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CHAPTER I

INTRODUCTION

A software system is formed by a set of intercommunicating hardware and software

components. Design of software systems involves numerous design choices, such as se-

lection of software components, hardware architecture, assembly of the components, etc.

The design choices are made to ensure that the final implementation of the system meets

a set of design requirements (constraints) and is most suitable with respect to a quality

metric such as cost or dependability. However, as the complexity of the software system

rises, the designers are faced with the challenge of identifying designs that meet the design

requirements in the presence of increasing number of components.

A design space of functionally equivalent design alternatives is created by the combi-

nation of existing design choices in the design process. Evaluating each design alternative

in this space is a complex task as the design space can become large very quickly, espe-

cially if arbitrary combinations of design choices are allowed. For example, assume an

application with t computational tasks is to be mapped on to a platform consisting of p

general-purpose processing blocks. This means that each task can potentially be mapped

to any of the blocks leading to a design space of pt design alternatives. The complexity fur-

ther increases if there are multiple conflicting requirements that the design solution must

satisfy, for example memory consumption and power dissipation. In this case, all objective

values of a design point must be compared with the corresponding objective values of every

other design.

Design Space Exploration (DSE) is the process of searching through the design space to

identify design solutions that satisfy all design requirements and are most suitable based on

quality metrics such as cost, memory use, etc. DSE is a challenging problem, often found in

1



the application areas (domains), such as embedded systems [94], software product-line en-

gineering [17], digital signal processing [85, 87], mobile ad hoc networks [129] etc. In the

past the designers have chosen to interactively search using a sequence of decisions. Each

decision prunes out a set of design alternatives and reduces the size of the space. However,

design is a complex activity where a unidirectional series of decisions do not always work.

The designer typically might have to retract a previously taken design decision to explore

other regions of the design space. Moreover, as the size of the space increases, manual

exploration becomes impractical and automated approaches to DSE become imperative.

A common approach to automate DSE is to write a customized algorithm [66, 94] to

evaluate design alternatives, and search the space for a particular problem. Although cus-

tomized algorithms work efficiently for the problem under consideration, this approach is

not only time consuming but also hard to maintain if the problem changes over time due

to addition, deletion or modification of objectives and constraints. In this case reusing

the same algorithm requires the user to deeply examine the code to identify the problem-

specific parts and rewrite these parts. This task is often time consuming and erroneous.

Consequently, there is a strong need for a more systematic approach to automate explo-

ration that can be easily maintained and reused.

The need for a disciplined approach to automate DSE has motivated the designers to

use well-defined search methods drawn from artificial intelligence and operations research.

Examples of these methods are constraint programming [83], mathematical programming

[109], metaheuristics algorithms [22], boolean satisfiability [37] etc. Given the variety

of search methods, they can broadly be classified into exact and approximate algorithms

[123], where exact algorithms exhaustively evaluate all design alternatives in the design

space, and return a guaranteed optimal solution, whereas approximate algorithms generate

high quality solutions in reasonable amount of time. The choice of a particular method

depends on the motivation for DSE.

A key advantage of using a search method to automate DSE is the generic scope of these
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methods. For example, constraint programming has been used to solve combinatorial prob-

lems in many domains from hardware design (placement and layout), financial decision

(portfolio management), computational biology (DNA sequencing), etc [114]. Another ad-

vantage of using standard search methods is the availability of well-tested and documented

libraries [30, 122, 127]. These libraries provide constructs for specifying and solving a

problem with the supported search method. This enables the designer to reuse code from

the libraries to develop an algorithm to automate DSE in a relatively short amount of time.

Moreover, the resulting algorithm is more reliable and maintainable in the face of evolving

problems. Over the years, research in the field of artificial intelligence has lead to creation

of efficient software packages (solvers) [2, 3, 44] based on search algorithms. Solvers sup-

port a declarative syntax to model a search problem, which is relatively easier to use as

compared to libraries that require an imperative coding language.

Given the range and power of search methods, an on-going challenge is to use these

methods to automate DSE. A typical approach for solving any new search problem using

general purpose search methods is to formulate an abstract mathematical model of the prob-

lem. This model is then processed by the solver to return a solution. However, formulation

of mathematical models for real-world problems is a challenging and time consuming step

that relies heavily on the experience and expertise of the designer. While creating the math-

ematical model for a given problem, the designers may look at models of similar problems

for inspiration before they can effectively formulate their problem. The task of creating a

mathematical model for a domain specific DSE problem is even more challenging, as the

conceptual gap between the informal problem description and the mathematical model is

too large even for the experts.

With these considerations in mind, the thesis of this dissertation is to develop a system-

atic approach and architecture that can reduce the complexity of leveraging standard search
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methods to automate exploration of design space. Such an approach should facilitate mod-

eling of DSE problems at a high-abstraction level, that can be solved without requiring

expert knowledge of the search methods and the tools used in the actual search.

I.1 Motivation

A DSE problem is essentially a search problem, where the goal is to find a valid and

optimal solutions given a design space, quality metrics and a set of validity constraints.

Literature survey reveals a vast body of work that exists to address the challenge of solving

DSE problems. Most existing work is focused on solving a given DSE problem from a

given domain. This work is motivated by the limitation of the existing domain-specific

approaches for automated DSE.

Figure 1: Generic Architecture of a DSE Framework

A common approach for solving a class of DSE problems in a domain is to integrate

a general purpose solver with a domain-specific design environment to create an environ-

ment that supports automated DSE for the modeled problems. Figure 1 shows the generic

architecture of domain-specific DSE frameworks. These frameworks consist of 2 salient

features: (a) a domain-specific modeling language MMD, and (b) a model compiler. The

language captures the main concepts of the class of DSE problem under consideration, such
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that the language can be used to specify problem instances belonging to the class. For ex-

ample, MILAN [14], a domain-specific DSE environment for embedded systems, supports

a language for resource and application modeling. A problem model MD can be created

by instantiating the concepts in the language. For example a problem model in MILAN

consists of a list of resources and tasks. The model compiler translates the problem model

MD, into a format that can be processed by the general-purpose solver. This compiler is

created by the domain experts, who have in-depth knowledge of the domain as well as the

search methods. The domain-expert tries to identify a recurring pattern used in formulating

a class of DSE problems in the domain and uses this pattern to build the model compiler.

This compiler is customized to work only for the problems in the class.

In order to use the framework, a domain engineer, who has minimum knowledge of

search methods, creates a model MD for an instance of of the DSE problem. The problem

model MD includes the design space and validity constraints that the solutions should sat-

isfy. The framework automatically processes the data from MD using the solvers to return

a solution. A number of such frameworks exist [15, 20, 84, 124]. An obvious advantage

of this approach is that it enables the domain-engineers to model and solve DSE problems

using high level domain-specific notations with minimal knowledge of the search methods.

An obvious concern with the framework-oriented approach is the time and effort re-

quired to build a DSE framework. Building a set of reusable classes and an efficient com-

piler require a number of iterations, where the classes and compiler are customized. Once

the framework has reached a level of efficiency, the framework is packaged as a black-box

framework that can be used by the domain-engineers without knowledge of the compilation

or the search algorithm involved to perform the actual exploration. However, any changes

in the requirements of the problem require a non-trivial amount of effort to change the com-

piler and classes to ensure that the instances conforming to the new problem are modeled

and solved correctly.
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Another concern with the existing approach is the complexity of writing validity con-

straints. Existing frameworks require the domain-engineers to specify validity constraints

using a constraint specification language, for example OCL [49]. The efficiency of the

search depends on the formulation of these constraints. Writing the constraints so that the

resulting mathematical model is efficient can be a daunting task, especially for an engi-

neer who does not have any expertise in optimization methods. Ideally, the responsibil-

ity of writing constraints should be given to the domain-experts who have the technical

knowledge of how to write constraints that work best for the class of DSE problems under

consideration.

However, a major limitation of existing DSE frameworks is that they are tailored to-

wards solving a single class of DSE problems in a given domain. This domain specificity

comes from three sources: (a) domain-specific modeling language that is used to model

the DSE problem; (b) the model compiler that is highly-specialized for the class of DSE

problems that the framework is intended to solve; and (c) the general purpose solver that is

selected on the basis of the requirements of the problems.

The domain-specific modeling concepts in the language supported by the design envi-

ronment precludes the use of the DSE framework to model similar problems from other

domains. For example, resource allocation problems have been found in embedded sys-

tem [61], network design [117], product-line engineering [131], yet no single framework

can model and solve all three problems, even though the general purpose solvers that are

integrated with the framework are powerful enough to solve them.

The problem-specificity of the model compiler restricts the modeler from using the

framework to solve another DSE problem within the same domain. For example placement

and routing problems in VLSI design. Even though the modeling notations supported by

the framework can be used to model both the problem and the general purpose solvers

can solve both problems, the model compiler makes the framework incapable of handling

instances of both problems as it is customized for a given problem only.
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Lastly, a DSE problem may evolve over time and addition of new constraints and objec-

tives can render the existing solvers inefficient. For example, the objective might initially

be to retrieve valid design alternatives. This is successfully done using a model compiler

that takes the design space model and translates it to a format that can be solved by con-

straint satisfaction solvers, like MiniSat[37], to retrieve satisfactory solutions. However,

this approach fails when one or more objectives are added to the problem and the goal is to

retrieve a set of optimal solutions.

Given the time and effort required to develop frameworks for automated DSE and the

power of general purpose solvers, it would be advantageous to have a unified framework to

model and solve DSE problems from a variety of domains, so that it can be exploited by a

large number of users. This framework should retain support for high-level modeling, so

that the engineers can model and solve DSE problem easily.

I.2 Challenges

Developing a generic DSE framework that supports modeling and solving DSE prob-

lems from a variety of domains has the following challenges:

The first challenge is to develop a language that can capture design spaces of problems

from a wide range of domains. A survey of the literature showed two categories of design

space representations: (1) enumerative representation, and (2) partial model representation.

An enumerative representation explicitly includes all alternatives in the design space. An

example of this representation is found in product-line configuration problems [20, 90],

where the design alternatives are organized in a tree structure (feature model) and a design

alternative is a set of paths from the root to a leaf. On the other hand a partial model

representation [57, 68] includes an incomplete model, where the design space is the set of

all well-formed models created by completing the model. A generic framework should be

able to support both representations. An additional requirement on the modeling language
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is that it should be easy to use both for the domain-experts and engineers. Therefore, the

generality of the representation should not add to the complexity of using the language.

Another challenge is to develop a language to specify the constraints in the DSE prob-

lem. Constraints are essentially validity conditions that each valid design alternative should

satisfy. These constraints are required to guide the exploration of the design space towards

valid solutions. Typically in DSE frameworks, high-level constraints are expressed along

with the model of the design space. These constraints are refined to lower-level languages

like propositional logic or relational algebra to guide the solver towards valid solutions.

A generic framework should therefore support a constraint specification language that can

specify a wide range of constraints, while being easy to refine to lower-level languages.

Existing frameworks, especially the MDE-based framework [90] use high-level constraint

specification languages, like Object Constraint Language (OCL) [49] or its variants to

specify constraints. OCL is expressive and user friendly, but the intricacies of OCL can

complicate the automated analysis of arbitrary OCL constraints [82]. On the other hand a

number of formal specification languages like Alloy[56], B[6] have been used to specify

consistency constraints on UML model. These languages have a formal mathematical basis

and are therefore easy to translate to lower-level languages because of their mathematical

foundation, but there is a steeper learning curve in writing correct constraints using these

languages. Therefore, the challenge is to develop an expressive constraint specification

language that is user friendly like OCL but is easy to analyze like the formal specification

languages.

A third challenge is to be able to solve a wide range of DSE problems. Most existing

frameworks are built on a single search method that is used to solve the DSE problem. This

is a limitation because the constraints and objectives of the exploration might change as the

problem evolves over time. A generic framework supports modeling of DSE problems with

a variety of constraints and in order to solve all modeled problems, the framework should

8



support a set of optimization and constraint satisfaction methods that can solve a rich set of

DSE problems.

I.3 Thesis Statement and Contributions

The objective of this work is to create a generic framework for automated design space

exploration that can be used to model and solve DSE problems from a variety of domains.

The focus is on reducing the development cost involved in solving design problems with

discrete design spaces. In order to meet this objective, we developed a model-based DSE

framework that can be configured to create domain-specific DSE environments. The key

idea is that the domain-experts can meta-program the generic framework to work for a

class of DSE problems in a given domain. This configuration results in a domain-specific

DSE environment that can be used by the domain-engineers to model and solve an instance

of the DSE problem. The main feature of the framework it its generic scope, such that

it can be used to model and solve exploration problems from a variety of domains. The

framework includes:

• generic reusable classes, that can be specialized to configure the framework to sup-

port modeling a class of domain-specific DSE problems.

• a simple yet expressive constraint language that is used to specify a variety of validity

constraints.

• solver support to solve the problems modeled using the framework, such that it is

possible to select a solver according to the requirements of a given problem model

(multi-objectives, constraint satisfaction etc.)

This framework is intended to be exploited by as many users as possible and to that

effect, most design decision of the framework were taken to enable ease of use by both the

engineers and experts. The goal of this work is to reduce the development cost involved in

solving new DSE problems.
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The most important contribution of our approach is the generic modeling support of

the framework. Our approach generalizes the existing approaches by decoupling the DSE

aspects of a DSE Problem (objective, constraints etc.) from the domain-specific concepts

(task, processor etc). The domain-independent DSE concepts are captured as a set of ab-

stract classes that are generic enough to be applicable to a wide range of domains. These

classes embody an abstract model of a DSE problem. The domain-experts inherit/special-

ize these classes to configure the framework for a class of specific domain-specific DSE

problems. The abstract classes include: (a) classes for modeling the design space; (b) con-

straints classes to model the validity constraints for a design alternative; and (c) objective

classes to capture the goal of the exploration. Together these classes are referred as the

Abstract Design Space Exploration Language (ADSEL).

A framework that supports generic modeling of DSE problems also requires an expres-

sive language to specify the conditions (constraints) that each valid design solution should

satisfy. Another contribution of our approach is the expressive and easy to use Constraint

Specification Language (CSL) to specify these constraints. This language can be used by

the experts to specify validity constraints. Additionally our approach supports constraint

templates, where the domain experts specify constraint templates that can be easily used by

the domain engineers by plugging in values. This simplifies the time-consuming and error

prone task of writing constraints. CSL is expressive without being excessively verbose and

can be used to write boolean, set and arithmetic constraints.

The third contribution of this work is the development of the Intermediate Language

(IRL), a solver-independent abstraction layer that decouples the problem specification from

the search method used to solve the problem. The IRL supports simple set theoretic con-

cepts like sets, functions and relations that can easily be refined to concepts in lower-level

mathematical languages (example constraint programming). A model in the IRL is refined

to a set of solver-specific models. The framework supports two solver-specific models: (1)

CP Model for mono-objective optimization using constraint programming and (2) MOP
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model for multi-objective optimization using meta-heuristics. The solver-specific models

are processed by the respective solvers in conjunction with the data generated from the

problem model to return valid design solutions. The refinement of DSE problem defi-

nitions, specified using ADSEL classes and CSL constraints is automated using a set of

translators. This approach of using multiple solvers empowers the domain-engineer to

choose a search technique to solve a problem instance. This is in contrast to the current

approaches that hard code a single search technique that is used to solve all problem models

belonging to the class.

I.4 Outline

The rest of the dissertation is structured as follows:

• Chapter II introduces the necessary background knowledge. It presents a summary

of the most commonly used search methods for automation of DSE, and then presents

a survey of selected DSE frameworks.

• Chapter III presents a detailed view of the architecture. The framework includes a

series of operations that cover the entire search process, starting with problem spec-

ification, translation to lower abstractions, and retrieval of solutions. We discuss the

languages and translators included in the framework in detail.

• Chapter IV: We validate the scope of our approach by a set of case studies and

summarize the extent of the success.

• Chapter V summarizes the results and discusses future work.
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CHAPTER II

BACKGROUND

A large body of work exists on automated DSE in a variety of domains. This chap-

ter presents background material on search techniques used for automating design space

exploration. The search techniques are drawn from research in the fields of artificial intel-

ligence and operations research. In order to solve a search problem using a standard search

technique, the problem is formulated as an abstract mathematical model and then a search

procedure is used to process this model to generate solutions. We evaluate each technique

on the basis of the mathematical model required and search algorithms supported. Al-

though many classifications are possible, we classify the search methods into three classes:

(1) constraint satisfaction, where the objective is to retrieve one or more valid solutions, (2)

mono-objective optimization, where the objective is to find a single global optima, and (3)

multi-objective optimization, where the goal is to retrieve a set of comparable solutions.

This chapter also presents a selected set of domain-specific and generic DSE frame-

works that are relevant to our work.

II.1 Methods for Constraint Satisfaction Problems

II.1.1 Constraint Programming

Constraint Programming (CP) [102] is a paradigm for solving combinatorial search

problems. It has been widely used to solve practical problems from network design [7],

VLSI design [107], scheduling [71, 99], product-line configuration [18], etc. Solving a

problem using constraint programing involves two steps: (1) modeling, and (2) solving.

We discuss each of the steps in detail in this section.

Modeling involves formulating a problem as a Constraint Satisfaction Problem (CSP). A
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CSP model consists of a set of variables, a set of finite domains for the variables and a set

of constraints restricting the values of the variables. Formally, an instance of a CSP is a

triple

〈X ,D,C〉 (II.1)

where

• X is a set of decision variables X = {x1, ...,xn},

• D is a set of possible values that each variable can take and consists of a finite set Di

of possible values for each variable xi,

• C is a set of constraints over the set of variables, which consists of mathematical or

symbolic constraints over the variables.

The goal of solving a CSP is to find a valuation: V → D, which maps a variable to

a value such that all the constraints in C are satisfied. Typically, the interest is to find

whether a solution exists, and if it does then find one or all solutions of the problem. In

order to formulate a problem P as a CSP model, a set of variables and domains are selected

to represent the entities in P and then constraints are written in terms of the variables to

represent the restrictions on solution in P.

Solving a CSP involves assigning values to each of the decision variables. A constraint

solver is a software package that takes in a CSP and determines an assignment of values to

the decision variables. A typical finite domain constraint solver uses a two step process to

solve a CSP: (1) Propagation and (2) Search [102].

Propagation is a means to infer implications of a constraint on the variables in its scope

and prune out inconsistent values from the variable domains. For example given a simple

CSP problem,

• variables V = a, b
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• domains D = (0..4),(1..5)

• constraints C = a ≥ b

A constraint a ≤ b can infer that the value ‘5’ can be removed from the domain of b and

value ‘0’ can be removed from the domain of a as these values do not satisfy the con-

straint. A set of consistency algorithms are used depending on the number of variables in

a constraint. Node consistency algorithms prune inconsistent values from the domain of

a single variable using unary constraints. Similarly, arc consistency algorithms prune out

inconsistent values from domains of two variables using binary constraints. K-consistency

and Path consistency algorithms are used to remove inconsistent values till no more values

can be removed from the variable domains.

However, consistency techniques alone may not be able to narrow down the domain to

a single value. In general consistency algorithms are combined with systematic search to

derive complete solutions to a problem. A search is a systematic way of traversing the space

of complete assignments to find a solution to the CSP. A search tree is constructed based

on variable and value ordering to systematically assign values to variables. The variable

ordering specifies the order of selecting the decision variables while creating the search

tree and the value ordering specifies the order of selecting a value in the variable domains.

These two heuristics form the core features of the search. At each step of the search, a

value is assigned to a variable. This triggers the propagation, where consistency checks

are performed till no more values can be removed. This step is iteratively performed till a

solution is obtained.

Several commercial and free constraint solvers exist today [2, 11, 30, 122]. Each con-

straint solver supports a declarative constraint programming language to specify the CSP.

This language includes constraint patterns that are often found in combinatorial problems,

called global constraints. The constraint solvers support specialized consistency algorithms

for propagation of global constraints, thereby reducing the search time.
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II.1.2 Boolean Satisfiability

Boolean Satisfiability (SAT) is the problem of determining if there exists an assignment

of values to boolean variables in a propositional logic formula such that it evaluates to true.

In the past, SAT has been used to solve planning problems [65] and FPGA layout problems

[87]. Solving a problem using boolean satisfiability involves two steps: (1) modeling, and

(2) solving.

Modeling involves formulating the problem as a propositional logic formula. A proposi-

tional logic formula consists of a set of boolean decision variables, boolean literals and a

set of logical connective like ∧, ∨, =⇒ , ¬ to form boolean expressions. The propositional

logic formulas should be in Conjunctive Normal Form (CNF), which is a standard format

accepted by most SAT solvers. A CNF consists of a conjunction of clauses, where each

clause is a disjunction of literals and each literal in turn is a boolean variable or a negation

of it. The goal of solving a SAT problem is to determine the existence of an assignment

such that all clauses are satisfied. Two variants of the SAT problem are MAX-SAT and

weighted MAX-SAT, where the goal is to find an assignment that maximizes the number,

or weighted sum of satisfied clauses.

Solving a SAT problem involves finding a single assignment for decision variables that

makes the formula true. Existing SAT solvers use Davis-Putnam-Logemann-Loveland

(DPLL) [32] algorithm or a variant of it to solve SAT problems. Davis-Putnam-Logemann-

Loveland (DPLL) algorithm is a systematic backtracking search algorithm, which starts

by choosing a literal in the formula, assigning a truth value to it, simplifying the formula

and then recursively checking the simplified formula. The basic DPLL algorithm suffers

from the same drawbacks as the backtracking algorithm (late detection of conflicts, redun-

dant work due to lack of record of conflicting values of variables ). The improved variants

of DPLL algorithm incorporate clause learning and non-chronological backtracking. For

example, Chaff [86] is a conflict-driven SAT solver which integrates the improvements
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over the standard DPLL algorithm, and as a result, performs very well on practical SAT

benchmarks.

Another approach for solving SAT problems uses approximate algorithms to find so-

lutions. Approximate algorithms are incomplete algorithms that are used to obtain high

quality (near optimal) solutions to the combinatorial optimization problems in polynomial

time. These algorithms do not guarantee finding a globally optimal solution. In order to

solve a SAT problem using approximate algorithm, the problem is formulated as an op-

timization problem, where the goal is find a solution with maximum number of satisfied

clauses. A local search algorithm (Section II.2.3), is an approximate algorithm that starts

with a randomly generated truth assignment and then selects variables according to some

heuristics for bit flip. Depending on the heuristic used to choose the variable, different local

search algorithms exist for SAT. One of the first local search algorithms used for solving

SAT problems was GSAT [111]. An improved version of the basic local search algorithm

for SAT is WalkSAT [52] where some noise is added to the strategy. A comprehensive

survey of the different local search algorithms for SAT problems is presented in [55]. and

second class of SAT solvers use variants of local search algorithms, for example GSAT

[111].

II.1.3 Symbolic Constraint Satisfaction

Constraint Programming solves satisfaction problems by searching through the search

space to find assignments that satisfy constraints. In order to retrieve all solutions, CP solv-

ing techniques will require time exponential in the number of decision variables. Neema

[89] came up with an Ordered Binary Decision Diagram (OBDD)[23] based technique to

retrieve all satisfying solutions in a single step by pruning out all inconsistent assignments.

OBDDs represent boolean functions as directed acyclic graphs and use graph algorithms

to perform operations on these boolean functions [24]. Since binary values and boolean

operations can be used to implement a variety of mathematical domains like sets, and finite
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domains, OBDDs and symbolic boolean manipulation can be used to solve set manipula-

tion problems as well. Neema formulated the design space pruning problem as a set ma-

nipulation problem, where the initial design space set consists of all possible (feasible and

infeasible) design points. This set DS is encoded as a boolean function f : {0,1}n→{0,1},

where n = dlog2|DS|e. Similarly the constraints are also represented as boolean functions

and thereafter as OBDDs. The main set manipulation operation (intersection) is performed

by conjunction of design space OBDDs with the constraint OBDDs. This can be interac-

tively performed by the designer.

This approach suffers from scalability issues in the presence of numerical constraints

because the underlying formalism is boolean algebra and booleanization of the numerical

domains leads to large OBDDs that take prohibitively long time to prune the trees. Eames

[34] developed a hybrid technique based on OBDD-based and finite domain CP to perform

sequential pruning by first applying boolean constraints using OBDD based technique and

then using CP to apply numerical constraints.

The BDD based technique was initially developed for synthesis of adaptive computing

systems, but they have also been used for design of embedded systems [14], reconfiguration

of sensor networks [69],and architecture synthesis [106].

II.1.4 Summary

The focus of this class of methods is to retrieve all valid solutions of a given problem.

Broadly, methods for solving constraint satisfaction problems can be divided into two cat-

egories: (1) Propositional logic based techniques and (2) Constraint programming [102].

A propositional logic formula consists of a set of boolean variables and a set of log-

ical connective like ∧, ∨, =⇒ , ¬ to form boolean expressions. A propositional logic

techniques takes a propositional logic formula as input and determines whether there is a

variable assignment that satisfies the formula. In this section we discussed two proposi-

tional logic techniques: Boolean Satisfiability [79] and Symbolic Constraint Satisfaction
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[89]. In order to either of these techniques to automate DSE, the variables and input pa-

rameters have to be represented as boolean variables, each constraint is mapped in to one

or more formulas and the conjunction of these formulas is fed into the solver. However,

these technique do not scale well in the presence of integer decision variables with large

domains. Encoding integer constraints as propositional formulas can easily lead to com-

binatorial explosion in the size of the formula [26]. These techniques are good for coarse

grained design space exploration.

On the other hand constraint programming based techniques take CSP (Section II.1.1)

as input to determine an assignment for the variables in the CSP. Constraint Programming

does not impose any restriction on formulation of constraints making it easier to formulate

a problem as a CSP. For finite domain constraint programming, both integer and boolean

variables can be used. Moreover, most existing solvers based on constraint programming

also support modeling and solving optimization problems using the branch and bound al-

gorithm.

II.2 Methods for Mono-Objective Optimization

An optimization problem is a problem of finding an optimal solution from a set a possi-

ble solutions. A constraint optimization problem (COP) can be formally defined as a tuple

[125]

〈X , f ,D,C〉 (II.2)

where,

• X is a set of decision variables X = {x1, ...,xn};

• D is a set of possible value that each variable can take.

• f (X) is the objective function

• C is a set of constraints on the values of the variables.
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This definition in essence is a CSP 〈X ,D,C〉 with an optimization function f . Let S be the

set of all possible solutions, then f : S⇒ Z assigns a value to each solution s ∈ S indicating

its worth. The objective function defines a total order relation between any two solutions

in the search space. A solution s ∈ S of COP is therefore a solution of CSP for which f (s)

is minimum or maximum depending on the requirements of the problem.

A combinatorial optimization problem is essentially an optimization problem where X

consists of discrete decision variables and finite domain search. In this section we focus on

the techniques used for solving single objective combinatorial optimization problems.

II.2.1 Branch and Bound

Branch and bound [75] is an exact algorithm that is used to solve optimization prob-

lems to retrieve globally optimum solution. The design space is explored by building a tree,

where the root of the tree represents the problem and the leaf nodes represent solutions to

the problem. Internal nodes of the tree represent subproblems, such that the size of the sub-

problem reduces as we move from the root to the leaf. The tree is dynamically construct

by iteratively branching and pruning. The branching strategy divides the problem into

two mutually exclusive subproblems that can in turn be divided into smaller subproblems.

Many branching strategies can be applied such as breadth-first, depth-first and best-first.

The pruning strategy is used to prune out subproblems that will not lead to optimal solu-

tions. This is done by computing a lower bound of the subproblems. If the lower bound is

greater than the best solution so far then the subproblem can be pruned out.

This method has been used to solve scheduling problems [58, 81]. Branch and bound

algorithms have been used to solve mono-objective optimization problems formulated as a

CSP or a linear program.
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II.2.2 Mathematical Programming

Mathematical programming [109] facilitates the modeling and solution of a broad class of

constrained optimization problems. A commonly used model in mathematical program-

ming is the Linear Programming (LP). A linear program is an optimization problem that

seeks to minimize a cost function subject to a set of linear constraints. A linear program in

its standard form can be formulated as:

Minimize : cT .x (II.3)

Subject to : A.x≤ b (II.4)

x≥ 0 (II.5)

where A is a matrix, and c, b are vectors of known coefficients. A, c and b are given and

x represents a vector of decision variable whose value is to be determined. Equation II.1

represents the objective function that combines the different variables to express a goal.

The objective function has to be maximized or minimized. Equation II.2 represents the

linear numeric constraints that are used to express bounds on possible solutions. A solution

of a linear program is binding of each decision variable to a value such that all the domain

constraints and bound constraints are satisfied.

An Integer linear programming (ILP) extends the concepts of linear programming by

adding integrality constraints to the linear programs. A Mixed Integer Linear Program

(MILP) relaxes the integrality constraint of ILP and can have variables which have one or

more variables which take real values. MILP has been used modeling hardware/software

partitioning [92], network design [28], real-time scheduling [70]

Search Methods: The following search methods have been used for solving linear pro-

gramming models:
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1. Simplex Method [88] is the most popular solution technique for solving linear pro-

grams developed in 1947. However, Simplex method has an exponential time com-

plexity. Karmakar’s projective scaling method [63] is a polynomial time algorithm

for solving linear programs.

2. Branch and bound [75] is used in combination with linear relaxations to solve ILP’s.

Using branch and bound an ILP solver decomposes the problem into smaller sub-

problems recursively. The integrality constraints are replaced with lower and upper

bounds on the variables, thus transformation it into an LP problem. The bound ob-

tained by LP relaxation is used to discard subproblems that have a bound than the

best known solution. An advanced version of branch and bound is the branch and cut

algorithm [96].

3. Metaheuristics: Local search algorithms have also been used to solve large instances

of ILPs [128]. The local search algorithms are discussed in detail in Section II.2.3.

Linear programming has proved efficient in solving a variety of exploration problems

like scheduling [100], hardware-software codesign [93].

II.2.3 Local Search Algorithms

Local search algorithms are one of the most widely and successfully applied approxi-

mate algorithms. A template of a local search algorithm is shown below:

Local Search Template
LocalSearch( s)

let currentSolution = s
While not Termination Criterion Do

GenerateNeighbourhood(currentSolution)
If no better neighbour then

Stop
Else currentSolution = improvedSolution

Output Local Optima
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A local search algorithm starts with a given solution of the problem and iteratively tries

to find a better solution in the neighborhood of the current solution. In case a better solu-

tion is found it replaces the current solution. This step is iteratively performed till no better

solution can be found in the neighborhood. The disadvantage of using the local search algo-

rithm is that it can get stuck at a local minima. In order to overcome this drawback several

improvements have been proposed. One approach is to restart local search from a new,

randomly selected solution. This approach is applied in Iterated Local Search (ILS) [78],

Greedy Randomized Adaptive Search Procedure (GRASP) [40, 41, 101]. Another possible

approach is to accept worse solutions, thus escaping the local optima. This approach is

applied in Simulated Annealing [74], Tabu Search [46].

II.2.3.1 Simulated Annealing

Kirkpatrick [67] applied the annealing concept from physics to solving combinatorial

optimization problems. Annealing is based on the principle of mechanics whereby a sub-

stance is heated and then slowly cooled to get a strong crystalline structure. If the substance

is not heated to the right temperature or the cooling is too quick then the process, then the

resulting solid is weak and brittle. Thus, it is imperative that the cooling is done at the right

rate.

Simulated Annealing (SA) algorithm simulates the energy changes in the system till it

converges to an equilibrium state. The optimization problem is analogous to the system,

where the system state represents a solution and the energy of the system represents the

objective function. Starting from an initial solution, SA incorporates significant random-

ization while traversing the state space. In each iteration a random neighbor is selected. If

the objective value of the neighbor is better the move is always accepted. If not, then the

move is accepted with a probability P, which is a function of the current temperature (a

control parameter) and the difference in the objective value (∆E). Initially the temperature

is high and the probability of accepting non improving solutions is also high, but as the
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simulated temperature decreases according to the cooling schedule, fewer such moves are

accepted. The search stops after stopping condition is met, typically when the probability

becomes negligible or the temperature reaches a certain threshold.

Different versions of SA have been used for design space exploration, for example

a multi-objective simulated annealing algorithm [97], a parallelized simulated annealing

algorithm [50], where a number of instances of the algorithm are run in parallel.

II.2.3.2 Tabu Search

Tabu Search (TS) [46] algorithm was developed by Glover. Like SA, TS also accepts

nonimproving solutions to escape from the local optima. In contrast to random moves used

in SA, the neighborhood is explored in a deterministic manner in Tabu search. Like the

basic local search algorithm, a better neighbor replaces the current solution, but the search

continues even after reaching the local optima by accepting non-improving solutions. This

can lead to cycles if the solution accepted has been previously traversed. TS avoids cycles

by maintaining a list of recently visited solutions/moves (tabu list) and discards all those

neighbors present in the list. TS also uses certain conditions, called aspiration criteria to

accept tabu moves if it generates a better solution among the set of solutions possessing a

given attribute. Advanced techniques like medium-term memory and long-term memories

are commonly used to handle intensification and diversification of the search.

Tabu search has also been used for design space exploration of embedded systems [35,

116].

II.2.4 Summary

Mono-objective optimization techniques deal with finding a globally optimal solution

with respect to an objective. In general mono-objective optimization problems are easier

to solve as compared to multi-objective optimization problems, because of the total or-

dering of the solutions in the search space. Mono-objective optimization problems have
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been solved using both exact and approximate algorithms. In this section, we presented

both exact techniques: mathematical programming, branch and bound, and approximate

techniques: Simulated Annealing and Tabu Search.

In general exact techniques perform better for tightly constrained problems, while ap-

proximate algorithms perform better for unconstrained optimization problems. However,

approximate techniques are mostly used when exact techniques are unable to provide so-

lution in acceptable amount of time. This is true for large instances of combinatorial opti-

mization problems. The approximate algorithms are generally used where reasonably good

solutions obtained in polynomial time are preferred over globally optimum solutions.

II.3 Methods for Multi-Objective Optimization

Unlike mono-objective optimization problem, many existing DSE problems have mul-

tiple objectives that conflict with each other, such that no single design solution is optimal

with respect to all objectives. Thus we need to find a set of solutions that trade off be-

tween the different objectives. These problems are known as multi-objective optimization

problems and consist of at least two objectives. The goal of solving multi-objective opti-

mization problems is retrieve a set of Pareto-optimal solutions. A Pareto-optimal solution

has a property that a given objective cannot be improved without deteriorating the values of

other objectives. A solution is Pareto-optimal if improvement of one objective will make it

worse with respect to other objectives. An optimal solution for these design space explo-

ration problems involve search of a set of solutions, referred to as Pareto Optimal solutions.

Gries [48] presents a definition of dominance and Pareto-optimality:

Definition 1. Pareto-criterion of dominance: Given k objectives to be minimized without

loss of generality and two solutions (designs) A and B with values (a0, a1,..., ak−1) and (b0;

b1; ... ; bk−1) for all objectives, respectively, solution A dominates solution B if and only if

∀0<i<k i : ai ≤ bi (II.6)
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and

∃ j : a j < b j (II.7)

This means that a dominating solution is better in at least one objective, while being the

same with respect to other objectives.

Definition 2. Pareto-optimal solution: A solution is called Pareto-optimal if it is not dom-

inated by any other solution. Non-dominated solutions form a Pareto-optimal set in which

neither of the solutions is dominated by any other solution in the set.

The solutions in the Pareto-optimal set cannot be ordered totally using the dominance

relation presented in Def. 1. All the solutions are equally viable and a further evaluation

is required to compare the solutions in the set. A wide variety of DSE problems found in

literature [13, 38, 45] require simultaneous optimization of more than one objectives, such

that valid solutions should also satisfy a set of constraints.

II.3.1 Evolutionary Algorithms (EA)

Metaheuristics are general purpose algorithms mainly used to obtain solutions to large

combinatorial search problems in polynomial time. The metaheuristics model search prob-

lems after the evolution of species. They can be applied to any optimization problem. Evo-

lutionary algorithms (EA)[12, 42] are a class of population-based metaheurisitcs, which

involve iterative improvement of a population of initial solutions. Figure 1 shows a tem-

plate of an evolutionary algorithm.

An Evolutionary Algorithm is a population based metaheuristics that is based on the

iterative improvement of a population of solutions rather than a single solution. Table 1

illustrates a generic template of an EA. With an EA, a set of initial solutions (population

P(0)) is created and then evolved over a series of generations to reach a final solution. The

evolutionary process involves generation of a new population of solutions and replacement

of the current population. First the Evaluate(P(t)) function associates a fitness value to
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Evolutionary Algorithm Template
Generate( P(0) )
t = 0;
While not Termination Criterion Do

Evaluate(P(t))
P′(t) = Selection(P(t))
P′(t) = Reproduction(P′(t)); Evaluate(P′(t));
P(t +1) = Replace(P(t), P′(t))
t = t + 1

End While
Output Best individual or population found

Table 1: Evolution Algorithm Template [123]

each solution of the population. The Section(P(t)) function selects solutions with better

fitness value. A simple selection strategy is to randomly select k individuals from the pop-

ulation and then the best solution from these k candidates is selected. These candidate so-

lutions then act as parents to generate new offspring by variation. The Reproduction(P′(t)

function, which basically includes the variation operators first makes small changes in the

selected candidate solutions and then combines them such that the offspring inherits the

characteristics of both parents. The Replacement function selects the best solutions from

the old population and offspring to promote their propagation in the evolution. This process

iterates till it satisfies a stopping criteria. When the evolutionary process ends the solutions

with the highest value is output as the best solution.

II.3.2 Scalar Approaches

Multi-objective optimization problem can be solved using mono-objective optimization

methods, such as mathematical programming by transforming multi-objective problems to

mono-objective optimization problems. This is done by using an aggregation function to

combine the different objective functions fi into a single objective function:

f (x) =
n

∑
i=1

wi fi(x), x ∈ S

combing the objectives where the weights wi ∈ [0...1] and ∑
n
i=1 = 1
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II.3.3 Summary

In this section we discussed two approaches for multi-objective optimization. The

scalar approach is used to combine mono-objective optimization techniques to solve multi-

objective optimization problems by aggregation of objectives into a single objective (cost).

The decision maker should have a good understanding of the problem being solved in order

to come up with an appropriate weighted sum of the objectives, so that useful results can be

obtained. The quality of solutions obtained using scalar techniques depends on the weights.

Moreover, depending on the weighted sum of objective, certain regions of the design space

unreachable by the search. In order to overcome this limitation, a search might have to be

repeated several times with different weights, such that different regions of the search space

can be explored. However, a disadvantage of this technique is that it does not retrieve all

Pareto-optimal solutions in the presence of a non-convex Pareto front. Another approach

for using mono-objective optimization techniques for solving multi-objective optimization

problems is to use multi-runs, each with one objective to retrieve a single optimal solution.

However, even this approach does not retrieve all possible Pareto-optimal solutions. Scalar

techniques are therefore used for solving multi-objective optimization problems with con-

vex Pareto fronts.

Contrary to scalar techniques, the Evolutionary Algorithms (EA)s (and other popula-

tion based metaheuristics) can retrieve Pareto-optimal solutions in a single run. Some of

the popular algorithms are Nondominated Sorting Genetic Algorithm (NSGA) [33] and

Strength Pareto Evolutionary Algorithm (SPEA2) [135]. Moreover, Evolutionary Algo-

rithms also work better for solving large instances of unconstrained optimization problems.

II.4 Design Space Exploration Frameworks

A large body of work exists on representation and solution of DSE problems, espe-

cially in embedded systems [94] and software product-line engineering [17]. Numerous
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domain-specific frameworks exist that use a combination of solvers and techniques de-

scribed in section. We sample a few domain-specific and generic exploration frameworks

and compare the capabilities in an attempt to highlight the limitations that exist and list out

requirements for a generic framework.

II.4.1 Domain-specific DSE Frameworks

Design space exploration techniques have been widely studied in the areas of electronic

design automation and high level synthesis. Gries [48] presents a survey of some of these

techniques and frameworks used for early design space exploration in embedded system.

Most commonly, DSE frameworks in embedded systems are used for component selection,

resource allocation, routing and scheduling.

II.4.1.1 Metro-II

Metro-II [31] is a DSE framework developed at UC Berkeley. It is an integrated design

environment for platform based design of embedded systems. The framework supports

system level design starting from functional specification to a mapped and optimized im-

plementation. Metro-II was developed to overcome the limitations of Metropolis [15] with

the goal of automating mapping of parallel heterogeneous embedded systems. In Metro-II,

modeling starts with a separate specification of application and platform. This is followed

by a mapping phase where the exploration is performed based on the constraints and objec-

tives. Mapping is the process of associating the functional blocks with architectural models

such that the services used by the functionality are bound to those provided by the archi-

tecture. The problem is formulated as a covering problem, where each process is covered

by exactly one architectural resource. The mapping should satisfy the performance con-

straints and optimize the relevant metrics. An MILP formulation is used in the back-end to

automate the process and a constraint language name Logic of Constraints (LOC) is used

to specify behavioral and structural constraints to be satisfied by the solution.
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Metro-II is a domain-specific DSE framework for embedded systems synthesis that

translates the DSE problem model to an MILP mathematical model.

II.4.1.2 MILAN

Model based Integrated simLuAtioN (MILAN) [14] is a framework developed by re-

searchers at USC and Vanderbilt/ISIS. It is mainly used for used for system level DSE for

heterogeneous embedded systems. The goal is to explore the space of possible design al-

ternatives created as a result of several architectural parameters such as voltage, operating

frequency, configuration, etc. and find a design solution that is optimal with respect to

throughput and energy consumption. The framework uses multi-layered design space ex-

ploration starting with symbolic constraint satisfaction (described in Section II.1.3). This

is used to prune the design space in order to remove infeasible design points. The de-

sign points obtained after pruning are iteratively evaluated using HiPerE, a performance

estimation tool which uses trace-based simulation to calculate estimate time and energy

performance of the system. The design points with lower performance are discarded and

the promising solutions are them simulated using low-level simulators.

This framework is more scalable because instead of exploring a large design space at

once, it performs multi-step exploration. The main drawback is that the lower-levels of

explorations are tightly coupled with estimation tools.

II.4.1.3 MULTICUBE

MULTICUBE Explorer [113] is a multi-objective design space exploration framework

to optimize MP-SoC architectures. This framework was developed as a part of the MULTI-

CUBE project [4] and was aimed for solving design time problems. The framework uses a

parameterized representation of the SoC architecture and explores the design space created

by a combination of architectural parameters. The goal is to find the best tradeoff in terms

of different objectives (energy, area, etc).
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MULTICUBE is different from other frameworks because it is more flexible. It sup-

ports a common interface for simulation engines and optimization algorithm, such that the

designer can plug in his optimization algorithm. The framework provides a set of meta-

heuristics algorithms to compute an approximated Pareto-optimal set. The exploration pro-

cess is made even more efficient by using neural networks to predict the cost of a design

point instead of performing the actual simulation.

II.4.1.4 FeAture Modeling Analyzer (FAMA)

FAMA is a framework for the automated analysis of feature models. It integrates some

of the most commonly used logic representations and solvers for the analysis. The auto-

mated analysis is a two-step process:

1. The feature model is translated to a logic (such as propositional logic ) representation.

2. Off the shelf solvers are used to extract information from the logic representation.

At present CSP, SAT and OBDD solvers are integrated in the back-end and the framework

has been used to compare the efficiency of these techniques in performing a predefined set

of operations on the feature models.

This framework provides more solver flexibility than other frameworks found in lit-

erature survey. The solver flexibility comes from the support for multiple solvers in the

back end. This allows the modeler to choose a different solver for every instance model.

This flexibility is not present in most other frameworks where only one search technique

is supported in the back end. The modeler also has an option to use to automatic selec-

tion, which allows the framework to automatically select the solver to use according the

operation requested.
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II.4.1.5 Software Product Lines Online Tools (S.P.L.O.T)

SPLOT is a Web-based system which uses SAT and OBDD solvers to analyze and con-

figure software product lines. The tool provides interactive configuration services to users.

This framework, like FAMA uses different solvers to perform different operations like

counting of valid configurations is done by OBDD solver, whereas selection of a particular

configuration is done by invoking a SAT solver.

SPLOT supports more than one solver in the back-end but does not give the modeler

the flexibility to choose the solver. The choice of the solver used for a particular operation

is hard-coded in the execution engine. For example, operations like auto-completion, and

configuration are performed only by SAT solvers, whereas product search depending on

feature selection by the modeler are solved using OBDD based solvers.

II.4.2 Generic Frameworks

II.4.2.1 DESERT

Design Space Exploration Tool (DESERT) [90] is a DSE framework that is aimed at

performing early design space exploration in embedded system design. Design alterna-

tives are represented hierarchically as an AND-OR-LEAF tree which boolean constraints

describing interaction of design choices. The design tree and constraints are symbolically

encoded, using OBDDs. (for more details refer to Section II.1.3). The designer can in-

teractively choose the hard constraints and prune the design space. The main advantage

of this approach is that it is exhaustive and is very useful for performing coarse grained

design space exploration. However, it does not scale well in the presence of continuous

finite domain variables [89].

DESERT-FD [34] is a DSE framework developed to overcome the limitations of DESERT.

It uses a combination of OBDD and a Finite-Domain (FD) solver to perform DSE. Both

DESERT and DESERT-FD frameworks are domain-independent frameworks and can be

used to represent and explore design spaces in any domain.
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II.4.2.2 PISA

A Platform and Programming Language Independent Interface for Search Algorithms

(PISA) [21], is an interface specification and tool developed at E.T.H, Zurich. The focus of

the tool is to perform multi-objective optimization. The interface provides a lot of solver-

flexibility because it allows separating the problem-specific and problem independent part

of an optimization problem. The search algorithm is a separate process that communi-

cates with the optimization problem. The problem representation part can be arbitrarily

combined with any ready-to-use multi-objective optimization algorithms. Although the

domain-engineer does not need to implement the search algorithms himself, he still needs

to write the domain-dependent evaluation and consistency checking functions.

PISA is better than other frameworks in terms of flexibility since it supports separation

of the specification of the DSE exploration problem from the exploration algorithm. It is

language and platform independent, but a significant coding effort is required to write the

evaluation functions.

II.4.3 Discussion

Table 2 shows a summary of the frameworks surveyed in this chapter. The frameworks

are compared on the basis of the modeling and solution support provided by them. The

modeling support includes the the design space representation and constraint specification

language. The solving support highlights the search method used by the framework.

The frameworks used for product-line configuration, in general support an enumerative

design space representation, where each alternative is explicitly modeled. The design al-

ternatives are organized in a compact representation, called the feature model. DESERT

also uses an enumerative representation to organize alternatives hierarchically. On the other

hand, the frameworks used for automated DSE in embedded systems, support partial model

representation of the design space, where an incomplete model represents the design space.

Each alternative in the space is a model obtained by completing the partial model.
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All, except two frameworks surveyed are domain-specific. This means that the same

framework cannot be used to model and solve exploration problems from other domains.

This is also because the design space is represented using domain-specific concepts. Most

frameworks (except PISA) provide a constraint specification languages to specify declar-

ative constraints. The Metro-II framework uses logic of constraints, a language used for

specifying temporal constraints. The constraint languages supported by the frameworks

range from high-level languages like OCL to low-level languages like propositional logic.

In contrast to the low-level languages that are tied to the search techniques, high-level lan-

guages provide a user friendly solver-independent syntax to specify validity conditions.

However, most frameworks surveyed in this chapter do not provide any support to the

modeler for constraint formulation.

Most frameworks (except FAMA) are built on a preselected solver, such that all prob-

lem instances modeled using the framework are solved by the same solver. This is also

because different frameworks are built on the requirements of the class of DSE problems it

is intended to solve. For example, some frameworks are used to obtain design points which

satisfy constraints (DESERT), yet there are others which are used for multi-objective op-

timization. However, pre-selection of solver prevents the modeler from solving both satis-

faction and optimization problem in the same framework.
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CHAPTER III

A GENERIC FRAMEWORK FOR DESIGN SPACE EXPLORATION

This chapter presents a generic framework for automated design space exploration.

This work is motivated by the limitation of existing approaches for automated DSE, which

focus on solving problem instances belonging to a single class of DSE problems from

a given domain. As an example consider the problem of assigning of real-time tasks to

multi-processor during embedded systems synthesis. This is a common DSE problem,

where given a set of task and a set of resources, the goal is to find an assignment of tasks to

processors, such that the solutions satisfy certain non-functional properties (cost, memory,

etc). A large body of work exists to automate the exploration of design space for the task

to processor mapping problem. Approaches range from use of ad-hoc algorithms [66, 95]

to using frameworks [31, 34, 90, 132] built on integration of constraint solvers etc into

domain-specific modeling environments.

The use of frameworks to automate DSE is better than other approaches found in liter-

ature as they support reuse of code and design. The framework-oriented approach is built

on a model compiler that transforms an arbitrary model in the domain-specific modeling

language along with a set of constraints to a suitable formulation, for example an inte-

ger linear program that can be processed by an optimization solver to retrieve valid and

perhaps optimal solutions. The results of the solver are integrated back into the domain-

specific environment. This approach allows the domain-engineer to model DSE problems

at a higher abstraction level using familiar notations, and then solve them without any par-

ticular knowledge of the search method.

However, like other approaches, existing DSE frameworks are also tailored to solve a

class of domain-specific DSE problems. This is due to the tight coupling of the model

35



compiler and the modeling language with the domain-specific aspects of the problems be-

ing solved. Literature survey reveals that similar kind of DSE problems exist in different

domains. For example the design of synchronous optical networks [117] is a DSE problem,

where a set of client nodes have to be installed on one or more rings given the traffic and de-

mand constraints. This problem, like the task to processor mapping problem in embedded

systems, is also a resource allocation problem. Although the general-purpose solvers are

powerful enough to solve both problems, the domain-specificity of the existing frameworks

restricts their use to modeling and solving only one of the two problems. Given the time

and effort required to develop frameworks for automated DSE and the power of general

purpose solvers, it would be advantageous to have a unified framework for DSE that can be

exploited by as many users as possible.

This chapter introduces a generic framework for automated DSE that can be used to

model and solve DSE problem from different domains. The framework adopts Model In-

tegrated Computing (MIC)[121] as its core technology. MIC paradigm is a development

methodology that centers around the use of models in system development activities. MIC

facilitates model-based development by definition and implementation of a domain-specific

modeling language (DSML), a language tailored to a particular domain. Use of models

raises the level of abstraction and enables the modeler to reason about the problem in terms

abstract concepts. Moreover, use of DSMLs in particular improves the modeling experi-

ence through the use of domain-specific concepts. This is a much desired feature for the

generic DSE framework, where use of a DSML enables the domain-engineer to formulate

the DSE problem using domain-specific concepts.

The generic framework is based on three distinctive features as compared to existing

framework: (1) a set of reusable classes that capture concepts common to DSE problems

across domains, (2) a simple constraint language and constraint templates that enable easy

constraint specification, and (3) a solver-independent abstraction level that enables trans-

lation of a well-formed problem model to a number of solver-specific formats that can be
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processed by the different solvers. The key idea is whenever a new class of DSE problems

in a given domain is to be solved, the domain-expert associates the DSE aspects captured by

the reusable classes with the existing domain-specific concepts in the DSML of the domain

to create a new DSML. This new language can be used to specify models of the problem

using domain-specific notation. The DSML is used to configure the the generic framework

to create a domain-specific DSE environment, that can then be used by domain-engineers to

model DSE problem instances. The model compiler is domain independent, therefore, any

problem modeled in the framework is correctly transformed to a solver-dependent format.

In order to achieve generic modeling of DSE problems, an alternative approach would

have been to use the Unified Modeling Language (UML) [103], for modeling the DSE

problems. The UML provides a single unified language that can be used to describe all

domains. A common approach to use the UML is to tailor the existing models using pro-

files. A UML profile is an extension of the UML language for an area of application, for

example the SysML [43] is a UML profile for System Modeling. A UML profile for spec-

ifying DSE problems would be generic enough to support DSE problems from different

domains. However, this approach requires the domain-engineers to learn a new language,

in this case the UML profile, that lacks the familiarity of a domain-specific modeling lan-

guage. This in turn will add to the complexity of modeling the DSE problems. Therefore,

in order to achieve generic modeling support without losing out on the niceties of using

domain-specific modeling languages, the modeling support of the framework is based on

a clear conceptual separation of the domain-specific concepts and the DSE aspects of the

problem. This separation allows the use of the framework to model any DSE problem.

In order to solve the problems modeled using the framework, a generic solver support is

included in the framework. Existing approaches for automated DSE integrate one general-

purpose solver that is most suited for their needs. This choice of the solver is based on

the objective of solving the problem (global optimal solution, all valid solution) as well as

the type of constraints (linear, non-linear). However, in a generic framework that supports
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solution of DSE problem instances with arbitrary combinations of objective and constraints,

integrating a single solver will not suffice. Thus, in order to have an extensible solver

support, a solver-independent abstraction level was introduced in the framework. Any

problem modeled in the framework is automatically translated to a model at this abstraction

level. This model of the problem can then be translated to different solver specific formats

and solved according to the objectives and constraints. At present, two solvers, one based

on constraint programming [16] and one based on evolution algorithms [47] have been

integrated. Although these two solvers are capable of solving a wide range of problems,

any more solvers can easily be integrated into the framework given the simplicity of the

solver-independent abstraction level. Unlike existing approaches, where the choice of the

solver is predefined, the domain-engineer can select a solver based on the requirements of

the instance.

In this chapter we give and overview of the architecture and discuss the languages

involved, in detail. We use the following definition while describing the concepts in the

framework.

Definition 3. Conceptual Model: A conceptual model MMCM models a class of DSE prob-

lems P in a domain. MMCM includes the concepts, relationships, validity constraints that

the solution should satisfy and objective of solving P.

Definition 4. Problem Model: A problem model MCM models a problem instance Pi be-

longing to P. A problem model MCM conforms to the abstract syntax captured by the

conceptual model MMCM of P.

Essentially, the concepts in the conceptual model are common to all problem models

belonging to the class of DSE problems under consideration.

III.1 Overview of the Architecture

As previously mentioned, the generic framework adopts MIC, that facilitates model-

based development by systematic definition and implementation of DSMLs and a suite of
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meta-programmable tools including (Generic Modeling Environment (GME) [76], Univer-

sal Data Model (UDM), Graph Rewriting and Transformation(GReAT)) to reduce the effort

required in creating domain-specific modeling environments, as well model transformation

and synthesis.

Figure 2: Modeling layers in MIC

A key tool in the MIC metaprogrammable tool suite is the GME [121], a configurable

toolkit for creating domain-specific modeling environments. The configuration of the tool

is accomplished through metamodels, a definition of the syntactic and semantic aspects

of the domain in a stereotyped UML-style class diagram. Figure 2 shows the metamodel

MMDSML of a task to processor mapping problem. This metamodel is used to automatically

generate the target domain-specific environment. The generated domain-specific environ-

ment is then used to build domain models MDSML like the one shown in Figure 2, that

conform to the language defined by MMDSML. The GME is meta-programmable, there-

fore, the same environment is used by the language designer to capture the metamodel

of a language and the engineers to create model instances of the language. The model

can essentially be seen as an instance of the metamodel. The GME provides a predefined

metamodeling language, MetaGME that is used to specify metamodels.
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The generic DSE framework is based on the meta-programmable tool GME. The recon-

figurability of GME enables the domain-experts to configure the generic DSE framework

for every class of DSE problem. The framework includes three key elements. First key

element of the framework is the Abstract Design Space Exploration Language (ADSEL),

that consists of abstract modeling concepts common to all DSE problems. These concepts

might include objectives, constraints, global variables, components. Another key element

is the Constraint Specification Language(CSL), an expressive language that is used to

write constraint definitions denoting the conditions that the solution model should satisfy.

The ADSEL and CSL together form the crux of the generic modeling support in the frame-

work. The third key element of the framework is the Intermediate Language (IRL), a

solver-independent language used to capture a high-level mathematical model of the class

of DSE problem under consideration. This mathematical model is then refined to lower-

level solver specific formats.

Figure 3: Architecture of the generic framework
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Figure 3 shows a detailed view of the architecture of the framework. Given a DSE

problem model MCM, the goal of using the framework is to retrieve a set of design solution

models MS. The process of modeling and solving a DSE problem consists of 5 main tasks:

(1) Configuration, which involves configuring the framework for a DSE problem in a do-

main by creating the conceptual model MMCM, of the DSE problem; (2) Search Problem

Generation, which involves translation of the conceptual model MMCM to create solver-

specific models that can be processed by the solvers; (3) Search data generation, which

involves generation of instance specific data from the a DSE problem model MCM; (4)

Model and search, which involves creation of a DSE problem model MCM and performing

the search; and (5) Solution Model, which involves taking the results of the solver to create

a solution model MS. Task (1) is performed by the domain expert, once for a DSE problem,

while task (4) is performed by the domain-engineer for every problem model MCM of the

DSE problem. Task (2) and (3) are automated in the framework and task (5) is performed

manually using simple steps.

1) Configuration: In order to use the framework to solve a class of DSE problems in a do-

main, the domain-expert has to configure the environment to create a domain-specific DSE

environment that supports modeling problem instances belonging to the class. For example,

to solve task to processor mapping problems in the embedded system domain, the domain-

expert configures the framework to create an environment where the domain-engineer can

create a specific DSE problem model consisting of a list of tasks and processors and solve

it to retrieve possible mappings. In order to achieve this, the domain-expert starts with

definition of DSML for the embedded systems domain, shown as MMDSML in Figure 3,

that captures all the key concepts of the domain, for example task, processor, etc. Based

on MMDSML, the domain expert creates a new DSML that essentially captures the concep-

tual model of the task to mapping problem by associating DSE aspects from the ADSEL

classes with the existing concepts in MMDSML. This association is achieved by using Tem-

plate Instantiation technique of metamodel composition [36]. As the ADSEL consists of
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only abstract classes, the template instantiation method proposes inheriting a pre-existing

concept Class m in MMDSML from an abstract ADSEL Class a, such that Class m also in-

herits the characteristics of Class a in the resulting new DSML, captured by the metamodel

MMCM. For example, the MMCM for the task to processor mapping problem includes Task

as an ADSEL component. The ADSEL classes and their use is discussed in detail in Sec-

tion III.3. The constraint classes in the MMCM are annotated with constraint definitions

specified using the Constraint Specification Language (CSL) constraints that should be sat-

isfied by valid solution models MS. Once the development of MMCM is complete, it can be

used to automatically configure GME, to create a domain-specific DSE environment. The

configuration is performed once for every class of DSE problem solved.

2) Search problem generation: This task involves translation of the conceptual model to a

set of solver-specific formats. This translation is performed in two stages. The first stage,

illustrated by the CM2IRL transformation (Figure 3), translates the conceptual model of

the DSE problem to a high-level mathematical model MIRL conforming to the Interme-

diate Language (IRL). The second stage transforms MIRL to solver-specific formats. The

CM2IRL is a domain independent model transformation, that is it remains the same for all

MMCM. The transformation rules only focus on those elements of MMCM that are a special-

ization of the ADSEL classes. The CM2IRL also rewrites the CSL constraint expressions

in the conceptual model MMCM to lower-level constraint expressions in MIRL. These pro-

cessed CSL constraints, referred to as pCSL constraints, are written in terms of elements of

MIRL.

In order to translate the model MIRL to lower-level solver specific models a set of trans-

lators are used. Currently, the framework supports two solver-specific formats for solving

the DSE problem. Figure 4 shows the translators and the models produced. The translator

IRL2CPL is used to generate a model MCPL, referred to as the CP Model, which is basi-

cally a constraint satisfaction problem in a Constraint Programming Language (CPL). For

this work, we chose Minizinc [91], a solver-independent medium-level CPL that is used
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Figure 4: Generation of solver-specific models

to express combinatorial search problems. The MCPL along with the data can be used to

retrieve valid design solutions or a globally optimal solution with respect to a single objec-

tive. Alternatively, the model MIRL can also be refined a model MIL, referred to as the MOP

Model. This model is basically a program implemented in an imperative language that is

used in conjunction with an evolutionary algorithm to produce a set of Pareto-optimal de-

sign alternatives (Section II.3). Currently, the model MIL is implemented by a Java program

and interacts with an evolutionary algorithm program using text-based interface. The MOP

model is described in detail in Section III.7.

3) Search data generation is automated by the M2Data transformation. It takes the prob-

lem model MCM created by the domain-engineer and generates textual data that is used in

conjunction with the solver-specific models: MCPL and MIL to generate solution model MS

(or a set of solution models). This transformation is generic and uses a definition of MMCM

to generate the right data. The data is generated in two similar each corresponding to the

two solver-specific models.

4) Model and Search is iteratively performed by the domain-engineer when the system is
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being designed. The domain-engineer creates a DSE problem model MMCM and selects the

search method to be used. The solver-specific model corresponding to the selected search

method is then executed and solutions (if any exist) are returned in the solver output format,

usually a plain text format.

5) Solution modeling This output is used to create solution models MS that conforms to

metamodel MMS. The metamodel MMCM is used to create design spaces and simple mod-

ifications are required so that the metamodel can be used to represent a simple design alter-

native instead of a design space. These modifications depend on the kind of design space

representation used in MMCM. A simple modification can be to concretize an abstract el-

ement in MMCM to generate MMS. The solution to model transformation is performed

manually as present.

III.2 Running Example

In the following sections we discuss each of the languages used in the framework in

detail. As a running example, we used the task to processor mapping DSE problem found

in embedded system [61]. Given an application consisting of a set of tasks and a platform

of connected processing elements, the goal of the platform mapping problem is to find a

mapping of the tasks on to the processing elements.

(a) Application (b) Platform

Figure 5: Embedded Systems DSML
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Application Specification : Let T be the set of all tasks in the application, i.e., T =

{t1, t2, ...} .

Platform: Let P be a set of all processing elements in the platform, i.e, P= {pe1, pe2, ..., pem}.

Each processing element pe j has 2 attributes {cost j, powd j} where cost j gives the cost and

powd j gives the power dissipation of processing element.

Constraints: All resulting design solutions must satisfy the following constraints

(i) Each task must be mapped to exactly one processor.

(ii) A task t1 must not be co-located with t2, modeled using a a NoCon f lict constraint.

(iii) A task must be mapped to one processing element from a set of possible choices,

modeled using a Mapping constraint, for example IDCT module can be mapped to

a processing elements from a set {muP1,muP2}.

Problem Objective: For a given application and a processing element library, the goal is to

find design solutions that satisfy the constraints, and are Pareto-Optimal with respect to cost

and power dissipation. Both CP and MOP models for the running example are tested in this

chapter. Figure 5 shows the DSML of an embedded system that embodies domain-specific

aspects of the DSE problem.

III.3 The Abstract Design Space Exploration Language (ADSEL)

The generic modeling support of the framework is based on a set of reusable classes

that capture the common aspects of DSE problems, for example the components, objec-

tives, constraints etc. These classes together are referred as the Abstract Design Space

Exploration Language (ADSEL). In this section we discuss the rationale of creating the

classes and the definition of the language in detail.
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III.3.1 Rationale

One of the key research challenges of our work was to determine a set of abstract mod-

eling concepts that can capture generic aspects of DSE problem. These concepts should be

generic enough to be applicable to a wide range of domains. We evaluated a set of DSE

problem from different domains to identify common modeling concepts used to capture

the problems. The goal is to separate out these common concepts into a pattern metamodel

that can be reused for modeling DSE problems. We consider two DSE problems: a task to

processor mapping problem [59], and a configuration of software product-lines [131] in our

evaluation. In each case we followed 3 steps: (a) Identify key elements of the DSE prob-

lem, this includes the design space, the solution of the problem, the constraints that each

valid solution should satisfy and finally the objective of the exploration; (b) create a meta-

model to reflect the concepts; (c) create a problem model and a solution model to ensure all

concepts were captured. We discuss each of the examples in detail. The language defini-

tion is specified as a metamodel in GME and uses the GME metamodeling syntax which is

well documented in [64]. Concepts like inheritance and containment are similar to those in

UML. The stereotypes (ex: «Model», «Atom», «Connection») express the binding

of the abstract syntax to the concrete syntax implemented by the GME environment.

Figure 6: Task to Processor Mapping Problem
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1) Task to Processor Mapping Problem: This is a simplified version of the running ex-

ample presented in Section III.2.The goal of this version of the task to processor mapping

problem is to find a mapping between MapsTo : T → P, given a set of tasks T and a set

of processors P. Key aspects of the problem are: (a) design space: a set of all possible

mappings; (b) constraint: each task t ∈ T is mapped to exactly one processor p ∈ P; (c)

objective: find valid mapping. Figure 6 shows a possible metamodel MMD for capturing

the key aspects of the problem. This includes classes: Task and Process to capture the

inputs, and an association MapsTo to model the mapping relation. The cardinality of the

association captures the constraint. This metamodel can be used to model both the design

space model MD and solution model MS.

2) Software Product-line Configuration is a DSE problem found in software product line

engineering, where given a set of possible features that can be included in a product, the

goal is to select a product variant that contains a subset of features. Key features of this class

of problem are: (a) design space: all possible subsets of the set of features. (b) constraints:

consistency constraints, like feature A is selected if feature B is selected, composition con-

straints, (c) objectives: find a product variant with the lowest total cost.

There are two alternate ways to capturing the design space in this problem. One ap-

proach is to have a Feature class and then use associations to model the constraints on

selection on selection of the feature. Another, more concise representation is to hierarchi-

cally organize the alternative subsets in a tree like structure, called feature models [62],

where the composition constraints are transformed to containment relationships to create

a tree-like structure. We use the feature model approach to develop a metamodel to cap-

ture the problem, shown in Figure 7. It consists of a Primitive and Compound classes

to model the leaf and internal nodes of the feature model tree. The Feature class has

two attributes: select boolean attribute to model selection of class in a product vari-

ant and cost attribute. Besides the composition constraints, this problem includes two

kinds of constraints: cross tree constraints that relate selection properties of two features,
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Figure 7: Feature Configuration DSE Problem

for example ‘F1.select->F2.select’, as shown in the figure. This constraint can be

specified as an association, where the exact constraint definition is captured as expression

attribute of this association. Another constraint is the dependency constraint where the

cost of a feature is determined based on the cost of the composed features. For example

‘F1.cost=F2.cost+F3.cost’. Such a dependency relation is more naturally as an assign-

ment statement. Besides this, a concept is required to capture the attributes of a design

alternative in the design space. For example, total cost of a product variant. Figure 7

shows an example design space model with the constraints and a solution derived based on

the information included in the model.

As a result of the evaluation we conducted, we came to the conclusion that the follow-

ing concepts are required to model the DSE problems in an MDE-based framework: (i)

Components that form the core of design space representation in the problem models, for

example Task and Processor classes in task to processor mapping problem and Features

in the configuration problem; (ii) Component Attributes, that can capture the properties of
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the components. The values of these attributes may be included in the problem model,

like cost attribute of Feature class in configuration example, or maybe calculated by the

solver and included in the solution model, for example select attribute; (iii) Association,

that are used to express relations between the core components in the design space, for ex-

ample MapsTo relation, (iii) Constraints, that are used to capture conditions that must be

satisfied by the solution models, for example the Cross-Tree constraints in the configura-

tion example; (iv) Global Variables that are required to capture properties associated with

a design point in the design space, for example total_cost. Besides these concepts

that capture the design space, we require a concept to capture the objective of solving the

DSE problem. These classes are separated out into a template that is reused associate DSE

characteristics with any DSML .

III.3.2 The ADSEL Definition

The ADSEL language definition is specified as a metamodel in GME. In this section

we discuss each concept of ADSEL in detail. As a running example to explain the concepts

we use the DSE problem illustrated in Section III.2.

Based on the evaluation in Section III.3.1, the ADSEL Metamodel consists of (i) Com-

ponent Types, which are entities used to model the design space in a given problem, (ii)

Association Types, which model relationship between the component types, (iii) Constraint

Types, which model the constraints to be satisfied by valid design alternatives, (iv) Global

Variables, which capture properties of a design solution, for example, totalcost. These

properties are required to compare the different design alternative during the search, and

(vi) Objective Types, which captures the goal of the exploration. In the following, we de-

scribe each of category in detail and use our simple mapping problem to show the use of

these classes in creating the conceptual model for the mapping problem.
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(a) ADSEL Component Types (b) Mapping Component Types

Figure 8: Component Types

III.3.2.1 Component Types

The design space in a problem model MCM is represented using a set of Component

objects. This design space can be enumerative, where the design alternatives are organized

hierarchically in a tree like structure as done using feature models [62]. Alternatively, the

design space can be represented as a partial model, where the space is a represented as a

model template and each design alternative is a well-formed model created by completing

the model template. The Component classes provide generic means to support both rep-

resentations. The Component classes are classified into Primitive and Container class, as

shown in Figure 8(a). The Primitive class represents a fundamental unit of composition

atomic concepts that cannot be decomposed any further. A Container component repre-

sents a decomposable model concept, that can contain one or more components (Primitive

or Container), shown by containment relationship Children. The components form the

building blocks for modeling a design space, for both enumerative and partial models.

An additional set of container components, namely, Mandatory, Alternative, Option

and Or are provided for the convenience of modeling enumerative design spaces. The

Mandatory class models composition, which means all the child objects are included if the

parent is included in a solution model. The Alternative class models a choice point where

exactly one child object is included. The Option class models a choice point where one or
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none of the child objects is included. Finally, the Or class models a choice point where any

number of child objects between the child_min and child_max can be included if the

parent is included in a configuration. Essentially only Primitive and Container component

types are enough to create a hierarchy. In such a case additional constraints will have

to specified to express the composition constraints. Therefore, Mandatory, Alternative,

Option and Or are provided for user convenience. Figure 8(b) shows the components in

the conceptual model of our simple mapping problem, where the Task and Processor are

modeled as primitives.

Figure 9: Output Component

A Component class by default models an input component where the component objects

are included in a DSE problem model MCM, created by the domain engineer. However, DSE

problems require a concept to model classes where the component objects are retrieved as

a result of the search. This concept is modeled using an Output component, captured by

isOutput attribute, where (isOutput=true) for an output component. An output

component is a singleton, where a single object of the component is included in the design

space model. The DSE properties of this singleton are shared by all the objects returned by

the search.

Certain DSE problems require an ordered set of objects, such that each object can be
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Figure 10: Ordered Component

accessed using a unique index number in the range [1..cardinality]. where the

cardinality gives the total number of objects included in problem model. We model

such a set using an Ordered component class, reflected by the isOrdered attribute. Fig-

ure 10 shows an example of an ordered component Slot. Each object of Slot can be ac-

cessed using the index property.

(a) ADSEL Association Types (b) Mapping Association

Figure 11: Association Types

III.3.2.2 Association Types

An Association class models a relationship between the Component instances . There

are two kinds of associations classes, as shown in Figure 11(a): (1) BinaryAssociation class,
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which models a relationship between two component types, and (2) Nary Association class,

which is used to model a relationship between more than two components. The association

end points specify the role and multiplicity. The roles are specified using the key words

‘src’ and ‘dst’. In case of Nary associations where there is more than one source or

destination contexts, the rolenames ‘<src|dst>[N]’ are used, where N is a natural number

used to uniquely index a context in case of more than one source(destination) components.

The multiplicity of the association denotes the number of instances that can participate

in the relationship. For example, Figure 11(b) shows a binary association between Task

(role name: src) and Processor (role name: dst), where one instance of Task instance can

be associated to exactly one instance of a Processor, but the Processor instance can be

associated to zero or more Tasks. We can reason about the set of all Association instances

in the model by use of the association name. For example, MapsTo refers to the set of all

association instances in the problem model. A particular instance of the association can

be referenced by function style notation where the association ends points are passed as

arguments. For example, ‘MapsTo(t,p)’ refers to the association instance between Task

t and Processor p. The associations in ADSEL are navigable in both directions although

the directionality is implied by the role names. The source to destination navigation in this

case is written as ‘MapsTo(t,_)’, where t is the name of the Task instance and returns the

Processor instance. Reverse navigation is achieved by writing ‘MapsTo(_,p)’ where ‘p’p

is the Processor instance id.

Association classes can be abstract or concrete. An abstract association class models an

output relation between components, that is included in the design solution returned by the

search. A valid design solution should satisfy the cardinalities of the association. Figure

11(b) shows an abstract MapsTo association class. The cardinalities of the association

suggest that each Task instance in the design solution should be associated to exactly one

Processor instance by a MapsTo association.

53



All N-ary association can essentially be modeled using a set of binary association.

Therefore, for the remaining thesis, we restrict our focus to the use of binary association.

III.3.2.3 Properties

The attributes of the DSML elements (for example, cache type) represent the natural

characteristics of these model elements but may or may not be useful for design space

exploration. In order to express attributes relevant for design space exploration (for ex-

ample, cost) we associate DSE properties with components and associations. A property

specification includes the following parts:

• Property Type, which can be {PARAMETER, DECISION, METRIC}. A parameter

property is set before the search process whereas a decision property is a result of the

search. A metric property depends on other properties of the component, global

variables or associations navigable using the parent component.

• Value Type, which can be {INT, BOOL, STRING, FLOAT}. Only a parameter prop-

erty can take string values.

• Domain, which can be a single value or set or range of values that the variable can

take and depends on the ValueType.

• Assignment Statement, which specifies the CSL assignment statement (arith-

metic or boolean) used calculate the value of a metric property.

In our mapping example, the Processor component has three properties, namely, cost,

powd and used as shown in Figure 8(b), where cost represents the cost of the processor,

powd represents the power dissipation of the processor and used models a condition to

check if at least one Task object is associated to the Processor object. The cost and powd

properties are of parameter type, where the value of the properties for each Processor object

is included in the DSE problem model. These properties remain constant for the duration
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of the search. The used property is modeled as a metric type property, where the value

is calculated using the assignment statement in Figure 12, where ‘$self’ refers to the

Processor component. Each property of the component is accessed using a ‘.’ operator.

The ‘card’ operator gives the cardinality of the set of Task objects associated with the

Processor using the MapsTo association. The statement is written using the constraint

specification language discussed in Section III.4.

1 $self.used <-> ( card(MapsTo(_, $self)) >= 1)

Figure 12: Assignment statement for cost property

Figure 13: Property Inheritance

Property Inheritance: Properties of a component are inherited by all derived component

classes. For example, Figure 13 shows component classes C and P that are derived from the

base component class B, where the base component class has cost property of decision

type. This property is inherited by the derived components and can be accessed like any

other property that belongs to the component. For example ‘C.cost’, is a valid arithmetic

expression. It is possible to constrain the domain of an inherited property. A decision prop-

erty is the least constrained, thus an inherited property of decision type can be constrained
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further by using an assignment statement that is a function of other properties of the com-

ponent. For example, in the feature example, the cost decision property of component B

is inherited by component C and is constrained by the following assignment statement,

1 $self.cost = sum(c in Children($self, _) ) (c.select * c.cost)

A decision or a metric inherited property can be constrained to a single value input by

the domain engineer. For example, the cost property in Figure 13 is also inherited by P

and is constrained to a single value entered by the domain engineer. The is done by the

following assignment statement:

1 $self.cost = param($self.cost)

where the function ‘param’ is used to convert a decision (metric) property to parameter

property such that the value of the property is equal to the value included in the DSE

problem model.

III.3.2.4 Constraints Types

Constraints are used to model conditions that each valid design solution must satisfy. A

constraint is expressed in terms of one or more context component classes and is applica-

ble to a particular component object or all component objects included in the DSE problem

model. Based on the number of context components, the ADSEL constraints can be of

three types: Unary, Binary and Nary constraints (Figure 14(a)). Each constraint class can

be concrete or abstract, where an abstract constraint class models a constraint that should

hold true for all instances of the context like an OCL invariant or at least one unknown

instance of the context. On the other hand a concrete constraint class models a constraint
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(a) ADSEL Constraint Types

(b) Mapping Constraints

Figure 14: Constraint Types

that has to be explicitly instantiated and applies to a single component object in the prob-

lem model. All constraint classes have an attribute <name>_expr, which captures the

constraint definition using the CSL, a simple constraint specification language discussed in

Section III.4. We discuss each of the constraint classes in detail.

1. A Unary Constraint models a single context constraint, where the context is a Com-

ponent. For example a constraint on the memory property of a component Module,

say ‘Module.memory <= 128’ can be modeled as a unary constraint with the Module

component as context. The CSL constraint definition is given by ‘$ctx1.memory <=

128’. If the constraint class is abstract, then the constraint definition applies to all

Module objects in the problem model. If the constraint class is concrete, then it is
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explicitly instantiated in the design model MCM and constrains the memory property

of an object of the Module component.

2. A Binary Constraint models a dual context constraint used to specify a condition re-

lating two components (and their properties). For example, a selection constraint in

the product configuration problem presented in Section III.3.1 relating the selection

property of a feature A to a feature B, such the selection of feature A implies selection

of feature B. This constraint can be easily modeled as a binary constraint BC with

Feature class as both source and destination contexts. The CSL constraint definition

is given by ‘$ctx1.sel -> $ctx2.sel’, where ‘$ctx1’ and ‘$ctx2’ refer to source

and destination Features. An abstract binary constraint BC is applied to all combi-

nations of source and destination instances. A concrete binary constraint is explicitly

instantiated in the design space instance model. The contexts of the constraint have

rolename ‘$ctx[N]’, where N is a natural number uniquely index each context com-

ponent. Figure 14(b) shows two binary constraints in our example mapping problem.

The NoConflict binary constraint models the condition that the context Task instances

should not be mapped to the same Processor and the Mapping constraint models that

a Task t is mapped to Processor p. The CSL expression of the mapping constraint is

given by ‘MapsTo($ctx1,$ctx2)’.

3. NaryConstraint models constraints with more than two context components.

By default a valid configuration should satisfy a conjunction of all constraints, except in

case of DisjunctiveConstraint Sets. A DisjunctiveConstraintSet models a set of constraints

that are composed using a disjunctive operator. It can contain a set of unary, binary or

nary constraints, such that exactly one constraint in the set should be true. For example, in

our simple mapping problem a task can be mapped to exactly one out of a possible set of

processors. This is represented by a disjunctive set of Mapping constraints. Figure 14(b)
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shows a disjunctive constraint set MappingPossibilities that consists of a set of Mapping

constraints out of which exactly one constraint should hold.

III.3.2.5 Global Variables

Global Variables are essentially DSE properties that are associated with a design solu-

tion and cannot be expressed as properties of a particular component or association. For

example, total_wire_length is a global variable that is used to model the length

of nets for a particular placement solution. This property is used to compare the dif-

ferent placement alternatives during the search. Like properties, global variables have a

value_type attribute that specifies the type of values the variable can take. Addition-

ally, all global variables have an isSingleton attribute, which models whether exactly

one or more instances of variable can be included in the problem model. By default the

global variables are singletons (isSingleton=true).

(a) ADSEL Global Variables (b) Mapping Global Variables

Figure 15: Global Variables

There are two types of Global Variables, shown in Figure 15(a):

1. a Decision global variable models a property of the design solution that is deter-

mined by the search. A decision variable cannot be of float or string type. The

domain attribute captures the possible values of the variable and the assign_expr
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attribute captures the assignment statement used to calculate the value of the variable

depending on values of other properties.

2. a Parameter global variable, which models a property that is shared by all solution

in the design space. The value attribute is used to capture the value of the variable

instance.

Figure 15(b) shows two global variables in the mapping example that are used to calculate

the total cost and total power dissipation of a design solution. The total_cost is an integer

variable that can take all non-negative values. The assignment statement is given:

1 $self = sum(p in Processor) (bool2int(p.isUsed)*(p.cost))

III.3.2.6 Objective Types

This captures the goal of solving the DSE problem. There are two kinds of objective

functions (shown in Figure 16): (i) Satisfy objective is used to perform constraint-based

DSE where the goal is to find design alternatives that satisfy all constraints, and (ii) Opti-

mize provides a placeholder for specifying the cost functions used to compare the alterna-

tives in the design space.

The Optimize objective contains one or more Objective Variables that are essentially

global decision variables or decision properties of components. The property_name

attribute gives the name of the property under consideration. Each objective variable has

a weight attribute which is used for aggregation when a CP solver is used for multi-

objective optimization. In the mapping example for instance, the objective is to find a

design that satisfies the constraints and has minimum cost and power dissipation. The

objective variables are total_cost, total_powd.
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Figure 16: Objective Types and Objective Variables

III.4 The Constraint Specification Language (CSL)

In DSE, constraints are often used to specify logical conditions that the design solution

should satisfy. These conditions are often in the form of bounds on certain properties of a

design solution. For example, “the memory consumption of the system should be

less than 100”. They can also be in the form of a relationship between concepts that the

design solution should honor. For example in a task to processor mapping problem [51], a

typical constraint can be “Always deploy Task A and Task B on the Processor p”.

These constraints are used by the search methods to prune out design alternatives that do

no satisfy them and move towards valid solutions. The efficiency of the search and the

correctness of the returned solution is highly dependent on the way the constraints are

formulated. Therefore, correct formulation is of the essence while solving DSE problems.

The generic framework presented in this dissertation is a model based framework,

where the constraint definitions are specified in conjunction with the conceptual model

of the problem. We had four requirements for a constraint specification language . Firstly,

we required a declarative constraint specification language that can be used to annotate

the concepts in the conceptual model of the problem. Secondly, keeping in line with the

generic scope of the framework, we required an expressive constraint specification lan-

guage that can adequately specify a wide range of constraints, from simple relational con-

straints, to complex structural constraints that are specified on graph-based model of the
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system. Thirdly, given the importance of constraint formulation for search, we require a

constraint specification language that supports a simple syntax so that the modeler can spec-

ify and debug complex constraints. Moreover, the expressiveness of the language should

not add to the difficulty of using the language. Finally, the constraints specified in the con-

ceptual model are translated to constraint expressions in lower-level constraint language

supported by the solvers. Therefore, the constraint language should be such that the con-

straint expressions can be easily translated to a number of solver-specific formats.

Existing model-based frameworks (including GME) use textual constraints to include

information about the static and dynamic semantics of the language that cannot be included

in the graphical model. This includes constraints that specify state invariants, guards in

state machines, constraints in sequence diagrams, and pre and post condition of operations.

In the generic framework, the constraints are used to specify conditions that must be sat-

isfied by valid design solutions. In essence these constraints are analogous to invariants

that must hold for all valid models that conform to the language. Therefore, we focus on

how invariants are specified using constraint specification languages like the Object Con-

straint Language (OCL) [39] that are used in conjunction with UML, as well as formal

specification languages like, Alloy [56] and Z [120], that are used for analysis of the UML

models.

The OCL is a standard language that is widely accepted for writing constraints on UML

models. It is based on first order logic and is used to specify constraints for various types of

models. It was developed with the aim of being easier to use for the modelers as compared

to formal specification languages like Z. OCL is tightly integrated into the UML and con-

tains features for navigating across models by using association roles. This makes is easier

to specify structural constraints in OCL. The ease of use and expressiveness made OCL

a good candidate for the generic framework. As a result an initial attempt included using

an extended subset of OCL, similar to [89], to specify the constraints in DSE problems.
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Figure 17 shows an example constraint in OCL specifying that two Ring objects should be

associated with disjoint set of nodes using the association RingNode.

1 OCL context: Ring
2 OCL expression:
3 Ring.allInstances ->forall (p, q | p.name != q.name implies
4 p.RingNode->intersection (q.RingNode)->isEmpty)

Figure 17: Example constraint expression in OCL

Although OCL is expressive and user friendly, there are two disadvantages of using

OCL as a constraint specification language for our framework. The first disadvantage is the

use of single-context constraints. In OCL, all constraints are written in context of a single

class and in order to reason about other classes (parent, children) a chain of navigations are

used. This can sometimes make simple OCL constraints verbose and hard to read [126].

Moreover, the OCL constraints use quantifier stacking that adds to the complexity when

multiple levels of navigations are used. Both these problems can be eased by avoiding

navigation chains by use of multi-context constraints that require only one step navigation.

The second disadvantage of using OCL comes from the complexity in translating arbitrary

OCL constraints to logic [25, 27]. This complexity arises from the expressiveness of OCL,

which makes specifying of constraints easy for the user but the analysis of those constraints

hard. This can complicate refinement of arbitrary constraints to lower-level constraint lan-

guages (constraint logic) supported by the optimization models. A third minor issue is the

lack of support for creating constraint templates, that can be created by the domain-expert

and used by the domain-engineer by plugging in values.

In contrast to the OCL that is tightly coupled with UML, textual formal specification

languages like Alloy [56], B[6], Z[120] are used to specify the entire model along with the

constraints. These languages were built to support automated analysis of the UML models.

Alloy is a specification language based on first-order relational logic. Everything in Alloy
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is a relation, including sets and scalars, where sets are considered 1-tuple unary relation

with each 1-tuple in the unary relation representing an element of the set. Similarly scalars

are considered a singleton (size 1) unary relation. This provides uniformity in syntax and

semantics. For example e1 + e2 represents union of sets if e1 and e2 are sets. The invari-

ants in Alloy are written as f acts and always hold . The biggest advantage of Alloy is the

support for automated analysis provided by Alloy Analyzer, that analyzes the model for

consistency and if the model is consistent returns a model. Alloy analyzer is based boolean

satisfiability and is used for model search in small design spaces because of the combina-

torial explosion as the complexity of the model and constraints increase. Therefore, we

cannot use Alloy analyzer for our framework, but Alloy can still be used as a stand alone

language for specifying constraints.

1 all p, q | p.name = q.name -> no (p.RingNode & q.RingNode)

Figure 18: Example constraint expression in Alloy

A large body of work exists that refines UML model along with OCL constraints to

formal specification language for consistency checking [8, 9, 77], but the languages are

rarely used in conjunction with UML models to specify constraints. One instance where a

formal specification language (B) is used as an action and constraint language with UML

models is the UML-B profile [118]. One obvious reason for this lack of integrated use is

that formal specification languages can textually capture the entire model, so there is es-

sentially no dependence on the UML models. A stronger reason is the semantic difference

between formal specification languages and UML. For example, Alloy supports only inte-

gers as opposed to UML, that supports integers, strings, booleans etc. Another difference

between UML and Alloy in the uniform treatment of sets and relations. In UML, sets and

scalars are viewed as distinct types whereas in Alloy everything is a relation. In the generic

framework we need a constraint language that can use the declarations in the conceptual
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model and specify invariants in context of one or more classes. In such a case writing con-

straints which make no distinction based on types can create confusion. For example, if the

constraint expression includes a ‘e1 in e2’ is used, it is hard to figure out whether the ex-

pression means that e1 is a set that is a subset of set e2 or whether it means that p is a scalar

that is an element of set e2. Consequently, we need a language that can be used to specify

readable constraints using notation that is familiar to the modeler rather than requiring him

to learn a new language.

In pursuit of this goal, we have developed Constraint Specification Language (CSL), a

simple user friendly language used to specify constraints. The CSL is expressive enough

to specify complex structural constraints. The CSL is based on first-order logic and set

theoretic concepts. The goal was to have the bare essential constructs for specifying read-

able constraints and yet be easy to translate to a CLP constraints or an imperative boolean

functions. The CSL can be used to specify multi-context constraints to avoid navigation

chaining in the constraint definition. Additionally, the CSL supports quantifier chaining

instead of stacking to maintain the simplicity of the constraints. The generic framework

support constraint templates, such that the domain-engineer can write constraints by pro-

viding values for the template parameters.

1 forall($ctx1, $ctx2)(
2 ($ctx != $ctx2) ->
3 (RingNode($ctx1,_) intersect RingNode($ctx2,_) == {})
4 )

Figure 19: Example constraint expression in CSL
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III.4.1 Use Cases

The CSL expressions can be used in two ways in the conceptual model: (1) Specify

constraint definitions, (2) Specify assignment statements for metric properties/global vari-

ables. We discuss the format of each in this section.

Notation : We use the following syntactic convention given in Appendix B.1. Throughout

this section, Boolean expressions are denoted with uppercase letters from the beginning of

the alphabet (A, B, C, etc.); integer expressions are denoted with lower-case letters from

the ending of the alphabet (x, y, z, etc). Domains are written in capital letters (e.g. D1, D2)

and the elements of the domain are in lower-case letters (eg. d1,d2).

Constraint Definition Format: A CSL constraint definition is always written in the fol-

lowing format:

[ ( 〈Quanti f ier〉 ( 〈Context〉) )∗ ]( 〈ConditionalExpression〉 )

where the Quantifier represents either ‘forall’ or ‘exists’, Context is a context class

that are accessed using the context-keyword (for example $ctx1). The scope of this con-

text is limited to the quantified ConditionalExpression. The quantifier and thereby the

quantified-context is optional in the constraint expression, but there can more than one

conjuncted by ‘·’.

1 Context: $ctx1 = Node , $ctx2 = Node , $ctx3 = Processor
2 CSL: forall(<$ctx1,$ctx2> in Edge) . forall( $ctx3)(
3 MapsTo($ctx1,$ctx3) -> MapsTo($ctx2, $ctx3)
4 )

Figure 20: Example constraint in CSL

Figure 20 shows an example CSL expression of an nary-context constraint definition,
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where the constraint has three contexts. The first two contexts refer to Node components

and the third context refers to the Processor component. The expression specifies that if two

components are connected by an Edge association, then both the Nodes should be mapped

to the same processor. The quantifiers are chained outside the conditional expression.

The use and type of quantifier in the constraint definition depends on whether the con-

straint class is concrete or abstract. A concrete constraint class, which models a constraint

template does not include quantifiers or a list of formal parameter. An abstract constraint

class models a constraint expression that should hold true for all instances of the context

or at least one unknown instance of the context. The constraint definition in this case in-

cludes quantifiers to express the scope of the constraint. A universal quantifier (‘forall’)

specifies that the constraint is applicable to all instances of the quantifying-context. An

existential quantifier (‘exists’) specifies that the constraint is applicable to at least one

instance of the context component. The universal and existential quantifiers are always

specified outside the CSL expression and cannot be included in the conditional expression.

A CSL constraint is always written in terms of contexts of the constraint class. These

context classes are accessed in the constraint definition by use of keyword ‘$ctx[N]’, where

N is the context index number. For example, the source and destination classes of Dis-

jointMap (Figure 21) are accessed using the keyword ‘$ctx1’ and ‘$ctx2’ respectively.

Another context keyword, ‘$self’ is used to access the constraint class. These are reserved

keywords in CSL and cannot be used as variable names. The context in the constraint def-

inition can be a single context keyword, for example ‘$ctx1’, ‘$self’, etc or it can be a

tuple of context-keywords, where the context components are also the ends points of an

association, for example ‘<$ctx1, $ctx2> in MapsTo’, where MapsTo is an association

between the context classes referred by ‘$ctx1’ and ‘$ctx2’.

Figure 21, shows a typical use-case for a CSL constraint, where DisjointMap, a binary

constraint is used to represent a constraint between the Ring objects. The constraint class

is abstract, which means that the constraint is applicable to all or any pair of instances.
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Figure 21: CSL Constraint

Informally, the constraint specifies that if two Ring instances are different then the set of

nodes mapped onto them are disjoint. The CSL constraint definition is specified as the value

of cnstr_expr attribute. The RingNode is a binary association from Ring to the Node,

such that ‘RingNode(r,_)’ is used to specify the forward navigation of the association to

retrieve all Node instances associated with Ring r using the RingNode association. In the

constraint definition this association is accessed using the end points. This notation makes

it easy to express this constraint is a succinct syntax.

CSL Assignment Statement Format: CSL is also used to specify assignment statements

that are used to set the value of a metric property.

〈Context〉 〈AssignOp〉 〈AssignmentExpression〉

where the Context represents either a metric property, accessed by using ‘$self.〈property〉’,

or a decision global variable accessed by ‘$self’. The AssignOp can ‘=’ if the prop-

erty (variable) is an integer, or ‘<->’ if it is boolean. The AssignmentExpression can be a

68



boolean expression or an arithmetic expression depending on the type of the variable. It

can also be a special method supported by CSL. For example, ‘param’.

III.4.2 The CSL Definition

In this section we discuss the features of the CSL in detail. The CSL expressions

include context keywords, which always refer to the components in the conceptual model.

The expression can use the context properties, the associations that can be navigated using

the context components, and all the global variables defined in the conceptual model. Local

variables in a CSL expression can only be introduced as quantified variables whose scope

is limited to the corresponding quantification.

Notation: Throughout this section, classes in the conceptual model are denoted using

italics, for example MapsTo, Task, etc. The domain corresponding to these class are in

typewriter text, for example MapsTo. The keywords and operators included in the

CSL are in bold letters.

III.4.2.1 Data Types

The two basic data types supported in the CSL are Integer and Boolean. The advanced

data type supported in the CSL is domain, which is essentially a set of objects of a compo-

nent class, or a set of tuples of component objects associated by an association class. The

domain is referred to by the name of the component (association). For example ‘Task’ in a

CSL expression refers to a set of Task objects, where the Task component is declared in the

conceptual model. Corresponding to the data types, the literals in CSL includes integers

literals, example ‘1,4’ and boolean literal, for example‘true’, ‘false’, and set literals, for

example ‘{}’ that denotes an empty set.
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III.4.2.2 Domains

Domains are used to model finite sets in the CSL. There are two types of domains: the

component domain and the association domain.

Association domain is specified by the name of the association class. For example, ‘MapsTo’

is an association domain and refers to a set of tuples of objects, where each tuple is a pair of

Task and Processor objects connected by the MapsTo association. Note that ‘MapsTo’ can-

not be used in a CSL expression unless MapsTo association is included in the conceptual

model.

Component domain is specified by the component name. For example, ‘Task’, in the

CSL represents a set of Task component objects. A component domain can also be derived

from an association domain using ‘sources(〈Assoc〉)’ or ‘targets(〈Assoc〉)’ method to

retrieve a set of source or destination context objects. A component domain can also be

retrieved by association navigation. For example ‘MapsTo(p,_)’ returns a component do-

main with Processor instances associated to Task t and similarly ‘MapsTo(_, p)’ returns

a component domain with Task instances.

Domains are essentially sets, and therefore it is possible to use set operators ‘union’ and

‘intersect’ on two domains consisting of same type of component objects.

Table 3: Set Operators yielding Domain Expressions
Boolean Operators

D1 intersect D2 D1∩D2
D1 union D2 D1∪D2
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III.4.2.3 Basic Expressions

Every expression in CSL is either a boolean or integer. In this section, we cover the

basic expression that are either atoms or are constructed by unary or binary operators.

Complex expressions such as the quantified expression are discussed in Section III.4.2.4.

Table 4: Unary and Binary Operators yielding Boolean Expressions
Boolean Operators

not(A) negation of A ¬A
A /\ B A and B A

∧
B

A \/ B A or B A
∨

B
A->B A implies B A→ B
A<->B A is equivalent to B A↔ B

Relational Operators
x == y equality x = y
x <= y less or equal x≤ y
x >= y greater or equal than x≥ y
x != y inequality x 6= y
x < y less than x < y
x > y greater than x > y

d1 == d2 equality x = y
d1 != d2 equality x = y

Set Operators
D1 seq D2 D1 equals D2 D1⊆ D2∧D1⊆ D2
D1 sneq D2 D1 not equal to D2 D1 6= D2

d1 in D1 d1 is an element of D1 d1 ∈ D1

Basic Boolean Expressions are either atoms or expressions composed by operators that

yield Boolean expressions. A boolean atom can be constants (‘true’or ‘false’). It can also

be a Boolean property of a context, for example ‘$ctx1.select’, ‘$self.isUsed’, etc.

Boolean atom can also be a property of an element of the domain, for example ‘p.isUsed’,

where‘p’ is a local variable representing element of a domain. The domain (component or

association) should have the property that is being accessed by the variable. For example
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‘Edge($ctx1,$ctx2).select’, accesses the‘select’ property of an instance of Edge as-

sociation. A boolean atom can also be a condition to check the presence of an element in

the domain. For example ‘MapsTo(t,p)’ is an atomic boolean expression, which checks

the presence of an instance of MapsTo association between ‘t’ and ‘p’. Similarly, ‘c in

Channel’ is a check on the presence of an element ‘c’ in the domain ‘Channel’. Table 21

summarizes all unary and binary boolean, relational and set operators that yield Boolean

expressions. A and B are arbitrary Boolean expressions, x and y are arbitrary integer ex-

pressions and D1 and D2 are domains of the same type. These operators are standard in

most solver-independent modeling languages.

Table 5: Unary and Binary Operators yielding Integer Expressions
Binary Operators

x - y subtraction of A x− y
x + y addition x+ y
x * y multiplication x∗ y
x / y division x/y

Unary Operators
-x negative x −x

abs(x) absolute x |x|
card(D) cardinality of domain set

bool2int(A) boolean to integer

Basic Integer Expressions are either atoms or expressions composed by operators that

yield integer expressions. An integer atom can be a constant, (for example 0,1). An integer

atom can be property of the context or property of an element in the domain (component

or association). Table 5 shows the operators and methods that yield integer expressions.

The CSL supports the ‘card’ method that returns the number of elements in the domain,

for example ‘card(MapsTo)’. The CSL also supports a ‘bool2int’ method that converts a
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boolean expression to an integer (0,1) depending on the value. An integer atom can also be

the minimum (or maximum) element of an ordered domain set.

III.4.2.4 Quantified Arithmetic Expressions

Quantifications are a compact means of representing a variable number of constraints.

The general syntax is

〈Quanti f ier〉(〈Quanti f ying−Var〉 in 〈Domain〉)(〈ArithmeticExpression)

where quanti f ier represents either ‘sum’, ‘min’ or ‘max’, quantifying-variable is a tempo-

rary variable that is an element of the domain, for example ‘c in Children($self,_)’.

The scope of this local variable is limited to quantified expression. Only arithmetic quanti-

fiers can be included in the conditional expression and these quantifiers can be nested.

III.4.2.5 Special Methods

‘param’ is a unary operator on a decision (metric) component property that is used to

constrain the property to a single value that is input by the modeler. A detailed grammar

specification of CSL can be found in Appendix B.

III.5 The Intermediate Language (IRL)

Existing approaches for automated DSE integrate one general-purpose solver that is

most suited for their needs. The choice of the solver is based on the requirements of the

DSE problem that the framework is intended to solve. The requirements include the ob-

jective of solving the DSE problem (global optimal solution, all valid solution), and types

of constraints (linear, non-linear). In a generic framework, supporting a single solver is

not sufficient to solve problems with arbitrary combinations of objective and constraints.

In this case set of model compilers would have to be written to support solution of every
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problem modeled in the framework. However, developing even one model compiler that

directly transforms a domain-specific model of the problem to solver-dependent format is

a hard and time consuming task. Therefore, writing a number of them is not a feasible

approach.

In order to simplify the compiler development and maintain solver flexibility we devel-

oped a solver-independent abstraction level using an Intermediate Language (IRL). This

abstraction level includes simple set theoretic concepts like sets, functions and relations

that can be used to specify a high-level mathematical model of the DSE problem. The goal

is to automatically transform the conceptual model MMCM of a DSE problem to a model

MIRL in the IRL. This transformation distills out the domain-specific aspects of the DSE

problem and refines the DSE aspects to create a simple mathematical model. The model

MIRL is then automatically transformed to solver-specific models that can be processed by

the solvers to retrieve solution. The IRL simplifies the compiler development by requiring

only one translator from the conceptual model to IRL to be built and maintained. The IRL

is at an abstraction level where the concepts can capture all the information in the con-

ceptual model in a solver-independent way using concepts like sets, functions, relations,

constraints and predicates, making the transformation of IRL models to solver-dependent

formats relatively simple.

Besides simplifying the compiler development, the IRL has two advantages. Firstly,

it enables solver flexibility, such that a single DSE problem model MCM can be solved

with different solvers depending on the objectives. Secondly, the IRL provides an exten-

sion point in the framework that can be used to add more solvers to the framework. At

present the framework supports two solver-dependent models: (a) a constraint program-

ming [16] based (CP) model that is used to solve satisfaction and mono-objective optimiza-

tion problems, and an (b) evolutionary algorithm [47] based (MOP) model used to solve

multi-objective optimization problems. Although these two models solve a wide range of

problems, more solvers can easily be integrated into the framework given the simplicity of
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the IRL. This will allow the domain-engineers to compare the performance of difference

solvers in a solving a particular instance of the problem.

While defining the IRL, the main challenge was to find a reasonable middle ground

between the graphical conceptual model and the solver-dependent models that can take any

from ranging from a logic program to an language code. Our main research goals were to

define a language such that - (a) every conceptual model created in the framework can be

transformed to well-formed model in the IRL, and (b) a model can be transformed to a set

of solver-dependent models. In order to achieve the first goal, the initial version of the IRL

[108] focused on ease of model generation from the conceptual model. This version of the

language was created by removing all the visual and other non DSE related details from

the conceptual models. This resulted in a language that had a one-to-one mapping with

the ADSEL classes and ensured every conceptual model could be refined to a well-formed

model in IRL. However, it made the refinement of the IRL model to the different solver-

specific models a challenging task. Another version of the IRL was similar to a high-level

constraint programming language. This version worked well while solving DSE problems

using constraint programming, but made translation of conceptual models to other solver-

specific formats, like evolutionary algorithm program hard.

Finally, in order to achieve our goal, we started with the most basic notions from set-

theory: sets, functions, relations and operations on them. This notation has been used to

describe the semantics of UML class diagram [110]. As all conceptual models are essen-

tially annotated UML class diagrams, this notation is rich enough to specify the conceptual

model, which ensures that every conceptual model in the framework can be transformed to

a well-formed model in this language. Moreover, the a subset of the set theoretic concepts

included in the IRL have been translated to constraint logic [54] and boolean logic [24]

giving us the confidence that a model in the IRL can be translated to logic programs with

ease.

The IRL is a declarative language, defined as a metamodel in GME. In this section we
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discuss the parts of an IRL model and the IRL definition. The rules used to transform an

IRL model to a CP model and an MOP model are given in Appendix D and Appendix E

respectively.

III.5.1 The IRL Model

A model MIRL in the IRL can be formally defined as a 4 tuple:

MIRL = 〈IIRL,OIRL,CIRL,Ob jIRL〉 (III.1)

where

• IIRL is a set of fixed input data that remains constant during the search. This includes

an input parameter whose value is read from the data generated from the DSE prob-

lem model MCM and constants whose value is included in the model itself. The input

parameters and constants are generated from concrete components and associations

in the conceptual model MMCM of the DSE problem.

• OIRL is a set of decision variables whose value is determined during the course of the

search based on the constraints and the input parameters. A decision variable may

also be calculated based on the value of other decision variables as well as input pa-

rameters and constants. Decision variables are generated from abstract components

and associations in the conceptual model MMCM of the DSE problem.

• CIRL is a set of logical expressions written in terms of the input parameters, decision

variables and constants in the IRL model. These constraints must be respected during

the search. These constraints are generated from constraint classes in the conceptual

model MMCM of the DSE problem.

• Ob jIRL is a set of all decision variables that can be used in the optimization func-

tion. The actual objective of the search is specified in the design space model MCM
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and contains a subset of the objective variables. Moreover, the design engineer can

change the objective of solving a DSE problem, every time he invokes the search

method.

IRL is an internal format of the framework, each model MIRL is automatically generated

from the conceptual model MMCM of a DSE problem using the CM2IRL translator (Figure

3). Appendix C presents the rules for translating each concept in the conceptual model,

including the CSL constraints to corresponding concepts in the IRL model.

III.5.2 The IRL Definition

In this section we discuss three features supported by the IRL: the data types, the con-

straint types and finally the constraint expressions.

III.5.2.1 Data Types

The IRL is a strongly typed language where every variable (parameter or decision) has

a data type. Figure 22 shows the data type hierarchy supported by IRL. There are three

main data types in IRL: (1) Predefined types, (2) Set Types, and (3) Compound Types.

Basic Types: The irlPredefinedType models common primitive data types, namely Boolean,

Integer, String and Float. A parameter variable can be of any data type. The float and string

type parameter variables are used as arguments for function definitions only. A decision

variable is restricted to be of boolean or integer type, since the framework is used to solve

only discrete exploration problems. It is possible to assign a value to a decision variable

using an assignment expression, a processed CSL expression built on variables in the IRL

model.

The irlSetType represents the types of sets supported in IRL: (1) irSet, which mod-

els a simple set containing values from a set sdomain, such that irlSet ⊆ sdomain, where
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sdomain is a set literal or a set constant. For example irlSet A with domain set Z repre-

sents a set of integers; (2) irlIntervalSet is an integer set whose elements are in a range

[1...max]; Both parameter and variable can be of the supported data types, and (3) irl-

CompoundSet, which models a set formed by union of other simple or compound sets. This

set type is similar to a struct in C programming language.

Figure 22: Data Types in the Intermediate Language

Compound Types are used to model functions and relations on sets (can be literals or

constants). An irlRelation is used to a model a relation R⊆ A×B, where A and B are sets.

These sets can be existing simple sets (irlSetRef ) in the IRL mode, or projections of the

compound types, single element sets, or set literals).

An irlFunction is used to model a function F : A→ B, where A and B are sets with

composition roles domain and range respectively. These sets are obtained from similar

sources like the relation sets. In our framework, we consider only total functions, such that

for a function F : A→B, every element a∈A, there is exactly one b∈B such that (a,b)∈F .
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If B is a powerset of a set C, then the irlFunction models a function F : A →P(C).

If there is more than one set with domain (range) role, then the irlFunction models a

function F : A×B→C, where A and B are sets with domain role. Additionally, a function

in the IRL model can be injective, surjective or bijective, captured using

type enumerated attribute. The type of the function imposes additional constraints on the

function. A function can also include a Function Definition that models a process with

inputs and outputs, where the domain set represents the inputs and range set represents

the output of the function.

Figure 23: Constants in the Intermediate Language

III.5.2.2 Constants and Literals

The constants declared in an IRL model remain fixed during the course of the explo-

ration. The difference between constants and parameters is that the value of the parameters

is read in from the data generated from the design space instance. The IRL supports ba-

sic constants of integer, boolean, float and string types. Besides this, the IRL supports
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four set constants: (1) irlRange, a set that can be expressed either as range, for example

[1..4], (2) irlEnum, a set whose value is specified by enumerating the elements, for

example as{1,2,3}, (3) The Power Set, models power set of a set in the IRL model;

The IRL supports four set literals, namely set of all integers Z, set of all booleans B, set

of all natural numbers N, and Kleene star applied to character set S.

III.5.2.3 Data Type Conversion

The IRL also supports type conversion methods to cast functions, relations and prede-

fined types to sets. For example, a method ImgSet is used to retrieve the image set of a

function. Similarly, DomSet and RngSet methods are used to retrieve the domain and range

sets of a function respectively. The irlRelationProjection method is used derive projection

for any set in a relation using an index number, assuming each of the sets in the relation

is associated with an index number. A variable of a predefined type can be converted to a

Single Element set.

III.5.2.4 Constraint Types

Figure 24: Constraint classes in the Intermediate Language

The constraints in IRL are classified into constrains and predicates shown in Figure 24.
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An irlConstraint represents a global constraint expression that is applicable to all (or at least

one unknown) instances of the context. The context of a constraint is a decision variable

or an input parameter of set type. An irlPredicate models a constraint template that is

instantiated in the instance model and thus expresses an explicit constraint between context

instances. An argument of a predicate is always a parameter variable. These constraint

classes are annotated with logical expressions to capture the constraint definition. The

expressions are written in terms of the decision variables, inputs parameters in the IRL

model. These expressions are referred to as processed CSL (pCSL) constraints.

III.5.3 IRL Model of the Simple Mapping Problem

(a) IRL Inputs

(b) IRL Outputs

Figure 25: The IRL Model of the Simple Mapping Problem

Figure 25 shows the IRL model automatically generated from the conceptual model

MMCM of the mapping problem (refer to Appendix A) using the CM2IRL translator. Ap-

pendix C presents the rules for translating each concept in the conceptual model to concepts
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in the corresponding IRL model. This translation also includes the processing of CSL ex-

pression to generate logic expression in terms of sets, functions and relations (pCSL).

The Task and Processor components in MMCM are transformed to input parameters

iTask and iProcessor, that are sets of strings. By default all components in the concep-

tual model are refined to input parameters unless they are output components. The pa-

rameter properties cost and powd of the Processor are refined to parameter functions

iProcessor_cost : iProcessor→ Z and iProcessor_powd : iProcessor→ Z (Figure 25(a)).

The MapsTo association between the Task and Processor components is translated to

iMapsTo, a decision variable of function type in the IRL model (Figure 25(b)). By default

all concrete associations are translated to input function variables and all abstract associa-

tions are translated to decision variables in the IRL model. The isUsed boolean property

of the Processor component generates a decision function variable iProcessol_isUsed :

iProcessor→ B. The value of this property is calculated based on the assignment state-

ment:

1 iProcessor_isUsed(ctx)<-> ( (card( iMapsTo(∼ctx) ) > 1 )

This assignment statement is generated from the corresponding CSL assignment state-

ment of the isUsed property included in the conceptual model of the problem. The origi-

nal statement in CSL is rewritten in terms of sets, functions, relations and their operations.

Appendix C.5.1 presents a summary of the rewriting rules used to translate CSL to pCSL

expressions. As shown by the assignment statement, the value of the iProcessor_isUsed

function depends on the value of the function iMapsTo. This dependence is also graph-

ically modeled as a connection, shown in Figure 25(b). These dependencies create a Di-

rected Acyclic Graph (DAG) that can be used to identify independent search variables for

propagation in the CP model. The DAG is also used to identify the order of variable as-

signment in the MOP model.
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(a) No Conflict Constraint in
the Conceptual Model

(b) No Conflict Predicate in IRL Model

Figure 26: Constraints for the Simple Mapping Problem

Figure 26 shows the NoConflict constraint in the conceptual model of the mapping

problem and the IRL predicate generated by the translator. In the conceptual model, the

NoCon f lict constraint is a concrete binary constraint with the Task component as both

contexts, where the constraint definition is given by the CSL expression shown. This con-

crete constraint is translated to iNoCon f lict, a predicate with arguments ctx1 and ctx2,

such that ctx1,ctx2 ∈ iTask. The constraint definition is rewritten to reflect functional no-

tation. Therefore ‘MapsTo(ctx)’ refers to an element p ∈ iProcessor, such that 〈ctx, p〉 ∈

iMapsTo

III.6 Constraint Satisfaction and Mono-Objective Optimization

The generic framework provides support to solve constraint satisfaction and mono-

objective DSE problems modeled in the framework. We in this section we discuss this

solver support in detail.

The goal of solving a constraint satisfaction DSE problem is to retrieve all valid design

solutions that satisfy design constraints. A number of constraint satisfaction techniques,

such as boolean satisfiability [37], constraint programming [10], symbolic constraint sat-

isfaction [24] have been used to solve DSE problems (refer to Section II.1). A constraint
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satisfaction DSE problems can be solved using any of the techniques. However, constraint

programming was found to be the least restrictive in terms of formulation (both integer and

binary variables allowed) of the problem, which suited the requirements of the generic DSE

framework. All other approaches (boolean satisfiability, symbolic constraint satisfaction)

were found to be too restrictive as the problems had to formulated using boolean variables

and propositional logic formulas. Encoding these constraints as propositional formulas can

easily lead to combinatorial explosion in the size of the formula [26].

The goal of solving a mono-objective DSE problem is to retrieve a single valid design

solution that is optimal with respect to a single objective function. A set of techniques, such

as linear programming [109], branch and bound [75], local search [5] have been used in the

past to solve mono-objective DSE problems (refer to Section II.2). Branch and bound is

an enumerative algorithm used to retrieve global optima in a design space. Most constraint

programming based solvers support mono-objective optimization using branch and bound

algorithm. Given that we require constraint programming solver for solving constraint sat-

isfaction problems, we select the branch and bound algorithm for solving mono-objective

optimization problems, so that a single solver can solve both kinds of problems.

In this section we illustrate a constraint programming based model, referred to as the

CP Model, for formulating mono-objective and constraint satisfaction DSE problems. The

CP Model is essentially a logic program in Minizinc [91], a Constraint Programming Lan-

guage for specifying CSPs. Minizinc was chosen as the CPL in the framework for two main

reasons. Firstly, Minizinc is an expressive CPL that supports a variety of constraints ex-

pressions (finite domain, integer,set and linear arithmetic). This makes it a good candidate

for a generic framework like ours, that supports modeling of wide range of DSE problems,

where the constraints can vary from simple numerical relations to complex structural con-

straints. Also Minizinc supports a simple mathematical notation-like syntax that simplified

the translation of the IRL model including constraint definitions to a Minizinc program.

Secondly, Minizinc is a medium-level constraint programming language. A model in
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Minizinc can be used by an array of solvers (Gecode [122], Eclipse [11]). This enables

the modeler to solve the same Minizinc model using different solvers. Moreover, Minizinc

distribution [3] comes with a set of parsers that translate the model to SAT, ILP and hybrid

solvers. This support is limited because not every construct in Minizinc can be used with

every solver. For example, a SAT solver will not support the decision array variables in

Minizinc. Additional advantage of using Minizinc is that it supports the separation of model

with the data. This enables reusing the same model for a number of problem instances.

III.6.1 The Constraint Programming (CP) Model

The CP model is formally a 4-tuple:

MCPL = 〈DCPL,CCPL,SCPL,Ob jCPL〉 (III.2)

where

• DCPL, is a set of declarations of decision and parameter variables. The value of a

parameter variable is read from the data model and the values of decision variables

are calculated by the CP solver.

• CCPL, is a set of constraints. There are two kinds of constraints supported in CPL :

predicates and constraints. A predicate is a function that is called in the data model.

• Search options are used to specify the search variables that are used for propagation.

• Objectives of the problem are obtained from the DSE problem model, discussed in

Section III.6.3.

CP Model of the problem is automatically generated from its conceptual model MMCM

using the IRL2CP translator (Figure 3). Appendix D presents the rules for translating each

concept in the IRL model, including the pCSL constraints to corresponding concepts in the

CP model.
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III.6.2 CP Model of the Simple Mapping Problem

Left side of Figure 27 shows an excerpt of the CP model for the simple mapping prob-

lem and is automatically generated from the IRL model of the problem (Section III.5.3)

using the IRL2CP translator. The CP model consists of declaration of input parameters

Lines (3-7) generated from iTask and iProcessor input parameters in the IRL model of the

problem (Figure 25). Line (10) in the model shows the declaration of the decision variable

generated corresponding the iMapsTo decision variable in IRL model.

Figure 27: An excerpt of the CP Model (Minizinc) of the simple mapping problem

The search options in the CP model (Line(20)) include the search variables as well as

value and variable ordering that is used to configure the search procedure of the constraint

solver. All independent decision variables in the IRL model are considered as search vari-

ables and are combined to form a single array of search variables. In the simple mapping

problem only independent decision variable is ‘MapsTo’. The generic ordering used to order

86



the variables is to add functions first, followed by set variables and finally predefined vari-

ables. The value ordering of the search is to sequentially label the variable with each value

from the variable’s domain in an ascending order. This is represented by ‘indomain_min’.

The variable ordering of the search is given by ‘input_order’, which represents all vari-

ables in the search string are ordered in the order of their appearance. In this case there is

one decision variable in the search string. Finally the last parameter ‘complete’ is used for

exhaustive search of the design space.

The right side of Figure 27 shows a sample data file that includes instances of the Task

and Processor concepts as well as instance of the NoConflict constraint. This data is used

by the solver along the CP Model to retrieve solutions of the problem, if any exist. The

data that is used by the solver along with the CP Model is generated from a design space

model MD that conforms to the conceptual model. This data is generated using the M2D

translator. The details of the translation rules to generate CP model from an IRL model are

included in Appendix D.

III.6.3 Model and Search using CP Model

The conceptual model of the simple mapping problem (Appendix A) is used to con-

figure the GME to create a domain specific DSE environment, which can be used by the

domain-engineers to create problem models. Figure 28(a) shows a problem model, which

contains a set of 3 task objects; {Task1, Task2, Task3}, that is to mapped to 2 processor

objects Proc1 and Proc2. Task1 and Task3 have a NoConflict constraint specifying that

they cannot be mapped to the same processor. Task2 has two mapping constraints to Proc1

and Proc2 that are contained in the Disjunctive Set d1, specifying the constraint that Task2

can be mapped only to {Proc1,Proc2}. The objective of the exploration is to find a so-

lution that satisfies the constraint. The data generated from this instance model is shown

is Figure 28(b). This data is used in conjunction with the CP model and fed to the solver.

We use Minizinc finite domain solver to retrieve possible solutions. The design space of
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(a) Problem Model MCM

(b) Data generated from MCM (c) Solution Model MS

Figure 28: Mapping Problem Solution

this small example consists of 27 design points out of which 12 are valid design configu-

rations. Figure 28(c) shows one of the valid suboptimal design configurations returned by

the solver.

88



III.7 Multi-objective Optimization

A wide variety of DSE problems found in literature [13, 38, 45] require simultaneous

optimization of more than one objectives. In these problems, a single optimal solution that

is best in terms of all objectives most probably does not exist. Thus we need to find a set

of solutions that trade off between the different objectives. These problems are known as

multi-objective optimization problems and consist of at least two objectives. The goal of

solving multi-objective optimization problems is retrieve a set of Pareto-optimal solutions

(see Section II.3). A solution is Pareto-optimal if improvement of one objective will make

it worse with respect to other objectives.

Mono-objective optimization techniques solve multi-objective DSE problems by using

an aggregation function to combine multiple objectives into a single function. However,

these techniques cannot find all Pareto-optimal solutions (refer to Section II.3). In order

to overcome these limitations, in this section we present the multi-objective optimization

model, referred to as the MOP model, that uses a population based Evolutionary Algorithm

(EA) [12] to solve multi-objective DSE problems. The basic principle of a population-

based EA is iterative improvement of a set of solutions, performed over a series of gen-

erations to reach a final set that contains Pareto optimal solutions. Contrary to the CP

approach, where the multiple objective are scalarized to solve optimization problem, an

EA approach uses the dominance relation (refer to Definition 1) to rank the solutions and

retrieve a set of Pareto-optimal solutions in a single run. However, EA is an approximate

algorithm, so it does not guarantee finding all Pareto optimal solutions but only an approx-

imation of the Pareto front. Commonly used EA’s for solving multi-objective optimization

include the Non-dominated Sorting Genetic Algorithm (NSGA-II) [33] and Strength Pareto

Evolutionary Algorithm (SPEA-2) [135]. In this section, we discuss how multi-objective

optimization using evolutionary algorithm is supported in our framework.
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III.7.1 Background

In this section, we briefly discuss the different components of an EA followed by a

discussion on how we have used it in the generic framework.

III.7.1.1 Components of Population-based Evolutionary Algorithms

An evolutionary algorithm consists of the following main components [123]:

• Solution Representation is referred to as the chromosome in evolutionary algo-

rithms and is the most important component of the algorithm. The chromosome

is essentially a vector of decision variables referred to as the genes. Each gene can

take a set of possible values called the alleles. The solution representation plays an

important role in the effectiveness of the search algorithm. A linear encoding is a

string of symbols of a given alphabet. Most common linear encodings are binary and

discrete encodings. A binary encoding is usually used when the decision variables

denote boolean decisions. A solution in this case will be encoded by a vector of bi-

nary variables. A discrete encoding scheme is a generalization of the binary encoding

that uses an n-ary alphabet instead of binary alphabet. A decoder function d : R→ S

is used to retrieve the solution represented by an encoding.

• Population Initialization: As mentioned, evolutionary algorithm are based on itera-

tive improvement of a set of candidate solutions (individuals). The set of individuals

is referred to as the population. The initialization of the population affects the qual-

ity of solutions retrieved after a finite number of generation. The initial population

should consist of diverse candidate solutions so that the search does not converge

prematurely. However the most common method of population initialization is to

use a pseudo-random number generator.

• Objective Function formulates the goal of the optimization problem. The objective

function essentially provides a complete ordering to all solutions in the search space
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by associating a fitness value to each solution. The function thereby guides the search

towards good solutions in the search space.

• Constraint Handling is an important component of the algorithm while solving

constraint optimization problems. One of the common approaches for handling con-

straints is to use a penalize invalid candidate solutions by ranking them lower than the

valid solutions. Another strategy of handling constraints is to repair invalid solutions

to generate a valid solution.

• Selection Strategy is used to select candidate solutions that can be used for repro-

duction. A selection strategy uses the fitness value of the individuals to select the

parents.

• Reproduction Strategy involves use of suitable mutation and recombination opera-

tors to produce a population of offspring. Mutation is a unary operator that acts on

a single individual and generally involves changing the value of a gene with another

value in the alphabet. The parameter pm gives the probability to mutate each gene

of the chromosome. Usually, the value is pm is very small. Application of muta-

tion is followed by recombination, which is a binary (nary) operator and acts on 2

(or more) individuals. The recombination operator is used to inherit characteristics of

both parents while producing offspring. Most commonly used operator is a one-point

crossover operator, where a crossover point k is randomly chosen and offspring are

produced by interchanging segments of the parent strings. A parameter pc ∈ [0...1]

gives the proportion of the parents on which the recombination is performed.

• Replacement Strategy is used to modify the old population by taking the new off-

spring into consideration. One possible replacement strategy is to replace the entire

parent population by the offspring population. Another possible strategy is to replace

the weakest parent individual with a better offspring. Usually a mixture of these re-

placement strategies are used.
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• Stopping Criteria represents the end condition to be satisfied to stop the search.

Usually a static condition like number of generations , or maximum number of ob-

jective function evaluations can be used to quit the search algorithm. It can also be

adaptive condition, where the end of the search is not known a priori. For example,

a fixed number of generations without any change in the fitness value. A more ad-

vanced criteria calculate the diversity of the population and the algorithm stops when

the diversity of the population falls below a given threshold.

Our focus is on the use of evolutionary algorithm for finding Pareto-optimal solutions of

multi-objective optimization problems.

III.7.1.2 Platform and Programming Language Independent Interface for Search

Algorithms (PISA)

Figure 29: Platform and Programming Language Independent Interface for Search Algo-
rithms (PISA)

Figure 29 shows the control flow in an EA. In an Evolutionary Algorithm, the search
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starts with initialization of a population of randomly generated solutions of size α . Every

solution in the population is an encoded version of a solution of the problem, usually a

vector. A evaluation function is used to associate a fitness value to each solution. This

fitness value is used to select a set of µ solutions with better fitness value to act as parents,

to produce λ offspring (using mutation and cross-over). The newly generated offspring are

evaluated and finally, a replacement strategy is used to decide which individuals out of the

parents and offspring will survive. This represents one generation. This process is repeated

till a termination condition (for example, a constant number of iterations) is satisfied.

The solution representation, the evaluation function and the reproduction strategies are

problem-dependent components of EA and have to be customized for each new problem.

For example evaluation function for a Knapsack problem will be different from the eval-

uation function of a network processor problem. On the other hand the selection and re-

placement strategies are dependent only on the fitness values of the candidate solutions and

not on the characteristics of the problems. Consequently, the selection and replacement

strategy can be easily separated from the rest of the program and implemented as separate

module that interacts with the problem specific part through an interface. The Platform and

Programming Language Independent Interface for Search Algorithms (PISA) [21] is a text

based interface that is based on this principle of separation of problem-specific and inde-

pendent parts. The PISA interface is designed for interaction and synchronization between

two separate modules :

Variator, which consists of all problem specific aspects of the algorithm. This includes the

solution representation, the objectives and evaluation functions, mutation and recombina-

tion operators.

Selector, which consists of the selection strategy that is used to identify promising candi-

date solutions that can act as parents. A library of various selection algorithms, for example

SPEA, NSGA-II can be found at [134]. Same Variator can use different Selector algorithms
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to solve the problem, thus giving the flexibility two choose an algorithm best suited for solv-

ing a given problem. The two modules can be implemented separately and interact with

each other through text files. This interface allows the same problem to be solved using

with different selector modules. For more details on the interface, refer to [134].

III.7.2 The Multi-Objective Optimization (MOP) Model

In our framework we use PISA interface to divide the EA into Variator and Selector

modules. The Variator module is synthesized from the model MIRL of the problem and

the ready to use Selector modules, such as NSGA-II are used to solve the problem. Al-

though the Variator module in our framework is implemented as a Java program, of the

Variator module, it can be easily replaced by another imperative language as the interface

is language-independent and interaction is done using text-files. In order to reduce the

complexity of using an EA to solve a problem in the generic framework some parts of the

Variator are fixed. This includes:

(1) Representation: The framework supports discrete representation of the solution, where

the encoded solution (chromosome) is formed by a set of decision variables. For ex-

ample, if there are two integer decision variables x and y in the problem, then the

chromosome is of length 2, where each gene represents one decision variable.

(2) Population initialization: The initial population is by default done randomly. The size

of the initial population is fixed by the domain engineer using a parameter, alpha.

(3) Reproduction Strategy: The reproduction strategy includes application of mutation

and recombination operators. A mutation operator makes slight changes in the chro-

mosome. The probability mutation_probability specifies the probability to

mutate each gene in the chromosome. In a discrete representation, mutation of a

gene would replace value associated with a decision variable by another value from
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its domain. The recombination operator is a binary operator that inherits the char-

acteristics of the two parent chromosomes to generate the offspring. The generic

framework supports three strategies for recombination (cross-over) operators: one-

point crossover, where a crossover point in the chromosome is selected randomly and

two offspring are created by interchanging the segments of the parents. Similarly in

two-point crossover, two sites are selected randomly and two offspring are generated

by keeping the first and the last segments of one parent and mid segment of another

parent. In uniform crossover, each gene is inherited randomly from either parents.

(4) Constraint Handling strategy: We use the penalizing strategy for handling the con-

straints in the constraint optimization problems.

(5) Stopping Criterion: The evolution process continues for max_generations and

stops.

Details of the strategies are hidden from the user. The domain-engineers selects these

strategies (replacement, selection, etc) using the parameters mentioned when he solves a

multi-objective problem. Besides these fixed parts, the Variator also contains problem-

specific parts: the decision variables and the evaluation function that are synthesized from

the IRL model of the problem. This part is referred to as the MOP model in this thesis. In

the generic framework, the Variator module and hence the MOP model are implemented as

Java classes.

Formally MMOP is a 5-tuple:

MMOP = 〈P,~D,O,c(~D),e(~D,o)〉 (III.3)

where

• P is a set of parameters that characterize the search space of the problem rather than

a solution point. The parameters remain constant for a given problem and are used

95



in evaluation of the fitness of solution. All input parameters in the IRL model are

common to all solutions in the search space and are refined to parameters in the MOP

model. For example, the set of tasks in the simple mapping problem is a parameter.

This is discussed in detail in Section III.7.2.1.

• ~D is a candidate solution of the problem described as a vector, also referred to as the

Chromosome. Each position in the vector is derived from the decision variables of

the problem. This is discussed in detail in Section III.7.2.2.

• O is a set of objective variables that are used to guide the search towards the good so-

lutions in the search space. The MOP model is used for multi-objective optimization

and therefore consists of 2 or more objective variables

• c(~D) is a function that returns 0 if the individual does not satisfy a certain constraint.

There can be a set of functions, each corresponding to a constraint in the IRL model.

This is discussed further in Section III.7.2.3.

• e(~D,o), is an objective function that calculates the an objective value o ∈ O for a

specific candidate solution. There is a set of objective functions, each corresponding

to one objective. Each function also takes the number of constraint violations into

consideration while calculating the fitness value.

The MOP model is organized into two Java classes, namely

(i) Param Class, a singleton that contains the problem specific parameters that are read

from the data file.

(ii) Individual Class, that encapsulates the decision variables, chromosome, initialization

and evaluation using constraint and objective functions.
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III.7.2.1 MOP Parameters

In this section we discuss the synthesis of parameters from the input parameters in the

IRL model. The values of the generated parameters are obtained from the problem model.

The type of the parameter depends on the variable type.

Parameter Basic Types. Most imperative languages support basic variable types- int,

bool, string and float for inputs. Therefore the basic types of IRL have a direct

correspondence with the basic types in the imperative language.

Parameter Sets. Java already supports sets, so all set and compound set parameters are

refined to sets in Java. Unlike the CP model where all the sets were refined to set of integers,

the sets in MOP model can be of any type. For example in the simple mapping problem,

the set iProcessor in the IRL model is refined to a string set shown in Figure 30 (line 2).

This set contains the names of Processor objects in the problem model.

1 class Param{
2 HashSet<String> Task;
3 HashSet<String> Processor;
4 Function<String,Integer> Processor_cost = null;
5 Function<String,Integer> Processor_powd_rate = null;
6 }

Figure 30: Parameters: Mapping Problem MOP

Parameter Functions. We have built a template Java Class for Function data type. This en-

ables simple translation of input variables in the IRL model to objects of corresponding Java

Classes. The Function Java class consists of three data members: (1) a set D, representing

the domain, (2) a set R representing the range of the function set, and (3) f, a map with keys

from the domain and values from the range set. Methods of the Function class correspond

to the operators included in pCSL constraint expressions. For example, ‘irl_F(d,r)’ in

pCSL expression is rewritten as ‘F.isMember(d,r)’, where isMember is a method
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used to check for the membership of a pair 〈d,r〉 in the function F . Figure 30 (line 3) shows

the function variable synthesized from Processor_cost parameter function in the IRL model

of the simple mapping problem.

Parameter Relation. Like functions, we created a template Java Class for Binary Rela-

tions, consisting of data members and methods. It consists of three data members, two

sets S1 and S2, and r, a map associating elements of S1 and S2. Methods of the class are

operations that can be performed on a relation and are similar to the function operations.

All the input variables in the IRL model are synthesized to parameters in the MOP

model. The value of these parameters, that is the elements of the sets, functions and rela-

tions are obtained from the design space instance.

III.7.2.2 MOP Chromosome

Each candidate solution in the population is modeled as a vector (chromosome) ~D,

where vector components (genes) might represent a decision variable. We used a discrete

vector chromosome to represent the solution to a problem, where each gene i in the chro-

mosome is a value in the range (allele) [mini . . .maxi]. The mini and maxi depend on the

domain of the decision variable that it represents . In this section we discuss the synthesis

of the chromosome from the independent decision variables in the IRL.

Decision Basic Types. We restrict decision variables to integers and booleans. They are

translated to a single gene in the chromosome. The allele in case of a boolean variable is

[0..1].

Decision Sets. The set decision variables in the IRL are integer interval sets within the

range [1...max_cardinality]. This set is translated to a single gene that can take

values in the range [min...max].

Decision Functions.A function F : A→ B is represented by a set of genes [x . . .(x+ |A|)]
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1 class Individual{
2 //independent decision variables
3 DecisionFunction<String,String> MapsTo = new DecisionFunction<String,

String>(Node, Processor);
4 int MapsTo_offset = 0;
5 int MapsTo_length = this.MapsTo.card();
6 int MapsTo_allele = this.MapsTo.getRange().size();
7 //candidate solution
8 int[] Chromosome;
9 int Chromosome_length = mopMapsTo_length;

10

11 public Individual(){
12 this.Chromosome = new int[this.Chromosome_length];
13 for (int i = 0; i < this.Chromosome_length; ++i) {
14 if(i >= MapsTo_offset && i < MapsTo_offset + this.MapsTo.card()){
15 this.Chromosome[i] = randomGenerator.nextInt(MapsTo_allele);
16 }
17 }
18 this.objectiveSpace = new double[dim];
19 this.eval();
20 }
21 }

Figure 31: Chromosome: Mapping Problem MOP

in the chromosome, where x is the offset of the decision variable F , such that

∀i ∈ [x . . .(x+ |A|)] · ∃ j ∈ [1..|B|] ·D[i] = j

where D is the chromosome. For this condition to hold, both A and B require an index

map to associate map each element to a unique index number. For example set iTask =

{t1, t2} is indexed, such that t1 = 1 and t2 = 2. This indexing is implemented in the

DecisionFunction class that extends the Function class and initializes the index maps for

domain and range sets. Figure 31 shows the declaration of MapsTo decision function

in the MOP model. The variable MapsTo_allele takes the maximum value that each gene

representing the function can take. The mapping problem has a single independent decision

variable iMapsTo (see Figure 25(b)). Therefore, the length of the chromosome is given by

the cardinality of the function, which is equal to |iNode|, since all functions in IRL are total
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functions. The offset of the decision variable is 0. Similarly, a function F2 : A→P(B) is

refined to a 1-D array of length |A|× |B| where

∀i ∈ [1..|A|× |B|], D[i] ∈ {0,1}

Decision Relations. A relation R⊆ A×B is refined to a 1-D boolean array of size |A|×|B|.

The allele of each gene is [0..1].

The chromosome is intialized by randomly choosing a value for each gene from Processor,

range set. The chromosome is formed by the combination of all the independent output

variables. The position of each decision variable in the chromosome is captured using an

index offset. The initialization of the chromosome is done by choosing a random value for

each gene in the chromosome from the domain.

III.7.2.3 MOP Constraints

The generic framework uses penalizing strategy to handle constraints. This means that

the solutions that violate the constraints have a lower fitness value that the valid ones. Also

the invalid solutions are ranked in proportion to the constraint violation, which implies that

solutions with less number of constraints violations is ranked better than solutions with

more number of constraint violations. Each objective function f (x) is extended to include

the number of constraint violation into account, such that .

fp(x) = f (x)+ ∑
i∈C

wiαi (III.4)

where αi = 1 if the constraint i is violated and αi = 0 if the constraint is satisfied by the

solution x. A constraints in the MOP model is a function with boolean return value. This is

the most generic way of handling constraint optimization problems. A better approach of

handling constraints is repairing an invalid candidate solution. A repair operation can take

an arbitrary invalid solution and modify it to yield a valid solution. In a generic framework
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like ours, the problems can have constraints that are too complex and determining how to

modify a solution to satisfy these constraints can be challenge.

1 public class NoConflict implements Predicate{
2 String _t1;
3 String _t2;
4 public mop_NoConflict(String a, String b){
5 this._t1 = a;
6 this._t2 = b;
7 }
8 public boolean call(Individual ind){
9 String s1 = ind.MapsTo.getImage(_t1);

10 String s1 = ind.MapsTo.getImage(_t2);
11 if( ! s1.equals(s2)){
12 return true;
13 }
14 return false;
15 }
16 }

Figure 32: Predicate: Mapping Problem MOP model

A constraint class in the IRL model models an invariant condition that must be satisfied

by all valid design solutions. Each constraint class is refined to a method with a boolean

return value. A predicate class in the IRL model models a template condition that can

be instantiated in the design space instance. Each predicate class in refined to a separate

Java class. Figure 32 shows the class corresponding to the iNoCon f lict predicate (Figure

26) in the IRL model. The class NoCon f lict extends the base class mop_Predicate. The

base class contains a call method that takes the chromosome as an argument and returns a

boolean value. This method is overwritten to include the definition of the predicate. The

function returns false if the constraint is violated and true if the constraint is satisfied by the

current solution. The arguments of the predicate in IRL model are translated to data mem-

bers of the derived class. The objects of this predicate class are obtained from the design

space instance. Although it is possible to implement the predicates as methods, the class ap-

proach maintains a clear distinction between the constraints and predicates. This is required
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while retrieving relevant data from the design space instance. A set of simple rules are used

to translation the constraint definition in pCSL to imperative functions. The methods sup-

ported by the Function and Relation Java classes are similar to the operations on the same

supported by pCSL making the translation straight forward. Figure 32 shows the imperative

function corresponding the pCSL constraint definition in IRL, where the boolean expres-

sion with ‘iMapsTo(ctx)’ is translated to ‘MapsTo.getImage(ctx)’. A subset of

the rules are included in Appendix E for reference.

III.7.2.4 MOP Functions

All output variables are data members of the Individual class. The independent output

variables are refined to a Chromosome representation, while the dependent output variables

are calculated using the assignment statements or function definitions that specify how the

values of these variables depend on other variables. Assignment statements and function

definitions are refined to methods of the Individual class. For example, the function defini-

tion of the ‘Processor_isUsed’ function in the simple mapping problem is parsed to

a set of functions shown in Figure 33.

III.7.3 Model and Search using the MOP Model

The problem model presented in Figure 28 is run with an initial population of size 10,

a mutation probability of 0.1, a recombination probability of 0.1 and maximum generation

of 40. We use the simple evolutionary multi-objective optimization algorithm for selection.

The solutions obtained are shown in Figure 34. The invalid solutions obtained have high

cost and power dissipation due to the constraint violation penalty function used to penalize

the objective values. We obtain two non-dominated valid solutions.

Solution A with total cost= 350 and total powd = 60 corresponds to the

mapping
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1 public void processor_used_assign_stmt(){
2 //Processor_used(ctx) <-> (card(MapsTo(~ctx) >= 1)
3 for(String ctx: Variator.population.nfParams.Processor){
4 boolean bexpr = processor_used_assign_stmt_bexpr_1(ctx);
5 this.Processor_used.add(ctx, bexpr);
6 }
7 }
8 public boolean processor_used_assign_stmt_bexpr_1(String ctx){
9 int aexpr1 = processor_used_assign_stmt_aexpr_1(ctx);

10 int aexpr2 = 1;
11 if(aexpr1 >= aexpr2){
12 return true;
13 }else{
14 return false;
15 }
16 }
17 public int processor_used_assign_stmt_aexpr_1(String ctx){
18 HashSet<String> D1 = MapsTo.getCoImage(ctx);
19 return D1.size();
20 }

Figure 33: Assignment Statement: Mapping Problem MOP model

T1->p2, T2->p1, T3->p1

Solution B with total cost= 250 and total powd = 90 corresponds to the

mapping

T1->p2, T2->p3, T3->p3

Figure 34: Mapping Problem with multi-objectives solution
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CHAPTER IV

EVALUATION OF THE FRAMEWORK

Our aim in this section is to evaluate the generic framework based on the following

hypothesis

• The reusable classes (ADSEL) provide an abstraction level that allows us to easily

model DSE problems that cover a wide range of problems from different domains.

Moreover, once created, the models of the problem are easy to modify.

• An IRL model for a class of DSE problems can be translated to alternative solver-

specific models, thus enabling flexibility to solve both constraint satisfaction and

optimization problems. The generated models (CP and MOP) are syntactically and

semantically correct and provide correct results.

The first challenge in evaluation of our framework was to identify a set of problems that are

diverse, not only in terms of the application areas but also in terms of the objectives. Even

though a large number of DSE case studies exist in literature, these case studies have mainly

been used for evaluation of domain-specific DSE approaches. Similarly, a number of es-

tablished benchmarks exist but they focus on a given application domain [48]. Literature

survey reveals that similar problems can exist in different application areas, for example

resource allocation problems exist in network design, embedded systems etc. Therefore,

we attempt to categorize the commonly found DSE problems based on structure and intent

of exploration rather than the application area. Towards this goal, we present 6 categories

of DSE problems: resource allocation, selection, placement, routing, scheduling and con-

figuration. Existing DSE case studies found in literature are variants of these classes, or a

combination of them. This classification is along the lines of the CSP classification pro-

posed by Miguel et. al.[1]. Here we briefly discuss each of the 6 problem categories.
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1. Resource allocation problems: Given a set of T objects and R resources, the goal

of a resource allocation problem is to allocate resources to the objects, such that all

constraints (memory, cpu, etc) are satisfied. A number of variations of this problem

are found in literature [38, 53, 112].

2. Selection problems: Given a set of objects S, the goal of a selection problem is to

a find a subset K ⊆ S, such that a set of constraints (for example memory ≤ 100)

are satisfied and a cost function (for example cost, memory consumption etc.) is

optimized. Selection problems have been commonly found in software-product line

engineering. [19, 130]

3. Placement problems: Given a set of two-dimensional objects and a plane, the place-

ment problem is to assign a position to each object, such that all objects lie within

the given boundary of the plane and the objects do not overlap. In a variant of the

placement problem, the plane is not given and the objective is to minimize the area of

the enclosing box containing all objects. Placement problems have been found most

often in VLSI design [105].

4. Routing problems: Given a graph G = (V,E), where V is a set of nodes, E is a set

of non-negative edges, and a set of terminals T ⊆ V , the routing problem is to find

the a tree connecting the nodes in T , such that the tree is optimal with respect to

an objective. These problems are commonly found in wire routing in VLSI [104],

network design [29] etc.

5. Scheduling problems: Scheduling problems are characterized by assigning start

times to a series of tasks that have to be performed by some deadline with the possi-

bility of precedence constraints between them [73, 99].

105



6. Configuration problems: A configuration problem involves creation of a relation-

ship between decision variables and their domain values subject to additional con-

straints. Besides this, we consider all unconstrained optimization problems to be

configuration problems [119]. This class also includes optimization problems that

do not have an analytical function to calculate the cost of a design solution.

We use the DSE classification to evaluate the scope of the framework. We evaluate the

framework based on the following criteria:

Scope: This is the most important criteria for evaluating the framework. We select a set of 5

problems, covering the following categories: resource allocation, construction, placements,

routing, and scheduling. Then, we attempt to model these problems using the framework.

Section IV.1-Section IV.5 present the modeling and solution of each of the problems. Each

section consists of two steps: (1) Configuration, which is to be performed by the domain

expert. This consists of creating a conceptual model of the problem and writing CSL con-

straints, and (2) Model and search, which consists of creating a DSE problem model and

performing search to retrieve solutions.

The configuration category includes class of problems that do not have an analytical

optimization model to calculate the cost of a design point in the design space. An example

class of problem in this category is the cache configuration problems [133], which has

been solved using the simulation-based methods. In order to solve these problems using

our framework, a standard interface is required to integrate the simulation tools with the

framework, so that the cost estimation using the simulation tools can be synchronized with

the search engine. We consider this task in our future work.

Solver Support: Can the same problem model MCM be used for constraint satisfaction,

mono and multi-objective optimization? In Section IV.6, we evaluate the solver flexibility

of our framework by generating a CP model as well as an MOP model from a complex

resource allocation problem and then use this model to retrieve Pareto-optimal solutions.
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IV.1 Resource Allocation Problems

A resource allocation problem is a common DSE problem found in most often the

embedded systems domain. Formally, an allocation problem is a three tuple

〈N,R,A,C〉

where N is a set of components with resource requirements , R is a set of resources which

are allocated to the nodes, A⊆ N×R is the allocation relation, and C is a set of constraints

that A should satisfy. Different resource allocation problems found in the literature can be

classified into two subcategories based on the allocation relation:

• A Relational Allocation Problem has a many-to-many relation between compo-

nents and resources, such that a resource can be allocated to many components and a

component requires more than one resource. The SONET (Synchronous Optical Net-

work) [7] design is an example of a relational resource allocation problem. The goal

of the SONET problem is to allocate a set of nodes to one or more optical network

rings.

• A Functional Allocation Problem is an allocation problem where every component

requires exactly one resource, such that for every c ∈ C there exists an r ∈ R such

that 〈c,r〉 ∈ A. Each node can requires only one resource, but more than one nodes

can require the same resource. The mapping problem in Erbas et al.[38], FPGA

design problem in Sarawat [104] are both cases of functional resource allocation

problems. The simple mapping problem used as a running example in Chapter III is

also an example of a functional allocation problem. Functional allocation problems

can differ depending on the properties of the allocation function (surjective, injective

etc.).

In this section, we use a simplified version of the SONET design problem in [7] to

evaluate the framework. A SONET communication network consists of a set of rings, each
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Figure 35: SONET Problem [115]

ring joining a number of nodes, shown in Figure 35. The placement of a node on a ring

requires an expensive equipment called an add-drop multiplexer (ADM). A node can be

installed on a number of rings. However, there is an upper bound on the number of nodes

that can be placed on a ring. Two nodes can communication with each other only if they

are installed on the same ring. The objective is to find a placement of nodes on rings, such

that the communication demands are met and the number of ADMs used is minimum.

Problem Specification

Inputs of a SONET problem include an undirected demand graph G = 〈N,Edge〉, where

N is a set of nodes, and Edge is a set of communication links between the pairs of nodes.

Each communication link (u,v) ∈ Edge corresponds to traffic demand of a pair u and v

nodes.

Output of a problem includes the results required from the search. In the SONET problem,

the search should return a solution model MS, with a set of rings R and an assignment

of rings to nodes, Ring-Node:R×N, where R. This reflects the relational nature of the

problem.

The constraints included in our version of the SONET are as follows :
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C1: at most r rings are used;

C2: every pair of nodes ni,n j ∈ N, such that (ni,n j) ∈ Edge is mapped to at least one

common ring;

C3: at most a ADMs on each ring;

The objective is to minimize the total number of ADMs used is minimized.

(a) Domain Language MMDSML (b) eSONET Components

(c) eSONET Association (d) eSONET Objective

Figure 36: eSONET Conceptual Model

IV.1.1 Configuration

Based on the informal problem specification the SONET problem, the domain ex-

pert creates a conceptual model MMCM of the problem by associating DSE aspects with

domain-specific modeling concepts. The domain-specific modeling language (DSML) for

109



networks, captured as a metamodel MMDSML (shown in Figure 36a) consists of Nodes with

communication Edges. The classes in MMDSML are composed with the ADSEL classes to

capture the different aspects of the DSE problem. The resulting conceptual model consists

of components, associations, constraints, objectives and global variables for modeling a

class of SONET problems.

IV.1.1.1 Conceptual Model

Components: The conceptual model MMCM, includes the Node concept of the domain

language, that plays the role of a Primitive component, as shown in Figure 36(b). A new

Primitive component, Ring is introduced in the conceptual model to model the rings in

the network topology. The Ring component is an output component (‘isOutput = true’),

where the number of instances of Ring is determined by the search. The capacity property

of the Ring component models the maximum number of ADMs that can be installed on a

Ring object.

Associations: The conceptual model MMCM includes a binary association RingNode, which

models the allocation relation between Ring and Node components (shown in Figure 36c).

The cardinalities of the association reflect the fact that more than one Node object can

be associated to one Ring object using the RingNode association, and vice-versa. As the

RingNode association models an output relation, it is modeled as an abstract binary asso-

ciation. The Edge communication link in the domain language MDSML is included in the

conceptual model MMCM and plays the role of a binary association.

Global Variables: The objective of the problem is to minimize the number of ADMs in

the topology, shown in Figure 36d. The total number of ADMs is modeled using a global

variable num_ADMS, which has an integer value type and an assignment statement
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1 context: Num_ADM
2 assignment statement: $self = card(RingNode)

The objective of the exploration is modeled as a minimize class MinimizeADM with the

num_ADM as an argument with weight = 1.

Constraints:

(C1) Constraint C1 specifies that at most r rings are used. This constraint is captured using

the ‘cardinality’ property of the Ring component.

(C2) Constraint C2 specifies that every pair of node connected by an edge should be

mapped to at least one common ring. We use an abstract binary constraint edgeCnstr

to capture this constraint (Figure 37) as the constraint is applicable to all instances of

the edge.

The constraint definition is formally specified as:

∀{n1,n2} ∈ Edge : RingNode(_,n1)∩RingNode(_,n2) 6= φ (IV.1)

Figure 37: Edge Constraint in the SONET Problem
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1 context:$self= edgeCnstr, $ctx1=Node, $ctx2=Node
2 CSL: forall( <$ctx1, $ctx2> in Edge )
3 (
4 RingNode(_, $ctx1) intersect RingNode(_, $ctx2)
5 sneq {}
6 )

Figure 38: Edge Constraint CSL Expression

The CSL constraint expression corresponding to Eq. IV.1 is shown in Figure 40. The

contexts ‘$ctx1’, ‘$ctx2’ are combined in a tuple to iterate over the ‘Edge’ associ-

ation domain. The constraint applies to all pairs of Node objects that are associated

to each other by the Edge association. The CSL constraint expression has backward

navigation along the RingNode association to retrieve all the Ring objects associ-

ated to a given Node object by RingNode association. The constraint specifies that

two Node objects should be associated to at least one common Ring object using the

RingNode association, if they are also associated using the Edge association.

(C3) Constraint C3 specifies each ring can have at most a ADMS. In this simplified model

number of ADMs is equal to the number of nodes on the ring. This constraint can

be modeled as an abstract unary constraint capacityCnstr. Formally, the constraint

definition states:

∀r ∈ Ring : |(RingNode(r,_)| ≤ capacity(r) (IV.2)
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Figure 39: Capacity Constraint in SONET Problem

1 context:$self= capacityCnstr, $ctx1=Ring
2 CSL: forall($ctx1)
3 (
4 card (RingNode(_, $ctx1) ) <= $ctx1.capacity
5 )

Figure 40: Capacity Constraint CSL Expression

IV.1.2 Intermediate Model

The conceptual model of the SONET problem MMCM is translated to a model MIRL in

IRL. This translation is done automatically using the CM2IRL translator. Figure 41 shows

parts of the IRL model. The Inputs comprise of three input parameters:

(iV1) A set of integers, iNode that is created by refinement of the Node component in the

conceptual model

(iV2) A relation, iEdge ⊆ iNode× iNode that is is a created by refinement of the Edge

binary association

(iV3) An integer variable iRing_capacity that is created by refining the capacity prop-

erty of the Ring component. As detailed in Section C.1, the properties of an output

component are refined to variables of predefined types.

(iV4) An integer variable iRing_cardinality that is created because the Ring is an output

component and the maximum number of instances of an output component is cap-

tured by ‘cardinality’ property common to ADSEL components.

113



The outputs consists of three decision variables:

(iV5) a relation iRingNode, which is a refinement of the RingNode binary association

(iV6) an interval set iRing, which is a refinement of the Ring output component

(iV7) an integer variable inum_ADM, refinement of the global variable num_ADM. We use

the assignment statement of inum_ADM to infer its dependence on the iRingNode

relation. There are two independent output variables. The default variable ordering

(Section II.1.1) that is followed while searching for a solution is to first assign val-

ues to compound variables (functions, relations), followed by sets before assigning

values to primitive variables.

(a) eSONET IRL Parameters (b) eSONET IRL Decision variables

(c) eSONET IRL Constraints

Figure 41: eSONET IRL elements
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The constraints in the IRL model generated from the constraints in the conceptual model

using the CM2IRL translator. This translator also includes a constraint rewriting engine that

processes the CSL constraint expressions and rewrites them in terms of the parameter inputs

and decision variables in the IRL, referred to as the processed CSL (pCSL) constraints.

This constraint is in addition to the constraints generated by the assignment statement of

num_ADM. For example, constraint C3 in the conceptual model is rewritten as a pCSL

constraint shown in Figure 42

1 pCSL: forall(c in iRing)
2 (
3 card (iRingNode(_, c) ) <= c.capacity
4 )

Figure 42: Capacity Constraint pCSL Expression

IV.1.3 Model and Search

The CP Model of the SONET problem, given in Appendix F is auto-generated from

the IRL model of the problem. Figure 43(a) shows a sample design space model MCM that

conforms to the conceptual model MMCM of the problem. MD consists of 5 nodes with

connections. A singleton Ring object is used to set the properties of Ring, for example

here cardinality = 4 and capacity = 2. The data generated from this model is

shown in Figure 43(b). The data and CP model are processed by the solver (Flatzinc FD)

to generate a solution, shown in Figure 43(c), showing a pair of nodes mapped to one ring

satisfying the capacity constraint of the rings. For the given example, a hand written code

takes 42 milliseconds to come up with the answer whereas the auto-generated code takes

80 milliseconds for the same. The main reason for a slower time comes from set based

encoding of the Constraint 2.
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(a) SONET design space instance (b) Model Data

(c) SONET Solution

Figure 43: eSONET Instance Model

IV.2 Selection Problems

Given a set of objects S, the selection problem is to a find a subset K ⊆ S, such that a

set of constraints is satisfied and an objective function is optimized. These problems are

often found in software-product line engineering, where the set of features are organized in

a tree-like structure called the feature model [62]. Figure 44 shows the feature model of a

face recognition sytem adapted from [131]. A feature model consists of primitive features,

modeled as the leaves of the feature model, and composite features that are modeled as

internal nodes (including root) of the feature model.

Formally, a feature selection problem in software-product line engineering can be de-

fined as a five-tuple CP = 〈F,C,D,L〉, where

• F is a set of features, such that F = Fl∪Fc, where Fl is a set of primitive features, and
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Figure 44: Feature Model(Adapted from [131])

Fc is a set of composite features. Each feature i ∈ F has a requirement reqi j which

represents the amount of resource i required by feature j.

• C is a set of composition constraints, which represent the relationship between a

composite feature fc ∈ Fc and any other feature f ∈ F .

• D is a set of dependency constraints between features. For example A requires B,

which means the selection of A implies the selection of B.

• L is a set of bound constraints on the resource requirements of a feature. For example,

A.memory≤ 100.

The solution of a feature selection problem is a subset of the features (configuration)

that satisfy all the constraints and optimize the total resources required by the product. In

this section, we model and solve the feature selection problems to evaluate the scope of our

framework in handling selection problems.

IV.2.1 Configuration

Based on the informal problem specification a feature selection problem, the domain

expert creates a conceptual model MMCM representing the class of problem by associat-

ing DSE aspects with domain-specific modeling concepts. The domain-specific modeling
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Figure 45: Conceptual Model Components

language (DSML), captured as a metamodel MMDSML consists of a System containing Fea-

tures. The classes in MMDSML are composed with the ADSEL classes to capture the dif-

ferent aspects of the feature selection problem. The resulting conceptual model consists of

components, associations, constraints, objectives and global variables for modeling a class

of feature selection problems.

Components. The Feature class in the DSML is included in the conceptual model as a

Primitive Component. A set of new components are introduced in the conceptual model to

enable modeling of the feature model. We model them as a set of Container components in

the conceptual model, where each component represents a unique composition relationship.

Figure 45 shows the new components: (1) Mandatory; (2) Alternative; and (3) Or, that are

inherited from the ADSEL Container component. Instead of creating new components, we

can also use the specialized container classes mentioned in Section III.3.

All features (both composite and primitive) are DSComponents, which has three prop-

erties: (1) select, a boolean valued decision property that models the inclusion or ex-

clusion of the feature in a configuration, (2) cost, an integer valued metric property that

models the cost requirements of the feature, and finally (3) memory, an integer valued met-

ric property that models the memory requirements of the feature. As mentioned in Section

III.3.2.3, all properties of the base are inherited by all derived classes. In this case, the sel,
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cost and memory properties of DSComponent is inherited by the primitive and container

classes.

Associations. The conceptual model includes a single association, a composition rela-

tion Children modeling the fact that a Container component can contain other Container

and Primitive features. A forward navigation of the Children association denotes by

‘Children($self,_ )’ returns a set of child features of the component.

(a) eFeature Resource bound Constraints (b) eFeature Cross Tree Constraints

Figure 46: eFeature Conceptual Model

Assignment Statements The cost and memory metric properties of a Container A are

calculated based on the property values of the contained features Children(A) . For example,

the assignment statements for cost and memory properties of an Alternative component is

given by CSL assignment statements shown in Figure 47.

1 context: $self = Alternative
2 CSL:
3 $self.cost = sum ( s in Children( $self,_) )(s.select*s.cost)
4

5 $self.memory = sum ( s in Children( $self,_) )(s.select*s.memory)

Figure 47: Assignment Statement for metric properties of Alternative Component
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The assignment statement for the Or component is the same as that of the Alternative

component. The assignment statements for cost and memory properties of a Mandatory

component is given by assignment statements shown in Figure 48

1 context: $self = Mandatory
2 CSL:
3 $self.cost = sum ( s in Children( $self,_) )(s.cost)
4

5 $self.memory = sum ( s in Children( $self,_) )(s.memory)

Figure 48: Assignment Statement for metric properties of Mandatory Component

The assignment statement for feature components is given by a value input by the do-

main engineer. In this case the inherited property is constrained to a single value using

the following assignment statement shown in Figure 49. The param operator is used to

constrain a decision property to a single value input by the domain-engineer.

1 context: $self = Feature
2 CSL:
3 $self.cost = param ( $self.cost)
4

5 $self.memory = param ( $self.memory)

Figure 49: Assignment Statement for metric properties of Feature Component

Constraints There are three kind of constraints in the conceptual model: composition con-

straints, dependency constraints and bound constraints.

Composition constraints, specify the constraint on selection of a child features based on the

inclusion/exclusion of the parent component. The composite features Mandatory, Alterna-

tive and Or have different composition relations with the contained features. For example,
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if an Or Component o is selected in a configuration, then the number of child features se-

lected is within [Child_min(o)...Child_max(o)]. Figure 50 shows the CSL expression for

the composition constraint for Or component.

1 context: $self = OrCnstr, $ctx1 = Or
2 CSL:
3

4 forall( $ctx1)
5 (
6 $ctx1.child_min <= sum ( s in Children($self,_) )
7 ( bool2int(s.select) )
8 /\
9 $ctx1.child_max >= sum ( s in Children($self,_) )

10 ( bool2int(s.select) )
11 )

Figure 50: Compostion constraint for Or Component

Similar composition constraints exist for Alternative and Mandatory components as

well. For example, if an Alternative a is included in a configuration then exactly one of

its child features is included in the configuration. Similarly, if a Mandatory m feature is

included in a configuration, then all its children are selected.

Dependency constraints: The conceptual model includes two types of dependency con-

straints: Excludes and Includes that are used to model constraint between two feature in

the feature diagram. Both are modeled using binary constraint class where the source and

destination are DSComponents. The Includes constraint specifies that the target component

is selected if the source component is selected. On the other hand the Excludes constraint

specifies that the target component is excluded if the source component is selected. Figure

51 shows the CSL expression for an Includes dependency constraint, where ‘$ctx1’ refers

to the source and ‘$ctx2’ refers to the target components.

Resource Bound constraints specify upper bounds on the resource requirements of features.
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1 context: $self = $ctx1 = DSComponent, $ctx2= DSComponent
2 CSL:
3

4 $ctx1.select -> $ctx2.select

Figure 51: Includes constraint

These constraints are modeled using concrete Unary Constraint class with the CSL expres-

sion, ‘$ctx1. <resource> <= $self.value’, where the <resource> is either cost

or memory.

Root constraint specifies that the root component of the feature model is always selected.

This constraint is modeled using a concrete Unary Constraint with CSL expression,

‘$ctx1.select <-> true’

.

Figure 52: eFeature Objectives

Objective There are three kinds of objectives for solving feature selection problems, shown

in Figure 52. The Satisfy objective is used to retrieve all valid feature model configurations

that satisfy the different constraints. On the other hand, the domain engineer may want

a configuration that minimizes cost or memory requirement of the a particular composite

feature or the entire system. This is done by the Minimize objectives. In this problem we
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use the objective variables compCost and compMemory to refer to the cost and memory

properties of a particular component instance, typically the root instance. The domain

engineer can change the exploration objective during design time.

IV.2.2 Intermediate Model

The conceptual model is translated to a model in the IRL, which is essentially a tuple

IMc = 〈Ic,Oc,Cc,Ob jc〉, where Ic is a set of inputs, Oc is a set of outputs and Cc is a set of

constraints and Ob jc is a set of objective variables. We discuss each in detail:

Inputs: All the components in the class hierarchy, shown in Figure 45 are refined to sets.

By default all the leaf components in the component hierarchy are translated to string sets

and the abstract internal classes are translated to compound sets. For example, Alternative

component is translated to iAlternative, a string set. Whereas DSComponent is translated

to translated to a compound set, such that iDSComponent = iPrimitive∪ iContainer, where

iContainer in turn is also a compound set. The properties of DSComponent are translated

to functions (decision variables or input parameters) depending on their type. The contain-

ment relation Children is translated to a function

iChildren : iContainer→P(iDSComponent)

Outputs: The metric and decision properties of the features: memory, sel and cost

are refined to corresponding decision variables. For example, the select property of

DSComponent is translated to a decision variable of function type. The assignment state-

ments that are used to assign value to select property in the derived classes of DSComponent,

for example Alternative, Mandatory are combined to form a conditional definition of the

following form:
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DSComponent_memory : DSComponent→ N , with definition

DSComponent_memory(x) =



sum(m in Children(x)) (DSComponent_memory(m))

if x ∈ iMandatory

sum(a in Children(x)) (DSComponent_memory(a)

∗DSComponent_select(a))

if x ∈ iAlternative

sum(o in Children(x)) (DSComponent_memory(o)

∗DSComponent_select(o))

if x ∈ iOr

Feature_memory(x) if x ∈ iFeature

The memory property depends on the selection property of the DSComponent, which is

translated to :

DSComponent_select : DSComponent→ B

Constraints in the conceptual model are refined to predicates and constraints.

• composition and cost constraints are applicable to all instances of the context com-

ponent and are thus refined to constraint objects in IRL model.

• bounds and dependency constraints are explicitly instantiated in the design space

instance model and are thus refined to predicate objects in the IRL model.

IV.2.3 Model and search

In order to evaluate our framework we use a simplified version of the face recognition

system problem adapted from[131] as a case study. The face recognition system problem
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has a feature diagram, shown in Figure 44, with three constraints: (1) a dependency con-

straint where PCA variant of the algorithm requires the image in JPEG compression format,

and (2) the face recognition algorithm must require, Memory≤ 2048. The objective of the

exploration is to find a subset of features that satisfy the composition and bounding resource

constraints, while optimizing the cost consumption.

Figure 53: eFeature Design Space Instance

The CP model generated from the IRL model and the data generated from the problem

model MCM is processed by the solver to retrieve solutions. The model corresponds to the

feature model in Figure 44. The data and CSP specification are given to the Minizinc finite

domain solver. One of the solutions returned consists of one instance of the camera and

ML implementation of the algorithm.
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IV.3 Placement Problems

A typical placement problem involves arranging objects according geometric constraints,

where all objects must lie within the given boundary and the objects do not overlap. Place-

ment problems have been found most often in VLSI design. Formally, the VLSI placement

problem deals with the nets and modules. The nets connect the modules through pins. A

circuit is a tuple C = 〈M,P,N,A〉, where M is a set of modules, P is a set of pins, N is a set

of nets and A is the area with IO-pins. Each module m ∈ M has a width (wm) and height

(hm) of the module. Modules are connected to each other through pins. Each pin p ∈ P is

mapped to a module. Pins are placed with respect to the lower left corner of the module.

Nets are subsets of P such that each n ∈ N is n ⊆ P. All pins should be a part of exactly

one net. A placement of a circuit C describes the position of each module.

Figure 54: DSML for Circuits

The goal of the placement problem is to find a legal placement. Formally, a placement

problem is a tuple

〈R,C,M,Mx,My〉 (IV.3)

where R is a set of rows in the layout grid, C is a set of columns, M is a set of modules,

every single module has a height and width. Mx : M→C represents the column positions
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of modules, and My : M→ R represents the row position of modules. The goal is to find Mx

and My, such that the modules do not overlap, that is for any

∀m1,m2 ∈M, Mx(m1)≥Mx(m2)+width(m2)

∨Mx(m2)≥Mx(m1)+width(m1))

∨My(m1)≥My(m2)+height(m2)

∨My(m2)≥My(m1)+height(m1)) (IV.4)

The objective is to find an optimal placement of the modules, such that length of the wires

required to connect the pins is minimum. Two pins are connected only if they belong to the

same net. Distance between pins is calculated by the Manhattan distance between the pins.

total wire length = ∑
(p1,p2)∈Net

| Px(p1)−Py(p2) |+ | Px(p1)−Px(p2) | (IV.5)

where Px and Py give the position of the pins on the grid.

IV.3.1 Configuration

Based on the problem specification, the domain expert creates a conceptual model

MMCM representing the class of placement problems by associating DSE aspects with

domain-specific modeling concepts. The domain-specific modeling language (DSML),

captured as a metamodel MMDSML is shown in Figure 54. The classes in MMDSML that

are relevant to DSE are composed with the ADSEL classes to capture the different aspects

of the placement problem. The resulting conceptual model consists of components, associ-

ations, constraints, objectives and global variables for modeling a class of feature selection

problems.

Components: In this problem, the Module and Pin concepts in the DSML metamodel

are included in the conceptual model, as shown in Figure 55. The Module component is
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Figure 55: Placement Conceptual Model Components

a Container component, and Pin, a Primitive component. The Module has width and

height parametric properties. The position of a Module on the grid is modeled by two

decision properties: xpos, ypos, which gives the lower left corner of the module. The

pins in a module are located at a certain offset with respect to location of the parent module,

which is modeled using xoffset and yoffset properties of the Pin class. Two new

primitives, namely Row and Column, are created to model the rows and columns in a grid.

These primitives are ordered and therefore each object of the primitive can be uniquely

identified with a natural number n ∈ [1...max_cardinality], where max_cardinality is the

maximum number of objects that can be included in a design space model MD

Figure 56: Children association reference
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Associations: There are two associations in this conceptual model: the Net association,

and the Children association. The Net association in the DSML metamodel (see Figure 54)

is included in the conceptual model as a Binary Association. A reference to containment

relationship between Modules and Pins is also included in the conceptual model, as shown

in Figure 56. This is required by the search procedure to calculate the positions of the Pins

based on the position of the Modules. Formally,

Children : Module→P(Pin) (IV.6)

Global Variables: The goal of the search is to find a legal placement which satisfies all the

constraints and minimizes the length of the nets. The global variable total_wire_length is

used to calculate the total length of the nets for a given placement, where length of each net

is given by the Manhattan distance between the position of the source and target pins. The

assignment expression of the variable is given in Figure 57 .

1 context: total_wire_length
2 CSL assignment statement:
3 $self = sum (m1 in Module )
4 (
5 sum ( p1 in Children(m1, _), p2 in Children(m2, _) )
6 ( bool2int( Net(p1,p2) )
7 * abs( p1.xoffset+ m1.xpos - p1.xoffset+ m1.xpos )
8 + abs( p1.yoffset+ m1.ypos - p1.yoffset+ m1.ypos )
9 )

10 )

Figure 57: Total Length CSL Assignment Statement

Constraints:

C1. NoOverlap The modules should be placed such that they do not overlap each other

and all the modules should lie with in the area of the circuit. This constraint is
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1 context: noOverlap, $ctx1 = Module, $ctx2 = Module
2 CSL constraint:
3 forall($ctx1, $ctx2 )
4 (
5 ($ctx2.xpos + $ctx2.width <= $ctx1.xpos )
6 \/ ($ctx1.xpos + $ctx1 .width <= $ctx2.xpos )
7 \/ ($ctx2.xpos + $ctx2 .height <= $ctx1.ypos )
8 \/ ($ctx1.xpos + $ctx1 .height <= $ctx2.ypos )
9 )

Figure 58: No Overlap CSL Constraint

formally specified in Eq. IV.4. The CSL definition of the constraint is shown in

Figure 58.

Figure 59: Packing Constraint

C2. There are two binary packing constraints RowPackCnstr and ColumnPackCnstr to

ensure the placement of the modules is within the height and width of the grid. The

ColumnPackCnstr (shown in Figure 59) specifies that the total height of all modules

placed in a column should not exceed the height of the grid. The corresponding CSL

constraint is given in Figure 60. The RowPackCnstr is similarly used to specify the
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1 context: columnPack, $ctx1 = Module, $ctx2 = Column
2 CSL constraint:
3 forall($ctx2 )
4 ( sum($ctx1 )
5 ( bool2int( ($ctx2.index >= $ctx1.xpos)
6 /\ ($ctx2.index <=$ctx1.xpos +$ctx1.width) )
7 * $ctx1.height
8 ) <= card($ctx2)
9 )

Figure 60: Column Packing CSL Constraint

constraint the total width of all elements in a Row is not more than the width of the

grid.

Objective: The overall objective is to minimize the total wire length.

IV.3.2 Model and search

Figure 61(a) shows a simple example with five modules. The Row and Column both

have cardinality 15 respectively. The CP Model auto-generated from the the IRL model

of the problem is used in conjunction with the data generated from the design space model

MD. The resulting placement minimizes the total wire length of the nets. The solution in

Figure 61(c) minimizes the total wire length of the nets to 18. The time taken to solve the

problem averaged out to approximately 60 seconds.

The packing constraints can also be modeled using cumulative global constraints.

We manually replaced the generated packing constraints with the global constraints and

observed a speed up of more than 100% as a result of it. Thus, in order to handle larger

instances, global constraints have to be manually introduced.
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(a) Design Space Model MD (b) Data

(c) Solution Model MS

Figure 61: Placement Problem Model and and solution

IV.4 Routing Problems

Routing problems are also found in VLSI design in combination with placement prob-

lems presented in Section IV.3. Figure 62(a) shows a DSML for VLSI, where a Circuit

consists of Modules and each Module in turn consists of Pins. A Wire connects a pair of

Pins. A Net is a set of Wires connecting the pins . Figure 62(b) shows a diagrammatic

representation of a circuit with 4 modules placed on the grid. Each module (box) consists

of pins (black dots). The circuit is divided into a routing grid. The intersection points are

shown as white dots. A pin can be placed in an intersection point (black node). A wire
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connecting two pins is routed by selection of edges in the routing grid. The goal of the

routing problem is to find a steiner tree connecting the pins in each net, such that the total

length of the wires in the Net is minimized.

(a) Original Metamodel (b) Route Problem Model

(c) Route Problem Grid

Figure 62: Routing Problem

Figure 62(c) shows a routing grid where three pins p1, p2 and p3 belong to a net N1

are to be connected. The goal is to find a steiner tree connecting the pins using (n-1) wires.

One way of solving this problem is to assume one of the pins, say p1 as the start point of

the path and the other pins p2 and p3 as the end points and for each wire, we try to find the

shortest path.

Formally, a routing grid is a tuple R = 〈N,E〉, where N is a set of nodes and E is a set
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of edge, where numWire(e) gives the number of wires routed through the edge e∈ E. Then

the following properties hold for all the nodes:

1. The wire should be routed, such that for each node, the number of incoming wires is

equal to the number of outgoing wires except for the start and end nodes of the route.

∀n ∈ Node · ∑
e∈Edge∧Src(e)=n

numWire(e) == ∑
e∈Edge∧Dst(e)=n

numWire(e) (IV.7)

2. For the start node the number of outgoing wires should be equal to the number of

end points in the net.

∀n ∈ Node · isStart(n)→ ∑
e∈Edge∧Src(e)=n

numWire(e) == ∑
n∈Node

isEnd(n) (IV.8)

3. For the end node there should be no outgoing wires and only one incoming wire.

∀n ∈ Node · isEnd(n)→ ∑
e∈Edge∧Dst(e)=n

numWire(e) == 1 (IV.9)

The goal of the routing problem is to minimize the total length of the wire, that is

calculated by adding the number of edges that have more than one wire.

IV.4.1 Configuration

The conceptual model representing the class of routing problems found in VLSI de-

sign consists a new component RGNode that is used to represent the intersection points in

the routing grid. An intersection point can be a Pin or an empty intersection point. An

association Edge is used to connect each pair of RGNode.

In order to retrieve a routing path, we need to assign a start node and one or more end

nodes. In each net we assume one pin is the start and all the other pins are the end pins.
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(a) Components (b) Associations

Figure 63: Routing Problem Conceptual Model

The is denoted by the isStart and isEnd parametric variables of the node. The actual

number of wires that are routed through an edge are modeled as Edge_flow decision

variable which is calculated as a result of the search. An edge is considered as a part of the

routing path if at least on wire flows through it.

Besides these, a global variable is used to capture the total wire length of the route. The

goal of the exploration is find a route that satisfies all the constraints and also has minimum

total wire length. The global variable total_wire_length is used to calculate the total length

of a single net, where the wire length is equal to the lengths of the edges selected to form

the route. The assignment statement of the variable is shown in Figure 64.

1 context: total_wire_length
2 CSL constraint:
3 $self= sum(<p1,p2> in Edge)( bool2int( Edge(p1,p2).edge_flow >0 ) )

Figure 64: Total wire length CSL Constraint

Constraints : The CSL constraints corresponding to the constraint in Eq. IV.7 and Eq.

IV.8 are given in Figure 65 and Figure 66 respectively.
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1 context: Node
2 CSL constraint:
3 forall($ctx1)
4 ( not($ctx1.isStart) /\ not ($ctx1.isEnd)
5 -> (sum( n in Node)( Edge($ctx1, n).edge_flow)
6 == sum( n in Node)( Edge(n,$ctx1).edge_flow)
7 )
8 )

Figure 65: Node constraint in Routing Problem

1 context: Node
2 CSL constraint:
3 forall($ctx1)
4 ( ($ctx1.isStart)
5 -> (sum( n in Node)( Edge($ctx1, n).edge_flow )
6 == sum( n in Node)( bool2int)(n.isEnd) )
7 )
8 )

Figure 66: Start constraint in Routing Problem

IV.4.2 Model and Search

Figure 67(a) shows a simple example with 4 modules and a net N1 connecting the pins

P1, P2 and P3 of three of these modules. The routing of the net N1 is done by modeling only

a subset of the grid as shown in Figure 67(b). The IRL model is refined to a CP model and

used in conjunction with the that is used in conjunction with the data generated from the

model in Figure 67(b). The solution of the routing problem returns the layout of the wires

connecting the pins in the net such that the route minimizes the total wire length of the nets,

as shown in Figure 67(c).
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(a) Route Problem Model (b) Route Problem Grid

(c) Route Problem Solution

Figure 67: Routing Problem and Solution

IV.5 Scheduling Problems

Scheduling problems is a common category of DSE problems often found in embed-

ded systems [72], [80]. Several variants of th scheduling problem exist, depending on the

constraints imposed due to the properties of the tasks and resources. We use the scheduling

problem as a case study to evaluate the adaptability of the framework. We first model and

solve a class of generic scheduling problems to evaluate the scope of the framework in han-

dling scheduling problems. Then we introduce additional requirements to model special

classes of scheduling problem (example tasks are non-preemptive, resources are cumula-

tive) and evaluate if the conceptual model of the generic scheduling can be reused to model

the new class of problems.

A scheduling problem is characterized by assignment of start times to each task, such
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that both temporal constraints and resource constraints are satisfied. Broadly, there are two

kinds of resource and tasks [98]:

• A disjunctive resource can execute at most one task at each point in time. The tasks

which require this resource can execute only when no other task is executing on the

resource.

• A cumulative resource can execute several activities in parallel, provided the re-

source requirement of the executing tasks does not exceed the resource capacity at

any point of time.

• A non-preemptive task must execute without interruption from start to end.

• A preemptive task can be interrupted by other task depending on some priority etc.

Most real scheduling problems consist of a combination of cumulative and disjunctive re-

sources as well as both interruptible and non-interruptible activities. In this section we

discuss three classes of scheduling problems: (1) Generic Scheduling; (2) Non-preemptive

disjunctive; and (3) Non-preemptive cumulative.

IV.5.1 Generic Schedule Problem

The generic scheduling problem corresponds to constraint-free scheduling, where any

number of tasks can be mapped onto a single resource and there are no constraints on how

many tasks can execute on a resource and a given instance of time.

Problem Specification: Formally, a scheduling problem is a tuple

SP = 〈Task,Rsrc,Slot, Interval,Dur,Sched,C,makespan〉 (IV.10)

• Task is a set of activities with given processing times and resource requirements,

Each task t j has an attribute {duration j,start j,end j} where dur j gives execution
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duration of the task, start j gives the start time of the task, end j gives the end time of

the task.

• Rsrc is a set of resources with given capacities,

• Slot is an ordered set of integer time slots,

• Interval : Task→P(Slot)

• Sched : Task→ Rsrc , is a function which assigns a task to a resource.

• C is a set of temporal constraints between tasks.

• makespan ∈ Slot, which is the end time of the last task that executes in the schedule.

Objective is to find Interval and Sched such that the schedule has minimum makespan.

Task Constraints specify generic constraints on task properties. The start time of the task

is the minimum time slot in the interval and the end time is the maximum time slot in the

interval. The size of the interval set is equal to the duration of the task.

∀t ∈ Task ·Start(t) = min(Interval(t)) (IV.11)

where Start(t) returns the start property of task t.

∀tsk ∈ Task ·End(tsk) = min(Interval(tsk)) (IV.12)

where End(t) returns the end property of task t.

∀tsk ∈ Task ·Dur(tsk) = |Interval(tsk)| (IV.13)
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where Dur(tsk) gives the duration of tsk. Any task execution must end before the makespan,

∀tsk ∈ Task ·End(tsk)≤ makespan≤ max(Slot) (IV.14)

The makespan is always less than the maximum time slot.

The template includes a set of temporal constraints that can be used for relative or

absolution ordering of the task execution. The Eqs. IV.15-IV.18 are used to order two tasks

relative to each other. For example, Eq IV.15 can be used to place a temporal constraint

between two instances of a periodic task. Similarly, Eq IV.16 specifies that task tski should

end before tsk j starts. This constraint can be used to model precedence constraint.

Start(tski)+ value <= Start(tsk j) (IV.15)

End(tski)<= Start(tsk j) (IV.16)

Start(tski)<= End(tsk j) (IV.17)

End(tski)<= End(tsk j) (IV.18)

End(tsk)<= N (IV.19)

N <= Start(tsk) (IV.20)

IV.5.1.1 Configuration

The conceptual model of the generic scheduling problem captures the different aspects

of the problem specification.

Components: The two basic concepts in a scheduling problem are resources and tasks.

Figure 68(a) shows the components used to model these concepts. The Resource primitive

component models a set of resources in the problem. The Task component models a set of

schedulable activities in the problem where each tsk ∈ Task has a set of properties. The
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(a) Generic Scheduling Components (b) Generic Scheduling Global
Variables

Figure 68: Schedule Template Components and Global Variable

duration parameter property of a task tsk represents the actual processing time of tsk on

a resource r. The class of problems considered in this section are assumed to have identical

resources, such that the processing time of task tsk remains the same irrespective of the re-

source on which it is scheduled. The timeline of the schedule is modeled using the Slot, an

ordered component class that represents a set of objects that can be accessed using unique

index number in the range [1...max_cardinality], where max_cardinality

is the maximum number of objects of Slot that can be included in the problem model.

Figure 69: Generic Scheduling Associations
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Associations: The conceptual model has two associations, shown in Figure 69. The Sched-

ule association models the mapping of Task to a Resource, where each task is associated

with exactly one resource and a number of tasks can be associated with the same resource.

Each task, irrespective of the resource on which it is mapped, executes in an interval of

time modeled as a set of Slot. This is modeled using the Interval association from the Task

to Slot. Each task is associated with a set of time slots reflected by the cardinalities. For

example, a non-preemptive task is associated with a sequence [A.start...A.end] of

contiguous time slots. Whereas a preemptive task is associated with a set of (discontinuous)

time slots where the minimum value of the set is the start time and the maximum value is

end time of the task.

Metric Properties: The start and end are metric properties of the Task component

(shown in Figure 68(a)) that represent the actual start and end time of execution of the

task on a resource. The task constraints specified in Eq.IV.11 and IV.12 are modeled as

assignment statements of the metric properties. Figure 70 (a) shows the assignment state-

ments in the CSL.

Constraints: Figure 70(a) shows four temporal constraints corresponding to Eq. IV.15 -

IV.15 that can be used to order tasks. For example, the end_be f ore_start constraint is used

to order two tasks Ti and Tj such that Ti finishes before Tj.

Objective:One of the common goals in the scheduling problems is to reduce the overall

execution time of the set of tasks. Since makespan represents the overall execution time of

the schedule, the template includes a Minimize objective to minimize makespan.

IV.5.1.2 Model and Search

Figure 71 presents the task graph and resources of an example scheduling problem. The

task graph consists of 8 tasks with fixed duration. The lines in the graph model precedence

constraints between pairs of tasks. When the release time is not specified all the tasks are
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(a) Task Constraints

(b) Timing Constraints

Figure 70: Generic Scheduling Constaints

assumed to be released at time 0. The objective is to schedule and execute the tasks on the

two resources. The resources are assumed to be identical. This example is used to test each

of the conceptual models for correctness. Figure 71(c) presents the schedule generated by

CPMt pl , where the Slot ordered component has a cardinality of 25. In a generic schedule

the ordering is done to satisfy the precedence constraints. As the resources do not have any

capacity constraints, all tasks are mapped to one resource.
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(a) Scheduling Example (b) Example Data

(c) Generated schedule

Figure 71: Generic Schedule Example
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IV.5.2 Non-preemptive Disjunctive (NPD) Scheduling

In this section we illustrate how a class of non-preemptive disjunctive scheduling prob-

lems can be solved in the framework by reusing the conceptual model for generic schedul-

ing problems created in the previous section. The conceptual model of the non-preemptive

disjunctive scheduling CMnpd consists of all the components and associations in the generic

problem conceptual model. Additionally the CMnpd consists of a task constraint to model

the non preemptive property of tasks and a resource constraint to model the disjunctive

nature of resources in this class of problems.

IV.5.2.1 Configuration

Task Constraint:The duration of the task tsk, given by Dur(tsk) is equal to the size of the

time interval Interval(tsk) in which the task executes. Execution of a non-preemptive task

can not be interrupted by another task. A set of contiguous time slots satisfies the condition

specified by Eq. IV.21, where the difference between the maximum and minimum time

slots is equal to the cardinality of the time interval.

∀tsk ∈ Task ·max(Interval(tsk))−min(Interval(tsk)) = |Interval(tsk)|−1 (IV.21)

Figure 72(a) models this non-preemptive task constraint.

Resource Constraint: A disjunctive resource rsrci can execute only one task at a time. The

Schedule(rsrci) functions returns all the tasks that execute on the resource rsrci. Any pair

of tasks tski and tsk j that require the same disjunctive resource rsrci execute in disjoint

intervals of time.

∀tski, tsk j ∈ Schedule(∼ rsrci) ·tski 6= tsk j→ Interval(tski) ∩ Interval(tsk j) = /0 (IV.22)

The disjunctive resource constraint is modeled using a ternary constraint and is applicable
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to all instances of the resource. Figure 72(b) shows the CSL expression of the disjunctive

constraint.

(a) Task Constraints (b) Resource Constraint

Figure 72: Sched Template Constaints

Figure 73: Non-preemptive disjunctive schedule for example in Fig. 71

IV.5.2.2 Model and Search

Figure 73 shows the non-preemptive disjunctive schedule generated for the example

problem in Figure 71(a). The schedule satisfies the precedence constraints and therefore

cannot resource P2 cannot execute any task in time slot 5. The total makespan of the

generated schedule is 10.
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IV.5.3 Non-Preemptive Cumulative (NPC) Scheduling

Non-preemptive cumulative scheduling is a special class of scheduling problems in

which a resource can execute more than one task at a given instance of time provided the

combined resource requirement of the tasks does not exceed the capacity of the resource.

The conceptual model CMnpc is an extension of CMt pl such that CMnpc = 〈CMt pl,Pnpc,Cnpc〉,

where Pnpc is a set of new properties added to existing components and Cnpc is a set of ad-

ditional constraints that specify a constraint imposed by the new properties. The Pnpc set

consists of two properties: (1) Task_req, which models the resource requirement of the

task, and (2) Resource_cap, which models the capacity of the resource component.

IV.5.3.1 Configuration

Figure 74: Cumulative Constraint

A cumulative resources can execute any number of tasks, unlike the disjunctive re-

source. However, the requirements of the tasks executing on the resource at a particular

instance of time, say t ∈ Timeline should not exceed the capacity of the resource. For-

mally, the constraint can be specified as follows:
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∀rsrc ∈ Resource · ∀t ∈ Slot·

∑
tsk∈Schedule(∼rsrc)∧t∈Interval(tsk

Task_req(tsk)≤Capacity(rsrc) (IV.23)

This constraint is modeled using the binary constraint CumulativeCnstr, shown in Fig-

ure 74. The constraint class is abstract since the same constraint is applicable to all the

instances of the context classes. The task constraint remains the same as the one shown in

the non-preemptive disjunctive scheduling (Eq. IV.21), where it models the non-preemptive

property of the task.

(a) Scheduling Example

(b) Non-preemptive cumulative schedule

Figure 75: Non-preemptive cumulative scheduling example
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IV.5.3.2 Model and Search

Figure 75 shows the scheduling example from Figure 71(a) with task requirements and

the resource capacities. Figure 75(b) shows the generated cumulative schedule with the

minimum makespan. The task T 6 cannot execute on resource B even though the processor

can fulfill the requirements of the task because of the precedence constraints which require

that task T 6 can start only after T 2, T 5 and T 7 have completed.

149



IV.6 Functional Allocation Problem with multiple objectives

In this section, we use a functional allocation problem [38] to evaluate the use of dif-

ferent solvers to solve the same problem. We discuss how the same problem can be solved

with constraint programming and evolutionary algorithms based on the number of objec-

tives in a problem model belonging to the class. The same problem model is used to retieve

valid solutions, mono-objective optimal solutions, while the MOP model is used to retrieve

Pareto-optimal solutions when more than one objective is included in the problem model.

Problem Specification: The problem consists of application and architecture models, and

an explicit mapping step to relate the two models.

Application model consists of a directed graph KPN = (VK,EK), where VK is a set of Kahn

nodes and EK is a set of directed FIFO channels between the nodes. Each node a ∈ VK is

connected to a set of channels and each channel is connected to exactly two nodes.

Architecture model consists of a directed graph ARC = (VA,EA), where VA represent the

architectural nodes and the EA represents the connections between those nodes. An archi-

tectural node can be a memory or processor, such that VA = P∪M. Each processor p ∈ P

is connected to a set of memory nodes.

Mapping is associating the application model of the problem with the architecture model.

xap denotes whether node a is mapped to processor p. Similarly xbm and xbp denotes

whether channel b is mapped to memory m and p. The mapping must satisfy the following

constraints:

• C1: each node a ∈VK is mapped on to a single processor;

∀a ∈VK ∑
p∈Processor

xap = 1 (IV.24)
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• C2: every channel c ∈ EK is mapped onto a processor or a memory.

∀b ∈ EK ∑
p∈Processor

xbp + ∑
m∈Memory

xbm = 1 (IV.25)

• C3: if two communicating nodes are mapped to the same processor then the chan-

nel(s) between them is also mapped onto the same processor.

xip = 1 & x jp = 1→∃b = (i, j) ∈ EK,xbp = 1 (IV.26)

• C4: if two communicating nodes are mapped to the different processors then the

channel(s) between the two is mapped to one of the memories reachable by both the

nodes.

pk 6= pl ∈P,ai,a j ∈VK & b= (ai,a j)∈EK ·xai pk = 1 ∧ xa j pl = 1→ xbm = 1 (IV.27)

• C5: a processor is in use if at least one of the nodes is mapped onto it.

∀p ∈ Processor · yp←→ ∑
a∈Node

xap ≥ 1 (IV.28)

Similarly, a memory is in use if at least one channel is mapped to it.

∀m ∈Memory · ym←→ ∑
b∈Channel

xbm ≥ 1 (IV.29)

The objective is to minimize find a mapping such that constraints are satisfied with respect

to three objectives:

• minimize processing time of the application

• minimize power consumption of the system
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• minimize power the total cost of the architecture

(a) Application original metamodel (b) Architecture original meta-
model

Figure 76: Original Metamodel

IV.6.1 Conceptual Model

Components: The conceptual model extends the original metamodel to capture the inputs,

outputs, constraints and objective of the problem. The original metamodel is shown in

Figure 76. In the conceptual model the Node, Channel and ArchComp are Primitive com-

ponents. Both the Node and Channel components have a fixed computation requirement

modeled as comp_req parameter property. In addition to a computation requirement, the

Channel component also has a fixed communication requirement, modeled as comm_req

parameter property. In this problem, an architecture component can be a processor or a

memory, where all architecture components have a fixed cost and processing capacity.

All architecture component dissipate power while execution and communication at a fixed

rate. This rate is given by powd_rate. The actual power dissipation depends on the
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processing time of the architecture component, which depends on the computation require-

ments of the nodes mapped onto it.

Figure 77: Components in the eSONET conceptual model

Figure 78: Concrete Associations

Associations: The Connect association (Figure 78) models a relationship between the Node

and Channel components. Each node is connected to a set of channels and each channel

is connected to exactly two nodes. The Reach association refers to the Bus connection

from the processor to the memory components in the original metamodel that models the
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memory components that can be reached by the node. The NodeMapsTo (Figure 79) ab-

stract association models the mapping of nodes to processors. Each node can be mapped

to exactly one processor and a processor can have zero or more nodes mapped onto it. The

ChannelMapsTo abstract association models the mapping of channels to an architecture

component (memory or a processor). Each channel is mapped to one architecture compo-

nent. The cardinalities of these associations enfore constraint C1 and C2.

(a) Node to Processor Mapping

(b) Channel to Processor/Memory Mapping

Figure 79: Abstract Associations in the eSONET conceptual model

Metric Properties: An architecture component is in use if a node or a channel is mapped

onto it. This constraint is given in equations IV.29 and IV.28. In the conceptual model,

yp and ym are modeled as isUsed metric property of the ArchComp. This property is
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inherited by the Processor and the Memory. The CSL assignment statements corresponding

to IV.29 and IV.28 are:

1 context: Processor

2 assignment statement:

3 $self.isUsed <-> ( card ( NodeMapsTo( _, $self) ) >= 1 )

4

5 context: Memory

6 assignment statement:

7 $self.isUsed <-> ( card ( ChannelMapsTo( _, $self) ) >= 1 )

The execution time of an architecture component is modeled as the exec_timemetric

property. The execution time of the processor includes the time spent in executing the

nodes and the time spent in communication, which depends on the channels connected to

the nodes. The value of the exec_time and comm_time properties for the processor

are calculated using the following assignment statements:

1 context: Processor

2 assignment statement:

3 $self.exec_time = ( sum ( n in NodeMapsTo( _, $self) ) (n.comp_req)

4 + $self. comm_time )

1 context: Processor

2 assignment statement:

3 $self.comm_time = ( sum ( n in NodeMapsTo( _, $self))

4 ( sum ( c in Connect( n, _ ))

5 ( bool2int( not (ChannelMapsTo(c, $self ) )

6 *c.comm_req)

7 )

8 )
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where $self refers to the Processor component. The total processing time of a pro-

cessor is given by the sum of the execution time of the nodes mapped on it and the commu-

nication required of the channels which communicate with the mapped nodes but are not

mapped on same processor. Similarly the total processing time of a memory is given by:

1 context: Memory

2 assignment statement:

3 $self.exec_time = ( sum ( c in ChannelMapsTo( _, $self) ) (c.comp_req

) )

Decision Global Variables:Three metric global variables are included in the conceptual

model, namely sys_cost, sys_powd and sys_exec_time representing the total

cost, power dissipation and execution time of the system. The statements used for assigning

values to these variables are given by:

(i) sys_exec_time models the processing time of the system. The value of this

variable is assigned using the following statement:

1 context: sys_exec_time

2 assignment statement:

3 $self = sum ( a in ArchComp ) ( bool2int(a.exec_time) )

(ii) sys_cost models the total cost of the system. The assignment statement is given

by:

1 context: sys_cost

2 assignment statement:

3 $self = sum ( a in ArchComp ) ( bool2int(a.isUsed) *a.cost) )

(i) sys_powd gives the total power dissipation of the system. The assignment state-

ment is:
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1 context: sys_powd

2 assignment statement:

3 $self = sum ( a in ArchComp ) (a.powd_rate *a.exec_time )

Constraints: There are two constraints in the conceptual model corresponding to the con-

straint equations C3 and C4. The CSL expression for the constraint given in Eq. IV.26 is

given by Figure 81. The CSL expression corresponding of the constraint in Eq. IV.27 is

given by Figure 82.

Figure 80: Ternary Constraint

1 context: $ctx1 = Node, $ctx2 = Node, $ctx3 = Channel
2 CSL expression:
3 forall$ctx1).forall$ctx2).forall($ctx3)
4 ( (NodeMapsTo($ctx1,_) == NodeMapsTo($ctx2,_)
5 /\ Connect($ctx1,$ctx3)
6 /\ Connect($ctx2,$ctx3)
7 ) -> ChannelMapsTo($ctx3,_) == NodeMapsTo($ctx1,_)
8 )

Figure 81: The CSL constraint definition for the mapping constraint
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1 context: $ctx1 = Node, $ctx2 = Node, $ctx3 = Channel,
2 $ctx4 = Processor, $ctx5 = Processor
3 forall$ctx1).forall$ctx2).forall($ctx3).forall$ctx4).forall$ctx5)
4 ( (NodeMapsTo($ctx1, $ctx4)
5 /\ NodeMapsTo($ctx2,$ctx5)
6 /\ Connect($ctx1,$ctx3)
7 /\ Connect($ctx2,$ctx3)
8 /\ $ctx4 != $ctx5
9 ) -> ChannelMapsTo($ctx3,_) in ( Reach($ctx1,_) intersect Reach(

$ctx5,_))
10 )

Figure 82: CSL Expression corresponding to Eq. IV.27

(a) MPEG application model

(b) Model Data

Figure 83: MPEG Model
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IV.6.2 Model and Search

The conceptual model is translated to two solver specific models: (1) the CP Model

that is processed using the Minizinc solver to retrieve valid solutions, and (2) MOP model

that is processed by the evolutionary algorithm to retrieve Pareto-optimal solutions. We

consider an MPEG encoder mapping problem model, where the application consists of an

MPEG encoder application and architecture model consists of 5 processors and 4 memory

components, as shown in Figure 83. The goal is to map the application model to the

architecture model such that the objectives: cost, execution time and power consumption

are minimized. We consider all objectives while solving the problem using MOP model

whereas use one objective at a time for obtaining optimized mapping with respect to one

objective.

We used a Intel Quad Core, 1.60 Ghz, 8GB RAM and 64 bit process to perform the

experiments. We used the Flatzinc solver to the CP model of the problem and NSGA-2

(Non-dominated Sorting Genetic Algorithm) to solve the MOP model of the problem.

The CP model of the problem was used to retrieve valid design solutions. 593 valid de-

sign solutions were returned in around 1.5 seconds. Then the CP model was used to retrieve

optimal results with respects to each of the three objectives. Figure 84 shows the solutions

obtained by executing the MOP model and CP models. The initial results obtained by

the execution of the MOP model did not return valid solutions. We manually initialized the

MOP population used 6 extreme points in the CP model obtained by minimizing (maximiz-

ing) each of the objective variables. These solutions and a set of other random solutions

are used to initialize the MOP model. The Pareto-optimal solutions obtained by executing

the MOP model with with the initial population size of 10, the cross over probability of 0.1

and the mutation probability of 1. The population in the MOP model is initialized using

the solutions from the CP model. Three Pareto optimal solutions are obtained after 150

generations in a single run. Point A in the figure has the minimum cost as well as power

consumption but has the longest execution time for the application and point C has the least

159



0
50

100
150

200
250

300
350

0

500

1,000
1,500

2,000
2,500

3,000
3,500

500

1,000
1,500

2,000
2,500

3,000
3,500

0

200

400

600

(A : 10,395,395)

(C : 290,2550,300)

(B : 170,2745,360)

costpower consumption

ex
ec

tim
e

Figure 84: MOP output

160



execution time and the maximum cost. An additional B is another pareto optimal solution

during the run.
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IV.7 Summary

In this chapter we evaluated the scope of modeling and solving a wide range of problem

using the generic framework. We first classified the commonly found classes of DSE prob-

lems into 6 categories, namely: resource allocation problems, selection problems, place-

ment problems, routing problems, scheduling problems and configuration problems. We

selected a case study from each of the 6 categories. The level of abstraction provided by

ADSEL classes and the expressiveness of CSL enabled us to model problems from 5 out

of 6 classes of problems (except configuration). Through the case studies presented in this

chapter, we could highlight the following features of the framework:

• The framework can be used to model and solve problems from a wide range of do-

mains. For example, embedded systems (Section IV.6), product-line engineering

(Section IV.2), network-design (Section IV.1). This highlights the generality of the

ADSEL classes, that can associate DSE aspects to any DSML, to create a model of

the problem.

• The framework can model and solve a range of problems. Each of the classes pre-

sented in the classification has a unique set of requirements. The framework was

used to model and solve problems from each of the classes, provided an analytical

model for cost estimation was available. This highlights that the ADSEL concepts

are rich enough to capture all the aspects of a DSE problem. Almost all aspects of

ADSEL (except N-ary associations) were used in modeling the different problems.

The notations supported by CSL was sufficient to capture the validity constraints

in each of the problems. The support for multi-context constraints was especially

useful in simplifying the specification of complex constraints, for example the CSL

constraint presented in Figure 82, is comparatively simpler than an OCL expression

for the same constraint that would require multiple navigations.

• The framework can be used to solve different DSE problems in same domain, for
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example placement (Section IV.3) and routing problems (Section IV.4) from VLSI

system design. The same DSML can be used as a basis to model both the problems.

Besides this, the framework can be also be used to solve a new variant of a DSE prob-

lem as the problem evolves over time. The scheduling problem (Section IV.5) highlighted

this feature of the framework by modeling a generic scheduling problem. The conceptual

model of the generic scheduling problem was reused to build a conceptual model for non-

preemptive disjunctive scheduling by adding two simple constraints: disjunctive resource

constraints and a non-preemptive task constraint. Further is shows modifying the concep-

tual model for the non-preemptive disjunctive problem to create a conceptual model for

non-preemptive conjunctive scheduling problem. These modifications (additional, dele-

tion) would be difficult in the existing DSE approaches, where a minor change in the re-

quirements of the DSE problem, would trigger changes to the infrastructure (model com-

piler, classes, etc). This feature of the framework supports the domain experts in developing

conceptual models for complex DSE problems. The domain-expert can start with a subset

of the problem requirements and develop a conceptual model based on these requirements.

Then at each stage, he can modify the conceptual model by addition of new elements (con-

straints, components, associations) until the entire problem is modeled. This simplifies the

development of a conceptual model for a class of problems and in turn reduces the devel-

opment time. Moreover, the domain-expert can incrementally test the correctness of the

model at each stage using simple examples (Section IV.5.1.2 and Section IV.5.2.2).

The framework supports solutions of all problems modeled in the framework. Section

IV.6 presents a complex case study where both CP and MOP models are used. The CP

model is used to retrieve satisfactory as well as three solutions, corresponding to each of

the goals, which the NSGA retrieves three Pareto-optimal solutions. The considered exam-

ple had numerous constraints and therefore,the CP model performed better as it pruned out

the infeasible solutions. Figure 84 shows 3 non-dominated solutions returned by NSGA
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algorithm by solving the MOP model of the problem. We used a generic penalizing tech-

nique for handling the constraints of the problem, where the value of a solution is indirectly

proportional to the number of constraint violations. This help prune out invalid solutions

and return valid Pareto-Optimal solutions.

IV.8 Observations

The evaluation resulted in the following observations:

Conceptual modeling: Given the variety of features supported by ADSEL, the domain ex-

pert needs to carefully choose the formulation. Although the IRL model corresponding to a

conceptual model is auto-generated in the framework, the domain expert needs to aware of

the the formulation choices he makes at the conceptual model level. For example, in case

of the Placement problem for example, two formulations were tested. The set formulation,

where the area of the circuit is represented as a set of slots XSlots = 1..circuit_length and

the slots occupied by the modules is modeled as an association, X_Interval : Module→

P(Slot), to represent the slots occupied by the module. The CP model generated from

this conceptual model did not return a solution in a reasonable amount of time. The second

model (presented in Section IV.3) replaced the associations with properties of the modules

Module_X and modified the constraints. This generated a CP model that returned an opti-

mal solution in 58 seconds for the example shown. Thus, a minor change in the modeling

made a significant difference in the time to obtain a solution.

Constraint Specification: In order to maintain the generality of the CSL, global constraints

supported by the constraint solvers (alldifferent, cumulative) are not included

in the language. One possible approach of using global constraints is to incorporate them

while translating the CSL constraint to solver specific model, in our case Minizinc. We

consider this task in our future work.
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Model Redundancy: The conceptual model is built by associating DSE aspect to the con-

structs in the DSML. These constructs (for example Node) can have properties (for exam-

ple name). Most of these properties are not relevant for DSE, but a few can be relevant

(memory_req). The current framework ignores the original properties, so in order to be

considered for exploration, a reference to the original property has to be created. Similarly,

the containment relationships in the original models are ignored and in order to be consid-

ered a reference is created. An example of this is the Children containment relationship in

the Placement Problem. This is again redundant and should be avoided. This introduces a

small extent of concept redundancy while creating the conceptual model.

Solver Support: The solutions obtained using the evolutionary algorithm are highly depen-

dent on the initial population. In a constrained optimization problem, the initial population

has to be carefully initialized, so that valid Pareto-optimal results can be retrieved at the

end of a finite number of iterations of the algorithm. By default, the initial population of

the population in the MOP model is randomly generated. Although both models are gen-

erated for a given problem, there is no exchange of information between the two. In the

multi-objective resource allocation problem presented in Section IV.6, we initialized the

population of the MOP model with a set of diverse solutions obtained from the CP model.

This lead to better results in terms of validity of the solutions returned.
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CHAPTER V

CONCLUSION

The core contribution of this dissertation is a generic environment for design space

exploration that supports modeling and solving exploration problems from different do-

mains. In order to use the framework, the domain-expert meta-programs (configures) the

generic framework to work for a class of DSE problems in a given domain to create a

domain-specific DSE environment. The resulting environment can then be used by domain-

engineers to model and solve several instances of the DSE problem. Each problem model

(instance) created using the framework is automatically translated to a solver-specific for-

mat. The solver is then executed on the input and solutions (if any exist) are returned to the

domain-engineer. This allows domain-engineers to model and solve DSE problems without

any particular background knowledge of the respective solver and its search technique.

There are two key features that make it possible to use the framework to model a wide

range of exploration problems. First key feature is a set of abstract modeling concepts (AD-

SEL) that are generic enough to be applicable to DSE problems in a wide range of domains.

These concepts include components, associations, constraints and the objectives. While

configuring the framework selected concepts are specialized/inherited, possibly multiple

times, to model domain-specific DSE concepts. The second key feature is an expressive

specification language (CSL) used to annotate the model concepts with constraint defini-

tions. The CSL is based on first order logic and set theoretic concepts that enable spec-

ification of a wide range of constraints from simple mathematical constraints to complex

structural constraints. Further, the addition of syntactic sugar makes the expressions easier

to read and write for the domain-experts. The framework supports constraints templates
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that can be created by the domain-experts as a part of the conceptual model. These con-

straints templates can be instantiated and used by the domain-engineers by plugging in

values of the constraint parameters in the template.

The framework simplifies the use of search methods (constraint programming and evo-

lutionary algorithm) to solve DSE problems. This is achieved by fully automating the pro-

cess chain required for solving a high-level model of a DSE problem. The process chain

includes solver-independent abstractions and a set of interpreters to automatically gener-

ate low-level mathematical models from the class diagram of the problem . The solver-

independent abstraction (IRL) is used to decouple the structure of the problem from the

optimization method used to solve it. Consequently, a single model can be solved using

both mono and multi-objective optimization methods in a single environment. The choice

of the solver is made by the domain-engineer depending on the number of objectives in the

problem instance. This is more flexible than the existing approaches where the choice of

the solver is made by the domain-expert, and is hard-coded for all the problem instances.

We presented a detailed evaluation of the framework in Chapter IV. The main crite-

ria of evaluation was to verify the scope of our approach. Towards that goal, we first

classified frequently found DSE problems into six categories, namely allocation problems,

construction problems, placement problems, routing problems, scheduling problems and

configuration problems. We selected 6 problems, one from each class and then attempted

to model and solve these problems using the framework. We discussed in detail how one

benchmark application from each class can be modeled and solved using the generic frame-

work. This evaluation showed that the framework can be used to model and solve DSE

problems from different domains, for example, embedded systems (Section IV.6), product-

line engineering (Section IV.2), network-design (Section IV.1). The framework can also

model and solve different DSE problems that belong to the same domain, for example

placement (Section IV.3) and routing problems (Section IV.4) from VLSI system design.
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Finally, the framework can be used to model and solve different variants of the same prob-

lem (IV.5.1). We used a multi-objective resource allocation problem to verify the solver

support in the framework. The same problem is solved to retrieve valid solutions, opti-

mal solutions with respect to a single solution, and Pareto-optimal solutions with respect

to multiple objectives. is used to highlight the solver flexibility in the generic framework

in Section IV.6. Unlike most existing DSE approaches where the framework comes with a

preselected search method that is used for all instances of the problem, the generic frame-

work supports selection of search method at the instance level. This is advantageous as

different methods can be selected for different objectives.

V.1 Future Work

The generic framework can be extended in several ways.

1. Improving the scope: The configuration class represents a set of unconstraint opti-

mization problems, which may or may not have an analytical function to calculate the

cost. For example, cache configuration problems [133] have often been solved using

simulation-based tools to estimate cost of design solutions. Moreover, the analytical

models [60] found were too complicated to be implemented using CSL. In order to

handle such problems, the framework has to be extended to provide an interface, so

that the simulators can be used in conjunction with the CP and MOP models.

2. Improving the solver support: One of the most promising extensions will be to com-

bine the MOP and CP models. A set of strategies to combine meta-heuristics with

constraint programming are described in [123]. One of the hybrid strategies is to use

MOP and CP models in a pipeline manner, where the CP model is used to produce

a set of valid design points. This set is used to initialize the population in the MOP

model, which then tries to improve the solutions in the set. Another strategy is to use

the CP model in the recombination function, where the idea is to keep the common
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elements of the parents. Using this incomplete solution, the CP model can be used to

find the best offspring.

3. Domain-expert assistance: In the generic framework, a conceptual model is created

for a class of DSE problem. This step is assumed to be performed by the domain-

experts. In order to increase the usability of the framework, a minimum level of

formulation support should be provided to the domain expert to create a new con-

ceptual model. This will reduce the time required to configure the framework as we

move from one domain to the other. One way of achieving this is to create conceptual

model templates corresponding to each class of problems. These conceptual model

templates can then be used by the domain-expert to create the conceptual model of

his problem.

4. Improving the Constraint Programming Model: The generic framework has been

tested with small problems. In order to make this approach more scalable, bottle-

necks need to be identified. For example, one of the reasons for the lack of efficiency

is the absence of global constraints. A possible approach to include global con-

straints is to include them in IRL2CP translation. At present the translation of the

conceptual model of the problem to the is performed without any user intervention.

This will One future direction of development will be to allow the domain expert

to choose the formulation of constraints, such that the domain-expert can introduce

global constraints, as well as a more efficient strategy for labeling the search vari-

ables. Currently a standard labeling strategy is to label the variables corresponding

to the IRL functions, then sets and finally the variables of the basic type.
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APPENDIX A

MAPPING PROBLEM CONCEPTUAL MODEL

Figure 85: Components in the Conceptual Model of the Mapping Problem

Figure 86: Association in the Conceptual Model of the Mapping Problem
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Figure 87: Constraints in the Conceptual Model of the Mapping Problem
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APPENDIX B

CONSTRAINT SPECIFICATION LANGUAGE

B.1 Notation

We use the following syntactic convention to present the grammar:

• non-terminals are written in 〈italic〉 font

• terminals are written in ‘type-writer’ font or underlined are terminals.

• keywords are written in bold. A letter is an alphabetic character.

• An ID is a string whose first character is a letter and the rest of its characters are

alphanumeric. Identifier recognition is case sensitive.

• A number is any string whose elements are the numeric characters.

• {a} denotes one, or several times the grammar segment a;

• [a] stands for one or zero occurences of a;

• a+ denotes the expression a{,a};

• a∗ denotes the expression a{.a};
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B.2 Grammar: CSL

〈Constraint〉 ::= 〈ConstraintExpression〉;

| 〈Assignment〉 ;

〈Assignment〉 ::= $self = 〈ArithmeticExpression〉

| $self subset 〈DomainExpression〉

| $self <-> 〈BooleanExpression〉

| $self.〈property〉 = 〈ArithmeticExpression〉

| $self.〈property〉 <-> 〈BooleanExpression〉

| $self.〈property〉 = param ( 〈IntegerProperty〉)

| $self.〈property〉 <-> param( 〈BooleanProperty〉)

〈ConstraintExpression〉 ::= ( forall ( 〈VarDeclList〉+) ) ∗〈ConditionalExpression〉

| 〈ConditionalExpression〉

〈ConditionalExpression〉 ::= 〈BooleanExpression〉 〈BinOp〉 〈BooleanExpression〉

| not( 〈ConditionalExpression〉 )

| ( 〈ConditionalExpression〉 )

〈BooleanExpression〉 ::= 〈ArithmeticExpression〉 〈RelOp〉 〈ArithmeticExpression〉

| 〈DomainExpression〉 〈SetOp〉 〈DomainExpression〉

| 〈DomainElement〉 (== | !=) 〈DomainElement〉

| 〈BooleanLiteral〉

| 〈BooleanPropertyAccess〉

| 〈DomainElementAccess〉
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〈ArithmeticExpression〉 ::= number

| 〈Quanti f iedExpression〉

| 〈ArithmeticExpression〉 〈Mulop〉 〈ArithmeticExpression〉

| abs( 〈ArithmeticExpression〉 )

| bool2int ( 〈ConditionalExpression〉 )

| card ( 〈DomainExpression〉 )

| 〈IntegerPropertyAccess〉

〈Quanti f iedExpression〉 ::= sum ( 〈VarDecl〉+) 〈ArithmeticExpression〉

::= min ( 〈VarDecl〉+) 〈ArithmeticExpression〉

::= max ( 〈VarDecl〉+) 〈ArithmeticExpression〉

〈DomainElementAccess〉 ::= 〈DomainElement〉 in 〈DomainExpression〉

| 〈AssociationID〉 ( 〈Arg〉 , 〈Arg〉 )

〈DomainExpression〉 ::= {}

| 〈CompDomExpr〉 {〈BinOp〉 〈CompDomExpr〉}

| 〈AssocDomExpr〉

| 〈ComponentID〉

| sources ( 〈AssociationID〉 )

| targets ( 〈AssociationID〉 )

| 〈AssociationID〉 ( 〈Arg〉 , _ )

| 〈AssociationID〉 (_ , 〈Arg〉 )

VarDecl ::= 〈TempVar〉 in 〈CompDomExpr〉

| < $ctx[number]+ > in 〈AssociationID〉

| $ctx[number]
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Arg ::= $ctx[number]

| $self

| 〈TempVar〉

〈IntegerPropertyAccess〉 ::= $ctx[number].〈IntegerProperty〉

| $self.〈IntegerProperty〉

| 〈TempVar〉.〈IntegerProperty〉

〈BooleanPropertyAccess〉 ::= $ctx[number].〈BooleanProperty〉

$self.〈BooleanProperty〉

〈TempVar〉.〈BooleanProperty〉

〈SetOp〉 ::= seq | sneq

〈BinOp〉 ::= union | intersect

〈MulOpt〉 ::= + | - | /| *

〈BoolOp〉 ::= -> | <-> | \/| /\

〈RelOp〉 ::= <= | >= | == | !=

〈BooleanLiteral〉 ::= true| false
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APPENDIX C

CM2IRL TRANSFORMATION

The CM2IRL translator applies a sequence of transformation rules to MMCM, the con-

ceptual model representing a class of DSE problems to transform it to MIRL, an equivalent

model in the IRL. There transformation rules can be divided into 5 set of transformation

rules that are applied in sequence. Each set handles a concept in the conceptual model and

transforms it a set of concepts in IRL. The components, associations and the global vari-

ables in the model form the data declaration part in the conceptual model. Therefore, these

are transformed before the constraints and assignment expressions can processed. Finally,

the objectives are processed at last. We briefly discuss each set of transformation rules in

this section.

C.1 Component Translation Rules

Table 6: Excerpt of the translation rules for Component Class
Component Contained Property IRL Concept

1 Primitive Component A Parameter String Set iA
Parameter Property p Parameter Function iA_p : iA→ Z
Decision Property p Decision Function iA_p : iA→ Z

2 Output Primitive Component A Decision Integer Set iA
Parameter Property p Parameter Integer iA_p

3 Ordered Primitive Component A Integer Set iA
Parameter Property p Parameter Integer iA_p

4 Compound Component A String Set iA
Parameter Property p Parameter Function iA_p : iA→ Z

5 Abstract Component A Compound Set iA = iB∪ iC
with derived class B and C Parameter Function iA_p : iA→ Z

Parameter Property p Parameter Function iA_p : iA→ Z
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Table 6 summarizes the transformation rules used for generating IRL concepts from

the conceptual model concepts. A component A ( Primitive or Container) by default is

translated to a set of strings. This set basically consists of the names of the instances of

the components. Any property of the component is translated to a binary function, where

the domain is the string set generated corresponding to the parent component and the range

depends on the type of the property. Table 6 shows translation rules for a property of

integer type. A property of an output component is analogous to a static attribute of a UML

Class. This property is not attached to any instance of the class but the class as whole and

is therefore transformed to an input parameter of primitive type. An Abstract component

class in the conceptual model is refined to a compound set in the IRL model using Rule 5

in Table 6.

C.2 Association Translation

Table 7: Excerpt of the translation rules for Association Class
Association Class Contained Property IRL Concept

1 Concrete Binary Association A Parameter Function
from B to C iA : iB→ iC

Parameter Property p Parameter Function
iA : iB× iC→ Z

Decision Property p Decision Function
iA : iB× iC→ Z

2 Abstract Binary Association A Decision Function
from B to C iA : iB→ iC

Table 7 shows the default transformation rules used for generating IRL concepts from

the Association Class in the conceptual model. By default a Binary Association is translated

to a function, where the domain and range are sets generated corresponding to the source

and destination components. A property of the association class is refined to a function

(Rule 1 in Table 7). All functions in the IRL model are total functions. The type of the
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Table 8: Association to IRL Refinement Rules
Association multiplicity IRL Concept Informal Description

{0...*}→ {1} iA2B : iA→ iB total function

{1...*}→ {1} iA2B : iA→ iB surjective function

{0...1}→ {1} iA2B : iA→ iB injective function

{1}→ {1} iA2B : iA→ iB bijection function

{0...*}→ {1...*} iA2B : iA→P(iB) total function to non-empty subsets
of iB

{0...*}→ {0...*} iA2B⊆ iA× iB relation

{1...*}→ {1...*} iA2B : iA→P(iB) total function to non

∧ img(iA2B) = iB empty subsets which cover iB

{1...*}→ {0...*} iA2B : iA→P(iB) total function to subsets

∧ img(iA2B) = iB of iB which cover iB

{0...1}→ {1...*} iA2B : iA→P(iB) total function to non

∧ dis joint(iA2B) non-empty subsets of iB which do
not intersect

{0...1}→ {0..*} iA2B : iA→P(iB) total function to subsets

∧ dis joint(iA2B) of iB which do not intersect

{1}→ {1. . .*} iA2B : iA→P(iB) total function to non

∧ dis joint(iA2B) -empty subsets of iB which

∧ img(iBA) = iB cover iB without intersecting

{1}→ {0. . .*} iA2B : iA→P(iB) ∧ total function to subsets of iB

dis joint(iA2B) which cover iB without

∧ img(iA2B) = iB intersecting

generated function is decided by the source and destination cardinalities of the association

in the conceptual model. For example, source cardinality of {1} and destination cardinality

of {1} generates a bijective function. Table 8 summarizes the special cases of association

class to function transformation rule based on the end point cardinalities of the binary

association, where iA and iB are the sets generated corresponding to ComponentA and

ComponentB respectively and iA2B is a function representing the association between A

and B.
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C.3 Global Variable Translation

Table 9: Excerpt of the translation rules for Global Variables
Global Variable IRL Concept

1 Parameter Global Variable A Parameter Integer iA
2 Parameter Global Variable A Parameter String Set iA

is Singleton = false Parameter Function iA_value : iA→ Z
3 Decision Global Variable A Decision Integer iA
4 Decision Global Variable A Parameter String Set iA

is Singleton = false Decision Function iA_value : iA→ Z

A Global Variable in the conceptual model is used to specify a property with global

scope. Table 9 summarizes the rules for translation of global variables in the conceptual

model to concepts in IRL. By default a global variable is translated to an input parameter

or decision variable of predefined type. It is possible to have more than one instances of

the same global variable, reflected by (isSingleton=false) property. In this case, a

global variable basically represents an array and is refined to a set representing the instances

of the global variable and a function to index to the value of each instance of the variable.

C.4 Assignment Statement Translation

An assignment statement in the conceptual model is used to assign values to the output

components, component properties and decision global variables. It is also used to con-

strain the value of an inherited property. Table 10 summarizes the rules for translating the

assignment statements to IRL concepts. The translation of an assignment statement de-

pends on the context. For example, assigment of a parametric property p of Component D

is translated to the definition of function D_p : iA→ Z, if D owns the property (Rule 1). If

p is an inherited property and belongs to the base Component B instead then it is translated

to a conditional definition of function B_p : iA→ Z, as described in (Rule 2). In case the
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Table 10: Excerpt of the translation rules for Assignment Statement
Context IRL Concept

1 def: ACSL($self) def: B_p(b) = ApCSL(b) , if b ∈ iB
context: Component B, Property p context: Function iB_p→ Z

2 def: ACSL($self) def: B_p(b) = ApCSL(b) , if b ∈ iD
context: Derived Component D context: Function B_p : iB→ Z
Base Component B, Property p

3 def: param($self.p) def: B_p(b) = D_p(b) , if b ∈ iD
context: Derived Component D Parameter Function D_p : iD→ Z
Base Component B, Property p context: Function B_p : iB→ Z

4 def: ACSL($self) def: iB = ApCSL

context: Output Component B context: iB
5 def: $self=ACSL def: iV = ApCSL

context:Global Variable V context: iV
6 def: ACSL($self) def: iB = ApCSL

context: Global Variable V context: iB
isSingleton=false

inherited property is constraint to a single value using param, then a new parameter func-

tion is generated. This is used to indicate that the value of the inherited property is to be

read from the design space model.

C.5 Constraints

Table 11 summarizes the rules for translating a constraint class in the conceptual model.

If the constraint class is abstract, then it is considered a global constraint which is appli-

cable to all instances (or at least one unknown instance) of the context. This constraint is

translated to a constraint in the IRL model otherwise it is translated to a predicate. The

orginal constraint definition is a boolean expression, is rewritten in terms of the variables

in the IRL model.

C.5.1 CSL to pCSL Rewrite Rules

CSL provides syntactic sugar to write constraint definitions in terms of components, asso-

ciations and their properties. The syntactic sugar is removed to restate the CSL definitions
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Table 11: Excerpt of the translation rules for Constraints
Constraint IRL Concept

1 Concrete Constraint C Predicate iC
context: Component A Argument Set iA

2 Abstract Constraint A Constraint iC
context: Component A Argument Set iA

in terms of sets, functions, relations and basic integer and boolean variables in the IRL

model. We will refer to this concise language as processed CSL (pCSL). The processing

step involves introduction of variables to replace context keywords. We describe a set of

processing rules perform additional processing, written in the format:

LHS⇒ RHS |C

Each processing rule consists of an LHS pattern from the CSL that is refined to a simplified

from in pCSL, captured by the RHS if the conditions are satisfied. The general form of a

CSL definition is given by:

[{〈Quanti f ier〉 (〈Quanti f ying−Variable〉)}] (〈BooleanExpression〉); (C.1)

Rule 1 Quantifying Variable Processing Rule :

forall($ctx[Number]) ⇒ forall(<cntxt-var> in <set-name>)

where a unique Number is used to refer to each context component and ‘set-name’

is the name of the irlSet in IRL model generated from the the context component of

the constraint in the conceptual model, and ‘cntxt-var’ is a variable of the basic type

introduced to access the elements of the irlSet. The type of ‘cntxt-var’ depends on

the type of the set.

Rule 2 Component Property Access
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$ctx[N].<propID> ⇒ <propFuncID>(<cntxt-var>)

where N is a natural number to index the context component, ‘propFuncID’ is the

name of the irlFunction in IRL model created by transformation of the component

property, and ‘cntxt-var’ is the integer variable introduced by processing of the

formal parameter.

Rule 3 Association Instance Reference
<BinAssoc>(<context1>,<context2>)

⇒ <binFuncID>(<cntxt-var1>) == <cntxt-var2>

| where <BinAssoc> is refined to a binary function

⇒ <binRelationID>(<cntxt-var1>,<cntxt-var2>)

| where <BinAssoc> is refined to a binary relation

where n1, n2 are natural numbers that uniquely index the constraints and ‘cntxt

-var1’ and ‘cntxt-var2’ are temporary variables introduced corresponding to these

contexts using Rule 1. If the binary association ‘BinAssoc’ is refined to a function

‘binFuncID’, then the instance access is processed to boolean expression of the form

‘f(a) == b’, to check the existence of the association instance. If the binary associ-

ation ‘BinAssoc’ is refined to a relation ‘binRelationID’, then the instance access is

processed to replace the context keywords with the corresponding context variables.

Rule 4 Association Instance Property Access
<BinAssoc>(<context1>,<context2>).<propID>

⇒ <propFuncID>(<cntxt-var1>, <cntxt-var2>)

where ‘cntx-var1’ and ‘cntx-var2’ are the variables introduced corresponding to

these contexts using Rule 1.

Rule 5 Association Forward Navigation
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<BinAssoc>(<context1>, _ )

⇒ <binFuncID>(<cntxt-var1>)

| where <BinAssoc> is refined to a binary function

⇒ <binRelationID>(<cntxt-var1>,_)

| where <BinAssoc> is refined to a binary relation

where ‘cntx-var’ is the variable introduced by processing using Rule 1. The forward

navigation of a binary association returns a set of all the target instances associated

to the source instance. If the binary association is refined to a function, then for-

ward navigation is refined to a functional notation : f(a). If the binary association

is refined to a relation, then forward navigation is processed to replace the context

keyword with the variable.

Rule 6 Association Backward Navigation
<BinAssoc>( _,<context2>)

⇒ <binFuncID>(~ <cntxt-var2>)

| where <BinAssoc> is refined to a binary function

⇒ <binRelationID>(_ ,<cntxt-var2>)

| where <BinAssoc> is refined to a binary relation

where ‘binFuncID’ is the name of the function generated from the ‘BinAssoc’. The

reverse navigation of the association returns a set of all the source instances asso-

ciated to a target instance by ‘BinAssoc’. If the binary association is refined to a

function then reverse navigation is reduced to a functional notation. If the binary

assocation is refined to a relation then the reverse navigation is processed to replace

the context keyword with the variable.

Rule 7 Association Sources
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sources(<BinAssoc>)

⇒ <setID>

| where <BinAssoc> is refined to a binary function

⇒ projection(<binRelationID>, <setID>)

| where <BinAssoc> is refined to a binary relation

where ‘setID’ is the set created by transformation of association source context com-

ponent of the association. The method returns a set of source instances associated

with any target component instance using the ‘BinAssoc’ association. If the asso-

ciation is transformed to a function, this means that the entire source set is returned

because we consider only total functions. In case the association is refined to a rela-

tion, this returns projection of the relation over source set.

Rule 8 Association Targets
targets(<BinAssoc>)

⇒ image(<binFuncID>)

| where <BinAssoc> is refined to a binary function

⇒ projection(<binRelationID>, <setID>)

| where <BinAssoc> is refined to a binary relation

where the method‘targets’ returns a set of target component instances that are

connected to any instance of the source component using the binary association

‘BinAssoc’. If the association is refined to a function, then the method call is re-

placed by ‘image’ call on function ‘binFuncID’. In case the association is refined to

a relation, this method call returns the projection of relation over the destination set.
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APPENDIX D

IRL2CP TRANSLATOR

This section describes the rules for translating the IRL data types and constraint ex-
pressions to corresponding Minizinc data types and expressions. The translation rules are
generic and can be reused for translation of an IRL model to any other constraint program-
ming language without much effort. The translation rules are grouped into two sets: data
type translation rules and constraint expression translation rules.

Table 12: Translation rules for Basic Type
IRL Concept CP Concept

1 Input Parameter 〈Type〉 p 〈Type〉 p
2 Decision Variable 〈Type〉 p var 〈Type〉 p
3 Type Type
4 Set A Interval Set
5 Compound Set A Inteval Set A

containing Set B and Set C |A|= |B|+|C|

D.1 Data Type Translation Rules
Most CPLs (including Minizinc) are over finite domains and support input variables of

‘int’, ‘bool’, ‘string’ and ‘float’ types. An output variable is strictly integer or boolean. The
compound data types supported by most Minizinc are: ‘array’ and ‘set’ of the basic types.
This section presents rules for translating IRL data types to Minizinc data types.

Basic Types. Table 12 summarizes the simple translation rules for basic data types and
sets. A set A in the IRL model is translated to an interval set Acp in the Minizinc, such that
the set consists of integers from ‘[1..|A|]’. An index map is created associating each element
of the set with A with a unique integer in the range. For example ‘Set A’ is translated to ‘set
of int A = [1..num_A]’, where ‘num_A’ is the cardinality of A.

Compound Types. Relations and Functions in the IRL model are not directly supported
by Minizinc. They are translated to arrays in the Minizinc according to the translation
rules summarized in Table 13. A relation R is translated to a 2 dimensional boolean array,
where ‘1’ represents membership in the relation and ‘0’ represents the absence. The array
is indexed by A and B.

All function in IRL are total functions, such that every element in the domain set is mapped
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Table 13: Translation rules for Compound IRL Types
IRL Concept CP Concept

1 Relation R⊆ A×B 2-D Array RD2[A,B]
st. RD2[A,B] ∈ {0,1}

2 Function F : A→ B 1-D Array FD1[A]
st. FD1[A] ∈ B

3 Surjective Function F : A→ B 1-D Array FD1[A]
st. FD1[A] ∈ B∧
∀b ∈ B · ∃a ∈ A ·FD1[a] = b

4 Injective Function F : A→ B 1-D Array FD1[A]
st. FD1[A] ∈ B∧
∀a,b ∈ A.a 6= b→ FD1[a] 6= FD1[b]

5 Bijective Function F : A→ B 1-D Array FD1[A]
st. FD1[A] ∈ B∧
|A|= |B|

to one element in the range. A binary function is translated to a 1-D array in Minizinc, such
that each element of the array belongs to the range of the function. This representation of
function is valid because of the interval representation of the set variables. Translation
of a surjective function generates an additional constraint stating that each element of the
range is mapped to an element of the domain. Similarly, translation of an injective function
generates an additional constraint stating that two distinct elements of the function domain
are mapped to distinct elements of the range. A bijective function is an injective function
with an additional constraint that the cardinalities of the sets iA and iB are the same.

186



Table 14: Translation rules for Compound IRL Types
IRL Concept CP Concept

1 Function F : A→P(B) 1-D Array FD1[A]
st. FD1[A]⊆ B

2 Surjective Function F : A→P(B) 1-D Array FD1[A]
st. FD1[A] ∈ B∧
∀b ∈ B · ∃a ∈ A ·b ∈ FD1[a]

3 Function F : A×B→C 2-D Array FD2[A,B]
st. FD2[A,B] ∈C

4 Surjective Function F : A×B→C 2-D Array FD2[A,B]
st. FD2[A,B] ∈C∧
∀c ∈C · ∃a ∈ A,∃b ∈ B · c ∈ FD2[a,b]

5 Injective Function F : A×B→C 2-D Array FD1[A,B]
st. FD1[A,B] ∈ B∧
∀a1,a2 ∈ A,b1,b2 ∈ B·
(a1 6= a2∨b1 6= b2)

→ FD2[a1,b1] 6= FD2[a2,b2]

6 Function F : A→ B×C 3-D Array FD3[A,B,C]

st. FD3[A,B,C] ∈ {0,1}
7 Surjective Function F : A→ B×C 3-D Array FD3[A,B,C]

st. FD3[A,B,C] ∈ {0,1}∧
∀b ∈ B,∀c ∈C · ∃a ∈ A ·FD3[a,b,c] = 1

8 Injective Function F : A×B→C 3-D Array FD3[A,B,C]

st. FD3[A,B,C] ∈ {0,1}∧
∀a1,a2 ∈ A,∃b1,b2 ∈ B,∃c1,c2 ∈C·

(a1 6= a2→ FD1[a1,b1,c1] = 1
∧FD1[a2,b2,c2] = 1
∧(b1 6= b2∨ c1 6= c2)

D.2 pCSL Constraints to Minizinc Constraints
Minizinc supports constraints and predicates to express relationship between the dif-

ferent variables. These constraints and predicates are generated by translation of the IRL
constraint classes and parsing the contained pCSL expressions to generate Minizinc con-
straints written in terms of the variables in the CP.

We use conditional rewrite rules, here written as follows:

L−→ R | C (D.1)

meaning that, if condition C holds, then expression L is rewritten into R. The constraint
definition is divided into 5 sections:
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Table 15: pCSL Quantified Expressions to Minizinc Constraints
pCSL Minizinc

1 forall( <i,j> in F) −→ forall(i in D1, j in D2)

(P(i,j)) ((FD1[i]==j) -> P’(i,j))

)

| where F : D1→ D2

2 forall( <i,j> in F) −→ forall(i in D1, j in D2)

(P(i,j)) ((j in FD1[i]) -> P’(i,j))

)

| where F : D1→P(D2)

3 forall( <i,j> in R) −→ forall(i in D1, j in D2)

(P(i,j)) ((RD2[i,j]) -> P’(i,j))

)

| where R : D1×D2

D.2.1 Translating pCSL Quantified Expressions
A quantified expression in pCSL is of the following form: The constraint definitions

in the IRL model are pCSL expressions in terms of sets, functions and relations. A pCSL
constraint in the IRL model has the following form:

[{〈Quanti f ier〉 (〈identi f ier〉 in 〈SetAtom〉)}] (〈BooleanExpression〉); (D.2)

where the Quanti f ier represents either ‘forall’ or ‘exists’, the Variables is a list of
identifiers that range over SetAtom and whose scope is limited to the BooleanExpression.
Table 15 summarizes the parser rules for parsing pCSL constraints to generate expressions
in Minizinc. The rules for parsing universally quantified expressions are also applicable
to the existentially quantified expressions. The parsing is dependent on the quantifying-
variables. In pCSL, functions and relations are seen as a set of tuples. Therefore, the
quantifying variables can be expressed as tuple in a function or relation. The predicate
P(i, j) is applicable only to the members of the function or relation. Therefore, the predicate
parsed to an implication, where P′(i, j) is the parsed predicate corresponding to P(i, j) and
is true only when 〈i, j〉 is a member of F , that is FD1[i] == j, where FD1 is a 1D array
generated from function F : A→ B. Similar rule applies for parsing a quantified expression
where the domain is a relation.

D.2.2 Translating pCSL Set Expressions
The set expression in pCSL are translated to set expressions in Minizinc. Table 16

summarizes the translation rules for translating the set expressions. The set atoms in pCSL
include the sets retrieved by projection on functions and relations. Minizinc supports binary
set operators ‘union’ and ‘intersect’, therefore there is one-to-one mapping from the pCSL
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Table 16: pCSL Quantified Expressions to Minizinc Constraints, where D1 is a pCSL set
expression and D1’ is the corresponding parsed set expression in Minizinc

pCSL Minizinc
1 D1 union D2 −→ D1’ union D2’

| where D1 and D2 are set expressions

2 D1 intersect D2 −→ D1’ intersect D2’

| where D1 and D2 are set expressions

3 F(a) −→ FD1[a]

| where F : D1→P(D2)

4 F(∼a) −→ {let set of int: FCOIMG}

{ function_reverse_image(FD1,FCOIMG,a)}

5 image(F) let set of int: FIMG

function_image(FD1, FIMG)

6 R(a, _) −→ {let set of int: RIMG }

{relation_image(RD2, RIMG, a)}

7 R(_, b) let set of int: RCOIMG

relation_reverse_image(RD2, RCOIMG, b)

8 projection(R, A) let set of int: RIMG

relation_projection(RD2, RIMG, AINDX)

set expressions to Minizinc set expressions. Minizinc also supports set literals ‘{}’. We have
built a library of minizinc predicates to simplify the translation of complex set expressions
that involve functions and relations. For example, ‘image(F)’, for a function F : A→P(B)
represents a set FIMG, such that FIMG ⊆ B. This expression is translated to a predicate
‘function_image’ and a temporary set variable ‘FIMG’.

D.2.3 Translating pCSL Boolean Expressions
Minizinc support binary and unary operators like ‘∧’, ‘∨’, ‘not’, ‘→’ and ‘↔’. Therefore,

the translation of such boolean expressions is trivial. Minizinc supports overloaded equality
and inequality operators for set expression, which was not the case in pCSL. Table 17
summarises the translation of set operators that create boolean expressions.
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Table 17: pCSL Boolean Expressions to Minizinc
pCSL Minizinc

1 D1 sneq D2 −→ D1’ != D2’

| where D1 and D2 are set expressions

2 D1 seq D2 −→ D1’ == D2’

| where D1 and D2 are set expressions

3 d1 in D1 −→ d1 in D1’

| where d1 is set element and D1 is a set expression

D.2.4 Translating pCSL Arithmetic Expressions
Minizinc supports the basic binary and unary operators on the arithmetic expression. It

also supports quantified sum operator. The only significant rules involve the translation of
quantified sum when the quatifying variable is a tuple over a function or a relation, shown
in Table 18. In this case a boolean condition is added to ensure the arithmetic expression is
calculated only over the elements of the function or relation.

Table 18: pCSL Arithmetic Expressions to Minizinc
pCSL Minizinc

1 sum( <i,j> in F) −→ sum(i in D1’, j in D2’)

(P(i,j)) ((bool2int (FD1[i]==j))

* X’(i,j))

)

2 sum( <i,j> in R) −→ sum(i in D1’, j in D2’)

(X(i,j)) (bool2int(RD2[i,j]) * X’(i,j))

)

3 card( F) −→ sum(i in D1’, j in D2’)

(bool2int(RD2[i,j]))

)

D.2.5 Translating pCSL Assignment Statements
The assignment statements and function definition in the IRL model are translated to

equality constraints in the Minizinc. A function definition of the form F(p) = x, where
p ∈ domain(F), is translated to the constraint expression- ‘forall(p in D)(A’(p))’.
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D.3 Predicate Library

1 predicate function_image(array[int] of var int: x, var set of int: s,
2 var set of int: t) =
3 assert(ub(s) subset index_set(x),
4 "range: upper bound of ’s’ must be a subset of the index set of ’x

’",
5

6 % All values in ’s’ must map to a value in ’t’.
7 forall(i in ub(s)) (
8 i in s -> x[i] in t
9 ) /\

10 % All values in ’t’ must be mapped from a value in ’s’.
11 forall(i in ub(t)) (
12 i in t -> exists(j in ub(s)) ( j in s /\ x[j] == i )
13 )
14 );
15

16 predicate inverse_image( array[int] of var int:F, var set of int: X, int
:k)=

17 forall(i in ub(X))(
18 (i in X) <-> (F[i] == k)
19 );
20

21

22 predicate bij_func_inverse_image( array[int] of var int:F, var int: X,
int:Y)=

23 forall(i in index_set(F))(
24 (i = X) <-> (F[i] == Y)
25 );
26

27 predicate relation_image(array[int, int] of var int: r, var set of int:
img, int: a) =

28 forall(i in index_set_2of2(r)) (
29 (r[a,i] == 1) <-> (i in img)
30 ) ;
31

32 predicate relation_reverse_image(array[int, int] of var int: r, var set
of int: img, int: a) =

33 forall(i in index_set_1of2(r)) (
34 (r[i,a] == 1) <-> (i in img)
35 ) ;
36

37 predicate relation_domain(array[int, int] of var int: r, var set of int:
img) =

38 forall( i in index_set_1of2(r))(
39 i in img <-> exists(j in index_set_2of2(r))(r[i,j] == 1)
40 ) ;
41

42 predicate relation_range(array[int, int] of var int: r, var set of int:
img) =

43 forall( j in index_set_2of2(r))(
44 j in img <-> exists(i in index_set_1of2(r))(r[i,j] == 1)
45 ) ;
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46 predicate binary_relation_projection(array[int, int] of var int: r, var
set of int: img, int:a) =

47 if (a==1) then (
48 forall( i in index_set_1of2(r))(
49 i in img <-> exists(j in index_set_2of2(r))(r[i,j] ==

1)
50 )
51 ) else(
52 forall( j in index_set_2of2(r))(
53 j in img <-> exists(i in index_set_1of2(r))(r[i,j] ==

1)
54 )
55 )endif;
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APPENDIX E

IRL2MOP TRANSLATOR

This section describes the rules for translating the IRL data types and constraint ex-
pressions to Java types and expressions. The translation rules are grouped into two sets:
(1) data type translation rules, and (2) constraint expression translation rules.

E.1 pCSL Constraints to Java Functions
A pCSL constraint is a boolean expression that is translated to a Java function that

returns a boolean value. Similarly, an arithmetic expression in pCSL is translated to a Java
function with integer return value. The assignment statements in the IRL model are refined
to function that include Java statements assigning values to the global variables (parameters
or decision variables).

E.1.1 Translating pCSL Quantified Expression to Java Functions
The constraint definitions in the IRL model are pCSL expressions in terms of sets,

functions and relations. A pCSL constraint in the IRL model has the following form:

[{〈Quanti f ier〉 (〈identi f ier〉 in 〈SetAtom〉)}] (〈BooleanExpression〉); (E.1)

where the quanti f ier represents either ‘forall’, ‘exists’, the identifier is a list of
identifiers that range over SetAtom and whose scope is limited to the BooleanExpression.

(1) If the quantifying variable is an element of a set ‘d1 in D1’’ and the constraint
holds for all the elements of the function, then the following rule is used to rewrite the
constraint in imperative language, where ‘A(d1)’ is a boolean expression in pCSL.
‘K’ is the type of the set D1’ which can be String, Integer, Boolean or Double.

forall( s in S) ( A(s) ) −→ boolean curr = true;

for(String d1: D1’){

if( A(s) && curr){

curr = true;

}else{

curr = false;}

};

(2) If the quantifying variable is a tuple in a function F : S→ T and the constraint holds
for all the elements, then the following rule is used to rewrite the constraint in Java
where K is the domain set type and V is the range set type.
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forall(<d1,d2> in F) (A(d1,d2))

→ boolean curr = true;

for(<K>d1:F.getDomain()){

for(<V>d2:F.getRange()){

if( A(d1,d2)

|| !(F.getImage(d1).equals(d2))

&&(curr)){

curr = true;

}else{

curr = false;}

}};

| where F : A→ B

(3) Similar translation rule is used for translation of quantified expression where the
identifier is a tuple in a relation R⊆ S×T .

forall(<d1,d2> in R) (A(d1,d2))

→ boolean curr = true;

for(<K>d1:R.getProjection(1)){

for(<V>d2:R.getProjection(2)){

if( A(d1,d2)

|| !(R.getImage(d1).equals(d2))

&&(curr)){

curr = true;

}else{

curr = false;}

}};

| where R : A×B
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E.1.2 pCSL Boolean Expression to Java Functions
Each boolean expression is translated to a function with boolean return value. Table

19 shows a summary of the translation rules used, where Boolean expressions are denoted
with uppercase letters from the beginning of the alphabet (A, B, C, etc.); integer expressions
are denoted with lower-case letters from the ending of the alphabet (x, y, z, etc). Set
expressions are denoted by uppercase alphabets (D1, D2, etc.) and set elements are denoted
by lowercase letters (d1, d2, etc.)

Table 19: pCSL Boolean Expressions to Java Code
pCSL Java

1
A −→

if(A){

return true

}else { return false }

2
not(A) −→

if(!A){

return true

}else { return false }

3
A -> B −→

if(!(A) || (B))

{return true}

else { return false }

4
A <-> B −→

if( (!(A) && !(B)) || (A && B) )

{return true}

else { return false }

5

x == y −→

int x’ = x;

int y’ = y;

if( (x’ = y’){

return true}

else { return false }

6

d1 == d2 −→

String d1’ = d1;

String d2’ = d2;

if( (d1’.equals(d2’)){

return true}

else { return false }

7

d1 != d2 −→

String d1’ = d1;

String d2’ = d2;

if( (not(d1’.equals(d2’))){

return true}

else { return false }

8

D1 seq D2 −→

HashSet<String> D1’ = D1;

HashSet<String> D2’ = D2;

if( D1’.equals(D2’)){

return true}

else { return false }
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E.1.3 pCSL Set Expression to Java Functions
Java supports HashSets that are used to represent the IRL sets. A library of classes

containing template definition for functions and relations was developed to simplify the
translation of set expressions. For example, ‘image(F)’, for a function F : A→P(B)
represents a set FIMG, such that FIMG ⊆ B. This expression is translated to a predicate
‘F.getImage()’. Table 20 presents an excerpt of the translation rules translation of set
expressions.

Table 20: pCSL Set Expressions to Java Code
pCSL Java

1

D1 union D2 −→
HashSet<String> D1’ = D1;

HashSet<String> D2’ = D2;

D1’.addAll(D2’)

return D1’;

2

D1 intersect D2 −→
HashSet<String> D1’ = D1;

HashSet<String> D2’ = D2;

D1’.retainAll(D2’);

return D1’;

3 F(a) −→ F.getImage(a)

| where F : A→P(B)

4 F(∼a) −→ F.getCoImg(a)

5 R(a, _) −→ R.getImage(a)

6 R(_, b) −→ R.getCoImage(b)

7 projection(R, D1) −→ R.getProjection(1)

| where R⊆ D1×D2

8 image(F) −→ F.getImage()
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E.1.4 pCSL Arithmetic Expression to Java Functions
Java supports all arithmetic operators used in the constraint expressions. Only signifi-

cant translation required rules are the ones used for translation of quantified sum.

Table 21: pCSL Arithmetic Expressions to Java Code
pCSL Java

1 card(D)

−→ int R;

HashSet D’ = D;

R = D’.size();

2 sum( s in S) (x(s))

(x(s))→ int tsum = 0;

HashSet<String> S’= S;

forall(String s: S’){

int x’= x;

tsum = tsum + x’;

}

return tcost;

3 sum( <i,j> in F)

x(i,j) → int tsum = 0;

HashSet<String> S1’= F.getDomain();

HashSet<String> S2’= F.getRange();

forall(String s1: S1’){

forall(String s2: S2’){

if(F.contains(s1,s2)){

int x’= x;

tsum = tsum + x’;

}

return tcost;
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APPENDIX F

SONET RESOURCE ALLOCATION PROBLEM

1 %--------------INPUT-------%
2

3 int: Ring_capacity;
4 int: Ring_cardinality;
5 var set of 1..Ring_cardinality: Ring;
6

7 int: num_Node ;
8 set of int: Node = 1..num_Node ;
9

10 array[Node,Node] of 0..1: Edge ;
11

12 %-----------OUTPUT--------%
13 array[1..Ring_cardinality,Node] of var 0..1: RingNode::is_output;
14 var int: Z;
15

16

17 %---------CONSTRAINTS--------------%
18 %
19 %-------constraint 2-----%
20 constraint
21 forall(n1 in Node, n2 in Node)(
22 let{
23 var set of 1..Ring_cardinality: COIMG1,
24 var set of 1..Ring_cardinality: COIMG2
25 } in
26 Edge[n1,n2] == 1 ->
27 ( relation_reverse_image(RingNode, COIMG1, n1)
28 /\ relation_reverse_image(RingNode, COIMG2, n2)
29 /\ ( COIMG1 intersect COIMG2 != {}))
30 );
31 %
32 %-------constraint 3-----%
33 constraint
34 forall(ctx1 in ub(Ring))(
35 let{
36 var set of 1..num_Node: IMG
37 } in
38 relation_image(RingNode, IMG, ctx1)/\
39 card(IMG) <= Ring_capacity
40 )
41 ;
42

43 %------assignment cnstr--%
44 constraint
45 Z = sum(r in ub(Ring), n in Node)(RingNode[r,n]);
46

198



47 %---------search option----
48 ann: search_ann = int_search([RingNode[i,j] | i in ub(Ring), j in Node],

input_order, indomain_split, complete);
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