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ABSTRACT 

             

 

This dissertation proposes a graphical analysis and presentation system for fitting, 

evaluating, and reporting longitudinal models in social sciences.  The graphical innovations 

demonstrated here address practical issues that arise in evaluating sequences of statistical 

models. A progression of nested or otherwise related models in a sequence creates a context for 

model comparisons. The proposed graphical methods provide the researcher with visualization 

tools to facilitate model evaluation, using data mapping and interactive document design. The 

study applies these methods to examine empirical trends of religious involvement using a 

nationally representative household sample of American youth, the National Longitudinal Survey 

of Youth, 1997 (NLSY97). Annual measures in the NLSY97 from 2000 to 2011 provided panel data 

on church attendance from approximately 9,000 individuals born between 1980 and 1984. These 

data are examined using latent curve models (LCM) to study the nature of change in religious 

involvement between ages 13 and 31. Data, code, and reproducibility instructions for this study 

are published as a GitHub repository and are available to the research community. 

https://github.com/andkov/Longitudinal_Models_of_Religiosity_NLSY97/blob/master/README.md
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CHAPTER I  

 

 

INTRODUCTION 

 

 

Overview 

 Statistical modeling has become an integral part of the scientific methodology in social 

and behavioral domains through methodological and technological developments of recent 

decades. Embedded in software technologies, statistical models have become a primary 

“window” into the world of abstract mathematical structures that are used to operationalize 

research theories. Social researchers sometimes liken research design and statistical models to 

such scientific tools as telescopes and microscopes – technologies that help them observe, 

examine, and ultimately explain phenomena behind human activity (Collins, 2006).  Statistical 

models are not palpable, like microscopes, but certainly not less real or useful. Developing this 

analogy, the present work offers a “microscope” for statistical models: graphical methods for 

conducting comparisons of multiple related models, for helping the researcher to interpret the 

results of fitting the models, and for preparing the results of such analysis for publication in the 

spirit of reproducible research.  

 The purpose of these graphical methods is to facilitate evaluation and comparison of 

statistical models. A common analytic approach in analyzing longitudinal data is to fit a sequence 

of increasingly complex models (e.g., Singer & Willett, 2003).   In practice, statistical modeling 

involves evaluating a series of model pairs, in which one model is somewhat different from the 

other. If the models are nested, each model comparison can be conceptualized as a null 

hypothesis significance test (NHST) that rules on the tradeoff between complexity differences 

between the models and differences in their performance in fitting empirical data (Rodgers, 
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2010). Examination of these comparisons informs and gives empirical grounds to the substantive 

theories developed to explain the phenomena behind the modeled data. Searching for the 

optimal model in a sequence of competitors during this process is associated with making a 

nontrivial number of model comparisons, each of which is potentially complex and messy. 

 The proposed graphical methods capitalize on the idea that statistical models “compete” 

during the estimation phase, but “collaborate” when interpreted. A better statistical fit might 

guide the researcher to the mathematical structure that reproduces the observed data patterns 

with the highest fidelity, but implications of such superiority would make sense only in 

comparison to other mathematical structures. As words help define other words, so models help 

define other models. Instead of arguing for the superiority of a single model selected as “the 

winner,” the new graphical system proposed here directs the focus to telling a more complex 

story of the entire sequence of related models, thus making them collaborate in contextualizing 

the meaning of each other.  

 This dissertation will develop a new mechanism for comparing, interpreting, and 

reporting a series of latent curve models. Although the implementation of this graphical 

approach is developed for quantitative methodologists, by application the results can assist the 

methodologist in communicating modeling results to the wider research community. By 

providing clear pedagogical value, such graphical reports of model sequences are designed to 

facilitate understanding, interpretation, and communication of statistical models by all members 

of the research team, narrowing the gap between methodologists and applied researchers. One 

of the key problems addressed by the proposed methods is the information overload that often 

accompanies projects involving multiple models. Managing multiple specifications, parameters, 

indices, conditions, and constraints can frequently hide the forest behind the trees.  That is, the 

limited resource of human attention is wasted on cognitive tasks that could be eliminated 

through intelligent report design. The reporting mechanism developed in this work gives the 

researcher the ability to effectively show how alternative models compare to some “winning” 

model, to demonstrate how “winning” is defined and justified, and to describe how model 

interpretation might change if more than one “winner” seems appropriate. 
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   Foremost, this dissertation will emphasize the importance of synthesizing multiple 

statistical models into a coherent whole that offers something greater than the sum its parts. I 

will demonstrate how an interactive system of comparisons and contrasts can create a setting 

for contextualizing the behavior and interpretation of each model in a sequence. Although it 

remains a common practice to report only the results of the “winning” model, such proclivity is 

frequently explained by technical limitations and the cost of reporting the “failed” models, rather 

than sound methodological considerations. This dissertation develops a tool for synthesizing 

“winning,” "competing," and even “losing” models into a richer understanding of the patterns 

involved in the competition. The graphical methods proposed here will assist the methodologist 

in producing more thorough, inclusive and informative model reports by offering a series of 

guides and templates to reduce the cost of similar report production. The intention of this study 

is to empower the practitioner to draw broader and more contextualized insights from their 

models, providing insight that may be difficult to achieve with standard approaches to model 

reporting.  

Model Sequences 

            To illustrate the principles behind the proposed mechanism for model reporting, consider 

bottom-up and top-down model-building strategies, especially relevant in exploratory 

analyses.  In the bottom-up (a.k.a. build-up or forward selection) approach, we start with a 

simplest possible model (1.1) and by adding terms incrementally (1.2, 1.3, and 1.4)1, we arrive at 

some model specification that satisfies us with respect to both statistical fit and interpretational 

utility.  

                                                      
1 Here I used Snijders & Bosker (2012) notation for multilevel models with i and j representing the first and second 
levels respectively. Later I will change it to t and i, to be consistent with Bollen & Curran (2006). For simplicity of 
illustration, these models were specified only partially: they represent only level-1 components, but ignore level-2 
components and the covariance structure. 
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where i and j are indices of the first and second level respectively, ijy  is the dependent variable,  

1ijX , 2ijX , and 3ijX  are independent variables,  0 j , 
1 j , 2 j , and 

3 j  are estimated weights, 

and ij  is the residual. In a more complex model estimation setting, a typical “winning” model in 

HLM/MLM (Hierarchical Linear Modeling/ Multilevel modeling) might look like (1.5),  

where i and j denote levels in this mixed effects model, 1 jW  and 
1 jZ are  second level predictors, 

and 0 ju  and 2 ju are disturbances of the random effects.  

The top-down (a.k.a. teardown or backward elimination) strategy reverses the logic and 

starts with the most complex model as reasonably possible inside the research agenda.  For 

example, we might start with the following complex structure (1.6), and then seek ways to 

simplify the structure by removing elements that did not prove useful. One can imagine a series 

of steps that could reduce (1.6) into (1.5) or into many other possible simpler structures. Each 

modeling step (within which we remove or add an element or feature) can be formulated as a 

statistical test, the significance of which would advocate for support of the modification to the 

model proposed by the step. A carefully constructed sequence of model comparisons guides 
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researchers in formulating the conclusions of the analysis and informs substantive 

interpretations of data patterns. Clearly, reporting a sequence of models, as opposed to only 

reporting the “winning” one, is more informative and thorough. 

 

            However, we quickly run into a number of problems when working with sequences of 

models. When modifications are easy to track, as in (1.3) compared to (1.2), and the number of 

elements in the sequence is manageable (e.g. 1.1 – 1.4), performing model comparisons may be 

relatively straightforward. However, this process can get out of hand very fast as sequences 

become longer and include models that are more complex. For example, a sequence of models 

that reduces (1.6) into (1.5) might have a model pair (1.7) and (1.8): 

0 1 1 2 2 3 3 0 1 1 2 2 3 3

0 00 01 1 02 2 03 3 0 0 00 01 1

1 10 11 1 12 2 1

2 20 21 1 22 2 23 3 2

3 30 31 1 3

(1.7) (1.8)
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j j j j j j

j j j j

j j j j j

j j j

y X X X y X X X

W W W u W

W W u

Z Z Z u

Z u

         

       

   

    

  

         

      

   

    

  
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Comparison between these two models tests the usefulness of the term 03 3 jW in (1.7). It takes 

some time to study the models and identify the difference, but this inspection gives only the 

most basic information about the model. Each of these models would generate estimates, fit 

statistics, residuals, and other various quantitative output that describes an estimated model, to 

say nothing of the reproduced patterns of data the model recreates. Ideally, all of these results 

would need to be compared to fully understand the influence that the term being tested exerts 
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on the overall structure. Further, this is but a single comparison in the sequence that may count 

several or even several dozen competing/collaborating models.  

            Two interconnected challenges confront the modeler when working with model 

sequences: how to represent each of the models in a comparison and how to construct a 

sequence of models so that those comparisons are most meaningful and relevant to the 

research agenda. The graphical methods proposed here help the researcher address these 

challenges, but they cannot be discussed easily independent of data. To see these challenges 

illustrated with real data from NLSY97, consider the following brief example, which will be 

elaborated in the Methods and Results chapters. 

An Applied Example 

            Consider a longitudinal multilevel model (1.10) in Snijders and Bosker (2012) notation, 

with predictors on both levels, located on the top right side of Figure 1.1, in which three time 

effects reproduce data trajectories over occasions i in individuals j.  Intercept is modeled as 

random, while other time effects are modeled as fixed. Each time effect is regressed onto the 

age difference of the individual2. Let’s say we would like to compare this model to its less 

restrictive counterpart (1.9). Identifying the difference is trivial:  the cubic term 31 jcohort in 

(1.10) disappears in (1.9). The comparison between this pair of models corresponds to an NHST 

of the 31 jcohort  prediction term in (1.10). When fitted, each of these models generates a 

collection of numeric descriptors, such as estimates and fit statistics, a partial list of which is 

given in Figure 1.1. Here, I used the lme4 R package for estimation, but one can imagine similar 

outputs from software like Mplus, SAS, SPSS and  others.   

                                                      
2 Only general familiarity with this model is required for present purposes, for detailed specification and estimation 
report of this model the reader is directed to methods (III) and results (IV) chapters of this thesis, respectively. 
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Figure 1.1 Partial Estimation results for two models:  (1.9) - left and (1.10) - right 

To determine a “better” model in this or any other pair we may refer to a sequence of 

formal (and informal) statistical comparisons. For example, nested models (as in this case) could 

be compared using a variety of criteria such as deviance, AIC, AICC, or BIC, to name a few. 
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Formally, only deviance is subjected to a direct statistical test, such as the chi-square difference 

test 2

0 1 1 0( ) ~ (df )D D q q   , which is frequently used as  a starting point in a sequence of 

model comparisons. This test is given as a t-statistic (treated as a z-value in interpretations) of 

cohort in (1.10): parameter estimate = 0.2509412, standard error = .0262713, t-value = 9.55.  

Other indices (such as BIC, AIC) have meaning only in comparison with rival models3.  In 

the context of model comparison, the model with the lower AIC or BIC is better fitting, and the 

value of deviance indicates the total unadjusted misfit computed from the likelihood function. 

Model (1.10) outperforms model (1.9) in terms of absolute fit (D(1.9) =103,884.3> D(1.10) 

=103,881.3), as would be expected from a more complex model (i.e., a model with more 

parameters).  However, after adjusting for parsimony (AIC(1.9)= 103,902.3 > AIC(1.10) =103,901.3) 

the model (1.9) seems to be a more reasonable choice, but not when model performance is 

adjusted for sample size (BIC(1.9)= 103,977.4 <  BIC(1.10) =103,984.8).  A significant t in the formal 

test (t = 9.55) justifies the increase of model complexity involved in adding  31 jcohort  to 

(1.9).  However, it is important to note that the evaluation of differences in relative information 

criteria can be informed by the performance of other models in the sequence; models help us 

define and interpret other models.  For example, knowing how much AIC/BIC changed when the 

term 21 jcohort  is removed from (1.9) would contextualize the meaning of the difference 

between AIC/BIC in comparing (1.9) and (1.10). 

Fit and information criteria, however, only describe how well a model does something 

(predicts values) per unit of complexity (df); for what a model actually is, we must refer to the 

estimated parameters, predicted values, residuals, and other indices. To inspect how adding

31 jcohort  to (1.9) disturbs the values of the estimated effects, their precision, and covariations 

one would have to compare the values for the corresponding estimates: 

                                                      
3 Many information criteria and fit indices have been developed:  GFI, AGFI, non-normed index Delta2 (Bollen, 
1989), normed index Rho1(Bollen, 1986), NFI (Bentler & Bonett, 1980) , CFI (Bentler, 1990), RNI (McDonald & 
Marsh, 1990), RMSEA (Steiger & Lind, 1980), each placing its own emphasis in the definition of the “best” model. 
Depending on model type, data, and research agenda at hand researchers may need to choose specific indices, 
however most software systems report at least deviance, AIC, and BIC. The present thesis uses these three 
quantifications of model performance. 
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Intercept(1.9) = 2.8647540 > Intercept (1.10) = 2.8383501 

timec(1.9) = -0.1148575 < timec(1.10) -0.0777854 

timec2(1.9) = 0.0200345 > timec2(1.10) =  0.0112332 

... 

and so on, until the desired list of value comparisons is exhausted. Evaluating differences in the 

values of the descriptors in model pairs is an arduous, sequential task. The graphical methods 

introduced here expand this operation from one involving only minute inspection of the outputs 

of model estimation, to one including a visual processing exercise. 

Graphical Methods for Model Sequences 

            Figure 1.2 is a linked screenshot of a prototypical model sequencer, where model 

specification (partial) of (1.10)4 is given  along with the selected estimation output,  graphs of 

predicted individual trajectories (thin red lines) in the bottom left, and a graph of model 

performance indices in the bottom right. Clicking the link “m6R1” in the guide menu on the left 

margin of the screen switches the view to the report of the corresponding model, specified by 

(1.9). This interactive report will be discussed and illustrated in detail by using the NLSY97 data in 

the Results chapter. For simplicity of the present demonstration, I have selected the point 

estimates of the standard deviation of the residual, and the fixed effects and the standardized 

covariance matrix for the random effects. The graph in the bottom right shows raw deviance of 

all models in the sequence, highlighting the model m10 (known as m7R1 in the model span), 

currently “under the microscope.” 

                                                      
4  The models used in the study were given descriptive names: (1.10) is referred as m7R1, while (1.9) corresponds to 
model m6R1 in the model span. The Results chapter will elaborate on the convention for model names.  
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  Figure 1.2 Screen shot of a prototypical LCM model sequencer 

Clicking between m7R1 and m6R1 (one can use hot-keys “Alt + Left/Right Arrow” for 

smoother transition) we immediately make several useful observations. First, by switching the 

views we can immediately identify the distinction between the models, allowing our eye to be 

drawn to the movement on the screen as added elements appear in the specification. Second, 

we notice that estimates for the fixed effects do change between the models, though not very 

much. Third, by studying the graph of the fit indices, the researcher can give relative meaning to 

the model performance indices. We see that although m7R1 improves on m6R1, this 

improvement is relatively small compared to changes from m4R1 to m5R1, yet rather substantial 

compared to other pairs of models. Finally, one can see how predicted individual trajectories 

(bottom left, thin red lines) change with the introduction of the extra predictor: as expected 
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from the minuscule point estimate, the change in the shape of trajectories is barely noticeable, 

compared to other model pairs.  

            This demonstrated graphical method of model comparison conveyed a lot of relevant 

information about latent curve models very quickly. Traversing the constructed sequence gives 

us the vocabulary to describe the latent construct of the study: in this case, the shape of change 

of religious attendance.  Naturally, the present example can be extended to include other results 

of model estimation interesting to the researcher, for example, correlations and standard errors 

of the fixed effects (see the output in figure 1.1). Other statistical models (mixtures, hazard, etc.) 

would call for different ensembles of model manifestations to optimally represent complexity 

and different types of modeling steps from which to construct meaningful sequences. In general, 

the graphical methods for sequencing longitudinal models will look different from one statistical 

method to another, but will be united by three design principles:  

1)      Ensembles of model manifestations must fit onto the same surface area across models  

2)      Only differences between models should be noticeable during alternation of two views 

3)      Choosing models for viewing must occur via interactions with page elements 

           As mentioned earlier, two main challenges arise from working with model sequences: 

how to represent each of the models in a comparison and how to construct a sequence. The 

present dissertation offers possible solutions to these challenges for LCM, leaving mixture 

growth, Markov, and other models for future work. The design principles listed above address 

these challenges, making a falsifiable statement: “Implementation of these principles in reports 

of statistical models offers analytical opportunities superior to those of traditional methods of 

analyzing sequences of longitudinal models”. The rest of this dissertation provides an evaluation 

of this claim. 

Organization and Chapter Summary 

            Recent reviews of quantitative methodologies for longitudinal data (e.g. Collins, 2006) 

point to an emerging challenge associated with the increasing complexity of statistical models. 

As models become more powerful and nuanced, they naturally grow more difficult to 
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understand, operate, interpret, and discuss. The challenge intensifies when entire sequences of 

models are estimated and compared. The present dissertation offers graphically-oriented 

methods to structure and analyze Latent Curve Models (LCM) . 

          Chapter II, Literature review, helps us recognize the general trend of increasing complexity 

in modern modeling methods. There, I expose the problem that my graphical methods address. 

After reviewing trends in statistical modeling in general, I focus on longitudinal models in the 

social and behavioral sciences, giving a brief overview of the methodological field for the last few 

decades, from which statistical methods were selected for the present study. Chapter II 

concludes with a brief overview of past published research articles and statistical analyses of 

religiosity, to provide context and rationale for the empirical research reported here. 

          Chapter III, Methods, gives a detailed description of the sample, data, and methodology 

used in the analyses. All analyses and visualizations in this dissertation can be reproduced with 

publically available code and templates; therefore, special attention was given to preparing the 

reader for reproducing these methods with their own data. First, I describe the NLSY97 sample, 

its data structure, and temporal design. Then, variables selected for analysis from the NLSY97 

database are discussed with the help of a computerized databox, following Cattell (1952). 

Transformations of the clean data in preparation for modeling the focal variable (church 

attendance) are described. Finally, I specify LCM in its general form.  

          Chapter IV, Results, reports a sequence of latent curve models fit to the data of church 

attendance in the NLSY97 sample. There, I describe and illustrate the report mechanism for 

presenting a sequence of statistical models compactly and efficiently.  I demonstrate how 

models compete in determining the “best” model and how they collaborate to arrive at 

meaningful substantive interpretations of data structures and predicted values.   

          Chapter V, Discussion, reviews the effectiveness of the proposed graphical method, 

discusses the way the graphical results informed the analysis of the NLSY97 religiosity data, and 

draws some general conclusions for substantive research on religiosity. Next, the value of 

reproducible research and dynamic reporting of the model sequences is discussed.  I conclude 

with discussion of limitations and ideas for future research.  
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

The Challenge of Model Complexity 

Complexity on the rise 

            Quantitative methodology offers a certain kind of active and interesting challenge. In the 

last 50 years, the variety and amount of data being collected on human-related activity have 

been accelerating. Technology has made it easier to collect, process, and share data. A 

remarkable variety of methodological approaches has been developed to accommodate new 

types and amounts of data. Some of those approaches are models, which have become 

numerous, specialized, and complicated. Consequently, human limitations in attention, 

perception, and information processing have become relevant in working with models.  

            Contributing to the challenge is the particular difficulty associated with the measurement 

of the primary subject matter of social science, behavior. A number of years ago, in a discussion 

concerning the role of methodology in the future of psychology, Raymond Cattell (1988, p. 5) 

noted that “[in order] to overcome the difficulties due to unusually complex subject matter, it is 

now necessary for psychologists to become unusually explicit and sophisticated about 

methodology.” Indeed, since then psychologists have become substantially more sophisticated 

with their methodology than they were in 1988, to the degree that in some (perhaps many) 

cases it is now prohibitive, if not impossible, for non-experts to appreciate, much less to employ, 

the methodological fruits of their labors.   

            Longitudinal models are at the forefront of this challenge because they operate on a very 

general (and important) data structure in social research.  Any statistical model in psychology 

can be thought of a special case of its longitudinal extension. Considering the pivotal role 
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longitudinal designs play in establishing causality (Pearl, 2000; Rubin, 1974; Shadish, Cook, & 

Campbell, 2002), it is understandable why addressing methodological issues in developmental 

models subsumes a great variety of other analytical instruments. This section will discuss the 

challenge of methodological complexity in the social sciences.  In later chapters, I will 

demonstrate some new graphical methods for model comparison that show promise in working 

with some specific longitudinal models. I apply recent technological advances to produce a visual 

integration of various model manifestations. This allows for quicker and easier evaluation and 

management of statistical models. To guide the development of such technological innovation I 

define three directions in which statistical models in general, and longitudinal models 

specifically, have been evolving.   

Types of complexity 

            First, models have become more numerous (though in some cases only by appearance). 

Many authors point out the wide range of options in analytical strategies available to 

developmental researchers (Collins, 2006; Cudeck & Harring, 2007; McArdle, 2005). 

Understandably, a wide variety of tools to answer a broad spectrum of questions can create 

either clarity or confusion. Card and Little (2007, p. 207) noted in the introduction to the special 

issue of International Journal of Behavioral Development on longitudinal modeling: “Given [this] 

tremendous amount of literature on longitudinal data analysis, the problem for developmental 

researchers is not a lack of information but rather an over-abundance of information.” Increasing 

specialization of models has produced an expansive and elaborate vocabulary, often laden with 

historical and/or disciplinary baggage. The disparate terminology that has been emerging, 

instead of clarifying the distinctions among the models, arguably contributes to the confusion 

instead of clarifying it.  For example, Raudenbush  (2001b) lists model names that can be used to 

discuss the same approximate concept from different perspectives :  "covariance components 

models,"  "hierarchical models,"  "latent curve analysis,”  “latent growth models,”  “mixed 

models,” “mixed linear models,” “multilevel models,”  “multilevel linear models,” “random 

effects models,” “random coefficient models,” and "structural equation modeling." Gibbons, 

Hedeker, and DuToit (2010) give additional approximate synonyms, adding "two-stage models," 

"empirical Bayes models," and "random regression".  Frequently, models with different names, 
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forms, and notations reveal themselves under scrutiny to be mathematically equivalent. 

Raudenbush  (2001a) pointed out that disparate terminology can frequently be traced to 

software, rather than conceptual differences.   

            Second, models have become more complex. Here, a literal meaning of “complexity” is 

invoked: the number of elements of which the whole is comprised. Encouraged by the ease and 

affordability of estimation, even cross-sectional models in econometrics, for example, may 

employ hundreds of predictors in a single regression equation.  A typical model in psychometrics, 

to take a less severe example, might incorporate a few dozen variables, although psychometric 

models defined at the item level may also include hundreds of elements. Of course, once placed 

in a longitudinal setting the number of elements is multiplied by at least the number of time 

points. Larger numbers of variables are not only a chore to handle during estimation, but also a 

challenge for interpretation. Interpretations are supposed to simplify the precision of the 

mathematical structure into patterns understandable by human language. Curran, Obeidat, and 

Losardo (2010) articulated: “And as any developmental researcher can attest, statistical models 

for longitudinal data can become exceedingly complex exceedingly quickly, both in terms of 

fitting models to data and properly interpreting results with respect to theory” (p. 122).   

            Third, models have become exceedingly sophisticated (in a manner that is distinct from 

complexity). Here, model sophistication implies some system of constraints by which 

components are united into mechanisms for generating predictions. Multiple components of a 

very complex model can nevertheless be united in a structurally straightforward fashion, as, for 

example, in a multiple regression with a large number of predictors. Others, like growth mixture 

models and dynamic item response theory, for example, offer more intricate ways of combining 

equation elements. 

            The concern about increasing inaccessibility of modern modeling methods by the broader 

community of social scientists is rising in both methodological and applied areas. The 

mathematical and programming expertise required to build, estimate, and interpret statistical 

models frequently becomes an obstacle for applied researchers, whose data analytical skills 

understandably lag behind those of professional methodologists. In addition to technical 
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expertise, researchers must possess experience and be willing to invest a considerable mental 

effort to make sense of models and exploit their inferential potential fully.  The more 

sophisticated a model is, the more difficult it is to specify, estimate, and communicate its 

findings. Thus, model complexity and sophistication are at constant odds with the ease and 

transparency of inference: “The challenge we face is that we must carefully balance the 

complexity of our theoretical models with the requisite complexity demanded by the empirical 

evaluation of our theory” (Curran & Willoughby, 2003, p. 581).  

            Marketing offers a useful analogy to modern quantitative methodologists:  the success of 

a “product” (i.e. methods, tests, software) depends not only on its utility, but also to a significant 

degree on the ease with which it can be used by the wide public. A microwave that requires a 

Ph.D. in mechanical engineering to operate will not sell well despite its out-of-this-world 

performance.  Within our social/behavioral science research domain, we want the model to be 

complex enough to accommodate the research agenda, but simple enough to be attractive to 

and usable by practicing researchers.   Theoretical developments in methodology, changing data 

culture, and evolving demands of substantive social research push for a larger number of models 

that are more complex and more sophisticated. These trends expose an important vulnerability 

of such confluence: models become exceedingly difficult to operate. 

            How can this challenge of methodological complexity be resolved, managed, or at least 

addressed? Some solutions are emergent: taxonomic devices and conceptual frameworks 

organize the methodological field into convenient clusters; I give a brief overview of them in the 

next section. Then, I develop and demonstrate a visual system of information management, 

designed to address the challenges in modern modeling methods for longitudinal data, using 

LCM as an example. Collins (2006, p. 508) drew an analogy: “In the natural sciences, the 

investigator may choose an instrument, such as a microscope, to provide a view of the 

phenomenon of interest. In the social and behavioral sciences, research design is a similarly 

important instrument that provides a view of the change phenomenon of interest.” In certain 

ways, graphical methods are even better analogies to microscopes than are research design 

principles and statistical models, because they are directly visual.  The present work develops 
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and presents a graphical microscope for examination of statistical models, the data they 

reconstruct, and the relationship between the two.   

            The microscope analogy is a rough one; after all, modern microscopes not only magnify, 

but also equip researchers with additional capabilities, including scales to evaluate size of the 

examined objects, controllers of zoom and spectrum of light, and even cameras to take stills and 

videos. More elaborate microscopes (e.g. fMRI, NIRS, astronomic spectroscopes) demonstrate 

that it is not sufficient to merely perceive the patterns in order to be well equipped to interpret 

them.  Enhancing the tools that enhance the senses is frequently necessary to uncover the 

patterns and the meaning behind them. In working with complex abstractions, we need the 

ability to enhance our perception of them.   

            Unlike previous (and overlapping) developments of interactive data visualization tools 

(DataDesk (Velleman, 1989), ViSta (Young & Bann, 1996), and Mondrian (Theus, 2003)) the 

present study does not offer a  tool for conducting data analysis, which is left for specialized 

software. Instead, the focus is on expanding interpretation by exploring the sequences into 

which they can be organized. The methodological scope of the current work is limited to latent 

curve models, offering a proof of concept, which can be extended to other statistical methods in 

the future.  This choice was informed by a review of relevant methodological literature in social 

sciences for the past several decades. The next section reviews several ways to organize the 

rapidly evolving field of longitudinal modeling.  

Review of Longitudinal Methods 

A brief overview of the main literature on longitudinal modeling in social sciences 

revealed a variety of ways to organize statistical tools that model change. For historical accounts 

of longitudinal models, the reader is directed to Bollen (2007), Bollen & Curran (2006), and 

Fitzmaurice & Molenberghs (2009). Representative examples of structuring the field of 

longitudinal modeling can be found in recent review articles (Card & Little, 2007; Gibbons et al., 

2010; Hertzog & Nesselroade, 2003; McArdle, 2009). Celebrating the abundance of recently 

developed statistical models of change, Collins (2006, p. 509) remarked: “With an 

unprecedented array of statistical models from which to choose, today’s behavioral scientist has 
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an excellent chance of identifying and applying a statistical model well suited to the theoretical 

model of interest” (p 509).  However, as was discussed in the previous section, handling this 

“unprecedented array” is becoming a challenge.   

Despite the variety of nuances, several ways to distinguish longitudinal models were 

especially prevalent. Certain features, such as the scale of latent variables, the scale of observed 

variables, and scale of change itself help think through the selection of possible models for 

operationalizing theoretical models of change.  This section reviews several taxonomies that help 

motivate the use of latent curve methods I present in this paper and sets up the stage for 

extending the graphical methods to other family of models.  

The first taxonomy that will be reviewed comes from Little, Preacher, Selig, and Card 

(2007).  They placed a ubiquitous taxonomic device, type of data, at the pivot of organizing 

general SEM models (Figure 2.1), distinguishing between the scale of latent and observed 

variables in the model. Their table illustrates how the options for analytic strategy changes with 

reconceptualization of the latent trait or with the transformation of the data that enters the 

statistical model. Such decision can be made during both the design and/or the analysis phases 

of a research project. The bottom-right quadrant hosts probably the most populous category: 

considered as reformulations of each other (Curran, 2003), latent curve and random coefficient 

models are considered to be “currently the most widely used longitudinal data analysis 

technique in psychology” (Kuljanin, Braun, & DeShon, 2011, p. 1).  

The taxonomy offered by Kaplan (2008), focused on the case when both latent and 

manifest variable are categorical, portrayed in the top-left quadrant of Little et al. 

(2007).  Elaborating on works of Langeheine (1994; Langeheine & Van de Pol, 2002) the 

taxonomy in Figure 2.2 shows how various statistical models of stage-sequential change can be 

represented with a diagram, in which arrows indicate that the model at its end is a special case 

of the models at its origin. The most general model here, mixture latent Markov, when applied 

to studying continuous growth is known as the general mixture model (Muthén , 2004). This 

observation helps with describing the relatedness of GMM and Markov/EMOSA models when 

the future research is discussed in Chapter V. 
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Figure 2.1 Screen shot from Little et al. (2007) 



20 
 

           Figure 2.2 Screen shot from Langeheine & van del Pol (2005) - top, and Kaplan (2008) - 
bottom. Arrows represent special cases 

Muthén  and Curran (1997) demonstrated how the history of academic disciplines 

shaped the development and classification of longitudinal models.   They distinguished three 

academic traditions of particular importance: biostatistics, education, and psychometrics. Each 

of the disciplines framed the questions in the language relevant to its own agenda. Not 

surprisingly, the models that provided answers to these questions had to reflect the 

idiosyncrasies of the respective discipline. Key terms, references, and software are organized in 

Table 2.1.    

http://statcanvas.net/thesis/II_litreview/2_LitReview_Figure_2_2.png
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Table 2.1 Created from classification of longitudinal models by Muthén  & Curran (1997) 

  Biostatistics Education Psychometrics 

Terms Repeated measurement 
Random-effects ANOVA 
Mixed model 
Random coefficient 
modeling. 

Slopes-as-outcomes 
Multilevel modeling 
Hierarchical linear modeling 
  

Latent curve 
analysis 
Latent variable 
structural equation 
modeling. 
  

References Rao (1958) 
Laird and Ware (1982) 
Diggle, Liang, and Zeger 
(1994) 
  
  

Cronbach (1976) 
Burstein (1980) 
Goldstein (1987) 
Bock (1989) 
Bryk and Raudenbush 
(1992) 
Longford (1993) 
  
  

Tucker (1958) 
Meredith and 
Tisak (1990) 
McArdle and 
Epstein (1987) 

Software BMDP5V 
SAS PROC MIXED, MIXED, 
and MIXOR. 
  

MLn 
HLM 
VARCL  
  

Amos, CALIS 
EQS,  LISCOMP 
L1SREL, MECOSA 
MX 

 

The last taxonomy in this overview comes from Collins (2006), who surveyed 

representative longitudinal models, organizing them with respect to the scale of the outcome 

and the temporal design of the study. While the Little et al. (2007) taxonomy used the scales of 

manifest and latent variables, Collins considered how the scale of the time itself influences the 

choice and/or development of the statistical model. In particular, she distinguished between two 

general types of longitudinal data: panel (4-8 time points) and intensive (20 and more time 

points).  She also articulated the principle that is becoming popular in modern methodology: a 

good longitudinal research design seamlessly integrates a theoretical model of change, temporal 

design, and a statistical model of change. The theoretical model describes the nature of change 

in the modeled phenomenon, discussing such aspects as shape, periodicity, and the scale of 

change, as well as the nature and role of covariates.  The temporal design structures 

observations in time, describing timing, frequency, and spacing of measurement points. The 

statistical model tests a specific mathematical operationalization of the theoretical model against 
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the observed structures of data. The models that Collins (2006) chose to exemplify her 

taxonomical categories are organized in Table 2.2. 

A simple longitudinal model may have different “maps” of how it can be extended, 

depending on what assumptions we are willing to make or what questions are driven to answer. 

For example, “slope-as-outcome” model, random effects ANOVA, or unconditional growth model 

may offer different potential for extensions, despite being very similar. With this in mind, the 

reviewed taxonomies should not be approached as ontological statements of “what is” in the 

field of quantitative methodology, but rather as roadmaps to remind the researchers what their 

model can become under specific conditions. The statistical model that I chose to illustrate my 

sequence reporting technique maps well into the reviewed taxonomies:  One can easily locate 

and contextualize LCM in each of them. Such versatility of relatedness offers a hope that my 

graphical methods can be extended to other related models as well.  This subsection has 

reviewed taxonomies of statistical modeling methods.  The next subsection offers a brief review 

of statistical models of religiosity.  
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 Table 2.2 Created from the survey of longitudinal models by Collins (2006) 

Theoretical Model Scale of Outcome and Time 
Calendar effect 
Periods/cycles 
Shape of change 
Time variant covariates 
Time invariant covariates  

Temporal Design Timing 
Frequency 
Spacing 

Statistical Model   
  Change in Continuous Variable Movement between states 

Panel Design MLM/HLM & SEM/LCM 
Raudenbush (2001a)   
McArdle and Epstein (1987) 
Meredith and Tisak (1990) 
  
PIECEWISE & MULTIPHASE 
Cumsille, Sayer, and Graham (2000) 
Cudeck and Klebe (2002) 
  
AUTOREGRESSIVE & HYBRID 
(Bollen & Curran, 2004) 
McArdle and Hamagami (2001) 
  
Growth Mixture Models 
(D. Nagin and Nagin (2005); Daniel S 
Nagin (1999)) 
D.S. Nagin and Tremblay (2001) 
Muthén and Muthén (2000) 
Muthén (2001) 

DISCRETE-TIME SURVIVAL ANALYSIS 
D. R. Cox (1972) 
Singer and Willett (2003) 
Singer and Willett (2003) 
  
LATENT TRANSITION ANALYSIS  
Langeheine (1994) 
Lanza, Flaherty, and Collins (2003) 
Lanza, Collins, Schafer, and Flaherty (2005) 
Lanza and Collins (2002) 
  
  

Accelerated Panel 
Design 

Bell (1953) 
McArdle and Hamagami (2001) 
Duncan, Duncan, and Hops (1996) 
Miyazaki and Raudenbush (2000) 
  

  

Intensive 
Longitudinal 
Design 

FUNCTIONAL DATA ANALYSIS 
Fan and Gijbels (1996) 
Ching, Fok, and Ramsay (2006) 
Li, Root, and Shiffman (2006) 
  
  
DYNAMICAL SYSTEMS 
Boker and Graham (1998) 
Boker and Nesselroade (2002) 
Ramsay (2006) 
  

POINT-PROCESS MODELS 
D. Cox and Lewis (1966) 
Cressie  
P. J. Diggle and Diggle (1983) 
Lewis (1972) 
Rathbun, Shiffman, and Gwaltney (2006) 
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Modeling Religiosity 

            The literature in psychology and sociology links adult and adolescent religiosity to positive 

and negative behaviors and outcomes. Studies abound exploring the association of religiosity 

with substance use (Mason & Spoth, 2011; Sanchez, Opaleye, Chaves, Noto, & Nappo, 2011; 

Vaughan, de Dios, Steinfeldt, & Kratz, 2011) , sexual behavior (Rostosky, Wilcox, Wright, & 

Randall, 2004), gambling (Casey et al., 2011), delinquency (Desmond, Soper, & Kraus, 2011), 

depression treatment (Schettino et al., 2011), community service (Smith, 2003), identity 

formation (Puffer et al., 2008), educational outcomes (Hakin Orman, North, & Gwin, 2009), 

coping (Desrosiers & Miller, 2007), and marital satisfaction (MacArthur, 2008; Orathinkal & 

Vansteenwegen, 2006), to name just a few of the most recent works.  For meta-analysis on the 

role of religiosity and positive and negative behavioral outcomes see Cheung and Yeung 

(2011).  However, in most cases such studies focus on religiosity as a predictor or explanatory 

factor for other behaviors of interest, rather than developing models of religiosity itself. 

            In particular, the change in religiosity during the transition from adolescence into 

adulthood has only occasionally been treated within developmental psychology until recently 

(King & Boyatzis, 2004). The stage of life between 18 and 25 years of age, identified by Arnett 

(2000) as "emerging adulthood," is associated with substantial dynamics in identity formation 

(Nelson & Barry, 2005),  neurological and cognitive development  (Steinberg, 2005), as well as 

transformation of the social environment.  The amount and multidimensionality of change 

experienced by individuals in this period clearly calls for longitudinal modeling, with only a few 

examples in the literature (Desmond et al., 2011; Petts, 2009; Uecker, Regnerus, & Vaaler, 

2007).  Otherwise, most studies addressing religiosity of adolescents and emerging adults were 

either purely cross-sectional, or contained but a few waves of observations, or used small, 

nonrepresentative samples.  In addition to these methodological shortcomings, as Desmond et 

al. (2011) noted, there exists “the lack of strong developmental studies that examine how 

adolescents’ religious attitudes and behaviors grow or decline over time.” The empirical portion 

of the present study helps to fill this gap by analyzing religious attendance of a nationally 

representative sample of American households (the NLSY97) in longitudinal detail, modeling 

twelve rounds of panel data.  
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            Most research on acquisition, transmission, and change of religious beliefs and practices 

operates in an ecological framework, identifying relevant socializing agents.  The influence of 

socialization in transmission and development of religiosity among adolescents and emerging 

adults is well recognized (Hill, 2011; M. D. Regnerus, Smith, & Smith, 2004; Vaidyanathan, 

2011).  Among the agents of socialization, two classes are most apparent: familial and extra-

familial. The  role of parents (Day et al., 2009; Milevsky, Szuchman, & Milevsky, 2008), mothers 

(Hood Jr, Hill, & Spilka, 2009), and fathers (Wilcox, 2002) in transmission of religious beliefs are 

linked to both formation of religious identities in childhood and religious practices in young 

adulthood.  The role of siblings as socialization agents, however, is yet to be explored 

(McNamara Barry, Nelson, Davarya, & Urry, 2010). The models that look at transition of 

religiosity between generations include Myers’ interactive model of religious inheritance (Myers, 

1996), the intergenerational transmission model (Bengtson, Copen, Putney, & Silverstein, 2009), 

and a broader model of religious socialization (Martin, White, & Perlman, 2003).  Inheritance 

models have been enriched by studies adopting an evolutionary perspective (Weeden, Cohen, & 

Kenrick, 2008), elaborating on the role of gene-environment interaction in the family context on 

formation of religious behavior and mate-selection mechanisms that increase the prominence of 

religious practices in the population (Rowthorn, 2011).  Among socializing agents outside of the 

family, researchers have studied other adults: mentors in college (Cannister, 1999), peers 

(Gunnoe & Moore, 2002; Schwartz, 2006), and media (Clark, 2002; Pardun & McKee, 1995), an 

influence that Arnett (1995) suggested is a type of “self-socializing” influence.  For a broad 

discussion of themes in adolescent religiosity, the reader is referred to a special issue of Applied 

Developmental Science (Volume 8, 2004), and the latest journal-article review of the field 

(McNamara Barry et al., 2010). 

            It is well documented that religious involvement declines during transition from 

adolescence into young adulthood (M. Regnerus, Smith, & Fritsch, 2003; Smith & Snell, 2009). 

Stoppa and Lefkowitz (2010), for example, found that during the first three semesters of college, 

religious attendance declines across demographic conditions and religious affiliations, heavily 

mediated by the latter.  With approximately  62% of American high school graduates entering 

institutions of higher education, college experiences play an important role in forming religious 
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beliefs and practices emerging during early adulthood (Braskamp, 2008; Milevsky et al., 2008; 

Uecker et al., 2007). However, as the religious participation undergoes substantial change in 

these years, religious beliefs themselves do not (Desmond et al., 2011). In fact, many researchers 

have found that the importance of one’s religion become greater during this time (Astin & Astin, 

2003). Although it was evidenced that the importance of one’s religion declined since 1990 

among youth from most industrialized nations, American adolescents and emerging adults stand 

as exceptions to the global secularization trend (Inglehart, 2004). The current study models 

attendance of religious services; all interpretations of the trends presented within this study 

must be limited to the behavioral component of the religiosity construct. For a thorough 

discussion of current trends in conceptualizing and measuring religiosity, see DeHaan, Younker, 

and Affholter (2011).  

            The abundant cross-sectional evidence for decline in religious involvement during 

emerging adulthood, however, does not result in strong developmental theories explaining the 

nature of this change. Cross-sectional data simply do not provide the support for theoretical 

developments that come from representative samples that combine behavioral and 

psychological measures of religiosity over multiple time points. Religiosity as a construct offers 

researchers unique challenges in data collection that the field began to address only recently, 

most notably with the National Study of Youth and Religion (Smith, Denton, Faris, & Regnerus, 

2002). The present study contributes to this effort by offering an in-depth look at the changes in 

religious attendance using a large number of time points and a nationally representative sample. 

With rare exceptions (e.g. Day et al., 2009) the utility of the NLSY97 sample has been untapped 

by the field of religiosity research.  
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 CHAPTER III 

 

 

METHODS 

 

 

NLSY97 Sample  

            The current study uses the data from the NLSY97 study, which is a part of a larger effort of 

the National Longitudinal Surveys NLS. NLSY97 is a nationally representative sample of 

households including approximately 9,000 participants. The NLSY97 was based on a household 

probability sample in which all adolescents between certain ages were surveyed within sampled 

households.  Selected individuals, born between 1980 and 1984, were 12 to 16 years old as of 

December 31, 1996. They were interviewed annually, starting in 1997 and continuing until the 

present.  

            As of the current date (April 2014), there are 15 publically available rounds of NLSY97 data 

(1997-2011), the reports for the other rounds are still to be released. The present study focuses 

on the span of 12 time points (2000 – 2011) for which an uninterrupted measure of church 

attendance was taken. We follow American youth starting in their teens (13-17 years of age) 

until early adulthood (27-31 years of age).  Figure 3.1 shows the structure of NLSY97 

measurements using two metrics of time (wave and age) and two data formats (wide and long).  

http://www.bls.gov/nls/nlsy97.htm
http://www.bls.gov/nls/
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Figure 3.1 Overview of the age-period-cohort structure of the NLSY97 



29 
 

Data and Measures 

Selected variables 

            Religiosity is a multifaceted construct and frequently calls for a psychometric scale to be 

measured properly (Rohrbaugh & Jessor, 1975). Psychometric scales of religiosity consist of 

many (sometimes dozens) of questions that span the multidimensional surface of the construct. 

Although psychometrically sound, such measures can be prohibitively expensive to administer in 

longitudinal studies. The NLSY97 contains a few items mapping into the domain of religiosity; a 

description of them follows.  

            The items of the NLSY97 that were available to operationalize religious involvement for 

this study can be conceptualized in relation to two dimensions from Cattell's (1966; 1988) 

databox, shown in Figure 3.2

 

Figure 3.2 Databox slice of variables selected from the NLSY97 for analyses 

Variables on vertical dimension and occasions on horizontal intersect over grey-filled boxes 

displaying the year of the wave for which data are available. Empty cells indicate that the item 

was not on the NLSY97 questionnaire in that round. The variable "attendance" is marked by red 

in Figure 3.2 to indicate that this will be the primary quantification of religiosity in the statistical 

http://statcanvas.net/thesis/databox/index.html
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models used in this study. This figure can provide guidance to future studies using the NLSY97 to 

study expanded operationalizations of religiosity. 

            The variable dimension of the databox slice is annotated by three identifiers adjacent to 

the left of the grid. First is the “Variable title”, the verbatim item label from NLS Investigator. The 

column titled “Codename” gives the short name of the variable used in the R code that 

accompanies the statistical analyses.  “Units” describes the scales used to measure the variable.  

            The light grey background highlights the variables related to religion and spirituality.  The 

first section of items (attendPR, relprefPR, relraisedPR) gives data on the religiosity of the 

parents of the respondents, whose households were sampled into NLSY97. One of the 

considered perspectives on religiosity, the channeling hypothesis, suggests that parents pass the 

meme of religiosity concepts onto the children. These three items help evaluate this hypothesis 

and explore the generational association in religious behavior.  The largest grey section lists the 

items related to the religiosity of the youth, describing their religious behaviors (relpref, attend, 

pray, decisions) and attitudes (values, todo, obeyed, bornagain, faith).  

            Context variables and covariates are on white background. The top section gives basic 

demographics: the month (bmonth) and year (byear) of birth, sex (sex), race (race), as well as the 

indicator whether the individual is a member of the cross-sectional sampling or a special 

oversample of minorities (sample).  Two variables measuring age are located between the 

religiosity sections: age at the time of the interview in months (agemon) and age in years 

(ageyear). Those are not derivatives of each other, but, understandably, are closely related 

(details on the measures of age in NLSY97 are given in the Results chapter). At the bottom are 

self-reports on emotional wellbeing (calm, blue, happy, depressed, nervous) and media activities 

(internet, computer, tv) of respondents.  To review the original questionnaire cards for the 

NLSY97 survey, as well as descriptive statistics for the selected variables, see the Descriptives 

section in the Results chapter. Although not all variables described here are actually used in the 

models of this study, I give context to show what NLSY97 has to offer in testing substantive 

theories about change in religiosity, perhaps for the future studies. I explore these directions in 

the Discussion chapter.  
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Data structures 

            All models in the study are applied to the same data – records of self-reported church 

(worship) attendance from 2000 to 2011 (indicated in red in Figure 3.2). The graphical and 

syntactical expression of the models and their properties used in present work relies on good 

understanding of the data structures. This section describes the focal dataset and prepares the 

way for discussing the research methodology to follow. A report in the Appendix narrates the 

steps in data preparation starting with accessing the gateway to NLS data online (NLS Web 

Investigator) and ending with the production of a groomed dataset, used as the starting point for 

each modeling method.    

            The dataset produced by the report in the Appendix directly relates to the databox slice in 

Figure 3.2. However, to match the data structures required by the estimation routine, the 

databox slice was transposed, distributing variables on the horizontal axis.  A new column 

variable year placed the wave values, displayed in the grey boxes of the databox slice, onto the 

vertical dimension. As displayed in Figure 3.3, it separated two kinds of variables: those whose 

values do not change with time and those measured at multiple occasions. This distinction will 

be of convenience in later discussion of statistical models.  

            The dataset in figure 3.3 is referred to as dsL throughout this text and the accompanying R 

code.  It defines the scope of the NLSY97 data used in the current study and has a direct 

correspondence to the databox slice from Figure 3.2. 

 

Figure 3.3 Generic dataset used in the current study, view for one respondent. 

  All models work with the same primary outcome (church attendance) and use time and 

the age of respondents to predict its change. These data are contained in four columns of dsL, 

https://www.nlsinfo.org/investigator/pages/login.jsp
https://www.nlsinfo.org/investigator/pages/login.jsp
http://statcanvas.net/thesis/III_methods/3_Methods_Figure_3_3.png
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which are subset in Figure 3.4: id, byear (birth year of respondents), year (survey year) and 

attend (church attendance, the outcome measure). The latter item first appeared in NLSY97 only 

in 2000, so years 1997-1999 are omitted. Extending this structure, I express statistical models, 

connecting them to the code that estimates them, in the spirit of reproducible research. 

  

Figure 3.4 (left) Basic modeling data view 
Figure 3.5 (right) Basic data structure extended for LCM 

  

For example, consider Figure 3.5, in which the basic dataset was modified and 

augmented with several additional variables to match the structure of latent curve 

models.   Timec is a centered variable (timec = year - 2000), and represents years since 2000. 

Another derived variable is cohort (cohort = byear-1980), which gives the age difference of the 

respondent with respect to the oldest cohort. Additionally, three shapes are added to quantify 

time effects: linear, quadratic, and cubic, represented by variables timec, timec2, and timec3 

respectively. The values for these effects are stored in the lambda matrix, to which the next 

section refers in LCM specification. Using the names of these variables in the estimation syntax 

of lme4, one can fit a variety of multilevel growth curve models. For example, the following code

 

specifies a multilevel model with occasions nested within individuals, three predictors on the 

first level, all modeled as random effects, with linear and quadratic effects regressed on age 

lmer (attend ~  1  + timec + timec2 + timec3 + cohort  

                   + cohort:timec + cohort:timec2 

                   + (1 + timec + timec2 + timec3 | id)) 
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difference at the second level. This model can be specified either in the LCM tradition (Bollen & 

Curran, 2006) or multilevel tradition (Snijders & Bosker, 2012)5 as follows: 

 

 

 

                                                      
5 Color is used to help match the elements in the specification to the elements of the graph produced by the model 
sequencer. Thus, blue is used to identify gamma estimates, green points to the predictors at the second level, and 
red refers to the estimates of the random effects and the residual variance. Also note the change of subscripts from 
i,j in Snijders & Bosker (2011) notation to t,i in Bollen & Curran (2006) notation. 
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Focus Outcome Variable: Church Attendance 

            The focal variable of interest is attend, an item measuring church attendance in the 

current year. Although it was recorded on an approximately ordinal scale, its precision allows us 

to treat it as quantitative for the purpose of fitting statistical models. We have data on 

attendance for 12 years, from 2000 to 2011. Figure 3.6 gives a cross-sectional frequency 

distribution of the data across the years, assuming attrition was not related to the outcome. 

 

Figure 3 6 Relative frequency of responses for each round of observation 

Modeling transitions between the frequencies of endorsing particular response items across 

time will be the focus of using a Markov model, which treats a set of cross-sectional 

representations. However, LCM and GMM work with longitudinal data, modeling the trajectory 

of each individual. To illustrate, the trajectories of subjects with id 4, 25, 35, and 47 are plotted 

in Figure 3.7  
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 Figure 3.7 Trajectories of church attendance: four respondents over waves 

The respondent id = 35 reported attending no worship services in any of the years, while 

respondent id = 25 attended quite often (indicating weekly attendance in 8 out of the 12 years). 

Individual id = 47 started as a regular attendee of religious services in 2000 (5 = “about twice a 

month”), then gradually declined his involvement to nil in 2009 and on. Respondent id = 4, on 

the other hand started off with a rather passive involvement, reporting attended church only 

“Once or twice” in 2000, maintained a low level of participation throughout the years, and then 

increased his attendance in 2011. Each of these trajectories implies a story, a life scenario 

related to each person's religious involvement. Why one person grows in his religious 

involvement, whereas another declines, or never develops an interest in the first place, is the 

empirical subject of the current investigation.  

            Previous research in religiosity indicated that age might be one of the primary factors 

explaining interindividual differences in church attendance. To examine the role of age, we 

change the metric of time from waves of measurement, as in the Figure 3.7, to biological age, 

calculated as age in months at the time of the interview and converted to years.  This re-

alignment is represented graphically in Figure 3.8. 
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Figure 3.8 Trajectories of church attendance: four respondents over age 

 

Research Methodology 

            The current study analyses how religiosity changes during adolescence and young 

adulthood, across ages. Latent curve models (LCM) test certain shapes of the time effect (linear, 

quadratic, and cubic) in a search for the best-fitting common trajectory that describes church 

attendance between 2000 and 2011, regressing random terms on age indicator.  

Model Specification 

The latent curve models (LCMs) considered in the analysis can be expressed in latent 

curve (Bollen & Curran, 2006), or in the multilevel regression tradition (Snijders & Bosker, 2012)6 

along with some color conventions, explained in the footnote on page 33. 

                                                      
6 S&B use i and j  for first and second level respectively, however I changed it to t and i to be consistent with Bollen 
& Curran (2006) notation and also because it offers a mnemonic “t for time and i for individual.”  
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iy - A vector of responses of individual i for times T  

Λ - Matrix of weights for P functions of time 

iη - Vector of person-specific weights for P time effects 

μ  - Vector of fixed effect estimates (mean/intercept)  

Γ - Matrix of fixed effect estimates for iw with K predictors 

iw - Time invariant, fixed predictors of iη   

iζ  - Random effect estimates  

iε - Residual variance 

T - Total number of time points in the data 
P - Total number of time effects estimated in addition to mean/intercept 
K - Total number of predictors iw  on time effects iη  
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where time occasions t are nested within individuals i and each of the time effects P is regressed 

on K time invariant predictors iw .  Such notation reflects some of the logic of lme4 syntax, 

however matrix algebra notation is more useful for other purposes. The present work relies on 

both notations to provide a broad perspective on the mathematical structure of these 

longitudinal models. The graphical methods illustrated in the first chapter will annotate the 

analysis fitting the model above to the NLSY97, providing additional nuance and interpretation. 
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CHAPTER IV 

 

 

RESULTS 

 

 

Descriptives 

 This section pursues two distinct goals. The first is to prepare the reader for 

the modeling exercise that is to follow. The second is to familiarize the reader with the 

structure and the potential of the NLSY97.  

Reproducible research, the aspiration of the current work, ideally presents the reader 

not only with the distilled statements about the nature of the world and the means of 

replicating the analysis, but also with the room to take the study into the directions 

unforeseen by the initial author.   Providing the reader with understanding of the structure 

of the NLSY97, and particularly its longitudinal aspects, may ( I hope) incline the reader to 

further exploit the utility of this sample and minimize starting costs of initiating a research 

project. 

Because of these dual goals, the graphical presentations may in a few cases provide 

more expansive information than what is required to link the graph to the modeling exercise 

presented later in the Results chapter.  In those cases, the additional information is 

presented to give the reader further depth of understanding of the NLSY97 data. 
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Age and basic demographic 

 The NLSY97 includes 8,983 respondents, of which 6,748 were selected from randomly 

sampled households, and 2,236 came from the oversample of racial minorities. The demographic 

composition of the sample is given in Figure 4.1. 

 

Figure 4.1 Race demographics in NLSY97: counts of respondents 

Respondents’ age was of particular interest in explaining church attendance.  The NLSY97 

contains static and dynamic indicators of age. Variables byear and bmonth (static) were recorded 

once in 1997 and contained the birth year and birth month respectively. Two age variables were 

recorded continuously at each interview: age at the time of the interview in months agemon and 

in years ageyear (dynamic).   Figure 4.2 shows how births in the NLSY97 sample were distributed 

over calendar months from 1980 to 1984. 
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Figure 4.2 Counts of respondents’ birth months  

The variable ageyear records the age in years a respondent reached at the time of the 

interview. Due to difficulties of administering the survey, time intervals between the waves 

differed. For example, for one person (id = 25) the age was recorded as 21 years for both 2003 

and 2004 (see ageyear). However, when you examine age in months (agemon) you can see this 

rounding problem disappears once the more precise scale is used (in the table below age is 

calculated as agemon/12). It must be noted however, that the dynamic measure of age was not 

recorded every year for each respondent and is not of much use, due to its frequent 

missingness.  To avoid numerous missing predictor values, age in years will be calculated as year 

- byear. In this way, we obtain a more consistent measure that could be used in predictive 

models, although at the expense of some precision. To illustrate the relationship among 

recorded and computed age variables Table 4.1 lists the complete age data for one respondent.  

Tables 4.1 Age data for one respondent in NLSY97. 

   id bmonthF byear year agemon ageyear   age 
   25     Mar  1983 1997    167      13 13.92 
   25     Mar  1983 1998    188      15 15.67 
   25     Mar  1983 1999    201      16 16.75 
   25     Mar  1983 2000    214      17 17.83 
   25     Mar  1983 2001    226      18 18.83 
   25     Mar  1983 2002    236      19 19.67 
   25     Mar  1983 2003    254      21 21.17 
   25     Mar  1983 2004    261      21 21.75 
   25     Mar  1983 2005    272      22 22.67 
   25     Mar  1983 2006    284      23 23.67 
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   25     Mar  1983 2007    295      24 24.58 
   25     Mar  1983 2008    307      25 25.58 
   25     Mar  1983 2009    319      26 26.58 
   25     Mar  1983 2010    332      27 27.67 
   25     Mar  1983 2011    342      28 28.50 

 

Figure 4.3 shows how static age maps onto the dynamic age among the respondents in the wave 

that was collected in 2000. This graph is not useful in detailed analysis due to the issues 

mentioned above, however it provides a good snapshot of the age constitution of the sample. 

The dynamic graph in the appendix animates with frames for each of the rounds of observation. 

 

Figure 4.3 Age and cohort structure of NLSY97 respondents in 2000 

Church attendance: cross-sectional view  

 The focal variable of interest is attend, the item measuring church attendance for 12 

months that preceded the interview date. The questionnaire recorded the responses on an 

ordinal scale, shown in Figure 4.4. 
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Figure 4.4 Scale for measuring church attendance (8 – Everyday, 1 – Never)  

 The immediate observation about the focal variable is the bimodal distribution of the 

responses, with the “Never” or “Once or Twice”  response category as one mode and “About 

once a week” as the other. This makes sense considering the natural regularity of worship 

services practiced by most religions.   Despite the fact that the scale allows for a finer distinction, 

the distribution of endorsement frequencies invites us to think of going to church more or less as 

a binary outcome: either you attend church regularly, or you do not. This graph was made using 

the data only from the member of NLSY97’s  cross-sectional, representative sample and 

therefore depicts, with a fair degree of external validity, the religious attitudes and behaviors of 

the American public in this age range. Considering that more than half of its representation 

(54.2%)  attends church no more than once a month and almost quarter (23.4%) ignores it 

completely, it won’t be an exaggeration to reason that the American young  adults are not very 

religious, at least using church attendance as a criterion.  

 Church attendance, as discussed in the Methods Section, is one of the standard and 

among the  best measures of religiosity available to longitudinal researchers. Luckily, the NLSY97 

tracks it for a period of 12 years,  since 2000. Another item about religiosity ( “In a typical week, 

how many days from 0 to 7 do you do something religious as a family such as go to church, pray 

or read the scriptures together?”) was on the questionnaire from 1997 to 2000, overlapping one 

year with attendance. Theoretically it would interesting to connect these two operationalizations 
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of religiosity in a longitudinal study, however only a relatively small portion of the sample 

completed this item prior to 2000 and the available sample size did not afford complex 

modeling. In addition, numerous missing values in this variable further limited its integration in 

the present study.  Table 4.2  give a two-way frequency count between family religious activity 

and church attendance. The first columns lists possible responses to the church attendance item, 

while the first row give possible answers to the question “In a typical week, how many days from 

0 to 7 do you do something religious as a family such as go to church, pray or read the scriptures 

together?” 

Table 4.2 Full sample counts in 2000 between family religious activity and church attendance 

                         0   1   2   3   4   5   6   7 <NA> 

  Never                914  69  17  16  10   5   6  10  974 

  Once or Twice        568 196  58  33  17  18   6  15  859 

  Less than once/month 269 176  30  18   9   9   3  19  523 

  About once/month      76 136  20   8   6   7   3   8  242 

  About twice/month     52 147  27  11   9   2   3  10  257 

  About once/week       74 591 169  40  27  17  17  54  488 

  Several times/week    36  59 105  78  30  31  14  61  203 

  Everyday               6   3   1   2   1   2   1  13   24 

  <NA>                   4   1   0   0   0   0   0   1  959 

 

Although the number of the available respondents is small in comparison to the full NLSY97 

sample (note the large NA column), the two features of religious involvement, bimodality and 

prevalence of church avoidance, can nevertheless be recognized in this bivariate data 

representation, too. Notice a sizable endorsement of “About once/week” by respondents 

reporting that one day on a typical week their family does something religious together.   

 Followed over time, the religiosity of adolescent and young adult Americans appears to 

be declining.  Figure 4.5 gives a cross-sectional frequency distribution of the data across the 

years. Here, missing values are used in the calculation of total number of responses to show the 

natural attrition of respondents and/or the increased response refusal rate.  Assuming that lower 

rate of response retrieval is not significantly associated with the outcome measure we can 

remove missing values from the calculation of the total and look at prevalence of response 

endorsements over time, as Figure 4.6 shows 
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Figure 4.5 Cross-sectional distribution of church attendance categories 

 

Figure 4.6 Distribution of church attendance as proportions from the total of non-missing values 

We see a dominance of blue colors increasing in both views, indicating a change toward a more 

secular lifestyle. Broad strokes of Figure 4.6 indicate a general decrease in religious involvement 

in this generation of Americans. To examine the trends with greater precision, Figure 4.7 remaps 

the same data in a line graph. There we see more clearly how specific categories change over 

time:  "Never" exhibits the sharpest climb,  "About once/week” drops rapidly in the first few 
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rounds for which observation are available but then stabilized around 12%, other categories, as  

"About twice/month" for example remain relatively stable throughout the years.  

 

Figure 4.7 Prevalences of church attendance over years. Remapped from 4.6 

 

Figure 4.8 Church attendance frequencies across races in 2000 



47 
 

The trend of declining church attendance, however, is not universal. Ethnic groups 

demonstrate substantial differences in patterns of religious involvement. Figure 4. 8 shows the 

distribution of responses to the NLSY97 item on church attendance. Supporting the observation 

that their group is the most polarized, 29% of White (actually non-Black/non-Hispanic) 

respondents indicated in 2000 that they never went to church in the past year – the highest 

percentage among racial groups. Both Hispanic and Black seem to be more accepting of nominal 

attendance ( “Once or Twice” is the leading category).  

 Racial minorities differed substantially not only in the level of initial religious 

involvement, but also in the rate with which it changed over time. The dynamics of prevalences 

across racial identifiers are shown in Figure 4.9. The data obtained from respondents, who 

identified themselves as Non-Black/Non-Hispanic (mostly Whites) make the trend of decreasing 

Figure 4.9 Prevalences of church attendance between years 2000 and 2011 
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church attendance much more clearly pronounced.  Between the other two racial categories, 

Whites are the most polarized in their differences in religious involvement and its dynamics. The 

gap between those who do not attend church and those who come once or twice a year, while 

the largest among racial groups at  the beginning of the study, only continued to grow, almost 

tripling by the last round.   

To a smaller degree, the same is true of respondents who identified as Hispanic. In 

contrast to Whites, the difference between these attendance categories (“Never” and “Once or 

Twice”) was reversed among Hispanic respondents, although not by much. The increase in the 

prevalence of “Never” among Hispanic is not as steep as those of Whites, but similar in pattern 

and magnitude. 

Figure 4.10 Prevalences of church attendance between ages 16 and 32 

Blacks seem to exhibit more stability in church attendance than Hispanics and Whites: 

they experience the smallest surge in the prevalence of endorsing the response “Never”, where 

the trajectory flattens fast and lags behind those of both Hispanic and White respondents. 



49 
 

Another noticeable difference among the races is the curve of the regular church attendance. 

Hispanic and White respondents descend quickly, reaching the asymptote within around two 

years. Hispanics demonstrate a more gradual decline in regular attendance, but nothing like 

Black, whose decline stretches over 7 years . The data collected among the oversample of 

minorities appears to demonstrate similar patterns, and validates such observations. See  

temporal animations of these and other graphs to explore the response dynamics. 

What drives such dynamics? Time is too easy an answer, because it is confounded with  

age, period, and cohort effects. Naturally, age and cohort offer richer hypotheses and 

explanations to developmental researchers. Sociological changes unfold on larger timescales, 

however, as the NLSY97 stretches the limits of panel studies, both in the resolution of the 

sample and the span of longitudinal observations. 

One of the common ways to untangle the confounded temporal factors is to rescale the 

metric of time and to re-align the chronology of the study. The patterns of declining church 

attendance are clearer after changing the metric of time from the rounds of NLSY97 to biological 

age, as demonstrated in Figure 4.10 and 4.11.  Figure 4.10 re-scales the data from Figure 4.9, 

while Figure 4.11 demonstrates what patterns of church attendance are among 16-yearolds, 

offering an alternative portrayal to Figure 4.8. 

Figure 4.11 Church attendance frequencies across races at age 16 
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The difference between 4.8  and 4.11 is dramatic: the former describes the group 

dominated by non-attendance, while the latter  gives an opposite picture. The differences 

among the races, however, preserves the structure we have seen in figures 4.9 and 4.10. Blacks, 

as the most religiously involved respondents, have a 37% endorsement of weekly church 

attendance, compared to Whites and Hispanics who are lower by  11 and 15 percentage points, 

respectively. The difference between these two data views is the age constitution of the selected 

respondents. Figure 4.8 was produced by data supplied by people of various ages, as young as 16 

and as old as 20.   In figure 4.11  only the data from 16-year-olds were used, making the group 

homogeneous in age. Comparing Figure 4.9 with 4.10 and Figure 4.8 with 4.11, we see that 

patterns of change become more pronounced and more sharply defined. Figure 4.11 especially 

powerfully demonstrates how much change occurs during the late teen years: the sharp drops in 

attendance across all races, especially in regular attendance, are steeper than for later ages. 

The cross-sectional data described above gave a good overall picture, but left key 

questions about the change in church attendance unanswered. We can see that the general 

trend is for respondents to attend church less as time progresses, but it is not clear how 

individuals contribute to this trend. Does the number of non-goers increase at the expense of 

fervent churchgoers or those who were only mildly involved in church? Are the prevalences that 

appear stable across time ( see “Several times per week” among Hispanic in Figure 4.8) really 

stable, or  characterized by people moving in and out of this category, creating only an 

appearance of stability of the prevalence? Is the observed change a result of many individuals 

changing a little bit, or from drastic changes among a handful of persons? To address these 

questions we must turn to longitudinal data and allow the observed and reproduced 

intraindividual change to inform the theories about the interindividual differences.  

By tracing individuals over time longitudinal methods separate within-person from 

between-person variability. Figures 3.7 and 3.8 already gave an example of individual 

trajectories, showing the trajectories of four individuals using the rounds of the study (Figure 

3.7) or biological age (Figure 3.8) as the metric of time.  Analyzing a large number of such 

trajectories may be quite challenging.  The rest of the chapter demonstrates and discusses the 

reporting tool developed in this dissertation designed to aid in assessing the interplay between 
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the interindividual and the intraindividual differences. Building on the existing tools for dynamic 

reporting, I offer a method to organize, carry out, and communicate the result of a sequence of 

latent curve models.   

Sequence of latent curve models 

I opened this work with a discussion of a challenge that has been in development in the 

last few decades in research and academic circles.  Statistical models became so complex that 

human limitations in attention, perception, and information processing have become relevant to 

practicing modelers. Much of the challenge facing a modern modeler, however, comes not only 

from the complexity of statistical structures used to operationalize research theories, but also 

from organizing and managing their estimation and publication. Despite the wonders of modern 

computer technology, the time and effort it takes to evaluate a series of models may be 

onerous, especially in cases involving long sequences and elaborate models.  

Recent advances in software technology allowed transforming the modern modeling 

workflow. Tools such as knitr (Xie, 2014) and pandoc offered technologies for combining 

statistical estimation, production of data graphics, and report writing in a single environment of 

RStudio. The dynamic report developed for this work employs some features of interactive 

documents to organize the evaluation of LCM sequences. Designed to minimize the information 

overload, the Interactive system of comparisons and contrasts offers faster and easier evaluation 

and management of statistical models. 

The general form of latent curve models was defined at the end of Chapter 3. I repeat the 

definition in Figure 4.12 for convenience. This is a general  specification; notice that level-1 

predictors in the random coefficient equation do not refer to time effects as specifically linear, 

quadratic, and cubic terms, but rather as some P functions of time, which may include other 

polynomials, shape factors, piecewise and exponential functions. However, in the more explicit 

LCM equation, the lambda matrix contains coefficients for polynomial functions specific to 

current models. 
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Figure 4.12 General specification of the models used in the study 

Fitted models 

 The primary analytic goal of the study is the examination of how time and the age of 

respondents interact to explain the observed church attendance in the NLSY97 sample. The 

models explored three time effects (linear, quadratic, and cubic) which were entered as 

predictors in the first level of the model. Time was centered at 2000. The second level contained 

a single predictor cohort, which quantified the age difference among the respondents. Cohort 

predictor was centered at 1984.  The model of the maximum complexity contains three 

functions of time, modeled as random effects, and fixed level-2 predictor cohort for each time 

function:   
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All other models are nested within this specification and can be derived through incremental 

deletion of terms.  Given this scope, there are a total of 54 distinct models fit to NLSY97 church 
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attendance data. They can be organized into five groups, according to the number of random 

terms they contain: 

 Group F -  models with fixed effects only 

 Group R1 -  models with 1 random term 

 Group R2 -  models with 2 random terms 

 Group R3 - models with 3 random terms 

 Group R4 – models with 4 random terms 

Each model will be referred to by a unique name, which will help in navigating the report 

document and in composing custom sequences of models. The layout in Figure 4.13 helps 

understand how each of the models was constructed. The columns of the table indicate the 

terms added to the first level. Thus, the first column contains the intercept-only models, the 

second column adds linear term, and third and fourth columns add quadratic and cubic terms 

respectively. The rows indicate what predictors are added to the second level. Thus, the first row 

contains the models with no predictor on the second level, the second row adds the predictor 

cohort to the equation of the intercept, the thirds, fourth, and fifth rows row each add the 

indicated predictor to equations of the linear, quadratic, and cubic terms respectively. The star in 

the name of the model refers to the five groups defined above: F, R1, R2, R3, and R4.  

 

Figure 4.13 Name and structure of the models used in the study. 
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Figure 4.14 lists the models in group F, arranged to fit the pattern in Figure 4.13, with the full 

names of the models listed. Not every model from Figure 4.14 will be present in groups with a 

higher number of random components. For example, although one can add a random 

component to the quadratic term in the model mFc (even though mFc does not include the 

quadratic time function), such models were omitted in the current analysis. Such models can be 

added if they present a particular interest to the modeler. The complete list of models is 

available in the appendix and is included in the dynamic report.  Note that the purpose of Figure 

4.14 is to show a collection of related models: examination of individual specification may be 

problematic due to small font size, which is necessary to fit all models in a single view. For closer 

inspection of individual models, the reader is directed to reports in the appendix, which allows 

zooming in on selected models. 

Figure 4.14 Model specifications of the F group  

Representing model solution 

Each of the models in the sequence corresponds to an array of quantitative descriptors: 

coefficients, standard errors, residuals, predicted values, etc. The list is extensive and would vary 

according to model’s class and particular specification. Choosing a set of criteria that makes 
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sense in the evaluation of each model and yet provides enough common ground for meaningful 

comparisons may be tricky, and certainly is contingent on the class of models and the research 

agenda. For illustration purposes, only the basic elements of model solutions were reported for 

this sequence. 

Quantitative descriptives of statistical models used in dynamic reports include: 

 

 Estimates and standard errors of fixed effects 

 T-value corresponding to the test of each fixed effect 

 Standard deviation of each of the random effects 

 Covariance matrix of random effects 

 Standard error of residuals 

 Deviance, BIC, and AIC 

 Predicted value of the model at person by time point resolution  

 

Some of these would be available in every model, while other would not (one can think of 

them as being equal to zero).  Each model is processed and reduced into a single complex graph, 

composed of four elements: model specification, model solution, model prediction, and model 

fit. Elemental plots are then assembled into the form shown in Figure 4.15a  

Figure 4.15a Layout of the complex graph describing model solutions 
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Figure 4.15b Screenshot of the sequence report  

Compare Figure 4.15a to Figure 4.15b containing the screenshot of the sequence report.  

The box with model specification contains current model specification in multilevel notation. In 

the box below, the estimated values of the coefficients, test statistics, and the standard error of 

residuals are placed in a grid graph. The cells of this graph are colored to match the colors of the 

elements in the specification equation. Thus, estimates of the fixed coefficients are marked by 

blue, and random coefficients are marked by red. This makes for a quicker connection between 

the specification and the actual values of the coefficients estimated from fitting the model to the 

data.  

The bottom row of the complex graph contains the graph of modeled individual 

trajectories (left) and the graph of model information indices (right).  Predicted trajectories are 
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represented by semi-transparent red lines. The solid black line gives the common trajectory, 

estimated from fixed effects. The bar graph contains BIC, AIC, and raw deviance for each model, 

highlighting the bar with the fit of the current model, in this case mR2e.  The graph adjusts the 

limits of the y scale to accommodate the lowest and the highest values plotted. As immediately 

obvious, such a graph is not the best for scrutinizing the difference in fit among the models, due 

to drastically different values of fit indices associated with each group. On the other hand, such a 

view is very useful in comparing the groups of models: one can immediately see what effect the 

decision to model a particular level-1 term has on model performance. A separate report 

contains bar graphs of fit scaled and subset for each modeling group, as demonstrated later.  

The interactive table of contents on the left lists the models available in the report – 

clicking the model name will take you to the results of the corresponding model. Such a layout 

allows quick retrieval of the individual model solution, without losing track of the context of the 

sequence. The entire sequence is estimated by a single call in RStudio and printed into the 

document, containing the processed and organized results for each model. Knitr and rmarkdown 

packages allow generating dynamic reports in both web (html) and print (pdf) formats from the 

same source code.  The full reports of the sequence is available as an appendix for both metrics 

of time: rounds of observation and biological age.  

Model selection criteria 

 Although it is tempting to choose a single model fit index as the guide in selecting the 

“optimal” model, using multiple criteria offers a better perspective on model comparison. The 

graphs of model fit offer three indices for each model: deviance, AIC, and BIC. Deviance is a 

−2log likelihood of the misfit function; it is the measure of the total discrepancy between all 

observed data points and model predictions for them. In confirmatory mode, this quantity is 

used to carry out significance tests.  However, as sample size increases, the value of significance 

test deteriorates. AIC and BIC represent two adjustments to the raw deviance that account for 

model complexity and sample size, respectively.  

AIC penalizes for model complexity, increasing the value of deviance by 2q, where q is 

the number of estimated parameters.  AIC reflects the difference between implied and observed 



58 
 

models adjusted for parsimony. It has no meaning on its own and must be interpreted in term of 

the differences among and between the models. A lower AIC is better, including negative values. 

If a more complex model of the pair has lower AIC, its increase in complexity from the less 

complex model of the pair is considered justified. The greater the difference in AIC, the more 

efficient (per degree of freedom) is the model with lower AIC. For each additional parameter to 

estimate, the deviance must decrease by at least 2, to offset the parsimony penalty. 

  BIC, in addition to model complexity, also penalizes for sample size. It increases the value 

of deviance by q*ln(N), where q is the number of estimated parameters and N is the number of 

data points. BIC is more conservative than AIC, giving greater penalty for model complexity than 

AIC, and favoring parsimonious models with fewer parameters. A lower BIC is better. If a more 

complex model of the pair has lower BIC, its increase in complexity  from the less complex model 

of the pair, adjusted for sample size, is considered justified. The greater the difference in BIC 

between the model in the pair, the more efficient the model (per degree of freedom, accounting 

for sample size) with lower BIC is.  

The deviance will always be lower in models that are more complex, so it is not an ideal 

criterion for model comparison, but it provides a useful basis for perceiving the levels of misfit 

among the groups of models. In typical cases, AIC will be larger than the deviance on which it is 

based, and BIC will be larger than AIC. Graphs that combine all three can point to the location in 

the sequences where the additions to model complexity become counterproductive. The 

selection of the “optimal” model from a particular span, therefore, should be based on the 

behavior of model indices. When a modeling step produces an increase in AIC we have the first 

hint at the counterproductive increase in complexity; the increase in BIC offers another, taking 

sample size into consideration. The full reports on model performance is available in the 

appendix for both metrics of time: rounds of observation and biological age.  

Model analysis and synthesis 

As was demonstrated in the first section of this chapter, racial groups exhibit substantial 

heterogeneity in church attendance, both in cross-sectional and longitudinal views. In light of 



59 
 

this, the current demonstration will use the data only from respondents, who identified 

themselves as White and provided the response on the focal variable at every time point.  

The estimation of the models in the F group generated fit statistics shown in Figure 4.16. 

Notice that the order of bars in the graph corresponds to the order laid out in Figure 4.14 if the 

elements are read sequentially by rows, starting with the top left position. The model m0F (the 

first bar in the graph) gives the reference point for relative improvements of fit with each added 

term.  Adding a linear function of time results in a substantial reduction of misfit, as would be 

expected from data that have a heavy longitudinal structure. The curvature of the quadratic 

term in m2F further reduces the misfit, however the cubic term in m3F shows only a slight 

reduction in the absolute deviance and a slight increase in BIC, which penalized model 

complexity. The next four bars (mFa, mFb, mFf, and m4F) correspond to the same progression of 

models , but with the predictor cohort entered into the second level equation of the intercept. 

The reduction in misfit follows a similar pattern: substantial drop after the linear term is added, 

 

Figure 4.16 Fit of models in the F group: view by rows in the group specification. 
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noticable decrease following the introduction of the quadratic term, and a similar reaction to the 

cubic term: minor decrease in deviance and AIC with a minor increase in BIC.  

The next bar corresponds to the model at the beginning of the third row of the model 

group specification. This model (mFc)  is not nested with m4F, but offers an interesting 

observation: a better fit can be achieved by extending the common ancestor mFb with a 

predictor cohort to the linear term,  than by adding quadratic and cubic terms to the first level 

equation. The sizable decrease of misfit in the next bar (mFf), however, indicates that quadratic 

term is much more valuable if enhanced by the presence of the predictor cohort in the equations 

of the first two time effects. 

  As is apparent, the interplay between first level and second level predictors can be more 

conveniently explored by organizing the bars in a different order. Figure 4.17 arranges the fit 

bars in the order layed out in Figure 4.14 if the elements are read sequentially by columns, 

starting with the top left position. Such arrangement allows looking at the effect of adding 

second level predictors among the models with the same number of time effects. 

Comparing m0F with the adjacent mFa shows that using the age difference does not 

improve the model much, which is not surprising given the longitudinal structure of the data.  

The next three bars show the decrease in model misfit when the predictor cohort is added to the 

model with a linear term. The drop from mFb to mFc reiterates the finding gleaned from Figure 

4.16: cohort improves the model substantially when added to the equation of the linear term 

and makes the quadratic term much more valuable (mFd). The next two bars (m2F and mFf) 

demonstrate that bare quadratic and cubic terms cannot compensate for the absence of cohort 

in the second level, even when it is entered into the intercept equation (mFf). Adding cohort to 

the equation of the quadratic term (mFe) further decreases both absolute and adjusted fit of the 

model, although not as drastically as adding cohort to the equation of the linear term in mFd. 
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Figure 4.17 Fit of models in the F group: view by columns in the group specification. 

The last column of the group F specification starts with m3F. The presence of the cubic 

term at the first level cannot compensate for the absence of cohort at the second level of the 

model equation. Looking at the change in misfit from m4F to m5F, we once again recognize the 

importance of having cohort as the predictor of the linear term. Minor fit reduction is associated 

with using cohort to predict quadratic term (m6F), but adding it to the cubic term (m7F) begins 

to increase AIC and BIC, indicating that the gains in misfit reduction are not justified by the 

increase of model complexity. 

The key finding from this brief analysis is the exceptional role that cohort plays in 

predicting the linear term.  Only after it is added to the linear term does the model fully 

capitalize on the presence of quadratic and cubic terms at the first level. Model complexity 
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beyond mFe (see fig. 4.16) however does not offer improvements in adjusted fit, indicating that 

after cohort enters the model for the first three time effects, modeling additional curvature may 

be unnecessary. 

 

Fit graphs show how models perform, but they do not describe what the models are in 

terms of the numeric solution of their coefficients.  To examine how changes in model 

specification affect the model coefficients and the reproduced patterns of data, we turn to the 

interactive feature of the model sequence report. Open appendix containing the report (I 

recommend Firefox browser for a more consistent performance). The top of the document 

contains the definition of the data used in the model, expressed through dplyr syntax. 

The null model (m0F) estimated the grand mean to be 2.80 with standard error of 0.01, 

resulting in the residual of 1.96 (standard deviation). The graphical interpretation of this model is 

a straight line passing through the y coordinate 2.80, depicted in the predicted value plots in the 

bottom right corner. We interpret the intercept as the grand mean of church attendance over all 

time points and individuals.  Although the estimated value does not have a direct quantitative 

interpretation, referring back to Figure 4.4 we see that value 3 on the scale with which church 

attendance was measured corresponds to response category “Less than once a month”, while 

value of 2 corresponds to “Once or twice a year”. 

The table of contents on the right lists the models available for viewing. Instead of 

scrolling down to see the results of the next model, click on the corresponding TOC item  starting 

with m1F.  The graph of the predicted values reflects the changes in the model: the new slope of 

the predicted trajectory is estimated to be  -0.06 and  the intercept increases to 3.12. The time 

variable on the x-axis is centered at 2000, thus the slope can be interpreted as the average 

change in church attendance for every additional year past 2000. Clicking through models m2F, 

m3F walks us through the models until the predictor is introduced in the second level.  The 

curvature added by the quadratic term in m2F convex the line and moves the intercept even 

higher to 3.32 and increases the magnitude of the slope to 0.17.  The cubic term, although 

invisible at the two decimal point resolution, is clearly visible in the shape of the line, continuing 
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the trend of the quadratic term: intercept increase to 3.27, the slope accrues magnitude and 

becomes 0.24. The quadratic term also increases from 0.01 in m2F to 0.03.  

Model m4F adds cohort as predictor of the intercept. For every year difference in age,  

younger respondents are expected to have the intercept higher by 0.04 from the grand mean of 

3.27. This indicates that respondents are expected to attend church more often the younger 

they are, which concurs with the cross-sectional descriptives. Addition of this term also 

introduces the thin red lines in the predicted value plots. Each of them represents the 

conditional prediction for every value of cohort.  The difference among the five birth cohorts 

become more visible after moving to m5F. The intercepts for each cohort spread out on the y-

axis, with higher values for younger cohorts. Now for every year in age difference, the younger 

respondents are expected to have the intercept higher by 0.18 from the grand mean of 3.00. 

This indicates that younger respondents have higher attendance at the beginning of their 

trajectories.  

Models m6F and m7F continue the trend of increasing the difference among the cohorts: 

the intercepts for cohort changes from 0.18 in m5F to 0.24 and 0.25 respectively. The increases 

of cohort coefficients in the equations of linear and quadratic terms also help to spread out the 

predicted lines. The coefficient associated with predicting the linear term from cohort 

membership 11 changes from -0.02 in m5F to -0.06 and -0.08 in m6F and m7F respectively. This 

indicates that younger respondents undergo more change than older respondents, which is 

congruent with their higher initial attendance.  

The path from m0F to m7F that we just walked is one of the many that can be found in 

the current span of the modeling space. The choice of the path is arbitrary and can be changed. 

Consulting the layout in Figure 4.14 we may choose a different path ( e.g.  m0F -> mFa -> mFb -> 

mFf ->  mFd -> mFe -> m6F -> m7F), which might better suit our analytical interests or 

demonstration purposes. For example, to explore the role of cohort in models with three time 

effects we can use the following series of steps: m2F -> mFf -> mFd -> mFe, which takes us down 

the third column in group F specification from Figure 4.14.  
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Instead of examining each model in this sequence (m2F -> mFf -> mFd -> mFe) and using 

your mouse to navigate between the models, click through the entire sequence first. Now using 

keyboard keys (Alt + arrow key )  traverse this sequence back and forth. This frees up the 

resource of attention it takes to identify the model name in the table of contents. With the 

sequence loaded, focus on the t statistics in the grid graph. Notice how t values of the time 

effects change with the introduction of cohort into the second level of model equation.  This 

indicates that the predictor cohort absorbs the variability, “stealing” it from the terms in the first 

level.  With your keyboard buttons go to the furthest point in this sequence (mFe) and extend 

the path by clicking m6F and m7F. We see that m6F regains some of the “stolen” significance 

from the first level term, but the cohort predictor in m7F reverses this, dropping all of the time 

effects except for the intercept below significance level.   

Naturally, observations like these could have been drawn from scrutinizing the model 

outputs provided by the estimation software. However, it would be probably not be the most 

efficient use of the analyst’s attentional resources.  

Other custom sequences 

 Sequences similar to those demonstrated with fixed effects models can be replicated 

with their counterparts from random effect groups, but due to space limitation they will not be 

narrated here. Instead, to further demonstrate the utility of the interactive model sequence I 

give a brief example of comparing models from different  model groups.  

 Using m5* as the model present in all five groups we define the sequence as m5F -> 

m5R1 -> m5R2 -> m5R3 ->m5R4. Click through the models to load the sequence. Alternating the 

views between the first pair with the keyboard keys we see how modeling the intercept term as 

random changes the t-values for each term. Time:cohort interaction changes its t-value from  -

10.58 to -18.17, indicating an increased importance of this term in the model of this 

configuration. This value, however, goes down as we add more random terms: -10.01, -9.12, and 

-10.34 in m5R2, m5R3, and m5R4, respectively.  

The clear advantage of using m5R1 over m5F is evident in the drastic reduction of the 

residual from 1.94 to 1.13. It progressively decreases, arriving at 0.90 in m5R4. The residual is 
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not the only reason to prefer m5R4 over its counterparts. Observing the changes in the 

covariance matrix of the random effects while walking this sequence, we can see that m5R4 has 

the lowest variances of the random terms. In addition, the covariance between the intercept and 

linear terms, reaching as high as -0.37 in m5R3, has the lowest value in m5R4 of any other 

preceding model. Although we can potentially interpret such covariance, a matrix with lower 

covariances offers simpler and more straightforward interpretation.  

Extending the sequence to include m6R4 and m7R4 we see that entering cohort into the 

equation of the quadratic and cubic terms does not offer us any reduction in the residual 

variance. However, when examining model performance in Figure 4.18, m7R4 does come on top, 

with the lowest absolute and adjusted fit. 

Figure 4.18 Fit of models in group R4 
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Changing the metric of time 

The models above use cohort as the second level predictor that accounts for age 

differences among individuals. Another way to explore the role of age in defining the trajectory 

of church attendance is to change the metric of time from the wave of observation to the 

biological age of respondents. Due to the dynamic nature of the reports, this can easily be 

accomplished by changing the definitions of the variables timec, timec2, and timec3: timec was 

previously computed as timec = year – 2000, now we use timec = age – 16, centering it about 16 

years of age.  Figure 4.19 reflects this change.  The x-axis of the graph of predicted trajectories 

now counts the number of years past the age of 16. Compare Figure 4.19 to Figure 1.2, where 

the same model was estimated using wave of measurement as the metric of time. The 

interactive report is included as a separate appendix. 

Figure 4.19 Screen shot of model sequencer with age as the metric of time  
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Changing the metric of time validates the key role that biological age plays in defining the 

trajectory of church attendance. When entered as the predictor on the first level, age explains 

the trajectories better, when equivalent specifications with different metrics are compared side 

by side. This makes sense, because age on the first level contains some of the age difference 

previously entered as a level-2 predictor. We can observe in Figure 4.20 that adding cohort to 

the second level does not result in relative misfit decrease: AIC and BIC begin increasing when 

cohort is added. Similar behavior of AIC and BIC is observed when time effects are modeled as 

random. 

 

 

Figure 4.20 Fit F group models: view by columns in the group specification. Time metric: age 
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Conclusions 

Is m7R4 the “winning” model? When time metric is the wave of measurement fit indices 

indicate that the answer is “yes.” However, the value of such a modeling exercise will be 

curtailed by simply reporting and interpreting the best fitting model. Frequently, a fuller picture 

emerges from studying how the model reacts to the introduction or removal of particular terms. 

As was demonstrated, using cohort to predict linear and quadratic time effects results in 

substantial misfit reduction, especially in models with random effects. This implies that individual 

age differences are the key factor in explaining the observed trajectories of church attendance. 

This conclusion is verified by the change of time metric. 

The power of the demonstrated method for examining statistical models proves to be 

useful both in searching for the optimal model to report and in gleaning a deeper understanding 

of the studied phenomenon. Focusing on the behavior of models, as terms are being added to or 

removed from them, offers an opportunity to explore various scenarios of model development 

that may not be evident at the beginning of the analysis and to test hypotheses about the role of 

individual predictors that emerge from ongoing analysis. Most importantly, reporting the entire 

span of models, as opposed to a few with the highest fit, invites the reader to participate in the 

analysis and delivers a richer opportunity for insight.  
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CHAPTER V 

 

DISCUSSION 

 

 

In this section, I will discuss several interpretational and summarizing topics.  First, I will 

review what has been learned through application of the graphical modeling method from the 

analysis of the NLSY97 religious data.  Next, I'll discuss how the graphical modeling method can 

be used in broader settings, by various audiences and to various ends.  Following, I will review 

weaknesses and limitations of the current research, and indicate possible future directions.  

Dynamics of church attendance 

 The respondents in the NLSY97 survey demonstrated that the dynamics of the frequency 

of church attendance heavily depends on age. As respondents grew older, they generally 

attended church less. The common trajectory for this pattern is captured with predicted values 

plots from model m7F. Figure 5.1 shows the frequency of responses to church attendance item 

of NLSY97 at the first and last rounds of observation, and the common trajectory line from 

model m3F that describes the change between these two time points.  

 

Figure 5.1 General trajectory of change in church attendance among Whites. 
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 The sample from NLSY97 included five birth cohorts and, as latent curve models 

indicated, the age difference was a significant factor in modeling the dynamics of church 

attendance. Figure 5.2 shows predicted lines, when age difference was used to predict how time 

affects the modeled trajectory. Each red line gives the predicted trajectory for respondents in 

the same birth cohort. Younger cohorts had steeper declines, while older cohorts tended to have 

trajectories with smaller slopes and curvatures. An important caveat relates to the age period 

during which the observations were taken. As Figure 4.10 indicated, church attendance tended 

to become relatively stable as subjects reach the age of about 20-21. Had data not included 

observations from respondents before that age, the effect of age on church attendance would 

have been much harder to detect.  

 

 

Figure 5.2 Common trajectory lines for each cohort.  

 Although inclusion of age differences helped in explaining the observed dynamics, 

respondents in each cohort were far from homogenous in their trajectories of church 

attendance.  The bimodality of the response distribution, observed during cross-sectional 

analysis, was also evident in the longitudinal perspective. After the inclusion of random effects, 

which models individual trajectories, it became evident that particular types of trajectories were 

especially common. As seen in Figure 5.3, which reproduces the predicted value graph from 

model m3R4, a consistently low rate of attendance (or not attending church at all) throughout 

the rounds of observation is the most salient cluster of individual trajectories. Another easily 
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detectable cluster of trajectories is tracing a regular attendance, at the level of around 6 on the 

outcome scale, which corresponds to attending church at least once a week.  

Figure 5.3 Predicted value plots of church attendance in model m3R4. 

 Further evidence of the importance of age differences in explaining individual trajectories 

can be found by juxtaposing the predicted value plots from models m3R4 and m7R4, given in 

Figure 5.4.  In m3R4, while allowing every time effect to vary across individuals, no age 

difference was entered into predicting the effect of time functions. This forced the predicted 

trajectories into pronounced clusters that defined typical dynamics, disregarding the age 

differences. In m7R4, however, we can see that, while preserving recognizable clusters,  

trajectories become more evenly distributed on the graph canvas, implying that accounting for 

age differences permits more accurate representation of individual trajectories. 
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Figure 5.4 Effect of age difference on modeled individual trajectories. 

The last example allows illustrating what insights can be achieved from using an 

interactive, graphical model report, unlikely otherwise. Consider sequence m4R4 -> m5R4 -> 

m6R4 -> m7R4. All models result in residual variance, indistinguishable under the second decimal 

point precision. The bar graph of model performance indicates increasing fit, however, more 

complex models are expected to fit better, and the large sample size might complicate the 

detection of statistical significance of the added terms. The changing values of the coefficients 

are useful, but do not describe how the model recreates the data. However, by focusing on the 

graph of the predicted values while walking the sequence we can observe the direct effect of the 

added terms on recreating individual trajectories: using age difference to predict the linear term 

results in the most visible changes in the modeled trajectories. 

Although it was demonstrated that changing the metric of time to biological age helps 

seeing the patterns in the dynamics of church attendance clearer, the former metric should not 

be discarded as inferior. When waves of measurement are used as the metric of time, we can 

express the influence of age through gamma estimates, which may be preferable depending on 
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the particular research question at hand. Another advantage of using rounds of observation as 

the metric of time is a better view of the period effect, concealed by repositioned trajectories 

when age is used.  

Uses and Applications 

 Although rooted in empirical research, the focus of this dissertation is on the design of a 

dynamic reporting method for statistical modeling in general and latent curve models in 

particular.  The rise of complexity in statistical modeling, discussed in the first chapter, pushes 

practitioners towards adopting more specialized software solutions that could offset the 

increasing complexity of modeling projects.  Although at least some of the model analysis and 

synthesis demonstrated in this dissertation could have been accomplished with traditional 

means of reporting, automating the most taxing tasks involved in modeling frees up the 

attentional resources of the analyst, affording more cognitive energy to be spent on perceiving 

and interpreting the difference among the models. The uses of the interactive model reporting, 

demonstrated in this dissertation, can suit various audiences of researchers, depending on their 

particular needs.  

Analysis and Synthesis  

 One of the most obvious use of the interactive dynamic reports demonstrated in this 

dissertation is the organization of the modeling workflow that permits maximum flexibility of 

model development within a defined span of models. Although in many cases, the analysis of 

data is preceded by formulating specific research hypotheses to be tested with appropriate 

statistical operationalizions, rarely are they specific enough to correspond to a particular 

sequence of model specifications.  For example, while a hypothesis “Age is a significant predictor 

of church attendance trajectory” is well formulated for human understanding, it can describe an 

entire array of models, each answering the question with the precision defined by its particular 

specification. Which specification should be chosen to be tested? Both  “Age difference has a 

significant effect on predicting the quadratic time function of the trajectory of church attendance 

when accounting for individual differences in the intercept and linear time function”  and “Age 

difference has a significant effect on predicting the cubic time function of the trajectory of church 
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attendance when accounting for individual differences in the intercept, linear, and quadratic time 

functions”  seem appropriate, among many other possible models.  

 When model reporting is costly in terms of organizing the estimation and reviewing the 

output, researchers are discouraged from testing many relevant specifications. When, however, 

a span of models is specified, estimated, and reported at a relatively low cost, the analyst may 

evaluate the hypotheses s/he did not anticipate due to their high specificity. Walking through 

various paths, which connect the extremes of model complexity within the span, offers 

opportunities for insight that might not be as readily available with traditional model reports. 

Instead of organizing the workflow around estimation and analysis of individual models, this 

dissertation demonstrates the advantage of higher order units of analysis – model sequences, 

collections of models, joined in a deliberate and meaningful order to provide custom views on 

the modeling space. 

Reproduction 

 The reports presented and discussed here are fully reproducible and can be downloaded 

and adapted for personal use from the GitHub hosting service. This functionality offers the 

interested researcher a good starting point if models need to be explored in greater detail or if 

the defined span does not include a specific model. For example, the demonstrated report can 

be reproduced using a modified lambda matrix, which instead of polynomial time functions 

encodes piecewise shapes or some other exotic time functions.  

 Another powerful feature of the provided templates is their custom-made wrappers (also 

known as adapters) to the popular estimation packages. An adapter creates an environment in 

which imported objects are transformed to fit common, specially designed syntax of interaction. 

The wrapper in this work was optimized for model reporting, rather model estimation.  For the 

span of models used in the present work, nlme and gls packages of R proved sufficient to carry 

out all estimations. Other packages can also be added without disturbing the integrity of the 

code that compiles the dynamic report.  

 Given that modeling is almost always a cyclical process, with analyses and estimations 

replicated once insights are drawn from the previous run, having the ability to reproduce the 
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report with a slightly different input can be a powerful factor in reaching deeper understanding 

of the studied phenomenon. For example, the demonstrated report was compiled using the 

models that relied on the data provided only by respondents who identified themselves as White 

and who had no missing observations on the outcome. This decision was informed by the 

obvious heterogeneity among the racial groups in the patterns of their church attendance. 

Would the conclusions hold if another racial group were chosen as focal, or if analyses were 

conducted across races? Replicating the report for different race categories is as easy as 

changing the one character in the code that selects the appropriate observations from the data. 

 Alternatively, one may wish to enter race as a predictor into the model to quantify its 

effect on the model’s solution and performance . This also can be easily achieved by adding 

relevant model formulas to the provided slot in the code ( see “./Models/LCM/LCModels.R” file 

at the GitHub repository).  The general form and the interactive functionality of the report will 

not be affected by such modifications. Naturally, the graph's contents and aesthetics are highly 

customizable, powered by ggplot2 syntax.  

Communication   

 Simplifying scientific communication serves an important role. Although the practice of 

reporting the “winning” model has its fervent adherents, there are also plenty of researchers 

who insist on reporting several models, each giving a slightly idiosyncratic take on recreating the 

data and explaining its patterns. The insights gathered from such multiple winners are argued to 

be superior over those relying on a single winner. However, similar to the controversy 

surrounding NHST, the debates surrounding the "legality" of reporting a single model as the 

winner is misdirected:  The issue is not whether a tool should exist, but rather how and to what 

end it should be used. Reporting a single model gives a tangible, concrete, and relatively simple 

statement about how the world works, without the vagueness of stipulations and contingencies 

that would invariably accompany any modeling exercise and research projects, but which may 

not be particularly useful in communicating the nuances and breadth of one’s research findings 

to the rest of the research community. 
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 On the other hand, omitting the “failed” models, while beneficial to the simplicity of 

communication, is detrimental to the thoroughness and transparency of the published results. 

Scientific publications are meant not only to preserve the conclusions of the study, but also to 

recreate the path of reasoning that led the researcher to the particular conclusion. To verify the 

validity of a study’s conclusions frequently requires accessing the models typically omitted from 

the reports due to either space limitation of the publication medium or simply because the 

researcher finds them “uninteresting.” Reporting all the models fitted in the study and pointing 

to the sequences that provide the basis for the reported conclusions avoids a version of the 

ubiquitous “file drawer” problem in academic research, in which only significant findings are 

reported to the research community and nonsignificant ones are stored unseen in the filing 

cabinet. Knowing what doesn’t work sometimes can be just as important as knowing what does. 

 Once a report is generated within the current system, no further programming 

intervention is necessary to employ its analytical utility.  Moreover, each interactive model 

report is created as a self-standing webpage (or a PDF document) that can be shared through 

data storage device or deployed to a remote website. This feature makes the results highly 

sharable, allowing a wider audience to be involved in its analysis and interpretation. In a research 

team, where programming is sometimes accomplished by a dedicated member, the adaptation 

of dynamic and interactive reports such as one demonstrated here offers a useful specialization 

of labor: production and analysis can be easily divided among members with different skillsets.  

 Finally, such reports can also be used to present the research findings to a live audience. 

After studying, analyzing, and synthesizing the models, a presenter may “record” a particular 

sequence that demonstrates his/her point, and have the entirety of supplemental materials 

readily available to answer follow-up questions and raised concerns. In this sense, the method 

becomes truly dynamic, and new results could be "discovered" by an engaged audience 

interacting with the system. 

Limitations and Future Directions 

 I will discuss limitations of the analysis of the NLSY97 religious attendance data, and also 

limitations and future directions within the system itself.  Each will be treated separately. 
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 Obviously, only a few "pathways through the data" have been presented in the current 

document. The sequences of models from group F (fixed effects only) that were demonstrated in 

detail could be repeated for group R1 (random intercept) to verify the finding from their 

counterparts in group F. Some of the models have corresponding specification in other groups: 

for example m3* has an expression in all four. By progressing through the sequence m3F -> 

m3R1-> m3R2 -> m3R3 -> m3R4  we can see how  accounting for individual differences in the 

intercept, linear, quadratic, and cubic terms affects predicted trajectories in that specific type of 

model (m3*).  

 Another possible exploration capitalizes on the location of certain models in the span. For 

example, mR2f is one modeling step away from 6 other models. Loading and progressing 

through the sequence mR2f -> m2R2 -> mR2f -> mR2b -> mR2f -> mRd -> mR2f -> m4R2 -> mR2f -

> mR3f -> mR2f -> mR1f  allows identifying  promising directions of development for mR2f and 

deciding whether and how this model should be reduced or extended. Alternatively, we can pick 

any model in the span as the starting point and explore what developments offer the greatest 

insights.   

 

 As far as the specific results presented here, the clusters found in the individual 

trajectories recreated by models’ predictions suggest that while LCM is an effective method to 

describe the overall trend, the data may contain latent classes that should be accounted for. 

Although the general trend of the observed individual trajectories indicates a decrease in church 

attendance, it is but an average. It makes sense to assume that individuals increase their 

attendance as they age, but their contribution to the general trend may be concealed by the 

weight of the majority. Other applications of the graphical modeling tool developed here would 

undoubtedly tell slightly (or even substantially) different stories. 

 Another limitation of the statistical analysis has to do with the scale on which church 

attendance was measured. Originally ordinal, it was transformed and treated as continuous for 

the purpose of fitting latent curve models. A more precise account of variability can be achieved 

by the models adapted to categorical data, such as survival analysis or Markov chains. Applying 
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growth mixture models and Markov chains to the same data may validate the findings of LCM 

and offer new insights into the dynamics of church attendance.  

 To this end, future directions of developing dynamic model sequence reports include 

accommodation of other modeling methods, capable of working with data on different scales of 

measurement and operationalizing different type of research theories. Developing new 

wrappers for R packages responsible for their estimation promises to extend the use the 

demonstrated graphical methods of model synthesis to the wider audience of researchers.  

 Any new system will of course have weaknesses, which require development over time, 

informed by the experience of users of the system.  One challenge will be moving this work into 

the hands of researchers. The latest version of R package rmarkdown allows uniting multiple 

reports and deploying the project as a static website (see examples at 

http://rmarkdown.rstudio.com) using Jekyll site generator.  This immediately places the research 

results within reach of a wide audience, but may be challenging to implement without certain 

programming skills. GitHub, from which the project can be downloaded for reproduction, while a 

powerful social coding platform, may also present somewhat of a learning curve for uninitiated 

users. However, given the rising popularity of R and RStudio in the research community and the 

creative momentum of the RStudio team, who continues to develop both functionality and the 

user interface of the latter, it is reasonable to expect that the skills needed to implement the 

system demonstrated in this dissertation will penetrate a continuingly wider audience of 

researchers in the immediate future. Another challenge will be coordinating and compiling fixes 

and improvements.  However, like the internet, this kind of system does not necessarily require a 

single -- or even a few -- organizers.  The system can ideally become a dynamical and changing 

method itself, as new models are developed within the context illustrated here. 

Conclusions 

  In conclusion, I would like to revisit the metaphor that opened this work. Given the 

crucial role seeing plays in human cognitive process, the ability to visually inspect the object of 

analysis cannot be underestimated. This dissertation made three important advancements to 

that end, relating to modeling workflow. First, I offered an example of how all crucial 

http://rmarkdown.rstudio.com/
https://github.com/jekyll/jekyll
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components of a model (specification, solution, fit) could be represented visually in a single 

graphical object. Second, I provided a technology for organizing collections of models and  a 

system for navigating among them that outsources detection of differences to visual processing, 

reducing cognitive strain and freeing attentional resources. Third, I demonstrated how the these 

two advances can be used creatively to compile custom sequences – perhaps even unforeseen 

initially – empowering both the analyst in testing custom hypotheses and the target audience of 

the report in joining in the analysis and interpretation.  When looking down the microscope, a 

researcher does not notice its lens or pay attention to its focus knob, but attends to the objects 

it magnifies. In the same way, the methods and techniques of model comparison presented here 

place the attentional focus where it is due: the model and the data.  

As a forest can be hidden behind the trees, so a model can hide behind its estimates.  

While statistical modeling at the individual model level is valuable in its own right and forms the 

foundation of many projects, model synthesis offers a far richer opportunity for insight and 

discovery.  Bringing many models together to define, illuminate, and critique each other creates 

a frame of reference in which the meaning of individual models become clearer and richer, 

offering something greater than an isolated analysis or a comparison to only a few rivals could.  

The word “rivals” in describing the models competing to be chosen as a “winner,“ deemphasizes  

the importance of “losing” models to enhance our understanding of the modeled phenomenon, 

and perhaps should be used with discretion.  Understandably, model synthesis is a more 

involved process with challenges distinct from those in model analysis. This dissertation offered a 

set of tools and examples to popularize this practice.  

All models are wrong, but any of them can be made useful.  
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