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CHAPTER I 

INTRODUCTION 

 

 This chapter introduces the subject dealt with in this research. An overview of the field of 

vacuum microelectronics, in particular, its history and present research focus, is provided. The 

need for nanocrystalline diamond as a cold field emission material and the motivation behind the 

development of lateral emitter device technology are presented. Last, the specific objectives of 

the proposed research are outlined, followed by the organization of this dissertation. 

 

1.1 Overview of vacuum microelectronics and vacuum field emission devices 

Vacuum microelectronics is an emerging technology [1] that will lead to the development 

of electronic devices and device components with much better performance and higher 

operational limits than those found in solid-state devices [2]. Vacuum microelectronic devices 

rely on ballistic electron transport in vacuum for their operation, a fundamental difference from 

that of solid-state technology, in which the electron transport is impeded by the crystal lattice, 

placing a limit on both the miniaturization and the switching speed of active electronic devices. 

The interest in the field of vacuum microelectronics has grown greatly over the last decade. 

The invention of solid-state transistors in the late 1940s [3], and the development of 

integrated circuits in the 1960s [4,5] had led people to believe that the time of using vacuum 

tubes was over. They were large, fragile, and inefficient then, requiring a vacuum to operate, 

with a cathode heated to over 1000 °C to generate the electrons. However, the rebirth of the 

vacuum tube in micron-sized forms has generated renewed interests in the utilization of vacuum 

microelectronic devices (VMDs) for many new applications. Present micro/nanofabrication 
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techniques have enabled the miniaturization of vacuum devices to nanoscale dimensions, 

specifically the field emission cathodes upon which the devices are based [6-8]. These vacuum 

electron source devices now offer several advantages over their solid-state counterparts. The 

ballistic transport of free electrons in vacuum is more efficient than the collision-dominated and 

mobility-limited transport in solid-state semiconductors, with no dissipation of energy and a very 

small electron transport time. The speed of electrons in solid-state medium is limited by the 

carrier saturation velocity of the solid (~107 cm/s in silicon) because of optical and acoustic 

phonons scattering, while in vacuum, it is limited only by the speed of light. Particularly, the 

operational characteristics of field emitter devices are essentially independent of the ambient 

temperature and are insensitive to radiation damage, unlike most solid-state devices that are 

primarily dominated by electron scattering transport in semiconductors, junction leakage at high 

temperature, and damage to the semiconductor crystal structure at high radiation, leading to 

spurious signals and general performance degradation. Also, the “junction-free” vacuum devices 

possess high-speed and long lifetime. As prominent issues of noise and leakage gain priority in 

solid-state circuits with technology scaling towards the sub-nanometer mode, vacuum-based 

nanoelectronics has the potential to become the technology of the future. These characteristics 

are conducive to employing vacuum microelectronics in many applications such as high-speed, 

high-power switches in power systems, active elements in integrated circuits, high-power 

amplifiers, microwave tubes and plasma electronics, field emitter arrays for flat panel displays 

and efficient light sources, instrumentation in space, aviation and communication systems, novel 

sensors/NEMS, electron microscopy and e-beam lithography, and x-ray generators [2,9,10]. 

Vacuum microelectronic devices principally utilize cold cathodes based on field-electron 

emission in contrast to the conventional electron tubes that exclusively employ cathodes based 
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on thermionic electron emission, thereby bringing certain unique aspects to device performance. 

Cold cathode devices can be turned on instantaneously, without a tedious warm-up period, and 

can operate at room temperature.  In addition, electron field emission can provide higher current 

density than thermionic emission. By keeping vacuum as the signal carrier medium, these 

devices should hold high temperature and radiation tolerance, high reliability and long life 

properties as thermionic vacuum tubes do. Also, because of their small size, VMDs can operate 

much faster than the traditional vacuum tubes. Table 1.1 summarizes the device properties of 

vacuum microelectronic devices and solid-state devices for potential applications. 

Table 1.1 Comparison of vacuum microelectronic & solid-state electronic devices [1] 

 
Property 

 
Solid-state devices 

Vacuum micro/nano 
electronic devices 

Comparison 
S-same; D-different; 

B-better; P-poor 
Structure Solid/solid interface Solid/vacuum D 
Size Micron/nano-scale 

range 
Micron/nano-scale range S 

Current 
density 

104-105 (A/cm2) 4 x 104 (A/cm2) S 

Voltage (Vop) > 0.1 V > a few (V) D 
Electron 
transport 
  - medium 
  - ballistic 
  - coherence 

 
 
Solid 
< 0.1 µm, Low temp. 
Length < 0.1 µm 
Time < 10-13 s at RT 

 
 
Vacuum 
100 % ballistic 
Length >> 0.1 µm 
Time >> 10-13 s 

 
 

B 
B 
B 
B 

Electron 
energy 

< 0.3 eV Several to 1000 eV D 

Cutoff 
frequency 

< 20 GHz (Si) 
< 100 GHz (GaAs) 

< 100-1000 GHz B 

Power  Small Large B 
Speed Moderate Very fast B 
Radiation 
hardness 

Poor Excellent B 

Temperature 
sensitivity 

-30 to +50 °C < 500 °C B 

Reliability Fair Good B 
Lifetime Medium Long B 
Technology  Very well established Recently developing  P 
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The basic ideas that led to the development of microfabricated field emitter array (FEA) 

were conceived by Kenneth Shoulders and Dudley Buck at MIT in the 1950s [11]. They 

proposed to employ thin film deposition and micromachining techniques to fabricate integrated 

vacuum field-effect devices. To be seen in proper perspective, this was done before the advent of 

solid-state integrated circuits. Shoulders brought these basic concepts to the Stanford Research 

Institute (SRI International) and initiated a research program to develop microfabricated vacuum 

integrated circuits [12].  In 1961, he designed vacuum field emission device structures of micron 

size, and predicted their performance in terms of switching speed, operating voltage, lifetime, 

temperature and radiation tolerance, and envisaged certain applications for them, thus forming 

the genesis of the vacuum microelectronic technology, which is now being researched in 

essentially every industrial country of the world. It was Capp Spindt, also of SRI, in 1968, who 

materialized Shoulders’ vision by developing a manufacturing scheme and microdevice, now 

popularly referred to as the Spindt emitter array [13-14], shown in Figure 1.1. The field then 

burgeoned in 1985, when the Spindt-developed field emission technology was used in flat panel 

displays by LETI CENG of Grenoble, France [15], and when Greene, Gray, and Campisi of the 

Naval Research Laboratory (NRL) presented their stimulating work on the gated silicon pyramid 

triode, marking the rebirth of interest in vacuum electronics [16]. The cross section of the latter 

device, as in Figure 1.2, was chosen as the logo for the International Vacuum Microelectronics 

Conference (IVMC), first held in Williamsburg, Virginia, which has been an annual event since 

then. The conference was renamed as the International Vacuum Nanoelectronics Conference 

(IVNC) in 2003, as the field embraced the advent of nanotechnology in vacuum field emission.  
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Figure 1.1 The Spindt microfabricated Molybdenum field emitter array structures [14]. 
 

 

 

 

 

 

 
Figure 1.2 Cross-section of the integrated silicon field emitter array vacuum FET (Field effect 
transistor) developed by Greene et al, which was adopted as logo for the IVNC [16]. 

(b) 

 
(c) 

(a) 

(b) 
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In the meantime, the core research of vacuum microelectronics has been the search for 

electron field emission devices with low operating voltage, high and stable emission current at 

practical vacuum levels for potential applications. A majority of the last decade has been focused 

on the development of new cathode materials and structures with better and more reliable 

performance for practical vacuum micro/nanoelectronic applications. These include the use of 

electric field enhancement on sharp micro/nanotips, and low work function wide band gap 

(WBG) emitter materials. Besides metal [13-14, 17-26] and silicon field emitter devices [16, 27-

44], electron field emission from diamond, diamond-coated surfaces, and carbon related 

materials specifically carbon nanotubes (CNTs) has been the major subject of interest. These 

carbon-derived emitters have emerged as appealing candidates for the present generation of 

vacuum nanoelectronic devices. 

Chemical vapor deposited (CVD) diamond has been shown experimentally to yield large 

emission currents at low electric fields relative to that of metals or narrow band-gap 

semiconductors. CVD diamond is an excellent electron emitter with a very low electron affinity, 

which allows for a very small threshold electric field [45-56] and subsequently a low turn-on 

voltage in an appropriately designed emitter vacuum device configuration. In addition, diamond 

has superior mechanical and chemical properties suitable for vacuum microelectronic 

applications. Diamond, being the hardest material known and also chemically inert, is immune to 

ion bombardment and chemical adsorption. Hence, the diamond emitters can operate with 

relatively good stability even at medium or practical vacuum levels achievable in a packaged 

environment. In addition, diamond has strong crystal structure, and hence field emission devices 

made of diamond should be able to operate with long life with no vacuum arcing even at high 

electric fields. The high thermal conductivity of diamond [57-59] prevents over-heating of the 
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emitters tips and maintains a very large current density. The wide band-gap (WBG) property 

permits the diamond emitters to have operational temperature immunity, which combined with 

its radiation tolerance characteristics, signifies a reliable material and device for harsh 

environments. The strongly bound crystal structure of diamond, its high electrical breakdown 

field and high thermal conductivity offer advantages over other materials, circumventing emitter 

tip erosion encountered at high current densities, as high and stable emission current 

requirements assume paramount importance in the potential application of vacuum 

micro/nanoelectronics for flat panel displays, intense electron sources for microwave generation, 

and other high power electronic devices, as illustrated by Figure 1.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.3 Illustration of the potential of diamond vacuum microelectronic technology for high 
power, high-frequency applications [60].  
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Table 1.2 summarizes the material properties of diamond, silicon and metal for field emission 

applications [61]. 

 

Table 1.2 Material properties of diamond, silicon and metal for field emission applications [61] 
 

Property Diamond Silicon Metal Advantages of 
diamond 

Electron 
affinity  

(eV) 

Low EA 
and NEA on 
some facets 

 
4.05 

 
4-6 

Low  
operating voltage 

Electrical 
breakdown 

field (V/cm) 

 
1 x 107 

 
2.5 x 105 

 
N/A 

High  
power application 

Thermal 
conductivity 
(W/cm-°C) 

 
20 

 
1.5 

 
5-0.5 

High emission 
current/current 

density 
Carrier 

mobility 
(cm2/V.s) 

 
1.5 x 103 

 
2.0 x 103 

 
102-103 

High carrier 
saturation velocity 

Surface 
chemical 
stability 

Relatively 
inert to 

adsorption 

Very  
sensitive to 
adsorption 

Quiet  
sensitive to 
adsorption 

High stability, 
larger emitting 

area 
Vacuum 

requirement 
(Torr) 

Relatively 
low vacuum  
(10-5-10-6) 

Very high 
vacuum  

(10-10 – 10-11) 

Very high  
vacuum  

(10-9-10-11) 

Practical vacuum 
environment 

Process 
Technology  

Recently 
developing  

Well 
established  

Well established, but 
with slow progress 

Technology 
rapidly advancing 

 

 

However, capturing the coveted properties of diamond reliably in thin film form has been 

challenging. Also, the utilization of these properties in device configurations has been hindered 

by the process difficulty in integrating diamond films with other materials (semiconductors, 

metals, oxides). The scarcity of appropriate wet, dry, or plasma etch techniques for diamond 

micropatterning has, so far, been a barrier to the successful realization of real diamond devices, 

especially in the case of cold cathode structures, where the emitter geometry directly affects 
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device performance. Incorporation of n-type donor impurities into diamond is required to 

directly populate the conduction band with electrons and induce emission with a very small 

electric field, taking advantage of the low or negative electron affinity surface of the material. It 

has not been an easy practice to introduce impurities especially donors into diamond since 

diamond is a wide band gap material with very tight lattice structure, and high activation energy. 

Further, there are very few reports of monolithic diamond emission devices, with feasibility of 

integration into vacuum ICs, such as diodes with built-in anode and triodes with built-in gate and 

anode, meeting the low operating voltage requirement of IC-compatible applications. From a 

fabrication perspective, batch-processing techniques for multiple field emission devices in wafer 

process technology have not been explored, especially with diamond. Importantly, the significant 

advantages offered by the properties of diamond for unaffected emitter device operation in 

hostile environments of high radiation, in addition to high temperatures, have not yet been 

utilized to realize the inherent potential of the vacuum technology for extreme-environment 

electronics. These issues are addressed in this research. 

 

1.2 Introduction to nanocrystalline diamond 

Nanocrystalline diamond or “nanodiamond” is one of the emerging materials, offering a 

wide range of applicability over the conventional CVD microcrystalline diamond. The properties 

of materials with nanometric dimensions are significantly different from those of atoms or bulk 

materials. Appropriate control of the properties of nanometer-scale structures can lead to new 

science as well as new devices, technologies, and products. Nanocrystalline diamond is evoking 

interest for vacuum electron devices [62-72], high-frequency surface acoustic wave (SAW) 

devices, and other applications in nanoelectronics [73-77], NEMS [78-79], biosensors, 
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electrochemistry and other varied fields [80-82]. Apart from the robust chemical, mechanical, 

and thermal properties of the conventional CVD microcrystalline diamond films, nanodiamond 

possesses certain distinct properties including smaller grain size (1 nm-100 nm), higher volume 

density of grain boundaries, smoother and more uniform surface morphology, n-type electrical 

conductivity at room temperature from nitrogen incorporation, increased (but still minute) degree 

of sp2-bonded carbon content, hardness and lowered internal stress, and a wider latitude for 

integration with other materials associated with active electronic devices, viz., semiconductors, 

metals, and insulators. These properties of nanocrystalline diamond have been found to be 

capable of being effectively controlled and reproduced. The grain size, sp2-carbon and n-type 

dopant are strong field enhancement factors (explained in detail in Chapter III), elevating the 

utility of diamond for vacuum nanoelectronic device applications. 

 

1.3 Background & motivation behind lateral field emitter devices 

This research focuses on the design, fabrication and characterization of nanodiamond 

lateral field emission devices, owing to the immense potential of the combination for practical 

vacuum micro/nanoelectronic devices. To date, the proposed and fabricated field emission 

devices have been largely divided into two categories, viz., vertical and lateral structures. Planar 

lateral field emission devices offer significant advantages in high-speed and high-frequency 

applications [83-103]. The first concept of a vacuum microelectronic device, proposed by 

Shoulders in 1961, included a “single-layer type” lateral emitter structure with a tetrode 

configuration (shown in Figure 1.4 (a)), having a switching time of ~ 10-10 s [12]. It was Busta, 

in 1989, who microfabricated the first lateral device using NiCr on a glass substrate, the device 

structure shown in Figure 1.4 (b) [83]. A laterally configured device, with the cathode, gate, and 
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anode lying on the same plane, can be easily designed to have a small electron path length 

resulting in reduced transit times [85]. Capacitance, a critical factor in determining the device 

speed is inherently small due to the small interelectrode overlapping area. Precise lithography-

controlled micron and sub-micron interelectrode spacings enable a significant reduction in 

device operating voltages, enhancing the practicality of applying the device in vacuum integrated 

circuits. Low voltage operation, in addition to reducing the power requirements, can minimize 

destructive effect caused by ion sputtering. Ochiai et al. [100] and Oro et al. [85] have achieved 

interelectrode gaps as small as 10 nm and 20 nm respectively assisted by focused ion beam (FIB) 

and electron beam lithography (EBL) techniques in planar lateral emitter device structures. If an 

appropriate lateral device fabrication process is identified for nanodiamond, the low threshold 

electric field potential of the material can be best utilized to develop a vacuum microelectronic 

device with a turn-on voltage lower than or comparable to that of solid-state devices, offering a 

potential replacement for semiconductor devices, especially in high-speed, high-frequency 

applications.  

 

 

 

 

 

 

 

 
Figure 1.4 (a) Tunnel effect vacuum tetrode: single-layer type (lateral device) structure first 
proposed by Shoulders [12]; (b) A perspective view of the first fabricated lateral device using a 
NiCr emitter on a glass substrate [83]. 

(a) 
(b) 
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One of the major challenges faced today in vacuum nanoelectronics is the development 

of emitter arrays delivering uniform emission current over a large area. A lateral device, with the 

emitter geometry and interelectrode gap defined by a high-resolution CAD-derived mask 

(layout) and transferred onto the emitting material by lithography process control, constitutes a 

versatile array construct suited for the generation of uniform current densities resulting in 

reliable array operation. Application of CVD diamond for lateral emitters can enhance the utility 

of the vacuum device for high power applications, owing to the high current per tip capability of 

the material. Moreover, the lateral configuration greatly reduces the processing complexity in 

monolithically integrating the anode, cathode and gate electrodes to achieve a complete field 

emission device, which can, in turn, be easily integrated with a driving circuit, such as CMOS 

circuits. This chip-type device architecture offers straight forward, conventional approaches to 

design performing electronic logic functions completely equivalent to conventional silicon 

devices except faster, more rugged and harder. The construct is also well suited for packaging 

with no device assembly issues involved. The application of the lateral emitters can extend to 

sensors and micro/nanoelectromechanical (MEMS/NEMS) systems, where the approach offers 

direct integration with MEMS actuators which provide a mechanical tuning feature. Milanović et 

al. [102] have shown that electrodes can be placed at closer, arbitrary distances by lateral 

actuation using comb drive, gap-closing, or thermal actuators, demonstrating a range of novel 

applications.  

Lateral field emission diode and triode devices, based on a variety of materials other than 

diamond including silicon and metal cathodes, have been investigated with different emitter 

geometries following simpler micro/nanofabrication processes compared to vertically configured 

emission devices. Some of the common patterning techniques employed to build these fully 
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integrated device configurations are focused ion beam-enabled nanopatterning, UV/e-beam 

lithography, standard wet and dry chemical etch processing, orientation dependent etching 

(ODE), local oxidation of silicon (LOCOS), and thermal stress-controlled nanogap formation for 

possible use in integrated circuits, RF systems, sensors and MEMS, and flat panel displays. Sub-

micron gate-cathode and anode-cathode spacings (0.1-0.4 µm) have been utilized to result in 

device turn-on voltages of 10-20 V and higher in some cases. However, the emission 

characteristics demonstrated deny practical applications due to high applied electric fields [85, 

86, 99, 100, 104-111] and voltages resulting in relatively low emission currents, and possible 

leakage through the supporting oxide layer when the device is operated over time at high electric 

fields.  Also, emitter tip degradation and destruction at current densities required for use in 

applications have been reported [112-113]. The turn-on voltage and maximum current capability 

are limited by the properties of the material applied and the processes employed to fabricate the 

devices. As the interelectrode gap cannot be reduced much further, it is imperative to decrease 

the electric field required to extract the electrons. With CVD diamond, having a low electron 

affinity and strong mechanical and thermal properties, and in particular, nanocrystalline diamond 

possessing suitable field enhancement factors and low work function with nitrogen 

incorporation, efficient and reliable nanodiamond lateral field emitters functioning at extremely 

low turn-on and operating electric fields and voltages generating high emission currents can be 

achieved. But, very less work has been reported [114] on diamond lateral devices due to the 

difficulty in realizing device-level, micron/submicron scale diamond patterning. In this research, 

we have identified a nanodiamond process technology for the development of lateral field 

emission devices.  
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1.4 Objective of the research 

The purpose of this research is to develop reliable and consistent process techniques to 

deposit and micropattern nanocrystalline diamond thin films and integrate them in the fabrication 

of monolithic lateral electron field emission devices, operable at low voltage and electric field 

with high emission current for IC-compatible and extreme-environment applications in vacuum 

microelectronics.  

This study is focused on the following: 

o Development of a consistent process technique for the deposition of nanodiamond films; 

o Identification of material factors contributing to field emission enhancement and the 

suitable optimization of the properties of nanodiamond; 

o Development of a well-controlled diamond patterning scheme to realize useful 

micro/nanostructures for a wide range of applications; 

o Design and fabrication of micropatterned nanodiamond field emission cathode, 

monolithic diode and triode devices in lateral configuration; 

o Electrical characterization and analysis of nanodiamond lateral emitter devices as vacuum 

diodes and triodes. 

 

1.5 Organization of the dissertation 

There are seven chapters in this dissertation and they are organized in the following 

topics: 

o Chapter I provides an overview of vacuum microelectronics and electron field emission 

devices. Need for the development of field emission devices and the advantages of 

nanocrystalline diamond as a material for vacuum devices are described. The 
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background and motivation behind the focus of this research on lateral electron emitters 

with nanodiamond is clearly outlined. Finally, the goal of the research is stated. 

o Chapter II contains a theoretical background of basic electron emission in vacuum, and 

field emission from metal, silicon, and specifically diamond. This chapter also provides 

an extensive survey of recent theoretical and experimental work on diamond field 

emission. 

o Chapter III is written to introduce the new material, nanocrystalline diamond, and its 

unique properties, with emphasis on its applicability to vacuum micro/nanoelectronics. 

o Chapter IV explains the proposed research and the methodological approaches used to 

achieve the objectives. 

o Chapter V describes the details of experimental conducted in this research, consisting of 

material and device processing, with the corresponding results. 

o Chapter VI presents the vacuum electrical characterization techniques and the field 

emission performance of the devices developed. 

o Chapter VII concludes the results of the proposed research, with recommendations 

provided for further work that can be explored in the area of study.  
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CHAPTER II 

OVERVIEW OF ELECTRON FIELD EMISSION 

 

 In this chapter, the theoretical aspects of cold field emission have been discussed in 

detail. The possible mechanisms of field emission from CVD diamond and some of the 

important results reported so far from diamond emitters and devices are highlighted. 

 

2.1 Basic principle of electron emission in vacuum 

Electron emission is the process of emitting electrons from a solid surface into vacuum. 

The most common processes of electron emission are thermionic emission, thermionic-field 

emission, and field emission. In these processes, energies in form of heat and/or electric field are 

exerted to induce electron emission. The mechanisms for these processes can be explained by 

considering the energy band diagram of a metal-vacuum system as shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1 Mechanisms for thermionic (1), thermionic-field (2), and field emission (3) [115]. 



 17

For thermionic emission, electrons emit into vacuum mainly due to heat application. At 0 

K, all electrons in metal have energy below the Fermi level (EF). As temperature increases, some 

electrons gain kinetic energy and have total energy above Fermi level. If temperature is 

sufficiently high, some electrons can have total energy higher than vacuum level (Evac). These 

electrons ((1) e- in Figure 2.1) are readily to emit into vacuum with no applied potential. 

Thermionic emission from metal is normally obtained at very high temperature of 1500-2500 °C 

depending on the metal work function. 

At moderate temperature, some electrons have total energy above Fermi level but below 

vacuum level. These electrons ((2) e- in Figure 2.1) are not readily to emit into vacuum. In order 

for these electrons to emit into vacuum, a moderate electric field must be applied to thin down 

the potential barrier as illustrated in Figure 2.1. This thermal-field activated emission process, 

via quantum-mechanical tunneling, is called thermionic-field emission. Depending on the metal 

work function, thermionic-field emission from metal can be observed at moderate temperature of 

700-1500 °C. 

Electron field emission is a unique quantum-mechanical effect of electrons tunneling 

from a condensed matter (solid or liquid) into vacuum. At low temperature, most of electrons 

have total energy below Fermi level. A strong external electric field must be applied to thin 

down the potential barrier (width of ~ 1.5 nm) at the solid/vacuum interface, thereby allowing 

electrons ((3) e- in Figure 2.1) to quantum-mechanically tunnel into vacuum. This is called field 

emission because electric field is the main energy source that induces electron emission.  

Electron emission can also occur by other methods such as light excitation (photoelectric 

electron emission), external electron energy (secondary electron emission), and internal 

polarization switching (ferroelectric electron emission). These interesting electron emission 
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phenomena are beyond the scope of this research. The efficiency of the field emission process is 

tens of millions of times higher than in other known emission processes. The extremely high 

current density in field emission and the fact that no energy is consumed by the emission process 

afford exceptionally wide possibilities for practical application of this effect. Theory and aspects 

of field emission as the main topic of this research are dealt with in the following sections. 

 

2.2 Fowler-Nordheim theory of field emission 

The electron field emission from cold cathodes with flat surface has been verified 

theoretically and experimentally to obey the Fowler-Nordheim equation, proposed in 1928 [116]: 

 

J = (I/A) = K1(E2/Φ)exp(-K2 Φ3/2/E)                                             (2.1) 

where K1 and K2 are constants: K1=1.54x10-6 A•eV/V2, K2 = 6.83x107 V/(cm•(eV)3/2), J is the 

emission current density (A/cm2), Φ is the work function of the emitting surface (eV) and E 

(V/cm) is the electric field across the parallel plates, which is given by:  

 E = V/d                                                                   (2.2) 

where V is the anode-cathode voltage and d is the anode-cathode spacing.  

It should be noted that Eq. 2.1 was derived for a metal cathode. From the equation, the emission 

characteristic strongly depends on the work function of the cathode. Material with lower work 

function gives a higher emission current at a given applied electric field. Considering the 

absolute value in the exponent of the equation, Φ is usually around 4-6 eV for metals, thus Φ3/2 

and the exponential factor are approximately 10 and Ex /103 8

10−  respectively. Therefore, an 

applied field greater than 3×106 V/cm is needed to make any sensible emission measurement 

from a planar metal cathode [117]. 
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In order to reach these high fields at reasonable voltages, it is customary to machine the 

field emitters into protruding objects to take advantage of the field enhancement of regions of 

high curvature. Hence, let us consider the sharp cone structure, generally referred as the “Spindt 

cathode”, which has been developed using various types of metal materials. The sharp cone 

structure results in non-uniform electric field. The electric field is highest at the tip apex and 

rapidly decreases outward to the anode. Thus, the F-N equation, Eq. (2.1), which is derived for 

planar cathode with an assumption that there is uniform electric field in the vacuum gap, cannot 

be precisely applied. The precise calculation of potential distribution, electric field, and emission 

current for a sharp microstructure involves numerical calculation of 3-dimensional Poisson 

equation and Schrodinger equation for electron emission [118-120]. However, the emission 

current for a sharp microstructure can be obtained with a simple modification of Fowler-

Nordheim equation for a planar metal cathode by replacing the parallel electric field in Eq. (2.2) 

with electric field at the apex of the sharp microstructure that is:  

   E = βV/d                                                                     (2.3) 

where β is defined as the geometrical field enhancement factor, which is the factor of which 

electric field is increased due the sharp microstructure relative to the planar structure. The 

Fowler–Nordheim current of an array of emitters is then given by: 
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Thus, by plotting the emission current in the form of ln(I/E2) versus 1/E, a straight line should be 

obtained with a slope proportional to Φ3/2/β and an intercept proportional to nβ2/Φ. 

It is well known that the geometrical field enhancement factor increases with sharpness 

of the tip and the field at the apex of the tip is inversely proportional to the tip radius. This 

simple approximation implies that the emission current for a sharp microstructure is equivalent 

to the emission current of a planar cathode of the same vacuum gap but the effective electric 

field is increased by the factor of β. This agrees very well with experimental results because the 

electric field of a sharp tip is strongest at the apex and reduced rapidly for the region away from 

the apex and thus it can be assumed that most of emission current arises from electron tunneling 

within the vicinity of this highest electric field region. Even with the sharp cone structure, the 

operating voltage of the cathode is still high, since the field enhancement factor is limited to 100-

500 by the technology of making the sharp metal tips. 

The sharp cone concept was later extended to silicon cathode structure. The silicon 

cathode is usually heavily doped (n+) to achieve low work function for silicon (Φ ≈ χ = 4.12 eV) 

and good ohmic contact with metal. The potential drop across the depletion region in the n+ 

silicon (V’) is generally very small compared to the potential drop across the vacuum gap 

because only small voltage is required for electrons to quantum-mechanically tunnel through the 

thin depletion potential barrier into the conduction band of n+ silicon. Thus, it is practical to 

assume that most of the potential drop across the vacuum gap and the enhanced electric field 

E=βV/d is established at the apex of the tip. The enhanced electric field at the apex allows 

electrons in conduction band of silicon to quantum-mechanically tunnel through the silicon-

vacuum potential barrier into the vacuum. Finally, electrons are accelerated by the electric field 

and collected at the anode. 
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Silicon emitters [16, 27-44] have shown some improvements over the metal cathodes. 

Since the work function of silicon is in the same order of magnitude as metal work function, the 

improvement obtained from silicon emitter is the increasing in the geometrical field 

enhancement factor due to the availability of advanced silicon technology for making sharper 

tips. In addition, the well-established IC technology allows the fabrication of more complex 

triode device structures and makes mass production of the emitters possible. However, silicon 

emitters have limited applications, because the operating voltage of the silicon cathode is still 

high compared to that of a solid-state device. Also, a silicon emitter is prone to surface 

adsorption, which leads to instability and reproducibility problem. The life of the emitter is short 

owing to tip destruction under high electric field. 

 

2.3 Electron field emission from diamond 

The presence of low electron affinity on diamond surfaces, coupled with the practical 

chemical vapor deposition (CVD) of diamond as a thin film on a variety of substrates, has 

promoted further interest in the use of diamond and diamond-like carbon materials as field 

emitters [121]. Experimentally, diamond has been observed to emit electrons at relatively low 

electric fields and generate useful current densities [56,122-123]. 

Diamond is one of the main crystalline allotropes of carbon, as shown in Figure 2.2 

[121]. It is the high-pressure form of carbon with an sp3-tetrahedral bonded cubic structure. 

Diamond has low electron affinity, which is a measure of the energy barrier that electrons must 

overcome to escape into vacuum. This combination of low surface barrier to electron emission in 

an otherwise robust material has attracted attention to diamond’s promise as a high performance 

cold cathode material. Diamond is an indirect wide band-gap material with Eg =5.45 eV. Three 
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distinct types of diamond surfaces have been widely studied [45-55, 61]. For hydrogen-free 

diamond surfaces, the electron affinity is small and positive as shown in Figure 2.3(a). Partially 

hydrogenated (111) and (100) diamond surfaces have effective negative electron affinity (NEA), 

as illustrated in Figure 2.3(b). The hydrogen is deposited as ionic species to form an affinity 

lowering surface dipole. This reduction in electron affinity, together with a short characteristic 

band bending at the surface results in the effective NEA surface. Furthermore, diamond surface 

coated with a thin layer of metal such as Zirconium (Zr) [124], Cobalt (Co) [124-125], Ni [126], 

and (111)-(2x1) Diamond-TiO surface [127] also exhibit effective NEA property. Last, the 

diamond (100)-(2x1):H and completely hydrogenated surface is believed to be a true NEA 

surface as illustrated in Figure 2.3(c). In addition, it is believed that a true NEA surface also 

exists on Cesium or Cesium oxide coated diamond (100) surface [128]. The occurrence of the 

true NEA has not been found for conventional semiconductor materials and is thought by many 

to never occur. 

 

 

 

 

 

 

 

 

 

Figure 2.2 The allotropes of carbon, diamond, graphite, C60, and carbon nanotubes [121]. 
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2.3.1 Energy band diagram of diamond 

 

 

 

 

 

 
 
 
 
 
 
Figure 2.3 Energy band diagrams of diamond: (a) Positive electron affinity; (b) Effective 
negative electron affinity; (c) True negative electron affinity [115]. 
 
 
 

Assuming a small positive electron affinity for diamond surface, a complete energy band 

diagram for electron emission from the surface may be drawn as shown in Figure 2.4 [115]. For 

electron emission to occur, electrons must quantum-mechanically tunnel through the potential 

barrier at metal-diamond interface into diamond. Electrons will then drift through diamond bulk 

and go over a small potential barrier at diamond-vacuum interface into vacuum. 
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Figure 2.4 Diamond cathode structure and energy band diagrams. (a) Diamond cathode 
structure; (b) Energy band diagram at thermal equilibrium; (c) Energy band diagram under 
forward bias [115]. 
 
 
 

Small electron affinity of diamond is believed by many to be responsible for observed 

low field emission from diamond because small electron affinity would allow electrons from the 

conduction band to emit into vacuum easily with low applied electric field. However, electron in 

the conduction band of diamond is limited because diamond is a wide band gap material, unless 
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n-type doping is performed. Thus, electrons must be injected from metal into conduction band of 

diamond in order for emission to occur. High electric field should be required for electrons to 

tunnel through metal-diamond interface because the potential barrier at metal-diamond interface 

would be as high as work function of silicon or metals. Thus, the basic energy band diagram as 

described is inadequate for the explanation of the observed low field emission from diamond. 

In order to understand the field emission mechanism from diamond, a better knowledge 

of carrier transport through diamond-metal interface and the diamond film is needed. In addition, 

a more complete energy band structure, which includes the effect of grain boundary and defects 

of polycrystalline diamond, also needs to be studied. Furthermore, unknown characteristics of 

diamond surfaces such as sharp facets of as-grown diamond with unknown field enhancement 

factor further complicated the emission mechanisms from diamond surfaces. A considerable 

amount of experimental and theoretical works has been carried out to reveal the field emission 

mechanism in CVD diamond. Several field emission enhancement models for various types of 

diamond emitters have been proposed. The following section summarizes some of the proposed 

theories and models. 

 

2.3.2 Emission mechanisms 

While the low electron affinity property of diamond surfaces may be important and can 

make diamond an efficient photoemitter, it is not adequate by simply invoking this property to 

explain why diamond is a good field emitter. For field emission to occur, and more importantly 

to sustain, there must be a continuous supply of electrons and a sustainable transport mechanism 

for the electrons to reach the surface. Moreover, the energy levels of these electrons relative to 

the vacuum level are critical in determining the threshold field required for emission. A small 
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electron affinity surface is practically useful in reducing the barrier for electron emission only 

when the energy levels of some occupied states or bands, including surface states, are positioned 

sufficiently close to the conduction band minimum in diamond.  

 

Simple field enhancement model 

Among the various models, the simplest and the most obvious argument cites the classic 

field emission theory, described earlier in this chapter, by noting that there are local field 

enhancements on sharp morphological features protruding on the diamond surface. The electric 

field at a given applied potential is enhanced by these sharp microstructures [129] and thereby 

electron tunneling is enhanced. Field emission from micropatterned diamond microtips exhibits 

significant enhancement both in total emission current and stability compared to planar diamond 

emitter. To apply the simple field enhancement model, the microstructure must have certain 

geometry with a smooth surface. The geometrical field enhancement factor β depends only on 

the geometry of the microstructure. The field enhancement factor β for various shapes of 

microstructure [1] has been estimated based on electrostatic theory and shown in Figure 2.5. The 

electric field at the surface of a sphere, Figure 2.5 (a), of a rounded whisker can be evaluated 

using elementary electrostatic theory and expressed in closed form as a function of polar angle θ 

as [1]:  

E=(V/d)(h/r+3cosθ)                                                 (2.6) 

β= h/r+3cosθ                                                       (2.7) 

where h is the height of the sphere from the base, r is the radius of the tip, V and d are defined 

previously. 
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Figure 2.5 Various shapes of field emitters: (a) Rounded whisker; (b) Sharpened pyramid;       
(c) Hemi-spheroidal; (d) Pyramid [1]. 
 

For h>>r, E ≈ (h/r)(V/d) and β ≈ h/r, it has been shown that the field at the apex of a rounded 

whisker shape is approximately equal to that of a floating sphere and is given by E = (h/r)(V/d). 

Thus, it has primarily been concluded that the round whisker shape is the closest to the “ideal” 

field emitter. On the contrary, a wide-angle pyramidal shape is not an optimum field emitter even 

though its thermal and mechanical stability is excellent. In addition, it was primarily found that a 

wedge molybdenum shape emitter [17] has an effective emitting area about 100 times greater 

than a conical shape emitter and a correspondingly larger current density. However, wedge-shape 

diamond tip arrays fabricated by mold transfer technique, reported later, did not exhibit 

significant field emission enhancement compared to the pyramidal shape one [130]. 

 

Two step field enhancement (TSFE) model 

This model is a modified version of the simple field enhancement model developed to 

account for the complicated morphology of diamond surface. The emitting surface may be 

thought of as a number of small protrusions act as tiny tips. The emitting tip with height h1 and 

sharpness of radius r1 is assumed to consist of a number of tiny tips with height h2 and sharpness 

of radius r2 as shown in Figure 2.6. 
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Figure 2.6 Geometry of emitters: (a) The simple field enhancement approach; (b) The TSFE 
approach [115]. 
 
 

The electric field on the blunt tip is equal to: 

E1 = (h1 /r1)(V/d)                                                  (2.8) 

and the field enhancement at the end of protrusions is equal to: 

E2 = (h2 /r2) E1  =  (h1 h2/r1 r2)(V/d)                                   (2.9) 

where V and d are defined previously. 

The TSFE model was applied to analyze electron emission from diamond coated silicon field 

emitters [131]. The emission current were calculated using the F-N analysis on diamond coated 

silicon field emitters based on the TSFE model and found to be in good agreement with 

experimental data. It has been proposed that the ultrasharp protrusions may be formed under the 

assumption that the diamond particles are relatively large (of micrometer range) and thus they 

are not truly smooth or spherical but have microstructures with some spikes of deep-

submicrometer sizes. The (111) surface on the spike microstructure may be thought of as spikes 
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of deep-submicrometer sizes or ultra sharp protrusions because (111) part of the surface with 

NEA could be the only actively emitting spot.  

The TSFE model has also been well applied to explain the increase in the geometrical 

field enhancement of sharpened pyramidal diamond microtips [115]. In this case, the sharpened 

diamond microtip was modeled as a large conical tip with tip height of h1 and tip radius 

curvature of r1, superimposed with a sharp tiny conical tip with tip height of h2 and tip radius 

curvature of r2, as shown in Figure 2.7. The electric field at the sharpened tip apex arises from a 

two-cascaded tip structure. In the first step, the electric field at the apex of large conical tip is 

enhanced by the factor of h1/r1 from the planar base, while in the second step, the electric field at 

the apex of the sharp tiny conical tip is enhanced by the factor of h2/r2 from the apex of large 

conical tip. Thus, the total geometrical field enhancement factor of the diamond microtip was 

taken as the product of field enhancement factors of the two cascaded tip structure: 
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Figure 2.7 Illustration of the two-step field emission enhancement (TSFE) model applied to 
explain the geometrical field enhancement in diamond microtips [115]. 
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The geometrical field enhancement estimated using the model was found to be in good 

agreement with the result obtained from F-N analysis. These field enhancement models could 

certainly be a working and contributing mechanism, but it addresses neither the source of 

electrons in the wide-bandgap diamond nor the issue of effective electron transport to the surface 

of diamond. 

 

Defect/impurity theory 

The defect/impurity theory suggests that structural defects and impurities can form 

energy states within the band gap of diamond [132-136]. When the defect density is sufficiently 

high, the electronic states of various defects can interact and form energy bands. If these bands 

are wide enough or closely placed, the electron hopping mechanism within the bands, similar to 

the Poole-Frenkel conduction mechanism or the Hill type conduction [137-138] could easily 

provide a steady flow of electrons to the surface and sustain a stable electron emission. The 

electrons can either be excited into the conduction band or unoccupied surfaces states from these 

defect/impurity bands and emit, or tunnel directly from the defect/impurity bands and emit. For 

example, photoelectron yield spectroscopy detected sub-bandgap emission associated with the 

presence of graphite in diamond [139]. The defects/impurities essentially raise the Fermi level by 

acting as donors of electrons and thus reduce the tunneling barrier. This theory is supported by 

overwhelming experimental data indicating that defective or lower quality diamonds have better 

emission properties.  
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Role of sp2-carbon content in the diamond film 

In regard to the role of graphite in the electron emission from diamond, Athwal et al. 

[140], and Xu and Latham [141] suggested a field-induced hot electron emission process from 

isolated graphitic inclusions in diamond, citing an antenna effect that leads to field 

concentrations on a “floating” conductive particle (i.e., graphite) embedded in an insular matrix 

(i.e., diamond).  This model is based on the observation that active emission sites correspond to 

discrete location of defects or graphite inclusions on the diamond surface [142-146]. To sustain a 

continuous emission current, electrons are assumed to be supplied to the emitting surface through 

conduction channels formed in diamond via an electroforming process at high electric fields 

[147-148]. Grain boundaries in diamond films [149-150] and hydrogenated diamond surfaces 

[146, 151] have also been suggested to function as conduction channels.  

Developing from the hot electron emission model, Wisitsorat-at [115,122] proposed that 

isolated conducting sp2 nano-particles in the diamond film form a series of cascaded MIM 

(metal-insulator-metal) microstructures, which enhance the electric field inside the diamond film, 

thereby increasing the field enhancement factor. The image effect at the diamond-sp2
 interface 

causes band bending in the conduction band of diamond as illustrated in Figure 2.8. The 

enhanced electric field decreases the width of tunneling distance, W, at the metal-diamond 

interface significantly, and thereby increases the electron tunneling probability from metal into 

the conduction band of diamond. The electrons in the conduction band of diamond are then 

accelerated toward the next floating sp2
 particle under the induced electric field. Thus, the sp2

 

particles would enhance diamond field emission. 

 

 



 32

 

 

 

 

 

 

 
 

Figure 2.8 Mechanism of sp2-carbon in diamond film as a field enhancement factor [115]. 
 

 

Similarly along this mechanism, Cui et al. [139] concluded from their photoelectron sub-bandgap 

emission study that the diamond phase provides a thermally and mechanically stable matrix with 

a comparatively low work function, and graphitic phases provide the transport path for electrons 

to reach the surface and emit. 

 

Field emission enhancement via doping  

In theory, the addition of n-type donor impurities into diamond is the best approach to 

enhance electron emission from diamond. Since diamond has low electron affinity, if the 

conduction band can be directly populated with electrons via donors, very small electric field is 

sufficient to induce electron emission. In practice, it is not easy to introduce impurities especially 

donors into diamond since diamond is a wide band gap material with very tight lattice structure. 

Diamond film doping with various group V elements, n-type dopants, such as phosphorous (P) 

and nitrogen (N) has been shown to be possible [71,132,152-156]. Ion implantation is the first 

successful method to introduce n-type dopants into diamond [71]. N and P have been 
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successfully incorporated into CVD diamond films by the addition of various dopant gases such 

as nitrogen (N2), ammonia (NH3), urea ((NH3)2CO), and phosphine (P2H5) into H2 plasma 

[152,156]. A very high concentration of 2×1020 cm-3 N-incorporated nanocrystalline diamond 

film has been achieved by a plasma-enhanced CVD technique using N2/CH4 plasma [154]. 

 

 

 
 

 

 

 
 
 
 
 
 

Figure 2.9 Energy band of diamond with dopants’ energy levels [115]. 
 

 

The n-type dopants such as N, Li and P provide donor levels within the energy gap as 

illustrated in Figure 2.9. The energy levels associated with Li and P dopants are still unknown, 

but it has been found that the substitutional nitrogen forms a donor level ~ 1.7 eV below the 

conduction band. Assuming NEA property on diamond surface, the vacuum energy level is ~ 0.7 

eV below the conduction band. Thus, the nitrogen donor level is 1 eV below the vacuum level, 

which means that the work function is approximately 1 eV. Therefore, a low electric field is 

sufficient for electron emission. The effect of nitrogen doping for electron emission enhancement 

has been confirmed by experiment with O-Cs treatment to lower electron affinity [132,155]. The 

nitrogen-doped diamond field emitter with Cs treatment exhibits electron emission at the lowest 
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reported electric field <0.2 V/µm [132]. Furthermore, other theoretical calculations for nitrogen-

doped diamond field emitter have quantitatively verified experimental results [157-158]. Other 

experiments [71,152,154,156] using phosphorous and nitrogen as n-type dopants with no Cs 

treatment have independently confirmed that a diamond emitter with n-type dopants shows a 

better emission characteristic than a p-type (boron-doped) diamond emitter. One of the main 

objectives of this research is to develop a reproducible technique to achieve room temperature n-

type electrical conductivity in nanocrystalline diamond for enhanced electron field emission. The 

process technique employed, the mechanism behind the n-type conductivity behavior, and the 

subsequent enhancement realized in electron field emission by n-type dopant (nitrogen) 

incorporation are discussed in this dissertation. 

 

Other interesting models 

Various other proposed models include electron injection over a Schottky barrier at the 

back-contact interface between a metallic substrate and diamond as the controlling mechanism 

[159], field concentrations induced by chemical inhomogeneity (such as hydrogen termination) 

on the surface [151], dielectric breakdown that provides conductive channels in diamond [148], 

surface arcing that results in the formation of tips and protrusions and thus provide additional 

geometric field enhancement [160], space charge limited conduction current through the bulk of 

the diamond [161], and surface conduction enhanced electron emission [146]. All these 

mechanisms are not necessarily mutually exclusive, because each addresses a particular part of a 

overall complex field emission process that includes the critical steps of supplying electrons to 

diamond, transporting them through the bulk to the surface, and emitting them into vacuum. 
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2.3.3 Reported emission characteristics of diamond 

Although the NEA property of diamond was reported by Himpsel et al. [46] in 1979, 

investigations of field emission properties of diamond did not start in earnest until the early 

1990s, when diamond films and coatings with controlled quality on many different substrates 

became widely available due to the emergence of low pressure CVD techniques. The many 

published reports show irrefutable evidence indicating that diamond and diamond-like carbon 

(DLC) materials are good field emitters, with low turn-on fields and useful emission current 

densities. Electron emission has been observed from many different types of diamond materials, 

including synthetic single crystals and powders, vapor-deposited islands and films with varying 

surface morphologies and crystallite sizes, and nanocrystalline coatings, as shown in Figure 

2.10.  

Early reports on diamond field emission include Wang et al. [142] who reported low-field 

(< 3 V/µm) electron emission from undoped CVD polycrystalline diamond films, Geis et al. 

[162] who measured emission currents from a diamond diode structure consisting of a p-type 

diamond substrate and a carbon ion implanted diamond surface, and Djubua et al. [19] who 

showed that arrays of diamond-like carbon cones formed by plasma polymerization required the 

lowest operating voltage for emission when compared to arrays of Mo and Hf tips. Most of these 

diamond materials are found to emit electrons efficiently under applied fields.  
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Figure 2.10 Scanning electron micrographs of diamond cold cathodes of (a) continuous film-
type, (b) island-type, and (c) nanostructured diamond coating [121]. 

 

 

While the low electron affinity behavior of diamond has been effectively utilized, its 

ability to emit large amounts of electrons without consuming heating energy which is necessary 

in the cases of hot electron cathodes has been explored for low-voltage, high-current 

applications. Vanderbilt University introduced a patented mold-transfer process [163] for 

creating high density diamond microtip arrays (30 million tips/cm2) and demonstrated the 

superior performance of the material as a cold cathode and further developed efficient vacuum 

diode and triode devices using the tip array structure [123,164-165]. A typical diamond 

pyramidal field emitter array (FEA) microstructure is shown in Figure 2.11, with its electrical 

performance in device forms given in Figure 2.12 and Figure 2.13.  

(c) 
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Figure 2.11 Scanning electron micrograph of CVD diamond pyramidal microtip array cathode 
fabricated from inverted Si molds by Vanderbilt [115]. 
 
 
 
The diamond diode, utilizing a flat-surfaced highly doped n-type Si anode, shows a rectifying 

behavior with an exponential increase in the emission current with increasing electric field in 

forward bias and zero current in reverse bias. The corresponding Fowler-Nordheim plots of 

ln(I/E2) vs. 1/E are characterized with a negative linear slope, confirming field emission-type 

behavior of the current through the diamond diode device. Also, a diamond field emission diode 

with a high emission current of 22 mA at an electric field of 16 V/µm has been shown [123], 

indicating that microtip arrays fabricated from diamond are promising candidates for high 

current cathodes. 
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Figure 2.12 Typical field emission behavior reported from the Vanderbilt CVD diamond 
pyramidal microtip array diode before and after vacuum-thermal-electric (VTE) treatment: (a) 
Current vs. Electric field (I-E) characteristics; (b) corresponding Fowler-Nordheim plots; (c) 
High current field emission characteristics (I-E) of the diamond diode [115,123]. 
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A triode is the three-terminal vacuum equivalent of a field effect transistor device, in 

which electrons are emitted from the cathode into vacuum, and a gate electrode varies the 

electric field between the cathode and gate to control the emission current. The electrons pass 

through apertures in the gate, accelerate toward the anode, and are collected to give a current 

through the device. A substantial output current gain (Ia) can be achieved if the gate intercepts 

only a small fraction of the emitted current. As this gate-controlled current goes to the anode and 

passes through an external load, it can produce a voltage larger than the control voltage at the 

gate, resulting in a voltage gain (∆Va/∆Vg). Therefore, a correct device geometry should yield an 

overall power gain. The performance characteristics of a vacuum field emitter triode developed 

with the pyramidal diamond microtip array [164] are illustrated in Figure 2.13. Transistor 

characteristics are obtained from the device in common emitter configuration, demonstrating 

good gate control and modulation of the anode current with well-defined cut-off, linear, and 

saturation regions, similar to that of a solid-state transistor. The plot shows that at a constant gate 

voltage, Vg, the anode or collector current, Ia, increases in the beginning with increasing anode 

voltage, Va, but saturates at Va > 60 V. Also, as Vg increases, the anode current in the triode 

device increases exponentially, illustrating that the emission behavior of the device is controlled 

by the gate, and is quite insensitive to applied anode voltage. The figure indicates a low gate 

turn-on voltage of 22 V and a high emission current of 200 µA. A high transconductance 

(∂Ia/∂Vg) and high DC voltage gain (∂Va/∂Vg) of 800 evident from the figure represent the best 

reported vacuum transistor behavior in literature [165]. Further, when an AC signal is 

superimposed on the input gate voltage of the triode amplifier, an AC voltage gain is obtained by 

connecting a load to the output. The characteristics of the diamond field emission triode show a 

high AC voltage gain of ~ 65 with a high output voltage of ~ 100 V for an input voltage of 1.5 V, 
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operating at Ia = 120 µA, Vg = 31 V and Va = 400 V, thereby displaying a very promising 

prospect for signal amplification applications. For comparison, the theoretical AC voltage gain 

obtainable from a Spindt-type vacuum microelectronic triode is 13.8 or 23 dB [166]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
        
 
Figure 2.13 Transistor characteristics of the Vanderbilt self-aligned gated diamond microtip 
array vacuum triode: (a) Ia-Va-Vg DC plots; (b) device structure; (c) AC characteristics [165]. 
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 The Spindt-type cold cathode structure, with sharp emitter tips surrounded by the gate 

electrodes to control the electron emission, has also been applied to diamond by Nishibayashi et 

al. at Sumitomo Electric Industries, Ltd. (Japan), and is being investigated for high current 

electron beam applications [167]. Cone-shaped diamond emitter tips, each with a surrounding 

gate electrode within a distance of 1 µm, was fabricated using a self-align process, yielding a 

high-density diamond emitter device with 390000 emitter tips in a 1 mm square area. The device 

structure is included in Figure 2.14.   

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
    
 
 
Figure 2.14 Diamond vertical field emitters fabricated by Nishibayashi et al for high current 
electron emission: (a) Emitter tip array; (b) Appearance of cone-shaped diamond tip; (c) Emitter 
with gate electrode; (d) Diamond device structure; and (e) Electric field diagram when positive 
bias is applied on gate electrode [167]. 
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When a positive voltage is applied to the gate electrode, the electric field is concentrated 

around the apex of the emitter tip so that electrons are pulled out from the emitter tip (Figure 

2.14 (e)). In such a strong electric field, electrons are emitted out of diamond by a tunneling 

effect. The sharper the emitter tip is, the lower the threshold voltage for electron emission. Gated 

diamond emitter devices with electron emission areas ranging from 5 to 500 µm-square were 

fabricated, and the emission current was found to increase as the emission area grew (Figure 

2.15). A maximum current density of 265 mA/mm2 has been achieved by the group [167]. Such 

high current densities enable diamond to be used as an ideal material for applications like 

electron microscopy, electron beam lithography, microwave tubes and integrated micro vacuum 

devices. Nishibayashi et al. report that the obtained results are from polycrystalline p-type 

diamond emitter devices and confirm that electron emission properties can be improved by using 

n-type diamond. 

 

 

 

 

 

 

 

 

 
Figure 2.15 Emission current vs. emission area plot of diamond emitter device: Electron currents 
>100 mA/mm2 were obtained in emitter devices of various sizes; total emission current above 
100 mA is expected to be achieved by enlarging the emission area. The solid and broken lines 
show emission current density upper limits for tungsten (W) and lanthanum hexaboride (LaB6), 
conventional hot cathode materials, which are 1 mA/mm2 and 10 mA/mm2, respectively [167]. 
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It is important to mention, while discussing about the high power potential of vacuum 

microelectronics, that the largest total emission current produced so far from a microfabricated 

field emitter device is 300 mA (40 A/cm2), achieved by Schwoebel, Spindt, and Holland at SRI 

International using a 50,000 tip Molybdenum emitter array [168]. Efforts by different teams are 

primarily concentrated on improving the emission uniformity over an emitter array in the 

cathode to realize the potential of microfabricated field emitters for very high current densities (> 

100 A/cm2) and total emission currents (> 1 A).  

Diamond materials with small grain sizes and high defect densities generally emit better 

than those with large crystallite sizes and low defect contents, as reflected in the data in Figure 

2.16. Heavy doping, n-type or p-type in nature, enhances emission. Outstanding emission 

properties are discovered in both ultrafine diamond powders containing 1- 20 nm crystallites 

produced by explosive synthesis and nanocrystalline or ultra-nanocrystalline diamond films 

(composed of ~1-100 nm crystallites) [154,169-173]. Emission has been found to originate from 

sites that are associated with defect structures in diamond [142, 173, 143-145]. Compared with 

conventional Si or metal microtip emitters, diamond emitters show lower threshold fields, 

improved emission stability, and robustness in low/ medium vacuum environments.  Attempts 

have also been made to apply diamond coatings on tips of silicon or metal-emitter arrays to 

further enhance the emission characteristics [131, 170, 174-178]. High emission currents of 60-

100 µA per tip have been measured for Si tips conformally coated with nanocrystalline diamond 

films [63]. 
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Nanocrystalline diamond, a strongly emerging form of CVD diamond material, has 

generated significant interest for vacuum micro/nanoelectronics in recent years. The properties of 

nanodiamond and its reported emission characteristics are discussed in the next chapter.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
       
 
 
Figure 2.16 Emission current density vs. applied electric field for various types of diamond 
emitters [121]. 
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CHAPTER III 

NANOCRYSTALLINE DIAMOND 

 

With this research oriented towards the development of a promising cold cathode 

material, nanocrystalline diamond, it would be appropriate to dedicate a chapter to introduce the 

material and update the rapid advancements perpetuated by its properties in various fields 

including vacuum nanoelectronics, NEMS, biomedicine, electrochemistry, optics, and beyond, 

with particular emphasis on its utility as an electron emitter. 

A unique combination of high thermal conductivity, low electron affinity, high chemical 

stability, and high resistance to particle bombardment makes CVD diamond, a suitable candidate 

for applications varying from electronics to tribology [179]. Uses based on the physical strength 

and hardness of diamond such as cutting tools, protective coatings and composite additives have 

been in practice and available in the market. At the same time, the conventional CVD 

microcrystalline diamond is not used widely for applications in micro/nanoelectronic devices, 

optical devices and coatings, nanoelectromechanical systems (NEMS), and thermal management 

devices. It is very important to tailor this material to cater to many applications. In this direction, 

the processing challenges and the difficulties encountered in applying the properties of diamond 

in thin film and device forms can be neutralized by the development of nanocrystalline diamond, 

often referred to as “nanodiamond”.  

A diamond film is termed as “nanocrystalline” if it possesses a grain size in the 

nanometer scale between 1 nm and 100 nm. Nanocrystalline diamond, while holding the 

meritorious nature of the conventional CVD microcrystalline diamond in its mechanical, thermal 

and electrical properties, offers certain unique properties, brought about by its small grain size 
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and large network of grain boundaries. Nanodiamond has great surface smoothness, n-type 

dopant incorporation, higher (but minute) degree of sp2-bonded carbon content, hardness, 

reflectivity, lowered internal stress and friction coefficient, and a large scope for materials 

processing and integration. These properties of nanodiamond are experimentally confirmed to be 

controllable over a broad range. 

 

3.1 Morphology of nanocrystalline diamond  

The grain size of a nanocrystalline diamond film can be typically controlled to be as 

small as 2 nm. For example, Ultrananocrystalline diamond (UNCD), first developed by Argonne 

National Labs (ANL), has ultra-small (2-5 nm) grains and atomically abrupt (~ 0.5 nm) high 

energy grain boundaries [79]. Figure 3.1 (a) displays a high resolution transmission electron 

microscope (TEM) image of the UNCD [180], while Figures 3.1 (b) and (c) show the scanning 

electron microscope (SEM) picture of nanocrystalline diamond, having a typical cluster 

morphology with grain size of 15-20 nm [65,70]. The morphology change in the diamond film 

brings with a large increase in the utility of the material. With respect to field emission, the 

nanodiamond grain size results in the formation of sharp tips with small radius of curvature, 

leading to a high geometrical field enhancement factor, while the increased grain boundary 

network, acting as conduction channels, augment the electrical conductivity of the entire film, 

thereby enhancing the electron transport through the diamond. Nanodiamond films overcome 

most of the drawbacks of traditional, microcrystalline diamond films as they are smooth, dense, 

and can be conformally coated on a wide variety of materials with high-aspect-ratio structures 

[181]. One of the effective deposition techniques to achieve nanocrystalline diamond, and the 

effect of controlling the plasma chemistry and associated process parameters on the morphology 
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and electrical properties of the diamond film have been explored in this research, which is 

elaborated in detail in chapter V. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 (a) TEM image of the UNCD film with 3-5 nm grain size [180]; (b and c) SEM 
pictures of nanodiamond films deposited by CH4/H2/N2 [70] and CH4/Ar [65] microwave plasma 
deposition techniques respectively. 
 
 

The surface roughness (100-400 nm) of the CVD microdiamond film is considered to be 

high for many applications. For example, diamond is well suited for use as protective optical 

coatings but diamond films with high surface roughness cause attenuation and scattering of the 

transmitted signals restricting their use in optical coatings. In order to overcome the problem of 

surface roughness of diamond films either post-polishing should be adopted, or naturally smooth 

films should be grown without compromising their hardness and other useful properties. 

However, post-polishing is expensive and time consuming. Nanocrystalline diamond has a very 

(a) 

(b) 
(c)
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smooth and uniform surface morphology with a typical RMS surface roughness about 20 nm 

[80]. The smoothness of the thin film is directly related to its mechanical properties like 

coefficient of friction relevant to MEMS, and is also a very critical factor in several cases such as 

micropatterning of diamond films to realize useful structures, and integration of different 

materials with diamond. 

 

3.2 sp2/sp3 composition of nanocrystalline diamond 

Nanodiamond is highly sp3-bonded in nature. Due to the decrease in the grain size and 

increase in the volume density of grain boundaries, nanodiamond films also encompass an 

increased sp2-bonded non-diamond carbon content, preferentially in the grain boundaries.  

 

 

 

 

 

 

 

 
 
Figure 3.2 (a) Visible Raman spectrum of a ultrananocrystalline diamond film with 3-5 nm grain 
size [182]; (b) Typical Raman spectrum of a microcrystalline diamond film. 
 

It is known that the intensity and broadening of Raman peaks are directly correlated to 

the crystallinity (crystal size) of films. A broad sp3-diamond peak (1332 cm-1) and higher sp2-

carbon shoulder (1560-1580 cm-1) are typical characteristics of the Raman spectrum obtained 

from a nanodiamond film, as shown in Figure 3.2 (a), in comparison with that of a conventional 
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microdiamond film (grain size: 1 µm-3 µm), featuring a sharp sp3-diamond peak and a very 

small sp2-carbon signature, Figure 3.2 (b). The use of visible excitation often gives rise to an 

intense background photoluminescence that can mask the Raman line in nanodiamond, even in 

films with low amounts of sp2–bonded carbon. Also, Raman scattering in visible range is about 

50 times more sensitive to the sp2-bonded carbon than the sp3-bonded carbon [80]. For reference, 

it can be noted that UV Raman spectroscopy and synchrotron based near-edge x-ray absorption 

fine structure measurements (NEXAFS) were used to identify the presence of about 5 % sp2 

bonding in a typical UNCD film [183]. The role of sp2-carbon as a strong field enhancement 

factor for electron emission from diamond has been discussed in Chapter II. 

The visible Raman spectroscopy is mainly suitable to monitor the sp2-carbon behavior 

and follow the evolution of sp2-carbon phase. UV–Raman spectroscopy using higher photons 

energy (shorter wavelength) can characterize the nature of sp3-bond in the films more clearly 

[184]. Figures 3.3 (a) and (b) show the typical visible and UV Raman spectra of nanocrystalline 

diamond films respectively. The peak at 1332 cm− 1, characteristic to sp3-bonding, which is not 

easily resolvable in visible Raman spectroscopy, is clearly observed in Figure 3.3 (b). 

 

 

 

 

 

 
 
 
Figure 3.3 (a) Visible Raman spectra of nanocrystalline diamond films deposited from 0, 2, 4, 
and 5% N2 in CH4/Ar/N2 source gas mixture; (b) UV Raman spectra of nanocrystalline diamond 
films deposited from 10% N2 in CH4/Ar/N2 source gas mixture [80]. 
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In Figure 3.3 (a), showing a series of visible Raman spectra for films deposited with and without 

N2 in the source gas mixture, three bands are observed for all four nanocrystalline films: 1125, 

1332, and 1560 cm-1. The broad band at ~ 1332 cm-1 is assigned to the first-order phonon mode 

for diamond, reflective of the sp3-bonded diamond nanocrystallites. Normally, microcrystalline 

diamond films have a sharp peak at 1332 ± 2 cm-1 with a line-width of 5 to 8 cm-1 (Figure 3.2 

(b)). The significantly broadened diamond line (broadening of the full width at half-maximum 

(FWHM) of the 1332-cm−1 diamond peak) for the nanocrystalline films results from the 

decreasing grain size to the nanometer scale. To a first approximation, the line-width is a 

measure of the phonon lifetime. The more defects (e.g., grain boundaries) and impurities (e.g., 

nitrogen) there are, the shorter the phonon lifetime and the broader the line-width [80]. The non-

diamond sp2-bonded carbon peak at 1560 cm-1 results from the π-bonded carbon atoms in the 

grain boundaries. The position and intensity of this broad peak depends on the deposition 

conditions used, the wavelength of the excitation photon, the relative amount of the sp2-bonded 

carbon phase in the optically probed volume, and how microstructurally ordered or disordered 

the phase is. The spectra also contain a feature centered at 1125 cm-1, which has been observed 

in nanodiamond films in the vicinity of 1120-1190 cm-1 by different researchers 

[65,67,70,80,185,186]. Definitive assignment of this peak has not been made yet. It is possible 

that the band arises from the effects of small crystallites or disorder in the tetrahedral carbon 

network of diamond [80]. 

It can be seen that the ratio of the diamond (1332 cm-1) to the nondiamond (1560 cm-1) 

band intensities, is large for the film deposited without any added N2 and decreases for the films 

deposited with the gas. However, the ratio is independent the of N2 level.  One of the suggested 

theories to explain the decrease in this sp3/sp2 band intensity ratio when N2 is added is the 



 51

decrease in the average grain size. In other words, increasing the N2 in the source gas mixture 

causes an increase in the relative number of grain boundaries in the film, and it is at these grain 

boundaries that the sp2-bonded carbon atoms exist [80]. 

The signal for diamond is expected to increase relative to that for amorphous or graphitic 

carbon as the excitation wavelength is shifted toward the UV due to an increase in the scattering 

cross section. For example, the spectrum for a 1% CH4/1% N2/98% Ar nanocrystalline diamond 

film, given in Figure 3.3 (b), exhibits a moderately intense diamond line at 1332 cm-1 with a 

line-width of 25 cm-1 [80]. No band was detected at 1125 cm-1 (this region of the spectrum is not 

shown), but a broad band centered near 1550 cm-1 is present due to the sp2-bonded carbon atoms 

in the grain boundaries. The band intensities for the diamond and nondiamond carbon are 

roughly the same, but the peak area for the latter is significantly larger. In essence, it is evident 

that nanocrystalline diamond films have a significant diamond crystal component, with a 

relatively increased sp2-bonded carbon. 

 

3.3 Nitrogen as an n-type dopant in nanocrystalline diamond 

The success in fabricating diamond-based electronic devices has been limited mainly due 

to the difficulty in achieving the effective n-type conductivity of diamond. The problem lies in 

the difficulty of finding a way to dope diamond so that it’s ambient temperature conductivity and 

carrier mobility are sufficiently high to make diamond-based devices work at room temperature. 

Nitrogen is among a few suitable dopants for nanocrystalline diamond. But, traditional doping 

with nitrogen does not work, since nitrogen atoms at substitutional sites introduce a deep donor 

level 1.7 eV below the conduction band, and thus is not thermally activated at room temperature 

[70,181,187]. This is due to the fact that nitrogen is very reluctant to insert into the diamond 
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lattice, and all efforts to dope microcrystalline diamond with electrically active nitrogen have to 

date met with very limited success. Unlike nitrogen doped single crystal diamond, nitrogen 

doped ND/UNCD films exhibit significant electrical conductivity at room temperature. This has 

been achieved in-situ by the addition of N2 to gas plasmas generated in CH4/Ar and CH4/H2 

mixtures during the thin film growth. 

In contrast to diamond single crystals or microcrystalline films, nanodiamond, due to its 

small grain size and thereby a high density of grain boundaries, allows for easier incorporation of 

nitrogen impurities [188-192]. Secondary ion mass spectroscopy (SIMS) data has shown that the 

content of nitrogen in the ultrananocrystalline diamond (UNCD) film saturates at 2x1020 

atoms/cm3 (~ 0.2 % total nitrogen content in the film), when the nitrogen concentration in the 

plasma is 5 % [188]. The conductivity at room temperature increases dramatically with nitrogen 

concentration, from 0.016 (1 % N2) to 143 Ω-1cm-1 (20 % N2) [188,193]. This is to be compared 

with the best values reported previously, which are 10-6 Ω-1cm-1 for nitrogen-doped 

microcrystalline diamond and 0.33 Ω-1cm-1 for phosphorous-doped microcrystalline diamond 

films. These obtained results with the UNCD by researchers at Argonne are illustrated in Figure 

3.4 [154,188]. Temperature dependent conductivity and Hall measurements performed on 

UNCD films are indicative of multiple, thermally activated conduction mechanisms with very 

low, effective activation energies of < 0.1 eV [181]. This behavior is similar to highly boron-

doped microcrystalline diamond. Hall measurements of the carrier mobility report reasonably 

high room-temperature carrier mobilities of 10 cm2/V-s [188]. The negative value of the Hall 

coefficients indicates that electrons are the majority carriers in nitrogen-doped nanodiamond 

films. 
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Several other works have reported successful nitrogen incorporation and high electrical 

conductivity in nanocrystalline diamond. SIMS measurements on nanocrystalline diamond films 

having a grain size of about 10 nm deposited by N2/CH4 plasma CVD process, were conducted 

by N.S. Xu et al [67], who found that the nitrogen distribution is uniformly high in the film with 

a concentration reaching up to 1021 atoms/cm3. K.L. Ma et al [70] have reported that the 

introduction of nitrogen to CH4/H2 in the nanodiamond growth plasma significantly reduces the 

resistivity of the film by six orders of magnitude. Further, the nitrogen incorporation has been 

confirmed to be consistent through the depth of the film, shown by the profiles of the carbon and 

nitrogen concentrations as a function of depth for a nanocrystalline diamond film in Figure 3.5 

[80]. X-ray photoelectron spectroscopy (XPS) information obtained from nanodiamond film 

grown in a nitrogen-rich CH4/H2/N2-mixture plasma CVD process is shown in Figure 3.6 [65]. 

The N 1s spectrum of the diamond film detected by XPS shows a clear peak located at 398 eV 

corresponding to nitrogen, denoting the existence of nitrogen atoms incorporated in the film.  

Researchers have proposed that in the case of nitrogen incorporation in nanodiamond, 

conduction occurs via the grain boundaries and not the grains. Density-functional based tight-

binding molecular dynamics simulations have shown that nitrogen incorporation into the grain 

boundaries is favored by 3-5 eV over substitution into the bulk. Nitrogen increases the amount of 

three-coordinated carbon atoms in the grain boundary and leads to additional electronic states 

near the Fermi level, causing it to shift upward (toward the conduction band). Thus, nearest-

neighbor hopping or other thermally activated conduction mechanisms could occur in the grain 

boundaries and result in greatly enhanced electron transport. The conduction may occur via the 

new carbon states in the band gap. Hence, it is proposed that grain boundary conduction 



 54

involving carbon π-states in the grain boundaries is responsible for the high electrical 

conductivities [154,181,188,194,80]. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 (a) High-resolution SIMS spectra of the ultrananocrystalline diamond film revealing 
the incorporation of nitrogen with a CN- secondary ion peak with a mass of 26.0030 amu; (b) 
Total nitrogen content and room-temperature conductivity as a function of nitrogen in the 
plasma; (c) Arrhenius plot of conductivity data obtained in the temperature range 300–4.2 K for 
UNCD films synthesized using different nitrogen concentrations in the plasma [154,188]. 
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Figure 3.5 Depth profiles for the atomic carbon and nitrogen concentrations in a 1 µm-thick 
nanocrystalline diamond film deposited from 1% CH4/5% N2/95% Ar [80]. 
 
 
 
 

 
         
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
        
Figure 3.6 The XPS N 1s core-level electron spectrum for nanodiamond film deposited in 
CH4/H2/N2 mixture, clearly showing the nitrogen peak at 398 eV [65]. 



 56

3.4 Growth temperature 

Most diamond CVD processes require the substrate temperature to be above 700 °C to 

obtain high quality crystalline diamond films, as the nucleation and growth of diamond is not an 

easy task at a lower substrate temperature (< 500 °C). Though the typical substrate temperature 

for nanodiamond growth is 700-800 °C, different researchers [195-196] have shown successful 

synthesis at temperatures as low as 400 °C. It has been reported that the nanodiamond growth 

process plasma chemistry exhibits much less temperature dependence than the conventional 

microcrystalline diamond deposition process. Figure 3.7 shows dense and continuous UNCD 

films obtained at 400 °C substrate temperature using an optimized ultrasonic seeding process 

[195].  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 SEM pictures of the surface morphology and cross-section of UNCD films deposited 
at (a) 800 °C and (b) 400 °C [195]. 
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Deposition at temperatures compatible with standard semiconductor manufacturing 

processes can enhance the feasibility of combining diamond with other materials including 

metals, semiconductors, and oxides, pitchforking its use in integrated circuits and other 

applications, such as microelectromechanical systems (MEMS) (see Figure 3.8) [195]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Low-temperature UNCD as hermetic coating for BioMEMS [195]. 
 
 
 
3.5 Micropatterning of diamond 

The mechanical hardness of diamond warrants a robust and controlled etch process to 

micropattern the material uniformly and realize useful structures for any given application. The 

surface roughness is a critical parameter for lithographically patterning a thin film. The smoother 

surface morphology and uniformly controllable thickness properties of nanodiamond can 

overcome many lithography problems. The nanodiamond reactive ion etch technique developed 

in this research offering selectivity, yield and reproducibility, while maintaining a good etch rate, 

is detailed in chapter V. The feasibility of film micropatterning in CVD diamond technology can 

help form various robust and useful structures suited for a wide range of applications. 
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3.6 Ultrananocrystalline diamond (UNCD)  

A summary of the features of ultrananocrystalline diamond (UNCD) [180,181,197] 

would provide a comprehensive shape to this chapter on nanodiamond. UNCD refers to a 

diamond film with the smallest ever grain size of 2-5 nm. Originally developed by Argonne 

National Laboratories, UNCD is synthesized using a microwave plasma chemical vapor 

deposition technique in hydrogen-poor plasma chemistries, with CH4 or C2H2 as the carbon 

source gas.  Argon-methane plasmas produce C2 dimers that lead to the growth of phase-pure 

nanocrystalline diamond (more than 95% sp3-bonded carbon). UNCD films have been deposited 

at temperatures as low as 350 °C, and on a wide variety of substrates, including Si, SiO2 (thin 

oxide films, quartz, Corning glass), refractory metals (Ti, Ta, W, Mo), as well as SiC and SiN. 

 Continuous films have been grown to render the substrate impervious to chemical attack from 

strong acid solutions such as HF and HNO3. Deposition of reliable, high-quality ohmic contacts 

has been possible on n-type conductive nitrogen-doped UNCD [198], useful for electronic 

devices. With recent advances in plasma technology, UNCD films have been deposited on 200 

mm substrates. 

The material properties of UNCDTM, commercialized by Advanced Diamond 

Technologies, Inc., are outlined as follows (as reported in [180]):   

Mechanical Properties:  The hardness, Young’s modulus, fracture toughness and strength of 

UNCD have been found to be essentially equivalent to natural diamond. 

Tribological Properties:  UNCD exhibits friction coefficients as low as 0.03 in air.  This, 

combined with the extreme hardness, good adhesion properties, and low film stress, allows for a 

wide range of applications of UNCD as a tribomechanical coating.  
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Transport Properties:  The electrical conductivity of UNCD films can be changed over eight 

orders of magnitude, by altering the deposition process.  Nitrogen-doped UNCD films have been 

reported to exhibit the highest n-type conductivity for a phase-pure diamond film and are more 

conductive than any doped microcrystalline diamond film or diamond-like carbon film.  

Electrochemical Properties:  Ultrathin UNCD films have been shown to exhibit the same 

superior electrochemical properties as heavily doped microcrystalline diamond films.  Very thick 

films of microcrystalline diamond, however, are needed due to the columnar microstructure and 

low-energy grain boundaries which gives rise to large leakage currents.  Due to the high 

renucleation rate, equiaxed microstructure, and high-energy grain boundaries, UNCD films as 

thin as 100 nm can be used for electrochemical applications. 

Electron Field Emission Properties:  Low threshold electric fields (2-3.2 V/µm) [62,154] have 

been reported from UNCD for electron emission. When deposited conformally on high aspect-

ratio Si tip emitters, as shown in Figure 3.9, field emission studies showed a substantial 

reduction in the emission turn-on voltage and a large enhancement of emission current for 

diamond-coated tips, as compared to the values of the uncoated Si tips [63]. Emission currents of 

60-100 µA from a single UNCD-coated silicon microtip and as high as 1 mA from conformally-

coated arrays of silicon microtips have been observed [63,121,180]. In addition, the field 

electron emission is reported to be very stable even when the surface is exposed to 10-4 Torr of 

oxygen or hydrogen [199-200].  
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Figure 3.9 Series of SEM images of a 25 nm diameter Si tip emitter coated with a UNCD film 
with incremental coating thickness. The tip on the left is uncoated and successive images 
represent coatings ranging from 100 nm to 2.4 µm in thickness [63]. 
 

 

3.7 Nitrogen-incorporated nanocrystalline diamond for enhanced electron field emission 

This section elucidates how the unique properties of nanodiamond can be favorable for 

electron field emission. For a semiconducting field emitter such as diamond, the emitting 

electrons can originate from either the conduction band, the valence band, and/or surface states. 

Diamond has a wide bandgap (~ 5.5 eV), and undoped diamond is thus generally thought to be 

unable to produce sustained electron emission because of its insulating nature. Although 

electrons emitting from surface states in diamond can occur, there are no obvious mechanisms by 

which electrons can be transported through the undoped bulk to the surface states. Either the bulk 

or the surface of diamond must be made conductive in order to sustain the emission process. 

Furthermore, to fully take advantage of diamond’s small electron affinity to realize electron 

emission at low applied fields, the Fermi level must be close to the conduction band. This would 

require the diamond to be n-type doped. Although p-type diamond can be readily made available 
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by boron doping, very high electric fields are needed for emission to occur, because the emitting 

electrons reside deep (> 5 eV) below the vacuum level in p-type diamond, unless sp2 content is 

included to improve electron transport and emission [115]. An ideal emitting structure may, 

therefore, consist of an n-type doped semiconducting diamond with a true NEA surface.  

Nitrogen-incorporated nanocrystalline diamond offers excellent field enhancement 

factors with its small grain size, increased and controlled sp2-carbon content and n-type electrical 

conductivity, thereby serving as a suitable electron emitting material. The tiny grain size of 

nanodiamond is instrumental in achieving an electron emitter tip with ultra-small radius of 

curvature. The small grain size provides a more localized field enhancement site at the tip apex, 

yielding a good figure of merit and high geometrical field enhancement factor, thereby allowing 

easier electron tunneling. The nitrogen dopant and sp2-carbon promote field emission by 

significantly enhancing the electron transport through the nanodiamond to the vacuum interface 

and reducing the energy barrier that the electrons must tunnel through for emission [62,65-66]. 

The considerable increase in the electrical conductivity of the nanocrystalline diamond film by n-

type conductivity indicates a reduction in the work function [64-65,68], a critical parameter in 

electron emission, governed by the F-N phenomenon. The energy states induced by 

nanocrystalline boundary and nitrogen incorporation in the CVD diamond have been calculated 

by quantum theory [67], which reveals that the interface-related states form a shallow band of 

0.29 eV below the conduction band edge. This boundary band, if occupied under an applied field 

or under some other appropriate mechanism, could supply significant electrons to sustain stable 

emission. Thus, nitrogen-incorporation to nanocrystalline diamond makes it electronically active, 

while retaining the thermal and mechanical stabilization properties of the diamond material, 

yielding an efficient and reliable electron emitter. 
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CHAPTER IV 

PROPOSED RESEARCH AND APPROACH 

 

The purpose of this research is to develop reliable and consistent process techniques to 

deposit and micropattern nanocrystalline diamond thin films and integrate them in the fabrication 

of lateral electron field emission devices, operable at low voltage and electric field with high 

emission currents for IC-compatible and extreme-environment applications in vacuum 

microelectronics. To achieve this goal, the research has been focused on two main areas. First is 

the development of well-controlled processes for the growth and micropatterning of 

nanodiamond films to realize useful emitter structures. This part of the research deals with the 

study, processing, characterization and experimental analysis of field enhancement factors in 

diamond for electron emission, realization of CVD nanocrystalline diamond material with 

properties suited for electron field emission, and development of a highly selective diamond etch 

technique to fabricate versatile electron emitter structures of nanodiamond. The second part of 

the research involves the design, microfabrication, and characterization of monolithic 

nanodiamond field emission diodes and triodes in lateral configuration by the application of the 

material and process techniques developed in the first part. The specifics of device design, 

fabrication schema, characterization techniques employed, and results achieved are presented in 

chapters V and VI. 
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4.1 Part I: Development of nanocrystalline diamond for use as an electron field emitter 

4.1.1 Analysis of field emission from diamond  

An understanding of the physics of diamond field emission is essential for the 

development of an efficient diamond field emitter. Figure 4.1 conceptually summarizes the 

mechanism of nanodiamond field emission described in chapters II and III. 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Summary of the mechanism of nanodiamond field emission. 
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For electron field emission from diamond to occur, electrons must [115]: 

1) Tunnel through the metal-diamond interface. Electron tunneling at the metal-diamond 

interface depends on the barrier height, Φb, and hence the choice of metal contact. 

2) Conduction through the diamond layer. The conduction through diamond plays an important 

role in the diamond field emission characteristics and this conduction is primarily controlled by 

diamond’s composition (sp2/sp3 and doping). 

3) Tunneling through the diamond-vacuum interface. The geometry of diamond emitter controls 

the electric field and the electron tunneling probability through the diamond-vacuum interface. 

The electron emission from the diamond emitters obeys the modified Fowler-Nordheim 

equation: 

Ln(I/E0
2)= Ln(A* K1*β2/Φ)-( K2 *Φ1.5/β)(1/ E0)                                  (4.1) 

where K1 and K2 are constants, I is the emission current, Φ is the work function of the emitting 

surface (in eV), β is the total field enhancement factor, A is the emitting area, and E0 is the 

macroscopic applied electric field (Volts/cm). E0=VD/d where VD and d are the anode-cathode 

voltage and spacing, respectively. 

Through experimental analysis, we have identified the unique behavior of the total field 

enhancement factor β of the diamond emitter. The β can be expressed as the product of the 

following field enhancement components: 

β = βg βsp2 βn                                                              (4.2) 

where βg, βsp2, and βn are field enhancement components due to the emitter geometry, sp2-carbon 

content, and nitrogen doping, respectively. As discussed in the previous chapter, the nitrogen-

incorporated nanocrystalline diamond, developed in this research, was found to be a promising 

form of CVD diamond, offering the field enhancement factors outlined in equation 4.2. 
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4.1.2 Development of nanocrystalline diamond film growth technique  

The nanodiamond growth plasma chemistry can be effectively controlled to define the 

grain size, sp2-carbon content, and the nitrogen-induced n-type conductivity in the thin film. We 

have identified a suitable process technique involving CH4/H2/N2 microwave plasma enhanced 

chemical vapor deposition (MPECVD) to grow nitrogen-incorporated nanodiamond films on 

various substrates including silicon. Effective seeding techniques, applicable for diamond 

device-level processing, were utilized to augment the diamond nucleation site density. Through a 

comprehensive set of trials, the microwave plasma growth parameters, viz., gas flow rates of 

methane, hydrogen and nitrogen, microwave power and reactant pressure, and in effect, the 

growth rate were varied to determine the ideal set of process parameters giving the best film 

continuity and uniformity, small grain size, optimal sp2-carbon content, low electrical resistance, 

and low surface roughness in the nanodiamond film. These nanodiamond films were electrically 

tested for vacuum field emission to consolidate the approach. The experiment led to the 

development of a reliable process technique yielding nanodiamond films with the required 

properties. 

 

4.1.3 Development of nanodiamond micropatterning technique 

The development of a robust micropatterning technique for nanodiamond is critical to 

utilize its strong properties and realize applicable structures and devices from the material.  Non-

uniform diamond emitter microstructures can result in uncontrolled randomly scattered emission 

sites, inconsistent emission behavior and no long-term stability. Hence, practical engineering 

design and control of the uniformity and microstructure of diamond emitters for device 

applications assumes paramount importance. If a deposition-etch selective micropatterning 
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process technique is developed for diamond thin films, it will be much more advantageous and 

less complicating than a selective diamond growth technique to realize useful 

micro/nanostructures and monolithic devices from the material. With this regard, a nanodiamond 

etch process has been developed using the ICP-RIE (inductively coupled plasma-reactive ion 

etch) technique in oxygen plasma with good selectivity, etch rate, and reproducibility to yield 

different micropatterns defined with the material for application as a field emitter. Experimental 

trials involving different plasma technology sources, etchant gas chemistries, power and pressure 

conditions, and masking materials of varied thicknesses were explored to establish the 

nanodiamond micropatterning process. 

 

4.2 Part II: Design and development of monolithic nanodiamond lateral vacuum diodes and 
triodes 
 

The development of practical vacuum microelectronic devices operating with high 

emission currents at low electric fields and voltages is the target of this research. There are four 

physical ways of improving the emission performance of a vacuum microelectronic device: 

 (i)  Reducing the cathode material work function; 

(ii)  Enhancing the effective field at the emitter tip through sharpening; 

(iii) Decreasing the inter-electrode distance; 

(iv) Increasing the number of emitter tips for a given area, i.e., tip density. 

Our fabrication process efforts are directed at simple ways of optimizing all of the above. 

Novel and efficient device designs and fabrication schemes have been developed to 

utilize the potential of the nanodiamond material as an electron emitter, by integrating the 

cathode with electrodes controlling the motion of electrons. The field emitter devices were 

designed to operate in a planar lateral configuration. This lateral-type vacuum device is a 
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complete field emission device, with a nanodiamond pointed finger-like emitter array, integral 

anode and insulator involving a small interelectrode gap. The Vanderbilt Diamond Laboratory 

has built the first diamond lateral emitter using mold transfer technique [114]. In this research, 

we introduce a controllable and consistent processing scheme, similar to that used with very 

large scale integrated (VLSI) wafer technology, for monolithic nanodiamond lateral field 

emission devices utilizing the reactive ion etching (RIE) technique. The entire arsenal of 

deposition, micromachining and other material processing techniques developed in Part I were 

integrated to microfabricate these devices. Simple lithography-assisted single-mask and 

advanced dual-mask batch-processing methods have been used to fabricate nanodiamond lateral 

emitter devices on silicon-on insulator (SOI) and aluminum nitride substrates.  

The motivation behind the development of a nanodiamond lateral emitter was to build a 

reliable, low voltage- and low electric field-operating monolithic field emission device 

applicable in integrated circuits, taking advantage of its small interelectrode gap distance, low 

input and negligible parasitic capacitance structure, along with the field emission potential of 

nanodiamond. One of the key parameters for an electronic device design is the operating voltage. 

For IC-compatible and general vacuum microelectronic applications, the turn-on and operating 

voltages should be as low as possible, as it offers better power and thermal management, apart 

from minimizing device reliability issues caused by ion sputtering, the sputter coefficient for ions 

in the energy range of the cathode to gate/anode voltage being negligible. Since the turn-on 

voltage depends on the turn-on electric field of cathode and the anode-cathode spacing, it is 

desired that a diamond cathode be fabricated to meet these two requirements. The lateral device 

configuration, with a simpler fabrication technique than the vertical assembly, allows for 

versatile electrode geometries, thereby paving the way for the nitrogen-incorporated 
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nanodiamond cathode to have a high field enhancement factor (β) resulting in a low turn-on 

electric field. Very small anode-cathode spacing in the micron or even sub-micron range can be 

realized in a lateral device, as the anode, cathode and the insulator are integrated, with the 

interelectrode separation defined by fine lithography. The small grain size and smooth surface of 

nanodiamond, coupled with its materials integration feasibility, enable uniform micropatterning 

of the diamond thin film to delineate the lateral device features using conventional 

photolithography and RIE process techniques. The lateral emitter arrays can also form a sound 

candidate for high power applications. In comparison with vertical field emitters, the smaller and 

more consistent interelectrode spacing of the lateral devices can result in electrical characteristics 

of higher current and higher transconductance at low operating voltages. The possibility of 

obtaining uniform current densities is appealing for high current, even though, lateral devices 

occupy more “real estate” than vertical devices, resulting in relatively lower packing densities. 

High density nanodiamond lateral comb array devices were fabricated to pursue this potential.  

 

4.2.1 Design of monolithic nanodiamond lateral vacuum diodes  

 

 

 

 

 

 

 

Figure 4.2 Basic design of a nanodiamond lateral field emission diode. 
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The basic design of the nanodiamond lateral field emission diode is presented in Figure 

4.2. The nanodiamond cathode is equipped with an array of uniformly spaced high aspect-ratio 

finger-like emitters with sharp apexes for geometrical field enhancement. The anode has a 

straight edge structure, and its material is either nanodiamond or a metal with high work function 

(Φ) to obtain rectifying diode characteristics. The electrodes are separated by a distance as small 

as 2 µm, determining the turn-on voltage of the diode, per a specific nanodiamond composition 

and diode configuration. Diamond lateral vacuum devices should operate at compatible voltages 

with photolithographically defined micron-scale spacings, owing to the low electric field 

emission characteristic of the cathode material. A silicon layer supports the diamond electrode 

structures on an insulating substrate of SiO2, which serves as the isolation material. A silicon-on-

insulator (SOI) wafer is the substrate on which the lateral devices are built. 

 

4.2.2 Design of monolithic nanodiamond lateral vacuum triodes  

Lateral device design is one of the suitable approaches to achieve a completely integrated 

three-terminal field emission device. An uncomplicated process technique can be utilized to 

batch-fabricate lateral triodes on the same substrate, notably with very small lithographically 

defined gate-cathode spacing. Furthermore, devices with multiple gate electrodes such as 

tetrodes and pentodes can be easily achieved with the lateral design. An important parameter for 

triode design is the gate voltage. For most applications, the gate turn-on and modulating voltages 

are desired to be small. Similar to the diamond vacuum diode, the gate voltage relies on the turn-

on electric field of diamond cathode and the gate-cathode spacing. The nitrogen-incorporated 

nanodiamond lateral device approach, with 2 µm gate-cathode gap design, is suitable to achieve 

the desired goals. Figure 4.3 represents the nanodiamond vacuum microtriode design, where a 
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finger-emitter is integrated with gate and anode electrodes in a lateral geometrical configuration. 

This lateral triode structure is more suitable for high-speed and high-frequency device 

applications because of their small emitter-to-gate capacitances, compared to the vertical triodes. 

 

 

 

 

 

 

 

Figure 4.3 Basic design of a nanodiamond lateral field emission triode. 

 

Other important parameters for diamond vacuum triode design are amplification factor 

and transconductance. Amplification factor determines the ultimate voltage gain and 

transconductance signifies current driving capability when a diamond triode is operated as an 

amplifier. For transistor application, the amplification factor and transconductance are desired to 

be high. To achieve high amplification factor, gate-anode spacing and the gate positioning must 

be properly chosen such that cathode is effectively shielded from the anode by the gate but anode 

potential is still capable of collecting all electrons emitted from the cathode. High emission 

current at low gate voltage from diamond triode is the key requirement to achieve high 

transconductance. The lateral device approach, with high current per tip capability of the 

diamond emitter in a small gate-cathode gap construct, can help achieve high transconductance. 

Different device configurations of the nanodiamond lateral triode featuring a single-emitter 
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cathode, varying in gate-cathode and anode-cathode separation distances, were fabricated. In this 

work, only a 1-finger geometry was designed for the triode, so as to clearly study the three-

terminal characteristics of a vacuum device in lateral configuration. This design can be later 

extended to form an array configuration to improve its performance. A detailed analysis was 

done correlating the device design and electrical characteristics, and it was found that the spacing 

of the electrode structures can be used to totally control the device characteristics, resulting in 

either triode or transistor-type operation. 

Overall, the key performance-related aspects of electron field emission focused on in the 

nanodiamond lateral device included low turn-on electric field and voltage, high emission 

current and current density, negligible leakage current, emission stability over time and 

repeatability of device I-V characteristics, diode rectification, and gate-controlled triode and 

transistor characteristics. The field emission behavior of the lateral emitter was analyzed as a 

function of the device parameters, viz., emitter geometry, emitter array size, and interelectrode 

spacing to establish the physical aspects of the vacuum device controlling its electrical 

performance. To investigate the potential of a vacuum microelectronic technology for extreme 

environment applications, a thorough experiment was conducted with the nanodiamond lateral 

device under conditions of high temperatures, and total dose (x-ray) and neutron radiation 

exposure. Efforts were also directed at developing a nanodiamond lateral emitter device 

functioning in a vacuum package, with help from the Kansas City Plant operated by Honeywell®. 
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CHAPTER V 

DEVICE FABRICATION AND EXPERIMENTATION 

 

This chapter describes the process techniques developed for the nanodiamond material, 

and the fabrication schemes for the development of monolithic nanodiamond lateral field emitter 

devices, along with the experimental results. 

 

5.1 Deposition and characterization of nanocrystalline diamond thin films 

An effective growth rate control technique is identified to grow nanodiamond films with 

the process of microwave plasma enhanced chemical vapor deposition (MPECVD). It was 

inferred that a decrease in the growth rate by the control of the CVD process parameters has a 

direct effect on the reduction of grain size of the diamond film. 

 

5.1.1 Experimental  

Nanocrystalline diamond films were deposited in an ASTeX® MPECVD system with a 

1.5 kW generator, operating at 2.45 GHz. The schematic of a typical MPECVD system is shown 

in Figure 5.1 (a).  The substrate temperature was set using an induction heater independent of 

the plasma. The growth system was coupled with a controlled gas handling system, allowing for 

precise control of the flow of all process gases. N-type silicon wafers (ρ=0.001-0.008 Ω-cm) 

were used as substrates for nanodiamond growth. The substrates were pretreated by 

mechanically polishing the surface using a 2.5-µm diamond powder, and ultra-sonicating with a 

5-20 nm nanodiamond powder in acetone solution to augment diamond nucleation. A gas 

mixture of CH4/H2/N2 was employed for nitrogen-incorporated nanodiamond growth. The gases 
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at flow rates of 15/8/190 sccm (CH4/H2/N2) were introduced into the CVD system at a pressure 

of 20 Torr. The substrates were heated to a temperature of 800 °C. The microwave plasma was 

maintained at a power of 550 W. Figure 5.1 (b) shows the snapshot of the CH4/H2/N2 

microwave plasma during the nanodiamond growth process. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 (a) ASTeX® PECVD system used for the nanodiamond growth process; (b) snapshot 
of the CH4/H2/N2 plasma during nanodiamond deposition. 
 

The growth rate was then altered by varying the CVD process parameters to investigate 

the grain size and morphology of the diamond films, and also its composition and electrical 

properties. To conduct a set of comprehensive trials for nanodiamond growth by CH4/H2/N2 

plasma CVD, the microwave power was varied between 550 W and 1000 W, methane gas flow 

rate from 2 sccm–15 sccm with the nitrogen and hydrogen flow rates remaining constant, and the 

reactant pressure was altered in the range of 13-28 Torr. For comparison, a gas mixture of 

CH4/H2 with flow rates of 15/138 sccm respectively, microwave power of 550 W, and reactant 

(a) 

(b) 
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pressure of 13 Torr maintained at a substrate temperature of 800° C was used for diamond film 

deposition in the same MPECVD system. The morphology of the CVD diamond films were 

examined using a field emission-scanning electron microscope (SEM), while the average grain 

size was determined by scanning across the surface of the film at a high magnification of 150 

kX, aided by a nano-scale marker. An atomic force microscope (AFM) was used to analyze the 

surface roughness profile of the nanodiamond film. The common method of scratch test was 

used to evaluate the adhesion strength of the nanodiamond film onto the substrate. The 

composition characterization and structure determination of the diamond films was studied using 

Raman spectroscopy. Electrical conductivity measurements were performed with the help of a 

multimeter. Energy dispersive spectrometry (EDS) was used to identify the incorporation of 

nitrogen in the nanodiamond thin film, where X-rays generated from the diamond film under 

electron bombardment by the SEM were collected with a liquid nitrogen-cooled solid state Si 

(Li) detector and analyzed via computer according to their energy. Rutherford backscattering 

spectrometry (RBS) experiment was also conducted to analyze the chemical composition of the 

CH4/H2/N2-plasma deposited nanodiamond. The technique was used to bombard a small portion 

of the diamond film with very high energy (1800 keV) helium ions, and measure the yield and 

energy of backscattered helium. The composition profile and nitrogen concentration in the 

nanocrystalline diamond were obtained. 

 

5.1.2 Results  

Nanodiamond growth: Nanocrystalline diamond films with grain size as small as 5-10 nm were 

synthesized using the CH4/H2/N2 microwave plasma chemical vapor deposition process at a 

growth rate of 0.1 µm/hr. The grain size of the diamond film was effectively decreased by 
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lowering the growth rate through the adjustment of the CVD process parameters, viz., 

microwave power, reactant pressure, and gas flow rate. It was found that a 15 sccm methane 

flow rate process at 1 µm/hr rate of growth gives a diamond grain size of ~ 200 nm, while a 

decrease from 15 sccm to 2 sccm results in the drop in the grain size to 10-15 nm. At a constant 

CH4 flow rate of 15 sccm, decreasing the microwave power from 1000 W to 550 W produced a 

grain size reduction from 200 nm to 80 nm, while a decrease in reactant pressure from 28 Torr to 

20 Torr with 550 W microwave power yielded a reduction in grain size from 80 nm to 5-10 nm, 

for which the growth rate was observed to be 0.1 µm/hr. The net result of grain size decrease 

from 200 nm to 5 nm was brought about by the lowering of growth rate from 1 µm/hr to 0.1 

µm/hr. Table 5.1 summarizes the effect of the adjustment of CVD process parameters on the 

grain size of the diamond film, while Figures 5.2 and 5.3 illustrate the result with the help of 

SEM micrographs. Figure 5.4 shows the morphology of the as-deposited nanodiamond film, 

examined at different magnifications in a SEM. The continuity and uniformity of the thin film 

over a 2-inch wafer area were found to be highly suitable for integration into device forms. 

The conventional CH4/H2 microwave plasma chemical vapor deposition process also 

yielded nanocrystalline diamond with grain size of 20-30 nm, when carried out at a low growth 

rate of 0.2 µm/hr, by controlling the CVD process parameters (see Figure 5.5). This result is in 

contrast to some reports that the CH4/H2 microwave plasma technique does not produce 

nanocrystalline diamond.  It is important to note that the grain size of the nanodiamond film 

remains constant throughout the growth process, irrespective of the thickness of the film. The 

thickness of the CVD diamond films deposited on flat silicon substrates and applied for this 

study was ~ 3 µm, though in a different experiment, the nanodiamond film was found to 

maintain its nanocrystallinity even to a thickness of  ~ 20 µm. 
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 By these experimental observations, we infer that an effective means to grow 

nanocrystalline diamond is to increase the nucleation rate and decrease the growth rate by 

adjusting the CVD process parameters, viz., microwave power, reactant pressure, and gas flow 

rate. During the MPECVD diamond growth process, diminishing the microwave power reduces 

the energy of the plasma, and decreasing the reactant pressure spreads out the microwave plasma 

in the CVD growth chamber. Reducing the methane flow rate decreases the carbon growth 

source, thereby slowing the growth rate. When all three parameters forces of the reaction process 

are decreased, the reaction is starved. Hence, the two events, diamond nucleation and growth 

compete against each other for the limited amount of energy available. In this condition, the 

nucleation density will increase and the grain size diminish.  Thus, a high density of nano-sized, 

fine diamond grains conglomerate on the substrate to form the nanocrystalline diamond film. The 

growth rate control process methodology employed here for nanodiamond thin film deposition 

can facilitate the synthesis of a very thin and smooth layer of CVD diamond on the surface of 

several substrates and structures for evaluation in varied applications. 
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Table 5.1 Reduction of the average grain size of diamond films deposited in CH4/H2/N2 
microwave plasma conditions through the adjustment of the CVD process parameters 
 
 
 

CH4  flow rate 
(Power: 1000 W; Pressure: 28 Torr) 

Average  
grain size 

15 sccm (~ 7 % CH4) 200 nm 
11 sccm (~ 5 % CH4) 90 nm 
5 sccm (~ 2 % CH4) 50 nm 
2 sccm (~ 1 % CH4) 10-15 nm 

 
Microwave power 

 (CH4 flow rate: 15 sccm; Pressure: 28 Torr) 
Average  

grain size 
1000 W 200 nm 
800 W 150 nm 
550 W 80 nm 

 
Reactant pressure 

(CH4 flow rate: 15 sccm; Power: 550 W) 
Average  

grain size 
28 Torr 80 nm 
20 Torr 5-10 nm 
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Figure 5.2 SEM micrographs portraying the decrease in diamond grain size due to the reduction 
in CH4 flow rate at a constant microwave power of 1000 W and reactant pressure of 28 Torr: 
 

(a) CH4 flow rate: 15 sccm; grain size: 200 nm;  
(b) CH4 flow rate: 11 sccm; grain size: 90 nm; 
(c) CH4 flow rate: 5 sccm; grain size: 50 nm; 
(d) CH4 flow rate: 2 sccm; grain size: 10-15 nm. 

 

 

 

        5.0 kV       x 50.0 K          600 nm            5.0 kV        x 50.0 K          600 nm 

        5.0 kV       x 50.0 K          600 nm          5.0 kV       x 50.0 K          600 nm 
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Figure 5.3 SEM micrographs depicting the decrease in diamond grain size due to the reduction 
in microwave power and reactant pressure at a constant CH4 flow rate of 15 sccm: 
  

(a) Power: 1000 W, Pressure: 28 Torr; grain size: 200 nm;  
(b) Power: 800 W, Pressure: 28 Torr; grain size: 150 nm;  
(c) Power: 550 W, Pressure: 28 Torr; grain size: 80 nm;  
(d) Power: 550 W, Pressure: 20 Torr; grain size: 5-10 nm. 
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Figure 5.4 SEM micrographs of an as-deposited nanocrystalline diamond film with average 
grain size of 5-10 nm grown by CH4/H2/N2 MPECVD process technique at different 
magnifications: (a) 1 kX, (b) 25 kX, (c) 60 kX, and (d) 100 kX. 
 
 

 

 

 

 

 
 
 
 
 
 
Figure 5.5 SEM image of a nanodiamond film grown by CH4/H2 microwave plasma deposition. 

(a) (b) 

(c) (d) 
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Nanodiamond film surface analysis: The SEM and AFM images in Figure 5.6 show that the 

nanodiamond film has a smoother and more uniform surface morphology than the microdiamond 

film, which possesses an increased surface roughness profile. Quantitatively, the RMS roughness 

of the nanodiamond film was found to be 8-20 nm, while that of the microdiamond film was ~ 

115 nm. The low surface roughness is a very important property required for lithographically 

micropatterning a thin film to realize useful structures for different applications. Hence, 

nanocrystalline diamond offers better compatibility for process integration and device formation. 

Also, the scratch test showed that nanodiamond films have good adhesion to the substrate. 

 

 

       

 

 

 

 

 

 

 

 

Figure 5.6 SEM and AFM images of nanocrystalline and microcrystalline CVD diamond films. 
 

Composition characterization of nanocrystalline diamond: Figures 5.7 and 5.8 show the results 

of the Raman spectroscopic analysis performed on the nanodiamond films. The sp3-carbon and 

sp2-carbon signatures are detected at 1332 cm-1 and 1580 cm-1 respectively in the Raman spectra. 
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A small shoulder detected at ~ 1140 or 1160 cm-1 indicates the nanocrystalline phase existing in 

the diamond film [65,185], possibly attributive of the disordered sp3-bonded carbon distributed 

in the nano-dimensioned grain boundaries, which are of increased volume-density in the case of 

nanodiamond [186,201]. Figure 5.7 compares the Raman spectrum (b) of the 5 nm grain-sized 

nanodiamond film deposited by CH4/H2/N2 MPECVD with that of a larger grain-sized diamond 

film deposited using the same CH4/H2/N2 technique. The spectrum (a) of the latter also shows a 

shoulder at ~ 1140 cm-1 due to the presence of some nano-sized grains and associated grain 

boundaries interspersed in the diamond film, but the average grain size is 200 nm. Comparing 

the Raman plots, it can be observed that the degree of sp2-bonded carbon content in the diamond 

film increases as the grain size decreases. The sp2/sp3 peak ratio of the 5-10 nm grain-sized 

nanodiamond film (CH4/H2/N2 CVD) was found to be ~ 0.97, while that of the 200 nm grain-

sized diamond film (CH4/H2/N2 CVD) was ~ 0.51. An assumption is often made that the relative 

peak intensities reflect the volume fractions of diamond and non-diamond carbon present. 

However, the optical probing depth (i.e., sampled volume) can vary with the microstructure of 

the carbon phase and the scattering cross sections for the mixtures of sp2- and sp3-bonded carbon 

are also unknown. Therefore, these data should be used in a relative, not an absolute, sense.  

A broad sp3-diamond peak and a higher sp2-shoulder are typical characteristics of the 

Raman spectrum of a nanocrystalline diamond film, as described in Chapter III in discussing the 

properties of the material. Further, it was deduced (see Figure 5.8) that the nanodiamond film 

grown by CH4/H2/N2 CVD possesses a higher sp2-carbon concentration than that obtained by 

CH4/H2 CVD (sp2/sp3 peak ratio: 0.76), the reason being nitrogen preferentially enters the 

network of grain boundaries, and promotes sp2 bonding in the neighboring carbon atoms 

[62,65,154]. The exciting wavelength and power of the laser beam used in Raman spectroscopy 
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(a) 

(b) 

 

was 623.81 nm and 11 mW respectively. The Raman scattering was confined to the ~ 3 µm-thick 

diamond films, and not the underlying Si substrate. The sp2-bonding has 50 times higher 

scattering efficiency than sp3-bonding in visible range, and hence, the nanodiamond film, though 

having increased sp2-carbon concentration, still retains a highly sp3-bonded diamond structure. 

 

 

 

 

 

 

 

 

 

 
         
Figure 5.7 Raman spectroscopic analysis of diamond films deposited by CH4/H2/N2 MPECVD: 
(a) 200 nm grain-sized diamond film; (b) 5-10 nm grain-sized nanodiamond film. 
 
 
 
 

 

 

 

 

 

Figure 5.8 Raman spectra of nanodiamond films deposited by (a) CH4/H2/N2; (b) CH4/H2 CVD. 
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Electrical conductivity of nanodiamond:  The electrical resistance measurements were performed 

using a multimeter, probed on identical-sized Ti/Au circular electrodes sputter-deposited on the 

surface of the nanodiamond film. To obtain good Ohmic contacts, a rapid annealing at 350 °C 

was carried out for 3 min in a vacuum environment. Direct measurement of the electrical 

conductivity at room temperature (RT) showed that the nanodiamond film grown by CH4/H2/N2 

MPECVD has a very low resistance of 2 Ω-10 Ω. In contrast, the electrical resistance of the 

CH4/H2-plasma grown nanodiamond film was found to be ~ 25 MΩ. It should be noted that the 

typical resistivity of intrinsic diamond is ~ 1013-1016 Ω-cm, the film resistance of which is 

measured to be “Open” in a G-ohm multimeter. 

The high electrical conductivity of nanodiamond obtained from CH4/H2/N2 MPECVD is 

attributed to the incorporation of nitrogen. Energy dispersive spectrometry X-ray microanalysis 

revealed the incorporation of nitrogen in the nanodiamond film. Figure 5.9 represents the 

corresponding EDS spectrum, displaying a real time histogram of X-ray count per channel versus 

energy expressed in keV. The nanodiamond film profile exhibits the characteristic carbon and 

nitrogen elemental peaks at X-ray energies of 0.277 and 0.392 keV, respectively. RBS 

experiments conducted on the CH4/H2/N2-plasma derived nanodiamond film also indicated the 

incorporation of nitrogen. The semi-log RBS plot, included in Figure 5.10, displays a distinct 

nitrogen edge, thus confirming the presence of nitrogen in the nanodiamond. An idea of the 

nitrogen distribution profile can be obtained using the graph. While the edge, typically occurring 

at 565 keV according to the RBS calibration, shows that nitrogen is present at the surface of the 

film, the step-like profile is indicative of nitrogen also distributed in the nanodiamond bulk. 

Quantitatively, the nitrogen concentration was found to be ~ 4.5×1021 cm−3 in the near-surface 

region (~ 50 Å) of the nanodiamond film. The actual percentage composition of nitrogen in the 
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diamond was ~ 1.45 %. RBS, being a surface-sensitive technique, could be used to accurately 

verify the nitrogen concentration in the near-surface region. But, since the nitrogen incorporation 

technique during nanodiamond thin film deposition is homogeneous, the nitrogen concentration 

should be uniform throughout the diamond layer. Secondary ion mass spectroscopy (SIMS) 

analysis can be used to accurately establish the nitrogen n-type dopant concentration. As the 

increase in electrical conductivity of the nanodiamond film by nitrogen incorporation clearly 

indicates a decrease in the work function, experimental techniques to estimate this reduction in 

the work function of the material form a subject of further study.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 5.9 EDS x-ray microanalysis composition profile (X-ray count Vs Energy) of the 
nanodiamond film deposited by CH4/H2/N2 MPECVD, indicating the incorporation of nitrogen 
impurity in the diamond film. 
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Figure 5.10 Semi-log RBS plot (backscattered ion count vs. energy) obtained from the 
CH4/H2/N2-nanodiamond possessing a distinct nitrogen edge in its composition profile. 
 
 

Nanodiamond films are incorporated with nitrogen to enhance the electrical 

characteristics of the material. In-situ addition of nitrogen gas to the growth chemistry in the 

MPECVD process is a suitable method for this purpose. The electrical conductivity of 

nanodiamond can be enhanced by increasing the percentage of nitrogen included in the growth 

plasma. Another effective technique to achieve nitrogen-doping in nanocrystalline diamond is to 

increase the microwave power and pressure at a particular nitrogen gas flow rate. Nitrogen-

incorporated nanodiamond films were developed in this research by means of extensive 

experimentation, where the material deposition process parameters, viz., microwave power, 
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pressure and nitrogen gas flow rate were effectively controlled to yield a small grain size as well 

as optimal doping for high conductivity at room temperature. 

 

5.2 Micropatterning of nanocrystalline diamond films 

One of the reasons for CVD diamond being less utilized as a field emitter is that it is 

difficult to pattern diamond films due to the scarcity of appropriate wet or dry etching 

techniques. Diamond, being the hardest material, requires a well-controlled etch process to be 

patterned uniformly to realize useful structures for varied applications. Optical lithography on 

microcrystalline diamond substrates is also a concern, due to its surface roughness. With the 

nanodiamond films developed in this research, having a small grain size and smooth surface 

morphology and uniformly controllable thickness, it is possible to overcome many lithography 

problems. The Vanderbilt Diamond Laboratory has previously created a mold transfer technique 

to micropattern diamond films and generate topologically managed diamond vacuum field 

emitters that optimize both the geometrical and quantum aspects of the Fowler-Nordheim 

governed emission [163]. In this research, a reactive ion etch (RIE) nanodiamond 

micropatterning process technique is developed, which can be utilized in the fabrication of a 

variety of diamond-based devices for applications in vacuum microelectronics and beyond, 

where the geometry directly affects device performance. 

Reactive ion etching of diamond has been attempted by different researchers with 

moderate success. Low etch rate, non-uniform etching, and inadequate mask-defined selectivity 

for device-level micropatterning have been some of the issues encountered during the diamond 

etch. This research addresses and overcomes these concerns, with nanodiamond, to develop a 

consistent and well-controlled micropatterning technique and realize potential electron field 
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emitter structures. Experimentation involving different plasma technology sources, etchant gas 

chemistries, power and pressure conditions, and masking materials of varied thicknesses led to 

the establishment of the nanodiamond micropatterning process. The utilization of an ICP-RIE 

system, based on the inductively-coupled plasma technology combining a high conductance, 

high vacuum compatible process chamber with an ICP source to produce very high ion density at 

controlled low pressures, resulted in a nanodiamond etch process with a high etch rate of ~ 0.5 

µm/min. R.F.-assisted pure oxygen plasma chemistry was identified to be a very efficient 

diamond etchant. An aluminum masking layer of ~ 0.5 µm thickness was found to offer good 

selectivity, allowing the micropatterned nanodiamond structures to retain the beneficial 

properties of the material. The ICP-RIE process parameters included a coil R.F. power of 700 W, 

platen R.F. power of 150 W, oxygen flow rate of 30 sccm, at a pressure of 10 mTorr. The etch 

conditions of high R.F. power and low pressure helped achieve good anisotropy, the high energy 

reactive ions with minimum ion scattering giving a high diamond etch rate and directionality. 

The selective etching ratio of diamond against aluminum was found to be suitably high for 

device pattern formation. The etching was examined to be uniform over a reasonably large area, 

leaving a smooth substrate surface with no residue at the end of the RIE process, facilitating 

high-yield batch-fabrication of devices applying diamond. Nitrogen doping levels in 

nanodiamond did not have an adverse effect on the etch rate, which can yield field emitter 

structures of diamond, with no compromise on the material properties. Lateral field emitters 

fabricated using this nanodiamond micropatterning process are presented in this chapter. 

Alternate diamond etch process recipes resulted in very little success. CF4/O2 plasma etch 

chemistry was implemented to investigate its effect on the diamond etch rate. Metal layers of 

titanium and gold were also applied in different trials to identify the masking material offering 
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the best selectivity. The experiment employing CF4/O2 plasma etchant species for nanodiamond 

RIE did not increase the etch rate significantly, while the process selectivity suffered. Also, Ti 

and gold (0.5 µm thick) masks were not reliable, the micropatterned metal layer on the diamond 

wearing out and peeling off under the same etch process conditions used with Al as mask.  

 

5.3 Cathode fabrication to investigate emission behavior of nitrogen-incorporated nanodiamond 

Nitrogen-doped and undoped nanodiamond films grown by the two different gas 

chemistries, CH4/H2/N2 MPECVD and CH4/H2 MPECVD respectively, described earlier in this 

chapter were applied individually in the fabrication of pyramidal diamond tip array cathodes 

through a mold transfer technique [163]. The physical and electrical characteristics of the 

diamond microtips have been well explored by Wisitsora-at at Vanderbilt [115]. Although the 

focus of this research is on planar lateral field emission devices, the potential field emission 

properties of the developed nitrogen-incorporated nanodiamond material can be evaluated in a 

conventional cathode form before application in advanced monolithic device configurations, 

which was the plan behind the application of nanodiamond to the pyramidal tips. The mold 

transfer process technique used to realize the diamond pyramidal cathode has been documented 

previously [115]. Figure 5.11 displays the CH4/H2/N2-nanodiamond applied pyramidal tip arrays 

at different magnifications. The ultra-sharp apex of the nanodiamond tip with a tip radius of 

curvature of 5 nm and height of 1 µm is displayed in Figure 5.11 (b), indicating that the 5 nm 

grain size of the CH4/H2/N2-nanodiamond film was incorporated in the mold-transfer technique. 

The microtips seen in Figure 5.12 are of the CH4/H2-nanodiamond. Due to the film’s slightly 

larger grain size, it can be seen that the radius of curvature (~ 25 nm) and height (~ 500 nm) of 

the tip apex are not as well defined as those in the CH4/H2/N2-nanodiamond tip. 
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Figure 5.11 SEM micrographs of the CH4/H2/N2-nanodiamond microtip array cathode:            
(a) a single nanodiamond microtip in an emitter array; (b) High magnification image illustrating 
the high aspect-ratio of the nanodiamond tip geometry with 5 nm radius of curvature. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.12 SEM images of the CH4/H2-nanodiamond microtip array cathode: (a) a single 
nanodiamond microtip; (b) Illustration of the relatively lower aspect-ratio of the tip with 25 nm 
radius of curvature. 
 
 
With the help of these aspect ratio observations of the tips, the geometrical field enhancement 

factor (βg) offered by the CH4/H2/N2- and CH4/H2-nanodiamond films to the microtip arrays was 

estimated. The two-step field emission enhancement model (TSFE), described in Chapter II, was 
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taken into consideration. It was found that βg of the CH4/H2/N2-nanodiamond tips (~ 32,000) was 

about 10 times higher than that of the CH4/H2/N2-nanodiamond tips (~ 3,200).  

The field emission characteristics of the nanodiamond microtip array cathodes are 

reported in the next chapter. The nitrogen-incorporated nanocrystalline diamond, when applied 

in a suitable cathode form, is a candidate for enhanced field emission due to the sharp emitter 

tips, obtained by virtue of its small grain size, providing a large geometrical field enhancement 

factor, the presence of deliberate but carefully controlled sp2-carbon content in the nanodiamond 

tips, and the incorporation of nitrogen n-type dopant in the nanodiamond.  

 

The ensuing sections in the chapter put forward the fabrication process schemes 

developed for monolithically integrated nanodiamond lateral field emission devices. 

 

5.4 Fabrication of monolithic nanodiamond lateral field emission devices 

A nanodiamond field emission device developed in lateral configuration can result in 

efficient low-voltage, high-speed and high-frequency electronic performance. Lithographically 

controlled emitter geometry and small interelectrode separation in a versatile, low-capacitance 

structure including a built-in anode and insulator, achieved using simple fabrication methods are 

salient attributes of a lateral field emitter device. By process integration of nitrogen-incorporated 

nanodiamond film deposition with the controlled micropatterning technique, multiple lateral 

diamond field emitter arrays have been batch-fabricated on SOI wafers, creating a useful 

approach to realize potential vacuum electron devices for applications. 
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5.4.1 Single-mask lateral field emission device fabrication 

Device fabrication process: The nanodiamond lateral field emitter devices were physically 

realized using an uncomplicated single-mask fabrication technique, paralleling conventional IC 

processing technology. The process schema is shown in Figure 5.13. The fabrication begins with 

the growth of a 1.5 to 2-µm thick nitrogen-incorporated nanodiamond film on a silicon-on-

insulator (SOI) wafer (2 µm active Si on 1 or 4 µm buried oxide on a 625 µm Si substrate) by 

CH4/H2/N2 MPECVD. Next, an aluminum metal layer of 0.5 µm thickness is deposited on the 

nanodiamond by thermal evaporation. The Al layer is then patterned with the lateral device 

structures using photolithography, the exposed aluminum being etched away by wet chemical 

processing in commercially available PAE (80% phosphoric acid-based etchant) and the 

photoresist (AZ 5214-E) removed. With this aluminum serving as a mask, micropatterning of the 

nanodiamond film is carried out with RIE in oxygen plasma using an ICP-RIE system to 

delineate the electrode structures in the diamond. The coil R.F. power is 600 W, platen R.F. 

power 100 W, with the oxygen flow rate being 30 sccm, at a low pressure of 10 mTorr. A final 

silicon etch step lets the underlying SiO2 layer of the SOI substrate serve as the isolating material 

and sets the interelectrode spacing between the nanodiamond cathode and anode. The process is 

performed using SF6/O2 RIE to ensure no etch of the SiO2 layer beneath. The process parameters 

are an R.F. power of 100 W, reactant pressure of 150 mTorr, and gas flow rates of 50/5 sccm 

(SF6/O2). Post-fabrication, the nanodiamond lateral devices are subjected to RCA chemical 

cleaning procedure, followed in the silicon wafer industry standard process technology, to 

remove any contaminants present on the emitter surface. 
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Figure 5.13 Single-mask fabrication process of the nanodiamond lateral field emission device 
using the reactive ion etch technique. 

Si 
SiO2 

Si 

(a) Starting material: SOI wafer 

Si 
SiO2 

Si 

Nanodiamond 

(b) Nanodiamond growth: CH4/H2/N2 MPECVD 

Si
SiO2 

Si 

Nanodiamond 

AluminumAnode pattern       Cathode pattern 

Si
SiO2 

Si 

Nanodiamond 

Aluminum

(c) Aluminum mask deposition and lateral device pattern transfer: photolithography

       Anode                Cathode  

SiO2 

Si 

Si

Nanodiamond 

(e)  Si etching to isolate nanodiamond cathode and anode

Si
SiO2 

Si 

Nanodiamond 

Aluminum

(d) Nanodiamond micropatterning: reactive ion etch (RIE) in oxygen plasma 



 94

Device fabrication results: Arrays of nanodiamond lateral diodes have been fabricated with 

anode-cathode distances ranging from 2 µm to 15 µm. Figure 5.14 shows the SEM micrographs 

of a 4-finger and 6-finger nanodiamond lateral diode with 4 µm anode-cathode gap. The 

nanodiamond cathode is comprised of finger-like emitter structures having a high aspect-ratio 

laterally tapering to end in sharp apexes, increasing the geometrical field enhancement factor 

(βg). This βg factor is estimated to be ~ 1,300 by modeling the nanodiamond finger as a conical 

tip with lateral tip height of h and tip radius curvature of r, with the factor h/r, defining the lateral 

aspect ratio. A 15 nm planar lateral radius of curvature of the emitter tip is obtained due to the 

combination of ultra-small nanodiamond grain size and precise control of the patterning 

processes in fabrication. The βg factor calculation is illustrated in Figure 5.15. The nanodiamond 

anode design is a straight edge geometry, giving the cathode the rectifying geometrical field 

enhancement factor. The 1-4 µm thick buried SiO2 layer of the SOI wafer forms the dielectric 

isolation between devices. The interelectrode spacing parameter in the lateral device design can 

also be well-controlled by lithography to be of any length, while maintaining the cathode tip 

sharpness, Figure 5.16, which determines the turn-on voltage of the diode, per a specific 

diamond composition and emitter diode configuration, facilitating device operating voltage 

requirements and IC-compatible device operation. Effective etch bias control is critical during 

the subtractive processes involved in fabrication, as any lateral over-etch of the masking layers 

and diamond may result in the widening of the anode-cathode gap, and also a broader and more 

rounded topology for the emitter tip geometry, which essentially govern the vacuum device 

performance.  
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Figure 5.14 SEM micrographs of a 4-finger and 6-finger planar lateral field emission diode with 
4 µm anode-cathode spacing fabricated on a SOI wafer. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15 Illustration of the geometrical field enhancement factor of the nanodiamond lateral 
emitter finger. 
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It is important to note that the SiO2 dielectric is well protected from any plasma-induced 

damage during the diamond RIE by the presence of the active Si layer of the SOI substrate. Once 

the nanodiamond is micropatterned with the lateral electrode structures, the silicon layer beneath 

the diamond is deliberately under-cut (plasma-etch process recipe chosen accordingly) to 

promote the nanodiamond layer gap proximity, ensuring that electron emission occurs only from 

the diamond. The silicon supporting layer also elevates the nanodiamond cathode and anode 

from the substrate, which results in the path of the emitted electrons to be away from the 

underlying insulator, minimizing any chance of surface conduction through the oxide. The 

device SEM images in Figure 5.17 illustrate the result of the Si etch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 SEM images showing three batch-fabricated nanodiamond lateral emitter diodes 
with lithographically controlled different interelectrode gaps: (a) 4 µm, (b) 7 µm, (c) 10.5 µm. 
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Figure 5.17 High magnification SEM images of the 4-finger and 6-finger lateral device 
structures, showing the deliberately undercut Si layer beneath the nanodiamond. 
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Nanodiamond lateral triodes: Different designs of nanodiamond lateral triodes have also been 

fabricated using the same process scheme. The monolithic lateral vacuum microtriode comprises 

a single nanodiamond finger as cathode, with a nanodiamond gate symmetrically arranged in 

close proximity with the emitter, and an integrated nanodiamond anode, all on the same plane. A 

small gate-cathode gap of 1.5-2 µm was achieved by photolithography and control of subsequent 

subtractive processes. Fabricated anode-cathode distances per design were set to vary between 

10 µm and 1 mm, so as to have a wider range to observe the effect of the collector position on 

the triode characteristics. The different nanodiamond triode structures are shown in Figure 5.18.  

 

 

 

        

 

 

 

 

 

 

 
 
 
 
 
Figure 5.18 (a) A completely integrated nanodiamond lateral field emission triode, with 2 µm 
gate-cathode and 20 µm anode-cathode spacings; (b) A lateral triode structure, showing a high 
aspect-ratio nanodiamond finger-emitter in close proximity with the gates, 1.5 µm gate-cathode 
spacing; (c) A diamond lateral vacuum transistor device with 500 µm anode-cathode separation; 
(d) An integrated nanodiamond lateral field emission amplifier circuit. 
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High current lateral emitter device configurations: A suitable design of the lateral emitter diode 

in array configuration over a large area was devised and implemented to develop a potential 

vacuum microdevice for high-speed, high-power applications. The objective was to increase the 

number of nanodiamond fingers in the lateral device structure and investigate how the number of 

emitters scales with respect to the forward emission current derived from the device. 

Nanodiamond comb-shaped lateral field emitter arrays in diode configuration have been 

fabricated for high current field emission using the single-mask process technique. The 

nanodiamond film thickness was increased to 3 µm to suit high current applications. Figures 

5.19 (a) and (b) display the construct of the nanodiamond lateral comb array diodes comprising 

650 and 9000 emitter fingers respectively. These high power configurations of the lateral device 

include symmetrically arranged arrays of comb-shaped structures, with each comb composed of 

65 nanodiamond finger-like emitters as shown in Figure 5.20. The nanodiamond fingers are 

designed and patterned to possess a high and consistent lateral aspect ratio. A small and uniform 

anode-cathode separation is maintained throughout the device structure by control and 

optimization of the micropatterning processes to permit a consistent emission current over the 

array of fingers. The application of a comb array configuration not only allows for a higher 

packing density of the emitters, but also ensures a uniform potential distribution to the diamond 

fingers over a large area. In wafer-scale fabrication, this design can also improve the processing 

yield to achieve monolithic emitter devices. Precise lithography control over the critical vacuum 

device parameters, viz., emitter geometry, array structure, and interelectrode gap is achieved in 

the lateral device. As a result, the device is equipped with well-defined emission sites with a high 

emission site density over a large area, thus allowing large total emission current to be drawn 

from a number of finger-tips operated in parallel. The combs are interconnected using large-area 
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interconnects (500 µm wide by 3 µm thick) of the nitrogen-doped nanodiamond material with 

high electrical and thermal conductivity to handle the high current efficiently and prevent 

electromigration. The large contact pads aid visual electrical probing. The cathode is equipped 

with two contact pads, facilitating the application of current through the electrode structure to 

clean the diamond finger tips prior to emission testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.19 SEM micrographs of the nanodiamond lateral comb array high current diodes: (a) 
650 emitter finger configuration; and (b) 9000 emitter finger configuration (Device Area: 1 cm2). 
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Figure 5.20 SEM images displaying (a) uniformly arranged comb array structures in the 
nanodiamond lateral diode; and (b) a single comb structure composed of 65 micropatterned 
nanodiamond lateral emitter fingers with (c) small and equal anode-cathode spacing. 
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step was incorporated into the lateral device fabrication schema and implemented by the 

deposition of a 1000 Å-thick Ti/Au metal layer over the nanodiamond film, prior to the 

application of the aluminum mask. Subsequent patterning of the Ti/Au layer was performed by 

wet chemical processing using the same photoresist as the mask used for aluminum layer etch. 

The Ti/Au layer was then annealed at 300 °C in vacuum to improve the adhesion strength of the 

metal contact to the diamond. The integrated Ti/Au metal contact layer (see Figure 5.21 (a)) can 

minimize the potential drop across the large-area lateral emitter array. The high-magnification 

SEM image in Figure 5.21 (b) shows the intentionally over-etched Ti/Au to remove any metal at 

the nanodiamond fingers. The integration of a metal contact on the diamond, without the use of 

any additional mask or complicated processes, is an innovative development for the lateral field 

emission device. The utility of this layer can be extended into the device packaging stage as well, 

where the Ti/Au on the diamond can aid wire bonding.  

 

 

 

 

 

 

 

 

 
Figure 5.21 (a) A lateral emitter array diode portraying the uniformly integrated Ti/Au metal 
contact layer on the nanodiamond; (b) High-magnification SEM picture showing that the 
nanodiamond emission regions are devoid of any Ti/Au metal. 
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Aluminum nitride insulator for high current nanodiamond lateral devices: In an effort to 

improve the reliability of the diamond lateral emitter device for high power applications, thicker 

and robust insulating materials were applied for electrode isolation. We have integrated the 

nanodiamond device with aluminum nitride insulator to function as a reliable high power 

vacuum microelectronic device.  

The device fabrication involved the deposition of a ~ 2 µm-thick nanodiamond film on 

the insulating substrate. Several insulator substrates including quartz, sapphire, alumina, and 

aluminum nitride were considered for this purpose. A 640 µm-thick polished aluminum nitride 

(AlN), with high thermal conductivity (140-177 W/m-K) and dielectric strength (1.2 MV/cm), 

was identified to be compatible with the lateral device process scheme. Deposition of a 

continuous CVD diamond film of reasonable thickness with good adhesion strength to very thick 

insulators is difficult. Hence, an intermediate 1 µm-thick layer of polysilicon was deposited on 

the aluminum nitride by low-pressure chemical vapor deposition (LPCVD). The 

silicon/aluminum nitride sandwich substrate was then pre-treated by ultra-sonicating with a 5–20 

nm nanodiamond powder/acetone solution to increase diamond nucleation. No mechanical 

scratching of the silicon surface was performed prior to nanodiamond deposition. The CH4/H2/N2 

microwave plasma enhanced chemical vapor deposition (MPECVD) process was used to grow 

the nanodiamond film on the substrate. The same single-mask nanodiamond lateral device 

microfabrication technique followed on the SOI substrate was then employed to yield the lateral 

emitter array device, with aluminum nitride as the spacer. 

Figure 5.22 shows the cross-sectional SEM image of an as-deposited nanocrystalline 

diamond film on a silicon layer over aluminum nitride. The nanodiamond film was found to be 

dense and continuous with an average grain size of 5-15 nm. Silicon and aluminum nitride have 
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good thermal matching, which permits strong adhesion of the nanodiamond layer onto the 

substrate. The integration of diamond thin films to thick insulators has thus been achieved. 

Figure 5.23 displays the structure of the nanodiamond lateral comb array diode microfabricated 

on AlN substrate with silicon as buffer layer. The lateral device processing has again been 

optimized to undercut the silicon layer beneath the diamond, as shown in Figure 5.24 (a), to 

insure that the silicon is removed from the high field nanodiamond emitter tip regions. Comb 

array diode configurations with over 9000 nanodiamond emitter-fingers in the cathode structure 

have thus been fabricated to evaluate high current testing. Lateral triode device structures have 

also been developed, Figure 5.24 (b), on the AlN substrate. This development of the lateral 

vacuum device on an insulator substrate forms an ultra low-capacitance electronic device 

structure, well-suited for high-frequency operation. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
   
Figure 5.22 Cross-sectional SEM of a uniformly deposited nanodiamond film on Si/Aluminum 
nitride substrate. 
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Figure 5.23 (a) Nanodiamond lateral comb array field emitter diode fabricated on aluminum 
nitride substrate; (b) SEM image showing the device electrodes isolated by aluminum nitride. 
 

  

 

 

 

 

 

 

 
Figure 5.24 (a) SEM picture of the lateral device structure showing the nanodiamond emitter-
finger region is devoid of the silicon layer beneath; (b) A gated nanodiamond lateral field emitter 
transistor device (integrated lateral anode, spaced 500 µm from cathode, not shown in image) 
isolated by the aluminum nitride substrate. 
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Lateral device batch-processing: Batch-fabrication of the lateral field emitter devices has been 

achieved with good repeatability owing to the uniform deposition capability of the nanodiamond 

film on large area substrates as well as the high etch rate and manufacturability offered by the 

RIE process. Figure 5.25 includes a view portraying multiple lateral devices, batch-fabricated 

using the same mask. One of the advantages of using a lateral emitter configuration is observed 

here, as several vacuum diode and triode devices are microfabricated monolithically on the same 

substrate, with no change in the process flow, the device electrode design being defined by the 

mask (layout) and transferred onto the wafer by lithography processing.  

 

 

 

 

 

 

 

 

 

 
 
Figure 5.25 Snapshot illustrating the batch-fabrication of multiple monolithic nanodiamond 
lateral field emission devices, isolated on the same substrate, using a single mask. 
 

Uniformly spaced lateral emitter arrays comprising more than 9000-fingers in the cathode 

structure over a 1 cm2 chip area in diode configuration have been realized. Interelectrode 

distances down to 2 µm achieved with this lateral device processing can be minimized further 
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when e-beam lithography is employed for device pattern transfer. Further, the fabrication scheme 

on SOI wafer substrates allows for the integration of the electrode structures, the dielectric, and 

the metallization contact of the vacuum microdevice, all using a single mask and same 

processing steps. The process flow parallels integrated circuit production, and by virtue of its 

single-mask utility, high manufacturability, combined with its reproducibility, is an efficient and 

cost-effective approach to realize volume production of field emission devices in various 

configurations in wafer process technology.  

 

5.4.2 Dual-mask lateral field emission device fabrication 

A field emission diode with reduced reverse current and high rectification can be realized 

with a non-diamond anode device approach. Since nitrogen-incorporated nanocrystalline 

diamond is an excellent electron emitter, a non-diamond material is preferred for the anode 

component of the lateral device as a diode. We have developed a precise dual-mask 

micropatterning scheme using an “etch/lift-off” process combination to build such a lateral field 

emission device, which can be an ideal candidate for low voltage, high rectification vacuum 

microelectronic diode for harsh environments. 

Device fabrication process: The 2-material lateral device processing follows the described 

single-mask pattern-etch scheme for the nanodiamond cathode emitter fabrication (mask #1). 

Next, the lateral anode pattern (mask #2) is transferred onto the substrate using standard 

photoresist processing, invoking mask alignment with the fabricated cathode. A nickel (Ni) metal 

layer, with a thin titanium (Ti) adhesion layer beneath, is blanket-deposited over the substrate, 

followed by a “lift-off” process with acetone to leaves the Ti/Ni only at the patterned anode area. 

Subsequent silicon etching was performed using SF6/O2 RIE to achieve isolation between the 
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nanodiamond cathode and metal anode using the SiO2 layer beneath and thereby set the 

interelectrode spacing. The fabrication process flow is outlined in Figure 5.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
      
 
Figure 5.26 Fabrication process schema of the nanodiamond lateral field emission diode by 
dual-mask micropatterning technique. 
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Device fabrication results: The dual micropatterning process technique achieved several lateral 

diodes with nanodiamond cathodes and nickel anodes, batch-fabricated with high yield, as 

depicted in the inset of Figure 5.27. The structure of the developed lateral field emission diode is 

shown in the main SEM micrograph of Figure 5.27, illustrating the diamond cathode and nickel 

anode are accurately aligned to set a 4 µm interelectrode gap. The selection of preferred anode 

material depends in part on its electron collecting efficiency. Nickel, a metal with high work 

function of 5.15 eV, serves as a good electron collector, but an inefficient emitter of electrons. 

Deposited nickel films also allow for easy micropatterning by “lift-off” process technique. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 5.27 SEM micrograph of the lateral field emission diode, equipped with a nanodiamond 
6-finger cathode and a nickel anode, precisely aligned to set 4 µm interelectrode spacing; inset: 
Arrays of lateral diodes batch-fabricated using a dual mask process technique. 
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Compatibility of diamond films for integration with many other different materials 

(semiconductors, metals, oxides) is a requisite for realizing active diamond-based devices. The 

development of the nanodiamond lateral field emission device, involving the integration of a 

diamond cathode with a metal anode and an insulating spacer, adds veracity to the fact that the 

many potential performance and reliability advantages of diamond can be successfully realized 

in device configurations. 

 

5.4.3 Package development for nanodiamond lateral field emission devices 

 The development of a vacuum package is of practical relevance to field emission devices. 

The chip-type architecture of the lateral device is well suited for packaging with no device 

assembly issues involved. In collaboration with the Honeywell-Kansas City Plant, a feasible 

packaging process has been developed for the diamond lateral emitters, where the monolithic 

devices are die-attached, wire-bonded, and vacuum-encapsulated in a cavity package. 

Packaged device development: A 10-pin cavity package made of Kovar (a nickel-cobalt ferrous 

alloy) has been chosen for this purpose. The die comprising the fabricated nanodiamond lateral 

devices is attached firmly onto the cavity package. The package was pre-cleaned in Ar(98 

%)/O2(2 %) plasma and vacuum baked at 200 °C for ~ 20 h. For die-attach, a 40000 Å thick 

Ti/Au film was deposited onto the back surface of the substrate, and attached to a 1-inch square 

coupon of thick film gold on ceramic by using a AuSn solder preform and run through a belt 

furnace at ~ 350 °C peak temperature.  Aluminum wire bonding is directly onto the 

nanodiamond contact pads of the lateral devices. A 2 mil aluminum wedge bond was employed 

for this purpose. Figure 5.28 shows a die, with several nanodiamond lateral diodes, attached 

inside the cavity package, while the devices wire-bonded to the contact leads of the package can 
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be seen in Figure 5.29. The smooth surface morphology of nanodiamond plays a critical role in 

yielding a robust wire-bond. The package is finally vacuum-sealed with a Ni-plated Kovar step 

lid in a SST®
 advanced packaging system using a getter material at a process temperature of 360 

°C.  Fine and gross leak tests are performed and passed per mil-spec levels to confirm the 

vacuum seal integrity. Figure 5.30 displays the package developed for the nanodiamond lateral 

field emitter device. 

A practical assembly and package for the diamond vacuum field emission device is thus 

developed. Field emission characterization results of the lateral device functioning in the 

package set-up are presented in Chapter VI. 

 

    

 

 

 

 

 

 

 

 

 

 
 
Figure 5.28 Snapshot showing a lateral device die, attached onto a 10-pin cavity package, with 
an SEM image of the batch-fabricated devices in the die included as inset. 
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Figure 5.29 Nanodiamond lateral emitter diodes wire-bonded in package; the inset shows the 
magnified image of the aluminum bond on the nanodiamond contact pad of a device electrode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Figure 5.30 Vacuum-sealed package developed for the nanodiamond lateral emitter device. 
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CHAPTER VI 

DEVICE CHARACTERIZATION AND DISCUSSION 

 

This chapter outlines the characterization methods employed for field emission testing of 

the fabricated cathodes, lateral diodes and triodes, and presents the electrical performance of 

these nanodiamond devices under vacuum. A discussion on the obtained device characteristics 

follows the results in each section. 

 

6.1 Device Characterization Techniques 

6.1.1 Field emission characterization of nanodiamond films and micro-tip array cathodes in 
vertical configuration 
  

Emission characteristics of as-deposited nanodiamond films and the fabricated pyramidal 

nanodiamond microtip array cathodes were investigated in diode configuration with a devised 

test set-up, involving an external n++ silicon anode (ρ=0.002-0.008 Ω-cm), and an alumina 

spacer. The diode test circuit is shown in Figure 6.1. 

 

 

 

 

 

 

 

 
 
Figure 6.1 Field emission test circuit for nanodiamond cathodes in vertical diode configuration. 
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A resistor R (1 kΩ-100 MΩ) was used to limit the current in case of a short circuit. The anode 

and cathode were electrically connected to the circuit via metal probes in a vacuum chamber. 

The emission testing was performed at room temperature in a vacuum environment of 10-7
 Torr. 

The emission current from the nanodiamond emitters was measured as a function of the applied 

voltage, in both forward and reverse bias directions to confirm the absence of any leakage 

current in the observed field emission. An ammeter was used to measure the emission current 

collected by the anode, while computerized data acquisition was available to record the data and 

generate the I–V and the corresponding F–N plots. The current versus time, at a fixed anode 

voltage, was also captured by a computer real-time to gauge the stability of the emission current. 

An average value of current at a fixed anode voltage was then computed and the voltage drop on 

the limiting current resistor was subtracted from the applied voltage to obtain the true anode 

voltage. The emission characteristic was obtained by plotting the emission current versus anode 

voltage and electric field, depending on the anode-cathode gap in the device set-up. 

 

6.1.2 Field emission characterization of nanodiamond lateral diodes 

The electrical performance of lateral diode was characterized using the test set-up in 

Figure 6.2. The fabricated device was maintained in a vacuum environment of 10-7
 Torr. Flat 

Moly metal dots with large surface area were placed on the contact pads of the cathode and 

anode of the lateral device, and were electrically connected to the circuit via metal probes. The 

emission current from the nanodiamond fingered emitter cathode was measured as a function of 

the applied anode voltage. A continuous D.C. power supply (HP 6035A; 0-500 V; 0-5 A; 1000 

W), capable of incrementing the applied voltage in very small intervals (less than 1 V) was used 

for low-voltage characterization of the lateral diode, designed with a small anode-cathode gap. 
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Figure 6.2 Schematic of the vacuum field emission test set-up for the nanodiamond lateral diode. 
 

Prior to emission characterization, the diamond lateral device was subjected to in-situ vacuum tip 

conditioning by means of thermal desorption to get rid of water vapor or other residual 

adsorbates on the surface of the nanodiamond accumulated at the terminus of the emitter device 

processing or by exposure to ambient. With the device on a heated stage, heat treatment was 

performed at 200 °C for ~ 3 h in a vacuum of 10-7 Torr. The device was then cooled down slowly 

to room temperature. Such post-fabrication processing techniques are also common in 

conventional silicon IC fabrication technology, such as the rapid thermal annealing (RTA) 

treatment done following ion implantation to repair the primary crystalline damage in the silicon. 

Then, without the application of an external heat source, the lateral device was maintained at a 

particular emission current, say, 3-10 µA (depending on the emitter array size) for ~ 1 h or more 

during normal vacuum diode operation by adjusting the anode voltage, where the extracted field 
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emission current was used to execute more localized cleaning of the nanodiamond emitter finger 

tip. The tip conditioning treatment was terminated when a stable current was obtained for a 

period of time ~ 1 h. The common activation procedure to enable the device to operate stably at 

high currents is to very gradually increase the current being drawn from the diamond emitter 

array from ~ 1 µA to its highest operational level at time intervals determined by the time it takes 

to reduce the emission fluctuations to a low level. At a given anode voltage, the emission initially 

increases with time, and the applied voltage must be reduced to maintain the emission level for 

that step. This procedure was followed to ensure stable emitter-finger operation at high current 

densities without destroy by an arc, and is analogous to the “burn in” procedures used for MOS 

devices. After the tip conditioning, the I-V characteristics of the lateral diode were obtained.  

 

6.1.3 Field emission characterization of nanodiamond lateral triodes 

The emission testing circuit for the monolithic lateral vacuum triode, in common emitter 

configuration, is shown in Figure 6.3. A load resistor Ra in the anode circuit is used to limit the 

current in case of short circuit in the anode circuit. A resistor Rg also limits the gate leakage 

current in case of short circuit in the gate circuit. Anode, gate, and cathode were electrically 

connected to the circuit via Molybdenum dots and tungsten probes in a vacuum chamber. 

The anode emission current was measured as a function of gate and anode voltages under 

vacuum (10-7 Torr). The three-terminal lateral devices were characterized following two 

procedures depending on the design. In a device with the lateral anode positioned closer to the 

cathode (~ 10 µm), an anode-induced field emission testing mode was employed, operating in 

the classical triode mode. Initially, the anode voltage was increased to extract electrons from the 

cathode, with no gate bias applied, until a particular anode current was perceived. Next, the gate 
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voltage was altered and the subsequent anode current modulation was observed. In an alternative 

approach, for a device with the anode placed farther (≥ 100 µm) from the cathode and gate 

electrodes, a gate-induced emission mode was followed, where the gate, by virtue of a very small 

cathode-gate gap (≤ 2 µm), was used to control the electric field at the emitter finger-tip and 

extract electrons, with the anode effectively as a collector, in a transistor-type operation. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3 Schematic of the lateral triode emission test circuit in common emitter configuration. 
 

The anode currents versus time were taken by a computer data acquisition system. For each set 

of emission current (Ia) measurement, the anode voltage was scanned manually while keeping 

the gate voltage constant. The gate voltage was then changed to a new value and the same 

emission measurement was repeated until a complete data set for all gate voltages in the range of 

interest were attained. The emission characteristics of triodes were obtained by plotting the 

anode emission current versus gate and anode voltages. 
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6.2 Electrical performance of nanodiamond vacuum field emission devices 

6.2.1 Field emission characteristics of nanodiamond pyramidal micro-tip array cathode 

The microtip array cathodes fabricated applying the nitrogen-incorporated nanodiamond 

(CH4/H2/N2-MPECVD) and the undoped nanodiamond (CH4/H2-MPECVD) were tested 

individually for electron field emission in a high vacuum of 10-7 Torr based on the set-up 

described in the previous section. The undoped nanodiamond tips showed a turn-on electric field 

of ~14 V/µm and 10 µA emission current was obtained at ~ 23 V/µm. The nitrogen-incorporated 

nanodiamond tips exhibited significantly enhanced field emission characteristics with a low 

threshold electric field of 1.6 V/µm and an emission current over 10 µA at ~ 3.3 V/µm, with the 

resultant onset electric field reduction being greater than 80 %. The turn-on electric field is 

defined as the electric field at which a threshold emission current of ~ 100 nA is obtained. The 

graph in Figure 6.4 illustrates the threshold emission characteristics from the two different 

cathodes. The linearity of the corresponding F-N plot and the absence of reverse leakage 

confirms that the observed current is solely due to field emission phenomenon. The drastic 

reduction in the F-N slope (by a factor of ~ 27) for the CH4/H2/N2-nanodiamond indicates the 

presence of strong field enhancement factors in the nitrogen-incorporated nanodiamond (see 

inset in Figure 6.4). When further subjected to high current testing, the CH4/H2/N2-nanodiamond 

applied microtip array generated an emission current of 19 mA (current density ~ 19 mA/cm2) at 

at ~ 6 V/µm, sustainable over time, proving that the nitrogen-incorporated nanodiamond material 

can yield and handle large electron currents, apart from requiring a very low electric field to emit 

the electrons. 
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Figure 6.4 Field emission characteristics (I–E) of the pyramidal microtip array cathodes: (A) 
nitrogen-incorporated nanodiamond tips and (B) undoped nanodiamond tips; inset: 
corresponding F–N plots. 
 

Discussion of the field emission characteristics of the nanodiamond microtip array cathode:  

The nitrogen-incorporated nanodiamond is an appealing material for vacuum microelectronic 

applications. The ultra-small grain size, relatively increased sp2-bonded carbon content and the 

high electrical conductivity of the nitrogen-incorporated nanodiamond film offer a combination 

of properties for efficient field emission devices. The high field enhancement factors of the 

CH4/H2/N2-nanodiamond microtips are summarized in Table 6.1. The improved field emission is 

explained by means of an overall improvement in the total field emission enhancement factor, β, 

which can be expressed as the product of the following components:  
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β = βg βsp2 βn                                                                                             (6.1) 

where βg, βsp2, βn are the field enhancement factors due to the geometry, sp2-carbon content, and 

nitrogen doping respectively, all of which contribute to enhance the electric field and reduce the 

barrier for electron emission in the diamond cathode. The CH4/H2/N2-nanodiamond tip emitter 

involves these parameters favorably to enhance β, and thereby, exhibits excellent electron field 

emission characteristics. Similar β enhancement due to geometry, sp2-content, and boron doping 

in diamond has been proposed and experimentally verified by Wisitsora-at [115]. 

 
Table 6.1 Comparison of the field enhancement factors in CH4/H2/N2- and CH4/H2-nanodiamond 
microtip array cathodes 
 

 
Field enhancement 

factors 

 
Analysis 

technique 

CH4/H2/N2- 
nanodiamond 

(nitrogen 
incorporated) 

microtips 

CH4/H2- 
nano 

diamond 
(undoped) 
microtips 

  
 Geometrical field enhancement   
  factor (βg) of the microtip 

SEM:  
tip radius of curvature & 

height measurement; 
TSFE model:  
βg calculation 

 
 

32,000 

 
 

3, 200 

  
 sp2-bonded carbon content in the 
 nanodiamond film (sp2/sp3 peak  
 ratio) 

 
 

Raman spectroscopy 

 
 

0.97 

 
 

0.76 

 
 Electrical resistance of the    
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Multimeter 

 
 

~ 2 Ω 
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 Nitrogen concentration levels 
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Energy dispersive 
spectrometry (EDS) 

 & 
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backscattering 
spectrometry (RBS) 

  
 

4.5 x 1021 cm-3 
in the emitter surface 
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6.2.2 Field emission characteristics of monolithic nanodiamond lateral vacuum diodes 

The nanodiamond lateral emitters can form a practical electron device for IC-compatible 

and general applications in vacuum electronics. Uniformly micropatterned diamond emitters, in 

conjunction with built-in gates and anode at a small electrode gap form an efficient device 

structure. The typical electrical characteristics of the developed monolithic nanodiamond lateral 

diodes are reported in this section. The device was found to have a low operating voltage and 

electric field, high and stable emission current, reasonable current scaling attributes with emitter 

area, rectification behavior, and operational temperature and radiation immunity. 

  

(a) Low voltage and electric field operation 

The nanodiamond 6-finger lateral diode fabricated with 3 µm anode-cathode spacing was 

characterized in a vacuum environment of ~ 10-6 Torr, a practically attainable vacuum when the 

device is sealed in a package. A low turn-on voltage of 5.9 V, corresponding to a turn-on electric 

field of 1.95 V/µm, which are one of the lowest values reported for lateral field emission devices, 

was demonstrated by the nanodiamond lateral diode. The current value determining the turn-on 

voltage is 10 nA per finger. Further, a high emission current of ~ 5 µA was derived at an anode 

voltage of 18 V (applied electric field of 6 V/µm). Figure 6.5 depicts the turn-on field emission 

characteristics of the device. The device I-V characteristics were found to be consistent with 

Fowler–Nordheim (F-N) relationship, as shown by the linear F-N plot, inset of Figure 6.5. This 

result shows that high-performance diamond devices can be designed to meet the operating 

voltage requirement for IC-compatible and general applications in vacuum microelectronics. 

Also, it is evident that diamond lateral emitters exhibit excellent field emission characteristics 

even prior to any use of special, cost-intensive submicron lithography patterning. 
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Figure 6.5 Low-voltage field emission characteristics of the nanodiamond 6-finger lateral diode 
with 3 µm anode–cathode gap; I–V plot indicates turn-on voltage of 5.9 V; inset: linear F–N plot. 
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cathode). The described emission performance of the lateral device is shown in Figure 6.6.  The 

highly linear F-N behavior confirms field emission tunneling mechanism, while shallow slope of 

the F-N indicates the presence of strong field enhancement constituents (β) in the lateral emitter, 

viz., finger-tip sharpness, sp2-carbon and nitrogen concentration in the nanodiamond. The current 

was then observed to increase exponentially with increasing anode voltages and an emission 

current of 65 µA was achieved at an applied field of 5.7 V/µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 6.6 Low-electric field emission characteristics of a nanodiamond 125-finger lateral diode; 
I–E plot shows turn-on field of 1.1 V/µm; inset: linear F–N plot with shallow slope. 
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The observed turn-on electric field of the nanodiamond lateral emitter is significantly 

lower than that of a comparable silicon lateral field emitter utilizing a sharp tip apex, which is > 

100 V/µm [104]. This is attributed to the superior material properties of nitrogen-incorporated 

nanocrystalline diamond offering the diamond emitter diode a higher effective field enhancement 

factor or a lower work function than a silicon field emitter diode. It would be in the bounds of 

practicality to realize a nanodiamond lateral field emission diode with a nanometer-scale 

interelectrode gap (20 nm-100 nm) brought about by ultra-high resolution (e-beam) lithography, 

operable at a subvolt turn-on voltage equivalent to conventional semiconductor p-n junction 

diodes, triggering a novel candidate for ultra low-power electronics.  The reported results from 

silicon lateral field emitters also confirm that for the electric fields at which the nanodiamond 

lateral diode operates, there can be no emission from the silicon layer beneath the diamond 

fingers. Moreover, the lateral device processing is optimized to overetch the Si layer, as shown in 

Figure 5.17, which leaves the silicon having a wider gap distance from the anode and also with a 

larger radius of curvature pattern. Further, the active silicon layer of the SOI substrate was 

chosen to have a relatively low dopant concentration. All these factors satisfied that the emission 

characteristics of the lateral diode are contributed solely by nanodiamond. 

 

(b) Geometrical field enhancement factor of the finger-like lateral emitters  

An organized study was conducted to identify the geometrical field enhancement offered 

by the finger-like emitter topology to the lateral device. Three different emitter configurations of 

nanodiamond, viz, the micropatterned 6-finger lateral structure, edge-shaped structure (the anode 

structure used in the lateral diode) and an as-deposited nanodiamond film were tested for vacuum 

field emission and their characteristics compared. The effect of the geometrical field 
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enhancement offered by the micropatterned finger-like emitters over the edge structure and the 

as-deposited nanodiamond film was established experimentally. SIMION 7.0TM simulation 

software, an industry standard for modeling of electron and ion optics, was subsequently used to 

model the lateral emitter geometries and study their equipotentials and electric field distributions 

to corroborate the geometrical field enhancement offered by the fingered emitters.  

Characterization procedure: Electron emission from the as-deposited nanodiamond film surface 

was measured in a vacuum chamber maintained at ~ 10-6 Torr, using a heavily doped silicon 

sample as the anode and a 40 µm-thick mica as the insulator, which defined the anode-cathode 

spacing (see schematic in Figure 6.7 (a)). The micropatterned nanodiamond emitters were 

characterized for field emission in a vacuum of ~10-7 Torr laterally with the integrated adjacent 

nanodiamond structure serving as the anode (see schematic in Figure 6.7 (b)). The separation 

between two adjacent emitter structures was designed to be 3 µm. The field emission I-E 

behavior and the corresponding F-N plot were obtained from each of the emitters and compared. 

 

 

 

 

 

 

 

 

   
    
Figure 6.7 Field emission diode characterization testing methods: (a) as-deposited nanodiamond 
film — vertical configuration; (b) micropatterned nanodiamond emitters — lateral configuration. 
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Characterization results: The field emission characteristics of the three different emitters are 

presented in Figure 6.8. The linear F-N plots, included as Figure 6.9, confirm that the current is 

attributable to field emission. The electron emission from the as-deposited nanodiamond film 

could be turned on at an electric field of 18 V/µm, attaining 3 µA emission current at ~ 30 V/µm. 

The 6-fingered nanodiamond emitter exhibited a very low turn-on electric field of 1.9 V/µm and 

a high emission current of ~ 100 µA at ~ 20 V/µm, while the nanodiamond edge emitter, with a 

6.5 V/µm turn-on field, demonstrated 4.6 µA emission current at the same applied electric field 

of 20 V/µm. It should be noted that the 6-fingered lateral emitter cathode was characterized for 

field emission with the adjacent edge structure serving as the anode, while the vice-versa 

combination was applied for testing the nanodiamond edge emitter.  

The effect of the geometry of the high aspect-ratio fingers and the edge emitters on field 

emission from the nanodiamond film was studied. The emission data of the different emitters 

was correlated to the modified Fowler-Nordheim equation: 

         ln(I/E0
2)=ln(A* K1* β2/Φ)-(K2*Φ1.5/β)(1/E0)                                  (6.2) 

where K1 and K2 are constants, I is the emission current, Φ is the work function of the emitting 

surface (eV), β is the total field enhancement factor, A is the emitting area, and E0 is the 

macroscopic applied electric field (V/cm). Furthermore, the total field enhancement factor β can 

be expressed in terms of the product of each field enhancement factor as β=βg βsp2 βn, where βg, 

βsp2, βn are the field enhancement factor due to the geometry, sp2-carbon content, and nitrogen 

doping, respectively. The slope of the linear F-N plot {ln(I/E2) vs. 1/E} is given by –K2Φ1.5/β. 

The observed field emission enhancement of the micropatterned nanodiamond emitters can be 

explained by an increase in the geometrical enhancement factor. This can be deduced from the 

observation that the F-N slope decreases significantly for the fingered and edge emitters (see 
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Figure 6.9). The reduction of the F-N slope should mainly arise from the geometric effect 

because the as-deposited nanodiamond film and the nanodiamond emitters have the same sp2-

carbon and nitrogen concentration and thus should have the same βsp2, and βn and work function 

Φ. Considering that Φ, βsp2, and βn are the same for the nanodiamond films and the 

micropatterned emitters, βg can be found from the F-N slopes of emission data. It was found that 

βg of the 6-fingered nanodiamond emitter is ~198 times that of the as-deposited nanodiamond 

film and ~ 35 times that of the nanodiamond edge emitter. It was also deduced that the βg of the 

edge emitter was ~ 6 times that of the as-deposited nanodiamond film. 

 

 

 

 

 

 

 

 

 

 

 

 

 
    
 
Figure 6.8 Field emission characteristics (I-E) of nanodiamond: (i) as-deposited nanodiamond 
film; (ii) nanodiamond edge emitter; (iii) nanodiamond 6-finger lateral emitter. 
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Figure 6.9 Fowler-Nordheim plots for nanodiamond field emission: (i) as-deposited 
nanodiamond film; (ii) nanodiamond edge emitter; (iii) nanodiamond 6-finger lateral emitter. 
 

 

Field emission simulations of the lateral emitter structures: SIMION 7.0TM simulation software 

was used to model the geometries of the fingered and edge lateral emitter structures. The 

distribution of the equipotentials and electric fields of the lateral emitter geometries for different 

bias conditions was obtained by solving Laplace equations using the tool. The shape of the 

emitter geometries were the same as that applied for the fabricated ones. The 6-fingered emitter 

and the edge geometry were considered as the electrodes with an inter-electrode spacing of 5 µm.  
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The potential arrays, defining the geometry and potentials of electrodes are utilized by 

SIMION  [202]. The potentials of points outside electrodes are determined by solving the Laplace 

equation by finite difference methods: 

 ∇2 V = ∇ . ∇ V = 0                                                  (6.3)  

∇ V = (dV / dx)I + (dV / dy)j + (dV / dz)k = E                                  (6.4) 

∇2 V = ∇ . E = dEx / dx + dEy / dy + dEz / dz = 0                             (6.5) 

The above equation is used to compute electrostatic potential fields. All electrostatic potential 

fields are constrained by the Laplace equation to conform to a zero charge volume density 

assumption (no space charge). The electrostatic potential of any point is defined in space in terms 

of the potentials of surrounding points.  For example, in a 2-dimensional electrostatic field 

represented by a very fine mesh of points, the Laplace equation is satisfied when the electrostatic 

potential of any point is estimated as the average of its four nearest neighbor points: 

 V = (V1 + V2 + V3 + V4) / 4                                                   (6.6) 

This relaxation technique minimizes normal numerical computational errors and produces stable 

solutions [202]. 

Figure 6.10 (a) shows the equipotential line plot of the lateral emitters in diode 

configuration for a given bias condition. The voltage to the edge geometry was set at 25 V, while 

the fingered geometry was grounded. The plot consists of 10 equipotential lines separated by 

2.27 V each.  The magnitude of the electric field at the very tip of each finger emitter and the 

corresponding edge-structured point is listed on the geometries, while the direction of the electric 

field is denoted by arrowhead. As one would expect, the electric field at the tip of the fingers is 

greater than that of the edge geometry throughout the device structure, indicating the enhanced 



 130

field emission characteristics of the nanodiamond 6-fingered lateral emitters observed in 

vacuum. When the potentials were reversed, with 25 V applied to the fingers and the edge 

structure grounded, the magnitude of the electric field on both the electrodes remained the same 

and the direction of the electric field reversed, being opposite to that of the potential gradient (E 

= -∇φ), (see Figure 6.10 (b)). 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Equipotential line plot of the nanodiamond lateral field emitters in diode 
configuration at a given bias condition, showing the magnitude and direction of the electric field 
of the chosen geometries: (a) lateral finger at 0 V and edge at 25 V; (b) lateral finger at 25 V and 
edge at 0 V. 
 

It can also be observed from the electric field distribution of the fingered geometry, that 

the field at the fingers towards the center of the configuration is greater than the corners. This 

effect could be more pronounced in reality if the corners of the nanodiamond edge, when serving 

as the anode, were over-etched during the etch processes in the lateral device fabrication. The 

influence of increasing the number of fingers in the emitter geometry can be considered in light 
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of this “corner-effect”. Comparing the 6-finger and 4-finger geometries, the former emitter 

configuration is superior to the latter due to the fact that there is 33.33% of the fingers at lower 

electric fields due to their location towards the corner of the structure, while the value increases 

to a notable 50% for the 4-finger electrode. Hence, a higher number of non-corner fingers would 

be expected to demonstrate more field emission current at a given applied field for the reason 

that a very small portion of the cathode geometry would be affected by lower electric fields due 

to the “corner-effect”. 

Figure 6.11 provides a clear view of the equipotential plot around the tip of a single 

finger, when the bias condition is set as 0 V on the finger and 25 V on the edge. The trajectory of 

the electrons emitted by a finger (cathode) to reach the edge (anode) at a potential of 25 V is also 

portrayed. It can be noticed that the density of the equipotential lines around the finger located 

towards the center of the geometry is higher than that at the corner owing to the lower electric 

field of the latter. The contours around the finger-tip in Figure 6.12 indicate the zones at which 

the electric field distribution is constant. The contours that have been plotted include magnitudes 

of 2 V/µm to 10 V/µm in increments of 2 V/µm and do not denote the direction of the electric 

fields.  The contour closest to the tip specifies the zone of the 10 V/µm electric field, which is 

followed by the 8 V/µm field contour.  The 6 V/µm contour splits in half and terminates on the 

anode.  The contours matching the electric fields of 4 and 2 V/µm stretch out and terminate on 

the adjacent fingers. The magnitude of the electric field defined by each contour was found to 

scale linearly with the anode voltage. These simulations help understand several aspects of 

electron emission in the lateral emitter geometries. The information obtained from the simulated 

data was incorporated in the lateral device design to optimize the emitter geometry, spacing 

between the emitters, and array configuration in the device structure for high performance. 
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Figure 6.11 Equipotential plot around the tip of a single cathode finger, also showing the emitted 
electron trajectory to the anode (edge) at a potential of 25 V. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.12 Constant-electric field distribution contours around the tip of a cathode fingered 
emitter. 
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(c) Observation of high emission current prospect in the nanodiamond lateral device 

The nanodiamond 6-finger lateral diode, apart from exhibiting a low turn-on voltage of 

5.9 V, achieved high current, which was the first indication in this research that lateral emitters 

can be a viable candidate for high power applications. As the anode voltage was increased, 

emission from the 6-fingered cathode was allowed to stabilize over time at different electric 

fields under vacuum, thus conditioning the tips and consolidating the emission sites participating 

in electron emission at a given applied field. The diode, then, demonstrated a high emission 

current of 1.1 mA at an anode voltage of only 98 V (electric field ~ 30 V/µm). The average 

current extracted per finger was 183 µA (assuming all of the 6 emitters contribute equally to the 

total current), which is among the highest current/tip values achieved from a lateral emitter 

geometry. The achievable currents per tip with silicon as the cathode material are reported to be 

limited to the order of 1 µA [102]. A simple estimate of the current density capability of the 

lateral device was performed. A 6-fingered cathode occupying a real estate of 270 µm2, Figure 

6.13, yielded ~ 1 mA electron current. Extrapolating, it might be possible to achieve ~ 85 A of 

emission current from a 1 cm2-area chip possessing multi-fingered (~ 6000 fingers) emitter 

arrays, with due consideration to the real estate occupied by the anode, interelectrode isolation, 

and contact pads on the chip. The high current field emission behavior of the nanodiamond 6-

finger lateral diode is presented in Figure 6.14, with the current density estimate in an I-J-V plot.  

 

 

 

 
 
 

Figure 6.13 SEM image of lateral device specifying the nanodiamond cathode emitter area. 

  Cathode area 



 134

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 High current field emission characteristics of the nanodiamond 6-finger lateral diode 
with 3 µm anode-cathode gap: 1.1 mA at <100 V; 85 A/cm2 current density capability based on 
the real estate occupied by the emitters on a 1 cm2-area chip; inset: Linear F–N plot. 
 
 

Alternatively, considering the cross-sectional area of the electron collector in the lateral 

device structure, the anode current density is found to be as large as 1.5x103 A/cm2. The ~ 1 mA 

emission current behavior obtained from the 6-finger nanodiamond lateral diode initiated further 

work on the lateral emitters for high power applications. Versatile designs of the lateral diode 

equipped with uniformly spaced high aspect-ratio emitters in array configuration over a large 

area, maintaining a small and equal anode-cathode spacing were devised, processed and 

characterized for high current. 
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(d) Emission current scaling behavior in nanodiamond lateral devices 

Linear scaling of emission current with emitter area has been challenging to achieve in 

vacuum microelectronic devices with certain factors affecting reliable array operation, viz., non-

uniform geometry of patterned emitter tips in the array, change in interelectrode spacing over the 

device area due to non-planarity, field screening effect, material issues in handling the high 

current, to name a few. In this research on nanodiamond lateral devices, these factors have been 

taken into consideration in the design, material and device processing areas to result in less than 

20 % deviation (logarithmic) from ideal linearity in the scaling trend of the emission current. 

Factors contributing to deviation, and the design/process developments addressed to mitigate the 

non-ideality are discussed in this section. 

 Experiment: The experiment involved the batch-fabrication of nanodiamond lateral diodes 

equipped with three different numbers of emitter fingers, viz., 6, 125, and 2000 to investigate 

how the forward emission current scales with the number of emitters in the device. The 

fabricated devices were tested for field emission in a vacuum of 10-7 Torr. Their current versus 

electric field characteristics and the corresponding Fowler-Nordheim behavior were obtained and 

compared. The emission current scaling results were analyzed. 

Results: The nanodiamond lateral devices were tested individually in vacuum upto an emission 

current of 100 µA to study current scaling behavior. The 6-fingered lateral emitter showed a 

threshold electric field of 3 V/µm and 100 µA emission current at an electric field of 37 V/µm. 

The 125-fingered lateral emitter exhibited a lower threshold field of 2.1 V/µm and required ~ 23 

V/µm field to generate an emission current of 100 µA. The threshold field of the lateral device 

with 2000 fingers in a comb-like arrangement was as low as ~ 1.1 V/µm, and the emission 

current of 100 µA was observed at a much lower electric field of ~ 9.7 V/µm. The emission 
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current value at the threshold electric field was set at 60 nA, which explains the decrease in 

threshold field as the number of fingers increases. The field emission characteristics (I-E) of the 

three devices are presented in Figure 6.15 (a). The semi-log plot in Figure 6.15 (b) shows the 

threshold electric field of the three lateral emitters. The corresponding Fowler-Nordheim data are 

plotted in Figure 6.16. The linear F-N plots with negative slopes prove that the current from the 

lateral emitters is from field emission, not leakage. The F-N plots have the same slope values, 

indicating that the field enhancement factor (β) and the work function Φ are essentially the same 

for all the three lateral emitters, and that the emission behavior enhancement is the result of the 

increase in the number of emitter fingers in the cathode. It is important to note that the three 

lateral devices were batch-fabricated, ensuring similar β and Φ factors. 
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Figure 6.15 - cont. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 (a) Field emission characteristics (I-E) of the nanodiamond lateral devices in 
discussion, showing the current enhancement obtained by increasing the emitter area; (b) Semi-
log plot of the field emission characteristics, showing the threshold electric field of the three 
lateral emitters. 
 
 
 
 

The current scaling behavior of these devices can be observed at a given electric field. 

For example, at an electric field of 10 V/µm, the 6, 125, and 2000-fingered lateral emitters 

demonstrated 1.1 µA, 11.3 µA, and 109 µA respectively. The augmentation in overall emission 

current capability of the multi-fingered lateral emitters is attributed to the increase in the emitter 

area and thereby the number of potential emission sites in the cathode.  

 

(b) 
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Figure 6.16 Fowler-Nordheim behavior of the nanodiamond lateral devices with identical 
slopes, indicating an unchanged β factor. 
 
 
 

Analyzing the current scaling trend in these diamond lateral devices, the deviation from 

the ideal scaling factor was calculated by logarithmically plotting the number of emitter fingers 

in the cathode structure with the observed emission current at a particular electric field for the 

three devices in discussion. It was found that the emission current from the nanodiamond lateral 

device scales with less than 20 % deviation from the ideal linear scaling phenomenon, in a 

logarithmic trend. Figure 6.17 graphically illustrates this statement, taken as a forward sign 

toward a high current lateral field emission device. 
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Figure 6.17 Logarithmic plot illustrating the deviation from ideal linear current scaling, 
observed in the nanodiamond lateral field emission devices. 
 

An effort to study the device aspects possibly causing the non-ideality in current scaling 

was undertaken and practical solutions have been recognized and addressed. One probable 

phenomenon could be the field screening effect [203], occurring in electron field emitters, where 

electric field shielding can arise between closely packed emitters in a dense array. Though the 

ND fingers are spaced uniformly in the comb array device, the separation between the tips is 

lesser than twice the tip height. A wider inter-emitter separation in the present lateral device 

configuration can help minimize the screening effect [203], but the solution would be a 

compromise on the emitter packing density. A determination of the suitable lateral finger length 

and inter-tip spacing for high current arrays is currently underway. Another issue affecting 

emission over large areas is the voltage drop across the lateral device. Increasing the electrical 
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conductivity of the nanodiamond film further and application of a Ti/Au metal contact layer on 

the nanodiamond can help mitigate this effect. An integrated Ti/Au metallization technique, as 

shown in Figure 5.21, has been applied with this regard to the lateral device. These ongoing 

design and process developments can further enhance the emission current scaling behavior, thus 

making the nanodiamond lateral comb array device a viable candidate for high current. 

 

(e) High power nanodiamond lateral comb array emitter diode 

Based on the current scaling results, it was observed that the nanodiamond lateral comb 

array device, possessing well-defined emission sites and a high emission site density with equal 

anode-cathode spacing over a large area, has the potential to generate large total emission current 

through a number of parallely-operated finger tips. A 9000-fingered nanodiamond lateral comb 

array diode with 8 µm anode-cathode spacing, occupying a device area of 1 cm2, was 

characterized for field emission under a vacuum of 10-7 Torr. To derive high current from the 

diamond device, the emitter fingertips were conditioned by allowing the emission current to 

improve and stabilize over time at different applied electric fields. Consequently, the 9000-

fingered lateral emitter demonstrated high emission current performance with ~ 25 mA derived 

at an anode voltage of 260 V (electric field ~ 32 V/µm, gap ~ 8 microns). The field emission (I-

V) behavior of the device is presented in Figure 6.18. The linear Fowler-Nordheim (F-N) plot, 

included as an inset in Figure 6.18, confirms that the current from the lateral emitter is 

attributable to field emission. The F-N plot exhibits a dual linear slope. The line with the 

shallower slope corresponds to low emission current regime (low emission field), while the one 

with the steeper slope corresponds to the high emission current zone (high emission field). This 

F-N behavior can be possibly explained by a change in the effective β factor during the field 
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emission. At lower electric fields, emission of electrons occurs only from the sharp apex area of 

each nanodiamond finger in the lateral emitter array. This leads to a case of smaller emission 

area (i.e. smaller extrapolated y-intercept value per the F–N equation) with very high field 

enhancement factor β, a shallow F–N slope. At higher electric fields, a larger area of the emitter 

finger contributes to the electron emission, which decreases the effective overall β. A higher 

emission area (i.e. bigger extrapolated y-intercept value per the F–N equation) and an 

augmentation in the number of emission sites with lower field enhancement factor is the reason 

for the observed high current and a steeper F–N slope.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.18 25 mA high current field emission behavior of the 9000-fingered nanodiamond 
lateral comb array diode; inset: F-N plot. 



 142

The potential of the nanodiamond lateral comb array emitter for higher current is 

demonstrated by its truly exponential I-V characteristics in the mA emission current regime at 

low anode voltage increments; no emission current saturation is observed, as depicted in Figure 

6.19. The high degree of linearity in the corresponding F-N behavior verifies that the high 

current measured adheres to the field emission theory.  The high emission current capability of 

this diamond lateral vacuum diode is attributed to the efficiency of the process in yielding 

uniformly micropatterned emitter fingers in array configuration with controlled geometry along 

with small and equal anode-cathode interdistance, and the material properties, viz., high 

electrical and thermal conductivity of the nitrogen-incorporated nanodiamond. A nanodiamond 

vacuum diode operable at high current over 25 mA at reasonable voltages in lateral configuration 

has thus been demonstrated in this research.  This device behavior represents the highest 

emission current value reported from comparable lateral field emitter arrays to date. 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Expand representation of Figure 6.18 at high emission current regime (a) I-V field 
emission characteristics; (b) F-N behavior at high current (mA range). 
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(f) Reliability-enhanced nanodiamond high power vacuum diode on aluminum nitride insulator 

The practical realization of the high-power potential of vacuum field emission devices 

has been hindered by issues such as over-heating of emitter tips owing to material properties, 

non-uniform current density over a large emitter array, and importantly, insulator breakdown at 

high current and associated high electric fields. With diamond lateral emitter array devices 

demonstrating high current capability, a robust insulator, alternative to SiO2, is essential to 

reliably operate the device at high power with long lifetime. With this regard, nanodiamond 

lateral comb array diodes were fabricated on a thick aluminum nitride insulating substrate, the 

process specifications of which have been described in Chapter V.  

Field emission characterization results: A 325-fingered diode was one of the devices built on 

aluminum nitride substrate and characterized for vacuum field emission. The diode had a turn-on 

voltage of ~ 30 V and the emission current was found to increase exponentially with the applied 

voltage. The device then demonstrated a high emission current of 1 mA at an anode voltage of 

360 V. Figure 6.20 includes the field emission I-V behavior of the lateral emitter array device. 

The highly linear F-N plot indicates that the observed current is due to field emission from the 

nanodiamond emitter-fingers. The emission current was found to be stable over time, around 1 

mA at constant applied voltage. The high current behavior was also sustainable, with no 

emission degradation resulting in monotonic decrease of current with time observed.  

Temperature tests were also conducted on the diode to verify the integrity of aluminum 

nitride for device functionality at high current. Since heat generation can occur in the emitter tip 

regions during high current operation, these temperature tests can provide indication of the 

device reliability for high power. At a constant applied electric field, no significant change was 

observed in the current obtained from the lateral emitter device as the substrate temperature was 
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increased from 27 °C to 350 °C, as depicted in Figure 6.21 (a). The temperature insensitivity 

behavior observed was also stable with time, as shown in the current-time plots in Figure 6.21 

(b), captured at different temperatures of 27 °C and 200 °C, with the applied voltage is kept 

constant. In addition to the verification of F-N behavior of the observed field emission, these 

temperature tests are necessary to rule out Frenkel-Poole conduction via the insulator in the 

lateral device structure, should it be present. The results presented in Figure 6.21 denote the 

absence of leakage current through the aluminum nitride.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Field emission behavior of a 325-fingered nanodiamond lateral diode fabricated on 
aluminum nitride substrate; inset: F-N plot. 
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Figure 6.21 Temperature insensitivity behavior of the nanodiamond lateral field emission device 
developed on aluminum nitride substrate. 

 

The observed electrical characteristics can enhance the applicability offered by the 

nanodiamond lateral field emitter array device for high power microelectronics, even under 

conditions of high temperature and radiation. 
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(g) Effect of interelectrode spacing on field emission in lateral devices 

The dependence of the emission current on the electrode spacing in the device structure 

was investigated. A strong sensitivity of 10 V µm-1 observed in the field emission behavior of the 

nanodiamond lateral device as a function of the cathode-anode distance can be utilized in the 

development of novel sensors and NEMS, reliably operable in harsh environments. 

Experiment: Three batch-fabricated nanodiamond lateral diodes, with a 125-finger emitter array, 

were chosen for this experiment (SEM images shown in Figure 5.16). The design parameters, 

viz., emitter geometry, array size and anode-cathode spacing were all mask layout-defined and 

transferred onto the nanodiamond device by lithography, following the single-mask lateral 

device fabrication process. The lateral devices differ only in their interelectrode distance, with 

the nanodiamond composition, emitter geometry and area controlled to be almost the same by 

parallel processing. The three devices, with different interelectrode gaps of 4 µm, 7 µm, and 10.5 

µm were individually characterized for field emission under the same vacuum environment of 

10-7 Torr. The current-voltage (I-V) and current-electric field (I-E) curves were obtained for each 

device and the results compared.  

Results: The effect of changing the anode-cathode gap was observed in the I-V characteristics, 

with a distinct reduction in the device turn-on and operating voltages with a decrease in the gap, 

inversely altering the electric field at the emitter fingers. The nanodiamond lateral diode with 

10.5 µm interelectrode separation exhibited a turn-on voltage of 23 V and achieved an emission 

current of ~ 5 µA at an anode voltage of 85 V. The lateral diode with 7 µm anode-cathode 

spacing showed 15 V turn-on voltage and yielded an anode current of ~ 5 µA at a lower anode 

voltage of 55 V. When the device with the smallest gap of 4 µm was tested for field emission, 

the turn-on voltage was as low as 9 V, and an applied anode voltage of 30 V yielded ~ 5 µA 
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emission current. The threshold current value used to determine the turn-on voltage is 60 nA. 

The I-V characteristics of the devices are graphically presented in Figure 6.22.  The derived 

current in the devices was found to be stable over time. The emission current from the lateral 

emitters conforms to Fowler-Nordheim behavior, shown in Figure 6.23. The parameters 

extracted from the linear F-N plots indicate that the field enhancement factor (β) and the work 

function (Φ), by virtue of almost identical F-N slope values, and the emitter area (same 

extrapolated y-intercept value per the F-N equation) are essentially the same for the three lateral 

emitters, and that the change in the emission behavior between the devices is the result of the 

variation in the interelectrode spacing. Further confirmation to this is provided by the fact that all 

the nanodiamond emitter devices demonstrate the same low turn-on electric field of ~ 2 V/µm 

and closely matched I-E characteristics, depicted in Figure 6.24. The semi-logarithmic plot, 

included as an inset in Figure 6.24, provides verification for the turn-on field of the three lateral 

emitter devices. The scaling of the emission current with the interelectrode gap can be observed 

at a given electric field. For example, at an applied electric field of ~ 8 V/µm, the 4 µm, 7 µm 

and 10.5 µm lateral-gap devices yielded 5.109 µA, 5.11 µA, and 5.10 µA respectively. The 

linearity in the relationship between the applied anode voltage and the interelectrode distance for 

a particular measured emission current was examined graphically. The slope of this line, at a 

constant current of 5.1 µA, was found to be ~ 1x10-7 m/V, which can be extrapolated [204] to a 

displacement sensitivity value of 10 V µm-1. Sensitivity expresses the amount of signal change 

(V) in proportion to the change in the device (or sensing) parameter, in this instance, the 

interelectrode spacing (microns). The combination of diamond cathode in Fowler-Nordheim 

emission has demonstrated a higher sensitivity factor than reported for, e.g., silicon vertical field 

emitters [205-206]. 
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Figure 6.22 Field emission (I-V) characteristics exhibited by the nanodiamond lateral field 
emission devices with different anode-cathode spacings. 
 

 

 

 

 

 

 
 
 
 
Figure 6.23 Fowler-Nordheim behavior of the three nanodiamond lateral field emitters with 
different interelectrode separation. 
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Figure 6.24 Virtually unchanged field emission (I-E) characteristics obtained from the lateral 
vacuum devices; inset is the semi-logarithmic plot showing the turn-on electric field of ~ 2 V/µm 
for the three diodes. 
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temperature and radiation immunity over conventional capacitive, piezoresistive, or piezoelectric 

sensors. Field emission sensing has been studied previously [207-211], but achieving a linear 

scaling relationship of the emission behavior with the separation distance between the electrodes 

is a challenge. The sensitivity of the nanodiamond lateral emitter device to the interelectrode 

spacing, along with its ease of fabrication and integration with on-chip circuitry, low voltage 

operation, and high frequency sensing capability, implies a novel IC-compatible candidate for 

“smart sensors”. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Illustration of a cantilever sensing application based on the effect of anode-cathode 
distance on field emission in a monolithic nanodiamond lateral vacuum microelectronic device. 
  

 Further, this exhibited dependence of the turn-on and operating voltages on the anode-

cathode spacing indicates the strong potential for achieving an ultra-low voltage vacuum diode, 

when a nanoscale-gap is achieved in the lateral device structure. 
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(h) Emission current stability characteristics of the nanodiamond lateral device 

The emission behavior of the nanodiamond lateral emitter was found to be repeatable and 

stable over time. An idea of the emission stability of the lateral device can be obtained from 

Figure 6.26, with a current fluctuation of ~ 2 % over a time period of 80 min under a vacuum of 

10-6 Torr for a given applied electric field. No monotonic current decrease with time is observed. 

The electron emission stability was found to be reasonable even at high current, with the 

fluctuation value about 4 % at an emission current of 1 mA maintained over 10 hours. The 

observed current fluctuation is considerably smaller than the fluctuation of 50 % at the emission 

current of approximately 1 µA from a typical single silicon tip [212]. Figure 6.27 presents the 

high current stability (I-t) plot obtained from the nanodiamond lateral emitter array diode. 

  

 

 

 

 

 

 

 

 

 

 

       
 
Figure 6.26 Current-time plots extracted from a nanodiamond lateral field emitter at various 
applied electric fields depicting its emission current stability over time. 
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Figure 6.27 High current stability (I vs. t) plots: (a) nanodiamond lateral emitter array diode at 
several hundreds of µA emission currents at various anode voltages during device operation; (b) 
nanodiamond lateral vacuum diode at 1 mA for 10 h at a constant anode voltage of 98 V.  
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(i) Nanodiamond lateral VFEM technology for harsh environments 

Orvis et. al [29] state that “the usefulness of miniature vacuum tubes will derive mainly 

from their radiation and temperature tolerance.” They point to potential applications in nuclear 

reactor instrumentation, accelerator instrumentation, and space power systems. Gray also 

speculated on the radiation hardness of vacuum microelectronic devices [213]. However, little if 

any actual experimental data on the radiation response of vacuum field emission microelectronic 

devices has been published. Through this research, we have developed the first vacuum field 

emission microelectronics (VFEM) technology, with the diamond lateral device, capable of 

operating efficiently at both low and high temperatures (350 °C), with an inherent “hardness” to 

radiation exposure as high as 20 Mrad(SiO2) total dose and 4.4x1013 neutrons/cm2, signifying an 

emerging electronics for extreme environment. 

Sensitivity to high temperatures and radiation in solid-state electronics is caused by bulk 

generation of charge carriers in the active regions of the devices [29]. These charge carriers can 

cause transient artifacts in the operation of the device (soft errors), and in some cases, permanent 

damage (hard errors). Most electrical properties in silicon solid-state devices are temperature-

dependent. Likewise, radiation damage observed in these devices has been attributed to electron-

hole pair generation, lattice displacement, and carrier removal effects [16]. With vacuum as the 

active volume (signal carrier medium), a field emission device is not susceptible to thermal- or 

radiation-induced bulk carrier generation or permanent damage by exposure to radiation. There 

can be carrier generation or damage involving other parts of the device that may be injected into 

the vacuum, but this will be a small effect, which can be minimized by proper device design and 

material choice. Particularly, with the electron emitter being diamond, a wide band-gap material 
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with high thermal conductivity and mechanical hardness, a diamond field emission device has 

suitable elements for achieving operational high temperature and radiation immunity. 

 

Temperature tolerance characteristics: To evaluate the temperature insensitivity of the 

nanodiamond lateral VFEM, several of the nanodiamond lateral diodes were subjected to 

temperature testing in a vacuum chamber maintained at 10-7 Torr. With the device seated on a 

heated stage, the operating temperature of the diode was measured and controlled by means of 

thermocouple feedback at close proximity of the device. Figures 6.28 (a) and (b) depict the 

temperature response of two different nanodiamond lateral field emission diodes operating at 

various temperatures upto 200 °C. No leakage current via the SiO2 layer was observed in the 

emission current and the electrical behavior of the diode was unaffected by the varied 

temperatures. Note the total independence of the device forward current on temperature, which 

signifies the operational temperature immunity of the nanodiamond lateral vacuum device. The 

corresponding linear Fowler-Nordheim (F-N) plots, as seen in the inset of the two graphs, 

confirm that the observed current is attributable to field emission. Though the operational 

temperature immunity of the diamond lateral device has been tested here only up to 200 °C, it is 

expected that the diode characteristics will be unaffected up to an ambient temperature of ~ 600 

°C, at which, thermionic controlled emission may overcome the field controlled emission and 

change the diode characteristics. The results presented in Figure 6.28 and earlier in Figure 6.21 

(temperature tolerance behavior upto 350 °C) demonstrate the performance offered by the 

nanodiamond lateral vacuum device for high temperature electronics. 
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Figure 6.28 Typical temperature insensitivity characteristics exhibited by the nanodiamond 
lateral vacuum field emission diodes. 
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Radiation tolerance characteristics (X-ray exposure experiment): Total dose radiation hardness 

tests were conducted on two nanodiamond lateral diodes, separately. Irradiation was performed 

with an ARACOR 10 keV x-ray source at a dose rate of 31.5 krad(SiO2)/min. Incremental 

irradiations were carried out to achieve total doses of 1,5, and 15 Mrad(SiO2). A bias of 2 V was 

applied to the diodes during the radiation exposure. Figures 6.29 and 6.30 show the results of x-

ray irradiation on the devices. Essentially no changes in I-V characteristics are observed as a 

function of total dose. And, the radiation dose has no effect on the diode turn-on voltage. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
          
Figure 6.29 Field emission behavior of the nanodiamond lateral diode (Pre-Rad, 1, 5 Mrads); 
inset: corresponding F-N plots. 
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Figure 6.30 Field emission behavior of the nanodiamond lateral diode (Pre-Rad, 15 Mrad); inset: 
corresponding F-N plots. 
 
 

The negative linear slopes of the FN plots (inset of Figures 6.29 and 6.30) indicate that the 

emission data conforms to field emission behavior. Moreover, the linear slopes remain 

unchanged as a function of radiation dosage confirming the irradiation caused no change in work 

function or field enhancement factor of the emitting surface. 
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electric fields. The data confirms the field emission behavior of VFEM is indeed insensitive to 

irradiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.31 Change in diode emission current as a function of total ionizing dose at 31.5 
krad(SiO2)/min. 
 

 
 

Since the nanodiamond lateral VFEM is fabricated on a SOI substrate, C-V 

measurements of the SOI structure were made to investigate the effect of charge trapping in the 

SiO2 layer and its subsequent effect on VFEM performance. Figure 6.32 shows the C-V 

characteristics of the SOI structure before and after 10 Mrad(SiO2) irradiation. It can be observed 

that the absolute value of the capacitance has changed, which shows that significant radiation-

induced hole trapping has occurred in the buried oxide and SiO2-Si interface. The post-radiation 

C-V measurements indicate fast-trapped mobile charges in the SOI substrate However, this 

disturbance does not affect the performance of the nanodiamond lateral VFEM (Figures 6.29-

6.31), which operates on the SOI substrate.  
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Figure 6.32 C-V plot of SOI structure; Pre-Rad and 10 Mrad(SiO2) irradiation. 
 
 
 
Radiation tolerance characteristics (Neutron exposure experiment): We have also performed 

neutron irradiation on the nanodiamond lateral emitter devices for their possible application in 

very high fluence neutron conditions.  The devices were examined in the SEM and measured 

electrically under vacuum before and after exposure to high fluences of neutrons.  Neutron 

irradiation was conducted at the U. S. Army White Sands Missile Range Fast Burst Reactor. One 

set of the diamond lateral devices was subjected to a total fluence of 1.25(1012 ), (> 3MeV was 

1.46(1011) and a second set of devices was subjected to a higher total fluence of 4.4(1013), (> 

3MeV was 5.6(1012), neutrons/cm2.  

The devices were subsequently examined via SEM for any noticeable material post-rad 

alterations such as expansion or contraction, and then for any change in resistivity or electrical 

performance. Although prior work on a polished sapphire surface [214] indicated expansion 
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upwards of a micron due to 1 dpa, as detected with a Dectac microstylus mechanical profiler (1 

displacement per atom (dpa) is equivalent to about 1(1021) 14 MeV neutrons/cm2), no 

discernable difference in physical size or appearance of the diamond devices was observed in the 

SEM, post fluence examination.  Given that the diamond lateral emission structures are very 

sensitive to the cathode to anode spacing, any dilation (expansion or contraction) in the material 

should result in a change in the emission current as a function of field (voltage).  This could 

provide a means of conducting reproducible dosimetry in very high neutron fluences.  However, 

no change in resistivity of the film pre vs. post exposure was observed.  Likewise, no significant 

difference in the I-V behavior was observed before and after neutron exposure, the current at 

higher voltages being identical pre vs. post radiation, as typically seen in Figure 6.33.  The small 

difference at very low currents is within measurement variations for the device. 

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.33 Field emission behavior of a nanodiamond lateral diode before and after neutron 
irradiation; inset: Corresponding F-N plots. 
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We have performed the first total dose and neutron exposure tests on nanocrystalline 

diamond lateral vacuum field emission microelectronics (VFEM) technology. No measurable 

change was observed in the diode device response after 15 Mrad(SiO2) total dose and 4.4x1013 

neutrons/cm2 radiation exposure. Radiation hardness was also observed in the vacuum transistor, 

when a gated nanodiamond lateral device was subjected to 20 MRad total dose (x-ray) exposure 

and characterized for field emission, results presented in Figures 6.39 and 6.40. This is 

consistent with the analysis and speculations of others. Adams and Holms-Siedle [215] estimate 

that VFEM devices can withstand conditions as high as 1013 rads(SiO2), 1022 n/cm2, and 

1013rad/s stating that “At these values, there will be some swelling of materials and uncontrolled 

electron emission.” The data presented here indicates that nanodiamond VFEM devices are very 

resistant to radiation and high temperature exposure, and that the technology is well-suited for 

application in harsh environments, encountered in radar, electronic warfare and space-based 

communication systems, and also in extreme-demand terrestrial electronics, where solid-state 

devices are impractical or inconvenient due to their inherent sensitivity to hostile environments.  

Present solutions for “rad-hard” ICs are to use a radiation shielding material, or to apply 

hardened fabrication techniques or SOI substrates for the solid-state devices, which have been 

shown to reduce radiation-induced failures. These methods require very conservative circuit 

design techniques to take into account the maximum predicted radiation damage (i.e., threshold 

voltage shifts due to radiation damage). Also, a more brute-force approach of built-in self testing 

(BIST) and redundancy is used to mitigate the failures due to radiation, which increases the 

complexity and power consumption of any given system, without actually addressing the 

problem of radiation damage [216]. With a vacuum channel for signal propagation, vacuum 

microelectronic devices are relatively immune to radiation damage, making them suitable for 
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high radiation environments. Further, there are crucial applications, such as aircraft and machine 

sensing applications, requiring high temperature operation. Currently, high temperature sensing 

requires the electronics to be placed in a shielded location away from the sensor, reducing the 

system efficiency and accuracy. Fuel cooling is often used in aerospace to cool these electronics. 

It has been estimated that high-temperature stable electronics on an F-16 fighter, would bring 

about savings in the order of hundreds of pounds of weight and millions of dollars per aircraft 

[217]. Diamond Vacuum Microelectronics has shown the potential for much higher temperature 

stability than silicon and SiC based devices. This immunity to high temperature can allow closer 

placement of the device for high temperature measurements and also reduced need for heat 

transfer accessories (heat sinks, etc) in power electronics.  

Thus, the material system and device construct of the nanodiamond lateral field emission 

vacuum device is relevant for extremely hardened electronics and can be beneficial to the 

scientific, defense, and commercial high-temperature and rad-hard communities. 
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(j) Rectification  behavior of the nanodiamond lateral field emission diode 

As mentioned in item (b) of this section, by comparing the field emission characteristics 

of different nanodiamond lateral emitter geometries, the superior geometrical field enhancement 

of the high aspect-ratio finger-like emitter structure over the edge structure has been established 

experimentally. When these structures are combined to form an all-diamond diode, with the 6-

finger emitter as cathode and the straight edge as anode, the rectification factor was found to be ~ 

26. A non-diamond straight edge anode in the lateral device configuration can help realize a field 

emission diode with higher rectification factor with negligible or no reverse emission current, 

since it gives the nanodiamond cathode a superior field enhancement factor materially as well as 

geometrically. Nickel with a high work function (Φ=5.15 eV) was considered a suitable choice 

for the anode material, and the nanodiamond lateral diode was fabricated using the dual-mask 

micropatterning methodology described in the previous chapter.  

Figure 6.34 shows the field emission diode characteristics of a 6-finger 2-material lateral 

vacuum device (diode structure shown in Figure 5.27). Under forward bias, the diode shows a 

reasonable threshold electric field, and an emission current over 5 µA extracted from the 

nanodiamond emitter at an electric field of ~ 8 V/µm.  No measurable emission from the nickel, 

or leakage current, was observed under reverse bias condition at the corresponding applied 

electric field. The emission was found to obey F-N behavior, per the linear F-N plot with 

negative slope, inset of Figure 6.34. The shallow slope is indicative of a high β factor of the 

nanodiamond emitter of the lateral device. 
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Figure 6.34 Rectifying diode behavior obtained from a lateral vacuum diode with nanodiamond 
6-finger emitter array as the cathode and nickel as the anode; inset: corresponding F-N plot. 
 

 

These diode characteristics demonstrate that the nanodiamond lateral device with the 

non-diamond anode configuration can perform as an excellent diode with rectification ratio >104, 

suitable for practical microelectronic circuit applications. 
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6.2.3 Field emission characteristics of monolithic nanodiamond lateral vacuum triodes 

Field emission diodes and triodes are critical building blocks in the development of ultra-

fast, temperature- and radiation-immune vacuum microelectronics. Having examined the 

nanodiamond lateral device as a vacuum diode, the research was continued to study the device in 

a triode configuration. Lateral triodes with a gate-cathode spacing as small as 2 µm, and anode-

cathode spacings ranging from 10 µm to 1 mm were developed. The different three-terminal 

lateral configurations were tested to investigate the triode characteristics of the device. It was 

identified that the position of the electrodes in the device design plays a significant role in 

determining its characteristics. 

The functionality of the lateral emitter device as a triode or a transistor could be 

manipulated by lithographically altering the design of the three-terminal structure. The lateral 

anode, when placed closer to the cathode (~ 10 µm) can induce the electron emission and result 

in gate-modulated triode characteristics. By moving the anode farther (> 100 µm) from the 

cathode and gate electrodes, the anode effectively acts as a collector, with the gate, owing to a 

very small cathode-gate gap (≤ 2 µm), principally controlling the electric field at the emitter 

finger-tip and significantly shielding the collector field from the emitter, leading to transistor-

type characteristics. The operation of the nanodiamond lateral field emission device in triode and 

transistor modes is described in this section.  

 

(a) Vacuum triode characteristics 

A 1-finger nanodiamond lateral microtriode with 3 µm gate-cathode and 12 µm anode-

cathode spacings (device structure shown in Figure 6.35 (a)) was characterized for electron field 

emission in a vacuum condition of 10-6 Torr. The gate electrodes are separated laterally by an 
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equal distance of 3 µm from the cathode to have effective emission modulation at low gate 

voltages, while minimizing intercepted gate current. The device was operated similar to the 

classical thermionic triode, where the electron emission from the cathode is induced by the anode 

and modulated by the gate electrode. The only difference in this case is the gate voltage 

modulates the electric field at the emitter tip and hence the tunneling probability, whereas in the 

thermionic triode, the gate controls the space charge near the emitter. Figure 6.35 shows the I-V 

characteristics of the triode device as a function of the gate and anode biasing voltages. The gate-

controlled current modulation behavior is clearly observed, whereby higher applied gate voltages 

give rise to higher emission currents induced by a given anode voltage. A large anode current of 

~ 4 µA was thus obtained from a single nanodiamond lateral emitter at an anode voltage of ~ 65 

V, when the gate bias was 40 V. The low applied electric fields required to initiate and modulate 

the electron emission between the electrodes are attributed to the geometry and material 

composition of the nanodiamond lateral emitter. For a given anode voltage, the anode current 

was found to change by more than an order of magnitude with a ±10 V alteration in the gate bias. 

The transconductance, gm, relates the current driving capability, voltage gain, and high frequency 

response when the diamond triode is operated as an amplifier. It is defined as the change in the 

anode current due to a change in the gate voltage at a given anode voltage: 

 

        (6.7) 

       

This transconductance parameter was determined to be ~ 0.3 µS at Va=65 V, one of the highest 

reported for lateral-type devices involving a single emitter, especially with the cathode-gate 

separation in microns. This value can be further improved by applying a larger nanodiamond 

Va=constg

a
m V

Ig
∂
∂

=



 167

finger array as emitter. The gm was also found to increase exponentially with Vg, as the device 

electron current is strongly affected by the gate voltage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.35 (a) Structure of the integrated nanodiamond lateral field emitter vacuum microtriode 
with 3 µm gate-cathode and 12 µm anode-cathode spacings; (b) Triode characteristics of the 1-
finger lateral device; inset: F-N plot of one of the I-V curves shown in the main figure.  
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The device characteristics were found to follow Fowler-Nordheim relationship (inset, 

Figure 6.35), which confirms that the extracted anode current is due to the field emission 

mechanism. For optimum device performance, the gate-intercepted current must be small 

relative to the anode current. Operation in triode mode can allow for a low gate current, 

especially for negative and moderate positive gate voltages. The gate current for this lateral 

triode was below the measurable limit of 0.1 nA. The achieved triode device behavior is 

congruent with the simulated electrical characteristics [90] reported from lateral field emitter 

triodes, where an increase in gate voltage leads to a subsequent increase in the anode current, 

owing to the enhancement in the electric field at the emitter tip. 

 

(b) Vacuum transistor characteristics 

The demonstration of a lateral field emission transistor at microelectronic scale is 

essential to the development of the vacuum IC. Transistor characteristics have been reported 

from vertical emitter devices utilizing different cold cathode materials [164-166,218-220]. This 

work involves the development of a vacuum transistor, designed and fabricated in a completely 

integrated, planar, lateral configuration, achieving an advanced, alternative electron device. 

A 1-finger nanodiamond lateral device with 2 µm gate-cathode and 500 µm anode-

cathode spacings (device structure shown in Figure 5.18 (c)) was tested under vacuum for dc 

field emission characteristics in a common emitter amplifier configuration. The device was 

operated in a gate-induced emission mode, with the anode (collector) potential contributing an 

insignificant component to the electric field at the tip of the emitter-finger. A positive gate 

voltage (Vg) was applied on the gate electrode to extract electrons from the emitter and a fixed 

voltage (Va) was applied to the anode to collect the emitted electrons. The anode emission 
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current (Ia) was then recorded as a function of the anode (collector) voltages while holding the 

gate voltage constant. The measurements were repeated for different Vg to obtain a family of Ia-

Va-Vg curves. Figure 6.36 shows the dc characteristics curves of the lateral vacuum device. 

Gate-controlled current modulation behavior was clearly observed, whereby higher applied gate 

voltages, by means of field enhancement at the emitter-finger tip, gave rise to higher emission 

current collected by the anode. The gate turn-on voltage was 40 V, defined as the voltage 

required to obtain 1 nA of emission current from the 1-finger cathode. Saturation of the collector 

currents was observed at anode voltages above ~ 180 V, where the current stays constant, 

independent of the applied collector voltage. Overall, the field emission data demonstrated basic 

transistor characteristics of the nanodiamond lateral device with distinct cutoff, linear, and 

saturation regions in a triode configuration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.36 DC transistor characteristics of the nanodiamond lateral field emission device. 
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A plot of gate voltage vs. anode emission current of the transistor is shown in Figure 

6.37, neglecting the effect of the applied anode voltage. The linearity of the corresponding FN 

plot (inset, Figure 6.37) indicates that the electron emission is induced by the gate voltage and 

the anode acts exclusively as an electron collector, due to the close proximity of the former to the 

cathode in the device design. Hence, a positive amplification factor can be expected of the 

transistor amplifier. The negative linear slope of the FN further indicates that the device current 

is due to the field emission tunneling mechanism. A large anode current of 1.1 µA was obtained 

from the 1-finger nanodiamond emitter device, with the macroscopic current density calculated 

to be ~ 1 A/cm2 based on the cross-sectional area of the lateral anode. Gate currents were 

recorded at different Vg and Va values to interpret the trajectory of the electrons emitted from the 

cathode. Gate intercepted current, Figure 6.37, amounted to a very small (Ig/Ia) ratio of 0.001 % 

at gate voltages lower than 100 V, and 0.7 % at higher gate voltages.  This small (Ig/Ia) ratio 

would maximize the power gain by permitting a substantial output current gain, and also ensure 

reliable long-term operation of the transistor. Also, the sum of the gate and collector currents was 

almost constant over the entire voltage range of the transistor characterization. The emission 

behavior was found to be stable over time (tested for several hours), with low fluctuations and no 

monotonic decrease in the current observed at given anode and gate voltages. A typical current 

stability plot obtained from the nanodiamond lateral transistor device is given in Figure 6.38. 

The electrical isolation integrity of the cathode-gate-anode in the monolithic transistor device 

was confirmed from the observation of zero leakage. 
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Figure 6.37 Plot of the anode currents, Ia, gate currents, Ig, and transconductance, gm vs. the gate 
voltage, Vg of the nanodiamond lateral field emission transistor at an applied anode voltage, 
Va=380 V (saturation region); inset: F-N plot of the corresponding data of Ia vs. Vg. 
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how the gate voltage influences the cathode electric field more so than the anode voltage. The 

amplification factor, µ is defined as the change in the anode voltage due to a change in the gate 

voltage at a given anode current level and µ can be expressed as:  

 

     (6.8) 

It is an important parameter for small signal amplification applications because it defines a limit 

for voltage gain as can be implied from the above equation. The transconductance, gm, as defined 

by Equation 6.7 as (gm=∂Ia/∂Vg), signifies current driving capability, the voltage gain, and high 

frequency response of the amplifier. For transistor application, the amplification factor and 

transconductance are desired to be high. Also, the anode or plate resistance, ra is a parameter 

determining the output resistance/impedance (ro) and voltage gain of the device. It is a measure 

of the effectiveness of Va in controlling Ia and can be expressed as: 

 

           (6.9) 

 

Note that the amplification factor can be expressed as a product of the anode resistance and the 

transconductance, µ=ra.gm. 

An estimated µ at a constant current of 0.3 µA, from Figure 6.36, is determined to be ~ 

200, indicating this transistor can provide high voltage gain when operated as an amplifier. The 

gm is found to be ~ 22 nS at Va=380 V. This value can be significantly improved by using an 

array of fingers as the emitter or employing e-beam lithography to set a submicron gate-cathode 

gap. Higher transconductance from the 1-finger lateral diamond device is achievable, but we 

limited the emission current to ~ 1 µA in order to demonstrate operation of the device, not 

maximize collector current. Further, the gm was observed to increase exponentially with Vg, 
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Figure 6.37, substantiating that the emission current is affected by the gate voltage. The anode 

resistance, ra of the transistor is computed to be ~ 10 GΩ, useful in amplification applications 

requiring high output impedance.  

 

 

 

 

 

 

 

 

 
 
Figure 6.38 Current-time plot extracted from the nanodiamond lateral vacuum field emitter 
transistor at constant gate (Vg=140 V) and anode (Va=380 V) applied voltages. 
 
 

 

Transistor characteristics were also observed from a lateral device involving a 100 µm 

anode-cathode separation and the same 2 µm gate-cathode gap, with the anode current saturation 

occurring at a relatively lower voltage due to the decreased interdistance between the collector 

and the emitter in the device structure. Optimization of the lateral transistor design for lower 

operating voltages and higher gm is the subject for further study. The application of diamond and 

the low voltage potential in the lateral vacuum transistor can allow for a practical electron 

device, with reduced power requirements, minimized probability of device damage due to 

thermal issues, and operational stability in a vacuum-sealed package. 
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Thus, a monolithic vacuum transistor has been developed applying the diamond lateral 

field emitter. The lateral device configuration facilitates device fabrication and integration, with 

simple and few process steps. Transistor characteristics, exhibiting good gate control and 

modulation of the anode current in the device, with well-defined cut-off, linear, and saturation 

regions have been demonstrated. An important characteristic of this diamond lateral transistor is 

the very flat saturation of the current that occurs with increasing anode voltages, making for ideal 

current-limiting devices. The negligible gate intercepted current observed can ensure reliable 

operation of the device. The diamond transistor shows a high amplification factor and output 

impedance, and with further reduction of the threshold voltage and enhancement of the 

transconductance, the low-capacitance property of the lateral emitter device can enable the 

development of IC-equivalent high-frequency amplifiers, logic gates, electronic switches, and 

sensors, possessing temperature- and radiation-insensitivity. Unlike a conventional solid-state 

MOSFET, where reduction in the threshold voltage of the device requires a decrease in the gate 

oxide thickness, which is accompanied by reliability issues such as increased leakage current and 

insulator breakdown, the turn-on voltage of the vacuum lateral emitter device is independent of 

the thickness of the spacer material. Simple lithography process control over the lateral gate-

cathode spacing will directly regulate the threshold voltage of the vacuum transistor. 

A nanodiamond lateral field emission transistor, fabricated on aluminum nitride insulator 

substrate (device structure shown in Figure 5.24 (b)), was subjected to high total dose radiation 

to investigate the potential of the gated vacuum device for rad-hard electronics. DC field 

emission characteristics were captured in common emitter amplifier configuration under 

vacuum, prior to and after x-ray irradiation to a level of 20 MRad total dose and compared. A 

bias of 2 V was applied between the gate and cathode electrodes during the radiation exposure. 
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Similar to the results achieved with the lateral diode, no effect of radiation was observed in the 

field emission I-V characteristics of the monolithic diamond vacuum transistor. The electrical 

characterization results obtained from the device are depicted in Figures 6.39 and 6.40. The 

turn-on voltage of the transistor was unaffected after exposure to radiation, while no significant 

change was perceived in the gate-controlled anode current modulation characteristics. Overall, 

the basic transistor characteristics remained unaltered as a function of total dose, signifying the 

robustness of the device in extreme operating conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.39 DC transistor characteristics of a nanodiamond lateral field emission device built on 
aluminum nitride insulator substrate before and after 20 MRad total dose x-ray irradiation; data 
points in blue indicate pre-rad I-V characteristics and points in pink denote post-rad I-V data. 
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Figure 6.40 Unchanged Ia-Ig-Vg plots obtained from the nanodiamond lateral field emission 
transistor at an applied anode voltage, Va=360 V (saturation region) before and after x-ray 
exposure; inset: corresponding F-N plots of the data of Ia vs. Vg. 
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when operated as an amplifier. Table 6.2 estimates some of the potential performance 

parameters of the lateral emitter array transistor device, when developed. These estimates are 

based on the field emission characteristics observed in a typical multi-fingered nanodiamond 

lateral device in diode configuration on a SOI substrate. A safe and reliable long-term device 

operating mode at reasonable current densities and voltages is chosen for determining these 

values, even though better performance can be achieved by maximizing the current from each 

diamond finger tip. 

  
 
Table 6.2 Estimated performance specifications of a 125-fingered nanodiamond lateral field 
emission transistor designed with a 2 µm gate-cathode spacing on a SOI substrate 
 
 
     

Parameter Estimated value 
Gate turn-on voltage (Vth) 2.2 V 

(1.1 V/µm turn-on 
electric field) 

Transconductance (gm) ~ 11 µS 
A.C. voltage gain [Av = gm * (Ra//RL//ra)] 
Anode resistor Ra: 6 MΩ 
Load Resistor RL: 100 MΩ 
Anode resistance: 10 GΩ 

 
~ 61 or 35 dB 

Cut-off frequency [ft = gm/2πCg] 
Cg = cathode-gate capacitance: ~ pF 

1.75 MHz 

     
 
 
  

A possible design of the lateral emitter array transistor can involve a bottom-gate 

structure, where the array of nanodiamond emitter-fingers is present at a distance of 2 µm from a 

bottom layered gate (Si or metal), with an integral anode (nanodiamond) on the same plane as 

the cathode. The device can be fabricated using the same dual-mask process technique developed 

for the lateral diode in this research.  
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6.2.4 Vacuum device operation in a package  

Field emission characterization measurements were performed on vacuum-packaged 

nanodiamond lateral devices. The initial results indicate a practical device and package for 

vacuum electronic applications. 

Figure 6.41 presents the electrical characteristics of a 6-finger nanodiamond lateral diode 

in package environment, yielding an emission current over 3 µA at an anode voltage of 95 V 

(electric field: ~10 V/µm).  The F-N linear plot with negative slope (see inset, Figure 6.41) 

confirms that the current is due to field emission.  The current was found to be stable with no 

emission degradation over a time period greater than 2 h at a constant applied voltage, indicating 

that the vacuum environment in package is suitable for device operation. The current-time 

behavior, shown in Figure 6.42, also verifies that diamond electron field emitters, with their 

ability to withstand ion bombardment and also remain immune to gas adsorption and desorption, 

can operate with relative stability at practical vacuum levels achievable in a package. The 

package was then transferred into a bell-jar vacuum chamber maintained at a base pressure of 

2x10-7 Torr and the same device tested for field emission. The I-V characteristics were observed 

to be unchanged, as depicted in Figure 6.41, thus verifying that the vacuum seal of the package 

is not leaking. These results imply a portable candidate for temperature and radiation immune 

electronics. Packaging high power lateral emission device configurations and also testing them in 

extremely harsh conditions is a subject for future study. Efficient vacuum field emission device 

operation warrants a pressure level of ~ 10-5 to 10-6 Torr sealed in package cavity. Available 

techniques should be employed to analyze the constituents of the sealed vacuum environment 

and accurately measure the pressure in package, apart from assessing the same based on the 

emission behavior of the devices in the package. Efforts need to be focused on the development 
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of an advanced packaging process involving materials with low outgassing properties to 

routinely achieve optimal vacuum level in package. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.41 Field emission behavior of a 6-finger nanodiamond lateral device operating in 
package, with unchanged characteristics when tested inside a vacuum chamber; inset: F-N plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.42 Current-time emission stability behavior of the nanodiamond lateral device in 
package at a constant applied voltage of 95 V. 
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6.2.5 Verification of field emission from nanodiamond lateral emitter devices 

It is important to verify that the measured current in the lateral device is indeed a field 

emission current from nanodiamond finger tips, and not leakage current. Several techniques have 

been adopted to achieve absolute clarification of field emission phenomenon in lateral devices. 

The Fowler-Nordheim behavior of each and every lateral emitter device discussed in this 

research was verified. The emission was found to conform to F-N behavior; the F-N plots of the 

nanodiamond lateral diodes are straight lines with a negative slope. The F-N slopes are also 

indicative of the estimated β and Φ factors of the emitter. A conclusive idea of the electron field 

emission current was achieved by conducting temperature insensitive tests on the diamond lateral 

devices to rule out Frenkel-Poole conduction via SiO2 defects. The emission characteristics of 

the nanodiamond lateral diodes are temperature insensitive at 200 oC, which totally confirm the 

absence of any leakage current via the SiO2 layer (dielectric strength: 5 MV/cm) [221], and also 

signify the reliability offered by the nanodiamond vacuum device for high temperature 

electronics. The typical unchanged field emission behavior of the device at various temperatures 

has been shown earlier in this chapter (see Figure 6.28), which is the first operational 

temperature-immunity data presented in field emission literatures for the lateral emitters to show 

that there is no leakage through the supporting oxide layer in the device. 

In addition, current conduction due to F-N tunneling through silicon dioxide is highly 

unlikely, because tunneling through a silicon dioxide layer would occur at a much higher electric 

field typically 1000 V/µm [222] contradicting to the low turn-on of 1-5 V/µm obtained in the 

diamond lateral emitter device. Conductivity measurements of the lateral devices in an open-air 

environment before and after emission testing were also conducted to examine the quality of the 

silicon dioxide layer. If the measured current is a leakage current or hopping conduction current 
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via SiO2, it must remain unchanged in open air as well as in vacuum environments because 

leakage and hopping are conduction currents in solid-state devices. No current was observed in 

open air environment. Reverse bias measurements were done to confirm that the observed 

forward current is attributed to field emission. In an all-diamond lateral diode, there can be 

emission current in the reverse direction due the use of a nanodiamond anode. Hence, a nickel 

anode has been applied to show that there is no emission or leakage current in the lateral diode 

under reverse bias. Furthermore, it should be noted that leakage conduction currents via SiO2 

layer were observed from defective samples. These leakage conduction currents through the 

oxide were found to be strongly temperature sensitive, symmetric under applied voltage, and 

remained the same in both vacuum and open-air environment. 

Therefore, it is sufficient to conclude from these experimental measurements that the 

measured current from the lateral device is indeed the emission current from nanodiamond 

fingers into vacuum. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this research, nanocrystalline diamond has been developed as an applicable 

microelectronic material. Thin film processing techniques have been identified for nitrogen-

incorporated nanodiamond and integrated for device fabrication for utilization in vacuum field 

emission microelectronics (VFEM) technology. The upshot of these techniques is the 

development of monolithic diamond diode, triode, and transistor devices in lateral configuration, 

demonstrating enhanced electron emission characteristics of low turn-on voltage and electric 

field, high and stable emission current, operational temperature and radiation tolerance, making 

them potential candidates for realizing IC-compatible high-speed, high-power, extreme 

environment electronics, sensors, and nanoelectromechanical systems (NEMS). The important 

results obtained from the experiments conducted are summarized in this chapter, followed by 

recommendations for future studies on the nanodiamond lateral vacuum field emission devices. 

 

7.1 Conclusions 

7.1.1 Nanodiamond thin film processing and characterization 

Controlled and consistent process techniques have been developed to deposit and 

micropattern nanocrystalline diamond thin films with properties favorable for vacuum field 

emission. Factors contributing to electron field emission from diamond were identified and a 

suitable form of the material offering these field enhancement factors realized. An effective 

growth-rate control method has been devised and implemented to deposit nanodiamond films 

with grain size as small as 5 nm and low RMS surface roughness of 8-20 nm by CH4/H2/N2 
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microwave plasma-enhanced chemical vapor deposition (MPECVD). Nitrogen, a suitable n-type 

dopant in nanocrystalline diamond films, has been incorporated successfully to realize high 

electrical conductivity at room temperature and thereby enhanced electron transport and electron 

emission properties. Through characterization of the electrical behavior of nanodiamond 

cathodes under vacuum, it was found that field emission from diamond is significantly enhanced 

by properties of increased sp2 carbon content and nitrogen impurity concentration in the 

nanodiamond material. To apply nanodiamond as an efficient electron emitter, a micropatterning 

process was developed to derive geometrical field enhancement. The difficulty in patterning 

diamond films to build micron-scale devices, has been resolved by the development of a highly 

selective and uniform nanodiamond etch process using an oxygen plasma reactive ion etch (RIE) 

technique. A high diamond etch rate of 0.5 µm/min was achieved, and various electron field 

emitter micro/nanostructures of nanodiamond realized. 

 

7.1.2 Nanodiamond lateral field emitter device fabrication 

A process flow, compatible with conventional semiconductor integrated circuit (IC) 

process technology and integration, has been developed to fabricate nanodiamond lateral field 

emitter devices on a SOI wafer. Monolithic lateral diodes and triodes are consistently batch-

fabricated using a single mask, and other advanced vacuum microelectronic devices and circuits, 

in a chip-type architecture, could be built without employing excessive or arcane process steps. 

The deposition and micropatterning techniques developed for nanodiamond were applied with 

precise lithography processing to yield the lateral device features. High aspect-ratio finger-like 

nanodiamond lateral emitters having a ~ 15 nm tip radius of curvature form the cathode 

geometry, with a nanodiamond lateral edge structure as the anode, isolated by an SiO2 layer. 
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Anode-cathode spacings down to 2 µm have been achieved with the device, enabling the 

potential for low voltage operation. Versatile lateral comb array diode configurations comprising 

9000 uniformly micropatterned emitter-fingers with small inter-electrode separation over a large 

area for high current applications have been realized. The same process was applied to build 

monolithic lateral vacuum triodes, with the lateral cathode, gate, and anode integrated on the 

same substrate, with 2 µm gate-cathode spacing. The diamond device has also been provided 

with an integrated gold contact layer for equal potential distribution over a large-area structure. 

Further, an advanced dual-mask microprocessing scheme has been utilized to fabricate lateral 

field emission devices integrating a nanodiamond cathode with a nickel anode for high 

rectification diode applications, signifying the feasibility of materials integration offered by 

nanocrystalline diamond.  The 1 µm-thick oxide layer used for lateral device isolation has also 

been upgraded to an aluminum nitride substrate of 640-µm thickness for reliable high power 

vacuum microelectronics. High-resolution lithography control over critical device parameters, 

viz., emitter geometry, interelectrode spacing, and array structure in the lateral configuration 

provides a potential solution to some of the significant barriers in vacuum micro/nanoelectronics. 

 

7.1.3 Nanodiamond lateral vacuum diode characteristics 

 Several aspects of the field emission behavior of the nanodiamond lateral diodes have 

been investigated. A low turn-on voltage of 5.9 V has been achieved from a lateral device with 

interelectrode spacing in the micron range. An extremely low threshold electric field of 1.1 

V/µm is observed, attributed to the strong field enhancement factors in the nanodiamond lateral 

emitter. These characteristics enhance operational reliability and indicate the potential of the 

device for ultra-low power electronics, when a sub-micron anode-cathode distance is obtained by 
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an e-beam lithography-based process technique. The effect of the device design (emitter 

geometry, array size, and electrode gap) on the electrical performance is studied and quantified.  

The potential of the nanodiamond lateral device for high power applications was 

established. A high emission current of 1 mA from a 6-finger nanodiamond lateral device at an 

anode voltage under 100 V, with a current per finger of 183 µA, and current density of 85 A/cm2 

has been achieved. Increasing the cathode area, emission current scaling behavior was observed, 

with less than 20 % deviation from ideal linearity measured logarithmically. A nanodiamond 

vacuum diode operable at high emission current over 25 mA at reasonable voltages, with 

potential for generating much higher current from the device, has been demonstrated using a 

monolithic lateral comb array emitter structure, possessing well-defined emission sites and a high 

emission site density with equal anode-cathode spacing over a large area. Improved reliability of 

the lateral device for high power has been demonstrated, when aluminum nitride insulator is 

applied for electrode isolation. Excellent diode behavior with high rectification factor (> 104) has 

been achieved in the lateral field emission device, involving a non-diamond anode, implying 

viable candidacy for low voltage microelectronic circuit applications.  

 

7.1.4 Nanodiamond lateral vacuum triode characteristics 

A monolithically integrated nanodiamond lateral field emission microtriode has been 

developed in this work on SOI as well as aluminum nitride substrates. It was identified that the 

behavior of the lateral emitter device can be completely varied as a triode or a transistor by 

lithographically altering the design of the three-terminal structure. The lateral anode can induce 

the electron emission, when placed closer to the cathode (~ 10 µm), and result in gate-modulated 

triode characteristics, as in a classical triode. When the anode is located at a large inter-distance 
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(≥ 100 µm) from the cathode and gate electrodes, it effectively acts as a collector, with the gate, 

by virtue of its proximity (≤ 2 µm) to the cathode, principally controlling the electric field at the 

emitter finger-tip, leading to transistor characteristics.  

Transistor characteristics have been achieved for the first time in a lateral device 

configuration, exhibiting distinct cut-off, linear, and saturation regions, with good gate controlled 

modulation of the device current. The flat saturation region and negligible gate current attributes 

obtained are suited for practical and reliable applications. The diamond lateral transistor shows a 

high amplification factor (D.C. voltage gain) and output impedance, with low capacitance, and a 

clear path to further enhancement of the transconductance. This fabrication and demonstration of 

a monolithic lateral field emission transistor is an essential step in the development of IC-

equivalent high-frequency signal or power amplifiers, logic gates, switches, oscillators, 

modulators, sensors and control devices, having temperature- and radiation-immunity. 

The devices have undergone evaluation for their behavior at extended operational levels 

such as temperature and radiation. We have performed the first total dose and neutron radiation 

exposure tests on nanodiamond lateral vacuum field emission microelectronics (VFEM) 

technology. Exposure to high levels of x-ray radiation flux (upto 20 Mrad(SiO2) total dose), that 

would have damaged silicon solid-state devices, had no effect on device performance. The pre- 

and post-neutron radiation behavior of the diamond devices was examined to a total fluence of 

4.4x1013 neutrons/cm2. Property changes, including resistivity, dilation and emission 

characteristics were sought, but no changes were observed.  The diamond lateral vacuum 

emission devices are determined to be insensitive to neutron irradiation to this level of exposure. 

Operational temperature tolerance was also observed in the field emission performance of the 

lateral device over a wide temperature range between 27 °C and 350 ºC. These results, 
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portraying the inherent temperature tolerance and radiation hardness of the diamond vacuum 

microelectronics technology, represent the development of an electron device of choice for a 

whole large realm of applications warranting extreme operational limits in their system 

specifications, such as radar, electronic warfare and space-based communications, and also 

certain specialized terrestrial electronic systems. 

The emission characteristics of the nanodiamond lateral devices were observed to be 

stable and repeatable over time. Low current fluctuations were observed in the µA emission 

current regime, which increased slightly at high currents (mA regime), operating in a vacuum 

condition of ~ 10-6-10-7 Torr. Further improvement in the current stability behavior of the 

diamond lateral emitters can be expected at very high vacuum levels of 10-9-10-11 Torr. 

Nevertheless, the ability of the diamond emitter to function with good stability even at medium 

vacuum levels was noticed, when the lateral devices were assembled in vacuum cavity packages. 

 

Overall, nanocrystalline diamond is a favorable material for electron field emission, with 

its properties well suited for use in a broad range of applications. With the emergence of 

nanodiamond, the utility of CVD diamond can now be vastly expanded to perpetuate the 

development of robust devices and products from the material. One such application is explored 

in this research in the form of lateral vacuum field emission microelectronics. The nanodiamond 

lateral emitter device represents a new category of diamond-based electronics, made possible 

from the development of a consistent microfabrication process capable of achieving desirable 

micro/nanostructures from the material. The development of monolithic nanodiamond lateral 

field emission diode, triode and transistor devices signifies a novel approach to accomplish 

vacuum integrated circuits and electronic systems for terrestrial and space-based applications. 
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7.2 Recommendations for future work 

The present work on the nanodiamond lateral vacuum microelectronic devices can be 

extended to investigate the following: 

(i) Design, simulate, fabricate, and characterize a nanodiamond lateral field emission 

array transistor and examine its transconductance and gain performance for high 

frequency amplifiers 

(ii) Apply the diamond lateral vacuum diode, triode, and transistor devices monolithically 

in integrated circuits (ICs) and build digital logic gates, differential amplifiers, and 

complex electronic systems 

(iii) Develop a 100 nm interelectrode-gap diamond lateral field emission diode employing 

e-beam lithography patterning process and demonstrate ultra-low voltage device turn-

on and operation 

(iv) Pursue the reliability and high current potential shown by the nanodiamond lateral 

comb array emitter diode on aluminum nitride substrate for high power applications 

(v) Develop an advanced package for the lateral device with high vacuum sealing for 

portable and commercial utilization of the device and technology 

(vi) Extend the temperature insensitivity and radiation hardness performance of the 

diamond lateral vacuum device into a packaged device and for custom applications 

such as space communication electronics and sensors 

(vii)  Study the field emission response of the lateral vacuum device at very low (freezing) 

temperatures for cryogenic electronic circuits. 
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