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CHAPTER I

INTRODUCTION

Optimization has become a powerful tool in the design and implementation of computer

and engineering systems. Many problems in real-world applications in these fields arise

due to various constraints inherent in a system consisting of many distinct local compo-

nents working towards a shared global objective.

Consider a system comprised of a set of components and a set ofresources that are

available to each of the component. Each component is only responsible for a small sub-

set of the overall system objective and depends on a subset ofresources allocated to it.

The resources, however, can only provide services to a limited number of components at

any given time. Furthermore, the components naturally interact with neighboring compo-

nents only. The overall system objective in this case is to optimally allocate these limited

resources among the set of components so as to maximize the global objective.

Finding a solution to this resource-optimization problem in a distributed environment,

in the absence of a central coordinator, is one of the oldest and well-studied problem.

The distributed and resource constrained nature of the Internet generally encompasses this

optimization problem.

A Motivation

The recent advancement in compression techniques and networking technologies have re-

sulted in wide deployment of novel content distribution applications. These applications

enable the end-users to have ubiquitous access to media streaming services such as live

broadcasting, video-on-demand, and video conferencing.

Since the emergence of Napster in 1999, Peer-to-peer (P2P) networks have experienced

explosive growths, and P2P-based applications have becomethe most dominant form of
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Internet traffic [1]. This rapid expansion of P2P is further enhanced by the popular P2P-

based BitTorrent file sharing network. The growth of P2P traffic is expected to continue

along with the rapid increase in Internet connectivity and the development of popular end-

user based applications such as pplive, sopcast, justin.tv, that take advantage of P2P’s cost-

effective implementation and instant deployability. The application scenario considered in

this thesis is P2P multicast.

In P2P multicast, a media stream is disseminated to a large number of peers over the

Internet. Participants contribute their uplink bandwidthand other resources to relay me-

dia streams to neighboring peers in the network. Compared tocontent delivery network

(CDN), this type of distributed system is cost-effective due to its lack of dedicated infras-

tructure and is scalable to the number of users due to resource-sharing.

However, the clients that connect to the media streams are becoming more and more

heterogeneous and are connecting through a wide variety of access medium. These days,

typical devices used for media consumptions can range from mobile devices with low

processing power and small display sizes to high performance workstations with high-

definition (HD) displays. Furthermore, users are connectedto the Internet through access

medium such as Wi-Fi, 3G, 4G, Ethernet, etc. In the case of media stream, the best effort

nature of the Internet does not provide acceptableQuality of Service(QoS) guarantees that

are required for multimedia streaming. Therefore, in orderto ensure QoS, it is essential to

optimize the the available network resources.

B Problem Statement

The ubiquitous access to high-speed connectivity to the Internet for the end users has re-

sulted in a rapid growth in media-related traffic. However, the underlying infrastructure of

the Internet that was built during the 1990s and the first halfof the last decade was for ser-

vices such as e-mails and bulk data transfers. The traffic associated with these applications

are sensitive to losses but not to delay and therefore, are largely insensitive to bandwidth
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limitations. First proposed by Jacobson, et al. [2], TCP is the most widely deployed trans-

port protocol of today’s Internet. It was introduced duringthe early days of Internet with

the goal of ensuring reliable data transport for traffic thatare insensitive to delay. TCP pro-

vides end-to-end QoS support through its AIMD-based (Additive Increase/Multiplicative

Decrease) mechanism and is mainly responsible for the remarkable stability of the Internet

despite its rapid growth. While the congestion-control mechanism of TCP is appropriate

for bulk data transfers, it is not naturally suitable for media traffic. Its rapidly-varying con-

gestion penalty on data-rate is extreme to the strict delay requirements of streaming media

applications [3].

The QoS for media streams is extremely delay sensitive because of the time constraint

imposed by end users’ perceived quality of experience. Since the generated video quality

is directly related to the video bit-rate during the encoding process at the source, the QoS of

the media stream is also sensitive to the availability of network bandwidth. The dominance

of TCP means that any congestion-control protocol designedfor media streaming must co-

exist with TCP and beTCP friendly[4] because imposing unfair competition to TCP traffic

could lead to possible congestion collapse [5]. TCP friendliness means that under resource

constraint, media-data will experience the same delay and network bandwidth limitations

as TCP. However, being TCP-friendly also means that in the presence of constraint media-

data will experience severe data-loss. Such loss of data mayresult from dropped packets

when the underlying transport protocols (e.g. UDP) does notguarantee TCP-like QoS

against data losses. Data is also considered lost because ofdelayed arrivals in the presence

of congestion.

Current media technologies achieve TCP-friendliness through delay-loss tolerance.

This is done by introducing redundancies into the media stream during the content gen-

eration process. However, the ability to handle data loss meant that many video stream-

ing services rely on TCP-based protocol (e.g. browser basedHTTP used in YouTube )

to deliver media data. The continued dominance of TCP at the transport layer and the
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continuous increase in media traffic means that along with TCP-friendly media protocol,

resource-optimization at the application-layer is necessary to reduce cost and increase per-

ceived quality of experience by end-users.

P2P has become the most popular means for media distributionbecause it provides

an application-layer platform that can abstract the underlying heterogeneity at the trans-

port and the physical-layer [6]. In addition, deploying a P2P system is extremely cost-

effective due to the resource-sharing by the participatingpeer machines. However, due

to this resource-sharing and the network heterogeneity, available bandwidth of peers is

unavoidably constrained and fluctuates. Peer churning (arbitrary joining and leaving by

peers to and from a network) further exacerbates this problem. Furthermore, unlike in a

client-server system, data is often relayed via several peers, resulting in additional delays,

especially in the presence of network congestion and/or bandwidth constraint. Therefore,

P2P systems must implement proper resource-allocation techniques to optimally utilize

available bandwidth.

Bandwidth is the most demanding resource in a P2P system. In the context of stream-

ing media, optimization can be classified into two broad categories: local-rate optimiza-

tion between two communicating peers and global-rate optimization across all peers in the

network. Global-rate optimization for all peers depend on the type of encoding used to

generate the media itself. This thesis develops optimization solutions for media streaming

across both categories.

C Thesis Contributions

The contribution in this thesis can be divided into the following categories:

• In local-rate optimization between two communicating peers, a MEdia-friendly

congestion-aware real-Time Streaming (METS) protocol is proposed that can be

used to transport media data between two peers. Unlike existing congestion-aware
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protocol that uses regular feedback for rate-control, METSintegrate feedback data

with packet-retransmission or rate-control messages.

• In continuous-streamencoding, media data is encoded in such a way that the per-

ceived quality of the decoded video by the end-user is a continuous and monotoni-

cally increasing function of the streaming rate. Frameworkused to globally optimize

this type of media stream is referred to as theconvex optimization framework. A new

optimization algorithm under this framework is proposed for video streaming in P2P

networks that simultaneously considers uplink capacity ofa peer and the number of

cumulative of a peers.

• In scalable-streamencoding, media data is encoded in a such a way that the qual-

ity function is a discontinuous stair-case type function ofthe streaming rate and is

not amenable to convex optimization techniques. Existing optimization solutions in-

volve heuristic-based algorithm. This thesis proposes a new heuristic-based solution

to scalable-stream optimization. On the sender-side, the algorithm focuses on load-

balancing and priority-based video stream to a set of receivers. On the receiver-side,

video requests are made to maximize the received video data.

• Finally, this thesis also proposes a newmessage-passing frameworkfor optimiza-

tion of scalable video stream. Advantage of this simple but elegant approach over

other heuristic-based approach is that the optimization algorithm itself is indepen-

dent of the underlying constraints. The algorithm iteratively updates resource al-

location decision based on a given set of codewords. The codewords are binary

representation of various network and video constraints. Therefore, any number of

constraints can be used to generate a set of codewords without modifying the al-

gorithm. To the best of our knowledge, this is the first work that systematically

addresses the problem of scalable-stream optimization.
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D Thesis Outline

The thesis is organized as follows.

• Chapter II: This chapter provides a background on optimization. First,the network

topology that is used through-out the thesis is presented. Background on media

streaming protocols, optimization for continuous-streamand scalable-stream is also

presented.

• Chapter III: In this chapter, the congestion-aware streaming protocol for real-time

media is presented. The algorithm improves on the data-lossrate by implementing

a recovery mechanism to address lost or delayed data.

• Chapter IV: In this chapter, the optimization for continuous stream video for P2P

networks is presented. Simulation shows that this new algorithm improves the per-

formance over existing algorithm.

• Chapter V: Heuristic algorithm for optimization of scalable video stream in P2P

network is presented. The algorithm optimizes the rate across the network by con-

sidering available bandwidth of peer for topology construction, load-balancing, and

data-request from child peers to parent peers in the network.

• Chapter VI: In this chapter, the message-passing based optimization framework for

scalable video stream is presented. It is based on existing works in iterative decoding

in the field of Information Theory. Iterative decoding refers to the process of iterative

update of outgoing data based on all incoming data.

• Chapter VII: This chapter concludes the thesis and provides an outline offuture

work.
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CHAPTER II

BACKGROUND

The availability of high-speed Internet connectivity and the powerful computing devices

have resulted in a growing demand for multimedia communication services such as video-

on-demand, video conferencing, or live video streaming. This growing demand is ev-

idenced by the increasing popularity of online media services such as YouTube, Hulu,

Joost, etc. However, ubiquitous access to these services are still not guaranteed due to the

network infrastructure deficiencies. Therefore, any solution to cope with such lack of QoS

require rate adaptation of the data stream.

In this chapter, a brief introduction is provided to the network topology and network

model that is used in this thesis. The issue of heterogeneityand the need for resource allo-

cation is discussed. The use of video distortion minimization as an optimization objective

is discussed in the context of rate-adaptation. Finally, anoverview of various optimization

algorithms and protocols are presented.

A Network Model

Existing approaches for P2P streaming can be divided into two classes:tree-basedand

mesh-based. In a tree-based topology, peers are connected to a single parent, while peers

are connected to multiple parents in a mesh-based topology.The tree-based approach

extends the idea of end-system multicast [7]. A mesh-based P2P streaming is derived

from file swarming mechanisms (such as BitTorrent), where participating peers form a

randomly connected mesh. Due to the multiple incoming connections for each peer, a

multi-path mesh can fully utilize the network resources of its peers. Furthermore, peers

experience a higher degree of stability [8] in a mesh-based approach compared to a tree-

based approach. This results in higher quality for the delivered video. However, this higher
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quality and stability compared to tree-based approach comes with extra computational/data

overhead required to coordinate data reception from multiple parents.

In this thesis, only a cycle-free network is considered. A cyclic mesh structure is

common in P2P applications, mostly in downloading applications, where data relaying is

coordinated in receiver-driven mode on a piece-by-piece basis, e.g., BitTorrent. Many P2P

TV applications, albeit supporting video streaming, function in the same manner. Most

importantly, these applications are not concerned with video adaptation issues because all

peers receive exactly the same content. However, the targetapplications in this thesis is de-

signed towards streaming scenarios in which rate adaptation can help, such as the presence

of network heterogeneity (streaming to hand-held devices)or strong real-time requirement

overshadowing quality (multi-party video conferencing).It is not uncommon to see a DAG

(Directed Acyclic Graph) distribution structure in these scenarios. For example, in a live

broadcasting event, if a new peer always find its parent(s) among the current online peers,

a DAG structure will form where the new peer can be sequenced according to its joining

time.

A.1 Model Description

Consider a P2P network consisting ofH end hosts. The set of hosts is denoted asH =

{hi | i = 0,1, . . . ,H}. Define a flow f that directs from a peerh j to peerh in a cycle-

free network by the relationh j
f
−→ h, whereh( f )=h is the peer thatf directs to. In

this connection, peerh j is the parent of peerh (similarly, peerh is the child of peerh j ).

Consequently,F is defined as the set of flowsF ={ fi | i=0,1, . . . ,F }. For peerh, F (h) is

the union of the set of incoming flowsFi(h)={ f j |∀ j, h( f j)=h} and the outgoing flows

Fo(h)={ f j |∀ j, h
f j
−→ h j }. HereFi(h)= /0 for server peers andFi(h)= /0 for leaf peers.

This follows that the set of parent peers ofh is Hi(h)={h j |∀ f ∈Fi(h), h j
f
−→ h} and the

set of child peers isHo(h)={h j |∀ f ∈Fo(h), h( f )=h j }. The flowsf in the network takes

place on a unicast path that connects two peers and encompassa set of physical linksN

8



on the Internet such thatN ( f )⊆N is the set of links encompassed byf . Based on this

definition, the flow-set of each linkn is defined asF (n) = { f ∈F | n∈N ( f )} (i.e., the set

of flows that pass throughn). Therefore, the total receiving rate of a peerh is:

xh= ∑
f ∈Fi(h)

xf (1)

The maximum streaming rate for a flow depends on the uplink capacity cn of each of

the links traversed along the flow path (i.e., the smallest uplink capacity along the path

of f determines the maximum achievable streaming rate forf ). However, the physical

topology considered in this thesis is based on the assumption that the bottleneck link of

an end-to-end connection only happens at the uplink of the sending peer [9]. As such,

the maximum streaming rate of a sending peerh depends only on its own uplink capacity,

ch. This effectively reduces the link setN to contain only the uplink of peers and the

server. Consequently, the uplink capacity of the peers in the network are collected into a

capacity vectorz= (zh, h ∈ H ). As illustrated in Fig. 1, this topology is termed as thestar

topology. The notations used in this section are collected in Tab. 1

Figure 1: P2P Streaming Illustration: Star topology
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Notation Definition

h ∈ H End host or peer

f ∈ F Unicast flow in overlay multicast

h( f ) = hi Peerhi that flow f directs to

Fi (h), Fo (h) Set on incoming and outgoing flows of peerh

Hi (h), Ho (h) Set on parent and child peers of peerh

N ( f )⊆N Set of links encompassed by flowf

F (n) Set of flows passed through linkn

xf , xh Flow rate for flow f and total receiving rate for peerh

zh∈z Uplink capacity of peerh

h j
f
−→ h Peerh j is the parent of peerh connected by flowf

Table 1: Notations used for network model

A.2 Best-Effort Network - Leveraging Heterogeneity

As previously mentioned, the present day Internet is a best-effort network that does not

guarantee the QoS required for media streaming. The decentralized nature of the Inter-

net means that packets belonging to a single stream between asource and a destination

may traverse through unique routes and experience uncorrelated channel effects along the

routes. This has led to the idea ofdistributed video stream[10, 11], where the authors

proposed a distributed scheduling algorithm. Majumdar et al. [12] proposed a delivery

scheme based on distributed Forward Error Correction (FEC). These efforts have shown

a significant quality improvement in media streaming over the Internet compared to a tra-

ditional client-server model. The idea of distributed streaming naturally became popular

in the context of P2P networks once the bandwidth required for video streaming became

affordable to the average users.

The work by Hafeeda, et al. [13] introduces a dynamic peer selection scheme to me-

dia transmission. Padmanabhan, et al. [14], proposes a bandwidth adaptation protocol is

proposed for increased transmission robustness in P2P network, while Agarwal, et al. [15]

focused on the quality adaptive delivery of the media streams. Various QoS improvements
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offered by these works mainly follows the general idea that participating clients that have

already received the stream are able to help alleviate the server load by contributing to the

media distribution process throughpeer relaying. Peers that relay received media data to

other peers are calledrelay peers.

B Rate Adaptation

Due to the lack of QoS provisioning in P2P networks, proper utilization of the available

network bandwidth is necessary to ensure user satisfaction. For video stream, this implies

that the peers must perform rate adaptation to address bandwidth constraint and hetero-

geneous receiver capabilities inherent in a P2P network. Rate adaptation is particularly

important in the context of peer-relaying because a relay peer must re-encode the incom-

ing video stream according to its uplink capacity limit before it can relay the video to the

a child peer.

Rate-adaptation implies that the video quality received byeach peer is different. In

the case of multicast, having multiple streams of varying bit-rates may force the overlay

network to divide into smaller subgroups, each receiving only one version of the source

stream. However, this clustering exposes the peers to bandwidth fluctuation and peer

churning. Scalable video stream [16] has been proposed as a way to prevent clustering

in a distributed network by offering a single video stream that serves a variety of bit rates.

The video signal is encoded into several layers at the source, and the receiver only needs to

receive a subset of the layers to recover the signal with a certain level of quality degrada-

tion. Therefore, layered video prevents clustering in the network because heterogeneity is

addressed at the local nodes, where the sender selectively forwards the layers that fit within

the allocated bandwidth. However, this increased flexibility of layered video also produces

data overhead and reduces the coding efficiency. Throughoutthis thesis, the termlayered

videois used to refer to scalable video stream.
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B.1 Video Encoding and Adaptation Techniques

This work focuses on two main encoding schemes: continuous-rate and scalable-rate en-

coding. Consequently, video streams encoded with these schemes are called continuous

stream and scalable stream. In continuous-rate encoding, perceived video quality is di-

rectly proportional to the encoding rate. Fig. 2a shows the relation between media quality

and the encoding rate in a continue stream. Media quality here is a logarithmic function

of the rate. Rate adaptation for continuous stream is done bytranscoding, where incoming

video signal is changed by a relaying peer to meet lower uplink rate requirements, through

either re-encoding or adjusting key video parameters such as quantization values, etc.
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Figure 2: Video encoding types

For scalable-rate encoding, raw video sequences are compressed into non-overlapped

layers. Thebase layercontains data that constitutes the most important featuresof the

video. Additional layers - calledenhancement layers- contain data that progressively

enhances the quality of the reconstructed video [17] on the receiver side. Fig. 2b shows the

discrete stair-case relation between the encoding rate andthe perceived media quality for

scalable stream. The properties of scalable video dictatesthat a successful reconstruction

of a layer depends on the availability of all previous layers. Therefore, rate-optimization

for layered video is essentially maximization of the numberof consecutive layers received

by each peer in the network.
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While the adaptation techniques adapt streams to a given rate, the rate adaptation algo-

rithms determine the rate that maximizes the overall quality of the video streams received

by all peers in the network.

B.2 Video Properties

The goal of the optimization algorithm is to globally optimize the video streaming rate and

improve perceived video quality. In this regard, global rate optimization is dependent on

the video technology.

Continuous Stream Video

The goal of the optimization algorithm is to reduce distortion to improve perceived video

quality. Video distortion is defined as the loss in quality ofthe video upon decoding on the

receiver side. It is composed of two components:

Ddec= Denc+Dloss (2)

whereDenc denotes the distortion introduced by quantization at the encoder, andDloss

represents the additional distortion caused by packet loss[18]. Typically, the distortion

characteristics of the encoded video stream can be fit into a parametric model [18] as a

function of ratex:

Denc(x) =
θs

x− xs
0
+ D0 (3)

The parameters (θs, xs
0, D0) depend on the coding scheme and the content of the video.

They can also be estimated from trial encodings [18]. The distortion introduced by packet

loss due to transmission errors and network congestion can be derived from [19]:

Dloss= ζPloss (4)
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where the sensitivity factorζ reflects the impact of packet lossPloss and depends on both

the video content and its encoding structure. For simplicity, throughout the rest of the

thesis, it is assumed that packet losses due to transmissionerrors are addressed at the lower

layers in the network stack (e.g., retransmission at the MAClayer or channel coding at

the PHY layer). Hence, this thesis only focuses on the application-layer distortion due to

encoding loss as mentioned in Eq. 3. The overall video quality can be evaluated by using

thePeak Signal-to-Noise Ratio (PSNR)metric. ThePSNRis defined as:

PSNR= 10log10(2552/Ddec) = 10log10(2552/Denc) (5)

where the term 255 is an encoder constant related to 8-bit pixel representation of color.

Given the inverse relation between received rate and distortion, resource allocation of video

streams in P2P networks involves minimizing the overall distortion (i.e., maximizing the

allocated rate).

Scalable Stream Video

In scalable stream, the goal is to maximize the number of layers received. The basic

network model described in Sec. A.1 is extended for scalablestream. Define a set of layers

L = {l i | i = 1,2, . . .,L}. The rate assigned to a particular layerl asxl . The set of layers in

flow f is defined asL( f ). Therefore, each flowf has a ratexf :

xf = ∑
l ∈L( f )

xl (6)

The set of layers received by a peerh from all of its parents is defined as:

L(h) = ∪ f ∈Fi (h)L( f ) (7)
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Consider peersh j and hk such thathi
f jk
→ h j . Defineλ to be a binary variable with the

following properties:

λl
jk =











1 if layer l is present inf

0 otherwise
(8)

The objective function1 is adopted from the definition in Eq. 1 and is given as:

max. ∑
h∈H

xh (9)

subject to ∑
fkm∈Fo(hk)

∑
l ∈L( fkm)

λl
km xl ≤ zhk (10)

∑
l ∈L

∑
f jk∈Fi (hk)

λl
jk ≤ 1 (11)

∑
l ∈L

∑
f jk∈Fi (hk)

[

λl+1
jk − λl

jk

]

≤ 0 (12)

∑
l ∈L

[

∑
f jk∈Fi (hk)

λl
jk − ∑

fkm∈Fo(hk)

λl
km

]

≥ 0 (13)

where Eq. 9 is a non-linear function of the total allocated rate for all the peers in the

network. The ratexl for each layer is derived from the setL based on a constant rate that

can be generated empirically. Eq. 10 and Eq. 11 are associated with network constraint.

Eq. 10 states the capacity constraint for each peer. The duplicity constraint in Eq. 11 states

that a peer should not receive same layer from multiple parents. Implementing Eq. 11 is

not mandatory, however, algorithms that satisfy this constraint generally provides better

optimization results because it reduces bandwidth waste. Eq. 12 and Eq. 13 are related

to scalable video constraints. The continuity constraint in Eq. 12 states that the layers

received by a peer from all of its parents inL(h) are consecutive. For example, if a peer

has layer 3, the peer must have layer 1 and layer 2. The relay constraint in Eq. 13 states that

1For simplicity purposes, assume that the objective function excludes the rate maximization for root peers
that act as servers.
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a peer cannot receive a particular layer if none of its parents have that layer. The notations

used for the extended network model and layered video properties are collected in Tab. 2.

Notation Definition

l ∈L Layer l in scalable video stream

L ( f ) Number of layers in flowf

L (h) Number of layers received by peerh

xl Rate required to stream layerl

λl
i j Binary variable indicating the presence/absence of layer

l between the flow from peerhi to peerh j

Table 2: Notations used in the extended network model for scalable video stream

C Congestion-Control Optimization

TCP is the most widely deployed transport protocol in the Internet. TCP provides end-

to-end QoS support for delay insensitive bulk-data transfers. Multimedia-streaming appli-

cations are better served by slowly varying congestion-control mechanism that produces

smoother bandwidth usage profile compared to TCP. This has lead to the emergence of

equation-based congestion-control protocols, such as TFRC [4], XCP [20]. TFRC [21]

(TCP Friendly Rate Control) is the most widely used TCP-friendly congestion control

protocol. In TFRC, the sending rate is adjusted as a functionof measured packet loss,

instead of reducing it by half as in the case of TCP. RAP (Rate Adaptive Protocol) [22] is

another TCP-friendly rate-control protocol that uses the AIMD-based algorithm to achieve

inter-protocol fairness. LDA (Loss-Delay Based Adjustment) [23] is a RTP-based [24]

(Real Time Protocol) rate-control protocol that essentially uses a AIMD-type congestion-

control scheme and relies on RTCP (Real-time Control Protocol) feedback information.

TCP-MR (TCP Minimum Rate) [25] is a variant of TCP that maintains minimum rate to

ensure QoS for real-time multimedia data. Congestion-aware rate-control by adjusting the
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encoding rate of the video is addressed in [26].

D Continuous-Stream Optimization

Continuous-stream optimization is based on theNetwork Utility Maximization(NUM)

framework. The core idea of NUM is to decompose a centralizedoptimization problem

(e.g., optimizing global utility of all peers) into sub-problems that are optimized locally

(by each peer) in a distributed fashion. In the context of video streaming, the basic form

of NUM attempts to maximize the sum of source utilities that are function of rates, under

linear flow constraints.

D.1 Network-Utility Maximization

Let xf be the rate assigned to a flowf in the network. Each flow is assigned a utility

function U f that describes the utility valueU f (xf ) of the streaming ratexf for a given

application. LetF be the set of flows. The flows pass through a set of linksn∈N that are

capacity constrained byzn. Therefore, the optimization problem maximizes the sum of the

utilities of all flows, while satisfying the capacity constraints on each link in the network:

max. ∑
f ∈F

U f (xf ) (14)

subject to ∑
f ∈n

xf ≤ zn, ∀n∈N (15)

over xf ≥ 0, ∀ f ∈F (16)

Given the role of the utility function as a metric that quantifies the efficiency of the rate

allocation algorithm, the following question naturally arise: how to pick utility function?

In general, there are two types of utility functions: user-side utility and server-side

utility. Utility on the user-side depends on user priorities. Typically, this means that the

user-side QoS are direct functions of the received rate (as shown in Eq. 14). The user-side

QoS can also be a function of delay, reliability, jitter, etc. The server-side utility primarily
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addresses network-wide cost minimization for the operator. Typically, this involves setting

utility as a function of congestion, load-balancing, energy-efficiency, etc. Overall, the

goal of the utility function is to maximize the rate at a minimum cost, while maintaining

fairness among users. The utility functions are assumed to be a smooth, concave and twice

differentiable function of the data rate.

D.2 Optimization Algorithm

Since the utility function is continuous and twice differentiable, there exist a rate vector

consisting of all flows that ensure global minimum distortion in Eq. 14. This technique is

calleddecomposition-based optimizationor convex optimization.

The basic idea of decomposition is to divide the originalprimal probleminto smaller

sub-problems, which are then co-ordinated by amaster problem. Decomposition tech-

niques can be classified intoprimal-decompositionanddual-decomposition. Primal de-

composition decomposes the original problem, while the dual version decomposes the La-

grangian dual of the problem. In primal decomposition, the master problem directly gives

each sub-problem a certain amount of resources it can use. Therefore, the role of the mas-

ter problem is to optimize resource allocation to sub-problems. Under dual decomposition,

the master problem sets the price for resource usage by each sub-problem. Depending on

this price, the sub-problems decide the amount of resourcesto use. Therefore, the role

of the master problem is to use the best pricing strategy. Theheterogeneity associated

with the constraint in Eq. 15 means that a dual decompositionis the most suitable way to

achieve rate optimization in P2P networks. The dual decomposition with the Lagrangian

duality [27] property, relaxes the primal problem by transferring the constraints to the ob-

jective function in the form of weighted sums.

In this thesis, an optimization algorithm is proposed underthe NUM framework. The

solution is based on dual decomposition. The proposed utility function simultaneously

incorporates the capacity and the relay constraints to minimize rate distortion.
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D.3 Related Work

Many of the rate optimization works are inspired by the seminal work by Kelly et al. [28,

29], which initiated a new approach of optimization-based modeling and decomposition-

based solution to rate-optimization. As previously mentioned, this is called theNetwork

Utility Maximization (NUM)framework. In NUM, peers in a distributed network collec-

tively decide how much bandwidth each peer should receive. Each peer uses autility as

a function of its receiving rate. The goal is to maximize the aggregate utility of all peers,

subject to various network constraints.

Low et al. [30] extended this pricing strategy to a distributed algorithm. This price-

based approach has also been applied to multi-rate multicast by Kar et al. [31] by using

sub-gradient projections and proximal approximation techniques [32]. Other works in-

clude multi-path unicast [33] and streaming [34], multicast over wireless network [35].

A comprehensive review can be found in [36]. Cui, et al. [37] applied this framework to

overlay multicast, upon which this work is extended.

Recently, this framework has been applied to multicast treeconstruction in P2P sys-

tems [9]. A long line of works focus on different routing structures including single

tree [7], multiple trees [38], and mesh [8] topology. This work deliberately avoids the

routing functionality, but focuses on the optimized rate-allocation within any given routing

structure. As such, this solution can work with any tree or mesh construction solutions.

The rate distortion function used for this thesis is first proposed in [18] using a para-

metric model. There also exists many analytic models [39] todescribe rate distortion.

Finally, Hsu et al. [40] provides a comprehensive review on this subject. There have been

works on extending this framework under various networkingscenarios. These works

target to achieve optimized rate allocation by addressing the missing QoS provisioning

mechanism of the underlying network. The works in [26,41] address network congestion,

while [42, 43] address the fairness and scheduling respectively. Finally [9, 34] target rate

allocation by optimized routing.
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E Scalable-Stream Optimization

Scalable videos are not amenable to the NUM framework due to the non-concave, discon-

tinuous nature of its utility function. Any solution claiming global optimality is likely to

be intractable in the context of large distributed network.Existing solutions use heuristic-

based algorithm that locally optimizes a set of network or video related parameters. The

optimization problem gets even more complicated in the presence of mesh network be-

cause peers can receive different layers from different peers. Therefore, unlike continuous

stream video, receiving maximum rate does not alway translate into maximum effective

layers received if the layers can not be decoded in consecutive order.

Example 1. Fig. 3a illustrates the layer allocation problem in a P2P mesh. Assume that

peer m and n holds layer1 and layer1,2 respectively. Furthermore, delivering each layer

requires unit rate. Peer m and n has a capacity of2 and1. In this example, peer z will act

as a relay peer having capacity3. A relay peer relays data received from its parent peer

to its child peer. The goal is to distribute these layers fromthe server peers{m,n} to the

client peers{z,x,y} so that the number of consecutive layers received by the clients are

maximized. In this problem, peer m has layer1 with 2 unit capacity and peer n has2 layers
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(b) Optimal layer allocation

Figure 3: P2P mesh example

but 1 unit capacity. In addition, peer z can relay received layer with up to3 unit capacity.

Fig. 3b shows the optimal layer allocation solution. In thiscase, peer m sends layer1 to
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both child x and z. Since z already has layer1 from m, it receives layer2 from peer z. Since

peer x has already received layer1 from peer m, it now receives layer2 from peer z. Since

z still has2 unit uplink capacity left, z allocates2 layer to peer y. This example illustrates

the fact that unlike continuous video stream, the optimization for scalable video stream is

non-convex and non-differentiable.

McCanne, et al. [16] first proposed a Receiver-driven Layered Multicast (RLM) ap-

proach to address network heterogeneity. In RLM, layers aremapped to various multicast

groups and the peers perform rate-adaptation by subscribing to these groups. Scalable

stream has been proposed to address receiver heterogeneity[44] in the context of P2P

streaming. Optimization of scalable stream has been provento be NP-hard [44]. Research

work on layered video optimization mainly proposes heuristics-based solutions and can

largely be classified into three broad categories:overlay construction, utility maximization,

andlayer scheduling. Existing works based on these three broad categories are discussed

below.

E.1 Overlay-Based Optimization

Proper overlay construction is indispensable in achievinglayer optimization. A good over-

lay construction methodology is critical in order to send and receive layers from its neigh-

boring peers. Approach to QoS-aware overlay construction can be divided into two mesh-

based [7, 45] and tree-based [46, 47] topology. In both cases, newly joining peers first

contact a predefined rendezvous point and successively probe existing peers to determine

suitable joining position in the network. A tree-based topology can be trivially extended

for multi-layered video streams. However, in the presence of peer churning, tree-based

topologies are vulnerable to single point-of-failure. Themulti-source approach of mesh-

based topologies addresses this concern. However, it also introduces additional overhead

that is required to properly receive multi-layered video streams.

Generally, a mesh-topology is constructed with gossip-based methodology due to its
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inherent robustness against failure. Recently it has been used in various P2P media stream-

ing systems such as PRO [48], PRM [49], and Chunkyspread [50]. In a gossip-based sys-

tem, there is no defined parent-child relation and peers forward data to other peers that

are expecting data packets. This approach is also called data-driven approach. Neighbor

relation is managed by membership management protocols such as SCAMP [51], where

peers use a random peer selection policy to determine its neighbors. However, lack of QoS

awareness makes such selection policy unsuitable for largeP2P network with hundreds of

peers.

The mesh topologies previously mentioned only address single layered video. The

joining criterion in these cases involve network conditions such as bandwidth availability

and delay. However, a multi-layered video stream also requires finding neighbors who can

supply sufficient number of layers. In this regard, Xiao, et al. [52] proposes a two-stage

overlay construction approach for mesh network. Here QoS awareness is used on top of

the gossip protocol to select neighbors. In the first stage ofthe join process, the joining

peer probes the networking condition of its prospective neighbors along with their ability

to supply a complete layers. The second stage ensures the improvement of the the QoS of

the joining peer as well as the QoS of the neighbors.

Another approach to overlay construction is to use multi-tired topology. In this ap-

proach, each tier optimizes a single layer. Optimization ofhigher layer requires optimiza-

tion of the overlay network associated with all the previouslayers and may result in unique

overlay network for each layer. Zhu, et al. [35] starts with amesh network and generates

Application Layer Multicast (ALM) tree for each layer. Initially, a parent determines it’s

ability to send a complete layer to its child. Once a layer is allocated to a child, a parent

peer updates the available bandwidth used to allocate the next layer. If a peer is unable

to allocate bandwidth for a layer, it is removed from the network of available peers used

to construct the overlay for a layer. Guo, et al [53] proposesthis multi-tiered approach

for mesh construction on LSONet, where a QoS-aware data-driven method is taken for

22



neighbor selection.

Gossip-based mesh-topology construction offers robustness and multi-tired approach

allows for the use of multi-layered video. However, layeredvideo optimization based on

successive multi-tired overlay construction does not always result in optimal allocation of

layers.

Example 2. Fig. 4 illustrates the problem with multi-tired mesh construction approach

for scalable video optimization. Assume that each layer requires unit rate. The initial

m

(1)

1

z

(4)

n

(1)

1,2

x y

(a) Multi-layer optimization
problem

m

(0)

1

z

(0)

n

(0)

1,2

x y

1 2

1,
2 1,2

0

(b) Optimal allocation and re-
maining capacity

m

(0)

1

z

(3)

n

(0)

1,2

x y

0 1

0 1

1

(c) Multi-tiered approach - layer
1 optimization

m

(0)

1

z

(3)

n

(0)

1,2

x y

(d) Resulting network for layer
2 optimization

Figure 4: Multi-tier approach to layered video optimization example

configuration is shown in Fig. 4a. The capacity for each peer is shown in parenthesis.

Fig. 4b shows the optimal allocation for this configuration.In this case, the servers m and

n sends layer1 and 2 to peer z respectively. m does not allocate layers to peer x. Upon

receiving layers, peer z sends both layers to peer x and y.
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In the case of multi-tiered approach, Fig. 4c shows the first step with the allocation of

layer 1. Fig. 4d shows the resulting network after subtracting the required rate to deliver

this layer. However, server n in this case does not have enough capacity to send layer2 to

peer z. Therefore, the network capacity is under-utilized and the layers are not optimally

allocated.

E.2 Utility-Based Optimization

Network-utility maximization (NUM) for convex function has been studied extensively.

Naturally, the non-convex nature of the layered video has led to the use of sigmoidal-like

approximation-based utility function such that the NUM framework can be applied. Under

this scenario, algorithms developed for optimization of convex functions can be used to

optimize scalable video streams. Fig. 5 shows a sigmoidal utility function used to approx-

imate stair-case utility function associated with scalable video. However, attempting to

Rate

U
til

ity

Sigmoidal Approximation
Stair-case Utility Function

Utility level i Utility level i+1

Figure 5: Sigmoidal utility function used to approximate stair-case utility function

smooth a stair-case utility function in order to take advantage of the properties of a convex

optimization does not always lead to optimality.

Example 3. Fig. 6 provides a simple example to illustrate one of the flawsof using sigmoidal-
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like function to optimize non-convex utility. In this example, parent m has layer1 with unit
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Figure 6: Sigmoidal Approximation for layered video optimization

capacity and allocation of a layer requires dedicating unitbandwidth as well. The utility-

maximization algorithm for m allocates equal rate of0.5 for both x and y. Since, it is a

discrete function and acceptable allocations are0 and 1 only, m does not allocate layer

to any of its children. Fig. 6a shows this resulting scenario. However, an optimal layer

allocation considers the discrete nature of the utility function and allocate layer1 to any

one of the children and0 layer to the other as shown in Fig. 6b.

Heuristic-based algorithms have been proposed that are based on this sigmoidal-like

utility function framework. Lee, et al. [54] proposed a distributed price-based heuristics

that can self-regulate user access to resources. Hande et al. [55] developed conditions

under which a distributed price-based algorithm can globally converge to an optimal rate

at the presence of non-convex utility function. However, none of these solution truly ad-

dresses the concerns related to scalable video optimizations in a mesh network. A sig-

moidal approximation assumes that the utility increases progressively with the allocated

rate. However, in a mesh topology, peers can subscribe to multiple parents and receive

different layers from different parent.

Example 4. Consider the example in Fig. 7. Here the sigmoidal approximation algorithm

allocates layer1 from both parents of x as shown in Fig. 7a. This allocation notonly results

in redundancy but it also produces sub-optimal allocation for x. The optimal solution -
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shown in Fig. 7b - for x will be to receive layer1 from m and layer2 from n.

m

(0)

1

x

n

(0)

1, 2

1 1

(a) Allocation with sigmoidal ap-
proximation

m

(0)

1

x

n

(0)

1, 2

1 2

(b) Optimal allocation

Figure 7: Sigmoidal Approximation for layered video optimization

E.3 Scheduling-Based Optimization

Most of the scheduling-based approaches [43, 44, 56] are heuristic-based algorithm that

mainly adheres to the following optimization procedure. The algorithm assumes the pres-

ence of a set of sender from which a peer will receive layers. The receiver uses optimization

algorithm to maximize the number of received layers based onthe available layer infor-

mation received from the sender. Cui, et al. [44] uses a greedy-based approach to receive

maximum number of layers, while PALS [56] determines the number of received layers

by maximizing the throughput as well as the number of received layers. PALS proposes a

diagonal buffer distribution and employs round-robin method to request data.

Recently, a chunk-based mesh-pull strategy has been proposed in LayerP2P [43,57] to

optimize multi-layered video in P2P mesh. Here each layer isbroken into smaller chunks,

which are then pulled from neighbors in a data-driven approach. LayerP2P in [43] uses a

3-stage strategy to address various QoS requirements such as minimizing the number of

useless packets and maximizing the number of layers delivered. Useless packets in this

case refers to packets belonging to layerl that cannot be decoded due to missing packets

from previous layers. Liu et al. [57] optimizes the number ofreceived layers by using an

incentive-based tit-for-tat data dissemination strategyto ensure fairness.
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F Message-Passing Based Optimization Framework

The heuristic-based algorithms discussed in Sec. E attemptto optimize the number of

layers received. However, there is generally no guarantee that such algorithm provides

optimal solutions, or even converges. The message-passingbased algorithm discussed

next, seeks to address this issue for non-convex constraint-based optimization problem.

F.1 Related Work

Recently, there has been an explosion of interest towardsmessage-passing algorithmto

solve problems that can be modeled under node-based graphical structures. They have

been independently discovered in a number of different fields. Introduced by Gallager [58]

in the context of low-density parity-check (LDPC) codes, message-based sum-product al-

gorithm was first invented fora posterioriprobability (APP) decoding. Tanner et al. [59]

first explicitly introduced graphs to describe LDPC codes, constraints and the optimality

of the sum-product and min-sum algorithms for decoding codes on a cycle-free graph.

Wiberg et al. [60] introduced states in tanner graphs. Eventually, the application of the

sum-product algorithm has expanded to a variety of fields: statistics, communications,

signal processing, probability theory, etc.

The seminal work of Ahlswede et al. [61] extended this into the field of computer

networks (initially defined by a point-to-point communication network where a number

of information sources are to be multicast to a certain sets of destinations) by introduc-

ing network coding and the idea of admissible coding rate region. Here the admissible

coding rate region is defined as a coding scheme satisfying the link capacity between two

communicating points in a network.
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F.2 Application to Distributed Systems

In the context of a graph consisting of nodes and edges, the message-passing algorithm op-

erates by passing messages with neighbors along edges. Messages are updated iteratively

until convergence is achieved. Messages are only passed between nodes connected to each

other. Because of this localized nature, message-passing algorithms can be implemented

in a decentralized and asynchronous fashion.

Interest in message-passing algorithm has largely been triggered by the success of

turbo decoding[62]. It is routinely used in communication systems that employ error-

correcting codes. Turbo decoding aims to solve an NP-hard problem. Separately, inspired

by ideas from statistical physics, message-passing algorithm have been proposed for solv-

ing NP-hard combinatorial optimization problems such as graph coloring [63].

One may claim this to be another ad-hoc, heuristic-based approach. However, in the

instances noted above, it is the state-of-the-art method for optimization. Furthermore, it

provides a rich structure that can be used as an analytical tool. Recently, work has been

done to define message-passing framework for inelastic rateoptimization [64]. However,

no work has been done to apply message-passing algorithm forscalable video streaming

in the context of distributed systems, such as P2P networks.

F.3 New Application Framework for Scalable Stream

In this thesis, the admissible code region for a peer is defined as a code that satisfies the re-

quirements of network and layered video streams in the context of the P2P network. Based

on these admissible codes, the iterative sum-product update algorithm is then applied to

determine layer subscription from neighboring peers.

Formally, the thesis contribution is two fold. First, a flexible optimization approach is

presented that codifies the optimization requirements. Second, the constraints to determine

admissible codes and a sum-product update algorithm that iteratively applies incoming

messages on the codes to generate updated outgoing messagesare presented. On sender
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side, the algorithm works by iteratively updating probability for allocating a layer to a

child. On the receiver side, the algorithm works by determining probability of receiving

a layer from a parent. Convergence is reached when both sender and receiver agrees on a

probability value.

Intuitively, the algorithm can be interpreted as a type of positive feedback loop, where

peers send and receive likelihood probability values in order to establish active parent-child

relation. A sending peer increases the outgoing probability along the path it receives the

maximum incoming probability. Similarly, the receiver also performs the same action on

its outgoing probability messages. A probability value of 1, passed along a parent-child

connection implies that the child will receive a layer. However, this value is contingent

upon the fact that the parent must also receive this layer from its own set of parents.
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CHAPTER III

CONGESTION CONTROL PROTOCOL

The TCP-friendly congestion-control protocols discussedin Sec. II.C uses regular feed-

back for each packet sent and depends on the round-trip time (RTT) formulated in [65]

to adjust the sending rate. In this thesis, a congestion-aware MEdia-friendly real-Time

Streaming protocol (METS) is presented. METS does not require sending explicit ACK

for each transmitted packet. Instead, METS periodically exchanges state information be-

tween the sender and the receiver and updates the RTT value. METS addresses the issues

of network congestion and packet-loss based on the measuredinter-packet gap(IPG) infor-

mation on the sender and the receiver side. In particular, itis assumed that the packet-size

and the video encoding rate are fixed.

A Protocol Overview

Streaming in METS follows a sliding-window based technique, where a window consists

of k slots. Each slot corresponds to a packet. The sender maintains the sliding-window

buffer of k slots that are determined by the delay-bandwidth-product (DBP). The DBP

refers to the product of the link-capacity (in bit/second) and the end-to-end delay between

two communicating nodes in a network. Packets are transmitted periodically from the

sender-side with sending IPG defined asδs. Similarly, the receiving IPG is defined asδr .

The initial sending IPG value is set based on the fixed video generation rate. For a given

packet of sizeβps and encoding rateβe, the video IPGδv is defined asβ
ps

βe . Therefore, the

initial sending rate is:

βs =
1
δv βps (17)
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On the sender side, the window buffer is refreshed periodically after each IPG time and

a new packet enters the buffer if available. Each new packet is given a sequence number

n and a initial time-to-live (TTL) value (τn
ttl ) equal to the window sizek. After a buffer-

refresh event, this TTL value is decreased by 1 for all packets currently in the buffer. Once

the TTL value reaches 0, a packet is discarded. As soon as a packet enters the buffer, it is

scheduled for transmission. Tab. 3 at the end of this chaptercontains the list of notations

used in this chapter.

sender receiver

τtx

τrx

τ
d

rs

update request
τtx

τrx

τ
d

rs

update response

update request

Figure 8: Periodical RTT update

A.1 Buffer Update

The receiver periodically initiates an update request message and measures the round-trip

time (RTT). The sender measures its own RTT time when the receiver sends the next

update request. Fig. 8 shows the RTT update process. Hereτdrs on the sender side is the

elapsed time between receiving an update request and sending an update response. On the

receiver side, this corresponds to the elapsed time betweenreceiving an update response

and sending the next update request. Theτdrs value in this case is embedded in the update
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message. The RTT time can now be calculated as:

τrtt = τrx − τtx − τdrs (18)

Based on this RTT value, the sender can now calculate the DBP and determine the window

sizek:

ks =
τrtt ·βe

βps (19)

The receiver-side buffer window is determined based on the video IPG and initial start-up

delay,τst:

kr =
τst

δv (20)

A.2 Sender Rate-Adaptation

The basic premise of the protocol is that the sender assumes each packet transmission event

to be a success unless it receives an update request from the receiver. An update request

can be of two types:

• Rate-adjustment Request: The receiver in this case requests the sender to increase

the sending IPG (i.e., decrease the sending rate) to addressthe existing network

congestion.

• Retransmission Request: The receiver requests the sender to re-transmit a particu-

lar packet that is assumed to be lost.

Definition 1. Upon a successful transmission, the sender increases the sending rate by

decreasing the IPG value for the next transmission event. For simplicity, only a linear

increase/decrease of the sending IPG value is considered:

δs
n+1 = (1± α)δs

n (21)

The value ofα is usually set between0.1 and0.3 [21]. Upon receiving a rate-adjust request
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from the receiver, sender records the current time-windowκ and periodically increases the

IPG value during each transmission event until the following inequality is satisfied:

k e−(n−κ) ≥ εs (22)

The IPG-value increase is based on Eq. 21. Once Eq. 22 is satisfied and there are no

pending rate-adjustment request, the sender resumes decreasing the IPG value.

A.3 Receiver Rate-Adaptation

The receiver measures the IPG of the arriving packets and also stores the maximum IPG

value among the lastk packets. Entropy of the IPG is used to calculate the effective IPG

value on the receiver side.

Entropy

Entropy captures the uncertainties in a random variable. Shannon’s entropy can be used to

capture the randomness in the IPG data measured by the receiver. A high entropy value

indicates the presence of congestion. First, the probability distribution function (PDF) of

the IPG values of the lastk packets is calculated. Letpi be the probability of having IPG

valuei during the lastk window-slots. Shannon’s entropy can be calculated as:

HS = ∑
i

pi log pi (23)

However, Shanon’s entropy increases in the presence of small spikes and does not fully

capture the dominant PDF values in the IPG data. Reneyi’s entropy [66] is used to capture

the dominant IPG values:

HR =
1

1−q
log2∑

i

pq
i (24)
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Renyi’s entropy masks the low probability values by raisingthem to high powers (q).

Thus it depresses small PDFs but raises the higher PDF values. A detailed discussed on

clustering of IPG data based on entropy can be found in [67].

Definition 2. Defineδmax as the maximum IPG recorded for the last k packets. Therefore,

the average IPG time can be calculated as:

δav
n+1 = δmax·HR (25)

A.4 Receiver Feedback

The receiver feedback function involves sending requests to the sender regarding re-transmission

of lost packets or rate adjustment. This involves answeringthe following questions:

• If a packet is missing, how long should the receiver wait before sending a re-transmission

request?

• If the receiver receives data at a faster rate than it can process or that the packets are

suddenly arriving at higher IPG rate than the sender is sending at (i.e., presence of

congestion), when should the receiver send a rate-adjustment request?

Rate-adjustment Request

The receiver keeps track of the network-congestion by calculating the average IPG value

based on Eq. 25. Based on this information, the sender decreases the sending rate (i.e.,

increases the IPG value) when the difference between the average receiving IPG and the

video IPG goes above a certain threshold.

Retransmission Request

If a packet does not arrive within its expected time-interval, it is considered lost. The

receiver must send a retransmission request for the lost packet before the TTL value falls
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below a certain threshold. The threshold exist to ensure that a retransmission request for

a packet reaches the sender before it is being discarded and that the packet reaches the

receiver before the playback deadline.

Along with the fixed buffer of sizekr associated with fixed delay, the receiver also

maintains a dynamic buffer that is equal to the size of the sender-side buffer. The buffer-

size information can be passed to the receiver by embedding it in the update-response

message. Therefore, for the dynamic buffer window-slots, TTL value is given based on

the sender buffer-sizeks. After a refresh eventn, a new packet with sequence numbern is

expected to arrive within the next IPG interval in the dynamic buffer. As with the sender-

side buffer, the TTL value of the window-slot is decreased by1. Once it reaches 0, it is

passed to the read-only fixed-size (kr ) buffer for playback.

Definition 3. For a missing packet n in the dynamic buffer, the client sendsa re-transmission

request if the following inequality fails:

τn
ttl ≥ ks−

τrtt

δv (26)

whereτrtt is the round-trip time based on the latest update response received from the

sender.

Internet

sender receiver

100 Mbps link

Figure 9: Experimental topology

B Experiment

The general network topology for this experiment is depicted in Fig. 9, where a single

sender-receiver pair connects to the network through high-speed link. For this experiment,
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Figure 10: Average inter-packet gap of the received packets

the sender was located at a server at the ECE Dept. of University of Toronto and the re-

ceiver was located the Vanets server at the Vanderbilt University. The video is encoded

at 87.5 KB/s. The packet size is set to 2 KB. Therefore, the sending IPG value is approx-

imately 23.5 ms. The start-up delay is assumed to be 300 ms on the receiver side. The

experiment is run for approximately 11,000 packets (i.e., 258 seconds).

B.1 Results

Fig. 10 shows the average IPG value on the receiver side. The spikes in this figure imply

the presence of congestion in the network. This is confirmed in Fig. 11, based on the

corresponding retransmission requests by the receiver. Fig. 11 also shows the results of

this request from the receiver. A value of 1 corresponds to a successful retransmission,

while a 2 corresponds to a failed retransmission because thesender has already discarded

the packet. The IPG values in Fig. 10 also shows that the protocol quickly adjusts IPG

value to account for the network congestion.

B.2 Message Overhead

The message overhead required to implement this algorithm is minimal outside of the

update request and update response. The sender embeds the buffer size in the update
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Figure 11: Successful and failed re-transmission by the sender

Notation Definition

δv, δs, δr IPG of video data generation, data transmission by the sender,

and reception by the receiver

δav, δmax Average and maximum IPG

βe, βps, β Video encoding rate, packet size, and data sending rate

τn
ttl Time-to-live value for packet numbern

τrtt Round-trip time

τtx, τrx Sending and receiving time-stamp on a packet

τst Start-up delay

τdrs Elapsed time between receiving a request and sending response

ks, kr Sender and receiver-size window size

HS, HR Shanon and Renyi’s entropy

pi Probability of having IPG valuei

Table 3: Notations used in METS

response and the receiver embeds the average IPG value in update request message. The

only external message required is the re-transmission request by the receiver.
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CHAPTER IV

CONTINUOUS STREAM OPTIMIZATION

In this chapter, rate-adaptation for continuous stream in aP2P network is presented. The

goal is to minimize rate-distortion for video streams underthe NUM framework. The

solution takes into account peer relaying - a constraint unique in P2P distribution scenario

in which a peer is both a receiver and a sender. While helping with content distribution,

peer relaying constraint also ensures that the receiving rate of a child peer does not exceed

the receiving rate of its parent. This is because during the rate-adaptation, once the video

quality is lost, cannot be recovered. As such, the rate change occurred on one peer not

only changes the video quality for itself, but also for all ofits child peers. Therefore,

price-based resource allocation that considers peer relaying, ensures that peers with more

children receives higher bandwidth compared to peers with fewer children.

Simulation shows that simultaneously incorporating both network and relay constraints

significantly reduces the aggregate rate distortion for allpeers. For this simulation, mesh

and tree-based topologies are considered [68, 69]. The optimization solution presented in

this thesis is calleddouble-pricingsolution.

A Double Pricing Solution

As previously mentioned, the double-pricing solution simultaneously takes into account

the capacity constraintand therelay constraintassociated with the peers in a network.

The capacity constraint states that for each linkn, the total volume of its flow setF (n)

cannot exceed its capacityzn. Formally, letA be anN×F matrix, such thatAn f =1 if flow

f goes through the linkn (i.e., f ∈F(n)). Otherwise,An f =0.

A·x ≤z (27)
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The relay constraintstates that the receiving rate of a child peer cannot exceed the

receiving rate of its parent. This is illustrated with the overlay tree shown in Fig. 12a.

In this picture, according to the relay constraint, the video quality received byh3 andh4

cannot exceed the quality received by their parenth1. Therefore, the corresponding rates

x3 andx4 cannot exceed the ratex1. In case of P2P mesh shown in Fig. 12b, consider the

peerh4. It receives data from both peerh1 andh2. Consequently, the outgoing flow rate of

h4 can not exceed the total incoming flow rate. Formally, the relay constraint in this case

states thatx5−x4−x6≤ 0.

h0

h1 h2

h3 h4

h5

x1

x2

x3 x4

x5

(a) P2P tree

h0

h1 h2

h3 h4

h5

x1

x2

x3 x4

x5

x6

x7

(b) P2P mesh

Figure 12: P2P overlay network

Since any peer can be the parent of any other peer, the total number of such parent-child

pairs1 is H2. The relay constraint is formulated in aH2×F matrix B as follows:

B((hk−1)H+hi)· f =



























−1 if hk = h( f ) andhk→hi

1 if hi = h( f ) andhk→hi

0 otherwise

(28)

Since,B is a sparse matrix, where the((hk−1)H +hi)th row will only be active if there is

1There are in fact several special cases which forbid parent-child pairs. For example, the serverh0 cannot
be the child of any peer, also a peer cannot be the parent of itself. These cases are not included in the
formulation for simplicity purposes. Nevertheless, the actual number of parent-child pair number remains in
the order ofH2.
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a flow fromhk to hi . The relay constraint can now be formalized as follows:

B·x ≤ 0 (29)

Along with the network notations defined in Tab. 1, additional notations used in this chapter

are collected in Tab. 4.

A.1 Utility Function

The overall objective is to minimize the aggregate distortion of the streaming video re-

ceived by all peers. Given the rate distortion definition in Eq. 3, the rate allocation for a

tree-based network can be formulated as the following non-linear optimization problem2:

min. ∑
f ∈F

D f (xf ) (30)

subject to (27) and (29) (31)

over x∈ I f (32)

where Eq. 30 is a convex function of the allocated rate. The rate of each flowxf is adapted

within the rangeI f = [mf , M f ]. For a mesh-based network, the goal of optimizing the rate

of all the incoming flows of a peer under the same constraints as in Eq. 31 and Eq. 32 can

be stated as:

min. ∑
h∈H

∑
f∈Fi (h)

D f (xf ) (33)

By non-linear optimization theory, there exists a minimizing value for the rate vectorx for

the above optimization problem. Consider the Lagrangian form of this problem in Eq. 30

for a tree-based network (the Lagrangian for the mesh-basedproblem in Eq. 33 trivially

2Note that the objective function should exclude the rate distortion function for serverh0. For simplicity
purpose, this detail is ignored in the rest of the chapter. This can be easily achieved by assigning value 0 to the
rate distortion function ofh0.
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follows the same steps):

L(x, µα, µβ) (34)

= ∑
f ∈F (h)

D f (xf )+µα(A·x−z)+µβ(B·x) (35)

= ∑
f ∈F

D f (xf )+ ∑
f ∈F

xf ∑
n∈N

µα
n An f + ∑

f ∈F

xf

H2

∑
k=1

µβ
k Bk f− ∑

n∈F

µα
n zn

whereµα={µα
n , n∈N } andµβ={µβ

k , k=1,2, . . . ,H2} are vectors of Lagrangian multi-

pliers. Let us define two new vectorsλα={λα
f , f ∈F } andλβ={λβ

f , f ∈F } as follows:

λα
f = ∑

n∈N

µα
nAn f = ∑

n∈N ( f )

µα
n (36)

λβ
f =

H2

∑
k=1

µβ
kBk f = ∑

h→h( f )

µβ
(h−1)H+h( f ) − ∑

h( f )→h

µβ
(h( f )−1)H+h (37)

Therefore, Eq. 34 becomes

L(x, µα, µβ)= ∑
f ∈F

D f (xf )+ ∑
f ∈F

xf (λα
f +λβ

f )− ∑
n∈N

µα
nzn

whereµα
n is the link price. Consequently,λα

f is the sum of prices of all links inf ’s path

(i.e., thenetwork pricementioned in Eq. 27 thatf has to pay). In the star topology,f only

has to pay the price for the uplink bandwidth of its sending peer. µβ
(hi−1)H+hk

is therelay

price that peerhk has to pay to its parenthi for relaying the data.λβ
f can be interpreted as

relay price for f , which is the difference between the aggregated relay priceof parent of

h( f ) and the relay benefithf receives from all of its children.

Solving Eq. 30 involves two sets of prices, each corresponding to one of the two con-

straints defined in Eq. 27 and Eq. 29. Therefore, it is called the double-pricing solution, in

contrast to many existing solutions in the literatures [28–30] that only considers the capac-

ity constraint of Eq. 27 by treating all flows as independent from each other. Comparison
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Notation Definition

A = (An f)N×F Link capacity constraint matrix

B = (Bk f)F×F Relay constraint matrix

D f (xf ) Rate distortion function for flowf

µα
n ∈µα Link price for link n

µβ
f ∈µβ Relay price for flowf

λα
f ∈λα Sum of link prices inN ( f )

λβ
f ∈λβ Aggregate relay price

xf ∈x Flow rate collected in flow vectorx

xs
0, θs Encoding parameters specific to a video sequence

Table 4: Notations used in continuous stream optimization algorithm

of these two solutions with respect to the tree and mesh-based topology will be the main

theme of the simulation study in this chapter.

A.2 Distributed Algorithm

The problem in Eq. 34 can be solved in a distributed fashion, following the gradient pro-

jection method adopted by many existing works. The dual of problem can be written as:

min
x

L(x, µα, µβ) = min
x ∑

f∈F

(Φ(xf ))− ∑
n∈N

µα
l zn

whereΦ(xf )) = D f (xf )+xf (λα
f + λβ

f ) is thetotal costfor flow f (i.e., the rate distortion

it receives and the aggregated cost), which is the product ofthe flow rate and the combined

network and relay prices. By the separation of Lagrangian form, minimizingL(x, µα, µβ)

can be decomposed into separately minimizingΦ(xf ) for each flowf . SinceD f is strictly

convex and twice continuously differentiable, a unique minimizer of Φ(xf ) exists when

d
dxf

Φ(xf ) =
d

dxf
D f (xf ) + (λα

f +λβ
f ) = 0
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Thus, the optimal rate for a flowf can be calculated as:

xf (µ
α, µβ) = arg min

xf ∈ I f
Φ(xf ) =

[

D
′−1
f (λα

f + λβ
f )

]M f

mf

(38)

Combining Eq. 38 with the rate distortion function in Eq. 3 along with the network prices

λα
f and relay priceλβ

f , the optimal rate can then be calculated as follows:

xf (µ
α, µβ) =









xs
0 +

√

θs

λα
f + λβ

f









M f

mf

(39)

To this end, the distributed algorithm presented here proceeds in rounds denoted ast =

1,2, . . .. Each round involves two steps. The first step is the price update, where price

vectors are adjusted in opposition direction to the gradient ∇D(µα,µβ):

µα
n(t +1) =

[

µα
n(t)+ γ

(

∑
f∈Fo(n)

xf (t)−zn

)

]+

(40)

µβ
(h−1)H+h( f )(t +1) =

[

µβ
(h−1)H+h( f )(t)+ γ

(

xf (t)− ∑
f∈Fi(h)

xf (t)

)

]+

(41)

The second step is the rate update, where the rate of flowf is adjusted according to the

price change. The ratexf is calculated based on Eq. 39. This step requires the knowledge

of network priceλα
f and relay priceλβ

f , whose definitions can be found in Eq. 36 and Eq. 37

respectively.

Tree-based Implementation

The algorithm is a sender-driven implementation, startingwith the price update. As seen

in Eq. 40, to update the price of linkn, one needs to know about its old price, and the rate

of all flows going through it. Since this solution builds uponthe star-topology assumption,
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n must be a uplink of either the server or a peer, and all flows on this link must be gener-

ated from this peer as well. Obviously, the peer owningn is the best candidate to be the

bookkeeper of its priceµα
n .

The relay price given in Eq. 41 applies to the parent-child pair h→ h( f ), where flow

f directs from peerh to h( f ). To update it, one needs to know the old price, as well as peer

h( f )’s receiving ratexf and the receiving rate∑ f∈Fi (h) xf (t) of its parenth. Therefore, the

best candidate to calculate and maintain the relay price ish. It can easily measure the rates

of both flows since one of them entersh and the other exits from it.

To understand how to implement the rate update step for flowf , consider the parent-

child pair h → h( f ). As outlined in Eq. 39, calculatingxf requires the knowledge of

network priceλα
f and the relay priceλβ

f . Given the definition ofλα
f in Eq. 36 and the

star-topology assumption, it can be easily seen thatλα
f is the price of the uplink ofh, the

sender of flowf . Sinceh is also the bookkeeper of its own uplink price,λα
f will involve no

messaging overhead if the sender-based approach is used (i.e., leth be in charge of the rate

of flow f ). Based on Eq. 37,λβ
f is the difference between the relay price of parent-child

pair h → h( f ) and the sum of the relay prices of all parent-child pairs originating from

h( f ). Since the bookkeeper of a parent-child pair’s relay price is the parent, calculatingλβ
f

requires thath receives message fromh( f ) reporting all the relay prices managed byh( f ).

Calculatingxf requires additional video specific parameters (θs andxs
0). The server

can embed them into video packets at the beginning of the P2P streaming.

Mesh-based Implementation

The rate-allocation algorithm for mesh-based network follows the tree-based approach

with one exception: calculation of the relay price. The algorithm integrates the multi-path

scenario of [70] to adjust for relay price. Algorithm 1 presents the distributed algorithm

that each peer executes to update its rate.

For each flowf ∈ Fi(h), the link pricesµα
n for each linkn associated with the flow and
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Algorithm 1 Distributed Rate Allocation Algorithm

1: Each end hosth at timest = 1,2, . . .
2: Initialization
3: Fi ={ f | f ∈Fi(h)}
4: Ri = /0
5:

6: for each f ∈Fi do
7: for each n∈N ( f ) do

8: µα
n(t +1) ←

[

µα
n(t)+ γ

(

∑
f ∈Fo(n)

xf (t)−zn
)

]+

9: end for
10: λα

f (t)← ∑
n∈N ( f )

µα
n(t)

11: µβ
f (t +1)←

[

µβ
f (t)+ γ

(

xf (t)− ∑
f p∈Fi(h( f ′))

xf p(t)
)

]+

12: for each f ∈ Fo(h) do

13: µβ
f (t +1)←

[

µβ
f (t)+ γ

(

xf (t)− ∑
f i ∈Fi(h)

xf i (t)
)

]+

14: end for
15: λβ

f (t)←
[

µβ
f (t)− ∑

f i∈Fo(h)

µβ
f i (t)

]

16: end for
17: λα

f ′(t) = minf ∈Fi (h) λα
f (t)

18: λβ
f ′(t) = minf ∈Fi (h) λβ

f (t)

19: λ f ′(t)← λα
f ′(t)+λβ

f ′(t)

20: Source ratexh(t +1)←
[

D
′−1(λ f ′(t))

]M f

mf

21: for each f ∈ Fi(h) update flow ratedo

22: xf (t +1)←
[

xf (t) − γ
(

λα
f (t)+λβ

f (t)−λ f ′(t)
)]+

23: end for
24: for each f ′ ∈ Fi(hi) with minimum priceλ f ′ do

25: xf ′(t +1)←
[

xhi (t +1) − ∑
f∈F r f ′

xf (t +1)
]+

26: end for
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the relay priceµβ
f are calculated . After calculating the network priceλα

f and the net relay

price λβ
f for each flow f , a peer determines the minimum price among all the incoming

flows and uses this to calculate the incoming flow rate based onEq. 39. In the last two

steps of the algorithm, the rate of each flowf ∈Fi(hi) is adjusted based on this minimum

price. The flows with higher prices will have their rates reduced and the flows with the

minimum price will have their rates increased. The goal is tohave equal price among

all incoming flows for each receiver. This ensures that at optimality, the prices of each

incoming flow of the receiver is minimum and therefore, the flow rate is optimum [70].

The implementation of the optimization algorithm for mesh-based topology is receiver-

driven (i.e., receiver of a flow is the owner of that flow). Updating the link price ofn

requires the knowledge of old price and rate of all flows goingthrough the link. In the star-

topology, peer owningn maintains the link priceµα
n . Since the receiver is the owner of a

flow, a peer needs to receive message about the incoming rate from its parents to calculate

the relay priceµβ
f . To update the rate, one must calculateλα

f andλβ
f . The receiver of a

flow receivesµα
n from its parents and children and calculateλα

f . It also receivesµβ
f from its

children and calculateλβ
f for all of its incoming flows. Determining the optimum rate does

not require further message passing between a parent and a child.

A.3 Summary

In summary, the price update algorithms presented in this thesis require no messaging

overhead since the bookkeeper can collect all the necessaryinformation locally to compute

the update. The flow rate update process needs one message from the receiver of the

flow to its sender (i.e., from child peer to parent peer). Since such a message can be

blended into existing traffic between parent and children peers, such as heartbeat message

or acknowledgment message in transmission protocol (e.g.,TCP or RTCP), the messaging

overhead can be reduced significantly.
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B Simulation

This section presents the simulation results. First, the simulation setup is described. Re-

sults are presented for both single and double pricing solutions on three key aspects: con-

vergence speed, aggregate PSNR, and link capacity utilization.

B.1 Video Adaptation

Each relaying peer must be able to adapt the quality of the video to fit into the receiving

rates of its child peers. In this simulation, each peer performs transcoding by adjusting the

quantization value of the video. The transcoding techniquechooses the highest quantized

rate that is less than the receiving rate achieved by the rateallocation solution.

Definition 4. Let x′f be the optimal receiving rate for flow f calculated by the distributed

algorithm denoted as xq = {xq | xq < xq+1 ,1 ≤ q ≤ 51} [71] as the video encoding rate

with quantization value q. The actual relay rate will then be:

xf = {xq |xq≤ x′f < xq+1}

The open-source software x264 [71] is used to encode videos with different quantiza-

tion values. The benchmark test sequences used for quality comparison of the transcoding

simulation are the ITU-T test sequences [72]foreman, akiyo, hall,andmother-daughter,

each having 300 frames with CIF resolution. The PSNR-rates for these videos are given in

Fig. 13a.

B.2 Topology

A simple topology construction mechanism is used. However,the double-pricing algo-

rithm is topology-independent and works with any topology construction mechanism. A

real-time MSN video trace data [73] is used to construct the mesh. The traces provide
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Figure 13: ITU video sequences and peer churning in a P2P network

the join/leave time-stamp and the uplink bandwidth of each individual peers. The server

bandwidth is assigned to 2 Mbps. A new update round begins every 0.1 second (i.e., mem-

bers update their flow rate at every 0.1 second). For the sake of simplicity, multiple peers

joining the network at any instant are queued and added at thebeginning of each round.

Definition 5. Let capacity-coefficientbe the spare uplink capacity of a peer that can be

used to allocate a new child peer and are calculated by each peer h∈H as:

sh =

[

zh − ∑
f∈Fo(h)

xf

]xh

0
(42)

In the case of mesh topology, peers also calculate theirlink-ratio3 to decide if they should

seek multiple parents. Formally, this ratio is defined as:

rh =
xh

∑
f ∈Fo(h)

xf
(43)

A peer with rh < 1 implies that it dedicates more bandwidth to its children than it receives

and vice-versa.
3The server has a link-ratio of 0. It can be thought of as the seed in a torrent network
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Implementation

The following procedures summarize the overlay construction process for both mesh and

tree-based network:

• Link Update : At the end of each flow-rate update, a peer updates its link-ratio (for

mesh topology) and capacity coefficient. Peers then send this information to their

parents.

• ID Peer: If child peers exist, a parent peer decides the best candidate to be a parent

based on its own coefficient and the coefficients of its children. It then sends this

information to its own parents. This information eventually reaches the server.

• Join: A new peer sends a join request to the server. After receiving the prospective

parent id, the new peer joins the network.

• Request Parent: In the case of mesh topology, a peer withrh < 1 sends requests

for parents withrh > 1 (i.e., a peer that receives more than it gives). The server

then replies with an appropriate parent ID. The parent ID is generated such that it

does not create a cycle in the network. In the event a cycle exist, the requesting peer

repeats the process.

During the simulation, the maximum number of incoming/outgoing flow is set to 4.

However, the solution is independent of the number of flows a peer can have. During

the course of the simulation, the dynamic joining process may lead to different overlay

topology for the single pricing and double pricing solutions. In order to ensure fairness

and that both solutions use the same overlay configuration, the overlay used to simulate

the double-pricing solution is also used to simulate the single-price solution. Therefore, in

the case of single-pricing solution, although the overlay is constructed gradually, the ID of

the parent for a new peer joining the network is predetermined.

49



B.3 Single Pricing vs. Double Pricing Example

As mentioned at the end of Sec. A, a double-pricing solution involves both network and

relay prices. Alternately, this problem can also be addressed by a single-pricing solution,

which only considers the network constraint in Eq. 27. It first optimizes the rate allocation

of all peers by treating them as independent flows competing for bandwidth and then im-

poses the relay constraint of Eq. 29 if the receiving rate of child peers exceed the receiving

rate of its parent peer.

Example 5. Consider the example in Fig. 12a. The uplink bandwidth of thehosts h1

through h5 is set to2.00, 1.72, 0.86, 1.60, and1.62 Mbps. Bandwidth is assigned based

on the rate-distortion data points of theforemanvideo in the transcoding sequence. After

running both double-pricing and single-pricing simulation, the final aggregate rates are

3.54 Mbps and3.26 Mbps respectively.

The reason double-pricing outperforms the single-pricingsolution because it assigns

more bandwidth to peerh1 thanh2. This is becauseh1 has two children, which raises its

relay price, while the network price for bothh1 andh2 stays the same. In single-pricing

solution, the relay price is ignored. Therefore, the algorithm assigns the same rate for both

h1 andh2 and causesh1’s children to suffer from low source rate. Furthermore,h1’s uplink

bandwidth remains greatly under-utilized.

B.4 Results

This section compares results of single and double-pricingsolutions and also provides

analytical insight into convergence.

Convergence

The rate-convergence setup consists of a P2P network of 30 peers. The server peer has

a maximum uplink capacity of 2 Mbps. Each peer joins the network after every 200000
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iterations. For the single-pricing solution, data constraint is applied after every 100000

iterations. Following trial and error, the initial value ofµα andµβ is set to 0.5. The initial

rate is set to 1 Mbps.
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Figure 14: Rate convergence as peers join the multicast tree

Fig. 14 shows the rate convergence of the standard ITU video sequences used for

benchmarking. At the beginning, it takes more iterations for the rates to converge. This is

due to the fact that initially the price value ofλα andλβ are assigned to 0. However, as

more peers join the network, the price value stabilizes to the optimum point and it takes

less number of iterations for the price to move from old optimum point to a new optimum

point.

The step size also influences the number of iterations required for rate convergence.

Fig. 15 illustrates this width with different step sizes. Anincrease in step size from 0.0003

to 0.03 dramatically improves the number of iterations required for converge. Fig. 16

shows this improvement in terms of percent change during each iteration. After a few

thousand iterations, the rate of change becomes insignificant. Fig. 17 shows the effect of

changing the step size on average rate and PSNR value. The difference is negligible for
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step size 0.03 with respect to the step size 0.0003. The average rate change is less than 4%

and the average PSNR change is within 1% of the optimal value when used with an step

size of 0.03. In Fig. 18 shows the effect of the number of iterations used. It compares the

deviation in average rate and PSNR for step size 0.03 with step size 0.0003. Even though

it takes almost 100000 number of iterations to reach an optimal rate, 99% of the optimal

rate is reached within 1000 iterations. Furthermore, for both solutions, the average rate

value reaches 95% of the the optimal rate within 700 iterations. For the same number of

iterations, the PSNR value reaches 99% of the optimal PSNR.
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Figure 19: Double pricing solution vs. single pricing solution for transcoded video

Tree-based P2P

Fig. 19 shows the average PSNR value for the transcoded videos for a network of up to

100 peers. The average PSNR gain for the double-pricing solution over all the transcoded

videos is 2.03 dB. It also maximizes the uplink bandwidth utilization of peers as shown in

both Fig. 20. For all of the transcoded videos, the average link utilization over all the peers

is 95% for the double-pricing solution compared to 76% for single-pricing solution.
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Figure 20: Link utilization comparison for transcoded video: utilization varies from 0 to 1 (equivalent to 0
from 100)

Mesh-based P2P

For mesh-based algorithm, peer churning is simulated basedon the peer joining/leaving

event in Fig. 13b. Instead of simulating an event at every 0.1seconds, the real-time peer

joining/leaving time-stamp is used to help construct the mesh topology. Fig. 13b shows

the number of nodes in the network at any point in time over an 800 seconds interval.

New peers stop joining the network at approximately 400 seconds and eventually all the

peers leave the network. Fig. 21 shows the average PSNR valuefor the transcoded video

sequences during the interval. Fig. 22 shows the average rate over all the flows in the

network. The rate and the PSNR value drops to 0 at around 700 seconds, as the number of

peers (excluding the server) in the network become 0. The results show that the double-

pricing solution consistently performs better than the single-pricing solution.
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Figure 21: PSNR value comparison of the double-pricing and single-pricing solutions for transcoded video
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CHAPTER V

SCALABLE STREAM: HEURISTIC OPTIMIZATION

In this chapter, a heuristic-based optimization algorithmfor scalable video is presented [74].

For a given topology, it attempts to optimally allocate layers among all peers. The algo-

rithm focuses on two key metrics to achieve close to optimal layer allocation. Specifically,

the heuristic algorithm focuses on theload-balancingandweighted-layer allocationtech-

niques to achieve optimum allocation among peers in the network. In load balancing, a

child peer evenly distributes the layer requests among all available parents. This allows a

parent peer to serve multiple child peers. In weighted layerallocation, a parent prioritizes

layer allocation to its children based on the cumulative number of descendants of a child.

A Distributed Algorithm

A high level description of the algorithm is now given followed by a detailed discussion

of various aspects of the algorithm. A child initially inquires about the number of layers

available from a parent peer. It then generates a valid combination of layers, ranks the layer

combinations, and sends them to the respective parents. After receiving a layer allocation

request from its child, a parent allocates a combination of layers that maximizes its uplink

bandwidth utilization. The layer allocation is based on theranking information provided

by its children.

A.1 Layer Combination Generation

Each peer generates unique layer combinations for its parent based on the available layers

information received. For a peerh j with parentshi havingγi number of layers, there exist

a total of 2γi layer combinationsh j can request fromhi . These combination vectors are

collected in a setMhi = {δm
i |m= 1,2, . . .,2γi ; δ = [λ1

i j ,λ2
i j , . . .,λl

i j , . . .,λ
λi
i j ]}. The vector
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Algorithm 2 Layer-Gen: Valid Layer Generation Algorithm

1: For each end hosth j ∈H

2: P = /0
3:

4: for all ω∈Ωi do
5: Ωi←Ωi−ω
6: matched= 1, totalLayers= 0
7: for all δi∈ω do
8: if ∑γi

l=1 xi λl
i j ≤ci then

9: ω←ω−δi

10: end if
11: end for
12: l = 0
13: while (true) do
14: numParents= 0, layers= 0
15: for all δi ∈ω, where δi ∈Mhi , hi∈H (h j) do
16: if l < γi then
17: layers+= λl

i j
18: numParent++
19: end if
20: end for
21: if layers> 1 or l >= totalLayers+1 then
22: matched= 0
23: break
24: end if
25: if numParents== 0 then
26: break
27: end if
28: totalLayers+= layers
29: l ++
30: end while
31: if matched== 1 then
32: P←P + ω
33: end if
34: end for
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δ is a binary value vector that determines the presence of a layer between a parent and a

child as mentioned in Eq. 8. For each peerh j , let p= |Hi(h j)| be the number of parents,

wherehi ∈ Hi(h j). DefineΩ j = (Mh1×Mh2× . . .×Mhi× . . .×Mhn) be anp-tuple, where

each element setω ∈ Ω = {δ1 ∈ Mh1,δ2 ∈ Mh2, . . .,δn ∈ Mhn} is a set of possible layer

combination vectors from its parents. Algorithm 2 generates valid layer combinations

for a peerh j based on its parent setHi(h j). The for loop in line 7 eliminates any layer

combinations that violate the capacity constraints of a parent peer mentioned in Eq. 10.

The condition in line 23 eliminates discontinuity of Eq. 12 and duplicity of Eq. 11 in the

layer combinations generated. Thefor loop in line 15 ensures that a layer received by a

child must be present among its parents as mentioned in Eq. 13.

The resulting setP consists of all the valid layer combinations that satisfy the con-

straints from Eq. 10 - Eq. 11. Even though each parenthi with γi number of layers gener-

ates 2γi possible combinations, the total number of valid combinations of layers in setP is

significantly smaller after satisfying all the constraints.

A.2 Receiver-Side Optimization

After generating all the valid layer combinations inP , a child peerh j then usesrate maxi-

mizationandload balancingmethodology to rank the layer combinations.

Definition 6. A rank r is assigned to eachω. Each layer combinationδ ∈ ω also carries

this rank value. The set of empty layer combination vectors is Θ ⊆ ω, whereω ∈ P and

Θ = {δ | δ = /0}.

The setP = {ω1, ω2, . . . } is ranked{ r1, r2, . . .} based on rate maximization and load

balancing.

Rate Maximization

In order to ensure that each peer receives maximum number of layers possible, a child peer

ranks the elements ofP such that the combination that delivers higher number of layers
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has lower ranking compared to a combination that delivers lower number of layers.

Definition 7. The rate-maximization condition can be expressed as:

∑
δi ∈ω1

γi

∑
l =1

λl
i j ≥ ∑

δi ∈ω2

γi

∑
l =1

λl
i j (44)

Load Balancing

A child peer contributes to the overall improvement of the average layer delivery by ensur-

ing that it does not request all layers from a single parent. Abalanced request by a child

ensures that a parent does not carry the load of serving all the layers to a particular child.

Definition 8. A balanced request is defined as the request with the minimum standard

deviation of rates for a set of layer combinations among all the possible valid sets of

combinations. Given∑l ∈L( fi j ) λl
i j xl as a layer combination from a parent hi to child hj , the

standard deviation of a valid set of layer combinations fromone or more parents to a child

is defined as:
√

√

√

√

1
|Fi(h j) |

∑
fi j ∈Fi (hj )

(

∑
l ∈L( f )

λl
i j · xl − xµ

j

)2

(45)

where xµj is the average rate for a particular set of valid layer combinations from all the

layers received from all of the parents. Here xµ
j is defined as:

xµ
j =

1
|Fi(h j) |

∑
fi j ∈Fi (hj )

∑
l ∈L( f )

λl
i j · xl (46)

Preference Matching

For a child peer, if all the layers received from parents havethe same rankr, then there

will be no duplicate layers. The parents initially attempt to accommodate the layers with

the lowest rank to its children. A child receiving layers with higher rank implies that

the parent is capacity limited and/or has other children with lower link ratio i.e., receives
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higher priority in layer allocation decision.

In this case, a child determines a layer combination rank that satisfies the existing

layer-rate allocation constraints by its parents. A parentonly allocates a requested layer

combination if the bandwidth required to service all the layers in the combination is less

than the bandwidth allocated for that particular child.

A.3 Sender-Side Optimization

Maximizing the total number of layers received by peers across the network depends on

the proper allocation of layers by each parent such that a child with fewer children receives

fewer layers compared to another child. However, a child connected to fewer parent should

receive more layers compared to a child with higher number ofparents. In a mesh topology,

a child can always receive more layers from any of its parents. Therefore, in order ensure

fairness, a parent peer must consider both the incoming and outgoing degree of a child peer

when allocating layers.

Weighted Layer Allocation

A parent peer uses cumulative weight oflink-ration of its child to allocate layers.

Definition 9. For a peer hj , define the cumulative incoming and outgoing links asα j and

β j :

α j = |Hi | + ∑
hk∈Ho

αk (47)

β j = |Ho| + ∑
hk∈Ho

βk (48)

Therefore, thelink ratio for each peer hj is:

ℓ j = η ·
α j −β j

α j +β j +1
(49)
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whereη is a proportionality constant that can be adjusted to assignpriorities to children.

A child peer with lowerℓ has higher priority in receiving its preferred layers from

its parents. A parent then distributes its available uplinkbandwidth based on this ratio.

Fairness is ensured in this process because a peer with fewerchild will receive fewer layers

than a peer with more child.

Definition 10. The total allocated bandwidth by a peer hj having uplink capacity zj to a

child hk is:

xf jk = zj ·
ℓk

∑hi ∈Ho(hj ) ℓi
(50)

However, this process could lead to starvation by parents when child peers receive no

layers.

Definition 11. The link-ratio bandκ is defined for as a peer hj having two child peer hi

and hk with rank ri and rk having the following property:

⌈(ℓi − ℓk)/κ⌉≥ r i − rk (51)

whereℓi > ℓk.

Example 6. If ⌈(ℓi − ℓk)/κ⌉ is 2 and rk is 1, then peer hi can expect a layer combination

assignment having rank at least 3. If hj were to assign layer combination having rank 4 to

hi then rk must be lowered to rank 2.

A.4 Server-Side Optimization

Preemptive join is used to ensure that a peer with low uplink bandwidth does not prevent a

peer with high uplink bandwidth from joining. Furthermore,preemptive join ensures that

a peer with high uplink bandwidth stays at the top of the mesh.
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Preemptive Join

A peer initially sends aJoin request to the server. The requesting peer also sends its uplink

capacity along with the request. The server acts as a prospective parent and checks whether

the number of uplink connection has reached a maximum limit.If not, it accepts the new

peer as child. If the limit has been reached, the parent further checks whether the offered

uplink capacity is higher than the existing uplink capacityof any of its children. If the

check is positive, the parent then preempts the lowest capacity child to accommodate the

new peer. If the capacity is not higher, the parent then delegates the request to its children,

whom, as prospective parent, performs the same bandwidth check and accommodates the

new peer if the bandwidth is higher than the bandwidth of its existing children. The parents

send aDeclinemessage if the maximum number of connection has been reached, and the

offered bandwidth cannot be accommodated.

This recursive preemptive join ensures that a peer with lower uplink bandwidth does

not bottleneck at the top of the mesh. The notations used in this chapter are collected in

Tab. 5.

B Results

A streaming server is simulated with 8 layers, each having equal rate of 250 Kbps. The

peer bandwidth is randomly assigned between 2 and 3 Mbps. Thein-degree/out-degree

ratio and the value ofη for each peer is kept to 1. Fig. 23 compares the weighted layer

allocation technique with simple proportional layer allocation. Fig. 24 compares the av-

erage delivery ratio for weighted and proportional layer allocation for various number of

layers with 150 peers in the network. As the number of layers increase, the weighted layer

allocation performs better than the simple proportional allocation. Fig. 25a shows the av-

erage layer delivery ratio without preemption. Fig. 25b compares the layer delivery with

and without preemptive join. The performance is significantly better when the preemptive

63



Notation Definition

γi Number of layers peerhi has

δ Binary layer combination vector

Mhi Set of layer combination vectorδ for peerhi

Ωi n-tuple

ω ∈Ω Each element in n-tuple with layer combination from parents

P Set of valid layer combinations

Θi ⊆ ωi Set containing empty layer combinations

r Ranks assigned to layer combination set

α, β Cumulative incoming, outgoing links

ℓ,η Link-ratio, proportionality constant

κ Link-ratio band

sc
h Spare-capacity coefficient

sb
h Bandwidth coefficient

Table 5: Distributed Algorithm & Simulation Notations
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Figure 23: Average layer delivery ratio
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join mechanism is applied for topology construction.
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CHAPTER VI

SCALABLE STREAM: MESSAGE-BASED OPTIMIZATION

FRAMEWORK

In this chapter, message-based optimization framework forscalable video stream is intro-

duced. Specifically, a code-based framework for optimization is presented that uses the

sum-product algorithmas the basis for iterative update of messages and layer-allocation

decision.

The framework usesnetwork codes[61], which is defined as a state-space realization of

network behavior that describes a set of connections in a network. This thesis extends the

definition of network codes to capture the constraints of layered video in a P2P network.

The rest of the chapter is organized as follows. First a briefhistory of network codes are

presented followed by description of the state-space and normal realization of network

codes and an introduction to generic sum-product based message-passing algorithm. Next,

a description of message-passing optimization algorithm is presented for both single-layer

and multi-layer video streams. After presenting the complexity analysis for the multi-layer

algorithm, simulation results are presented. A thorough treatment of the state-space and

normal realization on a graph can be found in the seminal workby Forney [75].

A Factor Graphs and State-space Realization

A factor graph is a bipartite graphical representation of the structure of a global function

factored into a product of several local functions, which themselves depend on a subset of

the global variables.

Example 7. Let w(x1,x2,x3) be a global function of three variables that can be factored

into two local functionsC1 andC2. Fig. 26 shows a factorized representation of w. Based
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on this factor graph, w can be mathematically written as a product of the local functions:

w(x1,x2,x3) = C1 (x1,x2)C2 (x2,x3)

x1

C1

x2

C2

x3

Figure 26: Example of factor graph representation ofw(x1,x2,x3)

Therefore, a factor graph has a variable node for each variable and a factor node for

each local functions. An edge connects a variable node to a factor node if and only if

the variable is an argument of the function. Factorization can be generalized for a global

functionw with a set of local variablesx= {xi , i∈ In} factored into a set of local functions

C = {C j(x j), j ∈ Im, x j ⊆x}, where each local function depends on a subset of the local

variables:

w(x) = ∏
j ∈ Im

C j(x j) (52)

A.1 Marginal Function

Let x1,x2, . . . ,xn be a set of local variables such that for eachi∈ In, xi takes values from a

domainAi . Let w(x1,x2, . . . ,xn) be a global function of the variables such that the domain

of w is a Cartesian product of the domain of each variable:

A = ∏
i∈ In

Ai (53)

This is called theconfiguration-spaceof w. Assuming that the co-domain ofw is well

defined, there existn marginal functionswi(xi) associated withw. A marginal function
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associated with variablexi can be evaluated for valuea∈Ai by summingw over all con-

figuration of the variables withxi = a :

wi (a) = ∑
xj

j ∈{Inr i}

∑
xj=aj
aj ∈A j

w(x1, . . . ,xi−1,a,xi+1, . . . ,xn) (54)

In the example of Fig. 26, the marginal associated withx2 = a is:

w2 (a) = ∑
x1∈A1

∑
x3∈A3

w(x1,a,x3)

A.2 Probability Marginal Function

Factor graphs can also be used to represent joint probability mass function. Consider a set

of independent input observationsλi that are made on a set of variablesx = {xi , i ∈ In},

resulting in a set of output observationsy = {yi , i∈ In} and a likelihood vectorp(y |λ).

The marginal product for each variablexi is the component-wise product of the likelihood

vector:

wi(x) = ∏
xj ∈{xrxi}

p(y j |λ j) (55)

B Factor-Graph in Network Resource Allocation

Factor graphs can be applied to communication networks to represent the network connec-

tions. Consider a communication network with a set of peersH = {hi , i ∈ H}, each having

link ni ∈N . Each link in the network has a maximum capacity ofzn. The communication

among the peers in a network states that a peerhi is connected to its linkni , which in turn

is connected to a subset of peers thathi wishes to communicate with.

Example 8. Fig. 27 illustrates the factor graph representation of a setof peers commu-

nicating with each other. Fig. 27b shows the bipartite factor graph representation of the
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h1

h2

h4

h3

(a) Peer communication exam-
ple

h1 h2 h3 h4

N1 N2 N3 N4

(b) Factor graph representation

N1

h1

N2 N3

h2 h3

N4

h4

(c) Network representation of fac-
tor graph

Figure 27: Factor graph representation of a set of communicating peers

example in Fig. 27a and Fig. 27c shows the same factor graph inthe form of a communi-

cation network.

B.1 State-space Realization: Variables and Codes

Variables have already been introduced in the context of factor graphs. A variable can be

of type symbol and state. A symbol variableAi takes valuesai ∈Ai in a symbol alphabet

Ah. Therefore, asymbol-configuration spaceA is a Cartesian product:

A = ∏
i∈ In

Ai
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where In is discrete index set of symbol alphabets. The elements ofA are denoted by

a= {Ai, i∈ In}∈A . Similarly, a state variableSf takes valuessf ∈ S f in a state alphabet

S f . Therefore, thestate-configuration spaceS is a Cartesian product of the state alphabets:

S = ∏
f ∈ Im

S f

The elements ofS are denoted bys={Sf , j ∈ Im}∈ S . The difference between a symbol

and a state variable is that symbol variables are used when transmitting over a channel,

whereas state variables are used internally by the constraints and remain hidden.

A codeC can now be defined as a subsetC ⊆A×S in the symbol-state configuration

space. It may be characterized as a set of configurations thatsatisfy a certain set of lo-

cal constraints (i.e., local functions in the context of a factor graph),C (h) and therefore,

defines a subset in the symbol-state configuration space:

C (h) ⊆ A(h) × S(h) =









∏
i∈A(h)

Ai









×









∏
j∈S(h)

S j









The elements of a codec∈C ={Cj , j ∈ IC} are called codewords consisting of state and

symbol variables represented byCj . Therefore, a code represents a local constraint associ-

ated with a set of variables. A code consists of a set of codewords, where each codeword

is constructed from a Cartesian product of the associated state and symbol variables. The

variables take values from a discrete index set.

Example 9. Let codeC represents a local constraint and is connected to a set of variables

A = {A1,A2,A3}. Each variable Ai takes values from the same alphabetAi = {0,1}.

Therefore, the configuration-space is of length 3 and the number of possible codewords

are 8: C = {000,001,010, . . . ,111}

The termlocal constraintandcodeare used interchangeably throughout this chapter.
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This realization of code consisting of a set of local constraints that are applied to symbol,

and state variables is calledgeneralized state-space realization[75], where each local code

C (h) is a subspace of the direct product of the symbol-state vector space. However, a

generalized state realization is not suitable to properly represent a communication network.

B.2 Normal Realization: Codes on Network

In a generalized state-space realization, the graph must bebipartite, constraints and vari-

ables must be represented by vertices, edges are not labeled, and do not carry values. A

proper communication network representation requires that edges are directed, and carry

values. Hence, edges in a communication network must be represented by variables. Fur-

thermore, a communication network must not necessarily be bipartite. Forney [75] pro-

posed a normal realization of factor graphs that can be applied to communication networks

to represent nodes and directed edges. Such conversion without the loss of functionali-

ties associated with factor graphs allows us to apply the properties of codes, functions and

marginals to a operations on a communication network. Graphs with normal realization

are called normal graphs.

C1
µ1

C2
µ2

C3
µ3

C4
µ4

Figure 28: Normal realization of the example in Fig. 27a

In normal realization, each local constraintCh is represented by a vertex. Each state

variableSf is represented by an edge between two constraints. Each symbol variableAi is

connected to one local constraint vertex, represented by a leaf-edge [75]. For a commu-

nication network, incident edges to a vertex represent inputs, while the remaining edges

represent outputs. Fig. 28 illustrates the normal realization of the network presented in
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Notation Definition

w Global function

w(x) Cartesian product of local functions withxi ∈x

wi (xi) Marginal over variablexi

wi (xi) Sum of all marginals overxi

A , S Symbol and state configuration space

Cj ∈c∈C A codeC consisting of set of codewordsc

consisting of a set of variablesCj

αi , βi Incoming and outgoing message along edgei

Table 6: Notations used in factor graphs and marginal functions

Fig. 27a. In this case, each peer is converted to a constraintrepresented by vertices. The

vertices are attached to a set of state variables that represent the incoming and outgoing

edges associated with each peer. According to the definitionof normal graph, each vertex

is also attached to a symbol variable. The degree of each constraint c depends on the sum,

|A(h) |+ |S(h) | of the symbol and state variables involved. Compared to a generalized

state representation, state variables in a normal graph carry values.

The key notations used Sec. A, B, and C are collected in Tab. 6

C Sum-Product Algorithm

Sum-product is a powerful iterative decoding algorithm that operates bymessage-passing

in a graphical model. The algorithm works by sending and receiving messages between

a peer and its neighbors. Since all computation for the algorithm are done on the local

constraint, it can be used in distributed computing. The sum-product name is derived from

the fact that outgoing messages along each edge is asumof the marginal productof all

the incoming messages along the remaining edges. The sum-product algorithm is now

described in the context of a normal graph.
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C.1 Sum-Product of Messages

Consider a codeC consisting of a set of codewordsc∈C . Each codeword consists of a set

of variablesCj ∈c. Each variable takes a set of valuesc j ∈ ICj from a discrete index setI . If

codesCx andCy are connected by an edge, the outgoing messageβy from Cx is considered

an incoming messageαx by Cy.

Messages are sent and received along the edges for each valuec j ∈ ICj . For each vari-

ableCj , let the incoming and outgoing messages for valuec j be defined asα j (c j) and

β j (c j) respectively. Therefore, the outgoing message along an edge is computed as:

β j (c j) = ∑
c∈C j (cj )

∏
Ci ∈{crCj}

αi (ci) (56)

whereC j (c j) is the set of codewords consistent withc j ( i.e., variableCj assumes the value

c j ).

C.2 Sum-Product for Probability Decoding

The derivation of marginals for joint probability mass function has been discussed in

Sec. A.2. The marginal in Eq. 55 can be used to compute probabilities in a sum-product

algorithm. Following the description of codes in Sec. C.1, consider a set of input observa-

tions (i.e., codewords)c = {c j ∈ ICj } are made on all variables, resulting in a set of output

observationsy = {y j ∈ ICj} and a likelihood vector ofp (y j | c j). If all codewords are

equiprobable, Bayes’ theorem states that thea posteriori probability(APP) of p(c|y) of a

codewordc∈C is proportional to the likelihood vector:

p(c|y) =
p(y|c) p(c)

p(y)
∝ p(y|c), c∈C (57)
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Therefore, the APP vector for a variablep(Cj = c j |y) is given by:

w j (c j) = p(Cj = c j |y) = ∑
c∈C j (cj )

∏
Ci ∈{crCj}

p(yi |ci) (58)

β j (c j) = ∑
c∈C j (cj )

∏
Ci ∈{crCj}

αi (ci) (59)

In this case, the output observation of the likelihood vector (i.e., equivalent to the set of

incoming messages defined in Sec. C.1) are used to calculate the APP (i.e., equivalent to

outgoing message along an edge) for each variable. Therefore, the sum-product algorithm

for joint probability mass function involves computing theAPP vector for every variables

Cj over all values in the alphabetICj .

D Codes for Scalable Video in P2P Overlay

This thesis proposes an extension of Forney’s normal realization [75] of graph, to accom-

modate the relaying properties of peers in a P2P overlay and constraints of layered video.

Ci
h

Co
h

µh

Figure 29: Normal definition of a peer

Definition 12. Let peer h be a node in an overlay network having incoming and outgoing

flowsFi (h) andFo (h) respectively, whereF (h) = Fi (h)∪Fo (h). Since a state variable

represents an edge in a normal graph, a flow connecting two peers will be represented by

a state variable. The set of state variables representing incoming and outgoing flows are

defined asS i
h andSo

h respectively, whereSh = {Sf , f ∈F (h)}. A peer h will contain two

codes (i.e., local constraints): incoming codeC i
h and outgoing codeC o

h . The incoming

code is connected to all the incoming flows and the outgoing code is connected to all the

74



outgoing flows. A set symbol variables µh∈S
µ
h connected to the outgoing codeC o

h are used

to represent the finite outgoing capacity of a peer in a overlay. The input and the output

codes are connected by an internal edges. The internal edgesare represented by a setS l
h

of internal state variables. The internal state variables here represent the relay constraints

unique to a P2P network. With respect to the incoming code, the internal state variables

represent the receipt of layers from parent peers, while foroutgoing code, they represent

the precondition that layers must be present before they canbe allocated to child peers.

Fig. 29 shows the resulting normal realization of a peer in the context of a P2P overlay.

The length of a codeword is directly related to the number of edges and the number of

layers.

Example 10. Fig. 30 shows an overlay network and its normal graph representation for

scalable video.

h1

h2 h3

(a) Simple P2P overlay exam-
ple

C i
1

C o
1

µ1

C i
2

C o
2

µ2

C i
3

C o
3

µ3

(b) Normal realization of P2P nodes

Figure 30: P2P overlay example and its normal realization

The key notations used throughout the rest of the chapter arecollected in Tab. 7.

E Single-Layer Optimization

The single-layer optimization algorithm is presented here. First, a simplified optimization

algorithm is presented, where each peer has a maximum ofunit uplink capacity. The
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Notation Definition

ci ∈C i , co∈C o Codewords associated with incoming

and outgoing codes

Ck
µ∈Cµ Variable vector associated with capacity

Cl ∈Cl Variable vector associated with received layers

Cl
f ∈Cl

f ∈Cf Variable associated with the allocation of

set of layersl in a flow f that

part of a flow vectorf

λl
f = {1,0} Binary values assumed by variableCl

f

γl = {1,0} Binary values assumed by variableCl

µk = {1,0} Binary values assumed by variableCk
µ

σ Capacity unit

Table 7: Notations used in sum-product algorithm optimization

algorithm is then be modified to consider the situation wherepeers can have uplink capacity

that are multiple of the unit capacity.

Definition 13. Let xl be the rate required to deliver layer l and zh be the uplink capacity

of peer h. Since a scalable video stream requires the delivery of a complete layer for

successful decoding, aunit capacityrequires the ratioσh between the uplink capacity and

the layer rate be1:

σh =
z
xl

= 1

In the case ofmulti-unit capacity, the ratio is defined asσh > 1. Throughout this chapter,

it is assumed that the rate required for all layers are equal (i.e., xl = xl+1, ∀ l ∈L) and

constant. Therefore, uplink capacity of a peer h is defined totake value from the set of

natural number,σh∈N0

E.1 Algorithm: Unit Outgoing Capacity

Let C i
h andC o

h be the incoming and outgoing code for peerh. A codeword is generated by

the Cartesian product of the variables associated the edgesrelated to the code.
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Definition 14. The codewords associated with the incoming code is represented as the

Cartesian product of state variables:

ci =Cf×Cl =

[

∏
f ∈Fi

Cf

]

×Cl (60)

where Cf ∈ S i represents the set of variables associated with the incoming flows andCl ∈ S l ,

l ∈ L represents the layer present on the internal edge between the incoming and the out-

going code. Similarly, the codewords associated with the outgoing code is represented

as:

co =Cl ×Cf×Cµ = Cl ×

[

∏
f ∈Fo

Cf

]

×Cµ (61)

where Cf ∈ So represents the set of variables associated with the outgoing flows and Cµ is

associated with the symbol variable that represents the outgoing capacity.

Since there is a single layer, the variablesCf , Cl , andCµ can be represented by binary

values.

Definition 15. Let λ∈{0,1} be the binary value assumed by Cf . Therefore, for peer h

with having neighbor hj connected by flow f :

λl
f (h) =











1 if layer l is present inf

0 otherwise
(62)

For incoming codeC i
h, λl

f (h) = 1 implies that peerh receives layerl from parent peer such

thath( f ) = h. Similarly, for outgoing codeC o
h , λl

f (h) = 1 implies that peerh allocates

layer l to its child peerh j such thath
f
−→ h j .

Definition 16. Let γ∈{0,1} be a binary value taken by Cl :

γl
h =











1 if layer l has been received by peerh

0 otherwise
(63)
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For incoming codeC i
h, γl

h = 1 implies that layerl is present in at least one of the incoming

edges. For outgoing codeC o
h , γl

h = 1 serves as the precondition for allocating layers to

outgoing edges.

Definition 17. Let µ∈ {0,1} be the binary value Cµ takes:

µh =











1 if ∑λ = 1

0 otherwise
(64)

For outgoing codeC o
h , µh = 1 implies that exactly 1 edge has been allocated a layer.

Definition 18. Admissible codewordis defined as a codeword that satisfies the network

properties and the scalable video properties. The network properties are:

• Capacity Constraint: Total allocated rate by a parent to a set of child does not

violate the capacity (from Eq. 10).

• Duplicity Constraint: A layer is received from at most 1 parent (from Eq. 11). This

increases the overall probability of receiving more layersby a peer by removing

potential bandwidth waste.

The layered video properties are:

• Relay Constraint: A parent can only allocate a layer if it has received it (from

Eq. 13).

• Continuity Constraint: Received layers must be consecutive (from Eq. 12). The

properties of scalable video requires that a successful decoding of layer l depends

on receiving all previous layers1,2, . . . , l − 1. If a peer receives layer1, 2, and4,

it can only decode up to layer2 because layer3 is missing. Layer4 in this case

becomes useless.
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Definition 19. Satisfying the capacity constraint requires the followingcondition to be

true when generating a codeword for the outgoing codeC o:

∑
f ∈Fo

λ f ≤ µ (65)

In order to satisfy the duplicity constraint, admissible codewords for the incoming codeC i

must satisfy the following condition:

∑
f ∈Fi

λ f ≤ 1 (66)

The relay constraint for the outgoing codeC o is satisfied by the following inequality:

λ f ≤ γ (67)

Since there is only 1 layer, the continuity constraint in Eq.12 is not used. The following

example illustrates the properties an admissible codewordmust satisfy.

Example 11. Consider the mesh network in Fig. 31a. The peers m and n are server

peers having single layers and z is the relay peer. Both servers and the relay peer have

unit uplink capacity Fig. 31b shows the normal-graph realization of this mesh network

example. Fig. 32 shows the codewords for all the constraintsassociated with each peers.

Fig. 32a shows the admissible codewords associated with theoutgoing constraintC o
m

for peer m. The codewords are{ClCxCzCµ} = {0000,1101,1011}. Here the codeword

0000 represents the situation where peer m does not allocate layer to peer x or z. The

codeword1101represents the situation where peer m allocates layer to peer x (i.e., CxCz =

10). Similarly, codeword1011represents the situation where peer m allocates layer to peer

z (i.e., CxCz = 01). Since a layer must be present in order for m to allocate it, Cl must

be 1 to satisfy the relay constrain in Eq. 13. Due to capacity constraint, allocation of a

layer completely occupies the bandwidth of m. Therefore, Cµ must be1. Note that1111is
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(b) Normal graph representa-
tion

Figure 31: Example used for single layer optimization

not a valid codewords because providing layer to both children would violate the capacity

constraint in Eq. 10.

Fig. 32c shows codewords for the incoming constraintC i
z of peer z. The admissible

codewords are{CmCnCl} = {000,011,101}. The codeword000 means that peer z does

not receive layer from neither m nor peer n. The codeword101 implies that peer z receives

layer from peer m but not from n. The value Cl = 1 in this codeword represents the fact

that a layer has been received. Notice that111 is not a valid codeword because it violates

the duplicity constraint in Eq. 11. The continuity constraint in Eq. 12 is not addressed in

the single layer case.

Therefore, with the use of codes, it is possible to embed the network and the video con-

straints in the codeword-based symbol-state representation.

Admissible Codeword Generation

For a single layer, if an incoming code is connected toFi = |Fi | number of flows, there are

2Fi number of possible codewords. Similarly, for an outgoing code connected toFo = |Fo |

number of outgoing flows, there are 2Fo number of possible codewords. LetA be anMA×Fi

andB be anMB×Fo binary-value matrix that contains all possible binary combinations of
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(a) Outgoing constraint in
C o

m

Cl Cz Cµ

0 0 0
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(b) Outgoing con-
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n

Cm Cn Cl

0 0 0
0 1 1
1 0 1

(c) Incoming con-
straint inC i

z

Cl Cx Cy Cµ

0 0 0 0
1 1 0 1
1 0 1 1

(d) Outgoing constraint in
C o

z

Cm Cz Cl

0 0 0
0 1 1
1 0 1

(e) Incoming con-
straint inC i

x

Cz Cl

0 0
1 1

(f) Incoming
constraint in
C i

y

Figure 32: Creation of codewords for various constraints associated with each peer

lengthFi andFo respectively. The rows of the matrix are represented byAm or Bm, while

the columns are represented byAf or Bf .

Algorithm 3 presents the admissible codeword generation process for incoming code.

Thefor loop in line 8 counts the number of 1’s in a row. Theif condition at line 11 checks

the duplicity constraint. If the sumζ is greater than 1 from the loop in line 8, the rowm is

discarded as a potential codeword.Cl is set in line 14 according toζ. Hereζ = 1 implies

that the peer has received the layer from at least 1 of its parents. Algorithm 4 presents

the outgoing code generation process. Theif condition in line 11 checks the capacity

constraint. The outgoing capacity here is assumed to be 1. The valueCl in line 14 satisfies

the relay constraint. A value of 1 implies that parent has allocated layer to at least 1 child

and the parent must possess the allocated layer before it canrelay it to a child. The value

Cµ in line 15 refers to the uplink capacity used by a peer. A value1 implies that the peer
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Algorithm 3 Admissible Codeword Generation for Incoming Code

1: Initialize code: C i = /0
2: Initialize matrix: A
3: ζ = 0
4:

5: for each m∈Am do
6: c = /0
7: ζ = 0
8: for each f ∈Af do
9: ζ += am f

10: end for
11: if ζ > 1 then
12: continue
13: end if
14: Cl = ζ, whereCl ∈ c
15: for each f ∈Af andCf ∈Cf ∈c do
16: Cf = am f

17: end for
18: C i ← C i + c
19: end for

has allocated layer to one of its outgoing flows.

Probability Update

The sum-product based probability decoding for layered video is now presented. The goal

is to determine the probability with which a layer can be allocated by a parent and the

probability with which a layer can be received by a child peer.

Definition 20. The incoming messageα j for variable Cj ∈c along an edge represents the

probability of carrying a layer by that edge:

α j = p(Cj = 1|Cj = λ j) (68)

Sinceα only carries the probability ofλ j = 1, the probability of variable Cj = 0 can be

readily computed by1− α j . Upon computing the marginal probability for each variable,

82



Algorithm 4 Admissible Codeword Generation for Outgoing Code

1: Initialize code: C o = /0
2: Initialize matrix: B
3: ζ = 0
4:

5: for each m∈Bm do
6: c = /0
7: ζ = 0
8: for each f ∈Bf do
9: ζ += bm f

10: end for
11: if ζ > 1 then
12: continue
13: end if
14: Cl = ζ, whereCl ∈ c
15: Cµ = ζ, whereCµ ∈ c
16: for each f ∈Bf andCf ∈Cf ∈c do
17: Cf = bm f

18: end for
19: C o ← C o + c
20: end for

the outgoing messageβ j is normalized within a range of0 to 1:

β j =
p(Cj = 1)

p(Cj = 1) + p(Cj = 0)
(69)

Example 12. Let us consider a codeC consists of two codewordsC = {101,011}.

The incoming messages in this case areα1, α2, α3 representing the probability p(C1 =

1), p(C2 = 1), p(C3 = 1). The probability of C1 = {1,0} can be computer as:

w(1) = p(C1 = 1) = (1− α2)α3

w(0) = p(C1 = 0) = α2 α3

Therefore, the outgoing message normalized within the range 0 to 1 is:

β1 =
p(C1 = 1)

p(C1 = 1) + p(C1 = 0)
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Similarly, the probability of C2 = {1,0} is:

w(1) = p(C2 = 1) = (1− α1)α3

w(0) = p(C2 = 0) = α1 α3

and the probability of C3 = {1,0} can be calculated as:

w(1) = p(C3 = 1) = α1 (1− α2) + (1− α1)α2 = 1

w(0) = p(C3 = 0) = 0

The probability of p(C3 = 1) and p(C3 = 0) are set to1 and0 respectively because there

are no codeword representing C3 = 0. Therefore, normalization ofβ3 results in1.

Probability Initialization

At the beginning of the update algorithm, initial probability values are set along each edge.

Definition 21. The initial probability message along the incoming and the outgoing edges

related to the flows are set to 0.5. The probability assignment for the internal edge is set

as:

αl = p(Cl = 1) =



























1 if peer is a root andl is present

0 if l is not present for root peer

0.5 otherwise

Here, p(Cl = 1) = 1 for a root peer indicates that the layer is definitely present. Sum-

product update algorithm does not compute this probabilityfor root peers since the proba-

bility is fixed. Similarly, if a root peer is known to not have alayer, the probability assigned

in this case isp(Cl = 1) = 0.
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Definition 22. The probability value for variable Cµ is set as follows:

αµ = p(Cµ = 1) =











1 if Cµ = 1

0 otherwise

Since the capacity value is assumed to be constant, the update algorithm does not update

the probability values associated withCµ.

Exit Condition

The exit condition determines the convergence point when the probability of carrying a

layer from parent to child through an an edge reaches 1 or 0.

Definition 23. Let ε be the threshold for convergence. Therefore, convergence on an edge

with variable Cj is reached and the probability value is set to1 or 0 if the following condi-

tion is satisfied:

p(Cj = 1) =











1 if 1− p(Cj = 1) ≤ ε

0 if p(Cj = 1) ≤ ε

Algorithm

For each variable, the probability valueα is determined by calculating the sum of the

marginals and then normalizing it. This normalized probability is sent along the edges asβ

in response to each incomingα. Each peer waits to receive messages on all of its outgoing

edges from its child peers and updates the probability on itsinternal edge. Based on the

update on the internal edge, a peer then updates probabilityvalues on its incoming code and

sends this to its parents. Similarly, upon receiving reply messages on all of its incoming

edges, a peers recomputes the probability on its internal edge. A peer then updates the

probability on all of its outgoing edges and sends this updated probability message to its

children.
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Algorithm 5 Sum-Product Algorithm on Outgoing Code
For each constraintC o

h

1: Input : t
2: Incoming Message SetMo

3:

4: if t is odd roundthen
5: for all f ∈Fo do
6: Wait for all in coming messages:Mo←α f

7: end for
8: if h.type!= root then
9: {update probability of the internal edge}

10: Calculatewl (1)
11: Calculatewl (0)
12: Normalizeβl

13: Sendβl to incoming codeC i
h

14: end if
15: else
16: {even round now}
17: if h.type!= root then
18: Wait for update onCl

19: end if
20: for all f ∈Fo do
21: Calculatewf (1)
22: Calculatewf (0)
23: Normalizeβ f

24: Sendβ f to all outgoing edges
25: end for
26: end if

Definition 24. The algorithm works on rounds t= 1,2, . . . . During the odd rounds, mes-

sages travel upstream from child to parent peers, passing through the internal edge. During

the even round, messages travel downstream from parent to child peers, similarly passing

through the internal edge.

Algorithm 5 and Algorithm 6 summarizes the single-layer sum-product update algorithm

for each round for outgoing and incoming codes respectively.

Example 13. The following is an example of the sum-product message-passing algorithm

based on the topology and constraints shown in Example 11. Fig. 33 and Fig 34 shows
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Algorithm 6 Sum-Product Algorithm on Incoming Code

For each constraintC i
h

1: Input : t
2: Incoming Message SetMi

3:

4: {odd round}
5: if t is odd roundthen
6: if h.type!= root then
7: Wait for update onCl

8: end if
9: for all f ∈Fi do

10: Calculatewf (1)
11: Calculatewf (0)
12: Normalizeβ f

13: Sendβ f along all incoming edges
14: end for
15: else
16: {even round now}
17: for all f ∈Fi do
18: Wait for all in coming messages:Mi←α f

19: end for
20: if h.type!= root then
21: {update probability of the internal edge}
22: Calculatewl (1)
23: Calculatewl (0)
24: Normalizeβl

25: Sendβl to outgoing codeC o
h

26: end if
27: end if

the the rounds1 to 8. During the odd rounds, the messages travel upstream from child

to parent, while messages travel downstream from parent to child during the even rounds.

The messages converge after8 rounds. In optimality, peer m gives layer to x, while peer n

gives layer to peer z. Since x has already received layer fromparent m, peer z relays the

received layer to peer y.

Example 14. Fig. 35a shows another single layer optimization example. Fig. 35b and

Fig. 36 shows message-passing for rounds1 to 4. After round4, the layer allocation

converges to optimality. In optimal allocation, m does not allocate layer to x. Allocating
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Figure 33: Message passing algorithm for single layer allocation: Topology example 1
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Figure 35: Message passing algorithm for single layer allocation: Topology example 2
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Figure 36: Message passing algorithm for single layer allocation: Topology example 2

layer to y allows peer y to relay the layer to child peer d. Thisimproves the network-wide

QoS. The allocation is influenced by messages traveled from d.

E.2 Generalized Single-Layer Optimization Algorithm

The previous algorithm for single-layer with unit capacityis now expanded to include

peers with multi-unit capacity. Updating the algorithm involves adjusting the variableCµ

associated with the outgoing codeC o.

Definition 25. Letco be the codeword associated with outgoing code:

co =Cl ×Cfff ×Cµµµ = Cl ×

[

∏
f ∈Fo

Cf

]

×

[

σ

∏
k=1

Ck
µ

]

(70)

where Cµµµ is the Cartesian product of the symbol variables Ck
µ that represents the uplink
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capacity. The variable Ckµ can be assigned binary value µk based on the following:

µk =











1 if k ≤ ∑ λ

0 otherwise
(71)

Admissible Code Generation

The admissible code generation process for incoming code remains unchanged in Algo-

rithm 3. The outgoing code generation follows Algorithm 4 with the following modifica-

tions:

• Layers can be allocated up toσ

• The value ofσ is determined by the uplink capacity of the peer and the totalnumber

of layers requested by child peers.

The outgoing code generation process begins by parent peersreceiving layer requests from

all children and summing up the number of layer requests. Themodified outgoing code

generation process is given in Algorithm 7.

Algorithm

As previously mentioned, the sum-product update algorithmis independent of the un-

derlying constraints. The generalized algorithm for incoming and outgoing code follows

Algorithm 5 and Algorithm 6.

Example 15. The codeword construction technique for single-layer algorithm with multi-

unit capacity is given here for Example 14 based on Fig. 35a. In this example, assume that

peer m has a capacity of2 instead of1. The new codewords associated with the outgoing

codeC o
m for peer m is given in Fig. 37. In optimal configuration, peer mallocates layer to

both child x and y. This is possible because peer m now has a capacity of2.
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Algorithm 7 Codeword for Outgoing Code: Single-Layer Multi-Unit Capacity

1: Initialize code: C o = /0
2: Initialize matrix: B
3: ζ = 0
4: ϑ = 0
5:

6: for each flow f ∈Fo do
7: if layer requestf == true then
8: ϑ += 1
9: end if

10: end for
11: σ = min(σh, ϑ)
12: for each m∈Bm do
13: c = /0
14: ζ = 0
15: for each f ∈Bf do
16: ζ += bm f

17: end for
18: if ζ > σ then
19: continue
20: end if
21: Cl = (ζ≥1)? 1 : 0 whereCl ∈ c
22: for k = 1 to σ do
23: Ck

µ = (k ≤ ζ)? 1 : 0 whereCµ ∈ Cµµµ ∈ c
24: end for
25: for each f ∈Bf and Cf ∈Cf ∈c do
26: Cf = bm f

27: end for
28: C o ← C o + c
29: end for

F Multi–Layer Optimization

The single-layer optimization algorithm is now extended for the multi-layers. Here the

root peers can have multiple layers. Furthermore, peers canhave multi-unit capacity and

can deliver multiple layers to its children.

Definition 26. Let Cl
f ∈Cf be a new variable vector associated with each flow f∈F .

Let Cl
f ∈Cl

f be the variable representing the presence or absence of layer l in flow f .
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(a) Outgoing constraint inC o
m

Figure 37: Codewords for outgoing codeCo
m for peerm in Fig. 35a with uplink capacity 2

Furthermore, let Cl be the new variable vector associated with internal edge. Let Cl ∈Cl

be the variable representing the presence of layer l. The codewordsci associated with the

incoming codeC i for multi-layered video stream is defined as:

ci =Cf×Cl =

[

∏
f ∈Fi

Cl
f

]

×

[

∏
l ∈L

Cl

]

(72)

The codewordsco associated with the outgoing codeC o is:

co =Cl×Cf×Cµµµ =

[

∏
l ∈L

Cl

]

×

[

∏
f ∈Fo

Cl
f

]

×

[

σ

∏
k=1

Ck
µ

]

(73)

where Cl
f is a Cartesian product representing the presence of layers in flow f :

Cl
f = ∏

l ∈L

Cl
f (74)

Definition 27. Letλl
f = {0,1} be the value taken by Clf . It is defined based on Eq. 62. Let

Let γl be the binary value taken by Cl . For the outgoing codeC o, it is redefined as:

γl =















1 if ∑
f ∈Fo

λl
f ≥1 or ∑

f ∈Fo

λl+1
f ≥1

0 otherwise

(75)
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For the incoming codeC i , it is redefined as:

γl =















1 if ∑
f ∈Fi

λl
f ≥1

0 otherwise

(76)

Admissible codewords must satisfy the network and layered video properties defined in

Definition 18.

Definition 28. In a multi-layer environment, the admissible codewords associated with the

outgoing codeC o must satisfy thecapacity constraint:

∑
f ∈Fo

∑
l ∈L

λl
f ≤ σ (77)

Satisfying theduplicity constraint for incoming code requires the following condition:

∑
f ∈F

λl
f ≤ 1 ∀ l ∈ L (78)

Thecontinuity constraint on the incoming can be embedded by satisfying the following

condition when choosing a codeword:

∑
f ∈Fi

λl
f ≥ ∑

f ∈Fi

λl +1
f ∀ l ∈ L (79)

Admissible Codewords Generation

The generation of codewords for multi-layer video is now considered. ForL number of

layers, letB be aM×L binary value matrix consisting of all possible layer combinations

that can be delivered to flowf . HereM = 2L. The rows of the matrix are represented by

Bm, while the columns are represented byBl .

Admissible codeword generation associated with the incoming code must satisfy the

video constraints for the binary matrixB. Algorithm 8 determines admissible codewords
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for incoming codes.

Algorithm 8 Check Video Constraint

1: Input: vectorClll , type : int
2: Output: type : int
3:

4: for i = 0; i < L; i ++ do
5: if Cl > 1 then
6: return −1
7: end if
8: end for
9: for l = L − 1; l > 0; l -- do

10: if Cl <Cl−1 then
11: return −2
12: end if
13: end for
14: return 1

Ensuring the capacity and relay constraints for the outgoing code is done based on Algo-

rithm 9 and Algorithm 10.

Algorithm 9 Check Capacity Constraint

1: Input: vectorClll
f , type : int

2: Input Capacity: zf , type : int
3: Output: type : int
4:

5: set∑ = 0
6: for l = 0 to L do
7: ∑ += Cl

f
8: end for
9: if ∑ > zf then

10: return 0
11: end if
12: return 1

Complexity Optimization for Outgoing Code

If there areFo number of child peers, there are a possibleMFo number of codewords to

consider before selecting the admissible codewords. HereM = 2L for L number of layers.
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Algorithm 10 Create Code Layers

1: Initialize Matrix: BBB = M × L, M = 2L

2: Input: Fi, type : int
3: Input: vectorPfff , type : int
4: Output: vectorClll , type : int
5:

6: set Clll = 0
7:

8: for f = 0 to Fi do
9: m= Pf

10: for l = 0 to L do
11: Cl += Bml

12: end for
13: end for

For a large number of layers and a large number of outgoing peer, computing sum-product

update on so many codewords is computationally intensive.

Example 16. If there are L= 5 layers and F= 5 outgoing peers, the number of possi-

ble codewords are(25)
5
= 33554432. Furthermore, computing the probability on each

codeword requires F· L = 25 multiplication operations.

During the optimized codeword generation process, Admissible codewords associated

with the outgoing code requires that ifCk
µ = 0 andk≤ σ, thenp(Ck

µ = 0) = 0. This is be-

cause a parent peer always attempts to allocate the maximum number of layers. Therefore,

marginals of any codeword that under utilizes the uplink capacity will result in 0. There-

fore, during the code generation process, the only valid codewords are codewords that that

maximizes the bandwidth utilization based on the valid codeword requests received.

Codeword generation algorithm must consider the computational overhead required to

handle peer churning. Generating outgoing codewords everytime a peer leaves/joins will

requires intensive computation. However, the following lemma shows that the number of

admissible codewords are significantly less than the default (2L)
F , for L layers andF child

peers.

Definition 29. For an outgoing code having L probable layers to allocate, there are2L
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Figure 38: Optimized codewords generation for outgoing codeCo
m for peerm

codewords:
2L

∑
l =1

1 (80)

Since the codewords used to calculate the outgoing probability along each outgoing edge

is the same, a peer only needs to calculate codewords with respect to one peer. Therefore,

the number of codewords for n number of peers are:

2L

∑
l1=1

2L

∑
l2=l1

· · ·
2L

∑
lF =lF−1

1

The optimized codewords generation associated with the outgoing code are given in

Algorithm 11.

Example 17. Let peer m be a parent with2 child x and y. Assume that peer m has2

layers. Codewords used to generate outgoing probability topeer x is the same as peer y.

Fig. 38 shows the optimized process used to generate admissible codewords. Due to op-

timized codeword generation, the codeword combinations00 and01 are interchangeable.

Therefore, codeword0100has not been used because codeword0001has already been

generated. Similarly,1000, 1001 1100, 1101, and 1110has not been used because the

reverse combinations0010, 0110, 0011, 0111and1011has already been generated.

Example 18. Fig. 39 shows a comparison for the number of codewords vs. number peers
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Algorithm 11 Optimized Codeword Generation for Outgoing Code: Multi-Layer

1: Initialize code: C o = /0
2: Initialize matrix: B
3: Input: Number of Output Flows= Fo

4: Initialize: count[Fo] = 0
5: ζ = 0
6:

7: while (true) do
8: {get the current codeword}
9: c = /0

10: ζ = 0
11: for l = 0 to L - 1 do
12: for f = 0 to Fo - 1 do
13: m= count[f]
14: ζ += bml

15: Cl
f = bml, whereCl

f ∈Cl
f

16: Cl += bml, whereCl ∈Cl

17: end for
18: if Cl == 1 then
19: Cl−1 = 1, for l > 1
20: end if
21: c←c +Cl +Cl

f
22: end for
23: if ζ == σ then
24: {This is a valid codeword}
25: C o←C o + c
26: end if
27: {Search for the next optimized codeword}
28: for f = Fo - 1 to 0 do
29: if count[f] < 2L - 1 then
30: count[f] ++
31: for j = f +1 to Fo - 1 do
32: count[j] = count[f]
33: end for
34: break
35: end if
36: end for
37: if count[0] ≥ 2L then
38: break
39: end if
40: end while
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Figure 39: Number of codewords associated with the outgoingcode vs. the number of child peer and the
number of layers

for 3 and 4 layers. For a scalable stream with3 layers and5 child peers, the unopti-

mized codewords generation process considers32768number of codewords to generate

admissible codewords, while the optimized process considers only2436codewords to gen-

erate the list of admissible codewords (Fig. 39a). Similarly, with 4 layers and5 child

peers, the number codewords considered during the unoptimized code generation process

is 1048576, while the number of codewords considered in the optimized code generation

process is54264(Fig. 39b).

Complexity Optimization for Incoming Code

Similar to the complexity associated with the generation ofadmissible codewords for out-

going code, optimized codewords generation is also necessary for incoming code. LetB be

aM × L matrix whereM = 2L, containing all possible binary combination of layers thata

child peer can receive from its parent. If there areFi number of parents, the possible code-

word combinations are(2L )
Fi . Therefore, codeword optimization is necessary to reduce

the computational complexity. Algorithm 12 presents the permutation based optimized

codeword generation for incoming codes.

The algorithm takes a list of parentsppp and a binary arrayrrr [M] that corresponds to

all the codeword combinations forL number of layers, whereM = 2L. The function is
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Algorithm 12 Optimized Codeword Generation for Incoming Code

1: Initialize Matrix: AAA = M × L, M = 2L

2: Input: Fi {number of incoming flows}
3: Input: ℓ
4: Input: int ppp[Fi] {list is parents}
5: Input: int rrr [M]
6: Input: int listlistlist [Fi ]
7: Input: int j
8: for i = j +1 to M - 1 do
9: rrr [i] = 1

10: res= valid codewords(rrr ) {check duplicity and continuity constrain}
11: if res== 1 then
12: {This is valid codeword vector}
13: sort codewordvector(listlistlist, rrr, |Fi|)
14: repeat
15: if valid codewordcapacity(listlistlist , |Fi|, ppp[Fi]) == 1 then
16: computeprobability vector()
17: end if
18: until permute(listlistlist , |Fi |)
19: else ifres== -1 then
20: rrr [i] = 0
21: end if
22: if ℓ < |Fi | − 1 then
23: recursivefunction call(ℓ=ℓ+1, j = i, rrr)
24: end if
25: rrr [i] = 0
26: end for

initially invoked with parametersℓ = 0 and j = 0. The validcodewords function call in

line 10 refers to Algorithm 8 that checks the continuity and duplicity constraints associated

with incoming code. For a given set of codewords, the sortcodewordvector sorts the index

of the vectors used from matrixAAA in ascending order and puts it inlistlistlist array. If the number

of codewords used (i.e.,rrr [i] = 1) is less than the number of parents, the sort function fills

the remaining positions with 0s. The computation of the probability vectors are given in

the next section.

Example 19. If L = 3 and there are a total of4 parents, the number of possible codeword

vectors is7. A combination of001 (i.e., index rrr [i] = 1) and 010 (i.e., index rrr [i] = 2)
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Algorithm 13 Compute Next Permutation of an Ordered List
1:

2: Initialize Input: listlistlist
3: Initialize Input: len
4:

5: key = len− 1
6: newkey= len− 1
7: while key > 0 and listlistlist[key]≤ listlistlist[key−1] do
8: key--
9: end while

10: key--
11: {If key ¡ 0 the data is in reverse sorted order, which is the lastpermutation}
12: if key < 0 then
13: return 0
14: end if
15: newkey= len−1
16: while newkey> keyand listlistlist[newkey]≤ listlistlist[key] do
17: newkey--
18: end while
19: swap(listlistlist , key, newkey)
20: len--
21: key++
22: {The tail must end in sorted order to produce the next permutation.}
23: while len > key do
24: swap(listlistlist , len, key)
25: key++
26: len--
27: end while
28: return 1

constitutes a valid codeword combination. However, there are 4 parents. Therefore, sortsortsort

function returns the sorted indexes[0, 0, 1, 2] in the listlistlist array.

The permutation of all the vectors in the orderedlistlistlist is generated by Algorithm 13 [76].

The permutation here refers the possible number of ways a child peer can receive a a bi-

nary row from its parents.ForL number of layers, the computational complexity of finding

the next permutationOOO(L). Therefore, if there are a totalN permutations, the the final

computational complexity for finding all the codewords isOOO(NL).

Example 20. Fig. 40 presents an example of the application of Algorithm 12 to gener-
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Parent 1 Parent 2 Parent 3 Parent 4
cap: 1 cap: 3 cap: 2 cap: 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 1 1 0 1 1 1 0 0

1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1

(a) Parent Capacity

Level 1 Level 2 Level 3 Number of
Codewords

0 0 1 4 P 1 = 4
0 0 1 0 1 0 4 P 2 = 12
0 0 1 0 1 0 1 0 0 4 P 3 = 24
0 0 1 1 1 0 2·3 P 1 = 6
0 1 0
0 1 0 1 0 1 2·3 P 1 = 6
0 1 1 2·3 P 0 = 2
0 1 1 1 0 0 2·3 P 1 = 6
1 1 1 1·3 P 0 = 1

(b) Codeword Construction

Figure 40: Possible binary combinations based on capacity of parents to construct the codewords

ate optimized codewords for incoming code. In this example,a child peer has4 parents.

The capacity of the parents and the possible codeword representation of layers that the

child can expect to receive from its parents are given in Fig.40a. The optimized codeword

generation process for this configuration is shown in Fig. 40b. The algorithm recursively

generates possible codeword permutations. The algorithm starts with the codeword0 0 1

. The codeword combinations0 0 1 0 0 0 0 0 0 0 0 0can be arranged P4
1 possible

ways to receive from 4 parent. Therefore, there are P4
1 = 4 ways to receive layer 1. After

successful recursive call, the possible codeword combinations 0 0 1 0 1 0 0 0 0 0 0 0

can be arranged in P4
2 = 12 ways among 4 parents to receive 2 layers. After the next

successful recursive call, the codeword combinations0 0 1 0 1 0 1 0 0 0 0 0can be
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arranged in P4
3 = 24 ways. At this point, the cursive call is at level 3 and no othercode-

word combination is valid. Therefore, the algorithm returns to level 2 in recursion. The

next valid codeword combinations are0 0 1 1 1 0 0 0 0 0 0 0. From this codeword com-

bination, a child can receive up to 3 layers in P4
2 = 12 ways among4 parents. However,

only2 parent can deliver the codeword1 1 0. Therefore, only2 · P3
1 = 6 possible ways a

child can receive3 layers in this codeword combination. Here the permutation P3
1 is used

because one level with codeword1 1 0 has been removed. Once1 1 0 is set, there is only

3 more places left for the permutation. The multiplication by 2 is used because there are2

peers whose codewords can be set to1 1 0. At this point, the algorithm returns to level 1 in

recursion. Since the codeword0 1 0 does not violate the duplicity constraint, a recursive

call to level2 ensures that this combined with codeword1 0 1 forms a valid combination.

This codewords can be arranged in2 · P3
1 = 6 ways. The next valid codeword is0 1 1

. Due to capacity constraint, only 2 peers can serve this codeword. Therefore, there are

2 · P3
0 = 2 ways the codeword combinations0 1 1 0 0 0 0 0 0 0 0 0can be arranged

to receive2 layers from parents. Finally, only 1 peer can server codeword 1 1 1. Hence it

can be arranged in only 1 way.

Algorithm

The algorithm works on the codeword vector. The algorithm follows the same iterative

method mentioned in Algorithm 5 and Algorithm 6 for outgoingand incoming codes re-

spectively. For a given permutation of vectors probabilityis computed in Algorithms 14

and 15. Algorithm 14 computes the probability on the internal edge for the incoming code

when messages go from parent to child and on the outgoing codewhen messages traverses

from child to parent. Algorithm 15 computes the probabilityon the edges. For incoming

code, this determines the probability when messages travelfrom child to parent. Similarly,

Algorithm 15 also computes the probability on the edges connected to the outgoing code

when parent send message to child.
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Algorithm 14 Compute Probability: Edge to Layer Probability

1: Initialize Matrix: BBB = M × L, M = 2L

2: Initialize: prob= 1
3:

4: Input: F, type : int{edge set}
5: Input: vectorPfff , type : int
6: Input: vectorClll , type : int
7: Input: edge[F][L ][2], type : double
8: Input: pIn[L ][2], type : double
9:

10: Output: pOut[L ][2], type : double
11:

12: for f = 0 to F do
13: m= Pf

14: for l = 0 to L do
15: prob *= edge[ f ][ l ][Bml ]
16: end for
17: end for
18: for l = 0 to L do
19: prob *= pIn[ l ][Cl ]
20: end for
21: for l = 0 to L do
22: pOut[ l ][Cl ] = prob/pIn[ l ][Cl ]
23: end for
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Algorithm 15 Compute Probability: Layer to Edge Probability

1: Initialize Matrix: BBB = M × L, M = 2L

2: Initialize: prob= 1
3:

4: Input: F, type : int{edge set}
5: Input: vectorPfff , type : int
6: Input: vectorClll , type : int
7: Input: edgeIn[F][L ][2], type : double
8: Input: pIn[L ][2], type : double
9:

10: Output: edgeOut[F][L ][2], type : double
11:

12: for f = 0 to F do
13: m= Pf

14: for l = 0 to L do
15: prob *= edgeIn[ f ][ l ][Bml ]
16: end for
17: end for
18: for l = 0 to L do
19: prob *= pIn[ l ][Cl ]
20: end for
21: for f = 0 to F do
22: m= Pf

23: for l = 0 to L do
24: edgeOut[ f ][ l ][Bml ] = prob/edgeIn[ f ][ l ][Bml ]
25: end for
26: end for

G Simulation

Preliminary simulation is performed with 20 peers in the network. The server peer is as-

signed a 3 Mbps bandwidth. A group of 25% of the peers, selected randomly, are assigned

a bandwidth of 500 Kbps, 1 Mbps, 1.5 Mbps. Rest of the peers areassigned 2 Mbps band-

width. Furthermore, the maximum number of incoming or outgoing connection is set to

3. We assume that each layer requires 150 Kbps bandwidth to deliver and there are up to a

total of 8 layers available. In this simulation, each peer seeking a parent randomly selects a

peer to be parent. However, this algorithm can be used together with any other parent-child
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Figure 41: Average layer deliver ratio and message complexity as peers join network
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(b) Layer delivery ratio for all peers in the network

Figure 42: Average layer delivery ratio of peers in the network in the presence of peer churning

selection methodology for the overlay construction. Fig. 41a shows the average layer de-

livery ratio for various layers as peers join the network. When there are up to 5 and 6 layers

available, the algorithm achieves maximum layer allocation. As the number of available

layers increase, average delivery ratio decreases. Up to layer 8, the algorithm achieves

95% average layer delivery. Fig. 41b shows the average number of messages exchanged

between any two peers before the algorithm converges. Sincethe algorithm proceeds in

rounds and convergence decision is reached after a cycle of parent-child-parent messages

is completed, total number of messages is always a multiple of 2.

Fig. 42 shows the average delivery ratio in the presence of peer churning. Fig. 42a

shows the total number of peers in the network. After every 5 seconds, between 1 to 4
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Figure 44: Number of messages exchanged between parent and child peers to reach convergence

peers join the network. They are randomly given a life-time between 5 to 30 seconds. The

left axis show the average layer delivery when up to 8 layers are available. Simulation

has also been performed with larger networks. Fig. 43 shows the average layer delivery

ratio as large number of peers join the network. In addition,Fig. 44 shows the number of

messages required for layer allocations to converge as peers join the network. Comparing

Fig. 41b and Fig. 44, it is clear that as more peers join the network, the rate of the number

of messages required slowly decreases.
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CHAPTER VII

CONCLUSION

An optimal rate allocation solution for P2P applications ispresented. For continuous-rate

video streams, non-linear convex optimization framework has been used to minimize the

aggregated distortion and thus to maximize the overall PSNRamong all peers in a P2P

network. The optimization process uses peer relaying price- unique in a P2P distribution

scenario - along with the network price. Simulation shows that using this double pricing

solution improves the aggregate rate distortion for all peers in the network and provides

a better video experience compared to a solution that uses relay and network prices sepa-

rately. A solution has also been developed for multi-path P2P networks.

For scalable video streams, a heuristic-based layer allocation algorithm for a P2P mesh

network has been developed. The algorithm targets to achieve close to optimal rate among

peers by considering load balancing and weight based layer allocation. This ensures that a

child evenly distributes layer allocation request among all its parents and a parent allocates

higher rates to a child that in turn has more children than other child. Simulation shows

that for up to 7 layers, the algorithm achieves a layer delivery ratio of 90% more.

Finally, a simple sum-product based message-passing approach has been developed to

solve the problem of scalable video optimization in the context of P2P mesh network. The

simple but elegant nature of the algorithm results from the fact that the network and video

properties are embedded in a set of codewords. Sum-product algorithm iteratively updates

the probability along each connecting edge based on these set of codewords. Results show

that peers achieve 95% or higher average layer delivery ratio with exchanging fewer than

20 messages between neighbors.
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