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CHAPTER |

INTRODUCTION

Optimization has become a powerful tool in the design andémpntation of computer
and engineering systems. Many problems in real-world agfitins in these fields arise
due to various constraints inherent in a system consistingamy distinct local compo-
nents working towards a shared global objective.

Consider a system comprised of a set of components and a set@frces that are
available to each of the component. Each component is ogporeible for a small sub-
set of the overall system objective and depends on a subsesadirces allocated to it.
The resources, however, can only provide services to adihtiumber of components at
any given time. Furthermore, the components naturallyaatewith neighboring compo-
nents only. The overall system objective in this case is tov@dly allocate these limited
resources among the set of components so as to maximizeotha gbjective.

Finding a solution to this resource-optimization problenaidistributed environment,
in the absence of a central coordinator, is one of the oldedtveell-studied problem.
The distributed and resource constrained nature of thenkeitgenerally encompasses this

optimization problem.

A Motivation

The recent advancement in compression techniques andnk@tg/dechnologies have re-
sulted in wide deployment of novel content distribution laggtions. These applications
enable the end-users to have ubiquitous access to medinste services such as live
broadcasting, video-on-demand, and video conferencing.

Since the emergence of Napster in 1999, Peer-to-peer (RaM)ks have experienced

explosive growths, and P2P-based applications have betwrmaost dominant form of
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Internet traffic [1]. This rapid expansion of P2P is furthehanced by the popular P2P-
based BitTorrent file sharing network. The growth of P2Ffitrag expected to continue
along with the rapid increase in Internet connectivity dmeldevelopment of popular end-
user based applications such as pplive, sopcast, justimatvtake advantage of P2P’s cost-
effective implementation and instant deployability. Tipplication scenario considered in
this thesis is P2P multicast.

In P2P multicast, a media stream is disseminated to a lang@auof peers over the
Internet. Participants contribute their uplink bandwidtid other resources to relay me-
dia streams to neighboring peers in the network. Comparegntent delivery network
(CDN), this type of distributed system is cost-effectiveeda its lack of dedicated infras-
tructure and is scalable to the number of users due to resainaring.

However, the clients that connect to the media streams a@tiag more and more
heterogeneous and are connecting through a wide varietycefa medium. These days,
typical devices used for media consumptions can range frahilendevices with low
processing power and small display sizes to high performamarkstations with high-
definition (HD) displays. Furthermore, users are connetiddtie Internet through access
medium such as Wi-Fi, 3G, 4G, Ethernet, etc. In the case ofargbam, the best effort
nature of the Internet does not provide accept@hlality of ServicQoS) guarantees that
are required for multimedia streaming. Therefore, in otdegnsure QoS, it is essential to

optimize the the available network resources.

B Problem Statement

The ubiquitous access to high-speed connectivity to theriiet for the end users has re-
sulted in a rapid growth in media-related traffic. Howeviee tinderlying infrastructure of

the Internet that was built during the 1990s and the first dfaifie last decade was for ser-
vices such as e-mails and bulk data transfers. The traffaceged with these applications

are sensitive to losses but not to delay and therefore, ayelyainsensitive to bandwidth
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limitations. First proposed by Jacobson, et al. [2], TCHésrost widely deployed trans-
port protocol of today’s Internet. It was introduced durthg early days of Internet with
the goal of ensuring reliable data transport for traffic #ratinsensitive to delay. TCP pro-
vides end-to-end QoS support through its AIMD-based (Adeliincrease/Multiplicative
Decrease) mechanism and is mainly responsible for the kaxiolar stability of the Internet
despite its rapid growth. While the congestion-control haedsm of TCP is appropriate
for bulk data transfers, it is not naturally suitable for naelaffic. Its rapidly-varying con-
gestion penalty on data-rate is extreme to the strict delguirements of streaming media
applications [3].

The QoS for media streams is extremely delay sensitive Isecafithe time constraint
imposed by end users’ perceived quality of experience. eSline generated video quality
is directly related to the video bit-rate during the encgdinocess at the source, the QoS of
the media stream is also sensitive to the availability ofvoet bandwidth. The dominance
of TCP means that any congestion-control protocol desifpretiedia streaming must co-
exist with TCP and b& CP friendly[4] because imposing unfair competition to TCP traffic
could lead to possible congestion collapse [5]. TCP frigrdis means that under resource
constraint, media-data will experience the same delay atdark bandwidth limitations
as TCP. However, being TCP-friendly also means that in thegirce of constraint media-
data will experience severe data-loss. Such loss of dataresajt from dropped packets
when the underlying transport protocols (e.g. UDP) doesguatrantee TCP-like QoS
against data losses. Data is also considered lost becadstagéd arrivals in the presence
of congestion.

Current media technologies achieve TCP-friendlinessutjimodelay-loss tolerance.
This is done by introducing redundancies into the mediaastrduring the content gen-
eration process. However, the ability to handle data loszninhat many video stream-
ing services rely on TCP-based protocol (e.g. browser b&iSenP used in YouTube )

to deliver media data. The continued dominance of TCP atrdvesport layer and the



continuous increase in media traffic means that along witR-fii@ndly media protocol,
resource-optimization at the application-layer is neagst reduce cost and increase per-
ceived quality of experience by end-users.

P2P has become the most popular means for media distribb&ocause it provides
an application-layer platform that can abstract the uydegl heterogeneity at the trans-
port and the physical-layer [6]. In addition, deploying aPP&/stem is extremely cost-
effective due to the resource-sharing by the participagiagr machines. However, due
to this resource-sharing and the network heterogeneisijadle bandwidth of peers is
unavoidably constrained and fluctuates. Peer churningtr@np joining and leaving by
peers to and from a network) further exacerbates this pmableurthermore, unlike in a
client-server system, data is often relayed via severakpeesulting in additional delays,
especially in the presence of network congestion and/odwsiith constraint. Therefore,
P2P systems must implement proper resource-allocatidmitpees to optimally utilize
available bandwidth.

Bandwidth is the most demanding resource in a P2P systerhe lodantext of stream-
ing media, optimization can be classified into two broad gates: local-rate optimiza-
tion between two communicating peers and global-rate opéition across all peers in the
network. Global-rate optimization for all peers depend lom type of encoding used to
generate the media itself. This thesis develops optingizagolutions for media streaming

across both categories.

C Thesis Contributions

The contribution in this thesis can be divided into the foilog categories:

e In local-rate optimization between two communicating peers, a MEdia-friendly
congestion-aware real-Time Streaming (METS) protocolrgppsed that can be

used to transport media data between two peers. Unlikerexisbngestion-aware



protocol that uses regular feedback for rate-control, MEX&grate feedback data

with packet-retransmission or rate-control messages.

In continuous-streamencoding, media data is encoded in such a way that the per-
ceived quality of the decoded video by the end-user is amootis and monotoni-
cally increasing function of the streaming rate. Framewséd to globally optimize
this type of media stream is referred to as¢bavex optimization framewarl new
optimization algorithm under this framework is proposexivideo streaming in P2P
networks that simultaneously considers uplink capacitg péer and the number of

cumulative of a peers.

In scalable-streamencoding, media data is encoded in a such a way that the qual-
ity function is a discontinuous stair-case type functiorthaf streaming rate and is
not amenable to convex optimization techniques. Existptgrization solutions in-
volve heuristic-based algorithm. This thesis proposeswahsairistic-based solution

to scalable-stream optimization. On the sender-side, Ijugithm focuses on load-
balancing and priority-based video stream to a set of rec&ivOn the receiver-side,

video requests are made to maximize the received video data.

Finally, this thesis also proposes a newessage-passing frameworkor optimiza-
tion of scalable video stream. Advantage of this simple Ibegjant approach over
other heuristic-based approach is that the optimizatigorahm itself is indepen-
dent of the underlying constraints. The algorithm itemgdtivupdates resource al-
location decision based on a given set of codewords. Thewawde are binary
representation of various network and video constrainterdfore, any number of
constraints can be used to generate a set of codewords withaifying the al-
gorithm. To the best of our knowledge, this is the first worktthystematically

addresses the problem of scalable-stream optimization.



D Thesis Outline

The thesis is organized as follows.

e Chapter Il: This chapter provides a background on optimization. Ringtnetwork
topology that is used through-out the thesis is presentedck@ound on media
streaming protocols, optimization for continuous-stresmd scalable-stream is also

presented.

e Chapter IIl: In this chapter, the congestion-aware streaming protaxaiefal-time
media is presented. The algorithm improves on the datarlieshy implementing

a recovery mechanism to address lost or delayed data.

e Chapter IV: In this chapter, the optimization for continuous streanewvidor P2P
networks is presented. Simulation shows that this new #llgorimproves the per-

formance over existing algorithm.

e Chapter V: Heuristic algorithm for optimization of scalable videoestm in P2P
network is presented. The algorithm optimizes the ratessctioe network by con-
sidering available bandwidth of peer for topology conginrg load-balancing, and

data-request from child peers to parent peers in the network

e Chapter VI: Inthis chapter, the message-passing based optimizatiovefvork for
scalable video stream is presented. It is based on existinksiin iterative decoding
in the field of Information Theory. Iterative decoding refép the process of iterative

update of outgoing data based on all incoming data.

e Chapter VII: This chapter concludes the thesis and provides an outlirietudfe

work.



CHAPTER I

BACKGROUND

The availability of high-speed Internet connectivity ahe powerful computing devices
have resulted in a growing demand for multimedia commuitinatervices such as video-
on-demand, video conferencing, or live video streamingis Tnowing demand is ev-
idenced by the increasing popularity of online media sewisuch as YouTube, Hulu,
Joost, etc. However, ubiguitous access to these servieegtithnot guaranteed due to the
network infrastructure deficiencies. Therefore, any $ofuto cope with such lack of QoS
require rate adaptation of the data stream.

In this chapter, a brief introduction is provided to the natwtopology and network
model that is used in this thesis. The issue of heterogenaiythe need for resource allo-
cation is discussed. The use of video distortion minimarats an optimization objective
is discussed in the context of rate-adaptation. Finallyarview of various optimization

algorithms and protocols are presented.

A Network Model

Existing approaches for P2P streaming can be divided intodasses:tree-basedand
mesh-basedin a tree-based topology, peers are connected to a singtatpahile peers
are connected to multiple parents in a mesh-based topoldgne tree-based approach
extends the idea of end-system multicast [7]. A mesh-bagd $reaming is derived
from file swarming mechanisms (such as BitTorrent), whemtigigating peers form a
randomly connected mesh. Due to the multiple incoming cotmes for each peer, a
multi-path mesh can fully utilize the network resourcestsfgeers. Furthermore, peers
experience a higher degree of stability [8] in a mesh-bagpgdoach compared to a tree-

based approach. This results in higher quality for the dedigt video. However, this higher
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quality and stability compared to tree-based approach sawith extra computational/data
overhead required to coordinate data reception from nielpprents.

In this thesis, only a cycle-free network is considered. Alicymesh structure is
common in P2P applications, mostly in downloading applices, where data relaying is
coordinated in receiver-driven mode on a piece-by-piestsha.g., BitTorrent. Many P2P
TV applications, albeit supporting video streaming, fumetin the same manner. Most
importantly, these applications are not concerned witkeiddaptation issues because all
peers receive exactly the same content. However, the @pgéitations in this thesis is de-
signed towards streaming scenarios in which rate adaptesio help, such as the presence
of network heterogeneity (streaming to hand-held devioesjrong real-time requirement
overshadowing quality (multi-party video conferencinkg)s not uncommon to see a DAG
(Directed Acyclic Graph) distribution structure in theseiarios. For example, in a live
broadcasting event, if a new peer always find its parent(gngnthe current online peers,
a DAG structure will form where the new peer can be sequencedrding to its joining

time.

A.1 Model Description

Consider a P2P network consistingtéfend hosts. The set of hosts is denotedHas=
{hi]i =0,1,...,H}. Define a flowf that directs from a peen; to peerh in a cycle-
free network by the relatiom; N h, whereh(f)=h is the peer thaff directs to. In
this connection, pedr; is the parent of peen (similarly, peerh is the child of peei;).
Consequently¥ is defined as the set of flows={ f; |i=0,1,...,F }. For peeih, ¥ (h) is
the union of the set of incoming flowg (h)={ fj |Vj, h(f;) =h} and the outgoing flows
Fo(h)={fj|Vj,h R h; }. Here % (h) =0 for server peers and;(h) =0 for leaf peers.
This follows that the set of parent peerstab #(h) ={ h; |Vf € F(h), h; R h} and the
set of child peers igfy(h) ={ h; |V € Fo(h), h(f) =h; }. The flowsf in the network takes

place on a unicast path that connects two peers and encompas®f physical links\(



on the Internet such tha/(f) C A is the set of links encompassed by Based on this
definition, the flow-set of each linkis defined agF (n) = {f € F | ne A((f)} (i.e., the set

of flows that pass through). Therefore, the total receiving rate of a pbes:
Xh= > X 1)

The maximum streaming rate for a flow depends on the uplinkagpc, of each of
the links traversed along the flow path (i.e., the smalle$ihkrapacity along the path
of f determines the maximum achievable streaming ratef forHowever, the physical
topology considered in this thesis is based on the assumiat the bottleneck link of
an end-to-end connection only happens at the uplink of thdisg peer [9]. As such,
the maximum streaming rate of a sending gedepends only on its own uplink capacity,
ch. This effectively reduces the link s&{ to contain only the uplink of peers and the
server. Consequently, the uplink capacity of the peersemttwork are collected into a
capacity vector = (z,, h € H). As illustrated in Fig. 1, this topology is termed as ttar

topology The notations used in this section are collected in Tab. 1

Figure 1: P2P Streaming lllustration: Star topology



Notation Definition

he H End host or peer

feF Unicast flow in overlay multicast

h(f) =h; Peerh; that flow f directs to

F (h), o (h) | Setonincoming and outgoing flows of péer

7 (h), Ho (h) | Set on parent and child peers of peer

N (f)CA | Setof links encompassed by floiw

F (n) Set of flows passed through limk

Xf, Xh Flow rate for flowf and total receiving rate for pelr
Z ez Uplink capacity of peeh

hj — h Peerh; is the parent of pedr connected by flow

Table 1: Notations used for network model

A.2 Best-Effort Network - Leveraging Heterogeneity

As previously mentioned, the present day Internet is a &isit network that does not
guarantee the QoS required for media streaming. The detieatt nature of the Inter-
net means that packets belonging to a single stream betwseuree and a destination
may traverse through unique routes and experience unatadethannel effects along the
routes. This has led to the idea distributed video strean10, 11], where the authors
proposed a distributed scheduling algorithm. Majumdarl.efl2] proposed a delivery
scheme based on distributed Forward Error Correction (FEKgse efforts have shown
a significant quality improvement in media streaming overltiiernet compared to a tra-
ditional client-server model. The idea of distributed aitnéing naturally became popular
in the context of P2P networks once the bandwidth requireditteo streaming became
affordable to the average users.

The work by Hafeeda, et al. [13] introduces a dynamic peearctieh scheme to me-
dia transmission. Padmanabhan, et al. [14], proposes amidthdadaptation protocol is
proposed for increased transmission robustness in P2 retwhile Agarwal, et al. [15]

focused on the quality adaptive delivery of the media stsedvarious QoS improvements
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offered by these works mainly follows the general idea tlzatigipating clients that have
already received the stream are able to help alleviate therdead by contributing to the
media distribution process througieer relaying Peers that relay received media data to

other peers are calladlay peers

B Rate Adaptation

Due to the lack of QoS provisioning in P2P networks, propéization of the available
network bandwidth is necessary to ensure user satisfadtimnvideo stream, this implies
that the peers must perform rate adaptation to address Idthdeonstraint and hetero-
geneous receiver capabilities inherent in a P2P networke Rdaptation is particularly
important in the context of peer-relaying because a rel&y prist re-encode the incom-
ing video stream according to its uplink capacity limit krefdt can relay the video to the
a child peer.

Rate-adaptation implies that the video quality receivecelagh peer is different. In
the case of multicast, having multiple streams of varyirtgdiies may force the overlay
network to divide into smaller subgroups, each receivinly @me version of the source
stream. However, this clustering exposes the peers to bdtidfluctuation and peer
churning. Scalable video stream [16] has been proposed ag/ doaprevent clustering
in a distributed network by offering a single video streamt therves a variety of bit rates.
The video signal is encoded into several layers at the spanckthe receiver only needs to
receive a subset of the layers to recover the signal withtaiodevel of quality degrada-
tion. Therefore, layered video prevents clustering in tbevork because heterogeneity is
addressed at the local nodes, where the sender selectwelgrfls the layers that fit within
the allocated bandwidth. However, this increased flexybdf layered video also produces
data overhead and reduces the coding efficiency. Throudghisuthesis, the terrfayered

videois used to refer to scalable video stream.
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B.1 Video Encoding and Adaptation Techniques

This work focuses on two main encoding schemes: continuatesand scalable-rate en-
coding. Consequently, video streams encoded with thesarsehare called continuous
stream and scalable stream. In continuous-rate encodergeiged video quality is di-
rectly proportional to the encoding rate. Fig. 2a shows étation between media quality
and the encoding rate in a continue stream. Media quality tsea logarithmic function
of the rate. Rate adaptation for continuous stream is dotbgcoding where incoming
video signal is changed by a relaying peer to meet lower kipéte requirements, through

either re-encoding or adjusting key video parameters ssiciuantization values, etc.
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Figure 2: Video encoding types

For scalable-rate encoding, raw video sequences are cesagrénto non-overlapped
layers. Thebase layercontains data that constitutes the most important featfréise
video. Additional layers - calle@nhancement layerscontain data that progressively
enhances the quality of the reconstructed video [17] ondbeiver side. Fig. 2b shows the
discrete stair-case relation between the encoding ratéhengerceived media quality for
scalable stream. The properties of scalable video dictatdsa successful reconstruction
of a layer depends on the availability of all previous layerberefore, rate-optimization
for layered video is essentially maximization of the numdiezonsecutive layers received

by each peer in the network.
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While the adaptation techniques adapt streams to a giventhat rate adaptation algo-
rithms determine the rate that maximizes the overall qualfithe video streams received

by all peers in the network.

B.2 Video Properties

The goal of the optimization algorithm is to globally optiaithe video streaming rate and
improve perceived video quality. In this regard, globaéraptimization is dependent on

the video technology.

Continuous Stream Video

The goal of the optimization algorithm is to reduce distartto improve perceived video
guality. Video distortion is defined as the loss in qualityled video upon decoding on the

receiver side. It is composed of two components:

Ddec: Denc+ Dloss (2)

where D¢ denotes the distortion introduced by quantization at theoéer, andD'°ss
represents the additional distortion caused by packet[k&s Typically, the distortion
characteristics of the encoded video stream can be fit intaranpetric model [18] as a
function of ratex:
s
D) = 3 — + Do 3)

The parametersgt, x3, Do) depend on the coding scheme and the content of the video.

They can also be estimated from trial encodings [18]. Thdien introduced by packet

loss due to transmission errors and network congestion eaetived from [19]:

Dloss: ZPIOSS (4)
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where the sensitivity factat reflects the impact of packet 085S and depends on both
the video content and its encoding structure. For simplichroughout the rest of the
thesis, it is assumed that packet losses due to transmessmnsg are addressed at the lower
layers in the network stack (e.g., retransmission at the M&@r or channel coding at
the PHY layer). Hence, this thesis only focuses on the agipdic-layer distortion due to
encoding loss as mentioned in Eq. 3. The overall video quedih be evaluated by using

the Peak Signal-to-Noise Ratio (PSNRgtric. ThePSNRis defined as:
PSNR= 10log;, (255’ /D) = 10log,, (255 /D) (5)

where the term 255 is an encoder constant related to 8-k#t pepresentation of color.
Given the inverse relation between received rate and timoresource allocation of video
streams in P2P networks involves minimizing the overaliadi®on (i.e., maximizing the

allocated rate).

Scalable Stream Video

In scalable stream, the goal is to maximize the number ofréayeceived. The basic
network model described in Sec. A.1 is extended for scaktbdam. Define a set of layers
L={lj]i=1,2,...,L}. The rate assigned to a particular lay@sx . The set of layers in

flow f is defined ag (). Therefore, each flow has a rate;:

Xf = Z X (6)

| €LTf)

The set of layers received by a pédirom all of its parents is defined as:

L(h) = UsegmL(F) (7)
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f:
Consider peer$; and hy such thath; X hj. DefineA to be a binary variable with the

following properties:

: 1 if layer| is present inf
N = (8)
0 otherwise

The objective functiohis adopted from the definition in Eq. 1 and is given as:

max. Z Xh 9)
he #H
subject to > AnX < 7, (10)
fum€ Fo(hk) IGL(fkm)
AN <1 (11)
le L fjkej:l(hk)
[A'jzl — A'jk] <0 (12)
l€L i e Fi(he)
[ Ne— Y ALm] >0 (13)
l€L | fikeFi(h) fkm€ Fol(hk)

where Eq. 9 is a non-linear function of the total allocatew rfar all the peers in the
network. The rateq for each layer is derived from the sétbased on a constant rate that
can be generated empirically. Eq. 10 and Eq. 11 are asstaiatie network constraint.
Eqg. 10 states the capacity constraint for each peer. Thécitymonstraint in Eq. 11 states
that a peer should not receive same layer from multiple pardmplementing Eq. 11 is
not mandatory, however, algorithms that satisfy this aamst generally provides better
optimization results because it reduces bandwidth waste.1Z and Eq. 13 are related
to scalable video constraints. The continuity constranEq. 12 states that the layers
received by a peer from all of its parentsrih) are consecutive. For example, if a peer

has layer 3, the peer must have layer 1 and layer 2. The retesgraint in Eq. 13 states that

LFor simplicity purposes, assume that the objective funatiecludes the rate maximization for root peers
that act as servers.
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a peer cannot receive a particular layer if none of its parkate that layer. The notations

used for the extended network model and layered video piepere collected in Tab. 2.

Notation | Definition

le L Layerl in scalable video stream

L(f) Number of layers in flowf

L(h) Number of layers received by peer

X Rate required to stream layker

)\} J- Binary variable indicating the presence/absence of layer
| between the flow from pedy; to peerh;

Table 2: Notations used in the extended network model fdabt@video stream

C Congestion-Control Optimization

TCP is the most widely deployed transport protocol in thermet. TCP provides end-
to-end QoS support for delay insensitive bulk-data trassfélultimedia-streaming appli-
cations are better served by slowly varying congestiortrobmechanism that produces
smoother bandwidth usage profile compared to TCP. This lebkttethe emergence of
equation-based congestion-control protocols, such asCTBR XCP [20]. TFRC [21]
(TCP Friendly Rate Control) is the most widely used TCPrly congestion control
protocol. In TFRC, the sending rate is adjusted as a funatfomeasured packet loss,
instead of reducing it by half as in the case of TCP. RAP (Ratapiive Protocol) [22] is
another TCP-friendly rate-control protocol that uses thdB-based algorithm to achieve
inter-protocol fairness. LDA (Loss-Delay Based Adjustmdg@3] is a RTP-based [24]
(Real Time Protocol) rate-control protocol that esselytiabes a AIMD-type congestion-
control scheme and relies on RTCP (Real-time Control Patydeedback information.
TCP-MR (TCP Minimum Rate) [25] is a variant of TCP that maingaminimum rate to

ensure QoS for real-time multimedia data. Congestion-@wate-control by adjusting the
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encoding rate of the video is addressed in [26].

D Continuous-Stream Optimization

Continuous-stream optimization is based on Metwork Utility Maximization(NUM)
framework. The core idea of NUM is to decompose a central@atthmization problem
(e.g., optimizing global utility of all peers) into sub-fmems that are optimized locally
(by each peer) in a distributed fashion. In the context oéwidtreaming, the basic form
of NUM attempts to maximize the sum of source utilities that fnction of rates, under

linear flow constraints.

D.1 Network-Utility Maximization

Let xs be the rate assigned to a flofvin the network. Each flow is assigned a utility
function Us that describes the utility value;(x;) of the streaming rate; for a given
application. LetF be the set of flows. The flows pass through a set of Imks\( that are
capacity constrained k. Therefore, the optimization problem maximizes the suntef t

utilities of all flows, while satisfying the capacity coretits on each link in the network:

max. Y Us(xr) (14)
fefF

subject to Z Xt < Zn, vne A (15)
en

over X; > 0, vieF (16)

Given the role of the utility function as a metric that quéiat the efficiency of the rate
allocation algorithm, the following question naturallysa: how to pick utility function?

In general, there are two types of utility functions: useesutility and server-side
utility. Utility on the user-side depends on user priostielypically, this means that the
user-side QoS are direct functions of the received rateh@srsin Eqg. 14). The user-side

QoS can also be a function of delay, reliability, jitter,.€fte server-side utility primarily
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addresses network-wide cost minimization for the operdigpically, this involves setting
utility as a function of congestion, load-balancing, ewpegfficiency, etc. Overall, the
goal of the utility function is to maximize the rate at a mimim cost, while maintaining
fairness among users. The utility functions are assumed tdmooth, concave and twice

differentiable function of the data rate.

D.2 Optimization Algorithm

Since the utility function is continuous and twice diffetiable, there exist a rate vector
consisting of all flows that ensure global minimum distartin Eq. 14. This technique is
calleddecomposition-based optimizationconvex optimizatian

The basic idea of decomposition is to divide the origipaimal probleminto smaller
sub-problemswhich are then co-ordinated byraaster problem Decomposition tech-
niques can be classified infimal-decompositiorand dual-decomposition Primal de-
composition decomposes the original problem, while thé deision decomposes the La-
grangian dual of the problem. In primal decomposition, ttester problem directly gives
each sub-problem a certain amount of resources it can useefbhe, the role of the mas-
ter problem is to optimize resource allocation to sub-protd. Under dual decomposition,
the master problem sets the price for resource usage by ehgbrablem. Depending on
this price, the sub-problems decide the amount of resouccese. Therefore, the role
of the master problem is to use the best pricing strategy. hetterogeneity associated
with the constraint in Eg. 15 means that a dual decomposiitime most suitable way to
achieve rate optimization in P2P networks. The dual decaitipn with the Lagrangian
duality [27] property, relaxes the primal problem by tramghg the constraints to the ob-
jective function in the form of weighted sums.

In this thesis, an optimization algorithm is proposed uritdlerNUM framework. The
solution is based on dual decomposition. The proposedyufilnction simultaneously

incorporates the capacity and the relay constraints tomizei rate distortion.
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D.3 Related Work

Many of the rate optimization works are inspired by the senivork by Kelly et al. [28,
29], which initiated a new approach of optimization-baseateling and decomposition-
based solution to rate-optimization. As previously memgid this is called th&letwork
Utility Maximization (NUM)framework. In NUM, peers in a distributed network collec-
tively decide how much bandwidth each peer should receiazhpeer uses atility as
a function of its receiving rate. The goal is to maximize thgragate utility of all peers,
subject to various network constraints.

Low et al. [30] extended this pricing strategy to a distrémualgorithm. This price-
based approach has also been applied to multi-rate multgalkar et al. [31] by using
sub-gradient projections and proximal approximation méges [32]. Other works in-
clude multi-path unicast [33] and streaming [34], multicager wireless network [35].
A comprehensive review can be found in [36]. Cui, et al. [37plaed this framework to
overlay multicast, upon which this work is extended.

Recently, this framework has been applied to multicast ¢aestruction in P2P sys-
tems [9]. A long line of works focus on different routing sttures including single
tree [7], multiple trees [38], and mesh [8] topology. Thisrwaleliberately avoids the
routing functionality, but focuses on the optimized ralleeation within any given routing
structure. As such, this solution can work with any tree osimgonstruction solutions.

The rate distortion function used for this thesis is firstgm®ed in [18] using a para-
metric model. There also exists many analytic models [3%dscribe rate distortion.
Finally, Hsu et al. [40] provides a comprehensive reviewhis subject. There have been
works on extending this framework under various networkiegnarios. These works
target to achieve optimized rate allocation by addresdimegniissing QoS provisioning
mechanism of the underlying network. The works in [26, 41Jrads network congestion,
while [42, 43] address the fairness and scheduling respdetiFinally [9, 34] target rate

allocation by optimized routing.
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E Scalable-Stream Optimization

Scalable videos are not amenable to the NUM framework dusetodn-concave, discon-
tinuous nature of its utility function. Any solution claing global optimality is likely to

be intractable in the context of large distributed netwdkisting solutions use heuristic-
based algorithm that locally optimizes a set of network dewi related parameters. The
optimization problem gets even more complicated in thegmes of mesh network be-
cause peers can receive different layers from differentsp@enerefore, unlike continuous
stream video, receiving maximum rate does not alway tréngio maximum effective

layers received if the layers can not be decoded in consecotder.

Example 1. Fig. 3a illustrates the layer allocation problem in a P2P hef\ssume that
peer m and n holds layelr and layerl, 2 respectively. Furthermore, delivering each layer
requires unit rate. Peer m and n has a capacity2a@hnd 1. In this example, peer z will act
as a relay peer having capaci8: A relay peer relays data received from its parent peer
to its child peer. The goal is to distribute these layers fiitve server peer¢m, n} to the
client peers{z x,y} so that the number of consecutive layers received by thetslare

maximized. In this problem, peer m has lageavith 2 unit capacity and peer n haslayers

(a) Multi-layer mesh (b) Optimal layer allocation

Figure 3: P2P mesh example

but 1 unit capacity. In addition, peer z can relay receivegelawith up to3 unit capacity.

Fig. 3b shows the optimal layer allocation solution. In th&se, peer m sends laygito
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both child x and z. Since z already has lagdrom m, it receives laye2 from peer z. Since
peer x has already received laygfrom peer m, it now receives lay2ifrom peer z. Since
z still has2 unit uplink capacity left, z allocatezlayer to peer y. This example illustrates
the fact that unlike continuous video stream, the optinonafor scalable video stream is

non-convex and non-differentiable.

McCanne, et al. [16] first proposed a Receiver-driven Laydvielticast (RLM) ap-
proach to address network heterogeneity. In RLM, layersreeped to various multicast
groups and the peers perform rate-adaptation by subsgribithese groups. Scalable
stream has been proposed to address receiver heterogptitin the context of P2P
streaming. Optimization of scalable stream has been priovba NP-hard [44]. Research
work on layered video optimization mainly proposes heizgsbased solutions and can
largely be classified into three broad categormgrlay constructionutility maximization
andlayer scheduling Existing works based on these three broad categories stesdied

below.

E.1 Overlay-Based Optimization

Proper overlay construction is indispensable in achielaggr optimization. A good over-

lay construction methodology is critical in order to send aeceive layers from its neigh-
boring peers. Approach to QoS-aware overlay construciionbe divided into two mesh-
based [7, 45] and tree-based [46, 47] topology. In both ¢casmsly joining peers first

contact a predefined rendezvous point and successivelg mabting peers to determine
suitable joining position in the network. A tree-based fogy can be trivially extended

for multi-layered video streams. However, in the presericgeer churning, tree-based
topologies are vulnerable to single point-of-failure. Thalti-source approach of mesh-
based topologies addresses this concern. However, itrdlsmliices additional overhead
that is required to properly receive multi-layered videeains.

Generally, a mesh-topology is constructed with gossigthasethodology due to its

21



inherent robustness against failure. Recently it has bged in various P2P media stream-
ing systems such as PRO [48], PRM [49], and Chunkyspread [B@ gossip-based sys-
tem, there is no defined parent-child relation and peersdamiwdata to other peers that
are expecting data packets. This approach is also calledddi@en approach. Neighbor
relation is managed by membership management protocofsasuSCAMP [51], where
peers use a random peer selection policy to determine igbbeis. However, lack of QoS
awareness makes such selection policy unsuitable for R2§enetwork with hundreds of
peers.

The mesh topologies previously mentioned only addresdesiagered video. The
joining criterion in these cases involve network condiiauch as bandwidth availability
and delay. However, a multi-layered video stream also requdinding neighbors who can
supply sufficient number of layers. In this regard, Xiao, le{%2] proposes a two-stage
overlay construction approach for mesh network. Here Qo&ewess is used on top of
the gossip protocol to select neighbors. In the first stagihefoin process, the joining
peer probes the networking condition of its prospectivginiedrs along with their ability
to supply a complete layers. The second stage ensures thevienpent of the the QoS of
the joining peer as well as the QoS of the neighbors.

Another approach to overlay construction is to use muiietitopology. In this ap-
proach, each tier optimizes a single layer. Optimizatiohigher layer requires optimiza-
tion of the overlay network associated with all the previtaygrs and may result in unique
overlay network for each layer. Zhu, et al. [35] starts witthash network and generates
Application Layer Multicast (ALM) tree for each layer. litly, a parent determines it's
ability to send a complete layer to its child. Once a layerlgcated to a child, a parent
peer updates the available bandwidth used to allocate tktdayer. If a peer is unable
to allocate bandwidth for a layer, it is removed from the ratnof available peers used
to construct the overlay for a layer. Guo, et al [53] propases multi-tiered approach

for mesh construction on LSONet, where a QoS-aware datardrnethod is taken for
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neighbor selection.

Gossip-based mesh-topology construction offers robastaaed multi-tired approach
allows for the use of multi-layered video. However, layewstEo optimization based on
successive multi-tired overlay construction does not gdarasult in optimal allocation of

layers.

Example 2. Fig. 4 illustrates the problem with multi-tired mesh comstiion approach

for scalable video optimization. Assume that each layeuireg unit rate. The initial

(@) Multi-layer optimization (b) Optimal allocation and re-
problem maining capacity

1 1,2

(m) ®

(0) 0)

(©)

(c) Multi-tiered approach - layer (d) Resulting network for layer
1 optimization 2 optimization

Figure 4: Multi-tier approach to layered video optimizatiexample

configuration is shown in Fig. 4a. The capacity for each pseshown in parenthesis.
Fig. 4b shows the optimal allocation for this configuratidn.this case, the servers m and
n sends layed and 2 to peer z respectively. m does not allocate layers to peerpanU

receiving layers, peer z sends both layers to peer x and y.
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In the case of multi-tiered approach, Fig. 4c shows the fiegp svith the allocation of
layer 1. Fig. 4d shows the resulting network after subtragtihe required rate to deliver
this layer. However, server n in this case does not have dnoapacity to send layez to

peer z. Therefore, the network capacity is under-utilizad e layers are not optimally

allocated.

E.2 Utility-Based Optimization

Network-utility maximization (NUM) for convex function Isabeen studied extensively.
Naturally, the non-convex nature of the layered video hdddehe use of sigmoidal-like
approximation-based utility function such that the NUMhiiework can be applied. Under
this scenario, algorithms developed for optimization afwvax functions can be used to
optimize scalable video streams. Fig. 5 shows a sigmoidday/dtinction used to approx-
imate stair-case utility function associated with scaabildleo. However, attempting to

A

—— Stair-case Utility Function
—— Sigmoidal Approximation

Utility level i Utility level i+1

Utility

7

A

v

Rate

Figure 5: Sigmoidal utility function used to approximateistase utility function
smooth a stair-case utility function in order to take adagetof the properties of a convex
optimization does not always lead to optimality.
Example 3. Fig. 6 provides a simple example to illustrate one of the flafxsing sigmoidal-
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like function to optimize non-convex utility. In this exdepparent m has layet with unit

1 1
o/ M\, v O N\
(a) Allocation with sigmoidal ap- (b) Possible optimal allocation

proximation

Figure 6: Sigmoidal Approximation for layered video optaation

capacity and allocation of a layer requires dedicating umgindwidth as well. The utility-
maximization algorithm for m allocates equal rate®b for both x and y. Since, itis a
discrete function and acceptable allocations &rand 1 only, m does not allocate layer
to any of its children. Fig. 6a shows this resulting scenaritowever, an optimal layer
allocation considers the discrete nature of the utilitydtion and allocate layef to any

one of the children an@ layer to the other as shown in Fig. 6b.

Heuristic-based algorithms have been proposed that aes lmasthis sigmoidal-like
utility function framework. Lee, et al. [54] proposed a distited price-based heuristics
that can self-regulate user access to resources. Hande[Bbteveloped conditions
under which a distributed price-based algorithm can glgl@inverge to an optimal rate
at the presence of non-convex utility function. Howeveneaof these solution truly ad-
dresses the concerns related to scalable video optimigatioa mesh network. A sig-
moidal approximation assumes that the utility increasegnassively with the allocated
rate. However, in a mesh topology, peers can subscribe topheuparents and receive

different layers from different parent.

Example 4. Consider the example in Fig. 7. Here the sigmoidal approxiomaalgorithm
allocates layetl from both parents of x as shown in Fig. 7a. This allocationardy results

in redundancy but it also produces sub-optimal allocationX. The optimal solution -
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shown in Fig. 7b - for x will be to receive lay&rfrom m and laye® from n.

1 1,2 1 1,2

(0) . N (0) (0) . N (0)
() Allocation with sigmoidal ap- (b) Optimal allocation
proximation

Figure 7: Sigmoidal Approximation for layered video optaation

E.3 Scheduling-Based Optimization

Most of the scheduling-based approaches [43, 44, 56] argstietbased algorithm that
mainly adheres to the following optimization proceduree Higorithm assumes the pres-
ence of a set of sender from which a peer will receive layene. rEceiver uses optimization
algorithm to maximize the number of received layers basetheravailable layer infor-
mation received from the sender. Cui, et al. [44] uses a grbaded approach to receive
maximum number of layers, while PALS [56] determines the benof received layers
by maximizing the throughput as well as the number of reckiagers. PALS proposes a
diagonal buffer distribution and employs round-robin noekho request data.

Recently, a chunk-based mesh-pull strategy has been mopotayerP2P [43,57] to
optimize multi-layered video in P2P mesh. Here each laybraken into smaller chunks,
which are then pulled from neighbors in a data-driven apgrohayerP2P in [43] uses a
3-stage strategy to address various QoS requirements sutinanizing the number of
useless packets and maximizing the number of layers detivetUseless packets in this
case refers to packets belonging to lalyémat cannot be decoded due to missing packets
from previous layers. Liu et al. [57] optimizes the numbereadeived layers by using an

incentive-based tit-for-tat data dissemination strateggnsure fairness.
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F Message-Passing Based Optimization Framework

The heuristic-based algorithms discussed in Sec. E attémnpptimize the number of
layers received. However, there is generally no guarariaesuch algorithm provides
optimal solutions, or even converges. The message-pabsisgd algorithm discussed

next, seeks to address this issue for non-convex constragad optimization problem.

F.1 Related Work

Recently, there has been an explosion of interest towarelssage-passing algorithto
solve problems that can be modeled under node-based gahgshigctures. They have
been independently discovered in a number of differentdidistroduced by Gallager [58]
in the context of low-density parity-check (LDPC) codes ssage-based sum-product al-
gorithm was first invented fom posterioriprobability (APP) decoding. Tanner et al. [59]
first explicitly introduced graphs to describe LDPC codaemstraints and the optimality
of the sum-product and min-sum algorithms for decoding saale a cycle-free graph.
Wiberg et al. [60] introduced states in tanner graphs. Eadlyt the application of the
sum-product algorithm has expanded to a variety of fieldatistsics, communications,
signal processing, probability theory, etc.

The seminal work of Ahlswede et al. [61] extended this inte field of computer
networks (initially defined by a point-to-point communicat network where a number
of information sources are to be multicast to a certain sktiestinations) by introduc-
ing network coding and the idea of admissible coding rat@oregHere the admissible
coding rate region is defined as a coding scheme satisfymgrtk capacity between two

communicating points in a network.
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F.2 Application to Distributed Systems

In the context of a graph consisting of nodes and edges, tkeage-passing algorithm op-
erates by passing messages with neighbors along edgesadédssare updated iteratively
until convergence is achieved. Messages are only passeddiehodes connected to each
other. Because of this localized nature, message-paskjagthms can be implemented
in a decentralized and asynchronous fashion.

Interest in message-passing algorithm has largely beggeted by the success of
turbo decoding[62]. It is routinely used in communication systems that Emperror-
correcting codes. Turbo decoding aims to solve an NP-hanlgm. Separately, inspired
by ideas from statistical physics, message-passing #igotiave been proposed for solv-
ing NP-hard combinatorial optimization problems such apbrcoloring [63].

One may claim this to be another ad-hoc, heuristic-basetbapp. However, in the
instances noted above, it is the state-of-the-art methodgbmization. Furthermore, it
provides a rich structure that can be used as an analytiobl Recently, work has been
done to define message-passing framework for inelasticogimization [64]. However,
no work has been done to apply message-passing algorithatdable video streaming

in the context of distributed systems, such as P2P networks.

F.3 New Application Framework for Scalable Stream

In this thesis, the admissible code region for a peer is ddfisea code that satisfies the re-
quirements of network and layered video streams in the gboféhe P2P network. Based
on these admissible codes, the iterative sum-product epgorithm is then applied to
determine layer subscription from neighboring peers.

Formally, the thesis contribution is two fold. First, a flebe optimization approach is
presented that codifies the optimization requirementsor@kthe constraints to determine
admissible codes and a sum-product update algorithm #atiitely applies incoming

messages on the codes to generate updated outgoing measagessented. On sender
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side, the algorithm works by iteratively updating probipifor allocating a layer to a
child. On the receiver side, the algorithm works by detemgjrprobability of receiving
a layer from a parent. Convergence is reached when bothrsandeeceiver agrees on a
probability value.

Intuitively, the algorithm can be interpreted as a type dippee feedback loop, where
peers send and receive likelihood probability values ireotd establish active parent-child
relation. A sending peer increases the outgoing probglziliing the path it receives the
maximum incoming probability. Similarly, the receiver @lgerforms the same action on
its outgoing probability messages. A probability value ppassed along a parent-child
connection implies that the child will receive a layer. Heee this value is contingent

upon the fact that the parent must also receive this layen ft® own set of parents.
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CHAPTER IlI

CONGESTION CONTROL PROTOCOL

The TCP-friendly congestion-control protocols discusge&ec. 11.C uses regular feed-
back for each packet sent and depends on the round-trip &Ti€)(formulated in [65]
to adjust the sending rate. In this thesis, a congestiomeaWiEdia-friendly real-Time
Streaming protocol (METS) is presented. METS does not regending explicit ACK
for each transmitted packet. Instead, METS periodicallghexiges state information be-
tween the sender and the receiver and updates the RTT valE&SMddresses the issues
of network congestion and packet-loss based on the measteegacket gaglPG) infor-
mation on the sender and the receiver side. In particularassumed that the packet-size

and the video encoding rate are fixed.

A Protocol Overview

Streaming in METS follows a sliding-window based technigubere a window consists
of k slots. Each slot corresponds to a packet. The sender nraritae sliding-window
buffer of k slots that are determined by the delay-bandwidth-prodD&R). The DBP
refers to the product of the link-capacity (in bit/second)l he end-to-end delay between
two communicating nodes in a network. Packets are trarsmnferiodically from the
sender-side with sending IPG defineddsSimilarly, the receiving IPG is defined as
The initial sending IPG value is set based on the fixed videmgdion rate. For a given
packet of siz3P and encoding ratp®, the video IP&" is defined a%lf. Therefore, the
initial sending rate is:

1

= B” 17)
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On the sender side, the window buffer is refreshed peritidiedter each IPG time and
a new packet enters the buffer if available. Each new paskgiven a sequence number
nand a initial time-to-live (TTL) valuet,) equal to the window sizk. After a buffer-
refresh event, this TTL value is decreased by 1 for all packetrently in the buffer. Once
the TTL value reaches 0, a packet is discarded. As soon akatpaters the buffer, it is
scheduled for transmission. Tab. 3 at the end of this chapietains the list of notations

used in this chapter.
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Figure 8: Periodical RTT update

A.1 Buffer Update

The receiver periodically initiates an update request agessind measures the round-trip
time (RTT). The sender measures its own RTT time when theveceends the next

update request. Fig. 8 shows the RTT update process. tggren the sender side is the
elapsed time between receiving an update request and geamdumpdate response. On the
receiver side, this corresponds to the elapsed time betvemsiving an update response

and sending the next update request. Thgvalue in this case is embedded in the update
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message. The RTT time can now be calculated as:

Trit = Trx — Tix — Tdrs (18)

Based on this RTT value, the sender can now calculate the DBBetermine the window

sizek:
ke = T”érfe (19)
The receiver-side buffer window is determined based onitheoviPG and initial start-up
delay,ts;:
k=2 (20)

A.2 Sender Rate-Adaptation

The basic premise of the protocol is that the sender assuschgacket transmission event
to be a success unless it receives an update request fromectigar. An update request

can be of two types:

e Rate-adjustment Request The receiver in this case requests the sender to increase
the sending IPG (i.e., decrease the sending rate) to adtiressxisting network

congestion.

e Retransmission RequestThe receiver requests the sender to re-transmit a particu-

lar packet that is assumed to be lost.

Definition 1. Upon a successful transmission, the sender increases titkngerate by
decreasing the IPG value for the next transmission event. siplicity, only a linear

increase/decrease of the sending IPG value is considered:

he1 = (1£0)3; (21)

The value oft is usually set betwedhl and0.3[21]. Upon receiving a rate-adjust request
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from the receiver, sender records the current time-windamd periodically increases the

IPG value during each transmission event until the follayimequality is satisfied:

ke (=K > ¢s (22)

The IPG-value increase is based on Eq. 21. Once Eq. 22 idiedtiand there are no

pending rate-adjustment request, the sender resumesasiogethe IPG value.

A.3 Receiver Rate-Adaptation

The receiver measures the IPG of the arriving packets andsédses the maximum IPG
value among the ladt packets. Entropy of the IPG is used to calculate the effed®\G

value on the receiver side.

Entropy

Entropy captures the uncertainties in a random variablantn’s entropy can be used to
capture the randomness in the IPG data measured by theaecAinigh entropy value
indicates the presence of congestion. First, the prolpaldistribution function (PDF) of
the IPG values of the lagtpackets is calculated. Lex be the probability of having IPG

valuei during the lask window-slots. Shannon’s entropy can be calculated as:

Hs = % pilog p (23)

However, Shanon’s entropy increases in the presence of spikés and does not fully
capture the dominant PDF values in the IPG data. Reneyre@n{66] is used to capture

the dominant IPG values:
1

— d

33



Renyi's entropy masks the low probability values by raisthgm to high powersd).
Thus it depresses small PDFs but raises the higher PDF vadudstailed discussed on

clustering of IPG data based on entropy can be found in [67].

Definition 2. Defined™®* as the maximum IPG recorded for the last k packets. Therefore

the average IPG time can be calculated as:

By = " Hg (25)

A.4 Receiver Feedback

The receiver feedback function involves sending requestgetsender regarding re-transmission

of lost packets or rate adjustment. This involves answetiadollowing questions:

o If apacketis missing, how long should the receiver wait lef®nding a re-transmission

request?

e If the receiver receives data at a faster rate than it carepeoor that the packets are
suddenly arriving at higher IPG rate than the sender is agrati (i.e., presence of

congestion), when should the receiver send a rate-adjustraguest?

Rate-adjustment Request

The receiver keeps track of the network-congestion by tatiog the average IPG value
based on Eq. 25. Based on this information, the sender dmxxdhe sending rate (i.e.,
increases the IPG value) when the difference between thhagareeceiving IPG and the

video IPG goes above a certain threshold.

Retransmission Request

If a packet does not arrive within its expected time-intériais considered lost. The

receiver must send a retransmission request for the lokepaefore the TTL value falls
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below a certain threshold. The threshold exist to ensureaatransmission request for
a packet reaches the sender before it is being discardedhanthe packet reaches the
receiver before the playback deadline.

Along with the fixed buffer of sizek, associated with fixed delay, the receiver also
maintains a dynamic buffer that is equal to the size of theleeside buffer. The buffer-
size information can be passed to the receiver by embeddimgtie update-response
message. Therefore, for the dynamic buffer window-slof., Value is given based on
the sender buffer-sizie. After a refresh evem, a new packet with sequence numhbes
expected to arrive within the next IPG interval in the dynaumiffer. As with the sender-
side buffer, the TTL value of the window-slot is decreasedLbyOnce it reaches 0, it is

passed to the read-only fixed-sizg)(buffer for playback.

Definition 3. For a missing packet n in the dynamic buffer, the client sarmgstransmission
request if the following inequality fails:
T
> ks — = (26)

-y

whereTy; is the round-trip time based on the latest update responseived from the

sender.

sender receiver

100 Mbps link

Figure 9: Experimental topology

B Experiment

The general network topology for this experiment is depidte Fig. 9, where a single

sender-receiver pair connects to the network through spged link. For this experiment,
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Figure 10: Average inter-packet gap of the received packets

the sender was located at a server at the ECE Dept. of UrtiverfsToronto and the re-
ceiver was located the Vanets server at the Vanderbilt Wsitye The video is encoded
at 87.5KB/s. The packet size is set to 2 KB. Therefore, thelisgnPG value is approx-
imately 23.5ms. The start-up delay is assumed to be 300 meeoreteiver side. The

experiment is run for approximately 11,000 packets (i.88 econds).

B.1 Results

Fig. 10 shows the average IPG value on the receiver side. fdikessin this figure imply
the presence of congestion in the network. This is confirnmeHig. 11, based on the
corresponding retransmission requests by the receiver. 1Bi also shows the results of
this request from the receiver. A value of 1 corresponds tacaessful retransmission,
while a 2 corresponds to a failed retransmission becaussetider has already discarded
the packet. The IPG values in Fig. 10 also shows that the @obtpickly adjusts IPG

value to account for the network congestion.

B.2 Message Overhead

The message overhead required to implement this algorithmimimal outside of the

update request and update response. The sender embeddfénesize in the update

36



* 1-success|
m 2-pktloss

0 02 04 0.6 0.8 1
Total number of packets 10

Figure 11: Successful and failed re-transmission by thdesen

Notation | Definition

8,8% 0" | IPG of video data generation, data transmission by the sende
and reception by the receiver

o, dM& | Average and maximum IPG

B¢, BPS, B | Video encoding rate, packet size, and data sending rate

o Time-to-live value for packet number

Trit Round-trip time

Tix, Trx Sending and receiving time-stamp on a packet

Tt Start-up delay

Tdrs Elapsed time between receiving a request and sending r&spon
ks, Kr Sender and receiver-size window size

Hs, Hr Shanon and Renyi’s entropy

pi Probability of having IPG value

Table 3: Notations used in METS

response and the receiver embeds the average IPG valueateupduest message. The

only external message required is the re-transmissiorestdyy the receiver.
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CHAPTER IV

CONTINUOUS STREAM OPTIMIZATION

In this chapter, rate-adaptation for continuous streamRP2R network is presented. The
goal is to minimize rate-distortion for video streams untex NUM framework. The
solution takes into account peer relaying - a constrairgqusin P2P distribution scenario
in which a peer is both a receiver and a sender. While helpiitigg @ontent distribution,
peer relaying constraint also ensures that the receivilegofea child peer does not exceed
the receiving rate of its parent. This is because duringate-adaptation, once the video
quality is lost, cannot be recovered. As such, the rate chawgurred on one peer not
only changes the video quality for itself, but also for allitsf child peers. Therefore,
price-based resource allocation that considers peerimglagnsures that peers with more
children receives higher bandwidth compared to peers witlef children.

Simulation shows that simultaneously incorporating b@&twork and relay constraints
significantly reduces the aggregate rate distortion fopedirs. For this simulation, mesh
and tree-based topologies are considered [68, 69]. Thmization solution presented in

this thesis is calledouble-pricingsolution.

A Double Pricing Solution

As previously mentioned, the double-pricing solution digmeously takes into account
the capacity constraintand therelay constraintassociated with the peers in a network.
The capacity constraint states that for each Inithe total volume of its flow sef (n)
cannot exceed its capacity. Formally, letA be anN x F matrix, such thaf\,; =1 if flow

f goes through the link (i.e., f € F(n)). Otherwise Ay =0.

A-x<z (27)
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Therelay constraintstates that the receiving rate of a child peer cannot exdeed t
receiving rate of its parent. This is illustrated with theeday tree shown in Fig. 12a.
In this picture, according to the relay constraint, the widgiality received byh; andh,
cannot exceed the quality received by their patentTherefore, the corresponding rates
X3 andx4 cannot exceed the rakg. In case of P2P mesh shown in Fig. 12b, consider the
peerhy. It receives data from both pelky andh,. Consequently, the outgoing flow rate of
h, can not exceed the total incoming flow rate. Formally, thayreonstraint in this case

states thaks — x4 — xg < 0.

@)

49 49
(a) P2P tree (b) P2P mesh

Figure 12: P2P overlay network

Since any peer can be the parent of any other peer, the totddemof such parent-child

pairs' is H2. The relay constraint is formulated irH# x F matrix B as follows:

-1 if he = h(f) andhc—h
B((h—DH th).f = 1 if = h(f) andhy —hy (28)
0 otherwise

Since,B is a sparse matrix, where ttiéh, — 1)H + h;)th row will only be active if there is

IThere are in fact several special cases which forbid parieiid-pairs. For example, the sentgy cannot
be the child of any peer, also a peer cannot be the parentelf. it¥hese cases are not included in the
formulation for simplicity purposes. Nevertheless, theuatnumber of parent-child pair number remains in
the order oH?2.
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a flow fromhy to h;. The relay constraint can now be formalized as follows:

B-x<0 (29)

Along with the network notations defined in Tab. 1, additioratations used in this chapter

are collected in Tab. 4.

A.1 Utility Function

The overall objective is to minimize the aggregate disbortdf the streaming video re-
ceived by all peers. Given the rate distortion definition op B, the rate allocation for a

tree-based network can be formulated as the following iteeat optimization problef

min. D 30

i fezf £ (Xt) (30)
subject to (27) and (29) (31)
over xelt (32)

where Eq. 30 is a convex function of the allocated rate. Tteeabeach flonk; is adapted
within the rangd 1 = [m¢, M¢]. For a mesh-based network, the goal of optimizing the rate
of all the incoming flows of a peer under the same constramia &qg. 31 and Eq. 32 can

be stated as:

min. Z Z Df(Xf) (33)
he s fei(h)

By non-linear optimization theory, there exists a minimgvalue for the rate vectorfor
the above optimization problem. Consider the Lagrangiam fof this problem in Eqg. 30

for a tree-based network (the Lagrangian for the mesh-bpssalem in Eq. 33 trivially

2Note that the objective function should exclude the ratéodi®n function for servehy. For simplicity
purpose, this detail is ignored in the rest of the chapteis an be easily achieved by assigning value 0 to the
rate distortion function ofiy.
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follows the same steps):

L(x, 1, P) (34)
= > Dr (xf) + K (A-x—2) + 1P (B-X) (35)
fEF(h)
H2
= > Di(x)+ Y Xt Y HnAnrt+ Y Xt WP By — > Mz
fef feF nen feF k=1 nef

wherep® ={p3, ne A} andpﬁz{uﬁ, k=1,2,...,H?} are vectors of Lagrangian multi-

pliers. Let us define two new vectok§ = {A¢, f € F } and)\B:{)\E, fe 7 } as follows:

Af= 5 WA= > I (36)
nea ne A(f)
H2
B B B B
A=Y MUBa= % Wipninn— 2 Hn)-Hn (37)
=1 h-$h(f) h(f)h

Therefore, Eq. 34 becomes

LG )= 5 Dixi)+ 5 xiAF+AD) - 5 1z,
fef fef nen

wherepy is thelink price. ConsequentlyA$ is the sum of prices of all links iri’s path
(i.e., thenetwork pricementioned in Eq. 27 thdt has to pay). In the star topologf,only
has to pay the price for the uplink bandwidth of its sendingrpﬂ?hifl)H+hk is therelay
price that peelhg has to pay to its pareii for relaying the dataAEf can be interpreted as
relay price forf, which is the difference between the aggregated relay pfigarent of
h(f) and the relay benefit; receives from all of its children.

Solving Eg. 30 involves two sets of prices, each correspanth one of the two con-
straints defined in Eq. 27 and Eq. 29. Therefore, it is catheddiouble-pricing solution, in
contrast to many existing solutions in the literatures E#-that only considers the capac-

ity constraint of Eq. 27 by treating all flows as independeairf each other. Comparison
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Notation Definition

A = (Anf)ny g | Link capacity constraint matrix

B = (Bkf)g,r | Relay constraint matrix

Dt (Xf) Rate distortion function for flowf

pd e pd Link price for link n

e Relay price for flowf

A eN® Sum of link prices im\( (f)

I Aggregate relay price

X €X Flow rate collected in flow vector

X3, 6° Encoding parameters specific to a video sequence

Table 4: Notations used in continuous stream optimizatigarghm

of these two solutions with respect to the tree and meshdbag®logy will be the main

theme of the simulation study in this chapter.

A.2 Distributed Algorithm

The problem in Eq. 34 can be solved in a distributed fashiolfg\iing the gradient pro-

jection method adopted by many existing works. The dual oblgm can be written as:

; a —mi a
min L(x, 1, @°) = mxmfezf(@(xf)) —nEZNM Z

where®(x¢)) = D¢ (Xf) + X (A + )\E) is thetotal costfor flow f (i.e., the rate distortion

it receives and the aggregated cost), which is the produbiedfow rate and the combined

network and relay prices. By the separation of Lagrangiam faninimizingL(x, p®, p?)

can be decomposed into separately minimizir(g; ) for each flowf. SinceDy is strictly

convex and twice continuously differentiable, a uniqueiminer of ®(x;) exists when

d _ d a By _
d—xf(D(Xf) = d—Xfo(Xf) + ()\f +)\f) - O
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Thus, the optimal rate for a flol can be calculated as:

M+

Xi(H°, 1) =arg min ®(x;) = | D\ + AD) (38)

mg

Combining Eq. 38 with the rate distortion function in Eq. 8rad with the network prices

A§ and relay pricé\B, the optimal rate can then be calculated as follows:

M
05

xe (L0, 1B = 5§ +
Fead

(39)

mg

To this end, the distributed algorithm presented here gaeen rounds denoted &s=
1,2,.... Each round involves two steps. The first step is the priceatgpdvhere price

vectors are adjusted in opposition direction to the gradigD(p®, uP):

+

M+ 1) = [uﬁ(t)+v< T xi(t) —zn) (40)

feFo(n)

+
B B
U-(h,l)HH](f)(t +1) = [u(hl)H+h(f)(t) +V<Xf (t)— fe;(h) Xt (U)] (41)

The second step is the rate update, where the rate offfl@wadjusted according to the
price change. The ratg is calculated based on Eq. 39. This step requires the kngeled
of network priceA§ and relay pricé\B, whose definitions can be found in Eq. 36 and Eq. 37

respectively.

Tree-based Implementation

The algorithm is a sender-driven implementation, startiiitfy the price update. As seen
in EqQ. 40, to update the price of link one needs to know about its old price, and the rate

of all flows going through it. Since this solution builds uptie star-topology assumption,
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n must be a uplink of either the server or a peer, and all flowshnlink must be gener-
ated from this peer as well. Obviously, the peer ownirig the best candidate to be the
bookkeeper of its pricgl.

The relay price given in Eq. 41 applies to the parent-child pa— h(f), where flow
f directs from peehto h(f). To update it, one needs to know the old price, as well as peer
h(f)’s receiving ratex; and the receiving rat ¢ 5 ) X (t) of its parenth. Therefore, the
best candidate to calculate and maintain the relay pribeliscan easily measure the rates
of both flows since one of them entdrsind the other exits from it.

To understand how to implement the rate update step for flogonsider the parent-
child pairh — h(f). As outlined in Eq. 39, calculatings requires the knowledge of
network priceA§ and the relay pricé\[?. Given the definition ofA$ in Eqg. 36 and the
star-topology assumption, it can be easily seenXHés the price of the uplink oh, the
sender of flowf. Sinceh s also the bookkeeper of its own uplink prieé, will involve no
messaging overhead if the sender-based approach is wsetéth be in charge of the rate
of flow f). Based on Eg. 37);'? is the difference between the relay price of parent-child
pair h — h(f) and the sum of the relay prices of all parent-child pairsioating from
h(f). Since the bookkeeper of a parent-child pair’s relay psade parent, calculatinﬁf5
requires thah receives message fronif) reporting all the relay prices managedHgyf ).

Calculatingxs requires additional video specific parametei$gndx3). The server

can embed them into video packets at the beginning of the P&hsing.

Mesh-based Implementation

The rate-allocation algorithm for mesh-based networkofedi the tree-based approach
with one exception: calculation of the relay price. The alhon integrates the multi-path
scenario of [70] to adjust for relay price. Algorithm 1 pretethe distributed algorithm
that each peer executes to update its rate.

For each flowf € % (h), the link priceq); for each linkn associated with the flow and
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Algorithm 1 Distributed Rate Allocation Algorithm

1. Each end hosthat timest = 1,2,...
Initialization

Fi={flfefi(h}

Ri=0

for each f €F; do
for eachne A((f) do

ma+n«—@mw+wfz(ﬁmw—4ﬂ+
€ Fo(n

9: end for

100 Af(t) < > Ha(t)
nea((f)

JF
1w B < oy - T xe®)]
fPe FN('))
12:  foreach f € ¥4(h) do

13 B e O ven - T xa®)]

fiejﬁ(h)
14: end for
15 Mo [ lo- Y o)
fie%(h)
16: end for

17: A (t) = ming ¢z n) AF (1)

18: AY(t) = ming . A5 (1)

19: Ar(t) < A9, (1) + AP, (1)

20: Source rate(t 4+ 1)« [D/*l()\f/(t))] ::

21: for each f € %(h) update flow ratelo

22 xe(t+1) e [0 —y(AO A0 -Aum)]

23: end for
24: for each f’ € #i(h;) with minimum priceA do

+
25, xff(t+1)<—[xhi(t—|—l)— S xf(t+1)]
fef~f
26: end for
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the relay pricqff5 are calculated . After calculating the network prideand the net relay
price )\Ef for each flowf, a peer determines the minimum price among all the incoming
flows and uses this to calculate the incoming flow rate baseBmpr89. In the last two
steps of the algorithm, the rate of each flbw % (h;) is adjusted based on this minimum
price. The flows with higher prices will have their rates regll and the flows with the
minimum price will have their rates increased. The goal i©dwe equal price among
all incoming flows for each receiver. This ensures that aitogity, the prices of each
incoming flow of the receiver is minimum and therefore, thavftate is optimum [70].

The implementation of the optimization algorithm for mdsised topology is receiver-
driven (i.e., receiver of a flow is the owner of that flow). Updg the link price ofn
requires the knowledge of old price and rate of all flows gaimgugh the link. In the star-
topology, peer owning maintains the link pricgd. Since the receiver is the owner of a
flow, a peer needs to receive message about the incomingoatets parents to calculate
the relay priceuﬁf. To update the rate, one must calculateand )\Ef. The receiver of a
flow receivegiy from its parents and children and calculae It also receivespl[? from its
children and calculatbﬁf for all of its incoming flows. Determining the optimum rateego

not require further message passing between a parent aild.a ch

A.3 Summary

In summary, the price update algorithms presented in thésishrequire no messaging
overhead since the bookkeeper can collect all the neceisdamnation locally to compute
the update. The flow rate update process needs one message¢h&aeceiver of the
flow to its sender (i.e., from child peer to parent peer). 8isuach a message can be
blended into existing traffic between parent and childrezr@esuch as heartbeat message
or acknowledgment message in transmission protocol (EGP,or RTCP), the messaging

overhead can be reduced significantly.
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B Simulation

This section presents the simulation results. First, thriukition setup is described. Re-
sults are presented for both single and double pricing isolsiton three key aspects: con-

vergence speed, aggregate PSNR, and link capacity utlizat

B.1 Video Adaptation

Each relaying peer must be able to adapt the quality of theovid fit into the receiving
rates of its child peers. In this simulation, each peer peréaranscoding by adjusting the
guantization value of the video. The transcoding technithaoses the highest quantized

rate that is less than the receiving rate achieved by theHaigation solution.

Definition 4. Let % be the optimal receiving rate for flow f calculated by the rilisited
algorithm denoted aspt= {Xq | Xq < Xq+1,1 < q < 51} [71] as the video encoding rate

with quantization value g. The actual relay rate will then be

Xt = {Xq|Xq < Xf < Xqi1}

The open-source software x264 [71] is used to encode vid@ébshfferent quantiza-
tion values. The benchmark test sequences used for quahitparison of the transcoding
simulation are the ITU-T test sequences [f@Eeman, akiyo, hallandmother-daughter
each having 300 frames with CIF resolution. The PSNR-ratethese videos are given in

Fig. 13a.

B.2 Topology

A simple topology construction mechanism is used. Howener,double-pricing algo-
rithm is topology-independent and works with any topologystruction mechanism. A

real-time MSN video trace data [73] is used to construct tleshm The traces provide
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Figure 13: ITU video sequences and peer churning in a P2Ponetw

the join/leave time-stamp and the uplink bandwidth of eaxtividual peers. The server
bandwidth is assigned to 2 Mbps. A new update round beginy évé second (i.e., mem-
bers update their flow rate at every 0.1 second). For the dadieplicity, multiple peers

joining the network at any instant are queued and added &eiening of each round.

Definition 5. Let capacity-coefficienbe the spare uplink capacity of a peer that can be

used to allocate a new child peer and are calculated by eaeh pe # as:

Xh
S$h= [Zh - Xf] (42)
fefo(h) 40

In the case of mesh topology, peers also calculate fheisratio® to decide if they should
seek multiple parents. Formally, this ratio is defined as:
S - (43)

Xt
fe Fo(h)

q
=
|

A peer with | < 1 implies that it dedicates more bandwidth to its childrenrtliareceives

and vice-versa.

3The server has a link-ratio of 0. It can be thought of as the #ea torrent network
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Implementation

The following procedures summarize the overlay constuactirocess for both mesh and

tree-based network:

e Link Update: At the end of each flow-rate update, a peer updates its étik-(for
mesh topology) and capacity coefficient. Peers then sesdrfirmation to their

parents.

¢ ID Peer: If child peers exist, a parent peer decides the best catediddoe a parent
based on its own coefficient and the coefficients of its childrit then sends this

information to its own parents. This information eventya##aches the server.

e Join: A new peer sends a join request to the server. After reagitrie prospective

parent id, the new peer joins the network.

e Request Parent In the case of mesh topology, a peer with< 1 sends requests
for parents withr, > 1 (i.e., a peer that receives more than it gives). The server
then replies with an appropriate parent ID. The parent IDeisegated such that it
does not create a cycle in the network. In the event a cych, @Rie requesting peer

repeats the process.

During the simulation, the maximum number of incoming/aing flow is set to 4.
However, the solution is independent of the number of flowser gan have. During
the course of the simulation, the dynamic joining procesy fead to different overlay
topology for the single pricing and double pricing solusorin order to ensure fairness
and that both solutions use the same overlay configurati@npverlay used to simulate
the double-pricing solution is also used to simulate thglsiprice solution. Therefore, in
the case of single-pricing solution, although the overtaganstructed gradually, the ID of

the parent for a new peer joining the network is predeterchine
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B.3 Single Pricing vs. Double Pricing Example

As mentioned at the end of Sec. A, a double-pricing solutimolives both network and
relay prices. Alternately, this problem can also be adewk$y a single-pricing solution,
which only considers the network constraint in Eq. 27. Itfgstimizes the rate allocation
of all peers by treating them as independent flows competingdndwidth and then im-
poses the relay constraint of Eq. 29 if the receiving ratehd€iqpeers exceed the receiving

rate of its parent peer.

Example 5. Consider the example in Fig. 12a. The uplink bandwidth ofhbsts h
through hy is set 102.00, 1.72, 0.86, 1.60, and 1.62 Mbps. Bandwidth is assigned based
on the rate-distortion data points of tlieremanvideo in the transcoding sequence. After
running both double-pricing and single-pricing simulaticthe final aggregate rates are

3.54 Mbps and3.26 Mbps respectively.

The reason double-pricing outperforms the single-pric@olyition because it assigns
more bandwidth to pedr; thanh,. This is becaus; has two children, which raises its
relay price, while the network price for bothh andh, stays the same. In single-pricing
solution, the relay price is ignored. Therefore, the alfoni assigns the same rate for both
h; andh, and causeh;’s children to suffer from low source rate. Furthermdrgs uplink

bandwidth remains greatly under-utilized.

B.4 Results

This section compares results of single and double-prisioigtions and also provides

analytical insight into convergence.

Convergence

The rate-convergence setup consists of a P2P network of @3.p&he server peer has

a maximum uplink capacity of 2 Mbps. Each peer joins the ngtvadter every 200000
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iterations. For the single-pricing solution, data coristrés applied after every 100000
iterations. Following trial and error, the initial value @f andp? is set to 0.5. The initial

rate is set to 1 Mbps.
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Figure 14: Rate convergence as peers join the multicast tree

Fig. 14 shows the rate convergence of the standard ITU vidgaences used for
benchmarking. At the beginning, it takes more iterationgtie rates to converge. This is
due to the fact that initially the price value A% andAP are assigned to 0. However, as
more peers join the network, the price value stabilizes ¢odptimum point and it takes
less number of iterations for the price to move from old optimpoint to a new optimum
point.

The step size also influences the number of iterations redjfior rate convergence.
Fig. 15 illustrates this width with different step sizes. iorease in step size from 0.0003
to 0.03 dramatically improves the number of iterations meglifor converge. Fig. 16
shows this improvement in terms of percent change duriny éecation. After a few
thousand iterations, the rate of change becomes insigmtificig. 17 shows the effect of

changing the step size on average rate and PSNR value. Teeedde is negligible for
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@ (b)
Figure 15: Effect of step size on rate convergence (a) step=s0.0003 and (b) step size = 0.03
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Figure 17: Performance difference for step size 0.03 wisipeet to step size 0.0003 with 100000/peer join
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Figure 18: Rate and PSNR value difference for various nurabigerations and 0.03 step size with respect to
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step size 0.03 with respect to the step size 0.0003. Thegweate change is less than 4%
and the average PSNR change is within 1% of the optimal vahenwsed with an step
size of 0.03. In Fig. 18 shows the effect of the number of itens used. It compares the
deviation in average rate and PSNR for step size 0.03 withsske 0.0003. Even though
it takes almost 100000 number of iterations to reach an @ptiaie, 99% of the optimal
rate is reached within 1000 iterations. Furthermore, fdhlsmlutions, the average rate
value reaches 95% of the the optimal rate within 700 itenatid-or the same number of

iterations, the PSNR value reaches 99% of the optimal PSNR.

T T 42 T T

sifr Double Pricingi ----- Double Pricing 7
—— Single Pricing 41 —— Single Pricing .

PSNR (dB)

\ \ \ \ 47 \ \ \ \

..... Double Pricing

----- Double Pricing -
—— Single Pricing -

—— Single Pricing

45 |-

PSNR (dB)

Mother-Daughter

43 =

o] 20 40 60 80 100 0 20 40 60 80 100
Nodes Nodes

Figure 19: Double pricing solution vs. single pricing s@utfor transcoded video

Tree-based P2P

Fig. 19 shows the average PSNR value for the transcodeds/ide@ network of up to
100 peers. The average PSNR gain for the double-pricindigolaver all the transcoded
videos is 2.03 dB. It also maximizes the uplink bandwidtlization of peers as shown in
both Fig. 20. For all of the transcoded videos, the averauediilization over all the peers

is 95% for the double-pricing solution compared to 76% fagk-pricing solution.
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Figure 20: Link utilization comparison for transcoded \adeutilization varies from 0 to 1 (equivalent to 0
from 100)

Mesh-based P2P

For mesh-based algorithm, peer churning is simulated basetie peer joining/leaving
event in Fig. 13b. Instead of simulating an event at everys@cbnds, the real-time peer
joining/leaving time-stamp is used to help construct thesim@pology. Fig. 13b shows
the number of nodes in the network at any point in time over @b $conds interval.
New peers stop joining the network at approximately 400 seés@nd eventually all the
peers leave the network. Fig. 21 shows the average PSNR faaltiee transcoded video
sequences during the interval. Fig. 22 shows the averageovatr all the flows in the
network. The rate and the PSNR value drops to 0 at around Ho0ds, as the number of
peers (excluding the server) in the network become 0. Thétseshow that the double-

pricing solution consistently performs better than theglaspricing solution.
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CHAPTER V

SCALABLE STREAM: HEURISTIC OPTIMIZATION

In this chapter, a heuristic-based optimization algoritbnscalable video is presented [74].
For a given topology, it attempts to optimally allocate lsyamong all peers. The algo-
rithm focuses on two key metrics to achieve close to optiangit allocation. Specifically,
the heuristic algorithm focuses on tload-balancingandweighted-layer allocatiotech-
niques to achieve optimum allocation among peers in thearktwin load balancing, a
child peer evenly distributes the layer requests amongvallable parents. This allows a
parent peer to serve multiple child peers. In weighted lajlecation, a parent prioritizes

layer allocation to its children based on the cumulative henof descendants of a child.

A Distributed Algorithm

A high level description of the algorithm is now given folled by a detailed discussion
of various aspects of the algorithm. A child initially inges about the number of layers
available from a parent peer. It then generates a valid auattibin of layers, ranks the layer
combinations, and sends them to the respective parents: wfteiving a layer allocation
request from its child, a parent allocates a combinatiomydils that maximizes its uplink
bandwidth utilization. The layer allocation is based on rdeking information provided

by its children.

A.1 Layer Combination Generation

Each peer generates unique layer combinations for its phesed on the available layers
information received. For a pely with parentsh; havingy; number of layers, there exist
a total of 2 layer combinationd); can request fron. These combination vectors are

collected in a seM" = {§"m=1,2...,2%;8 = [)\ilj,)\ﬁ,...,)\}j,...,)\?ji]}. The vector
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Algorithm 2 Layer-Gen: Valid Layer Generation Algorithm

1: For each end hosth; € H

2: P=0
3:
4: for all we Q;do
5: Qi+—Qi—w
6: matched: 1, totalLayers= 0
7. forall djewdo
8: if 31 %A} <ci then
9: W W— O
10: end if
11: end for
122 1 =0
13:  while (true) do
14: numParents 0, layers= 0
15: for all & € w, where & ¢ M, hieH(h;) do
16: if | <y; then
17: layers+= Al;
18: numParent+
19: end if
20: end for
21: if layers>1or | >=totalLayers- 1 then
22: matched- 0
23: break
24: end if
25: if numParents=0then
26: break
27: end if
28: totalLayerst= layers
29: | ++
30: end while
31: if matched==1then
32: P+—P+w
33 endif
34: end for
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0 is a binary value vector that determines the presence ofex lagtween a parent and a
child as mentioned in Eq. 8. For each p&grlet p = |#(h;)| be the number of parents,
whereh; € 7 (h;). DefineQ; = (MM x M"2 x ... x M x ... x MM) be anp-tuple, where
each element sebc Q = {5' € M™% € M™,_... 8" ¢ M™} is a set of possible layer
combination vectors from its parents. Algorithm 2 geneyatalid layer combinations
for a peerh; based on its parent séf(h;). Theforloop in line 7 eliminates any layer
combinations that violate the capacity constraints of @apeer mentioned in Eq. 10.
The condition in line 23 eliminates discontinuity of Eq. I®daduplicity of Eq. 11 in the
layer combinations generated. Tfo loop in line 15 ensures that a layer received by a
child must be present among its parents as mentioned in Eq. 13

The resulting sefP consists of all the valid layer combinations that satisfy ton-
straints from Eq. 10-Eq. 11. Even though each pahemtith y; number of layers gener-
ates 2 possible combinations, the total number of valid comboratiof layers in seP is

significantly smaller after satisfying all the constraints

A.2 Receiver-Side Optimization

After generating all the valid layer combinations®a child peeh; then usesate maxi-

mizationandload balancingmethodology to rank the layer combinations.

Definition 6. A rank r is assigned to eadah. Each layer combinatiod € w also carries
this rank value. The set of empty layer combination vec®® ¢ w, wherew € P and

©={5|d = 0}.

The set? = {w, wy, ... } is ranked{ry, ry, ...} based on rate maximization and load
balancing.

Rate Maximization

In order to ensure that each peer receives maximum numbayefd possible, a child peer

ranks the elements @ such that the combination that delivers higher number dcrgy
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has lower ranking compared to a combination that delivegtawumber of layers.

Definition 7. The rate-maximization condition can be expressed as:

S %A}j GZ é (44)

dicw =1

Load Balancing

A child peer contributes to the overall improvement of therage layer delivery by ensur-
ing that it does not request all layers from a single parenhakanced request by a child

ensures that a parent does not carry the load of servingedlihjers to a particular child.

Definition 8. A balanced request is defined as the request with the minintamalard
deviation of rates for a set of layer combinations among lal possible valid sets of
combinations. Givelyc ) )\}j X as a layer combination from a parentto child hj, the

standard deviation of a valid set of layer combinations fimme or more parents to a child

2
1 M
J 0] o, << ) “)

where # is the average rate for a particular set of valid layer condtions from all the

is defined as:

layers received from all of the parents. Helﬁéix defined as:

1
X =

Eau fijeﬂhme;f) !

Preference Matching

For a child peer, if all the layers received from parents htheesame rank, then there
will be no duplicate layers. The parents initially attemptaiccommodate the layers with
the lowest rank to its children. A child receiving layers lwhigher rank implies that

the parent is capacity limited and/or has other childreimatver link ratio i.e., receives
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higher priority in layer allocation decision.

In this case, a child determines a layer combination rank ghtisfies the existing
layer-rate allocation constraints by its parents. A pawety allocates a requested layer
combination if the bandwidth required to service all theelayin the combination is less

than the bandwidth allocated for that particular child.

A.3 Sender-Side Optimization

Maximizing the total number of layers received by peers s€the network depends on
the proper allocation of layers by each parent such thatld whth fewer children receives

fewer layers compared to another child. However, a childheoted to fewer parent should
receive more layers compared to a child with higher numbpaoénts. In a mesh topology,
a child can always receive more layers from any of its paréftigrefore, in order ensure
fairness, a parent peer must consider both the incoming atigoiog degree of a child peer

when allocating layers.

Weighted Layer Allocation

A parent peer uses cumulative weightliok-ration of its child to allocate layers.

Definition 9. For a peer h, define the cumulative incoming and outgoing linksiasaind

Bj:

=%+ Y a (47)
hke%

Bj=1%l+ > B« (48)
hke%

Therefore, theink ratio for each peer his:

aj — B

@+ 1 ‘o

ﬁj:I’]-
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wheren is a proportionality constant that can be adjusted to assigorities to children.

A child peer with lower? has higher priority in receiving its preferred layers from
its parents. A parent then distributes its available uplakdwidth based on this ratio.
Fairness is ensured in this process because a peer withdhbilcewill receive fewer layers

than a peer with more child.

Definition 10. The total allocated bandwidth by a peey aving uplink capacity jzto a

child hg is:
Uk

Xf, = 2Zi ——————
e >hieo(hy) i

(50)

However, this process could lead to starvation by parentsnwdhild peers receive no

layers.

Definition 11. Thelink-ratio bandk is defined for as a peer;taving two child peer h

and h with rank . and 1, having the following property:
Rgi - Ek)/K—| >r — g (51)

where/t; > ¥y.

Example 6. If [(4 — 4k)/K] is 2 and Kk is 1, then peer hcan expect a layer combination
assignment having rank at least 3. |f\vere to assign layer combination having rank 4 to

hi then i, must be lowered to rank 2.

A.4  Server-Side Optimization

Preemptive join is used to ensure that a peer with low uplarkdwidth does not prevent a
peer with high uplink bandwidth from joining. Furthermopreemptive join ensures that

a peer with high uplink bandwidth stays at the top of the mesh.
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Preemptive Join

A peer initially sends doinrequest to the server. The requesting peer also sendsiitk upl
capacity along with the request. The server acts as a pringpparent and checks whether
the number of uplink connection has reached a maximum likinitot, it accepts the new
peer as child. If the limit has been reached, the parentduxhecks whether the offered
uplink capacity is higher than the existing uplink capa@fyany of its children. If the
check is positive, the parent then preempts the lowest @gpztld to accommodate the
new peer. If the capacity is not higher, the parent then dédsgthe request to its children,
whom, as prospective parent, performs the same bandwieétk@nd accommodates the
new peer if the bandwidth is higher than the bandwidth ofitstang children. The parents
send aDeclinemessage if the maximum number of connection has been reaahadhe
offered bandwidth cannot be accommodated.

This recursive preemptive join ensures that a peer with laypéink bandwidth does
not bottleneck at the top of the mesh. The notations usedsrcttapter are collected in

Tab. 5.

B Results

A streaming server is simulated with 8 layers, each havingkerpte of 250 Kbps. The
peer bandwidth is randomly assigned between 2 and 3 Mbps.inftiegree/out-degree
ratio and the value of] for each peer is kept to 1. Fig. 23 compares the weighted layer
allocation technique with simple proportional layer aiton. Fig. 24 compares the av-
erage delivery ratio for weighted and proportional laydocation for various number of
layers with 150 peers in the network. As the number of layeeegiase, the weighted layer
allocation performs better than the simple proportionklcaition. Fig. 25a shows the av-
erage layer delivery ratio without preemption. Fig. 25b panes the layer delivery with

and without preemptive join. The performance is signifizabetter when the preemptive
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Average Delivery Ratio (%)

Notation | Definition

Vi Number of layers pedrs, has

0 Binary layer combination vector

Mh Set of layer combination vectdrfor peerh;
Q; n-tuple

weQ Each element in n-tuple with layer combination from pare
? Set of valid layer combinations

O Cw Set containing empty layer combinations
r Ranks assigned to layer combination set
a, B Cumulative incoming, outgoing links

Zn Link-ratio, proportionality constant

K Link-ratio band

s Spare-capacity coefficient

Bandwidth coefficient

Table 5: Distributed Algorithm & Simulation Notations
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Figure 24: Average layer delivery ratio for different numbélayers with 150 peers in the network

join mechanism is applied for topology construction.
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CHAPTER VI

SCALABLE STREAM: MESSAGE-BASED OPTIMIZATION
FRAMEWORK

In this chapter, message-based optimization frameworkdalable video stream is intro-
duced. Specifically, a code-based framework for optimirats presented that uses the
sum-product algorithrmas the basis for iterative update of messages and layeatta
decision.

The framework usesetwork codef61], which is defined as a state-space realization of
network behavior that describes a set of connections invaankt This thesis extends the
definition of network codes to capture the constraints oélagl video in a P2P network.
The rest of the chapter is organized as follows. First a igtbry of network codes are
presented followed by description of the state-space amchalorealization of network
codes and an introduction to generic sum-product basedagegmssing algorithm. Next,
a description of message-passing optimization algorithprésented for both single-layer
and multi-layer video streams. After presenting the coxipleanalysis for the multi-layer
algorithm, simulation results are presented. A thoroughttnent of the state-space and

normal realization on a graph can be found in the seminal Wwgrkorney [75].

A Factor Graphs and State-space Realization

A factor graph is a bipartite graphical representation efstructure of a global function
factored into a product of several local functions, whichrtiselves depend on a subset of

the global variables.

Example 7. Let W(x1,X2,X3) be a global function of three variables that can be factored

into two local functiong’; and (. Fig. 26 shows a factorized representation of w. Based
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on this factor graph, w can be mathematically written as adpict of the local functions:

W(X1,X2,X3) = C1 (X1,%2) C2 (X2, %3)

Figure 26: Example of factor graph representatiowof;, X2, X3)

Therefore, a factor graph has a variable node for each Varatd a factor node for
each local functions. An edge connects a variable node tatarfaode if and only if
the variable is an argument of the function. Factorizatian lbe generalized for a global
functionw with a set of local variables= {x;, i € I} factored into a set of local functions
C ={Cj(xj), ] € Im, Xj ©x }, where each local function depends on a subset of the local
variables:

w(x)

I
O
—~
X

(52)

A.1 Marginal Function

Let x1,X%o,...,X, be a set of local variables such that for eaehry, x; takes values from a
domain4;. Letw(xy,Xo,...,X,) be a global function of the variables such that the domain

of wis a Cartesian product of the domain of each variable:

a= 4 (53)

i€y

This is called theconfiguration-spacef w. Assuming that the co-domain of is well

defined, there exist marginal functionswi(x;) associated witlw. A marginal function
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associated with variabbg can be evaluated for valuec 4 by summingw over all con-

figuration of the variables witk = a:

w; (a) = W(X1, ..o, X1, X1, -+ Xn 54
i (a) Z, Xj;j (X1 1,3,X+1 ) (54)

je{ln~\itaje g

In the example of Fig. 26, the marginal associated witk: ais:

W2 (a) = z W(Xl,a,X3)
X1€A1 X3 €A

A.2 Probability Marginal Function

Factor graphs can also be used to represent joint prolyatitiss function. Consider a set
of independent input observatiohsthat are made on a set of variables- {x, i € I},
resulting in a set of output observations= {y;, i € I} and a likelihood vectop (y|A).
The marginal product for each variablgis the component-wise product of the likelihood

vector:

W)= T[] P;ilA) (55)

Xj € {X~%}

B Factor-Graph in Network Resource Allocation

Factor graphs can be applied to communication networkgpresent the network connec-
tions. Consider a communication network with a set of pg¢es {h;,i € H}, each having
link nj € A’. Each link in the network has a maximum capacitygpfThe communication
among the peers in a network states that a pgisrconnected to its link;, which in turn

is connected to a subset of peers thawvishes to communicate with.

Example 8. Fig. 27 illustrates the factor graph representation of a sEpeers commu-

nicating with each other. Fig. 27b shows the bipartite facjeaph representation of the
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(a) Peer communication exam-
ple

(c) Network representation of fac-
tor graph

Figure 27: Factor graph representation of a set of commtingcpeers

example in Fig. 27a and Fig. 27c shows the same factor graphdrform of a communi-

cation network.

B.1 State-space Realization: Variables and Codes

Variables have already been introduced in the context ebfagraphs. A variable can be
of type symbol and state. A symbol varialfletakes values; € 4 in a symbol alphabet

4. Therefore, aymbol-configuration spacg is a Cartesian product:

i
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wherel, is discrete index set of symbol alphabets. The elementg afe denoted by
a={A,i€ly} € 4. Similarly, a state variabl&; takes values; € St in a state alphabet

Si. Therefore, thestate-configuration spacgis a Cartesian product of the state alphabets:

S= fDme

The elements of are denoted bg={S;, j €Im} €S. The difference between a symbol
and a state variable is that symbol variables are used wheasnhitting over a channel,
whereas state variables are used internally by the contstraind remain hidden.

A code C can now be defined as a subgkt 4 x S in the symbol-state configuration
space. It may be characterized as a set of configurationsdiiafy a certain set of lo-
cal constraints (i.e., local functions in the context of etdéa graph),C(h) and therefore,

defines a subset in the symbol-state configuration space:

chcamxsm=| [ 4|x| s
ica(h) jes(h)

The elements of a codec C={Cj, j €Ic} are called codewords consisting of state and
symbol variables represented @y. Therefore, a code represents a local constraint associ-
ated with a set of variables. A code consists of a set of codisyavhere each codeword

is constructed from a Cartesian product of the associastd ahd symbol variables. The

variables take values from a discrete index set.

Example 9. Let code( represents a local constraint and is connected to a set oalobes
A = {A1,A2,As}. Each variable Atakes values from the same alphab®&t= {0,1}.
Therefore, the configuration-space is of length 3 and thebmurof possible codewords

are 8: ¢ = {000,001,010,...,111}

The termlocal constraintandcodeare used interchangeably throughout this chapter.
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This realization of code consisting of a set of local coristsathat are applied to symbol,
and state variables is callgéneralized state-space realizatiptb], where each local code
C(h) is a subspace of the direct product of the symbol-state vepace. However, a

generalized state realization is not suitable to propegyesent a communication network.

B.2 Normal Realization: Codes on Network

In a generalized state-space realization, the graph musipbetite, constraints and vari-
ables must be represented by vertices, edges are not labelgdio not carry values. A
proper communication network representation requiresetiges are directed, and carry
values. Hence, edges in a communication network must besepted by variables. Fur-
thermore, a communication network must not necessarilyijpartite. Forney [75] pro-
posed a normal realization of factor graphs that can beegbpi communication networks
to represent nodes and directed edges. Such conversioowvitie loss of functionali-
ties associated with factor graphs allows us to apply thpeaties of codes, functions and
marginals to a operations on a communication network. Grayith normal realization

are called normal graphs.

Figure 28: Normal realization of the example in Fig. 27a

In normal realization, each local constraifit is represented by a vertex. Each state
variable$S; is represented by an edge between two constraints. EactosyariableA is
connected to one local constraint vertex, represented bgfeedge [75]. For a commu-
nication network, incident edges to a vertex representtgpuhile the remaining edges

represent outputs. Fig. 28 illustrates the normal redtimadf the network presented in
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Notation | Definition

w Global function

W (X) Cartesian product of local functions withe x
Wi (i) Marginal over variable;

Wi (i) Sum of all marginals ovex;

Aa,8 Symbol and state configuration space

Cjece(C | Acode( consisting of set of codewords
consisting of a set of variablé€}

aj, Bi Incoming and outgoing message along edge

Table 6: Notations used in factor graphs and marginal fonsti

Fig. 27a. In this case, each peer is converted to a constepnésented by vertices. The
vertices are attached to a set of state variables that esgrése incoming and outgoing
edges associated with each peer. According to the defirofiolwrmal graph, each vertex
is also attached to a symbol variable. The degree of eacltraonis depends on the sum,
| 4(h) |+ |S(h) | of the symbol and state variables involved. Compared to argéined
state representation, state variables in a normal grapi calues.

The key notations used Sec. A, B, and C are collected in Tab. 6

C Sum-Product Algorithm

Sum-product is a powerful iterative decoding algorithmt thgerates bynessage-passing
in a graphical model. The algorithm works by sending andivatg messages between
a peer and its neighbors. Since all computation for the #lgorare done on the local
constraint, it can be used in distributed computing. The-punduct name is derived from
the fact that outgoing messages along each edgesisref the marginal productof all
the incoming messages along the remaining edges. The sadogiralgorithm is now

described in the context of a normal graph.
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C.1 Sum-Product of Messages

Consider a cod€ consisting of a set of codewords C. Each codeword consists of a set
of variablesC; € c. Each variable takes a set of valug€ I, from a discrete index sét If
codes(y and (y are connected by an edge, the outgoing mesBafiem ¢ is considered
an incoming messagsg by .

Messages are sent and received along the edges for eaclcyallg. For each vari-
ableC;, let the incoming and outgoing messages for valpee defined as(; (c;) and

Bj (c;) respectively. Therefore, the outgoing message along amisdgmputed as:

B' (C) — q; (Ci) (56)
Y ceg(Cj)CiE!:l\Cj}

where(; (cj) is the set of codewords consistent with( i.e., variableC; assumes the value

Cj).

C.2 Sum-Product for Probability Decoding

The derivation of marginals for joint probability mass ftioo has been discussed in
Sec. A.2. The marginal in Eq. 55 can be used to compute pritiebin a sum-product
algorithm. Following the description of codes in Sec. Cdnsider a set of input observa-
tions (i.e., codewords) = {c;j € ¢, } are made on all variables, resulting in a set of output
observationsy = {y; €lc;} and a likelihood vector op (y;|c;). If all codewords are
equiprobable, Bayes’ theorem states thatlp@steriori probability(APP) of p(c|y) of a

codewordc € C is proportional to the likelihood vector:

p(ylc)p(c)

o) Op(y|c), ceC (57)

p(cly) =
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Therefore, the APP vector for a varialpg¢C; = c; |y) is given by:

wj (cj) = p(Cj =¢cjly) = p(yi|ci) (58)

ceCj(cj)CiGJ:l\Cj}
Bic) = > J_| ai (ci) (59)
ce(j(c))Ge{c~Cj}

In this case, the output observation of the likelihood veéte., equivalent to the set of
incoming messages defined in Sec. C.1) are used to calcha#RP (i.e., equivalent to
outgoing message along an edge) for each variable. Theréfa sum-product algorithm
for joint probability mass function involves computing tA@P vector for every variables

Cj over all values in the alphabk .

D Codes for Scalable Video in P2P Overlay

This thesis proposes an extension of Forney’s normal egadiz [75] of graph, to accom-

modate the relaying properties of peers in a P2P overlay ansti@ints of layered video.

G

Hn
Cco—

Figure 29: Normal definition of a peer

Definition 12. Let peer h be a node in an overlay network having incoming angdang
flows % (h) and %, (h) respectively, wherg (h) = % (h) U %, (h). Since a state variable
represents an edge in a normal graph, a flow connecting twespe#l be represented by
a state variable. The set of state variables representiegriting and outgoing flows are
defined ass}, and SP respectively, wherg, = {S, f € # (h)}. A peer h will contain two
codes (i.e., local constraints): incoming cod‘f—; and outgoing cod&?®. The incoming

code is connected to all the incoming flows and the outgoinlg ¢é® connected to all the
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outgoing flows. A set symbol variabla&wﬁ connected to the outgoing codg are used
to represent the finite outgoing capacity of a peer in a owerfahe input and the output
codes are connected by an internal edges. The internal eztgagpresented by a séﬁ

of internal state variables. The internal state variableséhrepresent the relay constraints
unique to a P2P network. With respect to the incoming codejrternal state variables
represent the receipt of layers from parent peers, whileofastigoing code, they represent

the precondition that layers must be present before theybeaailocated to child peers.

Fig. 29 shows the resulting normal realization of a peerédbntext of a P2P overlay.
The length of a codeword is directly related to the numberdgfes and the number of

layers.

Example 10. Fig. 30 shows an overlay network and its normal graph repmést#gon for

scalable video.

(a) Simple P2P overlay exam- (b) Normal realization of P2P nodes
ple

Figure 30: P2P overlay example and its normal realization

The key notations used throughout the rest of the chapteradiexted in Tab. 7.

E Single-Layer Optimization

The single-layer optimization algorithm is presented heéiiest, a simplified optimization

algorithm is presented, where each peer has a maximuamiofuplink capacity The
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Notation Definition

c'e(, e ® | Codewords associated with incoming
and outgoing codes

CkeCy Variable vector associated with capacity

G eC Variable vector associated with received layers

CieCleCs | Variable associated with the allocation of
set of layerd in a flow f that
part of a flow vectorf

A= {1,0} Binary values assumed by varial@

y = {1,0} Binary values assumed by varialle

U = {1,0} Binary values assumed by varialg

o Capacity unit

Table 7: Notations used in sum-product algorithm optimarat

algorithm is then be modified to consider the situation wipeers can have uplink capacity

that are multiple of the unit capacity.

Definition 13. Let ¥ be the rate required to deliver layer | ang ke the uplink capacity
of peer h. Since a scalable video stream requires the dglieéra complete layer for
successful decoding,umit capacityrequires the ratiaoy, between the uplink capacity and
the layer rate bel.:

Oh = =1

z
X
In the case omulti-unit capacity, the ratio is defined as,, > 1. Throughout this chapter,
it is assumed that the rate required for all layers are equa.(X¥ = X1, VI € L) and

constant. Therefore, uplink capacity of a peer h is definethite value from the set of

natural numbergy, € Ng

E.1 Algorithm: Unit Outgoing Capacity

Let Cﬂ] and & be the incoming and outgoing code for peeA codeword is generated by

the Cartesian product of the variables associated the edigsd to the code.
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Definition 14. The codewords associated with the incoming code is reptedes the

Cartesian product of state variables:

¢ =GxGC = [ C

fer

xC (60)

where G € S' represents the set of variables associated with the inapftows and Ce §',

| € L represents the layer present on the internal edge betweemtoming and the out-
going code. Similarly, the codewords associated with thiggang code is represented
as:

C0:C|XCfXCu:C|>< |_|Cf

fek

x Cy (61)

where G € S° represents the set of variables associated with the ouggftinvs and ¢ is

associated with the symbol variable that represents thgaing capacity.

Since there is a single layer, the variab&s C;, andC, can be represented by binary

values.

Definition 15. LetA€{0,1} be the binary value assumed by.CTherefore, for peer h

with having neighbor hconnected by flow f:

1 if layerl is present inf
Ay (h) = (62)
0 otherwise

For incoming codﬂ, )\'f (h) = 1 implies that peeh receives layel from parent peer such
thath(f) = h. Similarly, for outgoing code?, )\'f (h) = 1 implies that peeh allocates

layer| to its child peeth; such thah — h.

Definition 16. Letye {0,1} be a binary value taken by C

1 if layer| has been received by pder

vh

(63)
0 otherwise
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For incoming code, i, = 1 implies that layet is present in at least one of the incoming
edges. For outgoing codg’, y'h = 1 serves as the precondition for allocating layers to

outgoing edges.

Definition 17. Let pe {0,1} be the binary value gtakes:

1 ifyA =1
bh = (64)
0 otherwise

For outgoing code??, ph = 1 implies that exactly 1 edge has been allocated a layer.

Definition 18. Admissible codewords defined as a codeword that satisfies the network

properties and the scalable video properties. The netwarkgrties are:

e Capacity Constraint Total allocated rate by a parent to a set of child does not

violate the capacity (from Eq. 10).

e Duplicity Constraint A layer is received from at most 1 parent (from Eq. 11). This
increases the overall probability of receiving more layéssa peer by removing

potential bandwidth waste.
The layered video properties are:

e Relay Constraint A parent can only allocate a layer if it has received it (from

Eg. 13).

e Continuity Constraint Received layers must be consecutive (from Eqg. 12). The
properties of scalable video requires that a successfubdieg of layer | depends
on receiving all previous layers, 2,...,I — 1. If a peer receives layet, 2, and4,
it can only decode up to layet because layeB is missing. Laye# in this case

becomes useless.
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Definition 19. Satisfying the capacity constraint requires the followitwndition to be

true when generating a codeword for the outgoing coe

At < M (65)
fef
In order to satisfy the duplicity constraint, admissiblelewords for the incoming cod@

must satisfy the following condition:

> A<l (66)
fer

The relay constraint for the outgoing cod® is satisfied by the following inequality:
A <y (67)

Since there is only 1 layer, the continuity constraint in E2|.is not used. The following

example illustrates the properties an admissible codewmst satisfy.

Example 11. Consider the mesh network in Fig. 31la. The peers m and n akeser
peers having single layers and z is the relay peer. Both semed the relay peer have
unit uplink capacity Fig. 31b shows the normal-graph rediian of this mesh network
example. Fig. 32 shows the codewords for all the constraist®ciated with each peers.
Fig. 32a shows the admissible codewords associated withutgoing constraintC,
for peer m. The codewords af€,C,C,C,} = {000011011011}. Here the codeword
0000represents the situation where peer m does not allocate kaypeer x or z. The
codewordlL101represents the situation where peer m allocates layer toyéee., GC, =
10). Similarly, codeword 011represents the situation where peer m allocates layer to pee
z (i.e., GC, = 01). Since a layer must be present in order for m to allocate jitmDst
be 1 to satisfy the relay constrain in Eq. 13. Due to capacity ¢a@ist, allocation of a

layer completely occupies the bandwidth of m. ThereforenGst bel. Note thatl111is
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1) (1)

M

x ® 1
(a) Topology and initial layer alloca- (b) Normal graph representa-
tion tion

Figure 31: Example used for single layer optimization

not a valid codewords because providing layer to both ckitdwould violate the capacity
constraint in Eq. 10.

Fig. 32c shows codewords for the incoming constraiitof peer z. The admissible
codewords arg/C,,C,C} = {000,011 101}. The codeword00 means that peer z does
not receive layer from neither m nor peer n. The codewld@@liimplies that peer z receives
layer from peer m but not from n. The valug € 1 in this codeword represents the fact
that a layer has been received. Notice thafl is not a valid codeword because it violates
the duplicity constraint in Eq. 11. The continuity congtitain Eq. 12 is not addressed in

the single layer case.

Therefore, with the use of codes, it is possible to embed éteark and the video con-

straints in the codeword-based symbol-state representati

Admissible Codeword Generation

For a single layer, if an incoming code is connecteB te- | % | number of flows, there are
2F number of possible codewords. Similarly, for an outgoindecconnected tB, = | %|
number of outgoing flows, there are 2umber of possible codewords. l&be anMa x F

andB be anMg x F, binary-value matrix that contains all possible binary camations of
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y

Figure 32: Creation of codewords for various constrainseeaisited with each peer

lengthF andF, respectively. The rows of the matrix are represented\hyr B, while
the columns are represented Ay or Bs.

Algorithm 3 presents the admissible codeword generatioogss for incoming code.
Thefor loop in line 8 counts the number of 1's in a row. THieeondition at line 11 checks
the duplicity constraint. If the surhis greater than 1 from the loop in line 8, the ranis
discarded as a potential codewo@j.is set in line 14 according t6. Here{ = 1 implies
that the peer has received the layer from at least 1 of itsnfareAlgorithm 4 presents
the outgoing code generation process. Theondition in line 11 checks the capacity
constraint. The outgoing capacity here is assumed to bed vdlneC in line 14 satisfies
the relay constraint. A value of 1 implies that parent hascalled layer to at least 1 child
and the parent must possess the allocated layer before iielzgnit to a child. The value

C, in line 15 refers to the uplink capacity used by a peer. A valuplies that the peer
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Algorithm 3 Admissible Codeword Generation for Incoming Code

1: Initialize code: C' =0
2: Initialize matrix; A

3: (=0
4.
5. for eachme Ay, do
6: ¢c=0
7. (=0
8: for each f €A do
o: ( += amf
10: end for
11: if (>1then
12: continue
13: endif

14: C =, whereC; € ¢
15:  for each f €A andCscCiecdo

16: Ct =ams
17:  end for

18 C « (C'+c
19: end for

has allocated layer to one of its outgoing flows.

Probability Update

The sum-product based probability decoding for layeredwid now presented. The goal
is to determine the probability with which a layer can be edked by a parent and the

probability with which a layer can be received by a child peer

Definition 20. The incoming messagsg for variable G € c along an edge represents the

probability of carrying a layer by that edge:

aj = p(Cj = 1[Cj = Aj) (68)

Sincea only carries the probability ok; = 1, the probability of variable € = 0 can be

readily computed b — aj. Upon computing the marginal probability for each variable
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Algorithm 4 Admissible Codeword Generation for Outgoing Code

1: Initialize code: c°=0
2: Initialize matrix: B

3: (=0
4.
5. for eachmeB, do
6: ¢c=0
7. (=0
8: for each f €Bs do
9: { += b
10: end for
11: if (>1then
12: continue
13: endif

14: C =, whereC, € ¢
15:  Cy=¢(,  whereC,ecc
16: for each feBs andC;eCrecdo

17: Ct =bms
18: end for

19: (%<« (C°+c
20: end for

the outgoing messags is normalized within a range dfto 1.

(69)

Example 12. Let us consider a cod€ consists of two codewordsS = {101,011}.

The incoming messages in this case afe 0, a3 representing the probability (€; =

1), p(C; =1), p(C3 =1). The probability of @ = {1,0} can be computer as:

w(0) = p(CL =0) =aza3

Therefore, the outgoing message normalized within thegdnip 1 is:




Similarly, the probability of @= {1,0} is:

w(l) = p(C;=1)=(1-aj)as

w(0) = p(C; =0) =003

and the probability of @= {1,0} can be calculated as:

w(l) = p(C3=1)=0a1(1—0az)+ (1 —a1)a; =1

w(0) = p(Cs =0) -0

The probability of gC3 = 1) and p(C3 = 0) are set tol and 0 respectively because there
are no codeword representinggG= 0. Therefore, normalization @3 results inl.
Probability Initialization

At the beginning of the update algorithm, initial probalyiNvalues are set along each edge.

Definition 21. The initial probability message along the incoming and th&going edges

related to the flows are set to 0.5. The probability assigrinfiarthe internal edge is set

as:
1 if peer is a root andis present
a=pGCG=1= 0 if | is not present for root peer

0.5 otherwise

Here,p(C; = 1) = 1 for a root peer indicates that the layer is definitely pres&um-
product update algorithm does not compute this probabiityoot peers since the proba-
bility is fixed. Similarly, if a root peer is known to not havdeger, the probability assigned

in this case ip(C = 1) = 0.
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Definition 22. The probability value for variable s set as follows:

0 otherwise

Since the capacity value is assumed to be constant, theeupldmirithm does not update

the probability values associated wij.

Exit Condition

The exit condition determines the convergence point whenptiobability of carrying a

layer from parent to child through an an edge reaches 1 or 0.

Definition 23. Lete be the threshold for convergence. Therefore, convergenem@dge
with variable G is reached and the probability value is setitor O if the following condi-

tion is satisfied:

=
=
=
|
o
~—~
0
I
=
~—
IN
(32]

o
=
©
0
Il
=
IN
™

Algorithm

For each variable, the probability valeeis determined by calculating the sum of the
marginals and then normalizing it. This hormalized proligtis sent along the edges Bs

in response to each incomig Each peer waits to receive messages on all of its outgoing
edges from its child peers and updates the probability oimtiésnal edge. Based on the
update on the internal edge, a peer then updates probaailitgs on its incoming code and
sends this to its parents. Similarly, upon receiving repissages on all of its incoming
edges, a peers recomputes the probability on its interrget.ed peer then updates the
probability on all of its outgoing edges and sends this ugdigirobability message to its

children.
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Algorithm 5 Sum-Product Algorithm on Outgoing Code
For each constraint 9

1. Input:t

2: Incoming Message Sélf,

3:

4: if t is odd roundhen

5. forall fe %,do

6: Wait for all in coming messagest/, < o
7.  end for

8: if h.type! =rootthen

9: {update probability of the internal edpge
10: Calculatew; (1)

11 Calculatew; (0)

12: Normalize 3

13: Sendp; to incoming codec;

14:  end if

15: else

16:  {even round now
17:  if h.type! =rootthen

18: Wait for update orC;

19:  endif

20. forall fe¥,do

21: Calculatews (1)

22: Calculatews (0)

23: Normalize3¢

24: Sendf; to all outgoing edges
25:  end for

26: end if

Definition 24. The algorithm works on rounds= 1,2,.... During the odd rounds, mes-
sages travel upstream from child to parent peers, passimgitih the internal edge. During
the even round, messages travel downstream from parentltbpgers, similarly passing

through the internal edge.

Algorithm 5 and Algorithm 6 summarizes the single-layer sumduct update algorithm

for each round for outgoing and incoming codes respectively

Example 13. The following is an example of the sum-product messagengaakjorithm

based on the topology and constraints shown in Example 1d.. 338 and Fig 34 shows
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Algorithm 6 Sum-Product Algorithm on Incoming Code

For each constraint ¢

1
2

: Input: t
: Incoming Message Sél;

3.

10:
11:
12:
13:
14:

15

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27

© 0N a A

: {odd round
if t is odd roundthen
if h.type! =rootthen
Wait for update org
end if
forall fe % do
Calculatews (1)
Calculatews (0)
Normalize 3¢
Sendf; along all incoming edges
end for
. else
{even round noy
forall fe % do
Wait for all in coming messagestf; «+—a¢
end for
if h.type! =rootthen
{update probability of the internal edpge
Calculatew; (1)
Calculatew; (0)
Normalizef3
Sendp; to outgoing code’?
end if
- end if

the the roundsl to 8. During the odd rounds, the messages travel upstream frald ch

to

parent, while messages travel downstream from parertitd during the even rounds.

The messages converge af@aounds. In optimality, peer m gives layer to x, while peer n

gives layer to peer z. Since x has already received layer frarant m, peer z relays the

received layer to peery.

Example 14. Fig. 35a shows another single layer optimization examplay. B5b and

Fig. 36 shows message-passing for roudds 4. After round4, the layer allocation

co

nverges to optimality. In optimal allocation, m does nitdGate layer to x. Allocating
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i 1/0
| &

(a) initial probability (b) Round 1 and 2: leaf to root and
root to leaf

ix 1/0

ix 1/0

|
(c) Round 3 and 4 (d) Round 5 and 6

Figure 33: Message passing algorithm for single layer ation: Topology example 1
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(a) Round 7 and 8: Converged

Figure 34: Message passing algorithm for single layer atioa: Topology example 1

(a) Network example topology (b) Normal graph representation and initial
probability

Figure 35: Message passing algorithm for single layer ation: Topology example 2
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(a) Round 1 and 2 (b) Round 3 and 4: Converged

Figure 36: Message passing algorithm for single layer ation: Topology example 2

layer to y allows peer y to relay the layer to child peer d. Tiniproves the network-wide

QoS. The allocation is influenced by messages traveled from d

E.2 Generalized Single-Layer Optimization Algorithm

The previous algorithm for single-layer with unit capacisynow expanded to include
peers with multi-unit capacity. Updating the algorithmaltwes adjusting the variablg,

associated with the outgoing codg.

Definition 25. Letc® be the codeword associated with outgoing code:

c® =C xCf xCy = G x X |‘|cﬁ (70)
k=1

ne

fef

where G is the Cartesian product of the symbol variablq’?tﬁat represents the uplink
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capacity. The variable Scan be assigned binary valué hased on the following:

y 1 ifk<SA
u = (71)
0 otherwise

Admissible Code Generation

The admissible code generation process for incoming cadains unchanged in Algo-
rithm 3. The outgoing code generation follows Algorithm 4he following modifica-

tions:
e Layers can be allocated up o

e The value ofo is determined by the uplink capacity of the peer and the tataiber

of layers requested by child peers.

The outgoing code generation process begins by parent geeiging layer requests from
all children and summing up the number of layer requests. riibdified outgoing code

generation process is given in Algorithm 7.

Algorithm

As previously mentioned, the sum-product update algorithrimndependent of the un-
derlying constraints. The generalized algorithm for inamrand outgoing code follows

Algorithm 5 and Algorithm 6.

Example 15. The codeword construction technique for single-layer gthm with multi-
unit capacity is given here for Example 14 based on Fig. 364dhis example, assume that
peer m has a capacity @instead ofl. The new codewords associated with the outgoing
code(3 for peer mis given in Fig. 37. In optimal configuration, peeatlocates layer to

both child x and y. This is possible because peer m now hasacitgmwf2.
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Algorithm 7 Codeword for Outgoing Code: Single-Layer Multi-Unit Capgac

1: Initialize code: C°=0
2: Initialize matrix: B
3: (=0
4: 9=0
5:
6: for each flow f € %, do
7. if layerrequest == true then
8: d+=1
9: endif
10: end for
11: 0 =min(op, 9)
12: for eachmeBy, do
13: ¢c=0
14:. (=0
15:  for each f €Bs do
16: { += by
17:  end for
18: if (> othen
19: continue
20. endif
21: G =(C>1?1:0 whereC; € ¢
22: for k=1toodo
23: Ck=(k<Q)?1:0 wher€C,eCyec
24: end for
25. for eachfeBfand C;eCiecdo
26: Ct =bms
27:  end for
28 (C°<« (C°+c
29: end for

F  Multi-Layer Optimization

The single-layer optimization algorithm is now extended tfee multi-layers. Here the
root peers can have multiple layers. Furthermore, peerhi@am multi-unit capacity and

can deliver multiple layers to its children.

Definition 26. Let C'f € Ci be a new variable vector associated with each flow .

Let C; € C! be the variable representing the presence or absence of layeflow f.
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1 1 0 10
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1 1 1 11

(a) Outgoing constraint iG3

Figure 37: Codewords for outgoing co@g, for peermin Fig. 35a with uplink capacity 2

Furthermore, let Cbe the new variable vector associated with internal edge.G.e C
be the variable representing the presence of layer |. Thewoddsc' associated with the

incoming code” for multi-layered video stream is defined as:

¢ =G xC = |‘|c'f x TG (72)
fef ler
The codewords® associated with the outgoing cod® is:
o
¢ =CixCixCu= | []C]x |‘|C'f X |‘|c{j (73)
ler fef k=1

where q is a Cartesian product representing the presence of layeflow f:

¢t = [ ¢ (74)

lerL

Definition 27. LetA} = {0,1} be the value taken by,Clt is defined based on Eq. 62. Let

Lety be the binary value taken by (For the outgoing code®, it is redefined as:

1 it §Af>1or § AFI>1
Y = fez% erfo (75)
0 otherwise

93



For the incoming code™, it is redefined as:

1 it § Ak>1
Y= fezﬁ (76)
0 otherwise

Admissible codewords must satisfy the network and layeiddovproperties defined in

Definition 18.

Definition 28. In a multi-layer environment, the admissible codewordeeisged with the

outgoing code”® must satisfy theapacity constraint

N <o (77)
feflel

Satisfying theduplicity constraint for incoming code requires the following condition:
zx'fgl VieL (78)
feF

Thecontinuity constraint on the incoming can be embedded by satisfying the following

condition when choosing a codeword:

> Al > > AL vler (79)

Admissible Codewords Generation

The generation of codewords for multi-layer video is nowsidared. FoilL number of
layers, letB be aM x L binary value matrix consisting of all possible layer conations
that can be delivered to flol. HereM = 2. The rows of the matrix are represented by
B, while the columns are representediyy

Admissible codeword generation associated with the inngnesbde must satisfy the

video constraints for the binary mati Algorithm 8 determines admissible codewords
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for incoming codes.

Algorithm 8 Check Video Constraint
: Input: vectorG, type: int
: Output: type: int

[EEY

fori=0;i<L;i++do
if C; > 1then
return —1
end if
end for
forI=L—1;1>0;1-- do
10 if G <C_1then
11: return —2
122 endif
13: end for
14: return 1

© NGOk

Ensuring the capacity and relay constraints for the outgoide is done based on Algo-

rithm 9 and Algorithm 10.

Algorithm 9 Check Capacity Constraint

Input: vectorCl, type: int
Input Capacity: z;, type: int
Output: type : int

sety = 0

forI=0to L do
> +=Ci

end for

if 3 > z¢ then
return 0

end if

return 1

R =
N PO

Complexity Optimization for Outgoing Code

If there areF, number of child peers, there are a possillle® number of codewords to

consider before selecting the admissible codewords. Mete 2- for L number of layers.
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Algorithm 10 Create Code Layers
Initialize Matrix: B =M xL, M =2"
Input: F, type: int

Input: vectorPs, type: int

Output: vectorG, type: int

=

setG =0

for f=0to F do
m= Pf
forI=0to L do
G +=Bmi
end for
. end for

el ol
W N R o

For a large number of layers and a large number of outgoing peeputing sum-product

update on so many codewords is computationally intensive.

Example 16. If there are L= 5 layers and F= 5 outgoing peers, the number of possi-
ble codewords ar(§25)5 = 33554432 Furthermore, computing the probability on each

codeword requires FL = 25 multiplication operations.

During the optimized codeword generation process, Adivissiodewords associated
with the outgoing code requires thaﬂl\j =0andk < g, thenp(Cl'j =0) =0. This is be-
cause a parent peer always attempts to allocate the maximnmbar of layers. Therefore,
marginals of any codeword that under utilizes the uplinkacéty will result in 0. There-
fore, during the code generation process, the only valig¢wodds are codewords that that
maximizes the bandwidth utilization based on the valid eamtd requests received.

Codeword generation algorithm must consider the commurtatioverhead required to
handle peer churning. Generating outgoing codewords diraeya peer leaves/joins will
requires intensive computation. However, the followingutea shows that the number of
admissible codewords are significantly less than the de(fa‘u)F, for L layers and~ child

peers.
Definition 29. For an outgoing code having L probable layers to allocater¢hare2"
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Figure 38: Optimized codewords generation for outgoingecefi for peerm

codewords:
2L
Y1 (80)
=1

Since the codewords used to calculate the outgoing prabahibng each outgoing edge
is the same, a peer only needs to calculate codewords witlece$o one peer. Therefore,

the number of codewords for n number of peers are:

2L

2t 2t
S Z\ 1
li=1l=lh Ilg=lF_1

The optimized codewords generation associated with thgoowd code are given in

Algorithm 11.

Example 17. Let peer m be a parent with child x and y. Assume that peer m has
layers. Codewords used to generate outgoing probabilityeter x is the same as peery.
Fig. 38 shows the optimized process used to generate athrissidewords. Due to op-
timized codeword generation, the codeword combinat@hand 01 are interchangeable.
Therefore, codewor100 has not been used because codew@®d1 has already been
generated. Similarly100Q 1001 11001101, and 1110has not been used because the
reverse combination801Q 011Q 0011 0111and1011has already been generated.

Example 18. Fig. 39 shows a comparison for the number of codewords vsbaupeers
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Algorithm 11 Optimized Codeword Generation for Outgoing Code: Multirea

1: Initialize code: C°=0
2: Initialize matrix: B
3: Input: Number of Output Flows F,
4: Initialize: counfF,] =0
5:(=0
6:
7: while (true) do
8:  {get the current codewo}d
9: ¢=0
10. (=0
11: for1=0toL- 1do
12: for f=0toF,- 1do
13: m= countf]
14: (+=bmy
15: Cl =bm, whereC} eC}
16: C +=by, whereC €C
17: end for
18: if C, == 1then
19: C_1=1, forl>1
20: end if
21: c+c+C +C}
22:  end for
23: if (==0 then
24: {This is a valid codeworgd
25: C°«+(C°+c
26: endif
27:  {Search for the next optimized codewérd
28: for f=F,- 1to0do
29: if counff] <2-- 1then
30: countf] ++
31: for j=f4+1toF,- 1do
32: countj] = countf]
33: end for
34: break
35: end if
36: end for
37:  if counfQ] > 2- then
38: break
39: endif
40: end while
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Figure 39: Number of codewords associated with the outgoaug vs. the number of child peer and the
number of layers

for 3 and 4 layers. For a scalable stream wighlayers and5 child peers, the unopti-
mized codewords generation process consi@B68number of codewords to generate
admissible codewords, while the optimized process corssaigy 2436codewords to gen-
erate the list of admissible codewords (Fig. 39a). Simylarith 4 layers and5 child
peers, the number codewords considered during the ung@thtode generation process
is 1048576 while the number of codewords considered in the optiminelg generation

process i54264(Fig. 39b).

Complexity Optimization for Incoming Code

Similar to the complexity associated with the generatioadrhissible codewords for out-
going code, optimized codewords generation is also nege&sancoming code. LeB be
aM x L matrix whereM = 2-, containing all possible binary combination of layers that
child peer can receive from its parent. If there Braumber of parents, the possible code-
word combinations ar(aZL)F'. Therefore, codeword optimization is necessary to reduce
the computational complexity. Algorithm 12 presents thempeéation based optimized
codeword generation for incoming codes.

The algorithm takes a list of parenpsand a binary array[M] that corresponds to

all the codeword combinations far number of layers, whertl = 2-. The function is

99



Algorithm 12 Optimized Codeword Generation for Incoming Code

Initialize Matrix: A= MxL, M=2"
Input: K {number of incoming flow}s
Input: ¢
Input: int p[F] {list is parent$
Input: int r[M]
Input: int list [F]
Input: int j
fori=j+1toM- 1do
riij=1
res= valid_codewordér) {check duplicity and continuity constrain
if res==1then
{This is valid codeword vect¢r
sortcodewordvector(list, r, |F|)
repeat
if valid_codewordcapacitylist, |Fi|, p[F]) == 1 then
computeprobability_vector)
end if
until permutélist, |F|)
else ifres== - 1 then
riij=0
end if
if ¢<|F|—1then
recursivefunctioncall(¢=¢+1, j=i,r)
end if
25. rfij=0
26: end for

=

NNNNNRRRRRRRRR R
AP WNREROONDAORE®WNRO

initially invoked with parameterg = 0 andj = 0. The validcodewords function call in
line 10 refers to Algorithm 8 that checks the continuity angletity constraints associated
with incoming code. For a given set of codewords, the sodeworgector sorts the index

of the vectors used from matriin ascending order and puts itlist array. If the number

of codewords used (i.erfi] = 1) is less than the number of parents, the sort function fills
the remaining positions with 0s. The computation of the phility vectors are given in

the next section.

Example 19. If L = 3 and there are a total o4 parents, the number of possible codeword

vectors is7. A combination 0001 (i.e., indexrfi] = 1) and 010 (i.e., indexrifi] = 2)
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Algorithm 13 Compute Next Permutation of an Ordered List

2: Initialize Input: list
3: Initialize Input: len
4:
5. key = len—1
6: newkey = len—1
7: while key > Oandlistkey] < list[key— 1] do
8: key--
9: end while
10: key- -
11: {If key j O the data is in reverse sorted order, which is thepastmutation
12: if key < Othen
13: return O
14: end if
15: newkey = len—1
16: while newkey > keyand list[newkey < list[key] do
17:  newkey -
18: end while
19: swaplist, key, newkey)
20: len- -
21: key++
22: {The tail must end in sorted order to produce the next perioatét
23: while len > keydo
24:  swapglist, len, key)
25.  key++
26: len--
27: end while
28: return 1
constitutes a valid codeword combination. However, theeedaparents. Thereforesosbrt

function returns the sorted index@s 0, 1, 2] in thelist array.

The permutation of all the vectors in the ordelistlis generated by Algorithm 13 [76].

The permutation here refers the possible number of waysl@ pber can receive a a bi-

nary row from its parents.Fdr number of layers, the computational complexity of finding

the next permutatio®(L). Therefore, if there are a totdl permutations, the the final

co

mputational complexity for finding all the codewordOENL).

Example 20. Fig. 40 presents an example of the application of Algoritiintd gener-
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cap:1 cap:3 cap: 2 cap:1
000 000 000 000
001 001 001 001
010 010 010 010
100 011 011 100

100 100
101 101
110 110
111

(a) Parent Capacity

Level1l Level2 Level3 Number of

Codewords
001 4P 1=4
001 010 4P2=12
001 010 100 4P 3=24
001 110 23P1=6
010
010 101 23P1=6
011 223P0=2
011 100 23P1=6
111 1.3P0=1

(b) Codeword Construction

Figure 40: Possible binary combinations based on capatjigrents to construct the codewords

ate optimized codewords for incoming code. In this exangplhild peer hagt parents.
The capacity of the parents and the possible codeword reptason of layers that the
child can expect to receive from its parents are given in &@a. The optimized codeword
generation process for this configuration is shown in Figo.4The algorithm recursively
generates possible codeword permutations. The algoritanisswith the codewordd 0 1

. The codeword combination§01 000 000 000can be arranged® Ppossible
ways to receive from 4 parent. Therefore, there ‘arg =P 4 ways to receive layer 1. After
successful recursive call, the possible codeword comioinet001 010 000 000
can be arranged irf P = 12 ways among 4 parents to receive 2 layers. After the next

successful recursive call, the codeword combinatidnh@1 010 100 00Ocan be
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arranged in* B = 24ways. At this point, the cursive call is at level 3 and no otteate-
word combination is valid. Therefore, the algorithm retsito level 2 in recursion. The
next valid codeword combinationsa@01 110 000 00O0From this codeword com-
bination, a child can receive up to 3 layersin, P- 12ways among} parents. However,
only 2 parent can deliver the codeworti1 0. Therefore, only - 3P1 = 6 possible ways a
child can receive8 layers in this codeword combination. Here the permutaﬁop isfused
because one level with codewoidl 0 has been removed. Oncel 0 is set, there is only
3 more places left for the permutation. The multiplicatigr2bs used because there aze
peers whose codewords can be seltb0. At this point, the algorithm returns to level 1 in
recursion. Since the codeword1 0 does not violate the duplicity constraint, a recursive
call to level2 ensures that this combined with codewdr® 1 forms a valid combination.
This codewords can be arranged 2n 3P1 = 6 ways. The next valid codeword 31 1

. Due to capacity constraint, only 2 peers can serve this wodg. Therefore, there are
2. 3P0 = 2 ways the codeword combinatioris11 000 000 00CQcan be arranged
to receive2 layers from parents. Finally, only 1 peer can server codelvbrl 1. Hence it

can be arranged in only 1 way.

Algorithm

The algorithm works on the codeword vector. The algorithffofes the same iterative
method mentioned in Algorithm 5 and Algorithm 6 for outgoiagd incoming codes re-
spectively. For a given permutation of vectors probabiktyomputed in Algorithms 14
and 15. Algorithm 14 computes the probability on the inteadge for the incoming code
when messages go from parent to child and on the outgoingwlhbee messages traverses
from child to parent. Algorithm 15 computes the probabibity the edges. For incoming
code, this determines the probability when messages tiravelchild to parent. Similarly,
Algorithm 15 also computes the probability on the edges eoted to the outgoing code

when parent send message to child.
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Algorithm 14 Compute Probability: Edge to Layer Probability

=

NNNNRERRRRRERRR R
W NP O O®NDJOAE®WNREO

Initialize Matrix: B=M x L, M =2t
Initialize: prob=1

Input: F, type: int{edge set
Input: vectorPs, type: int

Input: vectorG, type: int

Input: edgéF|[L][2], type: double
Input: pIn[L][2], type: double

Output: pOufL][2], type: double

for f=0to F do
m= Px
forI=0to L do
prob*= edgé f |[1][Bm ]

end for
end for
forI=0to L do
prob*= pin[l1][G]
end for

:forl=0to L do

pOut!][Ci ] = prob/pIn[1][Ci ]
end for
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Algorithm 15 Compute Probability: Layer to Edge Probability

Initialize Matrix: B=M x L, M = 2t
Initialize: prob=1

=

Input: F, type: int{edge set

Input: vectorPs, type: int

Input: vectorG, type: int

Input: edgeldF][L][2], type: double
Input: pIn[L][2], type: double

[En
e

Output: edgeOutF][L][2], type: double

[EnY
=

for f=0to F do
m= Ps
forI=0to L do
prob *= edgelr f |[1][Bm]
end for
end for
forI=0to L do
prob*= pin[1](Ci]
. end for
:for f=0to F do
m= Ps
forI=0to L do
edgeOutf ][I ][Bmi] = prob/edgeln f |[1][Bmi]
end for
end for

NNNNNNNRERRRRR R R
QR WNRE OONDORE DN

G Simulation

Preliminary simulation is performed with 20 peers in thenwrk. The server peer is as-
signed a 3 Mbps bandwidth. A group of 25% of the peers, seleatedomly, are assigned
a bandwidth of 500 Kbps, 1 Mbps, 1.5 Mbps. Rest of the peerassigned 2 Mbps band-
width. Furthermore, the maximum number of incoming or oirigaconnection is set to
3. We assume that each layer requires 150 Kbps bandwidtHiverdand there are up to a
total of 8 layers available. In this simulation, each peeksey a parent randomly selects a

peer to be parent. However, this algorithm can be used tegefith any other parent-child
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Figure 41: Average layer deliver ratio and message contglesi peers join network
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Figure 42: Average layer delivery ratio of peers in the nekwn the presence of peer churning

selection methodology for the overlay construction. Fitp 4hows the average layer de-
livery ratio for various layers as peers join the network.afvthere are up to 5 and 6 layers
available, the algorithm achieves maximum layer allocatids the number of available
layers increase, average delivery ratio decreases. Upyéo & the algorithm achieves
95% average layer delivery. Fig. 41b shows the average nuaibaessages exchanged
between any two peers before the algorithm converges. $tcalgorithm proceeds in
rounds and convergence decision is reached after a cyclarehpchild-parent messages
is completed, total number of messages is always a multi#e o

Fig. 42 shows the average delivery ratio in the presence &f geurning. Fig. 42a

shows the total number of peers in the network. After evergdords, between 1 to 4
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Figure 44: Number of messages exchanged between parenhidshgeers to reach convergence

peers join the network. They are randomly given a life-tireeAmen 5 to 30 seconds. The
left axis show the average layer delivery when up to 8 layessamailable. Simulation
has also been performed with larger networks. Fig. 43 shhesaverage layer delivery
ratio as large number of peers join the network. In additiéig, 44 shows the number of
messages required for layer allocations to converge as jmerthe network. Comparing
Fig. 41b and Fig. 44, it is clear that as more peers join therordt, the rate of the number

of messages required slowly decreases.
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CHAPTER VII

CONCLUSION

An optimal rate allocation solution for P2P applicationplissented. For continuous-rate
video streams, non-linear convex optimization framewak heen used to minimize the
aggregated distortion and thus to maximize the overall P&nigng all peers in a P2P
network. The optimization process uses peer relaying priseque in a P2P distribution
scenario - along with the network price. Simulation shovwat thsing this double pricing
solution improves the aggregate rate distortion for allrpée the network and provides
a better video experience compared to a solution that ugsand network prices sepa-
rately. A solution has also been developed for multi-patR Rtworks.

For scalable video streams, a heuristic-based layer &tbocalgorithm for a P2P mesh
network has been developed. The algorithm targets to aelslege to optimal rate among
peers by considering load balancing and weight based ldigeation. This ensures that a
child evenly distributes layer allocation request amohgsaparents and a parent allocates
higher rates to a child that in turn has more children tharerothild. Simulation shows
that for up to 7 layers, the algorithm achieves a layer dslivatio of 90% more.

Finally, a simple sum-product based message-passing agphas been developed to
solve the problem of scalable video optimization in the eghbf P2P mesh network. The
simple but elegant nature of the algorithm results from #ut that the network and video
properties are embedded in a set of codewords. Sum-prolgiecitm iteratively updates
the probability along each connecting edge based on theséamdewords. Results show
that peers achieve 95% or higher average layer delivery with exchanging fewer than

20 messages between neighbors.
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