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"You cannot revolt: This is two times two equals four! Nature does not ask your 
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CHAPTER I 

 

INTRODUCTION 

 

How visual targets are selected for eye movements is a fundamental 

neural coding problem for all animals that see with a fovea. The strength of the 

model of the neuron as a coincidence detector suggests neural synchrony is a 

plausible, if not intrinsic, part of the cortical code (e.g., Abeles 1982; Softy and 

Koch 1993; Softky 1995; Konig et al. 1996; Aertsen et al. 1996; Salinas and 

Sejnowski 2000; Azouz and Gray 2003; Xu et al. 2006). As such, it may play a 

role in saccadic target selection in the macaque frontal eye field (FEF), a vital 

node in the visual target selection and saccade production networks (for review, 

see Schall and Thompson 1999; Schall 2002). Recently, synchronized activity in 

the gamma frequency range (30 � 60 Hz) among neurons in cortical area V4 has 

provided evidence for a parallel population search mechanism in visual target 

selection (Bichot et al. 2005), supporting the theory that synchrony may be a 

neural mechanism for selective visual attention (Singer and Gray 1995; Usrey 

and Reid 1999; Engel et al. 2001). Like V4, the frontal eye field (FEF) has 

visually responsive neurons that participate in the target selection process, 

combining input from both spatial- and object-oriented visual processing 

pathways (Schall et al. 1995a) to form an explicit topographic representation of 



 2

target identity and location1 (e.g., Schall and Hanes 1993; Schall et al. 1995b; 

Thompson et al. 1996; Bichot and Schall 1999; Sato et al. 2001).  It is thus 

plausible that the FEF would make use of neural codes endemic to the cortical 

areas with which it is densely reciprocally connected, like V4, particularly during 

concurrent visual processing. As such, synchrony may play a role in the target 

selection process in FEF. 

 Variability in spike timing has been observed widely in both sensory and 

motor domains (e.g., Werner and Mountcastle 1963; Schiller et al. 1976; Vogels 

et al 1989; Azouz and Gray 1999; Ronacher et al. 2004). While the cortical spike 

train has been modeled as a Poisson process to capture the variability of the 

inter-spike interval (ISI)  (Perkel et al. 1967; Shadlen and Newsome 1998; 

Shinomoto and Tsubo 2001; Shinomoto et al. 2005; Luccioli et al. 2006), whether 

or not there is a signal in the �noise� (variable ISI) has been highly contested 

(e.g., Softky and Koch 1993; Shadlen and Newsome 1994; Shadlen and 

Movshon 1999). One influential hypothesis supports the idea that variability in 

spike timing is an adaptive response to massive convergence of synaptic input 

onto the single cortical neuron, where �high-input� conditions seem to prohibit the 

transmission of temporally precise signals beyond chance (Shadlen and 

Newsome 1994; Shadlen and Newsome 1998)2. However, recent studies have 

                                                
1 Unlike V4 neurons, FEF neurons show little to no selectivity for individual features of the target 
such as color or shape (Mohler et al. 1973; Schall 1995a); in the rare instance that they do, it is 
the result of stimulus-response associations gained through long-term experience with a 
particular task and stimulus set (demonstrated in macaques after prolonged testing/training, 
reported in Bichot et al. 1996). Feature-selectivity in FEF is interesting from the viewpoint of 
cortical plasticity, but it is not an intrinsic property of the neurons prior to experience-dependent 
change.  
2 More specifically, Shadlen and Newsome (1994, 1998) argue that irregular ISIs arise from the 
inhibitory PSPs (postsynaptic potentials) required to balance the thousands of excitatory 
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established the existence of coincidence detection schemes in the cortical 

neuron in vivo, where voltage-gated conductances can adaptively enhance 

sensitivity to synchronous inputs under high-input conditions, simultaneously 

decreasing the single neuron�s sensitivity to temporally uncorrelated inputs 

(Azouz and Gray 2000, 2003). Growing evidence for coincidence detection in 

dendritic spines further supports the relevance of temporally structured signals in 

neural coding (Coss and Perkel 1985; Yuste and Denk 1995; Zador and Dobrunz 

1997; Xu et al. 2006), suggesting a brain engineered for temporal sensitivity at 

the level of the cell membrane.  

This trend extends from the single neuron to fine-scale functional 

networks, where circuit organization enables the decisive transfer of temporally 

structured input to postsynaptic neuron firing patterns. Specificity of circuit 

organization has been shown to induce stereotyped and repeatable synchronous 

activation in the retinogeniculate and geniculostriate pathways3 (Alonso et al. 

1996; Dan et al. 1998; Usrey et al. 1998; Usrey and Reppas 1999). Additionally, 

cortical modules, or regions of cortex devoted to topographically and/or 

functionally circumscribed processes (for review, see Mountcastle 1997), may 

also be supported by temporally structured activity in sub-networks. For example, 

Yoshimura et al. (2005) and Yoshimura and Callaway (2005) have shown that 

fine-scale assemblies of neurons connected within layers 2/3 of striate cortex 

                                                                                                                                            
connections converging onto the single neuron in cortex; without inhibition to balance what they 
call a �high input regime� of excitatory PSPs, the neuron�s firing capacity would be saturated, 
limiting its dynamic firing range. According to this theory, variable ISI is the adaptive mechanism 
that allows the regulation of firing rate in the neuron.  
3 Retinogeniculate: from retina to the lateral geniculate nucleus of the dorsal thalamus (LGN); 
geniculostriate: from LGN to striate (primary visual) cortex, or V1. 
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(V1) may give rise to the larger functional architecture of V1 columns through 

synchronous activation from common input from layer IV. This challenges the 

idea that connections in cortex are inherently probabilistic (e.g., Hellwig et al. 

1994; Binzegger et al. 2004) and signals must be averaged over many neurons 

to improve the neural representation of stimulus properties (Shadlen and 

Newsome 1994, 1998). Rather, neural representation may arise from sub-

networks that explicitly make use of spatially and temporally precise activity.  

To investigate a synchronous ensemble code for saccadic target selection 

in the macaque frontal eye field (FEF), we applied a method of multiple neuron 

analysis, the gravity algorithm (Gerstein et al. 1985), to simultaneously recorded 

neurons of a macaque monkey performing color singleton search. The gravity 

algorithm has been shown to be as efficient as cross-correlation (Moore et al. 

1966) in its temporal sensitivity to synchronous cell pairs (Strangman 1997); 

however, unlike traditional correlation-based methods for the analysis of 

simultaneously recorded multiple units4, the gravity method is not limited to 

representing pair-wise neural interactions alone. Rather, it can represent the 

coincidence structure of an unlimited number of simultaneously recorded neural 

spike trains. This is particularly attractive given the feasibility of simultaneous 

recording from populations of more than 100 neurons at a time (e.g., Wilson and 

McNaughton 1993). 

Temporally-coordinated population codes propose intriguing hypotheses 

about the neural mechanisms for selective attention, linking millisecond-level 

                                                
4 Cross-correlation (Moore et al. 1966) and the joint peri-stimulus time histogram (Aertsen et al. 
1989) are popular methods of investigating synchronous pair-wise interactions. 
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events with higher-order brain functioning. Capacity limits on information 

processing are a fundamental constraint on most sensory domains, particularly 

vision (for reviews, see Desimone and Duncan 1995; Kastner and Ungerleider 

2000; Moore 2006). As an adaptive mechanism for overcoming capacity limits, 

attention has been shown to gate and enhance the neural representation of 

stimulus properties toward meeting behaviorally-relevant goals5 (e.g., Hsiao et al. 

1993; Motter 1993; McAdams and Maunsell 1999; Burton and Sinclair 2000). In 

the early visual pathway, response synchronization is a mechanism for selective 

attention, functionally linked to perceptual scene segmentation through 

orientation tuning and contour grouping in primary visual cortex (Engel et al. 

1991; Gray et al. 1992; Aertsen and Arndt 1993; Singer and Gray 1995; Fries et 

al. 2001a; Roelfsema et al. 2004; Samonds et al. 2004; Samonds and Bonds 

2005 Samonds et al. 2006). Synchrony has been further implicated as a 

mechanism for attention in higher-level processing for color and form in the 

ventral pathway. Fries et al. (2001) reported the simultaneous enhancement of 

gamma-range synchrony and reduction of low frequency synchrony (< 17 Nz) 

among V4 neurons when attention was directed to a target for which the neuron 

                                                
5 In a classic study of attention in the object-oriented visual pathway, Moran and Desimone 
(1985) demonstrated that the locus of attention in a cell�s receptive field directly mediated its 
stimulus-related response, with the magnitude of the effect increasing progressively alongside 
receptive field size throughout the ventral processing stream. In inferotemporal cortex (IT), where 
single receptive fields can span the bulk of the contralateral and ipsilateral visual field, cells often 
failed to respond to the presence of a stimulus in the receptive field when attention was directed 
outside the receptive field. In other words, representations of unattended stimuli were 
dramatically suppressed or �filtered� through the attenuation of firing rate. In that study, as in 
many others, firing rate was the index by which the influence of attention on neural representation 
was gauged. While there are reasoned arguments for the explicit use of rate-based measures of 
neural activity, the growing availability and sophistication of multiple-unit recording and analysis 
open up new vistas for the investigation of neural ensemble interactions (see Brown et al. 2004).  
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was tuned, as opposed to adjacent V4 neurons activated by distractors. Bichot et 

al. (2005) extended this result to show a uniform increase in gamma band 

synchrony among V4 neurons driven by distractors that shared a stimulus 

property in common with the target. This not only suggests that the locus of 

attention can enhance neural representation of stimuli through synchrony, but 

suggests it may bias the representation of stimuli sharing features with the target 

in the visual search process.  

From the cognitive perspective, long-standing theories of visual search 

have sought to account for how attention is distributed across the visual field in 

the target selection process. For example, Thompson and Bichot (2005) suggest 

that target identity is signaled in FEF through the continuous, parallel 

representation of target and distractors in a topographic map of space; here, 

target identity is conveyed through a �winner-take-all� selection of the individual 

location in the topographic map with the peak firing rate. In this case, firing rate is 

the mechanism by which the neural representation of target identity emerges. 

However, rate-averaging can mask the temporal structure of spiking activity. For 

example, Georgopoulos et al. (1988) proposed an influential rate-based vector 

summation model for the coding of arm direction by neurons in primary motor 

cortex (M1). Later work by Grammont and Riehle (2003), however, showed that 

periods of increased synchrony among M1 neurons precede increases in firing 

rate across large populations of neurons, suggesting a hybrid neural code where 

synchrony gates rate-based processing. As synchrony has been shown to be a 
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neural mechanism of selective attention in the somatosensory domain6 (e.g., 

Steinmetz et al. 2000), the visual domain (e.g., Fries et al. 2001, Bichot et al. 

2005), and has been hypothesized to gate attention in general cortical 

processing (Niebur et al. 1993; Engel et al. 2001; Niebur 2002), it is plausible that 

the target selection process may incorporate synchrony to gate or bias visual 

attention. This opens up the possibility that rate-based evidence has masked the 

role of synchronous firing in guiding attention toward potentially relevant targets 

in FEF, motivating this investigation. 

                                                
6 For example, Steinmetz et al. (2000) reported an increase in synchrony during task-switching 
from visual to tactile discrimination in neurons in secondary somatosensory cortex (SII). 
Synchrony increased by 85% among synchronous pairs when the animal switched from making a 
difficult visual to a less difficult tactile discrimination, suggesting synchrony subserves not only 
switching the locus of attention, but reflects modulation of task difficulty. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Experimental design and physiological procedures 

Data have previously appeared in Bichot et al. (2001), Sato et al. (2001), 

Sato et al. (2003), and Schall et al. (2004), where full behavioral training and data 

acquisition techniques are described7. Briefly, spikes were collected from FEF 

neurons in both hemispheres of monkey F (Macacca mulatta) while performing 

singleton color search for reward. Single units were recorded simultaneously 

from the rostral bank of the arcuate sulcus with multiple insulated tungsten 

electrodes (FHC, n ≤ 9) guided through a 1mm spaced grid (Crist et al. 1988) at 

1 kHz, sorted offline with a window discriminator. Eye movements were recorded 

at 250Hz with a scleral search coil surgically implanted prior to recording, 

analyzed offline for saccadic reaction time. The animal was cared for in 

compliance with the National Institute of Health�s Guide for the Care and Use of 

Laboratory Animals and the guidelines of the Vanderbilt Animal Care Committee. 

In total, we included data from 16 ensemble recording sessions for analysis with 

the gravity algorithm.  

 

Search task 

The monkey was seated in a magnetic field for the monitoring of eye 

position through the implanted search coil. The search array was presented after 
                                                
7 Surgical procedures can be found in Schall 1991. 
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the monkey maintained fixation at a white point in the center of a dark gray 

screen for approximately 500 ms on each trial. The array consisted of 7 

distractors and 1 target aligned iso-eccentrically from the fixation point, scaled 

from 0.6º of visual angle at 6º eccentricity to 1º of visual angle at 10º eccentricity. 

The monkey was trained to make a saccade to the color singleton for a juice or 

auditory reward. Search efficiency was manipulated through target-distractor 

similarity. Efficient (easy) search trials consisted of a green target among seven 

red distractors (Comission Internationale de l�Eclairage (CIE) x = 283, y = 612 

and CIE x = 655, y = 327, respectively), while inefficient (hard) trials consisted of 

a yellow-green target (CIE, x = 363, y = 552) among green distractors. Stimuli 

were matched for luminance (11.1 cd/m2) and easy and hard trials were 

interleaved randomly. The behavioral task is shown in Figure 1.  
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Figure 1. Behavioral task. The monkey�s task was to shift gaze the color 
singleton in the array. Gaze was held at fixation point (white circle) until the 
array was presented. Arrows represent correct saccades. A, Efficient 
search trials (�easy search�) required locating a red singleton among green 
distractors. B, Inefficient search trials (�hard search�) required locating a 
yellow/green singleton among green distractors. (Modified from Bichot et 
al. 2001a).  
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Gravity algorithm8 

The gravity algorithm (Gerstein and Aertsen 1985) was applied to the 

ensemble data collected from each recording session. Broadly, the method treats 

each of n ensemble neurons as points in an n-dimensional vector space that 

move in relation to one another based on the coincidence structure of their 

simultaneously recorded spike trains. By representing the neurons as points in a 

common metric space, complex temporal interactions within the ensemble are 

conveyed through spatial relationships that evolve over the course of the trial 

period. The distance between neurons at any given millisecond, or the particle-

pair distance, is a time-varying index of temporal correlation. In all, each analysis 

produces one set of particle-pair distances for a single trial period.   

More specifically, at the beginning of a trial, all point-particles are arranged 

equidistantly in the vector space. We selected a value of 100 arbitrarily, but the 

only relevant constraint in the particles� initial positions is that the number be 

large enough to prevent them from converging on the same point simultaneously 

through the duration of the analyzed period. The original configuration for 3 

particles in 3 dimensions is shown in Figure 2; in higher dimensions (e.g., as in a 

6 neuron ensemble), the initial arrangement can be conceptualized as vertices 

on a hypercube. This homogeneous spatial ordering deliberately assumes no 

preferential spike-timing relationships at the outset of analysis (time t = 0 ms).   

As each neuron fires, its corresponding particle acquires a charge that 

decays exponentially; the decay period is specified by the experimenter and can 
                                                
8 Programs for implementing and running the gravity algorithm were downloaded from the Mulab 
webpage and adapted for our own data set and analyses. Original programs can be found at 
http://mulab.physiol.upenn.edu/programs.html. 
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be made comparable to the decay period of post-synaptic potential (PSP). We 

set this parameter to 3 ms such that only spikes with short-lag correlations would 

be charged over a common interval.   

Motion through the vector space is governed by force. More specifically, 

the force acting along the vector joining any two particles is proportional to the 

product of the charge on them both; however, unlike electrostatic charges, 

positive charges attract to reflect coincidence. The sum of all forces acting on a 

particle is calculated every 1 ms and used in the equation for motion (see 

Appendix A) to move the particle through the space9. The amplitude and  

                                                
9This value can be manipulated to accommodate the analysis of either short-, medium-, or long-
lag correlations. 
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Figure 2. Spatial configuration of a 3-neuron ensemble. A, At time t = 0, each 
neuron-particle pair is positioned equidistantly. B, At time t = 1, neuron 1 and 
neuron 3 fire simultaneously, indicated in C, the cartoon raster plot. Corresponding 
neuron-particles 1 and 3 acquire a charge that produces an attractive force along 
the vector between them, drawing them closer. Visual neuron-particle (blue), 
visuomovement neuron-particle (green), and movement neuron-particle (red) colors 
combine to signal particle-pair type: visual-visuomovement (cyan), visuomovement-
movement (yellow), and visual-movement (magenta).          
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direction of any given particle�s motion, then, is uniquely determined by the 

interaction of that particle with the entire ensemble.  

Force is proportional to velocity (and not acceleration) in the algorithm. 

This likens the vector space to a viscous medium where particle motility is 

controlled through a viscosity parameter. Higher viscosity values make 

movement through the medium more sluggish; lower values speed it up. This is 

primarily only relevant in relation to the initial configuration of the point-particles. 

If too low an initial particle-pair distance is paired with too low a viscosity 

constant, vigorous synchronous activity may cause the particles to converge on 

one point before the trial period is complete.    

 

The detection of anti-correlation among spike trains 

Because the gravity algorithm is explicitly designed to detect synchrony, it 

is not as sensitive to the detection and representation of anti-correlation among 

spike trains. This is ultimately due to the fact that motion in the vector space is 

mediated solely by attractive forces; there is no explicit repulsive force (induced 

by a repelling charge) integrated into the equation of motion (see Appendix A). 

Increases in distance between particles, therefore, result when some particles 

are selectively drawn closer at the exclusion of non-interacting particles. Rapid or 

noisy movement by one particle away from another may be the result of 

structured spike-events occurring elsewhere in the ensemble, not necessarily as 

the result of an inversely correlated relationship between the particle and the 
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ensemble. With this in mind, we associated increases in particle pair distance 

with asynchrony, but not its stronger form, anti-correlation.   

 

Recent enhancements to the algorithm  

Recent enhancements to the gravity algorithm present an adaptive charge 

filter for the detection of both short- and long-lag temporal correlations between 

neurons (Lindsey and Gerstein 2006). In its standard and original form (Gerstein 

et al. 1985), the charge decay parameter is static throughout the period of 

analysis; the experimenter selects a short decay constant to detect synchrony on 

fast timescales, or a longer decay constant to detect longer-lag correlations. The 

primary enhancement invoked by the dynamic charge filter is a pronounced 

sensitivity to long-lag correlations, reflected in the increased aggregation of 

particles-pairs correlated over longer time periods. As we sought to detect 

synchrony in intervals of 3 ms or less, we did not incorporate recent 

enhancements to the method and instead used the original form (Gerstein et al. 

1985). 

The formal details of the algorithm are presented in Appendix A.  

 

Significance testing: Poisson envelope 

A certain amount of synchrony can be expected to occur by chance 

across simultaneously recorded spike trains even if synchrony is not relevant to 

the neural code under investigation. There is no standard statistical test for the 

gravity representation, so we developed a method that compares the particle-pair 
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distances of recorded neurons with particle-pair distances from stochastically 

generated spike trains, an analogue to the �shift predictor� in the cross-

correlogram (e.g. Gerstein and Perkel 1969, 1972). By driving ensemble activity 

with Poisson processes, we were able generate particle-pair distances from 

spike trains that had no a priori temporal interactions on smaller timescales. This, 

in turn, provided a time-randomized comparison against which significant 

synchrony in the real recorded spike trains could be detected. The goal was to 

provide a set of controls that would form the basis of comparison against which 

the experimentally derived particle-pair distances could be evaluated for 

millisecond-level interactions. 

 

Simulating ensemble activity 

Given that this study analyzed interactions of cell classes in FEF, we 

wanted the simulated spike trains to reflect the response properties of the 

recorded neurons in each ensemble. At the same time, we wanted to introduce 

the intrinsic stochastic variability in ISI associated with the Poisson process as a 

control against which to measure temporally precise activity. To accomplish this, 

we applied a sliding window to each recorded neuron�s spike density function 

(SDF) and sampled the mean firing rate over the window�s interval10. More 

specifically, the instantaneous firing rate A for a neuron at time t was given by the 

equation describing the neuron�s SDF, 

                                                
10 The SDF is a smooth representation of the distribution of a neuron�s firing rates over time, 
generated by convolving each action potential in a spike train with an exponential function that 
has a growth and decay period similar to the post-synaptic potential (PSP). 



 17

                                  ( ) (1 (1)( ),
t t
g dA t e eτ τ

− −

= − −  

where 
g

τ  was a growth parameter set to 1ms and 
d

τ was a decay parameter set 

to 10ms. This parameter was selected because it was between the 3 ms decay 

period used in the gravity algorithm and the 20 ms decay period used in prior 

measures of target-selection processes in FEF (e.g., Thompson et al. 1996), and 

it is also a mid-range value for estimates of the membrane time constant for 

integration of post-synaptic potentials (see Koch et al. 1996).   

The firing rates generated by each recorded neuron�s SDF were used to 

drive a rate-modulated Poisson process, where the distribution of events or 

�spikes� generated by the Poisson process constituted the simulated spike train. 

More specifically, for any given firing rate kλ  in the kth  interval of the trial period, 

a spike train was produced by defining a Poisson distributed random variable 

over a k ms period: 

                         
( ){ ( ) } ( ; ) ,

!

kt m
k

k
e tP N t m m t

m

λ λλ
−

= = ƒ =  

where N(t)=m  is the number of events or �spikes� occurring before time t. 

In rare instances (< 5.2%), weakly firing neurons with high frequency noise 

biased the rate parameter used to drive the Poisson process toward the extreme 

values. In those cases, a 9-pole low-pass butterworth filter was applied to the 

SDF from which the rate parameters were sampled, passing frequency 

components of the signal that were one-third or less of the peak value of the 
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SDF�s power spectrum (MATLAB, The MathWorks, Inc.)11. This served only to 

reduce the high frequency noise while preserving the underlying distribution of 

firing rates. See Figure 3. 

                                                
11 This particular cutoff frequency for the lowpass filter was selected by trial and error, through 
eyeballing the improvement of filtered SDFs over original SDFs. More often than not, SDFs 
requiring filtering at specific locations/conditions had low overall firing rates ( fewer spikes to 
convolve with the exponential kernel and average over time meant more jagged functions).    
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Figure 3. Filtering for Poisson rate parameters. High frequency noise in 
weakly firing neurons were typically at fault in rare cases when the 
simulation algorithm failed to model the distribution of firing rates given 
by an SDF. The SDF of a weakly firing visuomovement neuron is 
shown here (green) alongside its low-pass filtered version (black). 
Weak spiking activity in an interval like λk prompts a jagged SDF where 
local firing rates are skewed toward extremes. To address the problem, 
firing rates sampled within any given interval (e.g., λk) used to drive 
simulated spike trains were taken from the filtered SDF (color), which 
captures the global properties of the interval.  
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Parameter selection for ensemble simulations 

While we aimed to model the distribution of firing rates of each recorded 

neuron, we did not want to model the distributions so well as to make the 

significance criterion (i.e., the particle-pair distance envelopes generated by the 

simulated spike trains) too stringent to detect nonrandom synchrony. Too highly 

controlled a simulation might ultimately result in too great of overlap between real 

and simulated particle-pair distances, thus contributing to Type II errors, or failure 

to identify synchronous events as they truly occur. The issue is technically one of 

timescale. As the sampling bin-size shrinks, the position of individual spikes 

becomes more relevant than the number of spikes per bin (Rieke et al. 1997). 

Thus, if we were to cull rate parameters from the original data to drive the 

simulation every 1 ms, we would essentially produce a concatenation of 600 

distinct distributions, each a binary code for �yes� (a spike occurred on average) 

or �no� (a spike didn�t occur on average). The simulated spike trains derived from 

that set of rate parameters would produce particle-pair distances having near 

perfect overlap with the original.  

To balance the need to limit Type II error while still preserving the 

underlying distribution of firing rates (reflecting the response properties of each 

recorded neuron), we chose three different sampling intervals, amounting to 

three different sets of simulated spike trains. Each interval matched the length 

over which a firing rate was sampled from the original SDF. This interval, in turn, 

was also the length of time over which that parameter was used to drive the 

simulated neuron�s activity. In all, we had simulations corresponding to three 
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sampling interval classes: 10 ms, 15 ms, and 20 ms. Sampling bins greater than 

20 ms were excluded because they failed to produce trials that modeled the 

original distribution of the recorded neuron�s firing rates (paired-t test).   

 

Generating significance envelopes 

In all, we generated 99 simulated spike trains for each condition appearing 

in the original data set (i.e., for each neuron by target location by search difficulty 

by align event). Significance envelopes were generated for the 10, 15, and 20 ms 

classes. To accomplish this, all simulated spike trains were analyzed with the 

gravity algorithm using parameters identical to those applied to the original data. 

Significance values were determined by identifying the extreme maximum and 

minimum particle-pair distance across the combined trials, parsed into 1 ms bins. 

For example, for any neuron n in ensemble E, the upper significance boundary 

value (SE,n, max) across all particle-pair distances p1 . . . p99  at millisecond tk was: 

 

SE,n, max (tk) = max(p1(tk), . . ., p99(tk)). 

 

Each numerical subscript corresponds to trial number. These values combined to 

create a series of upper and lower bounds for the trial period, SE,n, max (t1, �, t600) 

and SE,n, min (t1, �, t600), respectively.  

Original data were then paired with significance envelopes and compared 

at each 1 ms interval. Particle-pair distance excursions outside the envelope 

(exceeding the maximum value or falling below minimum value for the 1 ms 
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interval) were considered unlikely to occur by chance with 99% confidence. In 

other words, by finding the limit values of 99 time-randomized particle-pair 

distances for each condition, we established a measure wherein, 99 times out of 

100, it would be unlikely for a particle-pair distance to make an excursion outside 

the significance envelope if it were not synchronous beyond chance. Instances of 

significant synchrony were registered in a histogram that spanned the trial period 

for each particle-pair type across all trials.  

 

Cumulative density estimates of synchrony across the trial period 

To examine the cumulative distribution of synchronous events across the 

trial period, we computed a Kaplan-Meier estimate for each probability density 

function of synchronous spikes given by a normalized significance histogram. 

Formally, the probability S that a synchronous event k "survived" or occurred 

beyond time t throughout the trial period was given by 

( ) 1 ( )S t F t= − , 

where F is the probability a synchronous event failed to "survive" or did not occur  

beyond time t.  

For N total synchronous spikes, then, we let 1 ... ...k Nt t t≤ ≤ ≤  be the  

observed times t at which k spikes "failed to survive" beyond t in the significance 

histogram. This means that for each time kt , there was both a number of 

surviving synchronous events, kn , and a number of non-surviving synchronous 

events, kf , in the significance histogram. The Kaplan-Meier estimate of the 
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cumulative density of spikes across the trial period at time t was thus given by 

the survival function �S , where  

�( )
k

k k

t t k

n fS t
n≤

−=∏  

( �S  is an estimate of the continuous function S ). 

We then calculated the period of the greatest growth in synchronous 

activity in the trial period by computing the numerical derivative of the survival 

function �S  and finding its global maximum, which matched the global maximum 

of the probability density function provided by the normalized synchrony 

histograms.  

Our predictions for synchronous activity were based on cell-class 

interaction, receptive field organization of neurons pairs, and the influence of 

search efficiency. 

 

Analysis by physiological cell class 

Because the gravity algorithm measures distance between neuron pairs, 

we organized the analysis according to whether the pairs came from common or 

distinct physiologically defined cell-classes. This required the classification of the 

activity of each recorded neuron in relation to trial events based on previously 

established cell response properties (given in Bruce and Goldberg 1985; Schall 

1991; Schall et al. 1995a).  

Briefly, a mixed population of visual, movement, and visuomovement 

neurons participate in the sensorimotor transformation from target selection to 
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saccade production in FEF (Bruce and Goldberg 1985; Schall et al. 1995b). The 

firing rate of visually responsive neurons has been shown to represent target-

related information (Schall and Hanes 1993; Schall et al. 1995b; Thompson et al. 

1996; Bichot and Schall 1999; Bichot et al. 2001a), while motor neurons increase 

firing rate in association with preparation and execution of a saccade into their 

response fields (Bruce and Goldberg 1985; Schall 1991; Hanes et al. 1995; 

Hanes and Schall 1996; Hanes et al. 1998). Visuomovement neurons are active 

in both sensory and motor stages of processing (Bruce and Goldberg 1985; 

Schall et al. 1995b), and the evolution of their activity over the course of the trial 

period, measured in firing rate, reliably distinguishes target from distractors. 

Signal-processing techniques have been adapted from the measurement of 

psychophysical thresholds to estimate the time at which �neural� threshold is 

reached in visuomovement neurons for the discrimination of a target, or target 

discrimination time (TDT) (Thompson et al. 1996; see Britten et al. 1992 for an 

outline of the original �neuron-anti-neuron� method). TDT has been hypothesized 

as the time at which an explicit representation of target identity and location is 

formed in the neuron (see Thompson et al. 1996; Sato et al. 2001). We selected 

the gravity method for analysis by physiological cell-class based on its previous 

success in detecting synchronous cell assemblies involved in the motor control 

and regulation of breathing via respiratory-related nuclei in the medulla (Lindsey 

et al. 1992a, 1992b, 1994, 1997; Arata et al. 2000; Morris et al. 2000, 2001). We 

predicted differences in the temporal interactions of the neurons based on the 

particular overlap of physiological classes described by each union. See Figure 4 
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for representative spike density profiles of visual, visuomovement, and 

movement neurons from the analysis.  

Cell-class pairs were described as homogeneous or heterogeneous. 

Homogeneous cell-classes were divided by visual-visual, visuomovement-

visuomovement, and movement-movement neuron pairings. Heterogeneous cell-

classes were divided by visual-visuomovement, visuomovement-movement, and 

visual-movement neuron pairings.  

 

Analysis by receptive field interaction 

We also characterized the receptive field organization of ensemble 

neurons in relation to target location. The target was classified according to its 

appearance in one of the following locations: (i) In the overlap of the pair�s 

receptive fields (overlapping condition), (ii) in one neuron�s receptive field, 

directly adjacent to the other neuron�s receptive field (adjacent condition), (iii) in 

one neuron�s receptive field but neither adjacent to nor overlapping with the other 

neuron�s receptive field (in only one receptive field condition), or (iv) outside both 

neuron�s receptive fields (neutral condition). See Figure 5 for an illustration of 

search arrays in relation to receptive field interaction.  
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Figure 4. Cell classes. Spike density functions (SDFs) for frontal eye field (FEF) 
neurons during visual search. Vertical tickmarks represent neuronal discharge in 
the raster displays, aligned on target presentation in the left panel and saccade 
initiation in the right panel.  A, Visual neuron. Transient visually-related activity 
after target presentation, with no selective activity around the time of saccade. B, 
Visuomovement neuron. Phasic visually-related activity after target presentation, 
followed by movement-related activity around the time of saccade.  C. Movement 
neuron. No visually-related activity following target presentation, but strong 
movement-related activity near the time of saccade.  
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A B

C D

A B

C D

Figure 5. Receptive field organization. Particle-pair distances were 
classified according to the interaction of the color singleton with the 
cell-pair�s receptive fields. A, Overlapping condition. The target 
appears in the overlap of the receptive fields. B, Adjacent condition. 
The target appears in one neuron�s receptive field, adjacent to the 
other�s. C, Target in only one receptive field condition. The target 
appears in one neuron�s receptive field but is neither overlapping 
with nor adjacent to the other�s. D, Neutral condition. The target 
appears in neither neuron�s receptive field. 
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Analysis by search efficiency 

The manipulation of target-distractor similarity has been used extensively 

to try to dissociate serial from parallel stages of visual processing. Parallel search 

models were developed in part to explain the discrepancy in mean reaction time 

between efficient and inefficient search (for review, see Wolfe and Horowitz 

2004). During more effortful search, the serial focus of attention across the visual 

scene has been proposed to account for saccade latencies which are longer than 

those in �popout� search, where processing has been hypothesized to occur 

through the parallel encoding of bottom-up feature salience (Treisman and 

Gelade 1980, Wolfe et al. 1989; Duncan and Humphreys 1989; Wolfe et al. 1994; 

Treisman and Sato 1990). While the neural estimate of TDT when target-

distractor similarity is high is longer in FEF than when target-distractor similarity 

is low (Sato et al. 2001), why this is so is unclear from a neural coding 

perspective. To test the hypothesis that synchrony is modulated by target-

distractor similarity, we analyzed particle-pair distances according to whether the 

trial was efficient (red color singleton among green distractors) or inefficient 

(yellow-green color singleton among green distractors). 
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CHAPTER III 

 

RESULTS 

 

Behavioral data 

Sample particle distance results for a single trial are given in Figure 6, 

illustrating the output of the analysis in relation to raw ensemble activity and task 

conditions. Particle-pair distances from 6,024 efficient search trials and 4,734 

inefficient search trials contributed to these results. We included only correct 

trials in the analysis, so the discrepancy in trial number between efficient and 

inefficient conditions reflects the natural attenuation of performance accuracy in 

inefficient search. The lag between mean latencies for efficient versus inefficient 

processing further demonstrates a performance difference; mean saccadic 

latency between efficient and inefficient trials was significantly different, at 197 

ms and 246 ms respectively (t-test, p < 0.05). The range of saccade latencies 

spanned 48 to 1718 ms in efficient search and 119 to 3652 ms in inefficient 

search. 
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Figure 6. Particle-pair distances for a single trial. Particle-pair distances 
from a 6 neuron ensemble during efficient search. Distance trajectories 
are color coded by the cell-class interaction of each neuron pair, with this 
ensemble containing visual (VS) and visuomovement (VM) neurons only. 
Note that at the beginning of each trial, all distances originate at 100, 
reflecting the initial positions of the neurons (100 units apart) in the 6-
dimensional vector space. As the trial evolves, distance trajectories 
either exceed or drop below the initial baseline value of 100; distances 
greater > 100) reflect asynchrony, while distances less than 100 (d < 
100) reflect synchrony. The greatest drop in distance between 
particle pairs occurs approximately 80 ms prior to saccade initiation, 
reflecting synchrony in the raster plot (located above the distance graph). 
Each row in the raster plot corresponds to one neuron�s spiking activity 
400 ms prior to 200 ms after saccade initiation. The receptive field 
organization of the bold VM-VM pair reaching minimum distance within 
the ensemble is illustrated in the cartoon. 
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Distribution of neurons pair types 

 The distribution of cell types and neuron pairs included in the analysis is 

presented in Table 1. The majority of the cells were visuomovement (66.6%). 

Visuomovement-visuomovement neurons pairs were the largest neurons pair 

type in the analysis (forming slightly less than half of all particle-pair types, 

45.1%). 

 

Table 1. Cell and particle-pair types.

Type n %

Cell type
Visual                         14        18.7              
Visuomovement                                  49        66.6
Movement                    14        14.7   

Total cell type                                             75  100.0

Neuron-pair type
Visual-visual                                          5       3.3
Visuomovement-visuomovement         69       45.1
Movement-movement                          11         7.2
Visual-visuomovement                         37    24.2
Visual-movement                                   4     2.6
Visuomovement-movement                 27       17.6

Total particle-pair types                             153    100.0

Table 1. Cell and particle-pair types.

Type n %

Cell type
Visual                         14        18.7              
Visuomovement                                  49        66.6
Movement                    14        14.7   

Total cell type                                             75  100.0

Neuron-pair type
Visual-visual                                          5       3.3
Visuomovement-visuomovement         69       45.1
Movement-movement                          11         7.2
Visual-visuomovement                         37    24.2
Visual-movement                                   4     2.6
Visuomovement-movement                 27       17.6

Total particle-pair types                             153    100.0
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Simulation Accuracy 

 The accuracy of the simulated spike trains used to generate the 

significance envelopes was evaluated by performing a paired-t test of 

significance on the SDFs generated by recorded versus simulated neurons in 

each ensemble. The test compared mean instantaneous firing rates for both 

groups at the 1 ms interval across the full trial period. Failure to reject the groups 

as significantly different implied a successful simulation. Simulation accuracy for 

all three Poisson sampling intervals ( tλ∆  = 10, 15, and 20 ms) is reported in 

Table 2. Note that acceptance at higher p values required greater simulation 

accuracy, given that each simulation aimed to achieve no significant difference 

between group means12.  Figure 6 plots SDFs from recorded neurons alongside 

corresponding SDFs produced by the simulation.

                                                
12 That is, failure to reject the null at p < .05 required more correspondence between means than 
failure to reject at the p < .01 significance level. 

Table 2. Simulation accuracy. Percentages reflect simulation success rates, or the 
average number of simulated spike trains producing identically distributed firing 
rates (SDFs) to recorded neurons. The length of the interval over which the Poisson 
rate parameter was sampled and used to generate a spike train of the same length 
is given by            .tλ∆

Sampling interval p < .01                        p < .05

easy hardeasy hardtλ∆

10 ms          88.2             91.1                79.3               82.9         

20 ms        87.6                90.0                78.4 79.1         

15 ms         88.2                91.0                79.1  81.7         

Identically distributed firing rates (%)

Table 2. Simulation accuracy. Percentages reflect simulation success rates, or the 
average number of simulated spike trains producing identically distributed firing 
rates (SDFs) to recorded neurons. The length of the interval over which the Poisson 
rate parameter was sampled and used to generate a spike train of the same length 
is given by            .tλ∆

Sampling interval p < .01                        p < .05

easy hardeasy hardtλ∆

10 ms          88.2             91.1                79.3               82.9         

20 ms        87.6                90.0                78.4 79.1         

15 ms         88.2                91.0                79.1  81.7         

Identically distributed firing rates (%)
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Figure 6. Simulated versus recorded activity. Spike density functions (SDFs) 
generated by simulated and recorded spike trains are plotted together, aligned on 
saccade. A, SDF for visuomovement neuron (pink) and corresponding simulation 
(red) when saccades was made into the neuron�s response field  (sampling 
interval        = 10 ms). B, SDF for the same neuron (gray) and corresponding 
simulation (black) when saccades were made to a target outside the neuron�s 
response field. 
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Figure 6. Simulated versus recorded activity. Spike density functions (SDFs) 
generated by simulated and recorded spike trains are plotted together, aligned on 
saccade. A, SDF for visuomovement neuron (pink) and corresponding simulation 
(red) when saccades was made into the neuron�s response field  (sampling 
interval        = 10 ms). B, SDF for the same neuron (gray) and corresponding 
simulation (black) when saccades were made to a target outside the neuron�s 
response field. 
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Sensitivity of significance envelopes in detecting correlation 

In order to select the significance measure most sensitive to temporally 

correlated activity, we measured the performance of each class of significance 

envelope (10, 15, and 20 ms) in detecting artificial synchrony embedded into 

recorded ensemble activity. We wanted to identify the class of significance 

envelope that would detect temporally-precise relationships between as little as 

two neurons, even when embedded in an otherwise uncorrelated (�noisy�) 

ensemble. To accomplish this, we imposed structured synchronous relationships 

on randomly selected neurons pairs within each ensemble by devising a �source� 

and �recipient� spike replacement technique.  

 Ten percent of the originally recorded trials were randomly selected 

across all sessions. For each randomly selected trial, two neurons were selected 

(again, randomly) for correlation and designated either a �source� or �recipient.� 

We tested two levels of synchrony. In the first condition, all source and recipient 

pair types were perfectly correlated; that is, the source neuron�s entire spike train 

was copied and embedded into the recipient neuron�s spike train. Firing rates 

were conserved to reflect the endogenous properties of the neurons, however, so 

for each set of j spikes copied from the source neuron�s spike train, j randomly 

selected spikes were simultaneously removed from the recipient neuron�s spike 

train. See Figure 7 for an illustration of the sampling and replacement technique. 

In the second condition, source-recipient synchrony was scaled to reflect 

the likelihood of correlation based on the response properties of each neuron�s 

physiological cell-class. In this scaled condition, homogeneous neurons pair 
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types were more strongly correlated than heterogeneous neurons pair types, with 

a standard correlation of 0.8. Visual-visuomovement and visuomovement-

movement  pairs were each assigned a 0.6 spike train correlation, while visual-

movement pairs, the least likely to have spikes naturally overlap during the trial 

period, had 0.4 correlation. The source-recipient correlation technique increased 

synchronous spikes in the selected neurons� spike trains by a factor of 2.6 in the 

perfect correlation condition and 1.9 in the scaled correlation condition. 

The artificially correlated spiking-activity was then analyzed by the gravity 

algorithm and tested for significance using each envelope class. The sensitivity 

of each envelope class was defined as the product of the number of trials on 

which at least one significant event was registered and the number of significant 

events registered per trial. The 10 ms class, corresponding to significance 

envelopes generated by spike trains from Poisson processes modulated every 

10 ms, demonstrated the best performance. See Table 3 for a summary of 

envelope sensitivity. Appendix B contains comprehensive results organized by 

source-recipient pair. 

 All envelope classes detected the perfectly correlated synchronous 

condition better than the scaled condition, which we would expect if the 

envelopes were sensitive not only to the presence or absence of synchrony, but 

its presence or absence in degrees. Due to the fact that we randomly selected 

neurons in which to induce correlation, we could not guarantee robust firing rates 

for every source-recipient pair. This accounts for the less than perfect detection 

of synchronous events by all envelope classes in the perfect correlation condition 
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(performance ranged from 80.4% to 85.9%). For example, if the source-recipient 

pair both had particularly low firing rates, even perfectly correlated spike trains 

may fail to be detected amidst an otherwise active ensemble, given that particle 

motion is governed by the sum of all neuron-particle forces in the vector space, 

not pair-wise force between source and recipient alone. 

Figure 8 compares the particle-pair distances for a recorded ensemble 

alongside distances after scaled- and perfectly-correlated spikes are embedded 

into the ensemble.  

 



 37

spikesss = 7| ||      |   |  |    |
|  | |  ||    | |  |   |

| |     |    |  ||  |    |

Ø

| || |   |  | |
|  | |  ||    | |  |   |

| |     |    |  ||  |    |

R

S

Ø Ø

| || |   |  | |
| |     |    |  ||  |    |

|  | |  || | |  | || || | |  | |

Ø

A

B

C

spikesrr = 8

spikesss = 7

spikesrr = 8

spikesss = 7

spikesrr = 4

spikesss = 7| ||      |   |  |    |
|  | |  ||    | |  |   |

| |     |    |  ||  |    |

Ø

| || |   |  | |
|  | |  ||    | |  |   |

| |     |    |  ||  |    |

R

S

Ø Ø

| || |   |  | |
| |     |    |  ||  |    |

|  | |  || | |  | || || | |  | ||  | |  || | |  | || || | |  | |

Ø

A

B

C

spikesrr = 8

spikesss = 7

spikesrr = 8

spikesss = 7

spikesrr = 4

Figure 7. Inducing artificial temporal correlation. Synchrony was 
embedded into simulated spike trains to induce artificial temporal 
correlation, illustrated here. A, Sample spike trains associated with the 
ensemble�s visual neuron (blue) and a visuomovement neuron (green) are 
randomly selected as a source-recipient pair. The unselected neuron�s 
spike train is not modified in any way. B, A fraction of spikes from the 
source neuron�s spike train (~0.6) is selected (cyan) for replication in the 
recipient neuron�s spike train. The same fraction of the recipient neuron�s 
spikes is selected (gray) for deletion from the recipient neuron�s spike 
train. C, The randomly selected spikes are embedded in the recipient 
neuron�s spike train. Newly correlated spikes (cyan) are matched in time. 
Note that firing rate is conserved in the sampling and replacement 
process.    
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Significant trials (%)     Significant ms/trial (ms)     Scaled product (ms)

PERFECT CORRELATION                                      

SCALED CORRELATION                                      

10 ms

15 ms

20 ms

10 ms

15 ms

20 ms

72.5

73.9

69.8

83.3

85.9

80.4

330

305

298

275

254

240

287

268

262

208

198

183

Table 3. Significance envelope performance by millisecond-level class. Percentage 
of trials on which artificial synchrony imposed on particle-pairs was detected from 
background ensemble firing. The 10 ms envelope class was used for the set of 
significance class criterion in the analysis.
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Table 3. Significance envelope performance by millisecond-level class. Percentage 
of trials on which artificial synchrony imposed on particle-pairs was detected from 
background ensemble firing. The 10 ms envelope class was used for the set of 
significance class criterion in the analysis.
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Figure 8. Particle-pair distances after embedded synchrony. The sensitivity of 
the significance envelope to the degree of spike correlation is illustrated. A, 
Recorded ensemble: Particle-pair distances from a 7-neuron ensemble of 
visual, visuomovement, and movement neurons are plotted. Visuomovement-
visuomovement pairs (VM-VM) are in green, visuomovement-movement (VM-
MV) pairs are in yellow,  visual-visuomovement (VS-VM) pairs are in cyan, and 
one visual-movement (VS-MV) is in magenta. Note the coarse segregation of 
synchrony by cell-pair type, with synchrony increasing: VS-MV < VS-VM <  VM-
MV < VM-VM. B, Recorded ensemble: The particle-pair with the greatest 
synchrony (a VM-VM pair) is in bold, alongside the significance envelope 
generated for that pair and receptive field condition (overlapping). The first 
period of significant synchrony is isolated in red, followed by a second period 
isolated in purple. C, Scaled correlation: Particle-pair distances following scaled 
correlation between the spike trains for the bold VM-VM pair. Note the earlier 
onset of the first synchronous period (red) and the longer duration of the second 
synchronous period (purple). D, Perfect correlation: Particle-pair distances 
following perfect correlation for the bold VM-VM pair. Note that the duration of 
the second synchronous period is longer than in the scaled-correlation 
condition.    
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Summary of synchronous and asynchronous activity   

 The overall percentage of trials with significant synchrony was 

6.9%, while the overall percentage of trials with significant asynchrony was 

14.0%. There were no significant differences in mean synchrony by receptive 

field organization or search efficiency (paired t-test, p = 0.05). Similarly, there 

were no significant differences in mean asynchrony by receptive field 

organization or search efficiency (paired t-test, p = 0.05). See Tables 3 and 4 for 

detailed results by cell-class interaction, search efficiency, and receptive field 

organization. 

There are trends that are worth nothing, nonetheless, in the distribution of 

synchrony across the search efficiency, cell-class interactions, and receptive field 

organization conditions. In the synchronous condition, neuron pairs with 

overlapping and adjacent receptive fields exhibited more synchrony, as a rule, 

than the neutral and singleton receptive field (target appearing in only one 

neuron�s receptive field) conditions. Inefficient search trials for neurons with 

overlapping receptive fields were more synchronous than any other group, 

occurring on an average of 10.1% of trials. There was no particular trend 

differentiating groups with minimum synchrony values. The greatest amount of 

asynchrony occurred in inefficient search trials in neurons in the neutral receptive 

field condition, occurring on 14.9% of all trials. The least amount of asynchrony 

was for efficient search trials in neurons with overlapping fields.   
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Maximum synchrony in relation to TDT 

We calculated the points of maximum growth in synchrony by finding the 

global maximum of the probability density function for visual-visual, visual-

visuomovement, and visuomovement-visuomovement neuron pairs across the 

trial period and compared them to previously collected TDT estimates. There 

appeared to be no systematic relationship between periods of maximum growth 

in synchrony and TDT by cell-class interaction, receptive field interaction, or 

search efficiency (Welch�s t-test).  

 

Cumulative density of synchrony 

The cumulative density of synchrony in relation to target presentation and 

saccade initiation proved complex and trends were difficult to identify. The most 

salient result was the marked lack of temporal correlation in the visuomovement-

visuomovement pairs in relation to target-distractor similarity, which we would 

expect to see if our prediction for synchrony as a mechanism for biasing potential 

target locations were substantiated. Moreover, the lack of significant synchrony 

between movement-movement pairs prior to saccade initiation suggests 

synchrony may not be a mechanism for gating broader population responses. 

The cumulative density results require more careful interpretation for cleaner 

division and organization of results. See Appendix C for full cumulative density 

results.  
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Trials with significant synchrony (%) 

Neuron-pair type
EFFICIENT SEARCH                                      

7.4
12.3*
3.5
5.9
10.2
6.6

7.7

4.5
11.0
6.2
5.8
8.7 
5.7

7.0

2.4
7.5 
4.0 
5.1 
4.7
7.9

5.3

2.8
8.2
6.0
6.0
7.0
7.4

6.2

5.8

5.3
12.3*
7.2
6.3
10.0
4.0

7.5

7.3

14.1**
13.8**
13.4*
4.6
10.2
4.7

10.1

8.9

Neuron-pair type
Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

INEFFICIENT SEARCH                                      

1.7
10.2
3.8
5.4
6.3
5.1

5.4

2.3
10.9

5.9
5.6
6.1
4.6

5.9

5.7

AVG

AVG

Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

OVERLAPPING ADJACENT
IN ONE CELL�S 

RF ONLY NEUTRAL

AVG

4.0
10.3
4.4
5.6
6.3
7.5

6.4

6.1
11.3

8.1
5.6
8.3
5.2

7.4

6.9

Table 4. Percentage of total trials with significant synchrony. Columns: Neuron-pair receptive field organization in 
relation to target. Entries with one asterisk had signi ficant synchrony for at least 10 ms. per trial on at least 10% of all 
trials. Entries with two asterisks had significant synchrony for at least 20 ms. per trial on at least 10% of all trials.  

GRAND AVG

Trials with significant synchrony (%) 

Neuron-pair type
EFFICIENT SEARCH                                      

7.4
12.3*
3.5
5.9
10.2
6.6

7.7
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7.5 
4.0 
5.1 
4.7
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1.7
10.2
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5.4
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2.3
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5.9
5.6
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5.9

5.7

AVG

AVG
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Visuomovement -
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Visuomovement -Movement   
Visual-Movement 

OVERLAPPING ADJACENT
IN ONE CELL�S 

RF ONLY NEUTRAL

AVG

4.0
10.3
4.4
5.6
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7.5

6.4

6.1
11.3

8.1
5.6
8.3
5.2

7.4

6.9

Table 4. Percentage of total trials with significant synchrony. Columns: Neuron-pair receptive field organization in 
relation to target. Entries with one asterisk had signi ficant synchrony for at least 10 ms. per trial on at least 10% of all 
trials. Entries with two asterisks had significant synchrony for at least 20 ms. per trial on at least 10% of all trials.  

GRAND AVG
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Table 5. Percentage of total trials with significant asynchrony. Columns: Neuron-pair receptive field organization in 
relation to target. Entries with one asterisk had signi ficant asynchrony for at least 10 ms. per trial on at least 10% of all 
trials. Entries with two asterisks had significant asynchrony for at least 20 ms. per trial on at least 10% of all trials.  

Trials with signi ficant asynchrony (%) 

Neuron-pair type
EFFICIENT SEARCH                                      

9.5
14.7
7.4
15.3
14.8
16.6

11.8

14.7
15.2
10.2
15.5
13.2
16.5

14.2

15.9
14.7
9.8
12.3
13.2
12.1

13.0

19.9**
17.8
11.9
15.3
14.5
9.5

14.8

13.9

14.9
16.2
9.5

15.3
15.2
15.0*

14.4

14.3

8.7
15.7
12.8
16.3
15.5
16.6**

14.3

13.0

Neuron-pair type

Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

INEFFICIENT SEARCH                                      

16.0
14.8
7.8

15.6
10.8
13.1

13.0

15.7
16.9
12.2
16.0
13.1
15.4

14.9

14.0

AVG

AVG

Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

OVERLAPPING ADJACENT
IN ONE CELL�S 

RF ONLY NEUTRAL

AVG

14.0
14.9
8.8

14.7
13.0
14.6

13.3

14.8
16.7
11.6
15.7
14.6
14.1

14.6

14.0GRAND AVG

Table 5. Percentage of total trials with significant asynchrony. Columns: Neuron-pair receptive field organization in 
relation to target. Entries with one asterisk had signi ficant asynchrony for at least 10 ms. per trial on at least 10% of all 
trials. Entries with two asterisks had significant asynchrony for at least 20 ms. per trial on at least 10% of all trials.  
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14.5
9.5

14.8

13.9

14.9
16.2
9.5

15.3
15.2
15.0*
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14.0GRAND AVG



 44

Discussion  

 

Determining the functional interaction of cell classes in FEF is made 

especially complex by the FEF�s location in a densely interconnected network. 

While the notion of a �hierarchy� of visual processing may be controversial and 

even obsolete (see Felleman & Van Essen 1991, Van Essen et al. 1992; 

Hochstein & Ahissar 2002), the FEF is nonetheless remarkably distinguished in 

the breadth of inputs it receives from more than 20 cortical areas, which combine 

to project feature-, memory-, and goal- related information to FEF (see Schall et 

al. 1995a; Thompson & Bichot 2005). The interaction of the functionally 

heterogeneous cell classes in FEF has yet to be fully characterized; 

unfortunately, the interpretation of the results of the gravity analysis proved 

ambiguous.  

To test the general prediction of synchrony as a mechanism of selective 

attention, we predicted synchrony would increase among homogeneous 

visuomovement neurons pairs with the level of target-distractor similarity, biasing 

visual attention toward cells with receptive fields stimuli that share features with 

the target. Moreover, we predicted an increase in synchrony among 

homogeneous movement neurons pairs in trials when the target appeared in 

overlapping response fields, biasing attention toward topographic locations that 

signal the correct amplitude and direction of gaze shift. We also predicted an 

increase in transient synchrony following the onset of the target and a 

stereotyped afferent delay associated with the onset of visual activity in FEF (see 
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Pouget et al. 2005). Finally, we predicted homogeneous cell pairs (e.g., visual-

visual, visuomovement-visuomovement, movement-movement) would show 

more synchronous activity at or around the time of their response-related events. 

None of these predictions yielded easily to interpretation with the given results.  

Observations about surround-related suppression were considered in 

receptive field analysis. Schall et al. (1995b) reported a correspondence between 

the attenuation of activity (or �response suppression�) of a neuron with a 

distractor appearing in its receptive field and the proximity of the target, which 

may give rise to more asynchrony among visuomovement-visuomovement pairs 

in the adjacent receptive field condition (where the target appears in the 

receptive field of one neuron but is adjacent to the other), alongside more 

synchrony in the overlapping receptive field condition.  Preliminary results did 

find synchrony in the overlapping receptive field condition, and moderate 

asynchrony in the adjacent receptive field condition, but full interpretation of the 

particular quantification of the degree of synchrony (percent of trials on which 

synchrony occurred) will require comparing the outcome of correct versus 

incorrect trials. Analysis of incorrect trials will provide a basis of comparison  

against which to scale the functional impact of the degrees of synchrony 

reported.  

At this stage, more careful interpretation of results will be required to draw 

meaningful conclusions about the effect of synchrony on selective visual 

attention in saccadic target selection.  Appendix D contains a table of predictions 

to guide subsequent interpretation of these results.  
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APPENDIX A 

 

FORMAL CHARACTERIZATION OF GRAVITY METHOD 

 

Each ensemble of n recorded neurons was characterized as a point-

particle in an n-dimensional vector space. The initial positions of the particles 

described orthogonal basis vectors for the space, with orthogonality conferring 

the property of equidistance between any two points. Any n-neuron ensemble 

described by the vectors 1 2, ,..., nx x x
uv uuv uuv

 assumed the normalized initial positions  

                                               

1

2

3

2( ,0,0,...,0)
2

2(0, ,0,...,0)
2

2(0,0, ,...,0)
2

...

2(0,0,0,..., )
2n

x

x

x

x

=

=

=

=

uv

uuv

uuv

uuv

 

 

such that  the distance between any two particles jx
uuv

 and nx
uuv

 was  

   1.j nx x− =
uuv uuv

 

In higher dimensions, initial positions of the point-particles can be 

visualized as vertices of a hypercube (orthotope), and their trajectories can be 

visualized through projection into a plane.  

At the outset of each trial, the distance between particles is multiplied by a 

large constant to provide enough room for them to move during the course of the 
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analysis (the duration of the trial period). Technically, the distance between 

particles in their original configuration is the eigenvalue of the diagonal matrix 

describing the ensemble a time t = 0. We selected the value of 100. 

 

Throughout the trial period, whenever a neuron jx
uuv

fired, it acquired a 

charge that was equivalent to a low-pass filtered version of its spike train. The 

charge jq  on any point-particle jx
uuv

 at time t obeyed the equation  

                                                       j jdq q
dt τ

−
= ,  

where τ is the charge decay parameter. We selected a value of τ = 3 ms to 

reflect a short exponential decay period, although τ  can be manipulated to 

control the influence of post-synaptic potential (PSP) on the simulation.  

 Particles moved in relation to the forces acting on them from all other 

charged particles. The force between any two point-particles jx
uuv

 and kx
uuv

 at time t 

was proportional to the product of their charges, acting on the unit vector �jku on 

the line between them, described by the equation  

                                                      

�( ) .jkjkf t q q uj k=
uv

 

 

The total force acting on the particle at time t was the sum of all pair-particle 

forces, or  
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                                            �( ) ( ) ( ( ) )
total

j kj k j jk
f t q t q t u

≠
= ∑

uv
. 

 

The algorithm treats the particles as if they were moving through a viscous 

medium, rather than a vacuum. This makes the velocity (rather than the 

acceleration) of each particle proportional to the total forces acting on it. The 

viscosity constant σ governs the quickness with which the particles move through 

the vector space. We set σ = 0.5, although the value may be manipulated for the 

purposes of the experiment.  The velocity with which particle jx
uuv

 moved at time t 

was given by  

                                                    1( ) ( )
total

j jv t f t
σ

=
uuv uv

.  

These conditions, in total, characterized the incremental distance js∆ moved by 

particle jx
uuv

 over the change in time t∆ , which is the outcome of particle jx
uuv

�s 

interaction with all other particles in the ensemble: 

                                         1( ) ( ).
totalj

j j j

d s
s v t t f t

dt σ
∆ = ∆ ⇔ =

uuv
uuv uuv uv

 

We integrated over each t∆  = 1ms interval and recorded particle movement  

throughout the trial period. Pair distances were recorded by registering the 

Euclidean distance between any two point-particles at each 1 ms interval, 

reflecting the coincidence structure of the ensemble activity.   
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APPEN
D

IX B 
Comprehensive significance envelope performance by millisecond-level class. The performance of each
envelope is listed by its sensitivity to neuron-pair type. The correlation (r) values indicate the proportion of identical
spikes between source-recipient pair spike trains. 

Envelope class

10 ms 15 ms       20 ms

Neuron-pair type

10 ms 15 ms       20 ms
Correlation          Significant trials (%)                       Significant ms/trial (ms)

PERFECT CORRELATION                                      

r

1
1
1
1
1
1

88.4
91.4
61.0
88.6
79.1
91.0

83.3

88.4
90.3 
64.0
88.6
77.9 
92.4

83.6

80.1
87.1 
58.7 
88.3 
76.1
92.4

80.4

76.5
77.0
40.4
61.3
50.0
52.0

59.2

69.8

67.6
78.7
40.4
63.3
49.4
50.0

58.2

70.9

67.6
79.3
36.5
62.7
51.2
58.0

61.6

72.5

Neuron-pair type

Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

SCALED CORRELATION                                      

0.8
0.8
0.8
0.6
0.6
0.4

420  
344
249
339
295
331

330

383
327
214
340
269
295

305

379
319
206
328
269
288

298 

340
306
223
240
205
135

243

287

356
284
184
227
217
117

230

268

353
272
194
215
215
102

225

262

AVG

AVG

GRAND AVG

Visual-Visual                                                          
Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 

Comprehensive significance envelope performance by millisecond-level class. The performance of each
envelope is listed by its sensitivity to neuron-pair type. The correlation (r) values indicate the proportion of identical
spikes between source-recipient pair spike trains. 

Envelope class

10 ms 15 ms       20 ms

Neuron-pair type

10 ms 15 ms       20 ms
Correlation          Significant trials (%)                       Significant ms/trial (ms)

PERFECT CORRELATION                                      
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1
1
1
1
1
1

88.4
91.4
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88.6
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91.0

83.3

88.4
90.3 
64.0
88.6
77.9 
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83.6
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87.1 
58.7 
88.3 
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92.4
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Neuron-pair type
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Visual-Movement 
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0.8
0.8
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0.6
0.6
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420  
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330
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AVG

AVG

GRAND AVG
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Visuomovement -
Visuomovement                                    
Movement-Movement                                                     
Visual-Visuomovement                                                   
Visuomovement -Movement   
Visual-Movement 



 50

APPENDIX C 

 

CUMULATIVE DENSITY PLOTS 

 In the following pages, the comprehensive results for cumulative density 

functions for synchrony and asynchrony are given (y-axis represents cumulative 

density for every plot, while align event is individually marked). On each page, 

the colored function corresponds to the overlapping receptive field condition for 

the neuron pair type. The colored but dashed function corresponds to the 

adjacent receptive field condition. Gray and black functions correspond to neutral 

and singleton receptive field conditions, respectively. Moreover, open circles 

represent peaks in the growth of synchrony, superimposed on the CDF for each 

receptive field condition. Finally, vertical gray lines indicate the time of average 

TDT for each condition.  

 

 

 

 

 

 

 

 

 

 



 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-MOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-MOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-MOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-MOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-MOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-MOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-MOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-MOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-MOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-MOVEMENT SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-MOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-MOVEMENT SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-MOVEMENT ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-MOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-MOVEMENT ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-MOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUAL-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUAL-VISUAL SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUAL-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUAL-VISUAL SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUAL-VISUAL ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUAL-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUAL-VISUAL ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUAL-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUAL-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUAL-VISUAL SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT

0

0.5

1
VISUAL-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUAL-VISUAL SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT



 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUAL-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUAL-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT

0

0.5

1
VISUAL-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUAL-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT



 59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

ci
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

ci
en

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 
= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

c i
en

t
In

ef
fic

ie
nt

= time of peak growth 
= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

Y 



 61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
f fi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
f fi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT



 62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

ci
en

t
In

ef
fic

ie
nt

= time of peak growth 
= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

VE
 D

EN
SI

TY
  (

C
D

F)

E
ffi

ci
en

t
In

ef
fic

ie
nt

= time of peak growth 
= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

Y 



 63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUOMOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUOMOVEMENT SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUOMOVEMENT ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUOMOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUOMOVEMENT SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUOMOVEMENT SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUOMOVEMENT ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUOMOVEMENT ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUOMOVEMENT ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
VISUOMOVEMENT-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

VISUOMOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT

0

0.5

1
VISUOMOVEMENT-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT



 69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
VISUOMOVEMENT-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT

0

0.5

1
VISUOMOVEMENT-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

VISUOMOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

D
EN

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

=  TDT



 70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUAL SYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUAL ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUAL ASYNCHRONY

-400 -200 0 200
0

0.5

1

Time from saccade (ms)

MOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUAL SYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUAL SYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 73

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1
MOVEMENT-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields

0

0.5

1
MOVEMENT-VISUAL ASYNCHRONY

-200 0 200 400
0

0.5

1

Time from target (ms)

MOVEMENT-VISUAL ASYNCHRONY

C
U

M
U

LA
TI

V
E 

DE
N

SI
TY

  (
C

D
F)

E
ffi

ci
e n

t
In

ef
fic

ie
nt

= time of peak growth 

= overlapping receptive field
= adjacent receptive field
= in one receptive field, not other
= neutral receptive fields



 
74

APPEN
D

IX C
 

 
RELEVANT 
EVENT OR 
PROCESS

RECEPTIV E FIELD
ORGANIZATION

IN RELATION TO 
TARGET

SEARCH
EFFICIENCYTHEORY OR OBSERVATION SYNCH.

CELL-CLASS 
INTERACTION

35-70 ms 
after target 

onset

i. Stereotyped latency for onset of  
visual activity in FEF (Thompson et 
al. 1996; Schmolesky et al. 1998; 
Pouget et al. 2005)

ii. Synchrony in topographically 
organized sub-networks/modules 
(Yoshimura et al. 2005)

Target 
selection, at 
or around 
previously 
established 
TDT times

With peak synch. in 
efficient search closer to 

target onset

!OVERLA PPING 

!OVERLA PPING
!NEUTRAL
!IN ONE ONLY

i. Synchrony as mechanism for selective 
attention (Niebur 2002)

ii. Synchrony as mechanism for parallel 
distribution of selective visual attention 
in search (Bichot et al. 2005)

i. Surround suppression increases w ith 
target proximity (Schall et al. 1995b), 
but not search eff iciency (Schall et al. 
2004)

Target 
discrimination 

process

i. Continuous processing during 
sensorimotor transformation (Bichot et 
al. 2001b), movement neuron activity 
enhanced in conjunction search when 
similar distractor in RF

Target 
discrimination 
and saccade 
preparation

!NEUTRAL
!IN ONE ONLY
!ADJACENT
(distractor in at least
one RF in each 
condition)

&

ØOVERLA PPING
ØNEUTRAL
ØIN ONE ONLY

!ADJACENT

?ADJACENT

ØADJACENT
(surround supp.)

i. Continuous processing during
sensorimotor transformation (Bichot et 
al. 2001b)

ii. Enhanced activity for target appearing 
in response field of  movement neuron 
prior to saccade 

iii. Topographic map in FEF w here 
amplitude and direction of  saccades 
organized retinotopically (Bruce et al. 
1985)  

No init ial target selectivity
(Schall & Hanes 1993; 
Schall et al. 1995 b)

Saccade 
planning and 

initiation

No singleton
distractor to bias 

bottom-up
distractor salience 
in efficient search 

!OVERLA PPING

With peak synch. in 
inefficient search 
closer to saccade 

initiation

&

RELEVANT 
EVENT OR 
PROCESS

RECEPTIV E FIELD
ORGANIZATION

IN RELATION TO 
TARGET

SEARCH
EFFICIENCYTHEORY OR OBSERVATION SYNCH.

CELL-CLASS 
INTERACTION

35-70 ms 
after target 

onset

i. Stereotyped latency for onset of  
visual activity in FEF (Thompson et 
al. 1996; Schmolesky et al. 1998; 
Pouget et al. 2005)

ii. Synchrony in topographically 
organized sub-networks/modules 
(Yoshimura et al. 2005)

Target 
selection, at 
or around 
previously 
established 
TDT times

With peak synch. in 
efficient search closer to 

target onset

!OVERLA PPING 

!OVERLA PPING
!NEUTRAL
!IN ONE ONLY

i. Synchrony as mechanism for selective 
attention (Niebur 2002)

ii. Synchrony as mechanism for parallel 
distribution of selective visual attention 
in search (Bichot et al. 2005)

i. Surround suppression increases w ith 
target proximity (Schall et al. 1995b), 
but not search eff iciency (Schall et al. 
2004)

Target 
discrimination 

process

i. Continuous processing during 
sensorimotor transformation (Bichot et 
al. 2001b), movement neuron activity 
enhanced in conjunction search when 
similar distractor in RF

Target 
discrimination 
and saccade 
preparation

!NEUTRAL
!IN ONE ONLY
!ADJACENT
(distractor in at least
one RF in each 
condition)

&

ØOVERLA PPING
ØNEUTRAL
ØIN ONE ONLY

!ADJACENT

?ADJACENT

ØADJACENT
(surround supp.)

i. Continuous processing during
sensorimotor transformation (Bichot et 
al. 2001b)

ii. Enhanced activity for target appearing 
in response field of  movement neuron 
prior to saccade 

iii. Topographic map in FEF w here 
amplitude and direction of  saccades 
organized retinotopically (Bruce et al. 
1985)  

No init ial target selectivity
(Schall & Hanes 1993; 
Schall et al. 1995 b)

Saccade 
planning and 

initiation

No singleton
distractor to bias 

bottom-up
distractor salience 
in efficient search 

!OVERLA PPING

With peak synch. in 
inefficient search 
closer to saccade 

initiation

&

Prediction
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