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CHAPTER I 

INTRODUCTION 

Overview 

Many biological creatures, human beings included, learn from experience. In 

order to understand the underlying mechanism of such a magnificent system, engineers 

and scientists from various disciplines have put a lot of effort in this research area. In this 

learning process, evidence from the cognitive sciences shows that the working memory 

plays a crucial role, in part by fixing attention on the most relevant data. In particular, it 

has been shown that there are adaptive working memory structures in primate brains 

[1,2,3]. We believe that recently developed computational models of such systems may 

be useful for engineered systems.  

In robotics, one important objective is the ability to teach the robot new skills and 

have it reason about the current tasks at hand without explicit programming. Indeed, this 

is central to open-ended development, developmental robotics and autonomous mental 

development. One way to accomplish this idea is to have the robot learn from its own 

past experience, which would take the programming of robots away from writing 

unnatural, large amounts of tedious code. Additionally, this allows the system to adapt 

itself to changing environments. Obviously, such natural and experience-based learning is 

widely used by human beings, primates, mammals and many other animals. Another 

desired characteristic of a robotic system is to facilitate the decision making process by 

focusing on the information needed by the current task and discarding the irrelevant data 

[4].  
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Main Objectives 

The main overall objectives of this research are to develop a system, such that: 

• The system supports research into developmental robotics (and open-ended 

developmental robotics), such that it can learn behaviors and concepts which can, 

in turn, be used to learn more complex behaviors. 

• The system possesses a rich, powerful perceptual system, which can reliably 

discriminate percepts and provides robust performance in complex, unstructured 

and unmodified environments. 

Many of the systems in the developmental robotics literature have only crude 

perceptual capabilities and as a result, the environments are usually very simplified by 

modifications, such as by employing artificial percepts. Such systems often fail in 

complex, uncontrolled environments, especially under different lighting conditions. One 

of our main goals is to build a perceptual system which can reliably operate in these types 

of environments to perform various tasks. In our system, we exploit the fact of having a 

reliable and powerful perceptual to support robust task execution.  In fact, one of the 

concepts we discuss in the next chapter is that the use of overly simple perceptual 

systems may significantly hamper the performance of system development approaches, 

both the traditional modular approach and the developmental approach.  A powerful and 

robust perceptual system can provide a much richer description of the environment and 

thus overcome other limitations.  In fact, one possibility we consider is that the need for 

the deep integrated learning approaches of developmental robotics may be lessened by 

such a perceptual system to the point that the modular approach still has much utility.   
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At the very least, the system should be capable of learning the percepts and be 

able to robustly discriminate them. However, any visual system capable of operating in a 

complex, unstructured environment will encounter many percepts, and typically most of 

them are not relevant to the current task, and thus are distractors. This suggests the need 

for a capability to focus attention on the smaller number of items that are relevant to the 

task. Furthermore, support for developmental robotics implies that the system must use 

some kind of learning approach to learn to associate perception and action, and perhaps 

other concepts as well, in order to perform a task.  

These two requirements suggest that prefrontal cortex working memory models 

may be a good fit for the learning portion of the system. In particular, we choose to use 

the “Working Memory Toolkit” as the computational working memory model for our 

system. This model has been developed by Dr. David Noelle and his Ph.D. student 

Joshua Phillips at Vanderbilt University, and the model will be explained in detail in the 

subsequent chapters.   

Other than these main objectives, we would also like to support the following sub-

goals in our system: 

• Focus attention on the most relevant features of the current task. 

• Support generalization of tasks without explicitly programming the robot. 

• Guide perceptual processes by limiting the perceptual search space. 

• Provide a focused short term memory to prevent the robot from being confused by 

the "out of sight, out of mind" problem. 

• Provide robust operation in the presence of distracting irrelevant events. 
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To explore these issues, we propose a realistic system consisting of a perceptual 

system, actuators, reasoning, and short and long term memory structures. The proposed 

architecture is shown in Figure 1. The center of this system is the adaptive working 

memory module. An adaptive working memory does not function in an isolated manner. 

It has to be a part of a complex system; hence it was integrated into a robotic system in 

order to provide the embodiment required for exploring the issues of task learning [5]. It 

can be seen from Figure 1 that the system structure may be viewed as composed of five 

fully connected modules. 

 

Figure 1. Proposed System Architecture 

 
The short-term memory (STM) holds the data gathered within a recent time 

frame. The duration of this frame is not necessarily fixed but typically is at the scale of 
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minutes. Furthermore, the STM is decomposed into two parts, a spatial STM called the 

Sensory EgoSphere (SES) [6] and another for non-spatial information. The long-term 

memory (LTM) is also divided into two parts, a spatial LTM called the Landmark 

EgoSphere (LES) [7] and another for non-spatial data, such as the necessary information 

on how to perform the tasks known by the robot. The LES basically holds data about 

objects that are permanent in the robot's workspace. 

The spatial reasoning module is updated by all the other modules and provides the 

capability to reason on the spatial relationships among the objects the robot knows about. 

Essentially, it is responsible for reasoning about the objects currently within the robot's 

focus of attention, i.e., the contents of the working memory.  

The perception system conveys data to the other, and its perception processes may 

be guided by these modules. The perception system identifies the objects and events 

within the sensory range of the robot using trainable classifiers. This part of the system is 

one input for the working memory, and may also provide some guidance to the 

reinforcement learning process of the working memory. A reinforcement learning 

algorithm is a machine learning algorithm, where the agent selects its actions based on its 

past experiences (exploitation) and its new choices (exploration). The goodness of the 

selected actions is associated with a reward signal, which encodes the success of an 

action's outcome. Therefore, the goal is to learn to select actions that maximize the 

accumulated reward over time. A type of reinforcement learning algorithm, Temporal 

Difference (TD) learning algorithm, will be discussed in Chapter IV. The perception 

system may detect an interesting object that is present in the environment of the robot and 

may give a signal to the working memory system in order to "explore" this interesting 
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object. An important point here is that, reinforcement learning algorithms must carefully 

balance the "exploration" versus "exploitation" of previously learned knowledge in order 

to ensure the discovery of better choices, when they exist [12]. Therefore, by detecting an 

interesting object in the environment, the perception system can be an important factor 

for this balance issue.  

Goals of the Perception System 

It is a well known fact that the autonomous vision problem is extremely difficult 

and has not been solved in general, which results in robot vision systems which tend to be 

designed for specific types of problems and circumstances. Moreover, the results are 

often fragile, and once trained, it is often cumbersome to train the system to recognize 

new objects. 

The system that is being developed for studying the working memory is expected 

to place a wide range of demands on the perception system. Moreover, the perception 

module has been designed as a general purpose module that can be utilized for other 

robot applications. Hence, we desired to develop a perception system with broad 

capabilities and the ability to learn new visual tasks. Some of the design criteria and 

guiding principles for the perception system are: 

• The system should be taught simply by choosing and labeling examples from 

acquired images.  

• The system should use categorization and classification methods to determine 

which features have strong identification capability.  

• The system has the ability to learn attentional features for narrowing the focus of 

a visual search space. 
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• The system should be able to detect novelty, i.e., to detect that is viewing 

something that has rarely, if ever seen before. 

• The system should not be used only in a specific environment but should be able 

to be used in many environments.  

• If the system fails or is confused by an object that was taught to it 

(misclassification), it should be able to be corrected and trained immediately.   

The details of the perception system will be discussed in the following chapters; 

however, at this point, it is worthwhile to emphasize some of the other flexible vision 

systems that have been reported in the literature. 

In order to recognize various types of activities of mobile objects in a scene, a 

method, which is mainly an application of Bayesian Networks, is described in [14]. It is a 

generic automatic video surveillance application which detects and tracks moving regions 

and recognizes the type of mobile objects and their activities. Initially, several image 

features, such as width, height, the aspect ratio of the mobile object computed from the 

width and height, and color histogram, are computed from those regions. Additionally, 

some of the mobile object's properties are observed, such as angle, speed and distance 

from a reference object. Next, a single state scenario is defined which is characterized by 

the observed properties of the moving object. For example, a typical single state scenario, 

"object A is slowing down towards object B", may be confirmed by observing the 

direction and the speed of the object and the distance between the two objects. Since the 

input entities are statistically independent, a simple Bayesian classifier can be used to 

obtain the distribution of the combined result. If there is a hierarchy of scenarios, each 

layer in that hierarchy can be represented by a Bayesian classifier, and the whole 
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hierarchy can be considered as a Bayesian belief network. The belief propagation is 

computed from the bottom layer to the top layer.   

Another computer vision and machine learning system, which employs a 

statistical Bayesian approach, is described in [13], for modeling and recognizing human 

behaviors in a visual surveillance task. In order to detect and classify the behaviors of a 

single person and common interactions between two people, the system utilizes 

supervised statistical machine learning techniques. One of the goals of this system is to 

recognize new behaviors and construct a model with as little training as possible. 

Initially, the system detects and tracks objects in the scene. At first, the eigenspace model 

associated with the background (stationary part of the image), is computed.  This is a 

model that provides an accurate estimate of the stationary parts of a scene. Once the 

model of the background image is computed from a sample set of N images, the 

segmentation of the moving objects is simply obtained by calculating the Euclidean 

distance between the input image and the projected image that is obtained from the 

eigenspace model of the background image [13].  Next, in order to track and model each 

pedestrian in the scene, 2D blob features, such as  color, texture, motion and heading and 

the spatial relationships relative to all nearby moving objects, are computed. In order to 

model the behaviors and interactions, HMMs (Hidden Markov Models) and CHMMs 

(Coupled Hidden Markov Models) were used and the results are compared. Basically, a 

HMM is a probabilistic, state-based statistical learning approach where the system being 

modeled is represented with a number of discrete states. The CHMM is an extension of 

the HMM where the states are coupled via matrices of conditional probabilities which 

model temporal influences between their hidden state variables [13]. The graphical 
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representations of both an HMM and a CHMM is shown in Figure 2. The behaviors are 

defined as primitive or simple behaviors and complex behaviors. For instance, a behavior 

could be "follow, reach and walk together" or "approach, meet and go on separately". The 

results demonstrated that CHMM modeling performs better than classical HMM in terms 

of both training efficiency and classification accuracy.  

 

Figure 2. Graphical representations of HMM and CHMM [13]. 

 
In [15], the authors point out the necessity of a very large feature space, as well as 

a method that produces distinctive features from this space, in order to learn the 

distinctions between objects at various level of detail. For example, they proposed a 

system which generates primitive features which can be spatially combined into more 

complex, compound feature sets. Primitive features are referred to as the local appearance 

descriptors, such as the local intensity gradient and another description of the texture 

significance. However, primitive features themselves are not very distinctive. The 

compound features are defined as rigid geometric combinations of primitive features, 

defined by the angles and distances between them as shown in Figure 3. In order to 

recognize the objects, these feature sets are used to construct a bayesian network 
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structure. One critical limitation of such system is that it is restricted to high-contrast 

edge, corner and texture information, as the authors agree on this point [15]. However, a 

complete model should also integrate color information, as well as blob-type features.  

 

Figure 3. A compound geometric feature of order 3, from three primitive features [15]. 

 
Returning to our proposed research, the working memory module in Figure 1 acts 

as a central component of the system, in that it communicates directly with all other 

modules, acquiring necessary data from the perception system, passing data to and from 

the short-term and long-term memory modules, as well as being the primary source of 

information for the reasoning module. It retains only a limited amount of data (referred to 

as chunks), most relevant to perform the current task. This provides some means of 

deciding which information should be retained in the working memory as well as which 

should be discarded in the current context. Additionally, it also provides the effect of 

focusing the attention of the robot onto particular data. One way to design this selection 

mechanism would be to write task-specific procedures that represent the knowledge 

regarding the task relevance of candidate working memory objects. In this architecture, 

we have pursued a more general and adaptive approach. The working memory system of 

this architecture provides a mechanism, in which learning is based on experience and 

decides which chunks to maintain in memory. This learning mechanism is grounded in 
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computational neuroscience models of the working memory circuits of the prefrontal 

cortex [4]. It has been discovered by neuroscientists that certain neurons in the midbrain 

cells communicates via the neurotransmitter substance, dopamine. The studies confirm 

that this neurotransmitter encodes for changes in expected future reward, suggesting that 

these cells in the midbrain may be involved in a kind of reinforcement learning based on 

predicted reward, such as temporal difference (TD) learning [8]. Neural instantiations of 

such reinforcement algorithms have shown how action sequences might be learned from 

the occasional delivery of a reward signal [9]. The extensive presence of the midbrain 

dopamine neurons in the prefrontal cortex has suggested that such a reinforcement 

learning scheme might guide the updating of the working memory contents, as well as the 

learning of motor sequences [10]. Based on the success of computational neuroscience 

models of working memory updating that utilize temporal difference learning [11], the 

working memory system of this robot architecture uses TD learning to determine which 

informational chunks to retain in memory. The working memory system will be 

presented in detail in a later chapter.   

Summary and Organization 

In this Chapter, a brief overview of the system and the goals that we would like to 

achieve in this work are presented. Our desire is to build a developmental system that 

learns everything from scratch incrementally by interacting with the user and the 

environment. The perceptual system plays an important role in this process; however, in 

order to focus attention onto the most relevant features of the current task, as well as to 

learn new skills, a biologically inspired adaptive working memory model is included. As 

a working memory model, the Working Memory Toolkit (WMtk) library, which was 
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developed in the Electrical Engineering and Computer Science Department at Vanderbilt 

University by Dr. David Noelle and Joshua Phillips, has been chosen. This toolkit is the 

core of our implementation and is adapted to a robotic application. A complete robotic 

system was built in order to address the research issues that were mentioned earlier. The 

dissertation is organized as follows: In Chapter II, a discussion of the necessity of open-

ended developmental robotics is made, followed by a review of the relevant work in the 

literature. Chapter III starts with a definition of perceptual learning, emphasizes some of 

the challenges and continues with a brief overview of the early stages of the human visual 

system. Chapter IV presents the concept of working memory, reviews some of the 

important models of working memory in the literature and introduces a biologically 

inspired working memory model and its implementation details. Chapter V addresses the 

proposed system architecture and its components in detail, starting from the model of the 

perception system and its capabilities. Subsequently, the chapter concludes with a 

discussion of the system's cognitive structure. Finally, Chapter VI presents the proposed 

methodology and experiments that demonstrate the utility and capabilities of this 

framework in a mobile robotic platform. 
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CHAPTER II 

THE NECESSITY OF OPEN-ENDED DEVELOPMENTAL ROBOTICS 

Overview 

As mentioned in the first chapter, one of the objectives of this research is to build 

an open-ended developmental robot system, which can learn simple behaviors and build 

up more complex behaviors by utilizing the previously learned behaviors. Indeed, the 

ultimate, long term goal in robotics is to build a robotic system, which can develop new 

skills incrementally, in an autonomous open-ended approach through interactions with 

the environment without having a pre-designed, task-specific representation [48]. In 

general, traditional machine learning algorithms typically employ task specific methods 

and only the parameters pre-determined by the human programmer are updated. These 

methods often fail to respond to the dynamically changing states of the uncontrolled 

environments. Additionally, such methods may not represent a developmental entity, 

such as a human mind.  

A relatively new area of study, called autonomous mental development (AMD) 

aims to fill the gap of how machines do not benefit from traditional machine learning and 

AI techniques. In [57], it was pointed out by J. Weng and his colleagues that a mental 

development process must be able to generate representation and architecture 

autonomously online directly from raw sensory signals and also must be task non-

specific. Table 1 shows the basic differences between the traditional engineering (manual 

development) paradigm and the proposed mental development paradigm: 
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Table 1. Main differences between traditional and developmental programs [57]. 

Properties of Program Traditional 
Programs 

Developmental 
Programs 

Sensor-specific and effector-specific Yes Yes 
Program is task-nonspecific No Yes 
Tasks are unknown at programming time No Yes 
Generate representation automatically No Yes 
Animal-like online learning No Yes 
Open-ended learning of more new tasks No Yes 

 
 

The traditional learning programs in Table 1 also include traditional artificial 

neural networks. Weng argues that due to the fact that a neural network can only accept a 

fixed size, offline sensory data vector, the development of something as flexible as a 

mind is not possible. However, a developmental robot, which runs a developmental 

program, has the ability to add new data that it has never seen before, online, in the real 

physical world. Furthermore, it can develop simple, basic skills for many different tasks 

and these skills may be utilized to learn more complex skills. Another practical advantage 

of using developmental programs is the ease of the training stage. A human child's brain 

is not manually trained with data with one training session. Instead, the child is taught by 

its parents from time to time by approving or rejecting behavior. A developmental robot 

should be trained in the same way, by interacting with the environment and with the user, 

just like a student-teacher relationship.  

Why is there a necessity for open-ended developmental systems? As mentioned 

previously, the target domain in which robots should be able to operate is the real 

unconstrained world, where the environment is highly complex and dynamic. It is 

obvious that the human designer cannot predict every possible situation in the initial 

stage of programming. Therefore, the system should have the capability to cope with 
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unexpected changes in the environment. The environment also has a significant effect on 

the complexity of a task. In psychology, the term “muddy” is often referred to describe 

concepts that cannot be clearly defined or specified [48]. According to Weng and Hwang 

[48], the complexity or "muddiness" of a task can be considered as a product of 

muddiness measures in five individual categories: (1) external environment, (2) input, (3) 

internal environment, (4) outputs, and (5) goal. Weng and Hwang[48] uses the term 

“muddy” as a general term to measure how much intelligence is required to execute a 

task. A task can be considered extremely complex or “muddy”, if all the five categories 

have a high measure. For instance, a visually-guided navigation task could be considered 

to have relatively high complexity in (1), (2), (3) and (5), but moderate in (4).  

Our approach to the problem 

In both the working memory and developmental (AMD) robotics communities, 

there seems to be a particular interest in learning strategies that support a type of deep 

integrated learning. This is in contrast to a more modular and hierarchical learning and 

categorization of behaviors/skills that is often found in more traditional AI approaches. 

While we certainly do not disagree with the developmental robotics and working memory 

communities on this, we believe that a somewhat modular approach still has a deal of 

practical utility, especially for robots. 

In particular, we believe that some past limitations of a modular approach may be 

related to the use of an overly simple, impoverished, perceptual system that is incapable 

of describing realistic complex environments. Thus we propose to use a modular 

approach to behavior/skill learning combined with a powerful perceptual system.  
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The system learns basic, simple behaviors, which are needed to learn more 

complex behaviors with the working memory model. The perceptual system learns about 

the percepts and how to discriminate them. However, the system does not know what 

these percepts mean, so therefore, using the working memory, the robot learns the 

meaning of the percepts with respect to movement. This behavior, move to open space, is 

a very simple behavior and in this behavior, the percepts are associated with the task of 

motion. However, this behavior is crucial for a navigation task for a mobile robot. Once 

this association is complete, the system encapsulates this behavior. The robot learns and 

encapsulates other behaviors and skills that are necessary for a complex task. However, 

the automatic encapsulation problem is not addressed in this work. This problem by itself 

is an important problem and should be addressed in future work.  

Review of Related Work 

This section provides a brief overview of some of the efforts that contribute to the 

area of developmental robotics. In general these methods, as well as the method 

presented here, are inspired from biology, neuroscience and psychology. First, one of the 

earliest methods for the field of autonomous mental development will be addressed. 

Then, other relevant efforts from the literature will be summarized.  

It was first pointed out in [48], that many traditional machine learning algorithms, 

including artificial neural networks, are computational frameworks not developmental 

frameworks. According to Weng, two types of paradigm exist: The first one labels the 

traditional machine learning methods as manual development, where the programmer 

understands the task (not the machine), chooses a representation, and maps the task to the 

representation. Thus, the programmer conveys his understanding into the task 
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representation. Next, the programmer writes code which controls the machine to execute 

the task using the task-specific representation. The second paradigm is called the 

autonomous developmental paradigm where the programmer writes a developmental 

program and the robot learns the task by interacting with the user/teacher and the 

environment. The result of such a mechanism should be that the robot generates its own 

internal representation.  

Prior to our study of Weng's work, we had developed a tree structure which 

efficiently carves the pattern space into finite regions. In other words, the tree structure is 

a classification method, which divides the pattern space into many small subspaces. This 

hierarchical structure comprises some of the developmental part of the system and 

achieves logarithmic time complexity. The details of this search tree structure will be 

explained in detail in the subsequent chapters. Weng and Hwang [59] developed a 

different tree structure called the "Incremental Hierarchical Discriminant Regression 

(IHDR) engine". Weng argues that the system must deal with high-dimensional feature 

space. In order to demonstrate the proposed method, a vision-guided navigation 

experiment, which uses the IHDR tree system, is presented in [48], [49], [59]. A mobile 

robot, called SAIL, developed at Michigan State University is trained by pushing it 

around the corridors of the Engineering Building. The robot has two pressure sensors on 

each side. The difference of the two pressure readings is translated into heading 

information and associated with the images. The grayscale intensity of the pixels is used 

as the components of the feature vectors and the resolution of the images is rather low, 30 

x 40. Therefore, the number of dimensions on which the system operates is 30 x 40, i.e., 

1200, and only one feature vector is generated from an entire image. Linear discriminant 
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analysis, which is a parametric technique, is applied to the feature vectors to select the 

most discriminative features. Our system uses high resolution images and we obtain more 

than two thousand vectors from one image. Additionally, our system does not rely on any 

parametric methods, and exploits the use of a sparse vector representation which we have 

found to be a very important quality. This representation will be explained in detail in 

Chapter V. 

The methodology proposed in this dissertation, which focuses on issues of 

developmental robotics, is applied to a complex vision-guided navigation task. Part of the 

complexity of the task is that no a priori information is given to the system, such as a 

cartesian map or coordinates of objects, etc. Instead, a qualitative navigation approach is 

taken, where the robot proceeds by detecting natural landmarks that are present in the 

environment. The system learns everything from scratch, including what objects 

represent a landmark, using both supervised and unsupervised learning. In order to 

achieve the navigation task, simple behaviors are learned and preserved in the system in 

order to learn more complex behaviors. This type of learning/teaching approach is also 

known as "shaping" and is extensively used in the animal experiments in psychology 

[58]. The desired animal behavior is achieved by initially learning a very simple task, 

followed by similar, slightly more difficult tasks. Thus, the animal is trained to perform a 

complex behavior in stages with different reward strategies for each training phase. In 

[50][51][52], a computational model of such a conditioning process is presented as an 

extension of reinforcement learning.  

In [50][51], the model is applied to a very common task in cognitive neuroscience 

called the Delayed Match to Sample (DMTS) task to study working memory in rats and 
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monkeys, and simulation results are presented. Figure 4 shows the configuration of the 

simulation environment called the "Skinner box".  

 

Figure 4. Skinner box configuration for the DMTS task [50][51]. 

 
Initially, at the start of a trial, only one switch extends and the rat must press that 

switch. Next, the cue light turns on and the rat must turn around and go to the opposite 

wall and make repeated nosepokes. The purpose here is to move the rat away from the 

switches. The rat stays there for a variable delay period averaging a minute. Once the cue 

light turns off, both switches are extended and the rat must go back to the switch that was 

pressed previously. In order to receive a water reward from the dispenser located between 

the two switches, the rat needs to remember which switch was pressed in the delay period 

and choose the correct switch. The task is composed of multiple stages; hence, both the 

rat and the model need to be trained in several stages with different rewards that govern 

the behavior for each stage. Initial robot implementation is also presented in [50], 

however it is mentioned that the system uses only a crude vision perceptual system to 

demonstrate the capabilities of the learning model on the robot. In [51], a simple color 

detection algorithm is used to teach the robot to sort the objects based on their colors into 
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bins using the proposed model. However, the need to add facilities for refining the 

perceptual space with experience is also mentioned in [51]. In their robot 

implementations, a human trainer has to be present all the time and press a button for 

each correct action that the robot chooses.  

Krichmar and Edelman [53], argue that devices, based on the working principles 

of the nervous systems, may provide the groundwork for the development of intelligent 

machines which operate on neurobiological principles rather than computational ones. 

They have designed a series of theoretical models, called brain-based devices (BBDs), 

and applied them to physical robots in order to investigate the functionality of different 

regions of the brain. The robots equipped with these models are used for studying 

perceptual categorization, operant conditioning, episodic and spatial memory formation 

and motor control. They emphasize that models of brain function should reflect the 

dynamics of different brain regions, their structure and the connectivity of these regions, 

rather than implementing them as a single neuron layer. According to them, to construct 

such models, detailed neuroanatomy and neural dynamics should be taken into 

consideration. Another argument given in [53], which supports the developmental 

robotics discussions presented in this chapter, is that a real environment for studying a 

behavioral task is crucial. Real environments are rich in information, multimodal and 

noisy, thus simulating (artificial design) every aspect of such an environment would be 

computationally expensive or even may not be possible.  

In order to investigate the functional anatomy of the hippocampus region and its 

surrounding regions, Krichmar et al. [54] programmed a physical robot to solve a dry 

variant of the Morris water maze task. In this task, the robot uses its spatial and episodic 
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memory by associating perceptual cues in the environment with a particular location. 

This task is also used as an evaluation of spatial learning in rats. The experimental 

environment is shown in Figure 5. The target location, which is the hidden platform 

shown in Figure 5, can only be detected in close range by the robot's front IR sensor. The 

robot starts a trial in one of the four locations shown in Figure 5 (a) with numbers, and 

stops if it detects the hidden platform or until a time limit of 1000 seconds is reached. In 

the former case, the robot receives a reward. The experimental results show that the robot 

learned to navigate to the target location from multiple starting positions in about 8 trials.  

 

 

Figure 5. (a) Schematic of the experimental environment. (b) Snapshot of the robot 
(Darwin X) used in the experiment [54].  

 
A slightly modified version of the task, inspired by Krichmar's work, is presented 

by Bursch, et al. in [55], in a simulation environment, shown in Figure 6. In contrast to 

Krichmar's experiment, the robot starts a trial in random locations and does not use 

odometry information. In order to create a mapping between a perceptual state and an 

action for that state, a Self-Organizing Feature Map (SOFM) [56] is used and the heights 

(in pixels) of the colored panels are presented as an input to the SOFM. Two navigational 
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approaches are proposed and compared. The first method is based on creating a 

probabilistic graph between the nodes of the SOFM and then searching for the optimum 

path in the graph in order to navigate to the target position. The second approach utilizes 

the Working Memory Toolkit (WMtk), which we also choose as a working memory 

implementation for our system. It was reported that the first approach outperforms the 

WMtk with relatively little experience. However, as the number of training samples 

increases, the WMtk actually performs much better than the graph search technique.    

 

 

Figure 6. The simulation environment used in [55]. 

Summary 

Traditional machine learning algorithms are usually targeted to small problem 

domains and use pre-defined representations. These techniques are prone to problems due 

to the limited representation of the environment. The methodology proposed by this 

dissertation follows the constraints for a developmental system and aims to contribute in 

the research field of developmental robotics.  
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The system is capable of learning new skills and percepts online in uncontrolled 

environments while performing a task and supports explanation of its knowledge to the 

user in an interactive way. In order to perceive such a dynamic, noisy and uncontrolled 

environment, the system uses a large number of very high-dimensional but sparse feature 

vectors, which can be easily generated on a single training session. However, the sparse 

vector representation is directly encoded into the system, therefore, the high number of 

dimensions has somewhat less effect on computational cost. As the training data set 

grows larger, the system quickly adapts to the dynamic changes in the environment, such 

as the changes in lighting and perspective.   
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CHAPTER III 

PERCEPTUAL LEARNING 

 
One of the most important functions of the brain is certainly the learning 

mechanism. The term "learning" literally corresponds to "knowledge or skill acquired by 

instruction or study" [16]. On the other hand, the definition of perceptual learning by 

Gibson is "Any relatively permanent and consistent change in the perception of a 

stimulus array following practice or experience with this array will be considered 

perceptual learning" [17]. A substantial amount of research has been conducted on 

perceptual learning since the early 1990's, suggesting that perceptual learning happens in 

the early stages of the brain, such as the primary visual cortex [18].    

Perceptual learning should be considered as a part of abstract or cognitive 

learning for any real-time or artificial system. If considered from the Artificial 

Intelligence (AI) point of view, perceptual learning should be considered as an active 

process that embeds a particular abstraction, reformulation, and approximation within the 

abstraction framework [19]. That is to say, perceptual learning is a particular abstraction 

layer which focuses only on the relevant data that is needed by the current learning task.   

According to the previous studies in neurobiology and machine learning, 

perceptual learning has been considered to occur at the cognitive level where 

identification and categorization is performed. Humans perform learning at the perceptual 

level for many real world tasks. In order to make the categorization task possible, the 

very basic features of the objects, such as color or shape information, are obtained in the 
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perceptual level. Additionally, in any learning task, it is well known that there is a strong 

interaction between perceptual learning and cognitive learning.  

One of the most challenging problems for neuroscientists is the object recognition 

problem. It is a very complex problem domain and has not been solved in general. The 

key point in this problem domain is prediction or generalization, which is the ability to 

apply knowledge from the past experiences to a new condition. For instance, the 

perceptual system should be able to generalize in a way that enables it to recognize 

objects despite large variations in appearance within the environment. In general, 

perceptual systems are very vulnerable to light or brightness changes, and occlusions in 

the environment.  

There is a question that needs to be addressed before modeling a perceptual 

learning task: What are the input sources and the form of the information that will be 

used to guide the learning task? Depending on the answer to this question, supervised 

models can be used, which require labeled training data to obtain a desired output, or 

unsupervised models, which have the capability to extract some statistical information 

from the data, without any explicit guidance [20].  

In supervised learning techniques, the system is trained by a teacher, who 

provides a category label for each training set.  The input training set is typically vectors 

and the output may be a continuous value or it may be a class label of the input objects. 

Supervised learning is often referred as learning from examples. The important questions 

that need to be considered are:  

"How can we be sure that a particular learning algorithm is powerful enough to 

learn the solution to a given problem and that it will be stable to parameter variations?" 
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"How can we determine if it will converge in finite time or if it will scale 

reasonably with the number of training patterns, the number of input features or the 

number of categories?" 

"How can we ensure that the learning algorithm appropriately favors 'simple' 

solutions rather than complicated ones?" [21] 

In the case of unsupervised (also called self-supervised) learning there is no a 

priori knowledge of categories and the system groups or clusters the patterns which are 

expected to have some common features according to a similarity measure. The fact that 

the number of categories is unknown may result in unsupervised clustering algorithms 

producing in inappropriate representations, at least from the point of view of a human 

observer.   

Having mentioned the challenges in perceptual learning, it is appropriate to look 

at the biological aspects of the human eye-brain system. From the moment an image is 

captured, until an object is recognized, the process performed in the human brain is 

highly complex. 

An Overview of the Early Stages of the Human Visual System 

A main sensory modality for human beings is vision. Visual perception begins in 

the eye, which focuses light onto the retina. The structure of the eye is given in Figure 7 

(a). The purpose of the retina is to convert the light stimuli into neural impulses and 

forms the first stage of visual processing. The retina is composed of three layers, namely, 

the receptor cell layer, the bipolar cell layer and the ganglion cell layer as shown in 

Figure 7 (b) [22]. First, the incoming light is converted into an electrical signal within rod 
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and cone photoreceptor cells.  The rods are primarily located in the periphery of the retina 

and used to detect low levels of light.  

 

(a) (b) 

Figure 7 (a) The structure of the eye [60]. (b) The neural structure of retina [61]. 

 
On the other hand, the cones are concentrated in the center or fovea of the retina. 

The distribution of rod and cone cells is depicted in Figure 8. The cones primarily 

function to discriminate the color features of objects at medium to high light intensities. 

Depending on the wavelengths of the light that is absorbed, the cones are also divided 

into three types; short middle and long for blue, green and red colors, respectively.   
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Figure 8. The distribution of the rod and cone cells around fovea. Horizontal axis is the 
angular separation from the fovea [62]. 

 
The neuronal impulses are then passed along to bipolar and horizontal cells, 

which in turn synapse onto ganglion cells. There are two types of retinal ganglion cells, 

G1 and G2 which have different responses and transmit different sequences of action 

potentials [23]. If the light is received in the retina, G2 fires, G1 turns off and vice versa. 

This is referred as ON and OFF responses. If the intensity of the light is increased in the 

center of the receptive field, the firing rate of the signals for the cells that have ON 

response also increases, but for the cells that have OFF response decreases. The opposite 

is true when the intensity of the light decreases. These responses are compared in the first 

cortical visual area, which helps to detect the orientation of the edges. The optic nerve, 

which is formed by the axons of the retinal ganglion cells, transmits the neural signals to 

the lateral geniculate nucleus (LGN), which establishes a pathway between the retina and 

the primary visual cortex Figure 9. 
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Figure 9. The pathway from retina to primary visual cortex. 

 
The LGN neurons mainly project to the first cortical visual area, the primary 

visual cortex (also known as the striate cortex or V1), which lies posteriorly in the 

occipital lobe. This section of the brain is an important area, in that partially processed 

information from the retina and LGN is separated here and processed for more elaborate 

analysis in the specialized visual areas of the extrastriate cortex. The neurons in V1 

exhibit strong responses to a small set of stimuli. Small changes in visual orientations, 

spatial frequencies and colors can be discriminated by these neurons. It has been shown 

that the optimal stimulus is a sine-wave grating which is classified by its spatial 

frequency [22][25]. Most neurons in the striate cortex respond best when a sine-wave 

grating of a particular spatial frequency is placed in the appropriate part of the visual 

field. For orientation-selective neurons, the grating must be aligned at the appropriate 

angle of orientation.  
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Additionally, there is a particular class of neurons in V1 which are unresponsive 

to single lines, bars, or edges but seem to be responsive to texture [22][24]. Responding 

preferentially to a sine-wave or square-wave grating of a particular spatial frequency and 

orientation, these cells respond to the ‘texture’ of the pattern. Natural surfaces tend to 

have a rough texture. Being sensitive to texture and texture orientation, these cells detect 

the presence of a surface and also its orientation. 

It is very well known that there are two parallel sensory processing streams in the 

visual system, and that they are responsible for object identification (e.g., color and 

shape) and relative spatial object location (e.g., position and motion). The ventral and the 

dorsal pathways have popularly become known as the 'what' and 'where' systems [26], 

and project to different cortical areas, and subsequently to different areas of the prefrontal 

cortex.  

Up to this point, the posterior or sensory portion of the brain has been discussed. 

Next, we move to the anterior part, which is mainly dedicated to motor operation. This 

portion is basically responsible for movement, such as skeletal movement of various 

body parts, ocular movement, expression of emotion, speech, visceral control and so on, 

together with considerable functional cooperation between them. The cortex of the 

occipital, parietal, and temporal lobes mainly supports perception and perceptual 

memory, while the cortex of the frontal lobe supports action and motor memory. The 

prefrontal cortex provides neural support to three cognitive functions that are crucial for 

performing temporal sequences: working memory, motor attention, and inhibitory control 

[27]. Working memory is memory in the active state that is used for the performance of 

actions toward a goal. Motor attention is the preparation for action or attention directed to 
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prospective action. The inhibitory control of interference is integrative and protects the 

structure of the behavior, speech, or thought from interfering influences, external or 

internal, that may conflict with it and lead it astray. 

The Role of Attention in Perceptual Learning 

The purpose of the long term memory is to retain information that will be 

selected, by the attention process, for further processing in working memory. The 

performance of perceptual learning is strongly dependent on the attention process. 

Attention is a cognitive process which focuses on a particular stimulus. It is one of the 

most intensely studied topics within psychology and cognitive neuroscience. In spite of 

the fact that there are many cognitive processes associated with the human mind, 

attention is considered to be a hot research topic, because it is strongly tied to perception. 

Attentional mechanisms are needed in perceptual learning to guide further processing of 

information relevant to the current task, while ignoring other information present in the 

visual environment that is irrelevant.  

The selection and determination of how many stimuli may be processed 

simultaneously depends on a variety of factors. We hypothesize that, at first, a goal to 

perform an action is known, which exerts a major influence on the type of stimulus to 

which the sensory system is attuned. Next, attention is focused on the stimuli needed to 

continue to process the current task. For example, when you would like to grasp an object 

that is out of your reach, you start to approach it. The position of the object guides the 

direction of your movement.  

It is acknowledged by many theorists that attention acts as a gate to working 

memory. Only the information needed to be focused is stored in working memory. 
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Therefore, this mechanism gives us the ability to filter out irrelevant information, as well 

as reduces the load on cognitive processing systems.  
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CHAPTER IV 

A WORKING MEMORY FRAMEWORK FOR ROBOTS 

 
In cognitive science, working memory is defined as a theoretical framework 

which refers to a temporal type of storage that retains elements that are active and being 

manipulated for a short period of time. The contents of the working memory are not kept 

in the active state for a long time unless it is repeatedly utilized in some way. Working 

memory can also be thought as the distinction between short-term and long-term 

memory. Short-term memory refers to a part of the memory, where a small amount of 

information is stored for a limited amount of time and highly available to other memory 

sections of the brain. However, we can see that in the literature, especially in textbooks, 

there are often contradictions about the distinction between short-term and working 

memory structures [28]. On the other hand, long-term memory has a very large capacity 

and the information is considered to be stored indefinitely. In other words, long-term 

memory is capable of storing many memories throughout our lifetime.   

In the literature, there are many working memory models, which have 

commonalities and differences [28]. However, it seems that there is a consensus in many 

of the models which agree on one of the most important aspects of a working memory 

system, which is limited capacity. Clearly, there are attentional limits on what we can 

process at one time. It was suggested many years ago that this capacity was about seven 

plus or minus two numbers in a digit-span task, which is an experiment in which one 

reads a list of numbers and immediately after must repeat the list [29]. However, a recent 
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suggestion was made that the number of memory elements or so-called "chunks" that can 

be maintained and manipulated by working memory is approximately four [30].  

In the late 1960s, many theories had been concentrated on the short-term memory 

(STM). For example, the Atkinson-Shiffrin model is one of the most significant [31]. 

According to this model, the human memory system is best represented as series of 

temporary sensory registers through a limited capacity short-term store (STS). The model 

flowchart is shown in Figure 10. The input stimuli from the environment are stored in 

sensory registers, such as a visual register, an auditory register and haptic register. It was 

also assumed that all the cognitive activities and working memory operations take place 

in the STM. Moreover, there is a bidirectional flow between the long-term store (LTS) 

and STS, suggesting that the information is retrieved into STS and can be combined and 

processed along with the new information that has entered into STS via the sensory 

registers. Hence, this model assumes that some memories might be produced by the 

combination of the new information with the permanent information from the LTS. 

 

Figure 10. The Atkinson-Shiffrin Information Processing Model [31]. 
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Neuropsychological studies showed that this model has problems with its 

assumptions concerning learning as well as the data regarding the impact of damage to 

STS [32]. Despite such damage, patients with STS impairment had few cognitive 

problems and apparently have normal LTM. Therefore, the STS by itself should not serve 

as a unitary working memory structure.  

Baddeley and Hitch [33] proposed a three component model of working memory 

system, which is composed of an attentional control system, the central executive, and 

two storage systems, the visuospatial sketchpad and the phonological loop as shown in 

Figure 11. 

 

Figure 11. The three-component model of working memory [33]. 

 
The phonological loop is a short-term auditory memory subsystem in, which the 

information is stored in an acoustic format and if not rehearsed, the memory trace decays 

over time. The visuospatial sketch pad is responsible for visual information. It has a 

limited capacity, in which the retention of the objects is dependent on the binding 

together of constituent features, a process that demands attention [32]. The last 

component, the central executive, is the most important, however the least understood 

part, where the information from the other components are combined and processed.  

In addition to this multi-component working memory model, Baddeley extended 

the model by adding a fourth component [34]. The revised model is shown in Figure 12. 
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Evidence from the studies with the patients who have STM deficits, suggested the need to 

assume there was a further back-up store, namely the episodic buffer. The new 

component, the episodic buffer, holds representations that integrate phonological, visual, 

and spatial information, and possibly information not covered by the subsystems.  

 

Figure 12. The extended version of the multi-model working memory [34]. 

 
The episodic buffer is assumed to have a limited capacity and to be capable of 

holding information in a multi-dimensional code. It provides a temporary interface 

between the subsystems and is controlled by the central executive. Its main functionality 

is to pass and retrieve information from the episodic LTM into the central executive. 

A Biologically Inspired Working Memory Framework for a Robot: The Working 
Memory Toolkit (Wmtk) 

 
The limited capacity property of a working memory system provides focus for the 

robot to search for appropriate actions in order to accomplish the given tasks. In fact, the 

key point faced by the working memory system that is utilized in this proposed robot 
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architecture is the determination of which chunks1 of information should be actively 

retained in the working memory, and which may be safely discarded, for the critical task 

success. A straightforward approach for this critical selection mechanism would be to 

write procedures or methods that could be used to determine which chunks are essential 

for a particular task. In the proposed architecture, more general and adaptive learning 

methods are pursued. The working memory model that is used in this architecture 

facilitates an adaptive mechanism that intelligently updates the contents of the memory 

by learning from experience.  

According to previous studies, regions of the prefrontal cortex (PFC) in the 

human brain are involved significantly in working memory [36]. During working 

memory operations, dopaminergic midbrain neurons physically fire [38] and dopamine 

levels in the PFC distinctively rise [37]. 

The alteration of the dopamine levels in certain neurons in midbrain cells suggests 

a prediction scheme in the expected future reward. Learning by associating stimuli with 

rewards and punishments (the reinforcers) is called reinforcement learning [39]. The 

neuro-reinforcement learning computational models [40][41] describe the midbrain 

dopamine neurons in terms of a very popular machine learning algorithm, the temporal 

difference (TD) learning algorithm [42]. 

The main objective of the agent (i.e., robot) in this type of learning is to maximize 

the total amount of reward that it receives. Thus, the goal is not maximizing the 

instantaneous reward, but the cumulative reward in the long run [42]. If the reward is a 

                                                 
1 In this context, the term "chunks" will be used to refer to the objects that are utilized by the working 
memory. 
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scalar and denoted as ( )tr , where ℜ∈r for each time step t, then the expected future 

reward ( )tR can be formalized as a weighted summation of the rewards: 

( ) ( ) ( ) ( ) ( )�
=

− −+=+++++=
N

k

k ktrtrtrtrtR
1

1210 1...21 γγγγ        (3.1) 

where γ  is a parameter, 10 ≤≤ γ , called the discount rate. This parameter influences the 

present value of the future rewards. In other words, a reward received in k time steps in 

the future contributes to the sum only kγ   times of its value, if it were received in the 

present. As γ  approaches 1, the effect of the future rewards becomes more significant. 

The above equation can be rearranged as 
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and can be represented by its recursive form such that: 

( ) ( ) ( )1++= tRtrtR γ                       (3.3) 

If we denote ( )tδ  being the difference between the predicted and the actual total 

future reward, then we obtain 

 ( ) ( ) ( ) ( )tRtRtrt −++= 1γδ           (3.4) 

Equation 3.4 is known as the temporal difference error, since it is the difference between 

two successive estimates from the term ( ) ( )tRtR −+1γ . The prediction error ( )tδ  plays 

an important role, in that the activity of dopaminergic neurons in the midbrain can 

represent this quantity.   

Dr. David Noelle, and his Ph.D. student Joshua Phillips implemented an open 

source software library, written in ANSI C++, called the Working Memory Toolkit 
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(WMtk), which provides an abstraction layer and can be easily integrated into robotic 

control mechanisms [35]. WMtk essentially implements the computational model of 

working memory updating, which is grounded in interactions between the PFC and the 

dopamine system and utilizes a neural network version of the TD learning algorithm. It 

contains classes and methods for constructing a working memory system to select 

working memory contents. The toolkit is very flexible and configurable, such that it lets 

the designer to adjust several parameters, such as the working memory size, learning rate, 

exploration rate and so on. Moreover, the WMtk requires several user-defined functions 

in order to extend the flexibility and programmability of the toolkit.  

The main object in the toolkit is the Working Memory object. The fact that the 

WorkingMemory object maintains untyped pointers, means that the chunk information is 

not restricted to a particular data type, thus there is no limitation on what kind of 

information may be grouped into a chunk. The candidate chunks that are provided to the 

system are not necessarily all stored as working memory content; however the 

WorkingMemory object learns which chunks to maintain or discard using the TD 

learning algorithm.  

In order to build a robotic working memory system, initially a WorkingMemory 

object is created. This object requires several parameters and some user functions to 

configure the internal setup of the WMtk. The first parameter is the working memory 

capacity parameter, which is consistent with the limited capacity property of a biological 

working memory system. The reason that WMtk does not limit the structure of chunks is 

it cannot extract the meaningful features from the candidate chunks in order to evaluate 

the retention of a chunk. Therefore, the designer must provide a helper function, which 
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encodes all of the relevant features within a chunk into a vector of real values. In a 

similar manner, another user-defined function is required that encodes relevant features 

of the current system state and/or the environment (e.g., robot's current sensory state) into 

a vector of real values. The working memory system will then assess the value of these 

various chunks given the current system state and/or the state of the environment. The 

designer must also provide a function which handles memory management for a chunk 

after it is no longer needed by the working memory system. In other words, this function 

might be used to free a dynamically created object, such as the chunks themselves or to 

cache extraneous chunk information if needed later. The last parameter is another user 

function that provides real valued instantaneous reward information. After multiple 

training episodes, this reward information will be used by the working memory system in 

order to learn when to update the contents of the working memory store. 

Once all the initial setup is complete, the WorkingMemory object performs the 

following steps: On each time step of the task, a new list of candidate chunks is provided 

to the WorkingMemory object by the robot control system. Primarily, these chunks are 

merged with the ones that are currently held in the working memory. Now, the key 

objective of the WorkingMemory object is to determine which objects to retain or 

discard. The working memory system considers every possible subset of the total 

collected chunks in the memory and each subset is encoded into vectors of real valued 

feature sets. These features are then compared with the robot's current state to produce an 

input vector for the adaptive critic, which then tries to estimate the expected future 

reward. As a result, the combination of chunks, which provides the highest estimate of 

future reward in that subset, will be maintained in the working memory system. The 
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remaining chunks are safely discarded from the system. Finally, the temporal difference 

error is then obtained from the reward function value of the previous episode's estimate 

and the current episode's estimated future reward. The adaptive critic's weights are then 

changed using the calculated temporal difference error [35]. A specific case which briefly 

demonstrates the design principles of the WMtk is shown in Figure 13. The 

interpretations of the chunks for our system are also depicted in Figure 13. In this case, 

WMtk selects chunk3 from the input chunk vector and chunk7, which is already held in 

the working memory. The center component represents the WMtk itself as well as the 

chunks that are held in the working memory store. 

 

 

Figure 13. An example which demonstrates the WMtk’s design principles. Among the 
input chunk vector, WMtk decides to choose chunk3 and chunk7 in this current state. 

 
Even though the basis of the WMtk relies on established reinforcement learning 

techniques, the most distinctive feature of the toolkit is that it is not limited to selecting 

one action out of a small fixed discrete set of actions, as most of the traditional 

reinforcement learning systems select. The toolkit explores every possible combination of 
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collection of chunks, which can be fit within the limited capacity of the working memory. 

The combination of chunks which provides the highest estimate value of the future 

reward is selected and the chunk in this combination is retained in the working memory. 

This feature of the WMtk can be very useful in robotic applications. The robot is not 

limited to only one single item to consider. For instance, in many applications a landmark 

location is represented by only one percept. However, a landmark location may be 

represented by a combination of percepts, which may help the efficiency of the robot’s 

localization process. In addition, this would also help to increase the number of unique 

landmark locations in the navigation path of the robot.  
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CHAPTER V 

THE PROPOSED SYSTEM STRUCTURE 

Overview: 

A focus of this work is to establish a biologically inspired system that employs 

perceptual knowledge along with the working memory system in order to provide broad 

capabilities for visual learning tasks. Our main overall objective is to develop a system, 

which supports research into developmental robotics and uses a powerful perceptual 

system for this purpose. Such a requirement necessitates a large set of goals that the 

system needs to satisfy. In general, robot vision systems tend to be designed for specific 

types of problems and circumstances. The resulting systems typically operate in restricted 

environments. Our desire in this work is to have the robot operate in real world 

environments that are not modified by using artificial landmarks. The perceptual system 

facilitates a supervised learning method where the robot acquires the information from 

the user.  

First of all, in order to perceive the information from the environment, the robot 

needs to learn how to perform segmentation from examples and continually refine these 

capabilities as new data is acquired. For example, the robot could have been trained in an 

environment where the lighting condition is different than in an environment where it 

currently needs to perform segmentation. In such a situation, we would like the robot to 

adapt to the new environment on the fly and refine its previous perceptual knowledge. In 

many cases, the standard method for modeling involves generating a Gaussian or a 

Gaussian mixture model for each class or percept in order to analyze future samples. 
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Such a model is usually constructed by utilizing a relatively few samples, which then can 

be used for identifying other samples in various proximities of the original samples. One 

argument in favor for this type of model is that the calculations are computationally 

efficient, after the model is created. Nevertheless another argument, one that is not in its 

favor, is that the estimation of the most accurate models, such as Gaussian mixture 

models, are computationally expensive as the number of samples or the dimension of the 

samples increases. In this architecture, 10001 different elements are used to construct a 

very high dimensional feature vector from a small region in the image. Hence, the 

dimensionality is high, and for the model to be accurate there must be an adequate 

number of samples to obtain one or more clusters in the feature space. In order to analyze 

the unknown samples, the model estimation approach in this system is a straightforward 

non-parametric model that allows simple updates to the model without the need for 

recalculation. Such flexibility allows the robot to make simple updates on its perceptual 

knowledge and the model can be quickly updated by adding a few samples on the fly. As 

the number of samples increases, the computational cost also increases. Therefore, this 

leads to a need for memory consolidation in order to reduce the computation cost.  The 

details for estimating the model and the memory consolidation process will be explained 

in this chapter.  

Once the model is constructed and applied to the image, the resulting segmented 

image is presented to the user for evaluation and correction. This is very similar to a 

relationship between a teacher and student, where a teacher might grade and correct the 

student's work. If a correction is necessary, the user selects the segmented percepts that 

are misclassified and the system generates new data points for each of these percepts. At 
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this point, the perceptual model can be either recalculated or can be updated by adding 

new data samples to the system without recalculating the entire model.  

It is important to maintain a strong connection to the features of the percepts in 

the environment and to their semantic meanings. In other words, the robot should learn 

what the percepts mean for itself. For example, a percept could mean a target object or 

might be perceived as an obstacle. In this context, understanding the meanings of the 

percepts is referred as perceptual grounding. 

Although it is not within the scope if this dissertation the robot should also be able 

to detect novelty, such as new objects or events that it has never been exposed to before, 

and use this to trigger learning. In such cases, the robot should ask the user what the new 

object is and learn what it means with regard to itself and to its current task. This idea 

could also be extended detecting a context change in the environment. The robot should 

have the capability to generate a measurement of how much novelty it sees in the 

environment. For instance, when you see a lot of new objects, you may realize that you 

are located in a different context or location. Consequently, the robot can therefore infer 

about the new context and interact with the user for confirmation or additional 

information. The perceptual part of the vision-based autonomous mobile robot system is 

shown in Figure 14. 
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Figure 14. Perceptual part of the vision-based autonomous mobile robot system. 

 
A flowchart that characterizes the perceptual system and the desired human-robot 

interaction concept of the perception system is shown in Figure 15. Initially, the user 

teaches percepts by identifying and labeling the percepts. The system extracts the 

necessary information from the identified percepts in order to form its perceptual 

knowledge. This process is continued until a sufficient number of samples to represent 

the percepts is acquired. Next, the system forms its generative and discriminative models. 

By means of the models generated, the system segments the percepts in the environment 

and then presents an image with the segmented percepts. The user evaluates the 

segmentation image and identifies the percepts that are not segmented or not segmented 

well enough. It is important to note that the system can be trained with any new 

perceptual data any time, even with the percepts that the system has never been trained 

before. Once the corrections are made to the system by the user evaluation, the system 

stores new samples in its memory and updates its perceptual model. If required, a 

memory consolidation process can be performed at this point.  
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Figure 15. The flowchart of the desired human-robot interaction 
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Justification of using extremely high dimensional feature space 

In a high-dimensional space, often, the input vector for the system cannot exhibit 

all the features. Thus, the vectors results in a highly sparse format, especially in our 

vision system. Encoding the input vectors in this fashion provides a significant 

performance gain, especially for non-parametric techniques such as an exhaustive nearest 

neighbor search between the vectors in the pattern space.  

In the beginning of our work, we wanted to explore a feature space having a very 

high number of dimensions, and the reason for this is that we believed that such a feature 

space would have a very large capacity to learn. Therefore, we suggested that one way to 

obtain a robust performance in complex environments is to use a very high dimensional 

feature space. However, we are not implying this is the only way to achieve robustness 

and there may be other approaches, but to our knowledge, at least in higher level 

biological systems, the eye-brain system exploits a high number of features and not all 

the features are necessarily present at a single time in the brain.  

One of the consequences of using a high dimensional space is that typically, the 

parametric classifiers become impractical as the number of dimensions increase. These 

are any of the parametric techniques which involve computing eigen-values and eigen-

vectors, covariance matrices, or acquiring covariance matrices in the first place or 

forming enormous data matrices and computing singular value decompositions, and so 

on. As a consequence of this we needed a simple classifier, and the fact that we wanted to 

use a very high dimensional space led us to select the nearest neighbor (NN) method as 

our classifier. The NN method does not need any kind of 2nd order covariance 

information. The NN method only needs to compute distances. Furthermore, there are no 
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assumptions about the distributions and it is not restricted in the choice of distance 

metric. 

Another consequence of using a high dimensional space is the need for a large 

database. A practical rule of thumb is that the amount of data required is approximately 

five times the dimension of the feature vectors. However, in a visual application, it is not 

difficult to obtain large amounts of training data.  

These requirements, that the system must to operate on such a large database and 

use NN as a classifier, mean that pure, exact NN would be too slow and computationally 

very expensive. As a result, an approximate NN implemented by a search tree would be 

much faster, and since the database is large we expected it to yield acceptable 

performance. Another aspect of this design is that the non-parametric search tree also 

allowed us to continually train the system during use, as necessary.  

It may seem that in a high dimensional space the distance calculations are 

expensive. On the contrary, it is not expected that all the features are present at all times, 

especially in the case of features we have chosen. Therefore, the feature vectors are very 

likely to be sparse. Hence, if the vectors are encoded in a sparse vector representation in 

the system, the calculations can be dramatically simplified, and the memory storage 

significantly reduced. Local high dimensional color histograms of small regions in an 

image exhibit this property. We note that in our system, the computational cost of 

distance calculation is virtually unrelated to the dimension of the vectors. This 

particularly addresses, to some extent, the “curse of dimensionality” problem, at least in 

terms of computational cost. Consequently, a high dimensional space is not a problem for 

our system.  Furthermore, due to the design of our system, the features can be computed 
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in a highly parallel fashion.  Parallel implementation will be addressed as a future work in 

the conclusions. 

Visual Features 

At first, an image is captured from a digital video camera and corresponding red, 

green and blue (RGB) values for each pixel are obtained. Next, the RGB image is 

switched to the HSV color space. The HSV color space is based on intuitive color 

characteristics such as hue, purity and the intensity of a color. As shown in Figure 16, the 

coordinate system is cylindrical and the colors are defined in a hexcone. The hue value, 

which defines the color family, ranges from 0° to 360°. The saturation parameter S is the 

degree of purity from 0 to 1. The value parameter V defines the brightness of a color and 

it is also from 0 to 1. The saturation S and value V can be also viewed as adding or 

subtracting white and black to a color. 

 

Figure 16. The HSV color domain representation. 

 

The color space conversion from RGB to HSV is computed as follows: 
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Once the HSV values are computed, the next step is to construct a probability 

density function (pdf) of the HSV distribution of colors. The pdf is essentially a 

histogram of HSV colors and computed using a color quantization method as follows: 

The hue space is evenly distributed into 100 bins, ranging from 0 to 1. The saturations 

and values are each evenly distributed into 10 bins that are also ranging from 0 to 1. 

Therefore, the individual color features can be obtained by combining these, resulting in 

10,000 different color features. For a small region in the image, an HSV color histogram 

is obtained by accumulating the HSV values of each pixel in the region. The region 

referred to here is a moving window of a particular size (currently 15x15 pixels). The 

center of the window is then moved throughout the entire image and a feature vector 

(color histogram) is obtained for each displacement. Currently, the displacement is 10 

pixels in the horizontal and vertical directions. Since there is only a relatively small 

number of pixels in each region (225 for 15x15 regions) and the total number of colors 
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that can be represented is 10,000, the feature vector has a highly sparse format. In other 

words, there are zeros in most of the bins in the histogram. Therefore, each feature vector 

is encoded using a sparse vector representation. A sparse vector is composed of two 

vectors, a value vector that represents the non-zero values and an index vector that 

represents the indices of these non-zero values in the original vector. This representation 

is useful in several ways in our system. First and foremost, increasing the dimensionality 

of the feature vectors does not affect the computational cost for computing the distance 

between two feature vectors. For instance, in our system, the distance between two 

feature vectors are calculated by using the Euclidean distance measure. The Euclidean 

distance between vectors X and Y is given by: 

( ) ( ) 2
122

2 YXYXYX ⋅−+=−=D  

In order to compute the norm of a vector, only the non-zero elements of the vector are 

sufficient. Furthermore, only the non-zero elements that are in the same dimension are 

necessary to compute the inner product of two vectors. This can be easily checked by 

looking to the index vectors of two sparse vectors that are pointing the same non-zero 

element positions. Thus, as long as the number of non-zero elements is constant, 

increasing the number of dimensions does not affect the distance calculations. If the 

feature vectors are constructed from an N X N region, the maximum number of unique 

element indices to be accessed for computing a distance is 12 2+N , where the additional 

one is due to the texture measure in both vectors. Secondly, the memory is significantly 

preserved by using sparse vector representation.  

One of the reasons that we use such a high dimensional space is to differentiate 

colors as much as possible. Another secondary reason is the resemblance to the sparse 



 53 

encoding employed in the brain. Theoretical and experimental studies suggest that the 

primary visual cortex (V1) uses a sparse code to efficiently represent natural scenes [46].  

In order to understand the "roughness" intensity of a region, a spatial filtering 

technique, based on the Laplacian operator, is applied to the image and added as the last 

element in the feature vector. The Laplacian operator is a 2D isotropic measure of the 2nd 

spatial derivative of an image. The Laplacian operator is often used for edge detection, 

where the regions that have rapid intensity changes are highlighted in the image. The 

Laplacian ( )yxL ,  of an image having pixel intensity values ( )yxI , , is defined as: 
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Since an image is composed of a set of discrete pixels, the following kernel, 

which approximates the 2nd derivatives in the definition of the Laplacian equation above, 

is applied. 
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If the image has M rows and N columns, and the kernel has m rows and n 

columns, then the size of the output image will be M-m+1 rows, and N-n+1 columns, 

after the convolution. The convolution is given by: 
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where O is the output image and i runs from 1 to to M-m+1and j runs from 1 to N-n+1. 

Adopting a Matlab-like notation, the texture feature is computed as follows: 

( )( )( )256/,, IKConvAbsKConvFeatureTexture LAPAVE=  
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where Conv and Abs are convolution and absolute value operators respectively, and KAVE 

is a normalized averaging filter which has the size of the moving window (i.e. if the 

window has 15x15 block size than the filter is normalized by 225) and ones in all of its 

rows and columns. 

Proximity Measure 

It is expected that the patterns that are members of a specific perceptual cluster 

should be closely positioned in the pattern space, while those from different percepts 

should be positioned further apart from one another. Once the set of visual features are 

computed, the next step is to define a similarity (or dissimilarity) measure between two 

feature vectors, which will aid in to revealing the organization of the patterns in the 

space. Based on this similarity measure, we then design an algorithm which efficiently 

searches for similarities and dissimilarities among the input patterns and clusters them in 

the feature space. At this point, we need to define a proximity measure, which will aid the 

robot to find the natural groupings of data in its perceptual space. There are many 

proximity measurements in the literature, such as Euclidean, Mahalanobis, Tanimoto 

distances and their variations are some of the examples. 

As pointed out by [47], the best approximation to an invariant relation between 

data and distances for a unitary or holistic stimuli, such as hue, saturation or brightness of 

a color, is the L2 norm, commonly known as the Euclidean distance. In a K-dimensional 

space, the Euclidean metric distance is given by: 
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where K= 10001 in this system.   
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The search tree and the Clustering Algorithm 

As mentioned earlier, as the dimension of the vectors increases, the number of 

training samples should also be increased considerably as much as possible in order to 

obtain meaningful percepts. However, due to the fact that the system operates in such a 

high dimensional feature space, an efficient, robust and yet an accurate search algorithm 

is desired.  For instance, if a pure nearest neighborhood were performed over such a large 

data set, it would be very time consuming and computationally expensive. Hence, the 

data stored in the memory should be consolidated and organized as much as possible.  

The training data and the tree structure construct the LTM or the database of the 

system. In order to obtain such an efficient and yet reliable search algorithm, a tree-

structured vector quantization method is applied to generate an approximate 3-way 

nearest neighbor searching tree. The tree structure is formed as follows: Initially, at the 

root or first level of the tree, three points, which represent the cluster centroids, are 

selected randomly and then the whole data set is clustered into three subsets by assigning 

each feature vector to its closest representative cluster center according to the proximity 

distance measure. At the second level, three subsets are obtained and the same procedure 

is applied, which in turn results in 9 subsets or in other words nodes for the tree. This 

procedure continues until either all the leaf nodes belong to the same object class (a pure 

node) or the number of leaf nodes is below some limit, e.g., a hundred. Every feature 

vector in the leaf nodes has a landmark associated with it. This completes the 

construction of the tree. 

Since all the centroids for each node in the tree structure are known, searching the 

tree is straightforward. Given a new feature vector, the three similarity measures, which 
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are between the new vector and the centroids of the three sub-nodes at the second level of 

the tree that belong to the root node, are computed. The winning sub-node is the one that 

is closest to the given feature vector. At the third level of the tree the same procedure is 

applied and a winner sub-node is selected and the fourth level of the tree has been 

reached. This procedure is terminated when the search has descended to a leaf node. If 

the leaf node is pure, that is all the feature sets belong to the same class, then the vector is 

labeled as the leaf node's class label. If not, that is the data set in the leaf node is mixed 

and below some threshold limit, then a nearest neighbor search is applied using the 

vectors of the leaf node, and the vector is labeled with the training vector's label that is 

closest. This completes the search algorithm. 

Immediate simple updates to the search tree 

Now assume that the tree structure has a relatively high number of nodes. It 

would be cumbersome and computationally expensive to re-compute the tree structure, 

when additional training is required. Earlier, it was mentioned that the non-parametric 

structure of the method enables simple updates to be performed on the fly. A very 

straightforward approach may be taken when a new training vector arrives. It is possible 

to treat the new training data as testing data and perform a search on the tree. Once the 

search is complete and reaches a leaf node, the training data is assigned to that leaf node, 

so that the population of that leaf node is incremented by one. This allows a very fast and 

computationally efficient algorithm to update the perceptual database.  

As the number of training vectors increases in time, the reliability of the 

perceptual system is also expected to be increased as well. It is desired to have a large 

number of training samples in order to obtain meaningful clusters in a high dimensional 



 57 

feature space. However, this does not necessarily mean that all the obtained training 

samples will equally contribute to the efficiency of the search tree. For example, suppose 

that there are ten thousand training points in a cluster that would represent some pattern 

in the environment. It is possible to represent the same pattern using only a few hundred 

or fewer data points in the search tree, which would dramatically increase the 

performance of the system by decreasing search time. In other words, only the points 

which provide a significant contribution to representing clusters in the pattern space 

should be maintained. This can be also related to the forgetting behavior of human 

beings. For example, in time, we may forget many of the events that we have experienced 

before and we may only remember the ones that are most important to us. Explanation of 

this is left to future work.  

Novelty Detection 

Furthermore, the structure of the tree also aids the robot in detecting objects that 

the robot has not seen before, or if the environment itself has changed significantly. In the 

pattern space, the more the features of objects are further apart from the features which 

the robot has been trained before, the more novelty exists in the perceptual space. 

Consequently, substantial change in the novelty of many objects may lead the robot to 

reason that a context change in its environment has occurred. One approach would be to 

obtain similarity measurements from the nodes of the search tree and construct a novelty 

image where novelty is estimated by the distance to the approximately nearest training 

vector. The distances then, can be mapped into a grayscale image that would indicate 

novelty.  
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The Cognitive Structure: The Perceptual System and the Working Memory Structure 
Combined 

 
After the segmented image has been obtained, the final stage of the perceptual 

system is to produce inputs for the working memory system, referred to as "chunks", in 

order for the robot to acquire sensory-motor associations to guide its actions. The input 

chunks for the working memory system are obtained by applying a connected-component 

labeling algorithm to find the locations and some other properties that describe regions, 

called "blobs", in the segmented image. Each blob represents a specific cluster in the 

feature space, but it also represents a clustering of pixels in the image space. This 

simultaneous clustering in both the feature space and the image space is usually 

indicative of a meaningful percept.  

Since this architecture is applied to a mobile robot platform, the connected-

component labeling algorithm is only applied to the lower half of the entire image. It is 

assumed that the objects that appear in the upper half contain many distracting percepts 

from distant objects. Also, distant objects experience greater variability in lightning 

conditions. This also helps to reduce the number of inputs for the working memory 

system to consider, as well as to improve the performance of the perceptual system.  

The final flowchart of the system is presented in Figure 17. The top half of the 

diagram represents the perceptual system as shown in Figure 14, previously. The lower 

portion of Figure 17 represents the working memory system, which is combined with the 

robot's sensory-motor scheme (i.e., actuators and sensors such as sonars to avoid 

obstacles). The combination of both the perceptual system and the working memory 

system yields the cognitive structure of the robot.  
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Figure 17. The proposed system architecture, perceptual system and working memory 
combined. 

 
The WMtk, intelligently decides which input chunks to maintain or discard in the 

working memory depending on the reward criterion. This criterion is dependent on the 

current task of the robot and is specified by the user as a requirement for the WMtk. The 

reward is generated in a discrete-time manner (namely "episodes") and is a real number. 

Depending on the selected action in the previous episode, as well as the reward signal 

generated for that particular action, the WMtk updates its internal parameters and outputs 

the working memory contents. The robot then selects and executes an appropriate action 

based on the contents of the working memory. 
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CHAPTER VI 

THE PROPOSED METHODOLOGY AND EXPERIMENTS 

 
As mentioned previously, a main objective of this research is to integrate a 

perceptual system into a biologically inspired working memory system in such a way that 

would yield a basic framework for visual learning tasks. Our approach in this work is not 

intended to focus on a specific task, such as navigation, object recognition, etc. In 

contrast, the aim is to provide a general framework for developmental learning, in order 

to investigate how well a neuro-computational PFC working memory model performs on 

a robotic platform in a real world environment with complex tasks. Additionally, we seek 

to explore the use of PFC working memory in robotic applications. Furthermore, we 

propose that this general framework may be integrated into specific robotic applications 

which involve learning.  

We propose to conduct several experiments that would exploit the usefulness and 

capabilities of this framework in a mobile robotic platform. A fundamental property of a 

mobile robot is the ability to navigate safely in an uncertain environment. In order to 

achieve this task, the system needs to acquire sensory-motor associations to guide the 

behavior of the robot. Each experiment is related and builds on each other in order for the 

robot to navigate successfully.  

The experiments will take place in the hall outside of the Intelligent Robotics 

Laboratory in the third floor of the Featheringill Hall.  This hall is composed of several 

objects and is shown in Figure 18. The floor consists of three tile structures: The yellow 

floor tiles in the center with white floor tiles, along the edges near the wall, and black 
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stripes of tiles are located periodically across the center of the hall. The walls consist of 

wood panel sections, light blue painted wall sections and a light blue railing. 

Additionally, there are also brick columns and blue floor tiles at the ends of the hallway.  

 

Figure 18. The hallway outside of the Intelligent Robotics Laboratory. 

 
Initially, the robot is trained by capturing an image from the input video stream. 

The user selects a region in the image and labels it by assigning a category. The features 

are extracted from the selected region and stored in the memory. Next the search tree 

structure is computed from the training features. In order to account the different lighting 

conditions, the features are collected over several days at different times. The feature 

vectors, the search tree structure and the labels of the feature vectors constitute the 

training database of the system.  

Experiment 1: Learning the Open Space 

In order for a robot to navigate safely, it has to move in open space. Therefore, the 

first step is to learn the percepts that will yield an open path for navigation through the 

robot's own interaction with the world.  
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Once meaningful blobs or percepts are obtained from the images acquired from 

the camera, the robot needs to learn the association of the percepts with the task of 

motion. In other words, the robot needs to determine whether the percepts represent an 

obstacle or an open space, since the robot does not have any prior information about these 

percepts. In order to have such association in this task, the reward criterion for the WM 

system is selected to be the distance taken by the robot, since percepts that are in the open 

space allow the robot to move further. The procedure for the experiment 1 as follows: 

• The WM size parameter is set to 1 in order to asses the percepts individually. 

Therefore, the WM can only select one of the available input chunks per episode.  

• The robot captures an image from the video stream and segments it into blobs. In 

order to reduce the number of computations, only the blobs that are located at the 

bottom half of the image are presented as an input to WM, since the objects that 

are in front of the robot are required. Initially, since there is no reward 

information (i.e. no displacement is taken by the robot), the WM randomly 

chooses one of the available chunks.   

• Next, the robot directs itself toward the selected chunk and proceeds forward for 

five meters or until sonar sensor indicates an obstacle, which forces the robot to 

stop. 

• The distance taken by the robot is returned as a reward for the WM system and 

associated with the selected chunk previously. If the robot moved for five meters 

than it will receive the maximum amount of reward, if not, it will receive a partial 

reward which is the distance it traveled. 
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• The same procedure is taken, starting from the first step, multiple times, which 

allows the WM system to intelligently update its internal parameters associated 

with each available chunk in the environment, depending on the reward received 

at each episode.  

Experiment 2: Learning Landmarks 

In a navigation task, landmarks are essential, in the sense that the robot might take 

an action on a specific landmark. In the first experiment, the robot learned which percept 

will provide the open space to move safely. Now, it must learn about landmark locations 

in order to localize itself in the environment. In this experiment, the black floor tiles are 

found to be convenient as landmark locations. For instance, the robot might turn 90° right 

or left at the 3rd landmark location. The following steps are taken for the experiment 2: 

• The WM size parameter is set to values of 1, 2, and 3 to determine which percept 

or combinations of percepts should be selected for recognizing a landmark 

location. 

• A set of training images are acquired from the environment to represent landmark 

and non-landmark locations as seen in Figure 19. As mentioned, the presence of a 

black floor tile in the foreground is an indication of a landmark. The number of 

landmark and non-landmark images is equal in the collected set of images. 

• The training images from the set are selected randomly and processed in order to 

obtain the chunks for the WM system, using the search tree.  

• The percepts that are available are duplicated and presented to the WM system. In 

other words, the input chunks for the WM system are doubled. One chunk is 
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considered as a landmark and the other in the same duplicate considered as non-

landmark. Once the WM system has selected a set of chunks, a vote is taken to 

determine whether the majority is a landmark or non-landmark. If there is a tie in 

the vote, then it is interpreted as a non-landmark by default. Since the training 

images are labeled, the WM system receives a reward of one if the selected chunk 

is a landmark, else it receives a zero.  

• Each of the WM sizes is trained for both 1000 and 5000 episodes. 

 

 

 

 

 (a) 
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 (b) 

Figure 19. (a) A landmark image. (b) A non-landmark image. 

Experiment 3: Learning the Navigation Task using the learned Landmarks 

At this point, the robot knows which percepts yield open space, as well as which 

percepts are considered to be landmark points. Now the question becomes how can the 

robot learn to associate a sequence of percepts for open space along with the percepts for 

landmark points in order to reach a goal position. Once, this is achieved, then the robot 

can learn a navigation task and accomplish the task successfully with the aid of its 

knowledge.  

In the first experiment, finding the open space to navigate safely could be thought 

of an action behavior for the robot. However, in the second experiment, finding the 

landmark percepts could be considered as a perceptual behavior. In the first one, the 

reward is based on the distance that the robot travels (a continuous value), which is the 

attentional constraint in order to find the open space. In the second experiment, the 

reward becomes a boolean type of variable such as true or false. The 2nd experiment is 

supervised in the sense that the landmark images are labeled, however there is some 
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freedom in the sense that the landmark percepts are not explicitly told to the robot in the 

images. The robot must discover them on its own.  

In this experiment, the robot needs to learn a navigation task by utilizing the 

previously learned behavior for finding the open space, as well as the landmark percept it 

has learned. It has to associate actions to the sequence of landmarks seen along the 

navigation. Additionally, it should also remember (i.e., exhibit a delayed-response) a 

contingent situation that will change the task completely into a new one. For instance, if 

it sees a contingent percept (i.e., a green ball) along the navigation path, it has to hold on 

to it until it reaches the last landmark and then come back to its initial position.   

Specifically, the robot will be positioned in front of the Intelligent Robotics 

Laboratory, looking towards the west side of the hallway. The black stripes along the 

hallway indicate the presence of a landmark. The objective of the robot is to navigate 

along the hallway until it reaches the third landmark. However, if the robot recognizes a 

green ball, as an unexpected, contingent percept along the way, it should remember the 

green ball until it reaches the last landmark and come back to the starting position. If no 

green ball is detected along the navigation path, the robot is required to learn to stop at 

the third landmark. The robot makes a decision, moves with a small distance increment 

and stops. The time required for this cycle is referred to as one time step. This procedure 

continues until the navigation is complete. The procedure for the experiment 3 is as 

follows: 

Initially, the robot captures an image and segments the percepts in the 

environment. A list of possible actions, such as "move", "stop", and "turn around" will be 

presented as inputs to the working memory. The working memory system will be 
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rewarded or punished by the possible actions chosen by the robot along the navigation 

path. These three action chunks are always provided to the working memory in the input 

chunk vector at each time step.  

In addition to the action chunks, the working memory is presented with the 

percepts detected in the environment. However, only “YellowFloor”, “BlackFloor”, and 

“GreenBall” percepts are presented, if recognized by the perceptual system. Since the 

task requires only remembering the “GreenBall” chunk, the other percepts are treated as 

distractors.  

Finally, the working memory is also presented with a “Nothing” chunk, meaning 

that the system does not make any selection. Therefore, the maximum number of chunks 

that can be presented to the working memory is seven. 

The working memory size is set to two. One slot is for an action chunk and the 

other one is for a percept chunk. Thus, the working memory is required to learn to select 

an action chunk as well as a percept chunk.  

Once the candidate input chunk vector is presented to working memory, a 

decision is made. The robot either moves, stops or turns around depending on the action 

selection made by the working memory at each time step. Furthermore, if a “GreenBall” 

percept is detected, the working memory is expected to remember the “GreenBall” chunk 

in its second output slot.  

The robot learns to move towards the open space for one meter and the cycle is 

repeated until the third landmark is reached. However, if a green ball is detected, it needs 

to remember that it has detected an indication for a contingent situation. Therefore, as the 
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task requires, it needs to come back to its initial position by passing again at each 

landmark, in order to demonstrate the bootstrapping effect.  

The objective of this experiment is to have the robot utilize its previously learned 

knowledge and apply them to learn a complex task. Furthermore, it needs to demonstrate 

the delayed response effect by holding on to a percept for a period of time. The delayed 

response task is widely used in cognitive neuroscience in order to evaluate the properties 

of working memory [4], [35]. 
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CHAPTER VII 

RESULTS 

Overview 

One of the goals that we wanted to achieve while designing the system is to 

utilize solely visual information. The testbed robot Skeeter, which is explained in detail 

in Appendix A, is equipped with a single camera to perceive the environment. The front 

sonar array is only used for obstacle avoidance purposes. In this chapter, the results of the 

experiments, which are discussed in the previous chapter, are demonstrated. The 

objective of the experiments is to reveal the capabilities of the system in uncontrolled 

environments. In the experiments, the system learns new percepts, as well as new skills to 

learn to ultimately perform a qualitative vision-guided navigation task. Since the task is 

qualitative navigation, no metric information is involved in the computations. Only the 

angular positions of the percepts with respect to the robot frame are computed. Before 

showing the results of the experiments, the features of the perceptual system will be 

demonstrated. Next, the results of the experiments will be introduced. Finally, a 

discussion section will conclude the chapter.  

Training and Segmentation 

The system is trained simply by choosing and labeling examples from the 

acquired images. The graphical user interface (GUI) of the system is designed to facilitate 

the rapid collection of feature vectors. Once a sufficient number of vectors has been 

collected, a 3-way approximate nearest neighbor search tree is constructed from these 
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vectors in order to consolidate the LTM and reduce the search time. Currently, the system 

has been trained on 7 percepts and a color value has been assigned to each percept for 

displaying them as different clusters in segmented images. Table 2 shows the percepts 

and their respective color value. 

Table 2. The percepts and their respective color value. 

Percept Label Assigned Color 
Value 

WoodPanel Red 
YellowFloor Yellow 
WhiteFloor White 
BlackFloor Black 

LightBlueWall Light blue 
Bricks Dark red 

BlueFloor Blue 
 

Figure 20 shows typical segmentation results of the system. These segmented 

images are obtained from a set of 58,198 feature vectors. The vectors were collected over 

several days at different times of the day to account for percepts in the environment under 

different lighting conditions. More segmented image results can be found in Appendix B. 

The results show that the system clearly segmented wood panels, white floor, yellow 

floor and black floor tiles. However, there are misclassified regions in the segmented 

image, especially for distant percepts. For instance, the blue railings are in general 

misclassified due to their thin structure. In order to get better results for this percept, the 

size of the moving window should be reduced to increase the resolution of the 

segmentation and capture the thin sections of the railing. However, the trade-off here is 

the increase in the resolution of the segmented image which will also increase the 

computational cost. The regions between the railings contain dark percepts which are 

similar to black floor tiles. Hence, these regions are sometimes classified as black floor 
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tiles. The misclassification of the distant percepts is an expected result, because the 

percepts are getting smaller and darker on the east side of the hallway. On the west side 

of the hallway, intense sunlight is coming out of the window, creating white reflections 

on the surface of the percepts, which are sometimes classified as white floor percept. The 

wax on the floor tiles causes the surface to be extremely reflective. However, the regions 

where the reflections are not relatively intense are still segmented reliably. This shows 

that the perceptual system is very sensitive to hue information. The reflections of some of 

the percepts such as wood panel and blur railings, are reflected on the floor tiles. Yet the 

system is still able to identify most of the actual floor percept. Nonetheless, overall, it can 

be seen that the system produces very good and reliable results on segmentation for the 

near percepts.  

 

 

 (a)  
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 (b) 

 

 (c)   

 

 (d) 

Figure 20. Typical segmentation results of the system. (a) West side of the hallway. (b) 
Segmented image of (a). (c) East side of the hallway. (d) Segmented image of (c). 
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As mentioned earlier in Chapter V that the non-parametric structure of the pdf 

estimation method enables simple updates to be performed on the fly. This enables the 

user to correct and update the system by adding new examplars to the system's LTM 

database. This flexibility allows the system to adjust itself online to a particular time of 

the day when different lighting condition is present. The only drawback of online training 

is the increase in computational cost, as the leaf nodes of the search tree also increases. 

However, it is possible to create a new tree branch when the samples in the leaf nodes are 

exceeding a desired threshold value. Thus, adding new samples to the tree does not effect 

the computational cost significantly. Moreover, only one or two updates are enough to 

correct the misclassifications of a percept. As a result, there is no need to recompute the 

search tree. Thus, with this capability, the system can be trained for new percepts in the 

environment at anytime. Figure 21 shows the result of such corrections as well as the 

structure of the GUI. The upper left corner of the GUI is the video stream captured from 

the digital camera. The upper right corner section of the GUI is the training region, where 

the training image is captured from the video stream. The user simply selects rectangular 

regions over the percepts in the environment, labels them and assigns a display color for 

the segmented image which is shown in the lower right corner of the GUI. In Figure 21 

(a), we can see that some parts of the white floor have been misclassified as wood panel 

and yellow floor. Even though, these small misclassified regions are not presented as a 

chunk to WMtk, we can still correct the perceptual knowledge of the system in order to 

get better segmentation quality. The user corrects the system by selecting the 

misclassified region (green rectangular box shown in Figure 21 (a)) and selecting the 

correct label from the list of the percepts in the menu which pops up when a selection is 
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made. The result of the correction is shown in Figure 21 (b). The selected region, as well 

as the other misclassified regions that occur in the white floor percept, are corrected. The 

same correction is also made in Figure 21 (c) for the wood panel percept. Some regions 

of the wood panel are classified as brick. Figure 21(d) shows the result of correction 

made for the wood panel.   

 

 (a)  

 

 (b)  
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 (c)  

 

 (d) 

Figure 21. Simple corrections. (a) Correction made for the white floor. (b) Result of the 
correction  made in (a). (c) Correction made for the wood panel. (d) Result of the 
correction made in (c) 
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The perceptual system is very sensitive to color differences. An example case is 

shown in Figure 22. The system is trained only for the green ball located on the right and 

shown in green color in the segmentation image. Anything that is different than the green 

ball object is shown as in black in the background of the segmentation image. We can see 

that the green ball on the left is not segmented at all, even though the colors are the same, 

but slightly different. There is also a green book in the book shelf and it is not segmented 

at all as well. We noticed that our perceptual system shows the same results at different 

times of the day and at different lighting conditions. This is a result of using a very high 

dimensional feature space, thus, the colors are finely differentiated. 

 

(a) 
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(b) 

Figure 22. The result of using a very high dimensional space. (a) The system is only 
trained for green ball located at the right section. (b) The system does not segment the 
ball on the left at all. 

Results of Experiment 1 

 The task the robot is expected to perform in this experiment is to learn the 

meaning of the percepts with regard to motion. Once suitable percepts are formed and 

meaningful blobs are obtained through the perceptual system, the robot learns to 

associate these percepts whether they represent an obstacle or open space. With a WM 

size of 1, the weight parameters inside the WMtk are directly associated with the 

percepts, and are related to the expected reward associated with these percepts.  

Therefore, it is expected that the WMtk quickly adapts to choose the percept that receives 

higher reward values with respect to the other percepts in time. In order to evaluate the 

system's learning performance, two sets of experiments were conducted.  

In the first set, the robot was put in the middle of the hallway and let go freely 

without any user interference.  Figure 23 shows the plot of the cumulative reward weight 

associations for each percept versus the number trials. The WMtk has also a reserved 
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chunk position when none of the chunks that are provided as input are selected. This 

reserved chunk is indicated in the plot as "No Selection" line. Initially, all the weights for 

each percept are set to 2.5, which is the average of the minimum and the maximum 

reward value. Assume that the rewards were set to zero and there were three chunks in 

the working memory. If two of the chunks represent an obstacle for the robot, most likely 

the WMtk would make a random choice for the first episode, since no reward signal is 

yet associated for each percept. If the chosen percept was an obstacle, still the robot 

would move towards it and receive a less amount of reward. In the next episode, if the 

working memory had the same obstacle chunk as well as a chunk, representing the open 

space, the WMtk would select the chunk which represents an obstacle. The reason for this 

is that the chunks that represent open space have not received any reward and 

additionally they were all set to zero. Hence the WMtk would select the chunk, 

representing an obstacle for the robot. However, initializing the weights to 2.5 forces the 

WMtk to explore chunks that represent open space, when the rewards, which are 

associated with the obstacle chunks, are lowered.  
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Figure 23.Plot for the reward  weights for each percept for each trial. 

 
The percepts that are detected decrease in value until around episodes 50-70 

where the dominant percept, labeled as "YellowFloor" begins to grow in a linear fashion.  

All percepts that are not encountered often do not change much or at all from the initial 

value.  Note that only percepts that are located at the lower half of the image are 

presented to the working memory. Therefore, some of the percepts are encountered rarely 

during the motion of the robot, even though they are still in the LTM of the robot.  

After "YellowFloor" percept is determined to be the dominant percept associated 

with open space, it is blocked at the 90th episode to observe how the remaining percepts 

will be affected in working memory. Figure 24 shows the plot of this situation. The result 

shows that the percept labeled "BlackFloor" begins to grow and the other percepts that 

would represent less motion such as "WoodPanel" are further decreased.  The blocking of 
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the dominant percept allows for further development of the other percepts clearly 

showing a second best option for the open path. 

 

Figure 24. "YellowFloor" blocked at episode 90. "BlackFloor" percept seems to be the 
second option for the open path. 
 
 

In the second set, instead of letting the robot go freely, after each trial, the robot 

was put back to the center of the hallway to begin the next trial. Figure 25 shows the plot 

for this situation. The purpose here is to see whether this method may improve the 

learning speed of the robot or not. However, the conditions of free travel versus forced 

centered travel seem to make no significant difference for the speed with which the robot 

learned this task.  
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Figure 25 The robot is put to the center of the hallway after each trial.  

Results of Experiment 2 

In this experiment, the robot utilizes the working memory to learn to recognize 

landmark locations in the environment. Localization of the robot in the environment is 

essential for a successful navigation. The black tiles in the hallway are a convenient 

percept to select as landmark locations. In order to train the system, a set of training 

images are obtained from the hallway and labeled to indicate the presence of a landmark. 

The set contains equal number of images that contain a landmark and not contain a 

landmark. The images are selected randomly and segmented by means of the search tree 

and the perceptual database.  
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As mentioned in the experiment description, once the chunks are obtained, they 

are presented to the working memory as pairs. For example, if the "YellowFloor" percept 

is recognized in the image, then it is presented to the working memory system as 

"YellowFloor_L" and "YellowFloor_NL". The reason that the percepts are presented as 

pairs is to have the working memory system to consider all the possibilities for a percept, 

which could represent a landmark or not. It is expected that the system should learn 

"BlackFloor_L" as the landmark percept and if the working memory size is greater than 

1, the system should output other percepts with "NL" suffix, denoting that they are 

considered as non-landmark percepts. In the case of working memory size greater than 1, 

a voting mechanism is applied to determine the final decision of the working memory 

system. For example, if the working memory size is three and the selected chunks are 

"YellowFloor_NL", "WoodPanel_L" and "WhiteFloor_L", the vote result will be in favor 

of presence of a landmark in the image. However, since in this case the image would be 

labeled as non-landmark image, the system would not get a positive reward. If the voting 

result agrees with the image label, the system receives a positive reward of 1, else it 

receives a zero as a negative reward. 

The WMtk has a parameter in order to adjust the exploration rate.  A higher value 

for this parameter increases the chance that the working memory system will explore 

other options in the choices rather than just pursuing the maximum expected reward. The 

percentages noted in Table 3, result from the trials with the exploration percentage set at 

0.05. Table 4 is the result using only the weights within the working memory to 

determine landmark choices without exploration, i.e., the exploration parameter is set to 

0. The percentage values for both tables are including the early misclassifications that 
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occur in the WM training. The percentages are higher in Table 4 than in 3 and more 

accurately represent the performance of WM after training. Each of the WM sizes is 

trained for both 1000 and 5000 episodes.                                       

 
Table 3. Percentage correct for Landmark classification with WM exploration set at 0.05 

WM 
size 

1000 
trials 

5000 
trials 

1 93.10% 85.86% 
2 90.00% 93.20% 
3 95.30% 96.60% 

 

 
Table 4. Percentage correct for Landmark classification with WM exploration set at 0.00 

WM 
size 

1000 
trials 

5000 
trials 

1 98.10% 99.52% 
2 95.50% 97.42% 
3 98.00% 99.38% 

 

Figure 26 shows the learning curve of the system for each working memory size 

and exploration rate values, as a plot of the average reward values over a sliding 25 point 

window over 1000 trials. Figure 27 shows the same plots over 5000 trials.  
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Figure 26. Average rewards for each case (WM size = 1,2,3 and Exploration rate (ER) = 
0.0, 0.05) over 1000 trials. 
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Figure 27. Average rewards for each case (WM size = 1,2,3 and Exploration rate (ER) = 
0.0, 0.05) over 5000 trials. 

 
The results are quite good in all cases. The results, which are obtained by setting 

the exploration rate to 0.05, yields lower accuracy, because the system is exploring new 

possibilities and thus making more mistakes. However, when this parameter is turned off, 

the results are much more accurate, as expected. 
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Results of Experiment 3 

In this final experiment, the robot is required to learn a navigation task. In order to 

perform a navigation task, it should navigate safely in an open path, localize itself in the 

environment as well as choose the right motor commands. So far, the robot knows which 

percepts are safe to move, as well as what percept indicates a landmark. Each of these 

skills has been encapsulated and will be used to perform a vision-guided navigation task.  

As mentioned in the description of the experiment earlier, the maximum number 

of input chunk vectors is seven. The training is performed in a simulation environment 

and all the possible chunks are presented to the robot at each time step. The robot is 

trained for each region of the navigation path as shown in Figure 28. Each region may be 

thought of as the state of the robot (i.e., state 0 is being located at region 1, and state 1 is 

at region 2, etc.). Furthermore, the detection of the contingent percept is also represented 

as a state of the robot. However, during the training, this state is randomly set to true 

once, in one of the regions or not set to true at all. This means that the contingent percept 

has been detected at a particular region if set to true or not detected if the state stays false 

in the entire trial. In the real world experiment (not in simulation), this state is set true 

once the perceptual system detects the contingent percept. The robot is required to choose 

the correct action chunk at each state. In addition, it must learn to remember the 

contingent percept if recognized along the navigation path.  

The learning criteria faced by the working memory are not trivial, indeed they are 

challenging. The robot needs to learn a considerable amount of information from a large 

combinatorial chunk space in five different states. The robot is trained for each region 

(each of the states from zero to three) of the navigation path and a reward value is given. 
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However, in order to speed up the learning, the training state is switched from one to 

another, only if multiple numbers of positive rewards are received in a row at each state. 

For instance, assume that the number of positive rewards required to switch the state 

from one to another, is ten. A successful trial is defined as not receiving any negative 

reward. Therefore, the system must receive 40 positive rewards (10 for each region) in a 

row in order the trial to be considered as successful. The number of received positive 

rewards in a row is referred to as the positive reward threshold (PRT). Figure 29 shows 

the learning curve of the system, as a plot of the average reward values over a sliding 25 

point window over 10000 trials for several PRTs. Table 5 shows the number of 

successful trials for each plots in Figure 29. 

 

Figure 28. Sketch of the navigation task and the regions that the robot is trained with. 

 
 



 88 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
(a) Learning curve for PRT = 1 
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(b) Learning curve for PRT = 7 
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(c) Learning curve for PRT = 10 
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(d) Learning curve for PRT = 20 

 
Figure 29. Learning curve of the system for several PRTs. 
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Table 5. Number of successful trials for 10000 trials and for different reward thresholds. 

Positive reward 
threshold 

Successful trials 
(Out of 10000) 

Percentage of 
successful trials 

1 7591 %75.91 
7 8275 %82.75 

10 8502 %85.02 
20 9330 %93.30 

 

These numbers are not unreasonable, considering the fact that we are imposing a 

very strict rule, which is receiving multiple positive rewards in a row. Moreover, the 

initial training stage is also included in these results. If at any time step of the training, 

the system fails to choose the correct chunk combination, the whole trial is considered to 

be an unsuccessful trial. In all of the cases, there is a positive learning trend. As the PRT 

is increases, the system makes fewer mistakes overall and the speed of the training is 

significantly increased in terms of episodes. With the system settings described in 

Appendix A, the time required to train the system, when PRT is set to 10, is 12 minutes 

and for a PRT set to 20, it takes 15 minutes. Thus, the training time is relatively short in a 

simulation environment.  

The robot successfully navigated in the hallway and it came back to its initial 

position when a green ball percept is presented. The robot chose the correct actions in the 

action selection slot and chose the “Nothing” percept, meaning that no percept is held in 

the working memory. However, once the contingent percept is presented along the 

navigation, the robot remembered the contingent percept in the percept selection slot of 

the working memory at each time step. Thus, the robot has successfully learned a 

complex task based on previously learned fundamental behaviors.  



 91 

The training of the task is highly supervised in the sense that once the perception 

system detects the contingent percept, it is encoded in the state vector. Thus, it is 

supervised to detect the contingent percept; however, it is not supervised to remember the 

contingent percept in the next time steps. Thus, we wanted to relax the system and do not 

encode the detection of the contingent percept in the state vector. In this case, the system 

needs to learn to detect the contingent percept and remember it. As a proof of concept, we 

trained the system for the first region of the navigation, and the system indeed 

successfully learned to remember to hold on to the contingent percept in the working 

memory. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

Conclusion 

In this work, the robot successfully learned a complex, vision-guided navigation 

task by means of a powerful and reliable perceptual system combined with a biologically 

inspired prefrontal cortex working memory model. The task faced by the robot is indeed 

a challenging task to be learned. The robot initially learned the percepts in the 

environment and robustly performed segmentation. Next, the robot associated the 

meanings relative to motion, and landmark detection, to the percepts in the environment 

and encapsulated them as simple behaviors. These behaviors were then used to build up a 

more complex behavior. In each stage of the task, only a single camera is used as the 

main sensory input for the robot. 

The working memory model (WMtk) used in this system, has significant 

distinctive features when compared with the traditional reinforcement learning 

algorithms. First of all, the robot is not restricted to consider only one item from a small 

set. The capability of considering multiple items in a situation considerably increases the 

robot’s learning ability. This is a result of utilizing the conjunctive coding 

implementation exploited in the model. As a consequence of this, the robot can focus on 

combinations of percepts that are most rewarding and therefore, most relevant to the task. 

Secondly, as demonstrated in this work, the model can learn complex tasks. The only 

drawback observed in the task is that the number of trials required to train the system for 

such a complex task is quite large and it may make it impractical to train the system in 
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some situations. We believe that the reason for this is essentially there is not sufficient 

communication between the human and the robot. For example, in the working memory 

experiments that are performed with monkeys, the monkey does not have sufficient 

communication with the human, except a sip of juice, as a reward for its correct actions. 

As a result, as the task gets more complex, it is natural to expect more training. Future 

work should address ways to speed up the training session. One way may be that the 

human can describe what the robot needs to learn in natural or simplified language terms. 

This may result in pre-biasing the weights in the conjunctive coding, which may speed up 

the training significantly. In conclusion, the model still learns the task successfully, 

especially from a very large combinatorial chunk space. With the system specifications 

given in Appendix A, the time required to train the system is in the range of minutes and 

it is relatively straightforward to design a simulator to train the system.  

The perceptual system is capable of learning percepts online in 

uncontrolled/unmodified environments. It is not difficult to obtain thousands of feature 

vectors from a few images. The system robustly discriminated the percepts under 

different lighting conditions and different times of the day. This demonstrates that the 

system learns to generalize the environment under different conditions. We believe the 

reliable segmentation is a consequence of having an extremely high dimensional space. 

However, the computational cost is strongly not affected from having such a high 

dimensional feature space. This is a result of using a sparse vector representation. 

Additionally, the memory storage is dramatically reduced by using this representation.  

Therefore, we found that the idea of using this representation is quite useful. Moreover, 

the high dimensional color histograms have several important advantages. First of all, 
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they are rotational and translation invariant. In addition, they are mildly scale invariant. 

For instance, the small changes in the scale of a color pattern do not affect the color 

histogram until the boundaries of the color pattern are outside the region of the 

histogram. Thus, for a practical range of scales it is reasonably scale invariant. The most 

important advantage is the sparse representation, because the computational cost only 

depends on the size of the region in the image.  

In conclusion, the system developed in this work, possesses a rich, powerful 

perceptual system, which can reliably discriminate percepts and provides robust 

performance in complex, unstructured and unmodified environments and supports 

research into developmental robotics (and open-ended developmental robotics), such that 

it can learn behaviors and concepts which can, in turn, be used to learn more complex 

behaviors. 

Future Work 

Context Change 

Navigation is one of the fundamental tasks in mobile robot applications. There 

may be times when the environment of the robot can change dramatically. In the 

following the "context change" will be referred to as a significant change of the robot's 

environment. For example, moving from indoors to outdoors could be considered as a 

context change. If the robot has the capability of detecting the context changes, then the 

robot might be able to deduce some important properties for its navigational tasks. 

Consider the following situation, depicted in Figure 30. Assume that the robot was 

trained for Context 1 and Context 3, but not for Context 2. If the robot starts moving from 
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Context 1 towards Context 3, it has to pass through Context 2. As the robot comes to 

Context 2, it may detect the new context by comparing its perceptual knowledge of 

Contexts 1 and 3 deducing that it has not been trained in Context 2. Once it reaches its 

final destination in Context 3, it would therefore, also deduce that it is not possible to 

navigate from Context 1 to 3 without passing through Context 2. Thus, context change 

may also aid the formation of topological maps.  

 

 

Figure 30. A navigation path. Robot detects that Context 2 is novel and it is a waypoint 
between Contexts 1 and 3. 

Parallel Computatation 

The reason that the robot is moved in small distance increments is that the 

segmentation process is not in real time. Given the specifications in Appendix A, the time 

required to segment the percepts in a frame is approximately 8 seconds in the current 

implementation. However, today’s graphical processing units (GPUs) offer fast and 

parallel computing architecture for even non-graphical processing. Figure 31 shows the 

comparison of floating operations per second for a CPU and several GPU models. In 

[63], it is stated that the main reason behind these results is that GPUs are specialized for 

highly parallel computation, which is exactly what graphic rendering is about. Thus, 

more transistors are dedicated to data-processing than data caching and flow control.  

Each of the feature vectors from the small regions of the image can be extracted and 
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segmented using a parallel architecture. In this way, we believe that the segmentation 

process may approach real time, using a parallel implementation.  

 

Figure 31. Floating point operations for a CPU and few GPU models [63]. 

Forgetting Behavior 

Even though a fast search tree algorithm is implemented, as the samples in the 

feature vector database grow, the computation cost of the segmentation process increases. 

In order to obtain generalization, it is desired to obtain a large number of training feature 

vectors. However, this does not necessarily mean that all the obtained training samples 

will equally contribute to the efficiency of the search tree. Thus, only maintaining the 

feature vectors that are most significant for the segmentation of a particular percept may 

reduce the computational cost dramatically. This process can be performed in a 

straightforward manner by only maintaining the vectors that are needed to describea 

particular cluster in the vector space. All of the vectors in a tightly bunched cluster need 

not be retained. Discarding redundant feature vectors can be related to forgetting in 

human beings. 
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APPENDIX A 

THE TEST BED AND SYSTEM SETUP 

 
One of the objectives in our research is only to use vision as our main sensory 

input to the system. The system is relatively a low-cost hardware setup which is not 

accurately calibrated or highly precise. The versatile Pioneer 2-AT robot has been chosen 

as our test bed mobile robot platform. It originally comes with a 16 sonar sensor rings, 8 

located in the rear and 8 in the front. However, only the front sonar rings are used for 

obstacle avoidance purposes in our work. The robot is shown in Figure 32.  

 

 

Figure 32. The test bed: Pioneer 2-AT 

  

In order to provide the necessary computational power, a laptop computer is 

strapped on the robot. The laptop has a X86 family, Intel Pentium M 2.13 GHz processor, 
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1024 MB RAM, and 256 MB nVidia Quadro FX Go1400 video card. The 

implementation is made on a Linux based operating system, using C++ programming 

language.  

Perception is provided by a Sony DCR – VX2000 digital video camera. The 

streaming video is captured via an IEEE 1394 firewire interface, connected to the laptop. 

The resolution of the video stream is 720 x 480 pixels and the same resolution is used for 

segmenting the percepts (no downsampling is applied). The camera is tilted down about 

15°, since the near percepts have higher priority than the distant ones.  

The laptop controls three different processes. The first one is the driver which 

controls the robot via an RS232 serial port. The second process is dedicated to capturing 

the video stream from firewire interface. The last one is the GUI processing thread, where 

the main computations take place.  
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APPENDIX B 

SEGMENTATION EXAMPLES 

 
 

(a) 
 

 
 

(b) 
 
 

Figure 33. (a) The hallway with significant specular reflections on the floor tiles. (b) 
Segmentation of (a). Note that the some of the errors are actually due to reflections in the 
“mirror-like” floor.  
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Figure 34. (a) The hallway with more specular reflections. (b) Segmentation of (a). Most 
of the percepts, especially the near ones, are segmented properly. 
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(a) 

 

 
(b) 

 
 

Figure 35. (a) The corner of the hallway with less reflection. (b) Segmentation of (a). The 
percepts are segmented with negligible errors. 
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