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CHAPTER 1 

Background and Research Goals 

 

Introduction 

 Cardiovascular disease (CVD) represents a major public health burden both in 

the United States and across the globe. According to the American Heart Association 

(AHA) and the World Health Organization (WHO), approximately 801,000 Americans 

and 17.5 million  people worldwide succumbed to CVD complications in 2013 (1, 2).  

These staggering statistics indicate that CVD is responsible for 31% of deaths both 

nationally and abroad. Of these CVD related mortalities, 1 in 7 American deaths and 2 

out of 5 global deaths are a direct result of Coronary Heart Disease (CHD)(1, 2). CHD 

occurs when plaque begins to form in the arteries, narrowing the lumen and restricting 

the flow of oxygen rich blood to the heart (3). This formation of plaque in the arteries is 

also referred to as atherosclerosis. Complete occlusion of the vessel either by plaque 

build-up or rupture often results in a myocardial infarction or stroke (4).  

 Atherosclerosis has been plaguing humans for thousands of years. Detrimental 

changes have been observed in the arteries of ancient Egyptian mummies, and these 

observations are consistent with the pathology currently seen in both vascular surgery 

and post-mortem histology (5, 6). Pathologic changes in the vasculature garnered 

scientific interest as early as the 19th century. At this time the pathologists Carl von 

Rokitansky of Vienna, Austria and Rudolf Virchow of Berlin, Germany both made the 

observation that there were changes in cellular composition within the vessel walls of 

atherosclerotic plaques (7, 8). As a humoral pathologist, Rokitansky believed that the 
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cellular changes were secondary to the changes to the vessel; however, Virchow 

believed that these cells played a causal role (9).  

At the turn of the 20th century, Adolf Windaus observed that atherosclerotic 

plaques were comprised of cholesterol and calcified connective tissue (10). Just three 

years later, Nikolai Anitschkow and Semen Chaltow showed that atherosclerosis could 

be induced by feeding rabbits a diet high in cholesterol (11). These studies not only 

identified cholesterol as an important risk factor for the development of atherosclerotic 

lesions, but also gave way to the field of thinking that lipids were key players in 

atherosclerotic plaque formation and cellular changes were secondary. 

 Despite the observations of Rokitansky and Virchow in the mid 1800’s that 

atherosclerotic plaques were accompanied by cellular changes in the vessel, it was not 

until approximately 30 years ago that the cell biology of atherosclerosis became a topic 

of interest again. While lipid-engorged foam cells were seen in the plaques of both 

humans and experimental animals, the development of monoclonal antibody technology 

finally allowed investigators to determination  that the majority of these cells were 

macrophages (12). This important finding resurrected the early work of Virchow, lending 

support to his theory that cellular inflammation may drive the progression of 

atherosclerosis. Further analysis using immunohistochemical staining in human 

atherosclerotic plaques showed the presence of many different immune cell subsets 

including  monocytes, macrophages, dendritic cells, neutrophils, and CD4+ and CD8+ T 

cells (13, 14). Furthermore, high levels of MHC-II staining on antigen presenting cells in 

the lesions suggested that an active immune response was occurring (14). Interestingly, 

these subsets of immune cells were even found in the arteries of children and young 
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adults at predicted sites of later plaque formation such as the aortic intima and in fatty 

streaks, further implicating immune inflammation in atherosclerosis development (15). 

While these descriptive studies suggested that an immune reaction was occurring in 

atherogenesis, the antigen(s) driving these interactions was unknown. In 1989, Palinski 

et al. showed that oxidized low density lipoprotein (oxLDL), a modified cholesterol found 

in the atherosclerotic plaque, could induce systemic antibody formation (16). Later, 

Goran Hansson’s group demonstrated that CD4+ T cells, specifically recognizing oxLDL 

associated apoB-100 are found in humans and in animal models of atherosclerosis. 

Follow-up studies further suggested a role for oxLDL as an immunologic antigen by 

showing that T cell clones isolated from atherosclerotic plaques became activated by 

oxLDL (17). These studies were important not only for identifying an atherosclerosis-

specific antigen but also for defining atherosclerosis as a systemic disease and not just 

localized inflammation. A model for the role of the immune response to oxLDL can be 

found in Figure 1.1. 

These pioneering studies offer compelling evidence that atherosclerosis is at 

least in part mediated by cellular inflammation.  However, despite the many advances 

and discoveries made since this initial work, many questions remain surrounding the 

immune response in atherosclerosis, as well as other diseases of sterile inflammation. 

Additionally, although there are treatment options available for atherosclerosis, it 

remains the number one cause of death both nationally and internationally, highlighting 

the importance for further understanding of this disease and identification of new and 

novel therapeutic targets. 
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Figure 1.1. Immune Responses to oxLDL in the Atherosclerotic Plaque. Macrophages and DCs within the 
plaque take up oxLDL and prime specific effector T cell responses. From (186). 
Copyright © Hansson and Hermansson. Nature Immunology, Volume 12. 
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B cell studies suggest systemic inflammation in atherosclerosis 

B cells are an important component of the adaptive immune response given their 

unique ability to produce antibody; however, very few can be detected in atherosclerotic 

lesions or the surrounding adventitia(18, 19).  In 2002, Major et al. showed that 

atherosclerosis-susceptible LDL receptor (LDLr) knock-out mice that received a bone 

marrow transplant from MT (B cell deficient) mice had increased atherosclerotic lesion 

size in the proximal aorta compared to controls when placed on a high fat diet (20).This 

increase in atherosclerosis was accompanied by diminished titers of oxLDL antibodies 

and decreased production of pro-inflammatory cytokines, suggesting a pathogenic role 

for B cells (20). A follow-up study by Ait-Oufell et al. investigated the implications of 

removing mature B cells from circulation using anti-CD20 treatment in both LDLr-/- and 

ApoE-/- mice. In contrast to Major et al., treatment with anti-CD20 provided 

atheroprotective effects. The authors observed that depleting B cells with anti-CD20 

dramatically decreased anti-oxLDL IgG, but only minimally reduced levels of anti-oxLDL 

IgM, effectively increasing the IgM to IgG ratio. This led the authors to hypothesize that 

IgM plays a protective role while IgG is inflammatory (21). Kyaw et al. confirmed this 

hypothesis in a series of elegant experiments in which he adoptively transferred either 

IgM-secreting B1a cells or conventional IgG-secreting B2 B cells into ApoE-/-Rag2-/- or 

ApoE-/- mice. The results of these studies showed that B1a B cells abrogated 

atherosclerosis compared to controls, while B2 B cells increased lesion size over 300% 

(22). In a second complementary study, Kyaw confirmed these findings with genetic 

deletion of B2 B cells using TNFRSF13B-/- mice crossed to the ApoE-/- background. 

When these mice were placed on high fat diet they had significantly smaller 
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atherosclerotic lesions in the proximal aorta compared to ApoE-/- accompanied by 

decreased titers of IgG and decreased levels of inflammatory cytokines (23). Kyaw, Tay, 

and Krishnanmurthi et al. further demonstrated the atheroprotective role of IgM using a 

splenectomy model that specifically depleted B1a but not B2 B cells. They found that 

following splenectomy, protection against atherosclerosis was achieved with adoptive 

transfer of wild-type, but not IgM-/- B1a cells. Mice that received protective wild-type B1a 

cells also had increased titers of anti-oxLDL IgM (24).  While the protective nature of 

IgM is well established at this point, the potentially pathogenic role of IgG is less 

understood.  

 

Immune Complexes in Sterile Inflammation 

B cell studies identified an important role for antibodies in the development of 

atherosclerosis. Shortly after the observation that antibody responses were generated in 

response to oxLDL, it was discovered that titers of circulating anti-oxLDL antibodies 

could be used as a biomarker for atherosclerosis disease severity (16, 25). While the 

majority of studies on the immune response in atherosclerosis focus on unbound oxLDL 

as the driving antigen in atherosclerosis, likely due to the early observations of 

Windaus, Anitschkow, and Chaltow, it has been shown that up to 90% of the oxLDL in 

circulation is bound to specific antibody, forming immune complexes (ICs) (10, 11, 26). 

Interestingly, it has been observed in both humans and hyperlipidemic animals that the 

majority of antibodies contained in oxLDL-ICs are IgG in nature, suggesting a potentially 

pathogenic role for these ICs (27, 28).  
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Generally speaking, an IC is a solitary unit formed by the binding of antibody to 

its soluble antigen that, when formed, acts as an antigen of its own. Many sterile 

inflammatory disorders including rheumatoid arthritis (RA) and systemic lupus 

erythematosus (SLE) are associated with disease specific ICs that not only correlate 

with disease severity, but also play a mechanistic role in pathogenesis. RA is a common 

form of autoimmune arthritis characterized by joint pain and bone destruction especially 

of the hands and feet (29). Over two thirds of RA patients are considered “seropositive,” 

meaning that they have ICs containing citrullinated proteins, as well as antibodies to the 

constant region (Fc) of self IgG antibodies (also known as rheumatoid factor). 

Citrullinated fibrinogen containing ICs precipitated from plasma have been shown to 

induce inflammatory Tumor Necrosis Factor alpha (TNF) production from peripheral 

blood mononuclear cells (PBMCs) (30). Antibodies contained in RA associated ICs bind 

to Fc gamma receptors on the surface of maturing osteoclasts, increasing differentiation 

that ultimately leads to bone erosion (31, 32). Binding of these ICs to osteoclasts also 

results in the secretion of CXCL8 (IL-8) which binds to its cognate receptor on sensory 

neurons, resulting in joint pain and swelling (33–36).  

Like RA, SLE is another sterile inflammatory disease driven by specific ICs. SLE 

has a wide variety of symptoms including a malar rash, alopecia, joint pain, and 

nephritis; however, the presence of anti-nuclear and anti-double stranded DNA ICs 

even in the absence of other symptoms is considered sufficient for an SLE diagnosis 

(37). These ICs can initiate experimental lupus nephritis by depositing in the kidneys 

and binding directly to the basement membrane of the glomerulus (38). In addition, 

nuclear antigen and double stranded DNA containing ICs initiate the complement 
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cascade. While this is a normal immune reaction for the clearance of immune 

complexes, chronic activation of complement has been observed to increase nephritis 

and proteinuria in mouse models of lupus (39, 40). 

Work from the Lopes-Virella lab showed that oxLDL containing ICs (oxLDL-ICs) 

elicit increased cellular activation, inflammatory cytokine production, and foam cell 

formation from the human macrophage cell line THP-1 in vitro (41). However, it is 

currently unknown how oxLDL-ICs modulate the immune response and whether oxLDL-

ICs play a mechanistic role in atherosclerosis progression or are simply biomarkers of 

disease. Interestingly, atherosclerosis patients are not the only individuals with 

increased levels of oxLDL-ICs.  Increased titers of these ICs are also observed in other 

sterile inflammatory disorders including type1 and type 2 diabetes, SLE, and RA (26, 

42–44). It is important to note that all of these diseases also have increased risk of 

cardiovascular complications as a comorbidity. Thus, it is important to understand the 

specific role of oxLDL-ICs in inflammation. The primary focus of my dissertation work 

has been to uncover the mechanism by which oxLDL-ICs influence inflammation and to 

determine whether oxLDL-ICs directly affect atherosclerosis outcomes.  

 

Fc Receptors as Indicators of IC Pathogenesis  

Fc receptors (FcR) are the canonical receptors for IgG ICs by binding to the 

constant (Fc) region of the antibody. Generally speaking, these receptors can be either 

activating (FcRI, FcRIII, and FcRIV in mice; FcRI, FcRIIa, FcRIII, and FcRIV in 

humans) or inhibitory (FcRIIb in mice and FcgRIIba). FcRs are expressed on a wide  
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Figure 1.2. Various effector functions of FcRs. From (46).  
Copyright © Nimmerjahn and Ravetch. Nature Reviews Immunology, Volume 8. 
 



 

10 

 

variety of cell types including macrophages, dendritic cells (DCs), neutrophils, and 

eosinophils. Activating receptors signal through an immunoreceptor tyrosine based 

activation motif (ITAM) which results in recruitment and phosphorylation of spleen 

tyrosine kinase (Syk). Effector functions resulting from activating receptor ligation 

include antibody dependent cellular phagocytosis (ADCP), antibody dependent cell 

mediated cytotoxicity (ADCC), and release of pro-inflammatory cytokines and 

chemokines. The inhibitory receptor FcRIIb signals through an immmunoreceptor 

tyrosine based inhibitory motif (ITIM) resulting in recruitment and phosphorylation of 

SH2-containing inositol 5′-phosphatase (SHIP). FcRIIb ligation results in 

immunomodulatory responses (Summarized in Figure 1.2) (reviewed in 31–33).  

Human studies suggest a regulatory role for FcRs. It has been observed that 

FcRs are expressed in atherosclerotic plaques, and polymorphisms in the activating 

receptor FcRIIa are associated with exacerbated CHD (48–50). In ApoE-/- mice on high 

fat diet, treatment with whole human immunoglobulin (containing the Fc portion), but not 

treatment with human Fab fragments (lacking the Fc portion) was protective against 

atherosclerosis (51). In vitro studies indicate that FcR (specifically the high affinity 

receptor FcRI) mediated uptake of oxLDL-ICs facilitates inflammation and foam cell 

formation in human and mouse macrophages (52, 53). 

Studies in mice globally deficient in FcR subsets further support a potential role 

for IC pathogenesis in atherosclerosis. Mice lacking both of the activating receptors 

FcRI and FcRIII (FcR-/-) on either the ApoE-/- or LDLr-/- background are protected 

from atherosclerosis compared to controls (54, 55). This protection is accompanied by 

decreased levels of pro-inflammatory cytokines in the aortas. Conversely, both LDLr-/- 
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mice that received a bone marrow transplant from inhibitory receptor FcRIIb-/- mice and 

FcRIIb-/- mice crossed to the ApoE-/- background had increased atherosclerotic lesion 

size and increased inflammation compared to controls (56, 57). A more recent study of 

FcRIIb/ApoE double knock-out mice on a congenic, rather than mixed, background 

showed opposite results. These mice had decreased atherosclerotic burden and 

inflammation compared to their control counterparts. The authors attributed this 

opposing finding to upregulation of lupus-associated Slam genes (involved in 

expression of many receptors on hematopoetic cells) in the mixed but not the congenic 

mice (58). However, despite this discrepancy, these studies indicated a potentially 

important role for oxLDL-ICs in atherosclerosis associated inflammation.  

 

ICs Can Bind to Multiple Receptors to Modulate Immune Reponses 

 While FcR are the canonical IC receptors, it has been widely observed that the 

antigenic portion of the IC can bind other cell surface receptors, as well. In many cases, 

ICs have been found to also bind various Toll Like Receptors (TLRs). TLRs recognize 

distinct molecular patterns and are key players in innate immune responses(reviewed in 

60). In the context of SLE, single stranded RNA containing ICs are able to bind to TLR7, 

enhancing inflammation and glomerular nephritis (60). Similarly, double stranded DNA 

containing-ICs bind to TLR9 following internalization to enhance dendritic cell and B cell 

mediated inflammation in SLE (61). Sokolove et al. demonstrated that RA associated 

citrullinated fibrinogen ICs concomitantly bind to FcRs and TLR4, enhancing the 

production of inflammatory TNFfrom macrophages (30). Yet another study from Duffy 



 

12 

 

et al. showed that IgG opsonized Francisella tularensis enhanced IL-6 and IL-1 

production from macrophages by binding to both FcRs and TLR2 (60).  

 Much like the antigens contained in the ICs discussed above, oxLDL has been 

shown to bind TLRs through molecular mimicry (63, 64). Binding of oxLDL to TLR4 

enhances production of pro-inflammatory cytokines and facilitates foam cell formation in 

human and mouse macrophages (65–67). As a modified cholesterol, oxLDL also binds 

the scavenger receptor CD36 (68). While the scavenger receptor CD36 is one of the 

main receptors responsible for lipid loading and foam cell formation in macrophages, it 

has also been shown to facilitate sterile inflammation by forming a heterotrimer with 

TLR4 and TLR6(69, 70). Formation of the TLR4/TLR6/CD36 heterotrimer results in 

increased production of the pro-inflammatory cytokine IL-1(70, 71). Given that oxLDL-

ICs may be able to bind multiple receptors on the cell surface, the studies discussed in 

this section highlight a potential mechanism by which oxLDL-ICs may modulate the 

immune response. 

 

Dendritic Cells are the Potential Drivers of IC Induced Immune Responses 

 To date, many studies of the immune response in atherosclerosis focus on 

macrophages. This is likely due to their prevalence in atherosclerotic lesions, as well as 

their propensity to become lipid-laden foam cells (reviewed in 60). However, there are 

many other immune cell types that are involved in inflammation and atherosclerosis. 

Dendritic cells (DCs) are specialized antigen presenting cells (APCs) that provide an 

important link between the innate and adaptive immune response. Although they derive 

from a common progenitor cell in the bone marrow, DCs are unique from macrophages 
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in both morphology and in their ability to potentiate an adaptive immune response (73, 

74).  Early studies of DCs found them to be especially potent at activating T cells in 

mixed leukocyte cultures, and uncovered that DCs are two times more proficient at 

capturing and presenting antigen to T cells than any other APC (75, 76). DCs survey the 

periphery where they capture antigens and bring them to the draining lymph node to 

initiate immune responses by presenting the antigen in the context of the MHC. 

 DCs are a heterogeneous population of cells with a wide variety of specialized 

functions. However, classical DCs are thought to be CD11c+MHCII+F4/80-. These 

markers differentiate DCs from macrophages which are CD11c- and F4/80. CD11c 

DCs are found in areas of the aorta prone to development of atherosclerosis in both 

humans and mice, and DC numbers increase as lesions grow (19, 77, 78). The DCs 

observed in atherosclerotic lesions cluster with T cells and are thought to be activated 

based on the expression of co-stimulatory molecules such as CD86 (78, 79).  

There have been many studies implicating DC/T cell interactions in the 

pathogenesis of atherosclerosis. LDLr-/- mice globally deficient in MHCII are protected 

from atherosclerosis, and this protection is accompanied by a reduction in T cell 

activation (80). Lievens et al. discovered that disrupting signaling of the 

immunomodulatory cytokine Transforming Growth Factor beta (TGF) in CD11c+ cells 

of ApoE-/- mice caused expansion of effector T cells and increases in atherosclerotic 

lesion size(81). Yet another study by Subramanian et al. showed that MyD88 (a critical 

protein downstream of TLR4) signaling for oxLDL  in CD11c+ cells is required for 

regulatory T cell (Treg) mediated protection from atherosclerosis in LDLr-/- mice (82).In 

addition to using in vivo manipulations to study DC/T cell interactions in atherosclerosis, 
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researchers have also investigated the effects of treating DCs in vitro prior to adoptive 

transfer into LDLr-/- or ApoE-/- mice. It has been shown that bone marrow-derived 

dendritic cells (BMDCs) treated with oxLDL and adoptively transferred into LDLr-/- mice 

generate specific CD4+ T cell responses and confer protection against atherosclerosis 

(83). On the other hand, a second study found that injecting ApoE-/- mice with BMDCs 

pulsed with malondialdehyde-modified LDL increases atherosclerosis by inhibiting the 

proliferation of Tregs (84).  

Interestingly, classical DCs express moderate to high levels of all of the FcRs, 

and DCs in atherosclerotic lesions express robust levels of the high affinity activating 

receptor FcRI(85, 86). FcRs provide an important link between the humoral and 

cellular immune response as internalization of ICs by FcRs allows for the antibody 

bound antigen to be shuttled to the endosome for subsequent presentation to T cells on 

Major histocompatibility complex (MHC) I and II (87–89).  Thus, it stands to reason that 

oxLDL-IC binding to DCs may be important to both the innate and adaptive immune 

response in atherosclerosis.  

 

Research Goals and Summary of Data 

 Atherosclerosis is a disease of sterile inflammation that represents a major public 

health burden both in the United States and worldwide. The majority of studies to date 

focus on the role of free oxLDL in the immune response in atherosclerosis; however up 

to 90% of circulating oxLDL is bound to specific antibody in ICs. Many sterile 

inflammatory disorders such as RA and SLE are characterized by the prevalence of 

disease specific ICs that are known to play a mechanistic role in pathogenesis. While it 
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is known that oxLDL-IC titers correlate with disease severity, it is currently unknown 

how oxLDL-ICs modulate the immune response.  The goal of this study is to determine 

the contribution of oxLDL-ICs to inflammation and atherosclerosis. 

 In Chapter II, I show that oxLDL-ICs act as a priming signal for the NLRP3 

inflammasome by binding to the receptors FcR, TLR4, and CD36. Signaling through 

these receptors converges on the adaptor protein CARD9 and results in formation of the 

CARD9-Bcl10-MALT1 complex, exploiting a pathway that is commonly associated with 

fungal pathogenesis. This chapter will also provide evidence that oxLDL-ICs directly 

influence atherosclerosis outcomes. Chapter III investigates how oxLDL-ICs modulate 

the adaptive immune response. In this chapter, I demonstrate that oxLDL-IC mediated 

IL-1 and IL-1 from DCs promotes Th17 responses, while IL-23 inhibits IFN 

production. The findings from these two chapters are summarized in Chapter IV and 

future directions for each are provided. Ultimately these studies move from bench to 

bedside, identifying a pathological role for a long standing biomarker of atherosclerosis 

disease severity.  
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CHAPTER 2 

 OxLDL Immune Complexes Prime the NLRP3  
Inflammasome via CARD9 and Exacerbate Atherosclerosis 

 
The majority of this work was published in The Journal of Immunology Volume 198 in the 
year 2017 under the same name. Figures and text from the original manuscript have been 
modified and data have been added. 

 
Abstract 
 
OxLDL has been shown to initiate inflammatory responses in many different cell types 

including macrophages and DCs. While many studies focus on the effects of free oxLDL 

on the immune response, the majority of oxLDL in circulation is complexed to specific 

antibody forming ICs. Elevated titers of oxLDL-ICs can be found in a number of sterile 

inflammatory disorders including atherosclerosis, Type 1 and 2 diabetes, RA, and SLE. 

Levels of oxLDL-ICs often correlate with atherosclerosis disease severity; however, little 

is known about how oxLDL-ICs modulate the immune response and effect atherosclerotic 

disease outcomes. In this chapter, I demonstrate that bone marrow- BMDCs incubated 

with oxLDL-ICs for 24 hours are more activated and secrete significantly more IL-1 

compared to BMDCs treated with free oxLDL, but there was no difference in levels of 

TNF or IL-6. OxLDL-IC treatment increased expression of inflammasome-related genes 

Il1a, Il1b, and Nlrp3. Pre-treatment of BMDCs with a caspase 1 inhibitor decreased IL-1 

secretion in response to oxLDL-ICs. To prime the inflammasome, oxLDL-ICs signaled 

through multiple receptors including FcR, TLR4, and CD36. OxLDL-IC signaling in 

BMDCs converged on the adaptor protein CARD9, resulting in formation of the CARD9-

Bcl10-MALT1 signalosome complex and NF-B translocation to the nucleus. Finally, 
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oxLDL-IC injection significantly increased atherosclerotic lesion burden in LDLr-/- mice 

compared to saline and oxLDL injected controls.  

Introduction 

Immune complexes (ICs) are formed by the binding of a specific antibody to its 

soluble antigen creating a solitary unit. Many sterile inflammatory disorders are 

characterized by increased serum titers of disease-specific ICs, which can have 

mechanistic roles in pathogenesis including RA, SLE and atherosclerosis (90, 91). In 

atherosclerosis, antibodies are directed at oxLDL forming oxLDL-ICs(25). Although it has 

been shown that oxLDL-ICs can elicit increased inflammatory cytokine production from a 

human macrophage cell line, little is known about how oxLDL-ICs modulate the immune 

response or effect atherosclerotic outcomes(41).  

Interestingly, many of  the sterile inflammatory disorders characterized by high 

serum titers of ICs are also associated with chronic  inflammasome hyperactivation (92–

94). The inflammasome is a multi-protein oligomer that requires both a priming and 

activating signal for initiation. Activation of the inflammasome results in robust secretion 

of the inflammatory cytokine IL-1(95). The inflammasome was originally identified as an 

innate immune mechanism necessary for the clearance of many bacterial and fungal 

pathogens (96, 97). Unfortunately, hyperactivation of the inflammasome has been found 

to exacerbate many inflammatory diseases (98). To combat the negative effects of 

chronic inflammasome activation, IL-1 blockade is used clinically to treat IC-related 

diseases including RA and juvenile SLE. (99, 100). Inhibition of inflammasome mediated 

IL-1 is also protective in atherosclerosis as it has been shown that knocking out the 

inflammasome- related gene Nlrp3 in mice completely abolishes atherosclerosis (101). 
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However, despite the observations that sterile inflammatory disease have both increased 

serum IC levels and inflammasome activation, a direct connection has not been made 

between these two factors.  

 This study demonstrates that oxLDL-ICs act as a priming signal for the Nlrp3 

inflammasome by concomitant signaling through FcR, TLR4, and CD36. OxLDL-IC 

mediated inflammasome priming occurs in a receptor dependent fashion and does not 

require previously established mechanisms such as cholesterol crystal formation (101). 

Signaling through these receptors converges on the adaptor protein CARD9, resulting in 

formation of the CARD9-Bcl10-Malt1 complex and nuclear translocation of NF-B.  

Finally, this study demonstrates that oxLDL-ICs increase atherosclerotic lesion size and 

are not simply a biomarker for disease severity.  

Materials and Methods 

Mice. C57BL/6J (B6), B6N.129-Nlrp3tm1Hhf/J (Nlrp3−/−), B6.129P2 (SJL)-Myd88tm1Defr/J 

(Myd88−/−), and B6.Cg-Tg (TcraTcrb) 425Cbn/J (OT-II) mice were originally obtained from 

the Jackson Laboratory (Bar Harbor, ME) and maintained and housed at Vanderbilt 

University. All mice used in these studies were on the B6 background. Procedures were 

approved by the Vanderbilt University Institutional Animal Care and Use Committee. 

oxLDL and oxLDL-ICs. Human native LDL was purchased from Intracel Resources 

(Frederick, MD) or Sigma-Aldrich (St. Louis, MO). OxLDL was made by dialyzing human 

LDL for 24 hrs against 0.9 M NaCl at 4C with two buffer changes, followed by dialysis 

against 0.9 M NaCl containing 20 M CuSO4 for 4 hrs at room temperature. Oxidation 

was terminated by dialysis against 1 mM EDTA in 1X PBS for 16 hrs with two buffer 

changes. Extent of oxidation was determined by TBARS assay (Cell Biolabs, Inc., San 
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Diego, CA). OxLDL-ICs were generated by incubating polyclonal rabbit anti-human apoB-

100 (Alfa Aesar, Ward Hill, MA) with oxLDL at a ratio of 10:1 (500 g of antibody, 50 g 

of oxLDL) overnight at 37C. Unbound antibody and antigen were removed by size 

exclusion filtration. For all experiments, immune complex concentrations were normalized 

based on oxLDL concentration to ensure that equal amounts of oxLDL were used in both 

the oxLDL and oxLDL-IC conditions. Fab2 fragments were made using the Pierce Fab 

Fragmentation Kit (Thermo Fisher Scientific, Waltham, MA) according to manufacturer’s 

protocol.  OxLDL enriched immune complexes were obtained from the serum of Apoe-/- 

mice fed Western diet (21% saturated fat, 0.15% cholesterol) for 12 weeks. Whole blood 

was obtained by retro-orbital bleeding. Serum was incubated with protein G beads for 1 

hr at room temperature. Immune complexes were eluted from protein G beads and protein 

concentration was calculated by BCA assay according to manufacturer’s instructions 

(Thermo Fisher Scientific).  

Cell Culture. BMDCs were generated as previously described (102). Briefly, bone 

marrow from hind legs was flushed with RPMI-1640 (Corning, Corning, MA) 

supplemented with 10% FBS (Gibco, Grand Island, NY), 10 mM HEPES (Corning), and 

1× Penicillin/Streptomycin/L-glutamine (Sigma-Aldrich) (hereafter referred to as TCM). 

Cells were plated in 100 mm2 petri dishes at 2×105 cells/mL in TCM containing 20 ng/mL 

recombinant GM-CSF (R&D Systems, Minneapolis, MN). Media was replaced on days 3 

and 6 and cells were harvested on day 9.  To make BMDCs from various transgenic 

strains femurs were shipped overnight. Femurs from Cd36-/- mice were obtained from Dr. 

Kathryn Moore (New York University, New York, NY). Cd11ccre/Sykflox/flox femurs were 

obtained from Dr. John Lukens (University of Virginia, Charlottesville, VA). Femurs from 
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Card9-/- mice were received from Dr. Thirumala Kanneganti (St. Jude Children’s Research 

Hospital, Memphis, TN) (103).   

ELISA and Western Blotting. IL-1, IL-6, and TNF (BD Biosciences, San Jose, CA) 

ELISAs were performed according to manufacturer’s instructions. For Western blotting 

experiments, 1×106 BMDCs were treated with indicated stimuli for 24 hrs. Cells were 

lysed with 1× RIPA buffer and lysates were separated by 4%-20% reducing SDS-PAGE. 

Blots were incubated with anti-mouse caspase-1 monoclonal antibody (Adipogen, San 

Diego, CA) or anti-mouse NFB p65 antibody (Cell Signaling Technology, Danvers, MA), 

overnight at 4°C followed by IRDye 680RD goat anti-mouse or goat anti-rabbit (LI-COR, 

Lincoln, NE) for 30 min at room temperature. Bands were visualized using the LI-COR 

Odyssey System. 

Immunoprecipitation. CBM complex formation was assessed in whole cell lysates from 

BMDCs stimulated for 2 hrs with oxLDL or oxLDL-ICs. Cells were lysed in 1× RIPA buffer 

followed by immunoprecipitation with antibody to MALT1, CARD9, or Bcl10 (Santa Cruz 

Biotechnology, Dallas, TX). Western blot analysis was performed as described above 

with anti-CARD9, anti-Bcl-10, and anti-MALT1 (Cell Signaling Technologies). 

Real-Time Quantitative PCR. BMDCs were treated with indicated stimuli for two hrs. 

Total RNA was isolated from cells using Norgen Total RNA Isolation Kits (Norgen Biotek 

Corporation, Thorold, Ontario, Canada). RNA concentrations were normalized and RNA 

was reversed transcribed with a high capacity RNA to cDNA reverse transcription kit 

(Applied Biosystems, Grand Island, NY). The reverse transcription product was used for 

detecting mRNA expression by quantitative real time PCR using the QuantStudio 6-flex 
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System (Life Technologies, Grand Island, NY). The cycling-threshold (CT) value for each 

gene was normalized to that of the house keeping gene Ppia, and relative expression 

calculated by the change in cycling threshold method (CT).   

Flow Cytometry. To measure FcR expression, BMDCs were then stained on ice for 30 

min with CD16.2-APC, CD16/32-FITC, CD32-Alexa Fluor 488, or CD64-APC in the 

absence of Fc-block. The CD16.2, CD16/32, and CD64 antibodies were purchased from 

BD Bioscience and diluted 1:200. Antibodies were diluted 1:200 in FACS buffer containing 

HBSS, 1% BSA, 4.17mM sodium bicarbonate, and 3.08mM sodium azide. The CD32 

antibody, a gift from Dr. Jeffrey Ravetch (The Rockefeller University, New York, NY), was 

labeled using an Alexa Fluor 488 Antibody Labeling Kit (Thermo Fisher Scientific). Cells 

were washed and re-suspended in 2% PFA for analysis on a MACSQuant seven color 

flow cytometer (Miltenyi Biotech) and data were analyzed using FlowJo Single Cell 

Analysis Version 7.6.5. To measure pSyk and pErk, cells were stimulated with LPS, 

oxLDL, oxLDL-Fab2 or oxLDL-IC for 5 or 15min. Cells were then fixed for 10minf in 1× 

lyse/fix buffer (BD Bioscience) and permeabilized for 30min using Perm Buffer III (BD 

Bioscience). After permeabilization, cells were Fc blocked for 15min followed by staining 

with either CD11b-V450 (BD Bioscience), CD11c-FITC (BD Bioscience) and pSyk 

Y525/526- PE (Cell Signaling Technology); or, CD11b-V450 (BD Biosciences), CD11c-

PeCy7 (BD Biosciences) and pERK1/2-FITC (BD Biosciences). 

In vivo studies. For atherosclerosis studies 8-10 week old male LDLr-/- mice were retro-

orbitally injected every two weeks with saline, 10g oxLDL, or 25g oxLDL-IC (equivalent 

concentrations of oxLDL). Mice were placed on Western diet (21% fat, 0.15% cholesterol) 
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one week after the first injection for the duration of the study. After 8 weeks on diet, mice 

were sacrificed and aortic root lesion area was evaluated using Oil Red O staining.  

Statistical Analyses.  Where appropriate statistical significance was determined using a 

Student’s t test. If more than two groups were compared, a one way Analysis of Variance 

(ANOVA) with Bonferroni correction was used. In all cases p<0.05 was considered 

statistically significant. 

Results 

OxLDL-ICs increase DC activation. It has been demonstrated that ICs containing 

TLR ligands can enhance inflammatory responses in DCs and macrophages (30, 61). To 

determine if oxLDL-ICs increase DC activation compared to free oxLDL, BMDCs were 

incubated with oxLDL or oxLDL-ICs for 16 hours followed by staining for the activation 

markers CD40, MHCII, and CD86 (Figure 2.1). Treatment of BMDCs with oxLDL-ICs 

increased expression of CD40 and MHCII compared to oxLDL treatment, indicating that 

oxLDL-ICs enhance DC activation.   

OxLDL-ICs elicit robust IL-1 production. In order to test whether increased 

activation was accompanied by differential cytokine responses, BMDCs were incubated 

with either oxLDL or oxLDL-ICs for 24hrs. No differences were observed in TNF or IL-6 

production between the treatment groups; however, oxLDL-ICs induced almost 10-fold 

more IL-1 production compared to free oxLDL (Figure 2.2A). To control for anomalies 

that may be associated with lab-generated oxLDL-ICs, BMDCs were also treated with 

oxLDL-enriched ICs isolated from hyperlipidemic ApoE deficient mice (ApoE-IC). Given 

that results elicited by ApoE-ICs were similar to those obtained with oxLDL-ICs, the  
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Figure 2.1. OxLDL-ICs increase activation of BMDCs. BMDCs were incubated with oxLDL or oxLDL-ICs for 24 
hours.  CD40, MHCII, and CD86 expression were measured by flow cytometry. Representative histograms of the 
respective activation markers are shown in A (Gated on CD11b+CD11c+ cells) for oxLDL (dashed) and oxLDL-IC 
(solid) treated BMDCs. Activation marker expression is quantitated based on mean fluorescence intensity (B) where 
n=3 mice/experiment and at least 3 experimental repeats Solid gray histograms are isotype controls. Unlike letters 
denote significance (p<0.05) by Student’s t test and error bars represent SEM.  
 



 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

A 

Figure 2.2. OxLDL-ICs induce potent IL-1 secretion from BMDCs and BMDMs. (A) BMDCs and (B) BMDMs 

were treated for 24 hours with oxLDL, oxLDL-ICs, or ICs isolated from the serum of ApoE -/- mice. Cytokine levels in 

culture supernatants was measured by ELISA. Shown are representative experiments where n= at least three 

biological and technical replicates. Error bars indicate SEM. Unlike letters denote significance (p<0.01) by Student’s 

t test. 
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enhanced IL-1 secretion elicited by oxLDL-ICs is likely to be physiologic and not simply 

an artifact.  Bone marrow-derived macrophages (BMDMs) were also treated with oxLDL 

or oxLDL-ICs for 24hrs. The cytokine profiles obtained mirrored those of the BMDCs, 

suggesting that this observation was not a DC-specific phenomenon and represented a 

fundamental difference in signaling between oxLDL and oxLDL-ICs (Figure 2.2B).  

 OxLDL-ICs prime the Nlrp3 inflammasome. High IL-1 production is a hallmark 

of inflammasome activation, and previous studies have shown that oxLDL activates the 

inflammasome through the formation of cholesterol crystals (101). I hypothesized that 

oxLDL-ICs may activate the inflammasome through a similar mechanism. Inflammasome 

activation is a two-step process. The first signal “primes” the inflammasome, resulting in 

the production of pro-IL-1. This signal is typically conferred by a pathogen associated 

molecular pattern (PAMP) such as LPS (95). The second signal, or the activating signal 

causes cleavage of pro-caspase 1 to caspase 1 which subsequently cleaves pro-IL-1 

into its mature form (Figure 2.3). Cellular damage, extracellular ATP, cholesterol crystals, 

and uric acid crystals have all been identified as activating signals for the inflammasome 

(104). To test if oxLDL-ICs can serve as an activating signal for the inflammasome like 

cholesterol crystals, BMDCs were primed with LPS for 3hrs followed by treatement with 

oxLDL (25g/ml) or increasing concentrations of oxLDL-ICs (containing 10, 25 or 

50g/mL total oxLDL) for 3 additional hrs. OxLDL-ICs were able to act as an activating 

signal, however even the highest concentration of oxLDL-ICs elicited IL-1 levels similar 

to that of oxLDL (Figure 2.4A, left).  To test whether oxLDL-ICs act as a priming signal for 

the inflammasome, BMDCs were incubated with oxLDL or oxLDL-ICs in increasing 

concentration for 3hrs followed by ATP for one additional hour. As a priming signal,  



 

26 

 

 

 

 

 

 

 

Figure 2.3. Inflammasome priming and activation. Inflammasome priming (first signal) typically occurs via PAMP 

signaling and results in the transcription of inflammasome related genes. Inflammasome activation (second signal) can 

happen through a variety of mechanisms including ATP or crystal formation and results in the cleavage of pro-caspse-

1 and the subsequent cleavage of pro-IL1. From http://www.invivogen.com/review-inflammasome. 

Copyrights © 2011-2016 InvivoGen. 

http://www.invivogen.com/review-inflammasome
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oxLDL-ICs elicited significantly more IL-1 than free oxLDL (Figure 2.4A, right panel). To 

rule out the possibility that OxLDL-ICs were inducing IL-1 production through the 

formation of crystals, OxLDL-ICs did not promote IL-1 through formation of cholesterol 

crystals, BMDCs were incubated with oxLDL or oxLDL-ICs for three hours and analyzed 

by polarizing light microscopy. Twenty-four hour incubation with oxLDL and the reverse 

cholesterol transport inhibitor CLI-067 was used as a positive control for crystal formation. 

Three hour incubation of BMDCs with oxLDL or oxLDL-ICs was not sufficient for crystal 

formation (Figure 2.4B). Endotoxin contamination of IC preparations is another scenario 

that could give false positive results for IL-1 production. Pretreatment of BMDCs with the 

LPS inhibitor polymyxin B prior to exposure to oxLDL or oxLDL-ICs had no effect on 

elicited IL-1 production, ruling out this possibility (Figure 2.4C).  

OxLDL-IC priming of the inflammasome is dependent on both Nlrp3 and 

caspase-1. To confirm that oxLDL-ICs were acting as a priming signal for the 

inflammasome, qPCR analysis was performed on RNA from BMDCs treated with oxLDL 

or oxLDL-ICs for 2hrs. Increased transcription of inflammasome-related genes Il1a, Il1b, 

and Nlrp3 was observed with no change in inflammasome-related genes Aim2, Nlrc4, or 

Il18 (Figure 2.5A). These data indicate that oxLDL-ICs induce Nlrp3 mRNA levels, 

suggesting that oxLDL-ICs specifically prime the Nlrp3 inflammasome. In order to confirm 

this finding, wild-type and Nlrp3-/- BMDCs were treated with oxLDL-ICs for 3 hrs followed 

by ATP for an additional hr. IL-1 was measured in culture supernatants by ELISA. As 

expected, absence of Nlrp3 completely abolished mature IL-1 production (Figure 2.5B). 

To confirm that oxLDL-IC mediated inflammasome activation was caspase-1 dependent, 

Western blot analysis was performed on whole cell lysates and supernatant from oxLDL  
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Figure 2.4. OxLDL ICs prime the inflammasome. (A) oxLDL ICs were tested for their ability to act as an activating 

(left panel) or priming (right panel) signal for the inflammasome. Culture supernatants were tested for IL-1β by ELISA. 

Shown is one representative of three experiments with three mice per experiment. Unlike letters denote significance (p 

< 0.05) by Student t test, and error bars represent SEM. (B) BMDCs were treated with oxLDL or oxLDL ICs for 3h or 

with oxLDL and the ACAT inhibitor CLI-067 (positive control) for 24 h, crystal formation was analyzed by polarizing 

light microscopy. Lipid-filled cells and crystal formation were quantified; representative images are depicted. Shown is 

one representative of two experiments. Original magnification ×1000. (C) BMDCs were treated with oxLDL ICs in the 

presence of polymyxin B. Shown is one representative of two experiments. IL-1β in culture supernatants was 

measured by ELISA. Unlike letters denote significance (p < 0.01) by one-way ANOVA with a Bonferroni posttest, and 

error bars represent SD. 
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and oxLDL-IC treated BMDCs. Treatment of BMDCs with oxLDL-ICs increased levels of 

cleaved caspase-1 that was not seen in lysates from cells pre-treated with caspase-1 and 

pan-caspase inhibitors (Figure 2.5C). Measurement of IL-1 production from BMDCs pre-

treated with caspase-1 and pan-caspase inhibitors confirmed that oxLDL-IC mediated 

inflammasome activation was capsase-1 dependent (Figure 2.5D). Taken together, these 

data show that oxLDL-ICs elicit robust IL-1 production from BMDCs by inducing 

production of pro-IL-1 and Nlrp3.  

OxLDL-ICs elicit IL-1 production via FcR, TLR4, and CD36.  FcRs are the 

canonical receptors for IgG containing-ICs, however it has been previously shown that  

oxLDL activates the inflammasome through formation of a heterotrimer containing TLRs 

and the scavenger receptor CD36 (45, 105).  To tease out the potential contribution of 

each of these receptors to inflammasome activation, I first determined the baseline 

expression of FcRs on BMDCs. Results indicated that BMDCs mainly express the 

activating receptors FcRI and FcRIV (Figure 2.6A). BMDCs were then treated with 

oxLDL-ICs or oxLDL-Fab2 (lacking the Fc portion of the antibody to prevent binding to 

FcRs) in the presence or absence of the TLR-4 inhibitor CLI-095 for 3 hrs followed by 

ATP for an additional hr. Treatment of BMDCs with the Fab2 complex or the TLR4 inhibitor 

decreased IL-1 production by approximately 50% (Figure 2.6B). Interestingly, treatment 

of BMDCs with both the TLR4 inhibitor and oxLDL-Fab2 further decreased IL-1 

suggesting an additive role for these receptors (Figure 2.6B). The importance of TLR 

signaling to oxLDL-IC mediated inflammasome activation was confirmed using Myd88-/-  

BMDCs, and Cd36-/- BMDCs implicated a role for the scavenger receptor, as well (Figure 

2.6C and D). These results show that oxLDL-IC priming of the inflammasome occurs in a  
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Figure 2.5. Inflammasome priming is Nlrp3 and caspase-1 dependent. (A) BMDCs were stimulated for 2 h with 

oxLDL or oxLDL ICs. Expression of inflammasome-related genes was measured using real-time RT-PCR and 

expressed as the 2−ΔΔCT method compared with the no-treatment group (n = 6 mice). Unlike letters denote 

significance (p < 0.01) by one-way ANOVA with a Bonferroni posttest. (B) B6 and Nlrp3−/− BMDCs were treated for 3 

h with oxLDL or oxLDL ICs, followed by ATP for 1 h. IL-1β production in culture supernatants was measured by 

ELISA. Shown is one of three experiments with three mice per experiment. Unlike letters indicate significance (p < 

0.01) by the Student t test, and error bars represent SEM.(C) Cells were stimulated for 3 hours with oxLDL or oxLDL-

IC followed by lysis in RIPA buffer and Western blot for pro-caspase 1 and cleaved caspase-1. (D) BMDCs were 

treated as in (B) in the presence or absence of a caspase-1 inhibitor (Z-VAD-FMK) or a pan-caspase inhibitor (Z-

YVAD-FMK). IL-1β production in culture supernatants was measured by ELISA. Shown is one of three experiments 

with three mice per experiment. Unlike letters denote significance (p < 0.01) by one-way ANOVA with a Bonferroni 

posttest, and error bars represent SD. 
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Figure 2.6. OxLDL-ICs elicit IL-1 production via FcR, TLR4, and CD36. (A) Surface expression of FcRs on 

BMDCs was measured by flow cytometry. Shown is one representative of three experiments. (B) BMDCs were 

treated with the TLR4 inhibitor CLI-095 prior to treatment with oxLDL IC or oxLDL Fab2 for 3h and ATP for an 

additional hour. Culture supernatants were tested for IL-1 by ELISA. Shown is one of three experiments with 

similar results. Unlike letters denote significance (p <0.01) by one-way ANOVA with a Bonferroni posttest. (C) 

BMDCs from Myd88 -/- (left panel) and CD36-/- (right panel) mice (n = 3 per group) were treated with oxLDL or 

oxLDL ICs for 3 h, followed by ATP for an additional hour. IL-1b in culture supernatants was measured by ELISA. 

Unlike letters denote significance (p<0.01) by Student t test, and error bars represent SEM. 
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receptor dependent fashion and suggests collaboration between FcRs, TLR4, and 

CD36.  

OxLDL-IC induce Syk phosphorylation downstream of FcRs. After observing 

that BMDCs express high levels of activating FcRs, and that BMDCs treated  with oxLDL-

Fab2 produced lower levels of IL-1 similar to those elicited by free oxLDL (Figure 2.6B), 

I hypothesized that oxLDL-ICs may enhance IL-1 production by induce phosphorylation 

of Syk downstream of activating FcRs. To answer this question, BMDCs were treated 

with oxLDL or oxLDL-ICs for 15 minutes and Syk phosphorylation was measured by 

phosphoroflow cytometry. Treatment of BMDCs with oxLDL-ICs increased levels of pSyk, 

however treatement with oxLDL did not result in Syk phosphorylation (Figure 2.7A left).  

To confirm that oxLDL-IC mediated Syk phosphorylation a direct result of FcRs ligation, 

BMDCs were treated with oxLDL-Fab2 or oxLDL-ICs. Like free oxLDL, oxLDL-Fab2 also 

did not cause phosphorylation of Syk (Figure 2.7A middle).  BMDCs were also treated 

with non-specific OVA-containing ICs (ova-ICs) as an additional control.  While ova-ICs 

did caused Syk phosphorylation, it was slightly less than the levels elicited by oxLDL-IC 

treatment (Figure 2.7A right). It is important to note that although ova-ICs increased levels 

of pSyk, they did not induce increased IL-1 production (Figure 2.7B). This observation 

suggests that enhanced IL-1 production requires concomitant ligation of multiple 

receptors. Further confirming the need for engagement of multiple receptors, unbound 

anti-oxLDL also did not elicit IL-1 production from BMDCs (Figure 2.7B). Given that 

ligation of FcRs can result in signaling through ERK to promote production of anti-

inflammatory cytokines such as IL-10, I tested the possibility that oxLDL-ICs generally  
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Figure 2.7. OxLDL ICs enhance IL-1 production via p-Syk. (A) BMDCs were incubated with oxLDL or oxLDL ICs, 

oxLDL-Fab2, oxLDL ICs, or ova-ICs for 15 min. Syk phosphorylation was measured by phospho-flow cytometry. 

Representative line graphs are shown (upper panels). n = 3 mice per group. Unlike letters indicate significance 

(p<0.001) by one-way ANOVA with Bonferroni posttest, and error bars represent SEM. (B) Cells were treated with 

oxLDL, anti-oxLDL, oxLDL ICs, or ova-ICs for 3 h, followed by ATP for an additional hour. IL-1 in culture supernatants 

was measured by ELISA. Shown is one representative of three separate experiments. Unlike letters denote significance 

by oneway ANOVA with a Bonferroni posttest, and error bars indicate the SD. (C) BMDCs were incubated with LPS 

oxLDL or oxLDL ICs for 15 min. Erk phosphorylation was measured by phosphoflow cytometry. A representative line 

graph is shown (left panel) and results are quantified by mean fluorescence intensity (MFI; right panel). n = 3 separate 

experiments. Unlike letters indicate significance (p <0.001) by one-way ANOVA with Bonferroni posttest, and error bars 

represent SEM. (D) B6 or Syk-/- BMDCs (left panel) or B6 BMDCs plus or minus the Syk inhibitor Bay61-3606 (right 

panel) were incubated with oxLDL or oxLDL ICs for 3 h, followed by ATP for 1h. n = 3 separate experiments. Unlike 

letters indicate significance (p<0.05) by the Student t test, and error bars represent SEM. 
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induce phosphorylation of all FcR-associated kinases. However, treatment of BMDCs 

with oxLDL-ICs for 15 minutes did not produce detectable ERK phosphorylation (Figure 

2.7C). The contribution of FcR mediated Syk phosphorylation to oxLDL-IC mediate 

inflammasome activation was supported by the significant decrease in IL-1 production 

from oxLDL-IC treated BMDCs from Syk-/- mice and in the presence of a Syk inhibitor 

(Figure 2.7D). These data indicate that while Syk phosphorylation plays an important role 

in oxLDL-IC mediated IL-1 production, it is not sufficient to elicit enhanced levels of this 

pro-inflammatory cytokine.  

OxLDL-IC-mediated inflammasome priming requires CARD9. Previous studies 

have shown that ITAM-coupled receptor and TLR signaling pathways converge on  the 

adaptor protein CARD9, and CARD9-dependent inflammasome activation and resulting  

IL-1 production are critical for mounting an immune response to fungal pathogens(106–

108). CARD9 is a key component of the CARD9-Bcl10-MALT1 (CBM) signalosome, a 

protein complex that facilitates translocation of NF-B to the nucleus and production of 

pro-inflammatory cytokines (109). Although studies on fungal pathogens typically focus 

on the ITAM coupled receptors dectin 1 and 2, it is possible that oxLDL-ICs may  also 

utilize the CARD9 pathway given that they bind to both TLRs and ITAM coupled FcRs 

(104,105,107). To test if CARD9 is involved in oxLDL-IC-mediated inflammasome 

responses, wild-type and Card9-/- BMDCs were treated with oxLDL or oxLDL-ICs for 3 

hrs followed by ATP for an additional hr in the presence or absence of either a TLR4 or 

Syk inhibitor. CARD9 deficiency had no effect on IL-1 responses to LPS priming (Figure 

2.8A, left panel) or oxLDL-mediated IL-1 production (Figure 2.8A, right panel). Absence 

of CARD9 did, however, result in significantly decreased levels of IL-1 secretion from 
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oxLDL-IC treated cells (Figure 2.8A, right panel).  As previously shown in figure 2.5A, pre-

treatment of wild type BMDCs with a TLR-4 or Syk inhibitor reduced IL-1levels b 

approximately 50% but did not completely abolish them, suggesting that that both TLR-4 

and FcRs are required for robust IL-1 production. Further confirming that oxLDL-IC 

signaling through these receptors converges on CARD9, pre-treatment of Card9-/- 

BMDCs with either TLR4 or Syk inhibitors completely ablated IL-1 production.  This was 

accompanied by decreased expression of inflammasome genes Il1a, Il1b or Nlrp3 in 

CARD9 knock-out cells treated with oxLDL-ICs, but not oxLDL (Figure 2.8B).  

Surprisingly, CARD9 deficiency did not affect production of IL-6 or TNF (Figure 2.8C). 

These data confirm that oxLDL-ICs prime the IL-1 response by signaling through 

multiple receptors and converging on the adaptor protein CARD9.  

OxLDL-ICs induce CBM complex formation and NF-kB translocation. To 

determine whether oxLDL-ICs signaling through CARD9 promoted formation of the CBM 

signalosome complex, BMDCs were treated for 2 hrs with oxLDL or oxLDL-ICs. 

Immunoprecipitation of whole cell lysates using antibodies to MALT1 and CARD9 showed 

that the entire CBM complex was formed when cells were treated with oxLDL-ICs, and 

not oxLDL alone (Figure 2.9A, left and middle). Interestingly, immunoprecipitation 

experiments with an antibody directed at Bcl10 resulted in detection of the entire CBM 

complex in both treatment groups. Although the entire CBM complex was pulled down in 

both treatment groups under this condition, the levels of MALT1 and CARD9 associated 

with Bcl10 were much higher in the BMDCs treated with oxLDL-ICs, suggesting that 

perhaps Bcl10 is rate limiting (Figure 2.9A, right). Given that CBM complex formation is 

associated with nuclear translocation of the transcription factor NF-B, I next analyzed  
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Figure 2.8. OxLDL-IC inflammasome priming is CARD9 dependent. (A) B6 and Card9-/- BMDCs were incubated 

with LPS, oxLDL, or oxLDL ICs in the presence or absence of a TLR4 or Syk inhibitor for 3 h, followed by ATP for an 

additional hour. IL-1 in culture supernatants was measured by ELISA (n = 3 mice per group). Unlike letters denote 

significance (p <0.001) by the Student t test, and error bars indicate SEM. (B) B6 and Card9-/- BMDCs were 

incubated with oxLDL (left panel) or oxLDL ICs (right panel) for 2 h. Expression of inflammasome-related genes was 

measured using real-time RTPCR and expressed as 2-CT compared with the no-treatment group (n = 3 mice per 

group). Unlike letters denote significance (p <0.01) by one-way ANOVA with a Bonferroni posttest. (C) BMDCs from 

B6 and Card9-/- mice were incubated with LPS, oxLDL, or oxLDL ICs for 24 h. TNF and IL-6 in culture supernatants 

were measured by ELISA. n = 3 mice per group; error bars represent SEM. 
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Figure 2.9. OxLDL-ICs cause CBM formation. (A) BMDCs were treated with oxLDL or oxLDL ICs for 2 h. 

Immunoprecipitation using Abs to MALT1, CARD9, and BCL10 was performed on whole-cell lysates, followed by 

Western blot analysis. Shown is one representative of three similar experiments. (B) BMDCs were treated with oxLDL 

or oxLDL ICs for 2h. Lysates were separated into nuclear and cytosolic fractions, followed by Western blotting for NF-

B p65. Shown is one of three representative experiments 
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levels of NF-B p65 in the cytosolic and nuclear fractions of oxLDL and oxLDL-IC treated 

BMDCs. Unsurprisingly, OxLDL-ICs but not oxLDL induced nuclear translocation of NF-

B. However, nuclear translocation of NF-kB did not occur when Card9-/- BMDCs were 

treated with oxLDL-ICs (Figure 2.9B). Taken together, the results from figures 2.7 and 2.8  

OxLDL-ICs exacerbate atherosclerosis and cause aortic dissection in vivo. 

In order to determine whether oxLDL-ICs played a role in atherosclerosis disease severity 

or were simply a biomarker, I injected LDLr-/- mice with oxLDL or oxLDL-IC and measured 

atherosclerotic lesions in the aortic root after 8 weeks on Western diet. Representative 

images of lesions in saline, oxLDL, and oxLDL-IC treatment groups are shown in Figure 

2.10A. Mice that received oxLDL-IC (equivalent concentration of oxLDL) injections had 

significantly larger atherosclerotic lesions than mice that received injections of saline or 

oxLDL (Figure 2.10B). Interestingly, although oxLDL-IC injected mice had increased total 

lesion are, they did not have significantly more ORO staining, indicating that the lesions 

were cellular in nature (Figure 2.10C). Changes in lesion area were not a result of 

changes in total body weight, serum cholesterol, or serum triglycerides (Figure 2.10D). 

Analysis of Oil Red O staining revealed that some of the atherosclerotic lesions seemed 

to be growing into the adventitia of the vessel causing vascular remodeling. Trichrome 

blue staining of the collagen fibers confirmed breaks in the intraelastic lamina of the 

vessel, indicating that these lesions were causing aortic dissection. A model figure of a 

blood vessel can be found in Figure 2.11A. Aortic dissection causes plaque instability, 

rendering the plaque more likely to rupture and cause a cardiovascular even such as 

heart attack and stroke. Interestingly, 4 out of 7 mice treated with oxLDL-ICs showed 

remodeling of the vessel (57%), whereas only 1 out of 6 in both the saline and oxLDL  
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Figure 2.10. OxLDL-ICs increase Atherosclerosis. LDLr-/- mice were injected with saline, 10g oxLDL, or 25g 

oxLDL-IC every 2 weeks for 10 weeks. Mice were placed on Western diet one week after the first injection. 

Atherosclerosis in the proximal aorta was determined by Oil Red O Staining. Representative images are depicted (A) 

and quantification of staining is graphed in (B). Data are representative of 6-7 mice per group. (C) Post study levels of 

serums cholesterol and triglycerides and body weight. Error bars represent SEM and unlike letters denote significance 

(p<0.05) by one-way ANOVA with a Bonferroni posttest.  
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treatment groups displayed aortic dissection (17%) (data not shown). Representative 

images of Oil Red O and trichrome blue staining in the proximal aorta from a mouse 

treated with oxLDL-ICs are shown (Figure 2.11B, C). Both lesion cellularity and aortic 

dissection have been associated with plaque instability, rendering the plaque more likely 

to rupture and cause a cardiovascular even such as heart attack and stroke(111–113). 

Taken together these data conclude that oxLDL-ICs increased atherosclerotic lesion size 

and promote aortic dissection and plaque instability.  

Discussion 

A number of past studies have provided indirect evidence that oxLDL-ICs have 

pathogenic potential. Experiments performed in hyperlipidemic Apoe-/- and Ldlr-/- mice 

deficient in activating FcRI/III exhibited decreased atherosclerosis, while 

atherosclerosis-susceptible mice lacking the inhibitory FcRIIb show strain-dependent 

increases or decreases atherosclerosis (54, 57, 58). Furthermore, Kyaw et al. 

demonstrated that IgG is pathogenic whereas IgM is protective(22–24). However, despite 

strong indications that oxLDL-ICs may play an important role in inflammation in  

atherosclerosis, the majority of studies understanding this immune response in focus on 

free oxLDL (31–33). Work from the Lopes-Virella lab has shown that oxLDL-ICs elicit 

production of inflammatory cytokines from human macrophages in vitro, however very 

little is understood about how oxLDL-ICs contribute to inflammation and if they have direct 

effects on atherosclerotic outcomes in vivo(41). I have provided evidence that oxLDL-ICs 

act directly on DCs (and macrophages) to cause increased activation marker expression  



 

41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Aortic dissection in oxLDL-IC treated mice. (A) A reference diagram for the anatomy of an artery. 
Copyright © J. Norah. Arterial Surgery of the Leg (B) Oil Red O stained showing vascular remodeling (indicated with a 
black arrow) (C) Trichrome blue staining of the same aorta depicts a break in the intraelastic lamina denoted with an 
arrow at low (left) and high (right) magnification. 
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and differential cytokine production compared to oxLDL alone. This finding is novel and 

important as dendritic cells provide a link between the innate and adaptive immune 

response.  

 Furthermore, I have shown that oxLDL-ICs act as priming signals for IL-1 

production and Nlrp3 inflammasome activation via FcR, CD36 and TLR4. Previous work 

by Sheedy et al. elicited a role for oxLDL as an activating signal for the inflammasome 

(71). Entry of oxLDL into the cell was facilitated by a heterotrimer of TLR4/TLR6 and 

CD36. Following entry into the cell, oxLDL was able to act as an activating signal through 

the formation of crystals which resulted in lysosomal disruption. The authors of this study 

concluded that oxLDL was able to act as both a priming and activating signal for the 

inflammasome via TLR ligation and cholesterol crystal formation, respectively. Given that 

high levels of IL-1 were observed following 24 hrs of treatment with oxLDL-ICs (Figure 

2.2A), it is likely that oxLDL-ICs are also able to act as both the priming and activating 

signal for the inflammasome even more efficiently than free oxLDL. Like oxLDL mediated 

inflammasome activation, oxLDL-IC priming of the inflammasome occurs in a receptor-

dependent fashion.  However unlike oxLDL, the primary mechanism of inflammasome 

activation is not cholesterol crystal formation. These conclusions are supported by data 

showing that 1) oxLDL-ICs enhance IL-1production above oxLDL when used as a 

priming signal for the inflammasome; 2) IL-1 production is partially decreased by 

removing CD36, TLR4, or FcR; and 3) oxLDL-ICs increase transcription of the 

inflammasome-related genes Il1a, Il1b, and Nlrp3. It is possible that oxLDL-ICs also act 

as an activating signal in vivo both by inducing cell death via pyroptosis resulting in the 
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release of cellular contents including ATP and by cholesterol crystal formation and 

lysosomal disruption following uptake via FcRs.  

 The aforementioned study and others have shown that oxLDL induces 

inflammasome mediated IL-1 production from BMDMs; however, we were not able to 

detect IL-1 in BMDM supernatants under our treatment conditions (Figure 2.2B)(71, 117, 

118). These different observations are likely related to both time and dose. Studies by 

Jiang et al. detected IL-1 production from BMDMs treated with increasing concentrations 

of oxLDL (25-200 g/mL) for 12 hrs, choosing to do the majority of the experiments with 

200 g/mL of oxLDL (117). Similar work by Liu et al. used  high concentrations of oxLDL 

(50-200 g) for 24 hrs to look at production of IL-1 (118). The concentrations of oxLDL 

used in these studies elicit potent responses, however they are at the extreme upper limit 

of being physiologically relevant. To complete the studies presented in this chapter, I 

chose to use 10 g/mL oxLDL to more closely mimic levels of circulating oxLDL in vivo. 

In addition to using higher concentrations of oxLDL, the studies by Jiang, Liu, and others 

stimulated cells for a minimum of 12 hours (117, 118).   Long incubation periods allow 

time for the formation of cholesterol crystals which is the primary mechanism by which 

oxLDL activates the inflammasome. The studies presented herein were performed using 

a much shorter 3 hr incubation with the antigens in an attempt to tease apart the different 

mechanisms by which oxLDL and oxLDL-ICs induced IL-1 production. 

  Recently, Duffy et al. demonstrated that inactivated Franciscella tularensis (F. 

tularensis) opsonized with IgG activated the inflammasome in an FcR/TLR dependent 

fashion (62). While this study did not directly demonstrate cross talk between these two 
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receptors, it is likely occurring given that TLRs and FcRs are tightly clustered in 

glycoprotein microdomains (119). Although they do not bind to FcRs,  fungal antigens, 

such as those from Candida albicans (C. albicans), have been shown to activate the 

inflammasome by binding to several other  ITAM associated receptors including the  C-

type lectins dectin-1, dectin-2, and mincle (106, 108, 110). Binding of these antigens leads 

to recruitment and phosphorylation of Syk and further signal propagation resulting in the 

formation of a CARD9/Bcl10/MALT1 (CBM) complex and nuclear translocation of NF-B 

(106). The study presented in this chapter shows that, like fungal pathogens, oxLDL-ICs 

utilize the CBM signaling pathway during sterile inflammation to enhance IL-1 responses 

in BMDCs.  Surprisingly, increased CARD9-mediated NF-B translocation did not result 

in increased production of TNF or IL6, both of which are known transcriptional targets 

of NF-B. There have been a handful of studies implicating CARD9 in increased 

TNFproduction in models of fungal pathogenesis, and no reports connecting CARD9 

signaling and IL-6 production to date (120–122). The studies examining CARD9 mediated 

TNF production all required dectin-1 ligation. It is reasonable to hypothesize that the 

FcR-CARD9 pathway is distinct from the dectin-1-CARD9 pathway and involves a 

phosphorylation or ubiquitination event that gives NF-B greater affinity for the IL-1 

promoter. In addition, it is also possible that TNF levels are increased at an earlier or 

later time point given that they were only measured at 24 hrs. Greater understanding of 

the FcR-CARD9 pathway in sterile inflammation is an area of continued interested and 

warrants further study.  
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       In 2014, Janczy et al. published data that opposed the current study. The authors of 

this report concluded that IgG containing ICs inhibit inflammasome activation by LPS in 

BMDMs. These experiments were performed by priming BMDMs with LPS in the 

presence of ICs containing sheep’s red blood cell, OVA, or C. albicans. Under these 

conditions,  IL-1 production was decreased compared to priming with LPS alone (123). 

However, in my studies I observed that similar to BMDCs, BMDMs also exhibit enhanced 

IL-1 secretion in response to oxLDL-ICs (Figure 2.2). One possible explanation for the 

discrepancy between this work and our current study is that the specific antigen contained 

in the immune complex plays an important role in the immune response. My data indicate 

that oxLDL-ICs activate the inflammasome by binding to TLR4, CD36, and FcR on DCs. 

There is no precedent for either sheep’s red blood cell or OVA binding to pattern 

recognition receptors although C. albicans can bind both TLR2 and TLR4. Interestingly,  

LPS has been shown to upregulate the expression of the inhibitory receptor FcRIIb on 

the surface of cells downregulating inflammation (124). Therefore, it is possible that pre-

treatment with LPS decreases IC-mediated inflammatory cytokines due to increased 

FcRIIb expression. Given that high levels of LPS are not found in sterile inflammation, 

the experimental system used in my studies may be more clinically relevant to diseases 

such as atherosclerosis, SLE and RA which are all associated with ICs containing 

molecules that can signal through both TLRs and FcRs.  

 In this study I show that intravenous (IV) injection of oxLDL-ICs causes increased 

atherosclerotic burden in vivo (Figure 2.9). However, I do not provide evidence that this 

increase in atherosclerosis is a direct result of oxLDL-IC mediated inflammasome priming. 

Past studies by Finbloom and Plotz have shown that over 80% of IV injected immune 
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complexes are deposited in the liver as early as 1 hr after injection whereas approximately 

2% stay in the blood up to 48hours (125, 126). Given that inflammasome activation is a 

very rapid innate immune response, it is feasible that this occurs in the blood prior to 

deposition of the immune complexes in the liver or that the small amount of IC that stays 

in the blood is able to perpetuate this immune response. The studies by Finbloom and 

Plotz were completed using heat aggregated IgG and ova-ICs, so it is important to 

determine if oxLDL-ICs are deposited throughout the body in a similar fashion. It is also 

possible that an adaptive immune response is responsible for the increase in 

atherosclerosis. A 2012 study showed that DCs in the liver travel to the liver draining 

lymph nodes (portal and coeliac) to activate CD4 and CD8 T cells, both of which have 

been implicated in atherosclerosis disease progression (127, 128). OxLDL-IC modulation 

of T cell responses will be discussed in chapter 3.  

      In conclusion, the current study demonstrates that oxLDL-ICs have the potential to 

enhance inflammation by priming the Nlrp3 inflammasome, and the molecular 

mechanisms by which this occurs are similar to those utilized pathogens and/or ICs 

formed during bacterial infections (62, 106). Collectively, the data suggest that while such 

responses may be beneficial during acute septic inflammation, IC-mediated production of 

cytokines such as IL-1 during chronic sterile inflammation are likely pathogenic 

(summarized in Figure 2.12). Finally, this study shows that oxLDL-ICs increase 

atherosclerosis in vivo. These findings identify an important contribution of oxLDL-ICs to 

both innate and adaptive immune responses that go beyond its previous recognition as a 

biomarker for atherosclerosis disease severity.  
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Figure 2.12. A proposed model for oxLDL-IC mediated inflammasome priming via CARD9-
Bcl10-MALT1 (CBM) Complex formation. Briefly, oxLDL-ICs bind to multiple receptors on the 
suface of DCs. Signaling converges on the adaptor protein CARD9 resulting in formation of the CBM 

complex, resulting in nuclear translocation of Nfb. This allows for transcription of pro-IL1b which is 
subsequently cleaved by caspase-1 following inflammasome activation. 
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CHAPTER 3 

OxLDL Immune Complexes Promote Th17  

Differentiation while Inhibiting IFN Responses. 
 

Abstract 

 OxLDL-ICs are a prominent feature of atherosclerosis with important pathogenic 

potential. In Chapter 2, I discussed data supporting that oxLDL-ICs cause innate 

inflammation by priming the inflammasome and eliciting increased levels of inflammatory 

cytokines from macrophages and dendritic cells. However, it is currently unknown how 

oxLDL-ICs modulate the adaptive immune response. In this study, I provide evidence that 

oxLDL-ICs induceTh17 polarization via inflammasome mediated IL-1 and IL-1. While 

enhancing IL-17 production, oxLDL-ICs simultaneously inhibit IFNresponses through a 

Syk-dependent IL-23 mechanism. These findings are important given the important role 

of Th1 and Th17 T cells in atherosclerosis pathogenesis. 

Introduction 

 OxLDL-ICs represent an important biomarker for atherosclerosis, as circulating 

titers of these ICs correlate with disease severity(25). While it has been shown previously 

that oxLDL-ICs enhance innate inflammatory responses in macrophages and DCs (32 

and Chapter 2 ), it is currently unknown whether oxLDL-ICs can modulate adaptive 

immunity, and if so, what might be the mechanism(s). CD4+ T cell responses are a critical 

component of adaptive immunity. Activation of these cells occurs by antigen presentation 

in the context of MHCII by an APC. The cytokine milieu generated by the APC in which 

antigen presentation occurs drives the CD4+ T cell to a certain lineage (reviewed in 125). 
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IFN producing Th1 cells and IL-17 producing Th17 cells have both been implicated in 

the pathogenesis atherosclerosis. In general, Th1 cell differentiation is driven by the 

production of IL-12 from the APC, whereas Th17 differentiation occurs in the presence of 

IL-1, IL-6, IL-23, and TGF.  

 A pathogenic role for IFN in atherosclerosis is well established. IFN receptor 

(IFNR) null mice crossed to the ApoE-/- background have a significant reduction in 

atherosclerotic lesion size accompanied by decreased lipid accumulation and lesion 

cellularity(130). Similarly, mice treated with a monoclonal antibody to IFN are protected 

from atherosclerosis(127). The contribution of Th17 cells to atherosclerosis pathogenesis 

is less clear. Studies have shown that there is enhanced expression of IL-17 secreting T 

cells both in the in situ in the aorta and systemically during early atherosclerosis 

development(132). Blockade of IL-17 in hyperlipidemic mouse models using both an 

adenoviral vector and a monoclonal antibody significantly improved atherosclerotic 

outcomes; however, genetic deletion of IL-17 enhanced lesion size(133–135). Studies by 

Taleb et al. and Gistera et al. also suggest a regulatory role for Th17 cells by 

enhancement of lesion stability and formation of a solid fibrous cap (136, 137).  

 Free oxLDL has been shown to mature dendritic cells, enhance T cell proliferation, 

and promote both IFN and IL-17 production in vitro(105, 138, 139). Clues from studies 

in FcR-/- mice implicated a potential role for oxLDL-ICs in T cell differentiation and 

cytokine production, as well. Experiments performed in ApoE-/- mice deficient in the 

activating FcRs reported increased levels of IFN and decreased IL-17, whereas ApoE-

/- mice lacking the inhibitory receptor FcRIIb have increased levels of IL-17(57, 140).  
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Given the pathogenic potential of IFN and IL-17 in atherosclerosis and the fact that that 

majority of oxLDL in circulation is complexed to antibody in immune complexes, it is 

important to determine how oxLDL-ICs modulate T cell polarization.  

Materials and Methods 

Mice. C57BL/6J (B6), B6N.129-Nlrp3tm1Hhf/J (Nlrp3-/-), and B6.Cg-Tg (TcraTcrb) 425Cbn/J 

(OT-II) mice were originally obtained from the Jackson Laboratory (Bar Harbor, ME) and 

maintained and housed at Vanderbilt University. All mice used in these studies were on 

the C57BL/6J background. Procedures were approved by the Vanderbilt University 

Institutional Animal Care and Use Committee. 

OxLDL and oxLDL-ICs. Human native low density lipoprotein was purchased from 

Intracel Resources (Frederick, MD) or Sigma-Aldrich (St. Louis, MO). OxLDL was made 

by dialyzing human LDL for 24 hrs against 0.9 M NaCl at 4C with two buffer changes, 

followed by dialysis against 0.9 M NaCl containing 20 M CuSO4 for 4 hrs at room 

temperature. Oxidation was terminated by dialysis against 1 mM EDTA in 1X PBS for 16 

hrs with two buffer changes. Extent of oxidation was determined by TBARS assay (Cell 

Biolabs, Inc., San Diego, CA). OxLDL-ICs were generated by incubating polyclonal rabbit 

anti-human apoB-100 (Alfa Aesar, Ward Hill, MA) with oxLDL at a ratio of 10:1 (500 g of 

antibody, 50 g of oxLDL) overnight at 37C. Unbound antibody and antigen were 

removed by size exclusion filtration. For all experiments, immune complex concentrations 

were normalized based on oxLDL concentration to ensure that equal amounts of oxLDL 

were used in both the oxLDL and oxLDL-IC conditions. Fab2 fragments were made using 

the Pierce Fab Fragmentation Kit (Thermo Fisher Scientific, Waltham, MA) according to 
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manufacturer’s protocol.  OxLDL enriched immune complexes were obtained from the 

serum of Apoe-/- mice fed Western diet (21% saturated fat, 0.15% cholesterol) for 12 

weeks. Whole blood was obtained by retro-orbital bleeding. Serum was incubated with 

protein G beads for 1 hr at room temperature. Immune complexes were eluted from 

protein G beads and protein concentration was calculated by BCA assay according to 

manufacturer’s instructions (Thermo Fisher Scientific).  

Cell Culture. BMDCs were generated as previously described (102). Briefly, bone 

marrow from hind legs was flushed with RPMI-1640 (Corning, Corning, MA) 

supplemented with 10% FBS (Gibco, Grand Island, NY), 10 mM HEPES (Corning), and 

1× Penicillin/Streptomycin/L-glutamine (Sigma-Aldrich) (hereafter referred to as TCM). 

Cells were plated in 100 mm2 petri dishes at 2×105 cells/mL in TCM containing 20 ng/mL 

recombinant GM-CSF (R&D Systems, Minneapolis, MN). Media was replaced on days 3 

and 6 and cells were harvested on day 9.  To make BMDCs from various transgenic 

strains femurs were shipped overnight. Cd11ccre/Sykflox/flox, IL1b-/-, and IL1a-/- femurs were 

obtained from Dr. John Lukens (University of Virginia, Charlottesville, VA).   

Real-Time Quantitative PCR. BMDCs were treated with indicated stimuli for two hrs. 

Total RNA was isolated from cells using Norgen Total RNA Isolation Kits (Norgen Biotek 

Corporation, Thorold, Ontario, Canada). RNA concentrations were normalized and RNA 

was reversed transcribed with a high capacity RNA to cDNA reverse transcription kit 

(Applied Biosystems, Grand Island, NY). The reverse transcription product was used for 

detecting mRNA expression by quantitative real time PCR using the QuantStudio 6-flex 

System (Life Technologies, Grand Island, NY). The cycling-threshold (CT) value for each 
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gene was normalized to that of the house keeping gene Ppia, and relative expression 

calculated by the change in cycling threshold method (CT).  

T cell Assays. For T cell assays, 50,000 BMDCs were incubated overnight with the 

indicated stimuli in round bottom 96 well plates. CD4+ T cells were isolated from spleens 

of OT-II mice using the CD4+ T cell Isolation Kit (Miltenyi Biotech, Bergisch Gladbach, 

Germany) according to manufacturer’s protocol and labeled with Cell Tracker Violet 

(Invitrogen, Gran Island, NY). 100,000 labeled CD4+ T cells were added to pre-treated 

dendritic cells in the presence of 100 ng/mL OVA323-339 peptide (Invivogen, Grand Island, 

NY) for 72 hours. Culture supernatants were collected for cytokine measurement and T 

cells were analyzed for proliferation and activation by flow cytometry. 

Flow Cytometry.  To measure T cell activation, cells were incubated for 15 minutes at 

room temperature with Fc-block (BD Bioscience) diluted 1:200 in FACS buffer containing 

HBSS, 1% BSA, 4.17mM sodium bicarbonate, and 3.08mM sodium azide. The following 

antibodies were diluted 1:200 and incubated with the cells for 30 minutes on ice: CD11c-

FITC, CD62L-PE, CD4-PECY7, TCR-CD4, and CD44-APCCY7 (BD Bioscience). Cells 

were washed and re-suspended in 2% PFA for analysis on a MACSQuant seven color 

flow cytometer (Miltenyi Biotech) and data were analyzed using FlowJo Single Cell 

Analysis Version 7.6.5.  

ELISA. IFN (BD Biosciences, San Jose, CA), and IL-17 (eBioscience, San Diego, CA) 

ELISAs were performed according to manufacturer’s instructions. 

Statistical Analyses.  Where appropriate statistical significance was determined using a 

Student’s t test. If more than two groups were compared, a one way Analysis of Variance 

(ANOVA) was used. In all cases p<0.05 was considered statistically significant. 
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Results 

OxLDL-IC treated BMDCs skew T cells to a Th17 phenotype. In order to determine 

whether oxLDL-IC treatment of BMDCs affected antigen-specific T cell responses, 

BMDCs were treated for 24 hours with oxLDL or oxLDL-ICs then co-cultured with bead-

purified splenic OT-II CD4+ T cells in the presence of ova323-339 peptide for an additional 

72 hours. While there were no observed differences in T cell activation (Figure 3.1A) or 

proliferation (Figure 3.1B), analysis of cytokines in culture supernatants showed that 

oxLDL-IC treatment of BMDCs induced increased production of IL-17 from T cells but 

decreased IFN compared to oxLDL alone (Figure 3.1C). To test the effects of oxLDL-ICs 

on T cell responses to oxLDL itself, we utilized the T cell hybridoma clone 48.5 (a kind 

gift of Dr. Goran Hansson, Karolinska Institute, Stockholm, Sweden) that recognizes 

native apoB100 on LDL. Similar to Hermansson et al., we observed that oxLDL induces 

less IL-2 production from the hybridoma compared to native LDL. Interestingly, oxLDL-

ICs induced IL-2 secretion to nearly the level of native LDL (Figure 2D). This result 

suggests that perhaps oxLDL-ICs may be facilitating increased uptake and presentation 

of oxLDL-associated apoB-100 by DCs. 
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Figure 3.1. OxLDL-ICs elicit different T cell cytokine responses. (A-C) 104 BMDCs were treated with oxLDL or 

oxLDL-ICs for 24 hours followed by co-culture with 105 MACs sorted OT-II CD4+ T cells and OVA peptide (50g/mL) 

for 72hrs. (A) T cell activation was measured by expression of CD44 and CD62L on CD4+TCR+ cells. Representative 
dot plots are shown (left) and percent of Cd44hiCD62Llo cells are quantitated (right). (B) T cell proliferation was 
determined by Cell Trace Violet dilution. Shown is a representative histogram (left) and percent of proliferating cells is 

graphed (right). (C) IL17 (left) and IFN (right) were measured in culture supernatants by ELISA. n= 3 mice. All 
experiments were conducted 3 times. Unlike letters denote significance p<0.05 by One-way ANOVA for comparisons 
of more than two groups and Student’s t test for comparisons of two groups. Error bars represent SEM. (D) D) 4x105 
BMDCs were co-cultured with 105 T cell hybridoma cells (clone 48.5) for 24 hrs in the presence of 20ug/mL native LDL 
(positive control), oxLDL, or oxLDL-ICs. IL-2 in culture supernatants was used as a measure of T cell activation and 
was quantified by ELSA. All Experiments were conducted a total of 3 times. Unlike letters denote significance (p<0.01) 
by Student’s t test. Error bars indicate SD.  
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OxLDL-ICs induce quantitatively and qualitatively different cytokine secretion from 

BMDCs compared to oxLDL alone. To determine the mechanism for differences in 

induced T cell response to oxLDL-ICs, cytokine levels in BMDCs following different stimuli 

were measured by qRT PCR. Results show that while oxLDL-ICs increased the 

expression of il12 by two-fold over the no treatment group, il23 mRNA levels were 

enhanced by an impressive 8-fold (Figure 3.2). This was approximately 2-times the 

amount of message elicited by oxLDL alone which seemed to favor il12 expression 

(Figure 3.2).  As expected, oxLDL-IC treatment caused a robust increase of IL-1 

expression compared to the no treatment and oxLDL groups.  

 OxLDL-IC polarize BMDCs to promote Th17 responses via inflammasome 

dependent IL-1. To determine if oxLDL-IC inflammasome activation and IL-1 production 

played a role in T cell polarization, OT-II CD4+ T cells were incubated with Nlrp3-/- and IL-

1-/- BMDCs pretreated with oxLDL or oxLDL-ICs. Loss of Nlrp3 resulted in abolished IL-

17 production (Figure 3.3A, left panel), and absence of IL-1 reduced IL-17 by two-fold 

(Figure 2.3B, left panel). Interestingly, IL-1-/- BMDCs treated with oxLDL or oxLDL-ICs 

were not able to elicit strong Th17 responses (Figure 3.3C, left panel).  Nlrp3-/- IL-1-/-, 

and IL-1-/-  BMDCs pretreated with oxLDL-ICs induced similar levels of IFN- compared 

to B6 BMDCs (Figure 3.3, right panels). While these experiments provide evidence that 

IL1 and/or  mediates oxLDL-IC enhancement of Th17 responses, they do not provide 

an explanation for the suppression of IFN.  
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Figure 3.2. OxLDL-ICs induce production of Th17 polarizing cytokines. Quantitative real-time RT-PCR was used 

to measure the expression of il1b, il23, and il12 and mRNA and quantification was completed using the CT method. 
Shown is one representative of 3 experiments with three mice per experiment. Unlike letters denote significance 
(p<0.01) by Student’s t test. Error bars represent SEM. 
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by ELISA. Shown is one of three experiments with three mice per experiment. Error bars represent SEM. Unlike letters 
denote significance (p<0.01) by One-way ANOVA with Bonferroni post-test.  
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OxLDL-ICs signaling through FcRs enhances IL-23 production in BMDCs via Syk 

phosphorylation. It was demonstrated in Chapter 2 that oxLDL-ICs signal through FcRs 

and induce Syk phosphorylation. To determine if oxLDL-IC induced T cell responses were 

pSyk-dependent OT-II T cell experiments described in previous figures were repeated 

using Syk-/- BMDCs. Measurement of cytokines in culture supernatants indicated that 

pSyk plays a role in both IL-17 and IFN production as loss of Syk decreased oxLDL-IC 

elicited IL-17 production, while simultaneously increasing IFN production (Figure 3.4). 

Decreased induction of Th17 responses in the absence of Syk is likely due to decreased 

IL-1 production by BMDCs.  This is supported by data demonstrating significantly 

decreased oxLDL-IC induced IL-1 production from Syk-/- BMDCs or BMDCs treated with 

a Syk inhibitor (Data shown in Figure 2.7D). A 2010 study by Sieve et al. defined a novel 

role for IL-23 as an inhibitor of IL-12 mediated IFN production in murine splenocytes 

leading to the hypothesis that Syk mediated IL-23 from DCs was suppressing IFN 

responses. Analysis of IL-23 and IL-12 expression in wild-type and Syk-/- BMDCs 

indicated that loss of Syk dampened oxLDL-IC mediated il23 expression (Figure 3.4B). 

To confirm this hypothesis, OT-II T cell experiments were repeated in the presence of an 

IL-23 neutralizing antibody. As expected, addition of the neutralizing antibody increased 

IFN production from T cells incubated with oxLDL-IC treated DCs (Figure 3.4C).  

Discussion 

 This study identifies a novel role for oxLDL-ICs in the adaptive immune response. 

I have shown not only that oxLDL-ICs promote Th17 polarization in an IL-1 dependent 

manner, but also that these ICs inhibit IFN production from T cells through an IL-23  
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Figure 3.4. Syk Signaling mediates IFN suppression. (A) Wild type and Syk-/- BMDCs were treated with oxLDL or 

oxLDL-ICs for 24 hours followed by co-culture with MACs sorted OT-II CD4+ T cells and OVA peptide (50g/mL) for 

72hrs. IL-17 (top) and IFN (bottom) were measured in culture supernatants by ELISA. n=3 mice /experiment. Unlike 
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mechanism. There is currently a large discrepancy in the field as to whether IL-17 is 

atherogenic or atheroprotective in nature. Although I have observed increased 

atherosclerosis in oxLDL-IC treated mice suggesting that Th17 polarization is pathogenic, 

I have not provided direct evidence that this adaptive immune response is the cause 

(133–137). However, given the prevalence of oxLDL-ICs in sterile inflammatory disorders 

and the importance of further understanding Th17 biology in the context of 

atherosclerosis, it is certainly an area that warrants further study. 

 A recent study by Ciraci et al. showed that ova IgG ICs suppress Th17 responses 

in an ova immunized mouse model through an IL-10 mechanism, begging the question 

as to whether the findings highlighted in this chapter would stand up in vivo. The authors 

noted that while the IL-17 production in their model required IL-1, it was not dependent 

on inflammasome activation(141). However, in the studies presented herein, loss of the 

inflammasome gene Nlrp3 completely abolished IL-17 production. This disparity is likely 

due to the antigen contained in the IC. I demonstrated in Chapter 2 that oxLDL-ICs have 

enhanced inflammasome activation due to the ability of the antigenic portion (oxLDL) to 

bind to multiple receptors on the cell surface. As OVA is not known to bind pattern 

recognition receptors, it is likely that ova-ICs elicit differential innate and therefore 

adaptive immune responses.  

 Interestingly, although IL-23 is known to be one of the cytokines involved in Th17 

polarization, inhibition of IL-23 with a neutralizing antibody did not inhibit oxLDL-IC elicited 

IL-17 production. Previous studies have shown that IL-1 is the only cytokine required for 

commitment to the Th17 lineage, whereas IL-23 and IL-6 are involved in maintenance of 

the population (142–144). Another surprising observation in this study is that IL-1played 
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a greater role in Th17 polarization than IL-1 as evidenced by the data presented in Figure 

3.3. Despite the fact that it is a unique and equally potent cytokine, very little is known 

about the inflammatory potential of IL-1as it is traditionally just considered a partner of 

IL-1(reviewed in 142). Many studies directed at evaluating the role of IL-1 in mediating 

Th17 driven diseases such as arthritis utilize the IL1 Receptor (IL1R) deficient 

mouse(146, 147). However, as both IL-1 and IL-1signal through IL1R, these studies 

do not tease apart the individual contribution of each of these cytokines. However, a 1991 

study by Jacobs et al. demonstrated that injections of soluble IL-1 exacerbated the 

symptoms of Experimental Autoimmune Encephalomyelitis (EAE), another Th17 driven 

disease(148). A more recent study on the role of IL-1 in EAE showed that IL-1 and IL-

1 mice develop EAE similar to wild type mice, but double knockouts were resistant to 

developing EAE(149). These studies in combination with the data presented in this 

chapter suggest an important role for IL-1 in Th17 pathology and highlight an important 

area of future study.  

 It has been shown that uptake of ICs by FcRs contributes to the pool of presented 

peptides in the context of MHCI and MHCII(87–89, 150). This observation has been 

exploited by the field of cancer biology as a potential therapeutic option for generating 

tumor specific T cell responses(151, 152). While this study determines how oxLDL-ICs 

polarize CD4+ T cells in an antigen-dependent fashion, it does not address whether 

oxLDL-IC internalization directly contributes to the pool of peptides presented to T cells.  

As it is known that pathogenic antigen specific T cell responses can be made to oxLDL, 

this is an area of continued interest. 
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 In conclusion, I have demonstrated that oxLDL-ICs enhance antigen dependent 

Th17 polarization via inflammasome mediated IL-1 and, perhaps more importantly, IL-

1. In addition, oxLDL-ICs elicit IL-23 production via Syk signaling which acts to suppress 

IFN production (Figure 3.5). These findings are important given the important role of Th1 

and Th17 cells in atherosclerosis, and have broader implications to other diseases of 

sterile inflammation characterized by high levels of circulating ICs.  

 

  

 

  

 

 

 

 

 

 

 

 

 



 

63 

 

 

 

 

 

 

 

 

Figure 3.5. A proposed model for oxLDL-IC mediated Th17 polarization and IFN inhibition. 
OxLDL-ICs elicit the production of the Th17 polarizing cytokines IL-1band IL-23 from DCs. 
Inflammasome mediated IL-1 promotes Th17 responses, whereas IL-23 inhibits the production of 

IFN.  
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CHAPTER 4 

General Discussion and Future Directions 

 

Collectively, the data presented in this dissertation support the hypothesis that 

oxLDL-ICs play a mechanistic role in the immune response in atherosclerosis and are 

not simply a biomarker for disease severity. In Chapter 2 I demonstrate that oxLDL-ICs 

result in increased activation of DCs and elicit a differential cytokine profile than free 

oxLDL (Figure 2.1 and 2.2A). These findings are not unique to DCs, as oxLDL-IC 

treatment of BMDMs produced similar results (Figure 2.2B).  I have provided strong 

evidence that oxLDL-ICs act as a potent priming signal for the Nlrp3 inflammasome as 

BMDCs treated with oxLDL-ICs prior to ATP treatment showed enhanced IL-1 

production, and oxLDL-IC treatment induced transcription of inflammasome related 

genes il1a, il1b, and nlrp3 (Figure2.4A and 2.5A).  Interestingly, oxLDL-IC mediated 

inflammasome priming was unique of previously discovered mechanisms given that 

oxLDL-ICs did not cause cholesterol crystal formation (Figure 2.4B). These findings 

were confirmed as oxLDL-ICs did not elicit IL-1 production from Nlrp3-/-  BMDCs and 

pretreatment with a caspase-1 or pan-caspase inhibitor significantly decreased oxLDL-

IC mediated IL-1 (Figure 2.5B, D).  

To prime the Nlrp3 inflammasome, oxLDL-ICs signaled through multiple 

receptors on BMDCs including FcR, TLR4, and CD36. Contribution of these receptors 

was additive, as inhibition or absence of each one individually only partially decreased 

IL-1production (Figure 2.6B, C). Analysis of untreated BMDCs demonstrated that 
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these cells expressed high levels of the activating FcRs I and III (Figure 2.7A). 

Phosphoflow analysis of Syk following treatment with oxLDL-ICs but not oxLDL showed 

Syk phosphorylation (Figure 2.7A). Genetic and chemical inhibition of Syk decreased, 

but did not completely abolish oxLDL-IC mediated IL-1 production (Figure 2.7D). This 

finding not only confirmed a role for activating FcRs in enhanced inflammasome 

activation, but also supports the necessity for multiple receptors. OxLDL-IC signaling 

through these receptors converged on the adaptor protein CARD9, a pathway 

previously implicated in fungal pathogenesis. Deletion of CARD9 in BMDCs drastically 

reduced oxLDL-IC mediated IL-1 production and transcription of il1a, il1b and nlrp3. 

OxLDL-IC signaling through CARD9 resulted in formation of the CBM complex that was 

not observed in oxLDL treated cells, and formation of the CBM complex resulted in 

nuclear translocation of Nfb (Figure 2.9). Finally, in chapter 2 I provide evidence that 

oxLDL-ICs enhance atherosclerosis burden in vivo. Intravenous injection of oxLDL-ICs 

but not oxLDL or saline into LDLr-/- mice on Western diet increased total lesion area 

independent of serum cholesterol and triglyceride levels (Figure 2.10). Interestingly, 

oxLDL-ICs did not significantly increase lipid accumulation, indicating that the lesions 

are cellular in nature. These findings are summarized in Figure 2.12.  

In chapter 3, I went on to demonstrate that oxLDL-ICs are also able to modulate 

the adaptive immune response. While oxLDL-IC treatment of BMDCs did not result in 

increased T cell activation or proliferation compared to oxLDL treated BMDCs, oxLDL-

ICs treatment did result in different T cell cytokine profiles (Figure 3.1A, B). OT-II T cells 

incubated with oxLDL-IC treated DCs produced significantly more IL-17 than those co-

cultured with oxLDL treated BMDCs (Figure 3.1C). However, while oxLDL-IC treatment 
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enhanced IL-17 production, it also resulted in decreased IFN production compared to 

treatment with oxLDL (Figure 3.1C). Consistent with this finding, BMDCs treated with 

oxLDL-ICs showed reduced levels of the Th1 polarizing cytokine IL-12 and increased 

levels of the TH17 polarizing cytokines IL-1 and IL-23 compared to oxLDL treated 

BMDCs (Figure 3.2). 

Nlrp3 inflammasome mediated IL-1 was found to be responsible for enhanced 

Th17 polarization as BMDCs deficient in Nlrp3, Il1b, and I1a were not able to induce 

increased IL-17 production (Figure 3.3, left panels). However, IL-1 did not play a role in 

oxLDL-IC mediated IFN suppression as absence of these genes did not result in 

increased IFN production (Figure 3.3, right panels). Given that oxLDL-ICs, but not 

oxLDL signal through FcR and Syk, I tested whether loss of Syk in BMDCs would 

result in increased IFN production when these cells were treated with oxLDL-ICs and 

cocultured with T cells. As expected, Syk deficient BMDCs treated with oxLDL-ICs 

elicited IFN levels comparable to oxLDL treatment (Figure 3.4A, right). Syk knock-out 

BMDCs showed decreased levels of IL-23 following oxLDL-ICs treatment (Figure 3.4B, 

left). Co-culture experiments in the presence or absence of an IL-23 neutralizing 

antibody confirmed that oxLDL-IC mediated IL-23 production was responsible for 

suppression of IFN responses. These findings are summarized in Figure 3.5. 

Inflammasome priming is commonly associated with pathogens including both 

bacteria and fungi. LPS, a key component in the cell wall of many gram negative 

bacteria,  is the canonical inflammasome priming signal by binding to TLR4(153). 

Fungal pathogens including Candida albicans, Microsporum canis, Malassezia spp, 
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Paracoccidioides brasiliensis, Cryptococcus neoformans, and Aspergillus fumigatus all 

prime the inflammasome via the ITAM-coupled dectin-1(96, 154–158). The findings 

presented herein are novel and important as oxLDL-ICs are the first sterile, endogenous 

ligands identified that are directly capable of priming the Nlrp3 inflammasome. Although 

TNF has been shown to license transcription of inflammasome related genes, this is not 

a direct effect as previous inflammatory events are required to initiate the production of 

TNF(159). Increased levels of oxLDL-ICs are observed in many sterile inflammatory 

disorders in addition to atherosclerosis including type 1 and type 2 diabetes, SLE, and 

RA, and many of these diseases are also associated with inflammasome 

hyperactivation (26, 42–44, 92–94). The observation that oxLDL-ICs can act as a 

priming signal for the Nlrp3 inflammasome identifies a novel mechanistic role for these 

ICs and provides an important link between oxLDL-IC titers and chronic inflammasome 

activation. 

The studies presented in chapter 2 as well as those by Duffy et al. demonstrate 

that ICs containing an antigen capable of TLR binding elicit increased inflammasome 

activation compared to the TLR antigen alone due to the additive effects of FcR and 

TLR signaling(62). Inflammatory diseases such as RA and SLE are also associated with 

ICs that have been shown to bind both to both FcRs and TLRs(30, 60, 61). However, it 

is unclear whether these ICs are also able to act as a priming signal for the 

inflammasome. Because citrullinated fibrinogen containing ICs associated with RA were 

shown to bind both FcR and TLR4 much like oxLDL-ICs, it is likely that they would 

evoke similar inflammasome responses. It is more questionable whether the double 

stranded DNA and single stranded RNA containing ICs would elicit robust 
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inflammasome responses. In the case of both oxLDL-ICs and citrullinated fibrinogen-

ICs, TLR4 and FcRs are both present on the cell surface, and it has been observed 

that these receptors cluster close together on glycoprotein microdomains allowing for 

concomitant ligation of these receptors by ICs. In the case of double stranded DNA and 

single stranded RNA, the cognate TLRs are found intracellularly within the endosome. 

Signaling through these TLRs would require prior endocytosis of the ligand containing 

ICs via FcRs. Although both TLR7 and TLR9 have been implicated in inflammasome 

activation, it is unclear whether SLE associated ICs would induce the enhanced IL-1b 

responses seen with concomitant signaling through multiple receptors on the cell 

surface(160).  Given the vast pathogenic potential of ICs in sterile inflammatory 

diseases, this represents an important area for future study. 

The adaptor protein CARD9 has been well studied in fungal pathogenesis, 

however its role in sterile inflammation is unclear. Initial studies of the role CARD9 in 

fungal infection utilized zymosan, a  glucan found on the cell surface of many fungi that 

binds both TLR2 and the ITAM coupled receptor dectin-1(161, 162). These studies 

showed that innate immune responses to zymosan required CARD9 and formation of 

the CBM complex to promote Nfb translocation to the nucleus and production of pro-

inflammatory cytokines(109, 163). Follow up studies confirmed a role for CARD9 in 

Nlrp3 inflammasome priming and activation via Syk signaling downstream of the ITAM 

(106, 164). While initial studies indicated that FcR crosslinking could not elicit 

inflammatory responses in the absence of CARD9, the focus of the Syk-CARD9 

signaling axis has largely remained on dectin-1 due to its role in the immune response 

to fungal pathogens(109). To the best of my knowledge, mine is the first study to 
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provide direct evidence that ICs utilize this signaling pathway for inflammasome 

activation.  

Activation of the Nlrp3 Inflammasome is required for development of 

atherosclerosis(101). Although I observed increased atherosclerotic lesion size in mice 

treated with oxLDL-ICs, it is currently unclear if this is a direct result of oxLDL-ICs 

signaling through CARD9 and resulting inflammasome activation. Given that oxLDL has 

also been shown to activate the inflammasome through an separate mechanism of 

cholesterol crystal formation and lysosomal disruption and my observations that oxLDL 

mediated inflammasome activation does not require CARD9, it is possible that CARD9 

signaling is not required for atherogenesis in vivo (68 and Figure 2.7A). However, a 

recent study by Nemeth et al. demonstrated that neutrophil-specific deletion of CARD9 

was protective against auto-antibody induced inflammation in a serum transfer model of 

arthritis, indicating that the IC signaling through CARD9 may play an important role in 

the pathogenesis of sterile immune diseases(165). Future studies evaluating the 

specific role of CARD9 in the development and progression of atherosclerosis are an 

important next step in these studies.  

In addition to playing a direct role in innate immunity, CARD9 signaling in myeloid 

cells has been found to be important in adaptive immune responses, as well. Ligation of 

the c-type lectin receptor dectin-1 on DCs by the fungal pathogen Candida albicans has 

been shown to result in Syk-CARD9 signaling that leads to the production of robust 

levels of IL-6 and IL23 and promote Th17 responses(166). Binding of the same 

pathogen to dectin-2 on DCs also results in a Th17 immune response via Syk-CARD9 

dependent production of IL-2 and IL-10(108). A glycolipid adjuvant for Mycobacterium 
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tuberculosis subunit vaccination has been shown to promote protective Th17 responses 

by activating macrophages and dendritic cells using the Syk-CARD9 pathway and 

formation of the CBM complex(167). An interesting follow up to this study determined 

that development of the protective Th17 response required inflammasome activation 

and IL-1 production(168). Thus, CARD9 represents an important link between the 

innate and adaptive immune response. Much like the aforementioned studies, in 

chapter 2 I demonstrate that oxLDL-ICs enhance IL-1 production through CARD9 

mediated inflammasome priming and in chapter 3, I provide evidence that oxLDL-ICs 

enhance Th17 polarization in an inflammasome dependent fashion. Although it seems 

likely that CARD9 is a key intermediary given that levels of IL-1 were barely detectable 

in CARD9-/- BMDCs treated with oxLDL-ICs, direct evidence is required to confirm this 

hypothesis (Figure 2.7A).  

The in vivo studies presented in figure 2.10 and 2.11 show that intravenous 

injection of oxLDL-ICs results in increased atherosclerotic lesion area compared to 

injection with saline or oxLDL, and these observed changes are independent of serum 

cholesterol or triglycerides. This finding is very exciting as oxLDL-ICs have long been 

considered a biomarker for atherosclerosis rather than playing an active role in disease 

progression. However, questions still remain including: 1.) Is oxLDL-IC enhanced 

atherosclerosis a direct result of inflammasome activation and/or Th17 polarization? 2.) 

Is the immune response to oxLDL-ICs occurring in the lesion or at a systemic site? A 

set of complementary studies by Finbloom et al. in 1979 demonstrated that nearly 80% 

of intravenously injected polyclonal IgG ICs deposited in the liver within 2hrs following 

injection(125, 126). Liver resident DCs have been shown to take up antigen with in the 
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liver and migrate to liver draining lymph nodes to elicit both CD4+ and CD8+ immune 

responses(127). Much like the in vitro observations with oxLDL-ICs, the parasitic 

pathogen Schistosoma mansoni elicits increased inflammasome mediated IL-1 

production and antigen specific Th17 responses in vivo. This immune response occurs 

in the liver as that is the lodging site for Schistosoma mansoni eggs(110). The liver and 

the heart have long been linked, as Fatty Liver Disease greatly enhances the risk of 

cardiovascular complications(169). Although a direct connection has not been made 

between the immune responses in Fatty Liver Disease and atherosclerosis, patients 

with Fatty Liver Disease have increased levels serum levels of inflammatory cytokines, 

and it has been observed that liver resident macrophages called Kupffer cells enhance 

hepatic inflammation following up-take of oxLDL (170, 171). Taken together, this 

information strongly suggests that oxLDL-ICs may generate innate and adaptive 

immune responses within the liver that result in systemic inflammation and increased 

atherosclerosis. Future studies will determine the definitive site of oxLDL-IC deposition 

and how this directly contributes to atherosclerosis.  

 Figure 2.11 demonstrates that oxLDL-IC treatment causes aortic dissection 

Vascular remodeling in atherosclerosis is typically associated with Matrix 

Metalloproteinases (MMPs)(172). These proteins degrade extracellular matrix, and are 

involved in normal tissue turnover.  However, over expression of MMPs results in poor 

cardiovascular outcomes. In humans, high levels of MMPs both in the lesion and in the 

serum as associated with plaque instability and likelihood of heart attack or stroke(173–

175). Additionally, single nucleotide polymorphisms in MMP genes represents an 

independent risk factor for poor cardiovascular outcomes(176). In mice, MMP2 and 
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MMP9 are associated with advanced atherosclerotic lesions(177). Studies have shown 

that IL-1 can stimulate the production of MMP9 from a variety of cell types including 

macrophages (178–180). Furthermore, it has been demonstrated that Nlrp3 

inflammasome activates MMP9 in smooth muscle cells(181). Given the potent ability of 

oxLDL-ICs to activate the Nlrp3 inflammasome, IL-1 mediated MMP9 activation 

represents a likely mechanism by which oxLDL-ICs are inducing aortic dissection. Future 

studies will determine the ability of oxLDL-ICs to stimulate MMP9 activity and prevalence 

of MMP9 within the atherosclerotic lesion of oxLDL-IC treated mice. 

 The studies presented in this body of work suggest that oxLDL-ICs increase 

atherosclerosis by inducing the production of IL-1 via an inflammasome and CARD9 

dependent mechanism and oxLDL-IC mediated IL-1 skews T cells towards a Th17 

phenotype. Thus, it stands to reason that IL-1 inhibition represents a potential therapeutic 

option in atherosclerosis. The soluble IL-1R agonists anakinra (Kineret) is currently 

approved to treat the disease RA (100). As previously mentioned, in addition to having 

ICs containing self-antigens, RA patients also have increased titers of oxLDL-ICs and 

enhanced cardiovascular disease (44). Thus it is possible that the enhanced IL-1 

observed in RA patients are a result of circulating oxLDL-ICs, and that anakinra provides 

protective effects by inhibiting this immune response. A clinical trial using anakinra 

following myocardial infarction showed that this treatment improved cardiac remodeling 

decreased the prevalence of new onset heart failure (182). A similar study in mice using 

a monoclonal antibody to IL-1 produced similar results (183). Given that anakinra is 

already approved by the Food and Drug Administration for treatment of RA, it represents 

a potential therapy for atherosclerosis that is not years in the making. Longitudinal studies 
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on the cardiovascular outcomes of RA patients that have and have not received this 

therapy could provide insights as to whether it may protect against atherosclerosis. While 

much less established, CARD9 represents a novel therapeutic target for the treatment of 

atherosclerosis. In addition to the findings presented in this dissertation, it has been 

shown that genetic deletion of CARD9 in mouse models protects against cardiac fibrosis 

and high fat induced myocardial dysfunction (184, 185). In the case of cardiac fibrosis, 

protection was correlated with decreased macrophage infiltration and IL-1 production in 

the heart. Although the role of CARD9 in humans is little understood outside of fungal 

infections, it represents an important area of future study in sterile inflammation as well 

as a promising therapeutic target. One major barrier to the treatment of atherosclerosis 

is that many individuals do not know that they have it until they have a major 

cardiovascular event. It is important to determine whether IL-1 or CARD9 interventions 

can provide reversal of disease.  

 Overall, the work presented in this dissertation highlights an important pathogenic 

role for a molecule that was previously believed to be only a biomarker for atherosclerosis 

disease severity. I have shown that oxLDL-ICs are a sterile ligand for the Nlrp3 

inflammasome and signal through multiple receptors on the cell surface. To prime the 

inflammasome, oxLDL-ICs utilize the CARD9 signaling pathway that has not previously 

been implicated in sterile inflammation. OxLDL-ICs also modulate the adaptive immune 

response by skewing T cells towards a Th17 phenotype while simultaneously inhibiting 

IFN responses. Finally, oxLDL-ICs increase atherosclerotic lesion burden in vivo. Future 

studies will focus on the direct contribution of CARD9 to atherosclerotic outcomes and 
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developing an understanding of exactly how these immune responses are playing into 

atherosclerosis development.  
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