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Chapter I 

 

MODULAR ANTI-HEMAGGLUTININ PEPTIDE DEVELOPMENT 
 

Introduction 

Influenza is a virus that affects humans most commonly as a seasonal infection.  In recent years 

the population has seen variations of the flu that have a pandemic nature (Avian Flu, Swine Flu, 

Hong Kong Flu).  These pandemic outbreaks have caused numerous amounts of deaths and 

sparked panic in affected communities.  Influenza is a enveloped orthomyxovirus that contains 8 

pieces of RNA which encode for 10 proteins, hemagglutinin (HA), neuraminidase (NA), 

nucleoprotein, two matrix proteins, three viral polymerase proteins, and two nonstructural 

proteins (Figure 1).10  The HA protein has been a target of research dedicated to understanding 

the structure and function of this surface protein in the grand scheme of the influenza virus.  

Within influenza A, there are different sub types of HA proteins found on the virion and they are 

Figure 1.  Structure and proteins of the Influenza virion. 
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labeled numerically 1-17, with 1, 2, and 3 being the most common in human infection.10    HA is 

a surface protein that has been designated as the mediator of fusion and infection of epithelial 

cells.  There are three different genera of the influenza virus, A, B, and C.  Influenza A is the 

most common that affects humans.  Within influenza A there is only one species and this species 

is found almost exclusively in aquatic birds.  Transmission of the influenza A virus to domestic 

poultry, and domestic livestock has given rise to the large outbreaks in the human population ex. 

H1N1 (swine flue), H5N1 (bird flu).10-12 The combinatory nature of these pandemic influenza 

viruses is due to the containment of RNA sequences found in bird and pig.   

 

Immunology of Influenza and Anti-Influenza Antibodies 

Once exposed to influenza, humans develop antibodies to help neutralize the virus and 

these antibodies are stored as memory cells.  Normally a more severe infection occurs when the 

human exposed to the virus does not have the correct antibodies stored as memory cells and the 

virus can infect the host, on-setting rapid decline of health.  Current treatment methods and 

therapeutics consist mostly of vaccination, some antiviral medication, and limited 

immunotherapy.  Vaccinations are available to humans that are a combination of non-infective 

influenza virus and common strain for that season.  Thus, once injected will create an immune 

response as if infected and create memory cells for neutralization if exposed to the true virus.  

The vaccinations only work on one specific influenza virus and may not protect one from 

infection from another strain.  Strains that have not been introduced to large amounts of the 

human population can lead to severe infections and death.  Experts think that virus strains that 

have not been introduced to the population in 50+ years such as H2N2 will be pandemic if 

circulated.13, 14  Therefore there is a push for alternative vaccination strategies for these pandemic 

strains of H2N2 and H3N2.   Antibodies against HA can inhibit fusion, by blocking the receptor-

binding domain located at the top or head of the HA protein.  This neutralizes the virus and does 
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not allow it from attaching to healthy cells.  These antibodies that show activity against 

pandemic strains of influenza are not common in today’s population.  Therefore valuable 

information can be obtained by screening anonymous blood donors for antibodies that recognize 

these types of influenza strains.  Currently at Vanderbilt University antibodies are screened, 

studied and sequenced to determine the basis of their specific reactivity to influenza viruses as 

well as testing for reactivity with other strains.  This can prove to be helpful for treatment and 

vaccination efforts if the H2N2 or H3N2 strains are reintroduced to the human population.  We 

believe that this epidemiologically, biologically, and chemically relevant information can be 

coupled with bioinorganic research efforts to create a novel technology such as an antibody-

mimic AuMPC.   

Development of a gold nanoparticle probe that can mimic antibodies against influenza is 

an appealing alternative to traditional vaccine design.  The components of our probe are, the gold 

nanoparticle as our platform, and a ligand that will be attached to the nanoparticle (Figure 2).  

An)body$coupled$to$HA$ Mimic7AuNP$bound$to$HA$

Sequence$of$
An)gen$Binding$

Region$

Amino$Acids$
involved$in$RBD$

C7PEGx7SGYSG$

Figure 2.  Antibody-antigen schematic contrasting natural antibody 
binding and synthetic AuMPC binding. 
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The design of this probe was achieved by understanding the dominant interactions between the 

antibody and influenza virus.  Experimental data from x-ray crystallography and protein 

sequencing was the insight into these interactions and the road map by which we will design our 

probe.  We employed a modular or “top down” approach to probe design to incorporate 

specificity while allowing chemical flexibility such as ligand length and presentation.  Gold 

monolayer protected clusters (AuMPCs) are our platform, and the ligand contain certain 

chemical aspects of antibodies to the hemagglutinin (HA) surface protein of influenza.  The 

long-term goal this work will be to use this antibody biomimetic as a hemagglutination inhibitor 

(HI) of influenza virus.  We hypothesized that a gold nanoparticle antibody biomimetic can be 

designed as a mimic to the natural antibody-antigen interaction, and the effectiveness can be 

determined by binding studies using HA. 

 

 

Ser98&

Gly99&

Tyr100&

Ser100A&

Gly100B&
Gln226&

Arg137&

Trp153&

Glu190&

Thr193&

Antibody! CDR-H3 Sequence!

8F8% CARQQDSGYSGPEVSYYSHYGMDVW%
8M2% CARVGGEWGSGRYYLDHW%
2G1% CARGISGSYGWFDPW%

Figure 3.  X-ray cystal data shown as stick diagram and space filling 
model of residues 98-100B of antibody 8F8 along with table showing 
CDR-H3 sequence of all 3 antibodies of interest. 
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Inspiration 

HA is a homo-trimeric integral membrane glycoprotein that is found on the surface of the 

influenza virion.  The protein’s 3-dimensional structure is described as a central α-helix coil ~14 

nm long, approximately 80,000 Daltons, and consisting of 3 polypeptides.  The heads of these α-

helices are used in mediating viral fusion and the hydrophobic portion of the polypeptide is in 

contact with the viral membrane.11 The “head” portion of HA binds to the monosaccharide sialic 

acid present on the membranes of cells; this is characteristic of the surface of epithelial cells of 

the upper respiratory tract and erythrocytes (red blood cells).  The binding of HA to erythrocytes 

causes them to clump together in a process known as hemagglutination.  HA binds to healthy 

epithelial cells by binding sialic acid causing the virions to stick to the cell surface.  The binding 

of the HA to the cells is called fusion and is the second step in the virus infection after exposure.   

Work by Hirst determined that the HA was indeed the surface protein responsible for fusion and 

entrance into cells.11 The structure of the receptor-binding domain of HA as well as the structure 

of sialic acid gives important information about their affinity for one another.  Sialic acid has 

numerous alcohol groups stemming from the sugar backbone.  The sequencing of the receptor-

binding domain of HA shows that there are amino acids that facilitate hydrogen bonding.11  

Therefore, one option for neutralizing the virus is to block the HA from binding to the sialic acid 

receptors of a healthy cell, this is known as fusion inhibition.   Fusion inhibition of the influenza 

virus is accomplished naturally by the immune response and development of antibodies that bind 

to the globular head of the HA protein.  The binding of an antibody to the head portion occupies 

the site that would be used for sialic acid binding and cell fusion, thereby neutralizing the virion.  

Antibodies are a Y-shaped protein produced during an immune response by B-cells to rid the 

organism of foreign antigens.  The immunoglobulin are water-soluble glycoproteins that account 

for approximately 20% of total protein in serum.16 The structure of all immunoglobulin consists 

of two heavy chains and two light chains that are connected through disulfide bonds.  There are 
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conserved and variable regions of immunoglobulin; the variable regions are what give the 

immunoglobulin specificity for a specific antigen.  Within the variable domain of the antigen 

receptor there are 3 complimentarity determining regions (CDR1, CDR2, and CDR3).  The 

CDR3 associated with the heavy chain of the antibody (CDR-H3), exhibits the highest variability 

in sequence and is considered hypervariable.16  When designing a peptide to mimic CDRs of an 

antibody to a specific antigen, having the sequence of the antigenic protein (HA), and the CDR 

prove to be valuable chemical data.  We would like to use this natural antibody-antigen complex 

as the design basis of our nanoparticle biomimetic. 

Currently Dr. Crowe and collaborators are working on analyzing human monoclonal 

antibodies against influenza viruses.  This is done using high-throughput screening of patient 

samples against the pandemic 1957 H2N2 and the pandemic 1968 H3N2 viruses.17  These efforts 

have discovered antibodies that bind and neutralize the HA surface receptor of influenza.  This 

neutralization occurs through binding the HA receptor with the CDR-H3 of the antibodies heavy 

chain and thereby blocking fusion.  More importantly some of the antibodies found have been 

Figure 4.  Modeled CDR-H3 conformatons using 
known structural "anchoring" motifs.17 
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shown to have activity across different subtypes of HA receptors (H2/H3), which is very rare.17  

The complexes of the HA protein with three different anti-HA antibodies 8F8, 2G1, 8M2 have 

been crystallized and the sequences have been mapped (Figure 3).36   

Mapping of these antibodies has allowed these researchers to determine that the CDR-

H3s have amino acids that are found to be in the receptor-binding domain of one of the 

monomers of HA. HI assays have been done with these antibodies and the data has confirmed 

that these antibodies specifically bind to the HA protein.  These CDR-H3’s have been sequenced 

and the amino acids of these specific antibody prove to be a linear chain that can be easily 

incorporated into our design (Figure 3).  Alternatively, there is work being done to cluster the 

CDR loop conformations of many antibodies using the inherent conservation of the canonical 

loop confirmations seen in CDRs.  This allows for modeling of unknown CDR-H3 loop 

sequences using known loop structures by designating anchor regions that are similar across 

antibodies (Figure 4).18  The modeling has given researchers a distance associated with the 

anchoring region of the CDR-H3 and this proved to be valuable information that was used in the 

planning and design of the modular ligand. 

 

Conclusions 

Due to the pandemic nature of influenza strains that the general population has not been 

exposed to, there is a current need for alternative approaches to fusion inhibition of influenza 

viruses.  We have shown precedence for bringing forward preliminary research utilizing the 

disciplines of immunology, virology, and inorganic chemistry.  The binding assays done with the 

native antibody gives us confirmation of specificity.  The sequencing and structural 

determination research is paramount, providing the measurements and a picture of the 

interaction. These insights into the antigen-antibody interaction of these pandemic influenzas 
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helped to achieve design and synthesis of a gold nanoparticle that mimics the CDR-H3 of an 

antibody that can bind HA receptors. 

 

CHAPTER II 

 

GOLD MONOLAYER-PROTECTED CLUSTERS FUNCTIONALIZED WITH MODULAR  

ANTI-HEMAGGLUTININ PEPTIDES 
 

Introduction 

  Nanobiotechnology utilizing functionalized gold surfaces and gold nanoparticles has been an 

important research tool for the past twenty years. Gold nanoparticles have been used in a variety 

of different chemical applications for the last 30 years.  They offer discreet size ranges, ability to 

tune shape, ease of purification, and facile ligand attachment.  There is precedence for using gold 

nanoparticles as a platform for nanoparticle-ligand based immunoassays in the literature and 

previous work in the Wright lab.4, 5, 8, 9, 19-24 The field has evolved from synthesis of discreet 

nanoclusters, to immunogold staining to electron imaging of tissue with gold particles, to quartz-

crystal microbalance techniques, and more recently the targeted nanoparticle-ligand binding 

probes of today.1-7 A critical component of these probes are the interfaces between the 

nanoparticle and biological molecules, for it determines both the specificity and sensitivity of 

these probes. Recently research efforts have focused on the biological efficacy of these 

nanoclusters when functionalized with proteins, namely antibodies.  Successful covalent 

attachment of antibodies to gold particles has been used for immunoassays and some diagnostics.  

The antibodies large size (150 kDa) limits the ability to control packing and ease of attachment 

to such small gold clusters. The Wright lab has used functionalized gold surfaces for 
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development of diagnostic tools in malaria, detection of explosives, capture and detection of 

proteins, imaging of RNA in living cells, and presentation of antigenic peptides.5, 8, 9 These 

varied tools highlight the breadth of potential applications. Gold nanoparticles can be 'tuned' by 

size and shape, and considering the ease with which they can be functionalized, are attractive 

platforms for applications in bioinorganic chemistry.  The Murray lab pioneered the AuMPC 

cluster frontier.  They successfully synthesized and characterized different sized AuMPC clusters 

with numerous types of ligands.  The Murray lab was also able to functionalize the particles 

surface with specific ligands of their choosing using place-exchange reactions.  These place-

exchange reactions are achieved using thiol-terminated ligands that can replace the original 

surface ligand and create a covalent-like bond with the surface atoms of the AuMPCs. 

 

 

 

TS) TS)

TS)TS)

VS)
ES)

ES)

Figure 5.  Face-centered cubic truncated octahedron, where 
the (111) and (100) planes are shown with dotted lines.  ES, 
Edge Sites; VS, Vertex Sites; TS, Terrace Sites. 
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Gold Monolayer-Protected Clusters 

 AuMPCs have previously been used in the Wright lab for epitope presentation of an 

antigenic HA peptide.  This work done by Dr. Gerdon showed that synthesized peptidic epitope 

sequence AYDPVDYPY of HA could be used to functionalize AuMPCs and 2-D gold surfaces.  

These epitopes were presented on the gold surface then recognized by an anti-HA antibody using 

Quartz Crystal Microbalance technology to develop a gravimetric immunoassay.  Given this 

AuMPC-antigen biomimetic’s ability to be recognized by the antibody, we decide to explore the 

reverse by making a gold antibody mimic MPC.  The original design of the AuMPC biomimetic 

is a multidisciplinary effort, using techniques in biology, immunology, virology, X-ray 

crystallography, and inorganic chemistry.  The key was incorporating the data compiled by Dr. 

Crowe, and Dr. Ian Wilson along with the literature precedence for functionalized AuMPC 

applications.  We used 2-3nm Gold tiopronin monolayer-protected clusters (tio-AuMPC).  The 

easy synthesis, fairly monodisperse size-range, and precedence in the Wright lab, afforded us the 

framework to pursue the research described herein.  The structures of tio-AuMPCs have been 

studied using TEM, and MS.7, 26, 27 Understanding the structure and shape of these tio-AuMPCs 

S
H
N

O
OH

O

SN
H

O
HO

O
HAuCl4 + HS

H
N

O
OH

O

S

HN
O

OH
O

S

NH
O

HO
O

+ NaCl, Disulfide

NaBH4

MeOH

Figure 6.  Reaction schematic for tiopronin monolayer-protected cluster synthesis. 
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and how that affects the place exchange and presentation of the ligand on the surface were 

imperative for probe design.  The 2-3 nm tio-AuMPCs will be synthesized using a modified 

literature basis.7  These 2-3 nm tio-AuMPCs have the ability to be functionalized with thiolated 

ligands of choice post-synthesis.25  The size and shape of gold AUMPCs have been extensively 

studied by Whetten and coworkers.28  Nanocrystal gold cores of varying size were studied using 

mass spectrometry and high-resolution transmission electron microscopy (HR-TEM).  

Researchers determined the number of atoms along the edge sites of different size 

nanocrystalline gold cores assuming a face-centered cubic arrangement and truncated octahedron 

structural motif.28  The gold atoms at the vertex sites such as the intersection of the (111) and 

(100) facets are more likely to be involved in the place exchange mechanism due to higher 

reactivity (Figure 6). The dynamics of the place exchange reaction are more favorable at the 

vertex sites and edge sites of the cluster.25  The distance between these vertex sites are 

determined using the size and structure of the AuMPC.  Therefore tuning the AuMPC size and 

having ligand modularity we can closely mimic the metrics and conformation of the CDR-H3s of 

interest. 

 

Geometry of Tiopronin Gold Monolayer-protected Clusters 

Assuming our AuMPCs are perfect truncated octahedrons we were able to derive a 

formula for determining the distances on the octahedron faces.  The radius r of a sphere that 

touches all points of a regular octahedron (Figure 7), where x is the lateral edge length is 

 

𝑟 =    !
!
2  (Eq. 1). 

 

Using our AuMPC diameter range 2-3nm we can calculate radii r range 1-1.5 nm and edge 

length x range 1.4-1.7 nm respectively.   
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 A truncated octahedron is formed by removal of 6 right square pyramids from each point 

of a regular octahedron of side length x.    

b 

a 

a
 

a 
i j 

a
 

Figure 8.  Left, truncated octahedron with square-face length e and 
square-face vertex-to-vertex length b.  Middle, right square-pyramid 
that was removed from each point with base length a, and lateral side 
length a.  Right, regular hexagon face with vertex-to-vertex lengths i 
and j. 

x 

Figure 7.  Regular truncated octahedron with equilateral triangular 
faces, edge length x and 6 points (A, B, C, D, E, F). 
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Assuming creation of regular hexagon faces then the equilateral right square pyramids created 

have pyramid base length a, and the pyramid lateral side length a where 

 

𝑎 =    !
!
  (Eq. 2). 

 

This formula can be used to determine the vertex-to-vertex distance range a = 0.46-0.56 nm.  

Using the definition of a right triangle we can determine the hypotenuse b of the right triangle 

created by the base of the pyramid with 

 

!
!

!
+      !

!

!
=   𝑏! (Eq. 3). 

  

This formula can then be used to determine the hypotenuse b, which affords us vertex-to-vertex 

distance range b = 0.66-0.8 nm.  The other vertex-to-vertex distance ranges on the hexagonal 

face labeled i, and j can be calculated using the same principles and afford us i = 0.8-0.98 nm 

and j = 0.92-1.12 nm.  Our 2-3 nm AuMPC has 4 distinct vertex-to-vertex distance ranges a, b, i, 

and j (Table 1).  If we assume the peptide loop formed has a circular shape, we can determine the 

length of the semicircle with diameter b, as it relates directly to the vertex sites.  Using calculated 

value ranges of a, b, i, and j as diameters the length ranges of the semicircle or l are found using 

 

𝐶 = 𝐷𝜋    (Eq. 4) 

𝑙 = !
!
  (Eq. 5). 
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The value ranges of l can be calculated to afford a length range of ~7.22-17.6 Å (Table 1).	
  	
  This 

data was used in ligand design as it pertains to optimal ligand length ranges.  Optimal length 

would be necessary to achieve maximum structural similarity between on particle presentation 

and the native antibody.	
   	
   	
  The lengths of the sequences in (Å) were calculated using the bond 

lengths bonds between amino acids.    

The 8F8, 8M2, and 2G1 sequences were calculated to be ~21 Å, ~38 Å, and ~38 Å respectively.  

The 8F8 sequence is similar in length to j and would adopt nearly semicircular conformation if 

place-exchange occurred on the same hexagonal face.  Longer sequences such as 8M2 and 2G1 

are long enough to place exchange at vertex sites that are not contained on the same face or 

would adopt a flatter conformation assuming our PEG is rigid and can change angular 

conformation from the normal.  

Table 1.  Geometric Calculations of AuMPC parameter ranges. 
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Ligand Design 

 The ligands designed were linear (LN) and looped (LP) peptidic 3-component systems.   

The 3-component ligand contains a surface modulator (connecting), spacing module 

(presentation), and an MRE (binding), inspired by the amino acids that were determined to be in 

the RBD by X-ray crystallography (Figure 3).  Gold-thiol bonding has been utilized for stable 

surface functionalization.7, 26-30  To achieve this, we designed our ligand with terminal 

cysteine(s), which contains a thiol group, our surface modulator.  Presentation of the CDR-H3 

sequence away from the AuMPC surface is imperative and was considered in the design.  The 3-

component design uses a polyethylene glycol spacer unit that was synthetically incorporated into 

the ligand. This type of spacing module was imperative for tuning the distance and geometry of 

the ligand from the AuMPC by using discreet polyethylene glycol of different sizes.  The MRE 

Figure 9.  Linear and looped modular ligand design schematic detailing 
the surface modulation, spacing and molecular recognition element.  
Specific peptide sequence used for molecular recognition element 
determined by antibody sequencing and x-ray crystallography. 
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of the 3-component system are the specific amino acid sequence of the CDR-H3 shown to be in 

the RBD as determined by Crowe and coworkers shown highlighted in (Figure 3).36   

This ligand comes in two forms, mono- and bi-dentate.  The mono-dentate design will 

have one surface modulator where as the bi-dentate will have two.  This created either a mono-

dentate linear ligand or a bi-dentate looped ligand that we presented on the AuMPC surface.  The 

possibility of the bi-dentate ligand binding to two separate AuMPCs, creating a particle-to-

particle linkage, was discussed and using strict control of concentration this was minimized and 

confirmed by TEM. The designed ligands were synthesized using standard FMOC solid-phase 

peptide coupling techniques.31  Cysteine-based resin was used to incorporate a terminal thiol into 

the ligand design.   

The mono-dentate ligand was built from the resin in the order of surface modulator, 

spacing modulator, terminating in the MRE (Figure 10).  The bi-dentate or looped ligand was 

built from the resin in the order surface modulator, spacing module, MRE, spacing module, 
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Figure 10.  Standard FMOC solid-phase peptide synthesis 
pathways for linear and looped designs of the 8F8 and 2G1 
sequences. 
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terminating in another surface modulator (Figure 10). These ligands were purified via High 

Performance Liquid Chromatography (HPLC) and characterized using Matrix-Assisted Laser 

Desorption Ionization Mass Spectrometry (MALDI) and 1H Nuclear Magnetic Resonance (1H-

NMR).  The synthesized peptidic ligands were incorporated into the monolayer of the tiopronin 

by place exchange.  These place-exchanged AuMPCs were purified by dialysis and characterized 

by 1H-NMR. 

The first aim was to design, synthesize and characterize a AuMPC-ligand antibody 

biomimetic.  We achieved this by designing a synthetic mimic of the CDR-H3 of an antibody 

using peptide synthesis and coupled this with an AuMPC as a platform.  More specifically, using 

interdisciplinary collaboration, we designed this AuMPC biomimetic to bind to the HA protein 

of the influenza virus. 

 

Experimental 

 

Chemicals: 

 Auric Acid (99%), Methanol (HPLC grade), N-(2-Mercaptopropionyl)glycine 

(tiopronin), and Sodium Borohydride were all purchased from Sigma Aldrich in the highest 

purity available.  FMOC-Protected amino acids were purchased from AAPPTec.  FMOC-

protected polyethylene glycol spacers of various sizes were purchased from Quanta Biodesign.  

All other chemicals and solvents were used as received. 

 

Synthesis:   

In methanol (500 mL), Auric Acid HAuCl4�3H2O (Sigma Aldrich 99%) (1.00g, 

2.5mmol) was dissolved and cooled to 0° C.   N-(2-Mercaptopropionyl)glycine (tiopronin) (1.2 
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g, 7.5 mmol) was added to this solution and allowed to stir until ruby red solution turns clear.  

NaBH4 (1.00 g, 25 mmol) was added quickly to the stirring solution while stirring vigorously at 

0° C.  Solution immediately went dark as the tiopronin monolayer-protected clusters are formed.  

The reaction is kept at 0° for 2 hours and then allowed to stir overnight at room temperature.  

Purification of the AUMPC suspension is achieved by rotary evaporation of the AuMPC-

methanol suspension, resuspesion into DI H2O with subsequent introduction into dialysis tubing 

(Thermo Scientific 10K-MWCO) and dialyzed against 4 L of DI H2O for 4 days, changing the 

water twice a day.  The AuMPC suspension is removed from the dialysis and the majority of DI 

H2O is removed via rotary evaporation.  The AuMPCs are then dried under a stream of N2 in pre-

weighed vials for yield calculations. 

 

Characterization:   

Images of the AuMPCs were taken on a Phillips CM20 Transmission Electron 

Microscope (TEM).  10 µL of a very dilute AuMPC solution were be dropped onto a TEM grid 

and allowed to air-dry overnight.  TEM images at different magnification were taken to allow for 

size analysis of the AUMPCs.  The TEM images were analyzed using ImageJ (NIH) and 400 

different AuMPCs were analyzed for their diameter, giving rise to an average AuMPC size. 

  The chemical composition (organic/inorganic) of the AUMPCs was determined using an 

Instrument Specialist’s TGA-1000 Thermogravimetric Analyzer (TGA).  A small amount 

(approx. 10-15 mg) of dry AuMPCs were put into a pan that is then tared within the instrument 

and the furnace heats the sample from 25° C to 800° C.  The mass loss from H2O and organic 

tiopronin ligands were measured and that mass is represented by a percent mass.  1H Nuclear 

Magnetic Resonance (NMR) spectra were obtained on a Bruker 400 Mhz instrument.  A mixture 

of DI H2O:D2O (90:10) was used as the solvent.  A small amount of AUMPCs were dissolved in 

this solvent for analysis.  Spectra were taken using the pulse program dhwatergate to suppress 
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the H2O proton signal and 600 scans were taken.  UV-Visible absorption spectra were obtained 

on a Biotek Synergy H4 Hybrid Reader.  The absorption spectra of the AUMPCs were taken in 

DI H2O from 200-800 nm. 

 

Peptide Synthesis: 

Fmoc-Cysteine Wang Resin (0.1 g, 63 µmol of NH) (AAPPTec inc.) was introduced to a 

clean fritted peptide synthesis vessel.  The resin was wetted with dichloromethane and allowed to 

swell for 10 minutes.  The resin was then washed 3 times in the order dimethylformamide 

(DMF), methanol (MeOH) and DMF.  The resin was then deprotected for 30 minutes using a 

20% (v:v) mixture of piperidine and DMF, and then washed using the same wash procedure.  

The fmoc-PEG8-Acid (Quanta Biodesign) (.125 g, 189 µmol)  was dissolved in a small volume 

of DMF, then HOBT (0.03 g, 189 µmol), HBTU (0.07 g,189 µmol), and DIEA (65 µL, 378 

µmol) were added to the Fmoc-PEG8-Acid in DMF and then incubated with the deprotected resin 

for 2 hours.  These steps are repeated for the introduction of each spacing modulator and amino 

acid needed.  After the final amino acid is incorporated the resin is deprotected and then dried for 

cleavage.  The peptide is cleaved from the resin at the C-terminus Cysteine using reagent K, a 

mixture of (trifluoroacetic acid:anisole:2,2-ethanedithiol:thioanisole) (90:5:2:3) by volume.  

After 2 hours of cleaving the solution of reagent K/peptide is filtered away from the resin and 

introduced to cold diethyl ether to precipitate the peptide.  The solid peptide is pelleted using 

centrifugation and the solid peptide is washed 3 times with aliquots of cold diethyl ether, spun 

down, diethyl ether decanted and then allowed to dry.  The crude peptide is then dissolved in a 

80:15:5 mixture of H2O:acetonitrile:glacial acetic acid then frozen and then lyophilized.  The 

crude peptide is then dissolved in same mixture for high performance liquid chromatography 

purification.  The peptide was purified on a Waters 4000 Semi-Prep HPLC system using a C18 
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column using a gradient of H2O to acetonitrile.  The fractions of interest were then collected, 

frozen and lyophilized to afford the powdery peptide. 

 

Characterization:  

The purified peptides were mass characterized using a Voyager Biosystems MALDI-MS 

instrument in positive or negative mode using Alpha-cyano as a matrix.  The 1H NMR spectra of 

the purified peptides were taken on a Bruker 400 Mhz instrument using D2O. 

 

Place Exchange Reactions and Synthesis: 

Place exchange reactions were performed according to previous literature.25  The purified 

cysteine-terminated peptides were be used to functionalize the tiopronin-gold AUMPCs (Figure 

10).  Ligands were dissolved in DI H2O (10 mL) and incubated with a ratio of 1:25 ligands to 

tiopronin surface ligands for 3 days.  The resulting solutions were then subjected to dialysis 

using 10 K MWCO tubing against DI H2O for 3 days changing the water twice a day.  The 

AuMPCs were dried by lyophilization. 

 

Characterization: 

The purified peptide functionalized AUMPCs were characterized as previously described 

using TEM, TGA,  1H NMR, and UV-Vis.  The TGA data coupled with the 1H-NMR will 

provide us with an empirical formula for the functionalized AuMPCs in the form 

AuxTioy(MRE)z.  The protons associated with the tyrosine residues downfield in the NMR 

spectrum were used for qualitative and quantitative analysis of these AuMPCs. 
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Results and Discussion 

 

Tiopronin Gold Monolayer-Protected Clusters 

As described previously, a 1.00g batch of tiopronin gold AuMPCs were synthesized.  The 

AuMPCs were made with a yield of %53.  The characterization data was compiled and this was 

used to determine the purity, average size of the AuMPCs, and the chemical composition.   

The average size of the AuMPCs were 3.03±.37nm as determined by TEM (Figure 11).  The 

organic composition of the AuMPC’s was determined to be 28.96% by TGA, the %Au is 

calculated as 100% minus the percent organic or (100 - %organic) (Figure 11).  Using the 

average size of the AuMPC, the occupancy of Au in face-centered cubic, and average bond 

radius for Au-Au the empirical formula for the AUMPCs can be achieved mathematically.  The 

formula for tio-AuMPCs is in the form AuxTioy.  The synthesized AuMPCs were calculated to 

have an average formula of Au620Tio382.  The 1H NMR (Figure 11) exhibits broad peaks, unlike 

normal solution NMR.  The 4 different peaks shown in the NMR (1.67 ppm, 3.66 ppm, 3.84 

ppm, 8.16 ppm) are associated with the 7 protons of the tiopronin ligand.  The three methyl 

protons are shown at (1.67 ppm), the two protons of the methylene at (3.66 ppm), the single 
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Figure 11.  (A) NMR spectra of purified tiopronin-AuMPCs in D2O, (B) TEM image of 
tiopronin-AuMPCs, (C) TGA graph of tiopronin-AuMPCs, (D) UV-Vis spectrum of 
tiopronin-AuMPCs. 
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proton at (3.85 ppm), and the secondary amine proton (8.16 ppm).  The line broadening is due to 

the suspension nature of the tio-AuMPCs, the entire ligand on the surface is not soluble in the 

solvent and therefore does not behave as it would a free ligand in solution.  Therefore the lack of 

dipolar coupling, leads to the broadness of the peaks.  The lack of sharp peaks elsewhere in the 

spectra confirms the lack of impurities.  Thermogravimetric analysis data was analyzed using the 

Instrument Specialist’s software.  The decline in mass percentage shown in the TGA graph 

(Scheme 11) is due to the “burning off” accomplished by the heating of the furnace.  The first 

small decline ~2% at 100°C is attributed to loss of H2O.  The large decline that starts around 

200°C and is completed around 620°C is attributed to the loss of tiopronin ligands on the 

AuMPC surface.  This decline is what was used to calculate the %Organic associated with the 

AUMPCs.  The last decline is thought to be associated with loss of actual Au atoms.  The UV-

Vis spectrum shown in (Figure 11) is used to confirm a small size of AUMPCs.  The featureless 

decay coupled with the lack of a plasmon resonance band (520nm) confirms that the AUMPCs 

are smaller than 5nm. 

 

Peptide Synthesis, Purification, and Characterization  

The linear peptides were isolated and purified using standard protocols and the white 

powdery peptide was then characterized to confirm structure.  MALDI-MS and 1H-NMR spectra 

were collected and used for identity confirmation (Figure 12). For MALDI-MS experiments a 

small amount of peptide was dissolved and spotted on the instrument plate and then matrix 

spotted in the same well, after drying MALDI-MS spectra were collected.  1H-NMR spectra were 

collected on a 400MHz instrument in D2O.  Synthesis of the looped peptide sequences proved 

difficult due to several reasons.  The solubility profile of the PEGx dominated the characteristics 

of the molecule and isolation and subsequent purification was affected.  HPLC profiles of these 
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pegylated-looped molecules were markedly different from linear sequences of the same type.  

MALDI-MS spectra of HPLC fractions of the looped ligands did not afford m/z’s consistent with 

the structure.  Special consideration should be taken when synthesizing these looped ligands in 

the future due to the expensive nature of the PEG and the purification difficulties. Three peptides 

Table 2.  Successfully synthesized place-exchanged AuMPCs. Sequence 
associated with each listed along with empirical formula. 

Figure 12.  (A) MALDI-MS of C-PEG4-8F8 after HPLC purification.  
Major peak at 819 m/z corresponds to the pure peptide.  (B) 1H-NMR 
of tiopronin-AuMPCs after place exchange with C-PEG4-8F8.  
Tiopronin peaks present, and signature tyrosine peaks are visible at 
approximately 6.8 ppm and 7 ppm. (C) AuMPC schematic 
functionalized with one linear and looped ligand each (not drawn to 
scale). 
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were successfully purified and structure confirmed via MALDI-MS and 1H-NMR (Table 2).  

These ligands were proper candidates to move forward with and place-exchange reactions were 

completed using these ligands.  

 

Place-Exchange Reactions 

After the characterization of the AuMPCs the place exchange reactions were completed 

using the synthesized and characterized ligands (Table 2).  Failure to isolate pure peptide based 

from all of the designed linear and looped peptides caused us to move forward with only 3 

successfully made peptides.  The various 8F8 and 2G1 place exchanged AuMPCs were purified 

via dialysis and lyophilized to provide us with our AuMPCs now functionalized with our 

modular ligands and therefore signifying the completion of the second half of our first aim 

(Figure 12).  The amount of place exchange achieved on each separate AuMPC was analyzed via 

1H NMR and the empirical formula was determined and is reported in the form AuxTioyMREz 

(Table 2).  We postulate that the differences seen in the amount of peptide exchanged for each 

linear sequence is directly related to structure and characteristics of the amino acid portion of our 

ligand.  Although the 2G1 and 8F8 sequences are similar, the bulkiness of the isoleucine and 

tryptophan coupled with their more organic character lead us to believe that sterics and solubility 

directly impacted the lower place exchange efficiency.  The longer PEG8 linker presents the 2G1 

peptide sequence further away from the tiopronin-monolayer on the surface and allows for more 

efficient place-exchange and higher substitution than the PEG4 version of the same ligand.  The 

presentation of the MRE on the surface of the can be tuned using the modular ligand design, or 

alternative platforms such as other size options of gold nanoparticles.  The use of colloidal gold 

nanoparticles (AuNP) of different sizes could be used to further tune the presentation and 

packing ability of our linear and looped ligands.  7nm Tannic Acid-capped and 15nm citrate-
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capped AuNPs are alternative platforms.  These type of AuNPs can be easily functionalized 

through the thiol present in our ligand, and purification can be done by centrifugation and 

washing.  UV-Vis spectroscopy is the most important characterization technique for colloidal 

AuNPs from 5-200nm.  The plasmon resonance at approximately 520nm associated with 7nm 

and 15nm AuNPs can be used to confirm if the particles are aggregated as well as if they are 

functionalized with our ligand.  The broadening of the plasmon band is indicative of aggregation, 

and a red shift (longer wavelengths) of the plasmon band is indicative of the change in the 

surface characteristics after the ligand is placed on the AuNP.  This is confirmation that our 

ligand has been attached to the AuNP.  Future research should strongly consider experimenting 

with different size regimes of particles to tune the ligand packing and conformation. 

 

Conclusions 

Interdisciplinary approaches to research are currently an effective method for attacking 

complex scientific questions.  We have taken a problem, applied interdisciplinary methodology, 

and reported the synthesis of an AuMPC biomimetic based on the CDR-H3 of an antibody to 

pandemic influenza strains.  The synthesis of these AuMPCs can be modified easily to afford any 

size range of clusters desired, and retaining the ability to place-exchange any ligands of interest 

into the monolayer with our surface modulator.  Synthesis and characterization of modular 

peptides inspired by CDR-H3s completes our first aim and prepares AuMPCs to move forward 

to conduct binding studies. 
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Chapter III 

 

BINDING EXPERIMENTS USING RECOMBINANT HEMAGGLUTININ 
 

Introduction 

 

Principles of Bio-layer Interferometry 

 The second aim to this research was to determine binding of our synthesized AuMPC 

biomimetic to the viral surface protein HA to which is was designed.  When determining an 

experimental technique to test this binding Bio-layer interferometry became an attractive 

method.  Experimental techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), and 

QCM were considered for this aim due to their reliable nature and lab precedence respectively.  

Ultimately BLI emerged as the experimental technique that would afford us the sensitivity, 

parameter control, and non-destructiveness that we deemed necessary for our research.  BLI, a 

technique developed by ForteBio for analysis of biomolecule interactions without the need for 

labeling, proved to be a more straightforward approach than ELISA and QCM.32, 33 This 

technology can be used with analytes of 150Da or greater and our biomolecules of interest, as 

well as AuMPC are far greater than this mass.  The principle of optical interferometry lies in the 

interaction of light waves with one another.  Constructive or destructive interference is achieved 

by waves in phase or out-of-phase respectively.  BLI technology employs this basic phenomenon 

in their fiber optic sensors for the signal.  Within the fiber optic tip there is an internal reference 

and the change in reflectivity of white light shining down the tip will return waves of light from 

two different surfaces, the internal reference and the edge of the tip introduced to the solution.  
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 A biomolecule of interest (small molecule, protein, etc.) can be immobilized on this sensor for 

“dip stick” type measurements.  After immobilization of a biomolecule there is a change in the 

optical thickness at the tip, which leads to an increase in path length of the reflection and change 

in the interference pattern.  This shift in the interference pattern across the visible spectrum can 

be plotted as a magnitude over time and association curves are created.  As biomolecules 

dissociate from the tip the interference pattern shifts back and this magnitude is also plotted as a 

magnitude over time, creating a dissociation curve.  This process creates real-time kinetics and 

affinity measurements.  The advantage of this technique is that this shift is only associated with 

molecules bound to the sensor (Figure 13).  The Octet Red has multiplex and high throughput 

ability; experiments can be conducted in 96 well plates using a row of 8 separate sensors.  This 

experiment also does not need large amounts of sample (200 µL), which works for small 

volumes of AuMPC solutions.  The Octet has disposable streptavidin sensors that are easily 

Figure 13.  Bio-Layer interferometry schematic, showing 
the sensor, surface, and fiber optic layout. 
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functionalized with our protein of interest HA via biotinylation.  The model experiment with this 

instrument done by Abdiche and coworkers used commercially available monoclonal antibody 

“4901” with the antigen calcitonin gene-related peptide (CGRP).32  They designed direct binding 

experiments, immobilizing 4901 on the octet sensor and binding CGRP this experiment showed 

precedence to use the Octet BLI systems for our experiments.  The Octet system was also shown 

to be successful in detecting low affinity antibodies, which was also considered to be a positive 

quality of the technique.33,34 Given the large nature of our AuMPC (~20 kD), we did not 

anticipate sensitivity issues as seen with smaller analytes.   

 

Kinetic Basics 

The picture of binding between two biomolecules where one is a ligand [A] and one is an 

immobilized protein [B] is modeled by mass action theory.  This type of reaction between A and 

B are assumed to follow pseudo first-order kinetics and using the reaction equation 

 

𝐴 + 𝐵 ⇌ [𝐴𝐵] (Eq. 6). 
 

The forward, association phase of the protein-ligand complex [AB], results in an increase in 

[AB] over time.  Where kf is the forward rate constant, and kr is the reverse rate constant. Taking 

the derivative of (Eq. 6) in respect to t gives a differential rate equation that relates the various 

parameters kf and kr to the concentrations of [A], [B] and [AB] 

 

! !"
!"

= 𝑘! 𝐴 [𝐵]− 𝑘![𝐴𝐵] (Eq. 7). 
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At t=0 no [AB] is formed, but at some time t the amount of [B] is equal to the initial 

concentration of biomolecule, [B]o minus the concentration of [AB] formed.  Plugging that 

relationship into (Eq. 7) affords us 

 

![!"]
!"

= 𝑘! 𝐴 𝐵 ! − 𝐴𝐵 − 𝑘![𝐴𝐵] (Eq. 8). 

 

This differential equation describes the formation of the [AB] complex in terms of  [A] and [B]o 

where kf is the forward rate constant which describes the rate of formation of the complex in 

units M-1s-1.  The stability of the [AB] complex formed is determined by the rate constant kr in 

units s-1.  In the case of bio-layer interferometry our protein of interest [B] is immobilized on the 

sensor tip and the AuMPC in solution is assumed to be a constant [A].  AuMPC concentration is 

considered to be constant because the amount of [B] immobilized on the surface is a very small 

amount, even if all the immobilized [B] was used in formation of [AB] the concentration of 

AuMPCs used would be ~10-15 in quantity.  Therefore [A], [B]o and [AB] can be expressed in 

terms of response or R by substitution of concentration C*, and Rmax into (Eq. 8) 

 

!"
!"
= 𝑘!𝐶∗ 𝑅!"# − 𝑅 − 𝑘!𝑅 (Eq. 9) 

 

The differential equation in terms of R was built by substituting [A] with the term C* for 

concentration constant and Rmax, the maximum response due to total amount of immobilized 

protein [B]o, and at any time t, (Rmax – R) is equal to the unoccupied surface protein.  

Rearrangement of (Eq. 9) gives 

 

!"
!"
=   𝑘!𝐶∗𝑅!"# − 𝑘!𝐶 + 𝑘! 𝑅 (Eq. 10) 
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Linear transformations from (Eq. 10) can be done to determine values of kf and kr but transform 

errors in the primary data.37  This fact has moved researchers to use the integrated rate equation 

which allows direct analysis of the data written as  

 

𝑅! =
!!!∗!!"#[!!!

! !!!!!! !

!!!!!!
 (Eq. 11). 

 

This kinetic explanation of protein-AuMPC interaction with 1:1 stoichiometry leads to the 

prediction of Langmuirian behavior for the adsorption, and desorption events.  The Langmuir 

absorption model is standard mathematical model for quantification of molecule absorption to a 

surface.  Langmuir isotherms can be used with inherent assumptions of surface site equivalency, 

monolayer coverage at these surface sites, and no interactions between adsorbed molecules at 

adjacent surface sites.  The BLI experiment we have designed fits within the realms of these 

assumptions.  The surface of the fiber optic tip is functionalized with HA protein that are 

assumed to be equivalent.  The binding anticipated, due to the mimicry CDR-H3’s interaction in 

the RBD, is 1:1.  Due to the low concentration of actual bound protein to the fiber optic tip we 

don’t expect interaction between two adsorbed AuMPCs with one another. 

In our experiment HA protein was immobilized on the sensors using standard 

biotinylation and introduction to the streptavidin sensors and these sensors were subsequently 

introduced to each different AuMPC biomimetic synthesized as well as reference antibody.  
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Experimental 

 

Chemicals 

The Crowe Lab at Vanderbilt University provided the specific H2N2 HA protein 

(A/Japan/305/1957) and the Anti-H2N2 antibody (8F8).  AuMPCs that were used were 

synthesized as previously described.  Phosphate buffered saline 1X (PBS) was purchased from 

(Life Technologies).  Polyoxyethylenesorbitan monolaurate	
   (TWEEN 20) and bovine serum 

albumin (BSA) were purchased from Sigma Aldrich.  EZ-Link Biotin N-hydroxysuccinimide 

ester (NHS) and Biotin-PEG2 were purchased from Thermo Scientific.  Streptavidin (SA) 

sensors were purchased from ForteBio.  Standard Black propylene flat bottom 96-well 200µL 

plates were used for all experiments. Deionized water was purified using a Modulab Water 

Systems unit (~18 MΩ). 

 

Biotinylation of HA 

The HA (A/Japan/305/1957) was biotinylated using EZ-Link Biotin-NHS procedure.  The 

biotinylated HA (Biotin-HA) was used for all subsequent binding experiments. 

 

Titration of Anti-HA (8F8) 

The 8F8 antibody was titrated against HA (A/Japan/305/1957) using the ForteBio Octet RED96 

with standard black flat-bottom 96-well plates.  Concentrations of 8F8 antibody ranging from 

600 µM to 50 µM in 1X PBS were used for the titration.  SA sensors were soaked prior to use for 

5 minutes in 1X PBS buffer.  All subsequent experimental steps were done in 1X PBS buffer.  A 

2-minute baseline step was conducted followed by a 2 minute loading step where biotin-HA was 

bound to the tip.  After loading a 1-minute wash step was done post loading.  A 2 minute binding 

using a biotin-PEG2 was completed as a blocking step to bind any exposed SA and minimize 
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non-specific interactions.  A 2 minute wash step followed the blocking, and then a 5 minute 

binding step (association) of 8F8 antibody was completed.  A 5 minute dissociation step into 

buffer was then completed signifying the completion of the antibody titration experiment.  The 

concentration of antibody in the titration that achieves ~0.5 nm binding interference shift is the 

optimal concentration to use in subsequent experiments.33  200µM Biotin-HA was used for all 

subsequent experiments. The antibody-antigen binding affinity was calculated using ForteBio 

Octet Data Analysis software. 

 

Double-Referenced Binding Studies of Antibody Mimic AuMPCs 

Three different AuMPCs were used for indirect binding studies with HA (A/Japan/305/1957).  

The different AuMPCs tested were each separately dissolved in buffer at surface ligand 

concentration 300mM and 100mM respectively, and placed in separate binding columns in the 

96-well plate. SA sensors were soaked prior to each experiment in 1X PBS buffer with .2% 

TWEEN and .01% BSA for 5 minutes.  This buffer was also the buffer used for all double-

referenced binding studies.  Binding studies were conducted in the order 

soak>wash>binding>dissociation and this data was subtracted from the data collected for the 

same AuMPCs in the order soak>load>wash>binding>dissociation (Figure 14).  All steps were 

done at 1000rpm.  One well in each binding column was filled with buffer only as a blank, one 

well in each binding column had 8F8 antibody at 0.8x10-9M as our reference.  The rest of the 

wells in the binding column were filled with the AuMPCs of interest.  The association-

dissociation curves obtained were fitted globally using 1:1 Langmuir model.  The fitting was 

done using the ForteBio Data analysis software to obtain the kf, kr, Ka, KD. 
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Results and Discussion 

 

Binding Experiment and Data Analysis 

After the synthesis and characterization of linear and looped AuMPC based off of the 

MRE of 2G1, and 8F8 antibodies binding studies were conducted.  This was a novel application 

of such instrument; currently there is no literature precedence for BLI for protein-MPC 

interactions.  ForteBio’s bio-layer interferometry technology proved to be an effective approach 

to determine if our AuMPC biomimetic can bind antigenic protein. The double referencing was 

used to subtract out any non-specific binding of our AuMPC to the SA tip.  To achieve double-

referencing a dummy-load step was incorporated into the experiment.  The SA sensors in this 

case were introduced to buffer only during the load step and contained no HA on the sensor and 

data was collected then washed in buffer.  The unloaded sensors were then introduced to the 

AuMPC solutions and data was collected for 15 minutes.  The AuMPC bound sensors were then 

introduced to buffer in the dissociation column and data was collected for 15 minutes.  The lack 

Table 3.  Equilibrium association and dissociation constants for 8F8 and 2G1 
place-exchanged AuMPCs, data for two concentrations of AuMPCs. *Error less 
than 0.01. 
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of HA protein on the SA tip creates a reference for the software to subtract out non-specific 

binding and create truer binding curves for the AuMPCs.  The curves for the double referenced 

experiment were globally fit using a 1:1 Langmuir model.   

The experimentally determined dissociation constants KD for the three functionalized 

AuMPCs range from 0.1x10-M to 14x10-6M (Table 3).  The experimentally determined 

association constants Ka range from 0.1x106M-1 to 15x106M-1.  Therefore our AuMPC 

biomimetic does not bind HA as tightly as the native 8F8 antibody with KD on the order of 1x10-

9M.  This data correlates with literature precedence of biomimetic AuMPCs.  Work by Gerdon 

produced a KD value of .17x10-6M and Ka  9x106M-1 for AuMPC-protein binding using QCM.8  

Analysis of the preliminary data shows that there is vast room for experimental improvement.   

The Ka within our experiment was shown to increase with decrease in concentration, most likely 

due to slower AuMPC association with the tip due to bulk concentration behavior.  Widening the 

concentration range of the AuMPCs tested to 10-6-10-9M will give insight into concentration 

Figure 14.  Double-referenced bio-layer interferometry 
experiment curves using 8F8 and 2G1 AuMPCs 
compared to 8F8 antibody. 
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dependency on signal.  Looped presentation AuMPCs will afford a comparison from the linear 

sequence.  We believe the conformational presentation of the peptide sequence will have 

implications on the association and dissociation constants.  There is also synthetic territory that 

has not been charted, such as anchored peptide sequences of complete CDR-H3s.  These are 

much longer sequences than the ones studied.  This could give rise to favorable interactions of 

the peptide with HA outside of the RBD.  Considering the complex nature of this experiment 

revisiting the assumptions listed previously would also be warranted.  Line fitting parameters R2 

and X2 are a measure of the quality of fit.  With R2 values of 0.77-0.92 and X2 values of 0.03-

0.61 steps should be taken to improve both of these parameters.  We used the standard 1:1 model 

but given the novelty and complexity of this type of experiment other fitting models should be 

considered and tested.  The mass-transfer model is used in situations where the ligand is first 

transferred from bulk solution to the sensor interface, and then binding to the protein on the 

sensor surface occurs.  The diffusion of the ligand from the bulk solution to the sensor is a 

slower process than the binding of the ligand to the sensor creating a lower concentration at the 

sensor surface.  This could be the case with our AuMPCs that have a very large MW and 

potentially slow diffusion from bulk solution and the coefficient of mass transfer kt would be 

used.  There is also a model for the case of the bivalent analyte.  We initially made the 

assumption that we have only one AuMPC binding per HA due to the surface concentration of 

HA.  These AuMPCs have multiple ligands on the surface and just as the case of an antibody that 

has two ligands per one structure this assumption may not hold true.  One AuMPC could 

potentially bind two different HA proteins at the sensor surface.  In the case of concentrated 

solutions such as ours this effect has been seen.  Two separate kf values arise where the second is 

much more difficult to interpret because the first binding event shifts the equilibrium of the 

system.  The envelope glycoprotein, gp120, of human immunodeficiency virus is the surface 

protein responsible for viral entry into cells much like HA to influenza.  The utilization of a 
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negative control viral protein such as gp120 with BLI experiments would further determine 

specificity of the AuMPCs.    Ultimately, testing our probe against all HA subtypes would 

determine if the CDR-H3 sequences are broadly neutralizing when presented by AuMPCs.  

 

Conclusions 

Experiments described previously have brought forth preliminary data of CDR-H3 mimic 

AuMPCs interaction with HA using BLI.  We successfully assembled and characterized these 

AuMPCs and used them to bind the HA protein influenza.  The results of these binding 

experiments suggest that these AuMPCs bind the HA protein to varying degrees.  The results 

also suggest that the design and components of these nanoscale probes were both important in 

eliciting biological activity in the form of cluster-protein interaction.  Biological activity of these 

novel AuMPCs was determined to be on the scale of previous research using alternative 

methods.  This research describes the first steps in designing and optimizing bioinorganic 

antibody mimics using AuMPCs.  Using this foundation, future endeavors in this research will 

optimize kinetic data fitting to better understand the AuMPC-HA interaction and provide a basis 

for studies of conformational replicas of CDR-H3s on a tunable cluster surface.  
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