
SUPERVISED-REINFORCEMENT LEARNING FOR A

MOBILE ROBOT IN A REAL-WORLD

ENVIRONMENT

By

Karla G. Conn

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

August, 2005

Nashville, Tennessee

Approved:

Professor Richard Alan Peters, II

Professor Doug Fisher

 ii

ACKNOWLEDGMENTS

This work would not have been possible without the financial support from

DARPA/NASA-JSC Grant #NAG9-1446 and Grant #NNJO4HI19G. I would also like to

thank my advisor, Dr. Richard Alan Peters, for his support during the research process.

The students in the Center for Intelligent Systems (CIS) lab were especially helpful, and I

offer my sincerest gratitude to them: Stephen Gordon, Juan Rojas, Josh Phillips, Will

Dodd, Paul Fleming, Katherine Achim, Albert Spratley, and Hande Kaymaz-Keskinpala.

Flo Fottrell deserves special thanks for all her support. Outside the CIS lab, I would like

to thank Megan Rothney for being critical without being coarse and for being a genuine

friend. Outside of Vanderbilt University, I owe recognition to Nate Koenig for help with

the Player software and John Sweeney for help with the SICK laser.

Finally, let it be known that I thank God for all areas of my life, which I received

without cost and will give without cost. My parents have always been supportive of my

decisions in life, and I cannot thank them enough! I also thank my siblings and extended

family for their continued support as well. Lastly, to Aaron Welch, who has been my

comfort on a daily basis throughout this scholastic effort, and I thank him for his

unwavering encouragement.

 iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...ii

LIST OF TABLES...v

LIST OF FIGURES..vi

Chapter

I. INTRODUCTION ...1

II. BACKGROUND ...6

Biological Interest ..6

Reinforcement Learning ..12

Dynamic Programming..17

Monte Carlo Methods ..19

Temporal-Difference Learning ..20

Q-learning ..22

III. METHODS ..25

Problem Overview ...26

Environment...27

State-Action Pairs ..36

Learning Algorithm ...49

System Overview...54

Hardware..54

Software ...56

Experiment Procedure..58

IV. RESULTS ..62

Stability Experiment Results..63

Flexibility Experiment Results ..73

Comparisons between Experiment Types..83

V. CONCLUSIONS & FUTURE WORK..87

Determination of Optimal Experimental Conditions.................................87

Future Applications..90

 iv

Appendix

A. SUMMATION OF NOTATION (adapted from Sutton and Barto, 1998)92

BIBLIOGRAPHY..94

 v

LIST OF TABLES

Table Page

1. Available Actions...37

2. Delineation of State Representation into Binary Bits and their Meaning..............39

3. Actions in Binary and Decimal Form ..40

4. Progression of epsilon, ε , over all episodes..54

 vi

LIST OF FIGURES

Figure Page

1. Diagrams of the brain: pointing out the frontal cortex and the striatum (left)

(Brown et al., 2002) and indicating the cerebrum, cerebellum, thalamus,

 striatum, substantia nigra, and their position with respect to each other

(right) (Dreyer, 2004)...8

2. Basal ganglia circuit, including the dopamine pathway (Dreyer, 2004)..................9

3. Output of midbrain dopamine neurons during classical conditioning

experiments (adapted from (Schultz et al., 1997))...11

4. Agent and environment interaction in a reinforcement learning problem.............13

5. Q-learning algorithm with TD control (Sutton and Barto, 1998)23

6. Photo of outside of Feathergill Hall at Vanderbilt University (taken by author) ..28

7. Photos of Segway (left), Pioneer 2-AT named Skeeter (middle) (taken by

author), and ISAC (right) (taken from (CIS, 2005))..28

8. Two-dimensional diagram of the third floor with general areas and specific

rooms that house the robots marked ..29

9. Photo displaying the start position from the hallway facing the direction the

robot faces at the start of an episode with the robot in the start position for

reference (taken by author) ..30

10. Photo displaying the start position from the table and chair area with the

robot in the start position for reference (taken by author)30

11. Photo displaying the goal position from the table and chair area with the

robot in the goal position for reference (taken by author)31

12. Photo displaying the goal position from inside ISAC’s room with the robot

in the goal position for reference (taken by author)...31

13. Photo displaying the goal position from the hallway facing the table and

chair area with the robot in the goal position for reference (taken by author).......31

14. Two-dimensional diagram of the environment on the third floor with

measurements indicating the start position and goal position32

 vii

15. Two-dimensional diagram of the environment with measurements

indicating the observed boundaries..33

16. Photo displaying common obstacles in the environment used during

flexibility experiments (taken by author)...35

17. Two-dimensional diagram of the environment used for flexibility

experiments with obstacles and measurements marked...35

18. Diagram of the right, left, and front sections of the laser scan used to define

three bits in the state representation...43

19. Diagram of a robot with a blue SICK laser outline indicating the front end

with an overlay of how odometry and orientation readings are arranged..............45

20. Diagram of the environment with the goal region outlined...................................47

21. Reward function equations and terms..50

22. Skeeter from front (left) and back (right) ..55

23. Diagram of the software pathway for communication between laptops................56

24. GTK based GUI with buttons, text boxes, and display window............................57

25. Connect tab on the GTK GUI ..59

26. Teleoperation tab on the GTK GUI ...60

27. Supervised-RL tab on the GTK GUI ...61

28. Time results for all trials from stability experiments, 1.0=α63

29. Time results averaged over trials from stability experiments, 1.0=α64

30. Time results for all trials from stability experiments, 5.0=α64

31. Time results averaged over trials from stability experiments, 5.0=α65

32. Time results for all trials from stability experiments, 9.0=α65

33. Time results averaged over trials from stability experiments, 9.0=α66

34. Reward results for all trials from stability experiments, 1.0=α67

35. Reward results averaged over trials from stability experiments, 1.0=α67

 viii

36. Reward results for all trials from stability experiments, 5.0=α68

37. Reward results averaged over trials from stability experiments, 5.0=α68

38. Reward results for all trials from stability experiments, 9.0=α69

39. Reward results averaged over trials from stability experiments, 9.0=α69

40. Goal found results averaged over trials from stability experiments, 1.0=α70

41. Goal found results averaged over trials from stability experiments, 5.0=α71

42. Goal found results averaged over trials from stability experiments, 9.0=α71

43. Goal found results from stability experiments for all alpha values72

44. Matching results from stability experiments for all alpha values73

45. Time results for all trials from flexibility experiments, 1.0=α74

46. Time results averaged over trials from flexibility experiments, 1.0=α74

47. Time results for all trials from flexibility experiments, 5.0=α75

48. Time results averaged over trials from flexibility experiments, 5.0=α75

49. Time results for all trials from flexibility experiments, 9.0=α76

50. Time results averaged over trials from flexibility experiments, 9.0=α76

51. Reward results for all trials from flexibility experiments, 1.0=α77

52. Reward results averaged over trials from flexibility experiments, 1.0=α77

53. Reward results for all trials from flexibility experiments, 5.0=α78

54. Reward results averaged over trials from flexibility experiments, 5.0=α78

55. Reward results for all trials from flexibility experiments, 9.0=α79

56. Reward results averaged over trials from flexibility experiments, 9.0=α79

57. Goal found results averaged over trials from flexibility experiments, 1.0=α80

58. Goal found results averaged over trials from flexibility experiments, 5.0=α80

 ix

59. Goal found results averaged over trials from flexibility experiments, 9.0=α81

60. Goal found results from flexibility experiments for all alpha values82

61. Matching results from flexibility experiments for all alpha values82

62. Results from fastest time finding goal for a single episode for all experiments....83

63. Results from fastest time finding goal over all trials for all experiments..............84

64. Results from most reward finding goal for a single episode for all experiments ..85

65. Results from most reward finding goal over all trials for all experiments85

66. Goal found results for all alpha values for all experiments86

67. Matching results for all alpha values for all experiments86

 1

CHAPTER I

INTRODUCTION

Can machines be taught? If so, what are some methods for teaching machines a

task and how will the machine learn? Machine learning is a field with its focus on

systems that can learn through their own experiences and evaluation, resulting in

increased competence. Programmers could directly define all behaviors for completing a

successful task, but this process becomes quickly limited to well-defined condensed

problems. For example, consider the game of backgammon. At first it may seem simple

to teach a machine the rules and design a means to improve its play. However, the

number of board layouts for a game of backgammon becomes too large to teach the

machine directly from a programmer (Tesauro, 1995). The system needs to be able to

learn from its mistakes and successes independently; thus creating an autonomous learner

who can find the optimal solution through trial-and-error. As Oliver G. Selfridge (2000)

so eloquently summarized, “Find a bug in a program, and fix it, and the program will

work today. Show the program how to find and fix a bug, and the program will work

forever.”

Questioning how machines can learn and be taught often incites questions about

how humans learn. Studies have been conducted that show learning is driven by changes

in the expectations about future events such as rewards and punishments (Schultz et al.,

1997). Moreover, the signals from dopamine neurons have been pinpointed in the brains

of primates, which use temporal-difference error to calculate reward (Schultz et al.,

 2

1993). Replicating such biological processes is popular in engineering, because it helps

explain and further understand how human brains work and allows for the development

of more human-like machines.

Reinforcement learning (RL) is a type of machine learning technique that is very

attractive because of its connection to actual cognitive processes in primate and human

brains (Schultz et al., 1997). RL is based on observations from behavioral experiments

on how animals learn predictions and is designed to allow agents to evaluate their actions

through reinforcement (Sutton and Barto, 1998). Using RL, agents learn through

interaction with the environment and feedback, in the form of rewards, on their

performance. This interaction is used to optimize a solution towards a goal. RL

problems and solutions often incorporate other learning techniques to improve on the

original dynamic-programming algorithm. Such techniques include Q-learning (Watkins,

1989), which defines a value function, and Temporal-Difference (TD) learning, which

defines an error as the difference between two states. Both Q-learning and TD learning

will be explained in further detail later in this thesis.

Pure reinforcement learning algorithms are an example of unsupervised learning,

insomuch as they are designed so that the agent has little to no knowledge of the

environment or specific goal at the beginning of a learning trial. Unsupervised learning

methods allow an agent to learn through trial-and-error. For example, a person learning

how to juggle three balls on their own is unsupervised learning. The person will initially

drop all the balls but with practice will learn how to keep them in the air. Therefore, RL

on its own is a particular type of unsupervised learning that includes a reward function as

feedback from the environment. However, this feedback is used only to evaluate the

 3

states, not as any form of instruction for the agent. The agent is simply allowed to try

actions and the RL framework evaluates the state the agent is in based on reward and the

calculated value of the state. RL methods are set up so that the agent knows very little

about the environment or procedure to solve the task but learns by trying several actions.

The learning process is slow and computationally intensive. Therefore, RL researchers

have tried to find ways that an agent could be told more about the environment, goal, or

specific actions that would help achieve the goal whilst maintaining the optimization

advantage and learning-on-its-own concept of RL (Dahl et al., 2002; Provost et al., 2004).

One resulting solution uses supervised learning techniques and reinforcement learning

together (Rosenstein and Barto, 2004). Supervised learning involves some type of

external supervision, like being taught to ride a bike. A person learns from their own

attempts at riding the bike and from specific instruction on how to balance and pedal

from the supervisor, like a teacher. Supervisors can be used in conjunction with RL to

speed learning, especially in tasks that face inevitable failure without some prior

knowledge. Using RL on real robots presents a greater need for prior knowledge and a

descriptive reward function in order to achieve some level of success (Smart and

Kaelbling, 2002). The following work contains both a supervisor in the learning process

as well as a dense reward function to increase the likelihood of success.

This research focuses on machine learning, specifically testing reinforcement

learning techniques on real-world robots. Reinforcement learning is a promising

algorithm that has been tested in many simulated environments (Tesauro, G. 1995;

Randløv et al., 2000; Coulom, 2002; Dahl et al., 2002; Ghory, 2004; Provost et al., 2004)

but on a limited basis in real-world scenarios (Kimura and Kobayashi, 1997; Smart and

 4

Kaelbling, 2002; Martínez-Marín and Duckett, 2005). Far fewer reinforcement learning

experiments have been conducted in real-world environments (Tangamchit et al., 2002).

Such an environment poses more problematic hurdles than a simulated environment, such

as enlarged state spaces, increased computational complexity, significant safety issues

when using machines, and longer turnaround of results. This research measures how well

reinforcement-learning techniques perform when applied to real-world tasks, managed as

a discrete-event dynamic system (DEDS). Approaching a real-world experiment as a

DEDS addresses the hurdles of real-world environments, such as reducing the state space

and simplifying the complexity of the environment; thus setting the stage for a successful

experiment. This work tests reward anticipation models and reinforcement methods on a

robot to determine if it can learn through reinforcement to complete a novel task. The

focus is on a specific navigation task using an ActivMedia Pioneer 2-AT robot

(ActivMedia, 2001). Reward signals will be used as reinforcement during the trials. In

order to create a robot that can learn to associate reward as a consequence of its behavior

the robot must be able to explore its environment and exploit its existing knowledge.

These two objectives of exploration and exploitation are key factors in reinforcement

learning (Sutton and Barto, 1998). Reinforcement learning methods including temporal-

difference learning will be used in the construction of the robot’s learning architecture

(Rosenstein and Barto, 2004). The Pioneer 2-AT uses this architecture to shape its

decisions while exploring the environment through a SICK laser range finder. The laser

presents the world in an egocentric manner. The robot’s calculations about the

environment are all robot-centric, or with reference to itself. The Pioneer 2-AT uses its

 5

robot-centric view of the world while applying the RL algorithms to facilitate its

determination of the optimal path from an initial position to the goal position.

In summary, the following work is limited only by the influence of the references

listed below. That is to say, there are a plethora of articles and books on the subject of

reinforcement learning, spanning the languages of the world. In addition, each presents

variations on the original algorithm for approaching the creation of successful

applications. This basis sets the scope of this thesis and clarifies the influence on the

work. Otherwise, a reader may be misled that this work is born out of the influence of all

material ever written on the subject, which is beyond the scope of this thesis. With this

scope in mind, the thesis presents original experiments using RL algorithms on a mobile

robot in the real world. Chapter II of this thesis presents an overview of the

reinforcement learning algorithm, its connection to biological observations, and an

evaluation of RL techniques used to speed learning. Chapter III outlines the methods

used in these experiments; describing the task and experimental procedure used to

conduct the experiments. In chapter IV, the results of the experiments are presented,

comparing and contrasting between different experiment types. Chapter V discusses

conclusions that can be drawn from the results and offers suggestions on future

applications where this work can continue.

 6

CHAPTER II

BACKGROUND

Biological observations can serve as inspiration for robotics researchers. Through

these inspirations, the fields of engineering and neuroscience meet. Biological systems

show researchers what is possible and allow researchers to study the method behind the

process that governs a biological behavior (Murphy, 2000). David Marr (1982), a

neurophysiologist, outlined these levels of study into computational theory, which has

aided the robotics community in defining control architectures for machines. This thesis

work gathers motivation from behavioral (Mackintosh, 1983) and physiological (Schultz

and Romo, 1988; Schultz, 1992; Schultz et al., 1993) experiments that study the

prediction of reward events. The specific role of dopamine has been linked to a neuronal

response to the anticipation of reward (Schultz and Romo, 1988). Noticed in animals,

this predictive response supported Sutton’s development of a model of prediction of

reward to be used in engineering systems (Sutton, 1988). Sutton and Barto (1998)

represent this anticipation in math equations, and these equations can be used to study

learning patterns.

Biological interest

Robotic researchers strive to mimic biological systems, especially the human

brain, because of its adaptability to changing conditions and capacity to solve a variety of

problems with a robust success rate. One such phenomenon of the brain that has been

 7

studied and linked to mathematical descriptions and simulated replications is the role the

basal ganglia play in reward-dependent decision processes, studied in animals such as

rats (Beninger, 1983; Beninger, 1989; Robbins and Everitt, 1992) and monkeys (Schultz

et al., 1993; Houk et al., 1995). The basal ganglia are key sub-cortical brain nuclei that

include the substantia nigra in the midbrain, the subthalamic nucleus, the putamen, and

the caudate nucleus (Vu, 1998). Dopamine neurons in the midbrain send signals to the

striatum, a part of the brain linked to motor control, reward, and motivation (Hikosaka

and Wurtz, 1983a, b; Chevalier et al., 1985; Deniau and Chevalier, 1985). To better

understand the location of these areas of the brain, look at the left side of Figure 1. The

striatum is identified, and the proximity of it to the frontal cortex is shown. The right

side of Figure 1 is a different view of the brain with areas of the basal ganglia labeled.

Dopamine neurons release dopamine, a neurotransmitter, in the substantia nigra that

serves as a main input to the striatum, and noticeably contribute in the brain’s motor

control decisions, reward anticipation, and motivation. The dopamine pathway is shown

in Figure 2. This image indicates how the substantia nigra in the midbrain releases

dopamine to the putamen part of the striatum. All of these regions are involved in the

dopamine pathway which effects reward anticipation in the brain.

 8

Figure 1. Diagrams of the brain: pointing out the frontal cortex and the striatum (left)

(Brown et al., 2002) and indicating the cerebrum, cerebellum, thalamus, striatum,

substantia nigra, and their position with respect to each other (right) (Dreyer, 2004)

 9

Figure 2. Basal ganglia circuit, including the dopamine pathway (Dreyer, 2004)

The response of dopamine neurons has been studied in animals and found to

signal a prediction of reward (Schultz et al., 1997). Electrodes are placed in the basal

ganglia region of a monkey’s midbrain, where dopamine neurons abound. Then classical

conditioning experiments are conducted while the firing rate of the neurons is recorded.

Figure 3 shows the results of this study. The top section of the figure shows the results

from experiments in which a reward, in this case fruit juice, is given to the monkey. The

reward (marked as ‘R’ in the figure) occurs with no preceding stimulus, and the positive

 10

reaction reflects an unexpected reward. The monkey thinks the reward was better than

life before the reward, which is indicated in the positive change in dopamine levels. One

might conclude that dopamine neurons simply signal a reaction to reward. However,

further experiments show the monkey is actually predicting the onset of reward. Next, a

conditioned stimulus (marked as ‘CS’ in the figure) is introduced in the form of a small

light before juice is administered. At first, the dopamine response continues to increases

only after the juice; however, after several days the monkey learns that the light indicates

juice will be given soon. Firing rates for the dopamine neurons shift to increase

immediately following the appearance of the small light, and neuronal activity after the

reward is stable, as can be seen in the bottom left section of Figure 3. One might now

conclude that the dopamine neurons simply signal a reaction to the conditioned stimulus

and the reward, such as firing every time something good happens. However, in the

bottom left section of the figure, the dopamine neurons do not increase their firing rate

when the juice is delivered, because the monkey is not expecting any future reward when

the juice is given. Further experiments show that dopamine neurons actually predict

when future reward is expected. The last section of Figure 3, in the bottom right, shows

that the dopamine neurons can also diminish their response when a conditioned stimulus

appears but no reward is received. The dopamine neurons increase their firing rate when

the light appears (indicated as ‘CS’ on the figure), but when the time comes for the

reward, no reward is given, and the neurons actually decrease their firing rate. There is

negative response indicating the expected future reward (Schultz et al., 1997). So

dopamine neurons are signaling more than a reaction to positive rewards that occur, and

they signal more than a positive response to conditioned stimulus. Dopamine neurons

 11

signal a prediction in expected future reward, and this prediction can change from

positive to negative.

Figure 3. Output of midbrain dopamine neurons during classical conditioning

experiments (adapted from (Schultz et al., 1997))

These physiological studies are especially appealing because the prediction of

expected future reward is a major element in some noteworthy learning algorithms

studied by computer scientists. This connection joins the fields of engineering and

neuroscience as mentioned earlier. However, instead of inspirations crossing the

boundaries of the two disciplines, now there is some real evidence on how the areas can

meet. From behavioral studies, mathematical models have been developed that represent

this behavior conditioning during reward-dependent trials in terms of dopamine levels in

the basal ganglia. These studies have lead to mathematical representations of the

predictions of reward that dopamine neurons in the monkey brain produce and the animal

 12

uses as it learns. The equations represent the concept of temporal-difference (TD) error

(Sutton, 1988). TD error, like a dopamine neuron, signals a change in expected future

reward. This error is the main variable in temporal-difference learning, an often-used

addition in reinforcement learning algorithms. Reinforcement learning methods can be

applied to a variety of experiments involving states, actions, a policy, a reward function,

and an optimization task.

This work applies these biologically inspired control algorithms to experiments

using a mobile robot in a real-world environment. These experiments attempt to make

strides in investigating the usefulness of RL in the real world. RL is a promising and

therefore worthy algorithm to explore; furthermore, RL in the real world is an area worth

expanding. This work seeks to further expand mobile robot experiments in the direction

of adaptive control using RL in real-world environments.

Reinforcement Learning

In order to attempt such strides, one must understand the reinforcement learning

algorithm and useful ways of amending it for improved performance. Reinforcement

learning methods solve problems through reinforcement signals and trial-and-error.

Reinforcement learning can be thought of as a set of problems, with the objective of

finding an optimal solution. With RL an agent in an environment chooses actions to

transition the agent into the next state of the environment. This process is illustrated in

Figure 4. An agent is placed in an environment, and at each time step, t, an agent chooses

an action, a, for state, s, and receives reward, r (Sutton and Barto, 1998).

 13

Figure 4. Agent and environment interaction in a reinforcement learning problem

Given a state space S and a list of actions A, the objective in a RL problem is to

optimize the interaction with the environment. When approaching optimization, it can be

helpful to think of the environment as a Markov Decision Process (MDP). Furthermore,

RL problems are often defined as MDPs, because they satisfy the Markov property.

Satisfying the Markov property requires that the state representation include all relevant

information needed to make a decision, which can be more than the immediate sensor

data. Hidden state information in the environment does not affect the Markov property,

as long as the state representation includes relevant information. Essentially, the agent is

not held responsible for information unavailable to it, but the state representation is held

accountable for presenting enough information. Ultimately, most RL problems can be

solved by assuming they are MDPs (Kaelbling et al., 1996).

An MDP characterizes a task in a probabilistic environment with transition

probabilities between the states of the environment. In an MDP the probability of

 14

transitioning from one state to another with a chosen action is called a transition

probability. If the current state is s and an action a is chosen, the probability that the agent

transitions into state s′ is a

ssP ′ . Moreover, all transition probabilities that define the

changes between states in an MDP are represented in the following expression:

},|Pr{ 1 aassssP tt

t

t

a

ss ==== +′ (1)

If the state space and action space are finite, than the optimization task is defined as a

finite MDP. A large majority of RL problems, including the work presented in this thesis

are finite MDPs (Sutton and Barto, 1998). For tasks that terminate, as with this work, the

terminating states can be described as absorbing. All states that do not end the interaction

with the environment are non-absorbing states. Also, if the task ends in a finite number

of time steps with probability one, then the MDP is called absorbing (Dayan and

Watkins, 2001).

 RL allows the agent to optimize its ability to select the best actions that lead it to

the goal of the task. As the agent selects actions, the probability of choosing an action

that transitions the agent to the next best state increases. In terms of an MDP, if the

transition probability for one action is greater than another (i.e. 1a

ssP ′ >
2a

ssP ′) and s′ is the

next best state, than 1a is the more-optimal action to choose over 2a (Kaelbling et al.,

1996). A mapping from each state, Ss∈ , and action, Aa∈ , to the probability of

choosing that action in the state is called a policy, π . The objective in RL problems is to

optimize a policy for the task. For state, s the policy,)(sπ maps the probability of

selecting actions for the set of all actions available in that state,)(sA . With the policy,

 15

π , a value function, πV , can be made. In an MDP, the value function for state s is

defined as

}|{)(ssREsV tt == π
π

, (2)

where πE is the expected value of the reward using policy π . tR is the cumulative sum

of all discounted rewards:

∑
∞

=

+++++ =+++=
0

13

2

21 ...
k

kt

k

tttt rrrrR γγγ , (3)

where the final time step, ∞=T (Sutton and Barto, 1998). Therefore, the value function

can be written as









== ∑
∞

=
++

0

1)(
k

tkt

k ssrEsV γπ
π









=+= ∑
∞

=
+++

0

21

k

tkt

k

t ssrrE γγπ , (4)

where γ is the discount factor, 10 ≥≤ γ , for k time steps in the future. The discount

factor is used to regulate future rewards. If 0=γ , the agent is concerned with immediate

rewards only, disregarding future rewards. Therefore, future rewards become equally as

important as current rewards (Kaelbling et al., 1996). Setting 0=γ is not advantageous

for the type of RL problem set forth is this thesis, because the goal for the task is several

time steps into the future. The agent must associate a higher worth for future rewards.

Increasing γ ’s value toward one makes the agent understand the big picture of the

optimization task. Future rewards are weighted more heavily than if 0=γ , and the agent

tries to optimize the sum of all future rewards instead of focusing narrowly on immediate

rewards (Sutton and Barto, 1998). For this work, 9.0=γ . Future rewards are discounted

 16

slightly, but there is still a strong emphasis on maximizing the cumulative sum of all

rewards to reach a goal several time steps into the future.

Solving an RL problem means an optimal policy must be found to maximize

reward. Of all the policies for a problem, one will be better or equal to all other policies,

in terms of its expected return, tR . Even for problems that have more than one optimal

policy, all are represented *π . For problems in a finite MDP, an optimal policy can be

defined using the value function, and all optimal value functions are represented *V ,

)(max)(* sVsV π

π
= , (5)

for all Ss∈ . The optimal policy)(* sV is the function RL problems are trying to solve;

however, in practice sufficient approximations are made with methods discussed in the

next section to satisfy the definition of)(* sV (Sutton and Barto, 1998).

 Nevertheless, since *V is an optimal policy for a function, it must satisfy the

Bellman optimality equations:

},|{max)(* * aassREsV ttt
a

=== π









=== ∑
∞

=
++

0

1* ,max
k

ttkt

k

a
aassrE γπ









==+= ∑
∞

=
+++

0

21* ,max
k

ttkt

k

t
a

aassrrE γπ

},|)(*{max 11 aasssVrE tttt
a

==+= ++ γπ (6)

for all Ss∈ ,)(sAa∈ , and +∈′ Ss , where +S is the state space S including a terminal

state. The Bellman optimality equations represent the relationship between the value of a

state and the value of its successor states. The value of a state ({}E) under an optimal

 17

policy (*π) must equal the expected return (tR) when the best action (
a

max) is chosen

from that state (sst =). Solving the Bellman optimality equations is one way to solve

the reinforcement learning problem, but this route is rarely used directly. Solving these

equations for every state in the environment necessitates that the Markov property holds

true, the agent has complete knowledge of the environment, and there is enough

computational power to solve the equations. For most tasks, one or more of the

requirements cannot be satisfied. Even in tasks where the first two requirements are

fulfilled, the last one may not be plausible. Therefore, researchers often settle for

approximations when solving RL problems (Sutton and Barto, 1998).

Dynamic Programming

One approach to solving the value function is to apply dynamic programming

(DP) algorithms. These algorithms suffer from some of the same requirements of directly

solving the Bellman optimality equations, but their presentation is theoretically useful.

These methods form a foundation for later techniques (Sutton and Barto, 1998).

One DP approach is called policy iteration. This approach starts with a definition

for policy evaluation. Ultimately, policy evaluation and policy improvement steps

alternate to solve the optimal policy (Dayan and Watkins, 2001). First, policy evaluation

assigns arbitrary values to the initial value function, 0V , for all states. These values are

used to look one step ahead in (4). Even though they are set arbitrarily, the values are

considered known for the next state and used to calculate the values for the current state.

Each successive approximation of the value functions ..., 3,21 VVV is found by solving the

Bellman equation for πV , resulting in an iterative procedure:

 18

},|)({)(111 aasssVrEsV tttktk ==+= +++ γπ , (7)

where k is an iteration step. As ∞→k , kV converges to πV . Iterative policy evaluation

is the term for this algorithm. In order to improve on this policy, the action that

maximizes the right hand side of (7) must be found. Therefore, a new greedy policy, π ′ ,

is considered:

},|)({maxarg)(11 aasssVrEs tttt
a

==+=′
++

πγπ , (8)

where a is the action that maximizes the equation. This equation is called policy

improvement, and it follows that

},|)({max)(11 aasssVrEsV tttt
a

==+= ++

′ ππ γ , (9)

for all states. Now that there is a policy, π , that can be improved to make a better policy,

π ′ , this process can continue until an optimal policy is found. This sequence converges

to *V and follows the pattern:

**...210

210 VVVV EIIEIEIE →→→→→→→→ ππππ πππ
, (10)

where →E is the policy evaluation and →I is the policy improvement.

Furthermore, policy iteration is the name of this algorithm (Sutton and Barto, 1998).

Another dynamic programming method is called value iteration, because it

directly searches the optimal value function. This method is similar to policy iteration

but requires only one sweep of the state space (Kaelbling et al., 1996). Also, policy

evaluation and policy improvement are combined:

},|)({max)(111 aasssVrEsV tttkt
a

k ==+= +++ γ , (11)

for all states (Sutton and Barto, 1998).

 19

These two methods converge to an optimal policy for discounted finite MDPs, but

there are drawbacks to them. Dynamic programming algorithms require a complete

model of the environment, which may not be possible in some optimization tasks. Also,

DP is not ideal for problems with a large number of states, because their solution requires

sweeps over the entire state space (Sutton and Barto, 1998). These sweeps can take far

too long to process, especially if the task is designed for the agent to react quickly.

Monte Carlo Methods

 Another method for solving the optimal policy is called Monte Carlo, to signify

they are based on averaging of a complete return. The return is the reward function that

RL must maximize, represented in (3). Monte Carlo (MC) algorithms do not require a

complete model of the environment as DP methods do. Instead MC methods develop an

optimal policy by using sample interactions with the environment and taking the average

of known reinforcements. Therefore, MC methods evaluate on an episode-by-episode

basis, not on a step-by-step basis. Interaction with the environment must terminate in

order to calculate the return for all states. MC methods use several episodes to calculate

the average of the known reinforcements and form the value function, represented in (2)

(Sutton and Barto, 1998).

However, dynamic programming and Monte Carlo methods are not practical,

especially for real-world tasks with mobile robots. DP algorithms must have complete

knowledge of the environment, which is often not possible. Even in situations where

complete knowledge is possible, the algorithms suffer from the curse of dimensionality.

As states increase to describe the environment, the computational resources needed to

 20

manage the information drastically increase to the point that processing is not possible.

MC methods are also at a disadvantage because of this curse. Additionally, MC methods

need sample episodes to calculate the value function and may not be privy to information

from states not visited during the samples. Therefore, researchers turned to methods that

can solve the value function on a step-by-step basis without a complete model of the

environment.

Temporal-Difference Learning

 Sutton and Barto (1998) tout, “If one had to identify one idea as central and novel

to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning.”

TD learning combines aspects of both DP algorithms and MC methods. Like DP

algorithms, it performs value iteration in one-step and does not have to wait for the

completion of an episode. Like MC methods it can learn without a complete model of

the environment. Unlike these methods, TD learning can calculate the value function on

a step-by-step basis. The value of the current state can be calculated using the next

immediate reward and value of the next state. The values are updated according to the

following equation:

))()(()()(111 tktkttktk sVsVrsVsV −++= +++ γα , (12)

where alpha(α) is a constant step-size learning rate parameter, 10 ≤< α . This update

equation can be rewritten using the general form:

NewEstimate ← OldEstimate + StepSize[Target – OldEstimate], (13)

where [Target – OldEstimate] measures an error. In the constant-α Monte Carlo

method, the target is tR :

 21

)]([)()(tttt sVRsVsV −+← α , (14)

but the end of an episode must be reached to calculate)(tsV . In TD learning the target is

)(11 ++ + tt sVr γ :

)]()([)()(11 ttttt sVsVrsVsV −++← ++ γα , (15)

 where)()(11 ttt sVsVr −+ ++ γ represents the TD error, tδ (Sutton and Barto, 1998).

The update equation is used to evaluate how well the algorithm is estimating

)(tsV and how good of a choice the action is for the current state. If the error is positive,

the old estimate of)(tsV is lower than its actual value. Therefore, the algorithm needs to

update the value of being in that state to a higher value. Transitions between states are

based on the actions chosen. Therefore, if the error is positive, the action chosen is good

and should be chosen more often in that state. In MDP terms, the transition probability

for that action in the current state should increase. In TD learning terms, the value of that

state for the action is increased. Similarly, if the error is negative, the old estimate of

)(tsV is higher than its actual value. The action should not be favored for the state, and

the value of that state for the action is decreased. These estimations have advantages

over previously discussed algorithms, because they use previous knowledge and evaluate

the value function on a step-by-step basis. On the right hand side of (15),)(tsV is the

one from the previous interaction with the environment. Therefore, TD learning makes

use of acquired information that methods like MC do not (Sutton and Barto, 1998).

 22

Q-learning

 A popular algorithm that uses TD learning is called Q-learning (Watkins, 1989).

This method does not need a complete model of the environment and simplifies the

formation of the policy (Sutton and Barto, 1998). When evaluating the value function,

two mappings are necessary. One mapping connects the states to actions, AS → .

Another mapping connects the states to their real-numbered values, ℜ→S . Q-learning

combines this process to one mapping, ℜ→× AS (Kaelbling et al., 1996). Reducing

the mappings makes Q-learning more attractive to optimization tasks with large state

spaces. Combining the mappings creates some slightly different notation. The Q-

function, analogous to the value function, denotes the value of the state when the action is

taken,),(asQ . Q-learning uses state-action pairs to represent the value, instead of states

alone. This model-free optimization technique incorporates TD error:

)()(11 tttt sVsVr −+= ++ γδ , (16)

and is represented in the one-step equation:

ttttt asQasQ αδ+←),(),(, or equally,

)],(),(max[),(),(11 ttt
a

ttttt asQasQrasQasQ −′++← +
′

+ γα , (17)

where taking action ta in state ts at time t results in reward 1+tr being given and

transitions the agent into state 1+ts . The updated value of the state-action pair, on the left

hand side of 17, represents the expected value),(tt asQ of taking action ta in state ts to

move into state 1+ts and then acting optimally thereafter),(max 1 asQ t
a

′
+

′
, because

a′
max

indicates the action with the maximum estimate for state 1+ts up to time, t . Therefore,

 23

the algorithm adjusts its estimate for a state-action pair with each action the agent takes

(Dayan and Watkins, 2001).

The function is usually saved in tabular form with a list of the states and each

action. The Q-values are initially set arbitrarily. As interaction with the environment

continues, the values are updated according to (17). This process continues for each step

(transition from state s to s′) of an episode(Sutton and Barto, 1998). In RL problems,

an episode is one run from the start state to a terminal state. The terminal state could be

any state that ends interaction with the environment, which includes the goal state, a fail

state, or when a maximum number of steps has been reached in an episode. Once a

terminal state ends interaction with the environment, another episode can begin. At the

start of each episode, the start state is initialized, but the Q-values update from the

previous episode, following initialization from the first episode. A group of episodes,

with Q-values evolving for each episode, is called a trial. Several trails make up an

experiment. The sequence of the Q-learning algorithm is laid out in Figure 5.

Figure 5. Q-learning algorithm with TD control (Sutton and Barto, 1998)

Initialize),(asQ arbitrarily

Repeat (for each episode);

 Initialize s

 Repeat (for each step of episode):

 Choose a from s using policy derived from Q (e.g., ε -greedy)

 Take action a , observe r , s′

)],(),(max[),(),(asQasQrasQasQ
a

−′′++←
′

γα

 ss ′← ;

 until s is terminal

 24

The ε -greedy policy mentioned in Figure 5 uses the parameter epsilon (ε) to

vary when a random action is chosen and when the best action in terms of the Q-values is

chosen. Greedy policies derive their name because of their design to make selections

based solely on the maximum value of the available choices. An ε -greedy policy is not

purely greedy, because it does not select the action with the maximum Q-value all the

time. Selection of random actions versus an action with the maximum estimated Q-value

is based on the value of ε . Policies that use ε -greedy methods have been found to

improve Q-learning algorithms. Therefore, they are often used in RL solutions that apply

Q-learning (Sutton and Barto, 1998).

 25

CHAPTER III

METHODS

This research seeks to use RL as a learning architecture that develops an optimal

path between an initial state and goal state as well as an architecture that can adapt to

changes in the environment, requiring new paths between states and actions to be formed.

The system was tested using a Segway Robotic Mobility Platform (RMP) (Segway LLC,

n.d.) and a Pioneer 2-AT (ActivMedia, 2001) robot in an indoor navigation task. In each

experiment, the agent (in this case a mobile robot) had access to the same table of

supervisor actions. The supervisor consists of human-guided remote-controlled runs

through the navigation task and acts as a teacher for the initial stages of reinforcement

learning. Six experimental conditions were tested for comparison. The first three

experiments tested the robot’s stability in implementing a task it has been taught. The

second set of experiments included obstacles that obstruct the path to the goal and tested

the robot’s flexibility when completing the task with a change in the environment.

Among the stability and flexibility experiments, three values of alpha (α), the

learning rate in an RL problem, were examined. Conclusions are mixed as to what value

of α , which ranges from zero to one, is optimal for a given optimization task employing

RL techniques. Sufficient information was not found in the literature (consisting of all

works cited in the Bibliography section of this thesis) to answer what value of alpha

would be most beneficial for the navigation task studied in these experiments. Experts

say a high value of α (around 0.9) will make for quicker learning than lower values

 26

(Sutton and Barto, 1998). Some experiments use lower values (around 0.2) and show

that this value is necessary for slower learning (Smart and Kaelbling, 2002). Slower

learning should aid in a more flexible evaluation of the environment, because the Q-

values are not changing as dramatically as with a higher value of α . However, in a

paper comparing RL techniques, Crook and Hayes (2003) conclude, “The success of an

agent with 1-step backup learning algorithms [can be] heavily dependent on the value of

alpha (α), [even resulting in] no satisfying policies being learnt.” Since there is no

definite answer as to what value of α will yield the most optimal solution, investigations

into three values of alpha (specifically 0.1, 0.5, and 0.9) for each of the two types of

experiments were performed. These values define the six experiments conducted for this

thesis.

Evaluation of the results is based on measurements of time taken to reach the

goal, averaged across the trials in an experiment. Also, the number of goal states found

during an experiment is compared across trials. Assessments will also be made for how

closely the Q-learning table of optimal actions matches the supervisor’s table of actions

for a specific group of significant states. Analysis of the results seeks to find the

conditions which yield the highest success rate for finding the goal.

Problem Overview

The premise of the optimization task for these RL experiments is to have the robot

learn how to travel from an initial position on the third floor of Featheringill Hall on the

campus of Vanderbilt University to a goal position on the same floor using reinforcement

learning to determine the optimal path. Tests were also run to challenge the

 27

architecture’s ability to re-plan when the environment changes. RL methods take

advantage of exploring the environment while choosing the actions predicted as most

rewarding. Therefore, a robot using RL can learn the optimal path to a goal but also

retains the means to explore different solutions. In reinforcement learning experiments,

the states are mapped to actions that connect between the next states that define a policy

for the robot to use for a given task (Sutton and Barto, 1998). In this experiment, states

are defined at positions along the task that break up the journey into segments connected

by simple actions. The possible variables of raw data that can be used to define the states

include: distance and orientation readings from the robot’s wheel odometers, distance

readings from a SICK laser range finder, and the angle of a particular distance reading

from the laser scans. Preliminary data files were recorded using the real Segway robot in

a real-world environment and used as the basis for defining the states of the environment

for the reinforcement learning episodes using other real robots. Gazebo and Player/Stage

software were also used as simulation tools to test experiments before running trials with

the robot in the real world. Stage has been used as an environment for other RL

experiments on simulated mobile robots (Dahl et al., 2002; Provost et al., 2004), which

encouraged the desire to go a step further in this work and use RL in the real world to test

how well the theory holds in a real environment compared to a simulated one.

Environment

The environment for the RL agent in this work consisted of an area on the third

floor of Featheringill Hall (Figure 6) on the campus of Vanderbilt University. This floor

is home to the Center for Intelligent Systems (CIS) robotics research lab, which houses

 28

many mobile robots; including Segway and a Pioneer 2-AT robot named Skeeter, and a

humanoid robot, named ISAC (Intelligent Soft-Arm Control). See Figure 7 for pictures

of the mentioned robots and Figure 8 for a layout of the third floor with rooms marked

where the robots are kept, for easy reference to these locations and robots later.

Figure 6. Photo of outside of Feathergill Hall at Vanderbilt University (taken by author)

Figure 7. Photos of Segway (left), Pioneer 2-AT named Skeeter (middle) (taken by

author), and ISAC (right) (taken from (CIS, 2005))

 29

Figure 8. Two-dimensional diagram of the third floor with general areas and specific

rooms that house the robots marked

This work studied how a mobile robot with a RL algorithm could learn to travel

from a start position near the table and chair area (see photos in Figure 9-10) to the goal

position (see photos in Figure 11-13) near ISAC’s room. The robot must learn to move

forward in the starting hallway until it can turn right into a hallway perpendicular to the

hallway where the robot started, then travel down that hallway and turn left into the goal

position. The learning algorithm for these experiments consider the goal found when

three elements are satisfied: the robot is in close proximity to the goal location, the robot

is oriented in the direction facing the wall opposite ISAC’s room, and the laser scan

matches the stored laser scan taken in the goal position with some degree of certainty.

More specific definitions of these elements will be discussed later in this chapter.

 30

Figure 9. Photo displaying the start position from the hallway facing the direction the

robot faces at the start of an episode with the robot in the start position for reference

(taken by author)

Figure 10. Photo displaying the start position from the table and chair area with the robot

in the start position for reference (taken by author)

 31

Figure 11. Photo displaying the goal position from the table and chair area with the robot

in the goal position for reference (taken by author)

Figure 12. Photo displaying the goal position from inside ISAC’s room with the robot in

the goal position for reference (taken by author)

Figure 13. Photo displaying the goal position from the hallway facing the table and chair

area with the robot in the goal position for reference (taken by author)

 32

See Figure 14 for a two-dimensional illustration of the environment marked with the start

position, goal position, and dimensions. The middle of the robot’s base is centered on the

start position at the beginning of every episode.

Figure 14. Two-dimensional diagram of the environment on the third floor with

measurements indicating the start position and goal position

 33

The environment for the RL agent consists of the area marked with length and width

increments in Figure 15. These measurements do not designate the limit of the available

hallway area but are indicative of the absolute limits to which the robot traveled as

observed during experiments. Travel outside these bounds was never observed during

any of the 450 episodes conducted.

Figure 15. Two-dimensional diagram of the environment with measurements indicating

the observed boundaries

Movement beyond the marked area was discouraged based on safety constraints and

attraction to the goal area. Either the robot would travel into a fail state, a state in which

no action but stop was possible based on safety constraints; or, the robot would find the

goal position, which terminates the episode. The robot is constantly updating the Q-

 34

values to optimize the task of navigating from the start position to the goal position.

Therefore, rationally, the robot would not travel far beyond the area bounded in Figure

15, because these places do not lead it to the goal it is designed to find.

This area shown in Figure 15 is the environment the robot travels in during all

experiments. However, during flexibility experiments there are two obstacles placed in

the environment. The obstacles were chosen as common items from the area that would

block parts of the path from the start to goal position. The obstacles were placed to

interfere with the path and the laser scans, which are discussed in greater detail later,

during episodes of the flexibility experiments. One obstacle was a trashcan, placed along

the wall the robot faces in the goal position. The other obstacle was a chair, placed in

alignment with the goal position but along the wall opposite of the wall the robot faces in

the goal position. See Figure 16 for a picture of the environment with obstacles for

comparison to Figure 11 without obstacles. Figure 17 is a diagram of the environment

used in flexibility experiments with dimensions of the obstacles.

 35

Figure 16. Photo displaying common obstacles in the environment used during flexibility

experiments (taken by author)

Figure 17. Two-dimensional diagram of the environment used for flexibility experiments

with obstacles and measurements marked

 36

State-Action Pairs

 Typical of most artificial intelligence tasks, once an environment is set, states and

actions need to be defined. The states represent the environment to the agent (a mobile

robot for these experiments) such that it can choose actions to transition between states to

find the goal (Russell and Norvig, 1995). For these experiments the actions need to

transition the robot from one state, s to the next, s′ such that ss ′≠ . The actions need to

be big enough in order for the environment to look different to the robot at the end of an

action from the start of an action. However, the actions need to be small enough so that

the robot does not move beyond a key change in the environment. Actions should not

change the state drastically so that the robot can evaluate the change. Defining states and

actions is one area of RL problems that can be more art than science (Sutton and Barto,

1998).

The requirement for finding the right balance in state-changing actions may not

seem difficult for simulated environments, but the real world is more complex. In

simulated environments, such as computer chess-playing games, the state space describes

the game board, which completely defines the environment. Any valid chess move is an

action that will change the environment and the state description such that the state before

the move, s is different from the state after the move, s′ (ss ′≠). In real-world

environments, picking actions that will automatically change the state of the environment

is not guaranteed. Small movements may result in a state that looks the same as the

previous one (ss ′=), but larger actions may skip over key transition areas. For

experiments in this work, actions are defined that transition the robot into a new state

 37

with each movement of the wheels. See Table 1 for a list of the actions, the forward and

turn speed values for the actions, and the resulting movement.

Table 1. Available Actions

Action Forward Speed Turn Speed Movement outcome

Stop 0 mm/sec 0 º/sec 2 sec pause

Forward 300 mm/sec 0 º/sec 500mm forward

Turn Right 0 mm/sec -10 º/sec 45º right turn

Turn Left 0 mm/sec 10 º/sec 45º left turn

The selection of these actions strikes a balance between actions that are too small and

ones that are too large. Given the dimensions of the environment (roughly 18 meters by

20 meters) and the characteristics of navigation task (forward and turning movements),

the actions were chosen to allow the robot to move at each step of the task into an area

that looked different than the previous one based on the state definition. The explanation

of the state definition also contributes to a better understanding as to how these actions

regularly transition the robot from state s to state s′ during an episode.

In simulated environments such as the above-mentioned chess game, state

representation could describe the board with position information about each piece and

perhaps an account of the last move. This state representation completely describes all

relevant information about the environment; thus, satisfying the Markov property, which

is desirable in RL problems. In a real-world environment, packaging all details about the

environment for the agent into a state representation may not even be possible because of

the complexity of the environment. Any element not described in the state representation

is considered hidden state information, because it is hidden from the agent. RL problems

settle for assuming the Markov property is satisfied if the states represent enough

 38

information for the agent to make informed decisions. This assumption is not exclusive

to RL techniques but can also be found in many methods to artificial intelligence (Sutton

and Barto, 1998; Russell and Norvig, 1995).

Therefore, the state definition used in these experiments must include enough

information about the environment for the robot to make informed decisions when

choosing actions. The states need to describe the environment with enough detail such

that the agent (robot) can make an informed decision about the action to take in the state.

This definition strives to satisfy the Markov property while balancing between this

property and the curse of dimensionality. If too many elements about the environment

are used to describe a state, than the state space can become too large to effectively

search it during RL episodes.

In these experiments, several elements are used to define the states. The previous

action taken is included. The robot’s internal sensors report odometry and orientation

information, which are used to define the state of the environment. An external sensor, a

laser range finder is used to determine areas that are clear to move into and ones that are

blocked, which are used to define the states. Also, the data from the laser is used to

compare the current laser readings to the scan of readings taken in the goal position.

Lastly, the environment is divided into regions that form part of the state definition.

Ultimately, ten Boolean features make up the state representation. Furthermore, these ten

features correspond to bits which represent information about the environment. See

Table 2 for a condensed description of the bits and what they represent for a quick

reference guide.

 39

Table 2. Delineation of State Representation into Binary Bits and their Meaning

Bit Indicates Boolean Values

Most Significant Bit

Comparison of current

laser scan to stored

scan at goal position

(1 bit)

0 – Does not Match

1 – Matches

.

.

Current action

(2 bits)

00 – Stop

01 – Forward

10 – Turn Right

11 – Turn Left

.
Right side Clear

(1 bit)

0 – Obstacle, Blocked

1 – No obstacle, Clear

.
Front section Clear

(1 bit)

0 – Obstacle, Blocked

1 – No obstacle, Clear

.
Left side Clear

(1 bit)

0 – Obstacle, Blocked

1 – No obstacle, Clear

.

.

.

Orientation of the

robot in a Cardinal or

Ordinal Direction

(3 bits)

000 – North

001 – South

010 – East

011 – West

100 – Northeast

101 – Southeast

110 – Northwest

111 – Southwest

Least Significant Bit
Region

(1 bit)

0 – Not Goal Region

1 – Goal Region

The most significant bit indicates whether or not the current laser readings match

the stored readings from the goal position within a degree of certainty. The robot is

equipped with a SICK Laser Measurement System (LMS) – model LMS 200 (SICK,

2005). The SICK LMS 200, discussed in the Hardware section of this chapter, takes a

scan of the environment and returns 180 measurements. These measurements correspond

to 180 angles, uniformly distributed on the half-circle scan. Each reading returns the

distance in millimeters to the nearest obstacle from that angle. The stored measurements

from the goal position are compared to the current measurements from the laser during an

 40

episode of the experiments. For all 180 readings, if the current reading is within 300mm

of the stored reading, than that measurement counts towards the total percentage of the

scan that matches the stored scan. The most significant bit in the state representation

becomes true if more than 10% of the current scan matches within 300mm of the scan

stored from the goal position. This method of matching the scans has an advantage of

processing the information quickly. Observations found the method to be reliable in

matching the scan saved in the goal position to similar areas in the environment.

Matching the laser scan perfectly to the goal scan was not necessary for finding the goal,

because finding the goal relies on satisfying three factors, only one of which deals with

matching the laser scan. The 10-bit binary representation of the state with a matching

laser scan and all other bits false would be written as 1000000000, which converts to the

decimal number 512. Likewise, a state with all bits false, including the most significant

bit signifying if the laser scan matches the goal scan, would be written 0000000000,

which is 0 in decimal form. More examples of the state representation will be given as

the individual bits are explained.

The next two bits indicate the action taken to transition the robot from the

previous state into its current state. See Table 3 for a list of the actions and how they are

represented in binary and decimal form.

Table 3. Actions in Binary and Decimal Form

Action
Binary

Representation

Decimal

Conversion

Stop 00 0

Forward 01 1

Turn Right 10 2

Turn Left 11 3

 41

In the initial state for all episodes, the action is stop. If the agent chooses to move

forward from the initial state, s the action bits would change from 00 to 01 in the next

state, s′ . For example, if the initial state, s had all other bits true, the action bits would

signify the stop action, and the state representation in binary would be 1001111111,

which is 639 in decimal form. If the robot chooses to move forward and all other bits

remain true, the new state s′ would be 101111111, or 767.

Data from the laser scan is used in the definition for the next three bits, each

indicating a section of the scan as clear (1) or blocked (0). The laser range finder returns

straight-line distances from each angle and the x and y components of each distance. The

first of these bits reports on obstacles to the right side of the laser. The laser is attached

and centered on the front of the robot, so this bit equally describes obstacles to the right

of the robot. The right side is defined by straight-line readings between angles 18 and

112. If at least one laser scan reading between 18º and 112º is less than 1000mm, then

the bit is false. The last of these bits reports on obstacles on the left side of the robot. If

at least one straight-line laser scan reading between 68º and 162º is less than 1000mm,

then the bit is false. The middle of these three bits represents obstacles in front of the

laser. This bit is determined using the x components of the laser scan data. If at least one

laser scan reading between angles 68º and 112º is less than 1450mm, then the bit is false.

For example, a state with an obstacle within 1000mm blocking the right and left side and

all other bits false would be written 0000100000, which is 32 in decimal form. In state

32 only the front section is clear. Furthermore, a state with all sides clear and all other

bits false would be 0001110000, or 112.

 42

The definitions for the right, front, and left side of the laser were designed based

on the actions, the robot’s dimensions, and the position of the laser range finder. The left

and right motions are 45º turns, so the right and left sections had to at least be 45º spans

from the leftmost and rightmost edges of the robot. For a right turn, the robot’s front

section (112º to 68º) and rightmost side (68º) had to move freely through at least 45º to its

right (23º); moreover, 5º of leeway were added on to make the final span 112º to 18º.

Likewise, a left turn required the front (68º to 112º) through leftmost side (112º) to move

through at least 45º of clear room to the left (157º), and adding 5º of leeway made the

final front and left span 68º to 162º. For the forward action the front span of the robot

had to be clear so that it could move forward without hitting an obstacle. This section is

defined as the span of laser readings from 68º to 112º, and the x-components of the laser

readings at these angles were used to determine if obstacles were in front of the robot.

The three sections with the laser sensor and robot outline are illustrated in Figure 18. The

front side of the Segway measures 0.6m; similarly, the distance across Skeeter’s front

including the wheels that extend out from the main body measure 0.56m. The laser sat

roughly 0.1m forward from the center of the base on both robots. Therefore, initial tests

with the Segway could be used to design the safety thresholds used in the experiments on

Skeeter.

 43

Figure 18. Diagram of the right, left, and front sections of the laser scan used to define

three bits in the state representation

These three bits and the thresholds that define them also serve to uniquely

describe different areas of the environment as distinguishable states and provide a ribbon

of safety between the robot and its surroundings. The thresholds for detecting an obstacle

were designed based on the distance needed to complete an action in that direction and

added safety. Initially, the thresholds were based on Segway’s safety pipes (Figure 7)

plus any distance traveled in the action itself (e.g. forward distance or turning radius).

These thresholds were tested on Skeeter and found to be efficient on both conditions of

distinctively describing areas of the environment and preventing collisions with

obstacles. Ultimately, the successful forward threshold was composed of:

900mm + 500mm + 50mm = 1450mm, (18)

 44

where the first measurement is for safety, the second for the forward movement, and the

third for the possible overshoot in the movement. The Segway robot with the necessary

safety pipes creates a larger turning radius than Skeeter; however, the left and right

thresholds were applicable for breaking up the environment into unique states. The

learning algorithm maps one optimal action to each state. Therefore, the environment

needs to be described in states so that different actions can be taken in different areas.

The 1000mm threshold on the bits that describe an obstacle-free area to the right or left

serves to describe different areas of the environment as different states. For example, the

robot starts each episode in a hallway. This area of the environment needs to be

described by a different state than a more open area so that different actions can be

mapped to these states. The initial state might be represented by the following state in

binary, 0000100100 and decimal, 36 form. Only the front section is clear; therefore, the

robot should choose to move forward safely. These thresholds do not want to restrict the

robot so much that it cannot explore most areas of the environment, but they are designed

to give the states some uniqueness and some account as to the possible safe actions

available. The thresholds create a balance between allowing the robot to explore the

environment without colliding into an obstacle while uniquely describing different areas

of the environment, which may restrict the available actions that can be executed safely.

 The three bits next to the least significant bit describe the direction that the front

of the robot is facing. Cardinal and ordinal directions were used to establish eight areas,

which help define unique states in the environment. The Player software, discussed later

in this chapter, was used to gather data from the robot. The robot’s internal sensors

report its pose, position and orientation, in the form of an x-position, y-position, and

 45

theta. The angle reported in theta was used to determine the direction the robot was

facing. See Figure 19 for a diagram of the orientation angles and odometry directions

with respect to the front of the robot.

Figure 19. Diagram of a robot with a blue SICK laser outline indicating the front end

with an overlay of how odometry and orientation readings are arranged

Segway and Skeeter use the same scheme for reporting pose information. In the start

position, the robot reports theta equal to 0º. Based on a map of the campus the relative

position of the robot in the start position was east, so a heading of 0º was set to east. If

the robot chose to turn right from the start position, a turn angle would be calculated as

the robot moved until it had turned 45º. Theta at the end of a turn right action from the

 46

start position would be around 315º, which corresponds to a southeast direction. If the

robot was facing southeast and all other bits were false, the state would be 0000001010 in

binary and 10 in decimal form. See Table 2 for a list of all cardinal and ordinal directions

and their representation in binary bits.

Accommodations were made to handle the switch between 0º and 360º on the

orientation circle. Ultimately, the eight orientation sections meant east corresponded to

any theta between 22.5º, exclusive, and 0º, inclusive, as well as any theta between 337.5º,

inclusive, and 360º, inclusive. Following clockwise southeast consisted of theta values

between 337.5º, exclusive, and 292.5º, inclusive. South fell between 292.5º, exclusive,

and 247.5º, inclusive. Southwest was accessed as being between 247.5º, exclusive, and

202.5º, inclusive. Likewise, west was defined between 202.5º, exclusive, and 157.5º,

inclusive. Northwest was comprised of theta values between 157.5º, exclusive, and

112.5º, inclusive. North rested between 112.5º, exclusive, and 67.5º, inclusive. The

eighth section defined northeast between 67.5º, exclusive, and 22.5º, inclusive.

The least significant bit represents whether or not the robot is in close proximity

of the goal position, based on odometry. The environment is broken up into two regions,

the goal region and any location not in the goal region. Odometry readings in the x and y

direction (see Figure 19) are used to compare whether or not the robot is within the goal

region. Thresholds of 3m in either direction set the boundaries of the region. See Figure

20 for a diagram of the environment with the goal region marked.

 47

Figure 20. Diagram of the environment with the goal region outlined

If this bit is true the robot is within the goal region, but if this bit is false the robot is

somewhere other than this region. In these experiments, the robot begins in the start

position with readings (0mm, 0mm, 0º), which signify (odometry reading in the x

direction, odometry reading in the y direction, orientation) or to coincide with Figure 19

(Xpos(), Ypos(), Theta()). Calculations are made during episodes of the experiments to

determine how far the robot has traveled in both the x and y direction. These distances

are compared with stored information about the goal position to determine if the robot is

within the bounds of the goal region around the goal position. For example, if the robot

is in the goal region but all other bits are false, that state would be written 0000000001 or

1 in decimal form.

 48

The ten binary bits mean there are 1024210 = states that make up the state space,

S , for the environment. Four actions make up the set of all actions,)(sA , for the state

space. Therefore,),(asQ , which holds values for all state-action pairs, contains 4096

values. The 4096 state-action pairs represent the full set of all combinations that need to

be tested to exhaustively evaluate the RL problem. However, full exhaustive searches,

evaluating every action for every state, are not often used in RL, nor are they required in

order to evaluate the state-action space for finding an optimal path to the goal. For

example, some actions selected in the real world would result in the robot colliding with a

wall. Restricting such actions does not diminish evaluation of the RL problem, instead it

aides in quicker learning by reducing the state-action space that needs to be evaluated.

Researchers try to reduce the search space if possible in order to quicken learning

(Huber and Grupen, 1999). Reducing the state space in this work to avoid collisions is

beneficial from a search aspect as well as for safety reasons. If the robot’s laser sensor

detects an obstacle in the front section and the policy chooses the forward action, then the

robot would travel forward and most likely collide with the obstacle. Consider state 36,

which in binary equals 0000100100. In this state, the left and right sides are blocked.

More specifically, at least one laser reading between 68º and 162º measures less than

1000mm, and at least one laser reading between 18º and 112º measures less than 100mm.

The front section is clear, which means all laser readings between 68º and 112º measure

1450mm or more. The possible choices of action include 0 (stop), 1 (move forward), 2

(turn right), and 3 (turn left) (See Table 3); which correspond to evaluating Q(36,0),

Q(36,1), Q(36,2), or Q(36,3). Choosing action 2 (right turn) or action 2 (left turn) may

result in a collision with an obstacle in the environment, such as a wall. Therefore, in

 49

order to prevent such collisions, any state-action pair with a blocked region that chooses

an action in the direction of a blocked region is not allowed. An added bonus is this

safety precaution reduces the state-action space. Out of the 4096 state-action pairs, 1536

involve states that report an obstacle in the direction of the action. Therefore, restricting

these state-action pairs results in a 37.5% reduction of the state-action space.

Learning Algorithm

 The learning algorithm used involved a reward function and policy.

Reinforcement learning algorithms always incorporate some type of reward function,

which can be either sparse or dense. When using a sparse reward function, the

environment returns reward with a value of 0 for most states and perhaps a positive

reward of 1 in the goal states. Dense reward functions use mostly non-zero values. In

this thesis, a dense reward function is used in order to make the robot more

knowledgeable about the optimization task. The policy chooses actions in order to

maximize the reward function. In this thesis a supervisor is included into the policy

along with random choices and choices based on the best evaluation in the Q-table.

 The reward function returns a highly positive reward for a goal state, a moderately

negative reward for a fail state, and a slightly negative reward for all other states. The

reward changes the value of the state-action pair that transitions the robot into the next

state and is based on the category of this state. Ultimately, it is desirable for an action to

transition the robot from one state to a goal state. Therefore, the reward is sent to

commend the state-action pair that moved the robot into a goal state. This relationship is

 50

represented in equation 14. See Figure 21 for the categories of states and their associated

reward function.

Figure 21. Reward function equations and terms

Whether or not the goal is found is not directly represented in the state definition

for a connection to the reward. An action transitions the robot into a new state, which is

evaluated for a reward. Only then does the algorithm check if the goal has been found,

based on three criterions: current laser scan must match stored laser scan from the goal

position, robot must be in the goal region, and robot must be in the East direction.

Therefore, the goal could be found in and represented by more than one state definition,

with bit changes such as different actions transitioning the robot into a goal state. If all

criteria for a goal state are satisfied, then the reward for the goal is given for the state-

action pair.

The reward for a goal state is set at a highly positive value to counter any

accumulated negative reward during an episode of the task. A fail state is one in which

the robot cannot move to the right, left, or forward based on the safety constraints. If the

robot transitions into a fail state, interaction with the environment ends the episode.

Reward Function

r(goal) = 2000

r(fail) = -(nmax*Tstep) = -(256*1.75) = -448

r(other) = -(n*Tstep) = {-1.75, -3.5, -5.25...}

Terms

n – step number

nmax – maximum steps before terminal state

Tstep – represents uniform time between steps

 51

Therefore, this state returns a significant negative reward to condemn the state-action pair

that moved the robot into a fail state. The design of the reward for a fail state is based on

the specific task but remains flexible if the task should change. The nmax term is the

maximum number of steps allowed before an episode is terminated. Basically, if 256

steps are taken in this task without a goal or fail state found, the episode has gone on long

enough, and the robot should begin a new episode. For this navigation task, 256 steps are

well enough steps to find a terminal state. However, if the task should change to be

longer or shorter, the nmax term could easily be changed to reflect the different task length

while maintaining the current representation in the fail state reward. The reward for all

other states is slightly negative based on a set term Tstep. This term represents time in the

reward function without explicitly doing so. No extra calculations are taken for each

state visited along an episode to determine the time from the start of an episode to that

state. Instead, Tstep represents a uniform time constant. For the actions available in this

work, at least 1.75seconds passes for each step of an episode. Therefore, the reward

function for states other than a fail or goal indicates the robot is taking too much time to

find the goal. Ultimately, the robot is trying to find the optimal path from the start

position to the goal position based on time.

 In order to find the goal in the shortest amount of time; thus, maximizing the

reward signal, the policy must develop optimal state-action pairs to transition the robot

from the start position to the goal position. In reinforcement learning, the policy trades

off between exploration and exploitation. The robot exploits the information it knows

about the visited states while exploring new states to reevaluate what it knows and

eventually learn the most optimal path through the states to the goal. In this work,

 52

suggested actions for a Supervisor Table and random actions are used to explore the

environment and the Q-table is relied upon to exploit what the robot has learned thus far

in the episode.

 The Supervisor Table is a list with 1024 entries, each corresponding to the states

of the environment used in this work. The values listed represent the action the

Supervisor suggests as the best action to take in that state. See Table 3 for the

correspondence between actions and their representative numbers. The Supervisor Table

is initialized with zeros. Then a systematic population of the table takes place based on a

hierarchy of actions and specifics about the task. The hierarchy makes forward actions

most desirable, right turn actions the next desirable movement, and left turn actions least

desirable. For states with bits that indicate a forward action is possible (i.e. no obstacles

in the front section of the robot), the action is set to forward. For states with bits that

indicate there are obstacles to the left and front of the robot, the Supervisor Table lists a

value for the turn right action. This systematic population continues to follow the

hierarchy for all combinations of obstacle bits. Another systematic assignment of states

to actions takes place for states that indicate the robot is in the goal region. A preference

is established that the robot should turn left in the goal region to face the correct East

direction for the goal state. Lastly, a remote-controlled run through the task from the

start position to the goal position influences the Supervisor Table. A human, specifically,

the author, guides the robot through the task, during which, the states and actions are

recorded in the Supervisor Table. The Supervisor Table is considered an optimal policy

for this navigation task. Using this table alone in this specific task, an agent would find

the goal with probability one. Other research has shown advanced controllers, such as

 53

the Supervisor Table in these experiments, to improve and quicken learning (Smart and

Kaelbling, 2002; Martínez-Marín and Duckett, 2005).

 In the policy, suggested actions from the Supervisor Table were selected with a

probability of 50%. The other half of the time, actions were divided up between random

selection and actions with the highest Q-value in the Q-table for the particular state

according to an ε –greedy method. At the beginning of an episode, the robot knows

nothing about the task, so the policy should choose more random actions. As the number

of episodes increases over a trial, the robot has a better evaluation of the values in the Q-

table. Therefore, the robot can rely more on the Q-table to choose actions near the end of

a trial of several episodes. The variable governing the balance between choosing random

actions and actions from the Q-table is called epsilon, ε . This variable decreases based

on the total number of episodes in a trial and the current episode according to the

following equation:

))(0.1(totalcurrentstart episodeepisode ÷−∗= εε , (19)

where 9.0=startε and 15=totalepisode for these experiments. See Table 4 for the linear

progression of ε over the 15 episodes used in all experiments in this work. The random

selection between the four available actions is divided uniformly and based on a random

number generated using the computer’s clock. Given a state, the greedy portion of the

policy compares the Q-values of all the state-action pairs in that state and returns the

action associated with the highest value. This method is termed greedy because it selects

based on the highest value only – no other measure.

 54

Table 4. Progression of epsilon, ε , over all episodes

currentepisode ε

0 .90

1 .84

2 .78

3 .72

4 .66

5 .60

6 .54

7 .48

8 .42

9 .36

10 .30

11 .24

12 .18

13 .12

14 .06

No matter how the action is chosen the Q-values are updated to evaluate the state-

action pair; thus, learning progresses. Therefore, the Q-values are evaluated over each

episode until the end of the trial, each episode allowing the agent to evaluate and improve

the policy closer and closer to the optimal policy for finding the goal. The analysis of

how well this learning algorithm evaluated the task is presented and discussed in Chapter

IV.

System Overview

Hardware

These experiments were carried out on a Pioneer 2-AT (all terrain) robot named

Skeeter, pictured from the front in Figure 22 (left). As depicted, the robot is equipped

 55

with a SICK laser range finder that reports distance readings from the laser to obstacles

across a 180 degree span.

Figure 22. Skeeter from front (left) and back (right)

The laser was powered using two rechargeable sealed lead batteries. The laser

range finder sensor connects to a laptop computer through an RS422 serial interface. The

RS422 connection is a high-speed connection that requires a special serial-to-USB

converter. The EasySync RS422 converter is used in the hardware configuration for

these experiments. Two Dell laptops were needed to relay commands and data during the

experiments. One, a Dell Inspiron 1150 was the control (not pictured), sent commands to

the laptop that road along Skeeter during experiments, pictured from the back in Figure

22 (right). Both systems run the Gentoo Linux operating system, which is needed for the

specific software.

 56

Software

 Player/Stage software, developed at the University of Southern California, runs

only in Linux and provides us with a straightforward way to connect to the robot and its

sensors (Gerkey et al., 2003). Stage is a two-dimensional simulation package that was

not used in these real-world experiments. Player, a robot server, contains configuration

files for many commonly used robots and sensors and acts as a link to the hardware (i.e.

SICK laser range finder and robot) for sending commands to the motors and returning

data from the range finder.

Additionally, NDDS (Network Data Distribution Service) was incorporated into

the communication pathway in these experiments (RTI, 2004). See Figure 23 for a

diagram of the pathway.

Figure 23. Diagram of the software pathway for communication between laptops

 57

NDDS is a communication protocol developed by Real-Time Innovations for real-time

data sharing. Any variables that need to be passed between the laptops are managed

using publish and subscribe commands from NDDS. GTK was also used to create a user-

friendly GUI for these experiments. With the GTK libraries, one can create interfaces

with buttons, interactive text boxes, and even image windows for data feedback. See

Figure 24 for one of tabs of the GUI used in these experiments.

Figure 24. GTK based GUI with buttons, text boxes, and display window

 58

The upper right corner of the tab displays a window with an outline of the robot and

SICK laser range finder and plots of distance data from the laser range finder that is sent

from the Skeeter laptop through the communication pathway. All these pieces of

software are used to remain consistent with the trends in the CIS lab.

Experiment Procedure

 Six experiments were conducted in this work, using two environments and testing

three values of the learning rate in each environment. Each experiment consisted of 5

trials of a set of fifteen episodes. As previously mentioned, an episode consists of a run

from the start position to a terminal state, either a goal, fail, or maximum number of

steps, whichever comes first. The procedure involved a series of steps using the GUI

designed for these experiments. The GUI consists of three tabs. The first prepared the

communication link between the two laptops (see Figure 25).

 59

Figure 25. Connect tab on the GTK GUI

The Skeeter robot was selected to connect to and the IP address of the laptop was entered.

Once communication between the laptops was established, commands could be sent to

the robot and data information received. The second tab allowed for the remote-

controlled run through the task so that the actions taken during the run were saved in the

Supervisor Table (see Figure 26).

 60

Figure 26. Teleoperation tab on the GTK GUI

This tab has labels that use the word “teleoperation.” For clarity, the human-guided run

through the task was remote-controlled and not strictly teleoperation, as defined by

Murphy (2000). Teleoperation means the operator is only using an interface to guide the

device. In these experiments, the operator had access to more information than data

displayed on the GUI, so it was more like driving a remote-controlled car to select the

actions to complete the task.

 The third tab was used in the bulk of these experiments (see Figure 27.) In this

tab interactive drop-down menus and text boxes are used to set the parameters of the

experiment.

 61

Figure 27. Supervised-RL tab on the GTK GUI

The type of environment was selected for labeling files. Then the number of episodes

and trials were set along with the value of alpha, the learning rate. Once the parameters

are set, the experiment can begin. During the experiment, distance readings from the

laser range finder are posted on the display window as feedback to the operator.

 62

CHAPTER IV

RESULTS

 The results in these experiments are taken from 450 episodes of the robot

traversing through the navigation task. Analysis is broken up by environment, the value

of alpha, and the parameter being measured. Graphs of the time in seconds taken from

the start to a terminal state for each episode are shown for the 5 trials performed under

each experimental condition alongside graphs of the average time. The total accumulated

reward is also graphed for each trial and the average of the trials. Comparisons are made

between experiments with differing alpha values for the percent of episodes in which a

goal state was found. Also, comparisons are made between the value of alpha that

yielded a Q-table that most resembles the Supervisor Table. The Q-table is evaluated

with each episode until the end of a trial. Therefore, the Q-table at the end of the 15
th

episode would reflect the most-informed conclusions about which actions should be

taken in given states. A set of 36, often-visited states were chosen to compare the actions

the Supervisor Table would take in those states against the Q-table at the end of a trial.

The percent of state-action pairs that matched is averaged across the 5 trials, and the

results are graphed to compare which experimental condition lead to a Q-table that

matches the Supervisor Table closest.

 63

Stability Experiment Results

 The following are graphs of the time taken during a trial. The data is calculated

during each episode of the experiment. A start time is recorded from the computer’s

clock at the beginning of an episode. Once an episode terminates, the end time is

recorded. The difference, measured in whole seconds, is taken. Figure 28 shows the

time measurements per episode for every trial performed in the stability environment

with 1.0=α , and Figure 29 shows the average of these measurements across trials.

Stability, Alpha = 0.1

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 28. Time results for all trials from stability experiments, 1.0=α

 64

Stability, Alpha = 0.1

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 29. Time results averaged over trials from stability experiments, 1.0=α

Figure 30 shows the time measurements per episode for every trial performed in the

stability environment with 5.0=α , and Figure 31 shows the average of these

measurements across trials.

Stability, Alpha = 0.5

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 30. Time results for all trials from stability experiments, 5.0=α

 65

Stability, Alpha = 0.5

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 31. Time results averaged over trials from stability experiments, 5.0=α

Figure 32 shows the time measurements per episode for every trial performed in the

stability environment with 9.0=α , and Figure 33 shows the average of these

measurements across trials.

Stability, Alpha = 0.9

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 32. Time results for all trials from stability experiments, 9.0=α

 66

Stability, Alpha = 0.9

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 33. Time results averaged over trials from stability experiments, 9.0=α

The next set of figures graph the total accumulated reward over the set of

episodes. A record of total reward is summed during an episode, adding the reward

received at each step along the episode from the start state to a terminal state. If an

episode ends in a goal state, the highly positive reward usually counter-balances the

negative reward accrued over the time of the episode. Figure 34 shows the reward

measurements per episode for every trial performed in the stability environment with

1.0=α , and Figure 35 shows the average of these measurements across trials.

 67

Stability, Alpha = 0.1

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 34. Reward results for all trials from stability experiments, 1.0=α

Stability, Alpha = 0.1

-3000

-2500

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 35. Reward results averaged over trials from stability experiments, 1.0=α

Figure 36 shows the reward measurements per episode for every trial performed in the

stability environment with 5.0=α , and Figure 37 shows the average of these

measurements across trials.

 68

Stability, Alpha = 0.5

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 36. Reward results for all trials from stability experiments, 5.0=α

Stability, Alpha = 0.5

-3000

-2500

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 37. Reward results averaged over trials from stability experiments, 5.0=α

Figure 38 shows the reward measurements per episode for every trial performed in the

stability environment with 9.0=α , and Figure 39 shows the average of these

measurements across trials.

 69

Stability, Alpha = 0.9

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 38. Reward results for all trials from stability experiments, 9.0=α

Stability, Alpha = 0.9

-3000

-2500

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 39. Reward results averaged over trials from stability experiments, 9.0=α

 As explained before, an episode can end in states other than the goal state.

However, the goal is the objective of the task. Therefore, the percent of episodes that

ended in a goal state under a particular experimental condition is noteworthy. The

percent is taken by summing the number of episodes in a trial that ended in a goal state

and dividing that number by 15, the total number of episodes. In a reinforcement

 70

learning problem, the theory would lead one to foresee that the goal would be found more

often at the end of a trial than at the beginning. Therefore, calculations were made to find

the percentage of when a goal state was found in episode 1, 2, 3,...,15, averaged over 5

trials. The overall average of finding a goal state is calculated for comparison between

experimental conditions. Figure 40 shows the trial average of percent of times the goal

was found, isolated by episode, for the stability experiment with 1.0=α .

 Stability, Alpha = 0.1

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 40. Goal found results averaged over trials from stability experiments, 1.0=α

Figure 41 shows the trial average of percent of times the goal was found, isolated by

episode, for the stability experiment with 5.0=α .

 71

 Stability, Alpha = 0.5

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 41. Goal found results averaged over trials from stability experiments, 5.0=α

Figure 42 shows the trial average of percent of times the goal was found, isolated by

episode, for the stability experiment with 9.0=α .

 Stability, Alpha = 0.9

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 42. Goal found results averaged over trials from stability experiments, 9.0=α

 72

Figure 43 shows the average of finding the goal over all episodes for the stability

experiment across values of alpha.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Goal Found Percentage, Stability

Alpha=0.1, 16.00%

Alpha=0.5, 24.00%

Alpha=0.9, 33.33%

Figure 43. Goal found results from stability experiments for all alpha values

 The last graph represents how well the final Q-table at the end of a trial matches

the Supervisor Table, based on a set of 36 common states. A percentage is calculated by

summing the number of states with matching actions and dividing that number by 36, the

total number of states in the comparison set. Figure 44 shows the percent matching

results for each value of alpha, averaged over the 5 trials preformed in the stability

environment.

 73

0.00

5.00

10.00

15.00

20.00

Percent Matching to Human Operator, Stability

Alpha=0.1, 11.67%

Alpha=0.5, 13.89%

Alpha=0.9, 16.11%

Figure 44. Matching results from stability experiments for all alpha values

Flexibility Experiment Results

 The results for the flexibility experiments are processed via the same methods as

the stability experiment results. Figure 45 shows the time measurements per episode for

every trial performed in the flexibility environment with 1.0=α , and Figure 46 shows

the average of these measurements across trials.

 74

Flexibility, Alpha = 0.1

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 45. Time results for all trials from flexibility experiments, 1.0=α

Flexibility, Alpha = 0.1

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 46. Time results averaged over trials from flexibility experiments, 1.0=α

Figure 47 shows the time measurements per episode for every trial performed in the

flexibility environment with 5.0=α , and Figure 48 shows the average of these

measurements across trials.

 75

Flexibility, Alpha = 0.5

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 47. Time results for all trials from flexibility experiments, 5.0=α

Flexibility, Alpha = 0.5

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 48. Time results averaged over trials from flexibility experiments, 5.0=α

Figure 49 shows the time measurements per episode for every trial performed in the

flexibility environment with 9.0=α , and Figure 50 shows the average of these

measurements across trials.

 76

Flexibility, Alpha = 0.9

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im

e

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 49. Time results for all trials from flexibility experiments, 9.0=α

Flexibility, Alpha = 0.9

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

T
im
e

Figure 50. Time results averaged over trials from flexibility experiments, 9.0=α

Figure 51 shows the reward measurements per episode for every trial performed in the

flexibility environment with 1.0=α , and Figure 52 shows the average of these

measurements across trials.

 77

Flexibility, Alpha = 0.1

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 51. Reward results for all trials from flexibility experiments, 1.0=α

Flexibility, Alpha = 0.1

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 52. Reward results averaged over trials from flexibility experiments, 1.0=α

Figure 53 shows the reward measurements per episode for every trial performed in the

flexibility environment with 5.0=α , and Figure 54 shows the average of these

measurements across trials.

 78

Flexibility, Alpha = 0.5

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 53. Reward results for all trials from flexibility experiments, 5.0=α

Flexibility, Alpha = 0.5

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 54. Reward results averaged over trials from flexibility experiments, 5.0=α

Figure 55 shows the reward measurements per episode for every trial performed in the

flexibility environment with 9.0=α , and Figure 56 shows the average of these

measurements across trials.

 79

Flexibility, Alpha = 0.9

-9000

-7500

-6000

-4500

-3000

-1500

0

1500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Figure 55. Reward results for all trials from flexibility experiments, 9.0=α

Flexibility, Alpha = 0.9

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

R
e
w
a
rd

Figure 56. Reward results averaged over trials from flexibility experiments, 9.0=α

Figure 57 shows the trial average of percent of times the goal was found, isolated by

episode, for the flexibility experiment with 1.0=α .

 80

Flexibility, Alpha = 0.1

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 57. Goal found results averaged over trials from flexibility experiments, 1.0=α

Figure 58 shows the trial average of percent of times the goal was found, isolated by

episode, for the flexibility experiment with 5.0=α .

Flexibility, Alpha = 0.5

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 58. Goal found results averaged over trials from flexibility experiments, 5.0=α

 81

Figure 59 shows the trial average of percent of times the goal was found, isolated by

episode, for the flexibility experiment with 9.0=α .

Flexibility, Alpha = 0.9

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Episodes

G
o
a
l
F
o
u
n
d
 P
e
rc
e
n
ta
g
e

Figure 59. Goal found results averaged over trials from flexibility experiments, 9.0=α

Figure 60 shows the average of finding the goal over all episodes for the flexibility

experiment across values of alpha.

 82

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Goal Found Percentage, Flexibility

Alpha=0.1, 21.33%

Alpha=0.5, 21.33%

Alpha=0.9, 22.67%

Figure 60. Goal found results from flexibility experiments for all alpha values

Figure 61 shows the percent matching results for each value of alpha, averaged over the 5

trials preformed in the flexibility environment.

0.00

5.00

10.00

15.00

20.00

Percent Matching to Human Operator, Flexibility

Alpha=0.1, 14.44%

Alpha=0.5, 13.89%

Alpha=0.9, 17.78%

Figure 61. Matching results from flexibility experiments for all alpha values

 83

Comparisons between Experiment Types

 To better compare the time results against a baseline, one autonomous episode

was run with the policy choosing actions from the Supervisor Table only. This episode

found the goal in 58seconds. This information is used to compare how well the episodes

faired in finding the goal in the least amount of time. Comparisons are made between the

baseline and the single best, based on time, episode that ended in a goal state, for a

particular experimental condition. The time measurements taken to find a goal state are

then averaged across all trials under the condition for comparison. Figure 62 graphs the

best time observed for an episode ending in a goal state against the baseline for each

experimental condition, and Figure 63 shows the average time when the goal was found

across trials.

Single Episode, Fastest Time Finding Goal

59

63

67

61

65

83

58

0 20 40 60 80 100

Time(sec.)

Supervisor baseline

Stability, Alpha = 0.1

Stability, Alpha = 0.5

Stability, Alpha = 0.9

Flexibility, Alpha = 0.1

Flexibility, Alpha = 0.5

Flexibility, Alpha = 0.9

Figure 62. Results from fastest time finding goal for a single episode for all experiments

 84

Average Time Finding Goal Across Trials

104

110

125

115

114

161

58

0 50 100 150 200

Time(sec.)

Supervisor baseline

Stability, Alpha = 0.1

Stability, Alpha = 0.5

Stability, Alpha = 0.9

Flexibility, Alpha = 0.1

Flexibility, Alpha = 0.5

Flexibility, Alpha = 0.9

Figure 63. Results from fastest time finding goal over all trials for all experiments

Similar comparisons are made for the accumulated reward during the episode in

which actions were used from the Supervisor Table only. This episode amassed a total

reward of 1667.5. Comparisons are made between the baseline and the single best, based

on reward, episode that ended in a goal state, for a particular experimental condition. The

reward measurements taken to find a goal state are then averaged across all trials under

the condition for comparison. Figure 64 graphs the best reward observed for an episode

ending in a goal state against the baseline for each experimental condition, and Figure 65

shows the average reward when the goal was found across trials.

 85

Single Episode, Maximum Reward Finding Goal

1667.5

1632.5

1517

1667.5

1632.5

1517

1667.5

1400 1450 1500 1550 1600 1650 1700

Reward

Supervisor baseline

Stability, Alpha = 0.1

Stability, Alpha = 0.5

Stability, Alpha = 0.9

Flexibility, Alpha = 0.1

Flexibility, Alpha = 0.5

Flexibility, Alpha = 0.9

Figure 64. Results from most reward finding goal for a single episode for all experiments

Average Reward Finding Goal Across Trials

1144.1

1217.6

1029.8

1069.1

1194.0

85.6

1667.5

0.0 500.0 1000.0 1500.0 2000.0

Reward

Supervisor baseline

Stability, Alpha = 0.1

Stability, Alpha = 0.5

Stability, Alpha = 0.9

Flexibility, Alpha = 0.1

Flexibility, Alpha = 0.5

Flexibility, Alpha = 0.9

Figure 65. Results from most reward finding goal over all trials for all experiments

Figure 66 shows the trial average of finding the goal over all episodes for each

experimental condition.

 86

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Goal Found Percentage, All

Alpha=0.1, 16.00%

Alpha=0.5, 24.00%

Alpha=0.9, 33.33%

Alpha=0.1, 21.33%

Alpha=0.5, 21.33%

Alpha=0.9, 22.67%

Figure 66. Goal found results for all alpha values for all experiments

Figure 67 shows the trial average of percent matching results for each experimental

condition.

0.00

5.00

10.00

15.00

20.00

Percent Matching to Human Operator, All

Alpha=0.1, 11.67%

Alpha=0.5, 13.89%

Alpha=0.9, 16.11%

Alpha=0.1, 14.44%

Alpha=0.5, 13.89%

Alpha=0.9, 17.78%

Figure 67. Matching results for all alpha values for all experiments

 87

CHAPTER V

CONCLUSIONS & FUTURE WORK

Determination of Optimal Experimental Conditions

Analyzing the above time and reward graphs for each type of experiment and

different value of alpha, one would expect to notice certain trends. The two objectives

for the optimization task, which are also directly connected, are to find the goal in the

least amount of time and maximize the total accumulated reward. At the beginning of a

trial the robot knows little about the task, and the Q-table has only been initialized. As

episodes increase over a trial, further evaluations of the Q-table take place. Therefore,

one would expect the trend for the time taken to reach the goal to decrease across a trial

while the reward increases. This trend was observed in some conditions in these

experiments, but not all trials showed a strong adherence to the possible trends. Some

reasons why most trials did not follow this trend is due to a high possibility of finding a

fail state during any region of the environment and need to evaluate a large number of

state-action pairs. The data suffers under the fact that a fail state could be found quicker

than a goal state. One example holding to the decreased time and increased reward trend

over episodes was observed in experiments in the stability environment with 1.0=α .

However, this desirable result may not forecast continued superiority on other evaluation

parameters, discussed shortly.

Scrutiny was focused more on the overall number of times the robot could find

the goal. Testing was conducted to determine which experimental setting yielded the

 88

most episodes ending in a goal and Q-table values that lead to the closest match to the

Supervisor Table actions. From the conclusions, the Q-table with the best evaluation of

the task could be selected for use in completing the task without random actions.

Comparing results of how often the goal was found and how well the final Q-table

matched the Supervisor Table lead to similar conclusions for both types of experiments.

The results from the flexibility experiments were not significantly less productive than

results conducted in the stability environment.

 The obstacles placed in the environment during the flexibility experiments were

meant to challenge the robot’s ability to find the goal. Even though the obstacles were

not designed to block the robot from reaching the goal, the hypothesis would be that the

different environment setting would conclude with less-optimal results than the stability

experiments. Actually, the results proved better at finding the goal in the case when

1.0=α , as compared to stability experiments when 1.0=α . The cases when 5.0=α

and 9.0=α , the percent for finding the goal is comparable to results from similar

stability experiments even though there are additional obstacles in the flexibility

environment.

Observations during testing showed that the obstacles played to both sides of the

success rate. On some occasions the obstacles presented a fail state that would not exist

in the stability experiments. In other cases the obstacles created states that encouraged

actions toward the goal. Therefore, the comparable results may be balanced by the fact

that the obstacles actually narrowed the environment toward the optimal path to the goal.

For example, if the robot approached the hallway with the goal in a southeast direction,

the trashcan may block the left side of the laser scans, which encourages a right turn

 89

towards the middle of the hallway with the goal. Also, the chair is in the goal region, an

area in which the robot must be facing east to find the goal. The chair could block the

right side of the laser scan, which encourages a left turn, which could lead the robot to

turn east in the goal region and most likely find the goal. However, the obstacles can also

put the robot in a fail state that would not occur if they were removed. If the robot is

close to the west-side wall in the hallway with the goal and turns toward the chair, it is

likely that a leg of the chair would cross the safety constraint barriers and signal a fail

state. In a stability experiment, the robot would be able to turn or move forward, because

there would be 500mm of uninterrupted space that the chair occupies in the flexibility

experiments. All in all, the obstacles actually improved performance over the stability

trials when 1.0=α and were comparable when 5.0=α and 9.0=α .

From the above results, one can conclude that the experiments which were most

successful were under conditions with 9.0=α , especially for matching the Supervisor

Table. This deduction seems reasonable, based on the literature as well. In general, a

high value of alpha should lead to quick learning of the optimal policy. Also, this

observation could be due to the design of the reward function used in these experiments.

A dense reward function was used to describe the objectives of the task to the robot. A

high value of alpha leads to drastic changes in the Q-table with each updated evaluation;

therefore, most of the value designed in the reward function is used to update the Q-table.

The combination of a dense reward function with a high value of α seems to lead to a

better evaluation of the optimal actions to take in a given state in order to complete the

task. Therefore, both environments report the closest matching of actions to the

Supervisor Table when 9.0=α .

 90

Future Applications

Reinforcement learning continues to intrigue robotisists for its ability to learn an

optimal policy for a task and adapt to changing environments. RL can also be used as a

component in other learning architectures and does not have to be the main learning

algorithm to aid an agent to learn. Therefore, future experiments could use the algorithm

to evaluate parts of a task that are probabilistic but perhaps not every action in a task. For

example, these experiments used a small number of simple actions. Future work on

mobile robots could include more sophisticated actions. The state space for these

experiments was very large compared to the number of episodes that could be run and the

number for states necessary to visit in order to find the goal. Therefore, improvements

could be made to reduce the state space describing the environment in order to allow the

algorithm to evaluate enough state-action pairs to converge toward an optimal policy for

finding the goal.

Also, one could modify the safety constraints such that a band of safety remains

between the robot and an obstacle but such that fail states are not possible. Then the

experiments could be evaluated on how quickly the robot found the goal, because an

episode would end only in a goal state. Examples from other RL experiments involve an

environment in which the agent can locate the goal from the start position or a sensor is

fixated in a heading towards the goal. Such exploitations of the task were not used in

these experiments but could be used in future work to quicken learning and quicken

evaluation of different parameters.

The experimental parameter studied in these experiments was the learning rate,

α , for two different environments. However, there are several variables that could be

 91

varied for evaluation of how the change affects performance of finding the goal and

evaluating the Q-table. For example, the policy selected actions from the Supervisor

Table half of the time. An interesting study would be to investigate if changing this

selection percentage to 10% corresponds to an equal drop in performance. Also, a linear

progression of ε was used in the policy in these experiments. Adjusts to the value of ε

could be tested, which may result in a quicker finding of a goal state in this task.

 92

APPENDIX A

SUMMATION OF NOTATION (adapted from Sutton and Barto, 1998)

t discrete time step

T final time step of an episode

ts state at t

ta action at t

tr reward at t , dependent, like ts , on 1−ta and 1−ts

tR return (cumulative discounted reward) following t

π policy, decision-making rule

S set of all nonterminal states

+S set of all states, including the terminal state

)(sA set of actions possible in state s

ℜ set of real numbers

a

ssP ′ probability of transition from state s to state under s′ action a

)(sV π value of state s under policy π (expected return)

)(* sV value of state s under the optimal policy

tVV , estimates of πV or *V

),(asQπ value of taking action a in state s under policy π

),(* asQ value of tacking action a in state s under the optimal policy

tQQ, estimates of πQ or *Q

 93

SUMMATION OF NOTATION, continued

tδ temporal-difference error at t

γ discount-rate parameter

ε probability of random action in ε -greedy policy

α learning-rate parameter

 94

BIBLIOGRAPHY

ActivMedia Robotics, Inc. (2001). Pioneer 2/PeopleBot Operations Manual, v9, October.

Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain

Research Reviews, 6(2):173-196.

Beninger, R. J. (1989). Dissociating the effects of altered dopaminergic function on

performance and learning. Brain Research Bulletin, 23:365-371.

Brown, J., Bullock, D., and Grossberg, S. (2002). How the Basal Ganglia and Laminar

Frontal Cortex Cooperate in Action Selection, Action Blocking, and Learning.

Department of Cognitive and Neural Systems and Center for Adaptive Systems,

Boston University. [Online]. Available:

http://mbi.osu.edu/2002/ws2materials/bullock.pdf

Chevalier, G., Vacher, S., Deniau, J. M., and Desban, M. (1985). Disinhibition as a basic

process in the expression of striatal function. I. The striatonigral influence on

tecto-spinal/tecto-diencephalic neurons, Brain Research, 334:215-226.

CIS, Center for Intelligent Systems. (2005). A Biologically Inspired Adaptive Working

Memory System for Efficient Robot Control and Learning. Cognitive Robotics

Laboratory Current Research Projects. [Online]. Available:

http://eecs.vuse.vanderbilt.edu/CIS/crl/wm.shtml

Coulom, R. (2002). Feedforward neural networks in reinforcement learning applied to

high-dimensional motor control. In 13
th
 International Conference on Algorithmic

Learning Theory, pages 402-413.

Cook, P. A. and Hayes, G. (2003). Could Active Perception Aid Navigation of Partially

Observable Grid Worlds?. Lecture Notes in Computer Science, Vol. 2837:72-83,

March.

Dahl, T.S., Matarić, M. J., and Sukhatme, G. S. (2002). Adaptive Spatio-Temporal

Organization in Groups of Robots. In Proceedings of the 2002 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1044-

 1049, Lausanne, Switzerland.

Dayan, P., and Watkins, C. J. C. H. (2001). Reinforcement learning. Encyclopedia of

Cognitive Science. MacMillan Press, London, England.

Deniau, J. M. and Chevalier, G. (1985). Disinhibition as a basic process in the expression

of striatal functions. II. The striato-nigral influence on thalamocortical cells of the

ventromedial thalamic nucleus. Brain Research, 334:227-233.

 95

Dreyer, J. (2004). The Basal Ganglia and the Reward Pathway. University of Fribourg,

Switzerland. [Online]. Available:

http://www.unifr.ch/biochem/DREYER/dreyer1.html

Gerkey, B., Vaughan, R., and Howard, A. (2003). The Player/Stage Project: Tools for

Multi-Robot and Distributed Sensor Systems. In Proceedings of the International

Conference on Advanced Robotics, pages 317-323.

Ghory, I. (2004). Reinforcement Learning in Board Games. Technical Report CSTR-04-

004, Department of Computer Science, University of Bristol, May.

Houk, J., Adams, J., and Barto, A. (1995). Models of Information Processing in the Basal

Ganglia, Houk, J., Davis, J., Beiser, D., and Schultz, W. editors, MIT Press,

Cambridge, Massachusetts.

Hikosaka, O., and Wurtz, R. H. (1983a). Visual and occulomotor functions of monkey

substantia nigra pars reticulata. III. Memory contingent visual and saccade

responses. Journal of Neurophysiology, 49:1268-1284.

Hikosaka, O., and Wurtz, R. H. (1983b). Visual and occulomotor functions of monkey

substantia nigra pars reticulata. IV. Relation of substantia nigra to superior

colliculus. Journal of Neurophysiology, 49:1285-1301.

Huber, M., and Grupen, R. A. (1999). A Hybrid Architecture for Learning Robot Control

Tasks. In AAAI 1999 Spring Symposium: Hybrid Systems and AIModeling,

Analysis and Control of Discrete + ContinuousSystems. Stanford University, CA.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement

Learning: A Survey. Journal of Artificial Intelligence Research, 4:903-910.

Kimura, H. and Kobayashi, S. (1997). Reinforcement Learning for Locomotion of a

Two-linked Robot Arm. In Proceedings of the 6th European Workshop on

Learning Robots, pages144-153.

Mackintosh, N. J. (1983). Conditioning and Associative Learning. Oxford University

Press, New York.

Marr, D. (1982). Vision: Computational investigation into human representation and

processing of visual information. W. H. Freeman and Co., San Francisco.

Martínez-Marín, T. and Duckett, T. (2005). Fast Reinforcement Learning for Vision-

guided Mobile Robots. In Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, pages 1425-1430, Barcelona, Spain.

Murphy, R. (2000). Introduction to AI Robotics. MIT Press, Cambridge, Massachusetts.

 96

Provost, J., Kuipers, B. J., and Miikulainen, R. (2004). Self-Organizing Perceptual and

Temporal Abstraction for Robot Reinforcement Learning. In AAAI-04 Workshop

on Learning and Planning in Markov Processes, 79-84.

Randløv, J., Barto, A. G., and Rosenstein, M. T. (2000). Combining Reinforcement

Learning with a Local Control Algorithm. In Proceedings of the 17th

International Conference on Machine Learning.

Robbins, T. W. and Everitt, B. J. (1992). Functions of dopamine in the dorsal and ventral

striatum. Seminars in Neuroscience, 4:119-127.

Rosenstein, M.T. and Barto, A. G. (2004). Supervised actor-critic reinforcement learning.

In Learning and Approximate Dynamic Programming: Scaling Up to the Real

World. pages 359-380. John Wiley & Sons, Inc., New York.

RTI, Real-Time Innovations, Inc. (2004). Can Ethernet be Real-Time? Network Data

Delivery Service (NDDS). NDDS Data Sheet & Product Brief. [Online].

Available: http://www.rti.com/products/ndds/literature.html

Russell, S. and Norvig P. (1995). Artificial Intelligence: A Modern Approach. Prentice

Hall, Englewood Cliffs, NJ.

Schultz, W. (1992). Activity of dopamine neurons in the behaving primate. Seminal

Neuroscience, 4:129-138.

Schultz, W., Apicella, P., and Lunjberg, T. (1993). Responses of monkey dopamine

neurons to reward and conditioned stimuli during successive steps of learning a

delayed response task. Journal of Neuroscience, 3:900-913.

Schultz, W., Dayan, P., and Montague, R.

R. (1997). A neural substrate

of prediction and

reward. Science 275:1593-1599.

Schultz, W. and Romo, R. (1988). Neuronal activity in the monkey striatum during the

initiation of movements. Experimental Brain Research, 71:431-436.

Segway LLC. (n.d.). About the Segway Robotic Mobility Platform. [Online]. Available:

http://www.segway.com/segway/rmp/

Selfridge, O. G. (2000). Comment: AI's greatest trends and controversies. In Hearst, M.

A. and Hirsh, H. editors, IEEE Intelligent Systems & Their Applications, 15(1).

SICK, Inc. (2005). Product Information – Laser Measurement Systems. [Online].

Available: http://ecatalog.sick.com/Products/

Smart, W. D. and Kaelbling, L. P. (2002). Effective reinforcement learning for mobile

 97

robots. In Proceedings of the 2002 IEEE International Conference on Robotics

and Automation.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences.

Machine Learning, 3(1):9-44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press, Cambridge, Massachusetts.

Tangamchit, P., Dolan, J., and Khosla, P. (2002). The Necessity of Average Rewards in

Cooperative Multirobot Learning, In IEEE Conference on Robotics and

Automation.

Tesauro, G. (1995). Temporal-difference learning and TD-Gammon. Communications of

the ACM, 38(3).

Vaughan, R. T., Howard, A., and Gerkey, B. P. (2002). Stage User Manual 1.3.

Player/Stage Project. [Online]. Available: http://playerstage.sourceforge.net,

November.

Vu, D. (1998). Basal ganglia [Lecture handouts]. University of New South Wales.

[Online]. Available: http://www.geocities.com/medinotes/basal_ganglia.htm,

September, 21
st
.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD Thesis. University of

Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279-292.

