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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

The autonomic nervous system is a regulatory structure primarily responsible for the 

physiologic response to environmental change. Pathologic disorders affecting this system disrupt 

the body’s natural coping mechanisms, leading to a significantly reduced quality of life. Since 

primary autonomic disorders, such as orthostatic intolerance [1], neurally-mediated syncope [2], 

and pure autonomic failure [3] are generally regarded as non-life threatening, they garner less 

attention than other, more severe medical conditions. However, more common diseases including 

hypertension [4-7], obesity [8;9], diabetes [10], and congestive heart failure [11] have all been 

shown to have underlying autonomic components. Therefore, the study and understanding of 

both the normal and abnormal characteristics of the autonomic nervous system is of great 

importance to the medical community. 

The Vanderbilt Autonomic Dysfunction Center (ADC) is a rare environment consisting 

of physicians, clinicians, and research scientists devoted to the care, treatment, and study of 

autonomic disorders. This institution places an emphasis on research investigating the underlying 

etiologies of these autonomic impairments in order to develop improved treatments for its 

patients. One of the most important and informative tools used to examine the autonomic origins 

of these diseases is a technique introduced in the mid-1960’s by Hagbarth and Vallbo known as 

microneurography [12]. It consists of directly recording the sympathetic nerve activity from 

large extremity nerves using a minimally invasive electrode [13]. Using this technique, scientists 

have been able to investigate the properties of many autonomic disorders as well as establish 

links between sympathetic activity and hypertension [4-7], congestive heart failure [11], and 

other diseases. 

Since its inception, the human muscle sympathetic nerve activity, a signal recorded using 

microneurography, has been analyzed using the same general integrated processing scheme. 

While this signal-conditioning technique was advantageous when confronting the limitations 

posed by early data-acquisition devices, it also discarded large amounts of potentially useful data 

which can easily be recorded with modern computers. Although, an alternative method has 
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recently been presented [14], its performance was not thoroughly assessed under the many 

dynamic conditions observed to occur in the sympathetic nerve activity during physiological, 

pharmacological, or pathological situations. Improvements in its basic mathematical premise 

have also been suggested. In response to these needs, we have developed and tested an improved 

quantification scheme for human sympathetic nerve activity. 

Along these same lines, there is currently a need to develop a similar analysis technique 

for murine sympathetic nerve activity. The rapidly emerging field of murine transgenic research 

has grown to include mouse models of various autonomic dysfunctions [15-17]. However, 

current quantification strategies of the murine sympathetic activity are limited to simple 

hardware-based amplitude discriminators whose parameters lack standardization. We have thus 

employed similar methods to those used for the human sympathetic nerve activity in the hopes of 

extending the sympathetic nerve quantification options in the mouse. 

Although microneurography is a useful research tool, the technique is time consuming, 

difficult to master, and requires specialized processing and recording devices [13]. Consequently, 

it is not practical for clinical monitoring and diagnosis of sympathetic abnormalities. At the 

Vanderbilt ADC and many other institutions worldwide clinicians are in need of diagnostic tools 

which can be administered with little effort and minimal technical training but are still capable of 

accurately and consistently assessing autonomic health. In the late 1970’s, Akselrod and others 

were able to partially achieve this goal by applying the Fourier transform and other frequency 

domain methods to the heart rate variability [18]. These innovative techniques were able to 

indirectly estimate sympathetic and parasympathetic control of the heart and have been used to 

study a wide variety of pathologies. Many scientists have continued in this same vein and are 

extending these non-invasive tools to include indirect analysis methods suitable for all forms of 

autonomic and cardiovascular interactions. 

A trait common in many biomedical signals in general and autonomic/cardiovascular 

signals specifically is a non-stationary and, for the most part, unpredictable nature. In the past, 

however, analysis of signals such as the heart rate and blood pressure variability has been 

generally limited to mathematical techniques whose basic principals include an assumption of 

stationarity. Over the past decade, wavelet transforms with compact support have been applied to 

a number of biomedical signals for the purpose of data compression, noise-reduction, and non-

stationary signal analysis amongst others [19]. Wavelets are now beginning to gain popularity in 
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the analysis of cardiovascular and autonomic signals [20-23], and could be used to fill gaps left 

by previous methods in both the direct and indirect assessment of autonomic function. 

The motivation for this work is two-fold. First, we would like to improve upon the 

current technology used to directly assess autonomic sympathetic nerve function in humans and 

mice for the purpose of researching the neural basis of autonomic disorders. Secondly, we plan 

to augment the existing tools used to rapidly and consistently provide indirect estimates of 

autonomic function for use in clinical diagnoses of autonomic disorders. Given the flexibility of 

the wavelet transform and the non-stationary nature of these autonomic signals, we believe the 

wavelet analysis can be used to achieve both of these goals.  

 

Overview 

The research discussed in this thesis was performed to achieve two main objectives: (1) 

To improve the quantification of the sympathetic nerve activity to allow for more complete 

characterization of human and murine sympathetic function and (2) To extend indirect estimates 

of sympathetic and parasympathetic influence on cardiovascular function ostensibly for use in 

clinical diagnosis. As discussed above, due to the non-stationary nature of this data we believe 

that wavelet-based analysis is well-suited to handle these problems. Included below is a brief 

summary of the sub-objectives achieved during each stage of this work. 

Chapter II provides a general background on the anatomy and physiology of the 

autonomic nervous system and describes the methodology and limitations of various autonomic 

function tests and quantification strategies. Brief qualitative descriptions of each problem are 

also discussed. Also presented are the important differences between Fourier- and wavelet-based 

analysis, the discrete and stationary wavelet transforms, and human and mouse sympathetic 

nerve activity. The objective of this chapter is to provide the reader with a background necessary 

to fully grasp the work and outcomes presented in each of the chapters that follows. A more 

mathematical description of the techniques used in this work, however, is presented in Appendix 

A. 

Chapter III discusses improvements made in the quantification of human muscle 

sympathetic nerve activity. This work focuses on an action potential detection strategy that takes 

advantage of both the burst-like temporal discharge patterns of the human sympathetic activity 

and the properties of stationary wavelet transform de-noising. Kurtosis, a higher-order statistical 
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property, is used to distinguish bursts of sympathetic activity from noise within the stationary 

wavelet transform coefficients and, ultimately, individual sympathetic spikes are identified 

through wavelet de-noising. This chapter concludes with an evaluation of the detection 

performance of this new algorithm using simulated signals and compares the spike detection to 

commonly used integrated burst information in recordings made during a graded head-up tilt 

protocol. 

Chapter IV describes an action potential detector designed specifically for the mouse 

renal sympathetic nerve activity. Although wavelet spike detection is again used in the mouse, a 

different strategy is employed to account for disparities between the temporal discharge patterns 

observed in human and mouse sympathetic activity. Additionally, a comparison is made between 

the detection performance of the discrete and stationary wavelet transforms. This comparison 

was also repeated for the human sympathetic activity, the results of which are presented in 

Appendix B. Each mouse method is evaluated using both simulated data and signals recorded 

during infusion of the pharmacological vaso-pressor agent phenylephrine. The outcome of this 

chapter was then used to demonstrate differences between the sympathetic activity recorded in 

normal mice and several transgenic mouse models of dysautonomias, the results of which are 

summarized in Appendix C. 

The primary objective of Chapter V was to establish a temporal link between the low 

frequency fluctuations in blood pressure and those found in the sympathetic nerve activity. Once 

this relationship has been established, the blood pressure fluctuations can be used as an indirect 

estimate of sympathetic function in situations where the recording of sympathetic nerve activity 

is impractical or impossible. For completeness, the relationship between the high frequency 

fluctuations and those found in the respiration were also examined. A model of the complete 

blood pressure fluctuations with sympathetic and respiratory inputs was evaluated in healthy 

subjects at rest and during a graded head-up tilt experiment. 

Chapter VI uses the result of Chapter V along with other wavelet-based analyses to study 

the mechanisms involved in different types of neurally-mediated syncope. In this chapter, the 

power of the inherently non-stationary fluctuations in the blood pressure and heart rate are 

quantified using a modified continuous wavelet transform, the details of which are discussed in 

Appendix D. The differences between normal subjects who experience neurally-mediated 

syncope alone and those who experience neurally-mediated syncope with asystole, a rare 
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stoppage of the heart, are highlighted. This information may be helpful for clinicians to indirectly 

assess the autonomic origins of patients with recurrent neurally-mediated syncope. 

Chapter VII summarizes this work and follows with a set of global conclusions and future 

directions. 
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CHAPTER II 

 

QUANTITATIVE ASSESSMENT OF AUTONOMIC FUNCTION 

 

Anatomy and Physiology of the Autonomic Nervous System 

Sympathetic and parasympathetic nerves serve as the antagonistic neural pathways 

between neurons of the central nervous systems (CNS) and visceral target (or affector) organs.  

In both systems, the pathway from the CNS to the target organ consists of two neurons. The cell 

body of the first neuron is housed within the CNS while its axon projects into the periphery and 

synapses with a second neuron whose cell body can be found in a peripheral ganglion. For this 

reason, the first and second neurons in the pathway are referred to as the pre- and post-ganglionic 

fibers, respectively [1]. The postganglionic fibers of the two autonomic divisions differ 

chemically in that the parasympathetic fibers almost exclusively release acetyl-choline (ACh), 

while most sympathetic terminals secrete norepinephrine (NE). These neurotransmitters are 

bound by different receptors on the target organ and, in this way, the two divisions can elicit 

antagonistic responses [2]. 

One of the primary roles of the ANS is to buffer against changes in blood pressure caused 

by environmental and internal stimuli [1]. The autonomic pathway for blood pressure control, 

known as the baroreflex, typically responds to short-term oscillations in blood pressure (Fig. 1). 

This reflex begins with stretch sensitive cells, termed baroreceptors, which are embedded in the 

walls of the carotid artery, aorta, heart, and lungs. These receptors modulate their firing rate in 

response to both prolonged and transient changes in local arterial blood pressure [3;4]. Generally 

speaking, an increase in the local pressure causes an increase in arterial stretch which results in 

an increased firing rate from the baroreceptor. 
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Figure 1. The anatomy of the baroreceptor reflex. 

 

The higher firing rate is sensed by afferent sympathetic fibers that carry the message to 

the brainstem, ultimately reaching the nucleus of the tractus solitarius (NTS) in the medulla 

oblongata [1]. At this point, inhibitory messages are sent to the efferent sympathetic branch of 

the ANS while the output of parasympathetic neurons is amplified. The result of the sympathetic 

inhibition results primarily in a dilation of many arteries especially those in the skeletal muscle 

[2]. A secondary consequence of this inhibition is a reduction in heart rate and cardiac 

contractility. The parasympathetic excitation mainly works to further reduce the heart rate until 

blood pressure returns to a normal level [2]. The decrease in the cardiac output and peripheral 

resistance causes a reduction in the blood pressure. If a drop in blood pressure occurs, the 

opposite chain of events takes place and the sympathetic division is activated to increase heart 

rate and contractility and constrict peripheral arteries until blood pressure is sufficiently 

increased [1]. 
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Situations that trigger the baroreceptor response commonly occur under normal 

physiological circumstances.  For instance, the force of gravity experienced upon standing causes 

blood to pool in the veins and interstitium of the lower extremities, creating an offsetting drop in 

mean arterial blood pressure that is sensed by the carotid baroreceptors. This scenario elicits 

increased sympathetic activity to tighten arteries and increase cardiac output in an attempt to 

force blood through the cardiovascular system to return the blood pressure to normal levels [2]. 

Although this example demonstrates the ability of modern science to explain normal physiology, 

many current explanations fall short of elucidating the pathological states of these systems.  

 

General Methods to Assess Autonomic Function 

 

Direct Measures of Autonomic Function 

Progress in the field of clinical research has helped physicians identify several abnormal 

conditions with underlying autonomic pathologies, including orthostatic intolerance [5], pure 

autonomic failure [6], multiple system atrophy [6], hypertension [7-10], and congestive heart 

failure [11]. However, the underlying etiologies of these diseases are largely unknown, 

motivating clinicians and scientists to develop quantitative assays of sympathetic activity. The 

two most prominent tools to assess sympathetic activity are determination of plasma 

catecholamine concentration (NE-spillover) and direct electrical recordings from the sympathetic 

nerve itself. 

Norepinephrine Spillover NE-spillover, involves the measurement of plasma NE 

concentrations [12]. The NE-spillover is thought to represent an excess portion of the NE that is 

neither bound by target organ receptors or recycled by postganglionic sympathetic neurons and is 

thought to mirror human sympathetic tone [12]. Nevertheless, blood draws for NE spillover are 

invasive, require lengthy intervals between samples (5-10 minutes), and produce inconsistent 

results. Further, this method may only reveal a partial picture of the sympathetic activity [12]. 

Integrated Sympathetic Nerve Activity Microneurography, a technique introduced by 

Hagbarth and Vallbo in the late 1960s, represents a more direct and less invasive assessment of 

sympathetic nerve activity [13]. During this procedure, a signal known as a neurogram is formed 

using a microelectrode to record the current created by the ion flux across neuronal membranes.  

Neurograms formed specifically from bundles of postganglionic sympathetic axons projecting to 
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a skeletal muscle vascular bed are termed the muscle sympathetic nerve activity (MSNA) and 

neurograms recorded from sympathetic neurons in the renal nerve are known as the renal 

sympathetic nerve activity (RSNA). 
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Figure 4.  (A) Electrode position for sympathetic nerve recordings. Sympathetic efferent fibers are contained within 
fascicles that innervate either skin or muscle. They are found along with afferent C-fibers within Schwann cells that 
are distributed amongst myelinated fibers. Modified from [14].  (B) Representative example of the multiunit raw and 
integrated neurograms. 
 

Single-Unit Sympathetic Nerve Activity The traditional method of recording sympathetic 

activity integrates the electrical activity of multiple sympathetic neurons using a single electrode.  

Recently, however, several groups have developed techniques to isolate and record single-unit 

sympathetic activity [16-22]. Single-sympathetic nerve fibers can be isolated for recordings by 

repeated minute adjustments of the electrode in the vicinity of a high-quality multiunit recording 

site [14]. Groups that have successfully accomplished this procedure have reported interesting 

relationships between single-unit sympathetic firing patterns and several autonomic parameters 

in subjects with normal [17;20;21] and abnormal or pathological [16;18;19;22] autonomic 

physiologies.  Several studies suggest the existence of several populations of muscle sympathetic 

neurons with distinctive behavior during basal and activated states [16;18;19;22]. In fact, the 

single-unit MSNA recordings were found to exhibit behavior different from that of the multi-unit 

burst activity and have provided additional information about several pathologies including 

essential hypertension [22] and congestive heart failure [16;19;22]. 

 

Indirect Assessment of Autonomic Function 

Due to the technical difficulty associated with directly measuring nerve activity and the 

inconsistency and temporal constraints of NE spillover, interest has grown in developing indirect 

assessments of autonomic activity. For instance, consistent, non-invasive techniques have been 

developed to record the electrocardiogram (ECG) and blood pressure waveforms which are used 
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to monitor the electrical and mechanical properties of the affector organs of the autonomic 

nervous system. The variability found in these sequences is related to the sympathetic and 

parasympathetic control of these organs which can provide an indirect assessment of autonomic 

health [23;24].   

Measurement of Heart Rate and Blood Pressure Standard surface ECG lead II is used to 

record the electrical activity of the heart during all experiments.  The recorded ECG waveform 

can then be used to assess instantaneous heart rate and R-peak to R-peak interval (RRI) length.  

The Finapres (FINger Arterial PRESsure) is an instrument which allows for continuous, 

non-invasive measurement of arterial blood pressure in the finger using a finger cuff.  This piece 

of equipment uses the volume clamp method described by Peñaz [25]. This method clamps the 

volume in the finger and determines a “set-point” or the pressure found in the arteries at an 

unstressed diameter, i.e. zero transmural pressure [26]. Once the set-point is established, a servo-

controller driven by the output of a photo-plethysmograph is used to dynamically change the 

finger cuff pressure to match the arterial pressure in the finger [26].  Using this method, a 

continuous blood pressure output is derived from the instantaneous pressure required to clamp 

the volume of the arteries [25].  An example of the continuous blood pressure output of the 

Finapres is displayed in Figure 5. 

Oscillations in Heart Rate and Blood Pressure Rhythmic oscillations in specific 

frequency ranges are common to all cardiovascular and autonomic signals [23;27].  For instance, 

oscillations with a 10-second period are noticeable in the heart rate and arterial blood pressure, 

particularly during interventions known to increase sympathetic activity (Fig. 5).  When a normal 

subject is administered an infusion of the pharmacological agent nitroprusside (NTP), the subject 

will experience a mean blood pressure drop followed by a baroreflex mediated increase in 

sympathetic activity and heart rate. During this time, both the diastolic and systolic values are 

shown to change in a near sinusoidal fashion with roughly the same 10-second periods. Similar 

changes are noticed in the length of time between heart beats. These rhythmic oscillations are 

typically quantified using some form of spectral analysis to indirectly estimate the level of 

sympathetic activation. 
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Figure 5. Regular oscillations in diastolic (red) arterial blood pressure.  During baseline (A), the cyclic trend is 
modest, but it appears to become more pronounced during pharmacological enhancement of sympathetic activity 
with nitroprusside (NTP) (B). 
 

Stimulation of Autonomic Function 

Valsalva Maneuver The Valsalva maneuver is conducted by having a subject expire 

against a closed glottis. This can be monitored by having the subject exhale into a manometer 

while the blood pressure and ECG are recorded. The cardiovascular changes that occur during 

this process in healthy individuals are predictable and have been described in four phases (Fig. 6) 

[28]. During Phase I, blood is squeezed out of the aorta due to the increase in intrathoracic 

pressure, causing a transient increase in stroke volume and blood pressure and brief reduction in 

sympathetic activity. In Phase 2 the strained expiration is continued and intrathoracic pressure 

remains high, limiting the venous return to the heart.  This results in a drop in the cardiac output 

and blood pressure, which in turn causes an increase in heart rate (response tachycardia) and 

sympathetic activity. A release of the Valsalva maneuver (Phase III) causes blood pressure to 

drop further for a brief period while sympathetic activity remains high. Phase IV occurs about 5 

seconds later and is characterized by an increase in arterial blood pressure, beyond baseline 

levels (overshoot) that causes a dramatic reduction in the sympathetic nerve activity and heart 

rate (reflex bradycardia). 

The physiological response to the Valsalva maneuver can be altered by pharmacology 

and diseases. For instance, response tachycardia is absent or blunted in patients with dysfunction 

of the sympathetic nervous system [28] and patients with congestive heart failure do not 

experience a drop in blood pressure during Phases II and III [29]. 
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Figure 6. Illustration of the changes in respiration (RESP), heart rate (HR), blood pressure (BP), and integrated 
muscle sympathetic nerve activity (IMSNA) during the four phases of the Valsalva maneuver (I-IV). 

 

Tilt Test A tilt test can be accomplished using one of two general strategies.  Both 

protocols begin with the subject in a supine position for baseline measures of autonomic and 

cardiovascular activity for 10 to 20 minutes. During an upright tilt protocol, the subject is 

immediately tilted to an upright position (60o or 70o), which is maintained for a period of 30 to 

60 minutes [28]. Alternatively, during a graded tilt protocol, the tilt angle is incrementally 

increased by 15o until a tilt angle of 75o is reached. At each tilt angle, the autonomic activity is 

monitored and recorded for a period of 3 to 10 minutes.  The upright position is typically 

maintained for a period of 10 to 20 minutes [28]. After both protocols, a recovery period is 

recorded for 10 to 20 minutes in the supine position. The normal physiological response to 
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upright tilt is similar to that described for moving from a supine to standing position and the 

graded tilt protocol typically results in graded increases in heart rate, blood pressure, and 

sympathetic nerve activity. 

The tilt test can be used to identify patient with various autonomic impairments who 

typically faint during the test. However, the tilt test has been noted to produce a significant 

number of false positives [28]. An estimated 20% of healthy young adults will have syncope 

during an upright tilt test [30]. This may be due to the absence or limited use of the calf and 

postural muscles during this procedure. These muscles are normally used to force blood pooled 

in the venous system of the legs back toward the heart. 

Pharmacology Various pharmacological agents are used to elicit autonomic responses.  

One such agent is phenylephrine (PHE), an α1-adrenoreceptor agonist, which evokes 

vasoconstriction and a subsequent increase in blood pressure [31]. Alternatively, sodium 

nitroprusside (NTP) has the opposite effect of vasodilatation followed by an increase in 

sympathetic activity. These pharmacological agents can be administered either in a bolus or in 

stepwise infusion. Stepwise infusion of PHE and NTP can be used to produce graded changes in 

blood pressure, which can be used to generate a baroreflex response curve that plots sympathetic 

nerve activity against changes in blood pressure. This curve is typically used to assess the 

function of the baroreflex [32].  

Reboxetine is an agent that inhibits the function of the norepinephrine transporter (NET), 

which functions in the reuptake of unused norepinephrine. Human studies involving blockade of 

NET with reboxetine have demonstrated a paradoxical tachycardia and elevated blood pressure 

with a drop in the sympathetic nerve activity [33;34]. 

Trimethaphan is a substance which is capable of inhibiting sympathetic activity through 

ganglionic blockade [35]. When this substance is infused, the low frequency oscillations in blood 

pressure are abolished, but the high frequency oscillations in the range of the breathing 

frequency are unaffected [35]. 

Neck Suction Negative neck suction pressure applied over the region of the carotid 

baroreceptors can also be used to stimulate autonomic function. The neck suction device includes 

two deformable cuffs and a vacuum pump used to create negative pressure (Fig. 7). During neck 

suction, the negative pressure in the cuffs is transmitted to transmural pressure of the vessels 

housing the carotid baroreceptors, causing the vessels to stretch (similar to the affects of elevated 
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local blood pressure) and ultimately leading to an elevated baroreceptor firing rate. The increased 

baroreceptor firing rate results in a decrease in sympathetic nerve activity, heart rate, and mean 

blood pressure. The neck suction process attempts to emulate the baroreflex response to locally 

elevated blood pressure [3].  

The negative neck suction pressure can be applied in either a static or dynamic manner.  

Sinusoidal neck suction has been demonstrated to induce rhythmic modulation of sympathetic 

activity, blood pressure, and the RRI [36]. 

Figure 7. Device used for neck suction of the carotid baroreceptors. 

 
 

Lower Body Negative Pressure Lower body negative pressure (LBNP) is used to 

redistribute fluid from the thorax and upper extremity to the lower extremity. This fluid 

redistribution leaves the upper body hypovolemic resulting in a lower local blood pressure in the 

aorta and carotid sinuses which is sensed by the aortic and carotid baroreceptors. In response, 

sympathetic activity and heart rate are increased through the baroreflex. 

The device used to create LBNP is shown in Figure 8. LBNP is typically increased in a 

graded fashion while sympathetic activity, heart rate, and blood pressure are recorded. 

Sympathetic activity has been shown to increase linearly with LBNP load [37]. 

 

 

Figure 8. Device used to create lower body negative 
pressure. 
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Murine Models to Assess Autonomic Disorders. 

Due to the many recent insights into the murine genome, several transgenic and gene 

targeted mouse models have been developed to aid in the study of cardiovascular [38;39] and 

autonomic [40-42] diseases. One example of a mouse model of autonomic dysfunction is the 

norepinephrine transporter (NET) deficient mouse. NET impairment has been implicated in 

human disorders such as essential hypertension and orthostatic intolerance [33]. Human studies 

involving blockade of NET using drugs such as reboxetine [33;34] and desipramine [43] have 

demonstrated a paradoxical tachycardia and elevated blood pressure with a drop in the baseline 

sympathetic nerve activity. Previous studies with the NET knockout mice have shown similarly 

high heart rate and blood pressure values, but sympathetic nerve activity was not previously 

analyzed in these animals [40]. 

Assessment of autonomic sympathetic function by directly recording sympathetic nerve 

activity from the renal nerve (RSNA) has recently been introduced in mice [44-47] and there is 

some debate as to how it should be objectively quantified. The low amplitude, multiunit 

sympathetic action potentials (AP) recorded from the renal nerve are significantly corrupted by 

high levels of bioelectric, mechanical, and environmental noise. Contamination from biological 

noise sources is particularly common in mice because many of the electrically active organs are 

in close proximity to the recording electrode due to the small frame of the animal. 

 

Signal Processing of ECG, Blood Pressure, and Sympathetic Nerve Activity 
 

Processing of Sympathetic Nerve Activity 

 

Integrated Muscle Sympathetic Nerve Signal Early observations of the human MSNA 

time series revealed a burst-like nature in the firing patterns of the sympathetic nerves that 

appeared to correspond to rhythmic changes in the cardiac and respiratory cycles [13]. However, 

due to characteristically small spike amplitudes (less than 10 µV) and a monopolar recording 

arrangement that allows for significant corruption from environmental and bioelectric noise, 

quantification of the MSNA is not straightforward. Consequently, the signal must undergo 

several stages of preprocessing prior to being analyzed (Fig. 9). 
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The traditional MSNA processing scheme takes advantage of the burst-like and band-

limited nature of the signal. Typically, the analog recorded signal, termed here the raw 

neurogram, is amplified with a gain between 1,000 and 99,000, band-pass filtered from 700 to 

2,000 Hz, and full-wave rectified. At this point, threshold discrimination is often performed to 

reduce baseline noise. Finally, the rectified waveform is passed through an RC-integrating 

network with a time constant of 0.1 seconds to create a linear envelope of the neural activity. For 

the sake of clarity, the output of this procedure will be referred to as the integrated neurogram or 

the integrated MSNA (IMSNA). 

The integrated preprocessing scheme led to several disputes about data interpretation, 

including different hypotheses concerning the physical interpretation of the integrated burst 

amplitude. For instance, burst amplitude variation between subjects may reflect the proximity of 

the recording electrode to the sympathetic axons or differences in the packing density of the 

sympathetic fibers [21]. Similarly, it is unclear as to whether an intra-subject increase in burst 

amplitude represents the recruitment of more neurons to encode different information or simply a 

change in the firing rate in response to cardiovascular stimulation. 

To account for these different theories, various integrated burst parameters have been 

developed to quantify the sympathetic activity from the integrated neurogram. However, at this 

time, there is no universally accepted method to measure the integrated bursts. Common 

conventions of burst quantification include burst frequency (bursts/min) and burst incidence 

(bursts/100 heart beats) which can both be used to analyze differences in the speed at which 
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bursts occur in the integrated neurogram [48]. While these parameters are comparable between 

subjects, neither takes into account the integrated burst amplitude variability which may hold 

information about the number and firing frequency of neurons contributing to each burst.  

Another popular quantification strategy involves averaging the burst area over a finite duration, 

as in burst area/min [49].  This method fails to account for the variability in inter-subject 

electrode position and the different levels of pass-band noise integrated into each burst [50].  

Furthermore, each of these methods is inadequate in evaluating the relationship between the 

MSNA and other common cardiovascular signals, such as the ECG and the arterial blood 

pressure [51], and is limited in the study of basal MSNA activity, where burst activity is reduced 

and many isolated sympathetic action potentials are averaged out of the integrated display [50]. 

Spike Detection in Murine Renal Sympathetic Nerve Activity Currently, the murine 

RSNA is quantified using two general strategies: (1) integrating the nerve signal over short 

periods of 5 to 10 seconds [44] or (2) using a hardware amplitude discriminator to detect APs 

[45-47]. The integration method suffers from the same limitations discussed in the previous 

section for the human MSNA. The second approach using amplitude discrimination involves 

manually adjusting a voltage threshold trigger until the threshold exceeds the level of the noise. 

All signal amplitudes that exceed the threshold are detected as spikes [52]. The level of the 

murine RSNA threshold is typically established as the voltage at which no spikes are detected 

following a bolus injection of a pharmacological agent known to increase blood pressure and 

suppress the heart rate and RSNA via the baroreceptor-reflex, such as phenylephrine (PHE), 

[45;46] (Fig. 10). Similarly, investigators studying the rat RSNA have used the highest voltage in 

the postmortem recording as a threshold for a subsequent off-line amplitude discrimination 

procedure [53] (Fig. 10). Postmortem activity has also been used to correct total activity recorded 

during the experiment to obtain an estimate of the true neural activity in mice [47]. 
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Figure 10. Noise threshold estimates using recordings during baroreflex mediated suppression of RSNA using 
phenylephrine (PHE) bolus injection (left) and postmortem recordings (middle) in the same mouse produce different 
spike rates. 
 

Both amplitude discrimination methods currently used in the processing of small animal 

RSNA signals have specific limitations. Selecting a threshold based on the maximum voltage 

level during baroreflex mediated decrease of sympathetic nerve activity necessitates having to 

perform pharmacological tests during each experimental protocol and it does not account for 

incomplete RSNA suppression due to the presence of baroreflex independent nerve activity. 

Further, this procedure can not be applied in mouse models that exhibit baroreflex dysfunction. 

A threshold procedure that uses the maximum voltage of the postmortem nerve recording can 

only be used for off-line analysis, may not be accurate due to changes in needle position 

throughout the recording, and does not take into account bioelectric noise present during the 

living state. The postmortem noise level is usually lower than the living state noise level due 

additional physiological activities and biological noise in the living animal. Threshold estimation 

following PHE bolus in the living mouse or after death can produce substantially different spike 

detection results, as illustrated in Figure 10. 

Hardware amplitude discriminators also have several obvious general drawbacks. To 

begin, they require manual threshold selection which can be both tedious and subjective. 

Additionally, they only take into account the amplitude and duration of the waveform and 

disregard other potentially useful attributes such as shape and frequency content. Over the past 

several decades, a number of spike detection algorithms have taken advantage of these properties 

and improved upon the classic amplitude discriminator approach, as discussed in several 

comprehensive reviews [54;55].  
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Discrete Wavelet Transform Processing of the Sympathetic Nerve Signal Recently, 

several wavelet-based methods have been used for unsupervised de-noising and detection of 

single channel, multiunit data with low signal-to-noise ratio [50;56-58]. In particular, spike 

detection with the discrete wavelet transform (DWT) has been proposed as an alternative to the 

integrated processing scheme and amplitude discriminators in the quantification of human 

sympathetic activity [50]. 
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Figure 11. DWT MSNA 
De-noising algorithm. The 
recorded raw neurogram is 
digitally filtered and 
decomposed into wavelet 
coefficients using the 
DWT. The detail 
coefficients are thresholded 
and the noise-free signal is 
reconstructed from the 
modified wavelet 
coefficients. 

 

The scheme used to detect the sympathetic spikes, termed here the DWT MSNA de-

noising algorithm, consists of an ideal band pass filter, a wavelet de-noising procedure, and an 

AP detector (Fig. 11Figure 11.). The specifications of these components were established based 

on physiological evidence of the MSNA signal characteristics. For instance, the limits for the 

band-pass filter were established to enhance the frequency range in which the MSNA is thought 

to be concentrated while eliminating frequencies significantly corrupted by noise [50]. Evidence 

of the MSNA band limits can be seen in Figure 12. When given even small amounts of a 

pharmacological agent known to reduce sympathetic nerve traffic, such as 1 mg/kg trimethaphan 

(TMT), the power in the 700-2000 Hz frequency range is visually diminished. 
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Figure 12. (A) Raw MSNA time series during baseline (top) and 1mg/kg trimethaphan (TMT) infusion (bottom). 
TMT significantly reduces sympathetic nerve traffic. (B) PSD of the MSNA during baseline (black) and 1 mg/kg 
TMT infusion (red).  Broken gray lines indicate the bounds of the 700 – 2000Hz bandwidth.  The MSNA power is 
diminished in this frequency range during TMT infusion. 
 

After band-pass filtering the MSNA signal, DWT de-noising was used to reduce any 

noise within the 700 – 2000 Hz pass band. A brief description of the discrete wavelet transform 

and wavelet de-noising is given below; however Appendix A contains a more comprehensive 

review of these subjects. 

The discrete wavelet transform (DWT) methods use a mother wavelet, Ψ, which can be 

translated and dilated according to the following equation (Matlab notation): 
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( ) ( )ktt jj
kj −= 22 2/

, Ψψ        Ζ∈kj, (1)

where ψj,k corresponds to the wavelet function at wavelet level j and temporal translation k. An 

increase in the wavelet level from j to j+1 results in a more dilated wavelet function, ψj+1,k, with 

a center frequency and bandwidth that is roughly half that of ψj,k. Symmlet 7 was chosen as the 

mother wavelet for the DWT MSNA de-noising algorithm due to its morphological similarity to 

a MSNA action potential (Fig. 13). 

 
Figure 13.  Morphological similarity between a MSNA 
action potential and the Symlet 7 wavelet. 

Action Potential Symmlet 7Action Potential Symmlet 7
 

 

The fast DWT algorithm proposed by Mallat (1989) decomposes a signal, f, using a set of 

quadrature mirror decomposition filters,  and , that have respective band-pass and low-pass 

properties specific to each mother wavelet [59]. Equations (2) and (3) describe the DWT 

decomposition process. The broad scale, or approximation, coefficients  are convolved 

separately with  and  and the result is down-sampled by two. This process splits the  

frequency information roughly in half, partitioning it into a set of fine scale, or detail coefficients 

 and a coarser set of approximation coefficients . This procedure can be iteratively 

continued until the desired level of decomposition, j=J, is obtained. Note that the algorithm is 

initiated by setting . 

0g 0h

DWT
ja

0g 0h DWT
ja

DWT
jd 1+

DWT
ja 1+

fa DWT =0

( ) ( ) ( )∑ −=+
n
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j
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j kaknhka 201     (2)

( ) ( ) ( )∑ −=+
n

DWT
j
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j kakngkd 201  (3) 

The  coefficients can be reconstructed from  and  by placing a zero 

between each consecutive value found in  and  (e.g. up-sampling by two), convolving 

DWT
ja DWT

ja 1+
DWT
jd 1+

DWT
ja 1+

DWT
jd 1+
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the results with the respective reconstruction filter, h0(-n) or g0(-n), and summing. This process 

can be iteratively continued until the original signal, f, is recovered. 

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

DWT
j

n

DWT
j

DWT
j ndnkgnankhka 1010 22 (4)

Down-sampling the DWT coefficients between each level acts to halve their effective 

sample frequency and halve the effective corner frequencies of the  and  filters for the next 

level of processing. Therefore, identical filters can be used for each step of the DWT procedure. 

The DWT has two main advantages: 1) Each step of the DWT requires half as many 

computations as the previous step, and 2) The total number of DWT coefficients never exceeds 

N, the length of the original signal. A number of AP detection and classification algorithms 

currently use this decomposition technique [50;57;60;61]. 

0h 0g

Most wavelet based spike detection algorithms include some modified form of a process 

known as wavelet de-noising [62]. In this process, a nerve signal with additive noise, f, is 

decomposed using the DWT and a threshold is applied to each of the detail coefficient levels. All 

coefficients with an absolute value greater than the threshold are thought to be part of an action 

potential and those below the threshold are presumably derived from noise. The noise 

coefficients can be set to zero and a noise-free signal can then be reconstructed and used for AP 

detection [50]. 

In the DWT MSNA de-noising algorithm, the probability distribution of the wavelet 

detail coefficients provided the motivation for a modified version of a standard mathematically 

derived threshold (see APPENDIX A for details). After filtering of the MSNA, the remaining 

noise is assumed to be correlated, but normally distributed and additive. Action potential peaks 

are assumed to have large amplitudes, causing the tails of the MSNA distribution to become 

heavier as more action potentials are added. These properties are carried over to the detail 

coefficients once the DWT decomposition is performed. Evidence for this affect can be seen in 

the Quantile-Quantile plot (QQ-plot) of the level 3 detail coefficients (Fig. 14) for the baseline 

and trimethaphan data shown previously. A QQ-plot is constructed in such a way that plotting 

the quantiles of a data set against those of a test distribution, in this case the standard normal 

distribution, should result in a straight line if the two distributions are the same, irrespective of 

their parameters [63]. If a straight line is present, the slope of the line is the standard deviation of 

the data and the y-intercept is its mean. In Figure 14B, the central portion of the QQ-plot is linear 
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and conforms to the normal distribution, while curvature is introduced in the non-normal tails. 

The noise characteristics of the recordings made during baseline and trimethaphan infusion, a 

common ganglionic blocker, are assumed to be the same, since both were recorded during the 

same experiment. The slope of the QQ-plot line between the first and third quartiles of the detail 

coefficients at level j was used to estimate of the standard deviation of the noise-related detail 

coefficients,  σj. 
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Figure 14. QQ-plots of the level 3 DWT detail coefficients during baseline (A) and 1mg/kg TMT (B).  Broken red 
lines indicate the QQ-plot of the model distribution. 
 

The modified thresholding rule, , is stated in Eq. (5. In Eq. (5, k is a correction factor 

that was found to be 0.8 through simulation, and N is the number of points in the signal [50]. 

This threshold was modified from a standard colored-noise threshold, , found in Appendix A, 

which does not include k and estimates σ

M
jT

S
jT

j as the median absolute deviation of the detail 

coefficients from zero divided by 0.6745, the 75th percentile of the standard normal distribution. 

( )NkT ej
M
j log2σ=  (5)

The optimal sampling rate, 10,000 Hz, and number of wavelet decomposition levels used 

to de-noise the MSNA signal, 5, were also determined from analysis of simulated signals [50]. 

This optimized MSNA DWT de-noising method was shown to perform better than common 

amplitude discrimination procedures in the detection of action potentials in simulated signals 

[50]. Several other neural de-noising schemes involving the DWT have been shown to exhibit 

similar performance advantages over other, non-wavelet methods of spike detection [56;57]. 
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Spectral Analysis of Heart Rate and Blood Pressure 

In order to analyze the quasi-periodic fluctuations in heart rate and blood pressure, a beat-

to-beat variability series is formed using the R-R intervals (RRI), systolic, or diastolic values 

(Figure 15) [64;65]. The R-wave peaks in the electrocardiogram (ECG) are an established and 

easily detectable landmark from which the position of a subsequent diastolic and systolic blood-

pressure event can be identified. The beat-to-beat series is then resampled at regular intervals and 

spectral analysis can be performed on the resultant tachogram (series of RRI), systogram (series 

of SBP), or diastogram (series of DBP) using fast Fourier transform (FFT) [66-68], or 

autoregressive (AR) [51;64;69-72] based methods. 
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Figure 15. Formation of the tachogram and diastogram from the ECG and continuous blood pressure records. Each 
diastolic event can be detected with knowledge of the R-wave peak of the ECG signal. The R-R intervals (RRI) and 
diastolic values are inserted consecutively into variability sequences which can then be evenly resampled using 
linear interpolation. 
 

Once the power spectral density (PSD) of the variability series is computed, it has 

become standard practice to analyze the power in established frequency ranges of the spectrum 

(Figure 16) [23;27;51;64;66-72]. Three specific regions of the frequency domain are typically 

considered important: the very low frequency (VLF; 0.004-0.04 Hz), the low frequency (LF; 

0.04 – 0.15 Hz), and the high frequency (HF; 0.15 – 0.40 Hz) [27]. The power in each of these 

regions is thought to represent changes in heart rate or blood pressure values brought about by 

different physiological systems. For instance, the relative control of systems that typically 

require long periods of time to exert an affect on the blood pressure, such as the hormonal action 
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of various glands in the endocrine system, is typically quantified using the VLF power [23]. 

Similarly, as demonstrated in Figure 5, the influence of the sympathetic nervous system on the 

vasomotor tone of the arterial blood pressure, reflected in a 10-second wave, known as a Mayer 

wave, whose power is found in the LF range [64;70]. In fact, spectral analysis of long time 

segments (>5 minutes) has demonstrated that the LF components of blood pressure undergo 

changes correlated to the sympathetic nerve activity during pharmacological interventions, such 

as nitroprusside and phenylephrine infusion [72], and physiological autonomic stresses, such as 

head-up tilting [70]. The LF component of the RRI series has been proposed as an index of 

sympathetic modulation on the heart rate; however, it may also be affected by the 

parasympathetic system. The HF range is thought to represent vagal modulation of the sinoatrial 

node and parasympathetic control of the arterial blood pressure. The most common peak in this 

range is typically found at the normal breathing rate (0.25 – 0.30 Hz) and is brought about by 

parasympathetic respiratory input [73].  
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Figure 16. PSD and defined frequency regions of the blood pressure variability. The regions defined by the Task 
Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology are 
very low frequency (VLF; 0.003 – 0.04 Hz), low frequency (LF; 0.04 – 0.15 Hz), and high frequency (HF; 0.15 – 
0.40 Hz) (Camm et al., 1996).  The power in each region is thought to represent the influence of different factors on 
blood pressure variability. 
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Limitations of the Signal Processing of Autonomic Signals 

 

Limitations of the Discrete Wavelet Transform in Neural Signal Processing 

The DWT MSNA de-noising algorithm uses the discrete wavelet transform to decompose 

sympathetic nerve signals prior to de-noising and AP detection. One complication that arises 

from the level-to-level decimation of the DWT coefficients, however, is a lack of translation 

invariance in the DWT representation of the signal [74-79]. Dyadically down-sampling the 

approximation and detail coefficients from f(n) leads to a completely different set of DWT 

coefficients than down-sampling the coefficients from its shifted version, f(n+1). Similarly, 

choosing to retain the odd wavelet coefficients during the dyadic down-sampling will result in a 

different outcome than retaining the even wavelet coefficients (Figure 17) [74-79].  

As a result of the shift variability of the DWT, several authors have used translation 

invariant decomposition techniques, such as the continuous wavelet transform or stationary 

wavelet transform (SWT), for the purpose of detecting action potentials [56;58] (Appendix A). 

In contrast to the DWT, the SWT up-samples the decomposition filters by inserting zeros 

between every other filter coefficient and, consequently, avoids the translational variance 

problem caused by decimation [80]. Therefore, the SWT uses a set of level dependent 

decomposition filters,  and , which are the  and filters with 2jh jg 0h 0g j-1 zeros between each 

discrete filter coefficient. The SWT approximation and detail coefficients can then be computed 

using Eq. 7 and 8. 

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kaknhka 1  (6)

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kakngkd 1  (7)

The SWT reconstruction process is similar to that of the DWT, although the 

reconstruction filters are level dependent an include 2j-1 zeros between each filter coefficients. 

This reconstruction process is described in Eq. 9. 

( ) ( ) ( ) ( ) ( )∑∑ −+−=+
n

SWT
jj

n

SWT
jj

SWT
j ndnkgnankhka 1 (8)

Inserting zeros between the filter coefficients allows the SWT to analyze every possible 

shift of the signal while the effective sample rate at each wavelet level remains unchanged. In the 

frequency domain, up-sampling acts to halve the corner frequency of both the low-pass and high-
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pass decomposition filters, resulting in the same bandwidth decomposition as is found in the 

DWT. The result is a redundant, or over-complete, set of detail and approximation coefficients 

[75]. The drawbacks of the SWT algorithm include its increased computational complexity and 

the increased number of wavelet coefficients it generates. The differences between the DWT and 

SWT are depicted in Figure 17 for one level of processing. A more detailed description of SWT 

decomposition can be found in Appendix A. 
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Figure 17. Relationship between the DWT (A) and the SWT (B) in the wavelet domain. The DWT keeps either the 
odd (grey) or even (white) approximation coefficients at level 1, whereas the SWT retains all of the coefficients. At 
level 2, the problem is amplified, as the DWT only computes every 4th approximation coefficient, while the SWT 
computes all possible approximation coefficients by up-sampling the decomposition filters. 
 

The differences between DWT- and SWT-based spike detection in sympathetic nerve 

recordings will be explored in Chapters III and IV of this thesis. 

 

Differences in Human and Murine Sympathetic Nerve Activity 

The murine RSNA has slightly different signal and noise characteristics than the human 

MSNA. First, the physiologically important frequency of the RSNA appears to be different from 

that of the human MSNA signal (Fig. 18). The power spectral density (PSD) of human MSNA 

during a graded head-up tilt protocol is shown in Figure 18A and the PSD of the renal nerve 

activity in mice during periods of baseline (BSL), nitroprusside (NTP) bolus injection, 

phenylephrine (PHE) bolus injection, and postmortem is depicted below in Figure 18B. The 
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human range of 700 to approximately 2500 Hz is activated in a graded fashion as the tilt angle is 

increased and sympathetic activity is further activated. In the mouse RSNA, however, power in 

the range of 100 Hz to 1000 Hz was dominant during all interventions in the living animal but 

was significantly abolished postmortem. NTP is a pharmacological agent that causes blood 

pressure decrease and a baroreflex mediated increase in sympathetic activity. Consequently, an 

increase of power in the 100 Hz to 1000 Hz frequency range is observed during NTP bolus 

injection. PHE has the opposite affect on blood pressure and sympathetic activity, and resulted in 

a reduction of this power. 
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Figure 18. (A) Power spectral density (PSD) of human muscle sympathetic nerve activity (MSNA) during a graded 
head-up tilt (HUT) protocol. As the tilt angle increases from supine (HUT 0o) to HUT 30o and HUT 60o, 
sympathetic activity is further activated, and power in the range of 700-2500 Hz increases. (B) Average normalized 
PSD of murine renal sympathetic nerve activity (RSNA) recordings during nitroprusside (∆), baseline (�), 
phenylephrine (Ο), and postmortem (∇) periods. The power in the range of 100-1000 Hz is increased by vasodilator 
nitroprusside and reduced during vasopressor phenylephrine infusion and postmortem. The PSD calculated for each 
period of the mouse RSNA was normalized to the respective baseline variance to demonstrate relative changes for 9 
mice. 
 

The difference in the frequency characteristics of the human and mouse sympathetic 

nerve signals is also reflected in the shape of a typical action potential from each species (Figure 

19). The murine AP has a much longer period than the human AP, which may be a result of 

different conduction velocities in the murine and human sympathetic neurons. 
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Figure 19. Typical action potentials recorded from human muscle sympathetic nerve fibers (A) and murine renal 
sympathetic nerve fibers (B). 

 

Lastly, the general appearance and overall temporal characteristics of the sympathetic 

signals from each species differs substantially. As described previously, the human muscle 

sympathetic discharge is organized into burst synchronized to the heart beat and respiration [81] 

(Fig. 20A). The mouse RSNA, on the other hand, consists of individual spikes which appear to 

lack group synchrony (Fig. 20B). 

 

Human Sympathetic Activity Mouse Sympathetic ActivityA B

 
Figure 20. Comparison of the discharge properties of human and mouse basal sympathetic nerve activity. (A) 
Human muscle sympathetic nerve activity (MSNA) is composed of synchronized discharges from a group of 
sympathetic neurons. (B) Murine renal sympathetic nerve activity is composed of non-synchronous discharge from a 
group of sympathetic neurons. 
 

Although simple hardware discriminators with manual noise level estimates have been 

applied to the murine RSNA signal, no automated spike detection schemes have been described. 

Due to the increasing popularity of transgenic and gene targeted mouse models in the study of 

autonomic and cardiovascular diseases, there is a growing need for such an unsupervised spike 

detection algorithm. However, due to the differences in the frequency content, action potential 
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shape, and temporal discharge characteristics the murine RSNA will require parameters and, 

conceivably, an entire detection strategy that is distinct from that of the human MSNA. In 

Chapter IV, an automated detection algorithm is parameterized specifically for the murine RSNA 

and this system is later utilized to examine differences in sympathetic activity between normal 

and transgenic mouse populations. 

 

Limitations in Fourier Based Spectral Analysis of Heart Rate and Blood Pressure 

The traditional methods of obtaining time-varying spectral information, such as the short-

time Fourier Transform (STFT) and moving autoregressive (AR) models, typically divide the 

signal into an arbitrary number of consecutive or overlapping segments of equal length and 

compute spectral estimates over the entire frequency bandwidth for each of these segments. The 

frequency resolution of the time-varying spectra is governed by the length of each of the 

segments. Longer segments yield higher frequency resolution and more accurate information 

about broader trends in the signal. However, longer segments also lead to reduced time 

resolution and inaccurate spectro-temporal information about abrupt changes in the signal.  

Therefore, this type of time-frequency analysis may be inappropriate during dynamic 

physiological interventions that cause signals to become non-stationary (Figure 21) [82-85]. 

Wavelet analysis offers a more flexible solution to the problem of time-frequency 

analysis by using scalable, finite duration basis functions. Rather than analyzing the entire 

bandwidth of a signal using a fixed time window, the continuous wavelet transform (CWT) uses  

broad, dilated wavelets to analyze long-term trends and short, compact wavelets to detect high 

frequency oscillations. In this way, the CWT is able to use an adjustable time window to analyze 

different frequency bands (Figure 21). 
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Figure 21. Performance of wavelet-based spectral analysis (left) and FFT-based spectral analysis (right) on a 
simulated signal (top).  The FFT-based method with a 30 sec window length is not able to accurately estimate the 
very low frequency component (VLF) of the simulated signal but can accurately detect changes in the low frequency 
component (LF).  The FFT-based method with the 90 sec window length accurately estimates VLF power, but 
smoothes out changes in the LF. The wavelet based method uses a broad wavelet to analyze VLF and a more 
compact wavelet to analyze the LF, and, consequently, is able to estimate the spectral power in both frequency 
ranges wit good accuracy. 
 

Several authors have successfully demonstrated the utility of the continuous and discrete 

wavelet transform in time-varying spectral analysis of heart-rate variability during dynamic 

cardiovascular stimulation [82-85]. A modified form of these methods will be used to analyze 

non-stationary syncope data from healthy subjects during orthostatic stress. The differences 

between normal individuals with syncope alone and syncope with asystole, a rare stoppage of the 

heart for greater than 3 seconds, will be examined. 
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CHAPTER III 

 

SPIKE DETECTION IN HUMAN MUSCLE SYMPATHETIC NERVE ACTIVITY USING 
THE KURTOSIS OF STATIONARY WAVELET TRANSFORM COEFFICIENTS 

 

Abstract 

The accurate assessment of autonomic sympathetic function is important in the diagnosis 

and study of various autonomic and cardiovascular disorders. Sympathetic function in humans 

can be assessed by recording the muscle sympathetic nerve activity, which is characterized by 

synchronous neuronal discharges separated by periods of neural silence dominated by colored 

Gaussian noise. The raw nerve activity is generally rectified, integrated, and quantified using the 

integrated burst rate or area. We propose an alternative quantification involving spike detection 

using a two-stage stationary wavelet transform (SWT) de-noising method. The SWT coefficients 

are first separated into noise-related and burst-related coefficients on the basis of their local 

kurtosis. The noise-related coefficients are then used to establish a threshold to identify spikes 

within the bursts. This method demonstrated better detection performance than an unsupervised 

amplitude discriminator and similar wavelet-based methods when confronted with simulated data 

of varying burst rate and signal to noise ratio. Additional validation on data acquired during a 

graded head-up tilt protocol revealed a strong correlation between the mean spike rate and the 

mean integrate burst rate (r=0.85) and burst area rate (r=0.91). In conclusion, the kurtosis-based 

wavelet de-noising technique is a potentially useful method of studying sympathetic nerve 

activity in humans. 

 

Introduction 

The autonomic nervous system helps to regulate a number of important systems 

throughout the body. One of its primary roles is to maintain cardiovascular function which 

includes regulation of blood pressure, heart rate, and contractility. Accurate assessment of 

autonomic function is important in the study and diagnosis of disorders such as essential 

hypertension [1-3], orthostatic intolerance [4], and congestive heart failure [5]. Autonomic 

sympathetic function can be assessed in humans by direct recordings of the muscle sympathetic 

nerve activity (MSNA) [6]. 
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The general appearance of the human MSNA has been described as heartbeat-

synchronous discharges from a group of sympathetic neurons, separated by periods of neural 

silence [7], (Fig. 1). These bursts of activity are coupled to changes in the blood pressure and 

cardiac output through the baroreceptor reflex [8-10]. The most widely used MSNA processing 

method involves using an R-C circuit to rectifying and integrate the neurogram to achieve its 

envelope [3;11], a signal known as the integrated-MSNA [12]. At that point, bursts are identified 

and sympathetic activity can be quantified in terms of burst frequency (bursts/min), burst 

incidence (bursts/100 heart beats) or burst area rate (arbitrary units2/min) [13;14]. 

Quantification of the MSNA using multiunit bursts has its limitations. For instance, none 

of the burst parameters is capable of conveying whether a large burst is generated by a few large 

amplitude sympathetic spikes (or artifacts) or many small amplitude spikes firing in rapid 

succession. Also, the amount of pass band noise integrated into each burst is dependent on the 

signal-to-noise ratio (SNR) of each recording, making it difficult to compare the arbitrary unit 

burst amplitudes and areas across subjects. 

An alternative solution to the MSNA quantification problem is to implement a spike 

detection algorithm. In the past, this has proved difficult due to the traditionally low SNR found 

in most recordings, a consequence of the monopolar recording arrangement and high levels of 

contamination from environmental and bioelectric noise. The properties of this noise can be 

identified during Phase IV of the Valsalva Maneuver (VM) when mean blood pressure 

“overshoots” basal levels and MSNA is suppressed via baroreceptor feedback (Fig. 1C) [15]. 

The amplitude distribution of the noise is nearly Gaussian and its frequency content is colored as 

a result of hardware-based filtering. 

Automated wavelet-based methods have been successful in detecting neural and 

classifying spikes in colored, Gaussian noise [16-19]. In particular, a wavelet-based spike 

detection method has been shown to outperform common, automated amplitude discriminators in 

the detection of human sympathetic spikes under varying signal to noise ratios [12]. However, 

the parameters of this algorithm were optimized from recordings during a supine resting state, 

and its detection performance was not examined at higher or lower burst rates [12]. A 

sympathetic spike detector whose performance is robust to changes in burst rate is important in 

the study of various autonomic syndromes [4;20-22] as well as in the analysis of various 

physiological and pharmacological interventions used to augment or suppress sympathetic 
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activity during clinical investigations [10;23]. Consequently, the properties of this technique 

should be studied during varying burst rates. 

The wavelet transform is capable of decomposing a signal into a set of wavelet 

coefficients which preserve its temporal structure, but distributes its energy amongst several 

frequency sub-bands. Following this decomposition, a threshold is generally applied to the 

wavelet coefficients to eliminate all small, noise-related coefficients and retain larger spike-

related coefficients [24]. Most standard wavelet threshold algorithms consider all of the 

coefficients while estimating the noise-threshold, i.e. those associated with both the signal and 

the noise [25]. However, it may be more beneficial to initially separate the wavelet coefficients 

purely derived from the noise from those which contain signal-plus-noise prior to thresholding 

[18]. In the MSNA signal, this requires identification of the wavelet coefficients related to the 

neural bursts and those related to the areas between bursts. 

As demonstrated in Figure 1, the amplitude distribution of the noise related regions of the 

MSNA are Gaussian, a property which is preserved during wavelet transformation [24]. During 

periods of moderate (Fig 1A, baseline) and high (Fig 1B, VM Phase II) burst rates, the tails of 

the distribution become progressively heavier, meaning a Gaussian fit is no longer accurate. 

Local deviations from Gaussinity similar to those caused by MSNA bursts have been shown to 

be detectable using higher-order statistics (moments and cumulants higher than order two) 

[26;27]. In particular, the kurtosis of wavelet coefficients has been employed to detect non-

Gaussian perturbation in cosmologic data [28;29]. However, to our knowledge, this technique 

has not been applied to neural signals. 

We propose to use the local kurtosis of the wavelet coefficients as part of a spike 

detection scheme for human muscle sympathetic nerve activity. Due to the bursting nature of the 

MSNA, the local kurtosis will be used to classify wavelet coefficients as belonging to a pure 

noise segment or a burst segment containing signal plus noise. The noise-related coefficients will 

then be used to establish a threshold which can subsequently be applied to the burst-related 

coefficients. The parameters of this procedure will be optimized using simulated MSNA burst 

data and later validated using both simulated data and recordings made during a graded head up 

tilt protocol. 
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Figure 1. Tracings of the respiration (RESP), blood pressure (BP), and raw muscle sympathetic nerve activity 
(MSNA) during Valsalva Maneuver. During baseline (period A), MSNA burst activity is at a basal rate, and the 
recorded amplitudes are close to Gaussian (lower left panel). During Phase II of the Valsalva Maneuver (B), BP 
drops rapidly causing a significant rise in the and MSNA burst rate. The MSNA amplitudes are no longer fit by a 
Gaussian (lower middle panel). In Phase IV of the Valsalva Maneuver (C), BP overshoots it baseline values and 
MSNA ceases. This is assumed to be neural noise and is well fit by a Gaussian distribution (lower right panel). 
 

Methods 

 

Instrumentation and Recording Conditions 

MSNA was recorded from the peroneal nerve [30]. A unipolar tungsten electrode with 

uninsulated tip diameter 1 to 5 µm and shaft diameter 200 µm (Frederick Haer and Co, 

Bowdoinham, MA, USA) was inserted into the muscle nerve fascicles of the peroneal nerve at 

the fibular head for multi-unit recordings. Raw nerve activity was amplified with a total gain of 

100 000, band pass filtered from 0.7 to 2 kHz (662C-3 Nerve Traffic Analysis System, 

University of Iowa, Iowa City, USA), and recorded. The filtered nerve signal was also placed 
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through an R-C integrating circuit with a 0.1 sec time constant and the output (integrated MSNA) 

was simultaneously recorded. Satisfactory recordings of muscle sympathetic nerve activity were 

defined by (1) heart pulse synchronicity; (2) facilitation during Valsalva straining and 

suppression during the hypertensive overshoot after release; (3) increases in response to breath-

holding; and (4) no change during tactile or auditory stimulation [11].  

The continuous blood pressure (BP) waveform was measured by photoplethysmographic-

based volume clamp method [31] with a finger cuff on the middle finger of the non-dominant 

hand (Finapres, Ohmeda, Englewood, CO, USA). Respiration was measured using a pneumobelt 

(Pneumotrace II; UFI, Morro Bay, CA). All data were acquired at 5000 Hz, 14 bit resolution 

using the Windaq data acquisition system (DI-720, DATAQ Instruments, Akron OH) and 

analyzed offline with custom software written in the PV Wave (Visual Numerics Inc., Houston, 

TX) and MATLAB (Mathworks; Natick, MA) environments. 

 

Signal Processing 

A brief discussion on wavelet-based signal processing is given in the following section. A 

more comprehensive review can be found in Appendix A. 

Wavelet Decomposition The initial sympathetic spike detection technique proposed by 

Diedrich et. al. (2003) used the discrete wavelet transform (DWT) to decompose the nerve signal 

into several frequency sub-bands of wavelet coefficients. However, the DWT lacks translation 

invariance, which can be detrimental in the de-noising [24] and detection [32] of transient neural 

spikes. Alternatively, the stationary wavelet transform (SWT) is translation invariant, and has 

been shown to improve sympathetic spike detection in mice [33].  

The SWT decomposition process [34] is described by Eq. 1 and 2. A signal, f, is 

projected onto a dyadically-spaced set of scales, or levels (j), using a set of level dependent 

quadrature mirror decomposition filters,  and , that have respective band-pass and low-

pass properties specific to each wavelet basis [35]. The broad scale, or approximation, 

coefficients, , are convolved separately with  and . This process splits the  

frequency information roughly in half, partitioning it into a set of fine scale, or detail 

coefficients, , and a coarser set of approximation coefficients, . During the next level 

of processing, a zero is placed in between each consecutive value found in the  and  filters 

jh jg

SWT
ja jg jh SWT

ja

SWT
jd 1+

SWT
ja 1+

jg jh
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(i.e. up-sampling by two) to achieve the  and  filters. This procedure can be iteratively 

continued until the desired level of decomposition, j=J, is obtained. Note that the algorithm is 

initiated by setting . 

1+jg 1+jh

fa SWT =0

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kaknhka 1    (1)

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kakngkd 1  (2)

The  coefficients can be reconstructed from  and  by convolving each 

with the respective reconstruction filter, h

SWT
ja SWT

ja 1+
SWT
jd 1+

j(-n) or gj(-n), and summing (Eq. 3). Note that each 

reconstruction filter is also level dependent and includes 2j-1 zeros between each filter 

coefficients. This process can be iteratively continued until the original signal, f, is recovered. 

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

SWT
jj

n

SWT
jj

SWT
j ndnkgnankhka 11 (3)

 

Wavelet Thresholding Most wavelet based spike detection algorithms include some 

modified form of a process known as wavelet de-noising [25]. In this process, a nerve signal with 

additive noise, f, is decomposed using the wavelet transform and a threshold is applied to each of 

the detail coefficient levels. All coefficients with an absolute value greater than the threshold are 

thought to be part of an action potential and those below the threshold are presumably derived 

from noise. The noise coefficients can be set to zero and a noise-free signal can then be 

reconstructed and used for AP detection [12]. 

Several standard thresholds have been derived for wavelet de-noising [25;36]. In the case 

of correlated or colored noise, the standard deviation of the noise changes with each level and 

consequently requires a robust, level-dependent estimate, σj (Eq. 4),  

( ) 6745.0jjj ddmedian −=σ  (4)

which is later used in the calculation of the standard colored noise threshold,  (Eq. 5) [36]. S
jT

( )NT ej
S
j log2σ=  (5)

A modified form of Eq. 5 has been shown to yield better detection performance in human 

sympathetic nerve activity [12]. We will refer to this as the modified colored noise threshold, 

. It is displayed in Eq. 6  M
jT
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( )NT ej
M
j log28.0 σ=  (6)

The performance of both the standard and modified colored noise thresholds will be assessed 

using simulation.  

Wavelet Basis and Level Selection It has been observed that not all wavelet levels are 

necessary for spike detection and additional levels could actually hinder the performance of 

wavelet based detectors [32]. In the human MSNA, we have found that sympathetic activation 

during physiological interventions, such as a head-up tilt (HUT) protocol, causes increases in the 

MSNA power spectral density (PSD) between approximately 400 and 2500 Hz (Fig. 2A). This 

frequency range approximately corresponds to wavelet levels 1 to 3 for a signal sampled at 5 

kHz. However, the wavelet coefficient standard deviation of levels 2 and 3 (σ2 and σ3) appear to 

have the most pronounced increases during HUT while σ1 does not appear to respond to mild 

sympathetic activation, for instance 30o HUT (Fig. 2B). We have therefore chosen only to use 

wavelet levels 2 and 3 while designing and testing the spike detection protocol. Symlet 7 was 

chosen as the wavelet basis because its morphology is similar to a sympathetic spike (Fig. 4D) 

[12]. 
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Figure 2. Power spectral density (PSD) (A) and percent increase in wavelet level standard deviations (σj) (B) of 
human muscle sympathetic nerve activity (MSNA) during different stages of a graded head up tilt (HUT) protocol. 
Increasing the angle of tilt further activates the sympathetic nervous system, and increases the power in the 
frequency range between 400 and 2500 Hz. Wavelet levels 2 and 3 appear to have the most dynamic response to the 
sympathetic activation. The approximate frequency range of each wavelet level is also displayed. 
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Local Kurtosis Estimate The local (or sliding) kurtosis computed over Nk detail 

coefficients of level j, expressed as Kj, was estimated using the following equation: 

( ) ( ) ( )( ) ( ) ( )( )
21

0

2
1

0

4 11
⎟⎟
⎠

⎞
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⎝

⎛
−−−−= ∑∑

−

=

−

=

KK N

n
jj

K

N

n
jj

K
j kmknd

N
kmknd

N
kK  (7)

where mj is an estimate of the local mean of Nk level j coefficients, calculated using: 

( ) ( )∑
−

=

−=
1

0

1 KN

n
j

K
j knd

N
km  (8)

The kurtosis of a Gaussian sequence is always 3, regardless of the mean or variance of the 

distribution. We expect the kurtosis of the burst related coefficients to be greater than 3 due to 

the presence of action potentials with large positive and negative values. 

Once the kurtosis sequence was computed, wavelet de-noising took place in two stages. 

In stage 1, a kurtosis threshold, TK, was established. All kurtosis values below TK were classified 

as coming from noise while kurtosis values above TK were assumed to be burst-related. During 

stage 2, the noise coefficients were used to estimate the noise standard deviation, σj, as shown in 

Eq. 7. All detail coefficients located within an identified burst segment and whose absolute value 

was greater than 3.5σj were retained, while all other coefficients were set to zero. The de-noised 

signal was then reconstructed and action potentials were detected using a simple peak detection 

scheme that locates maxima above 99% of the signal energy, as described previously [12]. An 

example of the two-stage kurtosis de-noising scheme applied to a representative MSNA 

recording is displayed in Fig. 3. The optimal values for NK and TK were determined through 

simulation, as described below in Section 2.3.1.  

 

Simulations 

Simulated signals were constructed with templates extracted from recordings with 

sufficiently high signal to noise ratio in 8 healthy subjects during periods of sympathetic 

activation (head-up tilt) (Fig. 4D). Noise was extracted from each recording during Phase IV of 

the Valsalva maneuver, as shown in Figure 1. Since the length of the noise was generally too 

short for an appropriate simulation (< 15 sec), a 50 order autoregressive (AR) model was created 

using the Burg method [37] and subsequently applied to a sequence of Gaussian random 

numbers 60 seconds in length. Prior to AR filtering the Gaussian random numbers have a white 

noise power spectral density (PSD) and normalized autocorrelation function (NACF). But after 
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filtering, the NACF and PSD of the simulated noise were shown to closely approximate those of 

the recorded noise (Fig. 4B-4C). The overall shape of the Gaussian sequence probability density 

distribution is not affected by the AR filter (Fig. 4A). 
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Figure 3. Two-stage kurtosis de-noising example. The MSNA is decomposed using the SWT. A moving kurtosis 
estimate is made of the detail coefficients (d2 and d3). The coefficients are grouped into noise-related (K2 and 
K3<TK) and burst-related (K2 and K3 >TK). The noise-related coefficients are used to estimate noise level (σ2 and σ3) 
and burst-related coefficients undergo thresholding. The de-noised signal is reconstructed with the ISWT. 
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The templates were then randomly inserted into neural noise in burst fashion. The burst 

position, burst duration, and spike placement within each burst were all randomly assigned 

according to separate Poisson random variables. The average burst duration and spike rate within 

each burst were fixed at 0.8 seconds and 60 spikes/sec, respectively. Each simulation was 

assigned either a low (5 burst/min), moderate (25 bursts/min), or high (50 bursts/min) mean burst 

rate. The signal to noise ratio (SNR) of the simulations was altered from 6 (high signal quality) 

to 1 (poor signal quality). The SNR was defined as the ratio between the absolute peak amplitude 

of the action potential and the standard deviation of the noise, as defined elsewhere [12;18]. 
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Figure 4. Simulation elements. (A) Histograms of the neural noise recorded during Phase IV of the Valsalva 
Maneuver (Measured, black) and random simulated noise after application of an AR filter (Simulated, gray). Both 
demonstrate a normal probability density. (B) The normalized autocorrelation function (NACF) of the measured 
(top, black) and simulated noise (bottom, gray). (C) The power spectral density (PSD) of the measured (black) and 
simulated (gray) noise. (D) The Symlet 7 wavelet (left) and two representative template action potentials (right) 
displayed in normalized units (NU). 
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Kurtosis Method Optimization The parameters of the kurtosis-based wavelet de-noising 

were optimized using the simulated data described above. The value for the kurtosis threshold, 

TK, was varied from 2.8 to 5 and the number of samples in each kurtosis calculation, NK, was 

varied from 250 to 4000 samples. The optimum TK and NK values for each burst rate and each 

SNR were defined as those which resulted in the maximum difference between the average 

percentage of correctly identified burst area and the percentage of the remaining area falsely 

identified as burst related. The optimum TK and NK values were averaged across all subjects, 

burst rates, and SNRs. The average TK and NK optimums were then used in the tests of spike 

detection performance and the validation discussed below. 

Evaluation of Detection Performance The simulated signals were also used to test the 

performance of several wavelet-based algorithms and an unsupervised amplitude discriminator. 

The amplitude discriminator detected all peaks with an absolute value greater than 3.5 times the 

standard deviation of the signal, as discussed elsewhere [38]. The three wavelet algorithms each 

used different de-noising methods which included the standard wavelet threshold (SWTS, Eq. 5), 

the modified threshold (SWTM, Eq. 6), and the two-stage kurtosis method (SWTK). Both the 

amplitude discriminator and wavelet detection methods used a 3 msec time-window, which was 

observed to be the maximum duration of a human sympathetic spike. The detection performance 

evaluation was repeated 12 separate times for each subject, yielding 96 trials for each SNR and 

mean burst rate. The performance of each method was quantified using the percent of correctly 

detected action potentials (PCD, Eq. 9) and the percent of false alarms (PFA, Eq. 10).  

100×=
AP

CD

N
NPCD  (9)

100×=
CD

FA

N
NPFA  (10)

NCD is the number of correctly detected APs, NAP is the number of APs inserted into the 

simulation, and NFA is the number of false alarms.  

Since the original method of MSNA spike detection employed the discrete wavelet 

transform (DWT), the performance of similar DWT methods were also compared to each of the 

SWT-based detection methods using the simulated human MSNA data. The results of this 

comparison can be found in APPENDIX B.  
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Validation using Graded Head-Up Tilt Protocol 

Seven healthy subjects (6 males and 1 female, age 23 to 47) were recruited from the 

Vanderbilt University General Clinical Research Center volunteer database. All subjects 

underwent extensive physical examination and abstained from all drugs for at least 72 hours 

prior to the study. The subjects were secured to a tilt table with straps and instructed to remain 

relaxed and quiet throughout all studies. After 15 minutes of supine rest the subjects were tilted 

by 15° increments every 5 minutes until an angle of 60° was reached. The parameters of the 

integrated MSNA bursts and the MSNA spike rates were later computed offline and compared 

using linear regression. The Pearson correlation coefficient (r) was used to quantify the goodness 

of fit. All studies were conducted at Vanderbilt University General Clinical Research Center and 

all procedures were approved by the local institutional review board. 

 

Results 

 

Kurtosis Method Optimization 

The results of the search for the optimal number of samples in each kurtosis calculation, 

NK, and the optimal kurtosis threshold, TK, are displayed in Figure 5. Each point represents the 

mean for each subject across all burst rates and SNR values. The group means were found to be 

TK = 3.7 and NK = 961.  
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Figure 5. Results of kurtosis method 
optimization. The optimal sample 
number for kurtosis calculation (NK, left) 
and optimal kurtosis threshold (TK, right) 
were determined through simulation. 
Each point is the mean for each subject 
across signal to noise ratios from 1 to 6 
and bursts rates of 5, 25, and 50 
bursts/min. 

 

These values were used in the evaluation of the detection performance and the validation 

during baroreflex testing.  
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Evaluation of Detection Performance 

The detection performance of each of the four methods is displayed in Figure 6. While 

the standard wavelet threshold (SWTS) has the lowest percentage of false alarms (PFA) during 

all simulations, its percent of correctly detected action potentials (PCD) is also lowest. The 

modification to the standard threshold (SWTM), suggested by Diedrich et al., results in a higher 

PCD and the PFA remains low (<10%) for SNR>2 during moderate (25 bursts/min) and high (50 

bursts/min) burst rates. However, during low burst rates (5 bursts/min), the PFA is greater than 

15% at a SNR of 3.25 and steadily increases as SNR drops. The two-stage kurtosis de-noising 

(SWTK) demonstrates the highest PCD for SNR>2 during all burst rates and its PFA is similar to 

that of the modified wavelet threshold at burst rates of 25 and 50 bursts/min and lower during the 

5 burst/min simulations. The amplitude discriminator has a PFA that is similar to or greater than 

all other detection methods during all simulations and its PCD is lower than that of the modified 

and kurtosis-based wavelet thresholding methods. 
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Figure 6. Mean results for simulations with varied noise levels and mean burst rates. The simulations tested the 
performance of an unsupervised amplitude discriminator (Discriminator), SWT decomposition with standard 
(SWTS) and modified (SWTM) colored noise thresholds, SWT decomposition with 2-stage kurtosis threshold 
(SWTK). Each point on each curve represents the mean result of 96 simulations. 
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Validation using Graded Head-Up Tilt Protocol 

Figure 7 demonstrates that a good correlation exists between the spike rates detected 

using the two-phase kurtosis method and the commonly used integrated burst rate (Fig 7A, r = 

0.85) and burst area rate (Fig. 7B, r = 0.91) parameters. The spike rate, burst rate (Fig 7C), and 

burst area rate (Fig. 7D) also demonstrate similar increasing trends as the head-up tilt angle is 

increased and the sympathetic nervous system is activated. 

 

0 500 1000 1500 2000

0

20

40

60

80
r = 0.85

Spike Rate (spikes/min)

B
ur

st
 R

at
e

(b
ur

st
s/

m
in

)

0 500 1000 1500 2000

0

3

6

9
r = 0.91

Spike Rate (spikes/min)

B
ur

st
 A

re
a 

R
at

e
(A

U
2 /m

in
)

A B

C

0 15 30 45 60

0

250

500

750

1000
Burst Rate

25

40

55
Spike Rate

Tilt Angle (deg)

Sp
ik

e 
R

at
e 

(s
pi

ke
s/

m
in

) B
urst R

ate (B
urst/m

in)

0 15 30 45 60

0

250

500

750

1000
Burst Area Rate

0

1

2

3

4

5Spike Rate

Tilt Angle (deg)

Sp
ik

e 
R

at
e 

(s
pi

ke
s/

m
in

)

B
urst A

rea R
ate (A

U
2/m

in)

D

 
Figure 7. Comparison of spike detection and burst parameters during a head-up tilt (HUT) protocol. The mean spike 
rate shows a good correlation to the mean burst rate (A) and burst area rate (B). The mean spike rate demonstrates 
the same general increasing pattern as the mean burst rate (C) and mean burst area rate (D) as tilt angle is increased. 
 

Discussion 

We have demonstrated a novel spike detection scheme for human muscle sympathetic 

nerve activity that uses the local kurtosis of the stationary wavelet transform coefficients to 

identify pure noise coefficients, which are used to estimate a noise threshold, and signal-plus-

noise (burst–related) coefficients, which undergo thresholding. This method was shown to 
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outperform a similar modified-wavelet technique specifically designed for the MSNA, which 

was not previously evaluated at varying burst rates [12]. It was also shown to have better overall 

detection performance than an unsupervised amplitude discriminator and a higher percent of 

correctly detected action potentials than standard wavelet thresholding. The mean spike rates 

detected using the two-phase kurtosis de-noising method during a graded head-up tilt protocol 

were also shown to be highly correlated to commonly used integrated burst rate (r = 0.85) and 

burst area rate (r = 0.91) parameters. These correlations were improved from than those 

previously reported with the modified wavelet threshold (r = 0.79 and r = 0.52, respectively) 

[12]. The spike rates, burst rates, and burst area rates also displayed similar increasing responses 

to increased tilt angle. 

 

Limitations 

In this study, we have focused our optimization and evaluations on recordings of the 

human muscle sympathetic nerve activity. This detection technique may be applicable to other 

neural or bioelectric signals with bursting characteristics, but this has not yet been investigated. 

In the case of the MSNA, the kurtosis-based wavelet de-noising method was found to possess 

reasonably accurate detection performance for signal-to-noise ratios greater than three 

independent of the burst rate, with over 70% of the action potentials correctly identified and less 

than 10% false alarms. However, detections made using this method, or any other method tested 

here, on signals with SNR<3 may not be reliable. Also, the kurtosis-based wavelet de-nosing 

method may not detect levels of tonic activity that occurs between bursts. But, the initial 

separation of noise segments using kurtosis may be useful in a hypothesis testing framework, as 

suggested earlier [18]. 

 

Conclusions 

Application of this spike detection technique may be useful in the diagnosis and study of 

various peripheral neuropathies and disorders of the autonomic nervous system. Specifically, 

detection of sympathetic spikes, as opposed to bursts, allows for the possibility of subsequent, 

automated sorting of spikes into classes derived from individual neurons [12]. Single-unit 

recordings have identified important differences in diseases such as congestive heart failure and 

hypertension which were not demonstrated in the multiunit burst rate [39-41]. Since these single 
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unit recordings are extremely difficult to achieve and sustain manually [42], automated spike 

detection and classification methods will be useful in this area. In conclusion, the kurtosis-based 

wavelet de-noising technique is a potentially useful method of studying sympathetic nerve 

activity in humans. 
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CHAPTER IV 

 

WAVELET METHODS FOR SPIKE DETECTION IN MOUSE RENAL SYMPATHETIC 
NERVE ACTIVITY 

 
Abstract 

Abnormal autonomic nerve traffic has been associated with a number of peripheral 

neuropathies and cardiovascular disorders prompting the development of genetically altered mice 

to study the genetic and molecular components of these diseases. Autonomic function in mice 

can be assessed by directly recording sympathetic nerve activity. However, murine sympathetic 

spikes are typically detected using a manually adjusted voltage threshold and no unsupervised 

detection methods have been developed for the mouse. Therefore, we tested the performance of 

several unsupervised spike detection algorithms on simulated murine renal sympathetic nerve 

recordings, including an automated amplitude discriminator and wavelet based detection 

methods which used both the discrete wavelet transform (DWT) and the stationary wavelet 

transform (SWT) and several wavelet threshold rules. The parameters of the wavelet methods 

were optimized by comparing basal sympathetic activity to postmortem recordings and 

recordings made during pharmacological suppression and enhancement of sympathetic activity. 

In general, SWT methods were found to outperform amplitude discriminators and DWT methods 

with similar wavelet coefficient thresholding algorithms when presented with simulations with 

varied mean spike rates and signal to noise ratios. A SWT method which estimates the noise 

level using a “noise-only” wavelet scale and then selectively thresholds scales containing the 

physiologically important signal information was found to have the most robust spike detection. 

The proposed noise level estimation method was also successfully validated during 

pharmacological interventions. 

 

Introduction 

The autonomic nervous system has a broad range of functions, including the regulation of 

blood pressure, cardiac function, visceral function, and renal output. Abnormal autonomic 

function has been associated with such profound disorders as essential hypertension [1-3], 

obesity [1, 4], chronic renal disease [5], diabetes [6, 7], orthostatic intolerance [8], and 

congestive heart failure [9]. The many recent insights into the murine genome have motivated 
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scientists to develop transgenic and gene targeted mouse models to better understand the genetic 

and molecular components of these diseases [10-15]. One method of assessing autonomic 

sympathetic function is to directly record renal sympathetic nerve activity (RSNA). 

Measurement of the RSNA in mice has been recently introduced [16-19] and there is some 

debate as to how it should be objectively quantified. The low amplitude, multiunit sympathetic 

action potentials (AP) recorded from the renal nerve are significantly corrupted by high levels of 

bioelectric, mechanical, and environmental noise. Contamination from biological noise sources 

is particularly common in mice because many of the electrically active organs are in close 

proximity to the recording electrode due to the small frame of the animal.  

Currently, the murine RSNA is quantified using two general strategies: (1) integrating the 

nerve signal over short periods of 5 to 10 seconds [16] or (2) using a hardware amplitude 

discriminator to detect APs [17-19]. The integration method is computationally efficient, but also 

indiscriminately integrates artifacts and noise and makes no correction for differences in AP 

amplitudes. For instance, several large amplitude APs with a low firing rate may produce the 

same value as many small APs with a high firing rate. The second approach using amplitude 

discrimination involves manually adjusting a voltage threshold trigger until the threshold 

exceeds the level of the noise. All signal amplitudes that exceed the threshold are detected as 

spikes [20]. The level of the murine RSNA threshold is typically established as the voltage at 

which no spikes are detected following a bolus injection of a pharmacological agent known to 

increase blood pressure and suppress the heart rate and RSNA via the baroreceptor-reflex, such 

as phenylephrine (PHE), [17, 18] (Fig 1). Similarly, investigators studying the rat RSNA have 

used the highest voltage in the postmortem recording as a threshold for a subsequent off-line 

amplitude discrimination procedure [21]. Postmortem activity has also been used to correct total 

activity recorded during the experiment to obtain an estimate of the true neural activity in mice 

[19].  
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Figure 1. Representative affects of phenylephrine bolus injection on murine arterial blood pressure (ABP), heart rate 
(HR), and renal sympathetic nerve activity (RSNA). 
 

Both amplitude discrimination methods currently used in the processing of small animal 

RSNA signals have specific limitations. Selecting a threshold based on the maximum voltage 

level during baroreflex mediated decrease of sympathetic nerve activity necessitates having to 

perform pharmacological tests during each experimental protocol and it does not account for 

incomplete RSNA suppression due to the presence of baroreflex independent nerve activity. 

Further, this procedure can not be applied in mouse models that exhibit baroreflex dysfunction. 

A threshold procedure that uses the maximum voltage of the postmortem nerve recording can 

only be used for off-line analysis, may not be accurate due to changes in needle position 

throughout the recording, and does not take into account bioelectric noise present during the 

living state. The postmortem noise level is usually lower than the living state noise level due 

additional physiological activities and biological noise in the living animal. Threshold estimation 
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following PHE bolus in the living mouse or after death can produce substantially different spike 

detection results, as illustrated in Fig. 2. 
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Figure 2. (A) Noise threshold estimates using recordings during baroreflex mediated suppression of RSNA using 
phenylephrine (PHE) bolus injection (left) and postmortem recordings (middle) in the same mouse. (B) The 
threshold value which yields the maximum change in spike rate from PHE to baseline (max ∆ spike rate) is termed 
the optimal threshold level (green broken line). The nerve signal recorded during PHE bolus (red broken lines) 
overestimates the noise level and the postmortem recording (blue broken lines) underestimates the noise level. 
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Hardware amplitude discriminators also have several obvious general drawbacks. To 

begin, they require manual threshold selection which can be both tedious and subjective. 

Additionally, they only take into account the amplitude and duration of the waveform and 

disregard other potentially useful attributes such as shape and frequency content. Over the past 

several decades, a number of spike detection algorithms have taken advantage of these properties 

and improved upon the classic hardware amplitude discriminator approach, as discussed in 

several comprehensive reviews [22, 23]. Notable contributions to this field include the 

unsupervised amplitude discriminator, power or energy detectors, and the matched filter [24, 25]. 

Unsupervised amplitude discriminators typically establish a threshold by multiplying the 

standard deviation of the signal by some predetermined factor [26]. Power detectors compute the 

sum of squared amplitude using a sliding window and also use the standard deviation of the 

signal to create a threshold [24]. The accuracy these methods has been shown to decrease 

significantly at low signal to noise ratios (SNR) [24]. Matched filters generally increase the SNR 

of a signal by correlating signal amplitudes with template waveforms identified from the signal, 

particularly when a prewhitening filter is used [24, 25]. This process requires manual 

identification of the templates for each signal analyzed and is difficult to automate due to the 

changes in action potential shapes that occur with different spatial relationships between the 

electrode and neurons [27]. 

Recently, use of the wavelet transform has become popular in multiunit AP 

discrimination [28-37]. Wavelet decomposition effectively filters the nerve signal into several 

frequency sub-bands while preserving its temporal structure. Each sub-band of wavelet 

processing decorrelates successive noise-related values and compares progressively more dilated 

versions of a general spike shape to each point in the signal, which is similar to a generalized 

group of matched filters coupled with prewhitening filters [31]. This process can ease the 

detection of APs by separating the signal and noise using their distinct time-frequency 

signatures. Several of these wavelet processing techniques are primarily concerned with the 

classification of APs from different cells [29, 30, 32, 36, 37], a process which follows detection 

and can be aided by an accurate detection algorithm that limits the number of false alarms 

detected. Oweiss, et al [35] presented a wavelet method that uses information from several 

electrode channels but is not applicable to single channel, bipolar recordings of the renal nerve 

activity in mice. However, others have demonstrated that wavelet methods are suitable for 
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unsupervised de-noising and detection of single channel, multiunit data with low signal-to-noise 

ratio [28, 31, 33, 34]. In particular, wavelet-based processing has been demonstrated to be 

effective in the detection of human sympathetic APs [28], suggesting that a wavelet detection 

method could be applied to the mouse sympathetic nerve activity.  

In general, two wavelet decomposition techniques have been used for spike detection, the 

discrete wavelet transform (DWT) and the stationary wavelet transform (SWT). These 

techniques have different limitations. The DWT lacks translation invariance [38-43] while the 

SWT expands the amount of data by over-representing signals in the wavelet domain (for details 

see section IIA). However, a formal comparison between the use of the DWT and SWT in spike 

detection has not yet been presented. 

The primary aim of this paper is to develop an automated, wavelet-based method for 

spike detection in recordings of renal nerve activity specifically for mice. The parameters of this 

method will be determined using pharmacological interventions and simulated data, but will be 

applicable to other data sets. The accuracy of several different wavelet decomposition techniques 

and wavelet threshold algorithms will be compared to one another and to a general automated 

amplitude discriminator detection method. 

 

Background 

A brief description of the wavelet-based signal processing involved in decomposition, de-

noising, and detection of action potentials is presented in the sections below. For a more detail 

review, please see Appendix A. 

 

Signal Decomposition with the Discrete and Stationary Wavelet Transform 

Several wavelet techniques have been introduced to project a signal, f, onto a set of 

dyadically-spaced scales on a time-frequency grid [44, 45] and have successfully been applied in 

the field of neuroscience [32, 46]. The two main discrete wavelet methods are known generally 

as the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT). Both 

methods use a mother wavelet, Ψ, which can be translated and dilated according to the following 

equation (Matlab notation): 

( ) ( )ktt jj
kj −= 22 2/

, Ψψ        Ζ∈kj, (1)
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where ψj,k corresponds to the wavelet function at wavelet level j and temporal translation k. An 

increase in the wavelet level from j to j+1 results in a more dilated wavelet function, ψj+1,k, with 

a center frequency and bandwidth that is roughly half that of ψj,k. 

The fast DWT algorithm proposed by Mallat (1989) decomposes f using a set of 

quadrature mirror decomposition filters,  and , that have respective band-pass and low-

pass properties specific to each mother wavelet [45]. Equations (2) and (3) describe the DWT 

decomposition process. The broad scale, or approximation, coefficients  are convolved 

separately with  and  and the result is down-sampled by two. This process splits the  

frequency information roughly in half, partitioning it into a set of fine scale, or detail coefficients 

 and a coarser set of approximation coefficients . This procedure can be iteratively 

continued until the desired level of decomposition, j=J, is obtained. Note that the algorithm is 

initiated by setting . 

0g 0h

DWT
ja

0g 0h DWT
ja

DWT
jd 1+

DWT
ja 1+

fa DWT =0

( ) ( ) ( )∑ −=+
n

DWT
j

DWT
j kaknhka 201   (2)

( ) ( ) ( )∑ −=+
n

DWT
j

DWT
j kakngkd 201  (3)

The  coefficients can be reconstructed from  and  by placing a zero 

between each consecutive value found in  and  (e.g. up-sampling by two), convolving 

the results with the respective reconstruction filter, h

DWT
ja DWT

ja 1+
DWT
jd 1+

DWT
ja 1+

DWT
jd 1+

0(-n) or g0(-n), and summing. This process 

can be iteratively continued until the original signal, f, is recovered. 

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

DWT
j

n

DWT
j

DWT
j ndnkgnankhka 1010 22 (4)

Down-sampling the DWT coefficients between each level acts to halve their effective 

sample frequency and halve the effective corner frequencies of the  and  filters for the next 

level of processing. Therefore, identical filters can be used for each step of the DWT procedure. 

The DWT has two main advantages: (1) Each step of the DWT requires half as many 

computations as the previous step, and (2) The total number of DWT coefficients never exceeds 

N, the length of the original signal. A number of AP detection and classification algorithms 

currently use this decomposition technique [28, 32, 33, 35]. 

0h 0g
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One complication that arises from the level-to-level decimation of the DWT coefficients, 

however, is a lack of translation invariance in the DWT representation of the signal [38-43]. 

Dyadically down-sampling the approximation and detail coefficients from f(n) leads to a 

completely different set of DWT coefficients than down-sampling the coefficients from its 

shifted version, f(n+1). Similarly, choosing to retain the odd wavelet coefficients during the 

dyadic down-sampling will result in a different outcome than retaining the even wavelet 

coefficients [38-43].  

As a result of the shift variability of the DWT, several authors have used translation 

invariant decomposition techniques, such as the continuous wavelet transform or stationary 

wavelet transform (SWT), for the purpose of detecting action potentials [31, 34]. In contrast to 

the DWT, the SWT up-samples the decomposition filters by inserting zeros between every other 

filter coefficient and, consequently, avoids the translational variance problem caused by 

decimation [47]. Therefore, the SWT uses a set of level dependent decomposition filters,  and 

, which are the  and filters with 2

jh

jg 0h 0g j-1 zeros between each discrete filter coefficient. The 

SWT approximation and detail coefficients can then be computed using Eq. (5) and (6). 

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kaknhka 1  (5)

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kakngkd 1  (6)

The SWT reconstruction process is similar to that of the DWT, although the 

reconstruction filters are level dependent an include 2j-1 zeros between each filter coefficients. 

This reconstruction process is described in Eq. (7). 

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

SWT
jj

n

SWT
jj

SWT
j ndnkgnankhka 11 (7)

Inserting zeros between the filter coefficients allows the SWT to analyze every possible 

shift of the signal while the effective sample rate at each wavelet level remains unchanged. In the 

frequency domain, up-sampling acts to halve the corner frequency of both the low-pass and high-

pass decomposition filters, resulting in the same bandwidth decomposition as is found in the 

DWT. The result is a redundant, or over-complete, set of detail and approximation coefficients 

[39]. The drawbacks of the SWT algorithm include its increased computational complexity and 

the increased number of wavelet coefficients it generates. The general differences between the 
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DWT and SWT are described in detail elsewhere [38-43]. Specific differences between DWT- 

and SWT-based spike detection in murine renal nerve recordings will be compared in this paper. 

 

Wavelet-Based Spike Detection 

Most wavelet based spike detection algorithms include some modified form of a process 

known as wavelet de-noising [48]. In this process, a nerve signal with additive noise, f, is 

decomposed using either the DWT or SWT and a threshold is applied to each of the detail 

coefficient levels. All coefficients with an absolute value greater than the threshold are thought 

to be part of an action potential and those below the threshold are presumably derived from 

noise. The noise coefficients can be set to zero and a noise-free signal can then be reconstructed 

and used for AP detection [28]. 

Several standard methods of deriving thresholds for wavelet de-noising have been 

suggested [48, 49]. A single level noise estimation threshold is typically used in the case of 

stationary white noise with an unknown variance ( ). In this case, the standard deviation of the 

noise related coefficients in all detail coefficient levels is equal to σ

2
Wσ

W and is usually estimated 

using the level 1 detail coefficients (Eq. 8) [48]. The corresponding threshold, Tw, can be applied 

to all levels of detail coefficients (Eq. 9). In Eq. 8, the standard deviation of the noise is 

estimated using the median absolute deviation from zero (MAD) of the level 1 detail coefficients 

divided by the 75th percentile of the standard normal distribution, 0.6745. This method of 

estimating the standard deviation is typically used in wavelet de-noising because it less sensitive 

to outliers than the traditional calculation of the sample standard deviation [50]. In Eq. 9, N is the 

number of points in the signal and 1d  is the sample mean of the level 1 detail coefficients. 

( )
6745.0

11 ddmedian
W

−
=σ  (8)

( )NT eWW log2σ=  (9)

In the case of correlated or colored noise, such as 1/f noise, the standard deviation of the 

noise is level dependent [49, 51]. This type of noise requires a standard level dependent noise 

estimation threshold, , which uses a level dependent noise level estimate, σS
jT j (Eq. 10 and 11) 

[49]. 
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Recently, Kim and Kim (2003) also made the observation that not all of the wavelet 

levels are necessary for spike detection, and additional levels could actually confound the 

detection process [31]. We have therefore elected to test both of these wavelet threshold 

techniques on the mouse RSNA signal using wavelet levels that contain physiologically 

important information, which will be described in a later section. We will demonstrate that a 

spike detector which uses the SWT and a single-level noise estimation threshold on select 

wavelet levels is more robust against changes in spike rate and signal to noise ratio than an 

unsupervised amplitude discriminator or other wavelet-based methods. 

 

Methods 

 
Animal Experiments 

Recordings from the renal nerve of 16 healthy C57BL/6J strain wild-type (10.1±0.1 

month; 31±0.4g) were used to determine the optimal parameters for wavelet based spike 

detection. All protocols were approved by the Vanderbilt University Institutional Animal Care 

and Use Committee. Mice were anesthetized with 1.5% Isofluoran (in 100% Oxygen). Body 

temperature was maintained at 36-37°C with an isothermal pad (Braintree Scientific, Inc., 

Braintree, MA). A bipolar stainless steel wire electrode pair (electrode distance 1-1.5 mm, 

MedWire Corp, NY,) was hooked onto renal nerve of the left kidney. After adjusting the 

electrodes to obtain optimal signal quality, the electrodes were secured with silicone adhesive gel 

(QuickSeal, World Precision Instruments, Sarasota, FL) to ensure a relatively constant distance 

relationship between the neuron and electrode throughout the recording. The nerve signal was 

high pass filtered (300Hz) and amplified (gain 100,000) by a differential amplifier (ISO-80, 

World Precision Instruments, Sarasota, FL). Blood pressure was measured through a catheter in 

right femoral artery (Micro-Renathane, Braintree Scientific Inc, MA; PE-50, Becton Dickinson, 

Signapore) connected to a pressure transducer (DTX Plus-4812, Becton-Dickinson, Signapore) 

and carrier amplifier (13-4615-35, Gould Instruments, Cleveland, OH). Drugs were administered 

through a venous catheter (Micro-Renathane, MRE-025, Braintree Scientific Inc., MA) with an 
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infusion pump (CMA/100, CMA, Sweden). Heart rate, blood pressure, and renal sympathetic 

nerve traffic were recorded for 5 min to determine baseline levels and then during intravenous 

administration of phenylephrine (30 µg/kg, 40 µg/kg) or sodium nitroprusside (30 µg/kg, 40 

µg/kg), bolus injection. 1 min baseline and 2 min after bolus injection was recorded. At the end 

of experiment, animals were euthanized with an overdose of urethane bolus and the renal nerve 

signal was recorded postmortem. The signals were recorded using a WINDAQ data acquisition 

system (DI410, DATAQ, Acron, OH) with 14 Bit resolution at 10,000 Hz sample frequency. The 

data were processed off-line using customized software written in the Matlab environment (The 

MathWorks, Inc., Natick, MA). 

 

Determination of the Physiologically Important Frequency Range  

The physiological frequency range of the baroreflex-related mouse RSNA was 

determined as the range of frequencies over which the most dominant changes in a) average 

power spectral density, and b) wavelet level variance were observed during baroreflex mediated 

pharmacological suppression and enhancement of the RSNA and after death, when no vital 

activity is present. These observations were used to determine which frequency range and 

wavelet levels are important for the detection of spikes in the mouse RSNA.  

Changes in power spectral density The Welch Periodogram method [52] was used to 

compute estimates of the power spectral density (PSD) in the mouse RSNA recorded during 

periods of baseline, NTP bolus injection (increase of nerve activity), PHE bolus injection 

(suppression of nerve activity), and postmortem (no vital activity) in 9 mice. Twenty-second 

signals recorded during each physiologic intervention were divided into 1-second segments that 

overlapped by 50%. Each segment was detrended, multiplied by a Hamming window, and zero-

padded. The power was estimated as the area under the PSD curve and normalized by the 

baseline variance. Spectral smoothing was then performed using a 20 point moving average. The 

frequency range over which the maximum changes in PSD occurred was determined to be the 

physiologically important range.  

Changes in wavelet level standard deviation The standard deviation of each level of detail 

coefficients and in the signal itself was calculated using the median absolute deviation from zero 

(MAD) divided by 0.6745 (Eq. 10) in all subsequent SWT, DWT, and amplitude discriminator 

methods. Changes in the standard deviation from baseline to phenylephrine (PHE) and 
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postmortem periods were also assessed in the signal and each of the detail coefficient levels. All 

signal coefficient values were normalized to the respective baseline signal variance. The Mann-

Whitney or Wilcoxon test with a significance level of 0.05 was used for statistical analysis. 

 

Simulated Signal Construction 

Simulated signals were constructed with templates extracted from the baseline periods of 

6 RSNA recordings with sufficiently high signal to noise ratios (Fig. 3). The templates were then 

randomly inserted into neural noise taken from the postmortem recordings with a length of one 

minute. The interspike intervals were randomly assigned according to a Poisson distribution [53] 

with a minimum refractory period of 10 msec between spikes. Each simulation was assigned 

either a low (10 spike/sec), medium (30 spike/sec), or high mean spike rate (60 spike/sec). The 

signal to noise ratio (SNR) of the simulations was altered from 5 (high signal quality) to 1 (poor 

signal quality). The SNR was defined as the ratio between the absolute peak amplitude of the 

action potential and the standard deviation of the noise, as defined elsewhere [28, 34]. 

 

Symlet 7 Template 1 Template 2

5 msec

0.5 NU

A B C
 

Figure 3. The symlet 7 wavelet (A) and two representative mouse sympathetic action potential templates, (B) and 
(C), used in the simulations. Amplitudes are displayed in units normalized to the largest absolute value in each 
waveform (Normalized Units; NU). 
 

The simulated signals were used to test the performance of several wavelet-based 

algorithms and an unsupervised amplitude discriminator, diagramed in Fig. 4. Four wavelet 
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algorithms were tested using the following combinations: (1) SWT decomposition with a single 

level noise estimation threshold (SWTS), (2) SWT decomposition with a level dependent noise 

estimation threshold (SWTD), (3) DWT decomposition with a single level noise estimation 

threshold (DWTS), and (4) DWT decomposition with a level dependent noise estimation 

threshold (DWTD). The decomposition methods and thresholds were discussed in detail in 

Section IIA and IIB, respectively. Each of the wavelet techniques used the same mother wavelet, 

symlet 7 (Fig. 3), due to its morphological similarities to an average sympathetic spike and 

because it has been shown to impose less distortion on sympathetic spikes during de-noising than 

other commonly used wavelets, such as Daubechies 4 [28]. Each simulated signal was 

decomposed into 5 levels of detail coefficients and 1 level of approximation coefficients. Five 

was chosen as the maximum decomposition level because levels higher than 5 were found to 

contain primarily noise. Only wavelet levels that were deemed to have physiological significance 

to the mouse RSNA spikes (determined later in Section IVA) were used in the thresholding 

process, and all other wavelet coefficients were set to zero. After the signal is decomposed and 

thresholded, the de-noised signal was reconstructed and the action potentials were detected using 

a simple peak detection scheme that locates maxima above 99% of the signal energy, as 

described previously [28]. The unsupervised amplitude discriminator detected all absolute values 

greater than three times the standard deviation of the signal as discussed elsewhere [26]. Both the 

amplitude discriminator and the wavelet detection used a window length of 6 msec, which was 

observed to be the maximum duration of a mouse RSNA spike. 
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Figure 4. Block diagram of all detection methods. (A) Unsupervised amplitude discriminator. (B) Single level noise 
estimation wavelet threshold used with either the stationary (SWT) or discrete wavelet transform (DWT). (C) Level 
dependent noise estimation wavelet threshold used with the SWT or DWT. 
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The performances of the five methods were quantified using the percent of correctly 

detected APs (PCD) and the percent of false alarms (PFA). 

100×=
AP

CD

N
NPCD  (12)

100×=
CD

FA

N
NPFA  (13)

NCD is the number of correctly detected APs, NAP is the number of APs inserted into the 

simulation, and NFA is the number of false alarms. 

 

Verification of Threshold Using Physiological Data  

A physiologic verification of the threshold was performed using pharmacologic data in 

mice. PHE increases blood pressure and induces a baroreflex mediated suppression of RSNA, as 

demonstrated in Figure 1. Rather than using the maximum absolute voltage level during 

baroreflex mediated decrease of sympathetic nerve activity (Fig 2A), we determined which 

thresholds would yield the maximum change in the detected spike rate from a baseline period to 

the period following a PHE bolus injection by systematically varying the threshold level and 

recording the corresponding maximum delta spike rate. Figure 2B demonstrates that the 

“optimal” amplitude discriminator threshold determined by the maximum response is neither the 

maximum voltage level during PHE depression nor the postmortem noise level but an 

intermediate value (Fig 2B). 

We applied the “maximum response optimization” approach to determine the optimal 

threshold value for each wavelet level that comprised the RSNA frequency range. In detail, renal 

nerve recordings that contained 60 seconds of baseline activity followed by approximately 60 

seconds of reduced nerve activity after PHE bolus injection were decomposed using the 

stationary wavelet transform. A systematic search for the optimal threshold value was then 

performed on each detail coefficient level found to hold physiologically important information. 

For all combinations of threshold values (which varied from 0 to 5σj for each wavelet level of 

interest) the detail coefficients with an absolute value above the threshold were unmodified. All 

other coefficients were set to zero. The signal was then reconstructed and spikes were detected 

using the same procedure described in Section IIIC. The spike-rate was then computed using a 
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one-second sliding window. The criterion used to determine the optimal combination of 

thresholds was defined as the maximum difference between the median spike rate during 

baseline and the minimum spike rate after PHE bolus injection. The optimal threshold values 

were then compared to those used in the single level noise estimation thresholding scheme. Data 

from all 16 mice were used during this verification. 

 

Results 

 

Determination of Physiologically Important Frequency Range 

Changes in power spectral density The average normalized power spectral density (PSD) 

of the renal nerve activity during periods of baseline, NTP bolus injection, PHE bolus injection, 

and postmortem is depicted in Figure 5A. Power in the range of 100 Hz to 1000 Hz was 

dominant during all interventions in the living animal but was significantly abolished 

postmortem. The power in this range was increased after NTP bolus injection and decreased after 

PHE bolus injection. Complete suppression of renal nerve activity was not always achieved 

during the highest dose of PHE, but this residual activity is abolished in the euthanized animal. 

This suggests the presence of other renal nerve activity independent of the baroreflex (as 

presented in Fig. 2). Above 1000 Hz, the average power remains relatively consistent during the 

baseline, postmortem, PHE and NTP recordings, indicating that these levels are unaffected by 

the RSNA and contain mostly noise. 
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Figure 5. (A) Average normalized PSD of renal nerve recordings during nitroprusside (∆), baseline (�), 
phenylephrine (Ο), and postmortem (∇) periods. (B) Normalized standard deviations of the detail coefficient levels 
and the signal during baseline (white), after phenylephrine bolus injection (hatched), and postmortem (black). The 
changes in the standard deviation of detail levels 1 and 2 (σ1 and σ2) are minimal, but changes in the standard 
deviations of the level 3, 4, and 5 detail coefficients (σ3 - σ5) and the signal (σsignal) are significant during 
phenylephrine and postmortem. 
 

Changes in wavelet level standard deviation To demonstrate the relationship between the 

power spectral density and the variance of the wavelet coefficients and determine the wavelet 

 79



levels with physiologically important information, the change in the detail coefficient standard 

deviations (σ1 – σ5 for detail levels 1 – 5) from baseline to post-PHE bolus injection and 

postmortem periods were compared (Fig 5B). The level 3, 4, and 5 SWT detail coefficients have 

approximate respective frequency ranges of 625 – 1250 Hz, 313 – 625 Hz, and 156 – 313 Hz for 

data collected at 10,000 samples/sec. The power in these frequency ranges demonstrated the 

most pronounced changes during the pharmacological interventions and after death (Fig. 5A). 

Consequently, the standard deviation of these detail levels (σ3-σ5) were found to drop 

significantly during PHE and postmortem (p<0.01, Fig. 5B). The level 1 and 2 detail coefficients 

have approximate frequency ranges of 2500 – 5000 Hz and 1250-2500 Hz, respectively. The 

power in these frequency ranges did not change significantly during any of the interventions 

(Fig. 5A), nor did σ1 and σ2 (Fig. 5B). The standard deviation of the signal (σsignal) also 

undergoes a significant decline during these periods (p<0.01).  

The detail coefficients can now be separated into levels that contain the RSNA signal 

plus noise and levels which contain noise only. Since both the power in the frequency ranges of 

the level 4 and 5 detail coefficients and the standard deviation of the coefficients themselves 

demonstrate significant changes during pharmacological tests and after death, they are assumed 

to contain the majority of the information associated with sympathetic spikes. Thus, only the 

level 4 and 5 detail coefficients will be subject to thresholding in each of the wavelet methods 

mentioned in Section IIIC during the simulations. All wavelet coefficients that either fall below 

the threshold or are found in other levels, including the level 5 approximation coefficients, will 

be considered noise-related and set to zero. The level 3 detail coefficients were not included in 

the threshold operation because the changes in spectral power and standard deviation in this level 

during pharmacological tests and postmortem were not as pronounced and could result in a 

significant number of false alarms in signals with very low signal to noise ratios. The standard 

deviation of the level 1 detail coefficients, σ1, will be used in the single level noise estimation 

threshold (as shown in Eq. 8 and 9) because it was shown to remain constant throughout the 

pharmacological interventions and postmortem. 

 

Simulation Results 

The detection performance of the unsupervised amplitude discriminator, SWTS, SWTD, 

DWTS, and DWTD is described in Fig. 6. The percent of correctly detected spikes (PCD, top) 
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and percent of false alarms (PFA, bottom) are displayed for low (left), medium (middle), and 

high mean spike rates at various signal to noise ratios (Fig. 6). 
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Figure 6. Mean results for simulations with varied noise levels and mean spike rates. The simulations tested the 
performance of an unsupervised amplitude discriminator, SWT decomposition with thresholds based on single level 
(SWTS) and level dependent (SWTD) noise estimation, and DWT decomposition with thresholds based on single 
level (DWTS) and level dependent (DWTD) noise estimation. Each point on each curve represents the mean result 
of 102 simulations. 
 

The detection performance of the amplitude discriminator method was found to be highly 

dependent on the mean spike rate (Fig. 6). It demonstrated a high percent of correct detections 

for signals with low and medium spike rates, but also detected the highest percent of false alarms 

during most SNRs and mean spike rate situations in these simulated signals.  

The detection performance of the SWT and DWT methods with level dependent noise 

estimation (SWTD and DWTD) also demonstrated a large dependence on the mean spike rate 

(Fig. 6). As spike rate increased, the percent of correct detections of the methods with level 

dependent noise estimation began to drop off at higher values of SNR. The SWT and DWT 

methods with single level noise estimation thresholds (SWTS and DWTS) show much more 

consistent patterns in their percent of correct detections during changes in mean spike rate. The 

single level noise estimation methods also generally had a higher percent of false alarms than 
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their level dependent counter parts, but the percent of false alarms for all wavelet methods was 

below 15% for all SNRs greater than 1.5 during all mean spike rate scenarios.  

The SWT methods correctly identified a higher percentage of the inserted action 

potentials than the DWT methods with the same threshold criteria for all SNRs and mean spike 

rates (e.g. SWTS>DWTS and SWTD>DWTD). The percent of false alarms was similar for SWT 

and DWT methods with the same threshold criteria. The SWTS method (stationary wavelet 

transform with a single level noise estimation criteria) seemed to exhibit the most consistent 

performance on the simulated murine sympathetic nerve recordings. The percent of correct 

detections for this spike detection method remained above 75% and the percent of false alarms 

remained below 10% for all spike rates and all SNRs above 1.8. Although the discriminator had 

a higher percent of correct detections than the SWTS at very low signal to noise ratios 

(SNR<1.6), it also detected a significantly higher percent of false alarms during these SNRs as 

well. 

 

Threshold Verification Using Physiological Data  

Renal nerve recordings that contained 60 seconds of baseline activity followed by 

approximately 60 seconds of reduced activity after PHE bolus injection were used to determine 

the optimal threshold value in each wavelet level that comprised the RSNA frequency range. The 

threshold in each of the wavelet levels of interest, levels 4 (T4) and 5 (T5), was systematically 

varied until the threshold combination which produced the maximum difference between the 

median detected spike rate during baseline and the minimum detected spike rate after 

administration of the PHE bolus was determined ( and ). Figure 7A demonstrates a 

representative example of the results of this search normalized by σ

optT4
optT5

1 the standard deviation of 

the level 1 detail coefficients. From Eq. 9 we can see that ( )NT eWW log2=σ . For the signals 

used in this section,  and Hz000,10 sec120 ×=N ( ) 29.5log2 ≈Ne . In Fig. 7A, the maximum 

delta spike rate ( 14 σoptT and 15 σoptT , the dark red region) is near the single level noise 

estimation threshold, i.e. 29.51514 ≈= σσ TT  (the white circle). 
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The threshold values and  were determined for 16 mice and normalized using 

the single level noise normalization, i.e. dividing by σ

optT4
optT5

1 (Fig. 7B). The average normalized values 

for both level 4 and 5 are near the standard value of 5.29. 
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Figure 7. (A) Representative example of the search for the optimal threshold combination for the level 4 and 5 
detail coefficients (T4 and T5) normalized by the standard deviation of the level 1 detail coefficients. (B) The mean 
values for the normalized  and for 16 mice. In both cases, the maximum response thresholds come close to 
the standard value calculated from Eq. 8 (5.29; white circle in (A) and broken line in (B)). (C) Mean changes in the 
detected spike rate from baseline to after PHE bolus injection (∆ spike rate) using two different SWT threshold 
algorithms. The single level noise estimation threshold (white) detected a significantly greater response to the PHE 
bolus than the level dependent noise estimation threshold (black). Error bars indicate SE. 
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The SWT methods using the single level and level dependent noise estimation thresholds 

were both used to detect the change in the detected spike rate from baseline to after PHE bolus 

injection in the same 16 mouse renal nerve recordings (Fig. 7C). The single level noise 

estimation threshold detected a significantly greater response to the PHE bolus than the level 

dependent noise estimation threshold. 

 

Discussion 

The aim of this paper was to devise an automated spike detection system specifically for 

mouse renal sympathetic nerve activity which could be used as an alternative to the currently 

used approaches of RSNA integration and hardware amplitude discriminators. Although we have 

only presented data for this specific neural signal, this type of optimization process and some of 

the results may be applicable to other types of neural data. We have shown that wavelet methods 

had a more robust performance than amplitude discriminators when presented with simulated 

mouse sympathetic nerve signals with different spike rates and signal to noise ratios. 

Additionally, the DWT methods, which lack translation invariance, were outperformed by 

translation invariant SWT methods with the same threshold criteria. The single level noise 

estimation threshold criteria was also shown to be less dependent on changes in mean spike rate 

in simulated mouse renal nerve recordings than level dependent noise estimation threshold 

algorithms. The choice of a single level noise estimate was also close to the maximum response 

thresholds determined using the physiological PHE bolus data. 

Johnstone and Silverman (1997) demonstrated that the SWT has better de-noising 

performance than the DWT for data contaminated with neurophysiological noise [49]. They have 

also suggested that the limitations of the DWT are more apparent for signals with low signal-to-

noise ratios (SNR) and sharp discontinuities [49]. Murine RSNA action potentials posses these 

characteristics and, consequently, a spike detection procedure based on the DWT is less effective 

than one which uses the SWT. The simulated scenario in Fig. 8 demonstrates how the translation 

variability found in the DWT reduces the likelihood of an RSNA action potentials being 

detected. Each peak in the RSNA action potential occupies a very short period, approximately 1 

msec, or 10 points of a signal sampled at 10,000 Hz. After 2 levels of decimation, less than 2 or 3 

peak points remain. In the simulated RSNA signal depicted in Figure 8, down-sampling by 

eliminating odd and even coefficients significantly alters the DWT representation and, as a 
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result, the detection performance of the DWT algorithm. The SWT, however, is able to detect 

both APs. This would account for the lower percentage of correctly detected action potentials in 

the DWT based detection algorithms in our simulations and may play a role in any DWT based 

detection or discrimination of neural data. 

One key feature common to both wavelet and amplitude discriminator based detection 

methods is a threshold rule based on some estimate of the noise level. A robust threshold rule 

should accurately reflect the noise level but should be unaffected by changes in spike rate or 

spike amplitude. In the case of the murine RNSA, the spike rate can be non-stationary, 

particularly when different pharmacological agents are introduced. Both the automated 

amplitude discriminator and the wavelet methods with a level dependent noise threshold, 

however, were significantly affected by changes in spike rate. For example, the standard 

deviation of the level 4 and 5 detail coefficients change significantly during the PHE and 

postmortem recordings, and these changes are presumed to be primarily caused by changes in the 

mean spike rate during these states (Fig. 5B). We have also observed that the standard deviation 

of simulated signals (σsignal) and the standard deviation of their detail levels in the frequency 

range of the RSNA spikes (σ4 and σ5) increase with spike rate. For instance, simulated signals 

with identical noise and mean spike rates of 0, 35, and 75 spikes/s resulted in σsignal of 0.25, 

0.295, and 0.365 normalized unit (NU) and σ5 of 0.25, 0.43 and 1.12 NU. However, the standard 

deviation of the level 1 detail coefficients, σ1, remained almost constant (0.25, 0.253, 0.256 NU) 

for all spike rates. Therefore, a threshold selection rule that relates the noise level of the level 1, 

or “noise-only”, detail coefficients to the threshold for the level 4 and 5, or “signal 

concentrated”, detail coefficients, such as the single level noise threshold rule, may be more 

appropriate detection in nerve signals with highly variable mean spike rates. The maximum 

response thresholds determined with the PHE bolus data also suggested that the use of the single 

level noise estimation threshold was more suitable than the use of a level dependent noise 

estimation threshold (Fig. 7). 
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Figure 8. Detection performance using the DWT and SWT de-noising. The top row contains a simulated signal, 
f(n), containing 2 APs (+). The middle rows contain detail coefficient for levels 1-5 (d1 – d5) obtained using either 
the DWT with odd down-sampling (A), the DWT with even down-sampling (B), or the SWT (C). Broken lines in d1 
– d5 are standard thresholds (Eq 8 and 9) and the bottom row is the reconstructed noise-free spike train, s(n). 
Decimating the odd coefficients eliminates the detail coefficients that represent the second AP, while even 
decimation abolishes the first AP. Both APs are detected using the SWT method because it does not down-sample 
the detail coefficients. 
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In light of these findings, we advocate the use of an SWT algorithm with a single level 

noise estimation threshold for the detection of action potentials in the murine RSNA. This 

method was shown to be the most robust when presented with variable spike rates and signal to 

noise ratios. Several previous publications have used the wavelet transform for the specific 

purpose of spike detection in similar multiunit neural data [28, 31, 33, 34, 54]. Kim, et al. (2003) 

suggested a novel AP detection method for nerve recordings with low SNR which combined 

selected scales of the SWT using point-wise multiplication and smoothing with a Bartlett 

window [31] and Olkkonen, et al. (2006) demonstrated a Hilbert assisted DWT to improve SNR 

in nerve signals [54]. However, neither author discusses a method to objectively automate a 

threshold selection process. Both Nakatani, et al [33] and Diedrich, et al [28] demonstrated 

automated methods for colored, normally distributed neural noise. Each implemented a level 

dependent threshold by extrapolating the parameters of the noise distribution by fitting a 

Gaussian to the central quantiles of the detail coefficient amplitudes at each wavelet level. This 

method assumes that the contribution of the AP waveforms to the central quantiles of the 

distribution is negligible, an assumption that is valid for lower spike rates but fails for higher 

spike rates. Both authors do not test their technique under conditions of variable spike rates. 

Nenadic, et al [34] uses the continuous wavelet transform (CWT) and a level dependent 

threshold to make an initial separation of signal and noise for the purpose of parameter 

estimation prior to hypothesis based spike detection. This technique is validated using 

simulations with different spike rates and SNR. Our results demonstrate that the level dependent 

threshold drastically over estimates wavelet noise levels at high spike rates, resulting in 

significant missed detections (Fig. 6). The discrepancy of these results may lie in the type of 

neural data used. The former study involved recordings from CNS neurons with a relatively high 

conduction velocity, whereas our recordings were derived from unmyelinated peripheral neurons 

with a slower conducting speed (Fig 3). The longer duration of the sympathetic APs yields more 

high amplitude points per unit time for each spike, which has a dramatic affect on the level 

dependent noise estimate, particularly at high firing rates. Although the noise in both the signal 

and simulations used here are colored, the single level noise estimation threshold was useful 

because it relates the noise level in a wavelet band that is unrelated to the physiological signal 

information to the wavelet levels that contain signal plus noise and avoids overestimating the 

threshold in these levels at high firing rates. 
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Applications 

Spike detection using the single-level noise estimation threshold coupled with SWT 

decomposition was applied to RSNA recordings from several transgenic mouse populations, 

including norepinephrine transporter (NET) deficient and regulator G-protein-2 (RGS-2) 

deficient mice. Using the wavelet-based spike detection, we were able to confirm that a baseline 

drop in sympathetic activity mimicking that observed during pharmacological NET blockade in 

humans also occurred in the NET deficient mice. Similarly, the regulator of G-protein signaling 

2 (RGS2) is known to play a role in the maintenance of vascular tone and sympathetic 

regulation. Mice deficient in this enzyme were also shown to have significantly lower than 

normal sympathetic spike rates using wavelet spike detection. Further details of these analyses 

and results can be found in Appendix C. 

 

Limitations 

One significant limitation to using the SWT as opposed to the amplitude discriminator or 

the DWT is the increase in computational complexity. While the amplitude discriminator 

requires no transformation, the DWT requires O(N) operations and the SWT requires O(N log(N)) 

operations [40], which may pose a problem when applying such a method to more complex problems, 

such as nerve signals recorded from a multielectrode array. However, the SWT requires less 

computational complexity than the CWT, an O(N2) process which has been used in previous spike 

detection methods [34]. A second limitation is the assumption that all of the recorded APs will have a 

shape similar to the symlet 7 wavelet or one of its dilations at higher wavelet levels. Although the 

waveforms identified in our recordings were relatively similar to those depicted in Fig. 3, different 

neuron-electrode geometries have been observed to result in very different AP morphologies [27] and this 

should be considered when implementing such a method. In this study we focused on the detection of 

APs and chose not to examine the sorting of waveforms, which is typically handled following detection. 

As a consequence, the amount of AP overlap in the simulations was limited. Significant AP overlap may 

cause multiple, overlapped APs to be detected as 1 AP. In this case an additional waveform classifier 

would be required to separate the overlapped waveforms. This has been proposed previously [28]. 

Extension of this method to other types of neural data and signals with transient spikes would 

require a similar form of optimization process and simulated data to objectively assess detection quality. 

The optimization process described here could be difficult without the use of either pharmacological or 

postmortem recordings. However, physiological interventions may be used in order to characterize the 
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noise process contaminating other neural data. For instance, in the case of the human muscle sympathetic 

nerve activity (MSNA), a noise component may be obtained during Phase IV of the Valsalva maneuver 

which is characterized by an increase in blood pressure beyond baseline levels and, consequently, a 

dramatic reduction in sympathetic nerve activity in healthy subjects [55]. The wavelet levels used in this 

optimization may also differ for other signals. The APs found in the MSNA, for example, have a similar 

shape to murine RSNA spikes, but have a much shorter duration [28]. As a result, the power of the 

MSNA spikes was found to be concentrated between 700 and 2000 Hz [28], and would require 

thresholding of the level 2 and 3 wavelet coefficients for 10kHz recordings.  

 

Conclusions 

An automated spike detection method for mouse sympathetic nerve activity would 

eliminate the need for establishing a subjective manual threshold or using integrated nerve 

activity. Furthermore, unsupervised spike detection allows for the possibility of AP classification 

and subsequent single-unit analysis of sympathetic nerve activity, which has been shown to hold 

useful information [56-60]. In conclusion, spike detection using the SWT is a potentially useful 

tool in the study of autonomic dysfunction in mice and may have implications for the study of 

various cardiovascular disorders.  
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CHAPTER V 

 

A SIMPLIFIED TWO COMPONENT MODEL OF BLOOD PRESSURE FLUCTUATION 

 

Abstract 

We propose a simple moving average (MA) model which uses the low frequency (LF) 

component of the peroneal muscle sympathetic nerve spike rate and the high frequency (HF) 

component of respiration to describe the low frequency neuro-vascular fluctuations and the high 

frequency mechanical oscillations in systolic blood pressure (SBP), respectively. This method 

was validated on data from eight healthy subjects (age 23-47, 6 males) during a graded tilt (15° 

increments each 5 min until 60°). The LFSBP had a strong baroreflex mediated feedback 

correlation with LFSpike Rate (r=-0.69±0.05) but also a strong feed-forward relation to LFSpike Rate 

(r=0.58±0.03 with LFSBP delay τ=5.625±0.15s). HFSpike Rate and HFSBP were not significantly 

correlated. Conversely, the HF components of respiration and SBP are highly correlated (r=-

0.79±0.04) while their LF components have a significantly lower correlation (r=0.45±0.08). The 

mean correlation coefficients between the measured LFSBP and the LFSBP predicted from the 

model was r=0.74±0.03 in the supine position, and this value did not change significantly during 

tilt. The mean correlation between the measured HFSBP and the predicted HFSBP was r=0.89±0.02 

while supine. The R2 values for the regression analysis of the predicted and measured LF and HF 

powers indicate that 78 and 91 percent of the variability in power can be explained by the linear 

relationship LFSpike Rate to LFSBP, and HFResp to HFSBP. We report a simple two component model 

using neural sympathetic and mechanical respiratory inputs which can explain the majority of BP 

fluctuation at rest and during orthostatic stress in healthy subjects. 

 

Introduction 

Various rhythmic oscillations found in the human blood pressure (BP) have been 

proposed to reflect the action of different physiological mechanisms on BP regulation. For 

instance, it has been suggested that very low frequency trends (VLF, period >25 sec, frequency 

<0.04 Hz) in BP represent the influence of hormonal and thermo-regulation and that high 

frequency fluctuations (HF, 0.15-0.4 Hz) mark the effect of respiration on BP. A more hotly 

debated issue is the idea that low frequency (LF, 0.04-0.14 Hz) BP oscillations occurring with a 
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10-second periodicity, generally referred to as the Traube-Hering-Mayer waves, reflect 

sympathetically-mediated vasomotor BP modulation. It has been proposed that the origin of 

these waves is a resonance phenomenon of the baroreflex pathway [1], and the LF power has 

been used as a marker of sympathetic activity [2-4], although this practice still remains 

controversial [5;6]. 
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Figure 1. Spectral characteristic of systolic blood pressure (SBP, upper panel), sympathetic spike rate, and 
respiration (RESP) during resting supine (broken line) and 60 deg head up tilt position (black solid line) in a 
representative subject. 
 

Several lines of indirect evidence have been used to associate the oscillations in BP with 

oscillations in these other physiological rhythms. For example, physiological maneuvers have 
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identified changes in the oscillatory patterns of the sympathetic nerve activity and respiration 

which correspond to those seen in the BP during sympathetic activation [7]. Figure 1 

demonstrates that, during head-up tilt: a) LF oscillations are evident in the nerve activity and BP; 

b) the HF oscillations are expressed in each of the three signals -- respiration, BP, and nerve 

activity; and c) relative changes in the LF of spike rate and the HF of respiration are also 

reflected in the BP.  

Similarly, pharmacological interventions and the study of autonomic pathologies have 

also provided indirect support to the idea that the sympathetic activity and respiration contribute 

to the oscillations in BP. The LFBP oscillations are attenuated during ganglionic blockade in 

healthy subjects [8-10] and are absent in pure autonomic failure patients with peripheral 

sympathetic nerve lesions [8;11], suggesting a sympathetic origin for this rhythm. On the other 

hand, HFBP fluctuations have been unaffected by ganglionic blockade [8-10] and is still present 

after thoracic sympathectomy in transplant patients [12].  Additionally, the neuro-vascular 

interface has been suggested to possess low-pass characteristics which effectively filter out the 

HF components of the sympathetic activity [1;13-15]. These findings indicate that the HFBP 

rhythm is not neurally mediated, but instead largely the result of the mechanical interaction 

between the BP and the respiration or cardiac output. 

Although much indirect evidence exists, a mathematical model may provide a more 

direct description of the relationship between the BP oscillations and fluctuations found in other 

cardiovascular parameters. A number of models have been developed to help explain the 

fluctuations in human BP using heart rate, blood pressure and respiration [1;16-18]. One 

limitation of these models is that they do not include sympathetic activity as a direct input 

parameter. Modeling of BP fluctuations from sympathetic activity has been successfully applied 

in animals [19-21]. However, a model developed by Myers, et al. (2001) for human BP 

fluctuations using integrated sympathetic activity as an input parameter yielded less accurate 

results [5]. But this model was primarily concerned with explaining the LF component of BP; 

utilized integrated burst areas with arbitrary units to quantify sympathetic activity, rather than the 

spike rates typically found in animal models; and involved euglycemic clamping to enhance 

sympathetic activation, a procedure which induces vasodilation through increased insulin release 

and may alter the neuro-vascular coupling [22]. 
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We propose a different mathematical model which combines subbands of the sympathetic 

spike rate and respiration to explain the LF and HF oscillations in human blood pressure. A 

technique to detect action potentials in raw human sympathetic nerve recordings has been 

recently introduced and can be used to form a spike rate density series to quantify sympathetic 

activity [23;24]. Using the spike rate density along with measured respiratory patterns, we will 

examine the accuracy of a two component linear model which attempts to describe the low 

frequency neuro-vascular interaction and the high frequency mechanical effects of respiration on 

the fluctuations in human BP. 

 

Methods 

 

Subjects and Clinical Conditions 

Eight healthy subjects (6 males and 2 females, age 23 to 47) were recruited from the 

Vanderbilt University General Clinical Research Center volunteer database. All subjects 

underwent extensive physical examination and did not have any signs of cardiovascular disease 

or history of syncope prior to the study. The subjects abstained from all drugs, including caffeine 

and nicotine, for at least 72 hours prior to testing. Their body mass index was 26±1.7 kg/m2, 

resting HR was 61±2 bpm, and BP was 111±2 / 65±2 mm Hg.  

 

Protocol  

The subjects were secured to a tilt table with straps. Subjects were instructed to remain 

relaxed and quiet throughout all studies and were monitored for any signs of presyncope during 

all tests [25]. After 15 minutes of supine rest the subjects were tilted by 15° increments every 5 

minutes until an angle of 60° was reached. All studies were conducted at Vanderbilt University 

General Clinical Research Center and all procedures were approved by the local institutional 

review board.  

 

Instrumentation 

The following variables were measured: electrocardiogram (ECG), blood pressure, 

respiration, and muscle sympathetic nerve activity (MSNA). The electrocardiogram (ECG) of 

lead II was recorded with a Gould ECG/Biotach amplifier (Gould Electronics, Cleveland, OH, 
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USA). The continuous finger blood pressure (BP) waveform was measured by 

photoplethysmographic-based volume clamp method [26] with a finger cuff on the middle finger 

of the non-dominant hand (Finapres, Ohmeda, Englewood, CO, USA) and verified using brachial 

BP obtained by automated auscultometric device (Dinamap blood pressure monitor, model 

1846SX, Critikon, Tampa, FL) on the contralateral arm. The hand with the Finapres sensor was 

fixed at heart level. Respiration was measured by a pneumobelt (Pneumotrace II; UFI, Morro 

Bay, CA). 

Microneurography MSNA was recorded from the peroneal nerve [27]. Recording was 

done randomly in either of the legs. A unipolar tungsten electrode with uninsulated tip diameter 

1 to 5 µm and shaft diameter 200 µm (Frederick Haer and Co, Bowdoinham, MA, USA) was 

inserted into the muscle nerve fascicles of the peroneal nerve at the fibular head for multi-unit 

recordings. Raw nerve activity was amplified with a total gain of 100 000, band pass filtered 

from 0.7 to 2 kHz (662C-3 Nerve Traffic Analysis System, University of Iowa, Iowa City, USA). 

Satisfactory recordings of muscle sympathetic nerve activity were defined by (1) heart pulse 

synchronicity; (2) facilitation during Valsalva straining and suppression during the hypertensive 

overshoot after release; (3) increases in response to breath-holding; and (4) no change during 

tactile or auditory stimulation [28].  

 

Data Preprocessing 

Data were acquired at 5000 Hz, 14 bit resolution using the Windaq data acquisition 

system (DI-720, DATAQ Instruments, Akron OH) and analyzed offline with custom software 

written in the PV Wave (Visual Numerics Inc., Houston, TX) and MATLAB (Mathworks; 

Natick, MA) environments. QRS detection was performed using a modified Pan-Tompkins 

algorithm [29]. Systolic and diastolic values in the continuous blood pressure recordings were 

automatically identified as the maxima and minima for each cardiac cycle. All detections were 

visually verified. 

Action potential spikes were detected in raw MSNA recordings using a modified form of 

a technique described elsewhere [24;30]. The MSNA was decomposed into 4 bands of wavelet 

detail coefficients using a stationary wavelet transform (SWT) with the Symlet 7 wavelet. 

Regions dominated by normally distributed noise in each band were identified as those which 

had a kurtosis less than 4. A kurtosis value of 3 indicates an ideal Gaussian distribution and 
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signal episodes with spike activity have usually higher kurtosis values. All coefficients with an 

absolute value less than 4 times the standard deviation of the identified noise regions were set to 

zero and the de-noised signal was reconstructed using the inverse SWT. Action potential spikes 

were then automatically detected from the de-noised signal using a peak detector with a 3 msec 

time window.  

We analyzed diastolic (DBP), systolic (SBP), and mean blood pressure (MBP) series, 

continuous respiration, and detected MSNA spikes over 200 second periods after a stabilization 

of 100 sec for supine, 15, 30, 45, and 60 degrees of head-up tilt. Diastolic, systolic, and mean 

blood pressure variability series were formed by linearly interpolating the detected values onto 

regular intervals of 200 msec (5 Hz). The detected MSNA spikes were used to form a spike rate 

series using a previously described method [23;31]. Briefly, a binary spike train was formed by 

inserting delta functions into a 5 kHz sampled series at the detected spike times. The spike train 

was converted to a spike rate series by convolving with a Gaussian filter with a 3 Hz cutoff 

frequency [23]. The spike rate signal was decimated by iteratively convolving with an anti-

aliasing Gaussian filter with a corner frequency of 0.4 times the current sample rate and down-

sampling by two until a sample rate of 4.88 Hz was reached. The resultant series was linearly 

interpolated at 5 Hz. The respiration signal was also decimated to 5 Hz after application of an 

eighth-order, anti-aliasing, Chebyshev Type I lowpass filter with a corner frequency of 2 Hz. 

Each series was detrended by removing the mean offset plus the very low frequency (VLF) 

components (0-0.04 Hz) by filtering with a high-pass, finite impulse response filter with a corner 

frequency of 0.04 Hz prior to any analysis or comparisons.  

Low frequency (LF) and high frequency (HF) time series were formed using a set of band 

pass filters based on the Meyer wavelet, a modulated sinusoid with compact support [32], with 

approximate respective pass bands of 0.04 - 0.15 Hz (LF) and 0.15 - 0.5 Hz (HF). Details of 

wavelet filtering can be found elsewhere [33]. 

 

Data Analysis 

To study the relationship between each blood pressure series (SBP, DBP, and MBP) and 

the MSNA spike rate and respiration, time-based cross-correlations were performed. In general, 

during the cross-correlation procedure one time series, x, was time-delayed between τstart and τend 

seconds while the other series, y, remained stationary. After each delay, a correlation was 
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performed between the two series. First, the low frequency components of each series were 

compared, using the LFSpike Rate and LFRESP as x and the LFSBP, LFDBP, and LFMBP as y. The 

procedure was then repeated using the HF components of each series. For the HFSpike Rate and the 

respiratory series, the maximum absolute correlation was recorded for time delays between τstart 

= 10 sec and τend = 0 sec, meaning that our only interest was the relationship in which changes 

respiration and HFSpike Rate preceded changes in the BP. For the LFSpike Rate and the low frequency 

components of the blood pressure series, two relationships were investigated. The minimum 

negative cross-correlation value was termed the baroreflex-feedback relationship and studied 

within the period of τstart = 2 sec and τend = -2 sec. In this case, a negative time delay (e.g. τ = -2 

sec) would indicate that the spike rate is advanced in time. The positive maximum cross-

correlation value was termed the feed-forward relationship and studied within the period of τstart 

= 10 and τend = 0 sec. 

Prior to modeling the BP fluctuations, the LFSpike Rate was delayed in time by an amount 

equal to the feed-forward delay and the HFRESP was delayed by an amount equal to the time-shift 

which produced the maximum absolute correlation to the HFBP. 

 

Data Predictive Modeling 

A two component, moving average (MA), linear model was used to predict the 

fluctuations in blood pressure using the low frequency oscillations in sympathetic nerve activity 

and the high frequency fluctuations in the respiration. First, the low frequency model (LF model) 

predicts the current value of the low frequency BP series (LFBP) using moving average model in 

which the output is a linear combination of P previous values of the low frequency components 

of the spike rate series (LFSpike Rate). 
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Similarly, the high frequency model (HF model) predicts the current value of the high 

frequency BP series (HFBP) using a linear combination of K previous values from the high 

frequency respiration series (HFRESP). 
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The proposed total model, as shown in Figure 2, is a summation of the outputs of the LF 

and HF models and predicts the current value of the detrended blood pressure series.  

 

ΣLFSpike Rate
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HFBP

LF Model

HF Model
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Figure 2. Block diagram of the components used to predict the fluctuations in the blood pressure (BP). H1 is a 
moving average (MA) model to convert the low frequency (LF) spike rate to the LF-SBP and H2 is the MA model to 
convert high frequency (HF) respiration (RESP) to HF-BP. The sum of the LF and HF model predict the total BP 
fluctuation. 
 

The coefficients for each model were computed using the Steiglitz-McBride method [34] 

and the optimal values for P or K (model order) was selected as the value which minimized the 

final prediction error (FPE) [35] with a maximum order of 25 coefficients, or 5 seconds of past 

data. The model is based on equidistant data because of the continuous nature of the spike rate 

and respiratory input signal. 
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Where  is the mean squared error between the model and true output, N is the total number of 

points in the signal, and P is the current model order. This modeling technique was applied to 

components of the signals recorded during a baseline period and over increasing orthostatic load 

during graded head-up tilt. The values predicted by each model were compared to the 

2
Eσ
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corresponding measured values using point-by-point linear regression analysis and by comparing 

their power spectral density (PSD) in specific frequency ranges.  

 

Power Spectral Density 

The Welch Periodogram method [36] will be used to compare the estimated power 

spectral density (PSD) in the measured BP series to that of the BP series predicted by the total 

model. The two hundred-second signals, which were recorded and predicted during each angle of 

tilt, were divided into 60-second segments that overlapped by 50%. Each segment was 

detrended, multiplied by a Hamming window, and zero-padded to the next power of two. The 

power in the low (0.04-0.15 Hz) and high (0.15-0.5 Hz) frequency ranges was estimated as the 

area under the PSD curve.  

 

Statistics 

Regression analysis was performed using a linear least squares fit and the Pearson 

correlation coefficient (r) or the coefficient of determination (R2) was used to quantify the 

goodness of fit. The Wilcoxon signed ranks test was used to test for significant differences in the 

correlation between the components of three different BP series (SBP, DBP, and MBP) and the 

components of the sympathetic spike rate and respiration. This test was also used to determine if 

significant differences existed between measured and model-predicted BP values at different 

degrees of head up tilt. A probability value of 0.05 was defined as the significance level. Unless 

otherwise noted, all data are reported as means ± SEM. 

 

Results 

 

Correlations between Oscillatory Components 

Figure 3 displays a representative temporal relationship between SBP and MSNA spike 

rate. The sample-to-sample correlation between the unfiltered SBP and spike rate does not reveal 

an inherent linear relationship between the two series (r=-0.37; Fig. 3A, bottom panel). However, 

their LF components appear to have two distinct relationships. Shifting the LFSpike Rate series back 

in time by 0.4 sec results in a strong negative correlation to the LFSBP (r=-0.87; Fig. 3B, bottom 

panel), which indicates the strength of the baroreflex mediated feedback (high spike rates 
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occurring during low blood pressures). Shifting the LFSpike Rate series back in time by 5.2 sec 

yields a strong positive correlation to the LFSBP, (r=0.70; Fig. 3C, bottom panel). This suggests 

the existence of a feed-forward relationship between the two series, meaning that an increase in 

LFSpike Rate will produce a corresponding increase in the LFBP. 

 

 
Figure 3. (A) Correlation between systolic blood pressure (SBP) and spike rate time series. (B) Baroreflex mediated 
feedback relationship between the low frequency (LF) components of SBP and spike rate. (C) Feed forward 
relationship between the LF components of the SBP and spike rate. The unshifted LF-spike rate time series are 
shown with broken lines. 
 

A similar relationship can be found between the SBP, the respiration, and their high 

frequency components (Fig. 4). The unfiltered time series have a lower correlation coefficient 

(r=-0.41; Fig. 4A, bottom panel), but after the application of an HF-band wavelet filter, the 

sample-to-sample correlation improves significantly (r=-0.86; Fig. 4B, bottom panel). 
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Figure 4. (A) Correlation between systolic blood pressure (SBP) and respiration (RESP) time series. (B) Correlation 
between the high frequency (HF) components of each time series. 
 

A complete correlation analysis was performed between the LF and HF components of 

the SBP, MSNA spike rate, and respiration for all eight subjects during the baseline period (Fig. 

5). The baroreflex mediated feedback correlation (r=-0.69±0.05) was significantly greater than 

the feed-forward relationship (r=0.58±0.03; Fig 5, top left panel) between the LFSBP and the 

LFSpike Rate. However, the feed-forward time delay (τ=5.625±0.15s, increases in spike rate lead to 

increases in blood pressure) was used in favor of the feedback time delay (τ=0.375±0.10s, spike 
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rate decrease occurs with blood pressure increase) in the predictive model because the intention 

of this model is to predict LF changes in blood pressure from the LF changes in spike rate. The 

HFSpike Rate and the HFSBP were not found to be significantly correlated (r=-0.22±0.04; Fig 5, top 

right panel). Conversely, the HF components of the respiration and SBP are highly correlated 

(r=-0.79±0.04; Fig 5, bottom right panel) while their LF components have a significantly lower 

and less consistent correlation across subjects (r=0.45±0.08; Fig 5, bottom left panel). 

When the correlation analysis was repeated using the DBP and MBP, the feedback and feed-

forward correlations to the LFSpike Rate did not differ significantly from those of SBP (p>0.05 in 

each case). The LFSBP (r=-0.58±0.03; τ=5.625±0.15s), LFDBP (r=0.62±0.05; τ=5.1±0.14s), and 

LFMBP (r=0.62±0.04; τ=4.8±0.17s) also had statistically similar feed-forward correlations to the 

LFSpike Rate. However, the correlation between the HFRESP and the HF component of the DBP and 

MBP were significantly less than that between the HFRESP and the HFSBP (p<0.01 in both cases). 

Consequently, the LF and HF components of the SBP will serve as the output of the predictive 

model in the subsequent sections.  

 

 
Figure 5.  Correlations between low frequency (LF, left column) and high frequency (HF, right column) 
components of systolic blood pressure (SBP) and the LF and HF components of spike rate (top) or respiration 
(bottom) during baseline conditions. 
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Figure 6. (A) Measured (gray solid line) and model predicted (broken black line) time series for the low frequency 
component (LF, top), high frequency component (HF, middle), and total (LF+HF, bottom) detrended systolic blood 
pressure (SBP). (B) Correlations between the measured and predicted LF and HF time series in (A). (C) Correlations 
between the predicted time series in (A) and the measured total SBP. LF-spike rate and HF-respiration were used as 
the LF and HF model inputs, respectively (See Fig. 2). 
 

Predictive Modeling during Resting Supine Position 

The LF model (Fig. 2) used past values of the LFSpike Rate to predict the current values of 

the LFSBP. The results of this model during baseline are displayed in Figure 6A. The oscillations 

in the predicted LFSBP are shown to follow those found in the measured LFSBP (Fig. 6A, top 

panel) and the two series have a strong linear correlation (r=0.80; Fig. 6B, top panel). The HF 

model (Fig. 2) used past values of the HFRESP time series to predict the current values of the 

HFSBP series. This model also demonstrates an ability to follow the measured HFSBP (Fig. 6A, 

middle panel) and the measured and predicted sequences show a high positive correlation 

(r=0.94; Fig. 6B, middle panel). When the output of the LF and HF models were summed, the 
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resultant series was able to predict the total fluctuations found in the SBP (Fig. 6A, bottom 

panel). As shown in Fig 6C, the sum of the LF and HF models produces a greater correlation to 

the measured SBP (r=0.78; bottom panel) than either the individual LF (r=0.70; top panel) or HF 

(r=0.37; middle panel) models. (Statistical analyses for the supine model are discussed in the 

following section). 

 

 
Figure 7. Measured (gray solid line) and model predicted (broken black line) detrended systolic blood pressure 
during supine, 15, 30, 45, and 60 degree head up tilt (HUT, left panels) Correlations between the measured and 
predicted time series are shown in the right panels. 
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Predictive Modeling during Orthostatic Stress 

The LF, HF, and total models were also tested over increasing degrees orthostatic stress 

during head-up tilt (HUT) (Fig. 7). The left column of Figure 7 shows that the model is effective 

in predicting the total oscillations in the SBP components. The right column demonstrates that 

the correlation between measured and predicted SBP fluctuations remains strong during 

increasing orthostatic load. 

The mean value of the correlation coefficients between the measured LFSBP and the 

model predicted LFSBP for eight subjects during resting supine position was r=0.74±0.03 and this 

value did not change significantly during increased orthostatic load (p>0.05 in all cases). The 

average order used for the LF model ranged between 14 and 19 coefficients (from 2.8 to 3.8 sec 

of past data) but did not differ significantly (p>0.05) over all degrees of HUT. The mean 

correlation for the measured HFSBP and the predicted HFSBP was r=0.89±0.02 during supine 

baseline. This correlation became significantly reduced during 30o (r=0.68±0.04; p<0.01) and 

45o (r=0.74±0.06; p<0.05) of HUT but was not statistically different from baseline at 15o or 60o 

of HUT. The average HF model order varied between 14 and 18 coefficients (from 2.8 to 3.6 sec 

of past data) but did not differ significantly (p>0.05) over all degrees of HUT. Figure 8 displays 

the correlation between total measured fluctuations in SBP and the SBP fluctuations predicted by 

the model during supine and graded tilt conditions. The mean correlation between the measured 

and model predicted SBP fluctuation during each degree of tilt fell within the range of r=0.68 

and r=0.79 and were not statistically different from one another. Note that three subjects fainted 

during 60o HUT and were not included in the results at this tilt angle. 

 

 
Figure 8. Correlations between measured and model predicted systolic blood pressure (SBP) during supine, 15, 30, 
45, and 60 degree head up tilt (HUT). 
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The relationship between the LF and HF power of the measured and predicted SBP 

signals for each subject during each degree of HUT is shown in Figure 9. The slope of both 

regression lines is near 1 (0.9 for LF power and 1.1 for HF power) and the y-intercepts are 0, 

indicating a close identity of the model and measured values. The respective R2 values for the 

regression analysis of the LF and HF powers indicate that 78 and 91 percent of the variability in 

power can be explained by the linear relationship. 
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Figure 9. Cumulative relationship between the low frequency (LF, left panel) and high frequency (HF, right panel) 
power derived from the measured and model predicted systolic blood pressure (SBP) series during supine, 15, 30, 
45, and 60 degree head up tilt (HUT). 
 

One Order versus Optimal Order Model. 

When a simple slope model (model order = 0, 1 coefficient) was used to predict the 

components of the SBP from the components of the spike rate and respiration, the correlation 

between the measured and predicted values still indicated a strong linear relationship (mean r = 

0.60 for total model), but the correlations were significantly less than those computed using the 

optimal model order defined by the minimum final prediction error (FPE, p<0.01). Similarly, 

when optimal model coefficients determined from the baseline period were used to predict the 

components of the SBP from those of the MSNA spike rate and respiration during the graded tilt, 

the correlation was significantly lower than those obtained using the optimal models for each 

recording (p<0.01 in all cases). 
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Discussion 

In this study, we report three main findings: 1) The LFBP has a strong, linear, temporal 

correlation to the LFSpike Rate, 2) The HFSBP and HFRESP also have a strong temporal correlation, 

and 3) A large portion of the fluctuations in blood pressure can be explained using the LFSpike Rate 

and HFRESP as the inputs to linear, moving average models. 

 

Relationship Between LFSBP-LFSpike Rate

A great deal of indirect evidence exists which supports the hypothesis that low frequency 

changes in the MSNA contribute to the low frequency changes in blood pressure. For example, 

the LFSBP has been shown to increases during periods of sympathetic activation, including 

orthostatic stress, such as LBNP [37-39] and upright tilt [7;40], infusion of vasoactive drugs such 

as nitroprusside [38], and hypovolemia [41]. Similarly, LFSBP power has been shown to decrease 

significantly during ganglionic blockade in normal subjects [8-10] and in patients with essential 

hypertension and multiple system atrophy [8], indicating that it is largely mediated by the 

sympathetic nervous system. Finally, the LFSBP and LFMSNA power have been shown to have 

corresponding increases during head up tilt [7] and nitroprusside infusion, while both decrease 

during phenylephrine infusion [42]. 

Conversely, a previous model of the human BP by Myers, et al (2001) reported that the 

sympathetic activity contributes little to the low frequency BP oscillations [5]. In the present 

work, however, we have demonstrated a strong temporal forward and feedback correlation 

between the low frequency fluctuations in SBP and the low frequency changes in MSNA spike 

rate in healthy humans during resting conditions. The relationship also improves when past 

values of the LFSpike Rate are incorporated to predict the current value of the LFSBP (Fig. 6; top 

row) and this is unaffected by increased orthostatic load.  

The discrepancy in these results may be explained by several differences in protocol. 

First, the previous model used normalized arbitrary units of integrated sympathetic burst area to 

form a sympathetic activity series, while our process involved detected sympathetic action 

potentials. The action potential detection is not based on arbitrary units and is less sensitive to 

the pass-band noise and artifacts that influence the burst area. Next, we used a physiological 

maneuver (head-up tilt) rather than vasoactive or metabolic drugs to induce an increased 

sympathetic state. These pharmacological agents may block or reduce the ability of the 
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vasculature to accept modulatory sympathetic input, particularly at high doses when operating on 

the non-linear portion of the baroreflex curve. Finally, the authors elected to use 0.05 – 0.20 Hz 

as the LF frequency range, which is broader than the range recommended by the Autonomic 

Task Force (0.04-0.15 Hz) [43], although breathing was controlled at a higher frequency (0.25 

Hz) [5].  

Interestingly, Myers, et al. also identified the strongest linear relationship between the 

LFSBP and the LFMSNA near 0 sec, which results in a highly negative correlation between the two 

(MSNA is high at low BP, and vice versa). In the present work, we have termed this the 

baroreflex “feedback” relationship, although the change in LFMSNA often precedes or occurs 

concurrently with changes in LFSBP (average τ=-0.375). We hypothesize that this could be a 

sympathetic response to the change in blood pressure (first deviation) rather than the absolute 

blood pressure itself [44]. This is supported by animal studies which have shown baroreceptors 

afferents respond strongly to changes in pressure [45]. 

The authors of this previous model of LFSBP using LFMSNA chose to use this inverse, 

feedback relationship as the input to their model, which necessitated the use of a negative model 

coefficient [5]. Instead, we have elected to use the feed-forward relationship, defined as the 

maximum positive cross-correlation between LFSpike Rate and LFSBP (high values of MSNA 

ultimately leading to high values in BP). The feed-forward time dealy was found to be 

approximately 5.6 sec, meaning a peak in the LFSBP occurred 5.6 sec after a peak in the LFSpike 

Rate. This finding supports the hypothesis that smooth muscle of the vasculature is slow to 

respond to an increase in sympathetic activity (~5sec delay) [1;46;47]. However, when the 

feedback relationship is used as the input to the LF model, it results in significantly higher 

correlations between the measured and predicted LFSBP (r=0.744±0.03 vs r=0.81±0.03, p<0.025 

for the mean feed-forward and feed back time shifts, respectively). 

 

Relationship Between HFSBP and HFRESP

Oscillations in the blood pressure corresponding to respiratory rhythms have been well 

documented using spectral methods [48-50]. The high frequency range of the blood pressure 

variability contains the range of frequencies associated with normal breathing rhythms. 

Ganglionic blockade has little or no affect on the HFBP, suggesting that these oscillations are 
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unrelated to the sympathetic activity and primarily due to changes in intrathoracic pressure 

caused by the mechanical aspects of respiration [8-10]. 

Here we report similar findings. We show that the temporal correlation between the 

HFSBP and the HFSpike Rate is low (r=-0.22±0.04), meaning that vessels act as a neural low pass 

filter [14] blocking the transmission of the HF oscillations in MSNA to the arterial pressure. On 

the other hand, the respiration has a strong mechanical influence on the blood pressure, 

evidenced by the high temporal correlation (r=-0.79±0.04) between the HFSBP and HFRESP during 

supine, resting conditions. 

The HFSBP was found to have a significantly higher correlation to the HFRESP than either 

the high frequency component of the diastolic (r=-0.45±0.06) or mean (r=0.56±0.08) BP during 

resting conditions. This is consistent with the model proposed by Saul, et. al. (1991) which 

described that the mechanical affects of breathing would have a larger impact on the SBP than 

DBP due to the increased capacitance offered by the ventricles during systole [47]. 

 

Predictive Model 

We have described how the fluctuations in the SBP can be predicted by summing an 

optimized linear combination of past LF spike rate values, which predict the LFSBP, and past 

HFRESP values, which predict the HFSBP. Using this approach, we were able to generate predicted 

SBP fluctuation series that had good correlations to the measured values during baseline and 

graded HUT conditions. The relationship between the power of the predicted and measured SBP 

also indicated that the models were able to explain a large majority of the fluctuations.  

The optimized models produced predicted values that were more strongly correlated to 

the measured SBP fluctuations than a simple slope model, suggesting that some past information 

from the respiration and sympathetic spike rate contributes to the fluctuations in the SBP. Also, 

when model coefficients computed during baseline were used to predict the SBP oscillations 

during varying degrees of HUT, the correlations between measured and predicted SBP values 

were reasonable, but significantly less than those predicted with the optimal models for each 

recording. This indicates that the relationship between the BP, sympathetic activity, and 

respiration changes during orthostatic load and cannot completely be explained by models 

created during baseline conditions. 
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Limitations 

Very low frequency (0.004-0.04 Hz) fluctuations were excluded from the present model 

mainly because the length of each segment analyzed was too short (~200 sec) to accurately 

calculate the influence of oscillations at this frequency range on the SBP. In this study, all 

subjects maintained a spontaneous breathing rate above 0.15 Hz (in the HF range), however 

respiratory frequencies lower than 0.15 Hz would cause additional respiratory input in the LF 

range and an LF model based solely on the LFSpike Rate could not accurately predict changes in the 

LFSBP. The present model only takes into account open-loop properties of the baroreflex system 

and ignores its closed-loop properties, i.e. feedback from the baroreceptors, which may also 

contribute to changes in BP and spike rate fluctuations [51]. Finally, although indirect measures 

of cardiac output (i.e. RR interval) have been shown to contribute to the fluctuations in BP [5] 

and more direct measures (acetyline rebreathing) have been correlated to changes in mean 

human sympathetic activity [52] its effect on BP fluctuation was not taken into account in this 

model. The addition of cardiac output as an input may help to explain the remaining variability 

in the BP oscillations. 

In conclusion, we have shown that a simple two component model of neural sympathetic 

and mechanical respiratory input can explain the majority of blood pressure fluctuation during 

resting condition and orthostatic stress in healthy subject. 
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CHAPTER VI 

 

WAVELET SPECTRAL COMPONENTS OF VASOVAGAL SYNCOPE WITH AND 
WITHOUT ASYSTOLE DURING ORTHOSTATIC STRESS IN HEALHTY SUBJECTS 

 

Abstract 

Orthostatic stress can cause syncope with poorly understood etiology. In rare cases, the 

syncope can end in a life threatening asystole. We tested the hypothesis that different autonomic 

control mechanisms are responsible for the two outcomes. We retrospectively studied 40 healthy 

subjects without a history of syncope during orthostatic stress. All subjects experienced syncope 

and in 18 cases the vasovagal syncope ended with asystole > 3sec. We analyzed R-R intervals 

(RRI) and continuous systolic blood pressure (SBP) before syncope. A modified continuous 

wavelet transform capable of handling non-stationary data was used to analyze the low and high 

frequency oscillations (LF 0.04-0.15, HF 0.15-0.4 Hz). We identified three general patterns of 

syncope amongst the pooled data. Statistical comparisons were made between subjects with the 

most prevalent pattern, rapid onset vasovagal syncope, who experienced syncope alone and 

syncope with asystole. The asystole group had a higher rate of R-R prolongation which occurred 

over a shorter final phase of syncope. HFRRI increased in both groups during the syncopal phase; 

however LFRRI increased only in the asystole group. LFSBP decreased in the group with syncope 

alone, but was slightly elevated in the asystole group. During the final phase of syncope, both 

groups showed vagal cardiac activation reflected in an increase in HFRRI. In the group with 

syncope alone, a decrease in LFSBP indicated additional peripheral sympathetic withdrawal. In 

contrast, sympathetic withdrawal was not present in the asystole group. In conclusion, different 

autonomic control mechanisms are responsible for the different outcome of syncope with and 

without asystole. 

 

Introduction 

Syncope is a common clinical condition [1]. It is broadly defined as a transient loss of 

consciousness brought about by rapid, global cerebral hypoperfusion which usually leads to 

falling [2]. However, the many causes of syncope are difficult to characterize and classify [3]. 

Most standard syncopal classifications have identified neurally mediated, or vasovagal, syncope 

as a distinct category of syncope [1-3]. Vasovagal syncope is generally characterized by vagally 
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mediated bradycardia coupled with arterial dilation and resultant hypotension in response to a 

number of stimuli, including orthostatic stress [2;4;5]. It can be recurrent and happen as part of a 

clinical syndrome that disrupts quality of life [1], but can also occur in otherwise healthy 

individuals in response to orthostatic stress [6-9] or infusion of vasoactive agents [10]. Although 

rare, vasovagal events in both patients and healthy individuals can terminate in a life threatening 

stoppage of the heart known as asystole [1].  

Analysis of the dynamic of blood pressure and heart rate preceding vasovagal events 

during diagnostic and research-based orthostatic tests, such as head up tilt and lower body 

negative pressure, has identified several common patterns that can be used to sub-categorize the 

reaction [11]. While these classifications are admittedly arbitrary, they have proved useful in the 

clinical diagnosis and treatment of syncope [2]. To date, most vasovagal classifications have 

been concerned with categorizing patients with recurrent syncope. But since the “false positive” 

tilt response in normal subjects are also common [12], vasovagal patterns in normal subjects also 

deserve attention and may provide a less obstructed view of the mechanism of vasovagal 

syncope, independent of any underlying pathophysiology.  

Profiles of the heart rate variability (HRV) and blood pressure variability (BPV) during 

the vasovagal reaction could help clarify and extend the definition of each sub-class of vasovagal 

syncope, which until now have relied on central tendencies in heart rate and blood pressure. 

HRV and BPV are established analysis techniques which can be used to estimate vagal [13;14] 

and sympathetic [15;16] activity when more direct measures are unavailable. In the past, the 

application of standard HRV and BPV methods, such as the Fourier transform or autoregressive 

(AR) modeling, to data collected during syncope have been limited because the transient, non-

stationary nature of the vasovagal reaction violates the mathematical assumptions of these 

techniques. Recently, however, more appropriate alternative HRV and BPV analysis methods, 

such as complex demodulation [17] and the wavelet transform [18], have revealed similar, 

consistent patterns in HRV and BPV during the “classic” vasovagal reaction. These methods 

could also be used to study other sub-categories of the vasovagal response, including those that 

terminate in asystole. 

While asystole has been mentioned as a potential outcome of vasovagal syncope and has 

even been used to sub-classify the vasovagal reaction [11], researchers have chosen to focus on 

the cardiac electromechanical origins of asystole [19;20] and have largely ignored the 
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contribution of the peripheral blood pressure and autonomic nervous system during orthostatic 

stress to this condition. Methods used to describe the HRV and BPV response during asystole 

could provide insight into its mechanism, which is important for the diagnosis and management 

of syncope in patients and could be useful in the development of drugs and pacemakers. 

In this study, we will retrospectively analyze a population of healthy subjects who have 

experienced vasovagal syncope and vasovagal syncope with asystole using a modified wavelet 

transform technique. We hypothesize that different subclasses of the vasovagal response can be 

described by different HRV and BPV patterns and that separate autonomic control mechanisms 

are responsible for syncope with and without asystole. 

 

Methods 

 

Subjects and Clinical Conditions 

We retrospectively studied 39 healthy subjects who experienced syncope during 

orthostatic stress. All subjects underwent extensive physical examination and did not have any 

signs of cardiovascular disease or history of syncope prior to the study. Data were collected 

during a baseline period, during which the subjects remained still and silent in a supine position, 

and during a tilt table test with or without additional lower body negative pressure suction. The 

orthostatic intervention was halted immediately after loss of consciousness. In 17 subjects (age 

33.5 ± 3.5, 8 female) the syncope ended in asystole, while in the other 22 (age 30.9 ± 2, 15 

female) it did not. The studies were conducted at three institutions and all methods were 

approved by the respective institutional review boards. 

The application of orthostatic stress to subjects was observed to produce transient 

changes in the heart, blood pressure, and their variability sequences. We hypothesize that these 

changes are due to natural, physiologic accommodation to the new orthostatic load. In either 

case, we were interested only in the changes in heart rate and blood pressure prior to syncope 

independent of the transient affects caused by increased orthostatic stress on these variables. 

Therefore, only subjects that fainted at least 240 seconds after the application or modification of 

the orthostatic stress were analyzed. This meant that data from 7 subjects were not included in 

the averages or statistical comparisons in the period prior to syncope or asystole. 
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Instrumentation and Software 

The electrocardiogram (ECG) of lead II was recorded with a Gould ECG/Biotach 

amplifier (Gould Electronics, Cleveland, OH, USA). The continuous finger blood pressure (BP) 

waveform was measured by photoplethysmographic-based volume clamp method [21] with a 

finger cuff on the middle finger of the non-dominant hand (Finapres, Ohmeda, Englewood, CO, 

USA) and verified using brachial BP obtained by automated auscultometric device (Dinamap 

blood pressure monitor, model 1846SX, Critikon, Tampa, FL) on the contralateral arm. The hand 

with the Finapres sensor was fixed at heart level. Data were acquired at 500 Hz, 14 bit resolution 

using the Windaq data acquisition system (DA-720, DATAQ Instruments, Akron OH). and 

analyzed offline with custom software written in the PV Wave (Visual Numerics Inc., Houston, 

TX) and MATLAB (Mathworks; Natick, MA) environments. QRS detection was performed 

using a modified Pan-Tompkins algorithm [22]. Systolic and diastolic values in the continuous 

blood pressure recordings were automatically identified as the maxima and minima for each 

cardiac cycle. All detections were visually verified. 

Syncope Detection 

The onset of RR-Interval (RRI) prolongation and systolic blood pressure (SBP) decrease 

were determined using semi-automated, custom written software. The RRI and SBP variability 

series were formed by linearly interpolating the detected values onto regular intervals of 200 

msec (5 Hz). A median filter with a length of 150 data points (30 sec) was applied to each 

sequence to identify the median trend independent of the very low (VLF; 0.004-0.04), low (LF; 

0.04 – 0.15 Hz), and high frequency (HF; 0.15 – 0.40 Hz) components defined by the Autonomic 

Task Force [23]. The nearest time prior to syncope at which the sign of the first difference of the 

median trend changed (from negative to positive for onset of RRI increase or positive to negative 

for onset of SBP decrease) was automatically identified. The times of onset were visually 

inspected and manually corrected if necessary. All of the subjects were then placed into several 

groups based on the time of onset of RRI increase and SBP decrease.  

 

Mathematical Analysis 

The traditional methods of obtaining time-varying spectral information, such as the short 

time Fourier Transform (STFT) and moving autoregressive (AR) models, typically divide the 

signal into an arbitrary number of consecutive or overlapping segments of equal length and 
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compute spectral estimates over the entire frequency bandwidth for each of these segments. The 

time and frequency resolution of the analysis is governed by the length of the segments. Using 

longer segments yields higher frequency resolution and more accurate information about broad 

(low frequency) trends in the signal. However, traditional analysis methods assume that the 

frequency content remains constant, or stationary, over the entire length of each segment [24]. 

Longer segments are more likely to contain intrasegmental changes in frequency content, making 

the assumption of stationarity invalid and leading to inaccurate spectro-temporal information. 

Wavelet analysis offers a more flexible solution to the problem of time-frequency 

analysis. Rather than analyzing the entire bandwidth of a signal using a fixed time window, the 

continuous wavelet transform (CWT) uses broad, dilated wavelets to analyze long-term trends 

and short, compact wavelets to detect high frequency oscillations. In this way, the CWT is able 

to use an adjustable time window to analyze different frequency bands. Previous use of the 

wavelet transform to analyze nonstationary heart rate and blood pressure data is well 

documented [18;25-30]. A brief introduction to the subject of wavelets is presented in Appendix 

A, but a more complete mathematical description is given elsewhere [31]. 

A Hilbert-modified CWT algorithm was formulated in order to estimate instantaneous 

spectral power of heart rate and blood pressure variability, similar to the Hilbert-modified 

discrete wavelet transform used previously [28;32;33]. In this method, the CWT coefficients of 

the equidistantly sampled (5 Hz) RRI and SBP series were computed using the Meyer wavelet 

[34] at scales of 8, 16, 32, and 64 which have corresponding center frequencies of 0.43, 0.22, 

0.11, and 0.05 Hz. The CWT coefficients (ds) of each scale (s) contain information about a 

different frequency bandwidth, but in order to convert the CWT coefficients to spectral power, 

the instantaneous amplitude of the filtered signals must be computed using the analytic signal 

from the Hilbert transform (See Appendix D for more detail) [32]. The output is then squared 

and scales are summed to provide the approximate frequency bands prescribed by the Autonomic 

Task Force [35], The wavelet scales and resampling frequency (5 HZ) were chosen to produce 

approximate LF (d32 + d64) and HF (d8 + d16) power bands. The Meyer wavelet was chosen over 

similar wavelets, such as DB4 and Symlet 8, because its output was observed to be most similar 

to the output of the Fourier Transform when used on stationary signals. 
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Data Analysis 

We analyzed the R-R interval series (RRI) and systolic blood pressure (SBP) series 

during a 5 minute baseline period and 5 minutes prior to syncope. The end of the syncope period 

was established as the cardiac cycle just prior to asystole or loss of consciousness (in the case of 

syncope alone). The Hilbert modified CWT described above was used to examine the dynamics 

of low frequency (LF; 0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) oscillations during 

both the baseline and syncopal periods. Average values for RRI, SBP, LFRRI, HFRRI, LFSBP, and 

HFSBP over the last minute of the pre-syncopal phase were compared to averages over the final 

syncopal phase associated with RRI prolongation and blood pressure decrease. Both the slope of 

the RRI prolongation and the duration of the final phase were also calculated and compared. 

 

Statistics 

The non-parametric Mann-Whitney test for unpaired data was used to test for significant 

differences between groups and the non-paramteric Wilcoxon signed ranks test for matched-pairs 

was used to test for significant differences between time periods within the same group. A 

probability value of 0.05 was defined as the significance threshold. Unless otherwise noted, all 

data are reported as means ± SEM. 

 

Results 

 

Baseline Comparisons 

The baseline information for the subjects who experienced syncope (Syncope) and 

syncope with asystole (Asystole) is displayed in Table 1. There were no significant differences in 

the ages of the two groups. The mean RR- interval (RRI) tended to be higher in the asystole 

group, but the difference was not significant. Both the low frequency and high frequency 

oscillations in RRI (LFRRI and HFRRI) and the low frequency oscillations in systolic blood 

pressure (LFSBP) tended to be higher in the asystole group, but the differences were also not 

significant. The asystole group did have significantly lower HFSBP power than the syncope alone 

group during resting baseline conditions. 
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Table 1. Baseline values for subjects who developed syncope with and without asystole. 

 Syncope (N=22) Asystole (N=17) p 

R-R Interval   (msec) 913.5 ± 24.2 1001.6 ± 47.5 0.20 

Systolic Pressure   (mmHg) 123.6 ± 3.1 118.1 ± 4.5 0.39 

Diastolic Pressure   (mmHg) 66.0 ± 2.6 64.4 ± 2.4 0.68 

LFRRI   (msec2) 865.4 ± 129.0 1292.4 ± 202.9 0.09 

HFRRI   (msec2) 675.7 ± 118.4 930.0 ± 261.1 0.64 

LFSBP   (mmHg2) 5.4 ± 0.9 9.1 ± 2.5 0.30 

HFSBP   (mmHg2) 1.9 ± 0.3 1.1 ± 0.2 0.006 

Values are expressed as the mean ± SE. 

  
Syncope Groupings 

Three general patterns of syncope from this group of subjects were empirically identified 

in the pooled data from observations of the time of onset of RRI prolongation and BP decrease. 

Representative RRI and SBP series from each pattern are depicted in Figure 1. Quantitative 

classifiers for the three groups can be found in Figure 2. 
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Figure 1. Three types of syncope. (A) Rapid vasovagal syncope occurs when the time of RRI prolongation (TRRI) is 
roughly the same as the time of SBP decline (TSBP) and the syncopal period is short (<60 sec). (B) Slow vasovagal 
syncope occurs when TRRI is roughly equal to TSBP and the syncopal period is longer (>60 sec). (C) During 
vasodepressive syncope the SBP drops before RRI prolongation. 
 

The pooled syncope alone and syncope with asystole data were each first divided into 

two subpopulations based on the difference between the length of time of RRI prolongation 

(TRRI) and the length of time of SBP decrease (TSBP) which were both semi-automatically 

defined as described above. When the onset of RRI prolongation and SBP decrease occurred in 

roughly the same period (i.e. TSBP – TRRI < 17 sec), the reaction was classified as a combined, or 

vasovagal, response (Fig 2). When the onset of SBP decrease substantially preceded the onset of 

RRI prolongation (TSBP – TRRI > 60 sec), the reaction was classified as vasodepressive (Fig. 2). 

The vasovagal reaction was more prevalent than vasodepressive reaction in both the syncope 

alone (14 vs 6 subjects, respectively) and syncope with asystole (9 vs 3 subjects, respectively) 

groups. Interestingly, the difference between the time of onset of SBP decline and RRI 

prolongation (TSBP - TRRI) was significantly less in the group which experienced vasovagal 

syncope plus asystole than in the group which experienced vasovagal syncope alone. 

Additionally, in the majority of cases (6 of 9), the time of onset RRI prolongation occurred prior 

to the time of onset of SBP decrease (TSBP – TRRI<0) in the group with vasovagal syncope plus 

asystole, whereas in the group with vasovagal syncope alone, this scenario occurred in only 3 of 

14 cases (Fig 2). 
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Figure 2. The difference between the duration of RRI prolongation (TRRI) and SBP drop (TSBP) during vasovagal 
syncope and vasovagal asystole (left) and vasodepressive syncope and vasodepressive asystole (right). TSBP – TRRI is 
the difference in the onset of SBP decline and RRI prolongation. Dashed lines are placed at TSBP – TRRI = 0 and TSBP 
– TRRI = 60. 
 

The group of subjects identified as having a vasovagal syncopal reaction was further 

divide based on the length of their syncopal phase. Individuals with a vasovagal reaction whose 

syncopal phase duration was greater than 60 seconds were said to have slow vasovagal syncope, 

while those with a syncopal phase less than 60 seconds experienced rapid vasovagal syncope. 

Slow vasovagal syncope was less prevalent and was identified in only 3 of the 14 subjects who 

experienced vasovagal syncope alone and in no subjects who experienced vasovagal syncope 

with asystole. The duration of the syncopal phase was also significantly shorter in the group with 

rapid vasovagal syncope ending in asystole than in the group with rapid vasovagal syncope alone 

(Fig. 3). 

In the following sections, statistical comparisons will be made between the groups who 

experienced rapid vasovagal syncope alone and rapid vasovagal syncope with asystole. Since the 

vasodepressive groups (i.e. vasodepressive syncope alone and vasodepressive syncope with 

asystole) contain only a small number of subjects, no statistical comparisons can be made at this 

time, but average data will be presented. Since the slow vasovagal syncope group contains a 
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small number of individuals and has no equivalent asystole group, statistical comparisons can not 

be made and group averages will not be presented. 
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Figure 3. Duration of the pre-syncopal phase for rapid vasovagal syncope alone (Syncope; left), and rapid vasovagal 
syncope with asystole (right). 
 

Time Dependent Spectral Analysis During Syncope 

The average wavelet-derived LF and HF spectral series for the RRI and SBP time series 

for rapid vasovagal syncope alone and with asystole are shown in Fig 4A and 4B, respectively. 

Noticeable differences exist in the time courses of the two groups. The LFRRI increases 

substantially in the last 30 seconds prior to asystole, but a similar increase is not evident in the 

LFRRI of the syncope alone group. The syncope alone group shows a decrease in the LFSBP in the 

final 60 seconds prior to syncope which is not demonstrated in the asystole group. Both groups 

appear to have elevated HFRRI and HFSBP prior to syncope. 

Similar discrepancies can be seen in the wavelet-derived LF and HF components of the 

RRI and SBP series of the groups with vasodepressive syncope alone and vasodepressive 

syncope with asystole (Fig 5A and 5B, respectively). The LFRRI again demonstrates an increase 
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over the last 30 seconds of the syncopal phase in the vasodepressive asystole group, a change 

which is not mirrored in the depressive syncope group. Both groups appear to have a drop in 

LFSBP by the end of the syncopal phase, but this drop occurs much earlier in the vasodepressive 

asystole group, whose LFSBP begins high and then drops approximately 200 seconds prior to 

asystole, even before the average SBP begins to fall. It must also be noted that the variability 

(SEM, dotted lines) in all of the parameters for both groups, but particularly for those of the 

vasodepressive syncope with asystole, is very high due to the small number of subjects involved 

in the averages. 
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Figure 4. The mean RRI, SBP, and their time-varying wavelet low frequency (LF) and high frequency (HF) 
components for rapid vasovagal syncope (A) and rapid vasovagal syncope with asystole (B). Solid line is the mean 
and dotted lines are the SEM. 
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Figure 5. The mean RRI, SBP, and their time-varying wavelet low frequency (LF) and high frequency (HF) 
components for vasodepressive syncope (A) and vasodepressive syncope with asystole (B). Solid lines are the 
means and dotted line are the SEM. 
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Comparison of Changes in HRV and BPV Before and During Syncope 

Statistical tests were used to determine if the changes in both time domain and spectral 

parameters for the two groups of rapid vasovagal syncope (i.e. with and without asystole) were 

significant. The RRI prolongation rate, calculated as the slope of the RRI over the syncopal 

phase, was found to be higher in the rapid vasovagal group with asystole than in the group with 

syncope alone (20.1±3.5 vs 7.0±0.9 msec/sec, p<0.01; Fig. 5A). The LFRRI was shown to 

increase significantly in the final phase of syncope in the vasovagal asystole group (838.6±215.8 

to 4922±1354 msec2, p<0.01), while only a slight increase occurred in the rapid vasovagal 

syncope alone group (525.7±200.6 to 678.3±215.5 msec2, p>0.05; Fig. 5B). The HFRRI was 

found to increase from 112.6±27.0 to 674.6±79.2 ms2 (p<0.01) in the vasovagal asystole group 

and from 52.1±18.2 to 285.2±123.1 ms2, p<0.02 in the rapid vasovagal syncope alone group (Fig 

5D). But while the syncope alone group demonstrated a significant drop in LFSBP during the final 

stage (20.7±4 to 9.7±1.6 mmHg2, p<0.01), LFSBP was slightly elevated in the asystole group 

(34.9±9.9 to 45.4±17.1 mmHg2, p>0.05; Fig 5B)  
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Figure 6. Difference between rapid vasovagal syncope (syncope) and rapid vasovagal syncope with asystole 
(asystole). The slope of the RRI increase in these two groups during the syncopal phase is compared in (A). Changes 
in wavelet LFSBP (B) LFRRI (C) and HFRRI (D) between the period of SBP decrease (syncopal phase) and 1-minute 
before (pre-syncopal phase) are also presented. 
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The same comparisons were made for the syncopal phases of the vasodepressive syncope 

groups with and without asystole. While tendencies are visible in the two groups, statistical 

comparisons did not reveal any significant differences due to the low number of subjects in each 

group. In both groups, the LFSBP tended to decrease during the syncopal phase, Five of the six 

vasodepressive syncope alone subjects and all of the vasodepressive asystole subjects 

demonstrated reduced LFSBP during vasovagal syncope (Fig. 7B). The LFRRI of the 

vasodepressive asystole group tended to increase, as each subjects showed a greater than 2-fold 

increase during the syncopal phase, while the vasodepressive syncope alone group did not 

demonstrate this tendency, 4 of the 6 subjects showed a decreased LFRRI during syncope (Fig. 

7C). The other parameters (HFRRI and RRI prolongation rate) demonstrated variability amongst 

both groups. 
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Figure 7. Changes in vasodepressive syncope (syncope) and vasodepressive syncope with asystole (asystole) during 
the syncopal phase. The slope of the RRI increase in these two groups during the syncopal phase is compared in (A). 
Changes in wavelet LFSBP (B) LFRRI (C) and HFRRI (D) between the period of SBP decrease (syncopal phase) and 1-
minute before (pre-syncopal phase) are also presented. 
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Discussion 

This is the first report to compare the autonomic changes that occur during syncope to 

those that occur during syncope with asystole in healthy subjects. We have identified three 

distinct syncopal groups, rapid vasovagal syncope (syncopal phase < 60 sec), slow vasovagal 

syncope (syncopal phase > 60 sec), and vasodepressive syncope (blood pressure drops well 

before heart rate). These grouping were based on the length of time of the syncopal phase and the 

difference between the times of onset of blood pressure decrease and R-R interval (RRI) 

increase. We have found that healthy subjects who develop asystole (> 3sec) during rapid 

vasovagal syncope undergo different changes in heart rate and blood pressure variability than 

those who experience rapid vasovagal syncope alone. Primarily, subjects who do not experience 

asystole during rapid vasovagal syncope demonstrate time varying spectral patterns that are 

consistent with sympathetic withdrawal, patterns which are not present in the corresponding 

asystole group. This suggests that sympathetic withdrawal is a protective mechanism which 

occurs in the late stages of syncope. The absence or failure of this mechanism during vagally 

induced bradycardia can lead to a near critical state of asystole which subsists until the removal 

of the orthostatic stress. 

 

Syncope Groupings 

The difference between the times of onset of the decline of systolic blood pressure and 

the rise in RRI was used to initially separate the groups into subjects who experienced a 

vasovagal response from those with a vasodepressive type response. The pattern described here 

as vasodepressive syncope was most similar to the dysautonomic vasovagal  pattern described in 

the syncope literature [11]. The vasodepressive pattern identified here differs from the described 

dysautonomic pattern in that the fall in blood pressure did not always occur immediately after the 

application of orthostatic stress. However, a slow decline in the blood pressure does initiate the 

syncopal reaction and a noticeable rise in RRI was found to occur near the end of syncope. 

The difference between the length of the SBP decrease and the length of the RRI rise was 

significantly lower in the group which experienced vasovagal syncope with asystole than in the 

group that experienced vasovagal syncope alone. Additionally, in the majority of the vasovagal 

asystole subjects the heart rate dropped before the blood pressure drop, which was not the case 

for the vasovagal syncope without asystole. This is mostly consistent with the modified VASIS 

 135



syncopal classification Type 2B – cardioinhibitory with asystole, which describes the heart rate 

fall as coinciding with or preceding the fall in blood pressure [11]. 

The final phase of syncope was defined as the period between the start of RRI 

prolongation and the loss of consciousness. Using this feature as a second criterion, we were able 

to identify two populations of vasovagal syncope. Rapid vasovagal syncope occurred in less than 

60 seconds and was characterized by a rapid decline in SBP and heart rate, and was most similar 

to the classic vasovagal syncope described previously [11]. This syncopal period was 

significantly shorter in the studied individuals who developed vasovagal syncope with asystole. 

This suggests that asystole is not simply the result of failure to promptly eliminate orthostatic 

stress during a vasovagal response but may be caused by a separate mechanism than syncope 

alone. 

 

Comparison of Changes in HRV and BPV Before and During Syncope 

The HFRRI significantly increased in the final phase of syncope in subjects with rapid 

vasovagal syncope with and without asystole, indicating that the bradycardia was induced by 

vagal cardiac activation, as previously reported in syncope patients [4;36]. Over the same period, 

the LFRRI seen in the group with rapid vasovagal syncope with asystole increases while in the 

group with rapid vasovagal syncope alone LFRRI does not change from presyncope. These same 

tendencies in LFRRI are apparent in the groups with vasodepressive syncope with and without 

asystole, all subjects with asystole demonstrated increased LFRRI and no consistent change was 

apparent in subjects who did not have asystole. An increase in LFRRI is suggestive of sympathetic 

cardiac activation, but it has also been linked to an increase in parasympathetic activity as well 

[37]. 

Several previous studies involving patients with recurrent syncope have demonstrated 

that a dramatic withdrawal of muscle sympathetic activity is responsible for the peripheral 

vasodilatation during late stage vasovagal syncope [4;36]. Similarly, we found that the low 

frequency component of systolic blood pressure (LFSBP), which has been linked to peripheral 

sympathetic innervations [38;39], dropped significantly during the final stages of syncope in the 

group with rapid vasovagal syncope alone. This pattern was consistent with the findings of 

similar analyses performed with wavelets [18] and complex demodulation [17] on syncope data 

and a similar tendency was also evident in the groups with vasodepressive syncope alone and 
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vasodepressive syncope with asystole. In contrast, the LFSBP was slightly elevated in the group 

that developed vasovagal syncope with asystole, suggesting an absence of peripheral sympathetic 

withdrawal.  

The differences in HRV and BPV parameters observed in the two rapid vasovagal groups 

may be indicative of a separate autonomic mechanism for rapid vasovagal syncope alone and 

rapid vasovagal syncope with asystole. 

 

Limitations 

This study was performed retrospectively with records compiled from several institutions 

because the occurrence of vasovagal syncope, in general, and vasovagal syncope with asystole, 

specifically, in healthy humans during orthostatic stress is extremely rare. While the nature of the 

orthostatic stress was similar in each case, the protocols may have differed slightly from subject 

to subject. We have attempted to address this issue by comparing individuals who had undergone 

a minimum of five minutes of constant orthostatic stress prior to the syncopal event. 

We also recognize that more direct measures of autonomic activity, such as recordings of 

the sympathetic nerve activity, would lend more power to our conclusions. However, this 

information was not available in these rare recordings necessitating the use of indirect autonomic 

assessment through heart rate and blood pressure variability. 

 

Conclusions 

Using a Hilbert-modified continuous wavelet transform, we were able to analyze 

nonstationary HRV and BPV data from healthy subjects during vasovagal syncope with and 

without asystole. The analysis demonstrated that the asystole group demonstrated significantly 

different spectral patterns, particularly in the low frequency oscillations of the RR interval and 

systolic blood pressure series. These findings suggested that the sympathetic withdrawal 

typically observed during vasovagal syncope was absent in subjects with asystole. In conclusion, 

different autonomic control mechanisms are responsible for vasovagal syncope with and without 

asystole. 

 

 137



References 

 [1]  R. Mosqueda-Garcia, R. Furlan, J. Tank, and R. Fernandez-Violante, "The elusive 
pathophysiology of neurally mediated syncope," Circulation, vol. 102, no. 23, pp. 2898-
2906, Dec.2000. 

 [2]  M. Brignole, P. Alboni, D. G. Benditt, L. Bergfeldt, J. J. Blanc, P. E. Bloch Thomsen, J. 
G. Van Dijk, A. Fitzpatrick, S. Hohnloser, J. Janousek, W. Kapoor, R. A. Kenny, P. 
Kulakowski, G. Masotti, A. Moya, A. Raviele, R. Sutton, G. Theodorakis, A. Ungar, and 
W. Wieling, "Guidelines on management (diagnosis and treatment) of syncope--update 
2004," Europace., vol. 6, no. 6, pp. 467-537, Nov.2004. 

 [3]  R. D. Thijs, W. Wieling, H. Kaufmann, and D. G. van, "Defining and classifying 
syncope," Clin Auton Res, vol. 14 Suppl 1, pp. 4-8, Oct.2004. 

 [4]  R. Mosqueda-Garcia, R. Furlan, R. Fernandez-Violante, T. Desai, M. Snell, Z. Jarai, V. 
Ananthram, R. M. Robertson, and D. Robertson, "Sympathetic and baroreceptor reflex 
function in neurally mediated syncope evoked by tilt," J Clin Invest, vol. 99, no. 11, pp. 
2736-2744, June1997. 

 [5]  S. Ogoh, S. Volianitis, P. B. Raven, and N. H. Secher, "Carotid baroreflex function 
ceases during vasovagal syncope," Clin Auton Res, vol. 14, no. 1, pp. 30-33, Feb.2004. 

 [6]  A. Fitzpatrick, G. Theodorakis, P. Vardas, R. A. Kenny, C. M. Travill, A. Ingram, and R. 
Sutton, "The incidence of malignant vasovagal syndrome in patients with recurrent 
syncope," Eur. Heart J, vol. 12, no. 3, pp. 389-394, Mar.1991. 

 [7]  R. H. Murray, L. J. Thompson, J. A. Bowers, and C. D. Albright, "Hemodynamic effects 
of graded hypovolemia and vasodepressor syncope induced by lower body negative 
pressure," Am Heart J, vol. 76, no. 6, pp. 799-811, Dec.1968. 

 [8]  K. Sander-Jensen, N. H. Secher, A. Astrup, N. J. Christensen, J. Giese, T. W. Schwartz, 
J. Warberg, and P. Bie, "Hypotension induced by passive head-up tilt: endocrine and 
circulatory mechanisms," Am J Physiol, vol. 251, no. 4 Pt 2, p. R742-R748, Oct.1986. 

 [9]  J. S. Sanders and D. W. Ferguson, "Profound sympathoinhibition complicating 
hypovolemia in humans," Ann. Intern. Med., vol. 111, no. 5, pp. 439-441, Sept.1989. 

 [10]  D. Robertson, G. A. Johnson, R. M. Robertson, A. S. Nies, D. G. Shand, and J. A. Oates, 
"Comparative assessment of stimuli that release neuronal and adrenomedullary 
catecholamines in man," Circulation, vol. 59, no. 4, pp. 637-643, Apr.1979. 

 [11]  M. Brignole, C. Menozzi, R. A. Del, S. Costa, G. Gaggioli, N. Bottoni, P. Bartoli, and R. 
Sutton, "New classification of haemodynamics of vasovagal syncope: beyond the VASIS 

 138



classification. Analysis of the pre-syncopal phase of the tilt test without and with 
nitroglycerin challenge. Vasovagal Syncope International Study," Europace., vol. 2, no. 
1, pp. 66-76, Jan.2000. 

 [12]  R. B. Hickler, R. G. Hoskins, and J. T. Hamlin, III, "The clinical evaluation of faulty 
orthostatic mechanisms," Med Clin North Am, vol. 44, pp. 1237-1250, Sept.1960. 

 [13]  S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R. J. Cohen, 
"Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat 
cardiovascular control," Science, vol. 213, no. 4504, pp. 220-222, July1981. 

 [14]  Task Force, "Heart rate variability: standards of measurement, physiological 
interpretation and clinical use. Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology [see comments]," Circulation, 
vol. 93, no. 5, pp. 1043-1065, Mar.1996. 

 [15]  R. Furlan, A. Porta, F. Costa, J. Tank, L. Baker, R. Schiavi, D. Robertson, A. Malliani, 
and R. Mosqueda-Garcia, "Oscillatory patterns in sympathetic neural discharge and 
cardiovascular variables during orthostatic stimulus," Circulation, vol. 101, no. 8, pp. 
886-892, Feb.2000. 

 [16]  M. Pagani, N. Montano, A. Porta, A. Malliani, F. M. Abboud, C. Birkett, and V. K. 
Somers, "Relationship between spectral components of cardiovascular variabilities and 
direct measures of muscle sympathetic nerve activity in humans," Circulation, vol. 95, 
no. 6, pp. 1441-1448, Mar.1997. 

 [17]  A. Kamiya, J. Hayano, T. Kawada, D. Michikami, K. Yamamoto, H. Ariumi, S. Shimizu, 
K. Uemura, T. Miyamoto, T. Aiba, K. Sunagawa, and M. Sugimachi, "Low-frequency 
oscillation of sympathetic nerve activity decreases during development of tilt-induced 
syncope preceding sympathetic withdrawal and bradycardia," Am J Physiol Heart Circ 
Physiol, vol. 289, no. 4, p. H1758-H1769, Oct.2005. 

 [18]  M. Suzuki, S. Hori, I. Nakamura, S. Nagata, Y. Tomita, and N. Aikawa, "Role of vagal 
control in vasovagal syncope," Pacing Clin Electrophysiol., vol. 26, no. 2 Pt 1, pp. 571-
578, Feb.2003. 

 [19]  R. Sutton, M. Brignole, C. Menozzi, A. Raviele, P. Alboni, P. Giani, and A. Moya, 
"Dual-chamber pacing in the treatment of neurally mediated tilt-positive cardioinhibitory 
syncope : pacemaker versus no therapy: a multicenter randomized study. The Vasovagal 
Syncope International Study (VASIS) Investigators," Circulation, vol. 102, no. 3, pp. 
294-299, July2000. 

 [20]  J. S. Sra, M. R. Jazayeri, B. Avitall, A. Dhala, S. Deshpande, Z. Blanck, and M. Akhtar, 
"Comparison of cardiac pacing with drug therapy in the treatment of neurocardiogenic 

 139



(vasovagal) syncope with bradycardia or asystole," N Engl J Med, vol. 328, no. 15, pp. 
1085-1090, Apr.1993. 

 [21]  J. Penaz, "Photoelectric measurement of blood pressure, volume and flow in the finger," 
Digest of the 10th international conference on medical and biological engineering - 
Dresden., p. 104, 1973. 

 [22]  J. Pan and W. J. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. Biomed. 
Eng, vol. 32, no. 3, pp. 230-236, Mar.1985. 

 [23]  Task Force, "Heart rate variability: standards of measurement, physiological 
interpretation and clinical use. Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology [see comments]," Circulation, 
vol. 93, no. 5, pp. 1043-1065, Mar.1996. 

 [24]  R. G. Shiavi, Introduction to Applied Statistical Signal Analysis, 2nd ed. San Diego: 
Academic Press, 1999. 

 [25]  M. Akay, G. Landesberg, W. Welkowitz, Y. M. Akay, and D. Sapoznikov, "Carotid-
cardiac interaction: heart rate variability during the unblocking of the carotid artery," Adv 
Exp Med Biol, vol. 346, pp. 365-372, 1993. 

 [26]  J. A. Crowe, N. M. Gibson, M. S. Woolfson, and M. G. Somekh, "Wavelet transform as a 
potential tool for ECG analysis and compression," J Biomed Eng, vol. 14, no. 3, pp. 268-
272, 1992. 

 [27]  V. Pichot, J. M. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche, F. Costes, L. 
Quintin, J. R. Lacour, and J. C. Barthelemy, "Wavelet transform to quantify heart rate 
variability and to assess its instantaneous changes," J. Appl. Physiol, vol. 86, no. 3, pp. 
1081-1091, Mar.1999. 

 [28]  K. Tanaka and A. R. Hargens, "Wavelet packet transform for R-R interval variability," 
Med. Eng Phys., vol. 26, no. 4, pp. 313-319, May2004. 

 [29]  E. Toledo, O. Gurevitz, H. Hod, M. Eldar, and S. Akselrod, "Wavelet analysis of 
instantaneous heart rate: a study of autonomic control during thrombolysis," Am. J. 
Physiol Regul. Integr. Comp Physiol, vol. 284, no. 4, p. R1079-R1091, Apr.2003. 

 [30]  U. Wiklund, M. Akay, and U. Niklasson, "Short-term analysis of heart-rate variability by 
adapted wavelet transforms," IEEE Eng Med Biol Mag, vol. 16, no. 5, pp. 113-8, 138, 
1997. 

 140



 [31]  A. Cohen and J. Kovacevic, "Wavelets: The mathematical background," P Ieee, vol. 84, 
no. 4, pp. 514-522, 1996. 

 [32]  S. Olhede and A. Walden, "The Hilbert spectrum via wavelet projections.," P ROY SOC 
LOND A MAT P ROY SOC LOND A MAT, vol. 460, pp. 955-975, 2004. 

 [33]  H. Olkkonen, P. Pesola, J. Olkkonen, and H. Zhou, "Hilbert transform assisted complex 
wavelet transform for neuroelectric signal analysis," J Neurosci Methods, vol. 151, no. 2, 
pp. 106-113, 2006. 

 [34]  I. Daubechies, Ten Lectures on Wavlets. Montpelier, Vermont: Capital City Press, 1992. 

 [35]  Task Force, "Heart rate variability: standards of measurement, physiological 
interpretation and clinical use. Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology [see comments]," Circulation, 
vol. 93, no. 5, pp. 1043-1065, Mar.1996. 

 [36]  C. A. Morillo, D. L. Eckberg, K. A. Ellenbogen, L. A. Beightol, J. B. Hoag, K. U. 
Tahvanainen, T. A. Kuusela, and A. M. Diedrich, "Vagal and sympathetic mechanisms in 
patients with orthostatic vasovagal syncope," Circulation, vol. 96, no. 8, pp. 2509-2513, 
Oct.1997. 

 [37]  Task Force, "Heart rate variability: standards of measurement, physiological 
interpretation and clinical use. Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology," Circulation, vol. 93, no. 5, 
pp. 1043-1065, Mar.1996. 

 [38]  A. Diedrich, J. Jordan, J. Tank, J. R. Shannon, R. Robertson, F. C. Luft, D. Robertson, 
and I. Biaggioni, "The sympathetic nervous system in hypertension: assessment by blood 
pressure variability and ganglionic blockade," J. Hypertens., vol. 21, no. 9, pp. 1677-
1686, Sept.2003. 

 [39]  R. Zhang, K. Iwasaki, J. H. Zuckerman, K. Behbehani, C. G. Crandall, and B. D. Levine, 
"Mechanism of blood pressure and R-R variability: insights from ganglion blockade in 
humans," J. Physiol, vol. 543, no. Pt 1, pp. 337-348, Aug.2002. 

 
 

 141



CHAPTER VII 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary 

This thesis presents several new methodologies that can be used to advance the study and 

assessment of the autonomic nervous system. Direct assessment of sympathetic function is 

through microneurography is typically used by researchers to investigate autonomic origins of 

diseases and the effects of pharmacological agents on the sympathetic nervous system [1]. But, 

in the signals achieved through microneurography, quantification has always been an issue of 

debate. In response to this problem, we have devised, tested, and validated improved 

quantification strategies for the muscle sympathetic nerve activity in humans and the renal 

sympathetic nerve activity in mice. We have shown that wavelet-based spike detection methods 

are capable of providing accurate spike detection under a wide variety of signal qualities and 

states of sympathetic activation in humans and mice. 

Although direct analysis of the sympathetic nerve signal is useful as a research based 

approach to sympathetic assessment, we recognize that this method is not always practical, 

particularly in clinical situations. As a result, in Chapter V, we provided a link between the 

detected spike rate series and the continuous blood pressure waveform. The low frequency 

oscillations in the sympathetic spike rate were found to have a strong linear, temporal correlation 

to the low frequency oscillations in the systolic blood pressure. Consequently, the power of these 

low frequency blood pressure oscillations could be used to indirectly estimate the power of the 

low frequency oscillations, or bursts, in the sympathetic spike rate. Since the continuous blood 

pressure waveform requires less technical skill to measure, it is more convenient clinically to 

derive the indirect estimates of sympathetic function from this signal than to measure 

sympathetic nerve activity directly.  

In Chapter VI, a form of time varying spectral analysis capable of dealing with non-

stationary heart rate and blood pressure data was developed using a modified wavelet transform. 

This method was able to exploit the relationship determined in Chapter V to indirectly estimate 

changes to the state of the sympathetic activity during episodes of syncope, a common symptom 

of many dysautonomias. Using this method of indirect analysis, potential mechanisms for 
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syncope alone and syncope ending in asystole, a rare stoppage of the heart, were able to be 

postulated. 

 

Conclusions 

In conclusion, several advancements have been made in the field of autonomic 

assessment as a result of the work performed in this thesis. The following generalizations can be 

drawn from the information presented: 

1. It is possible to accurately quantify the sympathetic nerve activity through automated 

spike detection given that the signal to noise ratio is greater than 3 for human muscle 

sympathetic nerve activity or greater than 2 for murine renal sympathetic nerve activity. 

2. The stationary wavelet transform is more appropriate than the discrete wavelet transform 

for the detection of transient spikes in high levels of noise. This conclusion is a direct 

result of the lack of translation invariance found in the discrete wavelet transform. 

3. The most robust spike detection algorithm for human muscle sympathetic nerve activity 

is one which takes advantage of the synchronous, bursting properties of the sympathetic 

neurons and the Gaussinity of its noise. A two-stage, kurtosis de-noising algorithm, such 

as that proposed in Chapter III, accounts for both properties. 

4. Automated, wavelet based spike detection can be translated to the mouse renal 

sympathetic nerve activity. However, a different detection strategy than that used in the 

human sympathetic activity is required to account for the different discharge patterns 

found in the mouse. A detector based on the stationary wavelet transform and a single 

level noise estimation threshold is the most robust against changes in spike rate and 

signal to noise ratio. 

5. Automated action potential detection is important in renal sympathetic nerve activity to 

demonstrate the differences between normal and transgenic mouse populations. 

6. As was long suspected, a definite temporal link exists between the fluctuations in blood 

pressure, muscle sympathetic nerve activity, and respiration in humans. This relationship 

was brought to light using the spike detection method described in Chapter III, and could 

not be found formerly when integrated parameters were used [2]. Consequently, the low 

frequency oscillations in the blood pressure provide a good indirect measure of the state 

of sympathetic activity. 
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7. Indirect estimates of autonomic function can be used to highlight differences in two 

autonomic outcomes. When used on normal subjects who experienced vasovagal syncope 

alone and vasovagal syncope with asystole, these indirect parameters were able to 

determine a potential mechanism for asystole. 

 

Future Directions 

The primary motivation for this work was to further develop both direct and indirect 

methods of autonomic assessment for the study and potential diagnosis of autonomic disorders. 

Along these lines, we hope that the sympathetic spike detection procedures developed here can 

be applied to the analysis of human autonomic disorders and additional transgenic mouse 

populations. In humans, the spike detection technique described in Chapter III was able to clarify 

a relationship to blood pressure which was not evident when similar analysis was done using the 

burst area parameter [2]. Therefore, sympathetic quantification through spike detection may also 

reveal differences in various autonomic disorders that may have not been evident using the burst 

rate or burst area rate. 

As mentioned in Chapter II, single unit sympathetic activity has identified differences 

between normal and pathological populations in humans that were not apparent in the 

sympathetic burst parameters [3-6]. However, single unit recordings are extremely difficult to 

achieve and maintain [1]. Therefore, implementing a method to automatically sort the detected 

spikes into classes derived from individual neurons may serve as an alternative to traditional 

single-unit recordings. Spike sorting may also be useful in the analysis of mouse sympathetic 

activity where, to our knowledge, single unit activity has not yet been analyzed. 

Although the model presented in Chapter V accounted for the majority of the fluctuations 

in human blood pressure, a small percentage of the variability was still unaccounted for. Some 

recent evidence suggests that cardiac output could play a role in both blood pressure fluctuations 

[2] and sympathetic activity [7]. The addition of cardiac output may improve this model. Also, 

the relationship between sympathetic activity and blood pressure oscillations may not be strictly 

linear [8] and, consequently, non-linear mathematical descriptors should also be explored. 

In Chapter VI, the indirect estimates of autonomic function using wavelet derived time-

varying spectral analysis were able to demonstrate differences between rapid vasovagal syncope 

alone and rapid vasovagal syncope with asystole. Similarly, qualitative differences were 
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observed in the subjects who experienced vasodepressive syncope with and without asystole, but 

since the number of subjects in each group was small, statistical differences could not be 

realized. Therefore, more data must be collected and analyzed from normal subjects that 

experience such events. We would also like to determine if the same patterns of time varying 

spectral patterns exist in patients who experience recurrent syncope. 

The long term goals for this project include real-time implementations of much of the 

work described in this thesis. On-line detection of spikes in murine and human sympathetic 

nerve activity would provide the investigator with quantitative feedback of the spike rate during 

various interventions, which could be useful for adjusts in protocol or instrumentation. Real-time 

analysis of the spectral components of continuous blood pressure and heart rate could be used to 

alert researchers or clinicians of an impending syncopal episode. This information may also be 

useful in the design of pacemakers that are sensitive to changes in both heart rate and blood 

pressure. 
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APPENDIX A. 

 

WAVELET PROCESSING 

 

The Continuous Wavelet Transform 

To evaluate a signal, f, using the continuous wavelet transform (CWT), one would first 

define a suitable mother wavelet or wavelet function, ψ, such as the Meyer wavelet shown in 

Figure 1. The mother wavelet can then be scaled and translated according to Eq. 1. 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

t
s

ts
τψψ τ

1
,      (1)

In Eq. 1, τψ ,s  is a scaled, translated version of the mother wavelet, ψ, where s is the 

wavelet scale and τ is the time-shift. In the following discussion, all wavelet functions are 

assumed to be real, although the properties can be extended to complex wavelet functions as 

well. The signal f could then be described in terms of the real wavelet basis using Eq. 2. 

( ) ( ) ( ) ττ ψψτ ,, ,, ss
CWT fdtttfsd == ∫      (2)

In this case, ⋅⋅⋅  denotes an inner product of 2 vectors. For computational purposes, the scale 

parameter is generally modified dyadically, i.e. s = 2j where j is an integer representing the 

wavelet level, and the signal is sampled at regular intervals, resulting in regular, discrete values 

of the time shift, τ = Tn where T is a user defined sampling period.   

( ) ( ) ( )Tnttfnd j
CWT
j −= 2,ψ      (3)

In Eq. 3,  is the output of the convolution at wavelet level j, or scale 2CWT
jd j. The 

computation described in Eq. 3 can be interpreted from two distinct points of view. The first 

interpretation is that of a time domain convolution, where the values contained in  represent 

a measure of similarity between a wavelet of scale s and the signal at time Tn. According to this 

view, a higher scale would indicate a more dilated form of the wavelet and the coefficients at 

these higher scales would indicate the presence of long term trends in the signal. The 

transformation in Eq. 3 can also be seen as a band-pass filtering of f, where the scale, s, dictates 

the center frequency and bandwidth of the filter and  is the filtered signal.  A dyadic 

increase in the scale would then limit the bandwidth overlap of successive filters by dividing 

CWT
jd

CWT
jd

 147



both the bandwidth and center frequency of the filter roughly in half for each increase in j 

(Figure 1). 
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Figure 1. An example of the dyadic progression of scale and its affect on center frequency and bandwidth. The 
Meyer wavelet is used in this example. 
 

The Discrete Wavelet Transform 

To completely represent f in terms of CWT coefficients, i.e. , an infinite number of 

dyadic scale steps would have to be taken, each step representing a smaller bandwidth centered 

on a lower frequency. An alternative approach to this operation was formulated by Mallat [1] 

who suggested an operator complementary to ψ called the scaling function, φ. If  is 

computed for all j<J, the scaling function can be used to compute all of the remaining 

information, i.e. the sum of  over all j>J.  The scaling function is also scalable, as shown in 

Eq. 4 

CWT
jd

CWT
jd

CWT
jd

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

t
s

ts
τφφ τ

1
,      (4)

where φs,τ is the scaled, translated scaling function. The scaling function is applied to the signal, 

f, in a similar manner to that of the wavelet function (i.e. as in Eq. 2), as seen in Eq. 5. 
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( ) ( ) τφτφτ ,,1, s
CWT fdt

s
t

s
tfsa =⎟

⎠
⎞

⎜
⎝
⎛ −

= ∫     (5)

We have chosen to represent this transformation in a more compact form for our purposes.  This 

can be seen in Eq. 6 

( ) ( ) ( )Tnttfna j
CWT
j −=

2
,φ      (6)

where  is the output of the scaling function convolution at wavelet level j. CWT
ja

Like the wavelet function, the scaling function can also be viewed as a filter whose 

bandwidth and center frequency are dictated by the scale. The bandwidth of the scaling function 

filter at scale s consists of all frequencies below that of the wavelet function at the same scale. 

Therefore, the coefficients found in  represent a low-pass filtered version of f. Figure 

contains the temporal and frequency information for the scaling functions that complement the 

Meyer wavelet functions found in Figure 2. 

CWT
ja
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Figure 2. Time and frequency information for the Meyer scaling functions for scales 1, 2, and 4. 

 

The temporal information found in both the and  coefficients exhibit the same 

redundancy as the scaling information of the CWT. If the scale of the wavelet transform is 

increased dyadically, a signal of length N can be non-redundantly represented by N/2

CWT
ja CWT

jd

j dyadically 

sampled coefficients at scale 2j. Therefore, the outputs of the scaling and wavelet function 
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operations can be simplified by letting T = 2j, indicating a uniform down-sampling to eliminate 

redundancy. This is shown in Eq. 7 and 8. 

( ) ( ) ( )nttfna jDWT
j j

−−= 2, 2φ  (7)

( ) ( ) ( )nttfnd jDWT
j j

−−= 2,
2

ψ  (8)

Here, the  contain the low frequency output at level j and are termed the approximation 

coefficients of the discrete wavelet transform (DWT) because they can be used to construct a 

course approximation of f(t). The  contain the high frequency information at level j and 

thus are termed the detail coefficients of the DWT. 

DWT
ja

DWT
jd

Mallat [1] noticed that the  DWT coefficients contain all of the information found in 

both the  and the 

DWT
ja

DWT
ja 1+

DWT
jd 1+  coefficients and purposed an efficient algorithm to compute the 

information found in the DWT. He defined 2 sets of mirror filters, 00
~ , hh  and 00

~ , gg  such that: 

( ) ( ) ( )dtttmh m∫
∞

∞−

=− 0,0,10 φφ  (10)

( ) ( ) ( )dtttmg m∫
∞

∞−

=− 0,0,10 ψφ  (11)

( ) ( )mhmh −= 00
~  (12)

( ) ( )mgmg −= 00
~  (13)

We will refer to  as the low-pass decomposition filter, 0h 0
~h  as the low-pass reconstruction filter, 

 as the high-pass decomposition filter, and 0g 0
~g  as the high-pass reconstruction filter. Using the 

decomposition filters, we can compute the next set of approximation and detail coefficients with 

the relationships described in Eq. 13 and 14. 

( ) ( ) ( )∑ −=+
n

DWT
j

DWT
j kaknhka 201 .     (13)

( ) ( ) ( )∑ −=+
n

DWT
j

DWT
j kakngkd 201  (14)

In Eq. 13 the  coefficients are computed by convolving the  with the low-pass 

decomposition filter, h

DWT
ja 1+

DWT
ja

0, and then down-sampling the result by two. Likewise, the  detail DWT
jd 1+
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coefficients are computed by filtering the  approximation coefficients with the high-pass 

decomposition filter and down-sampling by two. This procedure, known as a pyramidal cascade, 

can be iteratively continued until the desired level of decomposition (j=J) is obtained. During 

each successive iteration, the DWT splits the bandwidth of the remaining signal, storing a 

portion of the signal's fine detail in the detail coefficients corresponding to that level and leaving 

a set of approximation coefficients capable of constructing a coarser version of the original 

signal. Figure 3 demonstrates the bandwidth decomposition of a signal sampled at 10,000 Hz 

over five levels of the DWT. At each step, the red area represents the bandwidth of the 

approximation coefficients and the grey area represents the bandwidth of the detail coefficients. 

DWT
ja
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Figure 3. Approximate bandwidth of each wavelet level during DWT decomposition of a signal sampled at 10,000 
Hz.  At each step of the decomposition, the high-pass decomposition filter (--) creates a set of detail coefficients (dj) 
whose bandwidth is indicated by grey shading.  The low-pass decomposition filter (-) creates a set of approximation 
coefficients whose bandwidth is denoted by the red shading.  The bandwidth of the approximation coefficients is 
then decomposed further during the next level of processing until level 5 is reached. 
 

The pyramidal filtering scheme of the DWT represents a significant improvement in the 

computational efficiency of the wavelet transform. The DWT decomposition involves only 1 set 

of quadrature mirror filters which are computed prior to initializing the decomposition. These 
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filters also act on successively smaller sets of coefficients at each level of processing. In the case 

of the CWT, the entire length of the signal is filtered using a wavelet function specifically 

computed for each decomposition level. The efficiency of the DWT extends to its inverse 

process, which reconstructs the signal from the stored approximation and detail coefficients. 

During reconstruction, the aj coefficients can be reconstructed by placing a zero between each 

consecutive value of both the detail and approximation coefficients of level j+1 (i.e. up-sampling 

by two), convolving the up-sampled results with the respective reconstruction filter, and 

summing, as shown in Eq. 15.  

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

DWT
j

n

DWT
j

DWT
j ndnkgnankhka 1010 22 (15)

This process can be continued iteratively until the signal, f, is fully reconstructed. Both 

the decomposition and the reconstruction procedures are outlined in Figure 4. 
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Figure 4. Block diagram of the Mallat algorithm for discrete wavelet transformation (DWT) (A) and reconstruction 
(B) (Mallat, 1989). The approximation coefficients at level j ( ) are separately convolved with 2 
complementary filters, a high pass filter (g

DWT
ja

0) and a low pass filter (h0). The filtered signals are subsequently 
decimated by a factor of 2 to eliminate redundant samples. This procedure yields the next level of low frequency 
approximation coefficients ( ) and high frequency detail coefficients ( ). This decomposition process can 

be repeated using the ( ) coefficients as the input, resulting in another level of approximation and detail 
coefficients. The original input signal can then be reconstructed by reversing the process, known as inverse discrete 
wavelet transformation (IDWT). 

DWT
ja 1+

DWT
jd 1+

DWT
ja 1+

 

The Stationary Wavelet Transform 

In contrast to the DWT, the stationary wavelet transform (SWT) up-samples the 

decomposition filters by inserting zeros between every other filter coefficient and, consequently, 

avoids problems caused by the decimation step used in the DWT (Mallat, 1991) (Figure a).  

Therefore, the SWT uses a set of level dependent decomposition filters,  and , which are the jh jg
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0h  and filters with 20g j-1-1 zeros between each discrete filter coefficient. The SWT 

approximation and detail coefficients can then be computed using Eq. 16 and 17. 

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kaknhka 1  (16)

( ) ( ) ( )∑ −=+
n

SWT
jj

SWT
j kakngkd 1  (17)

During the SWT reconstruction, the level j detail and approximation coefficients are 

filtered with the appropriate level dependent reconstruction filter (i.e.  and jg~ jh~ , respectively) 

and summed to produce the coefficients. The reconstruction filters are then down-sampled 

for the next level of processing. This is described in Eq. 18. 

SWT
ja 1−

( ) ( ) ( ) ( ) ( )∑∑ ++ −+−=
n

SWT
jj

n

SWT
jj

SWT
j ndnkgnankhka 11 (18)

Both the SWT decomposition and reconstruction are depicted below in Figure 5. 
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Figure 5. The SWT algorithm. (A) SWT Decomposition.  At each wavelet level all coefficients are retained and the 
filters, gj and hj,  are up-sampled for the next level of processing. (B) SWT Reconstruction (ISWT). At each wavelet 
level, the detail and approximation coefficients are filtered with appropriate reconstruction filter and summed.  The 
filters are then down-sampled for the next level of processing. 
 

Inserting zeros between the filter coefficients allows the SWT to analyze every possible 

shift of the signal while the effective sample rate at each wavelet level remains unchanged. This 

process is depicted in for one level of processing. In the frequency domain, up-sampling acts to 

halve the corner frequency of both the low-pass and high-pass decomposition filters, resulting in 

the same bandwidth decomposition as is found in the DWT. The result is a redundant, or over-

complete, set of detail and approximation coefficients [2]. Note that the SWT detail coefficients 

are identical to the coefficients computed using the CWT, but they are computed using a 

different process. 
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Wavelet De-noising 

The basic assumption of the de-noising algorithm proposed by Donoho [3] is that the 

recorded signal, f, is composed of a signal of interest, s, and a noise term, w, such that: 

( ) ( ) ( )twtstf Wσ+=  (19)

where w consists of identically distributed Gaussian white noise with a mean of zero and unit 

variance and σW is the standard deviation of the noise of the recorded signal.  Donoho [3] 

suggests that once the recorded signal, f, is converted to a wavelet representation the energy of 

the desired signal, s, will be concentrated into a small number of wavelet levels, whereas the 

energy of the white noise term will be evenly spread throughout all of the wavelet levels. 

Consequently, the magnitude of the s detail coefficients in these levels will be relatively large 

compared to those associated with the noise term, w [4]. Therefore, if a simple thresholding 

algorithm is applied to the detail coefficients at each decomposition level, the resultant detail 

coefficients can be recombined with the highest level (j=J) approximation coefficients to recover 

s. Donoho has demonstrated a number of efficient algorithms to determine appropriate values for 

this threshold, many of which are explained in [3] and [5]. One of the more common threshold 

computations is described below in Eq. 20. 

( )NT eWW log2σ=  (20)

In the equation listed above, TW represents the threshold for the detail coefficients and N 

represents the number of samples contained in the entire signal. Under the standard assumption 

that w is a stationary white noise process, the noise level, σW, is equal for all levels of detail 

coefficients. Therefore, σW can be estimated from an arbitrary level of detail coefficients and the 

corresponding threshold can be applied to all levels of detail coefficients. In this document, this 

is referred to single level noise estimation threshold. In Eq. 21, the standard deviation of the 

noise is estimated using the median absolute deviation from zero (MAD) of the level 1 detail 

coefficients divided by the 75th percentile of the standard normal distribution, 0.6745. This 

method of estimating the standard deviation is typically used in wavelet de-noising because it 

less sensitive to outliers than the traditional calculation of the sample standard deviation 

(Hampel, 1986). In Eq. 21, 1d  is the sample mean of the level 1 detail coefficients. 
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( )
6745.0

11 ddmedian
W

−
=σ  (21)

In the case of correlated or colored noise, such as 1/f noise, the standard deviation of the 

noise is level dependent [6;7]. This type of noise requires a standard level dependent noise 

estimation threshold, , which uses a level dependent noise level estimate, σS
jT j (Eq. 22 and 23) 

[6]. The superscript S in  is used to differentiate this standard colored-noise threshold from a 

modified colored-noise threshold, , used elsewhere in the text (See Chapter III). 

S
jT

M
jT

( )
6745.0

jj
j

ddmedian −
=σ  (22)

( )NT ej
S
j log2σ=  (23)

In Eq. 22, dj is a general set of detail coefficients for level j.  The threshold can then be 

implemented using a hard-threshold criterion (Eq. 24), i.e. 

⎪⎩

⎪
⎨
⎧

≤

>
=′

S
jj

S
jjj

j Td if          
Td if        d

d
0

 (24)

or by using soft-thresholding (Eq. 25) 
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Where d’j are the thresholded detail coefficients at level j. 

Following the thresholding of the detail coefficients, s can be estimated by performing 

the typical wavelet reconstruction using the  approximation coefficients and the modified 

detail coefficients. Although the de-noising procedure was originally suggested for DWT detail 

coefficients [3], the algorithm has been shown to work using SWT coefficients as well [6;8]. 

More detailed descriptions of these algorithms is given in several texts, including [4;9]. 

Ja
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APPENDIX B 

 

COMPARISON OF DISCRETE AND STATIONARY WAVELET TRANSFORM SPIKE 
DETECTION METHODS FOR HUMAN SYMAPTHETIC NERVE ACTIVITY 

 

Motivation 

In Chapter III we were able to demonstrate that a spike detection method which used the 

stationary wavelet transform (SWT) coupled with a two-stage kurtosis de-noising method 

outperformed an unsupervised amplitude discriminator and similar SWT-based methods on 

simulated human muscle sympathetic nerve activity (MSNA) signals with varying burst rates and 

signal to noise ratios (SNR). However, the spike detection method presented by Diedrich, et al. 

for the human MSNA incorporated the discrete wavelet transform (DWT) rather than the SWT 

[1]. Although we were able to demonstrate the drawbacks of DWT-based action potential 

detection in the mouse sympathetic nerve activity in Chapter IV, we did not directly compare the 

DWT and SWT in human sympathetic spike detection. Therefore, we have elected to include this 

comparison in this Appendix. 

 

Methods 

 

Simulations 

To assess the performance of the of various discrete and stationary wavelet transform 

based human sympathetic spike detection methods, we again used the same simulated signals 

created for similar detection evaluation in Chapter III. Briefly, simulated signals were 

constructed with templates extracted from human MSNA recordings with sufficiently high signal 

to noise ratio in 8 healthy subjects during periods of sympathetic activation (head-up tilt). A 

short segment of noise was extracted from each recording during Phase IV of the Valsalva 

maneuver and modeled with a 50 order autoregressive (AR) model created using the Burg 

method [2]. The model was then applied to a sequence of Gaussian random numbers 60 seconds 

in length to create the simulated noise. 

The templates were then randomly inserted into neural noise in burst fashion. The burst 

position, burst duration, and spike placement within each burst were all randomly assigned 

according to separate Poisson random variables. The average burst duration and spike rate within 
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each burst were fixed at 0.8 seconds and 60 spikes/sec, respectively. Each simulation was 

assigned either a low (5 burst/min), moderate (25 bursts/min), or high (50 bursts/min) mean burst 

rate. The signal to noise ratio (SNR) of the simulations was altered from 6 (high signal quality) 

to 1 (poor signal quality). The SNR was defined as the ratio between the absolute peak amplitude 

of the action potential and the standard deviation of the noise, as defined elsewhere [1;3]. 

 

Detection Methods 

The performance of five wavelet-based detection methods was evaluated. The five 

methods included: (1) SWT decomposition with a standard colored noise threshold (SWTS), (2) 

SWT decomposition with a modified colored noise threshold (SWTM), (3) DWT decomposition 

with a standard threshold (DWTS), (4) DWT decomposition with a modified wavelet threshold, 

and (5) SWT decomposition with a two-stage kurtosis de-noising method (SWTK). Details of the 

SWT and DWT decomposition are presented in Appendix A. The standard, , and modified, 

, colored noise thresholds are displayed in Eq 1 and 2, respectively. 

S
jT

M
jT

( )NT ej
S
j log2σ=  (1)

( )NT ej
M
j log28.0 σ=  (2)

The standard colored noise threshold was suggested by Johnstone [4] and the 0.8 

modification shown in Eq. 2 was presented by Diedrich, et al. [1]. In both Eq. 1 and 2, σj 

represents the robust, level-dependent estimate of the noise standard deviation shown in Eq. 3 

[4]. 

( ) 6745.0jjj ddmedian −=σ  (3)

Details of the kurtosis de-noising method were presented in Chapter III. Although a 

separate unsupervised amplitude discriminator was also evaluated, the results were omitted from 

the graphical display to avoid confusion. Details of the amplitude discriminator and its results are 

displayed in Chapter III. 

 

Detection Performance 

The performance of each method was quantified using the percent of correctly detected 

action potentials (PCD, Eq. 4) and the percent of false alarms (PFA, Eq. 5).  
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N
NPFA  (5)

NCD is the number of correctly detected APs, NAP is the number of APs inserted into the 

simulation, and NFA is the number of false alarms. 

 

Results 

The detection performance of each of the five methods is displayed in Figure 1. 
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Figure 1. Mean results for simulations with varied noise levels and mean burst rates. The simulations tested the 
performance of SWT decomposition with standard (SWTS) and modified (SWTM) colored noise thresholds, DWT 
decomposition with standard (DWTS) and modified (DWTM) colored noise thresholds, and SWT decomposition 
with 2-stage kurtosis threshold (SWTK). Each point on each curve represents the mean result of 96 simulations. 
 

While the DWT-based detection methods misidentified a lower percentage of false 

alarms (PFA) than their SWT-based counter parts, they also correctly detected substantially 

lower percentages of the simulated action potentials in all burst rate and SNR scenarios. Both the 

standard colored noise thresholds (SWTC and DWTC) have a low PFA during all of the 

simulations, but their percent of correctly detected spikes (PCD) also remains low under all 

conditions. The modification to the standard threshold in both the SWT and DWT (SWTM and 
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DWTM), suggested by Diedrich et al., results in a higher PCD than their standard threshold 

counterparts (SWTC and DWTC, respectively) and the PFA remains low (<10%) for SNR>2 

during moderate (25 bursts/min) and high (50 bursts/min) burst rates. The two-stage kurtosis de-

noising (SWTK) demonstrates the highest PCD for SNR>2 during all burst rates and its PFA is 

similar to that of the modified SWT and DWT thresholds (SWTM and DWTM) at burst rates of 

25 and 50 bursts/min and lower during the 5 burst/min simulations.  

 

Discussion 

We have demonstrated that action potential detection methods based on the stationary 

wavelet transform, in general, have better detection performance than those based on the discrete 

wavelet transform. SWT methods appear to correctly detect a much higher percent of simulated 

action potentials but detect a similar or only slightly higher percentage of false alarms than DWT 

methods with the same threshold rule. The higher percentage of false dismissals (undetected 

action potentials) in the DWT-based methods may be attributed to the transform’s lack of 

translation invariance. The fact that the DWT decimates the number of wavelet coefficients 

during each level of processing combined with the fact that each action potential is represented 

in small number of wavelet coefficients means that chance of eliminating “spike-related” 

coefficients increases dramatically at higher wavelet levels. In Chapter IV, the shift-variability of 

the DWT was demonstrated to be detrimental to the detection sympathetic action potentials in 

the mouse, which characteristically have a longer duration, and thus more detectable high 

amplitude points, than human action potentials (see Chapter II). 

Overall, SWT decomposition with a two-stage kurtosis de-nosing procedure was found to 

have the most robust detection performance during variable burst rates and signal to noise ratios. 

In conclusion, SWT-based spike detection can be useful in the quantification of sympathetic 

nerve activity and may play a future clinical role in the analysis of autonomic function. 
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APPENDIX C 

 

APPLICATION OF WAVELET BASED SPIKE DETECTION IN TRANSGENIC MURINE 

MODELS OF DYSAUTONOMIAS 

 

Motivation 

In Chapter IV we were able to demonstrate that stationary wavelet transform (SWT) 

based spike detectors were more robust than common unsupervised amplitude discriminators and 

DWT-based methods in simulated murine renal sympathetic nerve activity (RSNA) signals with 

varying spike rates and signal to noise ratios (SNR). Our purpose in developing such a method 

was its eventual implementation in the analysis of transgenic mouse models of human autonomic 

disorders. In the following Appendix, we will discuss the outcome of such application to the 

study of norepinephrine transporter (NET) deficient [1] and regulator G-protein signal 2 (RGS2) 

deficient mice [2;3]. 

 

Background 

 

NET-Deficient Mice 

Norepinephrine (NE) is the neurotransmitter primarily released from the post-ganglionic 

sympathetic neuron at the neuro-effector junction [4]. The norepinephrine transporter (NET) is 

responsible for reuptake of free NE following sympathetic discharge [1]. NET impairment has 

been implicated in human disorders such as essential hypertension and orthostatic intolerance 

[5]. Human studies involving blockade of NET using drugs such as reboxetine [5;6] and 

desipramine [7] have demonstrated a paradoxical tachycardia and elevated blood pressure with a 

drop in the baseline sympathetic nerve activity. Previous studies with the NET knockout mice 

have shown similarly high heart rate and blood pressure values, but sympathetic nerve activity 

was not analyzed [1]. 

 

RGS2-Deficient Mice 

G-protein coupled receptors play an important role in normal cellular function and have 

been demonstrated to regulate sympathetic activity [8] and vascular tone [9]. The regulator of G-
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protein signaling 2 (RGS2) helps to regulate G-protein-effctor interactions in cells throughout the 

body [3]. RGS2 deficient mice have demonstrated elevated resting blood pressure, an 

exaggerated depressor response to alpha-1 blockade, and increased NE excretion rate [10], all 

suggesting that these animals may have reduced sympathetic nerve activity. 

 

Methods 

 

NET-Deficient Mice 

The NET knockout mice strain (NET -/-) was provided by Dr. Marc Caron of Duke 

University with NET gene disruption via insertion of EGFP cDNA coupled to the PGK-

neomycin-resistance gene in exon 2 of the native gene. NET -/- mice derived from an interbred 

129Sv/J x C57BL/6J strain were backcrossed 10X onto the C57BL/6J strain. KO mice were bred 

and maintained with a 12:12h light-dark cycle and fed standard mouse chow with tap water 

available ad libitum. 

Identical surgical and experimental protocols were administered to 13 NET -/- mice 

(9.5±0.2 month; 30.1±0.3g) and 14 healthy C57BL/6J strain wild type mice (NET +/+) (8.8±0.3 

month; 28.3±0.2g), which were used as a control group. All protocols were approved by the 

Vanderbilt University Institutional Animal Care and Use Committee. 

 

RGS2-Deficient Mice 

Seven adult male RGS2 deficient (RGS2 -/-) mice weighing 27±1 g and 8 male wild-type 

(RGS2 +/+) mice weighing 30±1 g. All animals were obtained from Washington University 

School of Medicine, Department of Cell Biology and Physiology, St. Louis, Missouri, USA. The 

animals were allowed free access to standard chow (0.25% sodium, SNIFF Spezialitäten GmbH, 

Soest, Germany) and drinking water. The protocol was approved by the local council on animal 

care in accordance with the guidelines of the American Physiological Society. 

 

Sympathetic Nerve Recordings 

Anesthesia Mice were anesthetized with 1.5% Isofluran (in 100% Oxygen) through a 

nose cone. Body temperature was maintained at 36-37° C with an isothermal pad (Braintree 

Scientific, Inc., Braintree, MA).  
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Nerve Recordings The left kidney was exposed through a left flank incision and with 

blunt dissection retroperitonaeally. A branch of the renal nerve running parallel to the renal 

artery was isolated carefully. A bipolar stainless steel wire electrode pair (wire 0.003 inches bare 

diameter and 0.0045 inches coated diameter, part number 316SS3T, MedWire Corp, NY, 

electrode distance 1-1.5 mm) were hooked onto the nerve. After achieving optimal signal quality, 

the electrodes were secured with silicone adhesive gel (QuickSeal, World Precision Instruments, 

Sarasota, FL). A high-pass filter (300 Hz) was applied to the nerve signal to reduce the 

significant low-frequency noise caused by the 60 Hz AC power and its harmonics as well as 

breathing artifacts. This filter setting was also recommended in previous publications [11;12]. 

The output was then amplified (gain 10,000) by an isolated differential amplifier (ISO-80, World 

Precision Instruments, Sarasota, FL).  

Data Acquisition The signals were recorded using a WINDAQ data acquisition system 

(DI410, DATAQ, Acron, OH) with 14 Bit resolution at 10000 Hz sample frequency. The data 

were processed off-line using customized software written in the Matlab environment (The 

MathWorks, Inc., Natick, MA).  

 

Sympathetic Nerve Analysis 

A spike detection algorithm using stationary wavelet transform (SWT) decomposition 

with the Symlet 7 wavelet and a single level noise estimation threshold on the level 4 and 5 detail 

coefficients was used to quantify the sympathetic nerve activity. Further details of this spike 

detection algorithm are presented in Chapter IV. Spike detection was applied to five minute 

periods of baseline RSNA from both transgenic mouse species and the mean spike rate results 

were compared to those obtained from their respective wild type counterparts using a non-

parametric Mann-Whitney U-Test for unpaired data. 

 

Results 

 

NET-Deficient Mice 

The SWT spike detection method was used to analyze five minutes of baseline RSNA in 

wild type (NET +/+) and norepinephrine transporter deficient (NET -/-) mice. The mean baseline 
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spike rate for the NET +/+ group (60.1 ± 10.0 spikes/s) was found to be significantly higher than 

that of the NET -/- group (21.3 ± 4.9 spikes/s; p<0.01) as shown in Figure 1.  
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Figure 1. Baseline spike rates in 14 wild type (NET +/+) and 13 norepinephrine transporter deficient (NET-/-) mice 
computed using the SWT spike detection method. 
 

RGS2-Deficient Mice 

Figure 2 demonstrates that the mean baseline spike rates in the wild type (RGS2 +/+; 

25.5 ± 5.1 spikes/s) mice were found to be significantly higher than those found in the knockout 

mice (RGS2 -/-; 17.4 ± 4.0 spikes/s; p<0.01). These results were reported with permission from 

[3]. 
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Figure 2. Baseline spike rates in 8 wild type (RGS2 +/+) and 7 RGS2 deficient (RGS2 -/-) mice computed using the 
SWT spike detection method. Graphic borrowed with permission from [3]. 
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Discussion 

We have demonstrated that the SWT-based spike detection method optimized in Chapter 

IV is capable of analyzing data from various strains of transgenic mice. The baseline spike rates 

for the NET +/+ and RGS2 +/+ wild type animals differed substantially different, but this may be 

the result of different mouse strains being used in the control group.  

The genes modified in both transgenic mouse strains were found to play a role in the 

regulation of sympathetic function and could be important in explaining the mechanism of 

various disorders of the autonomic nervous system. This information may be useful in the design 

of pharmacological agents used to target these specific transporters and regulators in the hopes of 

controlling the affects of these dysautonomias. In conclusion, SWT-based spike detection can be 

useful in the quantification of murine sympathetic nerve activity and may play a future clinical 

role in the assessment of autonomic function. 
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APPENDIX D 

 

A HILBERT-MODIFIED CONTINUOUS WAVELET TRANSFORM FOR 

INSTANTANEOUS SPECTRAL ANALYSIS OF HEART RATE AND BLOOD PRESSURE 

 

Motivation 

Several authors have successfully demonstrated the utility of the continuous and discrete 

wavelet transform in time-varying spectral analysis of heart-rate variability during dynamic 

cardiovascular stimulation [1-4]. Crowe et al (1992) was the first to apply wavelet analysis to 

heart rate variability [5]. Since this initial work, several authors have simply used the discrete 

wavelet transform (DWT) or the squared magnitude of its coefficient outputs to display the 

changes in the heart rate variability using a multiresolution approach [1;6;7]. However, the 

output of any form of real wavelet transform; e.g. DWT, CWT, or SWT; is simply a filtered 

version of the input and will oscillate significantly. Therefore, power computed in this manner 

will not be comparable to power computed using more traditional methods, i.e. with Fourier 

Transform based methods (Fig. 1). To account for this phenomenon, Toledo, et al (2003) 

suggests using a median filter with a length of 3 seconds to reduce the fluctuations in the output 

of the CWT (Toledo et al., 2003). This line of processing has two essential problems: (1) the 

median filter may distort the power information and (2) by averaging over 3 seconds, some time 

resolution is lost. 

Another method of eliminating the fluctuations in the wavelet coefficients is to find the 

instantaneous amplitude of the wavelet coefficient oscillations using a Hilbert Transform [8]. 

This method was applied to the DWT and the wavelet packet transform of the heart rate 

variability with some success [3] and could be useful for analysis in the analysis of the CWT 

spectral power for heart rate and blood pressure variability. 
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Figure 1. Wavelet decomposition versus Fourier spectral analysis. The input to each method is the simulated signal 
at the top.  The signal contains a 0.25 Hz sinusoid from 0-30 seconds and a 0.10 Hz sinusoid from 30-80 seconds. 
The wavelet decomposition simply produces filtered versions of this input signal. The coefficients at each wavelet 
scale have an oscillatory nature.  The FFT-based power calculation does not oscillate in the same manner.  Note also 
that the wavelet components appear to resolve the change from 0.25 Hz to 0.1 Hz more rapidly in both bands. 
 

Methods 

Details of the continuous wavelet transform can be found in Appendix A. An analytic 

signal zs, can be created from a set of real-valued wavelet coefficients at scale s, ds, using Eq. 1. 

( ) ( ) ( ){ }ndiHndnz sss +=      (1)

In Eq. 1, 1−=i  and  denotes the Hilbert transform. The instantaneous amplitude of d{ }KH s 

can then be computed by calculating the magnitude of the analytic signal [9] (Eq. 2). Note, As is 

the instantaneous amplitude of ds. 
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( ) ( ) ( ) ( ){ }[ ]22 ndHndnznA ssss +==      (2)

The instantaneous amplitude can then be converted to units of power by squaring As. For a more 

detailed description, refer to [9]. 

 

Results 

In Fig. 2 below, we present a general method for a Hilbert modified continuous wavelet 

transform algorithm. The computing the instantaneous amplitude of each continuous wavelet 

coefficient scale eliminates the oscillations and the result can be used to compute the time-

varying spectral power of the signal within specific frequency bands. 
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Figure 2. Hilbert-modified continuous wavelet transform (HMCWT).  First, the CWT of a the signal is computed 
(left column).  Next, the absolute value of the analytic signal of the Hilbert transform is used to display the 
instantaneous amplitude of the CWT (center column). These values are then squared and scaled to units of power.  
Finally, the appropriate scales are summed to form the approximate time-varying spectral band (right column). 
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Discussion 

We have shown the general method for instantaneous, time varying spectral estimates 

using the Hilbert-modified continuous wavelet transform. This method was optimized for use in 

heart rate and blood pressure variability analysis and used to analyze the time course of the very 

low frequency (VLF), low frequency (LF), and high frequency (HF) components of a non-

stationary data set in Chapter VI. This is a potentially useful technique which offers more 

flexibility than traditional Fourier-based time varying spectral estimates of fixed window length. 
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