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SUMMARY

Understanding protein-small molecule interactions is a critical part of exploring pro-

tein structure and function. Protein-ligand docking is the computational method aimed at

predicting if and how a protein and a small molecule interacts. The work presented in this

thesis examines ways to improve upon existing docking methodology through the use of

experimental structure-activity relationships and structural ensembles. The algorithms are

then applied in collaborative efforts towards structure-based drug discovery.

Chapter 1 is an introductory chapter discussing the background of incorporating ex-

perimental information and structural ensembles into protein ligand docking. It contains

material from Bender et. al. ”Protocols for molecular modeling with Rosetta3 and Roset-

taScripts”, a protocols manuscript for which I was an equally contributing first author. I

was responsible for the protein-ligand docking section as well as developing a workshop

tutorial on RosettaLigand docking. There is also material from Fu & Meiler ”The Predic-

tive Power of Different Types of Experimental Restraints in Small Molecule Docking: A

Review”, a review for which I was the sole first author. The datasets analyzed are discussed

in Appendix A.

Chapter 2 details the development of RosettaLigandEnsemble. It contains materials

from Fu & Meiler ”RosettaLigandEnsemble: A Small Molecule Ensemble Driven Dock-

ing Approach” for which I am the sole first author. I programmed and benchmarked Roset-

taLigandEnsemble and wrote the manuscript. Appendix B contains the protocol capture

accompanying this chapter. The congeneric ligand dataset is discussed in Appendix A.

Chapter 2 is based on an in-prep manuscript regarding the improvement to an auto-

mated protein ligand docking server. Further feature additions to the server, located at

http://rosie.rosettacommons.org/ligand docking, is ongoing. I contributed to the server,

drafted the manuscript, and will be an equally contributing first author on the manuscript.

Chapter 4 covers the applications of RosettaLigand and RosettaLigandEnsemble in col-

laborative drug discovery efforts. I made protein modeling and ligand docking models to

xi



support experimental data. The STAT collaboration resulted in a publication ”Development

of Erasin: A Chromone-Based STAT3 Inhibitor Which Induces Apoptosis in Erlotinib-

Resistant Lung Cancer Cells” for which I was a co-author. An additional manuscript from

the STAT project is presently under review. The mGlu3 collaboration is no longer being

pursued in its existing form. The PAR collaboration is an ongoing collaboration likely to

result in a publication at a future time.

Appendix A contains the datasets analyzed in Chapter 1 and 2. There are additional

datasets generated as a common lab resources for future benchmark studies.

Appendix C is an ongoing project extending RosettaLigandEnsemble to include en-

semble docking with protein mutations. The primary algorithm development and proof

of concept study will be submitted as an Arxiv preprint with a peer reviewed manuscript

to follow once an extensive benchmark is complete. Additional features added to Rosetta

will enable future developments in multitarget virtual screening and ensemble docking for

highly dynamic proteins.

xii



Chapter 1

Introduction

1.1 Summary

This chapter introduces protein small molecule docking and provides an overview of its

applications in drug discovery. The feedback loop between computational predictions and

experimental data is critical step in the modeling pipeline. This chapter discusses methods

for feeding wet-lab data into docking simulations, and ways for computational results to

inform further wet-lab experimentation.

This chapter contains material published as Bender et. al. ”Protocols for molecular

modeling with Rosetta3 and RosettaScripts”[1] for which I am an equally contributing

co-first author, and Fu & Meiler ”Predictive Power of Different Types of Experimental

Restraints in Small Molecule Docking: A Review”[2] for which I am the sole first author.

1.2 Proteins and their small molecule partners

It is a truth universally acknowledged, that a single protein in possession of a good

binding surface, must be in want of a ligand. A critical aspect of many proteins’ functions

in nature is the binding of ligands. Ligands range in size from individual ions such as

the magnesium in chlorophyll to large biopolymers such as DNA or RNA. Proteins may

modify a bound ligand, such as in the case of enzymes, or may need it to function, such

as in the case of cofactors or coenzymes. One prominent example of the latter is the role

ascorbic acid plays in making collagen, a structural protein that makes up tissue such as

tendons, ligaments, and skin. A lack of ascorbic acid, or vitamin C, impairs a hydroxylation

step in collagen synthesis resulting in scurvy, a disease marked by joint weakness and skin

bleeding [3]. Conversely, some ligands specifically inhibit protein function. Penicillin

1



binds a protein involved in bacterial cell wall peptide synthesis, resulting in a damaged cell

wall and bacterial cell destruction. A whole class of penicillin derivatives have been created

with anti-microbial properties via protein inhibition [4]. Noted chemist George Scatchard

mused there is such wide variety in the ways proteins interact with ligands that it would be

impossible to try to categorize all the forms of protein-ligand binding[5].

As one might imagine, controlled promotion and inhibition of particular proteins have

tremendous use in medicine and in correcting aberrant protein function. One class of

these protein binding ligands are small molecules, organic compounds larger than ions

but smaller than biologics. According to DrugBank, roughly 70% of approved drugs are

small molecules that bind reversibly to proteins as biological regulators. Lipinkski’s rule

of five provides additional general guidelines to these ”drug-like” molecules including a

molecular weight below 500 Daltons and a limited number of hydrogen bond acceptors

and donors. Generally, it is much easier to experimentally determine ”if” a small molecule

binds to a given protein, then to determine the ”how, where, and why”. The latter questions

require an understanding of molecular structure and the biological process the compound

aids or disrupts. The challenge of elucidating protein-ligand structural questions is one of

the central aims of computational docking.

1.3 Computational protein - small molecule ligand docking

Protein-ligand docking aims to predict computationally the binding interactions be-

tween a protein and a small molecule ligand. This requires a combination of recapitulating

the binding pose and quantifying the interaction strength. Docking is an important step in

the pipeline for structure based design and discovery of small molecule drugs. Successful

prediction of binding position is necessary to delineate critical interactions for improving

selectivity and/or efficacy. Docking interrogates how and why a ligand binds to a pro-

tein. Tangentially, virtual screening and ligand ranking asks if and how strongly a ligand

will bind. Together these techniques have aided advances in lead compound hit discovery
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and optimization[6]. One of the earliest examples of ligand ”docking” involved building a

scaled model of hemoglobin by hand[7]. A first actual computational docking used shape

complementarity to dock protein surfaces by describing them as knobs and holes. The

study successfully matched two dimers of hemologin but could not dock a trypsin and

an inhibitor because the potential combinations of the two required too much computing

capacity[8].

Computational ligand docking exist in conjunction with traditional wet-lab experi-

ments. As Richard Hamming once noted, ”The purpose of computing is insight, not num-

bers”. Computer models provide hypotheses that must be validated experimentally. The

results of these tests are then fed back to create an iterative cycle of model improvement.

The attraction of computer modeling is the direction it provides towards the efficient use of

wet-lab resources.

1.4 Ligand docking software

Popular docking algorithms such as AutoDOCK[9], DOCK[10], GLIDE[11], GOLD[12],

and RosettaLigand[13], have diverse methods for representing, sampling, and scoring the

molecular interface. Each sampling and scoring setup has its own advantages and disad-

vantages with regards to computational cost and accuracy. Many of these pros and cons are

system or use-case dependent. RosettaLigand is the core algorithm used in this thesis and

will be detailed separately.

For sampling, AutoDOCK[9] and GOLD[12] uses genetic algorithms that generate a

series of trial conformations. Each set of trial conformations are allowed to change before

the ones with the best binding energy is selected in a manner akin to natural selection.

Incremental growth algorithms such as DOCK[10] and GLIDE[11] break the ligand down

into fragments and start placement at an ”anchor”. The molecule is then reconstructed

piece by piece to fill the binding pocket. Monte Carlo methods such as RosettaLigand[13]

make a random perturbation to the protein-ligand model in each step and then accepts the

3



move if it has a more favorable score, or resets it if the move generates a less favorable

score. To avoid being trapped in a local minimum, there is a slight probability that a less

favorable move will be accepted based on the Metropolis criterion.

Scoring functions are divided into three categories: force-field, empirical, and knowledge-

based[14]. Force-field scoring is often referred to as ”physics based” but in reality, docking

algorithms generally simplify calculations or use empirical parameters to reduce the com-

putational cost. Force-field based methods such as MM-PBSA and MM-GBSA may be

used to rescore select docking models previously produced with other score terms[15].

AutoDOCK[9], DOCK[10] both began using an AMBER force field before adding empiri-

cal scoring terms. Empirical score functions generally sum up individual scoring terms over

pairs of specific interactions. For example, the ChemScore function used in GOLD[12] and

GLIDE[11] evaluates all hydrogen bonds and assign favorable scores to ones within a cer-

tain distance and angle range. RosettaLigand[13] uses a knowledge-based scoring function

for many aspects of its protein structure scoring. The scoring function is based on statistics

from the Protein Data Bank regarding the most common distances and angles for protein

features, and awards the best scores to models that match previous data.

1.5 RosettaLigand

RosettaLigand is a protein-small molecule docking application within the Rosetta Macro-

molecular Modeling framework. It is a Metropolis Monte Carlo sampling method paired

with a knowledge based scoring function designed to consider both protein and ligand

flexibility[16, 17]. RosettaLigand uses a two phase docking approach: a low resolution

phase of rapid sampling based on shape complementarity followed by a high resolution

phase of sidechain repacking and backbone minimizing. Ligand flexibility is modeled

through pre-generated conformations[18]. Using default settings, RosettaLigand accounts

for significantly more protein flexibility than comparable methods. As such, the two phase

method allows for many ligand placements to be sampled without being bogged down in
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the computationally intensive task of optimizing a fully flexible protein structure.

The low resolution phase scores binding poses based on a pre-generated Van der Waals

attraction-repulsion grid. A band of unfavorable repulsive interactions and a band of favor-

able attractive interactions are placed at set distances around a rigid receptor model. Ligand

atoms outside of this scoring shell are considered neutral scoring. Scoring grids can also be

pre-computed based on hydrogen bonding and other non-Van der Waals interactions[18].

The high resolution phase scores models using the Rosetta energy function. As previously

discussed, the energy function uses PDB-derived knowledge-based potentials for scoring

protein features such as Ramachandran angles and sidechain rotamers. Pairwise interac-

tions such as Van der Waals attraction-repulsion, electrostatic interactions, hydrogen bond-

ing, and disulfide bridges are weighted to units of kilocalories per mole. Many of Rosetta’s

interaction potentials are derived from the CHARMM forcefield. Further details of the

Rosetta energy function can be found in Alford et. al.[19]

Features for RosettaLigand are selected and customized through an XML interface[20],

making it easier to add new docking capabilities. A sample of previous RosettaLigand

development include docking with explicit interface water molecules[21], protein-ligand

interface design [22], and rapid screening of ligand libraries[18]. These protocols have

driven an improvement in Rosetta’s docking accuracy in simpler cases as well as expand

RosettaLigand’s applicability in more complex systems. For example, explicit water dock-

ing demonstrated 56 percent recovery for failed docking cases across a diverse benchmark

of 341 structures [21]. RosettaLigand’s performance in community docking benchmarks is

discussed in the following section.

1.6 Community assessments of docking

Ligand docking is commonly assessed by determining if docking programs can pre-

dict the binding mode given an interacting pair of protein and ligand. Depending on the

availability of data, structures of existing homologs or a priori knowledge of the binding
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site may also be provided. Two related challenges are whether or not programs can rank a

series of binding ligands with a mutual target, or determine if a particular ligand binds to

the given target.

Community assessments of docking software have generally displayed success in re-

covering near-native binding poses. Davis et. al. found that accurate binding poses were

found for all targets in a GlaxoSmithKline compound collection, but the overall success

rate varied dramatically among systems. Furthermore, no algorithm consistently outper-

formed the others across all systems. RosettaLigand generated native-like poses for at least

forty percent of ligands in each target set. RosettaLigand had difficulty in cases with tight

binding deep pockets as the pre-computed ligand conformers could not account for the

precise binding geometry needed[23].

The CSAR 2012 benchmark demonstrated features such as protein structure minimiza-

tion, histidine tautomeric states correction, pre-generated small molecule conformations,

native small molecule training, and substructure based restraints correlated positively with

docking success. However, binding affinity prediction and relative ranking of active small

molecules remains the most challenging aspect in the field and during this experiment in

particular[24]. In the 2015 D3R Grand Challenge involving blinded docking of HSP90 and

MAP4K4 ligands, roughly half of submitted predictions had a near-native model as the best

prediction. Not surprisingly, the most successful workflows superpositioned targets onto

similar ligands instead of sampling large, unrestricted binding space. One observeration

of note was that the same docking software used by different groups produced varied re-

sults depending on the exact parameters for ligand placement and scoring. RosettaLigand

was such a case where performance differed significantly based on the initial alignment

method and the allowed sampling volume [25]. The second iteration of the D3R Grand

Challenge affirmed the broad results of the 2015 benchmark and highlighted the need for

regular blinded assessments to evaluate development[26].

6



1.7 The use of experimental data in docking

A common theme of the previously discussed docking assessments was the benefit af-

forded by relevant experimental data. Experimental data may be straight forward in appli-

cation such as in the case of receptor structures determined by X-ray crystallography; these

structures may be used directly as docking targets. Some experimental data may be more

”fuzzy” as in the case of protein-ligand contact points determined via NMR spectroscopy.

With the proper integrative docking algorithms, these interacting points serve as distance

restraints that can be incorporated as part of the sampling and/or scoring process. Restraints

limit the ways a protein-ligand interface can be constructed, hence reducing the sampling

the sampling complexity and improving the scoring discrimination[24, 16, 25, 27]. The

potential for such soft restraints in hybrid/integrative methods have already been reported

for other aspects of protein modeling, such as the use of cryo-electron microscopy[28] or

electron paramagnetic resonance[29] restraints in protein structure prediction.

Experimental information for guiding ligand docking can be classified as protein recep-

tor structure-based, small molecule ligand-based, or protein-ligand interface-based. Protein

receptor structure-based data provides information about the protein target in the form of an

observed conformation, or knowledge regarding the ligand binding site. Conversely, small

molecule ligand-based indicate the ligand components responsible for interacting with the

target. Protein-ligand interface-based measurements are a combination of the two and di-

rectly identifies a specific protein-small molecule interaction. Although the same experi-

mental technique (ex: NMR spectroscopy) may be used to generate any of the three kinds

of restraints, the computational guidance provided by each data type differs significantly.

The following sections discusses the overall value of experimental restraints, the strengths

and drawbacks of each form of experimental data, and examples of programs/methods that

apply each data type.
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1.8 The power of different restraint types

In order to demonstrate the different power of the various restraint types, a simulated re-

strained docking benchmark was conducted using RosettaLigand[20] on the PDBBind Core

Subset described in Appendix A.2. Protein receptor structure-based data were represented

by restraining three randomly chosen binding pocket residues contact any small molecule

heavy atom. This is analogous to experimental data that identifies residues whose shifts

change in an NMR experiment upon ligand addition, or whose mutations abolish ligand

binding. Small molecule ligand-based restraints are simulated by requiring three particular

small molecule heavy atoms contact the protein. This is akin to structure-activity rela-

tionships that show binding affinity changes when certain functional groups are swapped

out. Protein-ligand interface-based restraints are created by enforcing contacts on three

randomly chosen pairs of interacting atoms between the receptor and the small molecule.

These types of restraints are derived from experiments such as a double mutant cycle that

correlate a specific protein-ligand contact point. A contact was defined as an interatomic

distance less than 4 , which includes most commonly observed molecular interactions[30].

For each test, the small molecule was initially subject to a random reorientation and transla-

tion within a 5 sphere. An additional test was conducted using minimal initial perturbation

as a representation of using the binding mode of a homologous protein-ligand complex as a

guide to initial placement. This case arises in applications where the a ligand highly similar

to the ligand of interest has a known binding mode with the given protein receptor. 2500

docking trajectories were completed for each protein-small molecule test case under each

restraint condition. The models were analyzed for percentage of native-like small molecule

binding modes using a 2.0 RMSD cutoff.

Figure 1.1 shows the distribution of sampling success rates across test systems for each

of the restraint conditions. The largest improvements are seen in docking with interface-

based restraints and in using molecular similarity to restrict the starting position. This

makes intuitive sense as both restricts the small molecule rotational orientation in additional

8



Figure 1.1: Boxplots of simulated restrained docking sampling efficiency. Each boxplots
show distribution of percent native-like binding modes observed across the PDBBind Core
subset for each restraint condition.

to its translational location in the binding pocket. Certain interface-based techniques, such

as INPHARMA, specifically work by determining the relative orientation of two similar

small molecules. Reinforcing interatomic distances with a protein point and a ligand point

restricts both the protein side-chain and small molecule conformational flexibility. Figure

1.2 provides examples of each type of restraint. Molecular similarity is discussed later in

this chapter as it is a general assumption about protein-ligand families.
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Figure 1.2: Receptor-based (blue), small molecule-based (red), and interface-based (green)
experimental data. Example programs for particular methods are given in parentheses.

1.9 Protein receptor structure-based data

Structure-based, also referred to as receptor-based data, are derived from observed

changes or effects on the protein alone. Protein structures in the absence of (apo) or in

complex with the small molecule (holo) determined via X-ray crystallography are the most

straightforward form of structure-based data. Small molecules can be directly docked into

receptor crystal structures or, if such structures are unavailable, into homology models.

Docking into holo crystal structures is generally more accurate than docking into apo crys-

tal structures or comparative models[31]. In testing a nitroreductase protein-ligand target

from CASP 11, Huwe et. al. found few dockings to comparative model structures that

were superior to docking to the experimental crystal structure. However, the comparative
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model docking managed to capture specific contacts 72.7% of the time[32]. Bordogna et.

al. found a Spearmans correlation coefficient of 0.66 between RMSD accuracy of the com-

parative model and the accuracy of the docking simulation for a diverse test set[33]. In

high-throughput docking, or virtual screening, applications, comparative models are capa-

ble of similar enrichment rates as their crystal structure template counterparts[34, 35]. A

common theme across the assessments is that traditional measures of comparative model-

ing ease, such as sequence similarity between template and target, does not correlate with

subsequent docking success. The success rate for docking into homology models can be

improved by up to 70 percent by using holo experimental templates crystallized with small

molecules of similar chemotypes[36]. Careful validation of the input crystal structure, par-

ticularly in regards to proper orientation and placement of the small molecule, should be

performed prior to using the structure in computational drug discovery efforts. Any modi-

fications to the target protein in the crystallization process, including biologically irrelevant

mutations or inserted constructs, should also be considered[37].

Receptor structures may also be derived from nuclear magnetic resonance (NMR) spec-

troscopy. An ensemble of conformations is generally provided to capture the flexibility

observed in structures obtained by NMR spectroscopy. Alternatively, NMR spectroscopy

may be utilized to obtain information on protein-small molecule interface contacts. Chem-

ical shift perturbations[38] are observed for specific residues upon small molecule binding,

while intra protein Nuclear Overhauser Effect (NOE)[39, 40, 41] reflect structural changes

within the protein. Distance restraints derived from these two sources are based on the

assumption that changes are due to interactions with the small molecule. Protein-focused

methods can help define the receptor binding pocket but do not necessarily give informa-

tion on the small molecule binding mode. This type of information generally translate to

a restraint favoring small molecule positons that are within a certain distance of the con-

tact residue[42]. Orts et. al. demonstrated the use of protein-mediated NOE data for two

competitively binding small molecules as a post-docking scoring filter that can improve ac-
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curacy by two orders of magnitude[40]. Onila et. al. extended this method to directly use

NMR data during docking by simultaneously optimizing poses for both small molecules,

which improved docking in a test set of weakly bound cAMP-dependent protein kinase

complexes. However, the results were highly dependent on obtaining proper orientation

of the protein side chains[39]. Cala et. al. reviews further experimental details for NMR

characterization of protein-small molecule contacts[42].

Other methods for studying localizing small molecule binding site interactions in-

clude hydrogen/deuterium exchange mass spectrometry (HDX-MS) and isothermal titra-

tion calorimetry (ITC) used in conjunction with mutagenesis. HDX-MS relies on the dif-

ferent exchange rates for exposed versus buried amide hydrogen atoms to identify pro-

tein residues covered up by small molecule binders[43]. Mouchlis et. al. uses HDX-MS

on protein backbone amides in conjunction with docking to determine binding modes of

phospholipase A2 inhibitors[44]. ITC is used to measure the thermodynamic components

of binding affinity: enthalpy and entropy. Structural information is inferred from binding

affinity changes following protein mutagenesis or small molecule modification. It is gen-

erally assumed that such changes is due to the impact of the alteration on small molecule

binding[45].

1.10 Small molecule ligand-based data

Small molecule-based information takes advantage of binding data through quantitative

structure-activity relationships (QSAR). QSAR is traditionally part of virtual screening ap-

plications when no receptor information is available. These models generally make use of

2D small molecule property descriptors or 3D small molecule shape fitting without con-

structing a receptor model. Certain docking algorithms can incorporate comparisons of

known small molecule binders in generating putative binding modes. SABRE is a method

that generates a consensus molecular shape density function from multiple bioactive small

molecules. Candidate molecules are then shape fitted using chemical substructures as op-
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posed to the entire molecule at once[46]. Adherence to experimental SAR can also be used

as a filtering step, though this is tricky as scoring functions generally do not rank order

compounds well. DoMCoSAR is a docking algorithm that selects the most commonly ob-

served binding modes and utilizes correlation with SAR to guide final model selection[47].

Small molecule conformational shape fitting can also be achieved with transfer NOE as

demonstrated in the design of a flexible macrocyclic inhibitor[48].

Ligand based pharmacophore models are an extension of molecular shape fitting by

identifying chemical commonalities among binders of a given receptor. Known ligand

binders of a receptor are aligned as flexible conformers and common features are identified

in 3D space to identify the pharmacophore. This approach can also be performed with pro-

tein side chains to create receptor side pharmacophores[49].One such method PharmDock

converts the receptor and ligand to hydrogen bonding and hydrophobic pharmacophores

before using an alignment algorithm to match pairs. On a test of the PDBBind Core Set,

PharmDock identified a native-like top model 56% of the time when native conformations

were used but only 37% when using Omega generated conformers, signifying the impor-

tance of input pharmacophore conformations[50]. Pharmacophores can be generated in

combination with molecular dynamics to generate an ensemble of binding pocket models

as shown in a development study of ligands for a highly flexible sulfotransferase binding

pocket[51]. Yang et. al. further discuss both ligand and structure-based pharmacophore

modeling along with potential challenges such as dataset construction, molecular align-

ment, and feature selection[49].

Use of SAR and multiple active small molecules in docking simulations is an exciting

area of research. In particular, activity cliffs, highly similar compounds with orders-of-

magnitude differences in potency, provide powerful SAR information. New methodologies

that utilize the experimental knowledge provided by SARs around activity cliffs can guide

the creation of additional structural analogues[52]. The current release of the ChEMBL

database contains over 13 million activities recorded against over 10,000 targets[53]. Fur-
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thermore, there are system specific small molecule SAR databases for common drug dis-

covery targets such as GLASS for GPCRs[54] and KLIFS for kinases[55]. One potential

way to incorporate this data is to use an ensemble docking method that can simultaneously

optimize multiple protein-small molecule complexes and correlate their calculated scores.

MLSD is an extension of AutoDock4 that allows the simultaneous optimization of multiple

small molecule fragments, though it is restricted to molecules that concurrently bind to the

same target[56]. Mass spectrometry of protein unfolding can also be used to examine mul-

tiple ligand bindings and their combined interactions on protein stability in the gas phase,

though further methods are necessary to translate this to binding modes[57].

In a reverse modality, small molecule information can also be used to generate distance-

dependent pair potentials for protein comparative modeling. The MOBILE program docks

small molecules into a starting ensemble average of homology models, and then gen-

erates restraints for subsequent rounds of model refinement. When used in combina-

tion with MODELLER, MOBILE produced native-like binding pocket geometries in 70%

of test cases, improving results in 60% of cases compared to restraint free comparative

modeling[58].

1.11 Protein-ligand interface-based data

Protein-small molecule interactions are the most powerful combination of the protein

and small molecule information as it can identify specific contact points that can be used in

determining both location and orientation. In testing small molecule docking into G-protein

coupled receptors, Nguyen et. al. demonstrated that sampling efficiency can increase by

an order of magnitude for every ten known protein-small molecule contacts. The gain was

even greater when utilizing more detailed information such as a specific ionic interaction

translated as a 3.0 distance restraint[59].

A protein-small molecule double mutant cycle analysis identifies interactions by com-

paring ITC binding data of a single protein mutation, a single small molecule functional
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group substitution, and both simultaneously. A substantial non-additive interaction en-

ergy change is evidence for a direct interaction. A collection of these pairwise inter-

actions can be used to derive protein-small molecule distance constraints to incorporate

into the energy gradient docking grid. Roisman et. al. probed 100 potential pairwise

interactions in an interferon-receptor complex and identified five significant interactions.

Docking simulations were run until a converged model was generated satisfying the five

restraints[60]. Blum et. al. utilized double mutant cycle analysis with a nicotine ana-

logue and an acetylcholine receptor backbone amide substitution to show a hydrogen bond

interaction[61]. Similar success have been obtained with double mutant cycle alanine

scanning for a yeast Ste2p GPCR[62], and with an allosteric binding site on a hM1 mus-

carinic receptor complex[63]. Compared to the traditional single site-directed mutagenesis

method, this approach has the potential to differentiate the impact on small molecule bind-

ing from disrupting favorable interactions vs. protein stability.

Another method of directly determining intermolecular distance restraints is with protein-

ligand NOEs. However, this is generally limited by the need to assign resonances for

the protein-small molecule complex. One alternative that relies on matching only small

molecule resonance assignments was developed by Constantine et. al [64]. NMR NOE

experiments can also be used to derive relative orientations between two weakly binding,

competitive small molecules. The INPHARMA technique relies on the transfer of NOEs

between the two small molecules and a common receptor target. This in combination

with a crystal structure of one protein-small molecule complex can be used in determin-

ing the binding of a related small molecule series without assuming binding in a similar

fashion[65].

Small molecule similarity is a type of interface restraint based on the known binding

mode between a related small molecule and the given protein target. The binding mode of

the related molecule can be used as a guide in placement and orientation during docking

simulations. HybridDock is one approach that augments docking with molecular similarity
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by generating possible binding modes using existing co-crystallized molecules. This sig-

nificantly improved both the binding energy correlation and native binding mode recovery

in a CSAR 2013-2014 test[66]. LigBEnD is a similar approach that uses the co-crystallized

molecule to generate an atomic property force field. Scoring models with this ligand-based

force field correctly predicted 30 out of 36 compounds in the D3R docking challenge[67].

Related binding pockets may be found even among proteins of distinct global folds and

evolutionary history. An analysis of potential enzyme drug targets and evolutionarily dis-

tant proteins in the PDB found similar binding pockets with different global folds in 61%,

10%, and 61% of kinases, phosphatases, and proteases respectively[68].

1.12 Similar binding of similar ligands

One potent form of experimental restraint as shown in figure 1.1 was molecular sim-

ilarity, the assumption that similar ligands will bind in similar fashion to a given target.

Although the relative orientation can be experimentally tested, it is often assumed as a

starting point. The common molecular scaffold is presumed to make similar interactions

with the binding pocket, while peripheral functional group modifications create different

contacts that explain SARs. Previous analysis of 206 protein-small molecule structure pairs

observed similar small molecule binding modes in ninety percent of related structures.

Binding similarity was defined as having an optimized small molecule shape Tanimoto of

greater than 0.8. The receptors in those cases exhibited very similar backbone structures

with the primary differences due to side chain conformation or water architecture[69]. An

examination of scaffold building pairs found that in 41 out of 297 cases the binding mode

changed upon chemical elaboration of a scaffold[70].

Using a subset of the PDBBind Refined Set, described in Appendix A.3, an analysis is

done to show the feasibility of the similarity approach across a broad dataset. The compari-

son of 7298 ligand pairs from 366 targets, shown in Figure fig:Review-Fig3, demonstrated a

significant decrease in RMSD of the common scaffold as the Tanimoto similarity increased.

16



Disparities in binding mode decreases significantly for Tanimoto similarities above 0.6.

Figure 1.3: Pairwise small molecule scaffold nRMSD vs. Tanimoto similarity Inset: Num-
ber of pairs and percentage under nRMSD cutoff for each Tanimoto range.

The dataset included 548 pairs where the common substructure is equivalent in size

to the smaller molecule. A small molecule binding mode change (nRMSD >2.0 ) was

observed in 52 cases (9.5%), slightly lower than the percent changed based on volume

overlap comparison used by Malhotra and Karanicolas[70]. Although these cases present

a challenge to using molecular similarity docking, it is generally possible to recover the

correct binding mode in these scenarios. In particular, a number of properties such as

pocket volume and molecular weight of the smaller molecule can be used as predictors of

when these exceptions occur. The much more challenging systems contain similar ligands

presenting in completely opposite binding modes. These exceptions are likely to lead to

docking failures when assuming molecular similarity and are discussed in more detail in
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the following sections.

1.13 Significantly different binding modes observed in similar ligands

In eleven small molecule pairs, highly similar small molecules (Tanimoto >0.7) ex-

hibited significantly different binding modes (nRMSD >5.0 ). In one particular exam-

ple, a series of diflunisal derivatives exhibited two opposite orientations when bound to

transthyretin, a protein involved in amyloidogenesis. The lead compound diflunisal was

found to bind in a forward and a reverse orientation. More interestingly, a meta-difluoro

derivative (Figure 1.4, left) was found exclusively in the reverse binding mode while an

ortho-difluoro derivative (Figure 1.4, right) was found exclusively in the forward binding

mode[71].

Figure 1.4: meta-difluoro diflunisal derivative (left, PDB: 2B9A) and ortho difluoro diflu-
nisal derivative (right, PDB: 2F7I) bound to transthyretin.

Another counter-example in the dataset is the binding of bile acids, taurocholate and

cholate, to Campylobacter jejuni CmeR regulator protein. The two compounds differ by

a distal anionic group but are found bound in anti-parallel orientations as shown in Figure

1.5. The two compounds share the same volume of the binding pocket and is suggested to
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interact similarly with a previously identified glycerol binding site. Furthermore, the pocket

is highlighted by a large hydrophobic tunnel with numerous mini-pockets, suggesting a

reason as to why it is capable of binding diverse small molecules in diverse fashions[72].

Figure 1.5: cholate (left, PDB: 3QPS) and taurocholate (right, PDB: 3QQA) bound to
CmeR regulator protein.

A number of notable exceptions can be found in literature as well. Structure-based

design of an influenza neuraminidase inhibitor series showed up to 180 degree variation

in the orientation of a central five member ring. Potent analogues were only found for

the congeneric series that bound in the same orientation with consistent SAR[73]. A

study of dipeptidyl peptidase IV inhibitors showed chemically similar small molecules

with different distal aromatic substitutions and placements bind in distinct orientations.

The substituted phenyl ring made pi-pi interactions but with distinct residues in the dif-

ferent cases[74]. Another common exception in systems such as HIV-1-Protease involve

inhibitors bound in two approximately symmetrical orientations[75]. Kim et. al. dis-

cusses a number of other exceptions, such as dihydrofolate reductase and cytochrome c

peroxidase small molecules, that were identified through examination of outliers left out
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when constructed QSAR datasets. It should be noted that some of the exceptions involve

conformational changes in the distal parts of the small molecule while the main chemical

scaffold remains aligned[76]. It may also be possible in these QSAR datasets that similar

small molecules reside in different conformations of a flexible protein binding pocket. In

such cases, the small molecule orientations remain constant but the protein-small molecule

contacts change[77].

Based on the PDBBind refined set survey, these exceptions are fairly uncommon. Some

features frequently seen in these exceptions include nearly symmetrical molecules, large

binding pockets allowing multiple orientations, and distal groups capable of making favor-

able interactions with different residues in the binding pocket. Unfortunately, there are no

currently known small molecule or receptor structure factors to distinguish exceptions from

regular binders.

Although a similarity based approach towards docking or screening with atoms aligned

by identity may not work in these particular cases, there may be remedies using molecu-

lar properties. A docking method utilizing pharmacophores with properties such as partial

charge or hydrogen bond donor/acceptors can alleviate this problem. Ph4Dock is an ex-

ample where atoms are represented as electrical charge centers without consideration for

identity[78]. Furthermore, similar contact residues are often observed in these situations

allowing for productive suggestions of pairwise interaction validation experiments such as

double mutant cycles.

1.14 The use of structural ensembles

Structural ensembles take advantage of binding similarities by the simultaneous con-

sideration of multiple structures for the protein and/or ligand. An ensemble can be used to

represent different conformations of the same molecule, or a group of related molecules.

Protein receptor ensembles are frequently used to account for receptor flexibility. Rueda

et. al. demonstrated improvement of cross-docking results using binding site ensembles to
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represent protein flexibility[79]. In particular, ensembles of two or more proteins, enhanced

for proteins co-crystallized with chemically similar small molecules, performed better on

average than single docking or randomly enumerated ensembles[80]. These conformational

ensembles can also be derived computationally using the relaxed complex scheme (RCS),

a series of molecular dynamics simulations to pre-generate low energy conformations[81].

Experimental data can then filter the conformations to avoid docking efficiency decrease

stemming from having a large number of ensembles structures[82]. Sinko et. al. and Feixas

et. al. further discuss RCS and other experimental methods to account for protein flexibility

in drug design applications[83, 84].

One area of further development would be ensemble methods to work with protein

mutants rather than just protein conformations. Such an algorithm would allow for simul-

taneous docking or screening against multiple targets of biological relevance. This could

be beneficial in targeting multiple mutants with a single compound, or in targeting dual

receptors as a replacement for combination therapy. Anighoro et. al. demonstrated the

applicability of dual inhibitor screening for Hsp90 and B-Raf inhibitors, though the com-

putation was performed independently rather than in conjunction[85]. The related multi-

ple ligand simultaneous docking strategy, where fragments are docked individually before

chemically linked, was used to find an inhibitor of STAT3[86]. An ensemble screening

method would score the potential ligands against multiple targets at the same time rather

than as a post-screening analysis.

The work in the remaining chapters develop a number of algorithms necessary to use

molecular similarity and structural ensembles as an aid to protein-ligand docking. Chap-

ter 2 covers the RosettaLigandEnsemble algorithm that emphasizes overlapping binding

modes of similar ligands. Appendix C shows a new docking modality allowing for the

simultaneous consideration of protein and ligand structural ensembles. Chapter 4 applies

these methods for small molecule discovery applications.
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Chapter 2

RosettaLigandEnsemble

2.1 Summary

This chapter discusses the creation and testing of a new docking algorithm within the

RosettaLigand framework. RosettaLigandEnsemble simultaneously docks an ensemble of

small molecules into a single flexible target receptor. The new method shows a significant

improvement in sampling efficiency over the previously existing RosettaLigand method.

Ligand ensemble docking is a novel approach not previously available in RosettaLigand

or any other popular ligand docking program. The text of this chapter contains material

published as Fu & Meiler ”RosettaLigandEnsemble: A Small Molecule Ensemble Driven

Docking Approach” for which I am the sole first author. I was responsible for developing

the algorithm, writing the code, and benchmarking the new docking features.

2.2 Introduction

2.2.1 Ligand docking and structure-based drug discovery

Structure-based drug discovery and optimization is a critical technique at the intersec-

tion of pharmacology and structural biology. Structure-based computer-aided drug discov-

ery is a powerful way to create hypothesis on ligand binding poses and specific critical

protein/ligand interactions that guide the design of improved small molecules[87]. These

hypothesis can be tested by a variety of experimental approaches including fluorescence

binding studies, calorimetric measurements, NMR spectroscopic studies, or X-ray crys-

tallography. Experimental validation often compares multiple ligands with the wild-type

protein or a mutant target[88]. For computer aided drug discovery to maximize its im-
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pact on drug discovery, it is necessary for computational ligand docking methodologies to

effectively identify correct protein-ligand binding positions.

Structure-activity relationships (SARs) refer to differences in binding affinity or bio-

logical efficacy following chemical scaffold derivatizations. Medicinal chemistry makes

use of such minor modifications to optimize lead compounds for desired affinity and other

pharmacological properties. This creates a massive wealth of SAR data on related ligands

for a single protein target. The PubChem database alone contains over 200 million bio-

logical activities measurements on approximately 10,000 protein targets[89]. BindingDB

specifically organizes a portion of its database into collections of congeneric ligands with

at least one co-crystallized with the common protein target[90]. It is generally expected

that highly similar ligands form similar interactions when binding to the same target[2].

We hypothesize that a docking algorithm that leverages this information can eliminate a

portion of false positive binding poses, i.e. poses that score well but are incorrect.

2.2.2 Inconsistent performance of existing protein-ligand docking tools

RosettaLigand[17, 16], a small docking tool within the Rosetta structural biology mod-

eling software suite[1], is one of several algorithms developed for this purpose in the last

few decades. AutoDock[9], DOCK[10], and Glide[11] are other popular methods, all of

which differ on both sampling and scoring technique. Performance of these docking tools

are not always consistent across systems. A 2013 docking study using the PDBBind dataset

evaluated scoring functions for decoy discrimination and scoring correlation. The success

rate for identifying correct binding modes from decoys was significantly higher than for

discerning weak, middle, and strong binders within a related ligand series[27]. Similar

results were obtained in the 2012 Community Structure Activity Resource (CSAR) evalu-

ation, which found that even when docking software was able to recover correct binding

poses for a given ligand, few could consistently rank order active ligands[24]. The recent

D3R Grand Challenge reaffirmed these findings and noted that docking performance var-
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ied even within the same congeneric series. In addition, the overall success of a docking

method was dependent on its preparatory workflow[25]. This performance gap between

docking and ranking is likely due to the steep energy landscape observed near native bind-

ing modes for high affinity protein-ligand complexes. Small perturbations in these regions

generally resulted in drastic scoring changes[91].

2.2.3 Use of structure ensembles in docking

Ensemble methods have traditionally been independently approached from the pro-

tein and ligand sides. Protein ensembles are a common way of capturing conformational

diversity during rigid receptor docking simulations. This need for a structure ensemble

can be due to the inherent flexibility of the protein (conformational selection) and/or due

to an induced fit effect upon ligand binding. Protein structural ensembles can be gener-

ated from experimental determination such as NMR, or through computational methods

such as molecular dynamics. One such preparation is the relaxed complex scheme that

generates a set of receptor targets for docking[81]. To emulate induced fit with ligand

binding, Glide docking can be used to convert all interface residues to alanine to allow

for sampling the binding pocket without bias from initial sidechain orientations[92]. For

scoring purposes, protein ensembles can be handled by an average energy grid that scores

over the ensemble[93], or by using a selection method to identify a single template mid-

simulation[94]. Feixas et. al. and Sinko et. al. further reviews the use of multiple receptor

structures in drug discovery and design[84, 83].

Ligand structural ensembles are used to represent both ligand conformations and phar-

macophore information from multiple ligands. Molecular mechanics or fragment based

sampling can be used to generate conformations prior to docking[95]. Hybrid methods in-

corporate information from multiple ligands to better position a given target. For example,

HybridDock performs pre-docking alignment via pharmacophore matching with similar

molecules[66]. However, these methods require related co-crystal structures to be readily
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applicable.

It has been observed that using well-chosen structural ensembles is advantageous over

docking with a single structure, particularly when ensemble proteins are co-crystallized

with molecules of similar chemical structure[96, 97]. In this chapter, we developed a two-

stage algorithm for ensemble docking of multiple related ligands into a single protein struc-

ture.

2.2.4 Incorporating ligand ensemble docking into RosettaLigand

RosettaLigand models protein-ligand interactions with full ligand and protein binding

pocket flexibility. This is achieved with pre-generated ligand conformations and protein

side-chain rotamer libraries[17, 16]. RosettaLigand is currently capable of docking mul-

tiple ligands simultaneously, but only in the sense that they bind the protein jointly (e.g.

a small molecule together with a key bridging water molecule or a co-factor with metal

ion bound)[21]. Here, we have extended RosettaLigand to RosettaLigandEnsemble (RLE),

an algorithm that can identify a binding mode favorable to a superimposed ensemble of

congeneric ligands. This allows users to simultaneously dock a series of ligands in unison

instead of individually as single ligands. We hypothesize that this will increase the effi-

ciency and accuracy of sampling. We illustrate RLEs hypothesized sampling advantage in

Figure 2.1.

Due to the presence of functional groups of varying sizes found within a SAR series,

there may be binding modes available to certain molecules but not others. RLE is capable

of eliminating binding orientations not available to the ensemble as whole. Furthermore,

highly similar ligands are expected to bind in similar fashions with common interactions to

the chemical core[69, 2]. The RLE scoring function emphasizes favorable positioning for

the common scaffold, shown by the red outline. The greater number of molecules that share

a common substructure, the greater the scoring emphasis on that particular substructure. It

is not anticipated that RLE will significantly improve docking for congeneric ligands that
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Figure 2.1: Hypothesized mechanism of RLEs sampling advantage. Top: Three small
molecules (green) are independently docked by RosettaLigand into the protein binding
pocket (blue). There are multiple docked orientations possible for each small molecule.
Bottom: The same three molecules are first aligned using their common scaffold (red).
Docking in concert using RLE then yields a single, unambiguous binding orientation.

exhibit significantly different binding modes. Malhotra et. al. reviews receptor and ligand

characteristics that tend to exhibit these alternate binding modes[70].

2.3 Experimental Methods

The validation dataset of 89 protein-ligand cocrystal structures curated across twenty

systems is described in Appendix .

2.3.1 RosettaLigandEnsemble algorithm

Figure 2.2 illustrates the two-stage RLE algorithm. RLE takes as input a single protein

structure and a congeneric series of molecules superimposed by chemical scaffold. In

the low resolution TransformEnsemble phase, the same 3D translations and rotations are

applied to all molecules in order to maintain the superposition and find a common binding

mode. Step sizes and direction for both translation and rotation are taken from a Gaussian
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distribution centered on a user provided value. Scoring is done using a pre-generated shape

complementarity energy grid and moves are accepted/rejected by a Metropolis Monte Carlo

criterion based on the sum of scores for all ligands in the ensemble. The protein structure

remains static but ligand conformers are changed by swapping out individual ligands with

alternate conformations from pre-generated libraries. The benchmark used the fragment

based BCL::Conf small molecule conformer generator[95]. During the high resolution

HighResEnsemble phase, only small perturbations to the ligand are applied with the focus

on optimizing the protein-ligand interface. Since side-chain orientation differences are

observed even for binding of related ligands, each protein-ligand interface is optimized

independently. In a single simulation run, RLE generates x models where x is the number

of ligands in the ensemble. Over the course of n simulation runs, RLE generates n*x total

models, the same quantity as x independent RosettaLigand runs of n trajectories each.

The bulk of the computation time in both RosettaLigand and RLE is due to protein side-

chain rotamer sampling during the high resolution docking phase. Since RLE generates

individual protein-ligand models for the high resolution stage, computation time is not

significantly altered.
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Figure 2.2: Illustration of RLE algorithm. The algorithm is separated into the low reso-
lution TransformEnsemble step and the high resolution HighResEnsemble step. Curved
arrows represent repeated moves accepted or rejected based on Metropolis Monte Carlo
criterion. Individual model of each protein-ligand pair are outputted from a single protein
structure and superimposed congeneric ligands as input.

2.3.2 Experimental model generation

Initial parameters for RLE are derived from the latest features of RosettaLigand algorithm[18,

20] and optimized for sampling efficiency. Additional sampling cycles and a decreased ro-

tational barrier was necessary to counteract the increased sampling space involved in find-

ing an optimal position for all molecules simultaneously. The exact number of sampling

steps was calculated on-the-fly based on difference between the current step score and the

maximum possible score assuming all atoms formed favorable interactions. Meanwhile,
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the repulsive score term was halved to allow the entire ensemble to rotate through clashes.

Ligand atoms are forbidden from moving outside of the defined docking sphere as was the

case in RosettaLigand.

Following optimization, docking was performed with both RosettaLigand and RLE and

evaluated for native ligand pose recovery. For each system, individual molecules were

docked independently and as an ensemble into the same receptor structure. For each run,

2500 models were produced and the top ten percent were selected based on ligand interface

energy for subsequent analysis.

In order to make the docking simulation resemble actual use, a uniform volume ran-

dom translation within a 5 sphere and a random full rotational orientation is performed

prior to docking. A random conformer is selected from the ligand conformer library. This

avoids biasing the starting position and orientation to that observed in the crystallographic

complex. An example of how to generate models for one system is provided in Appendix

B.

2.4 Results and Discussion

We examine the top ten percent of scoring models by ligand interface score for each

ligand cross-docking case. The top 250 models are analyzed for both sampling efficiency

and scoring discrimination of native-like models. Native-like models are defined as having

a ligand root mean squared deviation (RMSD) of less than 2 compared to the co-crystal

structure. Sampling efficiency is represented as the percentage of models that are native-

like, while scoring discrimination is represented as the scoring rank of the first native-like

model. A higher sampling percentage of native-like models and a lower scoring rank for

the best scored native-like model indicate improvement.
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2.4.1 RLE improves sampling and scoring among top models

Among the top ten percent of models by score, RLE improved both the percentage

of native-like models and the scoring rank of the first native-like model when compared

to RosettaLigand. The increased sampling efficiency was observed in 62 out of 89 cases

while the improved scoring rank was seen in 22 out of 89 cases as shown in Figure 2.3. In

three cases, RLE produced a native like model while RosettaLigand did not. In ten cases,

neither RLE nor RosettaLigand were able to find a native-like model in the top ten percent.

Figure 2.3: Comparison of sampling efficiency and scoring discrimination among top ten
percent of models by score from individual RosettaLigand docking versus ensemble RLE
docking. Overlapping dots are indicated by number of overlapped points below it. Blue
diagonal line shows when RosettaLigand and RLE performance are identical. A: Percent-
age of native-like models from single and ensemble docking B: Scoring rank of the best
scored native-like model from single and ensemble docking C: Small molecule RMSD of
the top ranked model from single and ensemble docking. The 2.0 angstrom success cutoff
is marked out in black lines.
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Among cases where RLE improved sampling efficiency, nearly half saw an improve-

ment of at least 25 percent. In contrast, no case saw RLE decrease sampling efficiency by

more than 9 percent. For scoring discrimination, RLE recovered a native-like top scoring

model in ten cases where RosettaLigand failed to do so. This is important as RLE would

have still produced an accurate model in an application scenario even for these cases. There

is a single case where only RosettaLigand produced a native-like top scoring model. Here,

RLE still produced a native-like model in the top ten scoring.

Although the sampling efficiency increase was significant, there does not appear to be a

direct translation between the number of native-like models and the ability to discriminate

them from non-native-like models. Since both algorithms utilizes the same knowledge

based scoring function during the high resolution docking and the final ranking, its expected

that they may have a similar model discrimination power. This is illustrated in Figure 2.3c

where in the large majority of cases, RLE and RosettaLigand either both succeeded or

both failed at ranking a native-like model as the best scoring. However, there are ten cases

where RLE was able to rescue the performance of RosettaLigand by producing a native-

like best scoring model. Averaged across all 89 cases, the sampling efficiency improved by

18 percent and in 20 of these cases, both sampling and scoring metrics improved.

2.4.2 RLE eliminates alternate binding modes

The final binding location and orientation of the ligand is primarily determined by the

low resolution docking stage. Perturbations of the ligand in the high resolution stage are

minimal as the bulk of computational time is spent towards conformational energy min-

imization of protein sidechains. The RLE low resolution phase moves all molecules in

unison, maintaining superimposition, and therefore force molecules to adopt a common

binding mode. This coordinated movement is the process that eliminates binding volume

available to some but not all members of the group. Figure 2.4 shows the ligand RMSD

distributions seen among the top ten percent of scoring models for both RLE and Roset-
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taLigand docking. Each protein-ligand pair of the system is plotted separately so effects

across the system can be observed. Higher density at the low RMSD end of distribution

indicates success. The red line in each subplot shows the 2 ligand RMSD cutoff for native-

like binding modes. The systems have been sorted qualitatively into broad categories based

on whether or not RLE generally improved both the sampling efficiency and the scoring

discrimination. The RMSD distribution pattern for RLE is much more consistent within

a system than the RosettaLigand distribution patterns for the same system. This is the

aforementioned forced common binding mode effect. However, there remains individual

protein-ligand pairs within a system where the distribution was not significantly improved.

Figure 2.4: Ligand RMSD distribution observed among top 10 percent of models for Roset-
taLigand and RLE. Nine example systems have been separated into four qualitative cate-
gories of sampling and scoring change. For each system, data is split by individual protein-
ligand pair with RLE docking on the left and RosettaLigand on the right. Black line shows
the median and red line shows the 2 cutoff. A: RLE improved docking sampling and scor-
ing for CTAP, HCV, and TPPHO (left, mid, right). B: RLE improvement varied from ligand
to ligand within system for CDK2 and P38 (left, right). C: RosettaLigand performed better
for LPXC and THROM (left, right). D: Both methods failed to perform well for CATB and
THERM (top, bottom.

In the systems where RLE drives both a sampling efficiency and a scoring discrimi-
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nation improvement (green), RLE eliminated a significant number of high RMSD binding

modes seen in the RosettaLigand results. In the CTAP example, RLE ligand RMSDs are

all within a similar range while the outliers produced by RosettaLigand are eliminated. It

remains possible for ensemble docking to be more successful for certain ligands within

group than others. Ligand C for CTAP has a smaller second peak that is not consistently

eliminated by ensemble docking. One reason for this is because the high resolution stage

considers ligand conformers in additional to protein conformers. For larger, more flexible

molecules, RMSD may be relatively high even if the correct binding location and orien-

tation is recovered. This is due to ligand conformational flexibility in the distal regions.

Alternatively, in the HCV example, the majority of models from both RosettaLigand and

RLE are not native like but only RLE generates a batch of native-like models. This is the

aforementioned rescue scenario in which RLE is able to produce a correct model when

RosettaLigand cannot.

A limitation to the RLE algorithm occurs when the alternate, high RMSD binding mode

is available to all molecules within a system, as seen in the P38 system with mixed results

(orange). RLE does not provide a significant advantage in scoring discrimination when

both methods have a similar sampling efficiency. The emphasis on placement of the com-

mon scaffold means that an incorrectly identified common binding mode will result in poor

performance across the system as seen in THROM (blue). RosettaLigand was able to pro-

duce good results for two members of this system because its docking runs are independent.

Whether or not the different binding modes will be correctly consolidated in an actual ap-

plication depends on the particular post-hoc analysis chosen. This incorrect placement of

the common scaffold is repeated in the CATB and THERM systems where the distribution

peaks fall out of the native-like RMSD range (red). One reason for this is the lack of chem-

ical diversity in the functional group modifications within the group. These systems are

difficult cases that neither algorithm can dock well.
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2.4.3 Illustrative examples of success and failure

The binding pocket for several illustrative examples are shown in Figure 2.5. CTAP lig-

and B and TPPHO ligand C both show a significant improvement in sampling and scoring.

The best scoring RLE model is native-like in both cases and sampling efficiency was 2.1x

and 3.3x better for TPPHO and CTAP respectively.

Figure 2.5: Illustrative examples of success and failure in recovering a native-like best
scoring model. The top panels show the best scoring model from RosettaLigand and the
bottom panels show the best scoring model from RLE. The co-crystal structure is shown
(purple) aligned with the model (green). Remaining ligands of the RLE ensemble are
shown as blue lines. A: CTAP system, ligand ID B (PDB: 4AGL) B: TPPHO system,
ligand ID C (PDB: 2QBR) C: HSP90 system, ligand ID B (4YKQ).

In the CTAP example, ligand B is a small ligand in a relatively open binding pocket.

This made it difficult for RosettaLigand to determine the proper orientation, generating

three equal possibilities as shown in the RMSD distribution in Figure 2.4. However, the

remaining ligands built off of the core scaffold have large chemical modifications off of

two sites. The interactions formed by the distal groups with the bordering protein loops

allows RLE to identify the proper orientation of the common core. Another example of

this orientation flip is illustrated in the TPPHO example. Although the RMSD distribution

for ligand C is more distributed, a clear binding mode is available for ligands D and E in the

same system. This gives RLE a modest increase in successfully orienting ligand C, with
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the major deviation due to conformation rather than orientation.

Figure 2.6: Ligand RMSD distribution observed among top 10 percent of HSP90 models
for RosettaLigand and RLE. RLE docking distribution is on the left and RosettaLigand on
the right. Five line summary shows highest, lowest, median, and quartiles.

Although RLE showed a slight sampling improvement for HSP90, the system proved

to be a relatively challenging case for ensemble docking due to the small size of the ligand

system. RosettaLigand produced a native-like best scoring pose while RLE generated a

flipped conformation. The RMSD distribution however favors RLE with more native-like

models. Across the system, there is a persistent alternate binding mode suggested by RLE,

as seen in Figure 2.6, due to the fact that the binding pocket is much larger than the ligand.

RLE is unable to rule out alternative binding modes of the common scaffold without distal

groups that can eliminate conformational space.
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2.4.4 Higher chemical similarity promotes higher sampling efficiency up to a limit

In order to better understand indicators of successful and unsuccessful systems, we

sought to characterize the similarity of the cross-dock small molecules compared to the

co-crystallized molecule. The traditional Tanimoto similarity coefficient is not particularly

robust for more complex substitutions as it focuses on atom identity within a common sub-

structure. We compared molecules using the in-house BioChemicalLibrary to calculate a

PropertySimilarity[59]. PropertySimilarity measures similarity based on atomic charges,

Van der Waals volume, bond types, and the presence of hydrogen bond donors/acceptors.

For this dataset, PropertySimilarity has a general positive correlation with Tanimoto simi-

larity as shown in Figure 2.7.

Figure 2.7: Tanimoto Similarity versus Property Similarity for 89 cross-docking test cases.
Each molecule is compared to the ligand co-crystallized with the receptor structure for the
system it belongs to.

The relationship between sampling and scoring improvement to property similarity is

shown in Figure 2.8. Ligands are classified based on whether both sampling and scoring im-

proved (red), both worsened (blue), or a mix of the two (white). There is a general tendency

for molecules docked with high sampling efficiency to have a high chemical similarity to
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the co-crystallized molecule. However, there are a number of highly related molecules in

Figure 2.8 that are poorly sampled, suggesting that chemical similarity is a necessary but

not sufficient condition of docking success. This is in agreement with previous studies that

have shown docking success increases with chemical similarity[80, 96].

Figure 2.8: Sampling efficiency versus PropertySimilarity for top 10 percent scoring mod-
els. Protein-Ligand pairs are divided into cases where RLE improved both sampling and
scoring (red), worsened both sampling and scoring (white), or improved one but not the
other (blue). A: PropertySimilarity of each test ligand to the ligand co-crystallized with re-
ceptor structure vs the improvement in RLE docking as calculated by RLE percent native-
like minus RosettaLigand percent native-like. B: The mean PropertySimilarity for each
protein system vs. the improvement in RLE docking. Each vertical set of dots represents a
single protein-ligand system.

In order to predict performance on a system level, we computed the mean PropertySim-

ilarity for each system and plotted this value against each ligands improvement in sampling

efficiency when docked with RLE. This is shown in Figure 2.8 with each vertical line com-

prising of a congeneric set of protein-ligand pairs.

The largest improvement falls around a mean PropertySimilarity measure of 0.8, sug-

gesting that there is a sweet spot for improvement. Systems that are too different (P38,

mean=0.37) or too similar (THERM, mean=0.97) exhibit limited benefits from ensemble

docking. In particular, the THERM system consists of a chemical scaffold to which the

primary modification is the switching of various hydrocarbon groups. Furthermore, the

molecule interacted with two separate hydrophobic ends and a network of water molecules
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in the binding account, which makes orientation determination difficult[98].

2.4.5 Identifying favorable binding poses corresponding with SAR data

The inaccuracy of ranking despite accurate docking remains problematic. One post-

hoc solution is to select sets of binding modes that correlated with experimental data. We

sought to address this deficiency during docking by adding a corrective factor to drive

high resolution docking towards binding modes. Following each cycle of optimization,

we modified the scoring difference based on the Spearman correlation to experimental

data as an adjustment prior to applying the Metropolis criterion. The adjustment provides

an additional bonus to perturbations that improved the score of stronger binding or more

active ligands, and to perturbations that worsened the score of weaker binding or less active

ligands. The low resolution docking stage remains the same and does not account for

experimental correlations. The adjusted co-dependent algorithm is shown in Figure 2.9a

with the score adjustment being applied in the highlighted step.

Although the corrective factor does improve correlation with experimental affinity, it

does not improve the sampling efficiency or docking accuracy. This is in part due to the fact

that the binding orientation is primarily determined in the low resolution phase that does

not account for correlation. The Spearman correlation coefficient is defined as the Pearson

correlation based on only the ranks of the models. Therefore, the Spearman correlation

has a discrete distribution with limited values available for a small data set. This makes it

difficult to significantly improve the correlation in many cases. The results are in agreement

with previous results showing that improvements in the Pearson scoring correlation using

machine learning based scoring functions only translated to a moderate increase in accurate

ranking[99].

One additional hindrance to a more successful corrective method is the dilemma in

selecting models illustrated in Figure 2.9b. In order to maintain the experimental correla-

tion, entire ensembles of ligand models must be selected. However, since the Monte Carlo
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Figure 2.9: RLE Spearman correction during high resolution docking to favor binding
modes that correlate with experimental data. A: Spearman corrected RLE high resolution
docking steps shown in red B: Model selection dilemma resulting from inaccuracies in
docking scoring function C,D: Distribution of Spearman correlation in generated ensembles
for each system with a corrective factor (left, purple) and without (right, blue). The mean
line is shown in black.

sampling method is stochastic, it is unlikely that each ensemble will contain low energy

conformations of every protein-ligand interface. Selecting models by a mean metric across

the entire ensemble may select the best scoring models for one ligand but not for others.

Even with improvements in scoring functions, this selection dilemma may prevent RLE

from simultaneously selecting the best models for each ligand.

2.4.6 Comparing RosettaLigandEnsemble with protein-ligand docking tools

We used AutoDock[9] with a Lamarckian Genetic Algorithm to test its performance

in the 89 cross-docking systems in the benchmark set. Standard protocol settings and
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a docking volume comparable to RLE docking were used to generate the models. The

AutoDock simulations were performed using a rigid receptor model.

Figure 2.10: Small molecule RMSD of the top ranked model from RLE and AutoDock
docking. The 2.0 angstrom success cutoff is marked out in black lines. Equal performance
of the two software is indicated by the blue line.

Figure 2.10 shows the small molecule RMSD of the top scoring model from RLE and

AutoDock docking. RLE recovered a native-like small molecule pose in 23 cases where

AutoDock did not. By contrast, there were only 13 cases where AutoDock had a native-like

best scoring model when RLE did not.

Wang et. al. evaluated ten docking software across the PDBBind dataset, including 18

cross-docking cases from the present benchmark in which at least one tested method did

not recover a native-like top scoring model[100]. RLE rescued the performance in 15 out

of 18 of the cases in Figure 2.11.
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Figure 2.11: RosettaLigandEnsemble performance on 18 failure cases from Wang et. al.
The table shows small molecule RMSD of the top ranked models from RLE and ten other
docking software. All results except for RLE were pulled from Wang et. al.

Most notably, RLE was able to generate native-like models across the calcium-dependent

protein kinase CDPK1 (CALM) and Helicobacter pylori nucleosidase (MTAN) systems.

However, the 2B07 test case from a series of protein tyrosine phosphatase inhibitors (TP-

PHO) remains challenging. This is likely related to the orientation flip discussed with

regards to Figure 2.5. RLE was also able to recover native like top scoring models for all

five spleen tyrosine kinase (SYK) compounds also tested in CSAR 2014, matching the per-

formance of the best available docking tools.[101] However, RLE performed worse on an

deacetylase (LPXC) test system that was part of CSAR 2012[24], only recovering a near

native model in 1 out of 4 cases. The generated best scoring models had a RMSD of 2.23

in the worst test case, suggesting only a minor performance decrease in the LPXC system.

It should be noted that these comparisons do not account for additional protein flexibili-

ties accounted for by RLE, nor does it include the effects of differences in starting ligand

conformation. However, there does not appear to be a strong induced fit or conformational

selection component in these structures.
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2.5 Conclusions and Future Directions

2.5.1 Needed improvements in decoy discrimination

The improved sampling efficiency did not directly translate into improved scoring rank-

ing partly due to the inaccuracies in discriminating between native-like and non native-like

models. Better decoy discrimination in conjunction with the more efficient sampling will

allow for fewer models to be produced before converging on a native like binding mode.

The reduced number of models will greatly reduce the time and computational resources

necessary for docking. Furthermore, the SAR correlated docking would benefit greatly

from a more accurate scoring function capable of ranking ligands. RLE in combination

with such a method would generate binding modes in accordance with SAR data without

the need for post-hoc filtering.

2.5.2 Consideration of alternate binding modes among congeneric ligands

RLE docking is generally designed for docking in cases where similar ligands exhibit

a common binding mode. This is the case for the vast majority of known protein-ligand

crystallographic complexes[2, 70]. Presently, a priori assumptions are made for a given

system, even if single ligand docking is used as initial placement is often based on previ-

ously seen binding modes. A future development of RLE docking would allow for minor

shifts in the binding mode while maintaining the general placement and orientation, a sort

of soft ensemble docking. Furthermore, the use of a property based alignment method such

as PropertySimilarity will allow for common scaffolds based on chemical similarity as op-

posed to identity. Cases wherein similar ligands bind in completely different pockets or to

different protein conformations will remain challenging for ensemble based methods.
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2.5.3 Ensemble approaches from protein structure based direction

A similar approach can be used to drive ensemble docking improvements in the use

of protein mutation data. Current approaches to protein ensembles generally focus on

accounting for conformational diversity. Mutational data on proteins is used to identify

potential protein-ligand interaction sites as a distance restraint to docking. An alternate

ensemble approach would utilize SARs based on multiple protein mutants to determine

how the ligands may bind to each mutant within the series. A further step would be in

combining protein ensemble and ligand ensemble methods to improve docking accuracy

by considering how ligand modifications fit into the different pockets of protein mutants.

Multi-target virtual screening, in particular with biologically relevant mutants, can be per-

formed with such an algorithm. The Platinum database of small molecule interactions with

protein mutants[102] provides an excellent source of data for training an algorithm in this

approach.
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Chapter 3

ROSIE Ligand Docking

3.1 Summary

This chapter discusses the upgrade of protein-small molecule docking server for use by

non-computational focused researchers interested in modeling a protein-ligand interface.

The server was updated to use the improved RosettaLigand docking algorithm described in

DeLuca et. al. [18]. Further additions such as the inclusion of a small molecule conformer

generator were made with the goal of reducing manual preparation steps necessary for a

docking submission.

The work in this chapter is ongoing but the bulk portion will be submitted as Fu et. al.

”ROSIE Ligand Docking: A Protein-Small Molecule Docking Server” for which I am an

equally contributing first author.

3.2 Introduction

Many proteins function by interaction with endogenous small molecule ligands. Small

molecule therapeutics account also for the majority number of FDA-approved medications[103].

Therefore, understanding the function of proteins as well as developing of novel drug can-

didates requires a structural understanding of binding interactions between a protein and

a small molecule. Atomic level insights regarding these interactions from structures of

protein-ligand complexes determined by X-ray crystallography are ideal for this purpose,

but experimental structures can be challenging and costly to obtain. Computational protein-

ligand docking aims to provide a full-atom model of the bound protein-small molecule

complex using existing structures of the individual partners as the starting point. Recent

advances and applications in small molecule docking and drug discovery have been dis-
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cussed extensively[104, 87].

A number of protein-ligand docking servers are presently available. SwissDock[105]

is a server based on EADock DSS, an evolutionary algorithm, while MEDock[106] uses a

novel optimization algorithm that works well with more rugged energy landscapes. PatchDock[107]

is a geometry based method focused on shape complementarity. There are also standalone

docking tools such as NRGsuite, which integrates with PyMOL to allow users to setup

real-time simulations on their own machines[108]. While some structure-based virtual

screening servers can also perform docking, these tend to focus on speed for docking large

libraries rather than accuracy for recapitulating a single protein-ligand interface. Other

small molecule docking methods generally require the user to provide computational re-

sources (e.g. AutoDock[9]) or a fee for usage (e.g. DockingServer[109]).

RosettaLigand[16, 17] is a well-established small molecule docking protocol within

the Rosetta biochemical modeling software suite[1, 110]. RosettaLigand uses shape com-

plementarity to sample reasonable binding modes and then performs high resolution re-

finement using a knowledge based scoring function. The algorithm treats the ligand and

surrounding protein residues, both backbone and side-chain, as fully flexible during the

refinement process. Hundreds of independent simulations can be quickly generated by

RosettaLigand running on a cluster.

There are a few limitations of the existing implementation of the RosettaLigand ap-

plication: 1) Rosetta primarily utilizes a command line interface, 2) Rosetta has specific

input formats for protocol scripts and ligand parameter files, 3) Rosetta has a large variety

of options for customizing the docking process, and 4) analysis of outputs often require

additional scripting. While the ability to customize protocols is an advantage to the experi-

enced user, it may be overwhelming for newcomers to protein-ligand docking. In order to

overcome these challenges, we have developed the ligand docking protocol for the Rosetta

Online Server that Includes Everyone (ROSIE)[111].
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3.3 Experimental Methods

ROSIE Ligand Docking utilizes a two stage approach for predicting the binding mode

between a small molecule ligand and the protein target. A low resolution first stage iden-

tifies likely binding modes based on geometric complementarity of the ligand with the

protein binding pocket. A rigid protein model is used to generate an attraction/repulsion

grid based on hard spheres. The ligand is then allowed to translate, rotate, and change con-

formations in the docking volume with moves accepted or rejected based on a Monte Carlo

Metropolis (MCM) criterion[18]. By default, the grid is 15 wide but users may increase

the search space up to 30 .

The preliminary model from the low resolution stage is passed on to a high resolution

MCM stage with a full-atom knowledge-based scoring function. Small perturbations are

made to the ligand position followed by rotamer library sampling of local protein residues.

Local residues are dynamically defined as residues within 7 of the ligand in addition to

sequentially adjacent residues to allow for backbone flexibility. The restriction of protein

flexibility to interface residues makes modeling of large proteins tractable. A soft-repulsive

energy minimization allows residues to sample conformations beyond the rotamer library.

Following six cycles of MCM docking, a final hard-repulsive gradient minimization is

used to optimize ligand and receptor torsion angles, both backbone and sidechain. The

score difference between the docked protein-ligand complex and the separated protein-

ligand pair is reported in Rosetta Energy Units as the interface delta score, an emulation

of binding free energy change. The models with the top ten most negative interface delta

scores are presented as the best models[16].

The detailed terms of the high resolution scoring function have been covered elsewhere[112,

17, 113]. Key terms included in the ROSIE Ligand Docking score function are 1) Lennard-

Jones attraction/repulsion potentials, 2) Lazardis-Karplus implicit solvation, 3) hydrogen

bonding potential, and 4) empirically derived rotamer and phi-psi angle probability scores.

In addition, the ligand docking specific scoring function includes the above terms and elec-
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trostatic terms for the ligand with adjusted weights benchmarked on 100 native protein-

ligand complexes[17].

3.4 Results and Discussion

The following describes the ROSIE Ligand Docking server setup including a descrip-

tion of the input and output process. Previous validation of the underlying RosettaLigand

algorithm is also discussed.

3.4.1 Inputs for ROSIE ligand docking

A structure of the protein target in PDB format is required. This structure can be derived

from experimental or computational methods. The ligand molecule should be provided as

a single SDF-formatted file. The user may choose to supply within this file all ligand

conformers to be considered during docking, or select for ROSIE to generate conformers

using the BioChemicalLibrarys knowledge based rotamer library sampling algorithm[95].

ROSIE Ligand Docking does not perform binding site detection and thus an approximate

starting location for the ligand is necessary. The starting location can be provided by setting

the ligand in the binding pocket prior to uploading the SDF file and checking the Use the

starting coordinates in the SDF option. Alternatively, the user can provide the starting point

as X, Y, Z coordinates. In this case, the server will automatically translate the centroid, cal-

culated by averaging the coordinates of all non-hydrogen ligand atoms, to the provided

coordinates. The automated conformer generation and use of SDF coordinates were not

available in previous implementations of the server. For more information on X, Y, Z coor-

dinates in the PDB format, consult the HETATM description on page 190 of the PDB format

guide (ftp://ftp.wwpdb.org/pub/pdb/doc/format descriptions/Format v33 Letter.pdf). Ad-

ditional information on the SDF file, an extension of the MDL Molfile format, can be found

at https://en.wikipedia.org/wiki/Chemical table file. In particular, the first block provides

the coordinates used by the server to define the ligand position.
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In cases where the approximate binding site is unknown, SiteHound-web[114] can

be used to identify potential ligand binding pockets. The center coordinates output by

SiteHound-web can directly be used as the starting X, Y, Z coordinates for ROSIE Ligand

Docking.

Figure 3.1: Screenshot of input screen for submitting a new ROSIE Ligand Docking job

Default sampling parameters that work well for most cases are provided, but may be

adjusted under Advanced Settings to modify search radius, step size, or step count. Users

do not have to modify any parameters under Advanced Settings. For a larger binding

pocket, users may wish to perform more extensive sampling by increasing the Maximum
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radius to search, Size of the low-resolution grid, Size of the low-resolution translation,

Number of Monte Carlo sampling steps, and Randomize the initial position parameters.

Conversely, if the likely binding location is better defined through experimental data, the

user may wish to decrease these parameters for a limited refinement docking. There are

further options for customizing the number of high resolution protein backbone and side-

chain optimization cycles. Optional parameters allow the user to specify job title, job

description, and email address for notifications. Users should consult the documentation

for additional details and usage examples. Figure 3.1 shows an example input screen for

docking eticlopride to human dopamine receptor 3 (PDB: 3PBL).

3.4.2 Outputs for ROSIE ligand docking

Figure 3.2 illustrates the typical output from a single run of ROSIE Ligand Docking.

The output is displayed in the Results section in the form of images and file links for the top

ten best scoring models. An interface score versus total score plot is available as a quick

visualization of scored models. A score table is provided in the standard Rosetta score

file formatting, where each row represents a single, independent model and each column

represents a score term.

The primary scoring term used to evaluate ligand docking models is interface delta,

which is located in the second column. This value is calculated in Rosetta Energy Units and

is meant to emulate the binding energy of the ligand, with more negative values being better.

In contrast, the total score evaluates the protein-ligand complex in its entirety, including the

unmodified protein residues outside of 7 protein-ligand interface region. If the user wishes

to sort by alternative scoring terms, the user may simply click on the column header for the

desired scoring term. The server enables downloading of all input and output as a single

TAR archive or individually through custom web-links. Summaries are also provided in

JSON format for use with database processing. The job submission parameters used to

generate results are also available.
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Figure 3.2: ROSIE Ligand Docking sample results page generated by docking eticlopride
to human dopamine receptor 3. The output page includes the top ten scoring models gen-
erated, a score plot, a sortable score table, and download links to all files.
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3.4.3 Information about ROSIE server

ROSIE Ligand Docking has completed more than 2000 ligand docking jobs since Jan-

uary 2014, which amounts to over 90,000 CPU hours. Roughly 1 CPU hour is needed to

generate 100 structures with exact time dependent on ligand size and sampling parame-

ters. Each docking model is an independent simulation allowing ROSIE Ligand Docking

to generate all models on the order of real time minutes. The current ROSIE computing

cluster is shared among all protocols and hence completion time from submission depends

on present server load. Previous implementation of the ROSIE Ligand Docking utilizes the

docking protocol described in Meiler & Baker (2006)[17] and Davis & Baker (2009)[16].

The present version combines the low resolution docking protocol from DeLuca (2015)[18]

with the high resolution docking protocol previously used. The updated low resolution

docking algorithm demonstrated a 10-15 percent increase in docking accuracy and a 30-

fold speed increase over the previous method. ROSIE Ligand Docking has a Python front-

end for user interface and records docking tasks into a MySQL database following input

validation. Unseen to the user, the back-end converts user requests into Rosetta command-

line scripts for the computer cluster. The results are stored back into the database for easy

user access. This setup allows for developers to modify the modeling protocol without af-

fecting user interactions[115]. ROSIE Ligand Docking is maintained and tested alongside

the Rosetta Software Suite to ensure underlying protocol changes do not impact the server

in unexpected ways.

3.4.4 Validation of RosettaLigand algorithm

The RosettaLigand protocol that serve as the basis for ROSIE Ligand Docking has been

validated in a number of independent studies. Davis et. al. found the best scoring model

to be within 2 of the native structure in 54/85 benchmark cases[16]. In a separate test

on a pharmacologically relevant GlaxoSmithKline dataset, RosettaLigand obtained ¿40
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percent docking success rate for 4 out of 7 systems. The current docking protocol was

further refined in DeLuca et. al., which demonstrated an effective 30-fold speed increase

and a 15 percent accuracy increase against 43 protein-ligand complexes[18]. These results

were comparable to other docking software, all of which showed system-dependent suc-

cess rates[16]. Absolute binding energy prediction on an HIV-1 protease/inhibitor dataset

obtained a correlation coefficient R of 0.71[20].

The RosettaLigand algorithm can also utilize protein targets generated via compara-

tive modeling. This is important as many pharmaceutically relevant targets do not have

experimentally determined structures. Docking into comparative models is a more chal-

lenging task but success can be significantly improved by utilizing holo protein templates

co-crystallized with chemically similar ligands. Kaufmann et. al. used RosettaLigand

to recover a native-like binding mode in the top ten scoring for 21 out of 30 benchmark

cases[36]. Nguyen et. al. demonstrated the applicability of this concept to G-Protein Cou-

pled Receptors (GPCRs), a major protein family for drug discovery applications[59]. A

broadly applicable comparative modeling method is not yet available on ROSIE but inter-

ested users are encouraged to look into the RosettaCM algorithm[116] or the combined

Rosetta homology modeling plus docking protocol[117].

3.5 Conclusions and Future Directions

We have developed ROSIE Ligand Docking as part of the ROSIE set of easy to use,

automated protocols for computational structural biology. Other available ROSIE proto-

cols include protein-protein docking, peptide docking, and antibody modeling. Additional

protocols can be developed via the directions provided in [115] and will be incorporated

into ROSIE once server back-ends become available.

ROSIE Ligand Docking provides a lower barrier to Rosetta for users less familiar with

scripting languages or computing clusters. Basic inputs of protein and small molecule

structures is sufficient to generate models of the interaction complex. Furthermore, users
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do not need to pre-compute conformations of protein or small molecules. More advanced

users may customize docking options or use ROSIE Ligand Docking in conjunction with

other computational methods. The standardized file formats of PDB and SDF for protein

and small molecule respectively can used with other structural biology software with ease.

In the future, we anticipate improvements in the ligand docking protocol are necessary

to keep up with drug discovery efforts geared towards more challenging targets. In particu-

lar, G-Protein Coupled Receptors and other membrane proteins remain difficult targets for

computational ligand docking. The difficulty observed in scoring these membrane protein-

ligand complexes may be improved by a better scoring function parameterized specifically

for these ligands. The current ROSIE Ligand Docking implementation do not allow for cus-

tomization of the scoring function. An iterative comparative modeling and ligand docking

pipeline is also in development. Furthermore, ROSIE Ligand Docking does not currently

allow for experimental restraints, a feature available in the command line version of Roset-

taLigand. The inclusion of protein-ligand interface restraints may help ROSIE Ligand

Docking better identify binding modes that correspond to experimental data. The current

workflow may also be upgraded to allow for use in virtual screening application.
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Chapter 4

Applications of RosettaLigand and RosettaLigandEnsemble

4.1 Summary

This chapter discusses the application of protein-ligand structure prediction with Rosetta

to small molecule discovery applications of pharmacological importance. Beyond Roset-

taLigandEnsemble docking, complementary techniques such as comparative modeling and

loop closure are utilized to model protein receptors. The computational predictions in this

chapter are checked in collaboration by research groups at the Vanderbilt Center for Neu-

roscience Drug Discovery and at Leipzig University.

The STAT ligands research discussed in this chapter contains material published as

Lis et. al. ”Development of Erasin: A Chromone-Based STAT3 Inhibitor Which Induces

Apoptosis in Erlotinib-Resistant Lung Cancer Cells.”[118] for which I am a middle author,

and material from an additional co-author manuscript currently under review. The work on

mGluR modulators is unpublished but contains a graphic reprinted with permission from

Wenthur, C., & Morrison, R. (2013), ”Discovery of (R)-(2-fluoro-4-((-4-methoxyphenyl)

ethynyl) phenyl)(3-hydroxypiperidin-1-yl) methanone (ML337), an mGlu3 selective and

CNS penetrant negative allosteric modulator”, Journal of Medicinal Chemistry, 1(56), pp.

52085212, Copyright 2013, American Chemical Society[119]. Finally, the PAR binders

research covers ongoing unpublished work.
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4.2 Introduction

4.2.1 The necessity of comparative models

Research questions in pharmacology often focus on understanding how a particular

small molecule ligand binds to a given protein target. With advances in cell-based assays

for high throughput screening, the number of known protein-ligand interactions are being

uncovered at a rapid pace[120]. However, Structure-based drug design requires detailed

knowledge of molecular interactions beyond a simple measure of binding affinity. Exper-

imental structure determination methods are improving rapidly and nearly 70 percent of

the human proteome either have a known structure or have a homolog (>30% sequence

identity) with a known structure[121]. In particular, in a structural coverage study of 667

human proteins targeted by 1194 approved drugs, roughly half had a determined structure

and almost all had a homolog with a determined structure[122]. Comparative modeling

is the computational technique for generating a protein’s unknown structure, based on its

sequence, from fragments of related homologs. Even in cases of when the target protein

has a known structure, a variation of comparative modeling may be necessary to generate

alternative conformations to capture the inherent dynamics of the protein. Protein structure

prediction is especially handy with membrane proteins that are more difficult to character-

ize than their soluble counterpart. The addition of modeling enables structural insights for

entire protein families when only a few members have experimentally determined struc-

tures. A common workflow in these studies is to generate an ensemble of comparative

models to represent a target receptor, and then docking a small molecule to the ensemble

to identify possible binding modes.

4.2.2 Comparative modeling and docking with Rosetta

The Rosetta software suite, with its protein modeling and design foundation, is able

to perform both comparative modeling and ligand docking. With the RosettaScripts ap-
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plication system, the two protocols can be linked seamlessly. A full case example using

T4-lysozyme is explored by Combs et. al[117]. In one benchmark Rosetta docking to

comparative models, Kaufmann and Meiler observed a native-like binding pose among the

top ten scoring for 21 out of 30 test cases. Furthermore, docking results were significantly

better in cases when utilizing protein templates containing a ligand of similar chemotype

compared to templates with dissimilar ligands or in the apo state[36]. In the case of G-

protein coupled receptors, integral membrane proteins of great pharmaceutical interest,

Nguyen et. al. found that RosettaLigand sampled near-native poses in docking into com-

parative models of 14 GPCRs, but it was challenging to select correct binding modes by

score alone. The use of high sequence identity templates, knowledge-based binding pocket

filters, and experimental contact points all served to improve accuracy[59].

4.2.3 Multi-template comparative modeling in Rosetta

Comparative modeling in Rosetta traditionally used a ”copy and refine” approach. A

given target sequence is matched with known structures from the Protein Data Bank (PDB),

the matching segments are copied over, and short sequence-based fragment pieces are used

to fill in the unmatched regions. Performance relied on having homologous proteins with at

least 30% sequence identity. Proteins that maintained its tertiary fold and had well ordered

structure were the easiest to model[1]. Proteins from less well characterized families were

more challenging to predict. Furthermore, docking to comparative models becomes more

difficult if the template protein structures were determined with no ligand or a chemically

distinct ligand bound. This can be an issue even when the homolog template has high

overall sequence identity with the target as the binding interface may not be conserved.

One way to better comparative modeling in these cases is with RosettaCM, an improved

sampling algorithm and scoring function that utilizes multiple templates with high local

sequence identity.

RosettaCM[116] is a comparative modeling algorithm that assembles structures from
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multiple aligned fragments. This allows for more accurate construction of a target protein

even when there are no close homologs. In the CASP10 study, RosettaCM improved side-

chain and backbone conformations when sequence identity was over 15%. A dedicated

scoring function for an initial low-resolution fragment recombination stage favors compact

structures with buried hydrophobic residues and paired beta strands. This initial stage

generated structures of correct topology overall but are often distorted where fragments are

joined. The second stage uses local fragment replacements to minimize individual areas

before a third stage adds the full side chain representation of the protein. One particular

area of improvement was in the modeling of loops connecting helices. This is particularly

important to ligand docking as there is often an induced fit effect when a flexible loop is

present near a ligand binding site.

4.2.4 STAT proteins

STAT, or signal transducer and activator of transcription, proteins are transcription fac-

tors that are activated by membrane associated receptors. All seven STAT proteins have

been shown to play a role in disease with STAT3 and STAT5 being popular targets for small

molecule inhibitors of human tumor growth[123, 124]. Berg et. al. previously discovered

a potent STAT5 inhibitor with a naturally occurring chromone scaffold[125]. The question

of whether a STAT5 inhibitor can be altered for activity against other STAT members was

explored and tested using a fluorescence polarization assay[126].

4.2.4.1 Structure of erasin and STAT proteins

A derivative of the originally reported STAT5 inhibitor was found to have significant ac-

tivity against STAT3 with lesser inhibition against STAT1. The compound, dubbed erasin,

and its activity is shown in Figure 4.1. A major structural question is understanding why

this compound exhibited different activities against the various STAT subtypes and if the

compound can be rationally designed for desired selectivity.
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Figure 4.1: Activity of erasin in fluorescence polization assay against SH2 domains of
STAT1, STAT3, and STAT5b.

Three crystal structures of relevance were identified in the PDB. a structure of unphos-

phorylated STAT1 complexed with a phosphopeptide, structure of the STAT3 homodimer

bound to its DNA recognition site, and a structure of STAT5A that was a close homolog

of the STAT5B structure. These structure was truncated to consider only the SH2 domain

containing the ligand binding site, which is based on the peptide binding position observed

in the STAT3 structure.

4.2.5 G-protein coupled receptors

GPCRs are transmembrane signal transduction proteins that comprise the largest human

superfamily of receptors. They are characterized by seven transmembrane domains, and

generally interact with either the cAMP or phosphatidylinositol signal pathways. A recent

analysis shows 475 drugs, over a third of alll drugs approved by the FDA, target GPCRs.

Existing drugs interact with 108 unique GPCRs with over 300 potential drugs in clinical

trials that target either established or novel GPCR targets[127]. There are over 350 potential

druggable GPCRs, i.e. GPCRs where one expects to be able to design a small molecule

binder and the binding of the small molecule might alter the function with a therapeutic

benefit. The discovery of new, selective GPCR ligands is also beneficial to studying GPCR

function in biological systems[128]. This makes GPCRs one of the most critical targets for

drug discovery[129, 130].

Only a fraction of GPCR-small molecule crystal structures have been solved across all

four major classes (A,B,C,F). There remains over 100 orphan GPCRs, receptors for which
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the endogenous small molecule is not yet known[129]. The GPCR Dock assessments re-

ported near experimental accuracy for docking rigid orthosteric small molecules into close

homologs, but docking flexible small molecules into binding pockets of distant homologs

with flexible loops remains challenging. As existing structures cover only a fraction of

druggable GPCRs, docking into comparative models will often be a necessary part of the

modeling pipeline[131, 132]. The existing structures and associated structure activity rela-

tionship data provide excellent templates in driving modeling efforts[133].

4.2.5.1 Metabotropic gluatamate receptors

Metabotropic glutamate receptors (mGluRs) are a family of eight class-C mammalian

GPCRs critical in excitatory activity in the CNS. The wide distribution of glutamater-

gic synapses suggests regulation of particular subtypes can be useful in treating a wide

range of CNS diseases[134] including Fragile X syndrome[135], schizophrenia[136] and

Parkinsons[137]. The eight mGluRs are further divided into groups I, II, and III based on

their localization and function in the synapse.

Metabotropic glutamate receptor 3 is a group II member of the mGlu GPCR receptor

family. Upon agonist binding, mGlu3 exerts cellular effects via inhibition of adenylyl cy-

clase. Activation of mGluR3 in turn modulates glutamate N-methyl-D-aspartate receptors,

whose inhibition is known to induce schizophrenic behavior in otherwise healthy individ-

uals. An mGluR3 agonist, LY354740, was shown to alleviate schizophrenia symptoms

in an animal model[138]. Furthermore, genomic studies have identified single nucleotide

polymorphisms in the mGluR3 gene associated with decreased pre-frontal cortex function,

cognition, memory, as well as an increased risk of schizophrenia. In addition, the local-

ization of group II mGlus in the forebrain and the differential distribution in presynaptic,

postsynaptic, and glial compartments make them promising therapeutic targets if selective

ligands can be developed.
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4.2.5.2 Allosteric modulation of group II mGluRs

Previous development of allosteric modulators for group II receptors has been hindered

by lack of selectivity between mGlu2 and mGlu3[139]. For instance, a previously dis-

closed NAM, LY2389575C[140], was shown to have a mere four-fold selectivity prefer-

ence for mGlu3 over mGlu2[141] in a GPCR-potassium channel coupling thallium influx

assay[142] . This intra-group preference is critical for therapeutic and probe development

as the two subtypes have distinct mechanisms in neurodegeneration/neuroprotection as-

sociated with schizophrenia[143]. However, recent progress within the Vanderbilt Center

for Neuroscience Drug Discovery has generated a novel mGlu3 selective NAM from a re-

lated mGlu5 PAM. The CNS-penetrant NAM, VU0463597, exhibits potent yet selective

binding to mGlu3 (>15x over mGluR2) and has an SAR profile suitable for molecular

docking experiments[141]. A library optimization strategy to improve upon the selectiv-

ity and DMPK profile of VU0463597 has yielded 410 total compounds, 137 of which are

active in a calcium mobilization assay[119].

Figure 4.2 shows VU0463597 and examples of currently known structure-activity re-

lationships. Two regions of particular interest are the MeO entity (green) implicated in

selectivity over mGlu5, and the amide entity (teal) implicated in selectivity over mGlu2.

Despite these advances, the underlying biological mechanism of mGlu3 allosteric modula-

tion and selectivity over mGlu2/5 remains mysterious.

4.2.5.3 Crystal structures for mGlu receptors

There are two crystal structures for the transmembrane domain of mGluRs, mGlu1 and

mGlu5, both in complex with a negative allosteric modulator[144, 145]. The mGlu1 struc-

ture, bound to the FITM ligand, was observed in a closed conformation. A N-terminus

fusion with a thermostablized apocytochrome was performed for crystallization[145]. The

mGlu5 structure was crystallized in complex with the mavoglurant negative allosteric mod-
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Figure 4.2: mGlu3 selective NAM VU0463597 is shown with critical chemical entities and
examples of previously tested structural derivatives. Graphic reprinted from Wenthur et.
al. 2013

ulator. A T4 lysozyme construct was inserted in the intercellular loop 2 to aid crystalliza-

tion. Relative to the mGlu1 ligand binding site, the mavoglurant site was much deeper in

the central helical core[144].

4.2.5.4 Protease activated receptors

Protease-activated receptors, or PAR, are a family of four (PAR 1-4) of GPCRs highly

expressed in platelet cells. They are activated by thrombin signaling, a critical component

of blood coagulation and thrombosis. Thrombin is known to cleave the N-terminus to

reveal ligand tether region that binds to the second extracellular loop to initiate signaling.

Several PAR4 antagonists are known to bind and block this binding site as a potential
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antithrombotic[146]. However limited physiological understanding of PAR4 function have

made drug discovery efforts challenging[147].

The structure of PAR1 in complex with the antagonist vorapaxar is available. Vorapaxar

binding is highly specific but virtually irreversible, leading to its clinical limitations. The

binding is very close to the extracellular surface but solvent exposure is limited due to the

closure of the extracellular loop[148]. Recently, the structure of PAR2 in complex with two

distinct antagonists have also been published. One of the antagonists exhibits slow binding

kinetics and competed against the orthsteric tethered ligand, making it ideal for potential

pharmaceutical development. The other antagonist bound in an allosteric pocket outside

of the transmembrane domain, exerting its inhibitory influence by preventing the structural

rearrangement necessary for PAR2 activation[149].

4.3 Experimental Methods

4.3.1 Modeling of target proteins

Rosetta comparative modeling was performed in each case using either a single tem-

plate or multiple templates when available. Templates were restricted to proteins of the

same family as at least one close homolog was available in each case. The template struc-

tures were available in the holo state with a ligand in the same putative binding pocket

targeted by subsequent docking runs. For the GPCRs, a membrane protein specific scoring

framework[150] was used in generating models.

4.3.1.1 STAT

The existing structures of STAT1 and STAT3 were energy minimized using the Rosetta

FastRelax to generate an ensemble of models. STAT5b was constructed from the highly

similar STAT5a homolog using single template ”copy and refine” Rosetta comparative

modeling.
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4.3.1.2 mGlu3

An mGlu3 comparative model was onstructed using the RosettaCM protocol[116]. A

sequence analysis of the 7TM domain shows mGlu3 is 45% identical to both mGlu1 and

mGlu5. The mGlu1 and mGlu5 crystal structures exhibit 72% identity and 83% similarity

over the 7TM domain to each other. The critical transmembrane helices and allosteric bind-

ing site are fairly well-resolved in the crystal structures. Gap regions in the crystal structure

template are restricted to the intracellular and extracellular loops, which are relatively far

away and unlikely to impact docking calculations. The same is true of the crystallization

constructs observed in the mGlu1 and mGlu5 templates. Missing residues in the align-

ment can be filled in via cyclic coordinate descent[151]. In order to reduce bias, multiple

top-scoring comparative models will be used for docking and the resulting scores will be

averaged to select the best protein-ligand complex models.

4.3.1.3 PAR4

The existing structure of PAR1 in complex with vorapaxar is used to generate compar-

ative models of PAR4 with single template modeling. This work is completed primarily

by Alyssa Lokits but is unpublished. The top comparative models were used for docking.

An effort to improve these models using RosettaCM with the PAR1 and PAR2 structures

as multiple templates is ongoing.

4.3.2 Preparing and docking ligands

Ligand conformations are generated using the Molecular Operating Environment. Roset-

taLigand and RosettaLigandEnsemble docking was used with a low resolution shape com-

plementarity stage and a high resolution knowledge based energy function to generate 1000

models. Models are selected based on ”interface energy”, an approximation for ligand bind-

ing energy calculated as the difference between the Rosetta score of the bound complex and
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the separated protein/ligand molecules.

4.3.2.1 STAT

Erasin docking to STAT3 was performed allowing a full ligand reorientation. Prior

to interface energy evaluation, generated models were clustered using bcl::cluster with an

RMSD cutoff of 3 . The largest clusters were analyzed qualitatively and quantitatively to

determine possible binding interactions. To understand erasin’s selectivity profile, STAT3

>STAT1 >STAT5b, models for erasin binding to STAT1 and STAT5b were also generated.

The position of erasin was aligned with pair fitting to the hypothesized binding mode from

STAT3 and a limited refinement with ligand and side-chain flexibility was performed.

4.3.2.2 mGlu3

Ligands are filtered to include only those with a defined biological effect (positive or

negative modulation) and IC50 values within detection limit. Compounds may be further

focused by evaluating their Tanimoto similarities to each other, and clustering molecules

that share the largest common scaffold. This will increase the likelihood that the selected

ligands adopt a common pose upon binding. A correlation weight of 500 was used with

RosettaLigandEnsemble to promote the generation of binding modes that match structure

activity relationships for the ligands. It is hypothesized that the mGlu3 ligands will bind in

a parallel position at the center of the transmembrane helices, similar to the pose adopted

by FITM and mavoglurant in the mGlu1 and mGlu5 structures. Prior to interface score av-

eraging, visual inspection was used to eliminate models where the ligand ensemble adopted

a perpendicular binding mode that protruded into the surrounding membrane. These likely

arose because the low resolution stage does not consider membrane nature of the protein

surroundings.
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4.3.2.3 PAR4

A series of three BMS derivatives were docked with RosettaLigandEnsemble with a

correlation weight of 500. It should be noted that experimental correlation is challenging

in cases with few ligands since rank correlation takes on very discrete values. The binding

mode of vorapaxar in PAR1 is used to make the initial placement of the BMS derivatives.

4.4 Results and Discussion

4.4.1 STAT

The fluorescence polarization assay to generate binding data is illustrated in Figure

4.3AB. The putative binding mode for erasin to STAT3 with key residues is shown in Figure

4.3C. Comparing the predicted STAT3 binding mode and STAT3 bound to a phosphotyrosine-

containing peptide motif in Figure 4.3D shows significant conformation changes for STAT3

binding to erasin.

The sequence and structural ensemble used for docking are shown in Figure 4.4AB

respectively. The STAT1 structure contains a highly flexible loop region away from the

ligand binding site. The STAT5b structure was much more compact compared to STAT1

and STAT3. The binding modes of the three STAT proteins with erasin are shown in Figure

4.4C. Significant clashes exist between erasin and the STAT5b structure, and to a lesser ex-

tent, with the STAT1 structure as shown in Figure 4.4D. These clashes, shown in red and or-

ange, are due primarily to intermolecular repulsive interactions scored on a Lennard-Jones

potential and unfavorable protein dihedral angles scored by a knowledge-based potential.

The acyl hydrazone part of erasin is located in a narrow channel. This is in accordance with

SAR studies that have shown substitutions in this region has significant impact on binding.
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Figure 4.3: A: Principle of fluorescence polarization (FP)-based competitive binding as-
says. The fluorophore attached to the STAT SH2 domain binding peptide is indicated by a
green star. B: Activity of erasin in fluorescence polarization assays against STAT1, STAT3,
STAT5b and Lck. C: Docking pose of erasin. D) Overlay of the docking pose of erasin
(STAT3 backbone shown in light grey, highlighted amino acid side chains shown in green)
and the crystal structure of phosphorylated STAT3 (protein backbone shown in ochre, high-
lighted amino acid side-chains shown in orange, PDB 1BG1).
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Figure 4.4: A) Amino acid sequence of the SH2 domains of STAT1, STAT3, and STAT5b.
B) Structural models of the SH2 of STAT1, STAT3, and STAT5b in the absence of a lig-
and show regions of protein flexibility. C) Representative model of a cluster 3 binding
pose of erasin bound to the STAT3 SH2 domain, and similar poses for STAT1 and STAT5b
obtained by docking starting from the pose of erasin as observed in STAT3. D) Surface rep-
resentation for models in panel C showing per-residue Rosetta energy units using rainbow
color codes (red-orange-yellow-green-blue), with the least favorable interactions shown in
red and the most favorable interactions shown in blue. Clashes (indicated in orange and
yellow) do not occur in the binding pocket of erasin in STAT3, but to a small extent, in the
equivalent region of STAT1, and to a large extent, in STAT5b.
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4.4.2 mGlu3

Seven models were then selected out of the top twenty comparative models to account

for conformational diversity. The selected models have up to 2.25 A of RMSD from the

best scoring model in all TM residues and up to 1.5 A of RMSD in key residues. Key

residues are defined as residues with at least one atom within 7 A of the allosteric binding

site as suggested by the mGlu1 crystal structure.

RosettaLigandEnsemble was used to dock eight congeneric NAMs into the top com-

parative models for mGlu3. The congeneric NAMs were discovered by collaborators as

derivatives of the mGlu3-selective lead VU0463597 shown in Figure 4.2. All modifications

were made only to the amide scaffold in order to maintain selectivity for mGlu3/mGlu3.

The selected compounds exhibited a ten-fold affinity range based on IC50 in a calcium flux

assay. The best scoring model exhibited a rank correlation of 0.6 with experimental binding

data and is shown in Figure 4.5.

Clustering analysis shows that the top scoring models generally adopted a binding mode

wherein the MeO moiety in the compound faced towards the extracellular surface. The ex-

act placement of the MeO group varied but interactions are frequently observed with the

residues colored in yellow/teal. This is significant as the sequence alignment in 4.6 shows

that the yellow residues are different in mGlu2/3 when compared with mGlu5. Previously

published SAR studies on the ligand scaffold have indicated the MeO is necessary to erad-

icate mGlu5 binding. This model suggests that the R68Q change in mGlu5 may disrupt a

key electrostatic interaction between the arginine and MeO, thus eliminating binding.

Furthermore, SARs indicate that substitutions at the amide moiety are critical in de-

termining selectivity between mGlu2/mGlu3. However, it has been difficult to completely

eradicate binding at one or the other. The orange residues shown interact with this critical

amide end and are conserved between mGlu2 and mGlu3. The degree of conservation in

the putative binding pocket explains why it remains challenging to select between the two

group II mGlus. The model also identifies an important residue (D/N 168) that may be
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Figure 4.5: Top scoring model from RosettaLigandEnsemble docking of eight NAMs into
seven mGlu3 comparative models. The view is from the extracellular side and key residues
are color-coded according to the alignment in Figure 4.6.

specifically targeted in future ligand optimizations.
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Figure 4.6: Sequence alignment of mGlu2, mGlu3, and mGlu5 crystal structures with the
TM domain indicated by red helices. Key residues in the interface are colored as fol-
lows: residues different between mGlu3 and mGlu5 (yellow), different between mGlu3 and
mGlu2 (green), same between mGlu3 and mGlu2 (orange), same among all three mGlus
(teal).

4.4.3 PAR4

Figure 4.7 shows the docking of three derivatives with different sized alkyloxy sub-

stitutes into the comparative model of PAR4. The top scoring ensemble docking results

show the alkyloxy group pointing into the center of the helical core. The docked ensem-

ble matches the experimental data that the largest group, the benzyloxy, had the strongest

biological inhibition. This suggests some sort of anchoring mechanism for the ligand. The

conservation coloring shows a limited number of possible mutations for explaining the
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PAR1 vs PAR4 selectivity of these compounds.

Figure 4.7: Docked model of hydroxyl (left), methoxy(center), and benzyloxy (right)
derivatives are shown in blue. Vorapaxar position in PAR1 is shown in orange. Protein
residues are colored by sequence similarity to PAR1 with white being identical and muta-
tions are colored from least conserved (red) to most conserved (purple).

4.5 Conclusion

4.5.1 STAT

Rosetta docking of erasin to STAT1, STAT3, and STAT5b generated a possible binding

mode that explains the protein and ligand structure activity relationships. Further studies

are needed to examine the protein structural cause of the binding selectivity. One hypoth-

esis is the lack of a key interaction on STAT5b that causes a loop to close over the narrow

channel observed in STAT3. Experimental mutagenesis studies would be needed to confirm

this hypothesis. A work currently under review examines the flexibility exhibited by these

loops, and their impact on the binding site.

4.5.2 mGlu3

Rosetta was used to generate mGlu3 models from mGlu1 and mGlu5 templates. Roset-

taLigandEnsemble was successfully used to dock a congeneric series of NAMs into these
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comparative models to find a binding mode that matches the structure activity relation-

ships. These models are used to create hypotheses that could be tested using a double mu-

tant cycle. In particular, mutation of critical residues in mGlu3 to their mGlu1 or mGlu5

counterpart should eliminate binding for a mGlu3 selective ligand.

4.5.3 PAR4

RosettaLigandEnsemble was used to dock BMS antagonists into a comparative model

of PAR4. Docking generated vorapaxar like binding modes with a portion of the molecule

extending deep into the helical core. Possible mutagenesis sites were selected for testing

but have not yet been experimentally validated. The project is ongoing and has a focus on

updating PAR models and docking a new chemical class of inhibitors.
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Chapter 5

Conclusion

5.1 Summary

Chapter 1 discussed the general background of protein-ligand docking. The central

theme of this dissertation is the improvement of protein-ligand docking tools by the ad-

dition of structural ensembles and structure-activity relationships. The chapter discusses

existing methods for incorporating experimental data and critically examines the assump-

tions behind molecular similarity. The included analysis showed that it is generally sound

to presume that congeneric small molecules bound in highly similar fashions to a given

protein target.

Chapter 2 presented a new docking method, RosettaLigandEnsemble, that allows for

the use of a multiple ligand overlay to simultaneously find binding modes for related small

molecules. It is designed to work in conjunction with SAR studies that provide many mod-

ifications to a central scaffold. There was a significant improvement in sampling efficiency

over the existing RosettaLigand algorithm, particularly for ligand series with significant

modifications to certain members. However, generating binding scores in correlation with

the SAR remained challenging due to the stochastic nature of the docking algorithm and

the steepness of the energy well around the native ligand binding mode. This chapter is

paired with Appendix B which contains a tutorial for running RosettaLigandEnsemble.

Chapter 3 covered the upgrades to an automated ligand docking server. The goal of

this project was to improve the accessibility of Rosetta docking methods. In particular,

it would be beneficial for those without any computational biology training to be able to

use Rosetta for docking and modeling. However, there are still additional features to be

added to ROSIE ligand docking such as a simplification of input file formats and a clearer
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interpretation of output results.

Chapter 4 applied RosettaLigand and RosettaLigandEnsemble to collaborative small

molecule discovery projects. Docking was used in conjunction with Rosetta comparative

modeling, a critical protocol for use cases without a readily available crystallographic struc-

ture of the protein target. It also touched on the pharmacological importance of G-protein

coupled receptors and the computational techniques necessary to approach GPCR ligand

docking. The STAT, mGlu3, and PAR applications all involved exploring the question of

how a small molecule binds and the structural factors that explain its selectivity. Although

only one of the projects was successfully completed and published at the present time,

the applications show the potential of RosettaLigandEnsemble docking as part of the drug

discovery pipeline.

Method development would not be possible without the proper benchmarking datasets.

Appendix A covers the datasets used to optimize the protocols within this thesis. These

datasets are made available as a lab resource for future research.

A proof of concept study considering structural ensembles from the protein side is

demonstrated in Appendix . This was a significant method development towards protein-

ligand docking incorporating structure-activity data from both ligand modifications and

protein mutations. The new method, ProtLigEnsemble, will require an extensive bench-

mark, beyond the scope of this dissertation, to fully understand its strengths and weak-

nesses. The protocol for running ProtLigEnsemble is included in this appendix.

5.2 Key findings

The introduction of biochemical data in the modeling process is a strong promoter of

protein-small molecule modeling success and accuracy. Spectroscopic methods such as

NMR and mass spectrometry have been adapted to interrogate receptor-small molecule in-

teractions. One can expect improvements in both sampling and scoring when incorporating

experimental contacts or structure activity relationships. Structure activity relationships de-
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rive from energetic changes upon modifications to either the receptor or the small molecule.

Docking improvements are particularly significant when experimental restraints limit both

the translational and the rotational modes of the small molecule. Such restraints can be de-

rived from interface-based experiments that identifies specific protein-ligand interactions,

or by relying on binding modes of similar small molecules. These methods would rely on

the assumption that similarities in structure translates to similarities in binding. A pairwise

comparison across the PDBBind database shows that this is largely true among congeneric

small molecules. Exceptions exist wherein typically highly symmetric molecules bind in

inverted orientations. These situations may be addressed by further development of phar-

macophore, or molecular property, based alignment methods.

RosettaLigandEnsemble docking significantly improved the sampling efficiency in a

benchmark set of congeneric ligand structures. However, additional pre and post processing

is necessary to use the algorithm. Correlation weighting is capable of producing sets of

structures that match the SAR data, however current scoring functions are not accurate

enough for this to be a significant benefit. Applying the existing scoring function to the

native-like binding mode is unlikely to rank the ligands in the correct order.

Applications of RosettaLigand and RosettaligandEnsemble to mGlu3, PAR, and STAT

proteins generate reasonable models of protein-ligand interactions. The predicted binding

mode identifies several key contacts to explain observations of ligand SARs and protein

mutant selectivity. Further experimentation is necessary to validate the proposed binding

mode. One issue is the resource commitment necessary to make mutagenesis studies to

test the binding mode. This can be challenging if the goals of the computational approach

do not match those of the experimental approach. In particular, an exhaustive synthesis

approach with readily available ligand fragments may be preferred over limited synthesis

based on probabilistic computational predictions.
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5.3 Future Outlook

Although the research advanced the central theme of accurate protein-ligand modeling

in the context of structure-based drug discovery, there are a number of considerations that

need to be addressed further. Two in particular are how to address the consistently more

challenging task of ranking small molecules, and to bridge the gap between computation

and traditional ”wet-lab” chemistry.

5.3.1 The challenge of small molecule scoring

Although the work in thesis focused primarily on docking to recover binding modes,

the major challenge remains the ability to accurately score, or rank, small molecule ligands.

Docking assessments have consistently found ranking to be the harder of the two tasks. An

improvement to scoring is likely to carry with it an improvement to native pose recovery. As

the D3R benchmark illustrated with its MAP4K4 docking benchmark, many submissions

had a native like binding prediction among its top 5 scoring models but only half identified

it as the most accurate model. Furthermore, the best correlation with experimental affinity

obtained for ranking was 0.48[25].

One potential way to improve ligand scoring is through the use of system specific scor-

ing functions. This is particularly useful for protein systems such as kinases where there

is an ever growing wealth of data. Ross et. al. demonstrated that an universal scoring

function, trained across a diverse data set, is less accurate than a target-specific scoring

function when applied to a single system. A score function that captures experimental

affinities across the entire dataset has varying accuracy on single protein datasets[152].

Thus, protein target dependence remains a significant challenge in choosing diverse bench-

mark targets for scoring function development, and in selecting a score function for use

in a particular application system. Current approaches to overcome this bias are to test

a multitude of scoring protocols before selecting one, or to utilize rescoring algorithms
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such as NNScore that can be suited to a specific receptor for screening applications[153].

Trained scoring functions such as the random forest based SFCscore or the support vector

machine based SVRR may be fitted to a given target by careful choice of training data

and/or descriptors[154, 155]. One major advantage of tuned scoring functions is the abil-

ity to reproduce experimental activity data. AutoShim, for example, uses provided IC50

activity data and partial least squares regression to parameterize the scoring function. This

empirical correction improved experimental SAR correlation from an all-purpose scoring

function best of 0.32 to 0.5 across a GSK docking set[156]. However, care must be taken to

avoid overfitting as having the same protein families in training and validation can produce

unrealistically high prediction accuracy[157].

5.3.2 Applications to virtual screening

Ligand scoring and ranking is also fundamental to the task of screening. This applies

both in a broad high throughput virtual screening situation where an algorithm needs to

score interactions across a variety of molecular scaffold, and in a local optimization sce-

nario where an algorithm need to be able to rank small modifications to a functional group.

Although this work focused on binding mode recovery, an natural extension would be to

the task of virtual screening. DeLuca et. al. [18] created tools for using the low resolu-

tion shape complementarity function for doing rapid virtual screening. Rosetta has also

been used in a raycasting docking approach called DARC for targeting protein-protein in-

teraction sites[158]. Ensemble docking can be used to perform virtual screening against

multiple receptor targets. Although a number of methods currently use this approach for

screening against multiple conformations of a flexible protein, a new application would be

to screen against multiple protein mutants.

Computational approaches for multi-target screening is useful for addressing at least

two basic research problems. First, certain mutations will invalidate the activity of an

existent drug. This is the case for many target proteins with a high mutation rate such as
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HIV proteins. The problem of binding erasing mutations is addressed from the protein side

with multi-target antibodies. A similar approach could be done from the small molecule

approach. Secondly, screening against multiple targets can be used to find multi-target

drugs as a replacement for combination therapy. In these cases, targets may not necessary

be the same protein binding target but rather a different target altogether[159]. It has been

suggested though that the diversity of protein binding pockets may be represented by a

thousand shapes[160], making it entirely possible to find multi-target drugs by screening

against multiple protein targets aligned by pocket similarities.

One additional improvment in this area is the advent of big data. Machine learning is

already a part of other aspects of the drug discovery process such as predicting organic

synthesis reaction routes and outcomes[161]. As previously discussed, machine learning is

also contributing to ligand docking in the development of system specific scoring functions

to bolster ranking capabilities. Big data driven approachs can be applied to target discovery,

particularly in the context of a limited number of binding pockets. This can be used for drug

repurposing existing compounds, saving time and effort on the front of safety and synthesis

testing [162]. This is particularly true given the ever growing size of compound bioactivity

databases. One challenge however is that the ever growing database of activity data do not

all reflect the same level of confidence in the bioassay[163]. There is certainly still a need

for structural based machine learning approaches to drug discovery.

5.3.3 The accessibility of computational predictions

Docking as a predictive tool is only useful if it can be coupled with traditional wet-lab

experimental verification. A binding mode is merely a hypothesis until it can be matched

to experimental data. Receptor or ligand side data can bolster support for a model but

coupled interface data such as double mutant cycles can provide stronger validation. One

gap to bridge is the mismatch in goals between wet-lab benchwork and dry-lab in silico

work. Computational approaches often come with the idea that no question is too basic.
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The ability of docking to successfully predict a protein-ligand complex structure is not a

given. However, experimental groups often have much further goals for a computational

collaboration. This came into play during the mGlu3 project. My work generally focused

on trying to determine the binding of presently available compounds while our collabo-

rators were interested in the development of DREDDs, or designer receptors exclusively

activated by designer drugs. Docking to GPCRs, in particular a yet to be crystallized class

C GPCR, was still a challenging problem and interface design was many steps away.

Part of this gap is due to a fundamental misunderstanding regarding the capabilities and

the timescale of computation. Computational methods are often described in collabora-

tions without the subtle nuances needed to understand their limitations. This is partially

due to poor communication between the computational and benchwork sides. One way

to foster better communication is increasing the availability of computational methods for

non-computational scientists. Many collaborations feature computational and wet-lab bi-

ologist working independently but coming together to share data. It could be beneficial to

develop easy to use tools for those without computational backgrounds. In particular, most

researchers are familiar with ”point-and-click” user interfaces in other scientific software.

It should be an standard in the computational field to offer graphical ways to operate the

methods. Furthermore, visualization of structural data is not always straight forward and

often require its own dedicated software tools or plugins. An easier way to share graphical

data and its interpretations could go a long way towards understanding what a computa-

tional prediction entails and means.

79



Appendix A

Description of Datasets

This appendix describes the various datasets constructed for the research presented in

this thesis. The datasets can be accessed in the Meiler Lab’s internal storage.

A.1 RosettaLigandEnsemble Congeneric Ligands Validation Set

A dataset of 109 protein-ligand complexes across twenty systems A.1 are curated from

the combination of the Community Structure-Activity Resource [164], BindingDB Protein-

Ligand Validation Sets[90], PDBBind[165], D3R docking resource, and individual crystal-

lographic studies[166, 167, 98].

Each dataset consisted of at least four chemically related ligands with experimental data

and X-ray crystallography determined structures against a common protein target. A single

receptor structure was selected from each dataset as the primary docking target on the

basis of crystallographic resolution, density in the ligand binding pocket, and experimental

affinity/activity. In order to test the potential of an ensemble docking approach, the dataset

favors cases wherein congeneric ligands bind in a similar fashion and an improvement using

RLE docking is expected. Figure A.2 shows the distribution of congeneric ligand RMSDs

and common scaffold sizes seen in the dataset.

The selected protein receptor structure is energy minimized using the Rosetta FastRelax

protocol with a knowledge based all-atom energy function[170]. The details of the Rosetta

energy function has been covered extensively by Alford et. al[19]. This minimization is

performed in the apo state to remove bias of side-chain positioning for the co-crystallized

ligand. All other molecules in the series are cross-docked to the energy minimized tar-

get using either traditional RosettaLigand docking or simultaneous RLE docking. Ligand
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conformations are generated using the in-house BioChemicalLibrary fragment-based con-

former sampling methodology[95]. The co-crystallized ligand is excluded from docking

with RosettaLigand and RLE to avoid any bias, leaving a total of 89 test cases across all

systems.
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Figure A.1: Protein-Ligand systems used to benchmark RosettaLigandEnsemble
Sources, ligand counts, receptor PDBs, and abbreviations of the twenty bench-
mark systems. Each protein-ligand set contains crystallographic structures of one
receptor in complex with each ligand. The systems are derived from BindingDB
(https://www.bindingdb.org/bind/index.jsp)[168], PDBBind (www.pdbbind.org)[169],
Community Structure-Activity Resource (CSAR, http://www.csardock.org/)[164], and
individual studies as listed.
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Figure A.2: Number of non-hydrogen atoms in the common scaffold versus the RMSD
(normalized to 15 heavy atoms) of the common scaffold. Each molecule is compared to
the ligand co-crystallized with the receptor structure for the system it belongs to.
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A.2 PDBBind Core Set

The PDBBind Core Set is a subset of the PDB Refined Set that contains 65 targets with

3 ligands each. Each triplet contains a low affinity binder, a medium affinity binder, and

a high affinity binder. A subset of 65 protein-ligand complexes is constructed using only

the high affinity binding molecules[27]. For benchmark purposes, the protein receptors are

relaxed using Rosetta FastRelax[170] in the apo state to reduce bias due to crystallographic

side-chain positioning.

A.3 PDBBind Refined Set

The PDBBind refined set contains 3446 structures controlled for protein structure qual-

ity, accurate binding data, small molecule properties, and non-surface interactions. Each

protein-small molecule co-crystal structure is paired with experimentally measured Kd, Ki,

or IC50[27, 169]. In order to analyze similarities in congeneric ligand binding, systems

with only one crystal structure were fitlered out. This produced 2443 structures across

441 targets. All complexes within a system were then aligned based on binding pocket

residues within 15 of the small molecule. The in-house BioChemicalLibrary (BCL) soft-

ware suite, available at http://www.meilerlab.org/bclcommons, is used to calculate small

molecule properties and make all possible intrasystem pairwise comparisons. The pairwise

normalized RMSD (nRMSD) is calculated based on the heavy atom RMSD of the largest

common connected substructure and normalized to ten heavy atoms using a small molecule

analog of RMSD-100[171]. The pairwise Tanimoto similarity coefficient is computed as

the number of atoms in the largest common connected substructure divided by the total

number of unique atoms.

All 34461 pairwise comparisons were then filtered to eliminate identical small molecule

pairs (Tanimoto = 1), trivial common scaffolds (scaffold heavy atoms <5), and different

binding pockets (small molecule center distance >3.0). A large number of the remaining
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comparisons were from the HIV-1-Protease system, which dominates the PDBBind refined

set. In order to avoid biasing the results towards any particular system, only a randomly

chosen small subset of HIV-1-Protease comparisons are included. Small molecule sym-

metry was factored in when calculating nRMSDs for pairs where symmetrical molecules

are flipped. The final subset included a total of 7298 comparisons across 366 targets. The

median Tanimoto similarity across the dataset was 0.333 and the median nRMSD of the

common scaffold was 1.071 .

A.4 GPCR Modeling and Docking Set

A GPCR modeling and docking set was constructed in order to test the effectiveness

of docking ligands into comparative models of GPCRs. A set of sixteen GPCR structures

were collected from the PDB. Each GPCR would be modeled with RosettaCM[116] using

the remaining fifteen as templates. Comparative modeling would focus primarily on the

transmembrane regions with loop building used to reconstruct intracellular and extracellu-

lar loops. Figure A.3 shows the transmembrane domain sequence identity (lower triangle)

and C-alpha RMSDs (upper triangle). This dataset need to be updated as newer GPCR

protein-ligand complex structures become available.
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Figure A.3: Transmembrane domain sequence similarity among the sixteen benchmark
GPCRs is shown in the lower triangle. Aligned C-alpha RMSDs over the same transmem-
brane region is shown in the upper triangle. Red indicates a higher similarity while blue
indicates greater differences.
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Appendix B

Protocol Capture for RosettaLigandEnsemble

B.1 Obtaining files

Rosetta can be obtained through www.rosettacommons.org All files associated with this

protocol capture is provided in the demos/protocol capture/rosettaligand ensemble/ direc-

tory of the Rosetta distribution. This protocol has been tested to work with Rosetta version

d978e6f, released August 22nd, 2017. Examples commands for this protocol are numbered

in the commands file of the protocol capture folder and referenced as (1), (2), (3)etc.

B.2 Starting files

The raw starting files are a single target protein receptor structure in PDB format, and a

series of ligands in SDF format. The protein structure can be prepared from an experimen-

tally determined structure or from homology modeling. The receptor structure used in this

example is the p53 core domain bound to a stabilizing small molecule (PDB: 4AGQ). This

file can be found in /inputs/ as protein.pdb. The ligand series should share a core scaffold

by which the ligands can be aligned. This example contains five congeneric ligands, but

any number between three and eight is a reasonable use case.

B.3 Ligand preparation

PyMol pair fitting is an easy way to manually align ligands by minimizing the distance

between core scaffold atoms. Automated ligand alignment tools may also be used but

generally do not perform as well compared to manual inspection. Examples of aligned

ligands can be found in the /prep/aligned ligands/ directory.
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Each ligand must have its own conformational library generated prior to using Roset-

taLigandEnsemble. Conformer generation was done using the BioChemicalLibrary. The

BCL (http://www.meilerlab.org/servers/bcl-academic-license) is a suite of software tools

readily available for academic users. Other software for conformer generation may also be

used but the outputs need to be converted to SDF files.

To generate conformers using the default settings, use command (1). Conformer gener-

ation can also be customized to use the PDB or CSD libraries, a greater range of rotamers,

or a structural comparison filter to remove similar conformers. For a full list of these op-

tions, see the help menu with command (2). Examples of generated conformers files are in

/prep/conformers/

B.4 Param file preparation

Rosetta requires params file to properly handle small molecule ligands. Prior to this

step, join the aligned ligand structure with the corresponding conformers into a single SDF

file such that the aligned structure is first in the file. This will insure that the inputs will

maintain the core scaffold alignment when generating the conformers. Examples of these

joined files are in /prep/make params/

Since PDB files use three digit residue codes and single digit chain designations, it is

helpful to assign a code for each ligand file. The example uses the ligands.list file to label

each ligand as residues 00B through 00F and corresponding chains B through F. This file

also contains pK values for each ligand binding to the target receptor.

To make params files for each ligand, use command (3). The molfile to params python

script is included in the /main/source/scripts/python/public/ directory of the Rosetta distri-

bution. Running the script without any input prints out the help menu.

For each ligand, command (3) generates a PDB file containing the single aligned lig-

and structure, a PDB file containing the remaining ligand conformers, and a params file

containing connectivity and charge information for the ligand. Examples of these files can
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be found in the /prep/rosetta inputs/ directory using the previously discussed letter des-

ignations. If you wish to incorporate SAR during docking, then use a text editor to add

NUMERIC PROPERTY AFFINITY YOURVALUE to the end of the params file, where

YOURVALUE represents an SAR measurement of the users choice. Rank correlation is

used in SAR mode and hence units only need to be self-consistent. RosettaLigandEnsem-

ble assumes that smaller affinities are more favorable just as smaller Rosetta scores are

considered more favorable. The behavior can be adjusted for cases where larger affin-

ity values is more favorable by either taking the negative of the provided affinities in the

params file, or by making the correlation weight negative.

B.5 Input file organization

For RLE runs, it is convenient to prepare a single PDB file containing the aligned lig-

ands by concatenating the individual ligand PDB files. The conformer and params do not

need to be joined. This is done as ligands.pdb in the /inputs/ folder. Youll also find the

previously prepared protein receptor PDB in the same directory.

In addition to structural files, a RosettaScripts XML file and a Rosetta options file. The

XML file describes the custom protocol to be used by Rosetta. Details of how to setup

an XML file and the meaning of the individual tags can be found by searching the doc-

umentation website https://www.rosettacommons.org/docs/latest/. The example dock.xml

provided uses the settings from the benchmark. Actual application use may require the user

to alter these values according to biological context. The defined scoring function is based

on the existing RosettaLigand scoring function, but may be substituted in the XML script.

The provided options file defines Rosetta input and output directories along with a number

of sampling parameters. A full options list is available on the documentation website. The

ligand ensemble option is necessary to use RLE; a weight of 0 can be used to run RLE

without taking SAR data into consideration.

Run command (4) to perform a single simulation and generate a set of RLE models.
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Each simulation will produce X models, where X is the number of input ligands. These

example output models are in the /outputs/ directory along with a score.sc scorefile.

B.6 Output and analysis

Individual protein-ligand predicted structures are labeled by a chain and a number des-

ignation, B 1.pdb through F 1.pdb. Structures with the same numeric label are based on

the same docking simulation and have a common binding pose. The protein interface con-

tacting each ligand are optimized independently. The score.sc file contains all score terms

for each simulation across a single row. Generally, individual ligand interface scores are

used to rank models, with a negative score indicating a better model. These ligand in-

terface scores are listed as interface delta *, where * is the single letter ligand chain ID.

The values are appended at the end of each output PDB, and also in the scorefile for each

protein-ligand pair. One suggestion is for the end user to examine the top ten percent of

models for each pair.
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Appendix C

Additional Developments of Ensemble Docking

C.1 Summary

This appendix describes ongoing research on the development and benchmark of en-

semble docking approaches that merge structure-activity relationships derived from ligand

modifications and protein mutations. A new algorithm, ProtLigEnsemble, was created to

use such SAR data and a proof of concept study was completed. The basis of the algorithm

and the proof of concept will be submitted as a Rxiv preprint for which I will be the sole

first author. A full peer reviewed manuscript is expected once a more extensive benchmark

has been completed. This appendix includes a protocol capture illustrating how the new

Rosetta based ensemble features should be used.

C.2 Ensemble approaches from the protein perspective

RosettaLigandEnsemble was developed to dock a series of congeneric ligands to a sin-

gle protein target with the option to include structure-activity relationship (SARs) for ligand

modifications. As one might imagine, this can be extended to utilize the SARs associated

with protein changes rather than ligand changes. As discussed in Chapter 1, ligand bind-

ing changes upon protein residue mutagenesis is often utilized as a way to localize the

interaction site. We have extended ligand docking in Rosetta to process mutation data

automatically and to use the SARs to guide modeling.

Existing methods make use of protein ensembles for working with challenging protein

targets that are not well represented by a single static structure. This often occurs with

protein targets with highly flexible binding sites and/or a significant induced fit effect. In

one study, Ellingson et. al. used molecular dynamics snapshots to improve decoy dis-
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crimination over docking against a single crystal structure[172]. This strategy can also be

used to generate the holo protein conformation when starting with an apo structure [173].

Although Rosetta does not perform molecular dynamics, we have now enabled the abil-

ity to use protein ensembles with an ”average-grid” scoring method in RosettaLigand and

RosettaLigandEnsemble. This greatly increases the amount of protein flexibility Rosetta

can process on top of the backbone and side-chain degrees of freedom typically allowed.

One interesting feature is that Rosetta protein ensembles do not have to be comprised of

the same protein variant. In other words, Rosetta protein ensembles can be used to dock or

screen against multiple mutants simultaneously.

C.3 Combining protein and ligand SARs

A further combination for ensemble docking would be the use of protein-based and

ligand-based SAR. This modality is geared towards cases where a ligand panel is tested

against several protein mutants. Figure C.1 shows the distinction among the datasets for

each of the ensemble docking approaches.

RosettaLigandEnsemble is discussed in Chapter 2 while protein ensemble docking and

protein ligand ”double” ensemble docking is new to this appendix. Protein ensemble dock-

ing can be performed by enabling additional options in the existing Rosetta ligand docking

movers. Double ensemble docking represents a novel method, ProtLigEnsemble, which

will be detailed further in this appendix. ProtLigEnsemble only requires a single input

structure either from experimental determination or comparative modeling. The remaining

structures will be generated by residue subsitution and energy minimization as the general

overall fold should remain the same. The presence of misfolding mutations can be experi-

mentally determined without the need for a fully solved structure. Missing binding data in

the table would be ignored by the algorithm.
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Figure C.1: Experimental datasets that different ensemble approaches are designed to work
with. In each case, it is assumed that the ligands have a common central scaffold and that
binding data is measured the same wway for all protein-ligand pairs. Only a single input
structure is required and it does not have to be the wild-type protein.

C.4 Ensemble docking workflows

The new ensemble features can be utilized as part of three workflows summarized in

Figure C.2. Workflow A represents RosettaLigand single protein-single ligand docking

protocol described in DeLuca et. al.[18]. The modification now allows alternate recep-

tor conformations to be passed into the low resolution docking phase with the ensem-

ble proteins XML tag. The alternate receptor conformations or mutations are used to cal-

culate the scoring grid in the same manner as the original protocol. A single protein-ligand

complex is produced using either the best scoring receptor model or the user’s preferred

receptor model.

Workflow B is the multiple ligand-single protein protocol described in Chapter 2. Sim-

ilarly to workflow A, a new feature allows alternate receptor models to be passed into the

low resolution docking phase. A single receptor model is passed on to the high resolution
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docking phase where SAR guided ligand ensemble docking takes place. Users can specify

whether they wish to use the best scoring model or to use the primary input model with the

use main model XML tag. The final output contains one protein receptor in complex with

each of the input ligands.

Workflow C is the new double ensemble method for multiple proteins-multiple lig-

ands docking. The approach in docking is similar to that of RosettaLigandEnsemble in the

low resolution phase. Alternate conformations may also be used in this stage. The addi-

tional protein mutants are generated in the high resolution ProtLigEnsemble stage. Similar

to RosettaLigandEnsemble, an experimental dta rank correlation will be used to promote

docking modes that generate the most favorable Rosetta scores for the strongest binders.

Compounds without binding data to a given receptor will not be factored into the Spear-

man’s coefficient. The final output contains a structure for every possible pair of input

ligands and input proteins.

Additional changes in ProtLigEnsemble are the optimization order and the docking ra-

dius. The RosettaLigandEnsemble SAR guidance optimized one protein-ligand pair after

another in iterative cycles. This has been adjusted to complete all optimization cycles for

the protein-ligand pair with the highest experimental affinity first. This should generate the

best scoring structures for the strongest binders, improving correlation with experimental

data and reducing the stochastic nature of the output model scores. Furthermore, a docking

radius has been introduced as a simple way of defining the binding pocket. Previous iter-

ations required individual definitions for each ligand, leading to increasingly bulky XML

scripts. The new version automatically defines the flexible portion of the protein structure

based on a single setting and applies it to all protein-ligand pairs.
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Figure C.2: Suggested workflows with optional inputs shown in broken line boxes. A:
RosettaLigand workflow for using multiple receptor structures. B: RosettaLigandEnsemble
workflow for using multiple receptor structures and SAR refinement. C: Protein ligand
double ensemble workflow to incorporate both receptor- and ligand-based SAR.
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C.5 ProtLigEnsemble proof of concept dataset

Two test cases are derived from individual studies on two GPCRs, the adenosine A2A

receptor and the neuropeptide Y1 receptor. The A2A dataset focus on work by Zhukov

et. al. [174] in which a panel of antagonists are tested against point mutants of a ther-

mostablized receptor.

Figure C.3: Experimental dataset derived from Zhukov et. al. containing binding data
(pKd) for two ligands against seven receptor variants. Crystal structure of wild type recep-
tor in complex with ZM241385 (PDB: 3EML) is shown in green, the ligand in orange, and
the mutation sites marked out in purple.

96



Figure C.3 shows the binding pocket of the A2A-ZM241385 complex with available

mutational data denoted in purple. SCH420814 is a ligand with a significant addition to the

extracellular binding end of the ligand. The crystal structure was published separately by

Jaakola et. al. (PDB: 3EML)[175].

The Y1 dataset, shown in Figure C.4 is derived from Yang et. al., which contains

a crystal structure of the Y1 receptor in complex with the antagonist UR-MK299 (PDB:

5ZBQ)[176]. The additional antagonists feature the addition of various linear amide groups

to the central scaffold of UR-MK299.

Figure C.4: Experimental dataset derived from Yang et. al. containing binding data (nM
Kd) for four ligands against five receptor variants. Crystal structure of wild type receptor
in complex with UR-MK299 (PDB: 5ZBQ) is shown in green, the ligand in orange, and
the mutation sites marked out in purple.
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C.6 ProtLigEnsemble docking results

Figure C.5 summarizes the docking results for the A2A test case. The docked mod-

els capture the general orientation of the binding mode observed in the crystal structure as

indicated by the significant portion of docked models around 4 RMSD. However, the com-

pact conformation of the ZM241385 ligand with the wildtype receptor is not well captured.

This may be an issue with the pregenerated conformations rather than the docking method.

One issue with the RMSD analysis is that only one protein-ligand pair can be compared for

native-like binding modes. Alternative measures may be necessary to evaluate the efficacy

of the method across the entire dataset. A significant enrichment of binding modes that

correlate positively with the SAR is observed for the A2A test.

Figure C.5: Summary of docking results with top right graph showing the RMSD distribu-
tion of wildtype-ZM241385 models, and the bottom right graph showing the experimental
rank correlation. A representative output is shown overlaid with the 3EML crystal struc-
ture. The crystal receptor structure and bound ligand is in red, docked ligands are in green,
and mutation sites are shown in yellow.

Figure C.6 shows the docked models from a single simulation in grid format. One ben-

efit of double ensemble docking over individual docking runs is the consistency of docking

modes across the entire system. Rather than performing ad-hoc analysis to distinguish pu-
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tative binding modes generated from individual runs, ProtLigEnsemble identifies binding

modes consistent with the entire dataset. The interfaces consists of individually optimized

ligand conformations and protein side-chain positioning. One limitation of this dataset is

that the side-chain mutations consisted of alanine scanning, which in some cases simply

represent a reduction in side-chain steric volume. A more extensive dataset including sig-

nificant electrostatic based mutations could be useful in testing how well ProtLigEnsemble

captures the SAR of substantial changes.

Figure C.6: Docking output from a single run of double ensemble docking. Top left corner
shows the crystal structure of wild-type protein in complex with ZM241385. Remaining
panels show each of 14 possible combination of 2 ligands with 7 protein variants. The
crystal structure is in red, docked ligands are in green, and mutation sites are shown in
yellow.

Figure C.7 shows the Y1 docking results summary. As indicated by the RMSD dis-

tribution, the native like binding mode was captured for a significant number of wildtype-
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UR-MK299 models generated. One issue that continues to arise is the band of high RMSD

models. Like RosettaLigandEnsemble, ProtLigEnsemble does not take into account SAR

during the low resolution docking phase. Future development could focus on a way to

improve model selection with low resolution scoring grids without adding substantial com-

putational cost. The Spearman distribution in the Y1 test case is also less than ideal. This

is likely due to the larger number of protein-ligand pairs being modeled. ProtLigEnsem-

ble optimizes binding pairs in order of affinity and it is possible that the SAR correlation

becomes too restrictive when docking the weaker binding pairs. This is analogous to the

difficulties of negative design when using an algorithm designed to find more and more

favorable scores.

Figure C.7: Summary of docking results with top right graph showing the RMSD distribu-
tion of wildtype-UR-MK299 models, and the bottom right graph showing the experimental
rank correlation. A representative output is shown overlaid with the 5ZBQ crystal struc-
ture. The crystal receptor structure and bound ligand is in red, docked ligands are in green,
and mutation sites are shown in yellow.
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C.7 Conclusion and future directions

Protein ensemble and double ensemble docking have been incorporated into the Rosetta

ligand docking suite. The proof of concept shows that ProtLigEnsemble is capable of gen-

erate a consistent set of docked models with protein-ligand SAR guidance. Additional

benchmarking is necessary to explore the full potential and limitations of the new algo-

rithms. One suggestion for benchmarking the addition of protein ensembles to the Roset-

taLigand and RosettaLigandEnsemble workflows is via PSCDB. PSCDB is a database that

tracks different types of receptor motion upon ligand binding[177]. This may be particu-

larly helpful in assessing the use of ensemble methods for ligand binding to highly flexible

loop regions.

To augment the double ensemble proof of study benchmark, the GPCR dataset de-

scribed in Appendix A may be a good starting point. Many of these receptor studies in-

clude mutational data in their supplemental and there may be additional ligand compounds

related to the co-crystallized ligand. It is unlikely a binding value for each protein mutant -

ligand pair will be found, but ProtLigEnsemble can work around this limitation by ignoring

missing SAR values. One other concern for dataset building is that different assays may

be used for different protein-ligand combinations. In particular, some of the ligand data

may be a measure of biological response, which can be due to allosteric effects as opposed

to binding affinity changes. Careful curation will be necessary to generate a proper and

diverse benchmark dataset.

C.8 ProtLigEnsemble protocol capture

The following section provides an example for using the double ensemble docking

protocol. Rosetta can be obtained through www.rosettacommons.org

All files associated with this protocol capture is provided in the demos/protocol capture/rosettaligand ProtLigEnsemble/

directory of the Rosetta distribution. This protocol has been tested to work with Rosetta
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version 9820fea, released July 12, 2018. Examples commands for this protocol are num-

bered in the commands file of the protocol capture folder and referenced as (1), (2), (3)etc.

C.8.1 Starting files

The raw starting files are a single target protein receptor structure in PDB format, and a

series of ligands in SDF format. The receptor structure used in this example is neuropeptide

Y1 receptor bound to the ligand UR-MK299 (PDB: 5ZBQ). This file can be found in /in-

puts/ as protein.pdb. The four congeneric ligands in /prep/aligned ligands/ directory have

been aligned by their core scaffold. The reasonable number of ligands depends on the num-

ber of protein variants considered as each run generates all possible pairs. We generated up

to 30 models per docking run without issue though this number may change depending on

your computational setup.

C.8.2 Ligand preparation

Ligand preparation can be performed in the same fashion as the procedure in Appendix

B. In particular, commands 1, 2, and 3 cover the process of generating conformations with

the BCL conformer generator and creating Rosetta ligand param files. Example ligand con-

formers have been created for you in /prep/conformers and the necessary param generation

files are provided in /prep/make params/

The final Rosetta input ligand files are provided in /prep/rosetta inputs/. The ligands

have been designated with the letters B,C,D,E though you are free to use any chain des-

ignation as long as they are different from each other and the protein receptor. The corre-

spondence between published ligand designations and the Rosetta lettering is provided in

ligands.list. The params file process is the same as those for RosettaLigandEnsemble but

you can skip adding SAR data to the param files as SAR data will be provided in a separate

dedicated file.
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C.8.3 Setting up the QSAR file

The QSAR file, an example of which is provided as inputs/qsar.txt, will provide protein-

ligand pairs of interest to the ProtLigEnsemble mover. Each line is organized as a protein

identifier, a ligand identifier, and an optional binding value. To provide a ligand binding

value to a wild-type protein, enter:

WT B 0.17

where WT indicates wildtype, B is the single letter chain of the ligand, and 0.17 is the

optional affinity value. Note that the affinity value can be any measure as long as they are

self consistent. Rosetta assumes the lower values indicates a more favorable binding. This

can be changed by setting a negative correlation weight in the -docking:ligand:ligand ensemble

option. To provide a binding value to a mutant protein, enter:

107 A B 7.5

where 107 A indicates a mutation at residue 107 to alanine, B is the single letter chain

of the ligand, and 7.5 is the optional affinity value. This will cause Rosetta to generate

a 107A mutant regardless of what the wildtype residue at position 107 is. Note that this

numbering system must correspond to Rosetta pose numbering, where the first residue is

numbered 1, the second is numbered 2...and so on. For the time being, ProtLigEnsemble

is designed to work with single mutants. This QSAR file will be provided to Rosetta in the

XML script as the qsar file tag for the ProtLigEnsemble mover.

C.8.4 Input file organization

For ProtLigEnsemble runs, it is preferred to combine all aligned ligand PDBs into a

single PDB file. This is provided as ligands.pdb in the /inputs/ folder. Note that the params

and conformers files are not combined, just the single ligand PDB inputs.

In addition to structural files, a RosettaScripts XML file and a Rosetta options file. The

XML file describes the custom protocol to be used by Rosetta. Details of how to setup
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an XML file and the meaning of the individual tags can be found by searching the doc-

umentation website https://www.rosettacommons.org/docs/latest/. The example dock.xml

provided uses the settings from the benchmark. Actual application use may require the user

to alter these values according to biological context. The defined scoring function is based

on the existing RosettaLigand scoring function, but may be substituted in the XML script.

The provided options file defines Rosetta input and output directories along with a number

of sampling parameters. A full options list is available on the documentation website. The

ligand ensemble option is necessary to use ProtLigEnsemble; a weight of 0 can be used to

run ProtLigEnsemble without taking SAR data into consideration.

A few XML tags in the ProtLigEnsemble mover are newer features to this mover. The

aforementioned qsar file tag tells Rosetta where to find the QSAR file. The distance tag

defines the radius, in angstroms, of the sphere around the ligand considered to be the bind-

ing pocket. All residues in this sphere are considered to be flexible. This tag replaces

the LigandArea, InterfaceBuilder, and MoveMap tags RosettaLigand users may be familiar

with. The ignore correlation option tells ProtLigEnsemble to avoid calculating the rank

correlation until there are at least 4 protein-ligand pairs in the dataset. This is because

ProtLigEnsemble optimizes binding pairs in order of binding affinity. Considering the rank

correlation with only a few protein-ligand pairs is not particularly useful. This option may

be adjusted based on the number of ligands in your particular dataset.

Run command (4) to perform a single simulation and generate a set of ProtLigEnsemble

models. Each simulation will produce X models, where X is the number of protein-ligand

pairs listed in the SAR file. These example output models are in the /outputs/ directory

along with a score.sc scorefile.

C.8.5 Output and analysis

Individual protein-ligand predicted structures are labeled by a protein-ligand pair desig-

nation. Wildtype proteins and ligand combinations will be tagged as WT B 1.pdb through
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WT E 1.pdb where the 1 indicates the docking run it came from. Mutant receptor-ligand

pairs will be tagged as 107 A B 1.pdb through 107 A E 1.pdb. The first two parts indicate

the mutant residue number and the mutant residue identity respectively. These are followed

by the ligand chain designation and the docking run number.

Structures with the same numeric label are based on the same docking simulation and

have a common binding pose. The protein interface contacting each ligand are optimized

independently. The score.sc file contains all score terms for each simulation across a single

row. Generally, individual ligand interface scores are used to rank models, with a negative

score indicating a better model. These ligand interface scores are listed as interface delta *,

where * corresponds to the protein-ligand prefix tag seen in the PDB files. The values are

appended at the end of each output PDB, and also in the scorefile for each protein-ligand

pair. One suggestion is for the end user to examine the top ten percent of models for each

pair.
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Aubé, Anuradha Roy, and John Karanicolas. DARC: mapping surface topography

by ray-casting for effective virtual screening at protein interaction sites. Journal of

Medicinal Chemistry, page 150630114820003, 2015.

[159] Rona R. Ramsay, Marija R. Popovic-Nikolic, Katarina Nikolic, Elisa Uliassi, and

Maria Laura Bolognesi. A perspective on multi-target drug discovery and design for

complex diseases. Clinical and Translational Medicine, 7(1):3, 2018.

[160] Mu Gao and Jeffrey Skolnick. A Comprehensive Survey of Small-Molecule Binding

Pockets in Proteins. PLoS Computational Biology, 9(10):e1003302, oct 2013.

128



[161] Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and

Klavs F. Jensen. Prediction of Organic Reaction Outcomes Using Machine Learning.

ACS Central Science, 3(5):434–443, 2017.

[162] Rosa S. Kim, Nicolas Goossens, and Yujin Hoshida. Use of big data in drug de-

velopment for precision medicine. Expert Review of Precision Medicine and Drug

Development, 1(3):245–253, 2016.

[163] Ye Hu and Jürgen Bajorath. Entering the ’big data’ era in medicinal chemistry:

molecular promiscuity analysis revisited. Future science OA, 3(2):FSO179, 2017.

[164] James B. Dunbar, Richard D. Smith, Kelly L. Damm-Ganamet, Aqeel Ahmed,

Emilio Xavier Esposito, James Delproposto, Krishnapriya Chinnaswamy, You-

Na Na Kang, Ginger Kubish, Jason E. Gestwicki, Jeanne A. Stuckey, and Heather A.

Carlson. CSAR Data Set Release 2012: Ligands, Affinities, Complexes, and Dock-

ing Decoys. Journal of chemical information and modeling, 50:1842–1852, may

2013.

[165] Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang.

The PDBbind database: methodologies and updates. Journal of medicinal chemistry,

48(12):4111–9, jun 2005.

[166] Bernhard Baum, Laveena Muley, Michael Smolinski, Andreas Heine, David

Hangauer, and Gerhard Klebe. Non-additivity of functional group contributions in

protein-ligand binding: a comprehensive study by crystallography and isothermal

titration calorimetry. Journal of molecular biology, 397(4):1042–54, apr 2010.

[167] Inna V. Krieger, Joel S. Freundlich, Vijay B. Gawandi, Justin P. Roberts, Vidyad-

har B. Gawandi, Qingan Sun, Joshua L. Owen, Maria T. Fraile, Sofia I. Huss,

Jose Luis Lavandera, Thomas R. Ioerger, and James C. Sacchettini. Structure-

129



Guided Discovery of Phenyl-diketo Acids as Potent Inhibitors of M. Tuberculosis

Malate Synthase. Chemistry and Biology, 19(12):1556–1567, 2012.

[168] Michael K. Gilson, Tiqing Liu, Michael Baitaluk, George Nicola, Linda Hwang,

and Jenny Chong. BindingDB in 2015: A public database for medicinal chem-

istry, computational chemistry and systems pharmacology. Nucleic Acids Research,

44(D1):D1045–D1053, 2016.

[169] Z. Liu, Y. Li, L. Han, J. Li, J. Liu, Z. Zhao, W. Nie, Y. Liu, and R. Wang. PDB-wide

collection of binding data: current status of the PDBbind database. Bioinformatics,

31(3):405–412, 2014.

[170] Patrick Conway, Michael D. Tyka, Frank DiMaio, David E. Konerding, and David

Baker. Relaxation of backbone bond geometry improves protein energy landscape

modeling. Protein Science, 23(1):47–55, 2014.

[171] Karen J. Gregory, Elizabeth D. Nguyen, Chrysa Malosh, Jeffrey L. Mendenhall, Jes-

sica Z. Zic, Brittney S. Bates, Meredith J. Noetzel, Emma F. Squire, Eric M. Turner,

Jerri M. Rook, Kyle a. Emmitte, Shaun R. Stauffer, Craig W. Lindsley, Jens Meiler,

and P. Jeffrey Conn. Identification of specific ligand-receptor interactions that govern

binding and cooperativity of diverse modulators to a common metabotropic gluta-

mate receptor 5 allosteric site. ACS Chemical Neuroscience, 5(4):282–295, 2014.

[172] Sally R. Ellingson, Yinglong Miao, Jerome Baudry, and Jeremy C. Smith. Multi-

conformer ensemble docking to difficult protein targets. Journal of Physical Chem-

istry B, 119(3):1026–1034, 2015.

[173] Stefano Motta and Laura Bonati. Modeling Binding with Large Conformational

Changes: Key Points in Ensemble-Docking Approaches. Journal of Chemical In-

formation and Modeling, 57(7):1563–1578, 2017.

130



[174] Andrei Zhukov, Stephen P. Andrews, James C. Errey, Nathan Robertson, Benjamin

Tehan, Jonathan S. Mason, Fiona H. Marshall, Malcolm Weir, and Miles Congreve.

Biophysical mapping of the adenosine A2A receptor. Journal of medicinal chem-

istry, 54(13):4312–23, jul 2011.

[175] VP Jaakola, MT Griffith, and MA Hanson. The 2.6 angstrom crystal structure of a

human A2A adenosine receptor bound to an antagonist. Science, 322(5905):1211–

1217, 2008.

[176] Zhenlin Yang, Shuo Han, Max Keller, Anette Kaiser, Brian J Bender, Mathias Bosse,
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