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CHAPTER I

INTRODUCTION

This thesis consists of three independent chapters. However, each chapter, one way or

another, examines the strategic incentives of market players under constrained situations

that generate economic externalities. The second chapter considers a model of competition

in which economic activity takes place through networks of bilateral interactions. The third

chapter focuses on managerial incentives of a monopolistic retailer to maximize its profits in

a market characterized by demand uncertainty. Finally, the last chapter focuses on incentive

tradeoff between demand uncertainty and price discrimination for oligopolistic firms.

Chapter II: Bargaining in a Network with Heterogeneous Buyers

This chapter examines the effects of exogenously given network structure, which repre-

sents potential traders in an economy, on market outcomes and identifies the conditions that

determine bargaining power of potential traders in a network with homogeneous sellers and

heterogenous buyers. The first focus of this chapter is the network structures that allow per-

fectly competitive market interactions. In particular, we consider a benchmark solution that

represents the competitive equilibrium outcome in networks context and characterize the

network structures that support this competitive market outcome. We find, as opposed to

earlier literature, that similar network structures may lead to different equilibrium outcomes.

In our setting, not only positions of the agents in a network are crucial for the equilibrium

outcome, so are the names (valuations) of the agents who capture those positions. Another

focus of this chapter is the efficiency aspect the competitive markets in which there are

communication restrictions between buyers and sellers. We provide a class of networks that

ensures the efficient allocation of goods and show that any member of this class supports

the competitive equilibrium outcome.
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Chapter III: Retail Assortment Planning Under Category Captainship

Retail assortment planning can have a tremendous impact on the retailer’s bottom line

performance. Recently, retailers have started to rely on their leading manufacturers for

recommendations regarding the assortment to be offered to the consumers in a particular

category, a trend often referred to as category captainship.

While retailers focus on many product categories, manufacturers usually focus on fewer

categories and have superior understanding of the consumer trends in these particular cate-

gories. Thus, category captainship carries potential benefits for both the category captains

and the retailers, mainly due to the elimination of information asymmetry. Category captains

might be given access to crucial information such as sales data and pricing. This information

allows captains to understand retail business better than their non-captain competitors. The

category captains can leverage these insights to improve their own product marketing. On

the other hand, captains often promise the retailers to grow retail categories and provide

consumer insights which are not readily available to the retailers.

This chapter investigates the consequences of using category captains for assortment

selection decisions. We develop a screening model where multiple manufacturers sell their

products to consumers through a single retailer. We compare the models where the retailer

selects the assortment in the category with a model where the retailer relies on a category

captain for assortment decisions in return of a target contract. We show that while category

captainship can provide significant benefits to the retailer and the category captain, it does

not always benefit the non-captain manufacturers.

Chapter IV: Price Discrimination in Quantity Competition

This chapter focuses on the incentive tradeoff between demand uncertainty and price dis-

crimination. Markets that contain demand uncertainty and possibility of price discrimination

create an incentive conflict for the firms operating in those markets. On one hand, firms

that face uncertainty choose sub-optimal strategies, which results in profit losses, in order

2



to smooth their strategies across different market outcomes. On the other hand, firms that

face different variety of consumers tend to discriminate consumers by offering different prices

in the hope of capturing higher surplus. Motivated by this tradeoff, the goal of the chapter

is to better understand the consequences of exogenously enforced price discrimination. In

particular, we consider a linear demand duopoly model in which two firms engage in quantity

competition over two varieties of a product. The results of this chapter extends the standard

Cournot and Stackelberg competition literatures by characterizing the equilibrium outcomes

in the presence of multiple varieties. Moreover, our results provide intuition on whether the

firms that engage in quantity competition choose to practice price discrimination or not. We

show that a firm chooses not to practice price discrimination if the firm is the leader in the

market and there is asymmetric price effect between varieties. In addition, we determine a

crucial component for the price differences between the varieties in the equilibrium.

3



CHAPTER II

BARGAINING IN A NETWORK WITH HETEROGENEOUS BUYERS

Introduction

In many markets, much of the communication that is important for the economic activity

take place through networks of bilateral interactions. While the nature of this interaction

is negligible in large and competitive economies, it becomes a central determinant of the

economic activity in highly non-competitive economic environments. This paper focuses on

two-sided markets organized through a network that represents communication limitations

on the potential traders.

Communication restrictions may take different forms such as social contacts, transporta-

tion costs, free trade agreements, technological compatibility, etc. Numerous examples in

social and economic contexts have been provided to support the importance of networks.1

Consider the U.S. housing market for example. In this market, not all buyers and sellers

have access to the agents on the other side of the market. A network of housing market may

represent the feasible houses for buyers and potential buyers for sellers. So, housing market

is two sided and surrounded by communication restrictions between buyers and sellers.

In an economic environment with restricted communication, it is not surprising that the

lack of ability to engage in trade may harm an agent. However, having relatively more

connections alone may not guarantee a better outcome either. Networks can generate power

differences among agents since they can create asymmetric positions in a market. A house

seller, who negotiates with two buyers, will probably receive a higher bid when his house

is the only one around compared to the situation when at least one of the buyers has an

1See Jackson (2008), Dutta and Jackson (2003), Jackson and Wolinsky (1996), and Jackson and Watts (1998)
for surveys of related literature.
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interest to another house. It is not immediately obvious what it means to be well-connected

in a market with interdependent relations between buyers and sellers.

This paper examines the effects of exogenously given network structure on market out-

comes and identifies the conditions that determine bargaining power of potential traders in a

network with homogeneous sellers and heterogenous buyers. The setting is as follows. Each

seller owns an identical indivisible good, which is worthless to him, and buyers value the good

differently. Bargaining occurs simultaneously and in an alternating order. The network gen-

erates a potentially infinite horizon discrete time bargaining game. In each period, agents

on the one side of the market simultaneously post prices that they are willing to accept, and

then agents on the other side simultaneously announce their reservation prices. A buyer can

buy a good from a seller, who is connected with the buyer in G, only if the buyer announces

a price higher than the seller’s posted price. If there are multiple feasible trade patterns,

then a surplus maximizing mechanism determines the effective trade pattern. After some

pairs trade at the posted prices, they leave the market, while the rest keep bargaining with

alternating orders. The game is played repeatedly among the players who did not trade in

previous periods until the market clears. Each agent has a common discount factor.

In a similar setting, Corominas-Bosch (2004) identifies strong, weak, and even agents in

markets with homogenous buyers and sellers. She shows the conditions that are necessary

and sufficient for a network structure to be complete enough so that the competitive market

outcome still prevails. Our first main result carries this line of research to a step further

and characterize the network structures that support competitive market outcomes in the

presence of heterogeneous buyers. To do so, we first characterize the subgame perfect Nash

equilibrium outcomes of small markets, i.e., the networks with at most two sellers and two

buyers. We find, as opposed to Corominas-Bosch (2004), that similar network structures

may lead to different equilibrium outcomes, especially in the presence of the even agents.

In our setting, not only positions of the agents in a network are crucial for the equilibrium

outcome, so are the names (valuations) of the agents who capture those positions. Later,
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we extend the small market exercises to more general network structures and characterize

networks that support the competitive equilibrium.

Another focus of this paper is the efficiency aspect the competitive markets in which

there are communication restrictions between buyers and sellers. While the two-sided net-

work models with homogeneous buyers and sellers provide intuition regarding the meaning

of being well-connected, they are silent on allocative efficiency. That is because, when buyers

and sellers are homogeneous the question of who participates in trade becomes irrelevant.

Homogeneity throws a veil over the efficiency properties of the buyer-seller networks. How-

ever, the question becomes relevant and important in the presence of heterogeneous agents.

We provide a class of networks that ensures the efficient allocation of goods and show that

any member of this class supports the competitive equilibrium outcome.

The literature on bargaining in markets is extensive. Stahl (1972), Rubinstein (1982),

and Binmore (1987) introduce the fundamental models of two-player non-cooperative negoti-

ations. Rubinstein and Wolinsky (1985, 1990), Gale (1987), and Binmore and Herrero (1988)

consider homogeneous markets without communication restrictions, in order to identify the

effects of various decentralized bargaining procedures on the competitive equilibrium price.

The highlight of this line of research is that the equilibrium price is affected by informa-

tion asymmetry, nature of market barriers, matching technology, and patience of the agents.

Our analysis diverge from this literature by imposing restrictions on possible bilateral trades

and relaxing the assumption that buyers are homogeneous. Kranton and Minehart (2001)

focus on the efficient implementation of networks via centralized auction mechanism in a

non-strategic sellers environment. Finally more recently, Polanski (2007), Manea (2008),

and Abreu and Manea (2009) provide intuition on bargaining power of homogeneous agents

in any market (not necessarily two sided) with communication restrictions. We restrict our

attention to only two sided markets while relaxing the homogeneity assumption.2

2In addition, the models in this line of literature focus mainly on the market outcome in the limit and more
appropriate for large markets. Our focus is more inline with the markets with smaller scale, e.g., housing
market.
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The results in this paper exploit connections to the structure of matchings in networks,

including decomposition theorems for networks with perfect matchings, and general market

properties like competitiveness and efficiency. The next section develops the model, while

introducing the notation and the preliminary mathematical tools. We then consider thin

markets with at most two sellers and two buyers to identify the intuition behind the general

results. Then, we analyze the properties of the networks that generate an environment that

is free enough for achieving competitive and efficient allocations. And finally in the last

section, we discuss the implications of the model and conclude the paper.

The Model

Consider a market with |S| sellers S = {s1, s2, ..., s|S|} and |B| buyersB = {b1, b2, ..., b|B|}.3

Each seller owns an identical indivisible good which is worthless for him. Each buyer wants

to buy exactly one good. Sellers are homogeneous but buyers have different valuations for

the good.4 Let vi ∈ [v, v] denote the valuation of buyer bi, where v and v are the lowest and

highest valuations, respectively, in the market.

There are communication restrictions in the market. The potential trade partners in

the market are represented by a bipartite graph. A non-directed bipartite graph, denoted as

G = (S,B, L), consists of a set of nodes formed by sellers in S and buyers in B, and a set

of links L.5 Each link joins a seller with a buyer and can be represented as a subset of the

cartesian product of S and B, that is L ⊆ S × B. An element of L, say a link from seller

si to buyer bj, is denoted as ij.6 In market terms, a link is a representation of possibility of

trade. Thus, lack of a link between two agents is a restriction over their ability to exchange

goods. We define a network of buyers and sellers as (G,v), where G is the underlying graph

3For any finite set X, |X| represents the number of elements in X.
4Although we require different valuations, our results still apply if we include the possibility of having same
valuation for some buyers. For simplicity, we drop such cases.

5We say that a node v belongs to a graph G = (S,B,L) if v ∈ S∪B. A node s is adjacent or linked to another
node b if there is a link joining the two.

6For the sake of notational consistency, we always write the seller first for any link. For instance, the link xy
means that the seller x is connected to the buyer y.
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of the market and v = (v1, v2, ..., v|B|) is the profile of buyers’ valuation.7

A path in a graph is a sequence of nodes such that from each of its nodes there is a link

to the next node in the sequence. A bipartite graph G is connected if there exists a path

linking any two nodes of the graph. We only consider the networks in which the underlying

graph of the network is connected. If the graph is disconnected, we can apply all of our

results to each disconnected component of the graph separately.

In our setting, trade can occur between a seller and a buyer only if they are linked with

each other in a network. Thus, it is useful to introduce the following concepts. The set of

buyers who are linked with s in G = (S,B, L) is denoted by NG(s) = {b ∈ B | sb ∈ L}. We

denote the set of buyers who are collectively linked with the subset of sellers S ′ ⊆ S in G as

NG(S ′) =
⋃
i∈S′ NG(si). Similarly, NG(b) stands for the neighbors of buyer b, and NG(B′) is

the set of sellers who are collectively linked to the subset of buyers B′ ⊆ B in G. A subgraph

G′ = (S ′, B′, L′) of G = (S,B, L) is a graph such that S ′ ⊆ S, B′ ⊆ B, and the restriction

of L over S ′ ∪B′, denoted as L′ = L|S′∪B′ .

Bargaining occurs in an alternating order. In the first period, each seller simultaneously

proposes the lowest price he is willing to accept for the good. After observing all the prices

posted by the sellers, each buyer simultaneously announces the highest price she is willing to

pay. A buyer can buy a good from a seller she is connected with in G only if she announces a

price higher than the seller’s posted price. If there are multiple feasible trade patterns, then

a surplus maximizing mechanism, which is defined in detail below, determines the effective

trade pattern. After a buyer and a seller trade, they leave the game. In the second period,

the remaining agents continue to bargain while preserving their positions in G, but this time

buyers announce their prices first.

In period t, the network is represented by Gt = (St, Bt, Lt) (with G1 = G). If t is odd,

then sellers post their prices first, but if t is even, buyers announce first. Let ptsi and ptbi denote

the prices proposed at period t by seller si and buyer bi, respectively. Given the actions of the

7Although they are slightly different concepts, throughout the paper, we use the terms “network” and “graph”
interchangeably.
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agents, we represent the set of agents who can be a part of the effective trade pattern in period

t by subgraph G̃t = (S̃t, B̃t, L̃t). A seller si is in S̃t if and only if {b ∈ NGt(si) | ptb ≥ ptsi} 6= ∅.

Similarly, a buyer bi is in B̃t if and only if {s ∈ NGt(bi) | ptbi ≥ pts} 6= ∅.

The set of possible trade patterns in period t is determined by the set of possible match-

ings in G̃t = (S̃t, B̃t, L̃t). A matching in a network is a subset of links such that each agent

in the network is connected to at most one link. A maximum matching is a matching that

contains the largest possible number of links. The mechanism that chooses the effective

trade pattern from the set of all feasible trade patterns uses a maximum matching in G̃t. If

there is more than one maximum matching in G̃t, then the mechanism selects a matching

with the highest total surplus, which is the summation of the valuations of the buyers in the

selected matching. If there is more than one surplus maximizing matching, the mechanism

picks one of them randomly. Notice that this procedure is well-defined because the set of all

matchings at any time period is finite.

After a buyer and a seller trade, they leave the game. The remaining agents continue to

bargain while preserving their positions in network. The game continues in this fashion until

either all players trade or have no remaining connections. Each player discounts the future

with the common factor δ. If a buyer bi and a seller trade at price p at period t, the seller

receives a utility of δtp and the buyer bi receives δt (vi − p). We are interested in subgame

perfect Nash equilibrium payoffs of this game.

Results for Small Markets

There are two types of heterogeneity in our model. The first type is driven by the network

structure and the second one is by the differences in the valuations of the buyers. Bargaining

power of an agent depends on possibly conflicting effects of these two forces. To simplify the

exposition, throughout the rest of the paper we refer the advantage created by the former

type of heterogeneity as positional power and that created by the latter as valuational power.

Notice that any agent can have positional power depending on the network structure but

9



only some of the buyers can enjoy valuational power. This implies that there is room for

cases in which sellers with strong positional powers face with buyers with strong valuational

powers. Next, we consider small markets where there are at most two sellers and two buyers.

The results in this section are also the first step of the results in the general setting. All

proofs are in the appendix.

Case |S| = 1, |B| = 1

If G consists of only one connected pair, then agents engage in the alternating offers

bargaining game of Rubinstein (1982), in which the unique equilibrium payoffs are 1
1+δ

vi for

the seller and δ
1+δ

vi for the buyer. As the agents become perfectly patient (that is, δ → 1)

they equally share the surplus.

Case |S| = 2, |B| = 1

In a market with one side is shorter than the other one, the agents in the short side

have strong positions when both buyers and sellers are homogenous. However, due to the

possibility of buyers with high valuational power, the name of the short side matters when

there is heterogeneity among buyers. If the buyer side is short, buyers collect all the economic

surplus because of the competition among sellers (if all sellers are competing). In particular,

when there are two sellers and one buyer the unique equilibrium price is zero and the buyer

gets her valuation as the equilibrium payoff. The situation in such a case is similar to the

Bertrand competition where two homogenous firms undercut each other to capture all the

demand. The following result is due to Corominas-Bosch (2004).

Proposition 1 When there are two sellers and one buyer in the market, there is a unique

subgame perfect Nash equilibrium in which the good is sold at the price of zero.8

Case |S| = 1, |B| = 2

When the seller side is short, there are two conflicting forces in the negotiation process.

While the strong positional power of sellers pressure the prices upwards, buyers with high

valuational powers can pressure the prices downwards since they can create more surplus.

8Throughout the paper, by uniqueness, we refer to the uniqueness in terms of payoffs not strategies.
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As a result, sellers cannot collect all the surplus as the buyers did when the buyer side is

short. Binmore (1985) is the first to characterize the equilibria of such a one seller two

buyers bargaining game. The following proposition, see Osborne and Rubinstein (1990),

summarizes the equilibria in this case.

Proposition 2 When there is one seller and two buyers in the market,

(i) If v ≥ δ
1+δ

v, then the game has a subgame perfect Nash equilibrium, and in all

the equilibria the good is sold (to high valuation buyer) at the price of δv + (1− δ)v.

(ii) If v < δ
1+δ

v, then the game has a unique subgame perfect Nash equilibrium in

which the good is sold (to high valuation buyer) at the price of 1
1+δ

v.

Proposition 2 has to consider two cases because of the possibility of having a rival buyer

whose valuation is so small that the players ignore the existence of such an option. The

second part can be thought as if the seller has an outside option which is negligible. In

such cases, the outside option does not affect the bargaining outcome. Thus, it is reasonable

and costless to ignore such cases. We carry the following assumption throughout the rest of

the paper: v > δ
1+δ

v. Intuitively, this assumption ensures that there is rivalry among the

neighbors of any given seller. In Proposition 2 terms, we ignore the case described in part

(ii) and focus on the type of equilibria similar to the one in part (i).

Case |S| = 2, |B| = 2

There are three possible connected networks. First, consider the complete network in

which both sellers (b1 and b2) are connected to both buyers (s1 and s2). In the complete

network, all the agents on one side of the market have symmetric network positions. Thus,

no agent has a positional power. However, the existence of a buyer with valuational power,

say b1, destroys the possibility of an equilibrium in which one good is traded at a higher

price. The competition among the sellers brings b1’s price down to the sellers’ outside option:

to bargain with b2 and collect 1
1+δ

v2. Indeed, Chatterjee and Dutta (1998) consider such a

bargaining situation and show that both sellers proposing 1
1+δ

v2 is the unique equilibrium.9

9Chatterjee and Dutta (1998) use a random matching mechanism for tie breaking in their bargaining game.
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Figure 1: An asymmetric market with a powerful seller.

Proposition 3 There exists a unique subgame perfect Nash equilibrium in the market rep-

resented by the complete network with two buyers and two sellers. In this equilibrium, b1

trades with s1 and b2 trades with s2 at the price of 1
1+δ

v2.

The two other possible connected networks when |S| = 2, |B| = 2 can be constructed

by removing a link from the complete graph. In Corominas-Bosch (2004) setting these two

networks generate the same equilibrium outcome. However, we show that in the presence of

heterogenous buyers these two markets are fundamentally different.

Figure 1 represents the case where the buyer with low valuation, b2, has a favorable

network position. In this case, b1 has valuational but not positional power and b2 has

positional but not valuational power. Because b1 has only one link, the negotiation between

b1 and his neighbor s1 is similar to the Rubinstein bargaining game. As his outside option,

the most that s1 can get by negotiating with b2 is 1
1+δ

v2, which is less than what he can get by

negotiating with b1. Thus, s1 prefers to ignore his link with b2. In a sense, s1 and b1 engage

in a Rubinstein bargaining game in which outside options are zero. In the equilibrium, s1

collects 1
1+δ

v1 and b1 receives δ
1+δ

v1. Similarly, s2 and b2 share the total surplus they create

and receive 1
1+δ

v2 and δ
1+δ

v2, respectively.

However, their result still applies the game setting here. Only, the strategies that are off the equilibrium
path need to be adjusted.

12
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Figure 2: An asymmetric market with a powerful buyer.

Proposition 4 There exists a unique subgame perfect Nash equilibrium in the market rep-

resented by the network G in Figure 1. In this equilibrium, b1 trades with s1 at the price of

1
1+δ

v1 and b2 trades with s2 at the price of 1
1+δ

v2.

Figure 2 represents the case where the buyer with high valuation also has a favorable

network position. In particular, b1 has both a strong position in the network and bargaining

power due to the heterogeneity of buyers’ valuations. Both of the sellers prefer to negotiate

with b1 simply because stakes are higher. Although b1 benefits from the competition among

sellers, she cannot capture all the surplus since s2 competes only up his outside option. In

the equilibrium, the competition brings the prices at which trades occur down to the second

seller’s outside option 1
1+δ

v2.

Proposition 5 There exists a unique subgame perfect Nash equilibrium in the market rep-

resented by the network G in Figure 1. In this equilibrium, b1 trades with s1 and b2 trades

with s2 at the price of 1
1+δ

v2.

Proposition 4 and 5 reveal the difference between seemingly similar two networks. These

results suggest that if the buyers who have high reservation values are also the ones who have

more connections, then the market outcome is similar to the one in the complete network.

On the other hand, if the buyers who have low valuations are the ones who have more

connections, then the market dynamics happen as if the market is segmented. In the next

section, we carry our analysis into more general networks.
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Analysis

A competitive market is essentially free from any possible rigidities including communi-

cation restrictions. The restrictions over communication structure of the society plays an

important role for divergence from the competitive market outcome. For instance, in the

small market example with two buyers and two sellers, we showed that the existence of

competition among sellers for the high valued buyer is crucial for the market price. It turns

out that the results for small markets are representative for the dynamics in any two sided

market.

The Competitive Solution

In order to use the competitive equilibrium outcome as a benchmark, we first define the

competitive solution in our context. Consider a market which consists of a set S of sellers,

each one endowed with a unit of an identical indivisible good, and a set B of buyers, who

values the good differently. If a seller trades with a buyer at price p, the seller gets utility p

and the buyer gets v−p, where v is the valuation of the buyer for the good. The competitive

equilibrium in such a market has the following characteristics: (i) if there are more sellers

than buyers, the equilibrium price is zero and buyers get all the surplus, (ii) if there are

more buyers than sellers, any price between the (|S|+ 1)th and (|S|)th highest valuations of

|B| buyers is an equilibrium price, and (iii) if the number of sellers is equal to the number of

buyers, any price between zero and the minimum valuation of the buyers, v, can be supported

as the competitive price.

We select the reference solution that represents the competitive equilibrium of a market

with heterogeneous buyers as follows.

• If |S| > |B|, the reference solution is the competitive solution: the equilibrium price is

zero and all the surplus goes to buyers.

• If |S| < |B|, the reference solution is a selection of the competitive solution: the

14
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Figure 3: A network that does not support the reference solution.

equilibrium price is equal to the (|S|+ 1)th highest valuation of |B| buyers, say v∗. All

sellers receive the payoff v∗ and buyer i receives vi − v∗.

• If |S| = |B|, the reference solution is a selection of the competitive solution: the

equilibrium price is equal p = 1
1+δ

v. All sellers receive the payoff 1
1+δ

v and buyer i

receives vi − 1
1+δ

v.

This selection of the reference solution is consistent with the one in Corominas-Bosch (2004)

model. That is, if we assume that the buyers have homogeneous valuations the reference

solution described above coincides with the reference solution described in Corominas-Bosch

(2004). In addition, if we assume the market is consist of only one buyer and one seller, then

we get the Rubinstein (1982) bargaining solution.

Not every communication structure allows a market to be competitive enough to achieve

the reference solution. For example, consider the market consisting two buyers (b1 and

b2 with valuations v1 and v2, respectively) and three sellers (s1,s2, and s3), represented in

Figure 3. There is a competition among the sellers due to the scarcity of buyers around

and therefore the reference solution would give all the surplus to the buyers. That is, all

buyers receive their valuations and all sellers get zero in the reference solution. However, s3

receives a positive payoff in the equilibrium of the bargaining game described in section 3.

To see why, observe first that both s1 and s2 will get a payoff of zero since they compete
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with each other to trade with b1. If one of them gets a positive price the other would be able

to undercut the accepted price. In such a case, s3 is simply going to ignore his link with b1

and bargain only with b2. They will end up agreeing for price 1
1+δ

v2 in equilibrium.

The natural question to ask is then: what type of network structures support the reference

solution? The next section seeks for an answer to this question.

Competitive Networks

Corominas-Bosch (2004) provides a decomposition algorithm, based on the well-known graph

theory algorithm provided by Gallai and Edmonds, to characterize the networks that support

the reference solution.10 The results in this section heavily depend on this bipartite graph

decomposition algorithm. Thus, first we describe the types of subgraphs that are identified

by the Corominas-Bosch decomposition algorithm (henceforth, CB-algorithm) and briefly

summarize the algorithm itself.

First, we need new definitions that are useful to describe networks. Let G be the under-

lying bipartite graph of a market and X be a subset of agents on one side of the market, that

is X ⊆ S or X ⊆ B. A set of nodes X is non-deficient in G if and only if |NG(X ′)| ≥ |X ′| for

all X ′ ⊆ X. Similarly, a set of nodes X is strictly non-deficient in G if |NG(X ′)| > |X ′| for

all X ′ ⊂ X. Intuitively, non-deficiency requires that every subset of agents on one side of the

market has enough neighbors to trade. The marriage theorem shows that non-deficiency is

both necessary and sufficient for the existence of a matching saturating a given set of nodes.

Theorem 1 ( The marriage theorem, Hall 1935)11 There exists a matching in G that satu-

rates all the nodes in X if and only if X is non-deficient in G.

The non-deficiency requirement may not be very plausible when there are more nodes on

one side than the other. For such graphs, we relax the requirement only to the subsets of

the nodes in the long side that has at most as many nodes as in the short side. Formally,

10See Lóvasz and Plummer (1986) for more details on the Gallai-Edmonds decomposition of graphs.
11Also known as the Hall’s theorem. Not to be confused with the results shown by Gale and Shapley, which

game theorists also refer to as “the marriage theorem”, but which are not directly related.
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in a graph G = (S,B, L) with one side is longer, say |S| > |B|, the set of nodes S is almost

non-deficient in G if for any subset S1 ⊂ S of size |S1| ≤ |B| we have that |N(S1)| ≥ |S1|.

Almost non-deficiency mainly targets the networks in which one side of the market is longer.

Basically, it requires non-deficiency whenever it is possible. The three types of graphs that

are related to our analysis are defined as follows.

Definition 1 A bipartite graph G = (S,B, L) is:

• of type GS if |S| > |B| and S is almost non-deficient.

• of type GB if |S| < |B| and B is almost non-deficient.

• of type GE if |S| = |B| and there exists a perfect matching.

It is easy to see that not every graph is one of the types described above. Figure 3 is an

example of a graph which is not one of these types. Nevertheless, Corominas-Bosch (2004)

showed that any bipartite graph can be decomposed into a union of subgraphs of types above

and some extra links. Such a decomposition can be acquired by the CB-algorithm, which is

summarized as follows. First, the algorithm checks all possible subgraphs for the existence

of GS type subgraphs in an ascending order of size and separates them from the graph

iteratively until no more GS type subgraphs can be found. Later, the algorithm repeats the

same process in order to remove the GB type subgraphs. Finally, the remaining disconnected

subgraphs are necessarily GE type.12

When buyers are homogenous in a market with communication restrictions, the network

structure is the only source of heterogeneity. In such markets, similar network structures

generate similar outcomes since names (valuations) of the buyers who capture the critical

positions in the network do not matter. However, differences in buyers’ valuations can

destroy such an irrelevance and affect equilibrium outcomes significantly. We have already

seen an example of two symmetric networks generating different equilibrium outcomes in

Figure 1 and Figure 2.

12A very detailed description of the algorithm can be found in the appendix of Corominas-Bosch (2004).
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In order to differentiate between similar network structures, we extend the CB-algorithm

by decomposing GB and GE type subgraphs further into smaller subgraphs. To describe

how these extensions works, we need new terminology and definitions. Let N+
G (v) be the

neighbors of v ∈ S ∪ B who have more than one connection in network G, that is N+
G (v) =

{w ∈ NG(v) : |NG(w)| > 1}. In a GE type subgraph, we say that a buyer is moderate if she

is connected to one seller only or she has the lowest valuation among all her competitors.

Formally, we define a buyer bi of a GE type subgraph as moderate if |NG(bi)| = 1 or

|NG(bi)| > 1 and vi = min {vj | bj ∈ CG(bi)}

where CG(bi) =
⋂
sj∈N+

G (bi)
NG(sj). The set of moderate buyers in a GE type subgraph is

always non-empty since, in any graph of GE type, the buyer with the lowest valuation is by

definition a moderate buyer.

Decomposition of the set of GE type subgraphs further into smaller subgraphs is as

follows. First, find all moderate buyers and remove all links between the following agents:

(i) sellers who are connected to the moderate buyer with the highest valuation and (ii)

buyers who have valuations lower than the highest valued moderate buyer. Then, remove

links between sellers who are connected to the moderate buyer with the second highest

valuation and buyers who have valuations lower than the second highest valued moderate

buyer. Continue removing links in this fashion.13 At the end of this process, we may end

up having more than one component. Label all the components with GE
k where k is the

subindex of the buyer with the lowest valuation in that component. Thus, the buyer with

lowest valuation in GE
k is bk and her valuation is vk. Notice that at the end of this process the

buyer with the lowest valuation in GE
k has to be a moderate buyer. The number of moderate

buyers determines the number of components. Intuitively, we remove all the redundant links

from sellers’ perspectives since being connected to a moderate buyer limits the minimum

earning of a seller. Sellers who are connected to moderate buyers will never consider trading

with buyers with lower valuations, which implies that the interaction in the market is local

13This process is well defined since there are only finite number of moderate buyers.
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Figure 4: A GB type subgraph in which the non-uniqueness of the CB-algorithm matters.

even though the market is globally connected.

Moderate buyers have disadvantageous bargaining positions relative to their rivals. How-

ever, they can still obtain goods at the end of the bargaining process. In subgraphs of GB

type, even though all buyers have weak positions in the network, some buyers are in worse

bargaining situation than the others because of their poor valuational power. Such buyers

cannot obtain goods due to the scarcity of the available goods. We need to differentiate such

buyers from moderate buyers. We define a buyer bi as soft buyer in a GB type subgraph

G′ if v∗G′ ≥ vi where v∗G′ is the (|S ′| + 1)th highest valuation of the buyers in G′. The main

difference between soft and moderate buyers is that while moderate buyers are able to engage

in trade, soft buyers cannot procure goods. In subgraphs of GS type there are no moderate

or soft buyers since all buyers have strong positional advantages. We denote buyers who are

neither moderate nor soft as hard buyers.

The CB-algorithm does not necessarily provide a unique decomposition in terms of net-

work structure. However, the decomposition is unique up to the following degree: if an

agent belongs to a subgraph of a certain type for a decomposition, then she belongs to the

same type of subgraph for every decomposition.14 This degree of uniqueness is not sufficient

when the buyers have different valuations since the CB-algorithm does not take valuations

14This property is due to the uniqueness of a more general decomposition result in matching theory known as
the Gallai-Edmonds decomposition. Please see Lóvasz and Plummer (1986) for details.
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into account. Figure 4 provides an example in which the location of high valuation buyer

matters. In the figure, suppose that the valuations of buyers follows a descending order, that

is v1 > ... > v5. Because the valuations of the buyers are different, the price b1 has to pay

changes depending on the subgraph which algorithm puts her in. While b1 pays a price of

v2 when she is a part of GB
1 , she only pays v4 in GB

2 . Moreover, because b1 engages in trade

no matter which subgraph she ends in, the set of buyers who procure goods is affected by

the structure of decomposition. In particular, this set is {b1, b4} when b1 is in GB
1 , but it is

{b1, b2} when b1 is in GB
2 .

In order to avoid such cases, we further modify the CB-algorithm in the step where the

algorithm identifies GB types of subgraphs as follows. Among all possible decompositions

of GB type subgraphs obtained as a result of applying the CB-algorithm on G, we pick the

decomposition which induces the maximum matching with the highest total surplus.15 If

there is more than one such decomposition, then we pick one of them randomly.

We start our analysis with the existence of a particular subgame perfect Nash equilibrium

of the game for a general network. In this equilibrium, agents have similar incentives as they

had in small markets discussion. While buyers with strong network positions can exploit

their advantages fully, sellers with strong network positions can only extract partially since,

in such situations, the positional power of sellers clashes with the valuational power of high

valuation buyers.

Proposition 6 There exists a subgame perfect Nash equilibrium in the market represented

by G = (S,B, L) such that

– A seller si in subgraph G′ gets a payoff of


0, if G′ is a GS type subgraph;

v∗G′ , if G′ is a GB type subgraph;

1
1+δ

vk, if G′ is a GE
k type subgraph;

15We look at the maximum matching with the highest total surplus after we apply the CB-algorithm.
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– A buyer bi in subgraph G′ gets a payoff of


vi, if G′ is a GS type subgraph;

vi − v∗G′ , if G′ is a GB type subgraph;

vi − 1
1+δ

vk, if G′ is a GE
k type subgraph;

where v∗G′ is the (|S ′|+ 1)th highest valuation of the buyers in G′.

The proof of Proposition 6 is by induction on the number of agents on both sides of the

market. The small markets results provide that the proposition is true for markets in which

there are at most two sellers and two buyers, which is also the first step of the proof. Later,

we assume that the proposition holds for markets that have at most n− 1 sellers and n− 1

buyers and show that the proposition also holds for the markets that have at most n sellers

and n buyers.

Essentially two forces play role in determining equilibrium outcome: critical network

positions (positional power) and bargaining power due to the existence of heterogeneous

buyers (valuational power). When there are more sellers than buyers in the market, these

two forces work in the same direction and, therefore, buyers capture all the surplus. However,

when there are more buyers than sellers in the market, positional power of sellers clashes with

valuational power of some buyers. In such markets, hard buyers behave as if they all have the

same valuation, which is the highest valuation of the soft buyers they are competing with.

Thus, sellers capture some but not all of the surplus. If there are equal number of buyers

and sellers in the market, the intuition is still true and sellers collect surplus depending on

the moderate buyers they are connected to.

We know by Corominas-Bosch (2004) that when consumers are homogeneous a necessary

and sufficient condition for a network to support the reference solution is that all separated

small markets in the economy are of the same type. However, networks in Figure 1 and

Figure 2 suggest that the intuition behind that result is no longer valid when buyers are

allowed to have different valuations. Heterogeneity of buyers hinders competition in some

economies which are unions of similar small markets. A network structure needs to have

more properties than uniform decomposability. The next theorem shows that the intuition
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still prevails in the presence of heterogenous buyers but with additional conditions in which

soft and moderate buyers play key roles.

Theorem 2 Let (G,v) be a network which represents a two sided market. Then, G =

(S,B, L) supports the reference solution if and only if

(i) G decomposes into subgraphs of a unique type,

(ii) (if applicable) the only moderate buyer is the buyer with the lowest valuation,

(iii) (if applicable) a buyer bi is a soft buyer if and only if v∗ ≥ vi,

where v∗ is (|S|+ 1)th highest valuation of |B| buyers in the economy.

Theorem 2 exploits the competition among agents. This intuition is clear especially

when one side of the market is longer than the other one. The agents in the long side

undercut each others’ prices as much as they can in order to be a part of possible trades.

However, when there are equal number of buyers and sellers in the market, the network does

not necessarily create enough competition to support the reference solution. Figure 1 and

Figure 2 demonstrate an example of this insufficiency. In the market represented by Figure

1, both buyers are moderate. Therefore, we can decompose the market into two parts by

removing the link between s1 and b2. Intuitively, seller s1 ignores his connection with b2 and

negotiates only with b1 since stakes are a lot higher. However, in the market represented

by Figure 2, the only moderate buyer is b2 and she has the lowest valuation. We cannot

decompose this market further into smaller markets since neither b1 nor s2 has incentives to

ignore the link between them. Thus, in order to achieve the competitive outcome, a network

structure has to be supported by a proper distribution of the valuations.

Efficiency

Communication networks give us information about which buyers can trade with which

sellers. In other words, they determine the set of feasible allocation of goods. In our context,

an allocation is simply a matching. Thus, given a network G, the set of all possible matchings

in G determines the set of feasible allocations in the economy.
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A natural result of the restrictions imposed by a network structure over the market is

that buyers who have the highest reservation prices are not necessarily the ones who procure

goods from sellers. Therefore, restrictions created by a network structure may cause a loss of

economic surplus. We define the economic surplus associated with a matching M as the sum

of the valuations of the buyers that receive a good in M . The focus of this section is on the

efficient allocations, which are defined as the allocations yielding highest surplus in a given

network. We say that a network is efficient if the allocation determined by the equilibrium

of the game is an efficient allocation.

In a similar setting, Kranton and Minehart (2001) consider the effects of communication

restrictions on the efficient allocation of goods via a centralized auction mechanism. Their

model focuses on markets in which abundant buyers compete for goods of scarce sellers.

Because the results in this section are closely related to ones in Kranton and Minehart

(2001), we maintain the same assumption throughout the rest of this section.

Suppose that in a two sided market there are more buyers than sellers. In such a market,

we define a network G as allocatively complete if G is almost non-deficient. We define a

network G as least-link allocatively complete (LAC) if G is almost non-deficient with the

minimum number of links. Intuitively, allocatively complete networks guarantee that any

set of buyers with the size of sellers can obtain as many goods as they need. The LAC

networks achieve this target with the most restrictive communication structure.16

Kranton and Minehart (2001) showed that allocatively complete networks are complete

enough to support efficient allocations in the sense that they create the highest possible

economic surplus for any distribution of prices. Our next result demonstrates that alloca-

tively complete networks create economic environments that are not only complete enough

to allocate goods efficiently but also competitive enough to support the reference solution.

Theorem 3 In a market where there are more buyers than sellers, a network G supports

the reference solution if and only if G is allocatively complete.

16Notice that by definition allocatively complete networks are of type GB .

23



A direct implication of Theorem 2 and Theorem 3 leads us the following corollary, which

is descriptive about the structure of the LAC networks.

Corollary 1 A network is least-link allocatively complete if and only if

v∗ ≥ vi ⇔ bi is a soft buyer.

An interpretation of the Theorem 3 is related to the fundamental theorems of welfare. In

particular, Theorem 3 shows that markets that are characterized by allocatively complete

networks function in such a way that efficient allocations are reached by non-cooperative

behavior of the agents. Every efficient allocation of goods in these markets can be supported

as the reference solution of our bargaining game.17

Allocatively complete networks are efficient for every distribution of valuations. However,

for a given distribution of valuations, there may be efficient networks that are not allocatively

complete. For instance, if we remove one of the links of a buyer in a LAC network, then

the newly established network is not allocatively complete anymore. On the other hand, if

the buyer whose link is removed happens to be a soft buyer in the original network, then

the new network is still efficient since the equilibrium allocation of goods does not change.

Theorem 3 shows us that this type of network does not support the reference solution. Thus,

in highly restrictive markets, there is a divergence between individual and social objectives.

Conclusion

This paper examines the role of communication restrictions on the divergence from com-

petitive market outcome. In our setting, exogenously given networks represents the com-

munication restrictions and the market prices are determined by the interactions between

buyers and sellers.

17We need to adjust the priorities defined by our tie breaking mechanism in order to support all efficient
allocations. For instance, consider the complete network. The tie breaking mechanism we selected leads to
only one of the efficient allocations. However, by changing the priorities of the sellers in the mechanism we
can support the rest of efficient matchings.

24



We first characterize the networks that are complete enough to support a natural selec-

tion of the Walrasian equilibrium when buyers have different reservation prices. While this

characterization confirms the intuitions of previous literature on global markets in which

the entire context matters, it also shows that in the presence of heterogeneous buyers the

network structure has to be supported by appropriate distribution of reservation prices. An

implication of this result is that if the buyers who have high reservation values are also the

ones who have more connections, then the market tend to support the competitive outcome.

On the other hand, if the buyers who have high valuations are likely to ignore most of their

connections then the market is less likely to be competitive.

Our characterization of competitive networks has also implications on bargaining powers

of agents in economies with restricted communication. Not surprisingly, an agent’s bargain-

ing ability depends on the position she is located in the network. While the network position

is a global property of bargaining power that applies anonymously to all agents, it does

not take individual characteristics (such as reservation prices) of agents into account. We

contribute to this line of description of bargaining power by determining the importance of

the reservation prices. In particular, we recognize buyers as hard, moderate, and soft de-

pending on their valuations relative to their competitors. The bargaining ability generated

by individual characteristics is a local property that is effected by both network structure

and valuations of potential rivals.

We also identify that allocatively complete networks provide environments that are both

competitive and efficient. For markets that are not allocatively complete, there is a tradeoff

between individual objective and social objective. In such markets, there are individuals

who have enough power to affect market prices.
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Appendix

For simplicity in the proofs, we refer to the actions of responders in which there is a

possibility of agreement as accept and to the ones in which there is no possibility of agreement

as reject.

Proof of Proposition 4. Notice that strategies must specify the distribution of proposed

prices and the responses of the agents not only when the market is given by the graph G,

but also when the market is given by any subgraph that results from G after a pair trades

and leaves the market. Two possibilities can happen: either one pair trades and two agents

get isolated or one pair trades and the remaining two agents are still connected and can keep

playing. The strategies followed in any of these subgraphs are simple. If agents get isolated,

they automatically get zero and have no actions to choose. If a pair remains in the market,

then the strategies are as in the two players alternating offers bargaining game. Let pbi and

psi be the offered prices by each agent.

Existence: If all agents are still in the initial graph G:

• when its their turn to propose, s1 proposes ps1 = 1
1+δ

v1 and s2 proposes ps2 = 1
1+δ

v2,

b1 proposes pb1 = δ
1+δ

v1 and b2 proposes pb2 = δ
1+δ

v2,

• s2 accepts pb2 if pb2 ≥ δ
1+δ

v2, b1 accepts ps1 if ps1 ≤ 1
1+δ

v1.

The strategies followed by s1 and b2 when responding depend on the priorities they have,

which is determined by the tie breaking matching mechanism.

• About seller s1:

case a) the priority of s1 is higher than that of s2

s1 accepts the maximum of the offered prices provided that maxi{pbi} ≥ δ
1+δ

v1.

case b) the priority of s1 is smaller than that of s2

case b1) if pb2 ≤ δ
1+δ

v1 then s1 accepts the maximum of the offered prices provided that

maxi{pbi} ≥ δ
1+δ

v1

case b2) if pb2 >
δ

1+δ
v1, then s1 accepts pb2 when pb1 <

δ
1+δ

v1, otherwise (that is, pb1 ≥
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δ
1+δ

v1) he accepts mini{pbi}.

• About buyer b2:

case a) the priority of b2 is higher than that of b1

b2 accepts the minimum of the offered prices provided that mini{psi} ≤ 1
1+δ

v2.

case b) the priority of b2 is smaller than that of b1

case b1) if ps1 ≥ 1
1+δ

v2, b2 accepts the minimum of the offered prices provided that

mini{psi} ≤ 1
1+δ

v2

case b2) if ps1 < 1
1+δ

v2, then: b2 accepts ps1 when ps2 > 1
1+δ

v2, otherwise (that is,

ps2 ≤ 1
1+δ

v2) he accepts maxi{psi}.

If there is only one pair of agents, si and bi, in the market, then:

• si proposes psi = 1
1+δ

vi, bi proposes pbi = δ
1+δ

vi

• si accepts pbi if pbi ≥ δ
1+δ

vi, bi accepts psi if psi ≤ 1
1+δ

vi

Notice that although the strategies above are described for a more general case, our tie

breaking mechanism gives a higher priority to the buyer with higher valuation. This implies

that, in the equilibrium, b2 cannot trade with s1.

It can be checked that these strategies form a subgame perfect Nash equilibrium.

Uniqueness (in terms of payoffs): Call Msi , msi the supremum and infimum of subgame

perfect Nash equilibrium for sellers in an s-game (respectively, Mbi , mbi for buyers in a b-

game), when all four agents are still in the market, that is, when the market is imbedded in

graph G. We will find inequalities in order to show that Ms1 = ms1 = Mb1 = mb1 = 1
1+δ

v1

and Ms2 = ms2 = Mb2 = mb2 = δ
1+δ

v2. Notice that we already know by existence that

Ms1 ≥ 1
1+δ

v1, Mb1 ≥ 1
1+δ

v1, ms1 ≤ 1
1+δ

v1, mb1 ≤ 1
1+δ

v1, Ms2 ≥ 1
1+δ

v2, Mb2 ≥ 1
1+δ

v2,

ms2 ≤ 1
1+δ

v2, and mb2 ≤ 1
1+δ

v2. We can now show that:

ms1 ≥ v1 − δmax{ 1

1 + δ
v1,Mb1} = v1 − δMb1 . (1)

If b1 rejects an offer from s1, he may get δ
1+δ

v1 or δMb1 . Thus, s1 will never offer a price
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strictly smaller than v1−δmax{ 1
1+δ

v1,Mb1} since he is sure to be accepted by buyer b1 when

he asks for v1 − δmax{ 1
1+δ

v1,Mb1}. On the other hand, we can also show that:

Mb1 ≤ v1 − δmin{ 1

1 + δ
v1,ms1} = v1 − δms1 . (2)

By rejecting an offer from b1, the minimum amount s1 can get is either δ
1+δ

v1 or δms1 .

Thus, to ensure an acceptance from s1, the minimum b1 has to offer is δmin{ 1
1+δ

v1,ms1}. In

other words, the maximum that b1 can collect is less than or equal to v1−δmin{ 1
1+δ

v1,ms1}.

We can rewrite inequalities (1) and (2) as

(1− δ)ms1 + δ(ms1 +Mb1) ≥ v1

(1− δ)Mb1 + δ(ms1 +Mb1) ≤ v1

Notice that these two inequalities imply that ms1 ≥ Mb1 . We also know that Mb1 ≥
1

1+δ
v1 ≥ ms1 . Thus, it must be the case that Mb1 = 1

1+δ
v1 = ms1 .

By using similar arguments, we can also show that Ms2 = 1
1+δ

v2 = mb2 must hold.

Now, consider the maximum payoff s1 can collect. The following inequality has to hold

Ms1 ≤ max{v1 − δmin{ 1

1 + δ
v1,mb1}, v2 − δmin{ 1

1 + δ
v2,mb2}}. (3)

To see why, notice that if s1 offers a price strictly greater than the amount on the right

hand side of the inequality, neither of the buyers will accept. Thus, the maximum payoff s1

can get is bounded above by this amount. Because mb1 ≤ 1
1+δ

v1 and mb2 = 1
1+δ

v2 we have

Ms1 ≤ max{v1−δmb1 ,
1

1+δ
v2}. Notice that v1−δmb1 ≥ 1

1+δ
v2 since v1−δmb1 ≥ v1−δ 1

1+δ
v1 =

1
1+δ

v1 ≥ 1
1+δ

v2. Thus, Ms1 ≤ v1− δmb1 has to hold. On the other hand, we also have a lower

bound for the minimum amount b1 can get.

mb1 ≥ v1 − δmax{ 1

1 + δ
v1,Ms1}. (4)

By offering a price equal to the amount on the right hand side of the inequality b1 can
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ensure s1 to accept. Notice that this condition holds because of the tie breaking matching

mechanism the game uses. Because Ms1 ≥ 1
1+δ

v1 we have mb1 ≥ v1 − δMs1 . We can rewrite

inequalities (3) and (4) as

(1− δ)mb1 + δ(mb1 +Ms1) ≥ v1

(1− δ)Ms1 + δ(mb1 +Ms1) ≤ v1

These two inequalities imply that mb1 ≥ Ms1 . We also know that Ms1 ≥ 1
1+δ

v1 ≥ mb1 .

Thus, it must be the case that Ms1 = 1
1+δ

v1 = mb1 . Using similar arguments we can also

show that Mb2 = 1
1+δ

v2 = ms2 has to hold.

Proof of Proposition 5. As before, let pbi and psi be the offered prices by each agent.

Existence: If all agents are still in the initial graph G:

• when its their turn to propose, sellers propose ps = 1
1+δ

v2 and buyers propose pb = δ
1+δ

v2,

• s1 accepts pb1 if pb1 ≥ δ
1+δ

v2, b2 accepts ps2 if ps2 ≤ 1
1+δ

v2,

• b1 accepts the minimum of the offered prices provided that mini{psi} ≤ 1
1+δ

v2.

• The strategy followed by s2 when responding depends on the priorities determined by

the tie breaking matching mechanism.

case a) the priority of s2 is higher than that of s1

s2 accepts the maximum of the offered prices provided that maxi{pbi} ≥ δ
1+δ

v2.

case b) the priority of s2 is smaller than that of s1

if pb1 ≤ δ
1+δ

v2 then s2 accepts the maximum of the offered prices provided thatmaxi{pbi} ≥
δ

1+δ
v2.

if pb1 >
δ

1+δ
v2, then: s1 accepts pb1 when pb2 <

δ
1+δ

v2, otherwise he accepts mini{pbi}.

If there is only one pair of agents, si and bi, in the market, then:

• si proposes psi = 1
1+δ

vi, bi proposes pbi = δ
1+δ

vi,

• si accepts pbi if pbi ≥ δ
1+δ

vi, bi accepts psi if psi ≤ 1
1+δ

vi.

It can be checked that these strategies form a subgame perfect Nash equilibrium.
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Uniqueness (in terms of payoffs): Call Msi , msi the supremum and infimum of subgame

perfect Nash equilibrium for sellers in a s-game (respectively, Mbi , mbi for buyers in a b-game),

when all four agents are still in the market, that is, when the market is imbedded in graph

G. We will find inequalities in order to show that Ms1 = ms1 = Ms2 = ms2 = Mb2 = mb2 =

1
1+δ

v2. Notice that these equalities also implies that Mb1 = mb1 = v1 − 1
1+δ

v2. By existence,

we already know that Ms1 ≥ 1
1+δ

v2, Mb1 ≥ v1 − δ
1+δ

v2, ms1 ≤ 1
1+δ

v2, mb1 ≤ v1 − δ
1+δ

v2,

Ms2 ≥ 1
1+δ

v2, Mb2 ≥ 1
1+δ

v2, ms2 ≤ 1
1+δ

v2, and mb2 ≤ 1
1+δ

v2. We can now show that:

ms2 ≥ v2 − δmax{ 1

1 + δ
v2,Mb2} = v2 − δMb2 . (5)

If b2 rejects an offer from s2, he may get δ
1+δ

v2 or δMb2 . Thus, s2 will never offer a price

strictly smaller than v2−δmax{ 1
1+δ

v2,Mb2} since he is sure to be accepted by buyer b2 when

he asks for v2 − δmax{ 1
1+δ

v2,Mb2}. Similarly, we can also show the lower bound of s1’s

payoffs:

ms1 ≥ min{v1 − δmax{v1 −
δ

1 + δ
v2,Mb1}, v2 − δmax{ 1

1 + δ
v2,Mb2}}. (6)

The first element of the right hand side is the minimum amount that s1 has to offer in order

to ensure b1’s acceptance and the second element is the amount to ensure b2’s acceptance.

Thus, s1 will never offer a price less than the smallest of these two amounts. Equation (6)

reduces to ms1 ≥ min{v1 − δMb1 , v2 − δMb2} since we know that Mb1 ≥ v1 − δ
1+δ

v2 and

Mb2 ≥ 1
1+δ

v2. On the other hand, we can also show that:

Mb2 ≤ v2 − δmin{ 1

1 + δ
v2,ms2} = v2 − δms2 . (7)

By rejecting an offer from b2, the minimum amount s2 can get is either δ
1+δ

v2 or δms2 .

Thus, to ensure an acceptance from s2, the minimum b2 has to offer is δmin{ 1
1+δ

v2,ms2}. In

other words, the maximum that b2 can collect is less than or equal to v2−δmin{ 1
1+δ

v2,ms2}.
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Knowing this we can show that

Mb1 ≤ v1 − δmin{ 1

1 + δ
v2,ms2 ,ms1}. (8)

If b1 offers a price strictly smaller than min{ 1
1+δ

v2,ms2 ,ms1} none of the sellers will

accept. Similarly as above, seller s2 will not accept. Knowing this, s1 can get δ
1+δ

v2 or at

least δms1 by rejecting; therefore seller s1 would not accept this price either. Moreover, b1

cannot get a payoff as high as v1 − δmin{ 1
1+δ

v2,ms2 ,ms1} by trading next period.

These inequalities together with Ms1 ≥ 1
1+δ

v2, Mb1 ≥ v1 − δ
1+δ

v2, ms1 ≤ 1
1+δ

v2, mb1 ≤

v1 − δ
1+δ

v2, Ms2 ≥ 1
1+δ

v2, Mb2 ≥ 1
1+δ

v2, ms2 ≤ 1
1+δ

v2, and mb2 ≤ 1
1+δ

v2 imply that Ms1 =

ms1 = Ms2 = ms2 = Mb2 = mb2 = 1
1+δ

v2.

Proof of Proposition 6. We prove the result by induction. First, we show that the result

holds for a number of agents |S| ≤ t, |B| ≤ t with t = 2.

Step 1. When t = 2, there are five possible graphs. We have already shown in Small

Markets section that the result is true for all of these graphs.

Step 2. Now, suppose that the result is true for all graphs with at most t = n− 1 agents

on one side of the market. That is, as the induction hypothesis, we assume that the result

is true for graphs of size |S| ≤ n − 1, |B| ≤ n − 1. We are going to show that the result is

true for any graph, say G, of size |S| = |B| = n.

The strategies must specify the actions of the agents for the graph G and for any subgraph

G′ of G that results from removing a set of pairs of nodes from G. For proposers, an action

is what price to propose, and for responders, it is what to do for any given distribution of

prices, in any given graph G′. The strategy of a proposer depends on which subgraph she

is in according to the extended CB-algorithm. The strategy of a responder depends on the

subgraph and each distribution of prices. Strategies do not depend on past history.

If we are in a strict subgraph of G, that means at least one pair of agents has traded and

left the market. Thus, the number of agents is strictly smaller than n both in S and B. By
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the induction hypothesis, we know that there exists a subgame perfect Nash equilibrium in

this subgame. The equilibrium strategies will follow the ones in any such subgames.

If we are in G, that means no one has traded. Apply the extended CB-algorithm and

identify the subgraphs of types GS, GB, and GE
k . For the sake of brevity, call the subgames

in which sellers are the proposers as s-game and the ones in which buyers are the proposers

as b-game.

The price proposal in equilibrium is the following:

• In GS type subgraphs, all proposed prices are 0 (in a s-game or in a b-game).

• In GB type subgraphs, all proposed prices are v∗G′ (in a s-game or in a b-game).

• In GE
k type subgraphs, all proposed prices are 1

1+δ
vk in a s-game and δ

1+δ
vk in a b-game.

For future reference, we denote this price proposal with P . If the price proposal is equal

to P , then all responders accept (both in s-game and b-game). Notice that sellers in s-game

have incentives to ask higher prices only while buyers in b-game would like to reduce the

prices if they ever decide to deviate. Now, suppose that only one proposer deviates from

the price proposal P . If it is a s-game and the seller who deviates belongs to a GS type

subgraph, then all buyers in that subgraph accept 0. Similarly, if it is a b-game and the buyer

who deviates belongs to a GB type subgraph G′, then all sellers in that subgraph accept v∗G′ .

If it is a s-game and the deviating agent, say s, belongs to a GE
k type subgraph, then all

neighbors of s reject the proposal of s and accept 1
1+δ

vk (if they can, otherwise they reject

all offers) while all the other buyers hold onto their earlier decisions (accept the same prices

they did in P ). On the other hand, if it is a b-game and the deviating agent, say b, belongs

to a GE
k type subgraph, then all neighbors of b reject the proposal of b and accept δ

1+δ
vk (if

they can, otherwise they reject all offers) while all the other sellers hold onto their earlier

decisions.

Until now, we have only specified what proposers should propose, what responders should

do when they face the price proposal P , and how should responders react when they face

some of the possible unilateral deviations. The remaining duty is to determine the reactions
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of responders in all the other cases. We define strategies so that if not all the possible

number of pairs forms, then they follow the subgame perfect Nash equilibrium of the resulting

subgraph (which we know exists by the induction step). If all agents reject, then the strategies

will prescribe for proposers to propose price distribution P and for responders to accept.

Therefore we can conclude that given an action for all responders, the payoffs are immediately

determined. For a given distribution of prices, the game is a one-shot game with a finite set of

actions. This game must have at least one Nash equilibrium (possibly, in mixed strategies).

We will define the strategies as follows: for a given distribution of prices, strategies will

tell responders to play according to this Nash equilibrium. Notice that we may have a

multiplicity of Nash equilibria. If this is the case, strategies must specify which of the

several Nash equilibria will be played. Any specification will do the job.

It can be checked that these strategies construct a subgame perfect Nash equilibrium.

Proof of Theorem 2. Notice that when (ii) holds none of the GE type subgraphs can be

decomposed further into smaller subgraphs. So, there cannot be two different prices in any

GE type subgraph since the only way to have different prices in a GE type subgraph requires

at least two moderate buyers. Furthermore, observe that if (iii) holds then there can be only

one subgraph of type GB, which is the graph itself. Then, by Proposition 6, we know that

(i), (ii), and (iii) are sufficient conditions for a network G to support the reference solution.

Thus, we only need to show that if G supports the reference solution then G has to satisfy

(i), (ii), and (iii).

Part (i). If G supports the reference solution then G decomposes into subgraphs which

are all of the same type.

Suppose that G supports the reference solution but it decomposes into subgraphs with at

least two different types when we apply the CB-algorithm. We have three cases to consider.

Case I. Suppose that |S| > |B|. Then, there must be aGS type subgraph inG. Otherwise,

we would have a contradiction with |S| > |B|. Because G supports the reference solution,

all buyers receive their valuations and all sellers get 0. First, assume that there is also a
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GB type subgraph in G, say G1 = (S1, B1, L1). Because all buyers receive their valuations,

they all must be matched with a separate seller in the equilibrium. Because G1 is a GB type

subgraph, by definition, |NG1(B1)| = |S1| < |B1| which contradicts with all buyers in G1

being matched in the equilibrium. Thus, there can only be subgraphs of GS or GE type in G.

Now, suppose that there is a GE type subgraph in G, say G2 = (S2, B2, L2). By definition

of GS type, there is no link between sellers in GS type subgraphs and buyers in G2. We are

going to show that there is a profitable deviation for a seller in G2, say si ∈ S2. Suppose,

instead of asking zero, si proposes a price of ε > 0. Then, a buyer in G2 would accept the

offer since there are |S2| − 1 sellers proposing 0 price, |S2| = |B2| buyers willing to accept it,

and buyers in G2 have no access to the sellers in GS type subgraphs. If the remaining buyer

does not accept ε she would have to share her valuation, roughly equally, with si instead of

receiving her valuation minus ε. Thus, if G supports the reference solution and |S| > |B|,

G is a union of GS type subgraphs.

Case II. Suppose that |S| < |B|. Then, there must be a GB type subgraph in G.

Otherwise, we would have a contradiction with |S| < |B|. Because G supports the reference

solution, all sellers receive payoff v∗ and all buyers receive their valuation minus v∗, where

v∗ is equal to the (|S| + 1)th highest valuation of |B| buyers. First, assume that there is

also a GS type subgraph in G, say G1 = (S1, B1, L1). Because all sellers receive a positive

amount, they all must be matched with a separate buyer in the equilibrium. Because G1 is a

GS type subgraph, by definition, |NG1(S1)| = |B1| < |S1| which contradicts with all sellers in

G1 being matched in the equilibrium. Thus, there can only be subgraphs of GB or GE type

in G. Now, suppose that there is a GE type subgraph in G, say G2 = (S2, B2, L2). Because

all sellers receive v∗, the total surplus captured by sellers is |S|v∗. Because all buyers receive

their valuation minus v∗, the total surplus captured by buyers is
∑|B|

i=1(vi − v∗). Then, we

have

|S|v∗ +
∑|B|

i=1(vi − v∗) =
∑|B|

i=1 vi + (|S| − |B|) v∗ <
∑|B|

i=1 vi

since |S| < |B|. This inequality leads us a contradiction because the last part is the total
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value of all transactions. Thus, we can conclude that if G supports the reference solution

and |S| < |B|, then G is a union of GB type subgraphs.

Case III. Suppose that |S| = |B|. If G does not decompose into GE type subgraphs

only, then it must have GS and GB type subgraphs, with all sellers getting 1
1+δ

v and all

buyers getting their valuations minus 1
1+δ

v. Let G3 = (S3, B3, L3) be an arbitrary GS type

subgraph in G. Because all sellers receive a positive amount in G3, they all must be matched

with a separate buyer in the equilibrium. Because G3 is a GS type subgraph, by definition,

|NG3(B3)| = |S3| < |B3| which contradicts with all buyers in G3 being matched in the

equilibrium. Thus, if G supports the reference solution and |S| = |B|, then G is a union of

GE type subgraphs.

Part (ii). If G supports the reference solution then (if applicable) the only moderate buyer

is the buyer with the lowest valuation.

If G decomposes into subgraphs which are all of GS or GB type, then there is nothing

to prove. So, suppose that G decomposes into GE type subgraphs only. We will prove the

contrapositive of the statement above. On the contrary, suppose that there is a moderate

buyer bi who does not have the lowest valuation in the subgraph she belongs to and G

supports the reference solution. Let Gi denotes the subgraph bi belongs to. By definition,

there must be another moderate buyer in Gi who has the lowest valuation, say bj. Then, we

can decompose Gi further into at least two smaller subgraphs by using the process explained

earlier in the text. Let Gii and Gij be the subgraphs bi and bj belongs to, respectively, at the

end of this decomposition. It is straightforward to see that the equilibrium prices in these

components will be 1
1+δ

vi and 1
1+δ

vj, respectively. Thus, we have a contradiction since all

trades in the reference solution occurs at a unique price.

Part (iii). If G supports the reference solution then (if applicable) a buyer bi is a soft

buyer if and only if v∗ ≥ vi.

If G decomposes into subgraphs which are all of GS or GE type, then there is nothing

to prove. So, suppose that G decomposes into GB type subgraphs only. First, we claim
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that there is only one subgraph, which is the graph itself. On the contrary, suppose that

G decomposes into at least two subgraphs of type GB. Let G′ and G′′ be two of those

subgraphs. By Proposition 6, we know that the equilibrium prices in these subgraphs are

v∗G′ and v∗G′′ , respectively, and because buyers have different valuations v∗G′ 6= v∗G′′ . Then, we

have a contradiction since all trades in the reference solution occurs at a unique price. If bi

is a soft buyer in G, then v∗ ≥ vi by definition. The only remaining duty is to show that bi

is a soft buyer in G only if v∗ ≥ vi. On the contrary, suppose that v∗ ≥ vi but bi is not a

soft buyer. Thus, bi receives a good in the reference solution. Because only |S| of the buyers

can procure goods in the reference solution, there must be a buyer bj with valuation vj > v∗

who does not receive any goods. Then, bj can have a profitable deviation by increasing her

offer above v∗ since all seller would be willing to accept such an offer. This is a contradiction

with the reference solution being an equilibrium outcome of the bargaining game.

Proof of Theorem 3. The necessity part of the theorem is a direct result of Theorem 2

since allocatively complete networks are of type GB and, by definition, all buyers who have

valuations less than v∗ in G are soft buyers. For the sufficiency, suppose that G supports the

reference solution but it is not allocatively complete. Because G is not allocatively complete,

there exists a subset B′ ⊆ B such that |NG(B′)| < |B′|. Then, the CB-algorithm would

decompose G into at least two subgraphs one of which involves only buyers in B′ and sellers

in NG(B′). This is a contradiction with G supporting the reference solution because the

existence of two subgraphs in the decomposition guarantees the existence of at least two

different prices. Thus, if G supports the reference solution then it is allocatively complete.
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CHAPTER III

RETAIL ASSORTMENT PLANNING UNDER CATEGORY CAPTAINSHIP

(WITH MUMIN KURTULUS)

Introduction

The proliferation of products available to consumers and low margins due to intense

competition are some of the challenges faced by the consumer goods retailers today. The

assortment carried by a retailer can have a tremendous impact on its bottom line. In the

late 80s, retailers started to segment products with similar characteristics into groups called

categories and started to manage product categories as separate business units. Many re-

tailers adopted the category management process which involves strategic management of

the categories to maximize sales and profit while satisfying consumer needs. More recently,

however, the scarcity of resources needed to manage categories and the increase in the num-

ber of product categories have led retailers toward a new trend. Retailers have started to

rely on their leading manufacturers for strategic recommendations regarding key category

management decisions such as category assortment. These leading manufacturers have often

been referred to as category captains and the practice itself has been referred to as category

captainship (Kurtulus and Toktay 2009).

Many retailers and suppliers have implemented category captainship and reported ben-

efits as a result of their implementations (Progressive Grocer 2007 and 2008). For example,

Coors Brewing serves as a category captain for a number of its retail clients in the alcoholic

beverages category. The key insight provided by Coors Brewing company to one of their

retail clients was that the retail chain’s core shopper best matched the characteristics of

premium light beer purchasers. However, the retailer was not able to convert its shoppers

into premium light beer buyers. In addition, Coors recognized that ineffective beer merchan-

dising and limited display support had resulted in flat market share and sales for the retailer.
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In response, Coors developed an aggressive merchandising plan that included megadisplays,

enhanced point of purchase materials, targeted zip code ads, and special pack-marketing

programs. These strategies led to a 6% to 12% increase in store volume (Progressive Grocer

2007 and 2008).

Several retailers rely on General Mills’ Small Planet subsidiary for recommendations in

the natural/organic canned and packaged foods category. The category managers at Small

Planet identified that consumers are confused about the placement of the organic and natural

products. In addition, they did a study on what products perform well in a particular region

and developed best practice planograms for the retailers for which they served as a category

captain (Progressive Grocer 2007). For another retailer, Small Planet strategists found that

placement of the organic/natural items was not a critical success factor when compared to

things such as the type of consumer (heavy vs light), variety, and duration of shopping trip

(Progressive Grocer 2007).

Both of these examples reveal that retailers can benefit from implementing category

captainship in two ways. Category captains usually (1) provide consumer insights and/or

(2) help retailers increase traffic into the category. Consumer insights such as the ones

provided by Coors and General Mills in the examples above are not readily available to the

retailers. These insights can help retailers offer an assortment that better matches consumer’s

needs. The category growth, on the other hand, is a result of traffic driving strategies such

as consumer education, promotions, and in-store display strategies.

While many retailers and suppliers have reported benefits, category captainship practices

have also been surrounded by controversies. In particular, category captains’ potential bias

in providing recommendations to their retailers has been an issue because these recommen-

dations cover not only their own brands but also the brands of their rivals in the category

(Desrochers et al. 2003). Even though the category captains are usually the biggest man-

ufacturers in the category and have a significant interest in the categories they manage for

retailers, their incentives may not be fully aligned with the retailer’s objective of maximizing
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the performance of the entire category. Retailers have responded to these threats by setting

some targets for their captains and continuously measuring their captain’s performance in a

scorecard (T. Kavanaugh, personal communication, March 4, 2008; ACNielsen 2005). How-

ever, it is not always possible for the retailers to detect biased recommendations. It has been

reported that in some cases the category captains have taken advantage of their positions

to disadvantage or exclude competing brands in the categories (Steiner 2001, Desrochers et

al. 2003, Greenberger 2003, Klein and Wright 2006). This phenomenon, in general, has

been referred to as competitive exclusion. Many category captainship implementations have

been taken to court over category captainship misconduct and alleged competitive exclusion

(Greenberger 2003).

Motivated by the controversies surrounding the category captainship practices, the goal

of our research is to better understand the consequences of using category captains for assort-

ment decisions. In particular, we answer the following questions: Is competitive exclusion

(reduction in category variety) a valid concern for the retailers? What is the impact of cate-

gory captainship on the retailer, the category captain, and the non-captain manufacturers?

To answer these questions, we consider a supply chain model where multiple manufacturers

sell to consumers through a single retailer. First, we consider a model where the retailer is

responsible for selecting the category assortment. Then, we consider a model where the re-

tailer delegates the assortment selection decision to one of its manufacturers in the category

in return for making recommendations such that a certain target category profit is achieved.

We assume that the retailer benefits from using a category captain for assortment decisions

because the captain can (1) provide consumer insights not readily available to the retailer

and (2) increase traffic into the category. Our results are based on a comparison of these

two models.

Our results can be summarized as follows. First, we show that category captainship can

be profitable for all involved parties (i.e., the retailer, the captain, and the non-captain man-

ufacturers). Nevertheless, we also find that competitive exclusion remains a valid concern
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and is driven by both the captain’s superior knowledge of consumers and ability to increase

traffic into the category. At the same time, we show that the reduction in variety under cat-

egory captainship is not always due to competitive exclusion. A retailer’s lack of consumer

insights might force the retailer to offer a suboptimal variety under retail category manage-

ment. The category captain’s insights can help the retailer to adjust the category variety to

a level that can be higher or lower than the variety under retail category management. A

possible reduction in category variety does not necessarily imply competitive exclusion but

sometimes is simply due to an adjustment as a result of improved information about the

consumers. Our results have implications regarding when and which categories the retailer

should rely on a category captain for assortment selection decisions.

Literature Review

Our literature review focuses on three streams of research: (1) literature on category

captainship; (2) literature on retail assortment planning; and (3) antitrust literature on

category captainship. Next, we discuss the relevance and contribution of our work to these

streams of research.

First, despite more than a decade of implementation, there has been limited academic

research about category captainship. Only three papers address this topic (Niraj and

Narasimhan 2003, Wang et al. 2003, and Kurtulus and Toktay 2009). Both Niraj and

Narasimhan (2003) and Kurtulus and Toktay (2009) investigate the emergence of category

captainship. Both papers consider a model with two manufacturers selling to the consumers

through a single retailer. While Niraj and Narasimhan (2003) define category captainship as

an exclusive information sharing alliance between the retailer and one of the manufacturers,

Kurtulus and Toktay (2009) define category captainship as an alliance that involves retail

pricing in an environment with limited shelf space. Niraj and Narasimhan’s findings are in

terms of the complementarity of the information available to each party whereas Kurtulus

and Toktay show that the emergence of category captainship depends on the degree of prod-
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uct differentiation, the opportunity cost of shelf space and the profit sharing arrangement

in the alliance. Wang et al. (2003) also model the category captainship as an alliance that

involves retail pricing and investigate the consequences of using category captains. Wang et

al. (2003) concludes that category captainship benefits the retailer and the category captain,

but disadvantages the non-captain manufacturer.

The fundamental difference between our research and this stream of research on category

captainship is that the category assortment has already been fixed in these papers and prices

are considered as a decision variable whereas in our model, retail prices are fixed and cate-

gory assortment is being considered as a decision variable. In addition, Kurtulus and Toktay

(2009) also recognize the possibility of competitive exclusion when the retailer relies on a cat-

egory captain for pricing recommendations. They identify the delegation of pricing decisions

and the limited shelf space at the retailer as potential drivers of competitive exclusion. We

contribute to this line of work by identifying other drivers of competitive exclusion. We find

that the delegation of the assortment decisions can also lead to competitive exclusion when

the category captain has private information about the consumers and ability to increase

traffic into the category.

Second, there is a literature on retail assortment planning where the main focus is on

retailer’s optimal assortment selection (see Kök et al. 2006 for a review of this literature).

Van Ryzin and Mahajan (1999) study the relationship between inventory costs and variety

benefits in retail assortment. They determine the optimal assortment and provide insights

on how various factors affect the optimal level of assortment variety. Various extensions to

the model by van Ryzin and Mahajan have been considered. Hopp and Xu (2003) extend the

model by assuming a risk-averse decision maker. Cachon et al. (2005) study retail assortment

in the presence of consumer search. Cachon and Kök (2007) study assortment planning with

multiple categories and consider the interaction between the categories. As in our model,

Aydın and Hausman (2009) also focus on assortment decisions in a decentralized supply

chain but their focus is on the use of slotting fees in coordinating the retailer’s assortment
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decision. All of these papers focus on the retailer’s optimal assortment. We contribute to

this literature by investigating how retail assortment under category captainship may differ

from that under retail category management.

Finally, some economists have voiced antitrust concerns related to category captainship

(Steiner 2001, Desrochers et al. 2003, Leary 2003, Klein and Wright 2006). Some of these

papers hypothesize that category captainship can result in competitive exclusion but offer

no evidence for it. Our research contributes to the ongoing debate by offering theoretical

support for the existence of competitive exclusion, but also identifying conditions under

which such concerns are irrelevant.

The Model

We consider a two-stage supply chain that consists of multiple manufacturers that are

potential candidates for selling their products to consumers through a common retailer. We

assume that each manufacturer sells only one product. The retailer faces the decision of

which products to offer in the category. Let n denote the number of products offered by

the retailer. After being offered an assortment with n products, a customer arriving at the

retailer either purchases one of the n products or does not purchase anything.

Cost Structure. We assume that all products are sold at the same retail price r. This

assumption is reasonable in perfectly competitive markets where firms do not have any power

over their pricing decisions. Retailers today operate in highly competitive marketplace and

therefore have very little room for competing on price but more on assortment. Cachon et al.

(2007) consider a similar model where all products have the same probability of appealing

to a consumer and therefore it is optimal for the firm to choose the same retail price for

their products. Shugan (1989) provides evidence for this assumption and indicates that the

majority of flavors within a product line are sold at the same price in the ice cream industry.

We also assume that all manufacturers offer the product to the retailer at the same wholesale

price w. We define m
.
= r − w to be the retailer’s net profit margin. For simplicity, we also
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normalize the production cost at each manufacturer to zero so that each manufacturer’s net

profit margin is w.

In addition to the basic cost structure, we assume that the retailer incurs an operational

cost σ(n) associated with carrying a variety of products in the assortment. For clarity of

exposition, we assume that σ(n) = βn, where β > 0.

Demand Model. We use a generic attraction market share type model introduced in Bell

et al. (1975). The multinomial logit (MNL), which is commonly used in the operations

literature to study assortment problems (e.g., van Ryzin and Mahajan 1999), is one example

of an attraction type market share model. Let vi be the attraction of product i to con-

sumers. The attraction of a product may be a function of advertising, price, reputation of

the company, the service given during and after purchase and other things that may play

a role in the consumer’s choice. For analytical tractability, we assume that all products in

the category are identical, v1 = v2 = ... = vn = v. In the Extensions section, we consider

an extension that demonstrates how our results would change if the assumption of identical

products was to be relaxed.

The consumers either select one of the n identical products or the no-purchase option.

Let v0 be the attractiveness of the no-purchase option. We assume that v0 is sufficiently small

(i.e., v0 < v̄0).1 Let q(n) be the probability that a consumer purchases one of the identical

products offered in the category and q0(n) be the probability that an incoming customer

selects the no-purchase option. Using the market share theorem in Bell et al. (1975), the

market share (or alternatively, the purchase probability) for one of the products offered in

the assortment is given by q(n) = v
v0+nv

. Similarly, the market share of the no-purchase

option (or alternatively the probability of a consumer walking out of the store without a

purchase) is given by q0(n) = v0
v0+nv

. Let also λ denote the rate of consumers entering the

store. Thus, the average demand rate for each product is given by λq(n) and the average

1This is a technical assumption that is used in some of our proofs and the exact value of v̄0 is given in
the appendix. Under this assumption, the attractiveness of the no-purchase option is small enough, which
implies that an incoming consumer’s willingness to shop is high enough.
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rate of consumers that do not purchase is given by λq0(n).

Information Structure. We assume that the category captain has better information

about the consumers’ preferences. This is in line with the main motivation of the retailers

for using category captains. We capture the information asymmetry through the attraction

parameter v in the demand model. While the retailer believes that the attraction parameter

v is either high (vH) or low (vL) with probabilities α and 1 − α, respectively, the captain

knows the realization of v.

To summarize, we make a number of simplifying assumptions such as equal production,

wholesale and retail prices for each product as well as assuming equally attractive products

in the category. Similar assumptions have been used in Cachon et al. (2007). These as-

sumptions ensure analytical tractability and allow us to focus on size of the assortment as

opposed to the structure of the optimal assortment as is common in the operations literature

(e.g., van Ryzin and Mahajan 1999 and Cachon et al. 2005). In addition, our goal is to

investigate the changes in the size of the assortment and how the size of the assortment is

impacted by the change in ownership of the assortment decisions. In the Extensions section,

we discuss how relaxing some of our modeling assumptions would change our results.

Analysis

We first consider the Retail Category Management (RCM) model where the retailer is

responsible for selecting the variety of the retail assortment. Then, we consider the Category

Captainship (CC) model where the retailer delegates the assortment decision to a leading

manufacturer in return for a target profit. All proofs are in Appendix A. For convenience,

we include a list of key notations used in the paper at the beginning of the appendix.

Retail Category Management

In this scenario, given the wholesale and retail prices, the retailer decides how many items

to include in the retail assortment in the face of uncertainty regarding the attractiveness
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parameter v. The retailer believes that the attractiveness for the products is either high,

vH , or low, vL with probability α and 1 − α, respectively. The retailer selects the optimal

variety n by solving

max
n

α
mλnvH
v0 + nvH

+ (1− α)
mλnvL
v0 + nvL

− βn

where the first two terms are the expected revenue from sales and the last term captures

the operational cost of managing variety. While in reality the parameter n is discrete, in

our paper we use an approximation where we treat the retailer’s objective function as being

continuous over n. Our approximation admits the following interpretation: If the continuous

approximation suggests that the optimal variety for the retailer is nR = 12.3 for example, we

would round this to the nearest integer (12 in this case) to find the solution of the discrete

optimization problem. This approximation is reasonable because our goal is to compare

the variety under RCM and CC and investigate the directional effects rather than drawing

conclusions regarding the variety to be offered in these scenarios separately. Let nR denote

the optimal variety in the RCM scenario.

Lemma 1 There exists a unique variety level nR that maximizes retailer’s expected profit.

Let nHR and nLR be the optimal varieties as if the retailer knows the consumer type. First,

it can be shown that nHR < nLR. The marginal revenue of adding another product for the

retailer is higher when consumers are low type since the increase in probability of buying is

higher for these consumers. This implies that the retailer would prefer a higher variety when

consumers are low type and lower variety when the consumers are high type. Second, for

α ∈ [0, 1], the retailer’s optimal variety under uncertainty nR is bounded above and below

by nHR and nLR, respectively. That is, nHR = nR < nLR when α = 1 and nHR < nR = nLR when

α = 0. Therefore, the retailer’s imperfect knowledge about the consumer’s behavior forces

the retailer to act as an expected profit maximizer and this results in a suboptimal category

variety.
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Let ΠR and πR denote the expected profits of the retailer and the category captain,

respectively, in the RCM scenario. We also define Πi
R and πiR where i ∈ {L,H} as the

retailer’s and the category captain’s realized profits under RCM when consumers are i-type.

Category Captainship

In the category captainship scenario, the retailer assigns one of the manufacturers as the

category captain and delegates the assortment selection decision to the category captain for

two reasons.

First, the category captain has better information about consumer preferences. While a

typical retailer sells a range of products that could fall in one of up to three to four hundred

categories, a typical consumer goods manufacturer sells a smaller range of products and

has better information about consumer preferences in particular categories. Manufacturers

constantly conduct consumer studies that are used in guiding them while introducing new

products and improving the existing products. For instance, the consumer insights provided

by Coors Brewing and General Mills helped the retailers in adjusting their assortments to

better match the consumers’ preferences. We capture the captain’s expertise and superior

knowledge about consumers by assuming that the category captain knows the realization

of the attraction parameter v (i.e., whether consumers are H-type or L-type) while the

retailer views this as uncertain. Better information about the parameter v translates into

an assortment that better matches consumers needs.

Second, the category captain can collaborate with the retailer and increase traffic into the

category through consumer education, promotions, improved in-store displays and merchan-

dising plans. The merchandising plan recommended by Coors Brewing is a good example

that illustrates how a category captain can help its retailers drive traffic into the category.

We capture this benefit to the retailer by assuming that the category captain increases the

rate of consumers who would potentially shop in the category and denote this increase by

Λ. The parameter Λ captures the category captain’s ability to stimulate demand.
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The sequence of events in the category captainship scenario is as follows: At stage one,

the retailer offers a category captainship contract. The category captain, in return, either

accepts or rejects the contract. At stage two, if the contract is accepted, the category captain

selects variety to be recommended to the retailer. We assume that if the category captain

accepts the contract and cannot achieve the target profit goal set by the retailer, then the

category captain pays a very high penalty to the retailer. If the category captain rejects the

contract, the retailer updates its beliefs about the consumers’ type and decides on variety

of the assortment. We assume that once the category captain accepts the contract, no

renegotiation or breach of contract takes place. If the contract could be renegotiated, then

in cases where the category captain rejects the contract, both the retailer and the category

captain could gain by renegotiation. Similarly, if a breach of contract was allowed, the

retailer could renege on its promised actions after finding out that the category captain is

making a positive surplus. Technically, we model the category captainship as a two stage

screening game in which the (uninformed) retailer makes a take-it-or-leave-it offer to the

(informed) category captain. We are interested in pure strategy perfect Bayesian equilibria.

One of the key steps in category captainship process is objective and target setting (or the

so-called category scorecard). Retailers might set different objectives for different categories.

While driving sales volume can be a very important performance metric for a traffic driver

category such as soft drinks and fresh produce, profitability is usually the primary objective

in most categories. We assume that the retailer delegates the assortment selection decision

to the category captain in return for a fixed target category profit level K. However, in the

Extensions section, we also consider an extension where the retailer’s goal is to maximize

sales in a category and offers a target sales contract to the category captain and discuss how

our results would change when the retailer’s goal is to maximize sales instead of profit.

A strategy profile is defined as (K, (φH , nH), (φL, nL)) where K is the target profit level

set by the retailer and (φi, ni) is the category captain’s strategy: ni is the variety level set

by the category captain when the contract is accepted and consumers are i-type, and φi is a
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{0, 1} dummy variable, with 0 and 1 representing rejection and acceptance of the retailer’s

offer, respectively. A strategy profile (K̃, (φ̃H , ñH), (φ̃L, ñL)) is a perfect Bayesian equilibrium

if and only if it satisfies the following conditions:

Retailer’s Best Response:

K̃ ∈ arg max
K

{
α
[
φ̃HΠH

TP (ñH , K) + (1− φ̃H)ΠH
R

]
+ (1− α)

[
φ̃LΠL

TP (ñL, K) + (1− φ̃L)ΠL
R

]}

where Πi
TP (ni, K) is the retailer’s profit with target profit (TP) when consumers are i-type

and Πi
R is the retailer’s optimal profit when consumers are i-type and the retailer sets variety

with its updated beliefs (without the increase in traffic). The retailer’s best response is such

that if the category captain accepts the offer (φi = 1), then the category captain recommends

the variety but if the category captain rejects the offer (φi = 0), then the retailer sets the

variety after updating its beliefs.

Category Captain’s Best Response: Let πiTP (ni, K) be the category captain’s profit with tar-

get profit and πiR be the category captain’s profit under retail category management when

consumers are i-type. The category captain accepts the offer (i.e., φ̃i = 1) if and only if

πiTP (ñi, K̃) ≥ πiR and recommends variety ñi ∈ arg maxn{πiTP (ni, K̃)}. The category cap-

tain rejects the contract (i.e., φ̃i = 0) if and only if πiTP (ñi, K̃) < πiR.

Bayes Consistency of Beliefs: Let P (φ̃H , φ̃L) be the probability that the consumers are H-

type when the category captain’s decision is φ̃H in the presence of H-type customers and

φ̃L in the presence of L-type customers. Then, P (1, 1) = P (0, 0) = α, P (1, 0) = 1, and

P (0, 1) = 0. These conditions ensure that there is no bias in the retailer’s beliefs.

The category captainship scenario is solved backwards: First, we assume that the cate-

gory captain has already accepted the contract and consider the category captain’s assort-

ment selection problem. Then, given the category captain’s variety response, we consider

the retailer’s target profit setting problem.

For a given target profit level K, the category captain who faces type i ∈ {L,H} con-
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sumers solves the following problem at the second stage:

max
n

(λ+ Λ)wvi
v0 + nvi

s.t.
(λ+ Λ)mnvi
v0 + nvi

− βn ≥ K.

The category captain’s profit is strictly decreasing in the variety offered to the consumers

because each additional product in the category cannibalizes the demand for the category

captain’s product. However, the target profit constraint prevents the category captain from

recommending its own product only. Therefore, the category captain recommends an as-

sortment where the target profit level is binding. The following lemma characterizes the

category captain’s best response ni(K).

Lemma 2 There exists a unique best response ni(K) for i ∈ {L,H} which is given by

ni(K) =
Bi(K)−

√
(Bi(K))2−4Kviv0β

2viβ
where Bi(K) = mvi (λ+ Λ)− v0β −Kvi.

At stage one, the retailer sets the target profit level K in anticipation of the category

captain’s behavior at the second stage. If the category captain rejects the contract, then

the retailer updates its beliefs about the type of consumers and then chooses the optimal

variety.

In general, there are multiple equilibria in Bayesian games (Chu 1992). Essentially,

two types of equilibria exist: (1) separating equilibrium and (2) pooling equilibrium. In a

separating equilibrium (SE), the uninformed agent (the retailer) makes an offer such that

the informed agent (the captain) reveals its type. In particular, the retailer sets a target

profit level such that the category captain accepts the offer only if the consumers are H-type

(φH = 1, φL = 0). In a pooling equilibrium (PE), the informed agent does not reveal its

type. Both types accept the retailer’s offer (φH = 1, φL = 1). Next, we characterize the

target profits that lead to separating and pooling equilibria.

Separating Equilibrium (SE). If the retailer anticipates a separating equilibrium, the
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retailer selects the target profit that solves the following optimization problem,

max
K

αΠH
TP

(
nH (K)

)
+ (1− α) ΠL

R = αK + (1− α) ΠL
R

s.t. πHTP
(
nH (K)

)
≥ πHR

πLTP
(
nL (K)

)
< πLR.

The retailer sets the target profit level K in such a way that the category captain accepts

the contract if consumers are H-type and delivers the required target profit. The category

captain rejects the contract if consumers are L-type. We assume that the captain accepts

the contract offer in case of indifference between rejecting and accepting. If the contract is

rejected, the retailer concludes that consumers are L-type and sets the variety to maximize

its profit under the RCM scenario knowing that consumers are L-type.

It is useful to define two auxiliary variety levels: nHTP and nLTP . The variety level niTP

represents the optimal variety in the best case scenario. That is, the retailer takes advantage

of the additional traffic Λ and knows that the consumers are i-type. Formally, nHTP =arg

maxn ΠH
TP (n) and nLTP =arg maxn ΠL

TP (n). Let also niTP be the variety level such that

the category captain is indifferent between accepting and rejecting the contract offer when

consumers are i-type. That is, πHTP
(
nHTP

)
= πHR (nR) and πLTP

(
nLTP

)
= πLR (nR).

Lemma 3 There exists an upper bound Λ such that for all Λ ∈ [0,Λ], the following holds

0 < nHTP (Λ) < nHTP (Λ) ≤ nLTP (Λ) ≤ nLTP (Λ) .

In the rest of the analysis, we focus on cases where Λ ∈ [0,Λ]. This assumption is

reasonable as it places an upper bound on the amount of additional traffic that the captain

can drive to the category. The following proposition characterizes the target profit level and

the variety offered to the consumers when the retailer offers a target profit that results in a

separating equilibrium.
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Proposition 1 In a separating equilibrium, the retailer offers KSE =
[√

(λ+ Λ)m−
√
β v0
vH

]2

.

The resulting variety is given by nHTP if consumers are H-type and nLR if consumers are L-type.

The retailer offers a target profit that is accepted by the category captain if and only

if the consumers are H-type in which case the category captain recommends variety nHTP .

On the other hand, if the consumers are L-type, the category captain rejects the contract

and retailer updates its beliefs about the consumer type. The retailer, in this case, sets the

variety to nLR which is the variety the retailer would have offered in the RCM scenario if the

retailer knew that consumers are L-type. However, the retailer cannot take advantage of the

additional traffic which could have been driven by the category captain in case the category

captainship contract was accepted.

Pooling Equilibrium (PE). If the retailer anticipates a pooling equilibrium, the retailer

selects the target profit that solves the following optimization problem

max
K

K

s.t. πHTP
(
nH (K)

)
≥ πHR

πLTP
(
nL (K)

)
≥ πLR.

The retailer sets the target profit level K in such a way that the category captain accepts

the contract no matter what the consumer type is and delivers the required target profit.

Proposition 2 In a pooling equilibrium, the retailer offers KPE = (λ + Λ)m − λmv0
v0+nRvL

−

β
(
nR + Λ

λ

(
v0
vL

+ nR

))
. The resulting variety is given by

BH(KPE)−
√

(BH(KPE))2−4KvHv0β

2vHβ
where

BH(KPE) = mvH (λ+ Λ)− v0β −KPEvH if consumers are H-type and nR +
(

Λ
λ

) (
v0
vL

+ nR

)
if consumers are L-type.

The first term in the expression for KPE is the maximum achievable profit for the retailer

(i.e., the profit if all incoming consumers would buy one of the products and the retailer makes

margin m on each product). The second term is the revenue loss due to the fact that some
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consumers do not purchase from the category and the last part is the operational cost of

managing variety when the variety is set to nR+
(

Λ
λ

) (
v0
vL

+ nR

)
. The retailer wants to make

sure that the category captain accepts the contract regardless of the consumer type. To do

that, the retailer asks for a profit level that makes the category captain who faces L-type

consumers indifferent between accepting and rejecting the contract. The retailer ensures

the increase in customer rate because the category captain always accepts the contract but

incurs a loss of surplus when consumers are H-type. Pooling type of equilibria are better for

the retailer when the category captain can drive significant additional traffic to the category.

We further investigate the conditions under which the pooling equilibrium is preferred in the

next section.

Results: Impact of Category Captainship

Our first result is about the effectiveness of the target profit contract in extracting con-

sumer insights from the category captain. Comparing the retailer’s profit in the separating

and pooling equilibria yields the following proposition.

Proposition 3 For α ≤ ᾱ, there exists a threshold level Λ∗ ∈ [0, Λ̄] such that for Λ ≤ Λ∗,

the retailer prefers the separating equilibrium and for Λ > Λ∗, the retailer prefers the pooling

equilibrium.2

The retailer has to make a tradeoff between the value of information (screening in the

SE) and the value of additional traffic into the category (increase in Λ). If the value of

information is greater than the value of additional traffic, which is the case for relatively

low values of Λ, the retailer prefers screening the category captain. On the other hand,

if the value of additional traffic is higher than the value of the category captain’s private

2The condition α ≤ ᾱ =
m− β

λ

(
v0
vL

+nR
)

m− β
λ

(
v0
vL

+nR
)√

vL
vH

is an auxiliary assumption which shortens the proof of Proposition

3 substantially by eliminating some extreme possibilities. This assumption provides a sufficient condition
for the existence of a threshold for every set of parameters. In particular, when this assumption holds, the
increase in the pooling equilibrium profit of the retailer as a result of increase in Λ is higher than the increase
in the separating equilibrium profit.
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information, the retailer prefers the pooling equilibrium. The threshold Λ∗ is the value where

the retailer is indifferent between the separating and pooling equilibria.

Our next result is about the impact of category captainship on the variety offered to

the consumers. Competitive exclusion refers to the phenomenon where the category captain

takes advantage of its position and disadvantages the non-captain manufacturers in the

category. There is an emerging debate on whether or not category captainship leads to

competitive exclusion in the form of variety reduction in the categories where the retailers

use category captains. These concerns are exacerbated by several antitrust cases concerning

category captainship misconduct (Steiner 2001, Desrochers et al. 2003, Greenberger 2003,

Leary 2003, Klein and Wright 2006). The following proposition sheds some light on the

conditions under which competitive exclusion takes place.

Let nCC denote the variety offered to the consumers under the category captainship.

Proposition 4 If consumers are L-type, then nCC > nR. On the other hand, if consumers

are H-type, there exists a threshold Λ1 such that

(i) if Λ ∈ [0,min{Λ∗,Λ1}), then nCC = nHTP < nR,

(ii) if Λ ∈ [min{Λ1,Λ
∗},Λ∗), then nCC = nHTP ≥ nR, and

(iii) if Λ ∈ [Λ∗,Λ], nCC < nR and nCC < nHTP .

Proposition 4 suggests that the transition from retail category management to category

captainship can increase or decrease the variety offered to the consumers. We find that this

increase/decrease is due to two effects: (1) the adjustment effect and (2) the competitive

exclusion effect. The adjustment effect can either increase or decrease the variety offered

in the category and is due to the retailer’s imperfect knowledge about consumers and the

increased traffic into the category. In particular, the adjustment effect is a result of two po-

tentially conflicting forces: (1a) the assortment-expanding effect of higher traffic created by

the category captain, and (1b) the assortment-expanding or assortment-shrinking effect of
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better information about consumer preferences. When consumers are L-type, the adjustment

effect suggests an increase in the assortment since both higher traffic and better informa-

tion lead to assortment expansion. However, when consumers are H-type, the adjustment

effect is ambiguous since higher traffic leads to assortment expansion but better information

leads to assortment shrinking. The adjustment effect suggests a reduced variety only if the

assortment-shrinking effect of better information dominates the assortment-expanding effect

of additional traffic. The magnitude of the adjustment effect is measured by |nLTP−nR| when

consumers are L-type and by |nHTP − nR| when they are H-type. The competitive exclusion

effect, on the other hand, always reduces the variety offered in the category and is due to

the category captain taking advantage of its position and reducing the variety to increase its

share. The magnitude of the competitive exclusion effect is measured by |nLTP − nCC | when

consumers are L-type and by |nHTP − nCC | when they are H-type.

The following two special cases delineate the drivers of the adjustment and competitive

exclusion effects. First, when the category captain is used to drive additional traffic only

(i.e., H = L and Λ > 0), the variety under category captainship is always higher than the

variety under the RCM, that is nCC > nR (see Appendix B for proofs). The increase in

the variety is entirely due to the assortment expanding effect of additional traffic. On the

other hand, when the category captain is used for consumer insights only (i.e., H > L and

Λ = 0), the variety under category captainship can be higher or lower than the variety

under RCM. If consumers are H-type, then nCC = nHTP < nR whereas if the consumers are

L-type, then nCC = nLTP > nR. In this case, the increase/decrease in variety is entirely

due to the assortment-expanding/shrinking effect of better information. Therefore, we can

conclude that while the adjustment effect can be driven by either asymmetric information

or the category captain’s ability to drive traffic into the category, the competitive exclusion

effect is driven by both effects simultaneously.

Figure 5 illustrates the impact of the adjustment and competitive exclusion effects on

the resulting variety for Λ ∈ [0, Λ̄] for both separating and pooling equilibrium cases. If
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Figure 5: Comparison of equilibrium variety levels under the RCM and CC for λ = 20,
m = 5, w = 4, v0 = 2, vL = 2, vH = 4, α = 0.5, β = 1.

the consumers are L-type (Figure 5a), the adjustment effect increases the variety offered in

the category (nLTP ≥ nR), but the competitive exclusion effect reduces the variety (nLTP ≥

nCC). Because the magnitude of the adjustment effect is greater than the magnitude of the

competitive exclusion effect (|nLTP − nR| > |nLTP − nCC |), the net effect is an increase in the

variety offered to the consumers (nCC > nR). On the other hand, when the consumers are

H-type (Figure 5b), both the adjustment and the competitive exclusion effects reduce the

variety in the category and therefore, the net effect is a reduction in the category variety

(nR ≥ nCC). Notice that the adjustment effect reduces the variety in this case since, for

the chosen parameter set, assortment-shrinking effect of better information dominates the

assortment-expanding effect of additional traffic.

Figure 5 illustrates an example where min{Λ∗,Λ1} = Λ∗ and the adjustment effect always

reduces the variety in the category when consumers are H-type (Figure 5b). Figure 6, on

the other hand, illustrates a different example where min{Λ∗,Λ1} = Λ1. In this example,
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Figure 6: Comparison of equilibrium variety levels under the RCM and category captainship
for λ = 20, m = 5, w = 4, v0 = 2, vL = 2, vH = 4, α = 0.8, β = 1.

the adjustment effect can either increase or decrease the variety when consumers are H-type

(Figure 6b). Because the competitive exclusion effect does not play a role when Λ is small,

the H-type consumers can observe an increase in variety under category captainship whereas

for larger Λ’s (Λ ∈ [Λ∗, Λ̄]) the reduction in variety is inevitable as the competitive exclusion

effect dominates.

To summarize, Proposition 4 suggests that while category captainship can lead to reduc-

tion in the category variety, this reduction is not always due to competitive exclusion but can

also be due to the adjustment effect. While the adjustment effect can increase or decrease

the variety, the competitive exclusion effect always reduces the variety in the category.

Impact of Category Captainship

In this section, we investigate the impact of category captainship on all the parties through

numerical studies and summarize our results below.
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Impact on Retailer. The retailer benefits from both the captain’s superior consumer

insights and the ability to drive traffic into the category and is always better off under

category captainship by definition. Figure 7 illustrates the retailer’s profit under both retail

category management and category captainship as a function of category captain’s traffic

driving ability Λ. First notice that, irrespective of the consumer type, the retailer’s profit is

non-decreasing in the category captain’s ability to drive traffic (Λ). Second, when consumers

are L-type, the category captain rejects the contract if the retailer asks for a target profit

KSE, in which case the retailer infers that the consumers are L-type and does set the variety

level to nLR. The gap between ΠL
R(nLR) and ΠL

R(nR) measures the value of information for the

retailer when the consumers are L-type.
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Figure 7: Comparison of equilibrium retailer profits under the RCM and category captainship
for λ = 20, m = 5, w = 4, v0 = 2, vL = 2, vH = 4, α = 0.7, β = 1.

While the retailer benefits from the category captain rejecting the contract when the

consumers are L-type, this is only the case for small values of Λ. As Λ increases, the retailer

prefers both types of category captains to accept the target profit contract because the

benefit due to the additional traffic into the category exceeds the benefit of having perfect
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information about the consumers.

Impact on Category Captain. The category captainship agreement increases the size of

the pie that is shared between the retailer and the category captain because of the category

captain’s private information about the consumers and its ability to drive additional traffic

into the category. The question is how does the surplus created in the category captainship

collaboration get split between the retailer and the category captain. Although we assume

that the retailer has the power to offer a take-it-or-leave-it contract to the category captain,

the retailer cannot always extract the entire surplus created in the category captainship

collaboration as the category captain gets compensated for its private information when the

consumers are H-type.
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Figure 8: Comparison of equilibrium profits for the category captain under the RCM and
category captainship for λ = 20, m = 5, w = 4, v0 = 2, vL = 2, vH = 4, α = 0.7,β = 1

Figure 8 illustrates the category captain’s profit under retail category management and

the category captainship scenarios. If the consumers are H-type, the category captain is

better off in the category captainship under both separating and pooling equilibria (i.e.,
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πHTP (SE) ≥ πHR and πHTP (PE) ≥ πHR ). The category captain is in an especially advantageous

position when its ability to drive traffic is substantial (i.e., Λ ∈ [Λ∗, Λ̄]). This is because

the opportunity cost of disagreement is very high for the retailer. Moreover, incentives of

the retailer and the category captain are somewhat aligned: increasing the category traffic

benefits both. The category captain can afford to recommend a relatively low variety level

and continue to meet the target profit because of the substantial additional traffic to the

category.

On the other hand, when consumers are L-type, the category captain is either worse off

under the category captainship with a separating equilibrium (πLTP (SE) < πLR for Λ ∈ (0,Λ∗))

or indifferent with a pooling equilibrium (πLTP (PE) = πLR for Λ ∈ [Λ∗, Λ̄]). The category

captain is worse off under category captainship for small Λs because the retailer sets the

variety as in the retail category management scenario with perfect information. The retailer

increases the variety (nLR > nR) which translates into a smaller market share and profit

for the category captain. Recall that it would be prohibitively expensive for the category

captain to accept the target profit contract when the consumers are L-type because a failure

to deliver the target profit would result in a stiff penalty.

Impact on non-Captain Manufacturers. Due to our modeling assumptions, the impact

of category captainship on a non-captain manufacturer is identical to the impact of category

captainship on the category captain given that the non-captain manufacturer is offered to

the consumers in both retail category management and category captainship scenarios. How-

ever, as indicated in Proposition 4, the transition to category captainship can both increase

or decrease the variety offered to the consumers. If category captainship results in a broader

assortment, then a non-captain manufacturer’s chances of being included in the assortment

improve, which in return increases the non-captain manufacturer’s expected profit. If cate-

gory captainship results in a narrower assortment, the non-captain manufacturer’s expected

profit suffers from the decrease in the probability of being included in the assortment. There-

fore, we conclude that depending on the resulting variety, category captainship can either
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hurt or benefit the non-captain manufacturers in the category.

Extensions

Our modeling choices were driven by our main research question which is to compare

the resulting variety under retail category management and category captainship and pro-

vide some insight on whether category captainship results in competitive exclusion. In this

section, we focus on the simplifying assumptions of our model to determine whether these

assumptions limit the realism of our model and obstruct the ability to generate insights that

can be generalized. In what follows, we provide the highlights of the key insights from these

extensions but the extensive analyses are available in an online supplement.

Category Captain Selection

Our model is silent on the retailer’s category captain selection problem because we assume

that the manufacturers are identical. To this end, we consider two extensions of our original

model to gain some insights on the drivers of the category captain selection decision. In the

first extension, we assume that one of the manufacturers offers a product which has a higher

attraction compared to the other products in the category. In the second extension, we

assume that one of the manufacturers can drive more traffic into the category as compared

to the other manufacturers. In both extensions, we compare the retailer’s profit when the

manufacturer with higher attractiveness product or ability to drive more traffic is assigned

as category captain to the retailer’s profit when one of the other manufacturers serves as

category captain.

In the first extension, we assume that one of the manufacturers offers a product with

attractiveness vi + δ and the other manufacturers offer products with attractiveness vi. We

keep all the other assumptions regarding the cost and information structure as in our original

model. First, consider the case where the high attractiveness manufacturer is assigned as the

category captain. Let KSE(δ) and KPE(δ) be the retailer’s profit under the separating and
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pooling equilibria when the high attractiveness manufacturer (with attractiveness vi + δ) is

selected as the category captain. Notice that KSE(0) = KSE and KPE(0) = KPE because,

when δ = 0, the model we consider in this extension is the same as our original model. It is

also straightforward to show that both KSE(δ) and KPE(δ) are increasing in δ. Thus, we can

conclude that the retailer prefers an assortment that includes the product with attractiveness

vi + δ over an assortment that excludes it.

Now, suppose that the retailer chooses a manufacturer other than the high attractiveness

manufacturer as the category captain. We consider the following two cases: (i) the category

captain includes the high attractiveness manufacturer’s product in the assortment and (ii)

the category captain excludes the high attractiveness manufacturer’s product. Case (ii)

corresponds to our original model (or, model with δ = 0). Case (i), on the other hand,

results in exactly the same best response function for the category captain in the model where

the high attractiveness manufacturer is assigned as a category captain. Thus, the retailer’s

equilibrium profit is the same as before (i.e., KSE(δ) in the separating equilibrium and

KPE(δ) in the pooling equilibrium) if the category captain includes the high attractiveness

manufacturer’s product in the assortment. The only difference between case (i) and the

case where the high attractiveness manufacturer is the category captain is the profit of the

category captain.

In summary, if one of the manufacturers with low attractiveness is selected as the cat-

egory captain then, in general, the category captain’s incentives are toward excluding the

manufacturer with a high attractiveness product. However, in equilibrium, the retailer sets

the target profit high enough to ensure that the category captain includes the product with

high attractiveness in the recommended assortment. Therefore, we conclude that the retailer

is indifferent between selecting the high attractiveness manufacturer or any of the other man-

ufacturers as the category captain as long as the high attractiveness product is included in

the assortment.

In the second extension, we assume that one of the manufacturers can increase the cat-
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egory traffic by Λ̃ whereas all the other manufacturers can increase the category traffic by

Λ. We assume that Λ̃ > Λ. All of the cost and information structure assumptions in this

extension are the same as the ones in our original model. Let KSE(Λ) and KPE(Λ) denote

the retailer’s equilibrium profits. By Lemma 5 (which is in the appendix), we know that

both KSE(Λ) and KPE(Λ) are increasing functions of Λ. Thus, we conclude that the retailer

is better off by choosing the manufacturer that can drive the most traffic into the category

as the category captain.

To summarize, our results in the extensions described above suggest that the retailer

prefers to choose a manufacturer who is able to put something unique to the table while

considering the category captain selection problem. In the first extension described above,

the manufacturer with high attractiveness product is not at an advantage because the high

attractiveness product can be included in the category regardless of whether the high at-

tractiveness manufacturer is selected as the category captain or not. What matters for the

retailer is whether the high attractiveness manufacturer is included in the category or not:

the retailer is better off when the manufacturer with high attractiveness product is included

in the assortment. On the other hand, if a manufacturer has a unique characteristic such as

being able to increase traffic more than the other manufacturers as in the second extension

described above, then the retailer would prefer that manufacturer as the category captain

over the other manufacturers.

Implementing Category Captainship with Target Sales Contract

While target profit is one of the most commonly used measures in the retailer’s category

captainship scorecard, category sales is another important measure that retailers are inter-

ested in. Target sales type of measures are particularly important in destination categories

that are used by the retailers to drive traffic into the store. In general, a retailer can use

a target sales contract either (i) as a tool to maximize profit or (ii) as a tool to maximize

sales. If the retailer uses the target sales contract as a tool to maximize profit, both target
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profit and target sales contracts lead to the same outcome. Intuitively, the reason for this

equivalence is that the objective of the retailer is the main determinant of the equilibrium.

If, on the other hand, the retailer’s objective is to maximize its sales by using target sales

contract, then our results about competitive exclusion would change. In the RCM scenario,

the retailer selects the variety level to maximize expected sales, that is

max
n

α
λnvH

v0 + nvH
+ (1− α)

λnvL
v0 + nvL

Notice that the retailer’s expected sales are increasing in n and the retailer selects the

maximum available variety, which we define as N .

In the category captainship scenario, the category captain has an incentive to reduce

the variety since its profit is decreasing in variety. However, anticipating this incentive,

the retailer would not allow a decrease in the already existing variety since such a decrease

would hurt the retailer’s sales. The retailer sets the target sales level to induce the category

captain to recommend an assortment with N products in it. Since the solution is on the

boundary, both separating and pooling equilibria lead to the recommended variety level N .

The retailer and the category captain would be better off under the category captainship

scenario due to the additional traffic driven in the category. Therefore, if the retailer’s

objective is to maximize sales, information asymmetry plays no role and hence there is no

room for competitive exclusion in this setting.

In practice, a retailer’s objective often lies somewhere between the two extremes of either

maximizing profit or maximizing sales in the category. Different categories have different

objectives for different retailers. If a retailer’s primary concern is maximizing profit (sales),

then the retailer is better off using target profit (sales) contract. However, retailers should

be aware that competitive exclusion is alive when the retailer seeks profit maximization, but

not effective when the retailer’s objective is to maximize sales. Finally, notice that as the

retailer’s operational cost parameter β approaches zero, the difference between these two
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objectives fades away since profit and sales maximization problems become equivalent.

Multiple Manufacturers Each Selling Multiple Products

Our model assumes that each manufacturer offers one product only. However, in practice

manufacturers usually offer multiple products in a single category. In this section, we explore

the drivers of competitive exclusion in a model with two manufacturers each selling multiple

products through a single retailer. We assume that both the category captain and the retailer

have perfect information about the consumers. In the retail category management, the

retailer decides on variety for both manufacturers and in the category captainship scenario,

the category captain makes a recommendation on the variety for its own and competitor’s

products (assortment mix) in return for a target profit level. For simplicity, as in our original

model, we assume that all of the products offered by the first and second manufacturers have

the same attractiveness v and the retailer has perfect information about the consumers.

These assumptions imply that all of the products are perfect substitutes from the retailer’s

point of view and therefore the retailer cares only about the total variety in the category and

not about the assortment mix. Our analysis suggests that competitive exclusion is possible

even in the absence of asymmetric information simply because the captain’s incentives are

toward recommending an assortment that includes more of its products while the retailer

only cares about the total variety in the category. This extension allows us to identify another

possible lever (i.e., assortment mix decision) through which the category captain excludes

the competitors’ products from the assortment in addition to asymmetric information.

Manufacturers with Nonidentical Attractiveness

Our assumption of identical manufacturers prevents us from drawing conclusions regarding

which products/brands are more likely to be included or excluded from the category. Next,

we consider an extension where we relax our assumption of identical manufacturers and

assume that the products are ordered such that v1 > v2 > v3 > ... > vN and the first manu-
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facturer is assigned as category captain. We keep all of the cost structure assumptions the

same as in our original model. First, we consider the model without asymmetric information.

We find that the retailer’s and the category captain’s recommended equilibrium assortments

are both in the most attractive set (i.e., include only the most popular products in the as-

sortment) and the variety under category captainship always increases due to the adjustment

effect. While the competitive exclusion effect does not reveal itself in this extension due to

the absence of asymmetric information, we show that the inclusion of asymmetric informa-

tion into this model could result in competitive exclusion. Our numerical analysis (which

is described in detail in the Online Supplement) suggests that depending on the category

captain’s traffic driving abilities, the category captainship might result in different types of

products being excluded from the assortment. In particular, we find that if the category

captain’s traffic driving abilities are limited (i.e., the retailer prefers separating equilibrium),

the category captain excludes the products with low attractiveness. On the other hand,

if the category captain’s traffic driving abilities are significant (the retailer prefers pooling

equilibrium), the category captain might exclude some of the high attractiveness products.

The intuition is as follows: Under the separating equilibrium, the equilibrium target profit

forces the category captain to recommend an assortment which includes the most attractive

products but allows exclusion of the less attractive products. On the other hand, under

pooling equilibrium, the category captain can drive significant additional traffic into the

category, which improves the captain’s bargaining position against the retailer. Therefore,

the captain can replace some of the most attractive products with less attractive ones in the

assortment.

Conclusions and Discussions

We consider a stylized two stage supply chain model where multiple manufacturers sell to

the consumers through a single retailer. The goal of our research is to investigate the impact

of a recent trend in the consumer goods supply chains where retailers rely on a leading
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manufacturer in a category for recommendations regarding the assortment to be offered to

the consumers. Retailers benefit from category captain’s (1) superior knowledge about the

consumers and/or (2) ability to drive additional traffic into the category. Our results are

along these two dimensions.

Figure 9: Summary of results table.

The overall conclusion of our research is that while using category captains for category

management can be an excellent value proposition for retailers, the consequences of using

category captains should be better understood by retailers. We find that the consequences

of using category captains may differ depending on what the category captains are used for.

Figure 9 summarizes our results along two dimensions in a simple two by two matrix. First, a

retailer should continue implementing retail category management in established categories

where traffic is stable and consumer behavior is well understood. Second, categories where

the retailer needs to increase traffic and consumer behavior is well understood are perfect

candidates for category captainship implementations. The retailers can expand the product

offering in these categories as a result of the increased traffic into the category.
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Third, in categories where retailers need consumer insights only, retailers can use cate-

gory captains who have a better understanding of the consumers but should be aware that

the category captains should be rewarded for providing insights. Depending on consumer

preferences, the category captainship implementation may result in either an expanded or a

narrower assortment when compared to the assortment under retail category management.

The possible reduction in variety is entirely due to the adjustment effect. Finally, categories

where retailers rely on their category captains to drive traffic and provide consumer insights

are also suitable for category captainship implementation but retailers need to compensate

the category captain for both its superior information and its traffic driving abilities. The

variety in the category can either increase or decrease as a result of the adjustment effect.

The competitive exclusion effect, however, always reduces the variety offered to the con-

sumers. The overall increase/decrease in the category variety depends on the magnitude of

the adjustment and competitive exclusion effects.

Our results have a number of implications regarding the implementation of category cap-

tainship in practice. First, we find that while the concerns regarding the category captainship

misconduct in the form of competitive exclusion are definitely valid, a reduction in variety

under category captainship is not always due to competitive exclusion but sometimes due to

the adjustment effect. In particular, expected profit maximizing behavior forces the retailer

to offer a suboptimal variety in the category under retail category management. This is not

desirable for the retailers as excess variety eats up precious retail shelf space while little vari-

ety may lead to lost consumers in the category. The category captain’s additional consumer

insights help the retailer to adjust its variety to better satisfy consumer’s needs. While this

adjustment takes place irrespective of the category captain’s traffic driving abilities, compet-

itive exclusion takes place when the category captain is capable of driving significant traffic

into the category. This is because the category captain is in a stronger position against the

retailer in this case. This is one explanation as to why the competitive exclusion effect is

difficult to detect in practice as it is not clear whether a reduction in category variety is due
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to competitive exclusion or it is simply due to an adjustment.

Second, our research has some implications regarding the implementation of category

captainship via target profit versus target sales contracts. On one hand, we find that if

the main goal of the retailer is to maximize profit, the category captainship implementation

might result in competitive exclusion whereas if the retailer’s goal is to maximize sales, then

competitive exclusion does not take place. On the other hand, the implementation of target

profit level contract requires that retailers share sensitive information such as competitor’s

margin and operational cost data with the category captain, therefore, posing some imple-

mentation challenges. However, target sales is relatively easier to track and does not require

sensitive information sharing. Therefore, retailers implementing category captainship via a

target profit should be aware that maximizing profit in a category comes at a cost. Retailers

have to make a tradeoff between maximizing profit (as opposed to maximizing sales) and the

possible adverse effects of competitive exclusion and sharing sensitive information if target

profit is to be used.

Third, our research suggests that while the retailer and the category captain can benefit

from category captainship, contrary to the common belief, the non-captain manufacturers

can also be better off under category captainship. In practice, many manufacturers get

frustrated and fear competitive exclusion when they hear that a major competitor has been

selected by a retailer to serve as a category captain. While the fear of competitive exclusion is

valid in some instances, we find that the variety in the category might actually increase after

implementing category captainship and the non-captain manufacturers can benefit from this

variety increase as well as the increase in the traffic to the category.

Finally, our model only captures the short term benefits of category captainship because

we model category captainship as a one shot game. However, category captainship can also

have adverse effects on the retailers in the long run. While we are not able to capture the

potential long term adverse effects of category captainship to the retailer, our model can be

used to derive implications regarding some of these long term effects. For example, compet-
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itive exclusion can lead to monopolization in the category, which in the long run can result

in price increases and reduction in category variety. While price spikes will lead to consumer

dissatisfaction, a reduction in the category variety can also result in consumer dissatisfaction

because consumers almost always prefer more variety to less (e.g., Broniarczyk et al. 1998

and Hoch et al. 1999). Retailers take measures such as assigning co-captains in categories

to verify their category captain’s recommendations to avoid biased recommendations but as

our research points out, it might be very difficult to separate the variety reduction which is

due to the adjustment and competitive exclusion effects. Therefore, we conclude that the

retailers should balance the short term benefits and the potential long-term adverse effects

while evaluating the pros and cons of category captainship practices.
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List of Key Notations

List of Notations

n number of variants offered at the retailer store.

nCC number of variants offered to the consumers under the category captainship.

nR the optimal variety in the RCM scenario.

niTP the optimal variety when the retailer takes advantage of the additional traffic
Λ and knows that the consumers are i-type.

niR the optimal variety in RCM scenario when the retailer knows that the con-
sumer type is i ∈ {H,L}.

Λ∗ the value of Λ that makes the retailer indifferent between the separating and
pooling.

Λ1 the value of Λ that makes nHTP = nR.

ΠR the retailer’s expected optimal profit in the RCM scenario.

πR the category captain’s expected optimal profit in the RCM scenario.

Πi
TP the retailer’s profit under TP when the consumer type is i ∈ {H,L}.

πiTP the category captain’s profit under TP when the consumer type is i ∈ {H,L}.
Πi
R the retailer’s profit when consumers are i-type and retailer sets variety as if in

the RCM scenario (i.e., without the increase in consumer rate).

πiR the category captain’s profit when consumers are i-type and retailer sets va-
riety as if in the RCM scenario (i.e., without the increase in consumer rate).
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Appendix

A. Proof of Lemmas and Propositions

Proof of Lemma 1: The retailer’s expected profit is strictly concave in the variety level n

because the second derivative of the objective function is equal to

λm

−α 2 v0
vH(

v0
vH

+ n
)3 − (1− α)

2 v0
vL(

v0
vL

+ n
)3

 < 0.

Thus, the problem has a unique maximum, denoted by nR. The maximum is determined by

λm[αfH + (1− α)fL] = β where fi =
v0
vi(

v0
vi

+nR

)2 for i ∈ {H,L}.�

The result in the following lemma is used in the proof of some our results.

Lemma 4 v0 < v0 = nR
√
vH
√
vL implies the following inequalities

v0 <
λmvL
β

< min{λmvH
β

,
λmvL
β

[
vH

vH − vL

]
}

Proof of Lemma 4: It is easy to see that λmvL
β

< λmvH
β

and λmvL
β

< λmvL
β

[
vH

vH−vL

]
since

vH > vL. It is enough to show that v0 < v0 implies v0 <
λmvL
β

. Suppose that v0 has the

biggest possible value under the presumption of the lemma, i.e. v0 = nR
√
vH
√
vL. Because,

by Lemma 1, λm[αfH +(1−α)fL] = β, we have v0 <
λmvL
β

if and only if 0 < vL+2
√
vH
√
vL.

Because the last inequality is always true, we can conclude that v0 < v0 implies v0 <
λmvL
β

.

�

Proof of Lemma 2: For given target profit level K, the category captain who faces

i ∈ {H,L} type consumers solves the following problem at the second stage:

max
n

(λ+ Λ)wvi
v0 + nvi

s.t.
(λ+ Λ)mnvi
v0 + nvi

− βn ≥ K
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Because the objective function is decreasing and the constraint is increasing in n, the optimal

solution is determined by the constraint (λ+Λ)mnvi
v0+nvi

− βn = K.

We can rewrite the equation as Ain2−Bin+C = 0 where Ai = βvi, B
i = (λ+ Λ)mvi−

βv0 −Kvi, and C = −Kv0. The quadratic equality has two roots which are given by n1 =

Bi−
√

(Bi)2−4AiC

2Ai and n2 =
Bi+
√

(Bi)2−4AiC

2Ai . Because the category captain prefers the variety

as small as possible, n2 cannot be a best response. Thus, there is a unique best response for

each type which is given by the smaller of the roots ni(K) =
Bi(K)−

√
(Bi(K))2−4Kviv0β

2viβ
. �

Proof of Lemma 3: By solving πHTP
(
nHTP

)
= πHR (nR) and πLTP

(
nLTP

)
= πLR (nR), we can

easily show that nHTP (Λ) = nR + Λ
λ

(
v0
vH

+ nR

)
and nLTP (Λ) = nR + Λ

λ

(
v0
vL

+ nR

)
. More-

over, by solving the corresponding maximization problems, we can calculate nHTP (Λ) =

arg maxn ΠH
TP (n) =

√
(λ+Λ)m

β
v0
vH
− v0

vH
and nLTP (Λ) = arg maxn ΠL

TP (n) =
√

(λ+Λ)m
β

v0
vL
− v0

vL
.

We prove the lemma in four steps.

(i) nHTP (Λ) > 0 for all Λ ≥ 0

Proof of (i): Take any Λ ≥ 0. Then, nHTP (Λ) =
√

(λ+Λ)m
β

v0
vH
− v0

vH
> 0 if and only if

(λ+Λ)mvH
β

> v0. By lemma 4, v0 <
(λ+Λ)mvH

β
holds and, therefore, nHTP (Λ) > 0.

(ii) nHTP (Λ) > nHTP (Λ) for all Λ ≥ 0

Proof of (ii): Let ϕH (Λ) = nHTP (Λ)−nHTP (Λ) =
√

(λ+Λ)m
β

v0
vH
− v0

vH
−nR− Λ

λ

(
v0
vH

+ nR

)
. First,

show that ϕH (Λ) is concave. We rearrange ϕH (Λ) in polynomial form: ϕH (Λ) = −ax2 + bx

where a =
(

1
λ

) (
v0
vH

+ nR

)
, b =

√
m
β
v0
vH

, and x =
√
λ+ Λ. Because the coefficient on x2

is negative, ϕH (Λ) is concave. We are interested in the values of Λ that satisfy ϕH (Λ) =

0. That is,
√
λ+ Λ

[√
m
β
v0
vH
−
√
λ+ Λ

(
1
λ

) (
v0
vH

+ nR

)]
= 0. This equation has two roots:

Λ1
H = −λ and Λ2

H = λ
[
λm
β
fH − 1

]
. If both of the roots are negative then ϕH (Λ) is negative

for all Λ ≥ 0 and, therefore, nHTP (Λ) < nHTP (Λ). It is clear that Λ1
H < 0. We claim that

Λ2
H < 0, or equivalently λmfH < β. The first order condition for the variety level in RCM

is λm[αfH + (1 − α)fL] = β. Then, Λ2
H < 0 ⇔ v0 < nR

√
vH
√
vL = v̄0. Because the latter

inequality holds, we have Λ2
H < 0 and nHTP (Λ) < nHTP (Λ).
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(iii) nLTP (Λ) ≥ nLTP (Λ) for all Λ ∈ [0,Λ]

Proof of (iii): Let ϕL (Λ) = nLTP (Λ)− nLTP (Λ) =
√

(λ+Λ)m
β

v0
vL
− v0

vL
− nR − Λ

λ

(
v0
vL

+ nR

)
. As

before, ϕL (Λ) is concave and ϕL (Λ) = 0 has two roots: Λ1
L = −λ and Λ2

L = λ
[
λm
β
fL − 1

]
.

Next, we show that Λ2
L > 0. It is sufficient to show that λmfL > β. By using an argument

similar to the one in the previous case, we can show that the above inequality holds since

v0 < v0 and λm[αfH +(1−α)fL] = β. Because ϕL (Λ) is concave, ϕL (Λ) is positive between

two roots. Therefore, nLTP (Λ) ≥ nLTP (Λ) for all Λ ∈ [0,Λ] where Λ = Λ2
L.

(iv) nLTP (Λ) ≥ nHTP (Λ) for all Λ ≥ 0

Proof of (iv): Take any Λ ≥ 0. Then, nLTP (Λ) > nHTP (Λ) is true if and only if nR +

Λ
λ

(
v0
vL

+ nR

)
> nR + Λ

λ

(
v0
vH

+ nR

)
. Because vH > vL we have nLTP (Λ) > nHTP (Λ) for all

Λ > 0. If Λ = 0 then nLTP (Λ) = nHTP (Λ) = nR. By (i), (ii), (iii), and (iv), we conclude that

nLTP (Λ) ≥ nLTP (Λ) ≥ nHTP (Λ) > nHTP (Λ) > 0. �

Proof of Proposition 1: We rewrite the retailer’s problem as follows

max
K

αK + (1− α) ΠL
R

s.t. nHTP ≥ nH(K) and nL(K) > nR +
Λ

λ

(
v0

vL
+ nR

)

We use the Karush-Kuhn-Tucker (KKT) method to solve this optimization problem

L = αK + (1− α) ΠL
R − µ1

[
nH(K)− nHTP

]
− µ2

[
nR +

Λ

λ

(
v0

vL
+ nR

)
− nL(K)

]
s.t. µ1 ≥ 0 and µ2 ≥ 0

Here we use µ2 ≥ 0 as an auxiliary assumption. Later, we relax it to µ2 = 0 since the second

constraint cannot be binding.

The first order KKT conditions are:

∂L

∂K
: α− µ1

∂nH(K)

∂K
+ µ2

∂nL(K)

∂K
= 0 (A1)
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∂L

∂µ1

: nR ≥ nH(K) ; µ1 ≥ 0 ; µ1

[
nHTP − nH(K)

]
= 0 (A2)

∂L

∂µ2

: nL(K) ≥ nR +
Λ

λ

(
v0

vL
+ nR

)
; µ2 ≥ 0 ; µ2

[
nL(K)− nR −

Λ

λ

(
v0

vL
+ nR

)]
= 0

(A3)

There are two possible cases:

(i) µ1 = 0 and µ2 = 0: In this case, equation A1 reduces to α = 0. Because α > 0, there is

no solution.

(ii) µ1 > 0 and µ2 = 0: Only one of the constraints is binding. Because µ1 > 0, A2

ensures that nH(KSE) = nHTP . From A1, we conclude that this case is possible only if

µ1 = α
∂nH (KSE)

∂K

> 0.

By definition, nH(K) is smaller than nHTP (since nH(K) is the smaller root) and, therefore,

we have to have ∂nH(KSE)
∂K

> 0. Because the condition in (ii) always holds, we have a unique

separating equilibrium in which the retailer’s target profit satisfies nH(KSE) = nHTP . By

solving the equation, we get

KSE = (λ+ Λ)m+ β
v0

vH
− 2

√
(λ+ Λ)mβ

v0

vH
=

[√
(λ+ Λ)m−

√
β
v0

vH

]2

In the equilibrium, the category captain accepts the contract offer and recommends the

variety level nHTP when consumers are H-type, and otherwise, the category captain rejects

the offer and the retailer chooses the variety level nLR. �

Proof of Proposition 2: We rewrite the retailer’s problem as follows

max
K

K

s.t. nHTP ≥ nH(K) and nR +
Λ

λ

(
v0

vL
+ nR

)
≥ nL(K)
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The first order KKT conditions are as follows:

∂L

∂K
: 1− µ1

∂nH(K)

∂K
− µ2

∂nL(K)

∂K
= 0 (A4)

∂L

∂µ1

: nHTP ≥ nH(K) ; µ1 ≥ 0 ; µ1

[
nHTP − nH(K)

]
= 0 (A5)

∂L

∂µ2

: nR +
Λ

λ

(
v0

vL
+ nR

)
≥ nL(K) ; µ2 ≥ 0 ; µ2

[
nR +

Λ

λ

(
v0

vL
+ nR

)
− nL(K)

]
= 0

(A6)

There are four possible cases:

(i) µ1 = 0 and µ2 = 0: This case is not possible since the equation A4 reduces to 1 = 0.

(ii) µ1 > 0 and µ2 = 0: In this case, only one of the constraints is binding. Because

µ1 > 0, A5 ensures that nH(K) = nHTP . Notice that ΠH
TP (n) > ΠL

TP (n) for all n > 0. And,

moreover, nHTP = arg maxn ΠH
TP (n). Thus, K = ΠH

TP

(
nHTP

)
> ΠL

TP

(
nLTP

)
> ΠL

TP

(
nHTP

)
which contradicts the assumption that the category captain rejects any target profit level it

cannot deliver. In this case, the category captain who faces L-type consumers cannot deliver

the desired profit.

(iii) µ1 = 0 and µ2 > 0: Because µ2 > 0, A6 ensures that nL(KPE) = nR + Λ
λ

(
v0
vL

+ nR

)
.

From the equation A4 we can conclude that this case is possible only if µ2 = 1
∂nL(KPE)

∂K

> 0.

Because nL(K) is an increasing function, KPE is always a solution.

(iv) µ1 > 0 and µ2 > 0: Because µ1 > 0 and µ2 > 0, A5 and A6 ensure that nH(K) = nHTP

and nL(K) = nR + Λ
λ

(
v0
vL

+ nR

)
, respectively. By (ii), we know that nH(K) = nHTP leads to

a contradiction. Thus, this case is not possible.

Because the condition in (iii) always holds, we have a unique pooling equilibrium in which

the retailer’s target profit satisfies nL(KPE) = nR + Λ
λ

(
v0
vL

+ nR

)
. By solving the equation,

we get

KPE = (λ+ Λ)m− β
(
v0

vL
+ nR

)
Λ

λ
− λmv0

v0 + nRvL
− βnR.

In the pooling equilibrium, both types accept the contract offer. However, the category
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captain chooses the variety level nH(KPE) =
BH(KPE)−

√
(BH(KPE))2−4KvHv0β

2vHβ
when consumers

are H-type and nL(KPE) = nR + Λ
λ

(
v0
vL

+ nR

)
otherwise.

Before we start the proof of the Proposition 3, it is useful to prove the following lemma.

Lemma 5 ∂KSE(Λ)
∂Λ

> ∂KPE(Λ)
∂Λ

> 0

Proof of Lemma 5: We use the following derivatives: ∂KSE

∂Λ
= m −

√
mβ

v0
vH√

λ+Λ
and ∂KPE

∂Λ
=

m− β
λ
v0
vL
− β

λ
nR. First, recall that nLR is an upper bound for nR. We show that ∂KPE(Λ)

∂Λ
> 0

even we assume that nR = nLR. If we replace nR with its upper bound, we get ∂KPE(Λ)
∂Λ

>

√
m
[√

m−
√

β
λ
v0
vL

]
. Because nLR =

√
λm
β

v0
vL
− v0

vL
> 0 we have

√
m >

√
β
λ
v0
vL

and therefore

∂KPE(Λ)
∂Λ

> 0. Now, consider ∂KSE

∂Λ
= m−

√
mβ

v0
vH√

λ+Λ
. Because nHTP =

√
(λ+Λ)m

β
v0
vH
− v0

vH
, we can

rewrite ∂KSE(Λ)
∂Λ

= m − β
λ+Λ

v0
vH
− β

λ+Λ
nHTP . Because nHTP < nR, Λ > 0, and vH > vL, we can

conclude that ∂KSE(Λ)
∂Λ

> ∂KPE(Λ)
∂Λ

. �

Proof of Proposition 3: Let us define Ω (Λ) = αKSE (Λ) + (1− α) ΠL
R −KPE (Λ). First,

we are going to show that Ω (Λ) is positive for Λ = 0.

Step 1. Ω (0) > 0

Proof of Step 1: Rewrite Ω (0) = α [KSE (0)−KPE (0)] + (1− α)
[
ΠL
R −KPE (0)

]
. By

definition, ΠL
R ≥ KPE (0). Let K be the profit level such that nH(K) = nL(KPE(0)).

Because nH(K) = nL(K ′) implies K > K ′ for all K and K ′, we have K > KPE(0). Because

nH(KSE(0)) = nHTP , we have KSE(0) ≥ K. Then, KSE(0) > KPE(0). Hence, Ω(0) > 0.

Next, we show that the slope of Ω (Λ) is always negative for sufficiently small α.

Step 2. For all α < α, ∂Ω(Λ)
∂Λ

< 0.

Proof of Step 2: By taking the derivative with respect to Λ, we get ∂Ω(Λ)
∂Λ

= α∂KSE

∂Λ
− ∂KPE

∂Λ
.

By Lemma 5, we know that ∂KSE(Λ)
∂Λ

> ∂KPE(Λ)
∂Λ

> 0. Let α (Λ) be such that ∂Ω(Λ)
∂Λ

= 0 holds.

That is,

α (Λ) =
∂KPE

∂Λ
∂KSE

∂Λ

=
m− β

λ
v0
vL
− β

λ
nR

m−
√
mβ

v0
vH√

λ+Λ

.
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Observe that α (Λ) is a monotonically decreasing function of Λ. Because Ω (Λ) is defined

over the range
[
0,Λ

]
, α
(
Λ
)

gives us the lower bound of α (Λ). Notice also that 0 < α(Λ) < 1

since ∂KSE(Λ)
∂Λ

> ∂KPE(Λ)
∂Λ

> 0. Hence, if

α < α = α
(
Λ
)

=
m− β

λ

(
v0
vL

+ nR

)
m− β

λ

(
v0
vL

+ nR

)√
vL
vH

then we have ∂Ω(Λ)
∂Λ

< 0. Note that if there is no information asymmetry (i.e., vL = vH), then

α(Λ̄) = 1 which implies that the proposition holds for any α.

Step 2 implies that there is a unique solution Λ∗ such that Ω (Λ∗) = 0. Therefore, the

retailer prefers the separating equilibrium if Λ ≤ Λ∗ and the pooling equilibrium otherwise.

�

Proof of Proposition 4: First, suppose that consumers are H-type.

(i) and (ii): Take any Λ < Λ∗. By Proposition 3, we know that the players play the

separating equilibrium. In the equilibrium, by Proposition 1, nCC = nHTP . By Lemma 3,

nHTP < nHTP (Λ) = nR + Λ
λ

(
v0
vH

+ nR

)
. Thus, nCC = nHTP < nR when Λ = 0. Let Λ1 be

such that nHTP (Λ1) = nR. Then, Λ1 = β
mfH
− λ. Because nHTP (Λ) is an increasing function

of Λ and nR is constant, we know that such a Λ1 exists. We have two cases: Λ∗ ≥ Λ1 and

Λ∗ < Λ1. If Λ∗ ≥ Λ1, then we have nCC = nHTP < nR when Λ ∈ [0,Λ1) and nCC = nHTP ≥ nR

when Λ ∈ [Λ1,Λ
∗). On the other hand, if Λ∗ < Λ1 we have nCC = nHTP < nR for all

Λ ∈ [0,Λ∗). Then, we can conclude that nCC = nHTP < nR when Λ ∈ [0,min{Λ1,Λ
∗}) and

nR ≤ nCC = nHTP when Λ ∈ [min{Λ1,Λ
∗},Λ∗).

(iii): Take any Λ ∈
[
Λ∗,Λ

]
. By Proposition 3, we know that the players play the pooling

equilibrium. The category captain accepts the contract offer and chooses the variety at

nCC = nH(KPE).

Now, let K be the profit level such that nH(K) = nL(KPE). By definition of the profit

function, the retailer produces more profit (with the same level of the variety) when the
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consumers are H-type, i.e. nH(K) = nL(KPE) ⇒ K > KPE. Because ΠH
TP

(
nHTP

)
≥ K, we

have ΠH
TP

(
nHTP

)
> KPE and, therefore, nH (KPE) = nCC < nHTP .

Notice that when the category captain chooses nH(KPE) the resulting profit for the

retailer has to be ΠH
TP

(
nH(KPE)

)
= KPE in the equilibrium. It is enough to show that

nR ≤ nCC = nH(KPE) can never happen. On the contrary, suppose that nR ≤ nCC =

nH(KPE). Then, we must have ΠH
TP (nR) ≤ ΠH

TP

(
nH(KPE)

)
= KPE. If we write down the

closed form solutions of ΠH
TP (nR) and KPE we get the following condition after simplifying

algebra

λm

[
v0

vL

v0
vH

+ nR
v0
vL

+ nR
− v0

vH

]
≤ Λ

[
m
v0

vH
− β

λ

(
v0

vL
+ nR

)(
v0

vH
+ nR

)]
First, consider the right hand side of the inequality. We claim that

m
v0

vH
− β

λ

(
v0

vL
+ nR

)(
v0

vH
+ nR

)
< 0.

Suppose that is not the case. Then, λm
v0
vH(

v0
vH

+nR

)(
v0
vL

+nR

) ≥ β has to hold, which contradicts

with β = λm[αfH + (1− α)fL]. Therefore, the right hand side of the inequality is negative.

Now, consider the left hand side of the inequality. It is not hard to see that v0
vL

v0
vH

+nR

v0
vL

+nR
−

v0
vH

> 0 since vH > vL. Because both λm > 0 and Λ ∈
[
Λ∗,Λ

]
, we can conclude that the

inequality never holds. Thus, we have KPE < ΠH
TP (nR) and, therefore, nCC = nH(KPE) <

nR.

Now, suppose that consumers are L-type. Then, in any separating equilibrium, the

category captain who faces with L-type consumers rejects the contract offer and the retailer

makes the variety decision after updating its belief on the consumer type. The optimal

variety for the retailer in this case is nCC = nLR. Because nLR > nR for any Λ ≤ Λ̄, we have

nCC > nR. The category captain chooses the variety at nCC = nR + Λ
λ

(
v0
vL

+ nR

)
in the

pooling equilibrium. It is clear that nCC > nR for any pooling equilibrium. Thus, if the

consumers are low type, nCC > nR. �

82



B. Special Cases

I. H = L and Λ > 0. The retailer’s problem in the RCM case reduces to maxn λm[ nv
v0+nv

]−βn

where vH = vL = v. It is straightforward to show that the optimal variety for this problem

is nR =
√

λm
β

v0
v
− v0

v
.

Because there is no uncertainty and the category captain can drive additional traffic into

the category the retailer always prefers to the category captainship practice. The retailer will

choose its optimal target profit level as if it is maximizing a problem similar to the one above:

maxn(λ+ Λ)m[ nv
v0+nv

]−βn. The optimal solution for this problem is nCC =
√

(λ+Λ)m
β

v0
v
− v0

v
.

Clearly, Λ > 0 implies nCC > nR.

II. H > L and Λ = 0. By Proposition 3, we know the retailer prefers the separating

equilibrium. The resulting variety in the separating equilibrium is given by nHTP if consumers

are H-type and nLR if they are L-type.

Recall, by Lemma 3, that nLTP (Λ) ≥ nHTP (Λ) > nHTP (Λ). These inequalities reduce to

nLTP (0) = nHTP (0) = nR > nHTP (0) when Λ = 0. It is also straightforward to see from Lemma

1 that nLR > nR since the solution for nLR corresponds to the case where the retailer maximizes

its RCM profit as if α = 0. Therefore, we can conclude that nLR > nR > nHTP when H > L

and Λ = 0.

C. Supplement for Extensions

Category Captain Selection. When all the manufacturers are homogenous, the question

of which manufacturer becomes the category captain is not meaningful. In order to gain some

insights on which manufacturers are better suited to become category captains, we consider

an extension of our original model where one of the manufacturers differs from the other

manufacturers. First, in Model IA, we consider a model where one of the manufacturers

offers a product with higher attractiveness compared to the other products in the category.

Second, in Model IB, we consider a model where one of the manufacturers can drive more

traffic into the category when compared with the other manufacturers in the category.
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IA: Manufacturers with Nonidentical Attractiveness:

In this model, we assume that one of the manufacturers offers a product with higher

attractiveness compared to the other manufacturers’ products. We keep all the other as-

sumptions regarding the cost and information structure as in our original model. We capture

the difference between the attractiveness levels with parameter δ; that is, one of the manu-

facturers offers a product with attractiveness vi + δ and the remaining manufacturers offer

products with attractiveness vi. Suppose that in the category captainship scenario, in addi-

tion to setting the target profit for the category captain, the retailer also faces the decision

of which manufacturer to designate as the category captain. We compare the model where

the retailer chooses the high attractiveness manufacturer (with attractiveness vi + δ) as the

category captain with the model where the retailer chooses one of the other manufacturers

(with attractiveness vi) as the category captain to understand the drivers behind retailer’s

category captain selection problem.

First, we consider the model where the retailer designates the high attractiveness man-

ufacturer as the category captain. The category captain solves the following maximization

problem for a given target profit K:

max
n

(λ+ Λ)w(vi + δ)

v0 + nvi + δ

s.t.
(λ+ Λ)m(nvi + δ)

v0 + nvi + δ
− βn ≥ K

The category captain’s unique best response nδ(K) is given by

nδ(K) =
Bδ(K)−

√
(Bδ(K))2 − 4Kvβv0 + 4βv((λ+ Λ)m−K)δ

2vβ

where Bδ(K) = (λ+ Λ)mv − βv0 −Kv − βδ.

The optimal assortment selection of the category captain decreases in δ. The retailer

sets its target profit level to ensure that nHTP = nδ(KSE) in the separating equilibrium and
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nR + (Λ
λ

)( v0
vL

+ nR) = nδ(KPE) in the pooling equilibrium. The resulting profits for the

retailer under the separating and pooling equilibria are as follows:

KSE(δ) = (λ+ Λ)m+ β

(
v0 + δ

vH

)
− 2

√
(λ+ Λ)mβ

v0

vH

KPE(δ) = (λ+ Λ)m− β
(
v0

vL
+ nR

)
Λ

λ
− λm(λ+ Λ)v0

δΛ + (λ+ Λ)(v0 + nRvL)
− βnR.

It is easy to show that both KSE(δ) and KPE(δ) are increasing in δ. Notice also that

KSE(0) = KSE and KPE(0) = KPE where KSE and KPE are the target profit levels when the

manufacturers offer identical products (i.e., as in our original model). Thus, we can conclude

that the retailer prefers an assortment that includes the product with attractiveness vi + δ

over an assortment that excludes it.

Now, suppose that the retailer chooses a manufacturer other than the high attractiveness

manufacturer as the category captain. We consider the following two cases: (i) the category

captain includes the high attractiveness manufacturer’s product in the assortment and (ii)

the category captain excludes the high attractiveness manufacturer’s product. The latter

case is identical to the model in the original manuscript or, equivalently, to the model we

consider above with δ = 0. In the former case, the category captain solves the following

maximization problem for a given target profit level K:

max
n

(λ+ Λ)wvi
v0 + nvi + δ

s.t.
(λ+ Λ)m(nvi + δ)

v0 + nvi + δ
− βn ≥ K

Notice that, this problem produces the exact same best response function nδ(K) we found

above since the category captain’s constraint, which remains the same in both cases, deter-

mines the solution. Thus, the retailer collects the same profit if the category captain includes

the high attractiveness manufacturer’s product in the assortment. The only difference be-

tween this case and the case where the high attractiveness manufacturer is the category
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captain is the profit of the category captain.

If the retailer chooses a manufacturer other than the high attractiveness manufacturer,

the category captain has an incentive to exclude the high attractiveness manufacturer from

the assortment since higher attractiveness of rival’s product hurts the category captain’s

profit. However, anticipating this incentive, the retailer will set the target profit level high

enough that the category captain will have to include the manufacturer with high attrac-

tiveness in the assortment. Therefore, we conclude that the retailer is indifferent between

selecting the high attractiveness manufacturer or any of the other manufacturers as a cate-

gory captain as long as the high attractiveness product is included in the assortment.

IB: Manufacturers with Nonidentical Ability to Increase Category Traffic:

In this model, we assume that one of the manufacturers can drive more traffic into the

category than the other manufacturers. All of the cost and information structure assumptions

in this extension are the same as the ones in our original model. We assume that while one of

the manufacturers can increase the category traffic by Λ̃, all other manufacturers can increase

the category traffic by Λ (where Λ̃ > Λ). As before, suppose that in the category captainship

scenario, in addition to setting the target profit for the category captain, the retailer also

faces the decision of which manufacturer to designate as the category captain. We compare

the model where the retailer chooses the manufacturer who can increase category traffic

by Λ̃ as the category captain with the model where the retailer chooses one of the other

manufacturers (i.e., category traffic increases by Λ).

First, consider the model where the retailer designates the manufacturer that can drive

Λ̃ as the category captain. The category captain solves the following maximization problem

for a given target profit K:

max
n

(
λ+ Λ̃

)
wvi

v0 + nvi

s.t.

(
λ+ Λ̃

)
mnvi

v0 + nvi
− βn ≥ K
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This problem is same as the one we consider in the original manuscript. Thus, the equilibrium

profits are

KSE(Λ̃) =

[√(
λ+ Λ̃

)
m−

√
β
v0

vH

]2

KPE(Λ̃) = (λ+ Λ̃)m− λmv0

v0 + nRvL
− β

(
nR +

Λ̃

λ

(
v0

vL
+ nR

))
.

By Lemma 5 (which is in the appendix of original manuscript and states that ∂KSE(Λ)
∂Λ

>

∂KPE(Λ)
∂Λ

> 0), we know that both KSE(Λ̃) and KPE(Λ̃) are increasing functions of Λ̃. Thus,

the retailer is better off by choosing a category captain that can drive more traffic into the

category.

The results in models IA and IB suggest that the retailer prefers to choose a manufacturer

who is able to put something unique to the table while considering the category captain

selection problem. In Model IA, the manufacturer with high attractiveness is not at an

advantage because the first product can be included in the category regardless of whether

the high attractiveness manufacturer is selected as a category captain or not. What matters

for the retailer in Model IA is whether the high attractiveness manufacturer is included in

the category or not: the retailer is better off if the manufacturer with high attractiveness

product is included in the assortment. On the other hand, if a manufacturer has a unique

characteristics such as being able to increase traffic more than the other manufacturers as in

Model IB, then the retailer would prefer that manufacturer over the other manufacturers.

Multiple Manufacturers Each Selling Multiple Products. Consider a two stage sup-

ply chain model where two competing manufacturers, each offering multiple products, are

selling their products to the consumers through a single retailer. For simplicity, we assume

that every product is equally attractive, both manufacturers’ production costs are normal-

ized to zero, both manufacturers sell to the retailer at the wholesale price w, and the retail

price of each product is r. Let v denote the attractiveness a product (which is assumed to be
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same for each product) and v0 be the attractiveness of the no-purchase option. Notice that

these assumptions imply that the products of the manufacturers are perfect substitutes from

the retailer’s point of view. The consumers can either buy one of the products by the first

or second manufacturer or decide to leave without a purchase. Let also n1 and n2 denote the

number of products offered by the first and second manufacturers, respectively. We assume

that both manufacturers’ product offerings are finite, that is, n1 ≤ n̄1 and n2 ≤ n̄2. We also

define the retailer’s profit margin as m = r − w.

Given these assumptions, when the retailer offers n1 and n2 products from the first and

second manufacturers, respectively, in the category, the average total demand for the first

and second manufacturers are

q1 = λ
n1v

v0 + (n1 + n2)v
and q2 = λ

n2v

v0 + (n1 + n2)v
.

In retail category management scenario, the retailer sets the variety levels n1 and n2 by

solving the following optimization problem:

max
n1,n2

λm
(n1 + n2)v

v0 + (n1 + n2)v
− β(n1 + n2) (1)

where the first part is net profit from sales and the second part is the cost of managing

variety for the retailer. Let n = n1 + n2 be the total number of products to be offered in

the category. Then, the retailer’s problem in (1) coincides with the retailer’s problem in

our original model. When all the products have equal margins and equal attractiveness,

we get multiple solutions of the type n1 + n2 = constant since manufacturers’ products are

perfect substitutes from the retailer’s point of view. The optimal solution for (1) requires

the following first order condition to hold.

nR = n1R + n2R =

√
λm

β

v0

v
− v0

v
. (2)
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Suppose that the retailer decides to use some allocation rule where the retailer allocates a

fraction τ ∈ [0, 1] to the first manufacturer’s products and 1−τ to the second manufacturer’s

products. Then, the retailer’s choice regarding the mix of products is as follows: n1R =

min {n̄1, τnR} and n2R = min {n̄2, (1− τ)nR}. Because n̄1 ≤ τnR would generate a trivial

outcome (solution would be on the boundary), we focus on the more interesting cases where

n̄1 > τnR.

As in our original model, we assume that the category captain can drive additional traffic

into the category and increase the rate of consumers into the category by Λ. Because there

is no uncertainty and the category captain can drive additional traffic into the category, the

retailer always prefers implementing category captainship. The retailer chooses its optimal

target profit level as if it is maximizing a profit similar to the one in (1). This is because when

there is no asymmetric information the retailer can achieve its first best (i.e., the retailer

can extract the entire surplus from implementing category captainship and leave the captain

indifferent) by using target profit contract (see the special case for symmetric information

in appendix B in the paper). The retailer’s problem is

max
n1,n2

(λ+ Λ)m
(n1 + n2)v

v0 + (n1 + n2)v
− β(n1 + n2). (3)

The optimal solution to this problem needs to satisfy the following condition:

nC = n1C + k2C =

√
(λ+ Λ)m

β

v0

v
− v0

v
.

Notice that nC ≥ nR, which is due to the adjustment effect. Now suppose that the retailer’s

first best choice would follow the same arbitrary allocation rule as before. That is, to allocate

the total variety where a fraction τ is allocated to the first manufacturer and 1−τ is allocated

to the second manufacturer. The retailer’s optimal assortment mix choice if the retailer could

drive the additional traffic to the category itself would be given by n1C = min {n̄1, τnC} and

n2C = min {n̄2, (1− τ)nC}.
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Suppose that the first manufacturer is assigned as the category captain. The category

captain’s profit in the category captainship game is

πC(n1, n2) = (λ+ Λ)w
n1v

v0 + (n1 + n2)v

The category captain has an incentive to decrease n2 and increase n1 as much as possible.

Therefore, the category captain recommends that all of his n̄1 products are offered and in

addition nC−n̄1 of the non-captain manufacturer’s products are offered. There are two cases:

nC − n̄1 ≥ (1− τ)nC and nC − n̄1 < (1− τ)nC . Remember that (1− τ)nC is the allocation of

the non-captain manufacturer’s products to be included in the retailer’s first best assortment.

In the former case, there is no room for competitive exclusion. In the equilibrium of this

case, the category captain recommends all of its products (i.e., n̄1) and nC− n̄1 of the second

manufacturer’s products. Because nC − n̄1 ≥ (1 − τ)nC , the second manufacturer benefits

from the category captainship practice. However, in the latter case, the category captain’s

decision results in exclusion of the second manufacturer’s products from the assortment

since nC − n̄1 < (1 − τ)nC . Furthermore, in this case, if (1 − τ)nC > nC − n̄1 ≥ (1 −

τ)nR, then the second manufacturer would benefit from the category captainship practice.

More generally, it is straightforward to see that πC(n̄1, nC − n̄1) ≥ πC(τnC , (1 − τ)nC) and

ΠC(n̄1, nC − n̄1) = ΠC(τnC , (1 − τ)nC) where ΠC denotes the retailer’s profit under the

category captainship practice. That is, when the optimal choice of the assortment requires

nC products in the category, the retailer is indifferent between any assortment mix (n1, n2)

as long as n1 + n2 = nC but the category captain prefers to include all of its products in

the assortment and none of its rivals. This implies that unless the incentives of the retailer

and the category captain are perfectly aligned (that is, τ = 1) there is room for competitive

exclusion.

Manufacturers with Nonidentical Attractiveness. Consider a supply chain model that

consists of multiple manufacturers that are potential candidates for selling their differenti-
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ated products to consumers through a common retailer. As in our original model, each

manufacturer offers one product only. Let N = {1, 2, ..., n} denote the set of manufacturers.

The retailer faces the decision of which manufacturers’ brands to offer to its consumers. Let

S ⊆ N denote the subset of variants that retailer decides to include in the retail assortment.

A customer either purchases one of the variants in S or does not purchase anything. Let

variant 0 represent the no-purchase option for the consumers with attractiveness v0. We

assume that v1 > v2 > v3 > ... > vn.

Given the choice set S and the no-purchase option 0, let qi(S) denote the market share

of manufacturer i’s product. Then, qi(S) = vi
VS

where VS = v0 +
∑

j∈S vj according to our

demand model in the paper. Let λ denote the rate of customers entering the store, w denote

the wholesale price (same for all products), and m denote the retailer’s net profit margin

from a product in the category. We normalize the manufacturers’ production costs to zero.

In addition, we assume that the retailer incurs an operational cost σ(φS) = βφS where φS

denotes the number of products in the assortment set S.

In the RCM scenario, the retailer decides on an assortment set S to maximize its profit:

max
S

λm
∑
i∈S

vi
VS
− βφS (4)

Result 1 Retailer’s optimal assortment is in the attractive assortment set P = {{}, {1}, {1, 2},

..., {1, 2, .., n}}.

Proof. First, consider the retailer’s profit when the retailer offers assortment S (which is

arbitrary), that is

Πb(S) =
λm(VS − v0)

VS
− βφS. (5)

Now, suppose that the retailer adds one more product, say product j with attractiveness vj,

to the already existing assortment S. That is the retailer offers assortment Sj = S ∪ {j}.

Let us denote the retailer’s profit with assortment Sj as Πb(vj). Then, the retailer’s profit
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with assortment Sj is given by

Πb(Sj) =
λmvj
VS + vj

− β +
λm(VS − v0)

VS + vj
− βφS (6)

Let hb(vj) = Πb(Sj)− Πb(S) be the difference in the profit of the retailer with and without

the product j. If hb(vj) is positive, then it is profitable to add product j to the assortment.

By substituting (5) and (6) we get

hb(vj) =
λmvjv0

VS(VS + vj)
− β (7)

From differentiation,

∂hb(vj)

∂vj
=

λmv0vj
(VS + vj)2

. (8)

Because hb(vj) > 0,∀vj ∈ [0,∞), we can conclude that hb(vj) is monotonically increasing

in vj on the interval [0,∞). This implies that if the retailer decides to add a product to the

already existing assortment, the retailer will add the product with the highest vj (among

the remaining products) to the assortment.

In the category captainship scenario, the retailer delegates the assortment selection de-

cision to the category captain (i.e., the first manufacturer). Both the category captain and

the retailer have the same information about the consumers (i.e., symmetric information)

but the category captain can increase the rate of customers purchasing from the category.

As in our original model, we denote this increase by Λ.

Result 2 In the subgame perfect Nash equilibrium, the category captain’s recommended as-

sortment is in the attractive assortment set P .
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Proof. The category captain solves

max
S⊆N

(λ+ Λ)
wv1

VS

s.t. m (λ+ Λ)
∑
i∈S

vi
VS
− βφS ≥ K

First, notice that the category captain’s profit is decreasing in the number of products

offered in the category. Second, if there are two sets of products with same number of

products offered in each, the category captain chooses the one with the lowest VS. Because

the category captain’s profit is decreasing in VS, the solution for the optimization problem is

determined by the constraint. Because all the products have different attractiveness levels,

each assortment set S with the same φS has a unique VS. Because the number of feasible

assortment sets are finite, the category captain’s solution exists. Let S(K) be the optimal

assortment recommended by the category captain when the retailer’s target profit is K. In

the equilibrium, the retailer will consider each of VS possibilities and choose the target that is

equal the highest possible profit. Let this profit be K∗. We claim that S(K∗) ∈ P . Suppose

not. Then, we can proceed as in the proof of Result 1 and show that there is contradiction

with S(K∗) being in the most attractive set.

Notice that this result does not claim that the recommended assortment is in the attrac-

tive assortment set P for any target profit level K. The category captain’s recommended

assortment with target profit level may not be in the attractive assortment set P for arbi-

trary K. However, for K large enough, the recommended assortment is in the attractive

assortment set P . Since the retailer pursues the largest possible K, in the equilibrium the

category captain’s recommendation of assortment lies in P .

While the competitive exclusion effect does not reveal itself in the extension described

above due to the absence of asymmetric information, the inclusion of asymmetric information

into this model would result in competitive exclusion. In a separating equilibrium, since the

information would be fully revealed, the competitive exclusion would not be a major concern.
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We conjecture that the recommended assortment will be in the attractive set. In a pooling

equilibrium, however, the competitive exclusion would become a serious issue because the

retailer would set its target to ensure that the low type category captain is indifferent between

accepting and rejecting the contract. In this case, the high type captain might be able to

deliver the target profit set by the retailer with multiple different assortments. If that is the

case, the captain would prefer recommending an assortment that has the lowest VS, which

would be a deviation from retailer’s preferences toward an assortment in the most attractive

assortment set. Therefore, in a pooling equilibrium, we conjecture that the recommended

assortment might not be in the attractive set.

We conducted a numerical study to confirm our intuition. We assume that vi = v + δi

with δ1 > δ2 > ... > δN . As in our original model, we assume that while the category captain

knows the consumer type, the retailer’s prior beliefs are such that v = vH with probability α

and v = vL with probability 1−α. We assume that there are eight manufacturers that want

to sell their product to consumers through the retailer, that is N = 8. We use the following

parameter set in our numerical study: λ = 100, m = 5, w1 = 4, v0 = 12, vH = 5, vL = 2,

α = 0.5, β = 10, and δ1 = 5, δ2 = 4.5, δ3 = 4.2, δ4 = 4, δ5 = 3.5, δ6 = 3, δ7 = 2.4, δ8 = 2.

With this set of parameters, it is optimal for the retailer to offer the six products with the

highest attractiveness in the RCM scenarios. Under category captainship, the assortment

outcome depends on the parameter Λ which measures the category captain’s traffic driving

ability. For example, for Λ = 10, the retailer prefers separating equilibrium. In this case,

if the category captain accepts the category captainship contract (i.e., if consumers are L

type), the retailer offers the all products in the category. The additional traffic allows the

retailer to expand its assortment offering. If the category captain rejects the contract (i.e.,

the consumers are H type), the retailer infers that consumers are H type and offers the five

products with the highest attractiveness.

If, on the other hand Λ = 20, the retailer prefers pooling equilibrium. In this case,

if the consumers are L-type, the category captain recommends an assortment with the six
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most popular products and if the consumers are H-type, the category captain recommends

an assortment that include the first, third and seventh products only. This confirms our

intuition that under a pooling equilibrium the recommended assortment is not in the popular

assortment set and some of the popular products might be excluded from the assortment.

To summarize, we conclude that depending on the type of equilibria that will be preferred

by the retailer, the category captainship might result in different types of products being

excluded from the assortment. If the captain’s traffic driving abilities are limited (i.e., the

retailer prefers separating equilibria), the category captain will exclude the products with

low attractiveness whereas if the captain’s traffic driving abilities are significant (the retailer

prefers pooling equilibrium), the captain might exclude the high attractiveness products.
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CHAPTER IV

PRICE DISCRIMINATION IN QUANTITY COMPETITION

Introduction

Many firms operate in markets that are subject to demand uncertainty. Also, many firms

operate in markets with different variety of consumers. Naturally, markets that contain both

of these structural elements create an incentive conflict for the firms. On one hand, firms

that face uncertainty choose sub-optimal strategies, which results in profit losses, in order

to smooth their strategies across different market outcomes.1 On the other hand, firms that

face different variety of consumers tend to discriminate consumers by offering different prices

in the hope of capturing higher surplus.2

Examples of firms competing in markets that have demand uncertainty and possibility

of price discrimination can be seen in various industries such as passenger transportation,

hotels, and automobile rentals.3 Especially, passenger transportation industries (airlines,

trains, buses, etc.) where firms compete for seats offered for a specific route are good

examples of such settings. For instance, airline tickets are sold in unit quantity and it is a

common practice that airlines price discriminate. There are also different type of consumers

(e.g., people who only fly in business class no matter what the ticket price is, or people who

can go with either business or economy, depending on the price) in the airline transportation

market as well as the demand uncertainty.

1For instance, in a Stackelberg environment, Anand and Goyal (2009) examine the incentives of competing
firms when the information about the demand uncertainty is asymmetric. Their model predicts that firms
in this environment choose sub-optimal quantities (comparing with the complete information benchmark)
and make less profit in the presence of information asymmetry.

2For example, Hazledine (2006) and Kutlu (2009) extends the standard quantity competition models by
introducing price discrimination to an exogenously determined number of markets.

3While these industries have other characteristics of price discrimination, such as the airlines use other type
of travel restrictions (e.g., Saturday-night stay-overs) on discount fares and advance purchase requirements,
they seem to satisfy the spirit of our assumptions.
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This paper focuses on the incentive tradeoff between demand uncertainty and price dis-

crimination. Motivated by this tradeoff, the goal of this paper is to better understand the

consequences of exogenously enforced price discrimination. In particular, we consider a lin-

ear demand duopoly model in which two firms engage in quantity competition over two

varieties of a product. In our quantity competition setting, the question of how prices are

determined if firms do not set them directly arises naturally. A general answer to these types

of questions is provided by Kreps and Scheinkman (1983), who showed that the quantity

competition outcome is equivalent to the outcome of a two-stage game in which firms decide

on production capacity in the first stage and subsequently compete in prices. Our setting fits

better to the environments in which the total capacity is relatively inflexible vis-à-vis price

changes. By changing the timing of the model, we consider the incentives of the duopoly

firms under both Cournot and Stackelberg settings. Depending on the timing of the model

we find and compare the relevant equilibrium outcomes.4

An important aspect of our model is that we allow demand interdependence between

two varieties of the same product. We incorporate such an interdependence by allowing

three different types of consumers in the demand model: loyal consumers for a variety and

switchers, who can potentially purchase both of the varieties. The existence of three types

of consumers produce a demand behavior where the cross price effects between varieties are

asymmetric. Such a demand behavior is consistent with the empirical results in the marketing

literature. For example, Blattberg et al. (1995) study the empirical generalizations on

promotion effects and show that cross-promotion effects are asymmetric and promoting a

higher-priced (higher quality) brand impacts a lower-priced (lower quality) brand more so

than the reverse. This phenomenon, which is known as the asymmetric price effect, is

documented by Blattberg and Wisniewski (1989) and has been extensively studied in the

literature.5

4For instance, we find perfect Bayesian equilibria for the Stackelberg game with asymmetric information
whereas we only need the standard Nash equilibrium for the full information Cournot game.

5See for example Sethuraman et al. (1999) and the references therein.
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There is a small literature on the theory of price discrimination in oligopolistic set-

tings. Borenstein (1985) examines third degree price discrimination in the Bertrand model.

Holmes (1989) compares the impact of the third degree price discrimination on monopoly and

duopoly outcomes when a market can be split into two independent markets. Corts (1998)

identifies a situation in which price discrimination is a prisoners’ dilemma for duopoly firms.

There is also a recently developed literature of price discrimination in oligopolistic quantity

competition settings. In particular, Hazledine (2006) and Kutlu (2009) examine the second

degree price discrimination in the Cournot and Stackelberg competition models, respectively.

This paper diverges from the literature by allowing asymmetric cross price effects between

markets. In addition, we examine the equilibrium behavior of the duopoly firms in the pres-

ence of demand uncertainty, which is generally not the case for the models in the literature.

Another stream of papers directly related to this paper are located in the revenue manage-

ment literature, which can be summarized as the use of market segmentation and assigning

quantity limits on each fare to generate maximum profit.6 Dana (1999) presents an oligopoly

model of price discrimination with uncertain demand in which competition increases the dis-

persion of prices. We diverge from this line of research by allowing firms to compete in a

market where two different varieties of the same product exist.

This paper extends the standard Cournot and Stackelberg competition literatures by

characterizing the equilibrium outcomes in the presence of multiple varieties. Our results

provide intuition on whether the firms that engage in quantity competition choose to practice

price discrimination. In the earlier literature, the results of Hazledine (2006) and Kutlu

(2009) are conflicted about the optimal quantity behavior of the firms. While Hazledine

(2006) shows that all firms choose to price discriminate in the Cournot setting, Kutlu (2009)

points out that only the follower price discriminates in the Stackelberg setting. We contribute

to this line of research by showing that a firm chooses not to practice price discrimination

when the firm is the leader in the market and the cross price effects between varieties are

6See Dana (1999) for a nice review of the revenue management literature.
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one sided.7 If the leadership is not established in the market or the cross price effect is not

one sided, then price discriminating is a dominant strategy for both firms. We also show

that the existence of switcher type of consumers is crucial for the price differences between

the varieties in the equilibrium.

Demand Model

There is a product characteristics x and the unit line [0, 1] is the characteristics space.

There are two variants, which are represented by the points B ∈ [0, 1] (business variant)

and E ∈ [0, 1] (economy variant) in the characteristic space, with B 6= E. For simplicity,

we assume that the variants are located on the boundaries of the characteristic space, i.e.,

B = 0 and E = 1. Three types of consumers exist: (i) business loyal (LB), (ii) economy

loyal (LE), and (iii) switcher (S). Business loyal type of consumers purchase either one unit

of the variety B or nothing, economy loyal type of consumers purchase either one unit of the

variety E or nothing, and switcher type of consumers purchase either one unit of B or E, or

nothing.

There is a continuum of consumers with type k ∈ {LB, LE, S}, who are differentiated

by their most preferred characteristic points, distributed according to uniform distribution

over the characteristic space. Each consumer purchases one unit of the variant which offers

the greatest utility. The utility of the consumer with type k, who is located at x (where x

corresponds to his most preferred point) and purchasing the variant i ∈ {B,E}, is given by

Uk
i (x) = vki − θki Pi − td(x, i) (1)

where vki representing the reservation value of the type k consumer from the consumption

of the variant i, t is a positive constant, and d(x, i) is the ideological distance between the

consumer located at x and the variant i. The parameter θki measures the price sensitivity of

7We say the cross price effect is one sided if the change in the price of a variety effects the demand of the
other quantity but not vice versa.

99



the type k consumer who purchases the variant i. Hence the first two terms in (1) can be

seen as being common to all consumers. By contrast, the last term differs across consumers

and it measures a consumer’s disutility from not buying the ideal variant. We assume that

the loyal consumers receive a negative utility by consuming the product that they are not

loyal to. That is, v
Lj

i < 0 for i, j ∈ {B,E} and i 6= j. Figure 10 represents this market

structure. While the switchers decide whether to buy the business variant or the economy

variant, the loyal consumers decide whether to buy the variant that they are loyal to or not

to buy at all. In particular, a business loyal consumer, who is located at x, solves

ULB(x) = max{0, ULB
B (x)} = max{0, vLB

B − θ
LB
B PB − tx}

and an economy loyal consumer, who is located at x, solves

ULE(x) = max{0, ULE
E (x)} = max{0, vLE

E − θ
LE
E PE − t(1− x)}

whereas a switcher consumer, who is located at x, solves

US(x) = max{0, ULB
B (x), ULE

E (x)} = max{0, vSB − θSBPB − tx, vSE − θSEPE − t(1− x)}

when facing the prices of PB and PE.8 In order to avoid boundary issues, we assume

t > max{V LB
B , V LE

E , V S
B , V

S
E }

throughout the rest of the paper, where V k
i = vki − θki Pi for k ∈ {LB, LE, S} and i ∈ {B,E}.
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Figure 10: Demand Model

We can define the market space of the variant i from the k-type consumers as

Mk
i = {x ∈ [0, 1] : Uk

i (x) ≥ max{0, Uk
j (x)}}

where i 6= j ∈ {B,E} and k ∈ {LB, LE, S}. Then, the demand for variant i from k-type

consumers is

Qk
i =


vki
t
− θki

t
Pi, if k = Li,

t+vki −vkj
2t

− θki
2t
Pi +

θkj
2t
Pj, if k = S, and

0, if k = Lj.

There is a dependence (i.e., MS
B + MS

E > 1) between the two variants’ demands when the

prices are low. However, when the prices are high enough, the two markets are separated

(i.e., MS
B +MS

E < 1). In particular, if

θSBPB + θSEPE > vSB + vSE − t

then the demand for each variant is independent from the price of the other variant and

8Notice that d(x,B) + d(x,E) = 1 since we assume that B and E are located on the two edges of the unit
interval.
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equal to

Qk
i =


vki
t
− θki

t
Pi, if k ∈ {Li, S} and

0, if k = Lj.

Throughout the rest of the paper, we restrict our attention to the more interesting case

where there is a dependence between the two variants’ demands. That is, we consider only

the set of prices that satisfy the inequality θSBPB + θSEPE ≤ vSB + vSE − t.

Total demand for the variant i is simply the sum of the demand for variant i from each

consumer type and equal to

Qi =
∑
k

Qk
i =

t+ vSi − vSj + 2vLi
2t

− θSi + 2θLi
2t

Pi +
θSj
2t
Pj

where
t+vSi −vSj +2vLi

2t
is the demand intercept,

θSi +2θLi
2t

measures the own price effect of the variant

i whereas
θSj
2t

measures the cross price effect. The existence of different price sensitivities leads

to a demand function with different cross price effects. In particular, the effect of a change

in the price charged to the consumers close to the variant B is different than the effect

of a change in the price charged to the consumers close to the variant E. Such a demand

behavior is consistent with the empirical results in the marketing literature, which names this

phenomenon as asymmetric price effect.9 The inverse demand functions obtained through

these demand functions are

Pi = δi − γiiQi − γijQj

for i ∈ {B,E}, where

δi =
(t+ vSi − vSj + 2vLi )θLj + (t+ vLi + vLj )θSj

θSi θ
L
j + θLi θ

S
j + 2θLi θ

L
j

,

9See Blattberg and Wisniewski (1989), Sethuraman et al. (1999), and the references therein.
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γii = t
θSj + 2θLj

θSi θ
L
j + θLi θ

S
j + 2θLi θ

L
j

, and γij = t
θSj

θSi θ
L
j + θLi θ

S
j + θLi θ

L
j

.10

Notice that the existence of loyal consumers ensures that the own price effect is greater than

the cross price effect, i.e., γii > γij. We assume that δi = δj = δ throughout the rest of the

paper. This assumption is only for convenience. It does not play any crucial role for the

results of the paper, however, it simplifies the analysis substantially.

Benchmarks

We focus our analysis on the markets in which two firms engage in quantity competition.

Depending on the timing of the setup, we can have either a model of Cournot competition

or Stackelberg competition. In particular, we consider a situation in which a leader firm

(L), who is already providing both varieties to a market as a monopoly, faces a follower

(F ). There is no cost of entrance for the follower. For simplicity, we assume that firms have

common marginal cost c, which is constant for all levels of production and small compared to

the demand intercept, i.e., δ > c. Each firm has to decide on allocating their total production

to the two varieties, which is denoted by qk = (qkB, q
k
E) where k ∈ {L, F}. We consider two

cases: (i) the follower cannot observe the quantity allocation decision of the leader (Cournot

competition) and (ii) the follower can observe the quantity allocation decision of the leader

before deciding on its quantity allocation (Stackelberg competition). The inverse demand

function of the variety i ∈ {B,E} is given by the expression in (2), where Qi = qLi + qFi

denotes the total quantity supplied by two firms.

Cournot Benchmark

We first consider that the firms play a simultaneous move game and know the shape of

the demand for each variety. In the first stage, the leader decides how much quantity to

supply for each variety, i.e., qL = (qLB, q
L
E). In the second stage, without observing the choices

10For convenience, throughout the rest of the paper, we use i and j for generic names of the two different
varieties. That is, i, j ∈ {B,E} and i 6= j.
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of the leader, the follower decides on its allocation qF = (qFB , q
F
E). Because there is no

information transition from the first stage to the second this setting technically corresponds

to a simultaneous move game.

When the leader and the follower chose allocations qL and qF , respectively, the profit for

the firm k ∈ {L, F} under the Cournot competition is

Πk = max
qk

∑
i∈{B,E}

(Pi − c)qki =
∑

i∈{B,E}

[δ − c− γiiQi − γijQj] q
k
i ,

which leads to the first order conditions

∂Πk

∂qki
= δ − c− γiiQi − γijQj − γiiqki − γjiqkj = 0

for i ∈ {B,E} and k ∈ {L, F}. The solution to these first order conditions determines the

reaction functions and the equilibrium quantity choices of the firms for each market.

Proposition 1 When the firms engage in Cournot competition under complete information,

the unique Nash equilibrium strategies of the firms, the market prices, and the firm profits

are

qki = δ−c
2
fj and Πk = (δ−c)2

2
[f1+f2

3
],

Pi = c[γiifj + γijfi] + δ[1− γiifj − γijfi]

where i ∈ {B,E}, k ∈ {L, F}, and

fj =
3γjj − 2γij − γji

4γiiγjj − (γij + γji)2 +
(γiiγjj−γijγji)

2

.

This benchmark result is consistent with the results in the previous literature. First, it

is straightforward to see that qki > 0 for i ∈ {B,E} and k ∈ {L, F} because γii > γij and

γii > γji, which is a result of common demand intercept assumption and the existence of
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the loyal consumers. Second, when there is only one variety, the results in Proposition 1

coincide with the original Cournot model outcome. That is, when the own price effect of the

variety j approaches to infinity (γjj → ∞), the equilibrium quantity decisions of the firms

approach to the Cournot equilibrium outcome (qki → δ−c
3

). Similarly, if there are no cross

price effects (i.e., γij = 0), the solutions in Proposition 1 coincide with the classical Cournot

model results in which two firms compete in two independent markets. Third, the results

in Proposition 1 are also consistent with the ones in Hazledine (2006) when the number of

markets in Hazledine (2006) is restricted to two. If the cross price effects are asymmetric

in such a way that the quantity of a variety affects the price of the other variety but not

vice versa, then the solutions in Proposition 1 coincide with the ones in Hazledine (2006).

In particular, when γ11 = γ22 = γ21 = 1 and γ12 = 0, the results in Proposition 1 reduce to

qk1 = 2(δ−c)
7

and qk2 =
qk1
2

= δ−c
7

, which is identical to the ones in Hazledine (2006) under the

restriction that there are two markets.

Proposition 1 suggests that unless the cross price effect is one sided (i.e., γij = 0 and

γji > 0), firms that are engaged in Cournot competition under complete information prefer

to supply both varieties while differentiating their prices. A comparison of the equilibrium

prices between two varieties reveals the following corollary.

Corollary 2 θSj > θSi implies PC
j > PC

i .

where PC
j is the complete information Cournot game equilibrium price for the j-th variety.

Intuitively, as long as the own price effects dominate the cross price effects (i.e., γii > γij),

the market price is higher for the variety that has higher price sensitivity of the switchers

(i.e., θSi ). This intuition holds for all possible non-negative levels of the own price effects.

Stackelberg Benchmark

In this section, we focus on the situation that the leader and the follower engage in a

Stackelberg type of competition where they move sequentially, rather than simultaneously.
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In particular, we consider the same setting as in the Cournot section but change the timing

of the game. The leader decides on allocation strategy qL in the first stage. However this

time, in the second stage, the follower decides allocation qF only after observing the strategy

choice of the leader.

We find the subgame perfect Nash equilibrium by solving the game backwards, starting

with the follower’s problem. The profit for the follower when the allocation choices of the

leader and the follower are qL and qF , respectively, is

ΠF = max
qF

∑
i∈{B,E}

(Pi − c)qFi =
∑

i∈{B,E}

[δ − c− γiiQi − γijQj] q
F
i ,

which leads to the following first order conditions:

∂ΠF

∂qFi
= δ − c− γiiQi − γijQj − γiiqFi − γjiqFj = 0

for i ∈ {B,E}. The solution to these first order conditions determines the follower’s reaction

functions for each market. Let qF∗ = (qF∗1 , qF∗2 ) be the best response strategy of the follower,

which solves the first order conditions of the follower’s problem. By anticipating best response

strategy of the follower, the leader solves

ΠL = max
qL

∑
i∈{B,E}

(Pi − c)qLi =
∑

i∈{B,E}

[
δ − c− γii(qLi + qF∗i )− γij(qLj + qF∗j )

]
qLi

to find its optimal allocation. The allocation that solves the first order conditions of the leader

simultaneously characterizes the unique equilibrium, which is summarized in Proposition 2.

Proposition 2 When the firms engage in Stackelberg competition under complete informa-

tion, the unique subgame perfect Nash equilibrium strategies of the firms, the market prices,
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and the firm profits are

qLi = δ−c
2
gj and qFi = δ−c

2
hj,

ΠL = (δ−c)2
2

[h1+h2
2

] and ΠF = (δ−c)2
2

[h1+h2
4

],

Pi = c[γii
gj+hj

2
+ γij

gi+hi
2

] + δ[1− γii gj+hj
2
− γij gi+hi2

]

where

gj =
γjj − γij

γiiγjj − γijγji
.

The results in Proposition 2 are also consistent with the results in the earlier literature.

First, when there is only one variety, the results in Proposition 2 coincide with the original

Stackelberg model outcome. That is, when the own price effect of the second variety ap-

proaches to infinity (γjj → ∞), the equilibrium quantity decisions of the firms approach to

the Stackelberg equilibrium outcome (qIi → δ−c
2

and qEi → δ−c
4

). Similarly, if there are no

cross price effects (i.e., γij = 0), the solutions in Proposition 2 coincide with the classical

Cournot model results in which two firms compete in two independent markets. Second, the

results in Proposition 2 are also consistent with the ones in Kutlu (2009) when the number

of bins in Kutlu (2009) is restricted to two. If the cross price effects are asymmetric in such

a way that the quantity of a variety affects the price of the other variety but not vice versa,

then the solutions in Proposition 2 coincide with the ones in Kutlu (2009). In particular,

when γ11 = γ22 = γ21 = 1 and γ12 = 0, the results in Proposition 2 reduce to qk1 = δ−c
2

and

qk2 = δ−c
6

, which is identical to the ones in Kutlu (2009) under the restriction that there are

only two varieties.

Finally, Proposition 2 suggests that firms that are engaged in Stackelberg competition

under complete information prefer to supply both varieties while differentiating between

prices as long as the cross price effects are small as compared to the own price effects.

A comparison of the equilibrium prices between two varieties reveals a result similar to
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Corollary 2,

Corollary 3 θSj > θSi implies P S
j > P S

i

where P S
j is the complete information Stackelberg game equilibrium price of the j-th variety.

Intuitively, as long as the own price effects dominate the cross price effects (i.e., γii > γij for

i, j ∈ {1, 2}), the market price is higher for the variety for which the price sensitivity of the

switchers is higher. This intuition holds for all possible non-negative levels of the own price

effects. Corollary 3 together with Corollary 2 highlight, perhaps surprisingly, that the order

of move is not crucial for the differences between equilibrium market prices of the varieties.

What matters ultimately is the price sensitivity of the switchers.

Analysis with Incomplete Information

In the previous section, we consider the effects of multi variety on the quantity com-

petition under complete information and found the benchmark results. When firms are

completely informed about the demand, the existence of a second variety increases the equi-

librium profits of both firms as compared to their profits in one standard quantity competition

profits, thanks to the firms’ ability to price discriminate. However, when one firm has incom-

plete information about the demand, the benchmark results are likely to move towards to the

standard quantity competition outcomes since the firms will choose sub-optimal quantities

in such situations. The surplus generating effects of price discrimination may be eliminated

by the loss generating effects of sub-optimal quantity choices. We first examine the effects

of incomplete information on the Cournot benchmark and later consider its effects on the

Stackelberg benchmark.

Cournot Competition with Incomplete Information

We model the effects of multi variety on the competition under incomplete information via an

asymmetric information Cournot game. In particular, we relax the symmetric information
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assumption and consider the Cournot duopoly model in which the inverse demand given by

Pi = δ̃ − γiiQi − γijQj.

The intercept δ̃ is random and equal to δh (high demand) with probability α and to δl (low

demand) with probability 1 − α. Furthermore, we assume that information is asymmetric:

the leader L knows the true value of δ̃, but the follower F only knows the distribution of δ̃.

All other aspects of the game are common knowledge.

Naturally, the leader may want to choose a different quantity allocation if the demand is

high than if it is low. Let qLh and qLl denote the leaders’s quantity allocation choices when

the demand state is high and low, respectively. The leader will choose qLk to solve

ΠLk = max
qLk

∑
i∈{B,E}

[
δk − c− γiiQi − γijQj

]
qLki

for k ∈ {h, l}. The follower should anticipate that the leader will tailor its quantity allocation

according to the demand state and solve

ΠF = max
qF

α

 ∑
i∈{B,E}

(P h
i − c)qFi

+ (1− α)

 ∑
i∈{B,E}

(P l
i − c)qFi


so as to maximize expected profit, where P k

i = δk − γiiQi − γijQj is the price of the variety

i ∈ {B,E} when the demand state is k ∈ {h, l}.

The first order conditions to these optimization problems are

∂ΠLk

∂qLki
= δj − c− γiiQi − γijQj − γiiqLki − γjiqLkj = 0, and

∂ΠF

∂qFi
= µ− c− γiiE[Qi]− γijE[Qj]− γiiqFi − γjiqFj = 0

where E[Qi] = qFi + E[qLi ] = qFi + αqLhi + (1 − α)qLli and µ = αδh + (1 − α)δl. The first

order conditions of the firms determine their reaction functions. By solving the reaction
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functions of the firms simultaneously, we get the Bayesian-Nash equilibrium outcome, which

is summarized in the following proposition.

Proposition 3 When the firms engage in Cournot competition under incomplete informa-

tion, the unique Bayesian-Nash equilibrium strategies of the firms in each market, the market

prices, and the firm profits are

qLki = µ−c
2
fj + (δk − µ)hj and qFi = µ−c

2
fj,

ΠLk = (δk−c)(µ−c)
2

[f1+f2
3

] and ΠF = (µ−c)2
2

[f1+f2
3

],

P k
i = c[γiifj + γijfi] + δk[1− γiifj − γijfi] + µ[γii(hj − fj) + γij(hi − fi)]

where k ∈ {h, l} and

hj =
2γjj − γij − γji

4γiiγjj − (γij + γji)2
.

Proposition 3 shows that both firms prefer to supply both varieties, however, the leader

provides different quantities for different varieties, whereas the follower smooths out its

quantity allocation between the varieties. The leader takes advantage of the information

asymmetry by supplying more whenever the demand is high and less whenever it is low.

Notice that the expected quantity (i.e., E[qLi ] = αqLhi + (1− α)qLli ) that the leader provides

for a variety is equal to the quantity provided by the follower for the same variety. Thus,

the leader and the follower earn the same profit in expectation. However, the existence of

asymmetric information leads to sub-optimal quantity choices for both firms. By comparing

the prices for two varieties, we can also conclude that the intuition in Corollary 2 is no more

valid when one of the firms has superior knowledge about the demand state. In the presence

of information asymmetry, not only the cross price effects but also the own price effects play

an important role in determining the difference between the price levels of the varieties.
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Stackelberg Competition with Incomplete Information

We now consider the effects of multi variety on the competition under incomplete information

when the firms choose their quantity allocations sequentially. As in the previous section, we

relax the symmetric information assumption and consider a Stackelberg competition model

with the inverse demand given by (2). We maintain all the modeling assumptions in the

previous section but change the timing of the model. Technically, this setting is a signalling

game in which the (informed) leader signals the demand state to the (uninformed) follower

by choosing its quantity allocation. Due to the nature of the game, we are interested in

the perfect Bayesian equilibria. As common in games of imperfect information, we focus on

separating and pooling equilibria. In this game, the leader has an incentive to mislead the

follower about the state of demand only when the true demand is high. Thus, it is reasonable

to expect that, in a separating equilibrium, for some set of parameters the low type leader

will sacrifice some profit for separation. Similarly, in a pooling equilibrium, the leader will

possibly prefer to decrease the competitiveness of the follower by maintaining information

asymmetry at the cost of losing sales when the demand is high.

Because the leader moves first and knows whether the demand is high or low, the

leader’s strategy choice generates a signal about the true state of the demand. A strat-

egy qL = (qL1 , q
L
2 ) for the leader specifies a quantity allocation for each possible level of δ̃. A

strategy for the follower specifies a quantity allocation in response to the leader’s allocation

choice. Because the follower does not know the true intercept δ̃, the follower must form some

conjectures (or beliefs) about δ̃ on the basis of the leader’s choice of quantity allocation. De-

fine point beliefs δ̃ = b(qL), which assigns a unique type of the leader (level of intercept) to

each quantity allocation choice of the leader. Given the beliefs b(·), the expected profit for

the follower when the leader and the follower chose allocations qL and qF , respectively, is

ΠF =
∑

i∈{B,E}

(Pi − c)qFi =
∑

i∈{B,E}

[
b(qL)− c− γiiQi − γijQj

]
qFi . (2)
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Expected profit for the leader, who knows that the intercept of the demand is δ̃, chooses the

allocation qL, and takes as the given strategy qF∗ of the entrant, is

ΠL =
∑

i∈{B,E}

(Pi − c)qLi =
∑

i∈{B,E}

[
δ̃ − c− γii(qLi + qF∗i )− γij(qLj + qF∗j )

]
qLi . (3)

As common in Bayesian games, there are multiple perfect Bayesian equilibria. We focus on

two types of equilibria: (i) separating equilibrium and (ii) pooling equilibrium.

Separating Equilibrium. In a separating equilibrium, the leader chooses a distinct al-

location in each demand state. The allocation decision of the leader shapes the follower’s

inferences about the underlying demand. In the equilibrium, the follower correctly infers the

true state of the demand from the leader’s choice of allocation.

We can construct a candidate separating equilibrium as follows. Consider first the deci-

sion problem of the follower, which is given by (2). Because the follower infers the true state

of the demand in a separating equilibrium and the leader knows that the follower can infer

the true state of the demand, the firms will make their decisions as if they are engaged in a

complete information Stackelberg competition. However, in order to ensure the existence of

the separating equilibrium, the equilibrium profits have to satisfy individual rationality and

incentive compatibility constraints.

As before, let qLh and qLl be the quantity allocation of the leader when the demand

intercept is high and low, respectively. Similarly, let qFh and qFl be the quantity allocation

of the follower when the demand intercept is high and low, respectively. Because in a

separating equilibrium the follower correctly infers the true state of the demand, the first

order conditions for the follower’s problem, which are derived from the optimization problem

in (2), are

∂ΠFk

∂qFki
= δk − c− γiiQi − γijQj − γiiqFki − γjiqFj = 0

when the demand is k ∈ {h, l}. Let qFk∗ be the reaction function of the follower, which

solves the first order conditions of the follower’s problem. Then, the k-type leader’s optimal
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decision must emerge as a solution to the optimization program

ΠLk = max
qLk

∑
i∈{B,E}

[
δk − c− γii(qLki + qFk∗i )− γij(qLkj + qFk∗j )

]
qLki

together with the non-negativity and incentive compatibility constraints. We first find the

solution to the unconstrained case and later verify indeed this solution satisfies the incentive

compatibility conditions, hence it is an equilibrium. By finding the first order conditions for

the leader’s problem and solving them simultaneously, we get the equilibrium strategies in

Proposition 2.

The only remaining issue is to determine the conditions under which the allocations pro-

vided in Proposition 2 are indeed equilibrium allocations. To do that, we need to ensure

that these strategies satisfy the incentive compatibility and non-negativity constraints. Be-

cause gj > 0 and hj > 0, the solutions are all non-negative. Thus, we just need to consider

the incentive compatibility constraints, which are shown to be equivalent to the following

inequalities after a tedious algebra

δh − c
δl − c

≥ 1 + γ̄ ≥ δl − c
δh − c

where 1 + γ̄ = 2 g1+g2
h1+h2

. While the inequality on the left ensures that the high type leader

does not find profitable to mimic the low type, the one on the right ensures the opposite.

Notice that the inequality on the right is never binding because δk > c for k ∈ {h, l}. Thus,

the low type leader never finds it profitable to mimic the high type.

A reasonable belief structure ought to satisfy the following intuitive essentials in order

to support the equilibrium. If the quantity choices of the leader were “high enough” in both

markets, the follower ought to infer that the demand state is high; similarly, if the quantity

choices of the leader were “low enough” in both markets, the follower would infer that the

demand state is low. The leaders allocation strategy increases in the probability the leader

ascribes to high demand.
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The above formulation embeds the notion of a perfect Bayesian-Nash equilibrium in the

following sense: (i) the leader’s actions (the optimal order quantities) are a best response to

what the leader knows at that point (the realized demand state), what the follower optimizes,

and to the leader’s own conjecture on the follower’s beliefs. (ii) the follower’s optimization is

in turn a best response to what the follower knows at that stage (the leader’s order quantity)

and the follower’s beliefs on the actual demand state. (iii) the follower’s actual beliefs and

the leader’s conjectures on the follower’s beliefs coincide.

Proposition 4 When the firms engage in Stackelberg competition under incomplete infor-

mation, there exist a separating equilibrium if δh−c
δl−c ≥ 1 + γ̄ and the firms play

qLki = δk−c
2
gj and qFki = δk−c

2
hj,

P r(b(qL) = δh) =

 1, qL ≥ qLl;

0, otherwise.

where k ∈ {h, l} and Pr(b(qL) = δh) is the follower’s belief that the leader is the high type.11

In this equilibrium, the market prices and the profits of the firms are

ΠLk = (δk−c)2
2

[h1+h2
2

] and ΠFk = (δk−c)2
2

[h1+h2
4

],

P k
i = c[γii

gj+hj
2

+ γij
gi+hi

2
] + δk[1− γii gj+hj

2
− γij gi+hi2

].

Because the information is fully revealed in a separating equilibrium, the parties achieve the

full information game outcome. However, this equilibrium outcome has to deter the high

type leader to mimic the low type. The high type leader would not mimic the low type only

if the asymmetry about the market demand (which is measured by δh−c
δl−c ) is large enough, or

in other words, when the information valuation is high for the leader. In the equilibrium,

the follower believes that the demand is high whenever the follower observes that the leader

chooses a quantity greater than qLl, which is the amount that the leader would choose if

11We define qL ≥ qLh as qLi ≥ qLh
i for all i ∈ {1, 2} and qLi > qLh

i for at least one of the varieties.
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the demand was low. So, the follower plays safe and chooses to be an aggressive competitor

rather than a soft one whenever the demand state is still ambiguous after observing the

leader’s signal.

Pooling Equilibrium. In a pooling equilibrium, the leader chooses the same allocation

at each demand state so that the follower cannot infer the underlying demand from the

allocation decision of the leader. On the negative side, the high type leader incurs a cost of

loss sales since the high type leader has to be less aggressive competitor in order to pool. On

the positive side, the high type leader receives the benefit of competing with a less aggressive

follower, which increases the profit of the leader.

A candidate pooling equilibrium can be constructed as follows. Consider first the decision

problem of the follower, which is given by (2). Because the leader’s strategy does not reveal

any information to the follower, the first order conditions for the follower’s problem are

∂ΠF

∂qFi
= µ− c− γiiE[Qi]− γijE[Qj]− γiiqFi − γjiqFj = 0

for i ∈ {B,E}. The solution to these first order conditions determines the reaction functions

of the follower for each variety. Let qE∗ = (qE∗1 , qE∗2 ) be the reaction function of the follower.

In a pooling equilibrium, both types of the leader must play the same strategy so that the

follower cannot infer the true demand state from the leader’s strategy. The low type leader

does not have an incentive to mimic the high type. Because the high type must play the

same strategy as the low type, the leader’s optimal decision must emerge as a solution to

ΠLk = max
qL

∑
i∈{B,E}

[
P k
i (qLl, qE∗)− c

]
qLli (4)

together with the non-negativity and incentive compatibility constraints. As in the previous

section, we first find the solution to the unconstrained case and later verify that the solution

satisfies the incentive compatibility conditions, hence it is an equilibrium. By deriving the
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first order conditions for the leader’s problem and solving them simultaneously, we find a

candidate for pooling equilibrium, which is summarized in Proposition 5 below.

It is straightforward to show that the solutions satisfy the non-negativity conditions. It

is also immediate that the low type does not have any incentives to mimic the high type

since doing so would result in a more aggressive follower. So, we only need to consider the

incentive compatibility constraint of the high type leader, which is shown to be equivalent

to the following inequality after a tedious algebra

δh − c
δl − c

≤ 1 + γ̂ (5)

where γ̂ = γ̄−(1−α)2

αγ̄+(1−α2)
. This inequality ensures that the high type leader finds it attractive

to mimic the low type. The leader prefers to mimic the low type only if the information

asymmetry about the market demand is low.

Proposition 5 When the firms engage in Stackelberg competition under incomplete infor-

mation, there exist a pooling equilibrium if δh−c
δl−c ≤ 1 + γ̂ and the firms play

qLki = δl−c
2
gj − µ−δl

2
[gj + gij] and qFi = µ−c

2
hj + µ−δl

2
[gj + gij]

Pr(b(qL) = δh) =


1, qL ≥ qLl;

α, qL = qLl;

0, otherwise.

where k ∈ {h, l} and Pr(b(qL) = δh) is the follower’s belief that the leader is the high type.

In this equilibrium, the market prices and the profits of the firms are

ΠLl = (µ−c)2
2

[h1+h2
2

]− α(δl − c) δh−δl
2

[g1 + g2],

ΠLh = (µ−c)2
2

[h1+h2
2

] + [α(δh − c)− (δl − c)] δh−δl
2

[g1 + g2],

ΠFk = (µ−c)2
2

[h1+h2
4

] + α(δl − c) δh−δl
2

[g1 + g2] + [α δ
h−δl

2
]2[g1 + g2],

P k
i = c[γii

gj+hj
2

+ γij
gi+hi

2
] + δk[1− γii gj2 − γij

gi
2

] + µ[1− γii hj2 − γij
hi
2

].
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In a pooling equilibrium, the leader chooses the same allocation under either demand

state and the follower cannot infer any demand information from the allocation choice of

the leader. On one hand, the high type leader incurs a loss in profit since the high type

leader has to supply less amount of products for both variety in order to mimic the low type.

However, because no information revelation takes place when the high type leader mimics

the low type, the high type leader gains a surplus since the follower becomes less aggressive

competitor in the high demand state. The gains from having a less aggressive competitor is

higher compared to profit losses due to loss sales when the information asymmetry is small.

Thus, the high type leader prefer not to mimic the low type only if there is a big enough

increase in demand from the low demand state to the high demand state.

As in the Cournot case, by comparing the prices for two varieties, we can conclude that

the intuition in Corollary 3 is also no more valid when one of the firms has superior knowledge

about the demand state. In the presence of information asymmetry, not only the cross price

effects but also the own price effects play an important role in determining the gap between

the market prices.

Conclusion

We extend the standard quantity competition models of duopoly by allowing firms to

compete in two varieties of a homogenous product simultaneously. In particular, we con-

sider both Cournot and Stackelberg models under complete and incomplete information

assumptions and characterize the equilibrium outcomes. Our findings shed light to the con-

flicting results in the recent literature by characterizing the conditions under which both

of the duopoly firms practice price discrimination. Furthermore, we show that the order of

move is not a crucial element of the equilibrium market price differences. What matters is

the existence of consumers who care only about the differences in prices and are otherwise

indifferent between the varieties.

This paper also contributes to the line of research on equilibrium price dispersion. In this
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literature, Dana (1999) extends the equilibrium price dispersion model of Prescott (1975)

to monopoly and imperfect competition, and he finds that demand uncertainty and the

perishable nature of the assets are sufficient for a firm to price discriminate. We show

that unless the cross price effect is one sided and the market leadership is determined, the

duopoly firms choose to operate in both markets if they are competing in quantities. Thus,

we can conclude that competition in markets with asymmetric cross price effects and demand

uncertainty is sufficient for firms to price discriminate.
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