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CHAPTER I

INTRODUCTION

Empirical measurements of the masses, radii, temperatures, and luminosities of

pre-main sequence (PMS) stars and brown dwarfs are valuable for the understanding

of star formation. They delimit the Initial Mass Function, defining the outcome

of star formation and providing the energy scale for the formation process. They

represent an observational tie to the theoretical evolution models that describe the

chronology of stellar evolution, and set the timescales for circumstellar disk evolution

and planet formation. In order for these models to accurately describe the physics of

PMS evolution, they must be tested against observed properties of young stars and

brown dwarfs (e.g., Mathieu et al., 2007).

Mass is the physical property of stars that is most important in determining

the course of their evolution. Most stellar masses, however, are derived from evolu-

tionary tracks based on converting the measured spectral types and magnitudes to

model-dependent calculations of temperatures and luminosities. Thus, the empirical

determination of PMS masses represents the link between observations and theoreti-

cal evolutionary models. The calibration of these models can be done by measuring

the dynamical masses, with precisions of at least a few percent, and jointly obtaining

stellar properties like luminosities and effective temperatures or radii (Torres et al.,

2010). Only three systems allow for dynamical mass measurements to be acquired:
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young stars with a circumstellar disks, binary systems with both double-lined spec-

troscopic and astrometric orbits, and double-lined eclipsing binary (EB) systems.

In the case of the first type of system mentioned above, the dynamical mass of

the parent star can be determined from the disk’s rotation curve (e.g., Prato et al.,

2002). The derived mass depends on the inclination of the disk with respect to the

observer, which can be estimated from the morphology of the observed disk emission.

In the second case, direct mass measurements for both binary components is possible.

The spectroscopic orbit solution provides the mass ratio of the system, as well as the

period and information about the size and eccentricity of the orbit. The inclination

of the system can be determined from the astrometric orbit solution, which sets the

scale of the system and thus the absolute masses of the components (e.g., Boden et al.,

2005). Lastly, eclipsing binaries provide both masses, and radii for each component,

and the ratio of the effective temperatures (see Chapter IV.2). Eclipsing binaries are

rare, because their orbits have to be oriented such that we see the components eclipse

one another.

There are only a handful of eclipsing binary systems where both components are

found to be in their PMS phase, and which constitute most of the direct measure-

ments, independent of theoretical models and distance determination, against which

the earliest stages of theoretical evolutionary models can be compared and tested.

There are a few tens of systems for which the dynamical masses of their PMS com-

ponents have been measured (Mathieu et al., 2007); eclipsing binaries however are

the only ones that allow for the measurement of the radii of the components. For
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PMS, low-mass, eclipsing binaries, where both components have masses below 1.5

M¯, there are only six systems reported in the literature: ASAS J052821+0338.5

(Stempels et al., 2008); RXJ 0529.4+0041 (Covino et al., 2000, 2004); V1174 Ori

(Stassun et al., 2004); Parenago 1802 (Cargile et al., 2008; Stassun et al., 2008); JW

380 (Irwin et al., 2007), and 2MASS J05352184-0546085 (Stassun et al., 2006, 2007).

Table 1 presents the physical properties of these low-mass, PMS, eclipsing binary

systems. This thesis is focused on the multi-band, multi-epoch analysis of two of

the youngest and least massive EB systems on this list, Parenago 1802, and 2MASS

J05352184-0546085. The components of the latter are below the hydrogen-burning

limit, i.e., they are brown dwarfs.

The study of young binaries, such as Par 1802 and 2M0535−05, not only allows

us to determine the properties of the individual components, but it also allows us

to probe into the formation mechanisms of close binaries and into the evolution of

their orbits. Multiple systems are thought to form simultaneously from the same

protostellar core, such that their components are assumed to be coeval and to have

the same metallicity. Binary and multiple systems are likely the result of collapse

with rotation in order to distribute angular momentum into the orbital motions of

the stars (e.g., Larson, 2003). Equal-mass components of binary systems, also known

as twins, are therefore expected to evolve following essentially the same evolutionary

track. While wide binaries may be due to fragmentation of rotating cloud cores, close

binaries require the involvement of stochastic processes, to account for the large range

of separations, and of dissipative processes, to reduce the initial angular momentum

3



Table 1: Physical Properties of the Low-Mass, PMS Eclipsing Binaries

Primary Mass Radius Teff Teff,2/Teff,1

Secondary (M¯) (R¯) (K)
1 ASAS J052821+0338.5 1.375 ± 0.011 1.83 ± 0.01 5103 ± 100 0.931 ± 0.005

1.329 ± 0.008 1.73 ± 0.01 4751 ± 100
2 RXJ 0529.4+0041 1.27 ± 0.01 1.44 ± 0.05 5200 ± 150 . . .

0.93 ± 0.01 1.35 ± 0.05 4220 ± 150
3 V1174 Ori 1.009 ± 0.015 1.339 ± 0.015 4470 ± 120 0.809 ± 0.002

0.731 ± 0.008 1.065 ± 0.011 3615 ± 100
4 Par 1802† 0.391 ± 0.032 1.73 ± 0.11 3675 ± 150 0.915 ± 0.002

0.385 ± 0.032 1.62 ± 0.08 3360 ± 150
5 JW 380 0.262 +0.025

−0.024 1.189 +0.039
−0.175 3200 ± 300 0.8700 +0.0168

−0.0041

0.151 ± 0.013 0.897 +0.170
−0.034 3000 ± 400

6 2M0535−05† 0.0572 ± 0.0033 0.690 ± 0.011 2715 ± 200 1.050 ± 0.004
0.0366 ± 0.0022 0.540 ± 0.009 2850 ± 200

References: (1) Stempels et al. (2008); (2) Covino et al. (2000, 2004); (3) Stassun et al. (2004); (4) Cargile

et al. (2008); Stassun et al. (2008); Gómez Maqueo Chew et al. (2010); (5) Irwin et al. (2007); (6) Stassun

et al. (2006, 2007); Gómez Maqueo Chew et al. (2009)

†
The analysis of these systems is presented in this thesis.

and average energy (Bate et al., 2002).

The multiplicity properties of newly born stars and brown dwarfs, such as the

multiplicity fraction, the orbital geometry, and the mass ratio are likely to be mass

dependent (e.g., Lafrenière et al., 2008; Bonnell et al., 2007). Furthermore, these

properties may be modified by dynamical interactions over a few million years that

may depend on the density of the environment (e.g., Kroupa, 1998). Observational

studies of field stars in the solar neighborhood have found that while low-mass stars

and brown dwarfs have a binary frequency between 10 and 30 percent (e.g., Bur-

gasser et al., 2003; Close et al., 2003; Fischer and Marcy, 1992) more than half of
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solar mass stars have companions (Duquennoy and Mayor, 1991). In the high-mass

regime, nearly all of stars are in binary or multiple systems (Mason et al., 1998). The

multiplicity of PMS stars and brown dwarfs is found generally to agree with the field

distribution for dense clusters (Köhler et al., 2006) or to be higher up to two times

for less dense environments (e.g., Lafrenière et al., 2008).

If the orbit of a binary system is eccentric, the tidal forces between the compo-

nents will be time dependent and will produce strong disturbances at each periastron

passage (Hut, 1981). As a result of tidal interactions between the components of a

close binary, the stellar components synchronize their rotation to the orbital motion,

and, at a much longer timescale, the orbit is circularized. An important part of this

orbital evolution occurs during the components’ PMS phase and continues during

the main sequence (Melo et al., 2001). The timescales for both synchronization of

the components and circularization of the orbit in the context of Par 1802 will be

presented in Section V.4.1.

We present in Chapter II the photometric and spectroscopic observations used

for the analysis of the two eclipsing binary systems, Parenago 1802 and 2MASS

J05352184-0546085. We also detail the reduction of the different data, in particular

that of the near-infrared photometric observations in Section II.1. In Chapter III, the

creation of radial velocity and light curves from the observations is described. The

methodology of the analyses implemented for the study of both eclipsing systems are

explained in Chapter IV. The periodicity analysis of the light curves used to determine

the orbital period of the binaries and the rotation periods of the components of each

5



system is described in Section IV.1. The simultaneous modeling of the light and

radial velocity curves, including a detailed assessment of the parameter uncertainties,

is found in Section IV.2. Chapter V describes the analysis and results of Parenago

1802, and Chapter VI that of the eclipsing brown dwarfs. Lastly, a summary of our

findings, including a comparison of the properties of Par 1802, 2M0535−05 and the

other known PMS EBs presented in Table 1, and a description of work in progress is

found in Chapter VII.
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CHAPTER II

OBSERVATIONS AND DATA REDUCTION

The physical properties of an eclipsing binary system and its components can be

determined when different types of observational data are analyzed jointly. Typically,

the data set consists of spectroscopic and photometric data. Depending on the nature

of the eclipsing system one can obtain different observable curves.

The photometric data of an eclipsing binary compose the light curve, which de-

scribes the flux observed from the system as a function of time. Eclipsing binary light

curves are characterized by periodic increases in magnitude, i.e., the system appears

dimmer to the observer for an extended period of time. This occurs when one of the

components blocks the light of the other as it passes in front of it, eclipsing it. The

simultaneous modeling of multi-band light curves allows us to probe the radiative

properties of the system in order to determine the components’ radii. The photo-

metric data obtained for Par 1802 and 2M0535−05 are described in Sections II.1 and

II.2.

The spectroscopic observations of eclipsing binaries are essential for describing the

dynamic properties of the system, primarily through radial velocity (RV) measure-

ments. The spectroscopic data for Par 1802 are described in Section II.3.1 and for

2M0535−05 in Section II.3.2. Precise and accurate RVs are necessary in the anal-

ysis of eclipsing binaries in order to calculate fundamental stellar properties. The

7



uncertainties in the RV measurements presented for these stars are of the order of a

few km s−1. Radial velocities can be extracted by cross-correlation of observed spec-

tra against a reference spectrum and by using a broadening function method. The

techniques used for the creation of the RV curves of Par 1802 and 2M0535−05 are

described in Chapter III.

From spectroscopic observations, we can obtain the RV curves of the system, and

we may also determine the spectral types of one or both of the components and may

give a measure of their effective temperatures, surface gravities, metallicities and

rotational velocities. Moreover, they can provide additional information about the

luminosity ratio, which constraints the individual radii of the eclipsing components.

II.1 The JHKS Photometric Observations

The near-infrared (NIR), corresponding to wavelengths between ∼ 1 and 5 µm, is

a very useful wavelength range in which to observe low-mass objects in star formation

regions. NIR radiation is able to travel through interstellar gas and dust experiencing

less absorption than visible light; thus, it is an excellent probe into dusty environ-

ments which are often opaque at optical wavelengths. Moreover, emission from stars

in the low-mass stellar population in dusty star formation regions generally peaks

at NIR wavelengths. However, observing in the infrared presents particular chal-

lenges. NIR observations are affected by ambient thermal emission, including the

telescope’s optics and support structure, and by the brightness of the atmosphere at

these wavelengths. The night sky’s background radiation at λ < 2 µm is domi-
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nated by scattered moonlight and starlight and by high-altitude airglow emission; at

λ > 2 µm, it is dominated by the blackbody thermal radiation of the atmosphere and

of the telescope (Glass, 1999). Furthermore, radiation at many wavelengths in the

infrared is effectively absorbed by atmospheric water vapor; this effect varies with ob-

serving site, season and time, making it necessary to be accounted for when reducing

the observations. The NIR atmospheric transmission at the site of our observations,

shown in Fig. 1, was adopted from Section III.1.b1 of the Explanatory Supplement to

the 2MASS All Sky Data Release1, and is compared to the JHKS passbands.

We observed Par 1802 and 2M0535−05 in the NIR passbands, JHKS, using

the ANDICAM instrument on the 1.3-m SMARTS2 telescope at Cerro Tololo Inter-

American Observatory3 (CTIO) in Chile. Optical images in B, V , or ICwere acquired

simultaneously to the NIR images, as described in Section II.2. The characteristics

of the ANDICAM’s NIR and optical detectors are presented in Table 2.

Table 2: ANDICAM Detector Characteristics

NIR Optical
Format (unbinned) 1024×1024 2048×2048
Pixel Size (µm) 18 15
Image Pixel Scale (arcsec/pixel) 0.137 0.185
Field of View (arcmin2) ∼2.4×2.4 ∼6×6

1http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html
2http://www.astro.yale.edu/smarts/
3http://www.ctio.noao.edu/
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Figure 1: NIR Atmospheric and Passband Transmission. The transmission of the
atmosphere above CTIO, shown in grey, was adopted from the Explanatory Sup-
plement to the 2MASS All Sky Data Release. This model accounts for atomic and
molecular absorption, and Rayleigh and site-specific mean aerosol scattering. The J
transmission curve is shown in blue in the figure, the H curve in green, and the KS

curve in red. Both the atmospheric and the passband transmission curves have been
normalized to have a maximum transmission of 1.0.

The JHKS filters have central wavelengths of 1.2 µm, 1.6 µm and 2.2 µm, respec-

tively. The KS passband is narrower than the K band used by Johnson (1964). This

variation reduces the contribution of terrestrial thermal background radiation (e.g.,

Wainscoat and Cowie, 1992).

ANDICAM’s dichroic mirror splits the beam at 1.0 µm and allows for simultaneous

optical and NIR observations (DePoy et al., 2003). Figure 2 shows the optical layout of
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Figure 2: ANDICAM’s Optical Layout (DePoy et al., 2003). By splitting the beam,
ANDICAM allows for the simultaneous imaging in the optical (blue path) and the
NIR (red path).

ANDICAM; the red beam describes the path of the NIR light and the blue beam that

of the optical light. Each NIR observation is composed of multiple, short exposure

images with slightly different fields of view, obtained by moving an internal mirror in

the NIR channel while maintaining the telescope’s pointing. This allows the optical

image to have a longer exposure than that of the individual frames that compose a

single NIR observation. This observing technique is called dithering and is important

for correcting for bad pixels and removing cosmic rays hits. The NIR channel’s field

of view, ∼ 2.4′× 2.4′, is not exactly located at the center of the larger (∼ 6′× 6′)

optical field of view and it’s exact location depends on the dithering position.

The observations were taken in queue mode one to three times a night during
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the Fall and Spring of each year from 2003 through 2008. The queue observing is

done exclusively by a CTIO staff astronomer, allowing for cost-effective and telescope-

time effective time series photometry over a long timespan, which is very useful for

monitoring the behavior of eclipsing binaries. The photometric observing campaigns

for Par 1802 and 2M0535−05 are described in detail in §V.1.2 and §VI.1, respectively.

II.1.1 NIR Data Reduction

Figure 3: JHKS Data Reduction Flowchart. Steps 1 through 3 are repeated for
each of the dither pointings using the corresponding calibration frames. The re-
duced frames were then combined to form the final image in Step 4. Observations of
2M0535−05 are used in this example.
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This section describes the reduction of the photometric JHKS data. The re-

duction process followed is the same for the observations of both systems. Slight

modifications were made for the different exposure times used; Par 1802 has a KS

magnitude of 9.9, whereas 2M0535−05’s is 13.5 (Cutri et al., 2003).

All the NIR data were pre-processed at CTIO before being distributed; a bad-pixel

mask was applied to the raw images and each frame was binned 2 × 2. Calibration

images, described below, were also obtained regularly at the beginning of each ob-

serving night and were distributed with the science images. ANDICAM has a linear

response up to ∼ 5 000 counts per pixel for the unbinned images. Thus for each

binned frame, one should be cautious for counts per pixel that exceed 15 000.

The reduction process described below refers to each of the dithered frames that

compose a single NIR observation as an individual image until they were combined

in the final step. Figure 3 presents a flowchart of the reduction process; the steps of

the reduction process are described below:

1. Dark Subtraction – Although called “dark” images in the pipeline processing,

these short exposures are dominated by the detector’s readout noise. To account

for the bias information, the dark current, and the readout noise present in the

images, we subtracted a dark image from every science frame using the IRAF4

task IMARITH. Typically, ten dark frames were available for every night the

science targets were observed. We median combined these to create one dark

4IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA) under cooperative agreement with
the National Science Foundation.
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image. If the dark frames were not furnished for a given night, we subtracted

the dark image closest to the date of the observations.

2. Flat-Field Correction – A flat-field correction is needed to account for the vari-

ation in sensitivity of each pixel throughout the image and for instrumental

vignetting. We divided each of the science images by the corresponding nor-

malized, wavelength-dependent flat-field which was obtained by pointing the

telescope at an evenly illuminated screen within the dome. This type of flat-

field image is also known as a dome-flat. Typically, a set of dome-flats in one

NIR passband were acquired each night, so that a full suite of JHKS dome-

flats were obtained every three nights. The sets were composed of seven distinct

dome-flats, one for each dither position. Each dome-flat was composed of the

average of ∼ 10 frames taken with the flat-field lamp on, from which a com-

bination of ∼ 10 frames with the lamp off was subtracted. The result is the

characterization of the illuminated flat-field, with the bias level, the dark cur-

rent, the readout noise, the thermal background, and the scattered light that

are typical in NIR observations removed. The dome-flat was normalized such

that its median is equal to unity, and then the science images were divided by

the corresponding normalized dome-flat using the task IMARITH. In season I,

dome-flats were not obtained in JHKS; thus, the reduction process of the I

data is slightly different, and is described in §II.1.2.

3. Sky Correction – Even after applying the flat-field correction, the images present
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Figure 4: JHKS Master Sky Frames. Individual sky frames were created for each of
the seven dither positions in J (top), H (middle), and KS (bottom) each observing
season. These sky frames were created for the observing season VII.

variations that surface as one uses plane-parallel light to illuminate the detector.

This remaining structure found in the images may be due to a difference in

optical path, scattered light and/or thermal emission, important contributors

in the NIR. The sky calibration frames, which we will refer to as master sky

frames, were used to correct for this effect and were particular to each filter

and to each dither position. Examples of these are shown in Figure 4. The

sky contribution was removed from the flattened science images by subtracting

a normalized master sky frame. One master sky was created for each of the

seven dither positions in each of the NIR filters to account for the difference in

optical paths. Furthermore, we made master skies specific for every observing

season in case any change in the instrument or configuration occurred during
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the off-season. We used between 10 and 15 science images from different nights

throughout the observing season to create the master skies. Each frame was

chosen to have a slightly different field of view, so that the stars in the field

of view are removed when the images are combined. Because observations

were taken only one to three times a night, the images that compose each

master sky are scaled so their medians are the same before being combined.

The combination of the images into a master sky for a given filter and dither

position was done by using the IRAF task IMCOMBINE. This median combination

of the sky images ensured that the stars and other high count contributions are

effectively removed and that only the sky contribution remained.

The appropriate master sky was scaled making its median equal to the median

of the science frame, and then subtracted from the image being reduced. Note

that in the case of the I data, we did not create specific master skies for the

dithered positions.

4. Combination of Dithered Frames into a Single Observation – The reduced frames

were aligned, cropped, and co-added to create a single NIR observation. We

first calculated the pixel offset between the different dither frames with respect

to the first frame. Using IMEXAMINE, we obtain the pixel coordinates of the

same star in all the dithers of the observation. Then, we created a list of the

shifts with respect to the first image of each subsequent frame. Using the IRAF

task IMALIGN and the calculated offsets, the frames were aligned and cropped,
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such that the star in each of the cropped frames was moved to the same pixel

coordinates. We combined each of the dithers using IMCOMBINE by averaging

the counts in each frame without any scaling to obtain a single co-added science

observation.

II.1.2 I Season: Undithered Calibrations

At the beginning of our dataset, dome-flats for the individual dither positions

were not available which affected the reduction of the Season I data. The calibration

images used to create Season I’s flat-field images comprise instead ten brightly illu-

minated and ten faintly illuminated “blank” sky frames, all with an exposure time of

4 seconds. Unlike the dome-flats described in the previous section, these images were

obtained by pointing the telescope at an apparently blank portion of the sky at the

beginning of the night and at a fixed mirror position. The reduction process for the

I data was adapted to accommodate for the difference in the calibration images, and

consists of the following steps:

1. Night Sky Subtraction – A night sky image was subtracted from each of the

science frames. This night sky image was composed from the seven dither frames

that compose the NIR observation. The individual frames were scaled to the

median of the first one. Then they were combined by their median using the task

IMCOMBINE; a rejection of the maximum value for each pixel was implemented

to ensure that the high-count contributions, such as stars, were removed from

the night sky image before being subtracted.
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2. Flat-Field Correction – The brightly illuminated blank sky frames for a single

night were median-combined using IMCOMBINE with no rejection or scaling; the

faintly illuminated blank sky frames were combined in the same manner. The

combined faint image was then subtracted from the combined bright image

creating the flat-field. This image was then normalized to have a median of

unity, creating our flat-field image.

3. Combination of Dithered Frames into a Single Observation – The dithers were

aligned, cropped, and co-added, as described in the previous section.

II.1.3 The NIR Bad Quadrant

Figure 5: J-band Bad Quadrant Dither and Co-Added Image. The left side of the
image shows the first dither of the image after the pixels in the bad quadrant have
been replaced by the median of the rest of the image. The co-added image, on the
right, includes seven dither frames.
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For images obtained between 2004 January 22 and 2004 November 30, the top-

right quadrant of the NIR detector of ANDICAM did not work, affecting the end of

the I and all of the II ANDICAM observing campaigns. The reduced field of view

limited the number of useful comparison stars in the field of view used to obtain

the differential magnitude of the target star. Furthermore, we had to ensure that

neither the target nor the comparison star fell within the bad quadrant in any of the

dithers. The bad quadrant has a constant count level similar to the that of the darks,

lowering the median of the entire image. Thus before undertaking the reduction of

these images, we replaced all the pixels in the bad quadrant to have a count level

equal to the median of the other three quadrants.

II.2 The BV IC Photometric Observations

This section describes the BV IC photometric data used to create the BV IC light

curves.

Both of the eclipsing systems were discovered during the photometric variability

survey of an area of 40′× 80′ centered on the Orion Nebula (Stassun et al., 1999).

Par 1802 and 2M0535−05 were observed during this ICband survey from 1994 Decem-

ber 11 through 1994 December 27 using the Kitt Peak National Observatory 0.9-m

and Wise Observatory 1.0-m telescopes. Follow-up observations in the BV ICbands

were acquired and include data from the WIYN5 0.9-m and the SMARTS 0.9-m, 1.0-

m and 1.3-m telescopes. The observations were obtained in queue observing mode in

5http://www.noao.edu/wiyn/
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the case of ANDICAM data, and during intensive observing campaigns lasting from

a few days to a few of weeks for the other telescopes. The BV IC data from the dif-

ferent telescopes are reduced following the standard process for optical images, bias

subtraction and flat-fielding.

The observing campaigns in all bands are described in detail in Sections V.1.1 and

VI.1, for Par 1802 and 2M0535−05 respectively.

II.2.1 ANDICAM BV IC Data Processing

As mentioned in Section II.1, ANDICAM simultaneously takes images in the opti-

cal channel along with the NIR frames. These parallel observations were done for the

most part in the IC filter, centered at 786.5 nm. In the case of Par 1802, observations

were also acquired in the BV filters, with central wavelengths of 445 nm and 551

nm, respectively. The ICband is at the reddest-end of the optical wavelength range.

Because the detector collects the IC light in the optical channel and its data reduction

process is the same as for V B filters, we will consider the BV IC data to be optical.

Unlike the JHKS data, ANDICAM optical data is not pre-processed at CTIO. A

data reduction pipeline has been implemented by the SMARTS team at Yale, utilizing

the NOAO IRAF package and the task CCDPROC. The pipeline subtracts the bias based

on the overscan columns and a zero frame. This zero frame is composed of 10 zero-

second exposures with the shutter closed that record the two-dimensional bias due to

the detector’s readout process. The final step in the reduction pipeline is the division

of the image by a normalized dome-flat. The calibrated images are then distributed
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to the observers.

II.3 The Spectroscopic Observations

This section describes the spectroscopic observations that were used in the analysis

of both eclipsing binary systems. The data are described here to provide context for

the analysis for which they are being utilized.

The reduction of spectroscopic data is done to obtain a one-dimensional spectrum

of the target from the image with which radial velocities may be measured. The

standard process starts with bias subtraction and flat-field correction using calibra-

tion frames typically obtained at the beginning of the observing night. The next step

consists of tracing the target spectrum on the image and extracting the pixels that

contain it. The sky contribution is then subtracted from the spectrum. The wave-

length solution of the image is then calculated based on arc lamp spectra typically

obtained immediately before and after the science images.

II.3.1 Spectra of Par 1802

The radial velocities for the components of Par 1802 are obtained from two sets

of spectroscopic observations: one with the Hydra Multi-Object Spectrograph (MOS;

Barden and Armandroff, 1995) at the 3.5-m WIYN telescope, and the second with

the High Resolution Spectrograph (HRS; Tull, 1998) at the 9.2-m Hobby-Eberly Tele-

scope6 (HET). Additional details of these spectroscopic observations and reduction

6http://www.as.utexas.edu/mcdonald/het/het.html
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analysis can be found in Cargile et al. (2008).

Par 1802 was observed on 8 nights between 1997 January and 2004 December

with the Hydra MOS, a fiber-fed spectrograph that allows up to 93 objects to be

observed over a 60′ field. The spectra of Par 1802 were centered at 6400 Å, which

corresponds approximately to the RC band; the spectra span the range from 6250

to 6550 Å, and have a resolution of R ≈ 12,000. The signal-to-noise ratio is about

20 per resolution element. The reduction of the data was done using the IRAF task

DOHYDRA. The wavelength calibration was done based on the spectra of a Th-Ar arc

lamp, taken with the same fiber configuration as for the target observations. Several

fibers were pointed at blank parts of the nebula, and for each target observation,

they were combined by their median to create a signature of the sky, including both

the nebular and sky emission. This composite “sky” contribution was subtracted

from the corresponding target spectra. The results of the sky subtraction were not

optimal because the nebula emission varies on a small-scale, and thus, the “sky” does

not represent exactly the nebular and sky contribution in the spectra of Par 1802.

The non-optimal sky subtraction causes the radial velocity measurements to be less

precise. The radial velocity standard used for the cross-correlation analysis, described

in Section III.2.1, is the M2-type star, GJ 411, observed by Rhode et al. (2001) with

same instrumental set up.

The ten spectroscopic observations of Par 1802 were obtained with the HRS in

queue observing mode from 2003 January to 2004 January. The HRS is a fiber-fed,

cross-dispersed, echelle spectrograph that allows for the observation of a single object
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with dispersed sky spectra in between the target’s orders taken through separate sky

fibers. Each observation of Par 1802 was divided into two exposures of 1650 s with

an average signal-to-noise ratio of ∼ 50. They are centered at 6948 Å and span

the range from 5263 to 8915 Å and have a spectral resolution of R ≈ 30 000. Each

spectrum is imaged onto two chips, with 30 spectral orders on the blue chip and 17

on the red chip. The red chip exhibits fringes rendering those orders unusable for

radial velocity measurements. Along with every observation of Par 1802, calibration

spectra of a Th-Ar arc lamp and of the radial-velocity standard HD 26162 (Famaey

et al., 2005) were obtained. The reduction of the spectra was done with the IRAF

tasks CCDPROC and ECHELLE, and consisted of the following steps: subtracting the

bias, flat-fielding, applying a mask for bad columns, tracing the sky and target orders

and subtracting the sky. The wavelength calibration was done by identifying ∼ 525

features in the Th-Ar spectrum and fitting a fourth-order polynomial in both the

dispersion and cross-dispersion directions. Cosmic ray removal was done by rejecting

deviant pixels when the two separate exposures were co-added. The templates used

for the cross-correlation method were of spectral types K2, K3, K5 and K7. Additional

observations of stars, with spectral types M1 and M2, were obtained and utilized for

a two-dimensional cross-correlation of the spectra of Par 1802 to obtain the flux ratio

of the system.

A single spectrum of Par 1802 was observed with HIRES (Vogt et al., 1994) at

the Keck-I7 10.0-m telescope on the night of UT 2007 Oct 23. HIRES is a grating

7Time allocation through NOAO via the NSF’s Telescope System Instrumentation Program
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cross-dispersed, echelle spectrograph; it was used in its HIRESr configuration. This

“red” configuration has a cross disperser designed to be most efficient at wavelengths

longer than 5 000 Å as compared to its “blue” cross disperser. The OG530 filter

was used to block the blue orders. One 900 s exposure of Par 1802 was obtained in

between Th-Ar arc lamp calibration images. We used 21 spectral orders ranging from

5782 to 8757 Å. The resulting resolution power was of R ≈ 34 000 with a S/N of ∼

70 per resolution element. Additionally, two late-type spectral standards, M1.5 and

M3 (Kirkpatrick et al., 1991), were observed. The reduction was done using standard

IRAF tasks and the reduction package MAKEE designed specifically for HIRES data

by T. Barlow. The first step of the reduction is the flat-fielding followed by the

determination of the trace of each of the echelle orders. The spectrum extraction is

performed by determining the background levels for each order optimally, followed

by the wavelength calibration. This data is used for the measurement of the veiling

in the spectrum of Par 1802, and is described in Section V.1.3.

II.3.2 Spectra of 2M0535−05

The spectroscopic observations for 2M0535−05, from which radial velocities were

measured, were acquired using the Phoenix instrument on the Gemini South8 8-m

telescope. Phoenix is a long slit, high resolution, infrared spectrograph. Its spectra are

single-order and cover a very narrow wavelength range. Observations were centered at

1.555 µm (Hband) and ranged from 1.5515 to 1.5585 µm, with a resolving power of R

(TSIP).
8http://www.gemini.edu/
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≈ 30 000. The exposure times ranged between 1 to 3.3 hours. Calibration spectra of a

Th-Ne-Ar arc lamp were obtained in between science exposures. The radial velocity

standard HD 50778, a K4III star (Setiawan et al., 2003), was observed to ensure

the instrument’s stability and to determine absolute heliocentric radial velocities.

Additionally, observations of late-type standards with spectral types between M0

and M9 (Kirkpatrick et al., 1991) were acquired with the same instrument setup.

The standard reduction of these spectral images was done using Interactive Data

Language (IDL) procedures. A sky subtraction was done from the background con-

tribution surrounding the target spectrum. The wavelength solution was determined

from the calibration spectra of the Th-Ne-Ar arc lamp. The attained signal-to-noise

ratio per resolution element is ∼ 15 for 2M0535−05 and ∼ 50 for standard stars.

The details of these observations and their processing can be found in the paper

by Stassun et al. (2007).
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CHAPTER III

LIGHT AND RADIAL VELOCITY CURVES

This chapter describes the generation of data curves from the reduced observations

described in the previous chapter. Light curves are produced from the BV ICJHKS

photometric data; the radial velocity curves are obtained from the spectroscopic ob-

servations.

III.1 Generating the Light Curves

This section describes the creation of the light curves after the photometric data

are reduced. Typically, light curves are given in units of magnitude as a function

of Heliocentric Julian Dates (HJD), which denote the time of the event as would be

measured from the center of the Sun. This correction accounts for the light travel

time between the Earth and the Sun.

Photometry refers to the measuring of the amount of flux received from an as-

tronomical object; its light curve describes the measured flux over a period of time.

The light curves of eclipsing binary systems are characterized by showing periodic

decreases in brightness as one component of the binary passes in front of the other

blocking its light.

Fundamentally, there are two types of photometry: differential and absolute pho-

tometry. Both compare the observed fluxes of the target to those of reference stars;
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the variation in the target’s magnitude due to external factors, like the weather and

observing conditions, is accounted for and only the intrinsic variability of the target

star remains in the light curve.

Differential photometry of point sources enables us to measure the apparent mag-

nitude of the target star with respect to one or more reference stars in the same field

of view. Since the target and the comparison stars are close to each other, it is rea-

sonable to assume that any atmospheric extinction variation between the target and

the comparisons is negligible. Absolute or all-sky photometry is done by comparing

the target star to a set of stars whose flux has been carefully measured, known as

standard stars. Because the target and the standard stars are not generally located

within the same field of view, careful atmospheric extinction corrections need to be

implemented. In general, differential photometry provides more accurate light curves

than absolute photometry when measuring small variations, because of its relative

simplicity as compared to absolute photometry.

Aperture photometry is one of the methods used to obtain the differential bright-

nesses of sources in an image. The signal from the source is estimated by defining

an aperture around the star, adding the counts in each pixel, and subtracting the

background level. No assumption is made about the shape of the light source. It

works best for uncrowded fields with little or no overlapping of sources, like the NIR

fields of Par 1802 and 2M0535−05 which contain about 10 stars.

A second method that may be used to measure the brightness of stars in an image

is based on fitting their point-spread function, or PSF, to an analytical function or an
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empirical PSF. The PSF depends on the telescope’s diffraction pattern, focus, guid-

ing, seeing, observing conditions, and aberrations; it may change with every image.

PSF fitting requires fields with enough of stars to be able to closely characterize the

true PSF of the stars in the image. One of its greatest advantages over aperture

photometry is that it allows for independent brightness measurement of sources that

may be overlapping.

We used different techniques to create the JHKS and the BV IC light curves.

Aperture photometry was applied to the JHKSimages because they contain only

about 10 point sources. The PSF fitting technique was used for the BV IC images.

They have a larger field of view and thus more point sources that can be used to

characterize the PSF of each image.

III.1.1 JHKS Light Curves

We applied aperture differential photometry for the creation of the JHKS light

curves of Par 1802 and 2M0535−05.

The full width at half-maximum (FWHM) of the point sources is typically 1.1–

1.5′′, corresponding to ∼ 3–4 pixels in the reduced images. The FWHM changes

with observing conditions and is consistently different in each NIR filter even for

consecutive observations, decreasing with increasing wavelength.

For the aperture photometry of our target and comparison stars, we use the IRAF

package APPHOT. We selected the aperture to be circular with a radius of 6 pixels,

about two times the typical FWHM. The contribution of the sky is calculated by
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fitting for the intensity-weighted mean within an annulus around the point source

extending from 14–20 pixels. Pixels within this annulus with counts outside the

bounds of the detector’s linear response range and those that are more than three

sigma above or below the sky-mean are rejected before any fitting. The centroid

of the distribution is fitted iteratively by rejecting the pixels that deviate from the

sky value. The final sky value is then subtracted from each of the pixels within the

target’s aperture.

The differential photometry requires at least one comparison star for each of the

objects. To create the differential light curves after the raw aperture photometry

is done, the target’s measured flux is subtracted from the comparison’s and that

difference is converted into differential magnitudes. The time of this measurement

is corrected for the total integration time. In the case of Par 1802, each of the five

dithered images that compose one J observation had an exposure time of 30 s adding

to an integration time of 150 s. The HKS observations had a total exposure time of

175 s and were composed of 7 dithers of 25 s each. In the case of 2M0535−05, each

JHKS frame was 70 s adding to 490 s per observation. The time of observation was

set to the midpoint of the total exposure time, and was converted into Heliocentric

Julian Dates using the IRAF task SETJD.

The comparison stars of Par 1802 and 2M0535−05 were chosen because they were

always present in the field of view and because their IC-band light curves did not

present significant variability. The comparison stars of Par 1802 and 2M0535−05

are also not found to be variable in the NIR by Carpenter et al. (2001), in time
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scales of a few days, months and up to two years. By using a single reference star

to obtain differential photometry, we are more susceptible to the intrinsic variability

of the comparison star. However, since the BV IC light curves, as described in the

next section, use a reference star formed from the average of the stars in the field,

they allow us to assess the variability of the stars used in the JHKS light curves as

comparison stars independently. Moreover, the IC light curves of the comparison stars

were searched for periodicities, following the procedure described in Section IV.1, and

none were found.

In fact, both comparison stars have been shown to be non-members of the Orion

Nebula Cluster (ONC) to which both eclipsing binary systems belong. Since they

are not part of the pre-main sequence stellar population, they are less likely to be

intrinsically variable. Par 1802’s comparison, Parenago 1810, was found to have a

proper motion distinct from the other stars in the ONC by Hillenbrand (1997). The

comparison star for 2M0535−05, 2MASS J05352007-0545526, was shown to not have

Hα emission and to have a heliocentric radial velocity inconsistent with the ONC

population (Fűrész et al., 2008). Moreover, it was was found to be a non-member

based on its position on the HR diagram (Frasca et al., 2009).

The uncertainty in the JHKS light curves is estimated from the scatter in the

out-of-eclipse (OFE) phases. Figure 6 shows the OFE phases of the light curve

delimited by the vertical lines. The OFE phases are between ∼ 0.05 and ∼ 0.45, and

between ∼ 0.55 and ∼ 0.95. The standard deviation of the rectified light curves in

the OFE phases, i.e., after all periodic signals found in the data have been removed
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Figure 6: Rectified, Out-of-Eclipse J Light Curve. Using the Jband of Par 1802 as
an example, the Out-Of-Eclipse (OFE) light curve is found between the phases of ∼
0.05 and ∼ 0.45, and between ∼ 0.55 and ∼ 0.95. The OFE phases are separated in
the figure from the eclipses by the vertical, dashed (red) lines. The uncertainty in the
JHKS light curves is given by the scatter of the rectified data in the OFE phases,
and is shown by the error bar at a phase of 0.15.

(see Section IV.1), is used to measure the photometric uncertainty. The uncertainty

in the light curves is dominated by systematic uncertainties, not by the error in the

aperture photometry which includes the error in the determination of the flux, the

sky, and the aperture of both the target and the comparison stars. Figure 7 compares

the errors from the aperture photometry in the JHKS-bands (left-side panels) to the

residuals of the light curve modeling (right-side panels; see Section IV.2 for modeling).

This figure shows that the scatter in the OFE light curves (vertical dotted lines) is

an adequate estimate of the photometric uncertainty, more so than the errors from
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the aperture photometry (vertical dashed lines).

Figure 7: Histograms of the JHKS Light Curves’ Residuals and Photometric Errors.
The left-side panels show the histograms of the residuals of the eclipsing binary model
to the JHKS light curves, from top to bottom. The vertical dashed lines represent the
median photometric error. The vertical dotted lines represent the standard deviation
in the OFE data for a given light curve. The right-side panels show the histograms
of the photometric errors. All histograms have a bin size of 0.005 magnitudes. This
figure is shows the data of Par 1802.
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III.1.2 BV IC Light Curves

The optical light curves are created using a differential PSF fitting photometry

technique as described by Honeycutt (1992) for inhomogeneous ensembles. This tech-

nique does not require a particular set of comparison stars nor it requires the stars

to be present in every frame.

Raw BV IC light curves for stars on the reduced images were obtained by fitting

the stars’ PSF to an empirical PSF using the IRAF task DAOPHOT. The optical fields

of view for both our targets contain a few tens of stars. After obtaining these raw

light curves, the magnitudes are compared to an assigned reference magnitude based

on observations taken with the best seeing and atmospheric transparency. This allows

for the calculation of an ensemble average created from the magnitudes of the stars

on each frame. Stars that deviate greatly from the ensemble’s average are removed

from the calculation in an iterative process. Differential light curves of the target

star are then determined with respect to the mean magnitude of the stars in the

field. The uncertainty of each magnitude measurement is given by the scatter of the

measurement for sources of similar brightness.

III.2 Radial Velocity Curves

The velocity of any astronomical object can be separated into two perpendicular

components: one parallel to the line-of-sight, known as radial velocity (RV), and the

other parallel to the plane of the sky. A positive RV signifies that the object is moving

away from the observer; while a negative RV means that it is approaching the observer.
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Fundamentally, radial velocities of stars can be measured by comparing the Doppler-

shifted wavelength of the observed spectral lines to their rest-frame wavelengths.

As the components of a binary system revolve around their common center of

mass, the spectral lines may show a continuous and periodic shift in wavelength.

The spectrum of a single-lined spectroscopic binary exhibits the spectral lines of

only one star with this periodic change, and provide its RV measurements. In the

case of a double-lined spectroscopic binary, there are two identifiable sets of spectral

lines, one for each component, that are shifting as they orbit. In this case, radial

velocities can be measured for both components, allowing for the ratio of the masses

to be ascertained. Both Par 1802 and 2M0535−05 are double-lined, eclipsing binary

systems; their mass ratios are directly determined from the ratio of their RVs at any

given orbital phase. The determination of the physical parameters of a double-lined

eclipsing binary system by modeling its radial velocity and one or more light curve is

described in detail in Chapter IV.2.

There are several techniques for determining the radial velocities of binary com-

ponents from a one-dimensional spectrum. They are based on the comparison of the

observed spectrum of the binary to template spectra.

One of the techniques used to measure RVs estimates the cross-correlation function

(CCF) between the observed spectrum and a template spectrum, and is described in

detail by Tonry and Davis (1979). The peak of the CCF corresponds to the relative

shift in radial velocities of the observed spectrum with respect to the template. In

the case of double-lined spectroscopic binaries, the CCF has two peaks and typically
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the more significant peak corresponds to the RV of the primary component. Cross-

correlation is a one dimensional technique, introducing systematic errors into the

RVs of both components in a double-lined spectrum when the lines are blended, i.e.,

when the components are near conjunction. By applying this method, the RVs of

Par 1802 were measured on the WIYN/MOS and the HET/HRS spectroscopic data

as described below in Section III.2.1.

Another method based on the CCF is the algorithm TODCOR (Zucker and Mazeh,

1994), specifically designed for the extraction of radial velocities from double-lined

spectra. It calculates a two-dimensional CCF of the observed spectrum against com-

binations of two templates. The templates can be of different spectral types; how-

ever, this introduces a strong dependence on the luminosity ratio between the two

templates. TODCOR is able to minimize for the intensity ratio, assuming that the

spectral templates used correspond closely to those of the binary components. The

highest peak of the two-dimensional CCF determines the RVs of the primary. Those

of the secondary component are given by the lower peak. This technique may be

applied iteratively with tomographic reconstruction of the spectra to refine the flux

ratio of the system, like in the case of Par 1802 as described in SMC08.

A third technique to measure RVs estimates the broadening function (BF) using

least-squares fitting, and is described by Rucinski (1999). The BF is the function by

which a standard template spectrum with sharp lines is transformed into the observed

spectrum of the binary. The BF method requires a template that is closely matched

to the target spectrum. This method relates directly the absolute RV of the target
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star to that of the standard. The RVs are measured by simultaneously fitting a

Gaussian to as many spectral features as are identified in the BF. This method is

used to measure the RVs of 2M0535−05 (see Section III.2.2) and is less sensitive than

the CCF technique to systematic errors in the RV determination when the velocity

separation of the components is of the order of the spectral resolution.

III.2.1 Radial Velocities of Par 1802

The radial velocities of Par 1802 were measured via the CCF method, applying

the IRAF task FXCOR to the data from WIYN/MOS and HET/HRS (See Section

II.3.1). The measurements presented here are described in detail by Cargile et al.

(2008).

The WIYN/MOS data was cross-correlated with the M2-type RV template using

the IRAF task FXCOR and producing a single CCF which was fitted to a Gaussian.

The radial velocities for a given observation are given by the centroids of the Gaussian

fit. The formal uncertainties are determined by the r statistic, which depends on the

characteristics of the CCF. The typical uncertainties of the measured RVs are ∼ 3

km s−1 for this data set.

The HET/HRS data was cross correlated with different templates of late type

stars. The spectral orders were cross-correlated independently, and the resulting

CCFs were added, excluding the CCFs that did not show two clear peaks. The

strongest CCF peaks were obtained for the K7 spectral type. The radial velocities

were obtained by fitting both CCF peaks to Gaussians. The uncertainties in the RVs
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were determined by the statistical error in the Gaussian’s centroid. The orders that

contained broad spectral features, like the nebular Hα emission were not included in

the cross-correlation.

III.2.2 Radial Velocities of 2M0535−05

As mentioned above, the RVs of the components of 2M0535−05 were obtained

via the BF method Stassun et al. (2006, 2007). The absolute heliocentric RVs of the

observed late-type standard stars are obtained relative to the RV standard HD 50778

(K4). To avoid systematic uncertainties in the absolute RV determination introduced

by a difference in spectral type between HD 50778 and the M-type standards, the

velocity corrections found by cross-correlation were applied sequentially. The BF

technique was then applied for the observed spectra of 2M0535−05 with respect to

the observed M-type standards. The highest peaks for both components in the BF

were found using the M6.5 template. Using the M6 and M7 templates caused the

peaks to weaken by ∼ 20%; later and earlier spectral types caused weaker peaks.

This suggests that the components of 2M0535−05 have similar spectral types, which

is confirmed with the effective temperature ratio of almost unity found from the

eclipsing binary modeling. The flux ratio between the binary components is estimated

from the ratio of the area under the BF peaks when the primary and secondary are

at maximum separation (see Fig. 8). This is a valid estimate in the H-band at which

the observations were taken because both components have similar spectral types.

The radial velocities for each component are measured by fitting a two-Gaussian
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Figure 8: RV Determination via the Broadening Function. The BF for the spectrum
of 2M0535−05 and a M6.5 template is shown by the solid line; the orbital phase of
the system is when the components are near their maximum velocity separation. The
dashed line is the two-Gaussian fit to the BF, from which the radial velocities are
measured. This plot is Figure 1. from Stassun et al. (2007).

function to the BF of 2M0535−05 for 7 of the 9 observations. One observation was

taken at the time of primary eclipse, so the BF was fit to a single Gaussian and

the RV was assigned to the secondary component. The other observation was taken

closely after the secondary eclipse, so the resulting BF was single-peaked. The RVs

were measured by fitting two Gaussian functions of fixed widths, based on the widths

of the two-peaked BFs at other orbital phases.
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CHAPTER IV

METHODOLOGY OF THE ANALYSIS

IV.1 Periodicity

This section describes the characterization of periodicities in the light curves.

One of the characteristics of Pre-Main Sequence stars is that they are variable.

Their variability may be intrinsic, i.e., due to physical changes in the star like pul-

sations, or extrinsic, due to their rotation or orbital motion. The variability can be

periodic, as in the case of eclipsing binaries, or eruptive, like in flares in T Tauri stars.

Identifying and determining the properties of the variability of PMS stars provides

insight into the physical properties of the system. Once the periodicity has been

identified, it is common to fold the light curves to display the variability as function

of phase, where one phase is the length of time over which the periodic signal occurs

once.

IV.1.1 Orbital Period Determination

Eclipsing binaries show periodicity in their light curves as the observed light from

the system decreases when one component eclipses the other and in their radial veloc-

ity curves due to the orbital motion of the components around their common center

of mass. Both of these periodicities depend directly on, and therefore contain infor-

mation about, the orbital period. The photometric variability to the orbital motion is
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not sinusoidal in nature for detached eclipsing binaries. The variability in the radial

velocity curves due to the orbital motion is sinusoidal if the orbit is circular; as the

eccentricity increases, it becomes less sinusoidal.

To determine the orbital periods of Par 1802 and 2M0535−05, we use the IC-

band light curves. In both cases, it is the light curve that has the longest time span

and the greatest number of data points. We did not search the radial velocities for

periodicities to determine the orbital period because the light curve provides about

two orders of magnitudes more data points.

We used a Phase-Dispersion Minimization (PDM) technique described by Stelling-

werf (1978) to determine the orbital periods of the binaries. This period searching

method does not make any assumptions about the shape of the periodicity, and thus

is well suited for detecting non-sinusoidal periodicities. This period searching method

compares the overall variance of the data with the variance of the data folded over

different trial periods. If the data do not contain a periodic signal at the trial period,

then the data will be randomly distributed and the variance would be comparable to

the overall variance of the data. When the data are tried against a true period, the

dispersion will be reduced and the ratio of the overall variance with the variance of

the data will be small. In a plot of trial frequency or period versus the ratio of the

variances, real periods and their aliases will be shown by dips. The depth of a dip

gives a measure of the significance of the associated period in the data.

Aliases are the result of the temporal sampling of the data. The gaps in the data

acquisition create a certain degree of regularity in the observations. For example,
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data that are observed in consecutive nights will show strong aliases at frequencies

of ± 1 d−1. Aliasing represents one of the main complications in detecting unknown

periodicities, since an alias instead of the true period may be identified. In fact, when

the PDM technique is applied to eclipsing binary systems it is common to find that

the deepest valley in the PDM is at half of the true orbital period. The uncertainty in

the period is determined via a post-mortem analysis (Schwarzenberg-Czerny, 1991),

similar to that described below (see Fig. 12).

PDM is not the only technique that can be used to search for periodicity in data.

There are also string-length methods and those based on periodograms, as employed

in Section IV.1.2, to analyze the low-amplitude variability in the light curves. A useful

tool to assess the determination of the orbital period is the O – C diagram, which

compares the observed data against an expected value by presenting the residuals.

Its name, O – C, means literally Observed minus Calculated. The shape of the O – C

diagram of the times of the primary and secondary minima can reveal whether the

orbital period is correct and whether it is constant over time. The calculated time of

eclipse tC is given by tC = E + n Porb, where E is the epoch, n is the cycle number

and Porb is the orbital period. For example, if the orbital period is correct, then the

O – C diagram will present the residuals to be scattered about zero. If the orbital

period is correct but epoch is not, then the scatter will not be about zero, and the

mean of the residuals will give the correction to E. If Porb is incorrect but constant,

then the residuals will be on a straight line with a slope containing the correction of

the period. If the O – C plot presents a sinusoid, it may be due to apsidal motion
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or light-time effect because of a gravitationally bound third body in the system. We

utilize this tool to refine the orbital period of Par 1802, as described in Section V.2.1.

IV.1.2 Low-Amplitude Photometric Variability

Apart from the orbital periodicity discussed in the previous section, we find that

the light curves present a periodic low-amplitude variability.

The photometric low-amplitude variability found in the light curves is sinusoidal,

which is characteristic of rotational modulation of the light curves by surface spots

(e.g., Stassun et al., 1999). Through the periodicity analysis, we are able to measure

the photometric rotational period of the eclipsing components. The details of the

periodicity analysis of Par 1802 and 2M0535−05 are described in Section V.2.1 and

VI.2.1, respectively.

We apply the periodicity analysis only to the out-of-eclipse (OFE) phases of the

light curves, i.e., all orbital phases except for the eclipse phases, to exclude the peri-

odicity that the eclipses introduce and to focus on characterizing the low-amplitude

variability. Another approach is to search the residuals of the light curve modeling

for periodicities, such that any periodic signal due to the binary nature of the system

would not be included. As a consistency check, after obtaining a good fit to the light

curve modeling, we search the residuals for periodicity to verify that the periods found

in the OFE light curves are real and are not skewed by the exclusion of the eclipse

phases. However, the bulk of this analysis is done before the best radial and light

curve model is reached, allowing the inclusion of the components’ rotation periods in
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the light curve modeling.

We implement the Lomb-Scargle periodogram technique developed by Scargle

(1982) that is well suited for unevenly sampled data. It constructs the power spectra

as a function of frequency by fitting sinusoids to the data by the method of linear

least squares. The periodograms present the power spectra in frequency (d−1) and

show multiple strong peaks. Figure 9 presents the Lomb-Scargle periodogram for the

V light curve of Par 1802, as an example. The power of the periodogram is shown by

Figure 9: V -band Lomb-Scargle Periodogram of Par 1802. The peaks in the peri-
odogram represent the two independent periodicities and their aliases (dotted and
dashed lines). The 1% false-alarm probability (FAP) is shown with the horizontal
broken line; periods above of this line have less than a 1% probability of being spu-
rious.
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Scargle (1982) to be equivalent to fitting sinusoids to the data by least-squares and

is normalized by the variance of the data (Horne and Baliunas, 1986). This allows

for the significance of the peaks in the periodogram to be given by the False-Alarm

Probability (FAP). This period searching technique assumes that the signal is sinu-

soidal. However, it is still a valid technique to detect unknown periodicity for highly

non-sinusoidal signals, because in principle all periodic signals can be decomposed

into a liner combination of sines and cosines.

The FAP describes the probability that for M independent frequencies sampled, a

given periodogram power z could be attained in the case that the data are only noise;

it is given by P (> z) ≡ 1 – (1 - e−z)M (Press et al., 2007). A priori the number

of independent frequencies M sampled is unknown, since it depends on the number

of frequencies sampled, the number of data points and their temporal sampling. We

are able to calculate the FAP for the periodogram of each light curve by using a

Monte Carlo method. For each light curve, we create 1000 synthetic signals keeping

fixed the number of data points and their time-stamps to keep the window function

and the statistical properties of the data the same. This allows us to not make any

assumptions about the level of noise in the data. The magnitudes then are randomly

distributed to create the new light curves, for each of which, we calculate the Lomb-

Scargle periodogram with the same frequency intervals as for the real data. We

find the highest peak in each of the resulting 1000 periodograms, and obtain the

probability distribution for different peak heights. We fit the distribution to find

M and then calculate the 1% FAP level for each light curve. Figure 10 shows the
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distributions of maximum periodogram power resulting from the Monte Carlo process

in the solid line and the fitted distribution to determine in the dashed line. The data

utilized in this figure are the light curves of Par 1802, and are shown here to exemplify

the process. The 1% FAP level is shown in Fig. 9 as the horizontal dashed line.

Figure 10: Maximum Periodogram Peak Distribution from Monte Carlo Method. By
fitting the resulting distribution of maximum peak heights, shown in the solid line,
to an exponential function of the form 1 – (1 - e−z)M , we are able to determine the
number of independent frequencies M that best fits each distribution. This best fit
is given by the blue, broken line. Consequently, we can obtain the 1% FAP for each
light curve.
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As mentioned in the previous section, aliases are common in periodicity searches

of astronomical observations and may complicate the detection of the true physical

period. In order to distinguish the real frequencies from their aliases, additional as-

sessment of the periodograms is necessary. Thus, we fit the OFE data to a sinusoid

with a period corresponding to the highest peak in the periodogram via a least-

squares method and consequently subtract the sinusoidal fit from the data. We apply

the same periodicity analysis to the residuals of this fit, allowing us to identify the set

of peaks that depend on the period, including its aliases. If the period that is removed

is real, then the peak corresponding to that period is removed from the periodogram

along with the peaks of its aliases; see middle panel in Fig. 11. Furthermore, the

overall noise in the periodogram decreases. If the period removed is an alias, the noise

in the periodogram increases and the removal of the peaks from the periodogram is

not as effective; see bottom panel in Fig. 11. This filtering technique also permits us

to identify independent periods in the data. When a true period has been successfully

removed by the fitted sinusoid and if another independent periodicity exists, then the

periodogram will still contain the peaks corresponding to this second period and its

aliases. In fact, the peaks may be higher in this periodogram because the removal of

the other periodic signal makes the remaining periodicities more significant, as shown

in the second panel of Fig. 11. To ensure that both periodic signals are truly indepen-

dent and that the second identified period is not a result of the filtering process, we

exchange the order in which the signals are filtered. We are able to distinguish both

periods regardless of the order in which the periodic signals are removed from the
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data. The top panel of Fig. 11 shows the Lomb-Scargle periodogram of the J light

Figure 11: Identifying Independent Periodicities from their Aliases. See text for
details.

curve of Par 1802; the 1% FAP is marked by the (red) horizontal, dotted line. The

true period, P1 = 0.7355 d, is highlighted with the (green) vertical, dashed line; its

aliases are marked by the (green) vertical, dotted lines. The green lines are shown in

every panel as a reference. The middle panel shows the periodogram of the residuals

when a sinusoidal signal with a period equal to the true periodicity has been removed;
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thus, the peaks that correspond to P1 are well removed from this periodogram. A sec-

ond independent periodicity is made evident with the subtraction of the first periodic

signal; the most significant peak in this periodogram corresponds to a period of P2

= 4.629 d, and is marked by the (blue) vertical, dashed line with the (blue) vertical,

dotted lines as its aliases. The bottom panel shows the periodogram resulting from

removing a sinusoidal signal with a period corresponding to the left-most alias of P1

at frequency of ∼ 0.36 d−1 from the OFE light curve. Filtering the alias is not as

effective in removing the set of periodogram peaks, as is filtering the real periodicity.

Additionally, because the available data sets are composed of multi-band light curves,

Figure 12: Period Uncertainty via Post-Mortem Analysis. The periodogram of
Par 1802’s H-band light curve around the most significant period, denoted by the
red vertical dashed line, is shown as a function of period. The horizontal dotted line
of height d, toward the bottom of the plot, measures the noise in the periodogram
around the peak. The uncertainty in the period, marked by the vertical dotted lines.
It is given via the post-mortem technique by the width of the periodogram peak at
a level of d (bottom horizontal, blue, dotted line) from its maximum amplitude (top
horizontal, blue, dotted line).
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we can compare the periodograms separately to determine which peaks correspond to

the real period. This is possible because the window functions of the light curves are

not exactly the same. We also analyze each of the observing seasons independently,

effectively changing the window function and the resulting aliases. We find generally

that the periodic signals change in phase for a given season, but the periods remain

consistent with each other. In searching each season independently for periodicities,

we have fewer measurements, and we loose frequency resolution because of the shorter

timespan of the data. Moreover, we fold the light curves to the significant periods to

visually assess their periodicity.

For the different light curves, we find slightly different periods. The uncertainty

in the determination of the period from the periodograms is obtained via the post-

mortem analysis described by Schwarzenberg-Czerny (1991). We calculate the pe-

riodogram as a function of period, instead of frequency, only around the period of

interest, that was determined from the previous periodograms. First, we estimate the

noise level d from the periodogram (see in Fig. 12). The width of the peak at a level

d from the maximum height of the peak determines the uncertainty in the period.

The rotation periods of the components are determined by the mean of the periods

obtained from each light curve and its uncertainty is given by the uncertainty in the

mean. Furthermore, we confirm that these rotation periods are consistent with the

measured values of v sin i.
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IV.2 Eclipsing Binary Modeling

This section describes the modeling of the eclipsing binary (EB) data with the

goal of determining the system’s physical parameters, including the characteristics of

the orbit and of the stellar components.

IV.2.1 Overview of the Model

The inverse problem for eclipsing binaries is to determine n physical parameters

from one or more observed radial velocity (RV) and light curves (LC) and can be

formulated as a nonlinear least-squares problem. Because the system is nonlinear and

the calculated parameters are correlated, the solution to a given set of observed curves

is not unique. A unique solution would correspond to a point in the n-dimensional

parameter hyperspace. Instead, the global minimum of the system is a region in

the n-dimensional parameter hyperspace; its form and significance depend on the

uncertainty in the data and the parameter correlations. The implication of this

solution degeneracy is that a change in the value of a parameter may be compensated

by a change in one or more parameters, rendering solutions that are indistinguishable

from each other. Thus, every solution must be examined to ensure that it lays within

the system’s global minimum and is physically consistent with external observational

constraints. The methodology described throughout this chapter aims to reduce the

effects of the present degeneracies in our solutions by capitalizing on the diverse

available data sets for both Par 1802 and 2M0535−05.

The modeling of the EB systems Par 1802 and 2M0535−05 is done with the
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software PHOEBE (Prša and Zwitter, 2005), which is based on the Wilson-Devinney

(WD) code (Wilson and Devinney, 1971). WD was developed specifically for the

analysis of eclipsing binaries and has been continuously refined since its creation

to include more complex treatment of implemented processes, additional constraints

and more efficient computations (Wilson, 1979, 1990; Van Hamme and Wilson, 2007).

PHOEBE is able to compute radial velocity and light curves from system parameters,

which are fitted to the observed curves by minimization algorithms. The minimization

algorithms converge by reducing the χ2 to the fit, and may therefore fall into a local

minimum in the parameter hyperspace instead of the solution’s deepest χ2 minimum,

or global minimum. The minimization implemented by WD is based on differential

corrections (DC), which replace partial derivatives with finite differences resulting

in the parameter corrections that reduce the χ2 of the fit. If the solution does not

converge, the method of multiple subsets described by Wilson and Biermann (1976)

can be applied. This method divides the parameters in subsets and minimizes for them

separately. Furthermore, PHOEBE implements the minimization algorithm Nelder-

Mead Simplex, based on function evaluation instead of derivatives. This method

is slower computationally, but it is more robust and does not diverge. Moreover,

PHOEBE’s back-end scripter capabilities facilitate the implementation of heuristic scans

of the solutions to explore the parameter degeneracies and avoid local minima.

A model of the observable curves is based on the understanding of the physics and

geometry of the orbits and the components, the computation of the local radiative

intensity and the computation of the integrated flux in the direction of the observer.
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Figure 13: Orbital Geometry and Orientation. Ω is the longitude of the ascending
node, ω is the argument of periastron, e is the orbital eccentricity and a is the semi-
major axis. See text for details. This figure was adopted from Kallrath and Milone
(2009).

The system’s orbital geometry can be described in terms of a relative orbit, where

the movement of one component is in terms of the other component, as shown in

Fig. 13. The orbit’s semi-major axis a is equal to the sum of the distances between

each component and the center of mass of the system; the orbital eccentricity e lays

between 0.0 and 1.0. In the case of e = 0.0, the orbit is circular and the components

are separated at all times by a. The orbital elements define the orientation of the orbit

with respect to a reference, typically the observer. The argument of periastron ω is

the angular distance, measured in the sense of the motion of the component, between

52



the ascending node, i.e., the point in the orbit where the secondary component is

moving most rapidly away from the observer, and periastron, the point of closest

approach of the components. The ascending node is on the line nodes in which the

orbital plane intersects the plane of the sky. The inclination angle i describes the

angle between the orbital plane and the plane of the sky; when i = 90◦, the system

is edge-on. The longitude of the ascending node Ω, measured in the plane of the sky,

gives the position of the ascending node and is by convention set to zero, because the

radial velocities and eclipses are independent to the orientation in this direction.

Figure 14: Orbital Phase and Quantities. This figure shows the relationship between
the orbital geometric phase θ, the orientation of the orbit (ω) and the position of the
star in the orbit measured from periastron, by the true anomaly υ. This figure was
adopted from Kallrath and Milone (2009).

The time dependence of the motion of the components of the binary system in
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their orbit is given by the orbital photometric phase Φ, i.e., the phase that is observed

in the light curves, depends on the orientation of the orbit (ω) and on the position

of the star in the orbit, as measured from periastron by the true anomaly υ. For a

circular orbit, the relationship between the geometric phase θ and the photometric

phase Φ is simply given as θ = 360◦ Φ. For eccentric orbits, the photometric phase

is θ = υ + ω - 90◦. The relationship between a and the orbital period Porb for an

inclined orbit is given by Kepler’s third law:

a3 sin3 i

P 2
orb

=
GM sin3 i

4π2
; M = M1 + M2, (1)

where M1 and M2 are the masses of the components, M is the total mass of the system

and G is the gravitational constant. The ephemeris of the system is determined by

a zero-point in time, HJD0, at which the origin of the ephemeris is set, the orbital

period Porb, the rate of period change dP/dt, and the phase shift ∆Φ, which is a

constant displacement to the ephemeris (Prša, 2006). By convention, we set HJD0

to be the time of a primary eclipse. For our systems, the orbital period is constant

during the observed timespan, and as such, dP/dt = 0.

The points at the surfaces of the stellar components are described by the Roche

model, which is based on equipotential surfaces. For a given set of system param-

eters, the surfaces of the components depend on only the potential energy of those

surfaces, and thus the effective surface potentials determine the shape and size of

the components. The Roche model assumes that the binary components are point

masses surrounded by a massless surface, such that each potential can be described

by the gravitational interaction between the components and a centrifugal potential
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(Kallrath and Milone, 2009). It also assumes that equilibrium is regained in short

timescales when compared to the orbital period. The stars are therefore considered to

rotate as equipotential surfaces, without differential rotation. Wilson (1979) showed

that an effective potential Ω can be defined and utilized to describe the binary sys-

tem assuming that the volumes of the components remain constant, even when their

shapes depend on where they are in their orbits. We denote the surface potentials

as Ω to be consistent with the notation typical in eclipsing binary modeling. Thus,

Ω hereafter refers to the surface potentials of the components and is different from

the longitude of the ascending node Ω described in the geometry of the system. The

surface potential for eccentric orbits and asynchronously rotating components is given

in terms of a component’s radius R normalized by the semi-major axis (r = R/a) by:

Ω =
1

r
+ q

[
1√

δ2 + r2 − 2λδr
− λr

δ2

]
+

1

2
F 2(q + 1)r2(1− ν2), (2)

where q is the mass ratio, given by:

q ≡ M2/M1; (3)

and d is the instantaneous separation between the centers of the components (δ =

d/a = (1− e2)/(1 + e cos υ)), F is the synchronicity parameter:

F = ωrot/ωorb = Porb/Prot, (4)

and (λ, ν) are the coordinates for points on the stellar surface. The potential with

respect to the secondary stellar component is obtain by the change of coordinate

system with the origin at the center of the primary component to the center of the
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secondary component: Ω′ = Ω/q + 1
2
(q − 1)/q and q′ = 1/q.

The radiative properties of the system determine how many photons are emitted

and how they are emitted by the components. Stars do not radiate uniformly because

of diverse physical effects described below, including distortions due to tidal forces and

the rotation of the components. The emergent intensity from each of the components

can be described by a simple black body radiation, or it can be based on model

atmospheres, like those by Kurucz (1996).

Limb darkening must also be taken into account. The emergent intensity from

the center of the stellar disk comes from a deeper layer of the stellar atmosphere,

which is at a hotter temperature, than the layer of the atmosphere that is observed

toward the edge or limb. Thus the limb of the stellar disk appears to be dimmer than

its center. PHOEBE allows limb darkening to be modeled by a linear, a logarithmic

or a square-root law by interpolating the van Hamme (1993) tables for a given set

of system parameters. van Hamme (1993) compared the different limb darkening

laws at different wavelengths and for different stellar sources and found that in the

ultraviolet range the logarithmic law worked best. The square-root law was best

at modeling limb darkening at NIR wavelengths. In the optical range, van Hamme

(1993) found that for effective temperatures of . 9000 K, the logarithmic law was

more appropriate; and for effective temperatures of & 9000 K, limb darkening was

best modeled by the square-root law.

Gravity darkening happens because rotation deforms a star causing the effective

gravity and the local temperature at the poles to be higher and thus to make the
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polar regions appear brighter than the equatorial regions, as stated by the von Zeipel

theorem (1924). Another effect to be considered is the so-called reflection effect in

binaries. Contrary to what it has been historically named, it refers to the heating

of the surface of the irradiated stars. When the radii of the binary components are

& 15 to 20% of the orbital semi-major axis (Wilson, 1990), reflection effects become

important as the radiation of one component by the other causes the heating of the

stellar surface and thus, an increase of surface temperature in the side facing the

other component. Furthermore, when the components are greatly distorted, like in

the case of contact binaries, the distortion causes a variation in the size of the surface

area visible to the observer, which affects the light curve.

Another phenomenon that affects the radiative properties of the binary compo-

nents is the existence of surface spots. The spots on the components’ surfaces can

be cold, like those typically attributed to magnetically induced spots, or hot, like

those that arise from accretion. A spot is fully described in PHOEBE by its position on

the stellar surface in colatitude and longitude, its angular radius and its temperature

factor, which is the ratio of the spot temperature to the local surface temperature.

Spots change the local emerging intensity by multiplying the local temperature by

the temperature factor on the surface elements covered by the spot (Prša, 2006).

The treatment of spots by PHOEBE allows the user to reproduce a large range of light

curve effects because of its simplicity, but must be used with reservations. For ex-

ample, a spot of a given size and temperature factor on the primary may produce

similar variations on the model light curves as a group of spots or a single spot on
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the secondary component. In fact, a large surface spot spot has a similar effect on

the overall emerging intensity than a smaller spot at a cooler temperature. These

different scenarios render fits to the observed light curves that are indistinguishable.

Without additional observational constraints, like Doppler tomography, it is not pos-

sible to determine the true configuration of the spots on the stellar surfaces. From

the observed photometric, small-amplitude variations like the ones described above

in Section IV.1.2, we are able only to narrow down the spots that reproduce the ob-

served amplitudes to a family of configurations; the details are further explained in

Sections IV.2.6 and its implementation in the modeling of 2M0535−05 is in Section

VI.3.

An additional source of flux in the light curves that may be extrinsic to the

eclipsing components can be modeled as a third light `3 that is constant in time.

The luminosities from the eclipsing components (L1, L2) are distinct from `3. The

zero-magnitude m0 of the system is used in PHOEBE to normalize the flux of the light

curves. The third light can be modeled in units of flux or as a fraction of the total

light of the system. If it is modeled in units of flux, then `3 is added directly to the flux

from the eclipsing components, such that: (L1 + L2)/(4π) + `3 = Fs, where Fs is the

flux of the system at, for example, quarter phase. From this relationship combined

with the ratio of fluxes: `3/[(L1 + L2)/(4π)] = x/(1− x), we can obtain the value of

`3 in percentage of the total light of the system. Effectively, additional light in the

system makes the eclipses shallower keeping all other parameters constant. The light

curve modeling of Par 1802 required the addition of `3 in order to simultaneously fit
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all bands and is described in Section V.2.3.

IV.2.2 Setting Up

This section describes the data and external information and the practical steps

that are done to begin the modeling of an EB system with PHOEBE, for which the radial

velocity (RV) curves of both components and multi-band light curves are available.

The RV solution provides the scale of the binary’s orbit, and the light curve (LC)

solution provides relative quantities, like the components’ radii as a function of the

semi-major axis of the orbit. The simultaneous solution of both RV and LC provides

a consistent solution with a single set of physical characteristics to describe the binary

system. This is only a guideline describing in general terms the modeling process of

Par 1802 and 2M0535−05; every eclipsing system is unique and its modeling may

require the adaptation of the procedure here described. A sample input file is shown

in Appendix A, and a script with the commands utilized for the EB modeling using

PHOEBE’s back-end scripter is shown in Appendix B.

The first step is to create a configuration file with the known parameters of the

system. If the system has been analyzed before and a solution is readily available,

one may use those values as a starting point for the modeling. Among the initial

parameters to be included is the ephemeris of the system: the orbital period Porb

obtained from the periodicity analysis of the light curves, as described in Section

IV.1.1, and the zero-point of the ephemeris HJD0. Because the periods of both

systems are not found to vary with time, dP/dt is set to zero.
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Initial estimates of the eccentricity e and the periastron ω can be obtained from

the duration of the eclipses and from their separation in time or orbital phase. For

eccentric orbits, the duration of the eclipse that occurs close to apastron (Θa), i.e.,

when the separation between the components is greater, is longer than the duration

of the one that occurs close to periastron (Θp), i.e., when the components’ separation

is smaller. The relationship between the duration of the eclipses and the orbital

elements e and ω is approximated as (Kallrath and Milone, 2009):

e sin ω ≈ Θa −Θp

Θa + Θp

; Θa > Θp.

In general for eccentricities larger than zero, successive primary and secondary minima

are not separated by equal lengths of time. The eclipses are symmetrically arranged

for circular orbits, or when the semi-major axis of an eccentric orbit coincides with the

observer’s line-of-sight. The displacement of the minima depends on the eccentricity

and the orientation of the orbit as follows:

e cos ω ≈ π

2P

(
tII − tI − P

2

)
,

where tI is the time of primary minimum and tII is time of the secondary minimum.

This relationship is valid for inclination angles close or equal to 90◦.

The components are assumed by default to be rotating synchronously with the

orbital motion, i.e., their synchronicity parameters Fj are 1.0 (see Equation 4). This

is not the case for either Par 1802 or 2M0535−05. Therefore, F1 and F2 are calculated

from the measured rotation periods Prot,i and Porb. If the components are rotating

sub-synchronously, the limits of the synchronicity parameter have to be adjusted in
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order to fit for Fj; the default upper limit is 1.0, allowing for the slowest rotation to

be of a synchronized component.

Generally, an appropriate step size, or increment, when minimizing for the system

parameters is about 1% of the parameter value. However, for certain parameters the

generalized rule does not apply; such is the case of the inclination angle, for which

the step size depends on the particular properties of the binary.

IV.2.3 Radial Velocity Solution

The fitting of the radial velocity (RV) curves was done first in order to obtain

from the observed radial velocities the system’s mass ratio q:

q =
M2

M1

=
K1

K2

,

where Kj are the semi-amplitudes of the orbit (see Equation 5), and the semi-major

axis as a function of the inclination angle of the system (Torres et al., 2010), a sin i:

a sin i =
Porb

2π
(1− e2) (K1 + K2).

These two quantities, q and a sin i, will remain constant for the rest of the analysis

once an adequate RV solution is reached.

The two RV data files are loaded into PHOEBE, one for the primary’s RVs and one

for the secondary’s. In fact, PHOEBE allows for more than one RV file to be uploaded

for each component and one must specify the component for which the measurements

apply. Each RV data file is composed of three columns: the Heliocentric Julian

Dates (HJD) of the observation, the measured RV and the standard deviation of the
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measurement σi. The individual weights of the measurements are calculated from

this uncertainty, wi = 1/σ2
i . We set the passband sigma σp for both curves to 1.0, so

that they are weighted equally and each data point is weighted only by its individual

weight wi. The typical definition of σp is to set each to the standard deviation of that

curve’s fit to the data. This is true for σp of both RV and LC data.

The passband in which each RV curve was observed is specified, and the appropri-

ate limb darkening law is chosen. Because we are not able to determine the inclination

of the orbit i from the RV solution, i is set to 90◦ and it is not adjusted throughout

the RV fitting. Initial estimates of a and q are left at their default values, 10.0 R¯ and

1.0, respectively. The systemic velocity vγ is solely determined by the RV solutioni.

It is not necessary to estimate a value of vγ, since its convergence is very efficient.

Starting at vγ = 0.0 km s−1, the solution converges after just a few iterations.

We mark the parameters to be fitted to the RV curves, ∆Φ, a sin i, q, vγ, e and

ω, and minimize them using DC as implemented by PHOEBE with the default step

sizes for each parameter. After each iteration, the corrections to the parameters are

verified to make sure they represent a physical solution, and if the solution appears to

be converging, we adopt them. Convergence is evaluated quantitatively by a decrease

in the fit’s cost function χ2 as reported by the minimization routine; it can also be

assessed by calculating with each iteration the rṁṡȯf the model curve to the data

(σcurve). The parameter step sizes should be compared to the parameter corrections

after a few iterations and modified if needed to aid convergence. Computational

accuracy can be increased by refining the numerical grid into which the components’
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surfaces are divided and which are used for calculating their physical properties. Once

the corrections to the parameters are of the same order of magnitude as the parameter

uncertainties, we include the treatment of the proximity effects, i.e., when the stars

are close to eclipsing, by modeling the Rossiter effect. The Rossiter effect is due to the

rotation of the components which causes the radial velocities to vary because part of

the velocity contributions of one of the components are being eclipsed. The solution

is minimized again a few more times, evaluating the corrections at each step. When

the change in the proposed corrections is not significant, iė,̇ when they are similar to

the parameter uncertainties, and when σcurve ≈ σ̄i, the solution has converged and

the data are well fitted; σcurve should not be less than σ̄i. It is also important to plot

the modeled curve superimposed with the data and to carefully inspect the residuals

in case there is an obvious systematic trend.

The attained values for q, vγ and a sin i for the RV solution will remain constant

throughout our analysis. In particular, the value of a as parameter in PHOEBE must

be adjusted as the value of i is fitted. This adjustment is done manually with every

iteration after which the inclination angle is minimized; thus, a sin i will be conserved.

IV.2.4 LC Solution

We now fit only the available light curves, excluding the RV data from the mini-

mization, in order to constrain i, the radii Ri and the temperature ratio T1/T2, and

improve the estimates of e, ω and ∆Φ.

Like the RV data files, the LC files typically consist of two columns, one for the
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HJD of the observation and the second for the measured differential magnitudes; a

third optional column, with the measurements’ individual uncertainties σi, may also

be present and if so, it must be specified to PHOEBE. In the case of our data sets,

the BV IC LC data did include uncertainties σi for each individual measurement;

however, the uncertainties in the JHKS light curves are estimated from the rectified

light curves, as described in III.1.1. As mentioned in the previous section, this be-

comes important when weighting the diverse data curves for the simultaneous fitting.

Therefore, we set the passband sigma σp of the BV IC LCs to 1.0, and for the JHKS

LCs to the typical measurement uncertainty, ∼ 0.02–0.04, because the σi’s for the

JHKS data are effectively 1.0.

Because both Par 1802 and 2M0535−05 have well separated eclipses as character-

istic of detached binaries, we constrain the system’s morphology as such. Since our

light curves are differential and not absolute, we set the zero magnitude of the system

to 0.0. The temperature of the primary component Teff,1 is typically determined from

the spectral type or from the fitting of the spectral energy distribution to measured

broadband photometry, and then included as a fixed parameter in the configuration

file. As a first estimate, the secondary’s effective temperature Teff,2 can be set equal

to Teff,1 if q ≈ 1 and the eclipses are of similar depth. We utilize the values of the

parameters resulting from the RV fit, and provide initial estimates for the potentials

Ωi. The inclination angle is set at 89.0◦ and a is adjusted accordingly.

We then fit for i, Teff,2, Ω1 and Ω2. As mentioned in the previous section, after

each correction in the value of i, a is updated to maintain a sin i constant. PHOEBE
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allows for the direct computation of the passband luminosities, instead of minimizing

them with DC like the other parameters, which enables a faster convergence of the

fitted parameters (Prša and Zwitter, 2005). Therefore, we do not fit for the passband

luminosities, but instead we compute them directly after the corrections from the

DC minimization are adopted. The same convergence criteria as for the RV solution

are applied, including the assessment of the parameter step sizes and the comparison

of the model light curves to the photometric data. The passband sigmas σp for the

LCs should be updated as the solution is improving, by calculating the standard

deviation of the fit of the model to the data, σcurve. Because of the weighting of the

curves described above, this is done only to the JHKS LCs; σp for the BV ICbands

remain at 1.0. Once these parameters have converged, we minimize for the e and

ω while keeping the rest of the parameters fixed. Specially at the beginning of the

analysis, each iteration has to be assessed carefully to make sure the parameters are

not diverging and it is closing into a good fit to the data.

IV.2.5 LC+RV Solution

As mentioned at the beginning of this chapter, the system parameters are corre-

lated and depend on the observables in different ways. So far, we have analyzed the

RV and the LC data independently by fitting subsets of the parameters separately

to minimize the effects of the solution degeneracy. However, doing the simultaneous

fit to all the available RV and LC (RV+LC) data is extremely valuable. Firstly, it

ensures that the solution provides a single and consistent set of parameters. This
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is particularly important, because there is only one physical system. Moreover, it

reduces the number of free parameters in the fitting. Fitting each curve individually

could provide different values for the non-wavelength dependent parameters, e.g., i,

q, Ωi, that should be equal within their uncertainties. However, some parameters, in

particular e, ω and ∆Φ, depend on both the RV and LC data, and should be fitted

to both types of curves.

We fit e, ω and ∆Φ to the RV and LC data, following the convergence criteria

mentioned above, and compare at each iteration the modeled RV and light curves

to the data. When a good fit is reached, we minimize for i, Teff,2, Ω1 and Ω2 to

only the LC data because they are not determined by the RV curves. We minimize

for the system parameters to the LC and the RV+LC fits in alternating order until

a consistent set of parameters is attained. The formal parameter uncertainties are

obtained from the correlation matrix that encompasses all of the parameters in a

single minimization. The corrections to the parameters’ values supplied by this final

iteration should not be adopted. In the likely case that any of the solutions (RV, LC

or RV+LC) contained parameter correlations that caused some of the parameters to

diverge and that we have painstakingly tried to circumvent throughout this model-

ing procedure, the corrections would depart from the converged solution. However,

only by including all of the parameters are we able to obtain the appropriate formal

errors from the covariance matrix. The determination of more complete and robust

parameter uncertainties is described in Section IV.2.8.

It is possible that an adequate fit is not achieved. This could be due to the solution
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converging to a local minimum instead of to the system’s global minimum; or another

possibility could be that the model is not appropriate for the system. In the case of

the solution falling outside the global minimum, one could change the subsets of the

parameters that are being fitted in order to break the strongest degeneracies between

them. In the case of Par 1802, we found that after trying multiple variations of the

fitting to find a good solution there was no combination of i, Teff,2 and Ωi that was

able to reproduce the observed eclipses. Thus, we include a third source of light in

the model light curves to be able to fit all passbands simultaneously. This is not done

lightly because of the large degeneracy that is introduced with the inclusion of third

light into the EB solution. More details about this analysis are found in Chapter V.

IV.2.6 Including Surface Spots

This section describes the practical aspects of implementing the treatment of sur-

face spots in the light curve modeling. As mentioned above, spot modeling is not well

constrained without Doppler imaging of the spots on the star’s surface. Furthermore,

the system’s physical parameters have been shown not to change significantly when

analyzing the rectified light curves as compared to the light curves including spots

(e.g., Milone et al., 1987). The inclusion of spots in the light curve modeling may be

done as an exercise to explain, as in the case of 2M0535−05, an apparent reversal of

the temperature ratio of the system as explained in Section VI.3.

PHOEBE allows for the modeling of one or more spots in either or both eclipsing

components. A surface spot is described by its position on the stellar surface, its size
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and its temperature. The position on the surface is determined by the coordinates

of spot’s center, given in: colatitude θsp, 0.0 at the pole, π/2 at the equator and π

at the opposite pole, and longitude φsp, 0.0 at the line between the centers of the

components increasing counterclockwise. The size of a spot is defined by its angular

radius in radians, where a spot with a radius of π would cover the entire surface of

the star. The temperature of the spot is characterized in PHOEBE by the temperature

factor tf ≡ Tspot/Tstar, such that a tf > 1.0 represents a hot spot and tf < 1.0 a cool

spot.

We can constrain the spot parameters with the small-amplitude periodic varia-

tion of the light curves. The amplitude of this variation along with its wavelength

dependency provides information about the properties of the spot and the underlying

effective temperature. Since rotational modulation of the light curves due to surface

spots can be approximated as sinusoidal, a way to estimate the amplitude of this

photometric variation is by fitting a sinusoid with the rotation period of the spotted

component to the data. In fact, if we find that both components are rotating with

different periods, we can fit two sinusoids simultaneously to obtain the amplitudes

due to both rotations. The measured peak-to-peak amplitude in each band must be

scaled by the components’ relative luminosities, because the observed amplitude is

diluted by the light from the other component. For example, spots that cause pho-

tometric variability of 10% in the light curve of a single star, in a system in which

two components are contributing equal amounts to the system’s luminosity, the same

spots would cause a 5% variability in the system’s light curve.
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Once we have estimated the intrinsic variability of the component ∆mo(λ), then

we model the spotted star following an analytical inversion technique, like that by

Bouvier et al. (1993). This model is based on blackbody radiation from two sources,

and assumes that all the spots are at the same temperature. It does not assume any-

thing about the number or shape of the spots, and instead models the areal coverage

of the spots as a fraction of the star’s surface, α = Aspot/Astar. The wavelength-

dependent variation in the light curves due to surface spots is thus described as:

∆m(λ) = −2.5 log[1− (1−Q(λ)) α/(1− µ(λ)/3)],

where µ(λ) are the corresponding limb-darkening coefficients for the observed bands

(e.g., Claret, 2000); and Q(λ) is the flux ratio of the spots and the star:

Q(λ) =
Bλ(Tspot)

Bλ(Tstar)
=

e
hc

λkBTstar) − 1

e
hc

λkBTspot − 1
,

where h is the Planck constant, c is the speed of light and kB is the Boltzmann

constant. The flux ratio Q(λ) is integrated over each of the observed passbands using

their transmission functions in order to best represent the variability in each band.

We fit the modeled ∆m(λ) to the observed variability in each of the observed

bands by doing a Monte Carlo sampling of the spots’ parameters α and tf , about

1 000 times. In fact, we are able to determine a family of α and tf for which the

variability is equally well fitted to the observed ∆mo(λ). This lack of uniqueness

in the solution is because a spot will cause a similar variability than a larger but

warmer spot, or several warmer spots, or a smaller and cooler spot. Once this family

of spot parameters is determined, one must chose a given α and tf that reproduces
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the observed variability to use as input parameters for the spot modeling in PHOEBE.

Because of the degeneracy that spot modeling introduces into the eclipsing binary

model, the determination of the spot parameters through this analytical inversion

technique is a proxy for minimizing for the spot parameters in the solution. After

obtaining values for α and tf , the position of the spot on the surface can be determined

by minimizing for θsp and φsp in PHOEBE, while keeping all other parameters constant.

Afterwards, because the analytical inversion technique is an approximation, the radius

of the spot which is derived from α can be also minimized after the position of the spot

is defined and while keeping the other spot parameters and the system parameters

fixed.

This analysis was implemented in the light curve modeling of 2M0535−05, as

described in Section VI.3, to describe the small amplitude variability of the light

curves in the different observed passbands.

IV.2.7 Joint Confidence Intervals

The global minimum of the solution is not a single point in the parameter space,

but is instead a region. In fact, the data’s noise and parameter degeneracy may make

the global minimum more difficult to identify. The heuristic scans allow us to obtain

statistically correct errors in the parameters, which are generally larger than the for-

mal errors. In order to explore the parameter correlations and solution degeneracies

more carefully, and to thus determine more robust parameter uncertainties, a thor-

ough Monte Carlo sampling of parameter hyperspaces is performed using PHOEBE’s
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scripting capability. An example of script written to scan the parameter cross section

between the ratio of temperatures and the ratio of radii or surface potentials is found

in Appendix C.

The correlations between the parameters are particular to the system’s charac-

teristics and data set. The goal of exploring different parameter cross sections is to

determine heuristic errors for parameters given the system parameters and evaluate

the goodness of the fit to the observed curves. The latter can be evaluated by the

reduced chi-square of the fit, which is given by:

χ2
red =

χ2

N −M − 1
=

1

N −M − 1

N−1∑
j=0

(Oj − Cj)
2

σ2
j

,

where N is the number of data points, M is the number of fitted parameters, (Oi−Ci)

are the residuals of the fit and σj is the uncertainty of the data points; an adequate

fit is when χ2 ≈ N −M − 1 (Press et al., 2007). The best solution will correspond to

that for which the χ2 of the fit is χ2
min.

The exploration of the parameter cross sections is done via a Monte Carlo sampling

that allows one to randomly select values of the parameters of interest. This part of

the analysis is computationally very expensive and is done largely with the use of

computer clusters. One parameter cross section typically requires several hundreds of

hours of computer usage on one processor. The system parameters that are strongly

correlated with the parameters of interest, like ∆Φ when sampling e and ω or the

passband luminosities when changing the effective temperatures, are then minimized

or computed; while all other parameters are kept constant. We begin the sampling

over a large range of parameter values. After a few hundred random iterations, we
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Table 3: ∆χ2 as a Function of Confidence Level and Number of Param-
eters of Interest ν

ν
1 2 3 4 5 6

68.27% 1.00 2.30 3.53 4.72 5.89 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6

95.45% 4.00 6.18 8.02 9.72 11.3 12.8
99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 15.1 18.4 21.1 23.5 25.7 27.9

This table has been adopted from Press et al. (2007).

assess the shape and depth of the χ2 around the global minimum and narrow the

sampled parameter range to obtain more detailed contours around the minimum

while limiting the computing usage. With every change in the system parameters,

the χ2 of the fit will also vary and one can calculate this variation with respect to the

best solution as ∆χ2 = χ2 − χ2
min. Thus ∆χ2 in the joint parameter hyperspace of

the sampled parameters will have a χ2 distribution with ν degrees of freedom, where

ν are the number of parameters of interest for which the confidence intervals are to

be determined jointly (Press et al., 2007). The confidence levels of ν parameters

for a given ∆χ2 are found in Table 3; where a confidence level of 68.27% typically

represents an uncertainty of 1 σ, a 95.45% level corresponds to 2 σ, 99.73% to 3 σ,

and so on. The heuristic uncertainty of a sampled parameter is determined by the

constant χ2 contours in the parameter cross section; see for example Figure 28. The

1-σ uncertainty for one of the explored parameters is given by the projection of the
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constant χ2 1-σ contour onto that parameter’s axis.

The detailed exploration of different parameter cross sections thus allows us to

determine the heuristic errors of parameters that are strongly correlated, and also to

ensure that the LC+RV solution has reached its global minimum.

IV.2.8 Determination of the Parameter Uncertainties

The formal errors of the fitted parameters are determined by the diagonal elements

of the covariance matrix resulting from the minimization procedure. The off-diagonal

elements represent the correlations between the parameters, and are useful to distin-

guish parameters that are not sensitive to a particular data set from those parameters

that are highly correlated. For example, the mass ratio q is fully defined by the radial

velocity curves and trying to extract it from a fit to only light curves is not possible.

The minimization might converge, but because the light curves are not sensitive to q

the resulting corrections are not physically significant. The modeling tools offer great

flexibility, and in practice, we are allowed to minimize for any adjustable parameter

given one or more observed curve. However, the user must undertake the analysis

cautiously in order to avoid generating unphysical results.

When implementing the method of multiple subsets to reach the best solution, the

covariance matrices resulting from the minimization of the distinct parameter subsets

expressly do not include all the parameter correlations in order to aid convergence.

Therefore, they are not suitable to derive formal uncertainties for the adjusted pa-

rameters (Wilson and Biermann, 1976). To correctly compute the covariance matrix
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for the determination of their formal errors, all of the parameters should be mini-

mized after the best solution has been attained. The result from this minimization

will include the appropriate formal errors from the covariance matrix; however, the

corrections to the parameters should not be adopted.

Once the global solution of the system has been attained, from the careful mini-

mization of the system parameters and the heuristic scanning, we are ready to assess

the uncertainties of the parameters of the RV+LC solution. There are certain param-

eters that have uncertainties that are not derived from the eclipsing binary modeling,

i.e. Porb and Prot,j, their determination has been explained in Section IV.1. These

errors are propagated into those of the other system parameters by the sum of their

errors in quadrature. The synchronicity parameters σFj
depend exclusively on Porb

and Prot,j (see Equation 4) thus their uncertainties are given by:

σFj
= Fj

[(
σPorb

Porb

)2

+

(
σProt,j

Prot,j

)2
]1/2

.

We continue with the determination of the parameter uncertainties that depend

solely on the RV solution, namely q, a sin i, vγ and M sin3 i. For the RV solution, the

inclination is set to 90◦ and the value of a is adjusted to maintain a sin i constant.

We minimize for q, a sin i and vγ, but also for e, ω and ∆Φ, in order to obtain

the appropriate correlation matrix from the minimization, because the RV solution

depends on all of these parameters. However, because e, ω and ∆Φ also depend on

the LC, it would not be correct to obtain their formal errors from this correlation

matrix. The formal errors from the covariance matrix of the fit to only the RV curves

are adopted for q, vγ and a sin i. The uncertainty in M sin3 i (see Equation 1) is
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obtained from the propagation of those errors according to:

σM sin3 i = M sin3 i

[(
3 σa sin i

a sin i

)2

+

(
2 σPorb

Porb

)2
]1/2

.

After setting i and a back to their best values, we then obtain the formal errors for i,

Ω1, Ω2, e, ω and ∆Φ from the covariance matrix of the RV+LC solution. This matrix

is obtained from the minimization of all of the parameters that have been determined

via the eclipsing binary modeling except for q, vγ and a sin i, which were determined

in the previous step. The parameters that are assumed or obtained externally are not

minimized.

In the cases where the uncertainty of a parameter has been determined from the

parameter cross section scans described in the previous section, the heuristic errors

are adopted instead of the formal uncertainties.

The uncertainty in a is then obtained from a sin i, i and their errors, as follows:

σa = a

[(σa sin i

a sin i

)2

+
( σi

tan i

)2
]1/2

.

The individual masses are obtained from Kepler’s third law (Equation 1) and the

mass ratio q (Equation 3), and their uncertainties are:

σM1 = M1

[(
3 σa

a

)2

+

(
2 σPorb

Porb

)2

+

(
σq

q + 1

)2
]1/2

,

σM2 = M2

[(
3 σa

a

)2

+

(
2 σPorb

Porb

)2

+

(
σa

q (q + 1)

)2
]1/2

.

The components’ radii depend on Ωj, q, a, e and Fj, by the inverse of Equation 2.

Since the components are not perfectly spherical, the radius of a component varies at
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different points on its surface. We obtain the uncertainty for the radius that points

toward the center of the other component, known as point radius, for which λ = 1,

ν = 0. The uncertainty in the fractional radius σrj
, where rj = Rj/a, will be largest

when the components are closest to each other, i.e. at periastron, thus d = 1−e. The

error in the fractional point radius is given by:

σrj
=

[(
σΩj

A1

)2

+

(
A2 σq

A1

)2

+

(
A3 σe

A1

)2

+

(
A4 σFj

A1

)2
]1/2

,

where:

A1 = − 1

r2
j

− q (rj + e− 1)

[r2
j + (1− e)2 − 2 rj (1− e)]3/2

− q

(1− e)2
+ F 2

j rj (1 + q),

A2 =
1

[r2
j + (1− e)2 − 2 rj (1− e)]1/2

− rj

(1− e)2
+

1

2
F 2

j r2
j ,

A3 = − q (rj + e− 1)

[r2
j + (1− e)2 − 2 rj (1− e)]3/2

− 2 q rj

(1− e)3
,

A4 = Fj (1 + q) r2
j .

The uncertainty in the radii are then given by:

σRj
= Rj

[(σa

a

)2

+

(
σrj

rj

)2
]1/2

.

We can also obtain the semi-amplitudes K1 and K2 and their uncertainties:

K1 =
2 π q a sin i

Porb (1 + q)(1 + e2)1/2
, K2 =

K1

q
; (5)

σK1 = K1

[(σa sin i

a sin i

)2

+

(
σPorb

Porb

)2

+

(
σq

q (1 + q)

)2

+

(
e σe

1− e2

)2
]1/2

,

σK2 = K2

[(
σK1

K1

)2

+

(
σq

q

)2
]1/2

.
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Additionally, we calculate the surface gravities, gj = G Mj/R
2
j , assuming that the

stars are spherical. Surface gravities are typically reported in terms of their logarithm,

log gj. The errors in log gj therefore depend on the mass and radius of each component,

according to the following:

σlog gj
=

1

ln (10)

[(
σMj

Mj

)2

+

(
2 σRj

Rj

)2
]1/2

.

An example of a PHOEBE script that was used for the calculation of the parameter

uncertainties of Par 1802’s system parameters can be found in Appendix D.
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CHAPTER V

PARENAGO 1802

This chapter exemplifies the use of the analyses and techniques described in the

previous chapters to model the eclipsing binary system, Parenago 1802, and consists

of the manuscript, Gómez Maqueo Chew et al. (2010), that is to be submitted for

publication.

The discovery of Parenago 1802 was presented, along with its radial velocity,

study which found the system to be an eclipsing binary with a period of ∼ 4.67 days

where both components have near equal masses, M1 = 0.40 ± 0.03 and M2 = 0.39 ±

0.03 M¯ (Cargile et al., 2008, hereafter CSM07). Par 1802, as a member of the Orion

Nebula Cluster (ONC; Hillenbrand, 1997), is considered to have an age of ∼ 1 Myr

(CSM07). A follow-up analysis which included the radial velocity curves and the IC-

band light curve found the components’ masses to be equal to within ∼ 2%, but their

radii and effective temperatures to differ by ∼ 5–10% (Stassun et al., 2008, hereafter

SMC08). These disparate radii and temperatures are suggested to be the result of

a difference in age of a few hundred thousand years. The common assumption that

binary components have the same age is tested by this equal-mass system by giving

a measure of how strictly coevality should be considered, to within ∼ 300 000 years.

At very young ages, like that of Parenago 1802, the true difference in the formation

epoch of the stars has a more significant imprint on the system and its components
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(Kraus and Hillenbrand, 2009); it is after ∼ 10 Myrs that this signature becomes

insignificant (Stempels et al., 2008).

We present the V ICJHKS light curves for Par 1802 (§V.1.1); as well as, newly

acquired, high-resolution, spectroscopic data (§V.1.3). The multi-band nature of our

analysis allows us to probe the radiative properties of the system. An in-depth peri-

odicity analysis of the light curves enables us to refine the orbital period for the binary

and to identify the rotation period of its components (§V.2.1). We are able to measure

a veiling contribution in the spectra (§V.2.2), which allows for the characterization

of the third light of the system (§V.2.3) required for the multi-epoch, multi-band,

light curve modeling presented in §V.3. As a result, we obtain the physical properties

of the binary and its components along with formal and heuristic uncertainties. We

also find evidence of a rapidly rotating stellar component in the light curves, which in

conjunction with the observed blue excess in the light curves and the veiling found in

the spectra, lead us to propose that Par 1802 has a third stellar component (§V.4.2).

V.1 Observations and Data Reduction

V.1.1 Photometric Observations

We present the light curves of Par 1802 in V (with a total of 2286 data points),

IC (3488), J (564), H (176) and KS (365). The detailed observing campaign is

described in Table 4, while Appendix E contains Tables 11–15 that provide a sample

of the individual measurements in the observed V ICJHKS passbands. The full data
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set will be found in the online version of the paper by Gómez Maqueo Chew et al.

(2010). The IC data cover the largest time span, from December 1994 to January

2009; it includes the previously published light curve (SMC08) and 1279 new data

points obtained between March 2007 and January 2009. The V light curve includes

data obtained between January 2001 and January 2009 with the 0.9-m telescope at

KPNO and with the SMARTS 0.9-m, 1.0-m and 1.3-m telescopes at CTIO. Using

the ANDICAM instrument, which allows for simultaneous optical and near-infrared

imaging, Par 1802 was observed photometrically with the SMARTS 1.3-m telescope

at CTIO between February 2005 and February 2008, constituting the entirety of

the JHKS light curves. Figure 15 shows the V ICJHKS light curves, including those

published in SMC08; the data have been folded over the orbital period and each band

has been shifted in magnitude for easier visualization. Each point is an individual

observation and the solid line represents the model of our best solution as described

in §V.3. We also observed Par 1802 in the B-band; however, the resulting light curve

was not well-sampled and it is very noisy due to the photometric variability of the

third component, as discussed in later sections. Thus, we do not include the B light

curve in the rest of our analysis, except as a consistency check of our final solution.

V.1.2 Near-Infrared Data Reduction

The mean near-infrared magnitudes of Par 1802 are J = 11.124 ± 0.024, H =

10.267 ± 0.032 and K = 9.938 ± 0.018 (Skrutskie et al., 2006). The observations

in the near-infrared were made in sets of five dither positions in J , and seven dither
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Figure 15: Observed and Modeled V ICJHKS Light Curves of Par 1802. We show the
observed photometric light curves with their corresponding uncertainties as described
in §V.1.2. The data has been shifted in magnitude for easier visualization and folded
over the binary’s orbital period. The solid line represents the best RV+LC solution
for Par 1802 (see §V.3 for a detailed description of the modeling procedure, and see
Table 7 for the physical parameters of the system).
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Table 4: Photometric Time Series Observations of Par 1802

Telescope HJD Rangea Filter Nobs
b

KPNO 0.9-m 49698.35–49714.50 IC 110
KPNO 0.9-m 50820.62–50829.78 IC 21
CTIO 0.9-m 51929.59–51936.78 IC 164

V 153
KPNO 0.9-m 52227.75–52238.00 IC 131
KPNO 0.9-m 52595.75–52624.95 IC 279

V 146
CTIO 0.9-m 52622.57–52631.51 IC 80

V 83
SMARTS 0.9-m 53011.57–53024.77 IC 200

V 104
SMARTS 1.3-m 53403.53–53463.53 IC 246

V 176
J 90

KS 88
SMARTS 1.3-m 53646.86–53728.69 IC 188

V 113
J 57

KS 52
SMARTS 1.0-m 53719.56–53727.83 IC 117

V 101
SMARTS 1.3-m 53745.63–53846.51 IC 276

V 182
J 80

KS 73
SMARTS 1.3-m 53980.89–54100.65 IC 254

V 190
J 99

KS 98
SMARTS 1.0-m 54103.58–54112.773 IC 105

V 103
SMARTS 1.3-m 54103.73–54191.53 IC 183

V 61
J 63

KS 54

Continued on Next Page . . .
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Table 4 – Continued

Telescope HJD Rangea Filter Nobs
b

SMARTS 1.3-m 54375.81–54465.82 IC 371
V 250
J 128
H 129

SMARTS 1.3-m 54467.62–54497.69 IC 142
V 96
J 47
H 47

SMARTS 1.0-m 54482.58–54494.74 IC 218
V 169
B 183

SMARTS 1.0-m 54835.56–54853.78 IC 403
V 359

a Range of Heliocentric Julian Dates (2 400 000+).
b Number of observations.

positions in HKS, with total integration times of 150 and 175 s, respectively.

The near-infrared data are reduced by taking into account the position of the

ANDICAM’s mirror which is essential in removing the interference pattern of sky

emission lines characteristic to each of the mirror positions, as well as of other infrared

contributions. Dome flats are provided individually for each of the possible seven

dither positions. Each of these dome flats is created by subtracting from the median

combination of ∼ 10 images taken with the lights off a median combination of ∼ 10

images taken with the dome lights on in order to reduce the infrared contribution

in the final images of sources such as the telescope, the optical components and the

sky. The individual dome flats for each of the mirror’s dithers allow for the creation

of separate flats for each mirror position. Sky flats are created from the median

83



combination of ∼ 10 images with slightly different star fields for each distinct dither

position, so that the stars present in the field average out and provide a flat image.

This is possible since the observed field is not a very crowded one. For each observing

season, new sky flats are created in order to correct for any changes in the dithering

and for any physical changes in the instrument. The procedure to then reduce the

data consists of the following steps: the dark is first subtracted from the raw image,

followed by the subtraction of the corresponding normalized sky image, which depends

on the mirror position at which the images were taken. The image is then divided

by the corresponding normalized dome flat. Once this is done, the dithered images

are shifted and cropped in order to be combined by doing a pixel-by-pixel average in

order to obtain the final image.

Differential aperture photometry is done using the IRAF package APPHOT. The

comparison star, Parenago 1810, was chosen for its frequency in the final reduced

images of Par 1802 and because it shows very little variability in the IC and V bands;

furthermore, it is not found to be variable in the near-infrared variability study of the

ONC by Carpenter et al. (2001). The uncertainty in the produced JHKS light curves

is dominated by the systematic uncertainties of the aperture photometry. The JH

bands have a similar scatter in magnitude, σJ = σH = 0.01; however, the interference

pattern of the sky emission lines in the KS light curve is more significant, making

the scatter in this band larger, σKS
= 0.02. These uncertainties are estimated by

calculating the standard deviation of the rectified light curves, excluding the data

during the eclipses. The periodic low-amplitude variability, identified in the light
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curves and described in detail in §V.2.1, is removed from each of the light curves in

order to determine the photometric precision.

V.1.3 Spectroscopic Observations

We observed Par 1802 on the night of UT 2007 Oct 23 with the High Resolution

Echelle Spectrometer (HIRES) on Keck-I1. We observed in the spectrograph’s “red”

(HIRESr) configuration with an echelle angle of −0.403 and a cross-disperser angle

of 1.703. We used the OG530 order-blocking filter and 1.′′15×7.′′0 slit, and binned the

chip during readout by 2 pixels in the dispersion direction. The resulting resolving

power is R ≈ 34 000 per 3.7-pixel (∼ 8.8 km s−1) FWHM resolution element. For the

analyses discussed below, we used the 21 spectral orders from the “blue” and “green”

CCD chips, covering the wavelength range λλ5782–8757.

We obtained one integration of Par 1802 of 900 s. Th-Ar arc lamp calibration

exposures were obtained before and after the Par 1802 exposure, and sequences of

bias and flat-field exposures were obtained at the end of the night. The Par 1802

exposure was processed along with these calibrations using standard IRAF tasks and

the MAKEE reduction package written for HIRES by T. Barlow. The latter includes

optimal extraction of the orders as well as subtraction of the adjacent sky background.

The signal-to-noise (S/N) of the final spectrum is ≈ 70 per resolution element.

In addition, we also observed the late-type spectral standards (see Kirkpatrick

et al., 1991), Gl 205 (M1.5) and Gl 251 (M3), at high signal-to-noise. These were

1Time allocation through NOAO via the NSF’s Telescope System Instrumentation Program
(TSIP).
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observed immediately before the Par 1802 exposure and used exactly the same instru-

mental configuration. We use these spectral standards in our spectral decomposition

analysis of the Par 1802 spectrum (see V.2.2).

V.2 Analysis

V.2.1 Periodicity

We measure the timings of the eclipses in the IC light curve, which covers the

longest time span, and are able to refine the orbital period for Par 1802 by fitting

a linear ephemeris to the observed eclipse times. We find that an orbital period of

Porb = 4.673903 ± 0.000060 days fits our radial velocity and light curves. The eclipse

timings are measured by fitting a Gaussian using a least squares approach to those

eclipses for which there are at least five data points and that include the minimum

of each eclipse. Table 5 summarizes the measurements of the timings of the eclipses

and their uncertainties.

The V ICJHKS light curves corresponding to the out-of-eclipse (OFE) phases, i.e.,

all phases excluding those during the eclipses, are searched for periods between 0.1

and 20 d using the Lomb-Scargle periodogram technique (Scargle, 1982), well suited

for unevenly sampled data. The resulting periodograms (Fig. 16) show the power

spectra in frequency units of days−1 and present multiple strong peaks. These peaks

represent a combination of one or more true independent frequencies and their aliases.

The amplitudes of the periodograms are normalized according to the formula-

86



Table 5: Timings of Eclipse Minima in the IC Light Curve

HJDa O-C (Phase) Eclipse Type
49701.567326 ± 0.000006 -0.014307 Secondary
49703.956710 ± 0.000005 -0.003621 Primary
49713.296386 ± 0.000001 -0.005335 Primary

51935.7554 ± 0.0001 0.0052 Secondary
52227.86081 ± 0.00004 0.00256 Primary
52234.84326 ± 0.00001 -0.00296 Secondary
52601.77110 ± 0.00008 0.00317 Primary
52622.76956 ± 0.00002 -0.00353 Secondary
52629.82635 ± 0.00002 0.00577 Primary
53017.71700 ± 0.00005 -0.00242 Primary
53024.74611 ± 0.00001 0.00204 Secondary
53459.48344 ± 0.00006 0.01700 Secondary
54106.74615 ± 0.00001 0.00265 Primary
54487.65947 ± 0.00007 0.00215 Secondary
54494.6722 ± 0.0005 0.0020 Primary

54847.563143 ± 0.000004 0.005949 Secondary

a Heliocentric Julian Date (2 400 000+)
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Figure 16: OFE V ICJHKS Lomb-Scargle Periodograms. The out-of-eclipse (OFE)
light curves were searched for periodicities, as described in §V.2.1, identifying two
independent periodic signals with frequencies of ∼ 0.216 and ∼ 1.36 days−1, corre-
sponding to periods of P1 = 4.629± 0.006 and P2 = 0.7355 ± 0.0002 d, respectively.
Table 6 lists the identified periods in each observed passband with their correspond-
ing uncertainties. The vertical, dashed lines on the top panel mark the frequency
corresponding to P1 and its aliases and beats; while the vertical, dotted lines corre-
spond to the frequency of P2 and its aliases and beats. The significance of the peaks
is given by the horizontal, dashed line which denotes the 1% False-Alarm Probability
(FAP); since most of the significant peaks are found between 0 and 4 days−1, only
the V -band periodogram is shown in its entirety. The out-of-eclipse V ICJHKS light
curves folded over the two identified periods are presented in Fig. 17.
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Table 6: Periodicity in the Light Curves of Par 1802

OFEa O-Cb

P1 P2 P1 P2

V 4.626 ± 0.001 0.73557 ± 0.00002 4.6257 ± 0.0009 0.73558 ± 0.00001
IC 4.6257 ± 0.0005 0.73560 ± 0.00001 4.6259 ± 0.0004 0.735606 ± 0.000009
J 4.628 ± 0.003 0.73551 ± 0.00007 4.627 ± 0.002 0.73551 ± 0.00005
H 4.64 ± 0.03 0.7353 ± 0.0008 4.64 ± 0.03 0.7353 ± 0.0007
KS 4.629 ± 0.003 0.7355 ± 0.0001 4.627 ± 0.004 0.7355 ± 0.0001

a Only the phases of the light curves that are out-of-eclipse, i.e. excluding the eclipses, were
searched for periodicities.

b We did the periodicity analysis on the residuals of the modeling of the light curves; any
periodicity due to the eclipsing binary nature of the system would be removed from the O-C
Periodograms.

tion of Horne and Baliunas (1986) by the total variance of the data, yielding the

appropriate statistical behavior which allows for the calculation of the false-alarm

probability (FAP). The FAP indicates the statistical significance of the periodogram

by describing the probability that a peak of such height would occur from pure noise.

To calculate the FAP for each of the OFE light curves, a Monte Carlo bootstrapping

method (e.g., Stassun et al., 1999) is applied; it does 1000 random combinations of

the differential magnitudes, keeping the Julian Dates fixed in order to preserve the

statistical characteristics of the data. The resulting 1% FAP level is indicated in

the periodograms by the horizontal dashed line in Fig. 16. All periodogram peaks

higher than the 1% FAP are considered to be due to real periodicity in our data; this

includes the aliases and beats of any periodic signals.

To distinguish the periodogram peaks of the independent periods from their
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Figure 17: Low-Amplitude, Photometric Variability. The sinusoidal shape shown by
the OFE light curves, folded over either of the two independent periods found in
all observed passbands from the periodicity analysis (see Fig. 16 and Table 6), is
characteristic of spot-induced, rotational modulation. The left-hand panel shows the
V ICJHKS light curves folded over P1 and displaced from zero for easier visualization.
Superimposed is a sinusoid of period P1 fitted to the data. In a similar way, the right-
hand panel shows the same photometric OFE data folded over the shorter period, P2,
and its corresponding sinusoidal fit. The actual data points are repeated over each
of the three phases shown. P1 is attributed to the rotation period of the eclipsing
components, and is consistent with the measured v sin i and radii of Par 1802; whereas
P2 is attributed to the stellar source of third light (see §V.4.2 for discussion on the
third body).
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aliases, a sinusoid is fitted to each light curve and subtracted from the data in order

to remove the periodicity corresponding to the strongest peaks in the periodograms.

This filtering procedure allows us to identify in the OFE periodograms of all ob-

served passbands two independent periods, P1 = 4.629 ± 0.006 days and P2 = 0.7355

± 0.0002 days. These two periods are given by the mean of the individual period

measurements in each band and their uncertainties are given by the standard devia-

tion of the mean (see Table 6). When the OFE light curves are phased to either P1

or P2, they are characterized by having a sinusoidal low-amplitude variability which

is indicative of stellar rotational modulation (e.g., Stassun et al., 1999). Figure 17

shows on the left-hand side the OFE V ICJHKS light curves phased to P1, and on the

right-hand, the same data is phased to P2. The periodograms of the OFE light curves

after removing both sinusoidal signals are found to have peaks which are mostly below

the 1% FAP line, ensuring that the periodic signals are well fitted by sinusoids and

that any deviation from true sinusoids is hidden within the scatter of the data.

When we assess in detail the significant peaks in the periodograms of the OFE

light curves, we find multiple-peaked structures due to the finite sampling of the data.

In Fig. 16, the vertical dashed lines indicate P1 and its aliases, and the aliases of P2

are marked by the dotted lines. The peaks due to P1 and its aliases attributed to the

one-day sampling of the light curves and the peaks due to P2 and its aliases corre-

spond to the following frequencies (in days−1):
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1/P1 = 0.216 -1 + 1/P2 = 0.359

1 – 1/P1 = 0.784 2 - 1/P2 = 0.641

1 + 1/P1 = 1.216 1/P2 = 1.359

2 – 1/P1 = 1.784 1 + 1/P2 = 2.359,

2 + 1/P1 = 2.216 and so on.

3 – 1/P1 = 2.784

3 + 1/P1 = 3.216

We also find at each significant period that there is a three-peaked structure,

which is confirmed to arise from the sampling of the data. The separation between

the higher central peak and the other two corresponds to the beat frequency of a

∼ 360 day period, which can be expected given the yearly recurrence of the data

acquisition. To ensure that the peak that corresponds to P1 is significantly different

than that of the orbital period given the available dataset, we create two synthetic

sinusoidal signals that are sampled using the timestamps of the OFE IC light curve:

one with a period equal to P1 and another to Porb. After running the synthetic signals

through the periodicity analysis described in §V.2.1, we compare their periodograms

to that of the OFE IC light curve. Figure 18 shows that the periodogram of the OFE

IC light curve (solid line) around the frequency of 1/P1 ' 0.216 days−1 is almost

equal to the normalized periodogram of the synthetic signal with the same period

(see dashed-dotted line in Fig. 18), as is expected. Moreover, the periodogram of

the synthetic signal with a period equal to the orbital period (see dashed line in Fig.

18) is clearly distinct from the other two periodograms. For example in Fig. 18,

the periodogram of the data (solid line) has its most significant peak at a frequency

of ∼ 0.216 days−1. The three-peaked structure is composed of this peak and the
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peaks at ∼ 0.2135, and ∼ 0.2189 days−1. By directly assessing the window function

of the data through the periodograms of the synthetic periodic signals, we are able

to discard the possibility that the three-peaked structure found in the periodograms

centered around the most prominent peaks is an artifact of our periodicity analysis.

The periodograms of the synthetic signals, as shown in Fig. 18, also present the

three-peaked structure confirming that it arises from the sampling of the data and

that we have enough frequency resolution to discern P1 from Porb.

P1 is close to the orbital period of the binary (Porb = 4.673903 ± 0.000060 d), but

is significantly different at a 7-σ level. In order to better understand P1, we search

for periodicities in the residuals (O-C) of the eclipsing binary modeling such that any

period due to the eclipsing binary nature of the system would be removed from the

periodograms. We are able to again identify both P1 and P2 in the O-C periodograms

of all observed passbands. Table 6 describes in detail both identified periods in each

observed light curve with their uncertainty, determined via a post-mortem analysis

(Schwarzenberg-Czerny, 1991), for all of the OFE and O-C periodograms. We are able

to verify that we have sufficient frequency resolution to distinguish P1 from Porb (see

Fig. 18). Thus, we conclude that P1 is not due to orbital effects, and in particular,

P1 significantly differs from Porb. If the photometric, low-amplitude variability is

caused by surface spots rotating in and out of view on one or both of the binary

components, the difference between P1 and Porb suggests that the rotation of the

stars is not synchronized to the orbital motion.

The 4.629 d period (P1) is consistent with the measured v sin i and radii of the
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Figure 18: OFE IC and Synthetic Periodograms. We compare the periodogram of the
OFE IC light curve (solid line) around the frequency of 1/P1 ' 0.216 days−1 with two
synthetic sinusoidal signals, one with a period equal to P1 (dashed-dotted line) and
another with a period of Porb (dashed line). Both synthetic signals have been sampled
to the timestamps of the IC data to preserve its statistical characteristics; and their
periodograms have been scaled to the amplitude of the OFE IC periodogram. The
three-peaked structure around the most significant peak is due to the yearly sampling
of the light curve; the side-peaks are separated from the central peak by a frequency
of 1/360 days−1. Since we are able to clearly distinguish between the periodogram
peaks of the P1 signal and those of the Porb signal, we conclude the P1 is significantly
distinct from the orbital period.
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eclipsing binary components, and we adopt it as the rotational period Prot of both

components. In §V.4.1, we will discuss how this rotation period provides information

about the age of the system as described by tidal evolution theory. The short period

(P2) is considered be too fast to be due to rotation of either of the binary components,

and based on the width of the spectral features, there is no evidence of such a rapid

rotation in their spectra. Therefore, we propose in this paper that Par 1802 has in

fact a third stellar component, which is rotating at the 0.7355 d period (P2). There

is additional observational evidence of the existence of this third body which will be

addressed in the later sections.

V.2.2 Spectral Veiling: Evidence for a Third Light in Par 1802

In SMC08, the method of tomographic decomposition was applied on the HRS/HET

dataset to recover the spectra of the individual components. It was found that the

reconstructed spectra are compatible with an M1V spectral type for the primary, and

an M3V type for the secondary. In addition, a detailed analysis of the relative line

depths of the components made it possible to recover the luminosity ratio of the two

components, which is found to be Lprim/Lsec = 1.75. This luminosity ratio is also

consistent with the measured surface temperature ratio and stellar radii recovered

from the eclipsing binary modeling of the system.

However, during our analysis of the HRS/HET spectra, we also found that the

combined spectra cannot be represented by a simple linear combination of M1V and

M3V template spectra. The line depths of the photospheric absorption lines are too
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shallow, and an additional featureless component needs to be included in the binary

model to reproduce the observations. The presence of such a featureless continuum

component is often seen in PMS stars, and is normally referred to as veiling. A

detailed description of veiling in T Tauri stars and how it can be measured is presented

by Stempels and Piskunov (2003).

Figure 19: Observed and Model Spectrum of Par 1802. This figure illustrates how the
observed spectrum of Par 1802 (black solid line) can be reproduced by a simple three-
component model (thick gray line). This model consists of: an M1.5V template for
the primary (upper spectrum), an M3V template for the secondary (lower spectrum),
as well as a featureless veiling spectrum (dashed line). The components are scaled
such that the continuum ratio of the components corresponds to 0.39:0.22:0.39. The
gray area represents the area under the observed spectrum of Par 1802. See §V.2.2
for a more complete description.
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In order to quantify the contribution of this third component to the total lumi-

nosity of the system, we performed a detailed analysis of the contribution from any

source other than the M1 and M3 stars. Here, we did not use the HRS/HET spectra,

since these were obtained with a fiber-fed spectrograph that does not allow for the

direct subtraction of the strong nebular background surrounding Par 1802. Instead,

we performed our analysis on the high-resolution Keck/HIRES spectrum, presented

in §V.1.3, which was obtained through a long slit and allows for proper background

subtraction, including the instrumental scattered light.

Even after subtraction of the nebular background, we find that there is still a

contribution from an unidentified third source present in the spectrum. We extended

the methods used by Stempels and Piskunov (2003) to a double-lined binary system

by first constructing an unveiled model spectrum for Par 1802. This unveiled model

spectrum is a combination of two observed template spectra, GL 205 (M1.5V) and

GL 251 (M3V), with a luminosity ratio of 1.75:1.0, as mentioned above. We then

applied a χ2-minimization on each individual spectral order to solve for the required

contribution of a third component. We find that there is a featureless continuum

present in the spectrum of Par 1802, with a luminosity that is approximately equal

to that of the primary component. The normalized luminosity ratio of all three

components is then (primary:secondary:veiling) 0.39:0.22:0.39, in the IC-band. In

terms of the veiling factor, which is defined as the ratio of the contribution of the

veiling continuum and the contribution of the stellar continuum, this is equivalent

to a veiling value of approximately 0.6. We illustrate our result in Fig. 19, where
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we show how the observed spectrum can be reproduced by adding the two eclipsing

stellar components and a third featureless component. The double-lined nature of the

system is obvious around the narrow absorption lines observed in the redder order.

The analysis above does not assume anything about the nature of the third light

source. We only state that an extra featureless component is needed in both the

HRS/HET spectra and the Keck/HIRES spectrum, and that this is not an artifact

of the reduction process. Given that there is no clear infrared excess in the spectral

energy distribution of the system as would be characteristic of disks (see SMC08), and

that the Hα emission of a few milliangstroms (CSM07) seen in the eclipsing stellar

components is too weak to arise from accretion, we conclude that the veiling must be

related to a source other than the eclipsing binary components.

V.2.3 Characterization of the Third Light

We constrain the level of third light in each passband (L3) from the veiling mea-

surements described above, and from the amount of third light needed to simultane-

ously fit all of the observed light curves. The details of the eclipsing binary modeling

and of the exploration of the parameter correlations are described below in §V.3,

as are the uncertainties of the system’s fundamental parameters introduced by the

uncertainty in the level of third light.

The upper limit of the third light level allowed by the observed light curves is

obtained by setting the inclination (i) of the system to 90◦, and fitting for L3. This is

the upper limit because at an inclination angle of i = 90◦ the eclipses are intrinsically
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deepest, thus the observed shallow eclipses require the maximum dilution. We find

that the maximum level of third light allowed is one that contributes ∼ 75% to the

total luminosity of the system in the IC-band. To further explore the relationship

between L3 and i, we fit the third light levels in each passband individually for

inclination angles between 75 and 90◦. We find two trends from this analysis. The

first one is that, for any given inclination angle, the required level of third light

is approximately constant for the ICJHKS light curves. The second trend is that

Par 1802 has a blue excess, i.e., the B and the V -bands require approximately 20%

more third light of the total system’s luminosity to fit the eclipse depths than in the

other passbands.

Without additional information on the contribution of third light, it would not be

possible to ascertain what the real values of the inclination and third light levels are.

Using the spectral veiling measurements described in the section above, we are able to

constrain the level of third light found in the light curves. The veiling measurements

vary from one order to the next; thus to obtain the third light contribution in the

IC-band (L3,IC
), we averaged the veiling factors in this wavelength range, obtaining

and average veiling of 0.6 ± 0.1. The corresponding third light given this veiling

measurement is one that contributes ∼ 40% to the system’s total IC-band luminosity

(LTOT,IC
). Therefore, we adopt L3,IC

= 0.40 × (L1,IC
+ L2,IC

+ L3,IC
) = 0.40 LTOT,IC

.

As discussed previously, given that a third light that is more significant in the V-band

than in the ICJHKS-bands is needed for the simultaneous fitting of all of the observed

light curves, we ascribe L3 = 0.40 LTOT for the JHKS-bands, and L3,V = 0.60 LTOT,V .
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Furthermore, we find that the source of third light cannot be a bare star. In order

to probe into the nature of the third light given the available data, we use NextGen

stellar atmospheres (Hauschildt et al., 1999) to model the eclipsing components, scal-

ing them with a luminosity ratio of 1.75. We quantify the third light contribution

at all observed passbands of a third stellar component with an effective temperature

between 3 000 and 6 000 K, by using NextGen atmospheres scaled to contribute 40%

of the system’s luminosity in the IC-band, as found from the veiling measurements.

This third light contribution is obtained by integrating the scaled spectral energy

distributions over the observed passbands; and for each passband, the contribution is

given by the ratio of the third component’s flux to the system’s total flux. We find

that the trends identified above from fitting the third light levels to the light curves

is not reproduced by any of the stars sampled. The blue excess can be modeled by

a third component with a temperature above 5 000 K; however contrary to our mea-

surements, for such star the contribution of third light in ICJHKS is much larger

than that observed in the light curves, and it decreases with increasing wavelength.

It is only for a third stellar component with a temperature between 3 400 and 3 700

K, i.e., very similar to that of the eclipsing components, that we find that the third

light contribution contributes an equal level in the ICJHKS-bands, as well as in the

V -band, contrary to the observed light excess in the V light curve. In order to repro-

duce the level of third light in the V -band, an additional source of third light besides

a naked star is needed.

Highly active, T Tauri stars are known to show blue excesses in their spectral
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energy distributions due to either scattered X-rays or accretion flux (Whitney et al.,

2003). And observationally, T Tauri stars with accretion disks are known to have

veiling measurements that systematically decrease by ∼ 25% from the V -band to the

IC-band (Hillenbrand et al., 1998). Thus we attribute the measured blue excess to

the veiling continuum of a T Tauri star of effective temperature similar to that of the

eclipsing components. This is consistent with the observed levels of the third light in

all light curves and with the veiling measurements of §V.2.2. Even though the veiling

measurements have high uncertainties (∼ 20%), we find that a variation in the level

of third light, contributing between 5 and 75% of the system’s luminosity, does not

greatly affect the derived physical parameters of Par 1802 (see §V.3).

V.3 Results: Orbital and Physical Parameters of Par 1802

We use the Wilson-Devinney (WD) based code PHOEBE (Prša and Zwitter, 2005)

to do the simultaneous modeling of the eclipsing binary’s radial velocity and light

curves. The modeling tools weight both photometric and spectroscopic data by their

passband r.m.s., independently of which parameters are being fitted and disregarding

their physical provenance. To minimize the effect of these systematic correlations, we

begin our analysis by doing an initial fit to only the radial velocity (RV) curves from

SMC08, comprised of 11 measurements for the primary and 9 for the secondary.

We adopt the orbital period Porb determined in §V.2.1 and initially set the incli-

nation angle i to 90◦, because the RV data provide information about sin i while i is

derived from the light curves later on. The primary effective temperature Teff,1 = 3675
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± 150 K is obtained by weighting the binary components by a luminosity ratio of 1.75

and adopting a combined effective temperature of ∼ 3 560 K (Luhman, 1999) from

Par 1802’s combined spectral type of M2 (Hillenbrand, 1997); Teff,1 remains constant

throughout our analysis. The synchronicity parameters are calculated from the rota-

tion period of the eclipsing components determined in §V.2.1, F1 = F2 = Porb/Prot

= 1.0097 ± 0.0013. We utilize for the starting point in our model fitting procedure

the RV solution the best-values from SMC08 of the parameters to be refined: the

semi-major axis (a sin i = 0.0501 ± 0.0006 AU), the mass ratio (q = M2/M1 = 0.98

± 0.01), the systemic velocity of the system (vγ = 23.7 ± 0.5 km s−1), the argument

of periastron (ω = 266.1 ± 1.8◦), and the orbital eccentricity (e = 0.029 ± 0.005).

We fit these parameters to the RV curves and obtain the best-solution which allows

for the determination of the parameters that depend solely on the radial velocities,

namely a sin i, M sin3 i, q, and vγ, while e and ω are later determined through the

fit to the RV+LC data. These parameters and their formal uncertainties, derived

conservatively from the covariance matrix of the fit to only the RV curves, are given

in Table 7 and are marked with a dagger (†). The measured values of a sin i, M sin3 i,

q and vγ remain fixed throughout the rest of our analysis.

We proceed to constrain the parameters that depend exclusively on the light curve

(LC) data, i, Teff,2 via the temperature ratio, the surface potentials (Ω1,Ω2), and the

luminosities, without minimizing for the other parameters. For this task, we include

the previously published IC light curve and the V ICJHKS light curves presented

in this paper (§V.1.1). Given that the short period, low-amplitude variability is
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not attributed to the eclipsing components but to a third body in the system, the

light curves are rectified by removing the sinusoidal variability due to the 0.7355

d period. As mentioned in the previous section (§V.2.3), it is not possible to fit

the V ICJHKS light curves simultaneously without including third light; there is no

combination of temperature ratio and inclination that will fit the observed eclipse

depths in all bands. When we are able to fit the eclipse depths of the ICJHKS light

curves, the V -band eclipse depths are overestimated by our model. Adopting the

third light levels described in §V.2.3, we are able to fit the observed eclipse depths

in all bands to our eclipsing binary model. The effects of the uncertainty in the

third light levels on the binary’s physical parameters are minimal and are explored

in detail below. By fitting the RV and LC data simultaneously (RV+LC), we are

able to refine e and ω. We iterate both the LC and RV+LC solutions, until we

reach a consistent set of parameters for which the reduced χ2 of the fit is close to

1. Figure 15 presents the observed light curves with this model overplotted. The

physical and orbital parameters of Par 1802 from our best solution are presented in

Table 7; it includes both the formal and heuristic parameter uncertainties, as well as

the uncertainties associated with our choice of third light levels. The formal statistical

errors are determined directly from the WD output. PHOEBE’s scripting functionality

allows for the Monte-Carlo sampling of parameter hyperspaces in order to determine

the heuristic errors and explore the correlations between them. This exploration of

the parameter correlations also ensures that the global minimum of the cost function

for the solution has been reached.

103



Figure 20: Effects of the IC Third Light on the System’s Parameters. By exploring the
effects of the amount of third light on the inclination, we are able to determine that
the system’s parameters, in particular those that depend directly on i (semi-major
axis, radii and masses), do not change significantly with a change in level of the third
light component. A variation of the level of third light in the IC-band, between 5
and 75% of the total luminosity of the system, corresponds to a change in inclination
angle between ∼ 78 and 88◦as shown in the top-left panel. The formal error for the
inclination (±1σ) is denoted by the horizontal dotted lines in the top-left panel; the
formal uncertainties for the semi-major axis, the masses and the radii are larger than
the effect of the variation of the third light on these parameters. This variation of the
third light, and consequently of i, corresponds to a change in the semi-major axis is
of less than ± 1.5% (top-right panel). It also translates into a change of less than ±
4% in the masses, corresponding to less than ± 0.015 M¯ (bottom-left panel). The
solid line and dashed line represent the change in the primary and secondary masses,
respectively. The change in the radii of the primary and secondary components of
+0.01 and –0.02 R¯ is presented in the bottom-right panel by the solid line and
dashed line, respectively.
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The inclination angle and the levels of third light are highly degenerate parameters,

i.e., an increase in the inclination angle may be compensated by an increase in the

amount of third light rendering the same goodness of the fit. The observational limits

on the real amount of third light are given by the veiling measurements (§V.2.2). The

relative contribution of amount of third light in the different bands is constrained by

the observed eclipse depths, such that the third light level in the V -band is always

higher than in the ICJHKS-bands. To explore this degeneracy in the parameter

space, we quantify the effects of the variation of the levels of third light on the system

parameters, in particular those that depend strongly on the inclination. From the

radial velocity data, we can measure the values of M sin3 i and a sin i; and from

the photometry, we can determine the sum of the fractional radii. A change in the

inclination would therefore affect most strongly the semi-major axis, the radii, and

the masses. The temperature ratio is weakly dependent on a change in the inclination

and its corresponding levels of third light, because it is constrained by the observed

relative depths of the eclipses in the different passbands. We vary the third light

level in the IC-band, such that it contributes between 5 and 75% of the system’s total

luminosity, adjusting the third light level in the other bands according to the trends

identified in §V.2.3. Figure 20 shows the relationship between the change in third

light levels and the inclination angle, the semi-major axis and the measured masses

and radii of the eclipsing components. We find that the corresponding value for the

inclination angle for this variation in third light lies between ∼ 78 and 88◦. Since

this change in the inclination is greater than its formal error of ∼ 0.2◦, we adopt its
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uncertainty in degrees to be + 8.0
− 2.0. Accordingly, the change in the value of the semi-

major axis as the level of third light is varied is less than ± 2%. Consequently, we

are able to determine that the masses vary by less than ± 4% or ± 0.015 M¯, which

is comparable to the uncertainties in the masses (∼ 0.02 M¯) if we only include the

formal σi = 0.2◦. However, these changes are well below our formal uncertainty of

0.032 M¯, which includes the uncertainty in i to be 8.0◦. The radii change by + 0.01
− 0.02

R¯, or ± 1%. The uncertainty in i due to the level of third light is not the main

source of error in the radii. When we include an uncertainty of 8.0◦ for the value of i,

the uncertainty in the radii are 0.11 and 0.08 R¯ for the primary and the secondary,

respectively. The uncertainties of the system parameters that depend on i have been

calculated with σi = 8.0◦ and are marked with a double-dagger (‡) in Table 7.

We are able to determine that the eccentricity of Par 1802 is in fact measurable

given our data set and significantly different than zero, e = 0.0166 + 0.0017
− 0.0026. Initial

estimates of e and ω are obtained from the separation in phase between the secondary

eclipse minimum tII,ph and primary’s tI,ph and from the duration of each eclipse Θi.

The eccentricity and angle of periastron are related as follows: e cos ω = π (tII,ph −

tI,ph − 1/2)/(1 + csc2 i) and e sin ω ≈ (Θp – Θs)/(Θp + Θs) (Kallrath and Milone,

2009). Therefore by measuring the separation between the minima in the light curves,

the lower limit for the eccentricity may be estimated, when | cos ω| = 1. In order

to measure the separation and duration of the eclipses, we fit a Gaussian to both

minima in the phased IC-band and obtain from the phases at which they occur that

their separation is tII,ph− tI,ph = 0.49799 ± 0.00025; hence, e ≥ 0.0031 ± 0.0004. The
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separation of the minima in conjunction with the measured durations, Θp = 0.1010

± 0.0007 and Θs = 0.0877 ± 0.0012, render ω = 1.514 ± 0.004 π radians and e =

0.071 ± 0.008.

Figure 21: RV+LC Joint Confidence Levels for e − ω. Given our dataset, we are
able to measure the very small but significant orbital eccentricity of the eclipsing
binary. The heuristic errors of the eccentricity e and the argument of periastron ω
are estimated by the variation of a χ2-distribution with two degrees of freedom with
e and ω. The center of the cross marks the point at which the χ2 of the RV+LC
fit attains its minimum value; its length and width indicate the 1-σ uncertainties for
the sampled parameters as given by the innermost contour level. Each subsequent
contour represents a 1-σ increase. The RV+LC parameter hyperspace is sampled for
0.0 < ω < 2π and 0.0 < e < 0.1; this is the same parameter range sampled for the
LC contours shown in Fig. 22.

By sampling the parameter cross-section between e and ω, we are able to determine
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Figure 22: LC Joint Confidence Levels for e−ω. The LC confidence contours allows us
to confirm that the values for e and ω from the RV+LC contours are not systematically
skewed by the weighting of the data, due to the abundant number of photometric data
in comparison to the number of RV measurements. The figure shows the sampled
parameter cross section in its entirety. The cross marks the lowest-χ2 point to the
LC fit with 1-σ uncertainties, surrounded by the solid line 5-σ confidence level. The
shaded contours beyond 5-σ do not correspond to a particular uncertainty level but
are shown to display the two valleys in χ2 when the orbit’s semi-major axis is parallel
to the line-of-sight. The inset shows in detail the confidence interval for e and ω within
5-σ and for comparison, the dashed lines denote the 1 and 5-σ RV+LC contours from
Fig. 21.
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the best-values of these parameters consistent with those estimated above, as well as

their heuristic uncertainties. Figure 21 shows the joint confidence levels for e and ω

following the variation of a χ2-distribution with two degrees of freedom around the

RV+LC solution’s minimum. The innermost contour represents a confidence level

of 1-σ, and each subsequent level corresponds to an increment of one σ. This cross

section was sampled ∼ 1750 times by randomly selecting values for e between 0.0

and 0.1, and for ω between 0 and 2π radians. The phase shift, which gives the

orbital phase at which the primary eclipse occurs, is strongly correlated with both

explored parameters and is therefore minimized for each set of randomly selected

values, whereas the rest of the parameters are less correlated and kept constant at

their best-values. In order to verify that e, ω and their uncertainties are not artificially

skewed by the weighting of both the RV and light curves as undertaken in PHOEBE by

WD, given that our data set is comprised mostly of photometric measurements, we

sampled the same range in e and ω about 1900 times fitting to the light curves alone

and obtaining their LC confidence contour levels. We find that the LC contours,

shown in Fig. 22, are very similar to the RV+LC contours (Fig. 21). The minimum

value of χ2 to the RV+LC fit is for e = 0.0166 +0.0017
−0.0026 and for ω = 1.484 ± 0.010 π

radians; while for the LC fit, it is for e = 0.0182 +0.0015
−0.0032 and for ω = 1.485 +0.009

−0.008 π

radians. The 5-σ contour level is denoted by the black contour around the lowest-χ2

point marked by the cross. The shaded contours are for larger changes in χ2, and do

not correspond to specific sigma levels. We plot beyond the 5-σ level to show the two

valleys in the parameter hyperspace when ω is close to π/2 and to 3π/2, i.e., when
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the orbit’s semi-major axis is aligned with the line-of-sight thus allowing for larger

eccentricities. The detailed LC contours up to 5-σ are shown in the inset in Fig. 22;

for comparison, the 1 and 5-σ RV+LC contours are overplotted in the dashed lines.

We find that both sets of contours are consistent, and thus we adopt the values of e

and ω and their heuristic uncertainties from the RV+LC contours.

Figure 23: Joint Confidence Levels for (Teff,1/Teff,2) – (R1/R2). Similar to Fig. 21 and
Fig. 22, the significance levels given by the contours are representative of the change
in χ2 as the ratios of temperatures and radii are explored. Even though the masses
of the components are almost equal, q = 0.985 ± 0.029, the effective temperatures
differ by ∼ 9% and the radii of the eclipsing binary components by ∼ 7%.

We confirm that the ratio of effective temperatures as shown in SMC08 is different
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Table 7: Orbital and Physical Parameters of Par 1802

RVs + IC
1 RVs + V ICJHKS

Orbital period, Porb (d) 4.673843 ± 0.000068 4.673903 ± 0.000060
Eccentricity, e 0.029 ± 0.005 0.0166 + 0.0017

− 0.0026

Orientation of periastron, ω (π rads) 1.478 ± 0.010 1.484 ± 0.010
Semi-major axis, a sin i (AU) 0.0501 ± 0.0006 0.0496 ± 0.0008†

Inclination angle, i (◦) 78.1 ± 0.6 80.8 + 8.0
− 2.0

‡

Systemic velocity, vγ (km s−1) 23.7 ± 0.5 23.4 ± 0.7†

Primary semi-amplitude, K1 (km s−1) 57.74 ± 0.75a 57.28 ± 1.22
Secondary semi-amplitude, K2 (km s−1) 58.92 ± 0.95a 58.19 ± 2.14
Mass ratio, q ≡ M2/M1 0.98 ± 0.01 0.985 ± 0.029†

Total mass, M sin3 i (M¯) 0.768 ± 0.028 0.745 ± 0.034†

Primary mass, M1 (M¯) 0.414 ± 0.015 0.391 ± 0.032‡

Secondary mass, M2 (M¯) 0.406 ± 0.014 0.385 ± 0.032‡

Primary radius, R1 (R¯) 1.82 ± 0.05 1.73 ± 0.11‡

Secondary radius, R2 (R¯) 1.69 ± 0.05 1.62 ± 0.08‡

Primary gravity, log g1 3.54 ± 0.09a 3.55 ± 0.07‡

Secondary gravity, log g2 3.62 ± 0.10a 3.61 ± 0.06‡

Primary surface potential, Ω1 . . . 7.3 ± 0.4
Secondary surface potential, Ω2 . . . 7.6 ± 0.3
Primary synchronicity parameter, F1 . . . 1.0097 ± 0.0013
Secondary synchronicity parameter, F2 . . . 1.0097 ± 0.0013
Effective temperature ratio, Teff,1/Teff,2 1.084 ± 0.007 1.0924 ± 0.0017

1 Previously published results (SMC08).
a Calculated from parameters and uncertainties in SMC08.
† The uncertainties in these parameters are conservatively estimated from the formal

errors of a fit to the RV data alone. See §V.3.
‡ The uncertainty in the inclination is conservatively estimated from a variation in the

level of third light between 5 and 75% of the system’s total luminosity, and is propagated
into the uncertainty in these parameters, since they depend on i. See §V.3.
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from unity, Teff,1/Teff,2 = 1.0924 +0.0017
−0.0013; and we also find this disparity in the case of

the ratio of the eclipsing components radii, R1/R2 = 1.0687 +0.0093
−0.0075. We sampled

the parameter hyperspace between (Teff,1/Teff,2) and (R1/R2) over 2000 times, shown

in Fig. 23, in order to confirm the significance of the differences in the radii and

temperatures of the eclipsing components of Par 1802. We explore the temperature

ratio between 1.0382 and 1.1271. The radius for the component of a detached eclipsing

binary depends on the surface potentials as ∼ 1/Ωj; so the ratio of the radii was

sampled by choosing values for Ω1 between 5.5 and 8.4, and minimizing for Ω2. To

facilitate the convergence of Ω2, we exploit the fact that the sum of the radii must

remain the same due to observational constraints.

The fundamental parameters of Par 1802 and their uncertainties obtained through

the modeling of the observed radial and light curves and from the careful exploration

of the parameter correlations are summarized in Table 7. The most conservative

uncertainties are adopted for each parameter; we include the uncertainty due to a

variation on the third light level in the determination of the derived parameters’

errors, like those of the individual masses, the radii and the surface gravities.

V.4 Discussion

Par 1802 is a unique system providing important and valuable observational con-

straints in the low-mass regime at the earliest evolutionary stages. Not only does it

provide precise and direct measurements of the mass and the radius of each of its

components; but because their masses are almost equal, it also constrains the degree
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to which the coevality of binary components should be considered. We are able to

measure the radii for the eclipsing components that are large as expected for PMS

stars, but they differ by 7%. Their effective temperatures are also confirmed to be

dissimilar by 9%. As discussed in SMC08, a difference in age for stars of 0.4 M¯ of

∼ 300 000 years would explain this discrepancy, with the larger star being younger

than its companion, because there is a fast evolution predicted by the theoretical evo-

lutionary models of D’Antona and Mazzitelli (1997) around an age of 1 Myr. Mass

equalizing mechanisms during the formation process may be the cause of this age

difference between the components of twin binaries (Simon and Obbie, 2009). The

early tidal evolution of close binary systems is also constrained by the measured rota-

tion period of the binary components, which is slightly faster than the orbital period,

consistent with quasi-synchronization, and by the small but significant eccentricity

of the orbit. Furthermore, we find observational evidence of the existence of a third

component in the system.

V.4.1 Eccentricity, Rotation Period and Tidal Evolution

The theory of tidal evolution predicts that the timescales for synchronization of

close binaries are shorter than the timescale for their orbits to be circularized (e.g.,

Mazeh, 2008). According to Zahn (1977), the synchronization period (in years) for

a binary where both components have convective envelopes with a mass ratio q and

an orbital period Porb (in days) is given by tsynch ∼ 104((1 + q)/(2q))2P 4
orb ; and the

circularization period is tcirc ∼ 106q−1((1 + q)/2)5/3P
16/3
orb years. For Par 1802, tsynch
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is close to 5 Myrs while tcirc is ∼ 3.8 Gyrs. And in fact, we find that the components

are rotating quasi-synchronously and that the orbit has a non-zero eccentricity.

From the eclipsing binary modeling, we confirm that the orbit is not circular with

a non-zero eccentricity of e = 0.0166 ± 0.003. We measure the photometric rotation

period of the binary components in §V.2.1 and find it to be Prot = 4.629 ± 0.006 days.

This period is very close to but significantly different from the orbital period of the

binary; the system is quasi-synchronized. For non-circular orbits, tidal interaction is

strongest around periastron and therefore the binary components synchronize to the

pseudo-synchronization rotational velocity as described by Hut (1981). If Par 1802

was rotating pseudo-synchronously and considering the system’s measured eccentric-

ity, its components would have to rotate with a period of 4.6662 days which is more

than 3-σ longer than the measured Prot. On the other hand, if we consider Prot to

be the pseudo-synchronization period of the binary, then the eccentricity of the orbit

would need to be ∼ 0.04 which is well outside our 5-σ confidence level for the eccen-

tricity (see Fig. 21 and Fig. 22). The theory of tidal evolution during the PMS phase

is not well determined because the initial conditions range from system to system and

there are different mechanism that affect the evolution of the rotation of the binary

components which may counteract each other: the contraction and conservation of

angular momentum spinning up the stars, which is in itself challenging, and the tidal

interactions slowing them down. Very small, non-zero eccentricities in close binaries,

like the one we are able to precisely measure, are typically ignored and the orbits are

considered circular.
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V.4.2 The Third Stellar Component

As mentioned in the previous sections, the observational evidence for the existence

of a third component in Par 1802 are: a) the V ICJHKS light curve modulation by

a 0.7355 day period during all observed epochs (§V.2.1), b) the measured excess

continuum or veiling found in the spectra (§V.2.2), and c) the need of third light for

the simultaneous modeling of the V ICJHKS light curves (§V.2.3, §V.3).

Since the ONC is in front of a very dense, optically-thick cloud, the source of third

light cannot be a background object, and it is not likely a foreground main sequence

star because of the observed spectral veiling, characteristic of T Tauri stars. It is

therefore most likely to be associated with the young cluster. The contribution of the

third component to the system’s luminosity is limited in order to maintain Par 1802

within the ONC, which is at a distance of 436 ± 20 pc (O’Dell and Henney, 2008).

Appendix F contains an IDL script that calculates the distance to Par 1802 taking

into account different values of interstellar extinction. Considering a third body that

contributes 40% to the system’s total luminosity, as we have determined for the IC-

band, the distance to Par 1802 with an extinction of AV = 0.0 visual magnitudes

is 390 ± 65 pc; for an extinction of AV = 0.5, as proposed in SMC08, the distance

would be 490 ± 65 pc. Both of these distances are consistent with the distance to the

low-mass stellar population associated with the Orion Nebula. A third component

that contributes more than 40% of the system’s total luminosity would therefore set

the distance to Par 1802 beyond that of the ONC. Par 1802’s third stellar component

is therefore unlikely to be an early-type star with a PMS radius that would dominate
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the light of the system.

The observed short-period, low-amplitude variability is likely to arise from a

rapidly rotating star and cannot be attributed to either of the binary components

because there is no evidence for such rapid rotation in their spectra. The fact that we

detect the short-period variability in all filters indicates that there is a contribution of

the third star at those wavelengths. Therefore, the third body cannot be an early-type

star that is still embedded within its parent cloud. Even though this would satisfy

the low contribution to the system’s luminosity, we would not be able to observe the

spot-induced modulation in all light curves. On the other hand, an active late-type

star, that is contributing 40% of the system’s luminosity and is rotating with a 0.7355

d period can cause the observed spot modulation (∼ 3% in the IC-band) if its intrinsic

variability is ∼ 5%, which is within the typical observed variability for PMS stars.

Moreover, other low-mass stars in the ONC have been found to have similarly fast

rotation periods (e.g. Stassun et al., 1999).

The spectrum of a rapidly rotating late-type star, which is diluted by the eclipsing

binary’s light, would not be easily identified in the spectra of the system. This may

explain the featureless extra continuum or veiling found in the spectra. Studies based

on the modeling of the spectral energy distributions of T Tauri stars are known to

show veiling in the blue part of the spectrum for highly active stars (Whitney et al.,

2003). The third body might be such an active, late-type stellar component, which

would explain the blue excess found for Par 1802 in the levels of third light in the

light curve modeling and from the veiling measurements. And though the binary
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components are shown in SMC08 to not have circumstellar or circumbinary material,

these might have been removed by tidal forces, which would not have as strong an

effect on the third body’s circumstellar material.

The observational constraints described above do not provide enough information

to enable us to determine the mass nor the spectral type of the third component of

Par 1802. In fact, we cannot entirely rule out the possibility that the third star is an

unrelated star along the line of sight. However, as we discuss above, it is very unlikely

to be either a foreground or background field star, so it is likely within the ONC, in

which case the probability of being projected within ∼ 1” line of sight is very low.

Moreover, we are able to set limits to the amount of light the third body contributes

to the system. As a consistency check, we fit the broadband photometry for Par 1802

to a composite model spectral energy distribution, which includes the eclipsing pair

and a third stellar component of similar effective temperature and radius with a blue

excess typical of T Tauri stars. We find that with a level of third light and blue

excess, the broadband photometry agrees with the effective temperatures and radii

of the eclipsing components.

A third stellar component in Par 1802 has been previously suggested (CSM07)

by a long term trend identified in the residuals of the orbit solution. The data span

about 10 years; the oldest of which are found to be well above 3-σ from the calculated

orbit. If we consider a third body with a mass similar to the EB components (∼ 0.4

M¯), as suggested by above, orbiting the EB with a period of ∼ 15 years at a distance

of about 6 AU, the maximum shift in the radial velocities of the EB would be ∼ 18
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km s−1. Such third body in Par 1802 would be consistent with the scatter found in

residuals presented in CSM07. In fact, the existence of the third body in an eccentric

orbit may be the cause for the low-eccentricity found in the EB.

We propose that the third body of Par 1802 is a rapidly rotating, PMS late-type

star, explaining the observed low-amplitude variability in the light curves with the

0.7355 d period. Because of its fast rotation and because its light it diluted with the

light from the eclipsing pair, we are unable to identify any of its spectral features.

Motivated by the observed spot-modulation in the light curves, this third body is

probably active and may still have circumstellar material from which it is accreting

or which is scattering X-rays causing the observed blue excess found in the levels of

third light needed to fit the light curves, and perhaps also causing the spectral veiling.
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CHAPTER VI

ECLIPSING BROWN DWARFS

This chapter exemplifies the use of the analyses and techniques described in the

previous chapters to model the eclipsing binary system, 2MASS J05352184-0546085,

and has been published as Gómez Maqueo Chew et al. (2009).

The discovery of the system 2MASS J05352184–0546085 (hereafter 2M0535−05),

the first eclipsing binary system comprised of two brown dwarfs, was presented by

Stassun et al. (2006), hereafter SMV06. With a reported orbital period of Porb =

9.779621 ± 0.000042 d, 2M0535−05 was found as part of a photometric survey search-

ing for variability in the Orion Nebula Cluster. Through the simultaneous radial ve-

locity and IC-band light curve analysis of this fully detached system, they obtained

masses of M1 = 0.054 ± 0.005 M¯ and M2 = 0.034 ± 0.003 M¯ for the primary

and secondary components, respectively, with corresponding radii of R1 = 0.669 ±

0.018 R¯ and R2 = 0.511 ± 0.026 R¯. They found a surprising reversal of surface

brightnesses in which the less massive component radiates more per unit surface area

(i.e., has a higher effective temperature) than the more massive one, contrary to what

is expected for coeval brown dwarfs (Baraffe et al., 1998).

A follow-up analysis of 2M0535−05 was presented by Stassun et al. (2007, here-

after SMV07) in which it was suggested that the apparent temperature reversal in

2M0535−05 could be the result of preferentially strong magnetic activity on the pri-
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mary brown dwarf. This hypothesis was shown by Chabrier et al. (2007) to be theoret-

ically plausible, and was then reinforced empirically when Reiners et al. (2007) found

that the primary brown dwarf rotates & 2× faster and exhibits & 7× stronger

Hα emission than the secondary. One manifestation of enhanced activity on the

primary brown dwarf should be the presence of large, cool surface spots (Chabrier

et al., 2007). If present, such spots should produce photometric variations that are

periodically modulated by the rotation of the brown dwarf. Indeed, the presence

of low-amplitude variations in the IC-band light curve of 2M0535−05 was noted in

SMV07; however an analysis of such variation was deferred to the present study.

This work broadens the previous analyses of 2M0535−05 with the addition of

near-infrared (JHKS) light curves, and investigates the intrinsic variability of the

light curves in more detail. The near-infrared observations and their reduction are

described in Sec. VI.1 and analyzed in Sec. VI.2. A periodicity analysis of the out-of-

eclipse phases of the light curves in Sec. VI.2.1 yields the rotation periods of the two

components of the binary to be Prot,1 = 3.293 ± 0.001 d and Prot,2 = 14.05 ± 0.05 d,

consistent with the v sin i measured by Reiners et al. (2007) and the previously mea-

sured radii. The modeling of the JHKS light curves together with the previously

published IC light curve and radial velocity data is described in Sec. VI.2.2, from

which we determine refined measurements of the system’s physical parameters. The

apparent temperature reversal found in the previous studies is confirmed again with

the addition of the JHKS light curves to the analysis.

Section VI.3 incorporates surface spots into the light curve modeling. In par-
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ticular, we assess the properties (areal coverage and temperature) of the spots that

are required to both reproduce the observed low-amplitude variations and permit the

surrounding photospheric temperatures of the two brown dwarfs to be in agreement

with theoretical expectation for young brown dwarfs. We find that a small cool spot

(∼ 10% areal coverage and ∼ 10% cooler than the surrounding photosphere) on each

of the brown dwarfs can reproduce the observed low-amplitude variations. Then, by

introducing additional spots that uniformly cover ∼ 65% of the primary’s surface, we

are able to simultaneously reproduce the observed surface brightness ratio of the two

brown dwarfs (i.e., the apparent temperature reversal) while bringing the underlying

temperature of the primary into agreement with the predictions of theoretical models.

Finally, we discuss our findings in Sec. VI.4.

VI.1 Near-Infrared Light Curves

The primary focus of this work is primarily to extend the published spectroscopic

and photometric analyses (SMV06, SMV07) of 2M0535−05 with the addition of the

near-infrared photometric light curves in the J (1.2 µ m), H (1.6 µ m) and KS (2.2 µ

m) passbands. The inclusion of more light curves in the modeling allows us to further

constrain the system’s parameters, in particular the temperatures and radii of the

components. The multi-band analysis also probes the nature of the low-amplitude

variability.
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VI.1.1 Near-Infrared Photometric Observations

As mentioned in Chapter II, the observations of 2M0535−05 here presented were

taken in the 2MASS near-infrared bands JHKS from 2003 October to 2006 April

at Cerro Tololo Inter-American Observatory in Chile. They were observed with the

SMARTS 1.3-m telescope using the ANDICAM instrument which allows for simul-

taneous optical and infrared imaging (the optical measurements have been reported

in SMV06 and SMV07). The observations in the near-infrared were made in sets

of 7 dither positions providing a total of 362 measurements in J , 567 in H and 385

in KS spread over five observing seasons. The integration times were typically of

490 seconds for the JHKS passbands. Table 8 describes the observing campaigns

in full detail, while Appendix G contains Tables 16–18 that provide a sample of the

individual measurements in the JHKS bands. The full data set may be found in

the online version of the paper by Gómez Maqueo Chew et al. (2009). The mean

near-infrared magnitudes of 2M0535−05 are J = 14.646± 0.031, H = 13.901± 0.043,

and KS = 13.473± 0.031 (Skrutskie et al., 2006).

VI.1.2 Data Reduction

The data were reduced differently depending on the dome flat acquisition as de-

scribed in Chapter II. For observations made between October 2003 and March 2004,

those comprising the data set I and affecting more than 50 percent of the H light

curve, the dome flats were obtained without information of the mirror’s position. A

composite dome flat was created by subtracting a median combination of ∼10 images
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Table 8: Photometric Time Series Observations of 2M0535−05

UT Dates Julian Dates Range Filter Expa Obsb

I 2003 10 09 – 2004 03 16 2452922.728 – 2453081.568 H 525 303
II 2004 10 01 – 2004 11 30 2453280.731 – 2453340.726 J 490 105

2453280.736 – 2453340.733 Ks 490 104
III 2005 02 01 – 2005 03 15 2453403.540 – 2453445.589 J 490 123

2453403.532 – 2453445.579 H 490 123
2453403.547 – 2453445.595 Ks 490 115

IV 2005 10 02 – 2005 12 23 2453646.828 – 2453728.701 J 490 55
2453646.821 – 2453728.694 H 490 53
2453646.836 – 2453728.717 Ks 490 103

V 2006 01 09 – 2006 04 09 2453745.651 – 2453835.506 J 490 81
2453745.643 – 2453835.498 H 490 89
2453745.658 – 2453835.514 Ks 490 64

a Total exposure time in seconds of the seven dithered positions.
b Number of observations per season.

taken with the dome lights on minus the median combination of ∼10 images taken

with the lights off in order to reduce the infrared contribution in the final images

of sources such as the telescope, optical components and the sky. The procedure to

then reduce data set I consisted of the following steps: a sky image is formed from

the median combination of the 7 dithers; it was then normalized to the background

of each individual image and subtracted from each separately; every image was then

divided by the normalized flat; the dithers were aligned; the images were cropped,

and they were combined by doing a pixel-by-pixel average.

For images taken from October 2004 onward, dome flats were provided individ-

ually for each of the 7 dither positions, proving essentially helpful in removing the

interference pattern of sky emission lines characteristic of each of the mirror posi-
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tions as well as the other infrared contributions. Each of the seven furnished dome

flats follow the same combination as did the dome flats described in the previous

paragraph. The individual dome flats for each of the mirror’s dithers allowed for the

creation of separate flats for each mirror position. Sky flats were created from the

median combination of ∼10 images with slightly different star fields for each distinct

dither position, so that the stars present in the field averaged out and provided a flat

image. This was possible since the observed field is not a very crowded one. For each

of the remaining observing seasons, new sky flats were created in order to correct for

any changes in the dithering and for any physical changes in the instrument. The

reduction process is slightly different than for the first data set: the dark was first

subtracted from the raw image; followed by the corresponding normalized sky flat,

which depended on the mirror position at which the images were taken. The image

was then divided by the corresponding normalized dome flat. Once this was done, the

calibration resembles that of data set I: the dithered images were shifted and cropped

in order to be median combined as to obtain the final image.

Differential aperture photometry was done using the IRAF package APPHOT. The

comparison star was chosen because it appears in all of the reduced observations of

2M0535−05 and because it is non-variable in the IC-band observations. The phased

JHKS light curves are presented in Fig. 24.

We do not report uncertainties on the individual differential photometric measure-

ments in Tables 16–18, because the light curves precision is dominated by systematics.

However, the standard deviation of the out-of-eclipse portions of the light curves gives
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Figure 24: JHKS light curves of 2M0535−05. The observed data points for each band are
plotted with their corresponding uncertainties as described on §VI.1.2 and are displaced by 0.7
magnitudes for clarity from the light curve above. The solid lines represent the light curve model
of the simultaneous fit to the radial velocity measurements and the ICJHKS photometric data (see
§VI.2.2 for discussion of the modeling procedure, and see Table 10 for parameters). The residuals
of the fits are also shown.

125



a measure of the photometric scatter in each of the bands. While the JH light curves

present a similar scatter, σJ = σH = 0.02, the interference pattern of the sky emission

lines is more significant in the KS-band making the scatter larger, σKS
= 0.04. As we

show below, this photometric scatter includes low-amplitude intrinsic variations due

to the rotation of 2M0535−05’s components.

VI.2 Light Curve Analysis

The JHKS light curves described in the previous section are analyzed for period-

icities apart from those due to the eclipsing nature of the binary (§VI.2.1). Then they

are modeled in conjunction with the available radial velocities and IC light curve in

order to obtain the system’s physical parameters (§VI.2.2). The thorough treatment

of surface spots is introduced to the light curve solution in Sec. VI.3.

VI.2.1 Rotation periods

The light curves, both in the IC and the JHKS bands, present several periodicities.

The most obvious period corresponds to that of the eclipses which recur on the orbital

period, Porb = 9.779556 ± 0.000019 d (Stassun et al., 2007). In addition, the light

curves in the observed bandpasses present a low-amplitude variability, with a peak-

to-peak amplitude of ∼0.02–0.04 magnitudes, noticeable in the out-of-eclipse phases.

We speculate that this type of periodic signal is due to the rotation of one or both

components, resulting from spots on their surfaces rotating in and out of view (e.g.,

Bouvier et al., 1993; Stassun et al., 1999). Another possible explanation for the
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low-amplitude variations is intrinsic pulsation of one or both of the components.

However, young brown dwarfs are expected to pulsate with periods of only a few

hours (Palla and Baraffe, 2005), whereas we find periods of P1 = 3.293± 0.001 d and

P2 = 14.05 ± 0.05 d (see below). Thus in what follows, for consistency we refer to

these periods as Prot,1 and Prot,2.

The light-curve data in the IC and JHKS bands corresponding to the out-of-

eclipse phases were searched for periods between 0.1 and 20 d using the Lomb-Scargle

periodogram (Scargle, 1982), well suited for unevenly sampled data. The resulting

periodograms (Fig. 25) show the power spectra in frequency units of d−1 and present

multiple strong peaks. These represent a combination of one or more true independent

frequencies together with aliases due to the finite data sampling (Wall and Jenkins,

2003). The windowing of the data acquisition is of more relevance in the JHKS bands

because a more significant aliasing is produced by including only data taken through

the SMARTS queue observing which has a strong one-day sampling frequency.

The amplitudes of the periodograms are normalized according to the formula-

tion of Horne and Baliunas (1986) by the total variance of the data, yielding the

appropriate statistical behavior which allows for the calculation of the false-alarm

probability (FAP). The FAP presents the statistical significance of the periodogram

by describing the probability that a peak of such height would occur from pure noise.

To calculate FAPs for the most significant peaks in the periodogram, a Monte Carlo

bootstrapping method (e.g., Stassun et al., 1999) was applied; it randomizes the dif-

ferential magnitudes, keeping the Julian Dates fixed in order to preserve the statistical
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Figure 25: Lomb-Scargle Periodograms of 2M0535−05. The out-of-eclipse light curves
were searched for periodicities using the Lomb-Scargle periodogram technique (Scar-
gle, 1982) finding two independent signals with frequencies of ∼ 0.30 and ∼ 0.07
d−1 corresponding to periods of Prot,1 = 3.293 ± 0.001 and Prot,2 = 14.05 ± 0.05 d
respectively. To assess the statistical significance of each of the predominant peaks
in the power spectrum, the false-alarm probability (FAP) was calculated via a Monte
Carlo bootstrapping method (e.g., Stassun et al., 1999). The horizontal, dashed line
denotes the 0.1% FAP. The vertical, long-dashed lines correspond to Prot,1 and its cor-
responding aliases and beats; while the vertical, dot-dot-dot-dashed lines correspond
to Prot,2 and its aliases and beats. The out-of-eclipse ICJH light curves folded over
these two identified periods are shown in Fig. 26.
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characteristics of the data. One thousand random combinations of the out-of-eclipse

magnitudes were done with this procedure to obtain the FAP in each band. The re-

sulting 0.1% FAP level is indicated in the periodograms by the dashed line in Fig. 25.

Except for the KS periodogram, multiple peaks are found well above the 0.1% FAP

level and are therefore highly significant. The KS measurements are much noisier

than in the ICJH bands (Sec. VI.1), so the lack of significant periodicity in that

light curve is not surprising and we do not consider the KS light curve further in our

periodicity analysis.

To distinguish the independent periods from their aliases, a sinusoid was fitted to

each light curve and subtracted from the data in order to filter out the periodicity

corresponding to the strongest peak in the periodograms. This peak in the ICJH

bands is that which corresponds to the 3.293 ± 0.001 d period previously identified

in SMV07, at a frequency of ∼0.30 d−1. This period is not found in the KS light

curve owing to a larger scatter of the data in that bandpass (§VI.1.2). As expected,

the subtraction of the 3.293-d periodic signal removed the strongest peak and also

its aliases. The residual light curves were then reanalyzed to identify any additional

periods.

This process revealed another independent frequency at ∼0.07 d−1 which corre-

sponds to a period of 14.05 ± 0.05 d. This 14.05-d period also manifests itself as a

three-peaked structure centered at 1 d−1 in the JH bands. The two exterior peaks

of this structure have frequencies of 0.93 and 1.07 d−1, corresponding to the beat fre-

quencies between the 14.05-day period and a 1-day period. The 1-day period is most
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likely due to the sampling of the observations, since the JH bands were observed

roughly once per night. The IC light curve does not show strong beats against a

1-day period because this band includes high-cadence data from many observing runs

which disrupt the 1-day sampling period. The subsequent filtering of the 14.05-day

period, as above, also removes its aliases and beats from the periodograms.

Figure 26 shows the out-of-eclipse light curves of 2M0535−05 phased on these

two periods, together with best-fit sinusoids to guide the eye and to quantify the

amplitudes of the variability as a function of wavelength. Regardless of the order of

the filtering, these two independent periods were always obtained via this analysis.

No other significant periods are found. We furthermore confirmed that these periods

were not present in the light curves of the comparison star used for the differential

photometry (§VI.1.2).

The uncertainty of the periods is given with a confidence interval of one sigma in

the vicinity of the period peaks via the post mortem analysis described by Schwarzenberg-

Czerny (1991). This method consists of determining the width of the periodogram’s

peak at the mean noise power level. The 3.293-d period has 1-σ uncertainties of 0.001

d, 0.003 d and 0.002 d for the IC-, J- and H-bands respectively; while for the 14.05-d

period the 1-σ levels are 0.1 d for the J-band and 0.05 d for the H-band.

Reiners et al. (2007) reported v sin i measurements of 2M0535−05 to be ≈ 10

km s−1 for the primary and < 5 km s−1 (upper limit) for the secondary, i.e., the

primary rotates at least twice as fast as the secondary. Moreover, these v sin i values,

together with the radii from SMV07 and sin i ≈ 1, correspond to rotation periods of
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Figure 26: Out-of-Eclipse ICJH-band Light Curves. The low-amplitude photomet-
ric variability is made evident by phasing the out-of-eclipse light curves to the two
individual periods found from the periodogram analysis (see Fig. 25). The 3.293-d
period attributed to the rotation of the more massive brown dwarf is used to phase
the ICJH light curves shown in the left-column panels. The amplitude of this varia-
tion increases toward shorter wavelengths. The actual observations are repeated over
each phase. The right-column panels are phased to the secondary’s rotation period of
14.05 d; interestingly, its amplitudes decreases toward shorter wavelengths. Superim-
posed in each panel is a sinusoid fit representing the modulation due to the rotation
of each component as described in §VI.3.
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Table 9: Periodicities Detected by Season and Passband

Seasona Prot,1 = 3.29 d Prot,2 = 14.05 d
IC JH IC JH

Ib X X . . . X
IIb X X X X
III X X . . . X
IV X X . . . X
V X X X . . .

a See Table 8 for details of the observing campaigns.
b Only J or H were observed during this season.

≈ 3.3 ± 0.1 d and > 6 d for the primary and secondary components, respectively.

These are consistent with the periods of 3.293± 0.001 d and 14.05± 0.05 d that we

have identified photometrically.

Table 9 summarizes the appearances of these two periods as a function of observing

season and passband. The 3.29-d period is found consistently in nearly every season

of observations in all three of the ICJH filters. We fit a sinusoid with a 3.29-d period

separately to the data from each of the observing seasons and found that while the

amplitude of the variability remained similar for each, the phase varied from season

to season. Evidently, the 3.29-d period is caused by long-lived features that drift in

longitude. The 14.05-d period is manifested less strongly in the data. While it is

found in the JH light curves in most (but not all) seasons, it is detected in only two

seasons of the IC-band data.

Interestingly, while the 3.29-d period manifests an increasing amplitude of vari-

ability toward shorter wavelengths (Fig. 26, left panels), as is expected for spots
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(either hot or cool; e.g., Bouvier et al., 1993), the amplitude of the 14.05-d period-

icity declines toward shorter wavelengths. Maiti (2007) found a similar behavior in

the optical variability of the field L dwarf 2MASSW J0036+1821, and suggested that

the photometric variability in that object is therefore likely caused not by magnetic

spots but rather by dust clouds formed near the surface (e.g., Zapatero Osorio et al.,

2005). Perhaps the feature on the 2M0535−05 secondary that is responsible for the

observed 14.05-d period is of similar origin. Indeed, this would be consistent with the

findings of Reiners et al. (2007) that the 2M0535−05 secondary has a much weaker

magnetic field compared to the primary, and thus may be less likely to produce strong

magnetic spots.

In §VI.3 below, we include spots in our modeling of the 2M0535−05 light curves

in order to demonstrate the effects that spots may have on the properties of the

magnetically active primary. The true physical nature of the inhomogeneity on the

magnetically inactive secondary does not affect that analysis. For our purposes we

emphasize that the 14.05-d period is consistent with the secondary’s measured v sin i

and radius, and thus we can confidently ascribe that period to the rotation of the

secondary.

VI.2.2 Orbital and Physical Parameters of 2M0535−05

Light-curve solution encompassing the multi-epoch, multi-band photometric data

and radial-velocity measurements is calculated using the software PHOEBE (Prša and

Zwitter, 2005) built on top of the 2007 version of the Wilson-Devinney algorithm
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(WD; Wilson and Devinney 1971). A square root limb-darkening law was adopted,

its coefficients linearly interpolated by PHOEBE from the van Hamme (1993) tables with

each iteration. Emergent passband intensities are computed based on the passband

transmission functions.

Table 10: Orbital and Physical Parameters of 2M0535−05

RVs + IC
a RVs + JHKS + IC

Orbital period, Porb (days) 9.779556 ± 0.000019
Eccentricity, e 0.3276 ± 0.0033 0.3216 ± 0.0019
Orientation of periastron, ω ( ◦) 217.0 ± 0.9 215.3 ± 0.5
Semi-major axis, a sin i (AU) 0.0406 ± 0.0010 0.0407 ± 0.0008b

Inclination angle, i ( ◦) 89.2 ± 0.2 88.49 ± 0.06
Systemic velocity, vγ (km s−1) 24.1 ± 0.4 24.1 ± 0.3b

Primary semi-amplitude, K1 (km s−1) 18.49 ± 0.67 18.61 ± 0.55
Secondary semi-amplitude, K2 (km s−1) 29.30 ± 0.81 29.14 ± 1.40
Mass ratio, q ≡ M2/M1 0.631 ± 0.015 0.639 ± 0.024b

Total mass, M sin3 i (M¯) 0.0932 ± 0.0073 0.0936 ± 0.0051b

Primary mass, M1 (M¯) 0.0572 ± 0.0045 0.0572 ± 0.0033
Secondary mass, M2 (M¯) 0.0360 ± 0.0028 0.0366 ± 0.0022
Primary radius, R1 (R¯) 0.675 ± 0.023 0.690 ± 0.011
Secondary radius, R2 (R¯) 0.486 ± 0.018 0.540 ± 0.009
Primary gravity, log g1 3.54 ± 0.09 3.52 ± 0.03
Secondary gravity, log g2 3.62 ± 0.10 3.54 ± 0.03
Primary surface potential, Ω1 . . . 13.63 ± 0.18
Secondary surface potential, Ω2 . . . 12.00 ± 0.16
Primary synchronicity parameter, F1 . . . 2.9725 ± 0.0009
Secondary synchronicity parameter, F2 . . . 0.6985 ± 0.0025
Effective temperature ratio, Teff,2/Teff,1 1.064 ± 0.004 1.0495 ± 0.0039

0.0038

a Previously published results (SMV07).
b The uncertainties in these parameters were conservatively estimated from the formal errors of

a fit to the RV data alone. See §VI.2.2.
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The simultaneous fit of the radial velocities and the ICJHKS light curves was

done using the published results from SMV07 as initial parameters for the modeling.

The first column of Table 10 lists these starting values. The solution was then iter-

ated. Since we do not have reliable errors on the individual JHKS measurements (see

§VI.1.2), the individual data points were assigned equal weight and then the overall

weight of each light curves was set to the inverse-square of the r.m.s. of the residuals

relative to the fit from the previous iteration. The primary’s temperature is taken to

be Teff,1 = 2715 ± 200 K, where the uncertainty is dominated by the systematic un-

certainty of the spectral-type–Teff scale (SMV07). We emphasize that the uncertainty

on the individual component temperatures does not represent the high accuracy with

which the quantities directly involved in the light curve fitting are determined, namely

the ratio of the temperatures. In addition to setting Teff,1 to a fixed value, the orbital

period Porb was also kept constant. The synchronicity parameters are obtained from

the rotation periods (§VI.2.1) such that F1 = ωrot,1/ωorbital = 2.9725 ± 0.0009 and

F2 = ωrot,2/ωorbital = 0.6985 ± 0.0025. The free parameters to be obtained from the

modeling were: the inclination angle i, the semi-major axis a, the orbital eccentric-

ity e, the argument of the periastron ω, the systemic radial velocity vγ, the mass

ratio q and the secondary’s surface temperature Teff,2, through the determination of

the temperature ratio Teff,2/Teff,1. Because the primary’s radius is small compared

to the semi-major axis (R1/a = 0.08), reflection effects are assumed to be negligible

(reflection effects generally only become important for R1/a & 15%; e.g., Wilson,

1990).
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A direct output of the Wilson-Devinney algorithm that underlies PHOEBE is the

formal statistical errors associated with each of the fit parameters, as well as a cor-

relation matrix that provides insight into the often complex interdependencies of the

parameters. In order to explore these parameter correlations and solution degen-

eracies more carefully, and to thus determine more robust parameter uncertainties,

we performed a thorough Monte Carlo sampling of the parameter hyperspace using

the PHOEBE code’s scripting capability. An examination of the parameter correlation

matrix revealed that there are two particularly strong parameter degeneracies in our

dataset: (1) between the inclination, i, and the surface potentials, Ω; and (2) between

the temperature ratio, Teff,2/Teff,1, and the radius ratio, R2/R1.

Figure 27 shows the resulting joint confidence interval for i and Ω1 given by the

variation of χ2 with these two parameters around the solution’s minimum. The shaded

contours correspond to confidence intervals following a χ2 distribution with two de-

grees of freedom, with the first contour at the 1-σ confidence level and each subsequent

level corresponding to an increment of 1 σ. The i–Ω1 cross section was sampled by

randomly selecting a value for i between 87◦ and 90◦, and one for Ω1 between 12.0 and

14.5, rendering a more complete coverage of the parameter hyperspace. We marginal-

ized over the remaining system parameters, notably the strongly correlated Ω2. This

analysis yields uncertainties around the best-fit values of: i = 88.49+0.03
−0.06 degrees and

Ω1 = 13.63±0.18, the latter corresponding to a primary radius of R1 = 0.691+0.009
−0.010 R¯.

The secondary’s best-fit radius and its uncertainties follow directly through the ratio

of the radii (discussed in the next paragraph).
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Figure 27: Joint Confidence Interval between the Inclination Angle i and the Primary
Surface Potential Ω1. The Monte Carlo sampling of this cross section allows for
the heuristic errors associated with the available data to be estimated given by the
variation of χ2 with i and Ω1 (§VI.2.2). Because of the intrinsic degeneracy of the
binary problem and the data’s uncertainties, closely correlated parameters must be
explored to ensure that the system’s solution falls within the global minimum of the
cost function. The cross represents the point at which the χ2 of the fit attains its
minimum value and shows the 1-σ uncertainties for each of the parameters given by
the smallest contour. Each subsequent contour symbolizes an increase of 1 σ. The
right panel shows the same sampling of the i−Ω1 cross section in terms of the primary
radius.
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Figure 28: Joint Confidence Interval between (Teff,2/Teff,1) and (R2/R1). This pa-
rameter hyperspace is of particular interest in the case of 2M0535−05 because of the
apparent temperature reversal it presents. Similar to Fig. 27, the cross represents the
point at which the χ2 of the fit attains its minimimum value and shows the 1-σ un-
certainties for each of the parameters given by the smallest contour. Each subsequent
contour symbolizes an increase of 1 σ.
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The (Teff2/Teff,1)–(R2/R1) plane, shown in Fig. 28, is of particular interest because

of the apparent temperature reversal that 2M0535−05 presents. This parameter cross

section was explored keeping the Teff of the primary fixed at 2715 K while varying

the Teff of the secondary between 2700 and 2925 K. The primary radius was varied

randomly between 0.635 and 0.758 R¯, while minimizing for the secondary radius.

The resulting uncertainties about the best-fit values are: Teff,2/Teff,1 = 1.0495+0.0039
−0.0038

and R2/R1 = 0.781+0.009
−0.010. Note that these errors determined from our Monte Carlo

sampling procedure are larger than the formal statistical errors by ∼50%.

Finally, we separately performed a fit of the radial velocity data alone for the

orbital parameters that most directly determine the masses, namely: a sin i, q, and

vγ in order to more carefully estimate the uncertainties in these parameters.These

orbital parameters should not depend on the light curves; however we found that

purely statistical correlations between these parameters and other system parameters

tended to drive down the formal errors in the masses to unrealistically small values.

We include e, ω, and the time of periastron in the fit, but for these parameters we

deferred error estimates to the simultaneous fit to the radial velocity and light curve

data. Therefore we adopted the uncertainties in a sin i, q, and vγ from the radial

velocity fit, the uncertainties in i, Ω1, Ω2, and T2/T1 from the Monte Carlo sampling,

and the uncertainties of other parameters from the simultaneous fit to the radial

velocity and light curve data. We then propagated these uncertainties into the final

errors of the parameters that depend on these quantities, such as the masses and

radii.

139



The final parameters for 2M0535−05 resulting from our joint analysis of the radial

velocities and ICJHKS light curves, and with uncertainties determined as described

above, are summarized in the last column of Table 10. The results are in agreement

with those previously published, although the uncertainties in many parameters have

now improved compared to those reported in SMV07. For example, the uncertainties

in the component masses has decreased from ∼10% to ∼6.5%, and in the radii from

∼ 5% to ∼1.5%. This improvement arises primarily because of the improved deter-

mination of e and ω through the addition of the JHKS light curves, thus improving

the determination of the time of periastron passage.

As in the previous analyses of 2M0535−05 (SMV06, SMV07), we find again a re-

versal of effective temperatures from what would be expected from the observed mass

ratio (i.e., the higher mass primary is cooler than the secondary) at high statistical

significance. This surprising result is now confirmed on the basis of a full analysis

including radial velocities and four light curves (ICJHKS) together.

VI.3 Surface Spots

In §VI.2.1 we found clear evidence of two separate low-amplitude variations in

the light curves of 2M0535−05 with periods of 3.29 d and 14.05 d. PMS objects are

typically found to be photometrically variable (e.g., Bouvier et al., 1993; Carpenter

et al., 2001), and this variability is in almost all cases attributable to the presence of

magnetic “spots” (akin to sunspots), to accretion from a circumstellar disk, or both.

However 2M0535−05 has been shown to not possess circumstellar or circumbinary
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material and thus is not currently accreting (Mohanty et al., 2009). Pulsations have

been suggested in a few brown dwarfs, but are expected to have characteristic periods

of only a few hours (Palla and Baraffe, 2005).

In this section we explore the effects of surface spots on the light curves for the

purpose of explaining the periodic variations found in §VI.2.1, and to assess whether

such spots might be able to explain the surprising reversal of effective temperatures

in the system (§VI.2.2).

We begin by determining the properties of spots on the primary required to re-

produce the low-amplitude, periodic variability observed in the light curves. The

primary’s variability amplitudes were measured by fitting a sum of two sinusoids to

the out-of-eclipse data in each of the ICJH bands, one sinusoid corresponding to the

rotation period of the primary at 3.293 d and another for the secondary at 14.05 d

(Fig. 26). The amplitudes of the 3.29-d signal were then scaled up by the components’

relative luminosities, since the observed amplitudes are diluted by the light from the

secondary.

These amplitudes were fit using an analytic model based on a two-component

blackbody as described by Bouvier et al. (1993). The free parameters are the spot

temperature relative to the photosphere and the spot areal coverage. The areal cov-

erage parameter is an “effective” area, i.e., it is really a measure of the ratio in spot

coverage between the least and most spotted faces of the surface and is thus a mea-

sure of the degree of spot asymmetry. The results of this first-order analysis of the

spot parameters are shown in Fig. 29. A family of solutions is found, such that a
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Figure 29: Modeling of the Wavelength-Dependent Photometric Variability Using an Analytical
Inversion Technique. Using this technique, based on a two-component blackbody radiation (Bouvier
et al., 1993), to fit the measured low-amplitude photometric variability of 2M0535−05’s light curves,
we can estimate the spot temperature relative to the photosphere and the effective areal coverage
of the spots. Because of the inherent degeneracy of spot modeling, a change in the temperature
ratio maybe counteracted with an appropriate change in the areal coverage; the inversion technique
renders not a single spot configuration but a family of solutions that describe the observed variability.
In the left-hand panel, the central region of the contours corresponds to those solutions for which the
analytical amplitudes (∆ mag) fall within the 1-σ photometric uncertainties of all of the observed
bands. The second level of contours represents the solutions that fall within the 2-σ photometric
uncertainties and the third those that fall within the 3-σ uncertainties. The right-hand panel shows
the observed amplitudes of the photometric variation at the different wavelengths with 1-σ error
bars; for comparison the modeled amplitudes corresponding to the spot parameters marked by the
four points in the left-hand panel are overplotted. The cross-point and the dotted line correspond to
the fit with lowest χ2; the square-point and the continuous line are representative of the parameters
chosen for the treatment of spots in the subsequent light curve modeling; the diamond-point and
the dot-dash line denote a point on the second level contours, and the triangle-point and the dashed
line correspond to a solution on the third contour level.
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change in the spot temperature factor may be counterbalanced by a change in the

areal coverage. As one example, the observed light-curve variations can be fit with

a spot that is ∼ 10% cooler than the photosphere and that has an effective areal

coverage of ∼ 10%. For the purposes of our modeling, and for simplicity, we placed

a small cool spot with this temperature and area at the equator of the primary and

allowed PHOEBE to adjust the spot’s longitude to match the phasing of the observed

variations (Fig. 26). We emphasize that the spot parameters are degenerate and we

do not claim that the adopted parameters are accurate in an absolute sense. Rather,

they should be taken as representative of the asymmetric component of the primary’s

spot distribution that causes the observed low-amplitude variability modulated on

the primary’s 3.29-d rotation period (Fig. 26).

We ran a new light curve solution with PHOEBE, this time including the small spot

on the primary as above, in order to check the influence of the spot specifically on the

derived temperature ratio. The best-fit system parameters are changed insignificantly.

The temperature ratio in particular is changed from the value in Table 10 by less than

1σ. This is not surprising given the small areal coverage and temperature contrast of

the spot and considering that in SMV07 we obtained a nearly identical temperature

ratio with a purely spotless model. The inclusion of a small spot on the primary

as required to fit the observed low-amplitude variability is by itself not sufficient to

explain the observed temperature reversal in the system.

As a next test, we added a large cool spot at the pole of the primary in addition to

the small cool spot. Assuming that the rotational and orbital axes of the system are
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parallel, and since i ≈ 90◦, the effective areal coverage of a polar spot will not change

with rotational phase as seen by the observer. Thus this polar spot represents the

symmetric component of the primary’s spot distribution that, if it covers a sufficiently

large area, may cause an overall suppression of the primary’s effective temperature

without producing additional variations with rotational phase1. The evolutionary

models of Baraffe et al. (1998) predict an effective temperature of 2880 K for a brown

dwarf with the mass of the 2M0535−05 primary at an age of 1 Myr, so we set the

photospheric temperature of the primary to this value and re-fit the light curves with

PHOEBE, this time including both a small equatorial spot as before together with a

large polar spot as described above, both with temperatures 10% cooler than the

photosphere. The areal coverages of the two spots were left as free parameters, and

attained best-fit values of 8% and 65%, respectively.

Finally, we added a small equatorial spot on the secondary, again with a tem-

perature 10% cooler than the photosphere, representing the surface inhomogeneity

that produces the observed variations modulated on the secondary’s 14.05-d rotation

period (Fig. 26). Using PHOEBE we performed a final simultaneous fit for the sizes of

the spots on both the primary and secondary. The final best-fit spot areal coverage

factors for the smal spot on the primary, the small spot on the secondary, and the

large spot on the primary were 7%, 3%, and 65%, respectively.

In reality, the observed variability of the magnetically inactive secondary is not

1In fact, even a polar spot will cause a small variation during eclipse, however this effect is
∼ 0.05% in the ICJHKS bands for the adopted spot parameters, and is thus below the threshold
of detectability given our photometric precision of ∼ 1%.
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likely to be caused by a magnetic spot, because the secondary is less active, it is ro-

tating slower than the primary, and the amplitude of its variability does not decrease

with increasing wavelength as expected for magnetic spots. So perhaps, the observed

variability is more likely due to dust in its atmosphere (§VI.2.1). Our light-curve

modeling code does not currently incorporate a physical treatment of such dust fea-

tures, and thus we use the spot modeling capability as a surrogate. In addition, we

found that there is a near-total degeneracy between the sizes of the small spots on

the primary and secondary if their temperatures are left as free parameters. That is,

in the same way that the temperature and size of an individual spot are degenerate

(see Fig. 29), the sizes of the two spots relative to one another are degenerate unless

their temperatures are fixed. Thus we have taken the simplifying approach of fixing

the spot temperatures to be 10% cooler than the surrounding photosphere on both

the primary and secondary. The spot sizes are then constrained by the observed vari-

ability amplitudes (Fig. 26). Similarly, we have chosen not to include a large polar

spot on the secondary as we have on the primary. The spot areas that we quote

above are the formal best-fit values, however we caution that the properties we have

determined for the inhomogeneity on the secondary should be taken as qualitative.

More important for our analysis here, the properties of the spots on the magnetically

active primary are minimally affected by the presence of the low-amplitude variability

from the secondary, regardless of its true nature.

Finally, we have not included a polar spot on the secondary, although from the

standpoint of the light curve modeling alone it is possible to achieve equivalent
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Figure 30: Degeneracy Between Large Polar Spots on the Primary and the Secondary
Components of 2M0535−05. This figure shows the χ2 convergence of the light curve
fitting of 2M0535−05 when large polar spots are included on both of the components,
with the temperatures of the components fixed at the values predicted by the theo-
retical evolutionary models of Baraffe et al. (1998). If a polar spot is included only
on the primary, its areal coverage is required to be 5% (see §VI.3). If a polar spot is
also included on the secondary, the areal coverage of the primary’s polar spot must be
increased to maintain the required temperature ratio of the components. All of the
solutions shown in the figure are equivalent in terms of χ2 and thus produce equally
good fits to the data.
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goodness-of-fit with polar spots on both components if their relative areal cover-

ages are adjusted so as to preserve the adopted photospheric temperature ratio (see

Fig. 30). We have taken the simplifying approach of including a polar spot on the

primary only because (1) the evidence suggests that the primary is the more mag-

netically active of the two components (Reiners et al., 2007), (2) the secondary’s

temperature is already in good agreement with the predictions of theoretical models

(SMV07) and thus does not need to be suppressed by a large spot, and (3) as dis-

cussed above, the secondary’s variability amplitudes do not indicate that it possesses

magnetic spots.

Figure 31 presents a comparison of the spotted and unspotted light curve models

for the IC band, the band in which the spot effects are most pronounced. The

synthetic light curves shown have been calculated over a single orbital period. In

view of the fact that the components do not rotate synchronously with one another

or with the orbital period, the effects of the spots on the light curves (such as the

dip in the model at a phase of ∼0.4) will shift in orbital phase from one orbit to the

next, and thus these variations are averaged out in the observed light curve which

is phased over many orbital periods. We furthermore verified that the effects of the

spots on the radial velocities are negligible and thus do not affect any of the system’s

physical parameters that are determined kinematically (e.g., the masses).

The primary conclusion to be drawn from the above is that the light curves of

2M0535−05 can be well modeled by having the primary component’s photospheric

temperature at the theoretically expected value if ∼ 65% of its surface is covered

147



Figure 31: Light Curve Modeling Including Treatment of Spots. The observed IC light curve is
plotted superimposed with three different synthetic models each corresponding to a single orbital
period starting at the time of periastron: the red curve represents the spotless model; the green
curve is for the model where only the primary brown dwarf is spotted, and the blue curve describes
one in which both components have spots. Both spotted models are proposed to have spots that are
10% cooler than the surrounding photosphere and have an asymmetric constituent that describes
the low-amplitude photometric variability, by the use of a small, equatorial spot on one or both
of the components, and a symmetric constituent in order to reconcile the more massive brown
dwarf’s effective temperature with that expected from the evolutionary models (e.g., D’Antona and
Mazzitelli, 1997), described by polar spots with a large areal coverage. The green model, with spots
only on the primary, has an equatorial spot that covers 10% of the surface (See Fig. 29), and a polar
spot with an areal coverage of 65%. In the case where both components have spots (blue curve),
the low amplitude variability is described by an equatorial spot on the primary that covers 7% of its
surface and another on the secondary with an areal coverage of 3%. Note that the non-synchronicity
of the rotation with the orbital period causes the effect of the spots on the light curve to change in
phase over time, rendering them noncoherent in the phase-folded data.
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with cool spots in a roughly symmetric distribution. The small spot in our model

represents the ∼ 10% asymmetry in the spot distribution that produces the observed

low-amplitude periodic variations.

VI.4 Discussion

In order to simultaneously explain the observed low-amplitude variations and the

anomalously low effective temperature of the primary (more massive) component in

2M0535−05, we have produced a model that includes a simple spot configuration of

a small equatorial spot together with a very large polar spot. The former represents

the asymmetric component of the spot distribution that produces the low-amplitude

variations modulated on the primary’s rotation period, while the latter represents the

symmetric component of the spot distribution that causes an overall suppression of

the effective temperature below its theoretically predicted value. In this model, the

unspotted regions of the primary’s surface have the theoretically predicted value of

2880 K (Baraffe et al., 1998).

The true distribution of spots on the primary’s surface is probably more complex.

For example, a more realistic spot configuration might be one that resembles Jupiter’s

bands. In that case, a symmetric equatorial band with a temperature 10% cooler than

the photosphere and extending 40◦ above and below the equator would reproduce

similarly the effect of the polar spot. The same result could be obtained by a leopard-

print pattern as that described by Linnell (1991) with an equivalent areal coverage

and equal spot temperature factor as the polar spot we modeled. Either of these
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might describe more accurately a physical configuration of spots for the primary.

Without direct Doppler imaging of 2M0535−05, it is not possible to more accurately

pinpoint the true spot properties.

We emphasize that there is nothing in our treatment of spots that prefers the

primary’s effective temperature to be 2880 K as dictated by the evolutionary models.

We could have chosen any other effective temperature for the photosphere surrounding

the spots and achieved an equally good fit of the light curves by adjusting the spot

temperature and/or areal coverage to compensate. Thus our adoption of a primary

effective temperature of 2880 K in the light curve solution of Fig. 31 should not be

interpreted as a verification of the theoretical models. In addition, it should be noted

that in our model the overall surface brightnesses of the components (integrating over

both spotted and unspotted surface regions) are unchanged, such that the primary’s

overall effective temperature is still lower than that of the secondary. This is an

unavoidable consequence of the observed eclipse depths, which ultimately require the

secondary to be effectively hotter than the primary. The luminosities of the brown

dwarfs thus also remain the same regardless of the chosen effective temperature and

corresponding spot configuration, because the overall surface brightnesses and radii

are unaltered by our spot treatment.

Moreover, our modeling of spots treats only the radiative behavior of the surfaces

of the brown dwarfs, not their underlying structure. Consequently our modeling

does not serve as a detailed test of any structural or evolutionary effects caused by

the surface magnetism that is likely responsible for the spots that we have modeled.
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For example, Chabrier et al. (2007) have proposed that the temperature reversal

in 2M0535−05 could be explained by a magnetically active primary with a spot

covering fraction of 50% together with surface convection that has been magnetically

suppressed to a very low α = 0.5 (as opposed to the usual α ≈ 1–2; e.g., Stassun

et al., 2004). They also suggest that suppressed convection may explain why the

measured radius of the primary is ∼ 10% larger than predicted by their theoretical

mass-radius relationship. Their exploratory treatment assumes “black” (i.e., 0 K)

spots, whereas our modeled spots have a more physically realistic temperature 10%

cooler than the photosphere, so the total spot-covering fraction of ∼ 75% that we find

for the primary (large polar spot plus small equatorial spot) may in fact be consistent

with the ∼ 50% coverage adopted by Chabrier et al. (2007). In addition, we have

empirically determined the radii of 2M0535−05 with an accuracy of ∼ 1%, however

our light curve modeling cannot confirm whether the radii have been altered in some

way by the presence of spots or by magnetically suppressed convection.
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CHAPTER VII

CONCLUSIONS

VII.1 Summmary

Parenago 1802 and 2M0535−05 are two of only six known pre-main sequence

eclipsing binary systems where both components have masses below 1.5 M¯. Par 1802,

recently discovered to be a double-lined, detached eclipsing binary, is the youngest ex-

ample of a low-mass system with a mass ratio of almost unity. 2M0535−05 is the first

known eclipsing binary in which both components are brown dwarfs. Their eclipsing

nature allows for precise direct measurements of the components’ masses and radii,

and are therefore of paramount importance for providing observational constraints

against which theoretical early-age evolutionary models of low-mass stars and brown

dwarfs are compared. This is the first multi-band analysis which better constrains

the radii of the eclipsing components. The masses of the eclipsing components of

Par 1802 have been determined within an uncertainty of ∼ 8% and their radii within

∼ 6%. The masses of the components of 2M0535−05 previously reported to have un-

certainties of ∼10% (SMV07) have been here determined with an accuracy of ∼6.5%,

and the radii with an accuracy of ∼1.5%. Our multi-band analysis permits a detailed

modeling of magnetic spots on 2M0535−05’s brown dwarfs that may be altering their

surface properties, and of a third light source in the case of Par 1802.

Through a detailed analysis of the variability observed in the light curves out of
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eclipse, we are able to identify the rotation periods of the components in both systems.

The measured rotation periods are consistent with the radii and the spectroscopically

measured values of v sin i. In the case of Par 1802, the components are rotating

quasi-synchronously with a period that is close to but significantly different from

the orbital period of the binary. The components have almost synchronized their

rotation to the orbital motion; however, because of Par 1802’s young age, its orbit

has not had time to circularize, presenting a very small, but significant eccentricity.

This represents one of the shortest period PMS binaries for which the eccentricity has

been measured to be different than zero (e.g., Melo et al., 2001). The rotation periods

of the brown dwarf components of 2M0535−05 are measured to be Prot,1 = 3.293 d

and Prot,2 = 14.05 d. Thus the brown dwarfs rotate non-synchronously relative to

their orbital motion, perhaps due to the youth of the system (∼ 1 Myr; Stassun

et al., 2006, 2007). They also rotate asynchronously relative to one another, with the

more massive brown dwarf rotating faster. These characteristics of the rotation and

the orbital motion provide important observational constraints for the theory of tidal

interactions at very young ages that lead to the synchronization and circularization

of low-mass binaries.

In both cases, we find unanticipated results when studying these eclipsing systems

in detail. Theoretical evolutionary models predict for stars of the same mass, com-

position and age. We find that for masses that are equal within 3%, the radii of the

eclipsing components of Par 1802 differ by 7% and their effective temperatures by

9%. This result challenges the current understanding of the formation and evolution
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of twin stars, like how strictly coevality of binary components should be considered.

A lag of 300 000 years in the formation of the primary component is able to repro-

duce the difference in radii and effective temperatures between the components of

Par 1802 (Cargile, 2010). 2M0535−05 is established to have substellar binary com-

ponents, and shows a surprising reversal of temperatures in which the primary (more

massive) brown dwarf appears cooler than the secondary. Since binary formation

predicts that the components of a system will be formed from the same collapsing

cloud, the components should thus have the same composition and age. Though this

prediction is challenged by Par 1802’s results. Therefore, equal-mass components of a

binary are predicted to have the same effective temperature and radii; and the more

massive of the components in an unequal mass binary is anticipated to be hotter than

its less massive companion.

The characteristics of these pre-main sequence systems shed light into the com-

plexity of the processes involved in star formation and early evolution. Both systems

present different modeling challenges. In order to explain the observed data, we pro-

posed that Par 1802 has a faint, unresolved, third component that is rapidly rotating.

The presence of this fast stellar rotator in the system explains the short-period pho-

tometric variability observed in all light curves and the excess continuum found in

Par 1802’s spectra. It also provides the third light source that is required for the

multi-band light curve modeling. The addition of third light in the modeling affects

particularly the system’s inclination angle, and therefore the system parameters that

depend on it. However, the dynamically deduced properties of Par 1802, like the
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mass ratio, remain unaffected.

In order to reconcile the observed effective temperatures of the components of

2M0535−05 with those predicted by theoretical models, the primary brown dwarf

must be heavily spotted. Through the detailed spectroscopic and photometric mod-

eling of 2M0535−05, including the treatment of spots, we are able to reproduce the

apparent reversal of the temperature ratio. This ‘spottedness’ must be more or less

symmetric to agree with the low-amplitude variability observed in the light curves,

and it must have large effective areal coverage. Thus we modeled a two-spot configu-

ration on the primary’s surface: a large polar spot with an areal coverage of ∼65% to

account for the lower-than-expected surface brightness, and an equatorial spot cov-

ering ∼10% of the surface for the purpose of introducing the asymmetry responsible

for the observed low-amplitude photometric variability modulated on the rotation

period. With this configuration, we are able to successfully reproduce the observed

light curves with the primary having an effective temperature at the theoretically

predicted value. Other geometries for the spot configuration—such as an equatorial

band akin to those on Jupiter—would achieve the same effect. To be clear, from the

standpoint of the light-curve modeling alone there is no need for a large spot-covering

fraction on either brown dwarf. A small areal coverage of ∼10% is sufficient to model

the low-amplitude variations that we observe in the light curves. Our aim here has

been to demonstrate as proof of concept that the spots on the primary are capable

of explaining its suppressed effective temperature in a manner that is consistent both

with recent empirical findings of enhanced activity on the primary (Reiners et al.,
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2007) and recent theoretical results on the effects of such activity on the physical

properties of young brown dwarfs (Chabrier et al., 2007; MacDonald and Mullan,

2009).

The departure of the two systems’ parameters from the expected trends may be the

result of one or more physical phenomena affecting these young low-mass stellar and

substellar objects that may not be well modeled. For example, evolutionary models

have typically not included the effects of magnetic fields because of the complexity

and difficulty involved in their modeling. Magnetic activity, as mentioned above, may

be the cause of the highly spotted surface and thus the apparent temperature reversal

of 2M0535−05. However, magnetic activity is unlikely to be causing the disparate

radii and temperature reversal found between the twin components of Par 1802.

Par 1802’s nearly equal-mass components are found to be rotating at the same rate

making it improbable that the components have different magnetic activity levels.

Furthermore, increased magnetic activity reduces the convective efficiency of the star,

thus lowering the effective temperature and increasing the radius in order to maintain

the star’s luminosity (Chabrier et al., 2007). If magnetic activity were the cause of

the discrepant radii and effective temperatures we observe in Par 1802, we would

expect the cooler eclipsing component to have the larger radius. We find however

that the eclipsing component of Par 1802 with the lower effective temperature is also

the smaller star.

The dissimilar radii and temperatures, and thus luminosities of the components of

Par 1802 has been proposed to be due to a difference in age (SMC08; Cargile, 2010).
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Figure 32 shows the how a change in a few thousand years can explain the differ-

ences in the physical parameters of the twin stellar components. The only theoretical

models that show a fast evolution at young ages and that would allow for the differ-

ences presented by the eclipsing components of Par 1802 are those by D’Antona and

Mazzitelli (1997). However, this evolutionary model approximates low-mass stars and

brown dwarfs as having grey atmospheres. For effective temperatures below 4 000 K,

the presence of molecules in the atmospheres causes the models to overestimate the

effective temperatures for a given mass (Chabrier and Baraffe, 2000). The evolution-

ary tracks by Baraffe et al. (1998) use a treatment of the atmospheres with model

NextGen atmospheres instead of the grey approximation. Baraffe et al. (1998) predict

that the surface temperature of the components of Par 1802 will not change signifi-

cantly with age; they get hotter by ∼ 200 K over 100 Myrs (Cargile, 2010). However,

they do not model ages younger than 1 Myr, which precludes our making a direct

comparison with the models by D’Antona and Mazzitelli (1997) shown in Fig. 32.

Figure 32: Comparison of Physical Properties of Par 1802 with Theoretical Models.
This figure is adopted from SMC08.
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Another source of discrepancy between the evolutionary tracks and the physical

properties of young, low-mass eclipsing binary components may be due to uncertain-

ties in theoretical spectra of cool objects. These spectra are characterized by having

molecular lines and line blanketing which are not yet modeled satisfactorily, and may

affect the determination of the effective temperatures from fitting model atmospheres

to observed spectra.

The particularities of these pre-main sequence, low-mass systems, Par 1802 and

2M0535−05, may well be due to intrinsic differences between young stellar and sub-

stellar objects at these young ages. It could be that because they are so young (∼ 1

Myrs), they still strongly affected by initial conditions associated with their formation.

More precise measurements of the physical properties of young, low-mass objects will

allow us to determine whether Par 1802 and 2M0535−05 are the exception or the

rule.

VII.2 Results in Context

We compare the current evolutionary models of Baraffe et al. (1998) to the avail-

able observational constraints provided by Par 1802, 2M0535−05, and the four other

known low-mass, PMS eclipsing binaries (see Table 1).

Theoretical evolutionary tracks by Baraffe et al. (1998) of ages younger than

1 Myrs are not available because the definition of the birthline which marks the

beginning of the PMS evolution is uncertain and varies from one model to another.

The theoretical tracks shown in Figures 33 and 34 model non-rotating stars with a
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low-efficiency convection, modeled by a mixing-length parameter of α = 1.0. This

choice of α has been found to be more appropriate for reproducing the levels of lithium

depletion found in PMS stars (e.g., Stassun et al., 2004), as well as reproducing the

larger radii observed in active eclipsing binaries (e.g., Morales et al., 2010). Their

radiative properties are determined using model atmospheres. Though spectral line

lists have greatly improved in the recent past, molecular lines remain a challenge for

the modeling cool stars and brown dwarfs.

In general, the models of PMS evolution fit the observed properties of the low-

mass components of young eclipsing binaries well. They predict correctly that the

more massive component will have a larger radius than its companion, as shown in

Figure 33. This success in describing the evolution of the internal structure is mostly

attributed to a suitable equation of state. Even in the substellar regime, the models

are consistent with the measured radii and masses of the components of 2M0535−05.

However, as mentioned above, the observed properties of Par 1802’s components

cannot be reproduced by a single isochrone. This is perhaps due to a difference in

age, in convection efficiency, or in magnetic activity.

As shown in Fig. 34, the models predict that the more massive object is going

to have a larger radius and a higher effective temperature than its lower-mass com-

panion. The theory generally agrees with the observed properties of the other PMS

EBs. However, both Par 1802 and 2M0535−05 deviate from this trend. Par 1802’s

secondary component falls on the 0.4 M¯ track as expected from its measured mass,

however the primary’s effective temperature is too high to be described by the same
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Figure 33: Observed and Theoretical Mass-Radius Relationship. The components
of Par 1802 and 2M0535−05 are marked by the filled circles; the rest of the EBs
in Table 1 are shown with the open symbols. They are compared to the theoretical
isochrones of (Baraffe et al., 1998) (lines from the left-top to the right-bottom corner)
that correspond to ages of 1, 2, 3, 6.5, 10, and 300 Myrs.
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Figure 34: Observed and Theoretical Effective Temperature-Radius Relationship.
The EB are marked with the same symbols used in Fig. 33. The slanted lines from
the top-right to the bottom-left corner represent isochrones that correspond to ages
of 1, 3, 6.5, 15.8, 20, 40, 60, 100, and 300 Myrs. The lines that start at the 1 Myr
isochrone (or at the top of the plot) and descend almost vertically during the first
few Myrs represent the evolution of different mass stars. From right to left, they
correspond to masses of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 M¯.
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evolutionary track. Moreover, this models do not allow for a difference in age to

explain the observed radii and temperatures for Par 1802. Maybe differences in their

magnetic activity and/or the convective efficiency in their interiors could reproduce

our observations. Contrary to the trend, the more massive component of 2M0535−05

is cooler than its companion. A difference in activity levels of the brown dwarfs,

supported by the measured rotation periods and Hα measurements, may explain the

apparent temperature reversal.

Par 1802, 2M0535−05 and the other four low-mass, PMS EBs are an important

source of observational constraints that, as larger telescopes and techniques, such

as Doppler imaging, are developed, will continue to provide insight into the nature

of young, low-mass stars and brown dwarfs. For example, these improvements will

allow to better characterize the spot configuration of the EB components, probing

their magnetic field structure.

VII.3 In Progress and Future Work

To better understand the particularities of Par 1802, we intend to analyze new 3.6

µm and 4.5 µm light curves together with our previous data. These data extend the

observed wavelength range further into the infrared, with the inclusion of Spitzer’s

Infrared Array Camera1 (IRAC) passbands centered at 3.6 µm and 4.5 µm. These

light curves will also allow us to search for evidence of the third body at redder

wavelengths, and thus test our proposed scenario. We are currently working with

1http://ssc.spitzer.caltech.edu/irac/

162



Andrej Prša to expand PHOEBE’s capabilities in order to enable the modeling of IRAC

passbands. As part of this work, we will need to extend the current spectral line lists

in PHOEBE beyond 4µm.

Each IRAC light curve spans about 40 days, during which Par 1802 was observed

81 times in the bluer band and 162 in the redder band (see Figure 35). Additionally,

we have additional J-band data (31 points) that span two months at the end of 2009

and that cover the time of the Spitzer observations. The J-band data was obtained

with the 3.8-m UKIRT2 telescope in Mauna Kea, Hawai’i. These new light curves

were kindly provided by John Stauffer from Caltech, and are also shown in Fig. 35.

Both IRAC light curves are calibrated in absolute magnitudes. There is a definite

variation of the light curves larger than the uncertainty of each measurement, the

mean of which is ∼ 0.004 magnitudes at 4.5µm and ∼ 0.003i at 3.6µm. The J-band

light curve, as provided to us, did not have individual uncertainty measurements so

I calculated the mean of the out-of-eclipse portion of the light curve to assign as an

upper limit to the photometry’s uncertainty in this band, σJ ∼ 0.006. The addition

of absolute light curves to the differential light curves we have analyzed will enable

us to better constrain the temperatures of the components. For example, it has been

shown by Wilson (2008) that it is possible to determine the effective temperatures

of both components in an eclipsing binary when the light curves are computed in

physical units of flux.

A periodicity analysis on the light curves will also be performed. The IRAC

2http://www.jach.hawaii.edu/UKIRT/
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Figure 35: Spitzer IRAC and new J Light Curves of Par 1802.
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light curves are not limited to only the nighttime, as are ground-based observations,

and do not contain any effects of a 1.0-day sampling window. The time between

observations of Par 1802 varies from several hours (∼ 5 h) to less than a day (∼ 0.8

d). The amplitude of the variation due to spots decreases with increasing wavelength;

however the IRAC and UKIRT light curves are more precise than the previously

analyzed light curves and show variability, in particular at 4.5 µm, greater than the

photometric precision.

The determination of the fundamental properties of PMS eclipsing binaries, like

those presented in this work, provides fundamental observational constraints for the

understanding of the formation and early evolution of low-mass stars and brown

dwarfs.
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APPENDIX A

PHOEBE: CONFIGURATION FILE

This appendix presents a sample configuration file for the modeling of 2M0535−05

with PHOEBE, which is compatible for use with both the graphical interface and the

back-end scripter.

# Parameter file conforming to PHOEBE svn

phoebe rvno = 2

phoebe spots no = 0

phoebe spno = 0

phoebe lcno = 4

phoebe opsf[1].VAL = 0.000000

phoebe opsf[2].VAL = 0.000000

phoebe opsf[3].VAL = 0.000000

phoebe opsf[4].VAL = 0.000000

phoebe opsf.ADJ = 0

phoebe opsf.STEP = 1.000000e-02

phoebe opsf.MIN = 0.000000

phoebe opsf.MAX = 10000000000.000000

phoebe name = "SM 4147 - swapped"

phoebe ld ybol1 = 0.500000

phoebe reffect switch = 0

phoebe ld ybol2 = 0.500000

phoebe dpdt.VAL = 0.000000000000

phoebe dpdt.ADJ = 0

phoebe dpdt.STEP = 1.000000e-06

phoebe dpdt.MIN = -1.000000

phoebe dpdt.MAX = 1.000000

phoebe logg1 = 3.516953

phoebe rv filename[1] = "sm4147.rv.p.phoebe.dat"

phoebe rv filename[2] = "sm4147.rv.s.phoebe.dat"

phoebe logg2 = 3.536255

phoebe lc dep[1] = "Magnitude"

phoebe lc dep[2] = "Magnitude"

phoebe lc dep[3] = "Magnitude"

166



phoebe lc dep[4] = "Magnitude"

phoebe ld lcy1[1] = 0.500000

phoebe ld lcy1[2] = 0.500000

phoebe ld lcy1[3] = 0.500000

phoebe ld lcy1[4] = 0.500000

phoebe compute hla switch = 0

phoebe bins switch = 0

phoebe ld lcy2[1] = 0.500000

phoebe ld lcy2[2] = 0.500000

phoebe ld lcy2[3] = 0.500000

phoebe ld lcy2[4] = 0.500000

phoebe lc filter[1] = "Johnson:H"

phoebe lc filter[2] = "Johnson:J"

phoebe lc filter[3] = "Johnson:K"

phoebe lc filter[4] = "Cousins:I"

phoebe dc spot2id = 1

phoebe el3 units = "Total light"

phoebe reffect reflections = 2

phoebe sma.VAL = 8.740220

phoebe sma.ADJ = 0

phoebe sma.STEP = 1.000000e-02

phoebe sma.MIN = 0.000000

phoebe sma.MAX = 10000000000.000000

phoebe ie factor = 3.100000

phoebe nms accuracy = 0.010000

phoebe grb1.VAL = 0.320000

phoebe grb1.ADJ = 0

phoebe grb1.STEP = 1.000000e-02

phoebe grb1.MIN = 0.000000

phoebe grb1.MAX = 1.000000

phoebe lc indep[1] = "Time (HJD)"

phoebe lc indep[2] = "Time (HJD)"

phoebe lc indep[3] = "Time (HJD)"

phoebe lc indep[4] = "Time (HJD)"

phoebe grb2.VAL = 0.320000

phoebe grb2.ADJ = 0

phoebe grb2.STEP = 1.000000e-02

phoebe grb2.MIN = 0.000000

phoebe grb2.MAX = 1.000000

phoebe incl.VAL = 88.491300

phoebe incl.ADJ = 1

phoebe incl.STEP = 1.000000e-02

phoebe incl.MIN = 0.000000
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phoebe incl.MAX = 180.000000

phoebe period.VAL = 9.779560017000

phoebe period.ADJ = 0

phoebe period.STEP = 1.000000e-04

phoebe period.MIN = 0.000000

phoebe period.MAX = 10000000000.000000

phoebe indep = "Time (HJD)"

phoebe grid coarsesize1 = 10

phoebe hla[1].VAL = 7.848573

phoebe hla[2].VAL = 7.176495

phoebe hla[3].VAL = 7.402460

phoebe hla[4].VAL = 7.010534

phoebe hla.ADJ = 1

phoebe hla.STEP = 1.000000e-02

phoebe hla.MIN = 0.000000

phoebe hla.MAX = 10000000000.000000

phoebe grid coarsesize2 = 10

phoebe atm1 switch = 1

phoebe ld model = "Square root law"

scripter ordinate reversed switch = 0

wd spots lat1.VAL = 0.000000

wd spots lat1.ADJ = 0

wd spots lat1.STEP = 1.000000e-02

wd spots lat1.MIN = 0.000000

wd spots lat1.MAX = 3.141593

phoebe f1.VAL = 2.972510

phoebe f1.ADJ = 0

phoebe f1.STEP = 1.000000e-02

phoebe f1.MIN = 1.000000

phoebe f1.MAX = 10.000000

wd spots lat2.VAL = 0.000000

wd spots lat2.ADJ = 0

wd spots lat2.STEP = 1.000000e-02

wd spots lat2.MIN = 0.000000

wd spots lat2.MAX = 3.141593

phoebe f2.VAL = 0.698540

phoebe f2.ADJ = 0

phoebe f2.STEP = 1.000000e-02

phoebe f2.MIN = 0.000000

phoebe f2.MAX = 1.000000

phoebe rv indep[1] = "Time (HJD)"

phoebe rv indep[2] = "Time (HJD)"

phoebe model = "Detached binary"
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phoebe bins = 100

phoebe atm2 switch = 1

phoebe vga.VAL = 24.057371

phoebe vga.ADJ = 0

phoebe vga.STEP = 1.000000e-01

phoebe vga.MIN = -1000.000000

phoebe vga.MAX = 1000.000000

phoebe nms iters max = 200

phoebe hjd0.VAL = 2452617.177000000142

phoebe hjd0.ADJ = 0

phoebe hjd0.STEP = 1.000000e-04

phoebe hjd0.MIN = -10000000000.000000

phoebe hjd0.MAX = 10000000000.000000

phoebe dperdt.VAL = 0.000000000000

phoebe dperdt.ADJ = 0

phoebe dperdt.STEP = 1.000000e-06

phoebe dperdt.MIN = -1.000000

phoebe dperdt.MAX = 1.000000

phoebe dc spot1src = 1

phoebe lc active[1] = 0

phoebe lc active[2] = 0

phoebe lc active[3] = 0

phoebe lc active[4] = 0

phoebe lc indweight[1] = "Unavailable"

phoebe lc indweight[2] = "Unavailable"

phoebe lc indweight[3] = "Unavailable"

phoebe lc indweight[4] = "Standard deviation"

phoebe synscatter seed = 150000000.000000

phoebe mbol1 = 8.825751

phoebe synscatter switch = 0

phoebe proximity rv2 switch = 1

phoebe mbol2 = 9.151553

phoebe spots corotate1 = 1

phoebe spots corotate2 = 1

phoebe pshift.VAL = -0.427230

phoebe pshift.ADJ = 1

phoebe pshift.STEP = 1.000000e-04

phoebe pshift.MIN = -0.500000

phoebe pshift.MAX = 0.500000

phoebe rm.VAL = 0.638690

phoebe rm.ADJ = 0

phoebe rm.STEP = 1.000000e-02

phoebe rm.MIN = 0.000000
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phoebe rm.MAX = 10000000000.000000

phoebe lc filename[1] = "sm4147.H.20070926.lc"

phoebe lc filename[2] = "sm4147.J.20070926.lc"

phoebe lc filename[3] = "sm4147.K.20070926.lc"

phoebe lc filename[4] = "sm4147.I.unrect.20060624.txt"

phoebe ld rvx1[1] = 0.500000

phoebe ld rvx1[2] = 0.500000

phoebe ld rvx2[1] = 0.500000

phoebe ld rvx2[2] = 0.500000

phoebe lc sigma[1] = 0.017992

phoebe lc sigma[2] = 0.018902

phoebe lc sigma[3] = 0.043457

phoebe lc sigma[4] = 0.010000

phoebe sbr1 = 5.534031

phoebe synscatter sigma = 0.010000

phoebe rv id[1] = "Primary RV"

phoebe rv id[2] = "Undefined"

phoebe rv id[3] = "Undefined"

phoebe sbr2 = 5.534031

phoebe spectra disptype = "Linear"

phoebe ecc.VAL = 0.321603

phoebe ecc.ADJ = 1

phoebe ecc.STEP = 1.000000e-03

phoebe ecc.MIN = 0.000000

phoebe ecc.MAX = 1.000000

phoebe cla[1].VAL = 4.794885

phoebe cla[2].VAL = 5.400436

phoebe cla[3].VAL = 5.211816

phoebe cla[4].VAL = 5.599514

phoebe cla.ADJ = 0

phoebe cla.STEP = 1.000000e-02

phoebe cla.MIN = 0.000000

phoebe cla.MAX = 10000000000.000000

phoebe perr0.VAL = 3.757110

phoebe perr0.ADJ = 1

phoebe perr0.STEP = 1.000000e-03

phoebe perr0.MIN = 0.000000

phoebe perr0.MAX = 6.283185

phoebe mnorm = 0.000000

phoebe rv sigma[1] = 1.591197

phoebe rv sigma[2] = 1.673940

phoebe mass1 = 0.057237

phoebe dc spot2src = 2
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phoebe mass2 = 0.036557

phoebe ie excess = 0.000000

phoebe rv filter[1] = "Johnson:H"

phoebe rv filter[2] = "Johnson:H"

phoebe grid finesize1 = 40

phoebe grid finesize2 = 40

phoebe passband mode = "Interpolation"

phoebe rv indweight[1] = "Standard deviation"

phoebe rv indweight[2] = "Standard deviation"

phoebe plum1 = 1.000000

phoebe met1.VAL = 0.000000

phoebe met1.ADJ = 0

phoebe met1.STEP = 1.000000e-02

phoebe met1.MIN = -10.000000

phoebe met1.MAX = 10.000000

phoebe pot1.VAL = 13.629750

phoebe pot1.ADJ = 1

phoebe pot1.STEP = 1.000000e-01

phoebe pot1.MIN = 0.000000

phoebe pot1.MAX = 10000000000.000000

scripter verbosity level = 1

phoebe plum2 = 0.610924

phoebe met2.VAL = 0.000000

phoebe met2.ADJ = 0

phoebe met2.STEP = 1.000000e-02

phoebe met2.MIN = -10.000000

phoebe met2.MAX = 10.000000

phoebe pot2.VAL = 11.999050

phoebe pot2.ADJ = 1

phoebe pot2.STEP = 1.000000e-01

phoebe pot2.MIN = 0.000000

phoebe pot2.MAX = 10000000000.000000

phoebe lc levweight[1] = "None"

phoebe lc levweight[2] = "None"

phoebe lc levweight[3] = "None"

phoebe lc levweight[4] = "None"

phoebe extinction[1].VAL = 0.000000

phoebe extinction[2].VAL = 0.000000

phoebe extinction[3].VAL = 0.000000

phoebe extinction[4].VAL = 0.000000

phoebe extinction.ADJ = 0

phoebe extinction.STEP = 1.000000e-02

phoebe extinction.MIN = 0.000000
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phoebe extinction.MAX = 100.000000

phoebe proximity rv1 switch = 1

phoebe spots units = "Radians"

phoebe ie switch = 0

phoebe lc id[1] = "Undefined"

phoebe lc id[2] = "Undefined"

phoebe lc id[3] = "Undefined"

phoebe lc id[4] = "Undefined"

wd spots temp1.VAL = 0.900000

wd spots temp1.ADJ = 0

wd spots temp1.STEP = 1.000000e-02

wd spots temp1.MIN = 0.000000

wd spots temp1.MAX = 100.000000

wd spots temp2.VAL = 0.900000

wd spots temp2.ADJ = 0

wd spots temp2.STEP = 1.000000e-02

wd spots temp2.MIN = 0.000000

wd spots temp2.MAX = 100.000000

phoebe usecla switch = 0

phoebe ld rvy1[1] = 0.500000

phoebe ld rvy1[2] = 0.500000

phoebe el3[1].VAL = 0.000000

phoebe el3[2].VAL = 0.000000

phoebe el3[3].VAL = 0.000000

phoebe el3[4].VAL = 0.000000

phoebe el3.ADJ = 0

phoebe el3.STEP = 1.000000e-02

phoebe el3.MIN = 0.000000

phoebe el3.MAX = 1000.000000

phoebe ld rvy2[1] = 0.500000

phoebe ld rvy2[2] = 0.500000

phoebe dc symder switch = 1

phoebe alb1.VAL = 0.600000

phoebe alb1.ADJ = 0

phoebe alb1.STEP = 1.000000e-02

phoebe alb1.MIN = 0.000000

phoebe alb1.MAX = 1.000000

phoebe ld lcx1[1].VAL = 0.500000

phoebe ld lcx1[2].VAL = 0.500000

phoebe ld lcx1[3].VAL = 0.500000

phoebe ld lcx1[4].VAL = 0.500000

phoebe ld lcx1.ADJ = 0

phoebe ld lcx1.STEP = 1.000000e-02
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phoebe ld lcx1.MIN = 0.000000

phoebe ld lcx1.MAX = 1.000000

phoebe dc spot1id = 1

phoebe alb2.VAL = 0.600000

phoebe alb2.ADJ = 0

phoebe alb2.STEP = 1.000000e-02

phoebe alb2.MIN = 0.000000

phoebe alb2.MAX = 1.000000

phoebe ld lcx2[1].VAL = 0.500000

phoebe ld lcx2[2].VAL = 0.500000

phoebe ld lcx2[3].VAL = 0.500000

phoebe ld lcx2[4].VAL = 0.500000

phoebe ld lcx2.ADJ = 0

phoebe ld lcx2.STEP = 1.000000e-02

phoebe ld lcx2.MIN = 0.000000

phoebe ld lcx2.MAX = 1.000000

phoebe radius1 = 0.690503

wd spots rad1.VAL = 0.200000

wd spots rad1.ADJ = 0

wd spots rad1.STEP = 1.000000e-02

wd spots rad1.MIN = 0.000000

wd spots rad1.MAX = 3.141593

phoebe ld xbol1 = 0.500000

phoebe radius2 = 0.539710

wd spots rad2.VAL = 0.200000

wd spots rad2.ADJ = 0

wd spots rad2.STEP = 1.000000e-02

wd spots rad2.MIN = 0.000000

wd spots rad2.MAX = 3.141593

phoebe ld xbol2 = 0.500000

phoebe rv dep[1] = "Primary RV"

phoebe rv dep[2] = "Secondary RV"

phoebe synscatter levweight = "Poissonian scatter"

phoebe dc lambda = 0.001000

phoebe teff1.VAL = 2715.000000

phoebe teff1.ADJ = 0

phoebe teff1.STEP = 5.000000e+00

phoebe teff1.MIN = 2000.000000

phoebe teff1.MAX = 50000.000000

phoebe compute vga switch = 0

phoebe teff2.VAL = 2849.000000

phoebe teff2.ADJ = 1

phoebe teff2.STEP = 1.000000e+01
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phoebe teff2.MIN = 2000.000000

phoebe teff2.MAX = 50000.000000

wd spots long1.VAL = 0.000000

wd spots long1.ADJ = 0

wd spots long1.STEP = 1.000000e-02

wd spots long1.MIN = 0.000000

wd spots long1.MAX = 6.283185

wd spots long2.VAL = 0.000000

wd spots long2.ADJ = 0

wd spots long2.STEP = 1.000000e-02

wd spots long2.MIN = 0.000000

wd spots long2.MAX = 6.283185

phoebe rv active[1] = 1

phoebe rv active[2] = 1
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APPENDIX B

PHOEBE: MODELING SCRIPT

This appendix presents a sample of commands utilized in PHOEBE’s Back-end
Scripter to model the radial velocity and the light curves of the double-lined, de-
tached eclipsing binary Par 1802.

# Ephemeris:

set parameter value (phoebe hjd0,2452947.618)

set parameter value (phoebe period,4.673843)

set parameter value (phoebe pshift,0.0012)

set parameter value (phoebe dpdt,0.0)

# Initial values of e and omega:

set parameter value (phoebe ecc,0.07)

set parameter value (phoebe perr0,CONST PI*1.514)

# Synchronicity parameter:

set parameter value (phoebe f1,1.009700) # From periodicity analysis

set parameter value (phoebe f2,1.009700)

# Redefine limits for sub-synchronous rotation:

set parameter limits (phoebe f1,0.0,4.0)

set parameter limits (phoebe f2,0.0,4.0)

# Curves will be modeled in:

set parameter value (phoebe indep,1) # Time

# Load RV files:

set parameter value (phoebe rvno,2)

set parameter value (phoebe rv filename,"sm2654.rv.p.20070922.txt",1)

set parameter value (phoebe rv filename,"sm2654.rv.s.20070922a.txt",2)

set parameter value (phoebe rv dep,1,1) #Primary RV

set parameter value (phoebe rv dep,2,2) #Secondary RV

set parameter value (phoebe rv indep,1,1) # JDs

set parameter value (phoebe rv indep,1,2) # JDs

set parameter value (phoebe rv indweight,2,1) #Standard deviation

set parameter value (phoebe rv indweight,2,2) #Standard deviation

set parameter value (phoebe rv sigma,1.0,1)#When indvweights are STDDEV

set parameter value (phoebe rv sigma,1.0,2)#que no se dupliquen.
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# RV Passbands:

set parameter value (phoebe rv filter,8,1) # R cousins

set parameter value (phoebe rv filter,8,2) # R cousins

#Set Limb Darkening law:

set parameter value (phoebe ld model,3)

# Inclination angle to 90:

set parameter value (phoebe incl,90.0)

# Initial estimates:

set parameter value (phoebe sma,10.00)

set parameter value (phoebe rm,1.0)

set parameter value (phoebe vga,25)

execute "calc sigmas.script"

set sigmarv1 = calc rv sigma(1)

set sigmarv2 = calc rv sigma(2)

#print sigmarv1,"Ä",sigmarv2
#info phoebe rv sigma

#set parameter value (phoebe rv sigma,sigmarv1,1)

#set parameter value (phoebe rv sigma,sigmarv2,2)

save parameter file ("rvs.090420.01.phoebe")

# Minimize for adjustable parameters

mark for adjustment(phoebe pshift,1)

mark for adjustment(phoebe sma,1)

mark for adjustment(phoebe rm,1)

mark for adjustment(phoebe vga,1)

#mark for adjustment(phoebe ecc,1) # Because it tends to values < 0.

#mark for adjustment(phoebe perr0,1) #Same as above

set parameter value (phoebe rv active,1,1)

set parameter value (phoebe rv active,1,2)

for (i=1;i<=3;i++) {
set a = minimize using dc()

print a

adopt minimizer results(a) }

#verify steps of adjustable parameters
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set parameter step(phoebe pshift,0.0001)

set parameter step(phoebe sma,0.01)

set parameter step(phoebe rm,0.001)

set parameter step(phoebe vga,0.1)

set parameter step(phoebe ecc,0.001)

set parameter step(phoebe perr0,0.001)

#turn on proximity effects

set parameter value (phoebe proximity rv2 switch,1)

set parameter value (phoebe proximity rv1 switch,1)

# Minimize again and update sigmas

for (i=1;i<=3;i++) {
set a = minimize using dc()

print a

adopt minimizer results(a) }

#set sigmarv1 = calc rv sigma(1) #Don’t UPDATE SIGMAS BECAUSE

#set sigmarv2 = calc rv sigma(2) #THE RVs HAVE INDIVIDUAL WEIGHTS!

#set parameter value (phoebe rv sigma,sigmarv1,1)

#set parameter value (phoebe rv sigma,sigmarv2,2)

#Set grids to be finer

set parameter value (phoebe grid coarsesize1,10)

set parameter value (phoebe grid coarsesize2,10)

set parameter value (phoebe grid finesize1,40)

set parameter value (phoebe grid finesize2,40)

mark for adjustment(phoebe pshift,0)

mark for adjustment(phoebe sma,0)

mark for adjustment(phoebe rm,0)

mark for adjustment(phoebe vga,0)

mark for adjustment(phoebe ecc,0)

mark for adjustment(phoebe perr0,0)

#save parameter file ("rvs.phoebe")

save parameter file ("rvs.090420.02.phoebe")

#value of sma at 90◦that will use from now on, when changing inclination

#set aconst = get parameter value (phoebe sma)

#For 20090420, sm2654:

set aconst = 10.669816
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#if not fitting rm, sma nor vga or ECC & Perr0, then de-activate RVs

set parameter value (phoebe rv active,0,1)

set parameter value (phoebe rv active,0,2)

# routine to change the value of the semi-major axis as i changes

macro sma (a) {
set parameter value (phoebe sma,a/sin(get parameter value (phoebe incl)*

CONST PI/180.0))}

#ADD LCS

set parameter value (phoebe lcno,6)

set parameter value (phoebe lc filename,"sm2654.H.20081120.lc",1)

set parameter value (phoebe lc filename,"sm2654.J.20081120.lc",2)

set parameter value (phoebe lc filename,"sm2654.K.20081120.lc",3)

set parameter value (phoebe lc filename,"sm2654.I.20090418.unrect.txt",4)

set parameter value (phoebe lc filename,"sm2654.V.20090418.unrect.txt",5)

set parameter value (phoebe lc filename,"sm2654.B.20090418.unrect.txt",6)

set parameter value (phoebe lc indep,1,1)

set parameter value (phoebe lc indep,1,2)

set parameter value (phoebe lc indep,1,3)

set parameter value (phoebe lc indep,1,4)

set parameter value (phoebe lc indep,1,5)

set parameter value (phoebe lc indep,1,6)

set parameter value (phoebe lc dep,1,1)

set parameter value (phoebe lc dep,1,2)

set parameter value (phoebe lc dep,1,3)

set parameter value (phoebe lc dep,1,4)

set parameter value (phoebe lc dep,1,5)

set parameter value (phoebe lc dep,1,6)

set parameter value (phoebe lc indweight,3,1)

set parameter value (phoebe lc indweight,3,2) # 3 = Unavailable

set parameter value (phoebe lc indweight,3,3)

set parameter value (phoebe lc indweight,2,4)

set parameter value (phoebe lc indweight,2,5) # 2 = Standard deviation

set parameter value (phoebe lc indweight,2,6)

set parameter value (phoebe lc levweight,1,1) # 1 = None

set parameter value (phoebe lc levweight,1,2)

set parameter value (phoebe lc levweight,1,3)

set parameter value (phoebe lc levweight,1,4)
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set parameter value (phoebe lc levweight,1,5)

set parameter value (phoebe lc levweight,1,6)

set parameter value (phoebe lc filter,65,1) #H

set parameter value (phoebe lc filter,64,2) #J

set parameter value (phoebe lc filter,66,3) #Ks

set parameter value (phoebe lc filter,9,4) #Ic

set parameter value (phoebe lc filter,61,5) #V

set parameter value (phoebe lc filter,60,6) #B

#print get parameter value (phoebe lc filter)

set parameter value (phoebe name,"sm2654")

set parameter value (phoebe lc id,"H-band",1)

set parameter value (phoebe lc id,"J-band",2)

set parameter value (phoebe lc id,"Ks-band",3)

set parameter value (phoebe lc id,"Ic-band",4)

set parameter value (phoebe lc id,"V-band",5)

set parameter value (phoebe lc id,"B-band",6)

#unset all adjustable params

mark for adjustment(phoebe pshift,0)

mark for adjustment(phoebe sma,0)

mark for adjustment(phoebe rm,0)

mark for adjustment(phoebe vga,0)

mark for adjustment(phoebe ecc,0)

mark for adjustment(phoebe perr0,0)

# Passband sigmas

set parameter value (phoebe lc sigma,0.02,1)

set parameter value (phoebe lc sigma,0.02,2)

set parameter value (phoebe lc sigma,0.03,3)

set parameter value (phoebe lc sigma,1.0,4)

set parameter value (phoebe lc sigma,1.0,5)

set parameter value (phoebe lc sigma,1.0,6)

set parameter value (phoebe model,4)

set parameter value (phoebe reffect switch,0) # 0 = Off

set parameter value (phoebe mnorm,0.0)

set parameter value (phoebe pot1,1/0.12)

set parameter value (phoebe pot2,1/0.12)

set parameter value (phoebe teff1,3850) # from broadband photometry
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set parameter value (phoebe teff2,3600)

#compute light levels

set hla = compute light levels()

for (i=1 ; i<=dim(hla) ; i++) { set parameter value (phoebe hla,hla[i],i)

}

#Set LC sigmas:

# JHK (start with Photometric scatter -> RMS of fit), BVI (1.0)

set sigh = calc sigma(1)

set sigj = calc sigma(2)

set sigk = calc sigma(3)

set sigi = calc sigma (4)

set sigv = calc sigma (5)

set sigb = calc sigma (6)

print sigh,"Ä",sigj,"Ä",sigk,"Ä",sigi,"Ä",sigv,"Ä",sigb
print get parameter value (phoebe lc sigma)

#set parameter value (phoebe lc sigma,sigh,1)

#set parameter value (phoebe lc sigma,sigj,2)

#set parameter value (phoebe lc sigma,sigk,3)

#set parameter value (phoebe lc sigma,sigi,4)

#set parameter value (phoebe lc sigma,sigv,5)

#set parameter value (phoebe lc sigma,sigb,6)

#We are going to fit for the INCL and TEFF2, so we don’t need RV curves

set parameter value (phoebe rv active,0,1)

set parameter value (phoebe rv active,0,2)

set parameter value (phoebe incl,89.9)

sma(aconst)

mark for adjustment(phoebe incl,1)

mark for adjustment(phoebe teff2,1)

mark for adjustment(phoebe pot1,1)

mark for adjustment(phoebe pot2,1)

for (j = 1 ; j <= 3 ; j++) {
set a = minimize using dc()

print a

adopt minimizer results(a)

sma(aconst)

set hla = compute light levels()
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for (i=1 ; i<=dim(hla) ; i++) { set parameter value (phoebe hla,hla[i],i)

} }

mark for adjustment(phoebe incl,0)

mark for adjustment(phoebe teff2,0)

mark for adjustment(phoebe pot1,0)

mark for adjustment(phoebe pot2,0)

#adjust e,w,pshift for adjustment

mark for adjustment(phoebe pshift,1)

mark for adjustment(phoebe ecc,1)

mark for adjustment(phoebe perr0,1)

set parameter value (phoebe rv active,1,1)

set parameter value (phoebe rv active,1,2)

for (j = 1 ; j <= 3 ; j++) {
set a = minimize using dc()

print a

adopt minimizer results(a) }

set parameter step (phoebe ecc,0.001)

set parameter step (phoebe pshift,0.0001)

mark for adjustment(phoebe pshift,0)

mark for adjustment(phoebe sma,0)

mark for adjustment(phoebe rm,0)

mark for adjustment(phoebe vga,0)

mark for adjustment(phoebe ecc,0)

mark for adjustment(phoebe perr0,0)

mark for adjustment(phoebe incl,0)

mark for adjustment(phoebe teff2,0)

mark for adjustment(phoebe pot1,0)

mark for adjustment(phoebe pot2,0)

save parameter file ("bvijhk.090420.02.phoebe")

#adjust all parameters

mark for adjustment(phoebe pshift,1)

mark for adjustment(phoebe sma,1)

mark for adjustment(phoebe rm,1)

mark for adjustment(phoebe vga,1)

mark for adjustment(phoebe ecc,1)
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mark for adjustment(phoebe perr0,1)

mark for adjustment(phoebe pshift,1)

mark for adjustment(phoebe hla,1)

mark for adjustment(phoebe incl,1)

mark for adjustment(phoebe teff1,1)

mark for adjustment(phoebe pot1,1)

mark for adjustment(phoebe pot2,1)

mark for adjustment(phoebe period,1)

mark for adjustment(phoebe hjd0,1)

mark for adjustment(phoebe teff2,1)

set parameter value (phoebe rv active,1,1)

set parameter value (phoebe rv active,1,2)

#DO NOT ADOPT MINIMIZATION RESULTS!

set a = minimize using dc()

print a
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APPENDIX C

PHOEBE: PARAMETER CROSS SECTION SCANNING SCRIPT

This appendix presents a sample script written to scan the parameter cross sec-
tion between the ratio of effective temperatures and the radii of radii, (Teff,1/Teff,2)–
(R2/R1).

define sum (arr) {

set retval = 0.0

for (i = 1; i <= dim(arr); i++)

set retval += arr[i]

return retval }

define calc_sigma (index) {

set_parameter_value (phoebe_indep,

get_parameter_value (phoebe_lc_indep, index))

set obs = get_parameter_value (phoebe_lc_filename, index)

set mag0 = get_parameter_value (phoebe_mnorm)

set hjd = column (obs, 1)

set mag = column (obs, 2)

set lc = compute_lc (hjd, index)

set diff = 10^(-2/5*(mag-mag0)) - lc.dep

set sig_flux = sqrt(sum(diff^2)/(dim(diff)-1))

return 5/2 * log(sig_flux+1) }

#macro go (INDEX_NO) {

set INDEX_NO = 1

open_parameter_file ("thlflux.ew.nt1.phoebe")

set_parameter_value (phoebe_rv_active,0,1)

set_parameter_value (phoebe_rv_active,0,2)

mark_for_adjustment (phoebe_pot2,1)
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mark_for_adjustment (phoebe_hla,0)

mark_for_adjustment (phoebe_pshift,0)

set t10= 30

set p10 = 0.4

set t2 = 3600

set p1 = 7.00

set p2 = get_parameter_value (phoebe_pot2)

set p1o = get_parameter_value (phoebe_pot1)

set chi2 = compute_chi2()

set minchi2 = sum(chi2)

print "Initial Chi2 ","\t",sum(chi2)

for (index = 1; index <= INDEX_NO; index++) {

set t2r = t2 + rand(t10)

set p1r = p1 + rand(p10)

set_parameter_value (phoebe_teff2, t2r)

set_parameter_value (phoebe_pot1,p1r)

set_parameter_value (phoebe_pot2,

p2+(p1o-get_parameter_value (phoebe_pot1)))

set hla = compute_light_levels()

for (i = 1 ; i <= dim(hla) ; i++) {

set_parameter_value (phoebe_hla,hla[i],i) }

print " "

print "Secondary Teff: ","\t", t2r

print "Primary potential: ", "\t", p1r

print " "

set r = minimize_using_dc ()

adopt_minimizer_results(r)

print r

set hla = compute_light_levels()

for (i = 1 ; i <= dim(hla) ; i++) {

set_parameter_value (phoebe_hla,hla[i],i) }

set tol = 1.5 # or whatever is appropriate
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set cfval = r.cfval

for (j = 1 ; j < 3 ; j ++) {

set r = minimize_using_dc()

adopt_minimizer_results (r)

set hla = compute_light_levels()

for (i = 1 ; i <= dim(hla) ; i++) {

set_parameter_value (phoebe_hla,hla[i],i) }

print r

}

while (cfval - r.cfval > tol) {

set cfval = r.cfval

set r = minimize_using_dc ()

print r

if (cfval - r.cfval > 0.0) {

adopt_minimizer_results(r)

set hla = compute_light_levels()

for (i = 1 ; i <= dim(hla) ; i++) {

set_parameter_value

(phoebe_hla,hla[i],i) }

}

}

set cfval = compute_chi2 ()

print index,"\t",get_parameter_value (phoebe_teff2),"\t",

get_parameter_value (phoebe_radius1), "\t",

get_parameter_value(phoebe_radius2), "\t",

get_parameter_value (phoebe_pot1), "\t",

get_parameter_value (phoebe_pot2),"\t",

r.cfval, "\t", sum(cfval), "\t", cfval[1], "\t",

cfval[2], "\t", cfval[3], "\t", cfval[4], "\t",

cfval[5], "\t", cfval[6], "\t", cfval[7], "\t",

cfval[8], "\n" ->> "vijhk.tr.100123.results"

}

}
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APPENDIX D

PHOEBE: UNCERTAINTY DETERMINATION SCRIPT

This appendix contains the PHOEBE script used to determine the parameter un-
certainties of the best RV+LC solution of Par 1802.

# Open the best fit parameter file

open_parameter_file ("thli40.phoebe")

#define variables

set m1 = get_parameter_value (phoebe_mass1)

set m2 = get_parameter_value (phoebe_mass2)

set r1 = get_parameter_value (phoebe_radius1)

set r2 = get_parameter_value (phoebe_radius2)

set a = get_parameter_value (phoebe_sma)

set e = get_parameter_value (phoebe_ecc)

set w = get_parameter_value (phoebe_perr0)

set psh = get_parameter_value (phoebe_pshift)

set incl = get_parameter_value (phoebe_incl)

set vga = get_parameter_value (phoebe_vga)

set q = get_parameter_value (phoebe_rm)

set p = get_parameter_value (phoebe_period)

set f1 = get_parameter_value (phoebe_f1)

set f2 = get_parameter_value (phoebe_f2)

set teff2 = get_parameter_value (phoebe_teff2)

set teff1 = get_parameter_value (phoebe_teff1)

set p1 = get_parameter_value (phoebe_pot1)

set p2 = get_parameter_value (phoebe_pot2)

set akm = a*6.955e5 # Convert to km from R_sun

#This one comes independent of the EB modeling in days

set sigper = 0.000060

set sigpersec = sigper*24*3600 # convert from days to s

set psec = p*24*3600

# from periodicity analysis

set prot1 = 4.629

set prot2 = 4.629

set sigprot1 = 0.006
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set sigprot2 = 0.006

# comes from determination of rotation period.

set sigf1 = f1*sqrt((sigper/p)^2 + (sigprot1/prot1)^2)

set sigf2 = f2*sqrt((sigper/p)^2 + (sigprot2/prot2)^2)

# From errors manuscript: #1

#find uncertainties of q and a sin i, vga

set_parameter_value (phoebe_rv_active,1,1)

set_parameter_value (phoebe_rv_active,1,2)

set_parameter_value (phoebe_lc_active,0,1)

set_parameter_value (phoebe_lc_active,0,2)

set_parameter_value (phoebe_lc_active,0,3)

set_parameter_value (phoebe_lc_active,0,4)

set_parameter_value (phoebe_lc_active,0,5)

set_parameter_value (phoebe_lc_active,0,6)

# #2

set aconst = a * sin(incl*CONST_PI/180.0)

macro sma (aa) { set_parameter_value (phoebe_sma,

aa/sin(get_parameter_value (phoebe_incl)*CONST_PI/180.0))}

set_parameter_value (phoebe_incl,90.0)

mark_for_adjustment (phoebe_sma,1)

mark_for_adjustment (phoebe_rm,1)

mark_for_adjustment (phoebe_vga,1)

mark_for_adjustment (phoebe_perr0,1)

mark_for_adjustment (phoebe_ecc,1)

mark_for_adjustment (phoebe_pshift,1)

mark_for_adjustment (phoebe_pot1,0)

mark_for_adjustment (phoebe_pot2,0)

mark_for_adjustment (phoebe_teff2,0)

mark_for_adjustment (phoebe_teff1,0)

mark_for_adjustment (phoebe_hla,0)

#set rvs = minimize_using_dc()

print rvs

set sigasini = rvs.ferrors[1]

set sigvga = rvs.ferrors[5]
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set sigq = rvs.ferrors[6]

print "sasini = ",sigasini,"\t","sigvga = ",sigvga,"\t","sigq = ",sigq

# From ERRORS paper: #3

set_parameter_value (phoebe_incl, incl)

sma(aconst)

# From errors: #4

set_parameter_value (phoebe_rv_active,1,1)

set_parameter_value (phoebe_rv_active,1,2)

set_parameter_value (phoebe_lc_active,1,1)

set_parameter_value (phoebe_lc_active,1,2)

set_parameter_value (phoebe_lc_active,1,3)

set_parameter_value (phoebe_lc_active,1,4)

set_parameter_value (phoebe_lc_active,1,5)

set_parameter_value (phoebe_lc_active,0,6)

mark_for_adjustment (phoebe_sma,0)

mark_for_adjustment (phoebe_rm,0)

mark_for_adjustment (phoebe_vga,0)

mark_for_adjustment (phoebe_pshift,1)

mark_for_adjustment (phoebe_incl,1)

mark_for_adjustment (phoebe_perr0,1)

mark_for_adjustment (phoebe_ecc,1)

mark_for_adjustment (phoebe_teff2,1)

mark_for_adjustment (phoebe_pot1,1)

mark_for_adjustment (phoebe_pot2,1)

mark_for_adjustment (phoebe_hla,1)

mark_for_adjustment (phoebe_el3,0)

#set b = minimize_using_dc()

print b

set sigpsh = b.ferrors[3]

set siginca = b.ferrors[4]

set sigperr0 = b.ferrors[2]

set sigecc = b.ferrors[1]

set sigteff2 = b.ferrors[5]
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set sigp1 = b.ferrors[6]

set sigp2 = b.ferrors[7]

set sigincl = siginca*CONST_PI/180.0 #in radians

set siginclf = sigincl

## from third light uncertainty

set sigincl = 8*CONST_PI/180.0 #in radians

## formal errors for:

set sigeccf = sigecc

set sigperr0f = sigperr0

## From heuristics:

set sigecc = 0.0026

set sigperr0 = 0.010*CONST_PI #In radians

set sigt1t2 = 0.0017

## Now #5:

set siga = sqrt((sigasini/sin(incl*CONST_PI/180.0))^2 +

(a* cos(incl*CONST_PI/180.0)*sigincl/sin(incl*CONST_PI/180.0))^2)

set sigakm = siga*6.955e5

## Now #6: Deferring to point #8

#print "R_1: ",get_parameter_value ( phoebe_radius1)," $\pm$ ",sigr1

#print get_parameter_value ( phoebe_radius2)

## Now #7

set sigm1 = m1 * sqrt((3*siga/a)^2 + (2*sigper/p)^2 + (sigq/(q+1))^2)

set sigm2 = m2 * sqrt((3*siga/a)^2 + (2*sigper/p)^2 + (sigq/(q*(q+1)))^2)

### Now #8:

set den1 = (r1/a)^2 + (1-e)^2 - 2* r1/a * (1-e)

set a1p = -1/(r1/a)^2 - (q*(r1/a + e -1))/den1^(3/2)

- q/(1-e)^2 + f1^2*(1 + q)*r1/a

set a2p = 1/den1^(1/2) - (r1/a)/(1-e)^2 + 0.5 * f1^2*(r1/a)^2

set a3p = - q*(r1/a + e -1)/den1^(3/2) - 2*q*r1/a/(1-e)^3

set a4p = f1*(1+q)*(r1/a)^2

set den2 = (r2/a)^2 + (1-e)^2 - 2* r2/a * (1-e)
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set a1s = -1/(r2/a)^2 - (q*(r2/a + e -1))/den2^(3/2)

- q/(1-e)^2 + f2^2*(1 + q)*r2/a

set a2s = 1/den2^(1/2) - r2/a/(1-e)^2 + 0.5 * f2^2*(r2/a)^2

set a3s = - q*(r2/a + e -1)/den2^(3/2) - 2*q*r2/a/(1-e)^3

set a4s = f2*(1+q)*(r2/a)^2

set sigrr1 = sqrt( (sigp1/a1p)^2 + (a2p*sigq/a1p)^2 +

(a3p*sigecc/a1p)^2 + (a4p*sigf1/a1p)^2)

set sigrr2 = sqrt( (sigp2/a1s)^2 + (a2s*sigq/a1s)^2 +

(a3s*sigecc/a1s)^2 + (a4s*sigf2/a1s)^2)

set sigr1 = r1*sqrt((siga/a)^2+(sigrr1/(r1/a))^2)

set sigr2 = r2*sqrt((siga/a)^2+(sigrr2/(r2/a))^2)

set sigr1f = sigr1

set sigr2f = sigr2

## From third light uncertainty:

set sigr1 = 0.020

set sigr2 = 0.020

define rsun2au (arsun) {

set aau = arsun*6.9599e10/1.4960e13

return aau }

### Calculate K’s and logg’s

set k1=2*CONST_PI*(akm/(1+1/q))/(psec)/sqrt(1-e^2)*sin(incl*CONST_PI/180)

set sigk1 = k1 * sqrt((sigasini/(aconst))^2+(sigpersec/psec)^2

+(sigq/(q^2*(1+1/q)))^2+(e*sigecc/(1-e^2))^2)

set k2 = k1/q

set sigk2 = k2 * sqrt ( (sigk1/k1)^2 + (sigq/q)^2)

# g = 2.74e4 * (m/msun) * (rsun/r)^2 = Gm/r^2 [=] cm/s^2

set logg1 = log(m1/r1^2)+4.438

set siglogg1 = 1/ln(10) * sqrt ((sigm1/m1)^2+((2*sigr1)/r1)^2)

set logg2 = log(m2/r2^2)+4.438

set siglogg2 = 1/ln(10) * sqrt ((sigm2/m2)^2+((2*sigr2)/r2)^2)

### Calculate Total Mass from RV solution

# gravitational constant in (1/Msun 1/days^2 Rsun^3)

#set g = 6.67259e-8*(24.*3600.)^2*1.989e33/(6.955e10)^3

set g = 2944.8645 #Calculation above done in IDL
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set msin3i = 4*CONST_PI^2*(aconst)^3/(g*p^2)

set sigmsin3i = msin3i *sqrt( (3*sigasini/aconst)^2 + (2*sigper/p)^2 )

# Printing out all errors:

print " p = ",get_parameter_value(phoebe_period),

" $\\pm$ ",sigper," (",sigper/p*100," %)"

print " e = ",get_parameter_value(phoebe_ecc),

" $\\pm$ ",sigecc," (",sigecc/e*100," %)"

print " w = ",get_parameter_value(phoebe_perr0)/CONST_PI,

" pi $\\pm$ ",sigperr0," (",sigperr0/w*100," %)"

print " psh = ",get_parameter_value(phoebe_pshift),

" $\\pm$ ",sigpsh," (",sigpsh/psh*100," %)"

print " a = ",get_parameter_value(phoebe_sma),

" $\\pm$ ",siga," (",siga/a*100," %)"

print "a (au) = ",rsun2au(get_parameter_value(phoebe_sma))," $\\pm$ ",

rsun2au(siga)," (",rsun2au(siga)/rsun2au(a)*100," %)"

print " asini = ",rsun2au(aconst)," $\\pm$ ",rsun2au(sigasini),

" (",sigasini/(aconst)*100," %)"

print " i = ",incl," $\\pm$ ",sigincl*180/CONST_PI," (",

sigincl*180/CONST_PI/incl*100," %)"

print " gamma = ",get_parameter_value(phoebe_vga)," $\\pm$ ",

sigvga," (",sigvga/vga*100," %)"

print " k1 = ",k1," $\\pm$ ",sigk1," (",sigk1/k1*100," %)"

print " k2 = ",k2," $\\pm$ ",sigk2," (",sigk2/k2*100," %)"

print " q = ",q," $\\pm$ ",sigq," (",sigq/q*100," %)"

print "Msin3i = ",msin3i," $\\pm$ ",sigmsin3i," (",

sigmsin3i/msin3i*100," %)"

print " M_1 = ",get_parameter_value(phoebe_mass1),

" $\\pm$ ",sigm1," (",sigm1/m1*100," %)"

print " M_2 = ",get_parameter_value(phoebe_mass2),

" $\\pm$ ",sigm2," (",sigm2/m2*100," %)"

print " R_1 = ",get_parameter_value(phoebe_radius1),

" $\\pm$ ",sigr1," (",sigr1/r1*100," %)"

print " R_2 = ",get_parameter_value(phoebe_radius2),

" $\\pm$ ",sigr2," (",sigr2/r2*100," %)"

print " logg1 = ",logg1," $\\pm$ ",siglogg1,

" (",siglogg1/logg1*100," %)"

print " logg2 = ",logg2," $\\pm$ ",siglogg2,

" (",siglogg2/logg2*100," %)"

print " pot1 = ",get_parameter_value(phoebe_pot1),

" $\\pm$ ",sigp1," (",sigp1/p1*100," %)"

print " pot2 = ",get_parameter_value(phoebe_pot2),

" $\\pm$ ",sigp2," (",sigp2/p2*100," %)"
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print " f1 = ",get_parameter_value (phoebe_f1),

" $\\pm$ ",sigf1," (",sigf1/f1*100," %)"

print " f2 = ",get_parameter_value (phoebe_f2),

" $\\pm$ ",sigf2," (",sigf2/f2*100," %)"

print " t1/t2 = ",teff1/teff2," $\\pm$ ",sigt1t2,

" (",sigt1t2/teff1*teff2*100," %)"

print " teff2 = ",get_parameter_value(phoebe_teff2),

" $\\pm$ ",sigteff2," (",sigteff2/teff2*100," %)"

print " "

print " Formal errors: "

print " sigma_r1 = ",sigr1f

print " sigma_r2 = ",sigr2f

print " sigma_e = ",sigeccf

print " sigma_w = ",sigperr0f

print " sigma_i = ",siginclf
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APPENDIX E

Par 1802: ABRIDGED V ICJHKS LIGHT CURVES

The tables presented in this Appendix will be published in its entirety in a
machine-readable form in the online version of the paper by Gómez Maqueo Chew
et al. (2010). A portion of each table is shown here for guidance regarding their form
and content.

Table 11: Differential V band Light Curve of Par 1802

HJDa ∆mb σm

2451930.557737 0.006 0.010
2451930.569416 -0.001 0.010
2451930.581025 0.007 0.010
2451930.592365 -0.007 0.010
2451930.603794 0.007 0.010
2451930.615404 0.000 0.010
2451930.626933 0.001 0.010
2451930.638092 -0.005 0.010
2451930.656051 -0.001 0.010
2451930.667491 0.001 0.011
2451930.679160 0.006 0.011
2451930.693249 -0.006 0.010
2451930.704649 0.007 0.010
2451930.735757 0.003 0.011
2451930.748306 -0.008 0.011

a Heliocentric Julian Date
b Differential V magnitude
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Table 12: Differential IC band Light Curve of Par 1802

HJDa ∆mb σm

2449701.860452 -0.040 0.020
2449701.913182 -0.026 0.020
2449701.938571 -0.026 0.020
2449701.976661 0.006 0.020
2449702.006931 -0.001 0.020
2449702.687600 -0.012 0.020
2449702.716890 -0.015 0.020
2449702.745210 0.003 0.020
2449702.773530 0.007 0.020
2449702.805760 0.009 0.020
2449702.861430 0.028 0.020
2449702.889750 0.027 0.020
2449702.918070 0.031 0.020
2449702.950290 0.032 0.020
2449702.981540 0.030 0.020

a Heliocentric Julian Date
b Differential IC magnitude
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Table 13: Differential J band Light Curve of Par 1802

HJDa ∆mb

2454013.794832 -0.010
2454040.717805 -0.002
2454041.709868 0.012
2454005.796854 -0.006
2453981.864644 0.018
2453999.786555 0.002
2454071.679609 0.150
2454002.846548 -0.025
2454003.778756 0.036
2454019.797322 -0.008
2454020.805072 0.013
2453993.868102 -0.027
2454023.779094 0.025
2454049.717259 0.008
2454050.713167 0.136
2454024.794247 -0.021

a Heliocentric Julian Date
b Differential J magnitude

195



Table 14: Differential H band Light Curve of Par 1802

HJDa ∆mb

2454376.787242 -0.014
2454377.789689 0.143
2454378.775544 -0.020
2454378.785284 0.012
2454380.739724 -0.019
2454381.776602 -0.025
2454381.886711 -0.012
2454382.748298 0.008
2454383.729640 0.004
2454383.859218 0.005
2454384.742592 0.047
2454384.862200 0.122
2454385.741196 -0.008
2454385.851496 -0.004

a Heliocentric Julian Date
b Differential H magnitude
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Table 15: Differential KS band Light Curve of Par 1802

HJDa ∆mb

2454013.798334 -0.006
2454040.721410 0.005
2454041.713265 0.001
2454005.800356 -0.011
2453981.868447 0.015
2453999.790149 0.012
2454071.683111 0.151
2454002.850061 -0.017
2454003.782373 0.043
2454019.800928 -0.002
2454020.808574 -0.009
2453993.871639 -0.011
2454023.782514 0.027
2454049.720749 0.003
2454050.716645 0.133

a Heliocentric Julian Date
b Differential KS magnitude

197



APPENDIX F

Par 1802: DISTANCE ESTIMATION SCRIPT

This appendix contains IDL script used to calculate the distance to Par 1802 vary-
ing the contribution of the third body to the system’s luminosity and given different
values of the interstellar extinction.

;fractional contribution of third component

;frac=0.25 ; 1/5 th of total lum, 20% of total lum

;frac=0.5 ; 1/3 th of total lum, 33% of total lum

;frac=0.11 ; 10% of total lum

frac=1. ; 50% of total lum

;frac=2/3. ; 40% of total lum

;r1=1.737;in Rsun

;r2=1.625;in Rsun

;with revised cooler temperatures

r1 = 1.730; in Rsun

r2 = 1.618; in Rsun

sr1=0.1;in Rsun

sr2=0.1;in Rsun

;t1=3.945e3;in K

t1=3.665e3

t2=t1/1.092

;t2=3.611e3;in K

st1=100.;in K

st2=100.;in K

;Constants:

sb=5.67051e-8; in W /(m^2 K^4)

lumsun=3.845e26 ;in W

rsun=6.95508e8;in m

mbolsun=4.74;from Allen’s Aph, p 341

smbolsun=0.01

198



bc=-1.64;mags, from Table A5, Kenyon & Hartmann 1995

sbc=0.0;unknown!

vk=4.11;mags, also from Kenyon & Hartmann 1995

svk=0.03;Allen’s Aph p. 151

k=9.938;mags, from 2MASS, simbad

sk=0.018;mags, from simbad

;luminosities:

lum1=4.*!dpi*sb*(r1*rsun)^2*(t1)^4/lumsun

lum2=4.*!dpi*sb*(r2*rsun)^2*(t2)^4/lumsun

slum1=2*lum1*sqrt((sr1/r1)^2+4*(st1/t1)^2)

slum2=2*lum2*sqrt((sr2/r2)^2+4*(st2/t2)^2)

lumsyst=(1.+frac)*(lum1+lum2)

slumsyst=(1.+frac)*sqrt(slum1^2+slum2^2)

;absolute magnitudes

mabs=mbolsun-2.5*alog10(lumsyst)

smabs=sqrt(smbolsun^2+(2.5*slumsyst/lumsyst)^2)

;apparent magnitudes

mapp=bc+vk+k

smapp=sqrt(sbc^2+svk^2+sk^2)

;distance

av=0.5; from Par1802 nature paper

sav=0.2; from Par 1802 nature paper

d0=10^((mapp-mabs+5.)/5.);in pc

sd0=alog(10)/5.*d0*sqrt(sav^2+smabs^2+smapp^2)

d=10^((mapp-mabs+5.+av)/5.);in pc

sd=alog(10)/5.*d*sqrt(sav^2+smabs^2+smapp^2)

;in pc, a_v = 0.32: is the extinction calculated for v1174 ori

d2=10^((mapp-mabs+5.+0.32)/5.)

;bw = wien’s displacement constant of proportionality

bw = 2.89777e3 ; in microns * Kelvin
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print,’ ’

print,’Distance to ONC: 436 +/- 20 pc (O‘Dell and Henney 2008)’

print,’ ’

print,’T_1 = ’,t1,’ T_2 = ’,t2

print,’l_max,1 = ’,bw/t1,’ l_max,2 = ’,bw/t2

print,’’

print,’L_3/L_tot = ’, frac/(1+frac)

print,’ ’

print,’Av = 0, Distance:’,d0,’ +/-’,sd0

print,’Av = 0.32, Distance:’,d2,’ +/-’,sd

print,’Av = 0.5, Distance:’,d,’ +/-’,sd
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APPENDIX G

2M0535−05: ABRIDGED JHKS LIGHT CURVES

The tables presented in this Appendix are published in its entirety in a machine-
readable form in the online version of the paper by Gómez Maqueo Chew et al. (2009).
A portion of each table is shown here for guidance regarding their form and content.

Table 16: Differential J band Light Curve of 2M0535−05

HJDa ∆mb

2453311.723468 -0.02137
2453321.645380 0.00305
2453327.667177 0.09047
2453327.736855 0.25355
2453337.627205 0.44196
2453337.712161 0.30654
2453340.661636 0.02005
2453291.837179 0.06698
2453301.833196 0.13945
2453280.731279 -0.01333
2453280.795035 0.01343
2453280.850294 -0.02312
2453281.725007 0.00358
2453281.790626 0.01219
2453281.842875 0.00321

a Heliocentric Julian Date
b Differential J magnitude
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Table 17: Differential H band Light Curve of 2M0535−05

HJDa ∆mb

2453426.520578 0.03610
2453445.485528 0.01546
2453428.650735 -0.00740
2453415.616726 0.00619
2453415.677288 0.06725
2453425.564072 0.37523
2453425.630860 0.53849
2453425.662732 0.47590
2453406.539051 0.01280
2453409.535701 -0.01483
2453409.619548 0.00244
2453435.510760 0.27719
2453435.569216 0.11036
2453435.621445 0.02131
2453436.510477 0.00301

a Heliocentric Julian Date
b Differential H magnitude

202



Table 18: Differential KS band Light Curve of 2M0535−05

HJDa ∆mb

2453336.725515 -0.07627
2453336.758641 -0.04853
2453428.666590 -0.04077
2453415.586925 -0.03317
2453415.632014 -0.07676
2453415.692587 -0.00632
2453425.579580 0.42007
2453425.646588 0.49068
2453425.678437 0.44216
2453409.550989 0.01162
2453409.634848 0.00240
2453435.526476 0.21726
2453435.584515 0.11184
2453435.637277 0.00116
2453438.537777 0.08671

a Heliocentric Julian Date
b Differential KS magnitude
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Fűrész, G., L. W. Hartmann, S. T. Megeath, A. H. Szentgyorgyi, and E. T. Hamden
(2008, April). Kinematic Structure of the Orion Nebula Cluster and its Surround-
ings. ApJ 676, 1109–1122.

205



Fischer, D. A. and G. W. Marcy (1992, September). Multiplicity among M dwarfs.
ApJ 396, 178–194.

Frasca, A., E. Covino, L. Spezzi, J. M. Alcalá, E. Marilli, G. Fżrész, and D. Gandolfi
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Köhler, R., M. G. Petr-Gotzens, M. J. McCaughrean, J. Bouvier, G. Duchêne,
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