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Chapter 1

INTRODUCTION

Inspired by the nature of human, visual sensing has proven to be very useful in the field of

robotics. One of its many uses is for visual servo control of robot manipulation [1]. Generally,

there are two approaches to visual servo control, image-based visual servo (IBVS) and position-

based visual servo (PBVS). The control scheme for IBVS moves the manipulator to minimize the

distance in the image stream between the image of the end effector and the image of the object.

PBVS uses 3D reconstruction of the scene to estimate the position of the object and moves the

manipulator to those 3D coordinates. [2].

This work describes a systematic approach to PBVS using a standard 6-axis industrial manipu-

lator with a standard, non-reactive controller. IBVS generally requires a reactive controller so that

position of the end effector can be changed continually and instaneously in response to the position

error measured by the vision system. But most off-the-self industrial robot controllers are designed

to be preprogrammed for repetitive point-to-point motion, which is decidedly not reactive. Once

the arm starts moving toward a programmmed position, its motion cannot be preempted. That

makes IBVS difficult. Nevertheless, visual servoing is inherently reactive. The controller’s limi-

tations require a servoing algorithm to break up the manipulator’s trajectory into small segments.

The motion steps are determined by having the vision system continually compute the 6-axis pose

(position and orientation coordinates) of the target object and send that pose to the manipulator at

the beginning of each motion. This thesis demonstrates that PBVS can work well with a standard

manipulator and controller. The approach lends itself to parallel implementation because the vision

system and robot controller are computationally independent and connect periodically through the

passing of coordinates from the vision system to the robot. [2, 3].

The thesis also demonstrates that visual servo control can be done inexpensively with a standard

PC workstation and a pair of webcams; expensive industrial machine systems are unnecessary. Off-
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the-shelf consumer-grade cameras suffice. This opens visual servoing to a much wider range of

applicaitons. Two Logitech webcams were used in this work and met our accuracy requirements.

Our approach to visual servo control has the following characteristics:

• Economic vision system and computation with consumer equipment;

• Easy to implement with tolerable calibration errors;

• Can be combined with other object detection methods;

• Sufficiently generic to work on a wide variety of robotic manipulation tasks.

1.1 Related Work

Visual servo control has been studied for well over two decades both as a topic in signal pro-

cessing and in robotics. In early works [4, 5], a vision system was integrated as a feedback control

module with object modeling. Visual based control was shown to be effective in conjunction with

object recognition. IBVS and PBVS were introduced as two different approaches [1] and demon-

strated to be feasible [6]. During the same time, significant advances in 3D reconstruction from

stereo vision were made by the use of projective geometry. Performance evaluation metrics were

also devised [7, 8].

In early 2000s, different techniques were well established for both IBVS and PBVS [9, 10,

2]. Given reactive control at the robot motor servo level, the two approaches were proven to be

comparable in performance [11] (although that performance is sensitive to the system setup). One

tutorial on VS [3], combined IBVS and PBVS as an advanced approach.

At the same time, stereo vision systems apart from robotics were extensively researched [12,

13]. Recent advances in 3D sensing devices have enabled researchers to improve computational

performance. Laser scanners have become less expensive and cheap consumer products such as

the Kinect have made 3D sensing widely available. [14, 15, 16, 17, 18].

Although both stereo vision systems and visual servo control have been well developed, they

have been applied to robots that have been designed with such control in mind. There has not
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been much work to bring VS control to the currently installed base of industrial robots. Our

work enables standard industrial manipulators to acquire reactive behaviors. This could enable

industry to use existing infrastructure while expanding its capacity for flexible manufacturing. The

economic benefits of advanced manipulation without having to replace existing robots could be

significant. The principles guiding this research have been threefold: economic (use inexpensive

components and existing robots), systematic (develop software systems that extend the capabilities

of current robots), and applicable (to new problems).

1.2 Problem and Solution

Our systematic approach is straightforward and could be implemented as two stand-alone sub-

systems: the stereo vision system and the robotic system. The stereo vision system handles 3D spa-

cial reconstruction and object detection while the robotic system handles coordinate frame trans-

formation and dynamic control based on 3D position.

The development of a stereo vision system was performed as follows: The intrinsic parameters

of stereo webcams were obtained from camera calibration using the Spatial Vision software from

Universal Robotics. Then wrote software using OpenCV library [19] to reconstruct 3D space from

stereo webcams with the intrinsic parameters applied. To achieve accurate pose oriented object

detection, we combined detection based on both color features and depth information. A simple

approach to 3D coordinate estimation of a targeted object in the camera frame was to compute the

center of mass of the combined features.

The kinematics of the robot were determined empirically since that information is not sup-

plied by the manufacturers of standard industrial manipulators. The robots are designed to be

programmed manually by actually moving the robot to a sequence of positions using a program-

ming pendant. Position-based visual servoing is essentially equivalent to programming the robot

on-the-fly during its manipulation tasks. That requires the simultaneous calibration of the robot

with the vision system. The transformation between camera frame and robot base frame must be

determined. The robot control program was written using ROS [20]. In our real-time system, a tar-
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get’s 3D coordinates in robot frame is computed by transforming the object position estimated with

respect stereo vision system’s coordinate frame. The robot control program is given coordinates

of the target pose of the end effector. A message-passing communications technique is employed

to connect the visual program in C++ and the control program in Python to ensure simultaneous

correspondence and dynamic tracking behaviors.

To illustrate the process straightforwardly, we include a system flowchart in the following Fig-

ure 1.1. The whole system comprises three parts. The separate, concurrently-operating vision

system and robotic system are connected by message passing protocol that includes frame trans-

formation.

The paper is organized as follows. Stereo calibration, 3D reconstruction, object detection and

tracking are introduced in Chapter 2. Chapter 3 describes the robotic kinematics, frame transfor-

mation between the robotic and the vision system, and simultaneous tracking control. Chapter 4

demonstrates the system’s dynamic behaviour and analyzes the sources of error. An appendix is

included, where we explain explicitly how to run the system in our test bed.
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Chapter 2

STEREO VISION SYSTEM

We describe our system implementation as economic yet efficient, in part because we use off-

the shelf webcams for the stereo vision system. Commercial 3D machine vision systems are very

expensive; they can easily cost thousands of US dollars. We have found that Logitech webcams,

although inexpensive are sufficiently accurate for our purposes. Its high-end product line features

webcams the autofocus as well as the Carl Zeiss lenes which feeds sharp and fluid video with a

high-definition resolution of 2-megapixels. Although these webcams are top-of-the-line consumer

products, they are are sufficiently accurate to for visual servoing. In our system, we employ dual

Logitech Pro 9000 that cost less than $100.00 USD, which significantly reduces the cost of our

system in comparison.

These webcams do not, however have the built-in functions of commercial systems such as 3D

construction, color detection, or object tracking. The work described in this chapter provides those

capabilities.

We place our vision cameras above and facing the robot. The two webcams are placed at the

same level. They are attached to a Kinect that is unused here but will be integrated in the near

future. The lenes are adjusted manually roughly towards a point right behind the robot end effector

with its up straight pose. This setting enables us to calculate correct depth information. It will

be explained later in this chapter. The mean distance from the webcams to the robot is about 1.3

meters. That is the minimum distance for which all the robot motions are within the field of view.

This also ensures that an object within the robot’s reach is not too far for the vision system to detect

and track. The completed system with dual webcams and the robot arm at the base is as shown in

the following Figure 2.1.

OpenCV is an open-source library for real-time computer vision that has existed for more than

a decade and is continually updated by users and volunteers. We used its optimized functions to
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Figure 2.1: System setup

advance our code efficiency and visual servoing speed. PCL (Point Cloud Library) [21] is an open-

source library for 3D geometric processing that has been under development since 2010. We use

it for 3D reconstruction in this work. All the code for this work are written in C++ under Ubuntu

14.04 platform using Code Blocks as the IDE.

The rest of this chapter introduces the development of our vision system in three sections. In

Section 2.1, we describe the intrinsic parameters of our webcams and estimate the transformation

between the two cameras in the stereo pair. In Section 2.2, we calculate the image depth and recon-

struct the 3D scenario based on calibration results using OpenCV and PCL. In the last Section 2.3,

we describe our algorithm for combining depth detection and color detection to achieve accurate

object tracking.
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2.1 Calibration of Stereo Webcams

In this work, camera calibration can be separated into two parts. First, each of the two webcams

is calibrated individually with camera matrix and distortion coefficients as its intrinsic parameters.

Camera matrix consists of focal distances fx, fy and image center (cx,cy) as

A =


fx 0 cx

0 fy cy

0 0 1

 . (2.1)

The distortion coefficient vector comprises radial distortion coefficients and tangential distortion

coefficients.

Second, the stereo webcams are mutually calibrated. This step estimates the rotation matrix R

and translation vector T between the coordinate systems of the cameras.

Universal Robotics, Inc. provided us with their commercial software Spatial Vision that com-

bines the stero calibration process in a single program with a straightforward user interface. We set

our webcam resolution to 640∗480 in the software and then conduct the calibration with 20 pairs

of checkerboard pictures. Then we have the calibration results with the projection errors as shown

in Figure 2.2.

Although we can tell the errors of our calibration results exceed the recommended values,

with the median of 3D back-projection error still in millimeter scale, this set of results meets our

requirement for our prototype system. We are also able to obtain the rectified image pair by the

distortion coefficients as shown in Figure 2.3.

Example results of the rectification process are shown in Figure 2.3b. Rectification undistorts

the images from stereo webcams and warps them to be parallel.
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Figure 2.2: Calibration projection error

(a) Raw camera feed (b) Rectified image

Figure 2.3: Camera feed pairs

2.2 Stereopsis

After an sufficiently accurate camera calibration, we employ six result matrices in our stere-

opsis program. They include left camera matrix (M0), right camera matrix (M1), distortion of left

camera (D0), distortion of right camera (D1), rotation (R) and transformation (T ). These matrices

9



are taken as inputs to function stereoRectify(), which computes a rotation matrix for each camera

to rotation camera images to the same plane. It produces five outputs which include

• Rectification rotation matrices (R1, R2) for left and right camera,

• Projection matrices (P1, P2) in the rectified coordinate system for left and right camera,

• Disparity-to-depth mapping matrix (Q) for later use when we reproject image to 3D space.

Then camera matrix, distortion, rotation and projection are inserted in function initUndistortRec-

tifyMap() as inputs for each camera. This function computes the undistortion and rectification

transformation. The outputs are represented in the form of maps for function remap(). The output

map functions are then used in function remap() to undistort and rectify the grey image pair from

our stereo cameras.

With the rectified stereo pair of grey images, we calculate the point-wise disparity which in-

dicates stereo point correspondence and leads to depth information from the vision system. Since

this work requires real-time correspondence, the calculation speed is important. We must choose

the algorithm for the calculation of depth information to be sufficiently fast. We found that the

block matching algorithm is a good choice because it produces about 7 frames of disparity map in

a second with some accuracy traded. In the block matching algorithm, there are several parameters

that had to be tuned manually. These play tremendously important roles in the accuracy of the dis-

parity map. Our tuning process uses a program called Stereo BM Tuner and the following values

in Table 2.1.

Notice that different systems require different sets of parameters. This set of parameters has

been tuned for our system and might not work well in other stereo vision systems.

After the disparity is computed by using the BM algorithm with the BM parameters listed in

Table 2.1, we normalize it for visualization. It contains the real disparity values reflecting the

overlapping of the image pair. So we first normalize the real disparity values to the range from

0 to 255 which is a grey image showing the depth information. Then we convert the grey image
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preFilterType CV STEREO BM NORMALIZED RESPONSE
preFIlterSize 5
preFilterCap 63

SADWindowSize 19
minDisparity -32

numberofDisparities 96
textureThreshold 0
uniquenessRatio 0

speckleWindowSize 0
spekleRange 0

Table 2.1: BM parameters

to RGB color disparity for better visualization. The grey and color disparity maps are shown as

follows:

(a) Grey disparity (b) RGB disparity

Figure 2.4: Visualized disparity maps

Although the disparity map exhibits lots of noise, the depth information is well illustrated. In

Figure 2.4a, the color changes from white to grey then to black with the distance increasing. In

Figure 2.4b, the color changes from red to green then to blue with the distance increasing.

Recall that we have an disparity-to-depth mapping matrix Q as the output from stereoRectify().

We use that to reproject the disparity image back to 3D space. The function reprojectImageTo3D()

takes real disparity and mapping matrix Q as inputs. It converts the single-channel disparity map to
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a 3-channel image representing a 3D surface. For each pixel (x,y) and the corresponding disparity

d = disparity(x,y), it computes:

[X Y Z W ]T = Q∗ [x y d 1]T (2.2)

3dImage(x,y) = (X/W,Y/W,Z/W ). (2.3)

We found that each pixel in the 3-channel matrix 3dImage contains the real 3D coordinates in

millimeters according to the camera frame. Although 3dImage would not be like a point cloud

which is visualized as a 3D image, it is more usable for us to extract its 3D position information

by each pixel location. This will be discussed more in detail in the next section.

2.3 Object Detection and Tracking

After disparity measurement, we obtain the stereo depth information in 3D space. In theory, we

are able to extract the 3D position with respect to the camera frame of any point in the visualized

disparity map. Under a real working conditions for a visual servo control system, we need our

robotic arm to reach any visible object in its workspace. This was achieved by eliminating all the

background and leaving a sufficient range of distances in the disparity map for the vision system

to do the object identification.

Whereas the disparity map could only be used to determine the depth information, the color

as well as the shape of an object are lost due to the overlapping of the stereo image pair. And if

the robot arm reaches out randomly to anything within the range we set, it would not be a target

oriented system. Worse, the robot arm could keep reaching toward itself once it moves into the

recognition area. Therefore we devised a method, described in this section, that uses both color

and depth information to detect and identify the object targeted by the stereo vision system. Shape

information about the object will be left for our future work and will not be discussed here.
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2.3.1 Depth detection

During depth detection, the vision system is not target oriented. It is a passive system that

demarcates an area by distance around the stereo webcams and marks any object that within the

area as a potential system target. The primary task here was to set up a region by distance for

object detection.

Recall that we scaled the real-valued disparity map into the integer range from 0 to 255. We

could simply filter out all the background depth information except for the area demarcated. So

we set 100 as the threshold value to blackout the background. In return, we obtained the following

threshold image with the original grey disparity map:

(a) Grey disparity (b) Threshold disparity

Figure 2.5: Threshold for disparity map

Unfortunately, this result was insufficient. One could see roughly from the original grey dis-

parity map in Figure 2.5a that a person was sitting on the right side holding up a round object in the

middle of the image. Figure 2.5b illustrates that the round object in the middle is well delineated

after thresholding. But it is impossible for the vision system to tell which part is the servo target

in the thresholded disparity map. Refer to the RGB disparity map in Figure 2.4b; it is apparent

that the other stuff in the thresholded disparity map is noise coming from the original disparity

map. For the vision system to eliminate efficiently as much noise as possible, a median filter was
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applied to the disparity map. We found that a fairly large aperture linear size 105 for the median

filter would remove the noise sufficiently. Then the results are as follows:

(a) Smooth grey disparity (b) Smooth threshold disparity

Figure 2.6: Threshold for disparity map with median filter

The result here shows that only the object is left in the image. We were able to estimate the

object’s depth information from this result.

After the successful object segmentation, we must estimate the 3D position of the target object.

Each pixel in 3dImage contains its own 3D position. The detected object covers many pixels at

the same time. We compute the mass center of the object from the smooth threshold disparity in

Figure 2.6b and take the position of that pixel as the object’s position for the robot arm to servo to.

To compute the center of the object, we use spatial moments computed by:

m ji = ∑
x,y
(array(x,y) · x j · yi). (2.4)

And the mass center (x̄, ȳ) is

x̄ =
m10

m00
, ȳ =

m01

m00
. (2.5)

Then the mass center (x̄, ȳ) is the pixel location in 3dImage that is used to estimate the 3D

position for the detected object.
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2.3.2 Color detection

The vision system as described to this point cannot be described as a target oriented system

because it does not have the ability to separate the target from other objects in the detection re-

gion. We use a color model of the object to disambiguate the objects found by depth detection

alone. Color detection is straightforward; we convert the remapped RGB color image pair to HSV

which is the color space most suitable for image segmentation. Most primary colors can be easily

separated using only the value of Hue channel in HSV space.

Recall that we are not able to do color detection from the disparity map since it does not

retain any color information from the raw feed stereo image pair. Therefore we must do the color

detection directly from the stereo image pair. We convert the RGB image pair from our stereo

webcams to HSV as follows:

(a) Left HSV image (b) Right HSV image

Figure 2.7: HSV image pair

In the HSV image, it is straightforward to extract a single color area using a suitable range of

hue values. Here we used a red object and extracted the red area from the image pair. Notice that

we converted the raw stereo image pair directly to HSV. Both the left and right images must be

remapped for comparison after color filtering. We obtained the following image pair that indicated

the red areas in Figure 2.8.
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(a) Left colored area (b) Right colored area

Figure 2.8: Color filtered image pair

Here one can see that the results from HSV color filtering are good with the red object extracted

in both webcams. There are some spurious areas in both images. They might be noise or other red

stuff (real but not the target object) identified by webcams. We handle that via noise canceling and

small area filtering since the spurious areas are small compared to the object.

To cancel the noise in the image pair in Figure 2.8, one can simply do an AND operand between

the images in the pair since it is unlikely that the small noise regions will overlap significantly in

both images. Moreover, overlap between the images will be likely to correspond to real objects

that occupy the same position which could improve the upcoming centroid calculation. After the

AND operation, the result of the color-filtered image pair is shown in Figure 2.9.

As shown in Figure 2.9, all the noise and other spurious areas are eliminated from the sum

image. But we still find that the outlines of the object is not smooth. Therefore we apply a different

median filter with radius of 21 to the images first. Notice that if we use only the color filter to detect

the object, it will be detected if it was captured by stereo webcams. In most cases within the visible

region, the robot arm would not be able to reach the object. Therefore, we combine depth detection

with color filtering to improve the object detection. We applied a threshold of 50 to cover the entire

robot move region within the grey disparity map (which was introduced in Section 2.3.1). Then we
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Figure 2.9: And operand of left and right images

do the AND operand between the thresholded grey disparity map and the smoothed color-filtered

image sum. The resulting detection image is shown in Figure 2.10.

Figure 2.10: And operand of depth detected and color detected images

The tightness and appearance of the object detected result as shown in Figure 2.10 is satisfac-

tory for servoing. We compute the center of mass in Equation 2.4 and 2.5 on that image. The

centroid pixel (x̄, ȳ) location in each image is taken as the object position. The procedure is suf-

ficiently fast to track the position of a moving object (if it is not moving too fast). This will be

further discussed in the next chapter.
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Chapter 3

ROBOTIC SYSTEM

Our hardware testbed includes a Yaskawa-Motoman HP3JC, 6-axis industrial manipulator with

an NXC-100 controller [22]. It is a small, lightweight robot1 with a 3kg payload. It has a wide

range of motor speeds from nearly undetectable motion to joint-dependent maxima in the range

150◦/s - 450◦/s. Each of its six motors is controllable with a positional accuracy of 1000 control

pulses per degree. It is also highly repeatable; it will return to within ±0.03mm of the same

location after hundreds of thousands of repetitions. In our experimental environment, the robot is

placed 1.5 meters in front of the vision system in an upright pose so that it has as wide as possible

range of motion within the stereo receptive field of the camera pair.

Visual servo control requires the mutual calibration of the robot and the vision system. The

vision system estimates an object’s position relative to the stereo camera frame. The robot moves

its end-effector to positions relative to its base frame. Therefore visual servoing requires the trans-

formation of object coordinates from the camera frame to the robot base frame.

Represent the transform from camera coordinates to robot base-frame coordinates by

xr = B r
cx

c, (3.1)

where xc is the location of a point in space as measured in the stereo camera frame, and xr is the

same point measured with respect to the robot’s base frame. Transform B r
c is a rigid rotation plus

translation, a member of the 3D special Euclidean transform group, SE(3). If B r
c ∈SE(3), then it

has the form

B r
c =

 R t

0T 1

 , (3.2)

where R ∈ R3×3 is such that RTR = RRT = I and det{R} = 1, (R is a rigid rotation), t ∈ R3 is a

1The HP3JC is light for for an industrial manipulator – it weighs 27kg.
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translation vector, and 0 ∈ R3 is the zero vector. In terms of its parameters, B r
c is 12-dimensional.

It has 9 entries in the rotation matrix and 3 in the translation vector.

Since the stereo camera pair and the robot are positioned manually, B r
c must be determined

empirically. This is done by finding a single, specific point on the robot’s end-effector in each of

the two images of a stereo pair taken by the vision system. Since there are 12 parameters, the robot

arm must be moved to at least 12 different positions within the vision system’s stereo-optic field of

view2, and a stereo pair taken at each position. If the vision system has been calibrated properly, xc

can be computed from the disparity between the two images of the point on the end-effector. Point

xr is known since the robot was moved there by a control program. Given point pairs, {xci ,xri}N
i=1,

Equation 3.1 can be solved for the transform parameters.

Thus the calibration procedure is to (1) move the robot to N ≥ 12 positions, (2) take a stereo

image pair of the robot at each of those N positions, and (3) estimate the transform parameters

from the point pairs using an optimization method such as LMS estimation. (cf. Section 3.2.)

If the robot’s position is to be controlled directly through is joint angles then in addition to B r
c

the inverse kinematics of the robot must be known. Through inverse kinematics the joint angles

can be derived from the Cartesian pose xr.

In our control system, object detection and tracking are continual; the vision system outputs a

time-series of measurements {xc(n)}. The time between measurement xc(n) and xc(n+1) will be

on the order of milliseconds whereas motion from one pose, xr(k), to the next, xr(k+ 1), can be

on the order of seconds. If all the points in the camera time-series were to be used, then a long

queue of target points would accumulate while waiting for the arm to complete a motion. If the

arm were to move to each successive point in the queue, visual servoing would bog down to the

point of uselessness. Therefore we have included logic that prunes the visual point queue while

preserving key points in the robot’s trajectory. That is discussed in Section 3.3.

225 to 30 points are recommended to mitigate the effects of noise in the image measurements.
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3.1 Forward Kinematics and Inverse Kinematics

A mechanical drawing of the Y-M HP3JC in its home position is given in Figure 3.1. The

Figure 3.1: Dimensional specifications of the Yaskawa-Motoman HP3JC in side view

(Modified from http://www.used-robots.com/images/robots/original/hp3jc-side.jpg)

drawing has the locations of the six joints S, L, U , R, B, and T marked with red dots. The numbers

indicate structural dimensions including the link lengths – the distances between adjacent joints.

We assign the robot’s base frame at the “S” joint (the base joint) which is 133 mm above the

physical base of the robot. To place the robot’s end effector at specific coordinates with respect to

the base frame, we must determine the mathematical transform between the rotation angles of all

the joints and the Cartesian coordinates of the robot’s end effector. The mapping from joint angles

to Cartesian pose is called “forward kinematics” and the retrograde mapping from Cartesian pose

to joint angles is called “inverse kinematics” [23].
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3.1.1 Forward kinematics

Forward kinematics give the Cartesian pose – position and orientation – of the end effector

relative to the base frame as a function of the robot’s joint angles. Forward kinematics can be

defined in a number of ways. We use the Denavit-Hartenberg (DH) convention which represents

the coordinate transform at each joint as the composition of four basic transformations [24],[25].

(cf. Equation (3.3).)

Figure 3.2: Link configuration in terms of Denavit-Hartenberg parameters

A link is the basic physical unit of an articulated manipulator (robot arm). It contains a motor

that turns a single revolute joint and the hardware that connects its joint to the next one. An

articulated manipulator is a connected chain of these links that extends from the physical base of

the robot (link L0, a special link that does not have a motor) through the first joint (link L1) and

successive joints to the end of the arm (link N) where a tool or end-effector is attached. Each

of links L1, . . . ,LN has an independently controlled joint so the entire chain (i.e. the manipulator

itself) has N degrees of freedom (DoF).

In the D-H convention Link Li has four parameters: ai – the link length, αi – the link twist, di –

the link offset, and θi – the joint angle (cf. Figure 3.2). Link length ai is the perpendicular distance

between the axis of joint i and the axis of joint i+1. It can be envisioned as the length of the vector
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between the axes that is perpendicular to both axes, i.e. the mutual perpendicular between link

axes i and i+1. The link twist, αi is measured in the plane defined by the mutual perpendicular. It

is the angle in that plane between the projection of axis i and axis i+1, measured in a right hand

sense around the perpendicular. Link offset, di, is the signed distance along joint i’s axis from the

point where ai−1 intersects the axis to the point where ai intersects the axis. Joint angle θi is the

angle between ai−1 and ai measured around axis i.

At the end of each link, Li, is a rectangular coordinate frame, F i. Its origin is at the intersection

of the ai perpendicular and the rotation axis of the next joint, i+ 1. Its z-axis, ẑi+1, is coincident

with the axis of rotation of joint i+1. In other words, coincident with the rotation axis of link Li is

the z-axis of link Li−1. Coordinate vector x̂i points in the same direction as ai and ŷi is constructed

via right hand rule from ẑi to x̂i. Frame, F 0 is associated with the base of the robot and is called,

therefore, the “base frame.”

In summary the link parameters in terms of the link frames are:

ai = the distance from ẑi−1 to ẑi measured along x̂i.

αi = the angle between ẑi−1 and ẑi measured around x̂i.

di = the distance from x̂i−1 to x̂i measured along ẑi−1.

θi = the angle between x̂i−1 and x̂i measured around ẑi−1.

The first three parameters are constant for a revolute-jointed articulated manipulator and θi is the

variable joint angle that sets the link’s pose.
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The coordinate transform, T i+1
i from Li to Li+1 is given by

T i+1
i = Transẑi−1,di

Rotẑi−1,θi
Transx̂i,ai

Rotx̂i,αi

=



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1





cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1





1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1


=

 R i+1
i xi+1

i

0T 1

 , (3.3)

which is SE(3) like the camera to robot base coordinate transform. The first three rows of the

fourth column of the matrix comprise xi+1
i , the 3-D position of of the next link in the chain, i+1,

relative to the the position of the ith link. The 3× 3 matrix in the upper left of T i+1
i is a rotation

matrix, R i+1
i that encodes the orientation of link i+1 with respect to link i’s coordinate frame.

Link ai αi di θi
1 (S) 0 −90◦ 157 θ1
2 (L) 260 180◦ 0 θ2−90◦

3 (U) 30 −90◦ 0 θ3
4 (R) 0 90◦ −270 θ4
5 (B) 0 −90◦ 0 θ5
6 (T ) 0 0◦ −90 θ6

Table 3.1: DH table

The DH parameters for the Y-M HP3JC are given in Table 3.1. Links 1 through 6 include the

base joint, S, the lower joint, L, the upper joint, U , and the wrist joints, R, B and T , “roll”, “bend”,

and “tool”. The DH parameters for each link specify a homogeneous transform3 through Equation

3“Homogeneous” here refers to the 4-dimensional projective representation of points in R3. A vector x ∈ R3 is
represented as xh = [ xT 1 ]T in homogeneous coordinates. This enables rotation plus translation to be represented
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3.3. The 6-axis robot, therefore, has 6 individual homogeneous transformation matrices (T i+1
i (θi)

for i = 1, . . . ,6). The elements of matrix T i+1
i depend on angle θk. The transform matrix, He

b ,

that maps six given joint angles to the Cartesian pose of the end effector, is the composition of the

homogeneous transformation matrices of each joint,

He
b (θ1, . . . ,θ6) =

Rotation Translation

0 1

=

Re
b te

b

0 1


= T e

6 (θ6)T 6
5 (θ5)T 5

4 (θ4)T 4
3 (θ3)T 3

2 (θ2)T 2
1 (θ1). (3.4)

He
b is the forward kinematic transform matrix from base frame b (at the robot coordinate origin

0) to the end effector point e. Note that matrix multiplication proceeds from right to left. Vector

te
b ∈R

3 is xr, the end effector position relative to the robot’s base frame. The orientation of the end

effector is encoded in the rotation matrix Re
b.

3.1.2 Inverse kinematics

The mapping in the other direction – from Cartesian pose to joint angles – is the inverse kine-

matic (IK) transform. Whereas the derivation of the forward kinematics in the previous subsection

was algebraic, the inverse kinematic transform is more easily derived from the robot’s geometry.

In this document, we have considered the inverse mapping from position, rather that pose, to joint

angles θ1, θ2, and θ3 – the base joint, S, and the lower and upper links, L and U , respectively. The

S, L, and U alone are sufficient for the end effector to reach most of its workspace. (See Figure

3.1.) We have fixed joint angles θ4, θ5, and θ6 to zero. This is sufficient for the work here since

we are considering only the object’s position and not its orientation in the servoing problem. The

work will be extended at a future time to include object orientation. The base joint is easily solved

for given the end effector coordinates [x y z]T since base joint, S, is the only one that rotates

as a single matrix operation. Also, given a homogeneous transform Φ, if y′ = Φ(xh) is such that y′ = [ yT γ ]T

where γ 6= 1 then yh = y′/γ .
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with respect to the vertical axis.

θ1 = arctan
(y

x

)
. (3.5)

Joints L and U are both rotating around horizontal axes so they can be solved together from the

geometric configuration of ther robot as in Figure 3.3.

(x,y)

z

d1

a 2
a3

−(d4 +d6)

t

d

x1

zw1

β

α

φ
γ

S

L

U

R B

T

Figure 3.3: Geometric side view of the robot

Values d1, a2, a3, d4, d6 are from the DH convention in Table 3.1. Vector [x y z]T contains

the end effector coordinates. The rest of the labels in Figure 3.3 are described as follows: x1 is the

distance from the lower link L to the projection point of end effector on the same horizontal plane;

zw1 is the perpendicular distance from joint T to L; d is the distance from joint L to T ; t is the

distance from joint U to T ; α is the angel between a3 and t; β is the angle between a2 and t; φ is

the angle between d and x1; γ is the angle between a2 and d.

The following equations can be derived from the geometry in Figure 3.3.

x1 =
√

x2 + y2 (3.6)

zw1 = z−d1 (3.7)

d =
√

x2
1 + zw2

1 (3.8)
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t =
√
(d4 +d6)2 +a2

3 (3.9)

α = arctan
(
−(d4 +d6)

a3

)
(3.10)

β = arccos
(

a2
2 + t2−d2

2a2t

)
(3.11)

φ = arctan
(

zw1

x1

)
(3.12)

γ = arccos
(

a2
2 +d2− t2

2a2d

)
. (3.13)

According to the joints configuration in Figure 3.3, the joint degrees for the lower and upper

links, L and U , could also be derived so far.

θ2 =
π

2
− γ−φ (3.14)

θ3 = α +β −π. (3.15)

Substitute Equations 3.13 and 3.12 into 3.15 and substitute 3.10, 3.11 into 3.15, to obtain the

inverse kinematics solution,

θ1 = arctan
(y

x

)
θ2 =

π

2
− arccos

(
a2

2 +[(x2 + y2)+(z−d1)
2]− [(d4 +d6)

2 +a2
3]

2a2
√

(x2 + y2)+(z−d1)2

)
− arctan

(
z−d1√
x2 + y2

)

θ3 = arctan
(
−(d4 +d6)

a3

)
+ arccos

a2
2 +[(d4 +d6)

2 +a2
3]− [(x2 + y2)+(z−d1)

2]

2a2

√
(d4 +d6)2 +a2

3

−π

θ4 = 0

θ5 = 0

θ6 = 0
(3.16)
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3.2 Robot Calibration

As one might have noticed so far, in our inverse kinematics computation, [x y z]T are the

coordinates in robot base frame which will not be fed directly from our vision system. Since

object detection in the vision system only feeds back the desired coordinates of the end effector in

camera frame, we have to figure out the coordinates of the same point in robot base frame. This

process is called robot calibration in which we are going to find the mathematical transformation

from camera frame to our robot base frame. Let us take our frame transformation as a rigid body

rotation followed by a linear translation. According to Euler’s Rotation Theorem [26]:

Theorem 1 Any displacement of a rigid body that leaves one point fixed can be represented by a

single rotation about an axis through the fixed point.

Since any rotation can be defined by using three Euler angles [φ θ ψ] as a result of a

fix frame sequence of 3 basic rotations, the ZYX roll-pitch-yaw angles are obtained by R =

Rz,φ Ry,θ Rx,ψ .

y

z

x

Roll

Pitch

Yaw

Figure 3.4: Roll-Pitch-Yaw (RPY) angles

Let us use t = [a b c]T to represent zero point translation between camera frame and robot

frame. We could have the following transformation equation:

xr = Rz,φ Ry,θ Rx,ψ ·xc+ t, (3.17)
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in which,

Rz,φ =


cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 , Ry,θ =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 , Rx,ψ =


1 0 0

0 cosψ −sinψ

0 sinψ cosψ


(3.18)

And,

t =


a a a

b b · · · b

c c c

 (3.19)

Also, xc, xr and T are 3×20 matrices. Let us refer back to Equation 3.1, then B r
c becomes

B r
c =

 Rz,φ Ry,θ Rx,ψ t

0T 1

 . (3.20)

At this point we are going to solve Equation 3.17 with 6 variables. So as many as 20 different

sets of camera coordinates and robot end effector coordinates are needed to obtain satisfied trans-

formation variables. Firstly we manually choose 20 different points based on the joint degrees and

we have the following table of 20 different joint variables as shown in Table 3.2.

θi(radian) 01 02 03 04 05 06 07 08 09 10 11 12
θ1 0 0 0 0 0 0 0 0 0.25 -0.25 -0.5 0.5
θ2 0 -0.5 0.5 0.5 0.5 0.25 0.75 1 1 1 1 1
θ3 0 0.5 0.5 1 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
θ4 0 0 0 0 0 0 0 0 0 0 0 0
θ5 0 0 0 0 0 0 0 0 0 0 0 0
θ6 0 0 0 0 0 0 0 0 0 0 0 0
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13 14 15 16 17 18 19 20
0.25 0.25 0.25 0.25 -0.25 -0.25 -0.25 -0.25
0.5 0.5 0.25 0.75 0.5 0.5 0.25 0.75
0.5 1 1.25 1.25 0.5 1 1.25 1.25
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 3.2: Joint degrees

Then we move our robot according to these 20 different joint angles and save the corresponding

color disparity maps from our vision system. The corresponding depth maps are in Figure 3.5 and

coordinates of the end effector are in Table 3.3.

Their corresponding end effector coordinates are figured out by picking up the end effector

points manually in Matlab using the funtion ginput(). Although the robot end effector seems to be

obvious in the color disparity maps as shown in Figure 3.5, our way of finding those coordinates

would probably introduce a certain amount of error to the final transformation matrices. In order to

make our system simpler and easier to set up and calibrate, we are keeping this calibration method

and its accuracy will be evaluated in Chapter 4.

CamCoords (mm) 01 02 03 04 05 06
x 57.3838 71.7439 47.3674 45.8052 53.5852 62.3344
y -53.4536 -518.729 73.9183 -98.7286 -198.88 -373.178
z 1234.08 1276.42 1164.55 1074.84 1063.57 1109.01

07 08 09 10 11 12 13 14
57.8255 53.7214 195.823 -91.09 -249.277 368.398 201.809 168.796
-4.77649 167.29 164.784 140.133 100.319 91.4347 70.4248 -106.217
1065.6 1109.01 1121.27 1115.66 1156.11 1157.31 1181.81 1087.4

15 16 17 18 19 20
146.603 195.103 -70.6518 -69.7809 -6.58294 -105.468
-395.497 -25.8362 72.1086 -104.105 -371.764 -13.2935
1111.22 1081.08 1171.89 1087.4 1111.22 1085.29

Table 3.3: Camera coordinates
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Figure 3.5: Depth maps

Finally we calculate the corresponding robot end effector coordinates using forward kinematics

with the table of joint angles in Table 3.4.

RoboCoords (mm) 01 02 03 04 05 06
x 360 44.6141 484.6506 426.1976 367.6095 233.5897
y 0 0 0 0 0 0
z 447 704.3101 415.1715 584.0921 652.5121 728.0559

30



07 08 09 10 11 12 13 14
478.7730 560.1688 542.7545 542.7545 491.5944 491.5944 469.5840 412.9481

0 0 138.5880 -138.5880 -268.5592 268.5592 119.9045 105.4430
546.1598 415.6114 415.6114 415.6114 415.6114 415.6114 415.1715 584.0921

15 16 17 18 19 20
226.3280 463.8891 469.5840 412.9481 226.3280 463.8891
57.7910 118.4503 -119.9045 -105.4430 -57.7910 -118.4503

718.0559 546.1598 415.1715 584.0921 728.0559 546.1598

Table 3.4: Robot end effector coordinates

With these corresponding coordinates available in our case, Equation 3.17 becomes a redundant

nonlinear equation group. Matlabs fsolve() method is used to solve non-linear equations to get the

rotation matrix R and transformation matrix t. The fsolve method requires the problem to be in the

format of F(x) = 0, and thus we use the formula

Rz,φ Ry,θ Rx,ψ ·xc+ t−xr = 0 (3.21)

in our calculations. The resulting equations for Matlab to solve is as follows: Where [a b c] are

the three variables in t and [φ θ ψ] correspond to the three angular variables in R. Equations

are written as a semicolon-separated list and assigned to the F variable. The right hand side of

each equation (which is zero) is omitted.

With the solution as

[a b c φ θ ψ] = [1274.7 40.7 1277.6 1.7 0.8 3.3], (3.22)

in which [a b c] are in millimeters and [φ θ ψ] are in radius. Then we are able to use these

values to command the robot to move to desired positions.
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3.3 Simultaneous Correspondence

Since the image processing code is written in C++, and the code to move the robot is written in

Python, we used an ROS node along with the publish-subscribe methods to let the two communi-

cate with each other. ROS middleware handles all kinds of things for us, such as variable passing

and reference stealing. First, we create an ROS node (with arbitrary name). When an image is pro-

cessed successfully, the resulting camera coordinate is sent to that ROS node using the publish()

method provided by ROS C++ API. For simplicity, the coordinates are sent as a semicolon sepa-

rated string. Then, in the robot code (python), we use the rospy.wait for message([node name]) to

receive any camera coordinates published to the node we created. Then we use Python to process

the message (camera coordinates) and hand the result to robot moving code. To convert the camera

coordinates to robot coordinates, simply use the formula mentioned above in Equation 3.17.

So far we have calculated the R and T matrices. Thus we can compute the robot coordinates

on the right hand side of the equation whenever we have received some camera coordinates. Then

we use the inverse kinematics to compute the joint angles, which can be used by the robot moving

code. In order to protect the robot, we have set some limits to avoid any collision.
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Chapter 4

EXPERIMENT AND ANALYSIS

With the visual servo program and robot control program running at the same time, our system

is tested and analyzed in this chapter. Due to the fact that this system is a prototype, our primary

goal in this chapter is to demonstrate that our idea works and the system behaves exactly as we

designed. We evaluate the effectiveness of our systematic approach from different aspects. First

of all, system integrity and dynamic behaviour are demonstrated under a live environment with

target object consistently changing its position. Error analysis will then be carried out for random

unexpected movements of the Y-M HP3JC.

4.1 Dynamic Behaviour

In order to demonstrate the system dynamic behaviour, we chose a red object together with

a color range filter for HSV values from (150,84,130) to (255,255,255). Using a red object

here would suffer smaller color interference according to our laboratory environment and a better

detection was obtained by a color filter with a wider HSV value range. Then roughly 10 minutes

of continuous detection and tracking was done. We have 9 representative frames from the recorded

video showing accurate detection and tracking performance as follows in Figure 4.1.

The red object we used in this experiment is about 3 inches in diameter and for most of the

time the robot end effector succeeded to reach it on target when the object is moved to different

places constantly. From the frames shown in Figure 4.1, it is obvious that our prototype system

is working as we expected. Both object detection and dynamic tracking were achieved back and

forth. Nevertheless, in order to further refine and improve our system to meet the needs for different

kinds of tasks, we still need to find out the way to evaluate the system accuracy. Since we were

only dealing with a big object with the diameter of 3 inches and the robot end effector is not in a

small size, our system error would not be seen easily from the dynamic behavior. As a result, we
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Figure 4.1: Capture and tracking

have to analyze our system error from the aspect of system components.

4.2 Error Analysis

When we look back to review our system, the developing process suffers from errors while

keeping system simplicity. In this section we discuss three main error sources including camera

calibration, depth map and robot calibration.

4.2.1 Error from vision system

Recall the camera calibration projection error in Figure 2.2, the 2D projection errors for both

webcams are at least 1 pixel which leads to the median 3D back-projection error of 2 mm. Most of

these calculated errors come from rotation between stereo webcams and len distortion [7]. More-

over, there are even greater undetermined intrinsic errors which are caused by sensor noise [8].

Nevertheless, block matching algorithm was used to ensure the calculation speed as compensation

for matching errors of correspondent points [27].
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When it comes to center point calculation for the detected object, there is a chance that the

calculated center would be off the object. Recall the equations we used to calculate the mass

center in Equation 2.4 and 2.5: the mass center would mostly lie in the area of the detected object

with a regular shape as shown in Figure 2.10. If the detect object is not in a regular shape and

the mass center might lie somewhere off the detected area. As a result, the depth information

extracted from the depth map indicates a point in the background. In the worst scenario, if our

calculated mass center lies in a noise area that we could find a lot in Figure 2.4, then there will be

no solution for inverse kinematics or the robot arm will move to somewhere unexpected than our

target position.

4.2.2 Error from robot calibration

Although there are lots of error sources from the vision system, they produce a small amount

of errors in several millimeters which are pretty acceptable and it is very unlikely to happen with

a fetal error. Most of our system errors exist and are caused by frame transformation between

webcams and robot.

While we recorded 20 sets of correspondent points both in camera frame and robot frame

to calculate the transformation, since we manually picked those end effector points in the color

disparity map, each set of points is not perfectly accurate. Also, with 20 sets of imprecise points,

in order to solve the redundant nonlinear equation group, nonlinear estimation was used to obtain

approximate rotation and transformation matrices. As a result, we have to test this approximate

solution with each point set to evaluate its accuracy. We substitute all the 20 point sets together

with our approximate rotation matrix R and transformation matrix t into Equation 3.21. Then we

have the following error table for all point sets in x, y and z directions of robot frame in Table 4.1.

Error (mm) 1 2 3 4 5 6 7
x -12.6570 -50.3916 1.4705 5.1360 1.9158 -17.8688 23.0215
y -38.7014 -36.0691 -39.1020 -33.3874 -25.9206 -24.8364 -19.0151
z 16.4698 65.3934 4.7227 22.4112 33.6268 52.2326 -1.9908

Mismatch 43.9233 90.0921 39.4136 40.5384 42.5006 60.5342 29.9254
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8 9 10 11 12 13 14 15
29.7343 23.8664 36.6147 45.4502 -16.9955 -12.1219 -6.8387 -35.1772
-25.2813 -24.0296 -31.7496 -64.0326 12.4470 -7.4673 -18.0914 0.5432
-25.4092 -41.2920 -0.9193 10.3367 -24.3155 -14.6903 11.1686 71.3532
46.5715 53.4046 48.4718 79.2006 32.1717 20.4574 22.3339 79.5551

16 17 18 19 20
-0.0724 20.6156 16.0368 -5.0291 32.5546
-3.0526 -37.3222 -44.2783 -35.7591 -65.1425
-6.3641 8.6712 25.1879 54.1808 1.2591
7.0587 43.5102 53.4058 65.1119 72.8350

Table 4.1: Transformation errors

The 3D space mismatch between the robot end effector and our target object are also calculated

by

Mismatch =
√

x2 + y2 + z2. (4.1)

With the table of errors in each direction and overall mismatch in 3D, the error distribution is

analyzed and shown it in Figure 4.2.

Figure 4.2: Error chart
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We are able to tell from the chart that the error in each direction lies mostly under 40 mm and

the overall 3D mismatch between robot end effector and our target object is around 50 mm. This

means that our robot end effector will have no problem reaching objects with a radius of at least

50 mm under most circumstances. There is also still lots of room for us to improve the system

accuracy with refined calibration methods in the future.
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APPENDIX

In this appendix, we list all the programs we wrote for this prototype system and describe

explicitly step by step to run it on our laboratory test machine. We list all the programs that should

run for the system in Table 4.2.

Name Directory Description
roscore Installed with ROS Collaborate and collect programs that are pre-

requisites of a ROS-based system
driver.py /home/crl/catkin ws/src/nxc-

100 driver/scripts/
Y-M HP3JC control program

stereopsis.cpp /home/crl/catkin ws/src/nxc-
100 driver/src/

Stereo vision program

listener.py /home/crl/catkin ws/src/nxc-
100 driver/scripts/

Message passing protocol that connects vi-
sion system and robotic system

test move.py /home/crl/catkin ws/src/nxc-
100 driver/scripts/

Move Y-M HP3JC back to original pose

Table 4.2: List of programs

All the steps needed to run the system are listed as follows:

• Run Spatial Vision software in Windows operating system and perform a complete stereo

camera calibration following the instructions in the software;

• Switch to Ubuntu 14.04 operating system and open the Windows partition. Under directory

/User/CRL/Documents/SpatialVision/data/, open “Cam Mat L.txt” to make the data on the

Windows 7 partition accessible by our program;

• Run “roscore” in terminal;

• First, run “rosrun nxc100 driver driver.py” in a new terminal;

• Then in a new terminal, run “rosrun nxc100 driver stereopsis.cpp”;

• In yet another terminal, run “rosrun nxc100 driver listener.py”;
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• Then carefully put objects in front of camera;

• To reset the system:

– Press “reset” on the teach pedant;

– Stop “rosrun nxc100 driver listerner.py”;

– Run “rosrun nxc100 driver test move.py” to reset robot pos.
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