with the highest number of KeyTimes. This

is a built-in sanity check that ensures that all the example motions used in future steps are

similar in structure.

Encoding of Examples

Once the motions have been pre-processed, the motions are ready for encoding. The first

step is to perform a least-squares linear fitting of the data. A least-squares linear fitting

typically solves for the slope and intercept of a line that best approximates the general trend

of the data. Knowing the trend of the data allows the Verbs and Adverbs algorithm to

extrapolate outside of the space defined by the example set. Consider Figure 8.
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Figure 8: Least Squares Example Data

In order to find a line that approximates this data, we must solve Equation 2 for the

coefficient matrix x. In this case, x will be a 2× 1 matrix containing the coefficients for x0

and x1.

Ax = B (2)

The matrix, A, becomes the values of the independent variable for the data. Equation 3

shows this matrix.

A =



a0
0 a1

0

a0
1 a1

1

a0
2 a1

2

a0
3 a1

3

a0
4 a1

4

a0
5 a1

5



=



1 1

1 2

1 3

1 4

1 5


(3)
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The matrix B becomes the values of the dependent variable as shown in Equation 4.

B =



2

1

2

3

2


(4)

This system can then be solved, in a general sense, for the coefficients through the simple

algebraic manipulations of Equations 5 and 6. Equation 7 shows the calulation for the

example presented.

AT Ax = AT B (5)

x = (AT A)−1AT B (6)

x = (

1 1 1 1 1

1 2 3 4 5





1 1

1 2

1 3

1 4

1 5


)(−1)

1 1 1 1 1

1 2 3 4 5





2

1

2

3

2


(7)

The Verbs and Adverbs technique uses the same least squares technique presented ex-

cept that the linear coefficients must be computed for each set of points in the trajec-

tory. The motions however, are completely defined in the adverb space. In other words,

the form of the least squares fitting used in our technique is shown in Equation 8 where

x[tt] is a NumAdverbs + 1 × NumDOF matrix of linear coefficients at index tt, A is a
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NumExamples×NumAdverbs+1 matrix of the adverb values of the example motion, and

B[tt] is a NumExamples × NumDOF matrix of the original trajectory at index tt. An

important point here is that the first adverb value for any example motion must be one (1).

In other words, the first column of any A matrix is all ones, representing the x0 term in our

previous explanation of a least squares fitting.

Ax[tt] = B[tt] (8)

Once the linear coefficients have been computed, we can solve Equation 9 for a linear

approximation of the original data.

Ax[tt] = B̃[tt] (9)

B̃[tt] denotes an approximation of B[tt]. By subtracting this linear approximation, B̃[tt],

from the original trajectory B[tt], as shown in Equation 10, we are left with the residual

error of the linear approximation. The linear approximation of the data set in this algorithm

is essential to the method’s ability to extrapolate beyond the area defined by the example

motions.

B[tt]− B̃[tt] = B̄[tt] (10)

The next phase of the encoding process will use the error, B̄[tt], to compute the residual

non-linearities of the original motion. The residual error will then be approximated using a

radial basis function. For simplicity we will use the same notation as [25]. The radial basis

function in the encoding process is computed using only the distance, di1(pi2) = ||pi1 − pi2||,
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between a point in the adverb space corresponding to example i1, pi1, and the point in adverb

space that corresponds to the example motion i2, pi2. In this phase of the encoding process,

the radial basis function used is a simple gaussian, shown in Equation 11 where α = 1000.

Figure 9: Gaussian Curve

Di1,i2 = edi1(pi2)/α (11)

To solve for the radial basis coefficients we must solve Equation 12 for each time tt.

r[tt] = D−1B̄[tt] (12)

Interpolation of New Motions

Once the example motions have all been decomposed into the linear and radial basis function

coefficients, it is possible to interpolate a new motion by defining a new A and D matrix for
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the desired motion. Let’s walk through a basic example assuming that all the coefficients

have already been computed. We will assume that our motion is defined by three adverbs;

for now we will denote those values by a1, a2, a3. The new A matrix is simple to create,

shown in Equation 13.

A =

[
1 a1 a2 a3

]
(13)

The D matrix, in our example, is determined by computing the gaussian using the distance

between the adverb definition of the new motion, denoted pnew and the adverb values of the

original examples. We will continue to use the values a1, a2, a3 to denote the new adverbs

values. Assuming there were originally 3 example motions, the new D matrix is shown in

Equation 14.

D =

[
e

d0(dnew)
α e

d1(dnew)
α e

d2(dnew)
α

]
(14)

Finally, to interpolate, we solve equation 15 for each index tt using the previously computed

coefficient matrices r[tt] and a[tt].

B[tt] = Dr[tt] + Aa[tt] (15)

Resampling of the New Motion

Once the new interpolated motion has been created it is necessary to resample the motion

so that the final motion has the appropriate duration and sample rate for playback. This

is done using a similar process as in Section . The resulting motion is basically resampled
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using a point-wise linear interpolation algorithm that determines the total number of points

to be computed based on the duration and sample rate desired by the user.
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CHAPTER IV

EXPERIMENTATION AND RESULTS

The experimental data was recorded relative to a point centered on ISAC’s right shoulder.

A polar coordinate system was used with the angle, measured in degrees, and the height of

the group and distance from the body being measured in inches. This setup is depicted in

Figure 10.

Figure 10: Experimental Setup

Each trial consisted of four motions, and each motion had at least 5 examples. The

motions selected for this experiment include: reaching to a point, returning from a point,

handshaking, and bicep-curls. These motions were chosen because, with the exception of the

bicep-curl, they represent motions that ISAC will probably use with some regularity. The
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bicep-curl was selected as a counter example. By varying the number of repetitions of the

curling motion, it was expected that the Verbs and Adverbs algorithm would fail to accurately

interpolate or extrapolate new motions. The angle of each motion was measured using a

protractor taped into place, centered about the point of rotation and a string that would

extend out over the workspace. There is an estimated 2◦ error in the angle measurement.

The distances and heights were measured with a yard stick and marked on a microphone

stand and on the floor with duct-tape. The estimated error is approximated to be the width

of a piece of duct-tape, ±1 inch. Data was recorded by manually manipulating the arm

through the desired motion while the encoder values were being logged. Section will explain

how the generated motions were analyzed.

Data Analysis

The collected data was analyzed using MATLAB. Three .m files were written in an attempt

to analyze the various data. The first file computed the kinematic centroid of each example

and plotted each of the joint trajectories. The second plotted the corresponding joints from

each of the examples and a newly generated motion against each other for comparison. The

third computed the RMS error for the generated motions that should match an examplar.

In each set of generated motions, at least two of the new motions used the same adverbs

as a recorded motion. This was done as a check that the algorithm was indeed accurately

encoding and generating the motions.
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Reaching

The first motion selected for use in my experiments, was for ISAC’s arm to reach from rest

to a point in ISAC’s workspace. This is probably the most common motion that ISAC will

ever perform. It serves as a precursor motion to other motions like grasping, pointing, etc.

ISAC’s arm was manually manipulated to six (6) points in its workspace while encoder data

was recorded. The adverbs were the angle relative to ISAC’s shoulder (degrees), the distance

(inches) from ISAC’s torso, and the height of the point relative to the floor (inches). Figures

11 through 16 show the joint angles for the first set of recorded motions.

Figure 11: Reaching 1
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Figure 12: Reaching 2

Figure 13: Reaching 3
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Figure 14: Reaching 4

Figure 15: Reaching 5
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Figure 16: Reaching 6
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Out of these recorded motions, three examples were selected. As mentioned in Section

, the other motions were discarded because of a lack of similarity. Figures 17 through 19

shows the plot of the centroids of the selected motions. Figures 20 through 22 shows the

centroid of the motions that were not selected.

Figure 17: Reaching Example 2
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Figure 18: Reaching Example 3

Figure 19: Reaching Example 6
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Figure 20: Reaching Example 1

Figure 21: Reaching Example 4
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Figure 22: Reaching Example 5
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In this particular case, the centroid plots aren’t very revealing in terms of why three of the

motions were not selected. While visual observation seems to suggest that these motions are

all very similar in structure, it is important to realize that the rigid nature of the selection and

segmentation process requires only minor deviations in structure to eliminate a particular

motion in favor of another. More obvious differences will be shown in future examples.

Reaching, Results

After the motions were segmented, resampled, and selected, they were encoded into the

coefficient matrices mentioned in Section . New motions were generated using the values

tabulated in Appendix B. The motions that were designed to match examples were analyzed

by computing the Root-Mean-Square (RMS) Error between the generated motion and the

originally recorded motion. The equation used for computing this error is given in Equation

16.

RMS =

√√√√ 1

N

N∑
n=0

f [n]2 (16)

Where f [n] is simply a point-wise difference between the joint trajectories being com-

pared. For example, if x[n] is equal to the trajectory of the first joint of motion 1, and y[n]

is equal to the trajectory of the first joint of motion 2, then f [n] = x[n] − y[n]. In this

set of examples and generated motions, there were two motions generated that should have

matched encoded examples. In fact, the plots lined up so well that the matching example

motions are not visible upon inspection. Figures 23 through 28 show one set of these plots.

Additionally, Table 2 shows the computed RMS values for all the generated motions and
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the corresponding example. Because the plots of the generated motions are so difficult to

see, they will be omitted in future sections.

Figure 23: Reaching, Generated Motion 2, Joint 1
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Figure 24: Reaching, Generated Motion 2, Joint 2

Figure 25: Reaching, Generated Motion 2, Joint 3
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Figure 26: Reaching, Generated Motion 2, Joint 4

Figure 27: Reaching, Generated Motion 2, Joint 5
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Figure 28: Reaching, Generated Motion 2, Joint 6

Table 2: Reaching, RMS Values
RMS Values for Generated Motions and Corresponding Examples

Example Gen. Motion J1 RMS J2 RMS J3 RMS J4 RMS J5 RMS J6 RMS
6 3 5.58e− 6 2.721e− 5 3.789e− 5 7.10e− 6 1.994e− 5 6.65e− 6
2 2 4.22e− 6 2.853e− 5 3.937e− 5 5.40e− 6 1.991e− 5 5.93e− 6

Handshake

The second motion selected for ISAC in this experiment was Handshaking. This is an inter-

esting example because the ”shaking” motion introduces some interesting structure to the

example motions. It is also often used in lab demos as part of ISAC’s routines for human

interaction. As in the other motions, ISAC’s arm was manually manipulated to a point

in ISAC’s workspace with a fixed height, at a fixed distance, but varying angle relative to

ISAC’s shoulder. The hand was “pumped“ three times at each point with a fixed amplitude.

The adverb was the angle to the handshake point relative to ISAC’s shoulder. Figures 29

through 33 shows the joint trajectories for the motions used. Only five (5) examples were
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recorded for this behavior.

Figure 29: Handshaking 1
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Figure 30: Handshaking 2

Figure 31: Handshaking 3
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Figure 32: Handshaking 4

Figure 33: Handshaking 5
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The centroid plots of these motions are of particular interest as they directly affect the

output of the segmentation and selection process. These plots are shown in Figures 34

through 38.

Figure 34: Handshaking Example 1
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Figure 35: Handshaking Example 2

Figure 36: Handshaking Example 3
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Figure 37: Handshaking Example 4

Figure 38: Handshaking Example 5
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In this case, the centroid plots all have very similar. All five motions were encoded in

this trial.

Handshaking, Results

As mentioned previously, these motions were analyzed, segmented, resampled, and encoded.

Five motions were generated from these examples. Two of the generated motions match the

examples. The adverb values used for generating these motions can be found in Appendix

B. The RMS values indicating the error between the generated motions and their corre-

sponding example are found in Table 3. The plots of the generated motions are not useful

for inspection and are therefore not included.

Table 3: Handshaking, RMS Values
RMS Values for Generated Motions and Corresponding Examples

Example Gen. Motion J1 RMS J2 RMS J3 RMS J4 RMS J5 RMS J6 RMS
1 1 3.761e− 5 4.044e− 5 2.953e− 5 3.460e− 5 2.843e− 5 4.332e− 5
5 3 3.836e− 5 4.138e− 5 2.997e− 5 3.529e− 5 2.901e− 5 4.411e− 5
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Return

The third motion chosen was to return from a point in ISAC’s workspace back to rest. As

usual, ISAC’s arm was manually manipulated while encoder data was recorded. The start-

ing points for these examples were designated by the angle of the point (degrees) relative to

ISAC’s shoulder, the distance (inches) relative to the torso, and the height (inches) relative

to the floor. The arm was returned, as close as possible, to the same resting point for each

example. There were six example motions recorded. Figures 39 through 44.

Figure 39: Return 1
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Figure 40: Return 2

Figure 41: Return 3
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Figure 42: Return 4

Figure 43: Return 5
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Figure 44: Return 6
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For this set of example motions, four out of the six recorded examples were encoded.

Unfortunately, the plots of the centroids of these examples don’t give much insight as to why

some were selected while others were discarded. The bicep-curl motion presented next will

provide better insight into this phenomenon.

Return, Results

These results were analyzed in the same fashion as the others. Table 4 shows the RMS

values of the generated motions and their corresponding examples.

Table 4: Return, RMS Values
RMS Values for Generated Motions and Corresponding Examples

Example Gen. Motion J1 RMS J2 RMS J3 RMS J4 RMS J5 RMS J6 RMS
2 2 2.833e− 5 3.0e− 5 2.236e− 5 1.585e− 5 2.966e− 5 2.646e− 5
6 3 3.392e− 5 2.419e− 5 2.449e− 5 1.591e− 5 2.926e− 5 2.449e− 5

Bicep-Curl

The final motion selected for this experiment was the bicep curl. This motion provides a

great example of how the algorithm analyzes and segments the motion data. For this mo-

tion, the arm was manually manipulated to a fixed point in ISAC’s workspace and ”curled”

a variable number of times. The magnitude/amplitude of the curling motion was controlled

by moving the hand to a fixed point above the end position. The adverb was the number of

times that the arm was curled. This motion was specifically chosen because it should cause

the algorithm to fail. In other words, the goal was specifically to vary the structure of the

motion so that the algorithm would throw out all examples except for one. The hypothesis
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was that if only one motion is encoded, the algorithm should not have enough data to gener-

ate any new motions that even closely resemble the examples. Figures 45 through 49 shows

the centroids of the different example motions. Note the clear structural differences. Each

of the “bumps“ in the plots represents one ”curl” of the motion. Since the segmentation and

resampling portion of this approach rely on local maximums, it is apparent that only one

motion will be selected.

Figure 45: Bicep Curl Example 1
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Figure 46: Bicep Curl Example 2

Figure 47: Bicep Curl Example 3
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Figure 48: Bicep Curl Example 4

Figure 49: Bicep Curl Example 5
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Bicep-Curl, Results

As mentioned previously, the theory was that because only one motion is selected in this

example set, the Verbs and Adverbs algorithm cannot encode enough information to accu-

rately represent the structure of the input motion. This seemed to hold true. Figures 50

through 55.

Figure 50: Bicep Curl, Generated Motion 1, Joint 1
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Figure 51: Bicep Curl, Generated Motion 1, Joint 2

Figure 52: Bicep Curl, Generation Motion 1, Joint 3
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Figure 53: Bicep Curl, Generated Motion 1, Joint 4

Figure 54: Bicep Curl, Generated Motion 1, Joint 5
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Figure 55: Bicep Curl, Generated Motion 1, Joint 6
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As you can see, the resulting motion from interpolation does not match the input mo-

tions very well at all. In fact, unlike the previous examples, the RMS Error for this motion

was considerably worse. Table 5 shows the RMS Error for the generated motion and the

corresponding example motion.

Table 5: Bicep-Curl, RMS Values
RMS Values for Generated Motions and Corresponding Examples

Example Gen. Motion J1 RMS J2 RMS J3 RMS J4 RMS J5 RMS J6 RMS
1 1 3.8951 5.1874 1.8225 4.1980 3.7067 5.8019
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CHAPTER V

CONCLUSIONS

When appropriate inputs are given to the Verbs and Adverbs algorithm, it is capable of

recreating the examples surprisingly well. It can also generate new motions, within reason-

able limits, that accurately represent the structure of the input motions. The algorithm

does, however, have limitations. Recall Equation 15, shown again in Equation 17. Since the

D and r matrices are dependent on NumExamples and tt, and the A and a matrices are

dependent on NumExamples, NumAdverbs + 1, and tt, the complexity of the algorithm

is given in Equation 19 and Equation 21. In other words, the ability of this algorithm to

quickly produce results is inversely proportional to the number of examples, the number of

adverbs, and the number of samples (which is dependent on duration and sample rate).

B[tt] = Dr[tt] + Aa[tt] (17)

NumAdverbs + 1 > NumExamples (18)

O(tt×NumAdverbs + 1×NumDOF ) (19)

NumAdverbs + 1 ≤ NumExamples (20)

O(tt×NumExamples×NumDOF ) (21)
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For most motions this algorithm will be more than adequate. Some preliminary timing

was done on the encoding and decoding time of the algorithm on a G4 processor running

OSX (v10.4) with 256 MB RAM. Table 6 shows these results. These numbers are anecdotal

only and should be used only for a rough order of magnitude timing estimates. According

to the “time“ utility manpage, and the POSIX.2 standard (IEEE Std. 1003.2-1992), system

time is defined as the amount of time consumed by system overhead. User time is defined

as the amount of time used to execute the application to the standard error stream. Real

time is defined as the total elapsed time. Times reported for system and user time can have

a ±1 second resolution.

Table 6: Timing Information
Encode Time Interpolation Time

Trial/Motion User Time (s) System Time (s) Real Time (s) User Time (s) System Time (s) Real Time (s)
Trial 1, Bicep-Curl .799 .060 1.023 .102 .221 .03
Trial 1, Handshake 1.253 .136 2.486 .492 .04 .844
Trial 1, Reaching .567 .054 .883 .176 .032 .528
Trial 1, Return .474 .05 .65 .19 .032 .533

There are a couple other minor issues regarding this implementation of the Verbs and

Adverbs algorithm on ISAC. As mentioned previously, the segmentation method is extremely

susceptible to even minor fluctuations in the kinematic centroid trajectory that result in the

detection of a local maxima. This is in part, due to an arbitrarily sized windowing process for

finding the local maxima. A technique that could be used to “filter“ some of these maxima

would be to examine the magnitude of a potential local maxima in terms of relative percent

increase. However, this process would also be somewhat subjective and would have limited

effectiveness in all situations.

Additionally, manually manipulating the arm through a motion is prone to human error. I

have not yet determined a mitigating approach to this problem. One possible solution would

be to compute a trajectory in advance and use that to “feed“ the algorithm. However, this
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approach seems to defeat the purpose of having a motion generation algorithm in the first

place. Controls need to be put into place in order to more accurately and repeatably record

motions. Overall, the Verbs and Adverbs algorithm, implemented on a humanoid robot

performs extremely well.
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APPENDIX A

RECORDED DATA

Reaching
Example Adverb 1 (range in.) Adverb 2 (elevation in.) Adverb 3 (azimuth deg.)

Ex1 9 30 65
Ex2 4 40 69
Ex3 10 50 90
Ex4 5 35 121
Ex5 0 30 159
Ex6 17 40 114

Bicep Curl
Example Adverb 1 (reps)

Ex1 1
Ex2 2
Ex3 3
Ex4 4
Ex5 5

Handshake
Example Adverb 1 (azimuth deg.)

Ex1 60
Ex2 90
Ex3 120
Ex4 115
Ex5 80
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Return
Example Adverb 1 (range in.) Adverb 2 (elevation in.) Adverb 3 (azimuth deg.)

Ex1 9 30 65
Ex2 4 40 69
Ex3 10 50 90
Ex4 5 35 121
Ex5 0 30 159
Ex6 17 40 114
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APPENDIX B

INTERPOLATION ADVERB VALUES

Reaching
Example Adverb 1 (range in.) Adverb 2 (elevation in.) Adverb 3 (azimuth deg.)

Ex1 9 30 65
Ex2 4 40 69
Ex3 17 40 114
Ex4 7 45 80
Ex5 12 30 110

Bicep Curl
Example Adverb 1 (reps)

Ex1 1
Ex2 2
Ex3 3
Ex4 4
Ex5 10

Handshake
Example Adverb 1 (azimuth deg.)

Ex1 60
Ex2 120
Ex3 80
Ex4 107
Ex5 160
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Return
Example Adverb 1 (range in.) Adverb 2 (elevation in.) Adverb 3 (azimuth deg.)

Ex1 9 30 65
Ex2 10 50 90
Ex3 70 40 114
Ex4 12 45 110
Ex5 7 30 80
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