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CHAPTER I 

 

INTRODUCTION 

 

Synaptic Transmission Overview 

The human brain contains more than 10
12

 neurons and these neurons are the master 

controllers of our perception, concentration, thoughts, and movement. Each of the 100 

billion neurons communicates with other neurons via thousands of synapses on average. 

These synapses transmit signals from one neuron to another by converting an electrical 

signal from the presynaptic neuron into a chemical signal—neurotransmitter—then 

converting it back to an electrical signal in the postsynaptic neuron through the binding of 

neurotransmitter to its specific receptor, and opening of ion channels. Chemical synapses 

are the main method of communication between neurons, in spite of the existence of 

electrical synapses (Bennett et al., 2000; Kandler and Katz, 1995; Rorig and Sutor, 1996), 

neurotransmitter spill-over (Diamond, 2001; Kullmann et al., 1996), and retrograde 

signaling (Murphey and Davis, 1994; Yin and Lovinger, 2006). Although there are many 

neurotransmitters, the two most prominent in the brain are glutamate and -aminobutyric 

acid (GABA), with glutamate being excitatory and GABA being mostly inhibitory. 

The three major modes of neurotransmission are excitatory, inhibitory and 

modulatory. I will focus on excitatory and inhibitory neurotransmission. Excitatory 

postsynaptic potentials (EPSP) depolarize the postsynaptic membrane, while inhibitory 
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postsynaptic potentials (IPSP) either hyperpolarize the membrane or shunt the excitatory 

current. One neuron can receive thousands of inputs from other neurons, with the inputs 

being a mixture of excitatory and inhibitory potentials. Each individual EPSP is too small 

to generate an action potential, although there are a few exceptions(Crepel et al., 1980; 

Lohof et al., 1996). The temporal and spatial summation of many EPSPs can add up to a 

large depolarization, and can trigger an action potential at the axon hillock if the 

depolarization reaches the action potential threshold (approximately -55 mV at axon 

hillock). At the same time, the inhibitory inputs from inhibitory interneurons generate 

IPSPs onto the same neuron, which tries to shunt the excitatory current and prevent the 

depolarization from reaching its action potential threshold. The total summation of 

excitatory and inhibitory inputs determines whether the neuron will fire an action 

potential. Inhibitory transmission not only plays a crucial part in this decision-making, 

but also prevents the neuron from being over-excited. In the absence of inhibitory 

neurotransmission, prolonged presynaptic depolarization results in large amounts of 

glutamate release and over-activation of glutamate receptors. Excessive Ca
2+

 moves 

through these receptors and activates a multitude of cellular processes involving kinases 

and phosphatases that leads to damage or even death to the cell. This whole process is 

called glutamate toxicity (Sattler and Tymianski, 2001). Large-scale over-excitation also 

causes synchronized neuronal firing and epileptic seizures. Overall, inhibitory 

neurotransmission has a crucial part in the decision-making process of the CNS and 

maintains the stability of the neuronal network. 
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The GABAA receptor in inhibition 

Before I fully discuss inhibition in the CNS, it is necessary to discuss some fundamental 

elements of both excitatory and inhibitory neurotransmission: neurotransmitters. 

Excitatory neurotransmission is mostly mediated by ionotropic glutamate receptors in the 

CNS (by acetylcholine receptors at the neuromuscular junction). Thus, glutamate is 

generally considered the major excitatory neurotransmitter in the CNS. There are three 

types of ionotropic glutamate receptors defined by their agonists and function: the 

NMDA receptor, the AMPA receptor, and the kainate receptor. The ligand-gated 

glutamate receptors are ionophores activated by binding of agonist. After its release from 

the presynaptic terminal, glutamate binds to the receptors on the postsynaptic membrane 

and opens up ion channels, allowing cations to pass. Na
+
 and K

+
 move through AMPA 

and kainate receptors, while NMDA receptors allows another ion, Ca
2+

, to permeate 

along with Na
+
 and K

+
. In the presence of normal physiological ionic distribution, the 

reversal potential for glutamate receptors lies at 0 mV because the weighted equilibrium 

potential for K
+
 and Na

+
 is approximately 0 mV. The resting membrane potential of 

neurons is normally more negative than -60 mV. Hence, the net driving force for cations 

is at least 60 mV inward. Upon opening of the ligand-gated ion channel, the current 

carried by cations flows into the neuron, causing a depolarization of the postsynaptic 

membrane. 

The inhibitory neurotransmitters in the CNS are GABA and glycine. Ionotropic 

GABAA receptors are widely expressed in different brain regions and play the most 
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prominent role in inhibition of neuronal networks. Ionotropic GABAC receptors are 

mostly localized to the retina, and take part in modulating visual signals. Ionotropic 

glycine receptors are best known for their inhibitory function in the brainstem and spinal 

cord (Betz, 1991; Betz et al., 1994). Finally, the metabotropic GABAB receptor located 

on postsynaptic membranes is also inhibitory, as GABA binding results in the activation 

of receptor-coupled G proteins and consequently the  subunits of the G protein activate 

a K+ channel (Chebib and Johnston, 1999; Mott and Lewis, 1994). GABAA, GABAC, and 

glycine receptors are ion channels permeable to Cl
-
 when activated, with a much weaker 

permeability to HCO3 (permeability ratio Cl:HCO3 is approximately 5:1). I will focus on 

the GABAA receptor since it is the most abundant and important receptor in the inhibitory 

system in the CNS. Each GABAA receptor consists of five subunits (pentameric structure) 

and has a conformation similar to nicotinic receptors. There are many different types of 

GABAA subunits in humans, including 6 α, 3 β, 3 γ, 3 ρ as well as δ, ε, π, θ (Dunn et al., 

1994). All subunits have four transmembrane segments, and different combinations of 

subunits endow the receptor with different properties in terms of affinity, gating, 

deactivation, and desensitization. 

   There are two types of inhibition through ionotropic GABAA receptors. Firstly, due to 

the low intracellular Cl- concentration in most adult neurons, the reversal potential of 

GABA-activated current is hyperpolarized relative to the resting membrane potential. 

Activation of GABAA receptors hyperpolarizes the cell membrane. This 

hyperpolarization moves the membrane potential farther away from the threshold to 
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trigger an action potential, resulting in the disruption (inhibition) of incoming excitatory 

signals. Another form of GABA inhibition is current shunting instead of direct 

hyperpolarization of the membrane. An IPSP is depolarizing when the GABA reversal 

potential is more positive than the membrane potential. The current from EPSPs can be 

short-circuited by the simultaneous opening of GABAA receptors and Cl
-
 channels 

(increasing membrane conductance) and thus, the amplitude of the EPSP is reduced upon 

arrival at the axon hillock. Theoretically, as long as the GABA reversal potential is more 

negative to the action potential threshold, GABA is still inhibitory. The HCO3
-
 gradient 

also contributes to the reversal potential of GABA. However, its effect is more prominent 

when the intracellular [Cl
-
] is low, as in most adult neurons, and is negligible when the 

intracellular [Cl
-
] is high, as in young neurons (Farrant and Kaila, 2007), also see 

Appendix B). 

 

GABA excitation in developing neurons 

GABA, although an inhibitory neurotransmitter in the adult brain, elicits depolarizing and 

excitatory effects during embryonic development and early postnatal life in rodents. In 

fact, GABA is the first excitatory neurotransmitter in postnatal development, as 

GABAergic synapses develop prior to glutamatergic synapses. GABA excitation is due to 

high intracellular Cl
-
 concentration (Avoli, 1996; Ben-Ari et al., 1994);(Ben-Ari, 2006). 

As I will discuss in more detail in later sections, the high [Cl
-
]i is thought to be the result 

of high expression of the Cl
-
 importer Na-K-2Cl cotransporter, NKCC1, and low 
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expression of the Cl
-
 extruder K-Cl cotransporter, KCC2 (Figure 1-1). This ―unusual‖ 

excitatory action of GABA is not adverse to the development of the CNS, but likely 

participates in some critical developmental processes. For instance, as glutamate 

receptors are ―silent‖ and GABAA receptors are active, GABA excitation depolarizes the 

membrane, activates voltage-gated Ca
2+

 channels, and removes the magnesium block 

from NMDA receptors(Ben-Ari et al., 1997a). Giant synchronous depolarizing potentials 

(GDP) have been observed in the developing brain, and they are inhibited by GABAA 

receptor blockers, but not glutamate receptor inhibitors (Ben-Ari et al., 1989; Leinekugel 

et al., 1998; Sipila et al., 2005). The subsequent influx of Ca
2+ 

through both types of 

channels triggers intracellular processes for phosphorylation and trafficking of the 

―silent‖ glutamate receptors (Ben-Ari et al., 1997a; Hennou et al., 2002) and might 

participate in the development and maturation of growth cones (Gao and van den Pol, 

2000; Obrietan and Van den Pol, 1996). As I will also discuss later, GABA 

depolarization might promote the expression of KCC2 and thus the maturation of the 

GABA system itself (Ganguly et al., 2001). 

   Excitatory GABA may also have detrimental effect on the developing brain. Neonatal 

seizures can cause neurological dysfunction in infants in the first 28 days of life (Ronen 

et al., 1999), and can even possibly lead to long-term impairment of brain and behavior 

(Painter et al., 1986; Scher et al., 1993). Neonatal seizures are hard to treat with 

traditional anticonvulsant drugs such as benzodiazepines and barbiturates. 
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From Lu et. al. J. Neurobiol. 1999 

Figure 1-1. The effect of GABA is determined by the intracellular Cl
-
 concentration 

that is regulated by two cation-chloride cotransporters: KCC2 and NKCC1.  

 

 

During the first postnatal week, expression of NKCC1 is high while expression of KCC2 

is low. Balance of Cl
-
 accumulation by NKCC1 versus Cl

-
 export by KCC2 favors Cl

-
 

accumulation in the neurons, and as a result, GABA response is excitatory. As the 

neurons mature, the decrease of NKCC1 expression and increase of KCC2 expression 

results in the balance shifting in the opposite direction and GABA responses becoming 

inhibitory.  
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Since the GABAergic system matures in a caudal to rostral fashion (Stein et al., 2004), 

it is possible to control the motor manifestations by potentiating GABA inhibition in the 

spinal cord and brainstem, but seizures in the rostral structures are resistant to such 

treatment (Painter et al., 1986). Whether or not targeting the mechanisms that set the 

intracellular Cl
-
 concentration will have an impact on neonatal seizures needs to be 

addressed. In a recent paper, Dzhala et al showed that NKCC1 function facilitates 

seizures in the developing brain (Dzhala et al., 2005). 

 

Excitatory GABA and Epilepsy 

The intracellular chloride concentration is not unchallenged during neuronal activities. 

There are various situations in which intracellular Cl
-
 will increase, including repetitive 

activation of GABAA receptors, activation of large amounts of GABAA receptors during 

prolonged depolarization and, as we will see later, the active inward Cl
-
 transport by 

NKCC1 transporters. As the intracellular Cl
-
 concentration increases, GABA becomes 

more excitatory. In the 1980s, Thompson et al. found that repetitive activation of GABAA 

receptors by stimulation from bipolar electrodes causes disinhibition which is the shift of 

EGABA in the depolarized direction possibly due to the excessive influx of Cl
-
 into the 

neuron through GABAA receptor channels (Thompson et al., 1988). In the adult CNS, 

especially the hippocampus where large amount of glutamatergic neurons form an 

interconnected network, disinhibition can lead to synchronous firing and oscillation, 

which usually precedes epileptic seizure. Numerous studies have examined the link 
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between GABA dysfunction and epileptic seizures (De Deyn et al., 1990; Macdonald et 

al., 2004; Prince et al., 1992). However in the research field of epilepsy, most of the work 

has focused on modifications and mutations of the GABAA receptor, and little attention is 

being paid to the driving forces that allow chloride ions to move through the 

receptor-activated Cl
-
 channel. Recently, more attention has been paid to the 

transmembrane chloride gradient, and this research might shed new light on the study of 

epileptic seizures that are resistant to the treatment with agents potentiating GABAA 

receptor function, such as benzodiazepines, barbiturates and ethanol (Connell et al., 1989; 

Dzhala and Staley, 2003; Painter et al., 1986; Scher, 2003).  

 

Cation-Chloride Cotransporters Overview 

Cation-chloride cotransporters (CCC) are a large superfamily of proteins that transport 

inorganic cations with chloride across the plasma membrane. There are seven 

functionally well-characterized members in this family, namely NCC (Na-Cl 

cotransporter); NKCC1, NKCC2 (Na-K-Cl cotransporters); KCC1, KCC2, KCC3, KCC4 

(K-Cl cotransporters); and two additional members with unknown functions, CCC8 and 

CCC9(Delpire and Mount, 2002; Hebert et al., 2003; Mount et al., 1998). These 

cotransporters vary vastly in terms of the expression pattern, cellular localization, and 

their physiological functions. However, they share similarities in their protein structure, 

encoded genes, the electroneutral nature of the transport, and sensitivity to loop-diuretics. 

Most of the cation-chloride cotransporters are sensitive to cell volume changes. The 



 10 

Na-K-2Cl cotransporters are activated by cell shrinkage, whereas the K-Cl cotransporters 

are activated by cell swelling (Delpire and Mount, 2002). The K-Cl cotransporter KCC2 

is also constitutively active under isotonic conditions (Payne, 1997; Song et al., 2002; 

Strange et al., 2000).  

Cation-chloride cotransporters do not directly utilize ATP as their source of energy. 

Instead, they rely on the Na
+
 and/or K

+
 gradients established by Na-K-ATPase to 

transport these ions across cell membranes. Transport is tightly coupled and therefore 

occurs only when all ions are present. Theoretically, the transport can occur in both 

directions: from the inside of the cell to the outside, or vice-versa. However, in most 

physiological situations, due to the activity of the Na-K-ATPase, [K
+
]i is significantly 

higher than [K
+
]o, and [Na

+
]i is significantly lower than [Na

+
]o. Thus, due to these 

gradients, Na-K-2Cl cotransporters move Na
+
, K

+
, and Cl

-
 into cells, while K-Cl 

cotransporters move K
+
 and Cl

-
 out of cells. Since the gradients of Na

+
 and K

+
 are rapidly 

restored by Na-K-ATPase at the cost of ATP hydrolysis, only the Cl
-
 gradient is generally 

different from equilibrium (Alvarez-Leefmans et al., 2001).   

There are three major functions associated with cation-chloride cotransporters. First, 

CCCs regulate the intracellular Cl
-
 concentrations in cells. As mentioned in the first 

section, Cl
-
 is the major ion permeating GABAA, GABAC, and glycine receptors. 

Abnormally high intracellular Cl
-
 causes the polarity of the GABA currents to switch 

from hyperpolarizing to depolarizing, leading to disinhibition of neuronal networks and 

epileptic seizures (see Chapter IV). Second, most cation-chloride cotransporters 
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participate in cell volume maintenance and regulation. When the osmolality of the 

extracellular space increases or decreases, cells shrink or swell due to the rapid 

movement of water across the plasma membrane. After cell shrinkage, the Na-K-2Cl 

cotransporter participates in the restoration of cell volume by transporting ions into the 

cell. This process is called regulatory volume increase or RVI (Majid et al., 2001; Russell, 

2000) . In contrast, after cell swelling, K-Cl cotransporters participate in water loss by 

extruding K
+
 and Cl

-
 ions. This process is called regulated volume decrease or RVD 

(Lauf and Adragna, 2000). Finally, CCCs participate in the secretion/reabsorption of fluid 

and ions in epithelia. For example, NKCC2 is expressed on the apical membrane of the 

thick ascending limb of Henle of the kidney where it facilitates transport of ions from the 

lumen (urine side) to interstitium (blood side). It is one of the main mechanisms for salt 

reabsorption (Gimenez and Forbush, 2003; Karolyi et al., 1998; Schnermann, 2001). On 

the other hand, in Cl
- 
secreting epithelia, NKCC1, expressed on the basolateral membrane 

accumulates Cl
- 

into the cell and provides a reservoir for Cl
-
 secretion at the apical 

membrane (Delpire et al., 1999; Haas and Forbush, 2000; Wall and Fischer, 2002).   

The genes encoding the cation-chloride cotransporters share homology with eukaryotic 

cationic amino acid transporters as well as with prokaryotic and eukaryotic amino acid 

permeases (Figure 1-2). These cotransporters can be divided into 2 sub-families: the 

sodium-dependent cation-chloride cotransporters, which include NCC, NKCC1 and 

NKCC2, and the sodium-independent cation-chloride cotransporters, which are 

comprised of KCC1, KCC2, KCC3 and KCC4. Two additional genes encode not yet 



 12 

                  From Delpire and Mount, Annu. Rev. Physiol. 2002 

Figure 1-2. The superfamily of cation-chloride cotransporters and amino acid 

permeases. 

 

 

There are three subfamilies of electroneutral cation-chloride cotransporters, Na-Cl 

coupled transporters (NCC), K-Cl coupled transporters (KCC), and Na-K-Cl coupled 

transporters (NKCC). NKCCs consist of two isoforms NKCC1 and NKCC2, while KCCs 

have four different isoforms: KCC1, KCC2, KCC3 and KCC4. These cotransporters are 

distantly related to the amino acid permeases of yeast and bacteria, and to Drosophila 

orthologs.  

 

 

 

javascript:AL_get(this,%20'jour',%20'Annu%20Rev%20Physiol.');
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functionally characterized are CCC8 and CCC9. (Figure 1-3). The crystal structure of 

these membrane proteins has not yet been resolved and their membrane topology was 

derived mostly based on predictions based on hydropathy analyses (e.g. Kyte-Doolittle). 

For the Na-K-2Cl cotransporter NKCC1, the topology was verified experimentally using 

an in vitro translation approach (Gerelsaikhan and Turner, 2000). The transmembrane 

domains TM3 to TM12 are homologous with a large amino acid permease domain 

(pfam00324), and each specific CCC is defined by TM1, TM2, and the large cytosolic 

N-terminal and C-terminal domains. TM2 is involved in determining the ion-binding 

affinity of the different cotransporters (Igarashi et al., 1995; Isenring et al., 1998). The 

large intracellular amino- and carboxyl-terminals of the cation-chloride cotransporters are 

involved in regulation of transport activity, such as through 

phosphorylation/dephosphorylation mechanisms (Bize and Dunham, 1994; Darman and 

Forbush, 2002; Jennings and Schultz, 1991; Klein et al., 1999).  

 

Physiological roles of Cation-Chloride Cotransporters 

 

NCC 

The Na
+
-Cl

-
 cotransporter NCC was the first cation-chloride cotransporter identified 

at the molecular level (Gamba et al., 1993). Although there are reports of NCC 

expression in bone (Nicolet-Barousse et al., 2005), the cotransporter is mostly found in 

kidney, located at the apical membrane of epithelial cells of the distal convoluted tubule  
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from Delpire and Mount, Annu. Rev. Physiol. 2002 

Figure 1-3. Cation-chloride cotransporters share a common 12 transmembrane 

domain core and two large cytoplasmic termini.  

 

 

Transmembrane domains TM3–TM12 share high homology among different subtypes of 

CCCs and are also homologous to the amino acid permease domain. The second 

transmembrane domain is involved in ion binding. 

javascript:AL_get(this,%20'jour',%20'Annu%20Rev%20Physiol.');
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of the kidney (Ellison et al., 1987).  In contrast to the other cation-chloride 

cotransporters, which are inhibited by loop diuretics, the Na-Cl cotransporter is inhibited 

by thiazide diuretics. Recent studies have found that NCC forms a homodimer in 

epithelial cells (de Jong et al., 2003). NCC is responsible for 5% of the filtered NaCl load 

and it also indirectly affects calcium homeostasis by increasing intracellular Cl
-
 and 

lifting the resting membrane potential of the epithelial cells (Delpire and Mount, 2002; 

Gesek and Friedman, 1992). NCC expression is under the regulation of hormones and the 

load of NaCl of the DCT itself. Both a low salt diet and mineralocorticoids can decrease 

the expression of NCC transcripts in the DCT (Kim et al., 1998). Inactivating mutations 

of NCC are involved in Gitelman syndrome, a salt wasting disorder characterized by 

excessive Na
+
, K

+
, Mg

2+
, and Cl

-
 in the urine and hypocalciuria (Bettinelli et al., 1992). 

Disruption of the NCC gene in mice causes some, but not all, of the symptoms of 

Gitelman syndrome, including increased renin mRNA levels in the kidney, 

hypomagnesemia, hypocalciuria, and morphological changes in the distal convoluted 

tubule (DCT), but not hypokalemia and alkalosis which is seen in human Gitelman 

syndrome (Schultheis et al., 1998) (Delpire and Mount, 2002).  

 

NKCC2 

The bumetanide-sensitive Na
+
-K

+
-2Cl

-
 cotransporter was cloned by screening a rat 

kidney cDNA library with a NCC cDNA probe (Gamba et al., 1994). NKCC2 plays an 

important role in the reabsorption of cations (Na
+
, Ca

2+
, Mg

2+
), acid secretion 
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(Attmane-Elakeb et al., 1998), and countercurrent multiplication (Good, 1994). Human 

NKCC2 is 95% identical to rabbit and 93%
 
to rat or mouse NKCC2 (Gamba, 2005a), 

with an approximate molecular weight of 121 kDa. Western blot analysis reveals that 

NKCC2 expression is restricted to the kidney (Gamba et al., 1994; Igarashi et al., 1995; 

Mount et al., 1999; Payne and Forbush, 1994). In situ hybridization and single nephron 

RT-PCR have localized NKCC2 transcript to the cortical and medullary thick ascending 

limb (Gamba et al., 1994; Igarashi et al., 1995; Yang et al., 1996). NKCC2 expression is 

also found in macula densa cells (Kaplan et al., 1996; Nielsen et al., 1998). Apical 

cotransport by NKCC2 plays a pivotal role in the transepithelial absorption of Na
+
 and 

Cl
-
 by the TAL and macula densa and also the absorption of ammonium (NH4

+
) from the 

tubular lumen, followed by countercurrent multiplication (Good, 1994). The loop 

diuretics bumetanide and furosemide inhibit NKCC2, which result in large production of 

urine isotonic to plasma fluid. NKCC2 deficiency is involved in an autosomal-recessive 

form of hypokalemic hypochloremic metabolic alkalosis disorder named Bartter 

syndrome(Delpire and Mount, 2002; Kleta et al., 2000; Kleta and Bockenhauer, 2006). 

 

NKCC1 

Cloning of NKCC1 was obtained simultaneously from homology cloning (Delpire et al., 

1994) and by screening a library using an antibody generated against the shark 

cotransporter (Forbush et al., 1994). NKCC1 is found in a wide variety of cells, both 

epithelial and non-epithelial. NKCC1 is found in the central and peripheral nervous 
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system, choroid plexus, lung, kidney, skeletal muscle, digestive tract, salivary gland, and 

testis (Haas, 1994; Haas and Forbush, 1998; Russell, 2000). Some splice variants have 

been found: one variant lacking a cassette exon in the C-terminus of the cotransporter 

(Randall et al., 1997), another containing a shorter, alternative C-terminus in muscle 

(Wong et al., 2001). In epithelial cells, NKCC1 is localized on the basolateral membrane, 

except for the choroid plexus, where the cotransporter is found on the apical membrane 

(Plotkin et al., 1997a). Due to its localization on the basolateral membrane of epithelial 

cells, and its role in ion secretion, NKCC1 is often referred to as the ―secretory‖ 

Na-K-2Cl cotransporter. In non-epithelial cells the cotransporter participates in cell 

volume regulation. The NKCC1 protein is relatively large, with about 1,200 amino acids 

and 12 transmembrane domains, TM1-TM12. Transmembrane domains 1, 3, 6, 8, 10 and 

the intracellular loop between TM2 and TM3 are highly conserved between the two 

isoforms of NKCC. TM2 is responsible for cation affinity, while Cl- affinity can be 

affected by TM4-TM7 (Payne et al., 1995; Russell, 2000).  

NKCC1 requires the presence of all 3 transported ions (Na
+
, Cl

- 
, K

+
) on the same side 

of the cell membrane to be active (Russell, 2000). Absence of any of these three ions will 

totally shut down transport by NKCC1. The ions of transport strictly follow the ratio 1Na: 

1K: 2Cl in most cells and 2Na: 1K: 3Cl in giant squid axons (Russell, 1983). This 

stoichiometry of NKCC1 transport determines that transport activity is electrically neutral, 

because the net charge crossing the membrane is zero. Under physiological ionic 

conditions, the driving force for NKCC1 is always inward, and thus NKCC1 acts as a Cl
-
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accumulator. NKCC1 is inhibited by the loop diuretics bumetanide and furosemide, with 

bumetanide (sensitivity varies among tissues: IC50 0.05-10 M) being much more potent 

than furosemide (Russell, 2000).  

 

KCC1 

KCC1, the fourth member of the Slc12 family of transport proteins, is often referred to as 

a housekeeping protein, involved in the maintenance of cell volume. It is widely 

expressed in brain, colon, heart, kidney, liver, lung, spleen, stomach, pancreas, and 

muscle (Delpire and Mount, 2002; Gillen et al., 1996). The physiology of KCC1 is best 

studied in red blood cells (Lauf and Adragna, 2000; Lauf et al., 1992). KCC1 plays a 

primary role in the regulatory volume decrease (RVD) of various types of cells under 

hypotonic environments. KCC1 is activated by hypotonic challenge and 

dephosphorylation (PP1 and PP2A) and inhibited by phosphorylation (Jennings and 

Schultz, 1991; Kaji and Tsukitani, 1991; Krarup and Dunham, 1996). KCC1, together 

with a Ca
2+

-activated K
+
 channel, is involved in the dehydration of sickle erythrocytes. 

Thus, therapeutic methods aimed at inhibiting KCC1 might provide benefit to sickle cell 

patients (Brugnara, 1995). KCC1 is also inhibited by the loop diuretics furosemide and 

bumetanide with Ki = 40 M and 60 M, respectively (Gillen et al., 1996).  
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KCC2 

KCC2, the fifth member of the Slc12 family of transport proteins (Slc12a5), was also 

found during an attempt to identify additional genes related to NCC and the two 

Na-K-2Cl cotransporters. The K-Cl cotransporter was identified by searching a database 

of Expressed Sequences Tags (ESTs), and the full length cDNA was then cloned from a 

rat cDNA library (Payne et al., 1995). Its basic transport properties were demonstrated by 

flux experiments after expression in HEK-293 cells (Payne, 1997).  

86
Rb flux experiments have been used extensively for the study of K

+
 channels, 

pumps, and transporter physiology. Due to its similar physiological properties to K
+
, 

radioactive rubidium ions are added as a tracer for K
+
 ion in these experiments. The K-Cl 

transport (KCC1) is well studied in red blood cells (Adragna et al., 2004; Lauf et al., 

1992). Functional characterization of KCC2 has been performed in HEK293 cells by 

Payne and coworkers (Payne, 1997; Payne et al., 1996). When expressed in the HEK293 

cell line, KCC2 showed many characteristics similar to the well-characterized KCC1 

transport. K-Cl transport via KCC2 is stimulated by the alkylating reagent
 
NEM and this 

NEM-stimulated K-Cl transport can be inhibited by the loop-diuretics furosemide and 

bumetanide, with higher sensitivity to furosemide (inhibition constant
 
(Ki) ~25 µM) than 

bumetanide (Ki ~55 µM). Other known inhibitors of KCC2 and other K-Cl transport are 

the stilbene disulfonic acid DIDS (Delpire and Lauf, 1992) and
 
the alkanoic acid DIOA 

(Vitoux et al., 1989). KCC2 transport is also sensitive to the external concentration of K
+
 

and Cl
-
, but not Na

+
, which is another trait shared by all K-Cl transporters. However, 
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KCC2 exhibits some unique properties which differentiate this neuronal-specific 

cotransporter from other K-Cl cotransporters. The K-Cl transport by KCC2 is 

constitutively active in isotonic solution. In HEK293 cells, KCC2 is insensitive to volume 

change, unlike other K-Cl cotransporters. However, Strange and coworkers found that 

KCC2 is sensitive to volume changes when expressed in Xenopus laevis occytes, 

suggesting that HEK293 cells have lost some components of cell volume activation of 

transport pathways (Strange et al., 2000). KCC2 also exhibits high affinity for 

extracellular K
+
 (Km = 5.2mM) (Payne, 1997), in contrast to the low affinity of KCC1 to 

extracellular K
+
 (Km > 25mM) (Gillen et al., 1996). This characteristic of the KCC2 

isoform suggests the K
+
 buffering capability for KCC2, as the neuronal K-Cl 

cotransporter works very close to equilibrium and extracellular K
+
 can rise to 10 – 12 

mM during sustained neuronal activity (Heinemann and Lux, 1977). The difference 

between KCC2 and other K-Cl transporters may be attributed to the low homology of the 

cation binding domain of TM2 between the K-Cl cotransporters (only 60% between 

KCC2 and KCC1, while the other 11 TM domains share >90% homology between 

cotransporters).  

KCC2 is a heavily glycosylated protein with a molecular mass of ~150kDa (Lu et al., 

1999; Payne et al., 1996; Williams et al., 1999). The 150 kDa protein reduces to ~125 

kDa after treatment with N-glycosidase F (Payne, 1997). Mutagenesis experiments have 

shown that the second transmembrane domain of KCC2 is responsible for the high 

affinity for extracellular K
+
 ions (Williams et al., 1999). This high external K

+
 affinity, 



 21 

coupled to the weak outward driving force ([K
+
]i x [Cl

-
]i > [K

+
]o x [Cl

-
]o), was 

speculated to underlie the possibility for KCC2 to easily reverse its direction of transport 

upon an increase of extracellular K
+
 (Payne, 1997). As already mentioned, KCC2 has the 

unique property of being active under isotonic conditions. In a recent paper, Mercado et 

al. (Mercado et al., 2006) argue that a unique region of the C-terminus confers the 

isotonic transport property of KCC2. Indeed, a chimera in which the unique region of 

KCC2 is placed in KCC4 confers isotonic transport activity to this K-Cl cotransporter. 

Conversely, removal of the proline/serine- and charged residue-rich region in KCC2 

eliminated the isotonic activity. These mutagenesis studies identified a 15-residue domain 

from 1021-1035 conferring isotonic transport (Mercado et al., 2006). KCC2 

heterologously expressed in HEK293 cells is inhibited by the loop diuretics furosemide 

and bumetanide with Ki of 25 M and 53 M, respectively (Payne, 1997). 

KCC2 expression is limited to the brain and spinal cord; there is no expression in 

colon, heart, kidney, liver, lung, spleen or stomach (Lu et al., 1999; Payne et al., 1996; 

Williams et al., 1999). Immunohistochemistry has shown that in the brain, expression of 

KCC2 is strictly confined to neurons (Lu et al., 1999; Vu et al., 2000; Williams et al., 

1999). The cotransporter is also expressed in retinal neurons (Vardi et al., 2000). The 

neuronal-specific expression pattern of KCC2 is due to a 21-bp neuronal-restrictive 

silencing element located downstream of exon 1 (Karadsheh and Delpire, 2001). This 

element is recognized by the transcription factor NRSF, or neuronal restrictive silencing 

factor, which is expressed in non-neuronal cells as well as neuron precursors (Kraner et 
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al., 1992). In tissues other than mature neurons, expressed NRSF binds to the 

neuronal-restrictive silencing element, turning-off transcription of the cotransporter. 

 

KCC3 

KCC3, the sixth member of the Slc12 family (Slc12a6), was cloned independently by 

three groups (Hiki et al., 1999; Mount et al., 1999; Race et al., 1999). Several isoforms 

have been reported. Two isoforms (KCC3a and KCC3b) are generated by two alternative 

transcription initiation sites (Pearson et al., 2001). Transcript for KCC3a is widely 

expressed in the brain, lung, kidney, heart and muscle, while transcript for KCC3b is 

mainly located in the kidney (Mercado et al., 2004). By Western blot analysis and 

immunofluorescence, KCC3 protein was found in most CNS structures, including 

hypothalamus, hippocampus, cerebral cortex, cerebellum, brain stem, spinal cord and the 

white matter (Hiki et al., 1999; Mount et al., 1999; Pearson et al., 2001; Pearson et al., 

2000). It is also found on the basolateral membrane of choroid plexus (Pearson et al., 

2001). KCC3 is expressed in both neurons and glial cells in the brain. 

KCC3 mutations have been found in patients with Agenesis of Corpus Callosum with 

Peripheral Neuropathy (ACCPN). The disorder is found in families sporadically 

throughout the world, but with a very high rate of occurrence in some counties of Quebec, 

Canada (Deleu et al., 1997). Patients with ACCPN show mental retardation and severe 

motor neuropathy, with or without agenesis of the corpus callosum. KCC3-null mice 

have been created by two different laboratories (Boettger et al., 2003; Howard et al., 
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2002). Hypomyelination, demyelination, axonal swelling and fiber degeneration were 

observed in the homozygous mice (Howard et al., 2002). These characteristics might 

account for the severe locomotor deficit observed in both the knockout mouse and human 

patients. Sensorimotor gating deficit (pre-pulse inhibition), as well as decreased 

exploratory behavior, have also been demonstrated in the KCC3 knockout mice 

indicating central deficits. KCC3 null mice also exhibit arterial hypertension and a slowly 

progressive, age-related deafness (Boettger et al., 2003). KCC3 is expressed in many 

supporting cells of the inner ear involved in the K
+
 recycling pathway, and these cells 

slowly degenerate in KCC3
-/-

 mice. KCC3 is also inhibited by the loop diuretics 

furosemide (Ki ~ 10M) and bumetanide (Ki ~ 40M)(Hiki et al., 1999). 

 

KCC4 

KCC4 was also identified through an EST database search (Mount et al., 1999). It is 

encoded by the SLC12A7 gene. KCC4 is found in a variety of tissues, which include 

kidney, the peripheral nervous system and the spinal cord. In the kidney, KCC4 is found 

on the basolateral membrane of type-A intercalated cells of the medullary collecting duct, 

and in the proximal tubule (Boettger et al., 2002). KCC4 expression in the CNS is not as 

abundant as other KCCs. It is mostly expressed on the apical membrane of the choroid 

plexus, as well as in cranial nuclei and cranial nerves (Karadsheh et al., 2004). KCC4 

expression in the brain is also developmentally regulated, but in the opposite direction to 

KCC2 (Karadsheh et al., 2004). The KCC4 transcript has been found to be abundant in 
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the proliferative zone around embryonic day E14.5, and is only found in choroid plexus 

and epithelial lining the brain and ventricles by P0 (Li et al., 2002). No human disorder 

has been associated with KCC4. KCC4
-/-

 mice generated by targeted deletion have 

normal hearing abilities until P14, when hearing begins to deteriorate. The mice lose all 

hearing ability after P21 (Boettger et al., 2002). KCC4 is thought to absorb K
+
 ions from 

the fluid around the outer hair cells into the supporting Deiters' cells, thus moving K
+
 into 

the gap junction pathway. KCC4 therefore participates in the K
+
 recycling pathway of the 

inner ear. KCC4 is also responsible for the Cl
-
 extrusion across the basolateral membrane 

of acid-secreting -intercalated cells in the kidney. Disruption of this function in KCC4
-/-

 

mice results in (Boettger et al., 2002). Unlike other KCCs, KCC4 shows a very low 

affinity for the loop diuretics bumetanide and furosemide (~ 900 M for both) (Mercado 

et al., 2000b).  

 

Regulation of cation-chloride cotransporters 

Cation-chloride cotransporters are regulated by a variety of stimuli, including osmotic, 

oxidative, hormonal, etc. All signaling pathways leading to cation-chloride cotransporter 

regulation seem to converge to the final phosphorylation or dephosphorylation of the 

transport protein. For the K-Cl cotransporters, dephosphorylation stimulates transport 

activity, whereas phosphorylation reduces transport activity (Adragna et al., 2004; Di 

Fulvio et al., 2001; Gamba, 2005b; Jennings and Schultz, 1991; Lauf, 1985; Lauf et al., 

1992; Mercado et al., 2000a; Starke and Jennings, 1993). For the Na-K-2Cl cotransporter, 
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it is phosphorylation that activates transport, whereas dephosphorylation results into 

cotransporter inactivation. A variety of protein kinases have been shown to be involved in 

the regulation of cation-chloride cotransporters; including PKA (Kurihara et al., 2002), 

PKC (Kurihara et al., 2002), and PKG (Di Fulvio et al., 2001; Selvaraja et al., 2000). 

Whether or not these protein kinases directly phosphorylate the transporters is unknown. 

Recently, mutations found in WNK1 and WNK4 have been shown to induce PHA2 

(pseudohypoaldosteronism type II), an autosomal-dominant syndrome of hypertension 

with hyperkalemia and metabolic acidosis (Wilson et al., 2001). This discovery led to the 

demonstration that WNK (With No Lysine) kinases regulate the trafficking of NCC to the 

apical membrane of the distal convoluted tubule (Cai et al., 2006). Mutations in the 

carboxyl-terminus of the kinases led to increased insertion of transporters in the 

membrane, resulting in increased salt reabsorption and hypertension. Recent studies also 

showed that WNK3 and WNK4 inhibit the activities of all KCCs (Garzon-Muvdi et al., 

2007; Kahle et al., 2006). WNK3, when co-expressed with either NCC, NKCC1 or 

NKCC2, resulted in a significant activation of these cotransporters in flux experiments 

(Kahle et al., 2005). These effects are also seen in hypotonic condition in which NCC, 

NKCC1 and NKCC2 are normally dephosphorylated and inhibited. On the other hand, 

co-expression of WNK3 and KCCs results in complete inhibition even in hypotonicity. 

Interestingly, a kinase-inactive mutant of WNK3 (KI-WNK3) had the opposite effect on 

all cation-chloride cotransporters. When co-expressed, the catalytically inactive kinase 

dephosphorylates and inhibits KCCs, and activates NKCCs. The activation of KCCs by 
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KI-WNK3 is reversed by PP1 inhibitor calyculin A and PP2B inhibitor cyclosporine A. 

These results imply that instead of being a volume sensor kinase, WNK3 regulates the 

cotransporters through its interaction with protein phosphatases (de Los Heros et al., 

2006). WNK3 likely phosphorylates the protein phosphatase and inhibits it, resulting in 

increased NKCC activity and reduced KCC activity. It can be concluded that WNK3 

affects cell volume through reciprocal regulation of NKCCs and KCCs (Figure 1-4) and 

keeps a balance between the net transport of KCCs and NKCCs. The expression of 

WNK3 co-localizes with the cation-chloride cotransporters NKCC1 and KCC2 in 

hippocampal, cerebellar, and cortical GABAergic
 
neurons. Interestingly, expression of 

WNK3 is also developmentally regulated in a pattern nearly identical to
 
that of KCC2: 

low at birth and gradually up-regulated during postnatal development. Since KCC2 is 

responsible for the developmental down-regulation of intracellular chloride and the 

subsequent switch of GABA responses from excitatory to inhibitory, WNK3 could be an 

important modulator of the developmental GABA switch (Kahle et al., 2005).  

    Our laboratory also demonstrated the first direct interaction between a kinase and 

the cation-chloride cotransporters NKCC1, NKCC2, and KCC3. Indeed, the N-terminal 

tail of the cotransporters possesses one or two anchoring sites for the Ste20p-related 

serine/threonine kinases SPAK (Ste20-related, proline alanine-rich kinase), and OSR1 

(oxidative stress kinase 1). SPAK, also known as PASK and STK39, has homologues in 

Drosophila (Fray), and C. elegans (Gck-3). 
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Kahle KT et. al., Physiology 2006 

Figure 1-4. WNK kinases regulate cation-chloride cotransporters through inhibition 

of protein phosphatase in a signaling cascade.  

 

 

WNK4 phosphorylates and activates SPAK under low intracellular Cl
- 
or cell swelling, 

which in turn phosphorylates the cotransporters. WNK3 is proposed to act as an 

intracellular Cl
-
/cell volume sensor, inhibiting protein phosphates by phosphorylating 

them. The activation of both WNK4 and WNK3 results in a net increase of 

phosphorylation level of the cotransporters. Phosphorylation results in NKCC1 activation 

and KCC2 inhibition. High intracellular Cl
-
 would result in the opposite effect, the 

activation of KCC2 and inhibition of NKCC1. 
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   SPAK and OSR1 were found to interact with the NKCC1 N-terminus in the 

yeast-two-hybrid assays (Piechotta et al., 2003). SPAK is also found to interact with 

several other proteins including the MAPK p38, gelsolin, heat shock protein 105,
 

apoptosis-associated tyrosine kinase (AATYK), and WNK4 (Piechotta et al., 2003). 

When overexpressed, a dominant-negative form of SPAK inhibited 70% of the NKCC1 

transport in HEK cells, while wild type SPAK only increased NKCC1 activity by 10% 

(Dowd and Forbush, 2003; Gagnon et al., 2006a; Kahle et al., 2005). SPAK is also 

sensitive to intracellular Cl
-
 concentration (Gagnon et al., 2006b). Our laboratory has also 

demonstrated that co-expression of WNK4 and SPAK, but neither WNK4 nor SPAK 

alone, is required to activate NKCC1 activity or inhibit KCC2 activity (Gagnon et al., 

2006a). It was later demonstrated that WNK4 phosphorylates and activates SPAK, and 

phosphorylated SPAK in turn phosphorylates the N-terminus of NKCC1, turning NKCC1 

into its activated state (Gagnon et al., 2006a; Moriguchi et al., 2006; Vitari et al., 2005). 

It is very likely that WNKs and Ste20-type kinases are components of a signaling 

complex, which regulate NKCCs and KCCs via phosphorylation/ dephosphorylation 

(Figure 1-5). 

 

Role of KCC2 in neurons 

During synaptic transmission and propagation of the action potential, the electrochemical 

driving force for Cl
-
 ions varies significantly in neurons as the membrane potential 

fluctuates. Provided that passive pathways for Cl
-
 movement across the plasma 
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membrane exist, changes in membrane potential will tend to affect the Cl
-
 concentration. 

In addition, both GABAA and glycine receptors contain intrinsic Cl
-
 channels, and during 

activation of these receptors, Cl
-
 ions flow across neuronal membranes. The mechanisms 

regulating intracellular Cl
-
 concentrations in neurons are not fully understood. Cl

-
 is 

rarely distributed passively across the plasma membrane, and thus maintenance of its 

concentration requires consumption of energy. After maturation, CNS neurons exhibit a 

Cl
-
 concentration that is lower than electrochemical potential equilibrium, due to an 

active Cl
-
 transport mechanism responsible for extruding Cl

-
 from the neuron. 

Already in the second part of the 1980s, there were indications that a K
+
-dependent and 

furosemide-sensitive K-Cl cotransporter was responsible for maintaining intracellular Cl- 

below equilibrium (Misgeld et al., 1986; Thompson et al., 1988). Thompson et al also 

found that repetitive stimulation of GABAA receptors reduces the driving force of the 

IPSP (Thompson and Gahwiler, 1989a; Thompson and Gahwiler, 1989b). In 1996, a 

neuronal-specific isoform of K-Cl cotransporters, KCC2, was cloned and its function was 

characterized (Payne et al., 1996). Expression of KCC2 in the CNS follows very precise 

spatial and temporal patterns. The global expression of KCC2 is low at birth and 

increases gradually during postnatal development (Clayton et al., 1998; Lu et al., 1999). 

This timeline of KCC2 expression coincides with a decrease in the intracellular Cl
-
 

concentration and the well-known switch of GABA and glycine responses from 

excitatory to inhibitory during postnatal development (DeFazio et al., 2000; Owens et al., 

1996; Stein et al., 2004). KCC2 expression also follows an interesting differential pattern  
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from Gagnon et al, Am. J. Physiol. 2007 

Figure 1-5. Model of NKCC1 regulation by the STE20 kinase SPAK.  

 

 

SPAK and OSR1 anchor to the N-terminus of the cotransporter and phosphorylate 

specific threonine residues located downstream of the binding site. For its catalytic 

activity, SPAK needs to be activated by an upstream kinase (WNK1 or WNK4). SPAK 

inactivation is mediated by PP1. PP1 dephosphorylation of SPAK is mediated through a 

scaffold protein such as AATYK. 
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from rostral to caudal with high expression at birth in the brainstem and extremely low 

expression in forebrain structures such as hippocampus and cerebral cortex (Balakrishnan 

et al., 2003; Kanaka et al., 2001; Li et al., 2002; Mikawa et al., 2002; Wang et al., 2002). 

KCC2 also shows different spatial expression patterns between different cell types in rat 

motorneurons (Ueno et al., 2002), rat substantia nigra (Gulacsi et al., 2003), rat visual 

system (Ikeda et al., 2003), thalamus (Bartho et al., 2004) and olfactory bulb (Wang et al., 

2005). For example, in the rat retina KCC2 colocalizes with neurons that express GABAA 

receptors and temporally different expression patterns were found between the inner 

retina and outer plexiform layer (Vu et al., 2000). Studies have shown that KCC2 is 

highly expressed in the vicinity of excitatory inputs in the hippocampus, possibly to 

provide fast Cl
-
 extrusion to negate rapid Cl

-
 rises in small subcellular compartments 

(Gulyas et al., 2001).  

Due to the lack of specific inhibitors, genetic modification of KCC2 provides a 

crucial tool to study KCC2. Knock-down of KCC2 expression by anti-sense RNA in 

hippocampal slice cultures revealed a positive shift in the GABA reversal potential 

(Rivera et al., 1999). The full knockout of KCC2 by targeted deletion of exon 5 of the 

KCC2 gene caused immediate death upon birth due to motor deficits and respiratory 

arrest, possibly due to the disrupted Cl
-
 homeostasis in brainstem (Hubner et al., 2001). A 

targeted deletion of the first exon of KCC2 gene was generated in our lab. Homozygous 

mice showed frequent generalized seizures and died at about two weeks after birth (Woo 
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et al., 2002). Interestingly, 5 percent of the total KCC2 protein still persisted in the brain 

of homozygous mice and thus these mice are hypomorphs instead of full knockouts.   

Although KCCs are regulated by phosphorylation/dephosphorylation in heterologous 

expression systems, not much is known about the signaling pathways that regulate KCC2 

in neurons. It has been proposed that the postnatal increase of KCC2 expression is 

―nurtured‖ by the excitatory action of GABA in the young brain (Ben-Ari, 2002; Ganguly 

et al., 2001; Leitch et al., 2005), while later evidence argues against it(Ludwig et al., 2003; 

Titz et al., 2003). Reciprocally, overexpression of KCC2 by transgenic methods in young 

neurons induces a earlier switch of GABA response from depolarizing to hyperpolarizing 

(Lee et al., 1998) and even an augmentation of the functional GABA synapses 

(Chudotvorova et al., 2005). In the adult brain, the expression of KCC2 is altered by 

various insults to the brain. Recent studies indicate that ischemia, oxidative stress, 

epileptic seizures, and other types of neuronal injury cause a downregulation of KCC2 

mRNA and protein (Bonislawski et al., 2007; Galeffi et al., 2004; Nabekura et al., 2002; 

Okabe et al., 2003; Rivera et al., 2004; Toyoda et al., 2003; Wake et al., 2007).        

Plasmalemmal KCC2 has a high turnover rate (Rivera et al., 2004) and repetitive 

neuronal stimuli result in a downregulation of KCC2 mRNA, which is often preceded by 

increased intracellular Ca
2+

 (Fiumelli et al., 2005). Trophic factors (BDNF and IGF) and 

sex hormones also contribute to the regulation of KCC2. IGF is believed to activate the 

inactive form of KCC2 and reduce the intracellular Cl
-
 (Kelsch et al., 2001), while BDNF 

was found to either increase or decrease the expression of KCC2 (Aguado et al., 2003; 
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Rivera et al., 2002; Rivera et al., 2004). Epileptic seizures have a higher occurrence in 

males than in females (Galanopoulou, 2005). Studies have found that testosterone 

down-regulates the expression of KCC2 in the developing substantia nigra 

(Galanopoulou, 2005; Galanopoulou, 2006; Galanopoulou et al., 2003; Veliskova et al., 

2004) and the developing thalamus (Perrot-Sinal et al., 2007). KCC2 is also found to be 

involved in pain (Coull et al., 2003; Mantyh and Hunt, 2004; Morales-Aza et al., 2004; 

Price et al., 2005). Peripheral nerve injury causes a trans-synaptic reduction of KCC2 

expression and consequent disruption of anion homeostasis in neurons of lamina I of the 

superficial dorsal horn, resulting in a lowered nociceptive threshold (Coull et al., 2003). 

The expression pattern of KCC2 during development (Clayton et al., 1998; Lu et al., 

1999; Rivera et al., 1999) and the phenotype of the KCC2 knockout (Hubner et al., 2001) 

and knockdown mice (Woo et al., 2002) are all consistent with the important role the 

cotransporter plays in supporting GABA and glycine hyperpolarizing responses. With the 

exception of one study that used anti-sense KCC2 oligonucleotides to decrease KCC2 

expression and affect EGABA (Rivera et al., 1999), demonstration of the role of KCC2 as a 

major Cl
-
 regulator in neurons comes mainly from the use of furosemide, an inhibitor of 

the cotransporter. However, as the loop diuretic lacks specificity, there is a serious need 

for additional evidence of the role of KCC2 in Cl- regulation in mature central neurons. 
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Role of NKCC1 in neurons 

Some neurons, mostly notably adult sensory neurons that exhibit depolarizing GABA 

responses, have an intracellular Cl
- 
concentration that is much higher than adult level. 

These high Cl
-
 levels are maintained by strong Na-K-2Cl cotransport activity 

(Alvarez-Leefmans et al., 1988; Rohrbough and Spitzer, 1996; Sung et al., 2000). In 

contrast to sensory neurons which keep a high Cl
-
 concentration throughout adulthood, 

central neurons show high Cl
- 

levels only during development from E15-E17 in the 

ventricular zone (LoTurco et al., 1995; Owens et al., 1996) to postnatal days P1-P7 

(Ehrlich et al., 1999; Owens et al., 1996). These high Cl
-
 levels are consistent with the 

depolarizing GABA responses that were measured in immature neurons (Ben-Ari et al., 

1989; Janigro and Schwartzkroin, 1988; Luhmann and Prince, 1991; Mueller et al., 1983; 

Muller, 1989). LoTurco et al. (LoTurco et al., 1995) demonstrated that GABA 

depolarization in embryonic ventricular zone neurons was related to a 

furosemide-sensitive Cl
-
 transport process. This process is consistent with an inward 

Na-K-2Cl cotransporter. Expression of NKCC1, a widely expressed Na-K-2Cl 

cotransporter, has been demonstrated in immature neurons (Plotkin et al., 1997a) and 

shown to decrease with neuronal maturation (Plotkin et al., 1997b). NKCC1 is activated 

by the decrease of intracellular Cl
-
 following GABAA receptor activation in cultured 

cortical neurons and serves as a positive feedback mechanism for maintaining high 

intracellular chloride concentration (Schomberg et al., 2003). A Ca
2+

 activated Cl
-
 current 

in olfactory receptor neurons is abolished in NKCC1 deficient mice, which also indicates 
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that NKCC1 plays a role in neuronal Cl
-
 accumulation (Reisert et al., 2005). Since 

increased intracellular Cl
-
 means less GABA inhibition, NKCC1 may play roles in 

epileptogenesis. The role of NKCC1 in epileptic seizure has been recently studied. 

Abnormally high expression of NKCC1 was found in epileptic tissues from both human 

and rodents (Aronica et al., 2007; Okabe et al., 2003; Palma et al., 2006; Sen et al., 2007). 

This anomalous expression of NKCC1 was suspected to contribute to excitatory GABA 

actions in the epileptic brain. Dzhala and colleagues found that inhibiting NKCC1 with 

bumetanide or targeted deletion of NKCC1 reduced epileptic activities induced by high 

[K
+
]o in the developing brain (Dzhala et al., 2005). They concluded that NKCC1 

facilitates epileptic seizure in the developing brain. 
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Hypotheses and Specific Aims 

 

Hypothesis I 

A neuron is a confined compartment consisting of the soma, the dendrites and the axons. 

GABAA receptors are expressed on most of the neurons and they are one of the pathways 

for Cl
-
 ions to enter or exit the neuron. Activation of GABAA receptor induces either 

influx (hyperpolarizing action) or efflux (depolarizing action) of Cl
-
 ion and causes the 

redistribution of Cl
-
 across the plasma membrane (Ehrlich et al., 1999). Without a 

transport system, the intracellular Cl
-
 would be fluctuating with the membrane potential. 

Although it was proposed that KCC2 maintains a low intracellular Cl
-
 concentration and 

is responsible for hyperpolarizing GABA response, most of the work is based on the 

effect of furosemide, an inhibitor of KCC2 with unspecific effects on other KCC 

isoforms (Ki = 40 M, 25 M, and 40 M for KCC1, KCC2 and KCC3, respectively), 

and other Cl
-
 transport proteins (see Chapter 1). The generation of KCC2

-/-
 mice in the 

laboratory provided an excellent opportunity to study with specificity how KCC2 

regulates intracellular chloride in neurons. Here, I hypothesize that KCC2 is 

responsible for driving and maintaining low intracellular chloride levels in mature 

neurons. I also hypothesize that KCC2 is active in maintaining/regulating 

intracellular chloride when its concentration is under various acute challenges. This 

hypothesis will be addressed by the following specific aims: 
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   Specific Aim I: To determine the intracellular Cl
-
 concentration by measuring EGABA 

(ECl) at different time points using cultured cortical neurons isolated from wild type and 

KCC2
-/-

 mice,  

   Specific Aim II: To measure the changes in EGABA (or ECl) after challenging the 

intracellular Cl
-
 concentration in wild-type and KCC2

-/-
 neurons. This will be achieved by 

lowering the extracellular K
+ 

concentration, prolonging the application of GABA and 

depolarizing the membrane potential, and measuring the recovery of internal Cl
-
. 

 

Hypothesis II 

GABA inhibition is critical in maintaining the stability of the neuronal network, and 

reduced GABA inhibition is a critical factor in the development of epileptic seizures. 

Therefore, as regulators of intracellular Cl
-
, the cation-chloride cotransporters are likely 

important players in the stability of neuronal networks and important players in 

preventing or promoting seizure susceptibility. As KCC2 decreases neuronal Cl
-
, it 

protects the brain from hyperexcitability and from the development of epileptic seizures. 

Thus, reduction of the cotransporter expression is likely to result in increased neuronal 

network excitability and increased susceptibility to seizure. As homozygous mice with 

targeted deletion of KCC2 have severe developmental problems and die early during 

postnatal development, they do not constitute a useful model to study the role of KCC2 in 

CNS hyperexcitability. In contrast, KCC2
+/-

 mice, by expressing half the amount of 

KCC2 protein in the brain, are viable and exhibit increased susceptibility to behavioral 



 38 

seizure induced by pentylenetrazol (PTZ), as shown in a previous publication from our 

laboratory (Woo et al., 2002). 

   As discussed in Chapter 1, the role of NKCC1 in neuronal Cl
-
 accumulation and 

network stability is still a matter of controversy. In P2-P4 cortical and hippocampal 

neurons, bumetanide produces a hyperpolarizing shift in EGABA of pyramidal neurons 

(Sipila et al., 2006; Yamada et al., 2004) and increased seizure activity in a high K
+
 

seizure model (Dzhala et al., 2005). In contrast, in auditory brainstem neurons 

(Balakrishnan et al., 2003) and retinal neurons (Zhang et al., 2007), intracellular [Cl
-
] 

remains high in the absence of NKCC1. As NKCC1 is not only expressed in neurons, but 

also in glial cells (Aronica et al., 2007; Mikawa et al., 2002; Su et al., 2002b), the 

cotransporter might play additional roles pertinent to brain excitability. For instance, the 

cotransporter might serve as a clearance route for excess K
+
 in the extracellular space 

during elevated neuronal firing and thus prevent hyperexcitability. Therefore, I 

hypothesize that KCC2 dampens network excitability and therefore reduces seizure 

susceptibility in the brain. I also hypothesize that through a mechanism independent 

of Cl- regulation in the pyramidal neurons, NKCC1 also prevents hyperexcitability 

in the brain. These hypotheses will be addressed through the following two specific 

aims. 

  Specific Aim III: To demonstrate that KCC2 prevents hyperexcitability in the brain. 

This will be achieved by recording the network activity and seizure susceptibility to 

4-aminopyridine in the hippocampus of wild-type and KCC2
+/- 

slices. 
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   Specific Aim IV: To demonstrate that NKCC1 does not accumulate Cl- in young 

CA3 pyramidal neurons, but prevents hyperexcitability of the hippocampal network. This 

will be achieved by recording the spontaneous activity of CA3 pyramidal neurons and 

seizure susceptibility to 4-aminopyridine in the hippocampus of wild type and NKCC1
-/- 

slices, and by measuring the direction and amplitude of muscimol-induced responses in 

both genotypes before and after application of 4-AP. 
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                             CHAPTER II 

 

MATERIALS AND METHODS 

 

Animals  

Mice used in these experiments were housed in micro-isolators in a standard animal care 

facility with a 12h light/dark cycle, and free access to food and water. All procedures were 

approved by the Vanderbilt University Animal Care and Use Committee, in agreement 

with the guidelines of the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals.  

 

Tail clips and genotyping  

Due to the early postnatal lethality of the KCC2
-/-

 knockdown animals (Woo et al., 2002), 

wild-type, heterozygote, and homozygote mice were generated from heterozygote 

KCC2
+/-

 matings. Genotyping was performed by clipping 1 mm of the tail of newborn 

(P0-P1) or P15 pups (from KCC2
+/-

 parents), and from P8 pups (from NKCC1
+/-

 parents). 

The tail clip was treated with 200 l solution containing 25 mM NaOH, 0.2 mM EDTA, 

pH ~ 12 for 20 min at 95
o
C. The sample was neutralized by the addition of 200 l 

solution containing 40 mM Tris-HCl, pH ~ 5. After mixing, the digested tail sample was 

centrifuged for 6 min at 14,000 rpm and 200 l of supernatant was collected for 

genotyping. Separate polymerase chain reactions were performed on 1-2 l tail DNA to 
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amplify fragments specific to the KCC2 control and KCC2 mutant genes. For KCC2, the 

oligonucleotide primers for the control gene were: forward 5’ AGCGTGTGTCCGTGTG 

CGAGTG 3' and reverse 5' TTGTTGAGCATGGTGGC TGCGC 3' oligonucleotide 

primers. To amplify the mutant gene, I used the same forward primer and reverse 

5'-CCAGAGGCCACTTGTGTAGCGC 3' primer. The reactions generate fragments of 

207 and 204 bp, respectively. For NKCC1, the primers for the control gene were: forward 

5’ TATCTCAGGTGATCTTGC 3' and reverse 5' ACACTGCAATTCCTATGTAAACC 

3'; and for the mutant gene: forward 5’ TGCAACTGGTATTCTAGCTGGAGC 3’ and 

reverse 5’ TACAACACACACTCCAACCTCCG 3’. In this case, the sizes of the 

fragments are 184 bp and 497 bp, respectively. 

 

Cortical neuronal cultures 

Mouse cortical neurons were grown in dissociated cultures according to the method of 

Huettner and Baughman (Huettner and Baughman, 1986) with modifications. Briefly, 

cortices from wild-type KCC2
+/+

, heterozygotes KCC2
+/-

, and homozygotes KCC2
-/-

 

mouse brains were isolated at postnatal days 0 or 1, and the meninges were removed. 

Cortices were then cut into small pieces and incubated in 5 ml solution containing 100 U 

papain, 1 mM L-cysteine, 0.5 mM EDTA, 500 U DNase1 in Earle’s balanced buffered 

solution (EBSS) for 60-90 min at 37
o
C. Following digestion, the tissue was rinsed briefly 

in EBSS containing 1 mg/ml trypsin inhibitor, 100 U/ml DNase1 and 1 mg/ml BSA, then 

triturated gently in MEM without serum. Cortical neurons were further purified by 
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centrifugation for 6 min at 70g, room temperature through a density gradient consisting 

of 10 mg/ml trypsin and 10 mg/ml BSA in 5 ml EBSS. The cell pellet was then 

resuspended in MEM without serum, counted, and plated at a density of 15,000-40,000 

cells on glial feeder layers consisting of growth-arrested rat astrocytes grown on 0.1 

mg/ml poly-D-lysine and 33 g/ml laminin in 35-mm glass bottom dishes. After 3 hours, 

1.5 ml conditioned growth medium was added to the dishes. The conditioned growth 

medium consists of MEM supplemented with 20 mM glucose, 0.5 mM glutamine, 5% 

fetal bovine serum, 50 U/ml penicillin G, and 50 g/ml streptomycin and conditioned by 

cortical astrocytes as previously described (Baughman et al., 1991). The cultures were 

kept up to 21 days in 5% CO2, 37
o
C, and fed once a week with 1.5 ml conditioned growth 

medium. 

 

Immunostaining 

Cells were washed with PBS and fixed for 30 min in 2% paraformaldehyde. After 

fixation, the cell membranes were permeabilized with 0.075% saponin in PBS for 10 min 

at room temperature (RT), followed by blocking with 0.2% BSA/saponin/PBS for 30 min 

at RT. Rabbit polyclonal anti-KCC2 antibody (Lu et al., 1999) was diluted 1:200 in 

BSA/saponin/PBS and incubated with the cells for 1 hour at RT. Following several 

washes in BSA/saponin/PBS, the cells were incubated with goat anti-rabbit 

immunoglobulin G (Jackson Immunoresearch, West Grove, PA) at a dilution of 1:800 for 

1 hour at RT, and then washed several times with BSA/saponin/BSA. For double-staining 
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experiments, cells were incubated successively with anti-KCC2 antibody for 1 hour, 

followed by cy3-conjugated secondary antibody and then with monoclonal anti-MAP2 

(microtubule associated protein-2, clone AP20, Roche, Indianapolis, IN), 1 hour at RT, 

followed by FITC-conjugated anti-mouse immunoglobulin G. Fluorescence signal was 

visualized using a Zeiss Axiovert S100 microscope equipped with a Photometrics 

Coolsnap
Cf

 CCD camera (Roper Scientific, Tucson, AZ) connected to a G4 Apple 

computer.  

 

HPLC analysis 

The concentration of GABA in the culture medium was assayed by HPLC. To obtain the 

fluorescent derivatives, 10 l samples were added to 70 l of borate buffer and 20 l 

6-aminoquinol-N-hydroxysuccinimidyl carbamate solution (both from AccQ-Tag 

Chemistry Package kit, WAT052875, Waters, Milford MA). After heating the mixture 

for 10 minutes at 37C, 10 l of labeled samples were injected into the HPLC system 

consisting of a Waters 712 autosampler, two 510 HPLC pumps, a column heater (37
o
C) 

and a Waters 474 scanning fluorescence detector.  Separation of the amino acids was 

accomplished using a Waters amino acid column and supplied buffers (buffer A: 19% 

sodium acetate, 7% phosphoric acid, 2% triethylamine, 72% water; buffer B: 60% 

acetonitrile), using a specific gradient profile. HPLC control and data acquisition was 

managed by Millennium 32 software. Using this HPLC solvent system, the following 

amino acids elute in the following order: cysteine, homocystetine, aspartic acid, serine, 
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glutamate, glycine, taurine arginine, threonine, alanine, proline, GABA, cystine, tyrosine, 

valine, methionine, lysine, isoleucine, leucine, and phenlyalanine. Calibration was 

obtained by running daily calibration curves, consisting of known concentrations of each 

amino acid (10 pmole/l – 100 pmole/l) to which the internal standard (-aminobutyric 

acid, 250 pmol/l) was added. Peak height of each amino acid was compared to that of 

the internal standard. 

 

Brain Slice Preparation  

Brain slices were prepared from P9-P13 NKCC1
+/+

 and NKCC1
-/- 

mice and P19-P25 

KCC2
+/+

 and KCC2
+/- 

mice. Animals were anesthetized with isoflurane and decapitated. 

Following the dissection of the skull, the brain was rapidly removed and immersed in 

oxygenated (95%O2 / 5%CO2) ice-cold high sucrose/high magnesium cutting solution of 

the following composition (in mM): sucrose 248, KCl 2.8, MgSO4 2.0, MgCl2 6.0, 

NaHCO3 26, NaH2PO4 1.25, glucose 10 (PH 7.4) for less than 30 seconds. The brain was 

quickly lifted and glued onto a 4% agar block, which was attached to a pre-chilled cutting 

stage. The stage was then mounted onto a vibratome (Vibratome, St. Louis, MO), and the 

cutting chamber was filled with oxygenated ice-cold cutting solution. Hippocampal 

transverse slices of 350-400 m were cut and transferred to 37
o
C oxygenated artificial 

cerebral spinal fluid (aCSF) containing (in mM): NaCl 124, KCl 2.8, CaCl2 2, MgCl2 1, 

NaHCO3 26, NaH2PO4 1.25, glucose 10. After 30 minutes incubation, the slices were 
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gently transferred into room temperature oxygenated aCSF and kept for at least one hour 

before use. 

 

Western Blot 

Wild-type mice of different ages were anesthetized, decapitated, and 500 m brain slices 

were prepared following the procedure described above. Slices were then placed on an 

ice-cold metallic block and 0.41 mm tissue punches were taken
 
from CA1 and CA3 

hippocampus using a tissue puncher (VWR Scientific, West Chester, PA). A small 

volume of lysis buffer containing 150 mM NaCl, 1 mM EDTA, 10 mM TrisCl, pH 7.4, 

and 1 complete minitablet/10 ml protease inhibitors (Roche Applied Science, 

Indianapolis, IN) were added to the slices and the samples were homogenized using a 

Kontes pellet pestle grinder (VWR Scientific). Protein concentrations were quantitated 

using a standard Bradford assay (Biorad, Hercules, CA). Protein samples were then 

denatured in SDS-PAGE loading buffer at 75°C for 20
 
min and separated on a 7.5% 

polyacrylamide gel. Proteins were then transferred
 
from the gels onto polyvinylidine 

fluoride membranes (BioRad), and the membranes blocked
 
for 2 h at room temperature 

(RT) in TBST (NaCl, 150 mM; Tris-Cl, 10mM, pH 8.0, Tween 20 

[polyoxyethylene-sorbitan monolaurate], 0.5%) supplemented with 5% non-fat dry
 
milk. 

Membranes were then incubated with anti-KCC2 (Lu et al., 1999) or anti-transferrin 

receptor (Invitrogen, Carlsbad, CA) primary antibodies at 1:1000
 
dilution in blocking 

solution at 4°C overnight. Following extensive TBST washes, membranes were incubated 
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in horseradish peroxidase-conjugated anti-rabbit (KCC2) or anti-mouse (TR) secondary
 

antibodies in blocking solution (1:4000; Jackson Immunoresearch, West Grove, PA) for 

1 h at RT,
 
and then rinsed for 2 h in TBST. Finally, protein bands detected by antibodies 

were visualized
 

by chemiluminescence using ECL Plus (Amersham Biosciences, 

Arlington Heights, IL).   

 

Electrophysiology—Cultured cortical neurons 

Electrophysiological responses of cultured cortical pyramidal neurons were recorded at 

room temperature using the gramicidin perforated-patch whole cell recording technique 

with an Axopatch 200 amplifier (Axon Instruments, Foster City, CA) and pCLAMP 8.2 

software (Axon Instruments). A 35-mm culture dish of cultured cortical neurons was 

placed onto an inverted microscope and an external solution was perfused at a rate of 1 

ml/min. The external solution contained 150 mM NaCl, 5 mM KCl, 0.5 mM CaCl2, 1 

mM MgCl2, 10 mM glucose, 26 mM sucrose, and 10 mM HEPES, pH 7.4. For the low 

K
+
 experiments, the KCl concentration of the external solution was decreased to 1 mM 

and the NaCl concentration was increased to 154 mM. Pyramidal neurons were identified 

by their typical morphology under the microscope. Patch pipette electrodes with 

resistances of 2-4 M were made from borosilicate glass capillaries (World Precision 

Instruments Inc., Sarasota, FL) using a horizontal pipette puller (Sutter Instruments Co., 

Novato, CA). The electrodes were first dipped in gramicidin free internal solution 

consisting of 140 mM KCl, 5 mM EGTA, 10 mM HEPES, pH adjusted to 7.4 using Tris 
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base, then backfilled with internal solution containing 20-50 M gramicidin D (Sigma, St. 

Louis, MO). Gramicidin stock solution (30g/ml in DMSO) was kept on ice and 

gramicidin-containing internal solution was made fresh every hour to maintain the 

activity of the ionophore. After the formation of a tight seal, the progress of gramicidin 

perforation was evaluated by following the series resistance. Recordings started after the 

series resistance stabilized (15-40 M). Whole cell capacitance (5-30 pF) was 

compensated before recording. Recordings were low pass filtered at 2 KHz. Drugs were 

dissolved in external solution and delivered using a 3-barrel SF-77B stepper motor-driven 

system (Warner Instruments Co., Hamden, CT) controlled by pClamp 8.2. 

The chloride equilibrium potential was estimated from the reversal potential observed 

during activation of GABAA receptors (ECl = EGABA). Reversal potentials were recorded 

using a voltage ramp protocol consisting of a step to -80 mV for 50 milliseconds, 

followed by a voltage ramp to -20 mV at a rate of 300 mV/sec. At this rate, the current 

through the membrane capacitance is negligible. The error in EGABA caused by the series 

resistance was corrected using the following calculation: EGABA = EGABA0 – (EGABA0-Em) * 

Rs/(Rinput1-Rinput2) (where Rs is the series resistance; Rinput1 and Rinput2 are the input 

resistance with and without GABA application, respectively; Em is the resting membrane 

potential; EGABA0 the original reversal potential recorded by ramp). Series resistance was 

compensated by 70-80% in recordings other than voltage ramps. 

After each perforated patch recording, additional negative pressure was applied to the 

pipette in order to break the membrane patch under the pipette tip and obtain the whole 
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cell configuration. EGABA was recorded with voltage clamp at different potentials. The 

value was always measured around 0 mV, indicating absence of voltage drift during the 

recording. The intracellular chloride ion activity was calculated using the Nernst equation: 

ECl = RT/F*ln(aCli/aClo), where R is the gas constant, T is the absolute temperature and F 

is the Faraday constant (96485.309 C/mol). The extracellular Cl
-
 activity is aClo = [Cl]o, 

where  is the activity coefficient calculated using the Extended Debye-Hückel equation 

(Harris, 2003).  To block voltage-dependent Na
+
 currents, all experiments were 

performed in the presence of 0.3 M tetrodotoxin (Alomone Labs, Jerusalem, Israel). 

Furosemide (Sigma, St. Louis, MO) was used at a concentration of 1 mM.  

 

Electrophysiology—Brain slices   

All electrophysiological experiments were performed at 29-30
o
C in a submerged chamber 

perfused with oxygenated aCSF. All data were filtered by Bessel filter (0.1-2000Hz), 

amplified by multiclamp 700B and analyzed by pCLAMP 9.0 (Axon Instruments, Foster 

City, CA). For extracellular recordings, 4-6 MOhm pipettes pulled from thin wall 

Borosilicate glass capillaries (World Precision Instruments, Sarasota, Fl) were filled with 

normal aCSF. The tip of the recording pipette was placed in the stratum pyramidale of 

CA3. For cell-attached experiments, the whole tip (from beginning to the end of taper) of 

the glass pipette (2-4 MOhm) was filled with gramicidin-free pipette solution containing 

(in mM): KCl 140, HEPES 10, pH 7.2. Then, the pipette was backfilled with pipette 

solution containing less than 5 g/ml gramicidin D (Sigma, St Louis, MO). Gramicidin 



 49 

was use to reduce Rpatch (See Appendix A) to a value much lower than the value for 

conventional cell-attached mode (Perkins, 2006). With low gramicidin, the series 

resistance drops to less than 200MOhm in a few minutes and Vpipette reaches a value very 

close to the resting membrane potential (-65 to -75 mV). All recordings were done in 

current clamp mode with holding current set at 0, so that no artificial current is injected 

into the neuron from the headstage. Bumetanide (10 lwas applied to the aCSF 

perfusing the slice from a stock in DMSO to reach a final concentration of M. 

4-aminopyridine (Sigma, St. Louis, MO) was used at a final concentration of 50 M in 

aCSF. Power spectrum analysis was done in Prism 3.0 (Graphpad Software, San Diego, 

CA). 
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CHAPTER III 

 

CORTICAL NEURONS LACKING KCC2 EXPRESSION SHOW IMPAIRED 

REGULATION OF INTRACELLULAR CHLORIDE 

 

Introduction 

During synaptic transmission and propagation of the action potential, the electrochemical 

driving force for Cl
-
 ions varies significantly in neurons as the membrane potential 

fluctuates. Provided that passive pathways for Cl
-
 movement across the plasma 

membrane exist, changes in membrane potential will tend to affect the Cl
-
 concentration. 

In addition, both GABAA and glycine receptors contain intrinsic Cl
-
 channels, and during 

activation of these receptors, Cl
-
 ions flow across neuronal membranes. The mechanisms 

regulating intracellular Cl
-
 concentrations in neurons are not fully understood. Cl

-
 is 

rarely distributed passively across the plasma membrane, and thus maintenance of its 

concentration requires consumption of energy. 

   The Cl
-
 concentration could be maintained by secondary active transporters which are 

mechanisms that use the energy of ion gradients set by other enzymes such as carbonic 

anhydrase for the generation of a HCO3
-
 gradient and the Na

+
/K

+
-ATPase for the 

generation of Na
+
 and K

+
 gradients. Some neurons, most notably adult sensory neurons 

that exhibit depolarizing GABA responses, have an internal Cl
- 

concentration much 

higher than electrochemical potential equilibrium. These high Cl
-
 levels are maintained 

by a strong Na-K-2Cl cotransport activity (Alvarez-Leefmans et al., 1988; Rohrbough 
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and Spitzer, 1996; Sung et al., 2000). In contrast to sensory neurons which keep a high 

Cl
-
 concentration throughout adulthood, central neurons show high Cl

- 
levels only during 

development ((from E15-E17 in the ventricular zone), (LoTurco et al., 1995; Owens et al., 

1996) to postnatal days P1-P7 (Ehrlich et al., 1999; Owens et al., 1996)). These high Cl
-
 

levels are consistent with the depolarizing GABA responses that were measured in 

immature neurons (Ben-Ari et al., 1989; Janigro and Schwartzkroin, 1988; Luhmann and 

Prince, 1991; Mueller et al., 1983; Muller, 1989). Lo Turco et al. (1995) demonstrated 

that GABA depolarization in embryonic ventricular zone neurons was related to a 

furosemide-sensitive Cl
-
 transport process. This process is consistent with an inward 

Na-K-2Cl cotransporter. Expression of NKCC1, a widely expressed Na-K-2Cl 

cotransporter, has been demonstrated in immature neurons (Plotkin et al., 1997a) and 

shown to decrease with neuronal maturation (Plotkin et al., 1997b). Further support for 

the role of NKCC1 in Cl
-
 accumulation in immature neurons has been provided in recent 

functional studies (Schomberg et al., 2003). 

   After maturation, CNS neurons exhibit a Cl
-
 concentration that is lower than 

electrochemical potential equilibrium, due to an active Cl
-
 transport mechanism which is 

responsible for extruding Cl
-
 from the neuron. This transporter was shown to be 

K
+
-dependent and furosemide-sensitive, consistent with a K-Cl cotransporter (Misgeld et 

al., 1986; Thompson et al., 1988). In 1996, a neuronal-specific K-Cl cotransporter, KCC2, 

was cloned (Payne et al., 1996). The expression pattern of KCC2 during development 

(Clayton et al., 1998; Lu et al., 1999; Rivera et al., 1999) and the phenotype of the KCC2 
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knockout (Hubner et al., 2001) and knockdown mice (Woo et al., 2002) are all consistent 

with the important role the cotransporter plays in supporting GABA and glycine 

hyperpolarizing responses. With the exception of one study that used anti-sense KCC2 

oligonucleotide to decrease KCC2 expression and affect EGABA (Rivera et al., 1999), 

demonstration of the role of KCC2 as a major Cl
-
 regulator in neurons comes mainly 

from the use of furosemide, an inhibitor of the cotransporter. However, as the loop 

diuretic lacks specificity, there is a serious need for additional evidence of the role of 

KCC2 in Cl- regulation in mature central neurons. 

  In this study, I sought to examine the role of KCC2 in controlling and regulating 

intracellular Cl
-
 by comparing the reversal potentials of GABAA receptor-mediated Cl- 

currents in cortical neurons cultured from wild-type and KCC2
-/-

 mice. We show that the 

normal developmental decrease in [Cl
-
]i in neurons is absent in mice lacking KCC2 and 

also show that active Cl
- 
regulation is severely impaired in KCC2

-/-
 neurons, strongly 

supporting the idea that that KCC2 is critical for Cl
-
 homeostasis in mature cortical 

neurons. 

 

 

 

 

 

 



 53 

Results 

 

Disruption of KCC2 expression abolishes the down-regulation of [Cl
-
]i in developing 

cortical neurons in culture 

A postnatal increase in KCC2 expression has been demonstrated in mouse and rat CNS 

by Northern blot analysis (Lu et al., 1999; Rivera et al., 1999), RNAse protection assay 

(Clayton et al., 1998; Ganguly et al., 2001), in situ hybridization (Balakrishnan et al., 

2003; Clayton et al., 1998), RT-PCR (Balakrishnan et al., 2003), Western blot analysis 

(Lu et al., 1999; Vu et al., 2000), and immunohistochemistry (Lu et al., 1999; Vu et al., 

2000). Using the KCC2 specific antibody developed in our laboratory (Lu et al., 1999; 

Vu et al., 2000), I observed low KCC2 expression in young, immature cortical neurons in 

culture and high expression levels in older cells (Figure 3-1A & C). Immunostaining of 

cortical neurons in culture reveals punctate KCC2 expression at the cell plasma 

membrane of both soma (Figure 3-1C) and dendritic spines (inset of Figure 3-1C). This 

expression pattern is absent in KCC2
-/-

 cells (Figure 3-1E). Neurons at all stages are 

easily identified by MAP2 staining (Figure 3-1B, D & F). The patterns of KCC2 and 

MAP2 staining are observed in 87% of 284 neurons examined from 2 wild type DIC14 

cultures. 

The developmental regulation of intracellular Cl
-
 concentration in cultured wild-type 

KCC2
+/+

 and homozygous KCC2
-/-

 cortical neurons was followed using gramicidin 

perforated patch clamp recordings. Because the neurons selected for our 

electrophysiological recordings were small pyramidal neurons (10-30 pF), only brief  
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Figure 3-1. Double-immunofluorescence staining showing that the expression of 

KCC2 protein in cultured cortical neurons is developmentally up-regulated. 

 

 

(A)Young, DIC 4, pyramidal neuron from cortical neuronal culture is stained with 

anti-KCC2 antibody. Expression of KCC2 is low, with a punctate pattern at cell soma and 

dendrites. (C) KCC2 expression is much higher in an older, DIC 10, pyramidal neuron. 

Intense immunostaining is observed at the soma membrane and dendrites. (Inset) KCC2 

signal is concentrated on dendritic spines. (E) Absence of staining in DIC 10 KCC2
-/-

 

neurons. (B, D, and F) same DIC 4 and DIC 10 neurons as in (A, C, and E), but stained 

with anti-MAP2 antibody. The MAP2 signal is similar in the young and old neurons. The 

neurons are cultured on a layer of astrocytes that can be seen under differential 

interference contrast microscopy (data not shown). These glial cells are not 

immunostained by either KCC2 or MAP2 antibody, as indicated by the absence of signal 

under the neurons. Bars = 20 m (A-F) and 10 m for inset in C. 
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GABA (100 M, 80 ms) pulses were applied. These short applications of GABA did not 

induce significant changes in the reversal potential of GABA-activated current, indicating 

no effect on intracellular Cl
-
. I used voltage-ramp recordings to measure the GABA 

reversal potential (EGABA) in cortical neurons cultured for 1 day (DIC1) to 20 days 

(DIC20). Because the external recording bath is nominally free of HCO3
-
, the recorded 

EGABA is equivalent to the chloride ion equilibrium potential or ECl. Two major 

observations were made from these experiments. First, depolarized ECl (or high Cl
-
 

concentrations) were measured in wild-type cortical neurons of very young age (Figure 

3-2A). To ensure that these high Cl
-
 levels did not originate from a pipette leak, I 

repeated the measurements at DIC2 with low Cl
-
 (10 mM Cl

-
, 130 mM gluconate) in the 

pipette. As shown by the open symbol in Figure 3-2A, the Cl
-
 activity (24.1 ± 1 mM, n = 

4) measured using a low pipette Cl
-
 concentration was identical to the one determined 

using high Cl
-
 in the pipette. Furthermore, as shown in inset c of Figure 3-2A, EGABA (as 

measured with high Cl
-
 in the pipette) remains stable during a relatively long period of 

recording time in both young and old neurons. Second, during development of the 

wild-type cortical neuron in culture, the ECl varied from -42.4 + 1.7 mV to -71.3 + 0.9 

mV (n = 180, 28). This corresponds to a gradual decrease in intracellular Cl
- 
activity aCli  

(see Materials and Methods) from 25.0 + 1.7 mM (mean ± SEM) at DIC2 to 7.3 + 0.3 

mM at DIC20 in (Figure 3-2A). The significant decrease in aCli and the ensuing shift in 

ECl underlie the switch of the GABA response from a large average inward current at rest 

in young CNS neurons to smaller inward current, and in many cases outward current, in 
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mature neurons. I also measured the resting membrane potential in young and older wild 

type and KCC2
-/-

 neurons (Figure 3-2B). Although there were no significant differences 

between the four groups (ANOVA P>0.05), I measured a slightly more depolarized 

potential in older neurons. This small difference, irrespective of the genotype, is 

consistent with previous reports showing a more depolarized resting membrane potential 

in cortical neurons of newborn animals (Mienville and Pesold, 1999; Zhou and Hablitz, 

1996). However, this more depolarized potential in young neurons could be due to 

shunting through the seal resistance, as these cells have a higher input resistance and no 

difference in resting membrane potential was measured between young and older neurons 

when a cell-attached method was used (Tyzio et al., 2003). At resting membrane potential, 

the size and direction of the GABA current was also determined (Figure 3-2A & C). 

GABA elicited inward currents in young immature wild-type neurons and on average 

outward currents in older neurons. However, not all older neurons expressed outward 

GABA currents: a fraction of them still exhibited inward current, despite the fact that 

~87% of the older neurons showed immunoreactivity with the KCC2 antibody. 

Consistent with absence of [Cl]i downregulation in KCC2
-/-

 neurons, GABA-evoked 

currents remain inward in more mature KCC2
-/-

 neurons (Figure 3-2C). 

 In contrast to wild-type neurons, cultured cortical neurons isolated from KCC2
-/-

 

animals failed to exhibit the ECl shift towards more hyperpolarized potentials. Thus, the 

intracellular Cl
-
 activity was maintained around 25 mM (from 25.1 + 1.6 mM (n = 5, 2) at 

DIC 2 to 23.2 + 1.2 mM (n= 5, 2) at DIC 20. In addition, I found that in the KCC2
+/-
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Figure 3-2. Developmental decrease of Cl
-
 is abolished in KCC2

-/-
 neurons. 

 

(A) Intracellular Cl
-
 was determined through measurements of the GABA reversal 

potential (EGABA) using the gramicidin perforated patch-clamp method. [Cl
-
]i was 

calculated from the Nernst equation. In cultured neurons from wild-type mice, 

intracellular Cl
-
 undergoes a significant developmental decrease. In contrast, in KCC2

-/-
 

neurons, the intracellular Cl
-
 levels did not change significantly during neuronal 

maturation in culture. Data represent mean ± S.E.M. For wild-type neurons (closed 

circles), data were obtained from a total of 180 cells (28 mice). For KCC2
-/-

 cells (closed 

diamonds), data were obtained from a total of 67 cells (7 mice). EGABA (and intracellular 

Cl
-
 activity) was also determined at DIC2 using low Cl

-
 (10 mM) in the pipette (open 

symbol). Insets a, b: sample traces showing typical GABA-induced currents during 

voltage-clamp at resting potential. c: stable EGABA measured for ~20 min in typical 

neurons of ages DIC1 and DIC17. (B) Resting membrane potentials determined in young 

(DIC3-6) and older (DIC18-21) neurons. (C) Currents evoked by exogenously applied 

GABA at resting membrane potential are inward in young wild-type and young and old 

KCC2
-/-

 neurons. In older wild type neurons, GABA evokes either outward or inward 

currents. 
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(heterozygote) neurons, the [Cl]i also undergoes a developmental decrease, but with a 

significant delay when compared to wild-type neurons. The Cli activity decreased from 

20 + 1.2 mM (n = 12, 5) to 13 + 1.2 mM (n = 13, 5). As the neurons differentiate and 

increase the numbers of synaptic connections in the culture, the concentration of GABA 

in the culture medium could increase, resulting in increased GABA activity and enhanced 

Cl
-
 flux across the membrane. However, this is unlikely to occur in the culture system 

used in the present study because glial cells are a major source of ambient GABA, and 

the glial cells used for the feeder layer in both KCC2
+/+

 and KCC2
-/-

 cultures were 

derived from rat. This enhanced tonic GABA activity could account for the observed 

gradual decrease in aCli towards electrochemical equilibrium. To minimize the 

accumulation of GABA, I plated the cortical neurons at low density and replaced part of 

the medium every 5-7 days. To measure the GABA content in the culture, I sampled the 

culture medium at different time points, and subjected the samples to high pressure liquid 

chromatography. As shown in Figure 3-3, the basal level of GABA in the conditioned 

medium was measured at 6 M, which increased progressively to 10 M until 

replacement of part of the medium every 7 days in both KCC2
+/+

 or KCC2
-/-

 neuronal 

cultures. Since the GABA concentration measured in wild-type and KCC2
-/-

 cultures was 

similar, the absence of aCli decrease in KCC2
-/-

 neurons argues against a role for tonic 

GABA activity in the gradual decrease that I observed in cultured wild-type control 

cortical neurons. Taken together, our results demonstrate that the Cl
-
 transport 

mechanism, KCC2, is critical for the decrease in aCl
-
 during postnatal development.  
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Figure 3-3. Ambient GABA is similar in wild type KCC2
+/+ 

and KCC2
-/-

 neuronal 

cultures. GABA concentration was measured by HPLC.  

 

 

GABA concentration was measured by HPLC. The concentration of GABA in 

conditioned medium was measured at 6 M and this concentration increased 

progressively in the culture, due to the release of GABA from both astrocytes and 

neurons. The culture medium was replaced every 7 days with fresh conditioned medium, 

leading to a periodic decrease in GABA concentration. The GABA concentration in 

KCC2
-/-

 neuronal cultures (filled squares) is very similar to that of wild-type KCC2
+/+ 

cultures (open circles). Each data point represents the mean ± SEM GABA concentration 

in the culture medium (n = 4, KCC2
+/+

 and n = 2 KCC2
-/-

). 
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Intracellular Cl
-
 in neurons is acutely regulated by KCC2  

Since the Cl
- 

content of mature neurons is significantly below the concentration for 

passive distribution, energy is required to drive Cl
-
 away from equilibrium. Figures 3-1 

and 3-2 demonstrate that the K
+
-coupled Cl

-
 transporter, KCC2, is expressed in more 

mature neurons and is responsible for setting the neuronal Cl
-
 concentration to low values. 

Whether or not the cotransporter also acutely regulates and maintains intracellular Cl
- 

upon challenge is addressed in the next experiments. Using 200 ms ramp protocols, 

EGABA was measured every 2 minutes in a DIC14 wild-type neuron. As indicated in 

Figure 3-4A, the measurement procedure did not affect the intracellular Cl
- 
concentration. 

Upon addition of furosemide (1 mM), I observed a progressive shift in EGABA towards 

more positive potentials, indicative of a rise in intracellular Cl
-
. Upon removal of the 

cotransporter inhibitor, the intracellular Cl
-
 returned towards control levels. The effect of 

furosemide was significant in older neurons but not in young neurons, in agreement with 

the increased expression of KCC2 in the more mature neurons (Figure 3-4). The effect of 

furosemide on KCC2
-/-

 neurons was examined in later experiments. The driving force for 

KCC2 results from the difference in the transmembrane ionic gradient of both potassium 

and chloride. Thus, changing the K
+
 concentration in the recording bath solution directly 

affects the intracellular Cl
-
 concentration (Kakazu et al., 2000). In the following 

experiment, after a steady EGABA was observed, the cell perfusion was switched from 

standard external bath solution containing 5 mM K
+
, to a bath solution with lower K

+
 (1 

mM, see methods and materials). In a DIC13 wild type neuron, EGABA dramatically 
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shifted in the negative direction when external solution was switched to 1mM K
+
 and this 

effect was reversed by applying 1mM furosemide (Figure 3-4C). In young wild-type 

neurons, lowering K
+
 had little effect on EGABA (Figure 3-4D left, n = 4, 2). In contrast, 

in older wild-type neurons, exposure to low K
+
 significantly depleted cell Cl

-
, resulting in 

a negative shift of EGABA (Figure 3-4D right, n = 14, 2). This effect of low K
+
 was 

counteracted by the addition of 1 mM furosemide (Figure 3-4C). The same 

manipulations were performed in DIC11-13 KCC2
-/-

 neuron cultures and I observed that 

the [Cl
-
]i only slightly decreased when the cells were exposed to low K

+
 (Figure 3-4D 

right, n = 8, 1). These data indicate that KCC2 plays a key role in coupling neuronal Cl
-
 

with neuronal K
+
. Other cation-chloride cotransporters, such as KCC1, KCC3, or KCC4, 

may also participate in the cation-anion coupling; although they may not be active at 

resting conditions (see discussion). 

 

KCC2 counteracts [Cl
-
]i challenges imposed by excessive Cl

-
 influx 

I have shown that KCC2 plays a critical role in the developmental down-regulation of 

intracellular Cl
-
. Because of low internal Cl

-
, mature neurons are always under the 

challenge of excessive influx of Cl
-
 ions driven by the large Cl

-
 gradient across the 

membrane. When GABAA receptors are activated, especially when the neuron is also 

depolarized, the [Cl]i of small compartments such as dendritic spines can increase 

significantly through the anion channels associated with GABAA receptors. Different 

mechanisms, including cation-chloride cotransporters and passive chloride channels, may  
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Figure 3-4. Evidence for a furosemide-sensitive K-Cl cotransporter in older cortical 

neurons in culture.  

 

 

(A) Typical experiment in a wild-type DIC14 cortical neuron showing a stable EGABA, as 

measured every two minutes for a period of 8-10 minutes in control conditions. Addition 

of furosemide induces a shift in EGABA towards more positive values, indicating an 

increase in intracellular Cl
-
 concentration. (B) In contrast to older neurons where 

furosemide induces a significant positive shift in the GABA reversal potential (b) (P = 

0.0001), in young neurons, furosemide has no significant effect on EGABA (a) (P = 0.087). 

(C) Reducing extracellular [K
+
] from 5 mM to 1mM greatly decreases intracellular [Cl

-
], 

and this effect is neutralized by furosemide. (D) Decreasing the external K
+
 concentration 

induces a significant EGABA shift in older KCC2
+/+

 neurons, corresponding to a 38 ± 8 % 

decrease in a[Cl
-
]i (c) (P <0.0001). In old homozygous KCC2

-/-
 neurons, reduction in 

external K
+
 results in a much smaller decrease in EGABA, corresponding to a 16 ± 13 % 

decrease in a[Cl
-
]i (d) (P < 0.005). In younger neurons from both genotypes, there was no 

effect of K
+
 reduction on EGABA. 
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immediately be activated to fight excessive Cl
-
 influx, and maintain the Cl

-
 equilibrium. 

To study the role of KCC2 in the acute regulation of [Cl
-
]i, I utilized a long 6 sec GABA 

(100 M) application coupled to a depolarizing step (30-40 mV away from the measured 

resting membrane potential) to induce a large amount of Cl
-
 influx into the recorded 

neuron. EGABA was monitored using repetitive (every 2 minutes) brief GABA pulses (80 

ms) with voltage ramp recording. Every experiment started when stable series resistance 

and stable EGABA were achieved.    

   During each 6 sec GABA application under depolarization, the intracellular Cl
-
 

significantly increased as demonstrated by the significant positive shift in EGABA (Figure 

3-5B, 3-5D). Although the extent to which EGABA changed was different in young and 

older neurons, the intracellular [Cl
-
]i returned to its original value within 8-10 minutes in 

both groups. The decrease in EGABA during the initial 2 min period were 8.64 ± 2.46 mV 

(n=5) and 1.94 ± 0.52 mV (n=8) in wild-type DIC14-18 and DIC2-6 neurons, 

respectively (Figure 3-5D, 3-5F). After recovery, a second 6 sec GABA application 

under depolarization was performed, followed in order by an immediate EGABA 

measurement and the perfusion of 1mM furosemide. It was only in wild-type neurons 

older than P10, that furosemide greatly inhibited the initial decrease in EGABA (from 8.64 

+ 2.46 mV to 1.76 + 0.74 mV (n=5), see Figure 3-5B, 3-5D, and 3-5F). The loop 

diuretic failed to affect the initial decrease in EGABA in the young wild-type neurons, in 

agreement with absent or low KCC2 expression in immature wild-type neurons. Identical 

experiments were performed in cortical neuronal cultures obtained from KCC2
-/-

 mice.  
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Figure 3-5. Deletion of KCC2 abolishes [Cl
-
]i regulation after acute loading of Cl

-
.  

 

(A) I-V traces recorded using voltage ramps before and after loading the cell with Cl-. EGABA 

shifts to more depolarized values after Cl- loading. The letters (a) and (b) correspond to 2 

specific recordings depicted in panel B. (B) Typical experiment performed in a wild-type 

mature neuron. After steady EGABA values were obtained, intracellular chloride loading was 

obtained using long (6 sec) GABA application combined with membrane depolarization 

(holding at -20mV). Voltage ramps were applied every 2 minutes to record EGABA. In 

wild-type neurons, the EGABA decrease during the first 2 min was greatly delayed by 1 mM 

furosemide. (C) In KCC2-/- neuron, the initial [Cl-]i (EGABA) decrease was unaltered by 

furosemide. (D) The initial EGABA decrease was calculated from the first 2 time points or first 

2 min interval. Each dotted-line set represents one experiment as shown in A. In wild type 

and KCC2-/- neurons, only more mature cells of wild type mice (DIC14-18), which have high 

KCC2 expression, showed high EGABA decrease and responsiveness to 1mM furosemide. (F) 

Only the inhibition of recovery rate by furosemide in more mature wild-type neurons is 

significant (P<0.001).  
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As seen in Figure 3-5C and 3-5E, KCC2
-/-

 neurons also recovered their Cl
-
 content after 

Cl
-
 loading, but the decrease was much smaller (3.12 + 0.52 mV in DIC11-22 neurons). 

In these neurons, furosemide did not affect the EGABA decrease (Figure 3-5C, 3-5E, and 

3-5F), consistent with the absence of the cotransporter in these cells. A more 

physiological example of Cl
-
 loading is the co-application of glutamate and GABA 

(Figure 3-6). I thus conclude that KCC2 in control neurons actively promotes the rapid 

extrusion of the anion from the neurons during acute loading of Cl
-
. Other Cl

-
 

mechanisms, probably passive Cl
-
 channels, also take part in the recovery process. 

 

KCC2 maintains neuronal Cl
-
 during prolonged depolarization 

Due to the presence of passive chloride permeation pathways, prolonged depolarization 

induced by persistent activation of GABAergic synapses will tend to increase 

intracellular Cl
-
 concentration and move ECl in the depolarized direction. In the next set 

of experiments, I demonstrate that KCC2 is able to prevent such changes in ECl due to 

depolarization. Again, cortical neurons obtained from wild-type and homozygote KCC2
-/-

 

animals were analyzed. In these experiments, the membrane potential was first clamped 

to obtain zero current (Erest) and a steady recording of EGABA. The cells were then voltage 

clamped 30 mV higher than ECl for the entire remainder of the experiment, with the 

exception of the time during ramping protocols used for EGABA (ECl) measurements. As 

indicated in Figure 3-7A & 3-7C-D, in older wild-type neurons, the ECl remained steady 

during depolarization (only a slight increase from -62.4 + 1.9 mV to -60.3 + 1.9 mV).  
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Figure 3-6 Intracellular Cl
-
 loading with co-application of GABA and glutamate 

shifts GABA in the depolarized direction.  

 

 

(A) Voltage ramp recording was used to measure the GABA reversal potential EGABA. 

After a stable baseline of EGABA was established, Glutamate (100M) and GABA 

(100M) with or withour glutamate receptor antagonists were co-applied to the neuron 

for 4 seconds. The response of the membrane potential to the co-application of GABA 

and glutamate is shown in (B) (current clamp, I=0). Immediately after the evoked 

response, same voltage ramp was applied to measure the EGABA (C). After the 

depolarization induced by co-aplication of GABA and glutamate (B1), EGABA shifts 

from -73mV of control (A) to -58mV (C1). Co-application of GABA/glutamate/CNQX 

induces a smaller depolarization (B2) and less shift in EGABA (C2). However DL-APV 

totally blocks the depolarization (B3) and EGABA shift (C3) when it is co-applied with 

GABA and glutamate. The data from the same P15 neuron is plotted in panel (D). KCC2 

inhibitor furosemide blocked the recovery of EGABA (E).  
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Upon addition of furosemide, the ECl significantly increased from -60.3 + 1.9 mV to 

-48.6 + 1.6 mV, indicating a large increase in the intracellular Cl
-
 concentration (Fig 3-7). 

In contrast, KCC2
-/-

 neurons reacted directly to the depolarization, as indicated by the 

marked increase in EGABA from 49.2 + 1.5 mV to 38.8 + 1.3 mV (Figure 3-7B & 3-7E-F). 

As anticipated, in these neurons lacking the cotransporter, furosemide did not affect 

EGABA. These data demonstrate that in older neurons, KCC2 renders the neuron resistant 

to changes in the intracellular Cl
-
 concentration during depolarization.  

   Interestingly, in young wild-type neurons, neither depolarization alone nor 

furosemide significantly affected EGABA (ECl), indicating that only relatively low levels of 

passive chloride channel pathways are expressed/active in early postnatal development. 

The absence of a furosemide effect in KCC2
-/-

 neurons not only confirms the absence of 

the cotransporter in these cells, but also confirms (under our recording conditions) the 

specificity of the furosemide effect on the cotransporter in wild-type neurons.  

    

Discussion 

In contrast to KCC2 knockout mice, which die at birth from respiratory failure (Hubner et 

al., 2001), genetically modified KCC2
-/-

 mice generated in our laboratory survive for 

about 2.5 weeks (Woo et al., 2002). In the brain of these mice, 2-5% KCC2 protein is still 

detected by Western blot analysis. This leakage is likely due to the targeting of exon 1 

and may explain the survival of the mice beyond birth. In their publication, Hubner and 

coworkers (Hubner et al., 2001) showed that EGABA in wild type E18.5 spinal cord motor  
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Figure 3-7. Depolarization greatly affects intracellular Cl
-
 in the absence of KCC2. 

 

 

(A-B) I-V traces recorded in wild-type and KCC2
-/-

 neurons using voltage ramps before 

depolarization (a), after depolarization (b), and in the presence of 1 mM furosemide (c). 

In A, the reversal potential shifts to more depolarized potentials only in the presence of 

furosemide, whereas in B, the reversal potential shifts to more depolarized potentials only 

during depolarization. (C) In a typical experiment, after stable EGABA recordings were 

established at Erest (a), the holding potential of the cell was stepped to a more depolarized 

potential (-30 mV). The absence of EGABA change (b) indicates that the intracellular Cl
-
 

concentration is not affected by depolarization in mature KCC2
+/+

 neuron. As expected, 

furosemide induces a shift in EGABA towards more positive potentials (c). (D) Recordings 

in several neurons at different ages. Each recording is from a single neuron and consists 

of three different EGABA values (see inset in C: EGABA before depolarization (a), during 

depolarization (b), and depolarization + 1mM furosemide (c)). (E) Typical experiment in 

mature KCC2
-/-

 neuron showing a marked effect of depolarization on EGABA and absence 

of furosemide effect. (F) Recordings in several KCC2
-/-

 neurons at different ages. 
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neurons is already hyperpolarized (−52 mV), whereas in KCC2
-/-

 neurons, it is more 

depolarized (-33 mV). Expression of KCC2 is already high in the spinal cord at late 

embryonic stage (Li et al., 2002; Stein et al., 2004). In our KCC2
-/-

 mouse model, 2-5% 

KCC2 expression may be enough to slightly shift the EGABA towards the shunting range 

of GABAA receptor activation, preventing the severe motor deficits that cause neonatal 

death in the full knockout mice. Of interest is the demonstration here that mature KCC2
-/-

 

cortical neurons have lost their ability to regulate [Cl
-
]i. 

Several studies conducted in a variety of GABA-responsive neurons have shown that, 

from late embryonic days to the second postnatal week, EGABA progressively shifts to 

more negative potentials (Ben-Ari et al., 1994; Fukuda et al., 1998; Kandler and Friauf, 

1995l; Owens et al., 1996; Wu et al., 1992). This shift is due to a gradual decrease in the 

neuronal intracellular Cl
-
 content (Fukuda et al., 1998; Owens et al., 1996). Since this 

decrease of intracellular Cl
-
 is against the inward driving force, Cl

-
 transport must require 

energy. The identification of a neuronal-specific K-Cl cotransporter (Payne et al., 1996) 

and the demonstration of its up-regulation during postnatal neuronal maturation (Clayton 

et al., 1998; Lu et al., 1999; Rivera et al., 1999), makes the cotransporter a good 

candidate for this developmental decrease in neuronal Cl
-
. Indeed, the tight coupling of 

Cl
-
 and K

+
 movements through K-Cl cotransport, allows for an uphill Cl

-
 transport using 

the large K
+
 gradient generated by the Na

+
/K

+
 pump. Two additional K-Cl cotransporters 

could potentially be expressed in cortical neurons. In total, there are four genes encoding 

K-Cl cotransporters. KCC1 is widely expressed throughout the brain (Payne et al., 1996) 
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where it fulfills housekeeping roles in volume maintenance and regulation. KCC3 

expression has been found in large cortical pyramidal cells (Pearson et al., 2001), 

whereas KCC4 is only expressed in cranial nerves (Karadsheh et al., 2003). Out of the 

four cotransporters, only KCC2 exhibits substantial basal transport activity (Payne, 1997; 

Song et al., 2002; Strange et al., 2000), the other transporters require swelling activation 

(Mercado et al., 2000b; Mount et al., 1999). In our experimental conditions there is no 

indication that an additional K-Cl cotransporter participates in Cl
-
 regulation in older 

neurons since this regulation is abolished in neurons lacking KCC2. 

In agreement with Ganguly et al. (Ganguly et al., 2001), I have shown that isolated 

neurons reproduce in culture the developmental up-regulation of KCC2 and the 

concomitant decrease in internal Cl
-
. An issue that remains unresolved concerns the 

nature of the mechanism underlying the high Cl
-
 concentration in young immature 

neurons. Although our data were consistent with many reports showing GABA 

depolarization in young neurons, I sought to exclude the possibility that the measured 

high Cl
-
 concentration in the young cultured cortical neurons resulted from a leak from 

the high Cl
-
-containing pipette. First, I measured identical GABA reversal potentials in 

DIC2 neurons when either low Cl
-
 (10 mM ) or high Cl

- 
(140 mM) was present in the 

patch pipette (Figure 3-2A). In addition, once the gramicidin perforation was large 

enough to allow current measurements, I showed that EGABA was very stable despite the 

high Cl
-
 in the pipette. A progressive leakage of Cl

-
 would have resulted in a progressive 

shift of EGABA towards more positive potentials. A Cl
-
 activity of 25 mM or more in 
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young neurons suggests the participation of an active inward Cl
-
 transport mechanism. 

Based on expression studies in CNS neurons, the laboratory proposed in the past that the 

Na-K-2Cl cotransporter might participate in Cl
-
 accumulation in immature neurons 

(Plotkin et al., 1997a; Plotkin et al., 1997b). However, out of four DIC1-DIC4 neurons 

recorded, only one responded to 10 M bumetanide (0.1 + 0.6 mV after 6 minutes in 

bumetanide, n = 4) .The lack of bumetanide effect is consistent with the absence of effect 

of decreasing the external K
+
 concentration (Figure 3-4C and (DeFazio et al., 2000)). 

These data suggest either that the NKCC1 cotransporter is not expressed or is not active 

in the young cultured cortical cells or that the Cl
-
 leak in these immature neurons is too 

small to expose the effect of NKCC1 inhibition. Because bumetanide can directly inhibit 

GABA receptors (Sung et al., 2000), I did not incubate the neurons in the inhibitor for 

extended periods of time. The potential participation of NKCC1 in Cl
-
 accumulation can 

be more directly examined in future studies using an NKCC1 knockout mouse model 

(Delpire et al., 1999). 

In this study, I provided evidence for a direct relationship between KCC2 and the 

developmental decrease in intracellular Cl, as neurons deficient in cotransporter 

expression fail to undergo this developmental decrease (Figure 3-2). The mechanisms 

underlying the postnatal up-regulation of KCC2 expression are still unknown. The 

laboratory recently demonstrated the presence of a neuronal-restrictive silencing element 

in proximity of exon 1 (Karadsheh and Delpire, 2001). Activation of KCC2 transcription 

concurs with the decreased expression of neuronal-specific silencing factor after birth 
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(Schoenherr and Anderson, 1995). Based on their findings that chronic blockade of 

GABAA receptors in hippocampal neuronal cultures abolished the KCC2 increase and 

shift of EGABA, Ganguly et al. also suggested that the GABA activity promotes the shift of 

the GABA response (Ganguly et al., 2001). However, results from two other groups 

argue against this effect of chronic GABAA inhibition on KCC2 expression levels 

(Ludwig et al., 2003; Titz et al., 2003).  

In older wild-type neurons (Figure 3-2), the internal Cl
-
 concentration is consistent 

with gradients set by a K-Cl cotransport mechanism: [K
+
]i x [Cl

-
]i = [K

+
]o x [Cl

-
]o. For 

known external concentrations of [K
+
]o at 5 mM, and [Cl

-
]o at 158 mM, and estimated 

[K
+
]i at 140 mM, the calculated [Cl

-
]i is 5.6 mM. The [Cl

-
]i estimated by measurements 

using gramicidin perforated patch clamp in DIC21 neurons is 7.3 + 0.2 mM (n=4). Thus, 

the agreement between calculated and recorded [Cl
-
]i indicate that KCC2 is the major 

mechanism setting [Cl
-
]i in older neurons. From these data and in agreement with Payne 

(Payne, 1997), I can also conclude that under physiological conditions, KCC2 is working 

close to its equilibrium. Also consistent with an obligatory coupled K
+
 and Cl

-
 transport, 

alteration of extracellular K
+
 has a significant impact on intracellular Cl

-
 levels. In 

experiments depicted in Figure 3-4 (C-D), I showed substantial reduction in Cl
-
 content 

in older neurons expressing KCC2 upon lowering external K
+
. In young immature 

neurons, a decrease in [K
+
]o showed no effect on [Cl

-
]i. In older homozygous KCC2

-/- 

neurons, the decrease in [K
+
]o induced a smaller but still significant reduction in [Cl

-
]i. 

Whether or not the [Cl
-
]i reduction is due to redistribution associated with a change in 
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membrane potential or to a K
+
 coupled mechanism remains to be determined. KCC2 was 

shown to be highly expressed in the vicinity of excitatory synapses (Gulyas et al., 2001). 

Thus, strong synaptic excitation or pathological conditions leading to increased 

extracellular K
+
 will likely result in a significant increase in [Cl

-
]i. Increased [K

+
]o and 

[Cl
-
]i should both lead to hyperexcitability. 

During neuronal inhibition, GABAA receptors are activated and Cl
-
 is driven into the 

cell down its electrochemical gradient. During frequent network synaptic activity, 

intracellular Cl
-
 accumulates due to prolonged GABAA receptor activation, and as a result, 

EGABA shifts to more positive potentials. During membrane depolarization, Cl
-
 ions can 

also accumulate through passive chloride conductances (Figure 3-5 and (Staley et al., 

1995). If repeated membrane depolarization is large enough, intracellular Cl
-
 could rise to 

values where GABA becomes depolarizing. In our experiment of Figure 3-5, long 

GABA application combined with depolarization tends to mimic this process. 

Co-application of GABA and glutamate can also induce similar result, indicating the 

possibility of such a Cl
-
 loading process in physiological conditions. NMDA receptor 

activation may provide the depolarization for such a Cl
-
 loading through GABAA 

receptors. GABAA receptor activation will no longer efficiently inhibit and might even 

lead to excitation if the accumulated Cl
-
 is not readily removed from the cell. Although 

other chloride regulating mechanisms such as ClC2 (Staley, 1994; Staley et al., 1996) 

(Whether the expression of ClC2 is altered in KCC2 knockout mice hasn’t been 

investigated) and passive chloride conductance will eventually lower the intracellular Cl
-
, 
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KCC2 is the major determinant mechanism for the rapid extrusion of excessive Cl
-
 

(Figure 3-4).     

In wild-type neurons expressing high amounts of KCC2, depolarization alone does 

not affect EGABA, whereas in KCC2
-/-

 neurons, a significant shift of EGABA is observed. 

These data demonstrate that KCC2 is able to regulate intracellular Cl
-
 during membrane 

depolarization and thus suggest a critical role for KCC2 in efficiently ―clamping‖ 

intracellular Cl
-
 during neuronal network activities. The activity of KCC2 greatly 

shortens the recovery time of the neuronal Cl
-
 from excited state to resting state. 

In summary, our study provides a comprehensive look at the role of KCC2 in Cl
-
 

regulation in isolated CNS neurons. By comparing neurons isolated from genetically 

modified mice deficient in KCC2 with wild-type neurons, I demonstrate that the 

cotransporter is critical in lowering intracellular Cl
-
 during postnatal development of 

cortical principal neurons, a process that occurs progressively during the first 10 days of 

postnatal life in the forebrain of rodents. I also show that KCC2 neurons lacking the 

cotransporter are unable to regulate and maintain their intracellular Cl
-
 during conditions 

in which the internal Cl
-
 is challenged. In contrast, control neurons use the cotransport of 

Cl
-
 and K

+
 to fight Cl

-
 changes completely independently of membrane potential effects 

(electroneutrality of cotransporter), during GABA inhibition and membrane 

depolarization. Importantly, I show the absence of a difference in Cl
-
 levels and in acute 

regulation of Cl
-
 between young neurons from wild-type and KCC2

-/- 
mice, but an 

increasing difference between the two genotypes during maturation of these neurons. The 
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inability of KCC2
-/-

 cortical primary neurons to regulate Cl
-
 may result in disinhibition 

and hyperexcitability in the cortical region, but because of the wide distribution of KCC2 

within the brain, disregulation of this cotransporter would likely result in defects 

involving most brain regions. For instance, disinhibition and hyperexcitability is likely to 

lead to the generation of seizures (Rivera et al., 2002; Woo et al., 2002). A role for KCC2 

in disinhibition and hyperexcitability has also been shown in the spinal cord in a model of 

chronic pain (Coull et al., 2003). 



 76 

CHAPTER IV 

 

ROLES OF THE CATION-CHLORIDE COTRANSPORTERS KCC2 AND 

NKCC1 IN PROMOTING/PREVENTING HYPEREXCITABILITY 

 IN THE HIPPOCAMPUS 

 

Introduction 

The hippocampus is an important CNS structure involved in temporal lobe epilepsy 

(Aronica and Gorter, 2007; Blumcke et al., 1999; French et al., 1993; Liu et al., 2007; 

Mathern et al., 1996). Inhibition provided by ionotropic GABAA receptors is essential in 

maintaining normal brain function and protecting against seizures. Indeed, the 

GABAergic tone, by hyperpolarizing postsynaptic membranes and increasing membrane 

conductance (shunting), dampens excessive glutamatergic excitation and prevents 

synchronization of neuronal networks into epileptiform activity. GABAA receptors 

mediate their effects through the opening of a Cl
-
 channel, allowing Cl

-
 to move into the 

cell driven by high external Cl
-
 and low internal Cl

-
, leading to plasma membrane 

hyperpolarization. The low neuronal Cl
-
 is maintained by a secondary active transport 

mechanism, the neuronal-specific K-Cl cotransporter, KCC2. This overall process 

matures concomitant with the development of glutamatergic excitation (Ben-Ari et al., 

1997b; Ben-Ari et al., 1994; Cherubini et al., 1991; Stein et al., 2004), which in rodents 

translates to the first two weeks of postnatal life. At birth, however, neuronal Cl
-
 is 

elevated, far above the extracellular concentration of the anion (LoTurco et al., 1995; 
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Luhmann and Prince, 1991; Owens et al., 1996). This implies that the absence of KCC2 

expression at birth, alone, cannot account for the high neuronal Cl
-
.  

  Accumulation of the anion in immature neurons is thought to be mediated by the 

inward Na-K-2Cl cotransporter NKCC1 (Fukuda et al., 1998; Plotkin et al., 1997b; Sipila 

et al., 2006; Yamada et al., 2004). Furthermore, expression of NKCC1 was found to be 

high in immature CNS neurons and down-regulated during postnatal development, 

opposite to that of KCC2 (Dzhala et al., 2005; Plotkin et al., 1997b; Wang et al., 2002). 

However, NKCC1 is not always involved in the accumulation of intracellular Cl
-
. Indeed, 

in the developing brainstem (Balakrishnan et al., 2003) and immature retinal neurons 

(Zhang et al., 2007), intracellular Cl
-
 is high in the absence of NKCC1 expression. In 

these neurons, the mechanism of Cl
-
 accumulation is unknown. Furthermore, there is 

evidence that NKCC1 may not be ubiquitously down-regulated in the developing 

hippocampus, but instead undergoes a change of localization from the soma of 

interneurons and pyramidal neurons to dendritic compartments (Marty et al., 2002), or 

from neuronal layers to glial formations (Hubner et al., 2001). These observations are 

significant since NKCC1-mediated elevation of Cl
-
 in GABAergic interneurons may 

reduce their inhibition by GABA, resulting in increased inhibitory output to pyramidal 

neurons and higher network activity. Furthermore, glial cells also play an important role 

in epileptic activity by regulating the K
+
 ion concentration in the extracellular space 

(D'Ambrosio, 2004; Lux et al., 1986) and glial NKCC1 may be important for clearance of 

extracellular K
+ 

(Chen and Sun, 2005). 
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   The formation of neuronal connections during brain development depends on a precise 

balance between inhibition and excitation, which is maintained throughout brain 

development and adulthood (Ben-Ari, 2002). As the rodent brain switches from GABA 

excitation to GABA inhibition during the first two week of postnatal life, this period 

constitutes a critical moment as excessive GABAergic excitation might lead to increased 

seizure susceptibility (Dzhala and Staley, 2003; Khazipov et al., 2004) while excessive 

GABAergic inhibition might prevent growth or synapse formation (Ben-Ari, 2002). A 

recent report showed that NKCC1 may facilitate seizures in the developing brain (Dzhala 

et al., 2005). However, as the seizure model used in that study utilized 8.5 mM external 

[K
+
], it is a concern for studying K

+
-dependent transport pathways (see discussion). In 

addition, in their experiments inhibition of NKCC1 by bumetanide shifted the EGABA of 

postnatal day 4 CA3 pyramidal neurons by -3 mV from -37 2.7 mV to -40.4 2.7 mV 

(Dzhala et al., 2005), a rather small change in the reversal potential.  

To further understand how inhibition or disruption of NKCC1 affects neuronal 

excitability and seizure susceptibility, in this study I make use of NKCC1 knockout 

mouse (Delpire et al., 1999; Woo et al., 2002) and a 4-aminopyridine (4-AP) seizure 

model in this study. To understand how 4-AP induced seizure-like activity affects the 

intracellular chloride concentration, I also combine two existing single cell patch clamp 

techniques, gramicidin perforated patch and cell-attached patch, into a new technique to 

continuously monitor the EGABA in CA3 pyramidal neurons. The experiments are done in 

P9-P13 neurons, when NKCC1 expression is still much higher than adult level (Dzhala et 
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al., 2005). As a continuation from previous study of KCC2 in cultured cortical neurons, I 

also compare the susceptibility of wild type and KCC2+/- hippocampus slices to 4-AP 

induced epileptic seizures. 

 

Results 

Hippocampal expression of KCC2 Protein increase during development 

Many studies have examined the spatial and temporal distribution of KCC2 mRNA 

transcript and protein during postnatal development (Clayton et al., 1998; Lu et al., 1999; 

Mikawa et al., 2002; Rivera et al., 1999; Shimizu-Okabe et al., 2002; Wang et al., 2002). 

There is a consensus that KCC2 expression in rodents is low at birth in the forebrain, and 

increases steadily during the first 2-3 weeks of postnatal life. To examine the level of 

KCC2 expression in the regions of hippocampus where our electrophysiological 

measurements are made, I acquired tissue samples from either CA1 or CA3 by making 

0.41 mm punches. Figure 4-1A shows that KCC2 protein in the CA1 region increased 

steadily. It was undetectable at postnatal day P1 and reached adult levels after P15 

(Figure 4-1B). In the CA3 sub-region, KCC2 expression was much lower than in the CA1 

during the first 2 postnatal weeks and then increased thereafter. Western blots were 

re-probed using anti-transferrin receptor to verify that punches were made in the neuronal 

layers. Unfortunately, due to the low abundance of NKCC1 and the small amount of 

tissue, the punches did not allow us to test for NKCC1 expression. 
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Figure 4-1. Postnatal expression pattern of KCC2 protein in the CA1 and CA3 

regions.  

 

(A) Example of 0.41 mm sample punches taken from CA1 and CA3 hippocampal regions 

in a 500 m whole brain slice from a P15 wild-type mouse. (B) Expression of KCC2 in 

CA1 hippocampus increases gradually from P1 to P17, but remains low in the CA3 until 

P17. P105 shows the level of KCC2 in the adult mouse. Anti-transferrin receptor antibody 

was used as control. 
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Hyperactivity and seizure susceptibility in KCC2
+/-

 slices 

To assess the role of KCC2 in the excitability of the hippocampus, I performed 

extracellular field recordings in brain slices isolated from wild-type and KCC2
+/-

 mice 

under control and 4-aminopyridine conditions. Extracellular recordings were obtained 

from the hippocampal CA1 subregion. In control aCSF, fewer spontaneous events were 

identified in wild type slices (Figure 4-2A) than in KCC2
+/-

 slices (Figure 4-2B) which 

express one half of the KCC2 protein content of wild-type animals (Woo et al., 2002). At 

age P19-P24, when KCC2 is maximally expressed in wild-type brain, expression of only 

one copy of KCC2 results in network hyperactivity (Figure 4-2C). Blocking 

voltage-gated potassium channels with 4-aminopyridine (4-AP) is a well-established 

model to increase the release of excitatory neurotransmitter and trigger epileptiform 

discharges and seizure-like events in hippocampal slices. As seen in Figure 4-3A2, 4-AP 

induced seizure-like events in the CA1 subregion of hippocampus in brain slices isolated 

from P24 KCC2
+/-

 mice. Each event was typically longer than 20 seconds and consisted of 

an interictal, tonic, and clonic phase (Figure 4-3A4). In contrast, 4-AP treatment induced 

interictal-like events in slices isolated from wild-type mice (Figure 4-3A1, A3), and in 

some slices induced ictal events lasting less than 5 seconds in duration. Figure 4-3B 

shows the power spectra for twenty minute consecutive recordings of CA1 hippocampus 

from wild-type and KCC2
+/-

 slices (traces taken from Figures 4-4A1 and 4-4A2). Power 

spectrum analysis showed that the power density in KCC2
+/-

 was greater than in wild-type, 

in the EEG frequency band (1-100HZ), as well as in the fast ripple frequency band  

http://professionals.epilepsy.com/page/pharmather_amino.html
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Figure 4-2. Recording of spontaneous spikes from wild type and KCC2
+/-

 slices in 

normal aCSF.  

 

 

Both the amplitude and frequency of extracellularly recorded spontaneous events are 

increased in slice from a KCC2
+/-

 mouse (A) (P18) compared to wild type mouse (B) 

(P19). No drugs are added to the perfusion during the recording. (C) Pooled data from 

both wild type and KCC2+/- slices. Number of spikes within 5 min are counted and 

analyzed by Clampfit 9.2. KCC2
+/-

 slices have a higher occurrence of spontaneous events 

(n = 5, 2 mice) than wild type slice (n = 5, 2 mice). 
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(200-400HZ). To quantify seizure susceptibility of KCC2
+/-

 brain slices and wild-type 

brain slices, the area under the power spectrum for frequencies ranging from 1-100HZ 

was measured for each recording, and averaged from seven 1-min windows for each trace, 

10 min after the application of 4-AP (Figure 4-3C). The power obtained from KCC2
+/-

 

CA1 hippocampal recordings (4.6 ± 1.4) x 10
-3

 mV
2
, n = 6 from 5 mice, P19-P25) was 

significantly greater than the power obtained from wild-type CA1 hippocampal recordings: 

(6.9 ± 2.4) x 10
-4

 mV
2
, n = 5 from 4 mice, P18-P24, P = 0.038). These results indicate that 

a reduction in KCC2 expression increases the susceptibility of the hippocampus to 

seizure-inducing agents such as 4-AP.  

 

Increased spontaneous activity in CA3 pyramidal neurons of NKCC1
-/-

 slices 

In contrast to the expression of KCC2 which is highest in mature CNS neurons (Lu et 

al., 1999; Mikawa et al., 2002; Rivera et al., 1999; Wang et al., 2002), the expression of 

NKCC1 is highest in immature CNS neurons (Kanaka et al., 2001; Li et al., 2002; 

Mikawa et al., 2002; Plotkin et al., 1997b; Wang et al., 2002). Whereas KCC2 functions 

to decrease intracellular Cl
-
 and thus promote GABAergic inhibition, NKCC1 might 

function to accumulate intracellular Cl
-
 and promote excitatory effects of GABA. To 

assess the role of NKCC1 in regulating intracellular Cl
-
, I first attempted to use the 

gramicidin-perforated patch method in brain slices to determine the GABA reversal 

potential without disrupting the chloride gradient. Because of the positive pressure applied 

to the pipette while advancing into the slice and the relatively high concentration of  
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Figure 4-3. Extracellular field recording shows 4-AP induces more seizure-like activities in 

CA1 region of hippocampal slices from KCC2
+/-

 mice.  

 

 

(A) 4-AP induces seizure-like events in KCC2+/- brain slice (P24, A2), but much less 

activities in its wild type counterpart (P24, A1). The boxed region is expanded in A3 and 

A4 for wild type and KCC2
+/-

, respectively. Each seizure-like event in the KCC2
+/-

 slices 

consists of a tonic phase (filled diamond) and clonic phase (filled oval). (B) Power 

spectra from the two traces of (A) in consecutive 20 minutes time windows (window 

starts at 10 minutes after 4-AP application). EEG (1-100 HZ) and fast ripple (200-400 HZ) 

frequency range are shown. (C) Average power of extracellular field activity (1-100 HZ 

band) in 1 minute windows of seizure-like events region 10 minutes after 4-AP 

application Wild-type: 5 slices from 4 mice P18-24; KCC2
+/-

: 6 slices from 5 mice 

P19-25. 
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gramicidin contained in the pipette, gramicidin often disrupted the G seal. Furthermore, 

by leaking into the slice, the ionophore also produced depolarization of surrounding 

neurons. Thus, instead of using the gramicidin-perforated patch method, I modified the 

conventional cell-attached patch recording method (Mason et al., 2005; Perkins, 2006) by 

adding a low concentration of gramicidin in the pipette. In the cell-attached patch mode, 

the recorded voltage (V) and the membrane potential (Em) have the relationship shown in 

Figure A-5A (See Appendix A). As Rseal is usually greater than 2 G, and Rm (with the 

exception of young neurons) is by and large uniform and low, the value of Rpatch typically 

determines the accuracy of the membrane potential measurement. When Rpatch is large, V 

approaches 0, whereas when Rpatch is small, V approximates Em. Thus, by adding very 

low concentrations of gramicidin in the pipette solution (less than 5 g/ml), Rpatch can be 

minimized and V becomes a good measure of Em at reasonable seal resistances. As 

mentioned above, due to the high resistance (Rm) of young pyramidal neuron membranes 

(Tyzio et al., 2003), this technique has its limitations. However, when the GABA agonist 

muscimol (20 M) is applied to the cell and the low membrane conductance (high Rm) is 

shunted by the high GABA conductance; the peak of the muscimol response V becomes 

again a good measurement of EGABA (Figure A-5A, equation 3). The EGABA measurement 

becomes more accurate with increased GABAA conductance. Using this technique, I 

studied the spontaneous membrane activity of CA3 principal neurons. As seen in Figure 

A-5B, the membrane potential can be followed accurately as the action potential threshold 

was measured at – 56.6 ± 1.6 mV (n = 40 spikes from 4 CA3 pyramidal neurons).  
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  Because NKCC1
-/-

 mice are viable and do not show any behavioral signs of seizure 

activity, I examined the spontaneous activity in brain slices prepared from wild-type, 

NKCC1
+/-

 and NKCC1
-/-

 mice. Under control perfusion conditions, I found that CA3 

pyramidal neurons from P10 NKCC1
-/-

 mice exhibited much higher action potential firing 

rates than the same neurons from P10 wild-type mice (Figure 4-4A). I then quantified the 

number of action potentials (AP) over a 5 min period. As shown in Figure 4-4B, there 

were 706 ± 210 APs per five minutes in CA3 pyramidal neurons from NKCC1
-/-

 mice (n 

= 7 from four P10-P13 mice), in comparison to 20 ± 9 AP spikes in neurons from 

wild-type mice (n = 8 from five P9-P13 mice, P = 0.0022). In addition, I tested whether  

bumetanide (10 M), a potent inhibitor of NKCC1, would alter excitability in wild type 

slices similar to NKCC1
-/-

 slices. Five-minute time windows were taken from the 

recorded trace before or after perfusion of bumetanide (at least 15 minutes after the start 

of bumetanide).   As seen in Figure 4-4C, the number of APs recorded from CA3 

pyramidal neurons after bumetanide treatment (237 + 87, n = 9 from 8 mice) was 

significantly larger than the number of AP spikes measured using control aCSF (54 ± 25, 

n = 9 from 8 mice, P = 0.027). Together, these results indicate that NKCC1 likely 

facilitates a tonic inhibition for the CA3 pyramidal neurons, and in the absence of 

NKCC1, their spontaneous firing rate increases. 
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Figure 4-4. Recordings of spontaneous action potential spikes from CA3 pyramidal 

neurons of wild-type and NKCC1
-/-

 slices in normal aCSF.  

 

 

The number of action potential spikes is much higher than in NKCC1
-/-

 slices (A) than 

wild type slices. (B) The number of action potential spikes within 5 minutes of recording 

from NKCC1
-/-

 slices (n = 7, 4 mice) is significantly larger than NKCC1+/- (n = 3, 2 

mice) and wild type (n = 8, 5 mice). (C) In the presence of the loop diuretic bumetanide 

(10 M), the number of action potential spikes within a 5 minute recording was 

significantly increased in wild type slices (n = 9, 8 mice).   
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Positive shift of the Cl
-
 driving force in CA3 pyramidal neurons of both NKCC1

-/-
 

and wild-type slices 

As the driving force of chloride determines the polarity of an evoked GABA response, 

the response of neurons to muscimol, a potent and selective agonist of ionotropic GABAA 

receptors but not metabotropic GABAB receptors, provides an estimation of the neuronal 

Cl
-
 concentration. While the majority of excitatory glutamatergic synapses are located on 

the dendrites of the pyramidal neurons of the hippocampus, a great portion of inhibitory 

GABAergic synapses are formed on the proximal dendrites or the cell soma. In the 

following experiments, I applied short puffs (6-8 ms) of muscimol (20 M) onto the cell 

soma to mimic synaptic release of GABA. When P10-old wild-type CA3 pyramidal 

neurons were current-clamped at 0 current, muscimol puffs evoked a slight 

hyperpolarization of the membrane potential from -54.5 mV to -59.5 mV (Figure 4-5A1), 

indicating that the driving force for chloride was inward. Differences between neurons in 

the muscimol peak response were due to variations in resting membrane potentials 

(Figure 4-5B), and all driving force values (Vdelta) measured with muscimol application 

were under 10 mV (Figure 4-5C). Interestingly, there was little difference in the chloride 

driving force between NKCC1
-/-

 neurons (-1.8 ± 2.6 mV, n = 3) and wild-type neurons 

(0.1 ± 2.8 mV, n = 3). Upon addition of 4-AP to the perfusing solution, the same 

application of muscimol induced a depolarization of the Vpeak (-63.8 mV to -51.0 mV) 

along with increased activity and interictal-like events in the slice (Figure 4-5A2). 

Hyperpolarization of the resting membrane potential is known to be an effect of 4-AP and 

was similar between NKCC1
-/-

 and WT (NKCC1
-/-

, -65.83 + 4.7 mV, -77.72 + 3.5 mV, 
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-75.76 + 3.4 mV, -80.61 + 4.7 mV at 0, 5, 10, 15 minutes after 4-AP application 

respectively; WT, -68.36 + 1.6 mV, -74.95 + 4.5 mV, -75.69 + 4.3 mV, -75.99 + 2.2 mV 

at 0, 5, 10, 15 minutes after 4-AP application respectively, P = 0.700, 1.000, 1.000, 0.700, 

respectively). This spontaneous hyperpolarization of the membrane is due to increased 

GABAB receptor-mediated activation of membrane conductance to K
+
 (Avoli et al., 1994; 

Jarolimek et al., 1994). Under 4-AP application, the driving force of chloride rapidly 

reversed its direction and GABA became excitatory. Again, there was no measurable 

difference in the chloride driving force between P10-P13 NKCC1
-/-

 neurons (16.2 ± 8.1 

mV, 22.7 ± 7.5 mV, and 26.4 ± 5 mV at 5, 10, 15 min respectively, n = 3), and P11-P13 

wild-type neurons (14.6 ± 7.6 mV, 16.8 ± 6.8 mV, and 20.0 ± 4.6 mV at 5, 10, 15 min 

respectively, n = 3) after 4-AP treatment (Figure 4-5C). Both the change in ECl and the 

hyperpolarization of the resting membrane potential contribute to the change of the 

driving force after 4-AP application (Figure 4-5B). Of interest is the fact that the 4-AP 

induced change in ECl was rapidly eliminated upon addition of 20 M DNQX, a potent 

antagonist of non-NMDA glutamatergic receptors (Figure 4-5A3). These results indicate 

that although NKCC1 accumulates chloride in neurons, the cotransporter had little effect 

on the chloride driving force in CA3 pyramidal neurons from P10-P13 mice in the 

presence of increased network activity.  
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Figure 4-5. GABA response becomes more depolarized in brain slices treated with 

4-AP, and this shift in GABA response is inhibited by suppressing the seizure-like 

events with DNQX.  

 

 

(A), In a CA3 pyramidal neuron from P10 mouse, brief (8ms) GABA application 

depolarizes the membrane from -63.8mV to -51.0 mV 10 minutes in aCSF with 50M 

4-AP (A2), in comparison to the slight hyperpolarization from -54.5mV to -59.5mV 

induced by same GABA application in normal aCSF (A1). This shift of GABA response 

is abolished 4 minutes after perfusing the slice with aCSF contains 50M 4-AP and 20 

M DNQX (A3). Arrow indicates the time of the GABA application. (B) The absolute 

peak of GABA responses (Vpeak) every 5 minutes are plotted against time from the 

perfusion of aCSF containing 4-AP. The peak of GABA responses shifts to more 

depolarized potentials in the presence of 4-AP in both NKCC1-/- (red symbols and lines, 

n = 3 from 3 mice) and wild type slices (dark symbols and lines, n = 3 from 3 mice). (C) 

The amount of depolarization (or hyperpolarization) (Vdelta) induced by GABA also 

increase in the presence of 4-AP for both NKCC1-/- and wild type slices.   

4-AP Control  

4-AP + DNQX 
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NKCC1
-/-

 slices showed more susceptibility to 4-AP induced epileptiform activity 

Since CA3 neurons of brain slices from NKCC1
-/-

 mice demonstrate hyperexcitability 

when compared to wild-type CA3 neurons, I tested the effect of 50 M 4-AP in the two 

genotypes (Figure 4-6). Cell-attached recordings (upper traces of Panels 4-6A and 4-6B) 

and extracellular field recordings (lower traces of Figure 4-6A and 4-6B) were carried 

out simultaneously in the CA3 region of the hippocampus. Shortly after the application of 

4-AP, ictal-like epileptiform activities arose in NKCC1
-/-

 slices (Figure 4-6B), whereas 

only interictal-like activities appeared in wild-type slices (Figure 4-6A). The ictal-like 

and interictal-like events were synchronized between cell-attached recordings and field 

recordings (Figure 4-6 A and B). Therefore what was recorded in the cell-attached mode 

is not only the activation of a single CA3 neuron, but a reflection of the synchronized 

network activity. The ictal-like epileptic events seen in NKCC1
-/-

 slices consist of a tonic 

and a clonic phase. I quantified the number of seizure-like events during the first 15 min 

after addition of 4-AP to the perfusing solution (Figure 4-6C). In P10-P13 NKCC1
-/-

 

slices, we recorded 7.2 ± 1.8 seizure-like epileptic events (n = 6, from 3 mice). This 

number is significantly greater than the number of ictal events recorded in wild-type 

slices (0.4 ± 0.2, n = 8 from 4 mice). Of interest, the number of seizure-like events in 

P11-P12 NKCC1
+/-

 mice was closer to wild-type slices: 1.5 ± 0.9 (n = 4 from 2 mice). As 

a summary of these results, targeted deletion of NKCC1 lowers the seizure threshold and 

facilitates the development of seizure activity at age P9-P13.   
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Figure 4-6. 4-AP induces more ictal events in NKCC
-/-

 slices than in wild type slices. 

 

 

(A) 4-AP application increases the level of spontaneous activities in both wild type and 

NKCC1
-/- 

slices (B), but ictal events (20-40 seconds duration) are more often seen in 

NKCC1
-/-

 slices. Cell-attached recording from CA3 pyramidal neurons (upper traces) and 

field recordings from CA1 stratum pyramidale (lower traces) show that the ictal events 

are synchronized (B). (C) The number of ictal events (duration > 20 seconds) of NKCC
-/-

 

slices (7.2 + 1.8, n = 6 from 3 mice, P10-P13) are significantly greater than that of wild 

type slices (0.4 + 0.2, n =8 from 4 mice, P10-P13). The number of ictal events seen in 

NKCC1
+/-

 slices is 1.5 + 0.9 (n = 4 from 2 mice, P11-P12). 

WT 

NKCC1
-/-
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Discussion 

Recent studies have uncovered multiple roles for the Na-K-2Cl cotransporter, NKCC1, in 

volume and ion homeostasis in the brain, and in diverse pathologies of the CNS. For 

instance, the endothelial NKCC1 is involved in the increased salt and fluid movement into 

the brain that is associated with ischemic brain injury (Chen and Sun, 2005; Pedersen et 

al., 2006). Furthermore, the cotransporter is also involved in glial cell swelling and 

glutamate release, leading to neuronal excitotoxicity (Chen and Sun, 2005; Su et al., 

2002a; Su et al., 2002b). The role of NKCC1 in central neurons is still controversial. 

Based on an overall decrease in NKCC1 expression during postnatal development, 

measured by Western blot analysis and immunofluorescence, our lab proposed in 1997 

that NKCC1 might accumulate intracellular Cl
-
 above the concentration predicted by its 

electrochemical equilibrium potential (Plotkin et al., 1997b). Indeed, NKCC1 is a 

well-established mechanism of Cl
-
 accumulation in sensory DRG neurons 

(Alvarez-Leefmans et al., 1988; Sung et al., 2000). Accumulation of Cl
-
 through the 

cotransporter is possible due to the large Na
+
 gradient generated by the Na

+
/K

+
 pump. The 

combination of down-regulation of NKCC1 expression and up-regulation of KCC2 

expression would account for the Cl
-
 decrease from values above electrochemical 

potential equilibrium to values below. In fact, in P2-P4 cortical and hippocampal neurons, 

NKCC1 accumulates Cl
-
, as bumetanide application results in >10 mV hyperpolarizing 

shift in the GABA reversal potential (Sipila et al., 2006; Yamada et al., 2004). However, 

recent studies in auditory brainstem neurons (Balakrishnan et al., 2003) and retinal 
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neurons (Zhang et al., 2007) have demonstrated that NKCC1 is not involved in the Cl
- 

accumulation, as high Cl
-
 concentrations were still measured in the absence of NKCC1. 

Whether or not the cotransporter accumulates Cl
-
 in some central neurons but not in others 

is still a matter of debate. 

   At P9-P13, when NKCC1 expression is still relatively high (Dzhala et al., 2005), and 

KCC2 expression has not yet increased (Figure 4-1B), I showed that the pyramidal CA3 

neuron ECl is close to Em (Figure 4-5C), indicating that at this age NKCC1 is not active 

in Cl
-
 accumulation.  

   Despite the fact that NKCC1 is not active in accumulating Cl
- 
at P9-P13, I showed that 

absence of NKCC1 resulted in significant hyperexcitability, as the number of action 

potentials measured per unit of time increased significantly (Figure 4-4B). Because I was 

examining the brain of a knockout animal which might have developmental abnormalities, 

I treated wild-type slices with bumetanide, an inhibitor of the cotransporter with a Ki 

ranging from 0.5-2 M. Complete inhibition of cotransporter function by 10 M 

bumetanide also induced a significant increase in the number of action potentials 

measured per unit of time (Figure 4-4C), indicating that the increased hyperexcitability 

observed in the knockout resulted directly from the absence of the cotransporter rather 

than from developmental abnormalities.  

   The increased spontaneous electrical activity of pyramidal CA3 neurons in NKCC1
-/-

 

slices therefore suggests a different role for the Na-K-2Cl cotransporter. One possible role 

is the regulation of external K
+
 concentration by glial NKCC1 during neuronal activity. 
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As cells are tightly packed in vivo and in brain slices, the K
+
 concentration in the 

extracellular space can increase rapidly during neuronal activity (Avoli et al., 1993; 

Louvel et al., 1994; Nicholson and Hounsgaard, 1983; Roberts and Feng, 1996). Several 

studies performed in isolated astrocytes have demonstrated involvement of NKCC1 in the 

clearance of K
+
 (Hertz, 1978; Su et al., 2002a; Su et al., 2002b; Tas et al., 1987; Walz and 

Hertz, 1984). Thus, the absence of the cotransporter in glial cells would reduce the rate of 

clearance of K
+
 during synaptic activity, resulting in the accumulation of the cation in the 

extracellular space and hyperexcitability. Alternatively, differential expression of NKCC1 

in inhibitory neurons could regulate their excitability, and, if so, its reduction in the 

knockout mouse or with bumetanide would result in hyperexcitability by decreasing 

inhibitory tone. 

   In this study, I also made use of 4-aminopyridine as a seizure-inducing agent. I 

showed that addition of 50 M 4-AP induced hyperexcitability in both wild-type and 

NKCC1
-/-

 slices (Figure 4-5A2 and Figure 4-6). Consistent with the hyperexcitability 

demonstrated in CA3 pyramidal cells from NKCC1
-/-

 mice or from wild-type mice in the 

presence of bumetanide, 4-AP induced seizure-like activity in CA3 pyramidal neurons. 

These seizure activities, synchronous between CA3 and CA1, were rarely seen in 

wild-type slices under 4-AP treatment. These data confirm that NKCC1 in P9-P13 

wild-type brains actively participate in preventing hyperexcitability and the development 

of uncontrolled, synchronous seizure-like activity. Thus, our data are contrary to those of 

Dzhala and coworkers who suggested that NKCC1 expression instead facilitates the 
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development of seizures in the juvenile brain (Dzhala et al., 2005). However, they used 

high extracellular K
+ 

(8.5 mM) to induce seizure activity. This high external K
+
 

concentration alters the function of NKCC1 by increasing the inward driving force for 

chloride ions. High K
+
 also alters the function of KCC2, even though its expression level 

is relatively low in the developing brain (DeFazio et al., 2000; Rivera et al., 1999). High 

external K
+
 also leads to the accumulation of ions and water in glial cells, and to the 

release of excitotoxic glutamate (Chen and Sun, 2005). Prevention of this effect in the 

NKCC1 knockout mouse or by applying the NKCC1 inhibitor, bumetanide, might have 

contributed to the conclusion that NKCC1 promotes hyperexcitability in the juvenile brain 

(Dzhala et al., 2005). 

   At the age when KCC2 expression in the forebrain is much lower than its expression 

level in the adult CNS, the intracellular chloride level of principal neurons was 

dramatically affected by the level of neuronal activity in the hippocampus. Indeed, in 

both NKCC1
-/-

 and wild-type neurons, when hyperactivity and frequent membrane 

depolarization were induced by 4-aminopyridine, the muscimol response shifted from 

slightly inward to strongly outward, indicating a rise in the intracellular chloride 

concentration. This increase in intracellular chloride is likely caused by the chloride 

influx through the extra-synaptic tonic GABA receptor channels or synaptic GABA 

receptor channels, or both, during the frequent depolarization of membrane potential. 

These data indicate the lack of a mechanism for rapid Cl
-
 regulation. These data are also 

consistent with previous findings in isolated cortical neurons (See Chapter III) or auditory 
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brain stem neurons (Ehrlich et al., 1999), that showed that young neurons are unable to 

handle large shifts in the intracellular Cl
-
 concentration. The change in the driving force 

measured under 4-AP (more than 20 mV) is large enough to produce depolarizing GABA 

responses. Furthermore, the hyperpolarization of resting membrane potential (a side 

effect of 4-AP) also contributes to increased Cl
-
 driving force (Avoli and Perreault, 1987; 

Avoli et al., 1993). The increase in intracellular chloride was fully activity dependent as it 

could be reversed by blocking non-NMDA glutamate receptors with the antagonist 

DNQX (Figure 4-5A3).  

   In this study, I have also seen increased frequency of seizure-like activities in CA1 

KCC2
+/-

 slices in comparison to wild-type slices in the presence of 4-AP, thus confirming 

the increased susceptibility to seizure in KCC2
+/-

 mice that was previously reported by us 

(Woo et al., 2002). Given the importance of the hippocampus in epileptic seizures, and 

together with the lack of specific inhibitors of KCC2 and the lethality of the KCC2 

knockout mouse, the KCC2
+/-

 mouse also provides an excellent model for further studies 

of seizure development. In summary, I have shown that both NKCC1 and KCC2 

participate in important neuronal function as mechanisms preventing the development of 

hippocampal epileptiform activity. 
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                             CHAPTER IV 

 

FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

Final Conclusions 

The goal of my project was to understand how the cation-chloride cotransporters KCC2 

and NKCC1 regulate neuronal [Cl
-
]i and excitability of the hippocampus network. I have 

addressed the role of KCC2 in active neuronal [Cl
-
]i regulation using cultured cortical 

neurons and its role in reducing neuronal excitability and seizure susceptibility, using 

brain slices. I have also revealed that, contrary to previous belief, pharmacological 

inhibition or genetic deletion of NKCC1 increases neuronal activity and susceptibility to 

seizures in the developing (P9-P13) hippocampus. The exact mechanism by which 

NKCC1 is involved in reducing hyperexcitability in the hippocampus remains to be 

further investigated.  

This work provided the first direct and thorough evidence that the developmental increase 

in the expression of KCC2 causes the developmental decrease of intracellular Cl
-
.  

Indeed, while several studies indicated that KCC2 lowers intracellular [Cl
-
], these studies 

used an nonspecific inhibitor (furosemide), recorded GABA responses using the 

whole-cell patch configuration, which disrupts the intracellular [Cl
-
] (DeFazio et al., 

2000), or were not performed in a developmental context (Hubner et al., 2001; Rivera et 

al., 1999). Here, I showed that the developmental down-regulation of chloride was a 
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direct consequence of KCC2 activity, as it was abolished in KCC2
-/-

 neurons. In these 

experiments, I used the gramicidin-perforated patch configuration which is non-invasive 

to measure the intracellular chloride concentration. 

   Second, I showed that KCC2 actively counteracts challenges to the intracellular Cl
-
 

concentration and decreases seizure susceptibility. These data provide evidence that acute 

challenges to intracellular chloride can be rapidly neutralized by the activity of KCC2. 

Indeed, influx of excessive amounts of chloride due to prolonged (or repetitive) GABAA 

receptor activation, or due to depolarization (possibly through passive Cl
-
 channels 

(Kakazu et al., 1999)), or due to co-activation of GABA and NMDA receptors renders 

GABA excitatory, which is detrimental to the normal function of CNS. In support of the 

role of KCC2 in regulating intracellular Cl
-
 and GABA function, I also showed that brain 

slices from KCC2
+/-

 mice, which express half the normal level of KCC2 protein, 

exhibited increased seizure susceptibility.  

Taken together, my work not only confirms previous findings that KCC2 is responsible 

for the long-term developmental decrease of intracellular [Cl
-
] and the developmental 

switch in the GABA response from depolarizing to hyperpolarizing, but also revealed 

that KCC2 is active in acutely regulating neuronal Cl
- 
during challenges and is active in 

maintaining the stability of neuronal networks.   

   Finally, I discovered that NKCC1 prevents epileptic seizures in the developing  

brain, in contrast to a previous report indicating that NKCC1 might facilitate neonatal 

seizures (Dzhala et al., 2005). I showed that at the age of P9-P13, EGABA is already very 
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close to the resting membrane potential and NKCC1 inhibition or deletion results in 

increased seizure susceptibility. My experiments also demonstrated that NKCC1 does not 

significantly raise the intracellular Cl
-
 concentration in pyramidal CA3 neurons, thus 

providing an alternative model for the role of NKCC1 in the central nervous system.   

This demonstration provides new avenues of investigation. Unlike KCC2, the expression 

of NKCC1 is not confined to the pyramidal neurons, but this cotransporter is also 

expressed in epithelial cells, glial cells and interneurons (see Chapter I). Future research 

on NKCC1 should not be limited to the pyramidal neurons but should investigate other 

cell types expressing NKCC1.  

 

Future Directions 

 

The regulation of KCC2 in the CNS  

 

As it is now well-established that KCC2 is responsible for the developmental decrease of 

intracellular chloride concentration and extrusion of excessive Cl
-
 during challenges, 

future studies should focus on the regulation of the cotransporter in the CNS. The 

expression of KCC2 protein in the brain is downregulated by ischemia, oxidative stress, 

epileptic seizures, growth factors (BDNF) and testosterone (See chapter I). It has been 

suggested that downregulation of KCC2 might be a general response to different neuronal 

insults (Rivera et al., 2004). In the case of epilepsy, downregulation of KCC2 would 

possible worsen seizures and cause greater damage to the brain. Future studies should 
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focus on the mechanisms of KCC2 downregulation, including the signaling pathways 

involved in triggering KCC2 removal from the plasma membrane. These studies might 

provide clues to the discovery and development of novel antiepileptic drugs.  

 

 

The role of NKCC1 in the CNS 

I have found in P9-P13 mice, that NKCC1 deletion results in increased seizure 

susceptibility. However, the specific mechanism of the function of NKCC1 in the CNS is 

not clear. Future experiments can be designed to answer the following questions. 

   Upon network activity, is the extracellular [K
+
] accumulating in NKCC1

-/-
 slices or in 

wild-type slices exposed to bumetanide, to a greater extent than wild-type slices 

incubated under control conditions? As NKCC1 is expressed in glial cells (see Chapter I), 

it might serve as a K
+
 clearance mechanism. Its inhibition or targeted deletion would then 

result in K
+
 accumulation in the extracellular space. This increase, in turn would 

depolarize the neurons and increase neuronal network activity. Two types of experiments 

can be done to address this question. First, the membrane potential of glial cells could be 

recorded in the presence of absence of NKCC1. As the membrane potential is a direct 

reflection of the extracellular K
+
 concentration, if the extracellular K

+
 increases, the glial 

cells will be more depolarized. Second, a direct measurement of the extracellular K
+
 

concentration could be made by using potassium-selective micro-electrodes. Recoding 

could be done under control conditions, or conditions of high network activity (with or 

without the presence of seizure-inducing agents). 
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   Does the chloride concentration in interneurons play a role in pyramidal neuron 

excitability? The GABA response in CA3 hippocampal interneurons has been reported to 

be shunting throughout life due to the counter balance between KCC2 and NKCC1 

(Banke and McBain, 2006). To address this question, we could measure the spontaneous 

IPSP frequency in the pyramidal neuron while changing the intracellular [Cl
-
]i in the 

interneuron. First, the ECl and frequency of action potential firing of hippocampal 

interneurons could be measured using either gramicidin perforated patch-clamp or 

cell-attached recordings, at different ages in wild-type and NKCC1 knockout slices. 

Second, we could obtain simultaneous recordings in a CA3 pyramidal neuron and its 

innervating interneuron with whole-cell patch clamp. The [Cl
-
] of the pipette solution of 

interneuron recording would be varied from 10 mM to 30 mM, which mimics 

physiological range of intracellular [Cl
-
] during development. Third, simultaneous 

recordings in a CA3 pyramidal neuron with whole-cell patch clamp and its innervating 

interneuron could be perfomed using gramicidin cell-attached patch-clamp. Focal 

diffusion of bumetanide around the interneuron would also increase [Cl
-
]i and disinhibit 

the innervated pyramidal neuron. Spontaneous IPSPs would be analyzed and compared 

within each experiment. The IPSP frequency should decreases in the pyramidal neuron, if 

the intracellular chloride concentration is reduced in the interneuron. Lucifer yellow 

would be included in the patch pipette to confirm the identity of the neurons by 

morphology at the end of each experiment (i.e. after whole-cell break-in in the perforated 

recording).   
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   Would the seizure susceptibility be affected by deletion of NKCC1 in interneurons or 

in glia? Once the experiments outlined above are completed, interneuron-specific 

NKCC1 knockout animals could be generated by driving recombination using 

interneuron-specific protmoters such as GAD, parvalbumin, calretinin, or calbindin. 

Similarily, glial-specific NKCC1 knockout could be generated by driving CRE-mediated 

recombination under the glial acidic fibrillary protein (GFAP) promoter. The seizure 

susceptibility of these animals would then be evaluated using different seizure inducing 

agents in vivo (behavioral or EEG) and in vitro (brain slices recordings). 

 

Summary 

In this project, I have provided evidence for a direct link between KCC2 

expression/activity and GABA inhibition. I confirmed the important role of KCC2 in 

stabilizing hippocampal neuronal networks. I also found that, in vitro, NKCC1 inhibits 

seizure activity in young animals, although the exact mechanism by which NKCC1 

prevents hyperexcitability remains to be further investigated.  
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APPENDIX B 

 

GRAMICIDIN PERFORATED PATCH TECHNIQUE IN CULTURED 

NEURONS AND BRAIN SLICES 

 

 

Introduction 

The patch clamp technique has revolutionized the world of neuroscience. It has been 

almost 30 years since the patch clamp technique was developed by Neher and Sakmann 

(Neher and Sakmann, 1992). During the past three decades, many improvements have 

been made to the basic method and today patch clamping cells plays the central role in 

electrophysiological studies and membrane biology. There are four major variants of the 

conventional patch clamp technique: whole cell mode, inside-out patch, outside-out patch, 

and cell attached mode. Whole cell recording is widely used because it is fairly easy to 

use and the macroscopic currents that are recorded are easy to analyze. But the whole cell 

recording technique has its problems. The dialysis of the recorded cell by the pipette 

solution washes out various active cytoplasmic components and thus compromises 

important functions such as phosphorylation-dephosphorytion, second messenger 

signaling, etc. Very importantly, it also artificially changes the intracellular ionic 

environment. A new method was introduced by the invention of the nystatin perforated 

patch technique (Horn and Marty, 1988) that solves most of the problems caused by the 

whole cell patch configuration. Today, there are several perforated patch methods that 
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evolved from the original nystatin perforated patch. There are three major perforated 

patch techniques which use nystatin, amphotericin B, and gramicidin as ionophores. 

Despite the different names of the drugs, they are all ionophores that create pores in 

the plasma membrane allowing movement of small ions such as Na
+
, H

+
, K

+
, and Cl

- 

(except gramicidin). These ions can flow through the pores in the membrane and thus 

provide electrical access from the recording pipette to the inside of cell. Multivalent ions 

such as Mg
2+

, Ca
2+

, and large molecules cannot pass through these pores. Consequently, 

whole cell currents can be recorded using these perforated patch techniques, with a 

minimal disturbance to the intracellular content. This technique has been widely used in 

studying voltage gated ion channels (Akbarali and Giles, 1993; Watsky et al., 1992), 

membrane transport such as Na-K pump (Oike et al., 1993; Urbach et al., 1996), 

cation-chloride cotransport (Ehrlich et al., 1999; Nabekura et al., 2002), and ligand gated 

channels (Meredith et al., 2003; Yoshimura and Tsumoto, 1994). Among the three 

ionophores, gramicidin has gained a lot of interest in recent years because of its unique 

features.  

Gramicidin was first found from the soil bacterium Bacillus brevis and used as an 

antibiotic (Okuda et al., 1963; Winnick et al., 1961). Gramicidin A, B and C are small 

pore forming tryptophan-rich linear peptides, which share the common structure: 

Formyl-L-XXX-Gly-L-Ala-D-Leu-L-Ala-D-VaI-Val-L-Trp-D-Leu-L-YYY-D-Leu-L-Trp

-D-Leu-L-Trp-Ethanolamine, where XXX denotes Val or Ile, and YYY denotes Trp, Phe 

and Tyr in gramicidin A, B, C, respectively (Andersen, 1984). Each gramicidin channel is 



 106 

formed by the dimerization of two non-conducting subunits, which are bound to the lipid 

bilayer membrane through hydrogen bonds (Andersen et al., 2005; Wallace, 1990). 

Gramicidin channels are among the most extensively studied and well defined ion 

channels. They have restricted selectivity towards different ion species. While water and 

small monovalent cations such as H
+
 and Na

+
 can permeate with ease, anions (Cl

-
, etc.) 

and divalent cations (Ca
++

, etc.) cannot move easily (Sandblom et al., 1977). Due to this 

fact, gramicidin not only provides a great tool for the study of membrane bound ion 

channels, but also can serve as a solution for particular electrophysiological paradigms 

when it is important to preserve intracellular chloride intact.   

Cl
-
 is one of the major ions in cells and tissues. Cl

-
 is important for neuronal 

excitability, salt secretion and reabsoprtion, cell volume regulation, and pH regulation. In 

the central nervous system, -aminobutyric acid (GABA) and glycine receptors are both 

Cl
- 
channels. The polarity of GABA or glycine response is dependent on the driving force 

for chloride. If the chloride equilibrium potential (ECl) is more positive than the 

membrane potential, Cl
-
 flows out of the neuron during GABAA or glycine receptor 

activation and the membrane is depolarized. If ECl is more negative than the membrane 

potential, Cl
-
 will flow into the neuron and the membrane will hyperpolarized. In contrast, 

if ECl is more positive than the membrane potential, Cl
-
 will flow out of the neuron and 

the membrane will depolarized. As we have seen in this document, intracellular Cl
-
 is 

regulated by cation-chloride cotransporters and neither conventional whole cell patch nor 

nystatin perforated patch can be used to record GABA or glycine receptor activity 
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without disturbing the intracellular Cl
-
. Sharp electrode intracellular recording also 

somewhat influences intracellular Cl
-
, although to a lesser degree. Cl

-
 electrodes, which 

have been used successfully in large cells to measure intracellular Cl
-
, are too large to be 

practical to record activity of small CNS neurons. Gramicidin instead, when dissolved in 

the pipette solution, can provide electrophysiological recordings in CNS neurons without 

disrupting intracellular chloride concentration. The gramicidin perforated patch technique 

has now been developed for a decade and it truly has made a significant contribution to 

the study of the inhibitory transmitter system in both the central and peripheral nervous 

system. (Akaike, 1996; Kyrozis and Reichling, 1995) (Rhee et al., 1994; Tajima et al., 

1996) 

Even though the gramicidin perforated patch technique has many advantages, it does 

have limitations. One of the major disadvantages is that perforation takes quite a long 

time, from 10 minutes to almost an hour. The other disadvantage is its high series 

resistance, usually ranging from 40 to 70 M. Many factors contribute to the perforation 

time and the series resistance, such as the pipette size and shape, the temperature and cell 

membrane properties. These problems are more acute in brain slice recordings. 
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The Gramicidin Perforated Patch Method  

 

Patch pipette and solution filling 

Gramicidin D (a mixture of gramicidin A, B and C, from Sigma) is commonly used in 

gramicidin perforated patch experiments. Gramicidin is very sensitive to humidity so any 

unused gramicidin needs to be refrigerated and desiccated. A stock solution of 10 mg/ml 

is usually made by dissolving gramicidin in methanol (Akaike, 1996) or DMSO (Kyrozis 

and Reichling, 1995). During my experiments, for some reason using DMSO as a vehicle 

for gramicidin I achieved more consistency in perforation time and series resistance than 

using methanol. The stock solution is then added to the pipette solution (140-150 mM 

KCl or CsCl, 10 mM HEPES, pH 7.4) to reach a final concentration of 5-100 g/ml (the 

final DMSO concentration in the pipette should not exceed 0.2%). The large variation of 

final concentration required from gramicidin is probably due to different experimental 

conditions such as temperature, pipette solution composition, brain slices vs. 

isolated/cultured neurons, pipette size and ways to obtain a seal (Ebihara et al., 1995; 

Euler and Wassle, 1998; Singer et al., 1998; Yamada et al., 2004). Usually for recording 

in cultured neurons, high concentration of gramicidin (20-100g/ml) is used, whereas 

relatively low concentration of gramicidin (5-20g/ml) is used for brain slices 

experiments. Because gramicidin is sensitive to humidity and loses its activity in water 

based solutions, the final pipette solution containing gramicidin needs to be freshly made 
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for each experiment (i.e. every hour) and the stock solution should be discarded everday 

after use.  

   The pipette for gramicidin perforated patch is made from thin walled borosilicate 

glass capillaries (WPI) on vertical (Narishige) or horizontal multistage pipette pullers 

(Sutter). During my experiments I have used capillaries of three different dielectric 

constants and softening points: patch clamp capillary glass type #0010 with dielectric 

constant 6.7 and softening point 625 degrees (Fahrenheit), patch clamp capillary glass 

type #8250 with dielectric constant 4.9 and softening point 720 degrees and the thin wall 

single barrel glass TW150. Even though the two patch clamp capillaries form very tight 

seals (~G) and are excellent for whole-cell and single channel patch experiments, they 

increase the spontaneous break-ins during perforated patch experiments and turn 

perforated patch conformation into whole-cell. Glass type TW150 forms less tight seal 

(5-10G) but the spontaneous break-ins are rarely seen. Pipettes with 3-5 M resistance 

are used for recordings in most neurons. The presence of gramicidin in the tip is 

well-known to disrupt G seal formation and gramicidin containing pipette solution that 

leaks onto neurons can also cause depolarization of the neuron. To prevent this, the 

pipette tip is usually front-filled with gramicidin-free pipette solution, and then 

back-filled with gramicidin containing pipette solution. Extra care must be taken while 

performing gramicidin perforated patch in brain slices, since positive pressure is usually 

applied to the pipette tip to achieve a successful G seal. Tapping of the pipette is 

necessary to get rid of any air bubbles in the pipette in patch clamp experiments. 
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However, it also accelerates the mixing of back-filled gramicidin solution with the 

gramicidin-free solution in the tip. Thus any tapping must be done before the back-filling 

of gramicidin-containing solution and careful back-filling using a fine needle can avoid 

any air bubble built-up in the pipette. Glass capillaries with filaments may be a better 

choice if it is hard to get rid of air bubbles.  

    

Getting the seal and the perforation 

For cultured cell experiments, getting the seal is quite easy since none or little positive 

pressure is needed at the pipette tip to reach the surface of the cell. However, for brain 

slice experiments, positive tip pressure is required for the pipette tip to move through a 

layer of dead cells and connective tissue, before touching the surface of the intended cell. 

If too little pressure is applied, the debris will get in the way of the pipette tip and prevent 

a perfect G seal. If too much pressure is applied, the gramicidin inside the pipette will 

reach the tip prematurely and also ruin the G seal. Therefore delicate control of the 

positive pressure is necessary. When the tip of the pipette touches the cell membrane, it 

can be detected visually (from the monitor) or electrically (from the sudden increase of 

pipette resistance). The positive pressure is released and negative pressure by suction or 

syringe is immediately applied to form a seal. After a G seal is formed, no further 

negative pressure should be applied. Gramicidin molecules start to insert into the patch 

membrane and form ionophores as soon as the seal is formed. In voltage clamp 

experiments, the holding potential should be as close to resting membrane potential as 
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possible (-60~-70 mV), because larger holding current will depolarize the cell and induce 

changes to [Cl
-
]i through tonic GABA receptor activity or other chloride conductances. 

By applying 10mV hyperpolarizing short pulses, the series resistance is monitored 

and calculated from the size and decay time) of the capacitive transient in membrane 

test of pClamp 9.0 (Figure A-1). In 10-30 minutes, the series resistance will usually 

stabilize < 100M. The exact stabilized series resistance depends on the final 

concentration of gramicidin in the pipette and also on the temperature of the bath (Akaike, 

1996). Higher concentrations of gramicidin may cause spontaneous break-ins and result 

in the alteration of the [Cl
-
]i by the pipette solution. Fluorescent dyes (Lucifer yellow) are 

sometimes added to the pipette solution as an indicator of spontaneous break-ins. No 

series resistance compensation should be used since oscillations will probably occur 

because the series resistance is usually high (40-70M) in perforated patch experiments.  

 

Calculate ECl from Voltage Clamp data  

Two alternative methods are typically used when ECl is to be measured by voltage clamp 

experiments: the vary-holding method (Figure A-2A), and the voltage ramp method 

(FigureA-2B). The data analysis methods that will be discussed next will pertain mostly 

to voltage ramp experiments, but can also be applied to vary-holding experiments. It is 

common knowledge that the equivalent circuits of excitable membranes comprise 

capacitors, resistors, and batteries (Figure A-3). In single-electrode voltage clamp mode, 

the voltage at the tip of the recording pipette is controlled by a circuit of amplifiers. 
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                         From Tajima et al. 1996. 

Figure A-1. Example pulses showing current at 0, 2, 4, 6, 10, 13 and 16 minutes after 

G seal.   

 

 

Figure A-2 Vary-holding and Voltage ramp recordings.  

 

(A) Here, GABA/Glycine receptor Cl
-
 current is recorded by applying glycine briefly 

onto a cell, which is being clamped at different voltages. The V value at the I intercept of 

the I-V trace is the reversal potential of GABA/Glycine (EGABA/EGly) (B) A brief ramp 

from -80 to -20mV is applied to the cell membrane and a current response is recorded. 

The V value where the control trace meets the test trace is EGABA. 
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Before GABA is applied, the current flow through the pipette (I0) can be expressed 

using the following equation: 

 

Cm*V/T is the capacitive current introduced by the voltage ramp. Since the whole-cell 

capacitance of neurons is about 10~50 pF, and V/T = 300 mV/s (this is the rate for 

Figure A-2B), the capacitive current equals C*V/T ≤ 50pF * 300 mV/s = 15 pA. 

This current is much smaller than the current value at V=0, so it is negligible. 

Then, the equation transforms into: 

 

However, if the ramp is too fast (for example, -80 to -20 mV in 20 ms, resulting in a rate 

of 3000 mV/s), the capacitive current may be too large to ignore (150 pA). Thus fast 

ramps need to be avoided. 

After GABA is applied (Figure A-3, right figure), the current flowing through the pipette 

(I) can be expressed using the following equation: 

 

The above equation can be further transformed by considering the whole circuit: 

 

As shown in equation (1) and (2), both currents consist of a leak component (E/Rseal) and 

a membrane component. The leak component is quite small, due to a large Rseal (> 2G),  
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Figure A-3 Equivalent circuit of gramicidin perforated patch clamp before (left) 

and after (right) GABAA receptors are activated. 
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and can be subtracted using the leak subtraction function of Pclamp 9.0. Thus, the two 

equations (1) and (2) can be transformed into (3) and (4), respectively. 

 

 

From the control trace we can easily obtain: 

 

(Rs can be measured by membrane test or fitting transient in Clampex 9.0)  

And from the GABA trace and equation (4), we can obtain: 

 

Thus, RGABA can be calculated from the results above as: 

 

At V0, equation (3) equals equation (4). 

 

Further rearrangements of the equation yields equation (6): 
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Figure A-4.  I-V traces after leak subtraction.  
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and after we substitute Rm with (1/S1-Rs) and RGABA with the value from equation (5), we 

get the final solution to ECl: 

 

If we name R1 = 1/S1 and R2 = 1/S2, then Equation (7) turns into Equation (8): 

 

Equation (8) is the final equation for series resistance correction for ECl measurements. 

From equation (8), it is obvious that ECl does not necessarily equal V0, which is the V 

value when the two traces cross. However, its value is also affected by the resting 

membrane potential Em, the series resistance and the input resistances of resting 

membrane before (R1) and after GABA application (R2). The input resistance of resting 

membrane is usually uniform for the same types of neuron, while the input resistance 

after GABA application R2 greatly varies with the concentration and amount of GABA 

applied. In whole-cell patch clamp experiments, given the fact that Rs (<10M) is 

usually much smaller than R1 and Rs can be easily compensated, ECl is approximately 

equal to V0. However, in perforated patch experiments, Rs is much higher (40 to 70 M) 

and series resistance compensation is not practical. Thus, ECl value needs to be corrected 

from V0 according to equation (8).  

From the above reasoning, we can also see that in voltage clamp experiments the the 

membrane potential is not actually clamped. Instead, the clamped voltage is the voltage at 

the pipette tip. The actual potential at the membrane is the clamp voltage E minus the 
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voltage drop at the series resistance I0 * Rs. From equation (3), we get the actual potential 

at the membrane Eactual = E – I0 * Rs =                . Thus the actual potential equals 

control potential E only when Rs << Rm. In experiments when series resistance cannot be 

ignored, series resistance correction is necessary during the experiment or the recorded 

data must be corrected.  

 

Gramicidin in cell-attached recordings 

One critical issue related to the measurement of internal Cl
-
 in brain tissue is the accuracy 

of GABA reversal potential measurements, especially in young neurons that have high 

membrane resistance. The gramicidin perforated patch clamp is certainly the most used 

electrophysiological method to assess the intracellular Cl
-
 concentration in neurons. In 

isolated cells, the method is relatively straightforward as application of positive pressure 

is not necessary during the advancing of the pipette towards the cell body. However, in 

brain slice experiments, as the pipette has to find its way through cellular material in 

tissue, positive pressure is typically applied. To avoid leak of gramicidin due to the 

positive pressure, gramicidin-free pipette solution is typically placed into the tip of the 

pipette whereas the gramicidin-containing pipette solution is backfilled. This maneuver 

eventually lowers the effective gramicidin concentration in contact with the membrane 

patch. In conventional gramicidin perforated patch recordings, consistency in the series 

resistance is critical in measuring with accuracy the GABA reversal potential. As the 

overall series resistance varies due to the variability in the amount of gramicidin free 
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solution, the temperature, and the positive pressure applied, it is difficult to obtain 

accurate GABA reversal potentials. Furthermore, as it takes a long time for the series 

resistance to stabilize. In perforated patch experiments, a high concentration of ionophore 

is often added to the pipette solution to achieve low series resistance. However higher 

concentration of the ionophores increases the chance of spontaneous break-ins, which 

lead to dialysis of the cellular milieu by the pipette solution. Therefore the conventional 

gramicidin perforated patch method is delicate in slice preparations. To resolve these 

problems, I switched to and modified the convention cell-attached patch clamp by adding 

very little amount of gramicidin in the pipette solution (<5 g/ml in the backfilling 

solution).  

   Cell-attached recording was first used by Fenwick et al. (Fenwick et al., 1982), and 

later used by other laboratories (Michelson and Wong, 1991; Perkins and Wong, 1996; 

Tyzio et al., 2003). Cell-attached recordings are accomplished by forming a seal with a 

patch electrode, without further rupture of the membrane. The internal solution can be 

either high KCl or high NaCl. Compared to the whole-cell or perforated patch method, 

the cell-attached recording method is the least invasive.  

The cell-attached method has been thoroughly reviewed by Perkins (Perkins, 2006). 

Depending upon the quality of the seal, cell-attached recordings can either be used to 

record action currents (loose seal), inject current, or record membrane potential (tight 

seal). To record membrane potential, two conditions must be met concomitantly: a tight 

http://www.sciencedirect.com.proxy.library.vanderbilt.edu/science?_ob=ArticleURL&_udi=B6T04-4JJ2BFV-3&_user=86629&_coverDate=06%2F30%2F2006&_alid=585078178&_rdoc=1&_fmt=full&_orig=search&_cdi=4852&_sort=d&_docanchor=&view=c&_ct=2&_acct=C000006878&_version=1&_urlVersion=0&_userid=86629&md5=427f05c50f1c27365bfabeb8a3d8e584#bib8
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seal, and the current clamped at I=0 (Mason et al., 2005; Perkins, 2006). The recorded 

voltage (V) and the actual membrane potential (Em) have then the following relation: 

 

RSeal is the seal resistance which is normally >2G, while Rm and RPatch are the whole 

cell membrane resistance and patch resistance, respectively. When RSeal << RPatch + Rm, 

V~0 (loose patch). When RSeal >> RPatch + Rm, V = Em (ideal tight patch). In reality, since 

RPatch is smaller but somewhat comparable to RSeal, the recorded membrane potential is 

between 0 and Em. If RSeal is 20 times more than RPatch + Rm, V will be equal to ~95% Em. 

For pyramidal neurons, RPatch + Rm ranges from 1G to 10GPerkins, 2006). Thus, to 

record membrane potential with >95% fidelity, a very tight seal (20~200G) is necessary 

but hard to achieve. However, if an effort is made to reduce RPatch + Rm, one can achieve 

nearly the actual membrane potential recording with less restrictions on the seal 

requirement. Because the value of Rm is usually consistent for adult neurons, RPatch 

becomes the determining factor of V. With a very low concentration of gramicidin (same 

for other ionophores) in the pipette solution, RPatch + Rm can be reduced to 200-300 M 

(measured by membrane test in Clampex 9.0, not published). In that case, a 4-6 G seal 

is sufficient to maintain 95% fidelity during membrane potential recordings. The final 

pipette concentration of gramicidin used in my experiments is less than 5 g/ml, with a 

fair part of the pipette tip filled with gramicidin-free pipette solution. Compared to the 

traditional gramicidin perforated patch technique, this cell-attached method using a low 
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concentration of gramicidin provides a less invasive and faithful recording of membrane 

potential, with less concern of series resistance. It greatly reduces the number of 

spontaneous break-ins. I have only experienced one spontaneous break-in during my 

experiments. However, the recording mode must be current clamp at zero current since 

any current injection will cause large aberration in the recorded voltage due to the large 

RPatch. By including low concentrations of gramicidin, the patch resistance is diminished 

significantly compared to the G seal, and the recorded membrane potential becomes 

very close to actual membrane potential. Furthermore, with this method, the peak 

potential of the evoked-muscimol response is also very close to the actual EGABA, as most 

of the current is shunted through the GABA conductance, away from the membrane 

resistance (Figure A-5A, equation (1) and (3)). 

   In conclusion, the gramicidin perforated patch method and the cell-attached recording 

(with a low concentration of gramicidin) provide us useful tools to study the regulation of 

intracellular chloride. These methods are much less invasive than the conventional 

whole-cell patch clamp technique. Thus, the data obtained with these methods are better 

representations of actual biological processes.   
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Figure A-5. The application of low-gramicidin cell-attached patch recording.  
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(A) Relationship between the measured potential and the membrane potential. The 

recorded membrane potential, V, is represented by resistances and potentials in (1). When 

GABAA receptor is not activated, RGABA is infinite and the representation of V is reduced 

to (2). When GABAA receptor is activated and the cell membrane resistance is very large 

in young age CA3 pyramidal neurons, RGABA is insignificant compared to RSeal and the 

representation of V is reduced to (3). In our experiments, RPatch is significantly reduced 

by gramicidin perforation, thus RPatch can also be ignored and V is a very close 

representation of the actual EGABA. RSeal is the seal resistance, Rm is the whole cell 

membrane resistance, and RPatch is the patch resistance. The equivalent circuit of 

cell-attached patch clamp is also drawn. When the cell is clamped at current zero, the two 

batteries and the seal shunting resistance forms a closed circuit resistance, EGABA is 

GABA reversal potential, RGABA is GABA resistance at peak muscimol response, and Em 

is the resting membrane potential. (B) Continuous measurement of membrane potential 

(V) by low-gramicidin cell-attached patch recording of a P13 CA3 pyramidal neuron. An 

action potential (arrow) is triggered at ~ -55 mV (Kandel et al., 2000) and the recorded 

resting membrane potential ranges from -65 to -75mV. Note that the action potential did 

not overshoot 0 mV, due to the artificial cut-off explained in (Perkins, 2006), and the 

recording in the cell body rather than axon. Membrane depolarization that did not reach 

threshold (arrowheads) failed to result in action potential firing. Inset shows the action 

potential with expanded time scale.   

 

 

 

 



 124 

APPENDIX B  

 

HCO3
-
 AND THE REVERSAL POTENTIAL OF GABA (EGABA) 

 

Under physiological conditions, only Cl
- 
and HCO3

-
 can pass through the ion channel of 

GABAA receptors. The reversal potential of GABAA receptors (EGABA) can be 

determined from the Goldman-Hodgkin-Katz equation, 

EGABA = RT/F * Ln ((PCl[Cl
-
]i+PHCO3[HCO3

-
]i)/(PCl[Cl]o+PHCO3[HCO3

-
]o))  

with R being Gas Constant, T being the absolute temperature and F being Faraday’s 

constant.  

The estimated value of the ratio PHCO3/PCl ranges from 0.18 to 0.6 in different culture 

neurons according to other ion permeability studies (Bormann et al., 1987; Fatima-Shad 

and Barry, 1993; Kaila and Voipio, 1987) and the variations may be methodological 

instead of biological (Farrant and Kaila, 2007). In the following statements, I assumed 

PHCO3/PCl to be 0.2. Thus the EGABA becomes 

EGABA= 59 mV * log((5[Cl
-
]i+ [HCO3

-
]i)/(5[Cl]o+ [HCO3

-
]o)).  

Since the HCO3
-
 concentration in the cerebral spinal fluid (CSF) is 26mM and we assume 

[Cl
-
]o is 150 mM, [HCO3

-
]o is much smaller and can be ignored in comparison to 

5x[Cl
-
]o(150 mM x 5 = 750 mM). Therefore the equation can be further converted to 

  EGABA = 59 mV * log(([Cl
-
]i+0.2[HCO3]i

-
)/[Cl

-
]o).  
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After rearrangement, we get 

EGABA = -59 mV * log([Cl
-
]o / ([Cl

-
]i+0.2[HCO3

-
]i)). 

Typically, neurons have an intracellular pH around 7.2 and extracellular PH 7.4, so the 

[HCO3
-
]i is calculated to be 16 mM from [HCO3

-
]i  x [H

+
]i = [HCO3

-
]o x [H

+
]o 

(ALVAREZ-LEEFMANs, 1990). Thus the EGABA now is  

EGABA = -59 mV * log([Cl
-
]o / ([Cl

-
]i+3.2)).  

Thus EGABA is not exactly determined by the ratio between extracellular and 

intracellular chloride concentration. A modifier of 3.2mM is added on top of [Cl
-
]i by 

HCO3
-
. In young neurons when intracellular chloride is high (20-30mM), the effect of 

HCO3
-
 is negligible. However, in mature neurons where intracellular chloride is 

decreased by KCC2, HCO3
-
 renders EGABA more depolarized. (Assuming that [Cl

-
]o is 

150mM and [Cl
-
]i is 8mM, theoretically EGABA will be -75.0mM in HEPES buffer and 

-66.4mV in aCSF with the presence of HCO3
-
). Therefore when comparing data recorded 

in normal aCSF and HCO3-free aCSF, this difference in EGABA needs to be taken into 

consideration, especially in mature neurons.  

   Other than directly participating in the ion flux through GABAA receptors, HCO3
-
 can 

also cause accumulation of intracellular Cl- through the anion exchanger AE3 and further 

affect the reversal potential of GABA and Glycine receptor ion channels (Hentschke et al., 

2006; Irie et al., 1998). The role of AE3 in the developmental regulation of intracellular 

chloride concentration in neurons remains to be further studied. The role of HCO3
-
 in 

EGABA has been reviewed very recently by Farrant and Kaila (Farrant and Kaila, 2007).  
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   In summary, HCO3- ion affects the reversal potential of GABA, especially when 

intracellular [Cl
-
]i is downregulated in mature neurons. HCO3

-
 may also increase the 

intracellular chloride concentration through the anion-exchanger AE3 and shift EGABA to 

more depolarized value. 

 



 127 

REFERENCES 

 

Adragna, N. C., Fulvio, M. D., and Lauf, P. K. (2004). Regulation of K-Cl cotransport: 

from function to genes. J Membr Biol 201, 109-137. 

Aguado, F., Carmona, M. A., Pozas, E., Aguilo, A., Martinez-Guijarro, F. J., Alcantara, 

S., Borrell, V., Yuste, R., Ibanez, C. F., and Soriano, E. (2003). BDNF regulates 

spontaneous correlated activity at early developmental stages by increasing                   

synaptogenesis and expression of the K(+)/Cl(-) co-transporter KCC2. Development 130, 

1267-1280. 

Akaike, N. (1996). Gramicidin perforated patch recording and intracellular chloride 

activity in excitable cells. Prog Biophys molec Biol 65, 251-264. 

Akbarali, H. I., and Giles, W. R. (1993). Ca2+ and Ca(2+)-activated Cl- currents in rabbit 

oesophageal smooth muscle. J Physiol 460, 117-133. 

ALVAREZ-LEEFMANs, F. J. (1990). Intracellular Cl- regulation and synaptic inhibition 

in vertebrate and invertebrate neurones. In Chloride Channels and Carriers in Nerve, 

Muscle and Glial Cells. (Plenum Press, New York.). 

 

Alvarez-Leefmans, F. J., Gamiño, S. M., Giraldez, F., and Nogueron, I. (1988). 

Intracellular chloride regulation in amphibian dorsal root ganglion neurons studied with 

ion-selective microelectrodes. J Physiol (Lond) 406, 225-246. 

Alvarez-Leefmans, F. J., Leon-Olea, M., Mendoza-Sotelo, J., Alvarez, F. J., Anton, B., 

and Garduno, R. (2001). Immunolocalization of the Na(+)-K(+)-2Cl(-) cotransporter in 

peripheral nervous tissue of vertebrates. Neuroscience 104, 569-582. 

Andersen, O. S. (1984). Gramicidin channels. Annu Rev Physiol 46, 531-548. 

Andersen, O. S., Koeppe, R. E., 2nd, and Roux, B. (2005). Gramicidin channels. IEEE 

Trans Nanobioscience 4, 10-20. 



 128 

Aronica, E., Boer, K., Redeker, S., Spliet, W. G., van Rijen, P. C., Troost, D., and Gorter, 

J. A. (2007). Differential expression patterns of chloride transporters, 

Na+-K+-2Cl--cotransporter and K+-Cl--cotransporter, in epilepsy-associated 

malformations of cortical development. Neuroscience 145, 185-196. 

Aronica, E., and Gorter, J. A. (2007). Gene expression profile in temporal lobe epilepsy. 

Neuroscientist 13, 100-108. 

Attmane-Elakeb, A., Mount, D. B., Sibella, V., Vernimmen, C., Hebert, S. C., and 

Bichara, M. (1998). Stimulation by in vivo and in vitro metabolic acidosis of expression 

of rBSC1, the Na-K(NH4)-2Cl cotransporter of the rat medullary thick ascending limb. J 

Biol Chem 273, 33681-33691. 

Avoli, M. (1996). GABA-mediated synchronous potentials and seizure generation. 

Epilepsia 37, 1035-1042. 

Avoli, M., Mattia, D., Siniscalchi, A., Perreault, P., and Tomaiuolo, F. (1994). 

Pharmacology and electrophysiology of a synchronous GABA-mediated potential in the 

human neocortex. Neuroscience 62, 655-666. 

Avoli, M., and Perreault, P. (1987). A GABAergic depolarizing potential in the 

hippocampus disclosed by the convulsant 4-aminopyridine. Brain Res 400, 191-195. 

Avoli, M., Psarropoulou, C., Tancredi, V., and Fueta, Y. (1993). On the synchronous 

activity induced by 4-aminopyridine in the CA3 subfield of juvenile rat hippocampus. J 

Neurophysiol 70, 1018-1029. 

Balakrishnan, V., Becker, M., Lohrke, S., Nothwang, H. G., Guresir, E., and Friauf, E. 

(2003). Expression and function of chloride transporters during development of 

inhibitory  neurotransmission in the auditory brainstem. J Neurosci 23, 4134-4145. 

Banke, T. G., and McBain, C. J. (2006). GABAergic input onto CA3 hippocampal 

interneurons remains shunting throughout development. J Neurosci 26, 11720-11725. 



 129 

Bartho, P., Payne, J. A., Freund, T. F., and Acsady, L. (2004). Differential distribution of 

the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. Eur J Neurosci 20, 

965-975. 

Baughman, R. W., Huettner, J. E., Jones, K. A., and Khan, A. A. (1991). Cell culture of 

neocortex and basal forebrain from postnatal rats. In Culturing Nerve Cells, G. Banker, 

and K. Goslin, eds. (Cambridge, MA, MIT Press), pp. 227-249. 

Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the 

nurture. Nat Rev Neurosci 3, 728-739. 

Ben-Ari, Y. (2006). Basic developmental rules and their implications for epilepsy in the 

immature brain. Epileptic Disord 8, 91-102. 

Ben-Ari, Y., Cherubini, E., Corradetti, R., and Gaiarsa, J. L. (1989). Giant synaptic 

potentials in immature rat CA3 hippocampal neurones. J Physiol (London) 416, 303-325. 

Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., and Gaiarsa, J. L. (1997a). 

GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. 

Trends Neurosci 20, 523-529. 

Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., and Gaiarsa, J. L. (1997b). 

GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'. 

Trends Neurosci 20, 523-529. 

Ben-Ari, Y., Tseeb, V., Raggozzino, D., Khazipov, R., and Gaiarsa, J. L. (1994). 

-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the 

development of hippocampal neurones in early postnatal life. In Prog. Brain Res., J. van 

Pelt, M. A. Corner, H. B. M. Uylings, and F. H. Lopes da Silva, eds. (Elsevier Science 

BV), pp. 261-273. 

Bennett, B. D., Callaway, J. C., and Wilson, C. J. (2000). Intrinsic membrane properties 

underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20, 

8493-8503. 



 130 

Bettinelli, A., Bianchetti, M. G., Girardin, E., Caringella, A., Cecconi, M., Appiani, A. C., 

Pavanello, L., Gastaldi, R., Isimbaldi, C., Lama, G., et al. (1992). Use of calcium 

excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: 

Bartter and Gitelman syndromes [see comments]. J Pediatr 120, 38-43. 

Betz, H. (1991). Glycine receptors: heterogeneous and widespread in the mammalian 

brain. Trends Neurosci 14, 458-461. 

Betz, H., Kuhse, J., Fischer, M., Schmieden, V., Laube, B., Kuryatov, A., Langosch, D., 

Meyer, G., Bormann, J., Rundstrom, N., and et al. (1994). Structure, diversity and 

synaptic localization of inhibitory glycine receptors. J Physiol Paris 88, 243-248. 

Bize, I., and Dunham, P. B. (1994). Staurosporine, a protein kinase inhibitor, activates 

K-Cl cotransport in LK sheep erythrocytes. Am J Physiol (Cell Physiol) 266, C759-C770. 

Blumcke, I., Beck, H., Lie, A. A., and Wiestler, O. D. (1999). Molecular neuropathology 

of human mesial temporal lobe epilepsy. Epilepsy Res 36, 205-223. 

Boettger, T., Hubner, C. A., Maier, H., Rust, M. B., Beck, F. X., and Jentsch, T. J. (2002). 

Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 

416, 874-878. 

Boettger, T., Rust, M. B., Maier, H., Seidenbecher, T., Schweizer, M., Keating, D. J., 

Faulhaber, J., Ehmke, H., Pfeffer, C., Scheel, O., et al. (2003). Loss of K-Cl 

co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. 

Embo J 22, 5422-5434. 

Bonislawski, D. P., Schwarzbach, E. P., and Cohen, A. S. (2007). Brain injury impairs 

dentate gyrus inhibitory efficacy. Neurobiol Dis 25, 163-169. 

Bormann, J., Hamill, O. P., and Sakmann, B. (1987). Mechanism of anion permeation 

through channels gated by glycine and gamma-aminobutyric acid in mouse cultured 

spinal neurones. J Physiol 385, 243-286. 

Brugnara, C. (1995). Erythrocyte dehydration in pathophysiology and treatment of sickle 

cell disease. Curr Opin Hematol 2, 132-138. 



 131 

Cai, H., Cebotaru, V., Wang, Y. H., Zhang, X. M., Cebotaru, L., Guggino, S. E., and 

Guggino, W. B. (2006). WNK4 kinase regulates surface expression of the human sodium 

chloride cotransporter in mammalian cells. Kidney Int 69, 2162-2170. 

Chebib, M., and Johnston, G. A. (1999). The 'ABC' of GABA receptors: a brief review. 

Clin Exp Pharmacol Physiol 26, 937-940. 

Chen, H., and Sun, D. (2005). The role of Na-K-Cl co-transporter in cerebral ischemia. 

Neurol Res 27, 280-286. 

Cherubini, E., Gaiarsa, J. L., and Ben-Ari, Y. (1991). GABA: an excitatory transmitter in 

early postnatal life. Trends Neurosci 14, 515-519. 

Chudotvorova, I., Ivanov, A., Rama, S., Hubner, C. A., Pellegrino, C., Ben-Ari, Y., and 

Medina, I. (2005). Early expression of KCC2 in rat hippocampal cultures augments 

expression of functional GABA synapses. J Physiol 566, 671-679. 

Clayton, G. H., Owens, G. C., Wolf, J. S., and Smith, R. L. (1998). Ontogeny of 

cation-Cl
-
 cotransporter expression in rat neocortex. Brain Research Developmental Brain 

Research 109, 281-292. 

Connell, J., Oozeer, R., de Vries, L., Dubowitz, L. M., and Dubowitz, V. (1989). Clinical 

and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child 64, 459-464. 

Coull, J. A., Boudreau, D., Bachand, K., Prescott, S. A., Nault, F., Sik, A., De Koninck, 

P., and De Koninck, Y. (2003). Trans-synaptic shift in anion gradient in spinal lamina I 

neurons as a mechanism of neuropathic pain. Nature 424, 938-942. 

Crepel, F., Delhaye-Bouchaud, N., Guastavino, J. M., and Sampaio, I. (1980). Multiple 

innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. 

Nature 283, 483-484. 

D'Ambrosio, R. (2004). The role of glial membrane ion channels in seizures and 

epileptogenesis. Pharmacol Ther 103, 95-108. 



 132 

Darman, R. B., and Forbush, B. (2002). A regulatory locus of phosphorylation in the N 

terminus of the Na-K-Cl cotransporter, NKCC1. J Biol Chem 277, 37542-37550. 

De Deyn, P. P., Marescau, B., and MacDonald, R. L. (1990). Epilepsy and the 

GABA-hypothesis a brief review and some examples. Acta Neurol Belg 90, 65-81. 

de Jong, J. C., Willems, P. H., Mooren, F. J., van den Heuvel, L. P., Knoers, N. V., and 

Bindels, R. J. (2003). The structural unit of the thiazide-sensitive NaCl cotransporter is a 

homodimer. J Biol Chem 278, 24302-24307. 

de Los Heros, P., Kahle, K. T., Rinehart, J., Bobadilla, N. A., Vazquez, N., San Cristobal, 

P., Mount, D. B., Lifton, R. P., Hebert, S. C., and Gamba, G. (2006). WNK3 bypasses the 

tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent 

pathway. Proc Natl Acad Sci USA 103, 1976-1981. 

DeFazio, R. A., Keros, S., Quick, M. W., and Hablitz, J. J. (2000). Potassium-coupled 

chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons. J 

Neurosci 20, 8069-8076. 

Deleu, D., Bamanikar, S. A., Muirhead, D., and Louon, A. (1997). Familial progressive 

sensorimotor neuropathy with agenesis of the corpus callosum (Andermann syndrome): a 

clinical, neuroradiological and histopathological study. Eur Neurol 37, 104-109. 

Delpire, E., and Lauf, P. K. (1992). Kinetics of DIDS inhibition of swelling-activated 

K-Cl cotransport in low K sheep erythrocytes. J Membrane Biol 126, 89-96. 

Delpire, E., Lu, J., England, R., Dull, C., and Thorne, T. (1999). Deafness and imbalance 

associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22, 

192-195. 

Delpire, E., and Mount, D. B. (2002). Human and mouse phenotypes associated with 

defects in cation-chloride cotransporters. Ann Rev Physiol 64, 803-843. 

Delpire, E., Rauchman, M. I., Beier, D. R., Hebert, S. C., and Gullans, S. R. (1994). 

Molecular cloning and chromosome localization of a putative basolateral Na-K-2Cl 



 133 

cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 

269, 25677-25683. 

Di Fulvio, M., Lincoln, T. M., Lauf, P. K., and Adragna, N. C. (2001). Protein kinase G 

regulates potassium chloride cotransporter-3 expression in primary cultures of rat 

vascular smooth muscle cells. J Biol Chem 276, 21046-21052. 

Diamond, J. S. (2001). Neuronal glutamate transporters limit activation of NMDA 

receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21, 

8328-8338. 

Dowd, B. F., and Forbush, B. (2003). PASK (Proline-Alanine-rich STE20-related 

Kinase), a Regulatory Kinase of the Na-K-Cl Cotransporter (NKCC1). J Biol Chem 278, 

27347-27353. 

Dunn, S. M., Bateson, A. N., and Martin, I. L. (1994). Molecular neurobiology of the 

GABAA receptor. Int Rev Neurobiol 36, 51-96. 

Dzhala, V. I., and Staley, K. J. (2003). Excitatory actions of endogenously released 

GABA contribute to initiation of ictal epileptiform activity in the developing 

hippocampus. J Neurosci 23, 1840-1846. 

Dzhala, V. I., Talos, D. M., Sdrulla, D. A., Brumback, A. C., Mathews, G. C., Benke, T. 

A., Delpire, E., Jensen, F. E., and Staley, K. J. (2005). NKCC1 transporter facilitates 

seizures in the developing brain. Nat Med 11, 1205-1213. 

Ebihara, S., Shirato, K., Harata, N., and Akaike, N. (1995). Gramicidin-perforated patch 

recording: GABA response in mammalian neurones with intact intracellular chloride. J 

Physiol 484 ( Pt 1), 77-86. 

Ehrlich, I., Lohrke, S., and Friauf, E. (1999). Shift from depolarizing to hyperpolarizing 

glycine action in rat auditory neurones is due to  age-dependent Cl
-
 regulation. J Physiol 

(London) 520, 121-137. 

Ellison, D. H., Velaskez, H., and Wright, F. S. (1987). Am J Physiol 253, F546-F554. 



 134 

Euler, T., and Wassle, H. (1998). Different contributions of GABAA and GABAC 

receptors to rod and cone bipolar cells in a rat retinal slice preparation. J Neurophysiol 79, 

1384-1395. 

Farrant, M., and Kaila, K. (2007). The cellular, molecular and ionic basis of GABA(A) 

receptor signalling. Prog Brain Res 160, 59-87. 

Fatima-Shad, K., and Barry, P. H. (1993). Anion permeation in GABA- and 

glycine-gated channels of mammalian cultured hippocampal neurons. Proc Biol Sci 253, 

69-75. 

Fenwick, E. M., Marty, A., and Neher, E. (1982). Sodium and calcium channels in bovine 

chromaffin cells. J Physiol 331, 599-635. 

Fiumelli, H., Cancedda, L., and Poo, M. M. (2005). Modulation of GABAergic 

transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. 

Neuron 48, 773-786. 

Forbush, B., 3rd, Lytle, C., Xu, J. C., Payne, J. A., and Biemesderfer, D. (1994). The Na, 

K, C cotransporter of shark rectal gland. Ren Physiol Biochem 17, 201-204. 

French, J. A., Williamson, P. D., Thadani, V. M., Darcey, T. M., Mattson, R. H., Spencer, 

S. S., and Spencer, D. D. (1993). Characteristics of medial temporal lobe epilepsy: I. 

Results of history and physical examination. Ann Neurol 34, 774-780. 

Fukuda, A., Muramatsu, K., Okabe, A., Shimano, Y., Hida, H., Fujimoto, I., and Nishino, 

H. (1998). Changes in intracellular Ca2+ induced by GABAA receptor activation and 

reduction in Cl- gradient in neonatal rat neocortex. J Neurophysiol 79, 439-446. 

Gagnon, K. B., England, R., and Delpire, E. (2006a). Characterization of SPAK and 

OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Mol Cell Biol 26, 689-698. 

Gagnon, K. B., England, R., and Delpire, E. (2006b). Volume sensitivity of 

cation-chloride cotransporters is modulated by the interaction of two kinases: SPAK and 

WNK4. Am J Physiol Cell Physiol 290, C134-C142. 



 135 

Galanopoulou, A. S. (2005). GABA receptors as broadcasters of sexually differentiating 

signals in the brain. Epilepsia 46 Suppl 5, 107-112. 

Galanopoulou, A. S. (2006). Sex- and cell-type-specific patterns of GABAA receptor and 

estradiol-mediated signaling in the immature rat substantia nigra. Eur J Neurosci 23, 

2423-2430. 

Galanopoulou, A. S., Kyrozis, A., Claudio, O. I., Stanton, P. K., and Moshe, S. L. (2003). 

Sex-specific KCC2 expression and GABA(A) receptor function in rat substantia nigra. 

Exp Neurol 183, 628-637. 

Galeffi, F., Sah, R., Pond, B. B., George, A., and Schwartz-Bloom, R. D. (2004). 

Changes in intracellular chloride after oxygen-glucose deprivation of the adult 

hippocampal slice: effect of diazepam. J Neurosci 24, 4478-4488. 

Gamba, G. (2005a). Molecular Physiology and Pathophysiology of Electroneutral 

Cation-Chloride Cotransporters. Physiol Rev 85, 423-493. 

Gamba, G. (2005b). WNK lies upstream of kinases involved in regulation of ion 

transporters. Biochem J 391, e1-e3. 

Gamba, G., Miyanoshita, A., Lombardi, M., Lytton, J., Lee, W.-S., Hediger, M., and 

Hebert, S. C. (1994). Molecular cloning, primary structure, and characterization of two 

members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter 

family expressed in kidney. J Biol Chem 269, 17713-17722. 

Gamba, G., Saltzberg, S. N., Lombardi, M., Miyanoshita, A., Lytton, J., Hediger, M. A., 

Brenner, B. M., and Hebert, S. C. (1993). Primary structure and functional expression of 

a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. 

Proc Natl Acad Sci USA 90, 2749-2753. 

Ganguly, K., Schinder, A. F., Wong, S. T., and Poo, M. (2001). GABA itself promotes 

the developmental switch of neuronal GABAergic responses from excitation to inhibition. 

Cell 105, 521-532. 



 136 

Gao, X. B., and van den Pol, A. N. (2000). GABA release from mouse axonal growth 

cones. J Physiol 523 Pt 3, 629-637. 

Garzon-Muvdi, T., Pacheco-Alvarez, D., Gagnon, K. B., Vazquez, N., Ponce-Coria, J., 

Moreno, E., Delpire, E., and Gamba, G. (2007). WNK4 kinase is a negative regulator of 

K+-Cl- cotransporters. Am J Physiol Renal Physiol 292, F1197-1207. 

Gerelsaikhan, T., and Turner, R. J. (2000). Transmembrane topology of the secretory 

Na+-K+-2Cl- cotransporter NKCC1 studied by in vitro translation. J Biol Chem 275, 

40471-40477. 

Gesek, F. A., and Friedman, P. A. (1992). Mechanism of calcium transport stimulated by 

chlorothiazide in mouse distal convoluted tubule cells. J Clin Invest 90, 429-438. 

Gillen, C. M., Brill, S., Payne, J. A., and Forbush, B. I. (1996). Molecular cloning and 

functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new 

member of the cation-chloride cotransporter family. J Biol Chem 271, 16237-16244. 

Gimenez, I., and Forbush, B. (2003). Short-term stimulation of the renal Na-K-Cl 

cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane 

translocation of the protein. J Biol Chem 278, 26946-26951. 

Good, D. W. (1994). Ammonium transport by the thick ascending limb of Henle's loop. 

Ann Rev Physiol 56, 623-647. 

Gulacsi, A., Lee, C. R., Sik, A., Viitanen, T., Kaila, K., Tepper, J. M., and Freund, T. F. 

(2003). Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) 

receptor-mediated inhibition in rat substantia nigra. J Neurosci 23, 8237-8246. 

Gulyas, A. I., Sik, A., Payne, J. A., Kaila, K., and Freund, T. F. (2001). The KCl 

cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat 

hippocampus. Eur J Neurosci 13, 2205-2217. 

Haas, M. (1994). The Na-K-Cl cotransporters. . Am J Physiol (Cell Physiol) 267, 

C869-C885. 



 137 

Haas, M., and Forbush, B. I. (1998). The Na-K-Cl cotransporters. J Bioenerg Biomembr 

30, 161-172. 

Haas, M., and Forbush, B. I. (2000). The Na-K-Cl cotransporter of secretory epithelia. 

Annu Rev Physiol 62, 515-534. 

Harris, D. C. (2003). Quantitative Chemical Analysis, 6th edn, W. H. Freeman & 

Company). 

Hebert, S. C., Mount, D. B., and Gamba, G. (2003). Molecular physiology of 

cation-coupled Cl(-) cotransport: the SLC12 family. Pflugers Arch. 

Heinemann, U., and Lux, H. D. (1977). Ceiling of stimulus induced rises in extracellular 

potassium concentration in the cerebral cortex of cat. Brain Res 120, 231-249. 

Hennou, S., Khalilov, I., Diabira, D., Ben-Ari, Y., and Gozlan, H. (2002). Early 

sequential formation of functional GABA(A) and glutamatergic synapses on CA1 

interneurons of the rat foetal hippocampus. Eur J Neurosci 16, 197-208. 

Hentschke, M., Wiemann, M., Hentschke, S., Kurth, I., Hermans-Borgmeyer, I., 

Seidenbecher, T., Jentsch, T. J., Gal, A., and Hubner, C. A. (2006). Mice with a targeted 

disruption of the Cl-/HCO3- exchanger AE3 display a reduced seizure threshold. Mol 

Cell Biol 26, 182-191. 

Hertz, L. (1978). An intense potassium uptake into astrocytes, its further enhancement by 

high concentrations of potassium, and its possible involvement in potassium homeostasis 

at the cellular level. Brain Res 145, 202-208. 

Hiki, K., D'Andrea, R. J., Furze, J., Crawford, J., Woollatt, E., Sutherland, G. R., Vadas, 

M. A., and Gamble, J. R. (1999). Cloning, characterization, and chromosomal location of 

a novel human K
+
-Cl

-
 cotransporter. J Biol Chem 274, 10661-10667. 

Horn, R., and Marty, A. (1988). Muscarinic activation of ionic currents measured by a 

new whole-cell recording method. J Gen Physiol 92, 145-159. 



 138 

Howard, H. C., Mount, D. B., Rochefort, D., Byun, N., Dupré, N., Lu, J., Fan, X., Song, 

L., Rivière, J.-B., Prévost, C., et al. (2002). Mutations in the K-Cl cotransporter KCC3 

cause a severe peripheral neuropathy associated with agenesis of the corpus callosum. 

Nat Genet 32, 384-392. 

Hubner, C. A., Stein, V., Hermans-Borgmeyer, I., Meyer, T., Ballanyi, K., and Jentsch, T. 

J. (2001). Disruption of KCC2 reveals an essential role of K-Cl cotransport already in 

early synaptic inhibition. Neuron 30, 515-524. 

Huettner, J. E., and Baughman, R. W. (1986). Primary culture of identified neurons from 

the visual cortex of postnatal rats. J Neurosci 6, 3044-3060. 

Igarashi, P., Vanden Heuvel, G. B., Payne, J. A., and Forbush, B. I. (1995). Cloning, 

embryonic expression and alternative splicing of a murine kidney specific Na-K-Cl 

cotransporter. Am J Physiol (Renal Fluid Electrolyte Physiol) 269, F405-F418. 

Ikeda, M., Toyoda, H., Yamada, J., Okabe, A., Sato, K., Hotta, Y., and Fukuda, A. (2003). 

Differential development of cation-chloride cotransporters and Cl- homeostasis 

contributes to differential GABAergic actions between developing rat visual cortex and 

dorsal lateral geniculate nucleus. Brain Res 984, 149-159. 

Irie, T., Hara, M., Yasukura, T., Minamino, M., Omori, K., Matsuda, H., Inoue, K., and 

Inagaki, C. (1998). Chloride concentration in cultured hippocampal neurons increases 

during long-term exposure to ammonia through enhanced expression of an anion 

exchanger. Brain Res 806, 246-256. 

Isenring, P., Jacoby, S. C., and Forbush, B. I. (1998). The role of transmembrane domain 

2 in cation transport by the Na-K-Cl cotransporter. Proc Natl Acad Sci USA 95, 

7179-7184. 

Janigro, D., and Schwartzkroin, P. A. (1988). Effects of GABA and baclofen on 

pyramidal cells in the developing rabbit hippocampus: an in vitro study. Dev Brain Res 

41, 171-184. 

Jarolimek, W., Bijak, M., and Misgeld, U. (1994). Differences in the Cs block of 

baclofen and 4-aminopyridine induced potassium currents of guinea pig CA3 neurons in 

vitro. Synapse 18, 169-177. 



 139 

Jennings, M. L., and Schultz, R. K. (1991). Okadaic acid inhibition of KCl cotransport. 

Evidence that protein dephosphorylation is necessary for activation of transport by either 

swelling or N-ethylmaleimide. J Gen Physiol 97, 799-817. 

Kahle, K. T., Rinehart, J., de Los Heros, P., Louvi, A., Meade, P., Vazquez, N., Hebert, S. 

C., Gamba, G., Gimenez, I., and Lifton, R. P. (2005). WNK3 modulates transport of Cl- 

in and out of cells: implications for control of cell volume and neuronal excitability. Proc 

Natl Acad Sci USA 102, 16783-16788. 

Kahle, K. T., Rinehart, J., Ring, A., Gimenez, I., Gamba, G., Hebert, S. C., and Lifton, R. 

P. (2006). WNK protein kinases modulate cellular Cl- flux by altering the 

phosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology (Bethesda) 21, 

326-335. 

Kaila, K., and Voipio, J. (1987). Postsynaptic fall in intracellular pH induced by 

GABA-activated bicarbonate conductance. Nature 330, 163-165. 

Kaji, D., and Tsukitani, Y. (1991). Role of protein phosphatase in activation of KCl 

cotransport in human erythrocytes. Am J Physiol 260, C176-C182. 

Kakazu, Y., Akaike, N., Komiyama , S., and Nabekura, J. (1999). Regulation of 

intracellular chloride by cotransporters in developing lateral superior olive neurons. J 

Neurosci 19, 2843-2851. 

Kakazu, Y., Uchida, S., Nakagawa, T., Akaike, N., and Nabekura, J. (2000). Reversibility 

and cation selectivity of the K(+)-Cl(-) cotransport in rat central neurons. J Neurophysiol 

84, 281-288. 

Kanaka, C., Ohno, K., Okabe, A., Kuriyama, K., Itoh, T., Fukuda, A., and Sato, K. 

(2001). The differential expression patterns of messenger RNAs encoding K-Cl 

cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. 

Neuroscience 104, 933-946. 

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural 

Science, Fourth edn). 



 140 

Kandler, K., and Friauf, E. (1995). Development of glycinergic and glutamatergic 

synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15, 

6890-6904. 

Kandler, K., and Katz, L. C. (1995). Neuronal coupling and uncoupling in the developing 

nervous system. Curr Opin Neurobiol 5, 98-105. 

Kaplan, M. R., Plotkin, M. D., Lee, W.-S., Xu, Z.-C., Lytton, J., and Hebert, S. C. (1996). 

Apical localization of the Na-K-2Cl cotransporter, rBSC1, on rat thick ascending limbs. 

Kidney Int 49, 40-47. 

Karadsheh, M. F., Byun, N., Mount, D. B., and Delpire, E. (2003). Localization of the 

KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience 123, 

381-391. 

Karadsheh, M. F., and Delpire, E. (2001). A neuronal restrictive silencing element is 

found in the KCC2 gene: Molecular Basis for KCC2 specific expression in neurons. J 

Neurophysiol 85, 995-997. 

Karadsheh, M. S., Shah, M. S., Tang, X., Macdonald, R. L., and Stitzel, J. A. (2004). 

Functional characterization of mouse alpha4beta2 nicotinic acetylcholine receptors stably 

expressed in HEK293T cells. J Neurochem 91, 1138-1150. 

Karolyi, L., Koch, M. C., Grzeschik, K. H., and Seyberth, H. W. (1998). The molecular 

genetic approach to "Bartter's syndrome". J Mol Med 76, 317-325. 

Kelsch, W., Hormuzdi, S., Straube, E., Lewen, A., Monyer, H., and Misgeld, U. (2001). 

Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward 

transport during maturation of hippocampal neurons. J Neurosci 21, 8339-8347. 

Khazipov, R., Khalilov, I., Tyzio, R., Morozova, E., Ben-Ari, Y., and Holmes, G. L. 

(2004). Developmental changes in GABAergic actions and seizure susceptibility in the 

rat hippocampus. Eur J Neurosci 19, 590-600. 



 141 

Kim, G. H., Masilamani, S., Turner, R., Mitchell, C., Wade, J. B., and Knepper, M. A. 

(1998). The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. 

Proc Natl Acad Sci USA 95, 14552-14557. 

Klein, J. D., Lamitina, S. T., and O'Neill, W. C. (1999). JNK is a volume-sensitive kinase 

that phosphorylates the Na-K-2Cl cotransporter in vitro. Am J Phyiol (Cell Physiol) 46, 

C425-C431. 

Kleta, R., Basoglu, C., and Kuwertz-Broking, E. (2000). New treatment options for 

Bartter's syndrome. N Engl J Med 343, 661-662. 

Kleta, R., and Bockenhauer, D. (2006). Bartter syndromes and other salt-losing 

tubulopathies. Nephron Physiol 104, p73-80. 

Kraner, S. D., Chong , J. A., Tsay, H. J., and Mandel, G. (1992). Silencing the type II 

sodium channel gene: a model for neural-specific gene regulation. Neuron 9, 37-44. 

Krarup, T., and Dunham, P. B. (1996). Reconstitution of calyculin-inhibited K-Cl 

cotransport in dog erythrocyte ghosts by exogenous PP-1. Am J Physiol (Cell Physiol) 

270, C898-C902. 

Kullmann, D. M., Erdemli, G., and Asztely, F. (1996). LTP of AMPA and NMDA 

receptor-mediated signals: evidence for presynaptic expression and extrasynaptic 

glutamate spill-over. Neuron 17, 461-474. 

Kurihara, K., Nakanishi, N., Moore-Hoon, M. L., and Turner, R. J. (2002). 

Phosphorylation of the salivary Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Cell 

Physiol 282, C817-C823. 

Kyrozis, A., and Reichling, D. B. (1995). Perforated-patch recording with gramicidin 

avoids artifactual changes in intracellular chloride concentration. J Neurosci Methods 57, 

27-35. 

Lauf, P. K. (1985). Passive K
+
-Cl

-
 fluxes in low-K

+
 sheep erythrocytes: modulation by 

A23187 and bivalent cations. Am J Physiol 249, C271-C278. 



 142 

Lauf, P. K., and Adragna, N. C. (2000). K-Cl cotransport: properties and molecular 

mechanism. Cell Physiol Biochem 10, 341-354. 

Lauf, P. K., Bauer, J., Adragna, N. C., Fujise, H., Zade-Oppen, A. M. M., Ryu, K., and 

Delpire, E. (1992). Erythrocyte K-Cl cotransport: Properties and regulation. Am J Physiol 

263, C917-C932. 

Lee, V. C., Moscicki, J. C., and Difazio, C. A. (1998). Propofol sedation produces 

dose-dependent supression of lidocaine-induced seizures in rats. Aneth Analg 86, 

652-657. 

Leinekugel, X., Khalilov, I., Ben-Ari, Y., and Khazipov, R. (1998). Giant depolarizing 

potentials: the septal pole of the hippocampus paces the activity of the developing intact 

septohippocampal complex in vitro. J Neurosci 18, 6349-6357. 

Leitch, E., Coaker, J., Young, C., Mehta, V., and Sernagor, E. (2005). GABA type-A 

activity controls its own developmental polarity switch in the maturing retina. J Neurosci 

25, 4801-4805. 

Li, H., Tornberg, J., Kaila, K., Airaksinen, M. S., and Rivera, C. (2002). Patterns of 

cation-chloride cotransporter expression during embryonic rodent CNS development. Eur 

J Neurosci 16, 2358-2370. 

Liu, Y. W., Mee, E. W., Bergin, P., Teoh, H. H., Connor, B., Dragunow, M., and Faull, R. 

L. (2007). Adult neurogenesis in mesial temporal lobe epilepsy: a review of recent animal 

and human studies. Curr Pharm Biotechnol 8, 187-194. 

Lohof, A. M., Delhaye-Bouchaud, N., and Mariani, J. (1996). Synapse elimination in the 

central nervous system: functional significance and cellular mechanisms. Rev Neurosci 7, 

85-101. 

LoTurco, J. J., Owens, D. F., Heath, M. J. S., Davis, M. B. E., and Kriegstein, A. R. 

(1995). GABA and glutamate depolarize cortical progenitor cells and inhibit DNA 

synthesis. Neuron 15, 1287-1298. 



 143 

Louvel, J., Avoli, M., Kurcewicz, I., and Pumain, R. (1994). Extracellular free potassium 

during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus. 

Neurosci Lett 167, 97-100. 

Lu, J., Karadsheh, M., and Delpire, E. (1999). Developmental regulation of the 

neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J 

Neurobiol 39, 558-568. 

Ludwig, A., Li, H., Saarma, M., Kaila, K., and Rivera, C. (2003). Developmental 

up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission. 

Eur J Neurosci 18, 3199-3206. 

Luhmann, H. J., and Prince, D. A. (1991). Postnatal maturation of the GABAergic system 

in rat neocortex. J Neurophysiol 65, 247-263. 

Lux, H. D., Heinemann, U., and Dietzel, I. (1986). Ionic changes and alterations in the 

size of the extracellular space during epileptic activity. Adv Neurol 44, 619-639. 

Macdonald, R. L., Gallagher, M. J., Feng, H. J., and Kang, J. (2004). GABA(A) receptor 

epilepsy mutations. Biochem Pharmacol 68, 1497-1506. 

Majid, A., Speake, T., Best, L., and Brown, P. D. (2001). Expression of the Na+K+-2CI- 

cotransporter in alpha and beta cells isolated from the rat pancreas. Pflugers Arch 442, 

570-576. 

Mantyh, P. W., and Hunt, S. P. (2004). Setting the tone: superficial dorsal horn projection 

neurons regulate pain sensitivity. Trends Neurosci 27, 582-584. 

Marty, S., Wehrle, R., Alvarez-Leefmans, F. J., Gasnier, B., and Sotelo, C. (2002). 

Postnatal maturation of Na+, K+, 2Cl- cotransporter expression and inhibitory 

synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 

15, 233-245. 

Mason, M. J., Simpson, A. K., Mahaut-Smith, M. P., and Robinson, H. P. (2005). The 

interpretation of current-clamp recordings in the cell-attached patch-clamp configuration. 

Biophys J 88, 739-750. 



 144 

Mathern, G. W., Babb, T. L., Leite, J. P., Pretorius, K., Yeoman, K. M., and Kuhlman, P. 

A. (1996). The pathogenic and progressive features of chronic human hippocampal 

epilepsy. Epilepsy Res 26, 151-161. 

Mercado, A., Broumand, V., Zandi-Nejad, K., Enck, A. H., and Mount, D. B. (2006). A 

C-terminal domain in KCC2 confers constitutive K+-Cl- cotransport. J Biol Chem 281, 

1016-1026. 

Mercado, A., Mount, D. B., and Gamba, G. (2004). Electroneutral cation-chloride 

cotransporters in the central nervous system. Neurochem Res 29, 17-25. 

Mercado, A., Mount, D. B., Vazquez, N., Song, L., and Gamba, G. (2000a). Functional 

characteristics of the renal KCCs. FASEB J 14, A341. 

Mercado, A., Song, L., Vazquez, N., Mount, D. B., and Gamba, G. (2000b). Functional 

Comparison of the K+-Cl- Cotransporters KCC1 and KCC4. J Biol Chem 275, 

30326-30334. 

Meredith, R. M., Floyer-Lea, A. M., and Paulsen, O. (2003). Maturation of long-term 

potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. J 

Neurosci 23, 11142-11146. 

Michelson, H. B., and Wong, R. K. (1991). Excitatory synaptic responses mediated by 

GABAA receptors in the hippocampus. Science 253, 1420-1423. 

Mienville, J. M., and Pesold, C. (1999). Low resting potential and postnatal upregulation 

of NMDA receptors may cause Cajal-Retzius cell death. J Neurosci 19, 1636-1646. 

Mikawa, S., Wang, C., Shu, F., Wang, T., Fukuda, A., and Sato, K. (2002). 

Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum. 

Brain Res Dev Brain Res 136, 93-100. 

Misgeld, U., Deisz, R. A., Dodt, H. U., and Lux, H. D. (1986). The role of chloride 

transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413-1415. 



 145 

Morales-Aza, B. M., Chillingworth, N. L., Payne, J. A., and Donaldson, L. F. (2004). 

Inflammation alters cation chloride cotransporter expression in sensory neurons. 

Neurobiol Dis 17, 62-69. 

Moriguchi, T., Urushiyama, S., Hisamoto, N., Iemura, S. I., Uchida, S., Natsume, T., 

Matsumoto, K., and Shibuya, H. (2006). WNK1 regulates phosphorylation of 

cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. 

J Biol Chem 280, 42685-42693. 

Mott, D. D., and Lewis, D. V. (1994). The pharmacology and function of central GABAB 

receptors. Int Rev Neurobiol 36, 97-223. 

Mount, D. B., Delpire, E., Gamba, G., Hall, A. E., Poch, E., Hoover Jr., R. S., and Hebert, 

S. C. (1998). The electroneutral cation-chloride cotransporters. J Exp Biol 201, 

2091-2102. 

Mount, D. B., Mercado, A., Song, L., Xu, J., George, J. A. L., Delpire, E., and Gamba, G. 

(1999). Cloning and Characterization of KCC3 and KCC4, new members of the 

cation-chloride cotransporter gene family. J Biol Chem 274, 16355-16362. 

Mueller, A. L., Chesnut, R. M., and Schwartzkroin, P. A. (1983). Actions of gaba in 

developing rabbit hippocampus: an in vitro study. Neurosci Lett 39, 193-198. 

Muller, D., Oliver, M., Lynch, G. (1989). Developmental changes in synaptic properties 

in hippocampus of neonatal rats. Dev Brain Res 49, 105-114. 

Murphey, R. K., and Davis, G. (1994). Retrograde signalling at the synapse. J Neurobiol 

25, 595-598. 

Nabekura, J., Ueno, T., Okabe, A., Furuta, A., Iwaki, T., Shimizu-Okabe, C., Fukuda, A., 

and Akaike, N. (2002). Reduction of KCC2 expression and GABAA receptor-mediated 

excitation after in vivo axonal injury. J Neurosci 22, 4412-4417. 

Neher, E., and Sakmann, B. (1992). The patch clamp technique. Sci Am 266, 44-51. 



 146 

Nicholson, C., and Hounsgaard, J. (1983). Diffusion in the slice microenvironment and 

implications for physiological studies. Fed Proc 42, 2865-2868. 

Nicolet-Barousse, L., Blanchard, A., Roux, C., Pietri, L., Bloch-Faure, M., Kolta, S., 

Chappard, C., Geoffroy, V., Morieux, C., Jeunemaitre, X., et al. (2005). Inactivation of 

the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal 

and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice. J 

Bone Miner Res 20, 799-808. 

Nielsen, S., Maunsbach, A. B., Ecelbarger, C. A., and Knepper, M. A. (1998). 

Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and 

macula densa of rat kidney. Am J Physiol (Renal Physiol) 275, F885-F893. 

Obrietan, K., and Van den Pol, A. N. (1996). Growth cone calcium elevation by GABA. J 

Comp Neurol 372, 167-175. 

Oike, M., Droogmans, G., Casteels, R., and Nilius, B. (1993). Electrogenic 

Na+/K(+)-transport in human endothelial cells. Pflugers Arch 424, 301-307. 

Okabe, A., Yokokura, M., Toyoda, H., Shimizu-Okabe, C., Ohno, K., Sato, K., and 

Fukuda, A. (2003). Changes in chloride homeostasis-regulating gene expressions in the 

rat hippocampus following amygdala kindling. Brain Res 990, 221-226. 

Okuda, K., Edwards, G. C., and Winnick, T. (1963). Biosynthesis of gramicidin and 

tryocidine in the Dubos strain of Bacillus brevis. I. Experiments with growing cultures. J 

Bacteriol 85, 329-338. 

Owens, D. F., Boyce, L. H., Davis, M. B. E., and Kriegstein, A. R. (1996). Excitatory 

GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin 

perforated-patch recordings and calcium imaging. J Neurosci 16, 6414-6423. 

Painter, M. J., Bergman, I., and Crumrine, P. (1986). Neonatal seizures. Pediatr Clin 

North Am 33, 91-109. 

Palma, E., Amici, M., Sobrero, F., Spinelli, G., Di Angelantonio, S., Ragozzino, D., 

Mascia, A., Scoppetta, C., Esposito, V., Miledi, R., and Eusebi, F. (2006). Anomalous 



 147 

levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy 

patients make GABA excitatory. Proc Natl Acad Sci USA 103, 8465-8468. 

Payne, J. A. (1997). Functional characterization of the neuronal-specific K-Cl 

cotransporter: implications for [K
+
]o regulation. Am J Physiol (Cell Physiol) 273, 

C1516-C1525. 

Payne, J. A., and Forbush, B. I. (1994). Alternatively spliced isoforms of the putative 

renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc 

Natl Acad Sci USA 91, 4544-4548. 

Payne, J. A., Stevenson, T. J., and Donaldson, L. F. (1996). Molecular characterization of 

a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271, 

16245-16252. 

Payne, J. A., Xu, J.-C., Haas, M., Lytle, C. Y., Ward, D., and Forbush, B. I. (1995). 

Primary structure, functional expression, and chromosome localization of the bumetanide 

sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 270, 17977-17985. 

Pearson, M., Lu, J., Mount, D. B., and Delpire, E. (2001). Localization of the K-Cl 

cotransporter, KCC3, in the central and peripheral nervous systems: expression in 

choroid plexus, large neurons, and white matter tracts. Neuroscience 103, 483-493. 

Pearson, M. M., Lu, J., Mount, D. B., and Delpire, E. (2000). Expression of KCl 

cotransporter (KCC3) in the central nervous system: concurrence with myelination. 

FASEB J 14, A351. 

Pedersen, S. F., O'Donnell, M., E,, Anderson, S. E., and Cala, P. M. (2006). Physiology 

and pathophysiology of Na+/H+ exchange and Na+ -K+ -2Cl- cotransport in the heart, 

brain, and blood. Am J Physiol (Regul Integr Comp Physiol) 291, R1-R25. 

Perkins, K. L. (2006). Cell-attached voltage-clamp and current-clamp recording and 

stimulation techniques in brain slices. J Neurosci Methods 154, 1-18. 

Perkins, K. L., and Wong, R. K. (1996). Ionic basis of the postsynaptic depolarizing 

GABA response in hippocampal pyramidal cells. J Neurophysiol 76, 3886-3894. 



 148 

Perrot-Sinal, T. S., Sinal, C. J., Reader, J. C., Speert, D. B., and McCarthy, M. M. (2007). 

Sex differences in the chloride cotransporters, NKCC1 and KCC2, in the developing 

hypothalamus. J Neuroendocrinol 19, 302-308. 

Piechotta, K., Garbarini, N. J., England, R., and Delpire, E. (2003). Characterization of 

the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the 

nervous system: Evidence for a scaffolding role of the kinase. J Biol Chem 278, 

52848-52856. 

Plotkin, M. D., Kaplan, M. R., Peterson, L. N., Gullans, S. R., Hebert, S. C., and Delpire, 

E. (1997a). Expression of the Na
+
-K

+
-2Cl

-
 cotransporter BSC2 in the nervous system. 

Am J Physiol (Cell Physiol) 272, C173-C183. 

Plotkin, M. D., Snyder, E. Y., Hebert, S. C., and Delpire, E. (1997b). Expression of the 

Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible 

mechanism underlying GABA's excitatory role in immature brain. J Neurobiol 33, 

781-795. 

Price, T. J., Cervero, F., and de Koninck, Y. (2005). Role of 

cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem 5, 

547-555. 

Prince, D. A., Deisz, R. A., Thompson, S. M., and Chagnac-Amitai, Y. (1992). 

Functional alterations in GABAergic inhibition during activity. Epilepsy Res Suppl 8, 

31-38. 

Race, J. E., Makhlouf, F. N., Logue, P. J., Wilson, F. H., Dunham, P. B., and Holtzman, 

E. J. (1999). Molecular cloning and functional characterization of KCC3, a new K-Cl 

cotransporter. Am J Physiol (Cell Physiol) 277, C1210-C1219. 

Randall, J., Thorne , T., and Delpire, E. (1997). Partial cloning and characterization of 

Slc12a2: the gene encoding the secretory Na
+
-K

+
-2Cl

-
 cotransporter. Am J Physiol (Cell 

Physiol) 273, C1267-C1277. 

Reisert, J., Lai, J., Yau, K. W., and Bradley, J. (2005). Mechanism of the excitatory Cl- 

response in mouse olfactory receptor neurons. Neuron 45, 553-561. 



 149 

Rhee, J. S., Ebihara, S., and Akaike, N. (1994). Gramicidin perforated patch-clamp 

technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii 

neurons of the rat. J Neurophysiol 72, 1103-1108. 

Rivera, C., Li, H., Thomas-Crusells, J., Lahtinen, H., Viitanen, T., Nanobashvili, A., 

Kokaia, Z., Airaksinen, M. S., Voipio, J., Kaila, K., and Saarma, M. (2002). 

BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and 

impairs neuronal Cl- extrusion. J Cell Biol 159, 747-752. 

Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Lahtinen, H., Lamsa, K., Pirvola, U., 

Saarma, M., and Kaila, K. (1999). The K
+
/Cl

-
 co-transporter KCC2 renders GABA 

hyperpolarizing during neuronal maturation. Nature 397, 251-255. 

Rivera, C., Voipio, J., Thomas-Crusells, J., Li, H., Emri, Z., Sipila, S., Payne, J. A., 

Minichiello, L., Saarma, M., and Kaila, K. (2004). Mechanism of activity-dependent 

downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24, 

4683-4691. 

Roberts, E. L., and Feng, Z. C. (1996). Influence of age on the clearance of K+ from the 

extracellular space of rat hippocampal slices. Brain Res 708, 16-20. 

Rohrbough, J., and Spitzer, N. C. (1996). Regulation of intracellulat Cl
-
 levels by 

Na
+
-dependent Cl

-
 cotransport distinguishes depolarizing from hyperpolarizing GABAA 

receptor-mediated responses in spinal neurons. J Neurosci 16, 82-91. 

Ronen, G. M., Rosenbaum, P., Law, M., and Streiner, D. L. (1999). Health-related 

quality of life in childhood epilepsy: the results of children's participation in identifying 

the components. Dev Med Child Neurol 41, 554-559. 

Rorig, B., and Sutor, B. (1996). Regulation of gap junction coupling in the developing 

neocortex. Mol Neurobiol 12, 225-249. 

Russell, J. M. (1983). Cation-coupled chloride influx in squid axon. Role of potassium 

and stoichiometry of the transport process. J Gen Physiol 81, 909-925. 

Russell, J. M. (2000). Sodium-potassium-chloride cotransport. Physiol Rev 80, 211-276. 



 150 

Sandblom, J., Eisenman, G., and Neher, E. (1977). Ionic selectivity, saturation and block 

in gramicidin A channels: I. Theory for the electrical properties of ion selective channels 

having two pairs of binding sites and multiple conductance states. J Membr Biol 31, 

383-347. 

Sattler, R., and Tymianski, M. (2001). Molecular mechanisms of glutamate 

receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24, 107-129. 

Scher, M. S. (2003). Neonatal seizures and brain damage. Pediatr Neurol 29, 381-390. 

Scher, M. S., Aso, K., Beggarly, M. E., Hamid, M. Y., Steppe, D. A., and Painter, M. J. 

(1993). Electrographic seizures in preterm and full-term neonates: clinical correlates, 

associated brain lesions, and risk for neurologic sequelae. Pediatrics 91, 128-134. 

Schnermann, J. (2001). Sodium transport deficiency and sodium balance in gene-targeted 

mice. Acta Physiol Scand 173, 59-66. 

Schoenherr, C. J., and Anderson, D. J. (1995). The neuron-restrictive silencer factor 

(NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 

1360-1363. 

Schomberg, S. L., Bauer, J., Kintner, D. B., Su, G., Flemmer, A., Forbush, B., and Sun, D. 

(2003). Cross talk between the GABA(A) receptor and the Na-K-Cl cotransporter is 

mediated by intracellular Cl-. J Neurophysiol 89, 159-167. 

Schultheis, P. J., Lorenz, J. N., Meneton, P., Nieman, M. L., Riddle, T. M., Flagella, M., 

Duffy, J. J., Doetschman, T., Miller, M. L., and Shull, G. E. (1998). Phenotype 

resembling Gitelman's syndrome in mice lacking the apical Na+- Cl- cotransporter of the 

distal convoluted tubule. J Biol Chem 273, 29150-29155. 

Selvaraja, N. G., Prasada, R., Goldsteinb, J. L., and Rao, M. C. (2000). Evidence for the 

presence of cGMP-dependent protein kinase-II in human distal colon and in T84, the 

colonic cell line. Biochim Biophys Acta 1498, 32-43. 

Sen, A., Martinian, L., Nikolic, M., Walker, M. C., Thom, M., and Sisodiya, S. M. (2007). 

Increased NKCC1 expression in refractory human epilepsy. Epilepsy Res 74, 220-227. 



 151 

Shimizu-Okabe, C., Yokokura, M., Okabe, A., Ikeda, M., Sato, K., Kilb, W., Luhmann, 

H. J., and Fukuda, A. (2002). Layer-specific expression of Cl- transporters and 

differential [Cl-]i in newborn rat cortex. Neuroreport 13, 2433-2437. 

Singer, J. H., Talley, E. M., Bayliss, D., and Berger, A. J. (1998). Development of 

glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 80, 

2608-2620. 

Sipila, S. T., Huttu, K., Soltesz, I., Voipio, J., and Kaila, K. (2005). Depolarizing GABA 

acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in 

the immature hippocampus. J Neurosci 25, 5280-5289. 

Sipila, S. T., Schuchmann, S., Voipio, J., Yamada, J., and Kaila, K. (2006). The 

cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat 

hippocampus. J Physiol (Lond) 573, 765-773. 

Song, L., Mercado, A., Vazquez, N., Xie, Q., Desai, R., George, A. L., Jr., Gamba, G., 

and Mount, D. B. (2002). Molecular, functional, and genomic characterization of human 

KCC2, the neuronal K-Cl cotransporter. Brain Res Mol Brain Res 103, 91-105. 

Staley, K. (1994). The role of an inwardly rectifying chloride conductance in 

postsynaptic inhibition. J Neurophysiol 72, 273-284. 

Staley, K., Smith, R., Schaack, J., Wilcox, C., and Jentsch, T. J. (1996). Alteration of 

GABAA receptor function following gene transfer of the CLC-2 chloride channel. 

Neuron 17, 543-551. 

Staley, K. J., Soldo, B. L., and Proctor, W. R. (1995). Ionic mechanisms of neuronal 

excitation by inhibitory GABAA receptors. Science 269, 977-981. 

Starke, L. C., and Jennings, M. L. (1993). K-Cl cotransport in rabbit red cells: further 

evidence for regulation by protein phosphatase. Am J Physiol (Cell Physiol) 264, 

C118-C124. 



 152 

Stein, V., Hermans-Borgmeyer, I., Jentsch, T. J., and Hubner, C. A. (2004). Expression 

of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low 

intracellular chloride. J Comp Neurol 468, 57-64. 

Strange, K., Singer, T. D., Morrison, R., and Delpire, E. (2000). Dependence of KCC2 

K-Cl cotransporter activity on a conserved carboxy terminus tyrosine residue. Am J 

Physiol (Cell Physiol) 279, C860-C867. 

Su, G., Kintner, D. B., Flagella, M., Shull, G. E., and Sun, D. (2002a). Astrocytes from 

Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in 

EAA release. Am J Physiol Cell Physiol 282, C1147-1160. 

Su, G., Kintner, D. B., and Sun, D. (2002b). Contribution of Na(+)-K(+)-Cl(-) 

cotransporter to high-[K(+)](o)- induced swelling and EAA release in astrocytes. Am J 

Physiol Cell Physiol 282, C1136-1146. 

Sung, K., Kirby, M., McDonald, M. P., Lovinger, D. M., and Delpire, E. (2000). 

Abnormal GABAA-receptor mediated currents in dorsal root ganglion neurons isolated 

from Na-K-2Cl cotransporter null mice. J Neurosci 20, 7531-7538. 

Tajima, Y., Ono, K., and Akaike, N. (1996). Perforated patch-clamp recording in cardiac 

myocytes using cation-selective ionophore gramicidin. Am J Physiol 271, C524-532. 

Tas, P. W. L., Massa, P. T., Kress, H. G., and Koschel, K. (1987). Characterization of an 

Na
+
/K

+
/Cl

-
 co-transport in primary cultures of rat astrocytes. Biochim Biophys Acta 903, 

411-416. 

Thompson, S. M., Deisz, R. A., and Prince, D. A. (1988). Outward chloride/cation 

co-transport in mammalian cortical neurons. Neurosci Lett 89, 49-54. 

Thompson, S. M., and Gahwiler, B. H. (1989a). Activity-dependent dishinibition. II. 

Effects of extracellular potassium, furosemide, and membrane potential on ECl in 

hippocampal CA3 neurons. J Neurophysiol 61, 512-523. 



 153 

Thompson, S. M., and Gahwiler, B. H. (1989b). Activity-dependent disinhibition. I. 

Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in 

vitro. J Neurophysiol 61, 501-511. 

Titz, S., Hans, M., Kelsch, W., Lewen, A., Swandulla, D., and Misgeld, U. (2003). 

Hyperpolarizing inhibition develops without trophic support by GABA in cultured rat 

midbrain neurons. J Physiol (Lond) 550, 719-730. 

Toyoda, H., Ohno, K., Yamada, J., Ikeda, M., Okabe, A., Sato, K., Hashimoto, K., and 

Fukuda, A. (2003). Induction of NMDA and GABAA receptor-mediated Ca2+ 

oscillations with KCC2 mRNA downregulation in injured facial motoneurons. J 

Neurophysiol 89, 1353-1362. 

Tyzio, R., Ivanov, A., Bernard, C., Holmes, G. L., Ben-Ari, Y., and Khazipov, R. (2003). 

Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. 

J Neurophysiol 90, 2964-2972. 

Ueno, T., Okabe, A., Akaike, N., Fukuda, A., and Nabekura, J. (2002). Diversity of 

neuron-specific K+-Cl- cotransporter expression and inhibitory postsynaptic potential 

depression in rat motoneurons. J Biol Chem 277, 4945-4950. 

Urbach, V., Van Kerkhove, E., Maguire, D., and Harvey, B. J. (1996). Cross-talk 

between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog 

skin principal cells. J Physiol 491 ( Pt 1), 99-109. 

Vardi, N., Zhang, L. L., Payne, J. A., and Sterling, P. (2000). Evidence that different 

cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J 

Neurosci 20, 7657-7663. 

Veliskova, J., Claudio, O. I., Galanopoulou, A. S., Lado, F. A., Ravizza, T., Velisek, L., 

and Moshe, S. L. (2004). Seizures in the developing brain. Epilepsia 45 Suppl 8, 6-12. 

Vitari, A. C., Deak, M., Morrice, N. A., and Alessi, D. R. (2005). The WNK1 and WNK4 

protein kinases that are mutated in Gordon's hypertension syndrome, phosphorylate and 

active SPAK and OSR1 protein kinases. Biochem J 391, 17-24. 



 154 

Vitoux, D., Olivieri, O., Garay, R. P., Cragoe, E., Jr., Galacteros, F., and Beuzard, Y. 

(1989). Inhibition of K+ efflux and dehydration of sickle cells by 

[(dihydroindenyl)oxy]alkanoic acid: An inhibitor of the K+Cl- cotransport system. . Proc 

Natl Acad Sci USA 86, 4273-4276. 

Vu, T. Q., Payne, J. A., and Copenhagen, D. R. (2000). Localization and developmental 

expression patterns of the neuronal K–Cl cotransporter (KCC2) in the rat retina. J 

Neurosci 20, 1414-1423. 

Wake, H., Watanabe, M., Moorhouse, A. J., Kanematsu, T., Horibe, S., Matsukawa, N., 

Asai, K., Ojika, K., Hirata, M., and Nabekura, J. (2007). Early changes in KCC2 

phosphorylation in response to neuronal stress result in functional downregulation. J 

Neurosci 27, 1642-1650. 

Wall, S. M., and Fischer, M. P. (2002). Contribution of the Na(+)-K(+)-2Cl(-) 

cotransporter (NKCC1) to transepithelial transport of H(+), NH(4)(+), K(+), and Na(+) in 

rat outer medullary collecting duct. J Am Soc Nephrol 13, 827-835. 

Wallace, B. A. (1990). Gramicidin channels and pores. Annu Rev Biophys Biophys 

Chem 19, 127-157. 

Walz, W., and Hertz, L. (1984). Intense furosemide-sensitive potassium accumulation in 

astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb 

Blood Flow Metab 4, 301-304. 

Wang, C., Ohno, K., Furukawa, T., Ueki, T., Ikeda, M., Fukuda, A., and Sato, K. (2005). 

Differential expression of KCC2 accounts for the differential GABA responses between 

relay and intrinsic neurons in the early postnatal rat olfactory bulb. Eur J Neurosci 21, 

1449-1455. 

Wang, C., Shimizu-Okabe, C., Watanabe, K., Okabe, A., Matsuzaki, H., Ogawa, T., Mori, 

N., Fukuda, A., and Sato, K. (2002). Developmental changes in KCC1, KCC2, and 

NKCC1 mRNA expressions in the rat brain. Brain Res Dev Brain Res 139, 59-66. 

Watsky, M. A., Cooper, K., and Rae, J. L. (1992). Transient outwardly rectifying 

potassium channel in the rabbit corneal endothelium. J Membr Biol 128, 123-132. 



 155 

Williams, J. R., Sharp, J. W., Kumari, V. G., Wilson, M., and Payne, J. A. (1999). The 

neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial 

characterization of the protein. J Biol Chem 274, 12656-12664. 

Wilson, F. H., Disse-Nicodeme, S., Choate, K. A., Ishikawa, K., Nelson-Williams, C., 

Desitter, I., Gunel, M., Milford, D. V., Lipkin, G. W., Achard, J. M., et al. (2001). 

Human hypertension caused by mutations in WNK kinases. Science 293, 1107-1112. 

Winnick, R. E., Lis, H., and Winnick, T. (1961). Biosynthesis of gramicidin S. I. General 

characteristics of the process in growing cultures of Bacillus brevis. Biochim Biophys 

Acta 49, 451-462. 

Wong, J. A., Gosmanov, A. R., Schneider, E. G., and Thomason, D. B. (2001). 

Insulin-independent, MAPK-dependent stimulation of NKCC activity in skeletal muscle. 

Am J Physiol Regul Integr Comp Physiol 281, R561-R571. 

Woo, N.-S., Lu, J., England, R., McClellan, R., Dufour, S., Mount, D. B., Deutch, A. Y., 

Lovinger, D. M., and Delpire, E. (2002). Hyper-excitability and epilepsy associated with 

disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 12, 

258-268. 

Wu, W. L., Ziskind-Conhaim, L., and Sweet, M. A. (1992). Early development of 

glycine- and GABA-mediated synapses in rat spinal cord. J Neurosci 12, 3935-3945. 

Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H. J., and Fukuda, A. (2004). Cl
-
 

uptake promoting depolarizing GABA actions in immature rat neocortical neurones is 

mediated by NKCC1. J Physiol (Lond) 557, 829-841. 

Yang, T., Huang, Y. G., Singh, I., Schnermann, J., and Briggs, J. P. (1996). Localization 

of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am 

J Physiol (Renal Physiol) 271, F931-F939. 

Yin, H. H., and Lovinger, D. M. (2006). Frequency-specific and D2 receptor-mediated 

inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad 

Sci U S A 103, 8251-8256. 



 156 

Yoshimura, Y., and Tsumoto, T. (1994). Dependence of LTP induction on postsynaptic 

depolarization: a perforated patch-clamp study in visual cortical slices of young rats. J 

Neurophysiol 71, 1638-1645. 

Zhang, L. L., Delpire, E., and Vardi, N. (2007). NKCC1 does not accumulate chloride in 

developing retinal neurons. J Neurophysiol In press. 

Zhou, F. M., and Hablitz, J. J. (1996). Postnatal development of membrane properties of 

layer I neurons in rat neocortex. J Neurosci 16, 1131-1139. 

 


