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I.1 Chemotaxis and Morphogenesis 

 

 

Cell migration is a process that plays a central role in a wide variety of biological and 

physiological phenomena. It is an essential component of three pivotal biological processes— 

embryogenesis, wound healing and metastasis. The advent of bioengineering has also made cell 

migration crucial for technological applications such as tissue engineering where it assists in the 

colonization of biomaterials scaffolding. Cell migration has both physical and chemical 

dimensions underlying its occurrence. Therefore, in order to understand it as an integrated 

process, it is essential to have a thorough understanding of the physical and chemical properties 

of the multicomponent assemblies that are involved. Cell migration has been described as a 

‘physically integrated chemical process’ 
[1]

 and the rationale of this statement is evident by the 

fact that it is physically coordinated both spatially and temporally by a number of chemical 

gradients. The studies on cell migration since the past decade have all aimed towards gaining a 

detailed perspective on the physicochemical nature of cell migration.  

Cell migration can be influenced by a range of factors from sunlight to complex gradients 

of biologically significant molecules. Chemotaxis, one of the types of cell migration, is 

characterized by the directed motion of cells in response to external chemical gradients of 

soluble molecules called chemoattractants. Cells can also be repelled by biological substances in 

which case they move away from the direction of the concentration gradient. Chemotaxis is a 

pivotal part of processes such as the movement of macrophages and neutrophils during wound 

healing, the migration of neural crest cells, the movement of endothelial cells in the early stages 

of cancer and metastasis. 
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Figure 1: Illustration of the basic process of cell migration
 [2] 

 

 

The orientation of the direction of motion is achieved by the preference of the pseudopod 

extension towards or away from the higher chemoattractant concentration. The pseudopod is the 

result of the morphological polarization and membrane extension of a migrating cell 
[3]

.  

 Wound healing is a fundamental process that is directed and managed through 

chemotaxis. The formation of a wound initiates a cascade of events such as inflammation, new 

tissue formation and tissue remodeling which lead to partial reconstruction of the wounded area. 

The first step in wound healing is the formation of a clot which is initiated by the 

vasoconstriction of the injured blood vessel and the activation of the intrinsic coagulation 

cascade by the endothelial cells and platelets 
[4]

. The clot that forms is made of collagen, 

platelets, thrombin and fibronectin and these factors release cytokines and growth factors that 

initiate the inflammatory response. This stage marks the advent of chemotactic processes in 

wound healing. Immediately as the clot is formed cellular signals are generated to bring about 

the migration of neutrophils to the wound site. This migratory movement occurs due to the 

responses of neutrophils to gradients of Interleukin (IL)-1, tumor necrosis factor (TNF)-α, 
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transforming growth factor (TGF)-β, PF4 and bacterial products 
[5]

. Macrophages are also 

attracted to the wound site due to the release of the same chemoattractants. Endothelial cells also 

help to bring macrophages and fibroblasts to the wound by the synthesis of IL-1 which, in turn, 

stimulates macrophages and neutrophils to express more of their own chemoattractant cytokines 

and growth factors 
[6]

. Macrophages release the chemoattractants platelet-derived growth factor 

(PDGF), TNF-α, IL-6, granulocyte colony stimulating factor (G-CSF) and granulocyte 

macrophage colony stimulating factor (GM-CSF) to recruit more fibroblasts and macrophages 
[7]

. 

Fibroblasts then release IFN-γ which induces monocytes to turn into macrophages. The process 

of wound healing can be summarized in this way as a cascade of chemotactic events where the 

lymphocytes are the cells involved in the response and the molecular gradients are formed by the 

cytokines and growth factors. 

 

 

 

Figure 2: An illustration of neutrophils during human epithelial wound healing 
[2] 
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Chemotactic cell migration is thought to play an integral part at several stages during 

cancer. The motility of invasive cancer cells is determined by the surrounding 

microenvironment. Subtle changes in the cancer cell’s interaction with the extracellular matrix as 

well as growth factors and cytokines define whether a cell becomes invasive or remains 

stationary in the tumor mass. The motility of cancer cells is being studied through the intravital 

imaging of cells, at single cell resolution, inside tumors within living animals. Protein expression 

analysis of macrophages and tumor cells invading jointly has revealed how these cells are 

attracted to each other and how they play synergistic roles during cancer invasion 
[8]

. Tumor cells 

express CSF-1, which stimulates macrophage chemotaxis, whereas macrophages express 

epidermal growth factor (EGF), which stimulates tumor cell chemotaxis 
[9]

. Several motility 

factors, both tumor and host-derived, as well as growth factors such as basic fibroblast growth 

factor (bFGF), TGF-α, epidermal growth factor (EGF), PDGF and hepatocyte growth factor 

(HGF) can induce chemotactic responses in tumor cells and endothelial cells 
[10]

. Angiogenic 

factors such as VEGF are also potent chemoattractors for endothelial cells and for certain tumor 

cells that express VEGF receptors 
[11]

. The second groups of key players in cancer cell invasion 

are the chemokines. Chemokines are a family of over 40 small (8 kDa) related proteins with the 

function of moving cells along a chemotactic gradient, either to organize cells within an organ or 

to facilitate the movement of leucocytes around the body. In the case of metastasis, a strong 

association is observed between the soluble chemokines and the cell surface, especially to sugar 

residues 
[12]

. Experiments using transwells have suggested that target tumor cells move towards 

increasing concentrations of the chemokine but it is still difficult to provide an explanation as to 

how an effective gradient can be maintained within a fast-flowing blood vessel or at a significant 

distance from the chemokine source in conditions of no flow 
[13]

. The current state of cancer 
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research suggests that several of these signaling pathways such as those involving PDGF and 

EGF are being uncovered. However, the complexity of interaction of gradients and the behavior 

of cells in the vicinity of these complex gradients indicate that additional research will be 

required to fully understand biological responses. 

 

 

Figure 3: Illustration of a chemokine gradient in cancer accompanied by macrophage 

migration 
[14] 

 

 

 The development of the vertebrate embryo also results from a series of complex and 

highly interconnected cell migration processes, giving rise to the difference between the fate map 

of the blastoderm and the definitive location of different tissues. This extensive reorganization of 

the basic regions of the early embryo is a result of morphogenetic movements, including 

individual cell migration in response to molecular gradients and cell sheet spreading during 
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gastrulation 
[15]

. The formation of the neural crest in the embryo and its subsequent development 

into the craniofacial and enteric nervous systems is governed by several chemotactic processes 

involving a complex array of molecular cues which form gradients at different levels 
[16]

. The 

fibroblast growth factor FGF
 
and bone morphogenetic protein (BMP) signaling systems 

[17]
, for 

instance, play numerous roles in the development of the cranial neural crest, being involved in 

the migration, survival, patterning and specification of several neural crest domains. FGF-8 and 2 

have been demonstrated to produce a chemotactic response in cranial neural crest cells in vitro 

and FGF-2 can produce a chemotactic response in vivo 
[18]

. The migratory and proliferative 

behavior of primordial germ cells has also been studied extensively and factors such as TGF-β 

and the Steel/c-kit signaling pathway have been implicated in the chemotactic responses and 

motility of these cells 
[19]

. However, a clear and definitive picture of the factors controlling the 

movement of primordial germ cells in the living embryo is still lacking.  

 In all processes where chemotaxis and cell migration are involved, the molecular 

components are being identified at a very rapid rate compared to the rate at which their 

mechanism of action in migration is being uncovered. The study of cell migration and 

chemotaxis as processes in which all these components participate as an integrated, dynamic 

system is the goal of all current research on these topics and given this goal, it is important to 

have devices that allow quantitative measurements of cellular responses to chemotactic 

gradients. 

 

I.2 Chemotaxis devices 

 

 

A great deal of information on chemotaxis has been accumulated in the past 45 years 

about the molecular components involved but there is not yet sufficient information of the effect 
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of these molecular players on cells. The major limitation of chemotaxis studies has been in terms 

of generating gradients in a controlled manner and maintaining them since cells need to sense 

changes in concentration gradients to direct their motion. The earliest methods of creating 

gradients of chemoattractants utilized collagen, fibrin or agarose gels 
[19]

. These methods relied 

on the diffusion of the chemokine through the gel. Recent methods are not based on gels and 

include the Zigmond Chamber 
[20]

, the Dunn Chamber 
[21]

 and an optical chemotaxis assay 

system 
[22]

. The Zigmond and Dunn chambers work on the principle of diffusion over a short 

distance between two fluid-filled chambers. However, these methods do not allow the formation 

of gradients of different shapes and are also limited in their ability to maintain the gradients over 

long periods of time. The generation of both complex and linear biologically active gradients is 

required to study the role of such gradients and the correlation between their shapes and the 

behavior of cells in them. It is also essential to be able to maintain these concentration gradients 

at conditions close to steady-state.  

 Microfluidic devices are ideal for the creation of such controlled chemotactic gradients. 

Microfabrication methods allow the creation of arbitrary microchannel designs through which 

cells can crawl.  A unique feature of fluids in microfluidic devices is laminar flow which can be 

attributed to the microscale dimensions of such devices. In laminar flows, mixing takes place 

only through diffusion and there is no convection component to consider, unlike in macroscale 

flows. This makes the process of gradient formation simple and provides ease of calculation 

while mathematically characterizing the gradients in the device. The class of laminar flow 

micromixers that utilize this property of laminar flow to pattern surface and solution properties at 

the microscale was developed by Jeon et al. 
[23]

. These devices have been fabricated for the study 

of chemotaxis and can create simple, controlled and linear gradients—their goal is to not mix the 
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streams fully and maintain heterogeneous gradients of the desired shape and magnitude. The 

device consists of two main parts, one of which is the gradient-generating portion and the other 

is the observation portion. Pyramidal branched arrays of microchannels that split, combine and 

mix fluid streams form the gradient-generating portion. Each microchannel contains a different 

portion of the chemoattractant and these are recombined in the main channel such that the 

concentration gradient is perpendicular to the direction of flow and the gradient is maintained 

throughout the length. The observation portion of the device consists of the main channel where 

the cells are placed. This device can be used to manipulate the microenvironment required by 

cells for motility. The underlying principle for this device is the use of low Reynolds numbers to 

eliminate the possibility of any inertial movements such as advection that can arise in diffusive 

flow. The gradient can be maintained at steady-state and cell migration can be observed and 

recorded in real time which enables the user to determine the chemotaxis coefficient without 

prior knowledge of parameters such as the variation of motility with chemoattractant 

concentration.  The potential problem with this device is gradient smearing due to the diffusion 

of chemoattractants at the device surface when streams of different compositions merge at the 

end. Dertinger et al. 
[24] 

extended Jeon’s pyramidal scheme by combining multiple pyramidal 

networks in parallel, generating a broad range of concentration profiles using relatively fewer 

inlets. They demonstrated that increasing the number of inlets on each pyramidal network from 

two to three provides a greater range of concentration profiles. Lin et al. 
[25]

 modified the 

pyramidal model by creating both linear and non-linear gradients and controlling them using 

different flow rates for the inlets. 
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Figure 4: Passive diffusion device fabricated by Jeon et al. 
[23]
 

 

They achieved this by the integration of a separate mixing module with the gradient-generating 

and observation network. 

Wikswo et al. have addressed the above problem in their experiments conducted with the 

device. In the experiments performed by Walker et al. at the Vanderbilt Institute for Integrative 

Biosystems Research and Education (VIIBRE) directed by Dr. John Wikswo, the flow used to 

maintain the gradient creates a small drag force on the cells and the diffusion between the 

streams causes the chemokine gradient to vary down the length of the device 
[23]

. The 

concentration gradient within the device was visualized and quantified using the fluorescent 

molecule FITC-dextran. The two input streams to the device are divided and mixed until five 

streams are created, all of which flow into the main microchannel. The experiments performed 

by Wikswo et. al. have characterized two aspects of the device. Firstly, the cross-sectional 

linearity of the chemokine gradient depends on the position down the length of the microchannel. 

Cells attached near the beginning of the microchannel experience a step-like cross sectional 

profile while cells attached further down the microchannel experience a smoother cross-section. 

Secondly, although higher flow rates are desirable from a gradient viewpoint they can affect cell 

movement through the effects of shear forces on cells.  
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 Figure 5: Extension of the Jeon device to generate gradients of more complex shapes 
[24] 

 

 The device class developed by Jeon et al., is a valuable tool for chemotaxis research but 

the investigator has to consider the dynamic effects of shear force intrinsic to this method of 

developing gradients and investigators must also be extremely careful to provide steady 

regulated flow rates and pay particular attention to bubbles or other obstructions in the flow 

dividing network which can disturb or modulate the intended gradient. 

 

I.3 A microfabricated multi-chambered diffusion device  

 

 

An effort initiated in 2005 from VIIBRE has resulted in the development of a class of 

multi-chambered implantable cell trap devices that can be used to examine the combinatorial 

effects of the gradients of diffusive substances. Figure 6 shows a variant of such a device which 

can be used for in vitro studies of crossed chemokine gradients. 
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Figure 6: VIIBRE microfabricated crossed gradient diffusion device 

 

 

This device is designed to allow the formation of gradients by substances diffusing freely 

in the chamber [B]. It is a square chamber with an upraised cylinder in the centre. It has four 

inlets through which four different substances can be introduced and a central, large volume 

cylinder which acts as the central diffusion sink [D]. The device features cell exclusion fences 

which prevent cells from entering and clogging the narrow flux limiting channels which separate 

the pacman reservoirs from the square cell assay chamber.  During experiments, the device is 

A. Chemokine 

loading port 

B. Square 

Chamber 

C. Cell 

exclusion fence 

D. Cylindrical 

diffusion sink 

E. Pacman-

shaped 

chemokine 

reservoir 
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placed in a Petri dish that is filled with water to the top such that the device is completely 

submerged in water. The uniqueness of the structure of the device is evident in the entry of 

substances into the device and their diffusion through it. It has four ‘pacman’-shaped structures 

[E] at each inlet at a short distance from the actual opening. The pacman structures are connected 

to the main device through short and narrow flux limiting channels. The pacman-shaped 

structures act as finite reservoirs which provide us with a mechanism for allowing the free 

diffusion of substances into the device without active pumping. The channels connecting these 

reservoirs to the main chamber are extremely narrow compared to the rest of the device (Figure 

2-G). This relatively high difference in dimensions provides us with a controlled delivery of 

biologically relevant substances from the reservoirs into the device. In experiments, cells are 

initially introduced into rectangular cell assay chamber and then observed as the crossed 

diffusion gradients engendered by the four chemokine reservoirs are created over time as 

substances diffuse through the narrow flux limiting channels [Fig. 7]. 
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Figure 7: Magnified view of the channel and cell exclusion fence 

 

 

 

A characteristic of this device that differentiates it from Jeon type laminar flow mixer devices is 

the gradient experienced by cells in the device from the beginning of the chamber to the central 

sink. The cells experience a smooth time dependent gradient derived by device geometry with no 

step-like fluctuation in any cell assay. 

We require a detailed visualization of these gradients to analyze the behavior of cells in 

combinatorial gradients of different substances. As the device is still in its first generation, the 

subsequent goal for it is to achieve maximum possible functionality which necessitates 

optimization of the design of this device. To determine the modifications that can be made to the 

design,  the current performance of the device should be thoroughly studied.  

 

F. Narrow 

channel 

G. Cell 

exclusion 

fence  
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I.4 Objectives 

 

The traditional empirical method for the development and optimization of a microfluidic 

device is a cyclical process. The initial prototype is fabricated and experiments are performed. 

The parameters are changed after interpretation of the results and the device is re-fabricated to 

optimize its performance. The performance of the device is characterized by a number of 

parameters which can depend on the device itself such as length of the chamber and the diameter 

of the sink or can also depend upon the properties of the substance introduced in the device such 

as diffusivity. Moreover, in order to control the formation of different combinatorial gradients 

we need to know the correlation between the properties of the device and the properties of the 

substances introduced in the device. The device, therefore, needs to be analyzed from a fluid 

mechanics and diffusion perspective. The analysis of device performance including all the 

necessary parameters becomes a multivariable problem where the effect of each parameter is 

determined by varying it and keeping the other variables constant. The experimental approach to 

solving such a multivariable problem involves both manufacturing resources and time as the 

device has to be fabricated each time a structural property is changed and a new experiment has 

to be performed each time a different molecule is made to enter the device. A computational 

fluid dynamics (CFD) model is an efficient solution to such a problem as it allows us to analyze 

the device by varying a single or a combination of parameters in much less time and using only a 

simulation. This enables us to select those cases where modifications in the device give us 

maximum benefit in terms of optimizing the function of the device. Advances in computational 

capacities and availability of software specific to fluidic analysis have made it possible to 

develop such models. Diffusion is not a standard problem in CFD and the device modeled in this 

thesis functions exclusively through diffusion, without involving any convection or even cross-
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advection. However, the principles for solving diffusion problems numerically are similar to 

those used for solving fluid dynamics problems and the geometry of the device is complex. The 

goal of developing a model for the diffusion device was to have an initial version which analyzes 

diffusion in the device and then extend it in the future to include those features where convection 

also needs to be analyzed. The choice of CFD provided us with this capability. 

In the context of this thesis, the computational fluid dynamics (CFD) model is also an 

endeavor to understand the feasibility of modeling microfluidic devices utilizing  the  Fluent 
[26]

 

and GAMBIT 
[27]

 computational fluidic software packages. A detailed discussion on modeling in 

GAMBIT and Fluent will be provided in Section II.2.3. Fluent is typically used for laminar flow 

or turbulent flow in macroscale problems. A flow or even a diffusion problem in the microscale 

involves values with extremely small magnitudes, in the order of femtometres. This thesis is an 

effort to understand and interpret the way Fluent handles small numbers and the extent to which 

a microfluidic device can be approximated with a CFD model. We have also shed light on the 

advantages of using CFD software, the issues encountered in the process and methods to 

circumvent these issues, if they exist. 

It is essential to define the variables and cases for the model before it is set up. 

Parameters related to the device that are to be studied in this project using the model include the 

length of each side of the square chamber, the diameter and height of the central sink cylinder 

and ratio of these two properties. Our approach in modeling the passive diffusion device in 

Fluent has been one of sequential approximation. We initially developed a model of the device 

which consists of only a chamber and a sink with an infinite source outside the device. This 

simple geometry allowed us to assess the validity of the results obtained from Fluent in the 

absence of complex structures that affect the diffusion process in the actual device such as the 
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narrow channel and a finite reservoir. The initial results were strictly to assess Fluent as a useful 

tool for simulating microfluidic devices. However, the cases studying the effects of particular 

architectural parameters on the function of the device can be taken as good approximations to 

estimating the functional trend of the device when each of these parameters is altered.  
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CHAPTER II 

 

CHARACTERIZATION OF A PASSIVE DIFFUSION MICRODEVICE FOR ASSAYS 

OF CHEMOTAXIS AND MORPHOGENESIS 

 

 

 

II.2 Materials and Methods 

 

 

 We have used a wide range of tools and techniques for the development of the 

computational model. Ranging from the fundamental principles of diffusion to visualization and 

contouring algorithms, they have been incorporated into the analysis at different stages. The 

most significant tool used in this process has been the commercial CFD software package named 

Fluent. We have used a separate section in this chapter to discuss the capabilities of Fluent, the 

interrelation between the preprocessing and the processing parts of the software and the sequence 

of processes leading to the final solution.  

 

II.2.1 Diffusion—theories and solution methods 

 

 

 Diffusion is the process by which matter is transported from a region of high 

concentration to a region of lower concentration as a result of random molecular motions 
[28]

. 

Transfer of heat by conduction is also due to random molecular motions and there is an obvious 

analogy between the two processes. This fact was first recognized by Fick who put diffusion on a 

quantitative basis by adopting the mathematical equation of heat conduction derived originally 

by Fourier 
[29]

. In this approach, diffusion is first considered as a macroscopic phenomenon and 

an approximate differential equation is derived to characterize it. A second form of the diffusion 
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equation which is the form derived by Fick, is obtained by combining the approximate 

differential equation with the continuity equation 
[30]

. We define fluence or flux density, an 

important characteristic of fluids, as the amount of matter transported across an imaginary 

surface per unit area per unit time 
[31]

. It can be represented by a vector pointing in the direction 

the matter moves and is denoted by j. Movement of molecules from one region to another takes 

place only due to a difference of concentrations in the regions. The change in concentration is 

denoted by 
x

C

∂

∂
 when the change is concentration is small enough to be approaching zero. We 

can assume the diffusion problem to be one-dimensional for simplification and consequently, 

make the statement that there is no net convection if 
x

C

∂

∂
= 0 and there is flow when 0≠

∂

∂

x

C
. 

Considering that the difference in concentration is small and following from the definition of 

flux density, we can also conclude that the flux density is linearly proportional to the 

concentration gradient. Therefore, 

x

C
jx

∂

∂
∝ . 

The corresponding equation for this relation is 

x

C
Djx
∂

∂
−=   (1.1) 

where the constant D is called the diffusion coefficient and has units m
2
s
-1
 in the S.I. system. 

This relationship is called Fick’s first law of diffusion and the negative sign shows that the flow 

is in the direction from higher concentration to lower concentration. If the equation for the first 

law is differentiated we get: 

2

2

x

C
D

x

jx

∂

∂
−=

∂

∂
  (1.2) 
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Fick’s second law can easily be derived by considering the following situation 
[32]

. An element of 

volume in the form of a rectangular parallelepiped is considered whose sides are parallel to the 

axes of coordinates and are of length 2dx, 2dy and 2dz. Let the center of the element be at P(x, y, 

z) where the concentration of the diffusing substance is C. We also assume that ABCD and 

A`B`C D` are the faces perpendicular to the axis of x as illustrated in Figure 3. 

 Therefore, the rate at which the diffusing substance enters the element through the face 

ABCD in the x-plane is given by 

)(4 dx
x

j
jdydz x
x

∂

∂
−  

where xj  is the rate of transfer through unit area of the corresponding plane through P. 

 

 

Figure 8: Rectangular parallelepiped for demonstrating Fick’s Second Law of Diffusion 

 

Similarly, the rate of loss of diffusing substance through the face A`B`C`D` is given by 

)(4 dx
x

j
jdydz x
x

∂

∂
+  

The net increase in the rate of diffusing substance can then be obtained by summing up the 

transfer and loss to get 

A 
A` 

B 
B` 

C 
C` 

D D` 

2dx 

2dy 

2dz 

[C] in [C] out 
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x

j
dxdydz x

∂

∂
− 8  

In a similar, from the other faces we get 

z

j
dxdydzand

y

j
dxdydz zy

∂

∂
−

∂

∂
− 88 . 

Hence, the total rate for the increase of diffusing substance in the element is given by 

x

j
dxdydz x

∂

∂
− 8  

z

j
dxdydzand

y

j
dxdydz zy

∂

∂
−

∂

∂
− 88  

The rate at which the amount of diffusing substance in the element increases is also given by 

t

C
dxdydz

∂

∂
8  

Equating the two expressions given above we get 

0=
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂

z

j

y

j

x

j

t

C zyx  

as the equation of continuity 
[33]

. The continuum hypothesis states that the number of particles or 

mass or in the case of an incompressible fluid, the volume, remains constant. 

Replacing the flux terms in the last three expressions from equation 1.1 we get 

)(
2

2

2

2

2

2

z

C

y

C

x

C
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∂
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+

∂
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+

∂

∂
=

∂

∂
  (1.3) 

or CD
t

C 2∇=
∂

∂
 (1.4) 

as Fick’s Second Law of Diffusion. It combines Fick’s first law with the continuum hypothesis 

and tells us how the concentration at a particular point changes with time. Fick’s second law has 

been used for modeling the diffusion device in this thesis.  
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 The diffusion equation has several general solutions when the diffusion coefficient is 

constant depending on the initial and boundary conditions. The conditions for which the 

diffusion equation is solved can be broadly divided into two categories—time-dependent and 

steady-state. We use steady-state conditions to solve the diffusion equation when the system is 

approaching a constant concentration or, in other words, the rate of change in concentration 

approaches zero. This can be written as 

0=
∂

∂

t

C
. 

In all other cases where the nature of the diffusion system is not completely known and the time 

required to reach steady-state has to be determined, the time-dependent method is used in which 

equation 1.4 is solved.  

 The diffusion equation can be solved analytically or computationally, depending on the 

type of geometry being considered. Analytical solutions for the diffusion equation consist mostly 

of simple geometries with defined initial and boundary conditions. However, all applicable 

geometries cannot be accurately modeled as ideal shapes and hence, the diffusion equation is 

solved computationally in such cases. The computational method requires a set of initial and 

boundary conditions as inputs along with the equation. It discretizes the problem space into small 

parts for each of which it obtains an approximate solution and then integrates over the whole 

space to obtain the final solution. The method of calculating diffusive flux computationally has 

been shown below 
[34]

 to demonstrate the transition from continuous to discrete domains. The 

diffusion equation, in the continuous form, is written as: 

2

2 ),(),(
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∂
                      (2.1) 
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In order to derive the discretized form of (1) we define each of the derivatives in their discrete 

forms and equate them as follows. It should be noted that although we have taken the 

concentration variable to be in terms of position on the x-axis and time, the same process that we 

outline below is applicable to systems for over 2 variables. Hence, the time derivative in (1) is 

expressed as: 

t

txCttxC

t

txC

∆

−∆+
=

∂

∂ ),(),(),(
 

The second derivative with respect to position can be expressed in terms of a centered formula. 

This states that for any function )(xf  the line joining the points )( hxf +  and )( hxf −  is also 

an approximation to the slope at the point )(xf  where h  is the quantity in terms of which the 

function )(xf can be expanded as a Taylor series.  Therefore, the first derivative from first 

principles and using this centered formula is written as 

h

hxfhxf
xf

h 2

)()(
lim)(

0

−−+
=′

>−
 

The second derivative, according to the same method and using Taylor series expansions can be 

written as  

2

)(2)()(
)(

h

xfhxfhxf
xf

−−++
=′′  

The second derivative of concentration with respect to position is, therefore, expressed as  
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Therefore, the discretized diffusion equation in the finite time central difference (FTCS)  form is 
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II.2.2 Computational Fluid Dynamics  

 

 

The division of a complete problem space into discrete elements which serve as the 

solution nodes forms the fundamental principle of computational fluid dynamics (CFD). In 

classical fluid dynamics, the fluid is treated as a continuum and the description of a body of fluid 

can be given using either its position or its velocity as the reference value. In the Lagrangian 

method of describing a fluid, a fluid particle is characterized by a position vector ),( tax  where 

the position is dependent on a property of the fluid, a  and its transition in time 
[35]

. In most 

cases, a  is assumed to be the position of the fluid particle at time t=0. The Lagrangian method is 

the standard mode of characterization and is used as the foundation for deriving the major 

equations that characterize the field of flow. All fluids where the stress-strain ratio curve is linear 

are called Newtonian fluids and their flow is characterized by three equations—the continuity 

equation, conservation of momentum and conservation of energy. The equations for the 

conservation of momentum are known as the Navier-Stokes equations. The solution of these 

three fundamental equations forms the core of understanding fluid flow.  

 The approximate solution of the steady and unsteady Navier-Stokes equations for 

incompressible fluids as well as any other equations associated with fluid flow continue to be 

active areas of research. Several numerical schemes have been developed for the calculation of 

these equations and the most significant factor in the process has been the proper specification of 

boundary conditions, especially when solid walls are present. The steady improvement in the 

speed and memory size in computers since the 1950s has led to the progression of solution 

methods from numerical analysis to computational fluid dynamics. According to Chapman, 
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Green, Rubbert and Jameson, CFD offers four major advantages when compared to experimental 

fluid dynamics 
[36]

. Firstly, the lead time in design and development is significantly reduced. 

Secondly, CFD can simulate flow conditions not reproducible in experimental model tests. 

Thirdly, CFD provides highly detailed and comprehensive information and is cost-effective. 

Lastly, CFD involves lower energy consumption than actual construction of fabrication of the 

object being modeled. 

 The process of obtaining solutions to flow, diffusion or other similar equations 

computationally consists of two main stages. The first stage converts the continuous partial 

differential equations and auxiliary (boundary and initial) conditions into a discrete set of 

algebraic equations. This first stage is called discretization. The replacement of individual 

differentiated terms in the partial differentiated equations by algebraic expressions connecting 

nodal values on a finite grid introduces an error. Therefore, it is important to choose algebraic 

expressions such that this error is minimized. The second stage of the process consists of the 

actual solution of the algebraic equations in an iterative fashion until satisfactory values are 

obtained for the approximate solutions. Three major methods are available for obtaining the 

solution to these equations—finite difference, finite element and finite volume. 

 The finite difference in the discrete space is analogous to the derivative in continuous 

space. It was developed in the 1920s by A.Thom 
[37]

 for the solution of nonlinear hydrodynamic 

equations and has since continued to be used for initial solutions of the Navier-Stokes equations. 

The method involves three basic steps—dividing the solution into grids of nodes, approximating 

the partial differential equation to finite differences that relate the solution to grid points and 

solving the finite difference equations subject to the prescribed initial and boundary conditions. 

The finite differences employed can be of the forward, backward or central kind as described 
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below and the schemes incorporating these different finite difference techniques are the explicit, 

implicit and Crank-Nicholson Methods respectively. Table 1.1 illustrates the mathematical 

definitions of each of these finite differences. 

 

Table 1: Different finite difference schemes and their application in the diffusion equation 

[38] 

 

 

A finite element method discretization of a continuous partial differential equation is based on a 

piecewise representation of the solution in terms of specified basis functions. These basis 

functions can be defined using a number of methods of which the most common method is 

Galerkin’s method 
[39]

. The boundary value problem which consists of the partial differential 

equations expressed as functions along with the appropriate boundary conditions is first 

converted to its weak or variational form. This form expresses the problem as a function of 
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integrals and their derivatives as opposed to functions of numbers. The variational form which is 

essentially an infinite dimensional linear problem is replaced with a finite dimensional form 

using piecewise linear functions. The given polygonal space is triangulated and the finite 

dimensional form actually consists of functions that are linear, quadratic or even polynomial on 

each triangle of the chosen triangulation. The advantage of the finite element method is that it 

can handle more complex geometries compared to the finite difference method which can handle 

only rectangular blocks or its simple variations. Moreover, the finite difference method 

approximates the operator (the derivative) and solves the problem on the nodes or intersection of 

edges on the grid. The finite element method, on the other hand, uses exact operators but 

approximates the solution basis functions and can solve the problem at the interior of elements or 

cells as well as at the nodes, depending on our needs.  

 

 

  

Figure 9: Piecewise linear approximation of a continuous function and triangulation of a 

surface using the finite element method 
[40] 
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The finite element method is mostly used in structural mechanics rather than in fluid 

mechanics, despite its advantages over the finite difference method. The most commonly used 

calculation scheme in CFD software is the finite volume method 
[41]

. This method is similar to 

FEM as it also uses an integral form of the original partial differential equation. However, in the 

finite volume method, the region of integration is taken to be a control volume iΩ , associated 

with the point coordinate ix . The finite volume method can be considered as a hybrid of the finite 

difference and finite element methods. It converges much faster than the finite element method 

with the run time of the two methods differing by a ratio of 10
5
, on an average. The finite volume 

method also uses a reduced system of weights, compared to the finite element. The finite element 

method uses a basis function to denote the weight function while the finite volume method uses a 

piecewise function to denote the weights. The finite volume method is therefore, a reduced 

version of the finite element method and due to its faster convergence time is used more 

extensively in computational fluid dynamics. 

 

 

 

 

 

Figure 10: Illustration of control volume variants used in the finite volume method 
[42] 
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II.2.3 Fluent and Gambit—fundamentals of fluidic modeling 

 

 

 Fluent is a widely used software package for CFD analysis and is currently packaged and 

marketed by Ansys, USA.  It is designed to handle both turbulent and laminar flow analysis and 

supports a large number of flow processes such as combustion, convection-diffusion, species 

reaction and turbo propulsion. The basic Fluent package consists of three main components: 

� Gambit for geometry development 

� Fluent, the solver 

� FlexLM, the licensing software 

A given flow problem is initially analyzed to find the simplest form of the original geometry in 

which the flow takes place. The geometry might have structural or other architectural 

components which either do not contribute to the flow or do not contribute significantly to it. 

The geometry that is set up in GAMBIT is exported as a mesh which is then set up as a case in 

Fluent. The materials for the simulation, boundary and initial conditions, relaxation factors and 

other parameters related to the simulation are set up in Fluent. The data obtained from Fluent is 

postprocessed using a number of tools that will be discussed in the next section.  

 GAMBIT is a preprocessing section of Fluent exclusively used for setting up the 

geometry for the CFD problem, assigning boundary conditions and fluid zones. Developing the 

geometry in GAMBIT begins with the creation of vertices, edges, faces and volumes. The final 

shape is then meshed using an appropriate meshing scheme. This is a significant step during 

geometry development as it is the time-limiting and calculation-limiting factor in the simulation. 

A finer mesh leads to refinement in data but results in a tradeoff in run-time. The objective of the 

recurring process of computational fluid dynamics is to achieve the optimal balance between 

mesh refinement and the running time for the calculation. The procedure for setting up geometry, 
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the options available and the theories of meshing algorithms are discussed in greater detail in 

Appendix A.  

 The geometry developed in GAMBIT is exported as a mesh file (.msh) and is read into 

Fluent, the solver environment. The materials required for the simulation—solid, liquid or 

gaseous are assigned here. The boundary conditions for the calculation are set up in GAMBIT 

but can be modified in Fluent. All other parameters required for evaluating the solution of the 

discretized diffusion equation such as relaxation factors, initial conditions, discretization 

schemes and calculation schemes are all set up in Fluent. The assignment of the time 

discretization scheme and the timestep size is the final crucial step while setting up a simulation. 

Larger timesteps decrease the stability of unstable solutions. Partial differential equations that 

have multiple time scales and are discretized through the finite element or finite volume methods 

are challenging for the cache-based architecture that is prevalent in most PCs at present. The 

optimization of run-time and mesh quality simultaneously is, therefore, an integral part of the 

modeling process. The procedure for setting up a simulation case in Fluent and issues to be 

aware of in the process are discussed in further detail in Appendix B and Appendix C.  

 The final stage of CFD modeling is the postprocessing and visualization of data from the 

solver is discussed in the next section. In a study done by Smith et al. 
[43]

 of the relationship 

between the running time of a CFD program and the number of nodes in an unstructured mesh 

they found that the execution time decreased exponentially as the number of vertices assigned to 

each node on a parallel computational system decreased (Figure 12).  
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Figure 11: Experiment showing the decrease in time with a decrease in the number of 

vertices per node 
[43] 

 

II.2.4 Visualization and analysis of CFD data 

 

The data obtained from any CFD solver environment can be in one of the two main 

formats—binary or text. The preferred choice for storage is generally binary as it occupies 

twelve to fourteen times less space compared to the text files. Binary files present limitations in 

terms of processing the data due to their compact size. The information is highly encoded and 

can be read bysome visualization programs but the process of reading the files takes a great deal 

of time (~15mins/file). Moreover, the binary case and data files are written out by Fluent in a 

nonspecific manner, i.e., all the output parameters applicable to the simulation in every part of 

the grid are written out in the data files. This makes it difficult for the user to sort out the 

required information and select the parts of the grid on which the reported data is required. It is 

also not possible to report certain important features of interest such as volume and surface 

integrals. Binary files can be read directly in programs such as Tecplot 
[44]

 that can regenerate the 
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mesh and the solution properties from the files. This feature gives a useful complete view of the 

geometry and the appearance of the solution as contours or streamtraces.  

In order to extract surfaces and report the data selectively on those surfaces we can use 

these binary case and data files in Fluent to extract any desired surface, beginning from a point to 

a sub-zone. These surfaces and the data associated with them can be reported in eight different 

file formats, among which we have used ASCII and Tecplot. Reporting data using a different 

format not only allows us to select the zone of interest but also the variables of interest. Another 

advantage of these text-based formats is immediate visibility of data which enables the user to 

see the raw data and check for any fundamental errors within it.  

 In this theisis my first focus was on verifying that Fluent could be used to generate 

credible results using simplified device geometry and realistic diffusion coefficients.   

Accordingly, before using a new software environment for large scale calculations, we did a 

‘pilot’ application using the device geometry in its simplest form and all the basic functions in 

Fluent that would be used in later simulations. The postprocessed data was not graphed using 

Matlab during these initial stages. Fluent files were directly read in Tecplot and points were 

extracted from Tecplot manually. These have been graphed using Microsoft Excel which has 

enough features to allow us to assess the concentration values and trends on a macroscale basis. 

 We have used the ASCII and Tecplot data file formats extensively to report data from 

selected surfaces. The surfaces that we have created using data and case files in Fluent are lines, 

rakes and planes. The detailed procedure for extracting these surfaces and reporting data from 

them is in Appendix B.  
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II.2.5 Geometries and boundary conditions used in Fluent 

 

 

 The simulations that we have modeled in Fluent, from preliminary geometrical 

representations to the complete device, have been run after setting up the geometries in 

GAMBIT with the required dimensions and specifications. In order to test the validity of Fluent 

before progressing to large-scale calculations, as mentioned in section I.4, we have used a simple 

version of the actual geometry of the device. This model consists of the square chamber and the 

cylindrical sink with an infinite source outside the device. The square diffusion chamber has 

each side equal to 7500µm and is 20µm tall. At the corners of the square are 12µm wide 

openings- this is assumed to be the initial width of the narrow channel. The sink is cylindrical 

with a diameter and height equal to 2000µm. This is the first model where we use a sizing 

function to create the mesh to adjust for mesh sizes at the corners of the chamber. 

We simulated the simple version of the 3D device initially and then approximated it to a 

2D diffusion problem in later simulations. This simplification was possible due to two major 

reasons. Firstly, the ratio of the height of the square chamber to the diameter and height of the 

cylinder is in the order of 10
2
—high enough to allow us to neglect the third dimension. Secondly, 

we show later [section II.3.3] numerically that the 3D and its 2D approximation can be treated as 

equivalent problems and therefore, the 2D model can easily be used in all situations to get 

feasible results. The square chamber is approximated to a square whose vertices are truncated by 

12µm wide openings. The cylinder becomes a circle in the middle of the square with the same 

diameter.   

 We used this 2D representation of the simple geometry to perform simulations in which 

we tested the effect of changing different parameters on the device. The parameters that we 

tested are the length of the square chamber, the diameter of the cylindrical sink, the ratio of the 
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length to the diameter and the diffusion coefficient of the diffusing substance. We ran 3-4 cases 

for each parameter and then summarized the results with an approximate polynomial derived by 

using the method of least squares
 [45]

. 

 In the next stage of simulations, we advanced to simulating the device geometry 

incorporating all parts of the actual device including the finite reservoir and the narrow 

restriction channel. The dimensions of the device were also changed in this model to equate them 

to the dimensions of the actual device. The length of each side of the square chamber is still 

3750µm. The width of the channel was made 100µm and its length was 200µm. The radius of the 

cylindrical sink was 2000µm and its height was 4000µm. The reservoir at the end of the channel 

was made a half-cylinder with the same radius and height. This model had significant changes 

with respect to meshing control, boundary conditions and initialization of the solution, 

summarized in Table 2.  

 Our final set of models emulated the original device exactly in dimensions and a great 

deal in terms of shape. We knew the area of the reservoir (80mm
2
) and using this value we 

designed a semicircular reservoir at the end of the channel with a radius equal to 1414.21µm. 

The remaining dimensions of the device remained the same as in previous models. The following 

table (Table 2) lists each model created in GAMBIT as well as the boundary and initial 

conditions specific to that particular model. The diffusion coefficient for the material used for the 

simulation is denoted by D. 
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Table 2: List of the models and simulations run in Fluent, from preliminary to final 

# Case Description Geometry Boundary and Initial 

Conditions 

1. Simplified 3D model 

D = 1.2E-05m
2
/s 

Square chamber and central 

cylindrical sink  

No-flux condition at side and 

bottom faces 

Concentration at cylinder-top: 

1E-26M 

Concentration of infinite source: 

1M 

2. 2D approximation of 

simplified 3D model 

 

D = 1.2E-05m
2
/s 

Square≅  chamber 

Circle≅ Cylinder 

No-flux boundary conditions at 

side edges 

Concentration at the 

circumference of the circle: 1E-

26M 

Concentration of the substance 

entering at the inlet: 1M. 

4. 2D model with 

restriction fence 

 

D[chamber] = 1.2E-05m
2
/s 

D[fence] = 1.2E-06m
2
/s 

Diameter of circle: 4000µm 

Fence≅ Trapezium at a 

distance of 375µm from the 

top right corner, width 

100µm.  

Same as 2D model 

 

5. 2D device with 

different diameters for 

the circle 

 

D = 1.2E-05m
2
/s 

 

3 cases—constant square 

dimensions and variable 

circle dimensions--2000µm, 

3000µm and 4000µm 

Same as for the 2D device 

6. 3D slice with and 

without the barricade 

layer 

 

D = 1.2E-05m
2
/s 

Slice of 3D device  

Width of the opening 

between the chamber and the 

cylinder: 

With barricade = 5µm 

Without barricade = 20µm 

Concentration of the substance 

entering the device is 1M. 
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Table 2, continued from previous page 

 

7. 2D device with 

different lengths for the 

square side 

 

D = 1.2E-05m
2
/s 

 

3 cases—same dimensions 

for the circle diameter and 

different lengths for the sides 

of the square--7500µm, 

10000µm, 30000µm and 

50000µm 

Same as for the 2D device 

 

 

8. 2D device with 

different square-side to 

circle diameter ratios 

 

D = 1.2E-05m
2
/s 

3 cases—length of square 

side is 30000µm in every 

case 

Diameter of the circle is 

2000µm, 3000µm and 

4000µm 

Same as for the 2D device 

9. 2D device with 

different diffusivities 

for the entering 

substance 

 

D = 1.2E-05m
2
/s 

4 cases—dimensions are 

same as those of the 2D 

device. 

Diffusivities are varied by 

10
-1
 in each case 

Same as for the 2D device 

10. Original device with 

half-cylindrical 

reservoir 

 

D = 5E-10m
2
/s 

Similar to the simplified 3D 

model.  

Diameter of sink: 4000µm 

Height of sink: 4000µm 

Additions 

Narrow channel: 

Width = 100µm 

Length = 200µm 

Half-cylindrical reservoir: 

Radius = 2000µm 

Height = 4000µm 

 

No flux conditions on all outer 

faces, including the top of the 

sink 

 

Initial concentration of fluid in 

the reservoir: 1mole/m
3 

 

Initial concentration of fluid in 

the rest of the device: zero 

 

 

11. Exact 3D model of 

original device 

 

D = 3E-11m
2
/s 

Alterations 

Semicircular reservoir with 

area 80mm
2
. 

Size functions used in both 

the chamber and the 

reservoir. 

5 cases with channel widths 

20µm, 40µm, 80µm, 150µm 

and 200µm 

Same as in the previous model. 
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In our final set of simulations using Fluent, we also obtain information about the gradient 

in every cell of the device grid. We need this information to observe the formation of gradients 

on a planar portion of the device. We have the option of exporting the concentration data from 

the planar surface to another visualization program and then computing the gradients on the 

plane. Fluent exports either the center or the node of every cell in the grid that falls within the 

plane. This approach leads to loss in accuracy as we have to form a matrix of points for any 

visualization program and thus, have to use linear interpolation in order to determine the 

concentration and consequently, the gradient values. We can use Fluent to calculate the gradient 

value of each cell by writing a user-defined function (UDF) 
[46]

 using the macros supplied by 

Fluent and integrating it to our simulation. Fluent calculates the gradient in every cell using the 

theoretical formula for diffusion gradient that is derived from Fick’s Laws as 

 

φ∇−= DJ  

where J  denotes the flux of the diffusive substance, D   its diffusion coefficient, φ   the function 

denoting its concentration and ∇  the gradient operator. 

This provides with data values directly from the simulation that can be visualized on the 

grid itself using Tecplot. The UDF is a program written in C, using macros inherently built in 

Fluent and constructs from the programming language itself. The results from the UDF 

calculations are stored in memory locations that are also defined by the user. The process for 

setting up the simulation with a UDF has been explained in greater detail in the tutorial in 

Appendix B.  
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II.3 Preliminary results for validation of Fluent 

 

II.3.1 The basic 3D computational domain—steady-state and flux 

 

 

The first set of results from Fluent is from the simplified version of the original device. 

The simulation was run for 300 timesteps with each timestep being equal to a second. The 

number of timesteps is derived from the diffusion time estimation formula: 

D

l
T

2

=  

 Figure 12 shows the contour diagram of the system at 150 seconds and by correlating the 

color map and the contour diagram we can observe the progression of the substance in the 

device. The concentration decreases as we reach the cylinder and drops to 0.05M over a distance 

of 3738µm along the x -axis.  
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Figure 12: Contour plot of the 3D model showing the concentration gradient at 150 seconds  

 

 

The system does not reach steady state with respect to the true physical definition of steady state. 

However, we need to establish a criterion to determine the time when the device reaches an 

optimum concentration distribution. We establish the condition for optimum concentration 

distribution according to the following mathematical relationship: 

061)(
1

1

1
−≤−∑

=

+
euu

N

t

i

N

i

t

i  

where 1+tu  is the concentration at time (t+1) seconds and tu  is the concentration at time t 

seconds. The change in time, ∆t is not shown as its value is equal to one. N is the number of 
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coordinates across which concentration values are taken, which in this case is 15. We choose 

such a criterion as an error margin of this order ensures that the concentration levels do not 

change in an amount that is biologically significant. In later experiments, such criteria are not 

used as we know the number of days for which we run an experiment in the actual device and 

use that information to establish the number of timesteps for the simulation. 

  The criterion established for this simulation takes into account the average of the 

differences in concentrations at two consecutive timesteps and is based on the epsilon-delta 

principle 
[16]

. The value that is set as equivalent to an epsilon value for optimum concentration is 

1e-06 as the concentration values for different coordinates are in the order of 1e-04 and the 

difference in concentration appears in the seventh decimal place and delta (∆ t) is equal to one. 

Figure 13 shows the 3D system approaching the established condition and data has been 

collected in intervals of 20 seconds except after 140 seconds. After 140 seconds, data is also 

collected at 145 seconds and the values for concentration are examined more closely for every 5 

seconds till 180 seconds. The raw data has been read directly in Tecplot and a slice is extracted 

from the 3D device by inserting a plane at the points (3750, 3750, 2E-05), (0, 0, 0) and (-3750, -

3750, 2E-05), shown in Figure 13. Data points have then been extracted along a straight line 

running diagonally through the chamber till the beginning of the cylinder. The number of points 

extracted at each time point is 15 and the data from these points has been plotted using Microsoft 

Excel. Each point extracted is expressed in terms of x , y and z coordinates and the graph in 

Figure 14 displays the concentration at different time-points with distance decreasing from the 

entrance of the chamber to the edge of the cylinder. The concentration undergoes a steeper 

decrease after the first 10µm and gradually approaches values in the order of 1E-20 near the 

cylinder. It is observed that after 145 seconds the concentration changes by 1e-06M only after  
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Figure 13: Simple 3D device viewed in Tecplot and the extracted 2D slice used for 

obtaining concentration values 

 

 

every 30 seconds, implying that the rate of change of concentration decreases. The time-points 

between which the rate of change of concentration reaches an average less than the decided 

epsilon are 145 and 150 seconds.  

 

Concentration vs Position in the 3D device
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Figure 14: Concentration versus position on the X-axis plotted at different time-points for 

the 3D model 
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The flux at the channel where the diffusing substance enters the device is also calculated. As the 

data obtained on concentration is with respect to x , y and z coordinates, the discretized version 

of the diffusion equation is used, derived in section II.1.1 as 

2

),(2),(),(),()1,(

h

txCthxCthxC
D

t

txCtxC −−++
=

∆

−+
 

The left side of the above equation is used in the calculation of flux which has been done using a 

Matlab code. The value of h is 4E-06m
2
 and that of D has been mentioned previously as 1.2E-

05m
2
/s. Figure 15 displays the trend of flux values from 10 seconds to 300 seconds and it is 

observed that the flux starts approaching a constant value at time values beyond 140 seconds.  
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Figure 15: Flux entering the chamber, at time-points spaced 10 seconds apart 
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We obtain the concentration in the device in discrete forms at regular intervals, corresponding to 

the x , y  and z coordinates.  

 

II.3.2 The 2D approximation of the basic 3D domain 

 

The simplified 3D model consists of a complex grid and takes approximately 6 hours to 

run on a Windows NT 4.0 Workstation. The running time for such models is related 

exponentially to the number of nodes in the mesh and the 3D model for this diffusion device has 

68,500 nodes. We created the 2D approximation model to reduce the complexity of the grid and 

to provide an approximation model which can run faster. Using this model, we get a system that 

takes 135 seconds to approach steady-state using the same diffusive materials as well as the 

boundary conditions and materials as used in the 3D model. Figure 16 shows the results obtained 

from this simulation.  

The system is shown approaching our established condition and data is plotted from 20 

seconds to 140 seconds at intervals of 20 seconds till 120 seconds after which data is plotted at 

130, 135 and 140 seconds. We observe from the results that the trend of concentration levels is 

similar to that in the 3D device but scaled down in terms of diffusion time and scaled up with 

respect to the concentration values. This happens as the substance is now moving over a 2D grid 

instead of a 3D grid and does not have to cover the z  dimension which is mostly contained in 

the cylinder in the 3D model. 
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Concentration vs. position for the 2D device
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Figure 16: Concentration versus position on the X-axis for the 2D model 

 

 

 

II.3.3 Equivalence of the 2D and 3D grids 

 

 We have used the 2D model to obtain a number of preliminary results examining the 

effects of various parameters, both architectural and physical, on the function of the device. We 

compared the 2D and 3D models prior to exclusively using the 2D model in order to determine 

the magnitude of error between the two models. We plotted the concentration over space from 

the 2D and 3D models at 140seconds. This plot indicated that the concentration values in the 2D 

and 3D models can almost be superimposed from the entrance to the chamber till the edge of the 

cylinder. We also plotted the difference in concentration values between the 3D and 2D models 

to obtain a magnified view of the error margin. The graph in Figure 17 indicates that the 
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similarity in concentration values is maximum near the inlet where the substance enters and 

minimum near the hole where the cylinder begins (in the 3D model). 

 

 

3D vs. 2D at 140 seconds
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Figure 17: Concentration profiles over space for the 2D and 3D models at 140 seconds 

 

 

To clarify this fact, we have also plotted the difference in concentration at the same coordinates 

in space for the 2D and 3D models, as shown in Figure 18. 
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Figure 18: The difference in concentration over space, between the 2D and 3D models 

 

 

We can see that further along the x -axis the magnitude of error decreases. This is an expected 

result as the regions of higher concentration are similar in both the 2D and 3D models—the 

height of the chamber is not significant compared to the width and length. It has been calculated 

from the numerical data that the standard deviation for the data is 1.38e-04kmoles.  

 

 

 

II.3.4 Parametric studies with the basic 2D grid 

 

 The first parameter that we have studied using the 2D model is the addition of a fence in 

the device which is 100µm wide and 375µm from the corner, as described in section II.2.2. The 

fence, being a restriction structure, is expected to distort the radially diffusing gradient in the 

device. The fence is designed such that the diffusivity of the substance entering the fence is 
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reduced by half on encountering it, which, in turn, accounts for the restriction in movement of 

substances in the device. Our model contains a simple version of this fence to examine the 

feasibility and method of adding this feature in Fluent and establishing proof of concept for the 

effect of the fence. The points have been extracted along the same diagonal line as in all other 

cases for the 2D model and the diffusivity of the substance after entering the fence is assumed to 

be 1% of the original diffusivity, as opposed to 50%, in order to see a more visible effect. 

 The results from the simulation show a significant slowing down of diffusive flow in the 

model with the fence which can be seen in Figure 19. At 180 seconds the difference between the 

concentrations obtained in the model with the fence and the simple 2D model, at the corner 

where diffusion starts, is more than 0.1M.  
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Figure 19: Comparison of concentration levels in the 2D device with the addition of a fence 
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The difference in flow can also be observed from the contour diagrams which are obtained for 

140 seconds (Figures 20 and 21).  

 

 

 

Figure 20: Contour plot of the device with no fence showing the concentration over space 

 

 

 

 

 

Figure 21: Concentration over space in the device with the fence (circled in blue) 

Fence  
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In the contour diagrams, we can observe from the color maps that the concentration levels in the 

model without the fence exceed those of the model with the fence by at least two orders of 

magnitude.  

 The second property that we studied through simulations was the diameter of the 

cylinder.  We used the 2D model for this study and made three versions of this model with 

circles of diameter 2mm, 3mm and 4mm. We ran each of these models to satisfy the criteria 

established in section II.3.1 and observed the effects of the increasing diameter on the time each 

model took to reach the same concentration level. Firstly, the distance traversed by the diffusing 

substance from the corner to the hole is less and therefore, it diffuses faster. Secondly, the 

distortion in the gradient around the hole is greater due to the higher degree of curvature of the 

hole. Figure 22 illustrates these aspects of the diffusive flow. The y -axis has the time-points at 

which each of the models satisfies our established delta-epsilon criterion. We obtain an empirical 

relation between the cylinder diameter and the time required to approach similar concentration 

levels by fitting an appropriate equation to the data points using the method of least squares. The 

final equation that we get is 

1700225.063 2 =−−= DDEToc  

where ocT denotes the time taken to reach the optimum concentration level according the delta-

epsilon criterion established in section II.3.1. 
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Figure 22: Variation in the time required by the 2D model to approach optimum 

concentration levels with variation in the diameter of the central hole 

 

 

 

 We also tested the 2D model for variation in concentration profiles with changes in 

diffusion coefficients. We vary the diffusion coefficient such that each new diffusion coefficient 

is less than the previous one by a factor of 0.1. This mode of variation is chosen for simplifying 

calculations as well as because the biological molecules that we ultimately want to use in our 

experiments have diffusion coefficients that can be expressed in terms of exponents of ten. We 

plot the logarithms of the diffusion coefficients instead of the actual diffusion coefficient values 

which are very small. The plot in Figure 23 shows the logarithm of the diffusion coefficients 

plotted against the time taken by each model to satisfy our established delta-epsilon criterion. We 

observe from this plot that the time taken to reach the same concentration level rises steeply with 

a decrease in the diffusion coefficient. 
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Figure 23: Variation in the time required by the 2D model to approach optimum 

concentration levels with varying diffusion coefficients 

 

 

 

 

Using the method of least squares again, we derive the equation relating this time to the diffusion 

coefficient of the diffusing substance. The equation obtained is 

)6568252262137411197( 23 +++−= DDDToc . 

 We ran a set of simulations with the 2D model varying the length of the square chamber. 

The range of lengths taken varies from 7500µm to 50000µm. The length of the side of the 

chamber is an important determinant of the time taken by the substance to travel to the central 

hole and then up the cylinder. Figure 28 shows the variation in the time required by the 2D 

model to satisfy our established criterion with increases in the length of the side of the base. Four 

cases have been taken with base-lengths of 7500µm, 10000µm, 30000µm and 50000µm. The 
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increase in time required to reach steady-state increases sharply after the first two points as the 

difference between the lengths of the sides also increases from 2500µm to 20000µm. 
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Figure 24: Variation in the time required by the 2D model to approach steady-state with 

different lengths for the square side 

 

 

 

We make estimates to find the equation which gives the minimum regression value for this curve 

and use the method of least squares to obtain the coefficients. We obtain the following equation 

4605101108109 62738 +×−×+×−= SSSToc  

 Our last set of parametric simulations has the ratio of the cylinder’s diameter to the 

chamber’s length as the independent variable. The two major factors which determine the path of 

diffusion in the device are the diameter of the central hole and the length of the side of the base. 

The longer the length of the side of the base, the longer a substance takes to reach the central 

hole. The diameter of the hole also impacts the concentration gradient as the distortion of the 
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gradient is higher with a larger diameter while the time taken by the substance to reach the 

central hole is shorter. 
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Figure 25: Variation in the time required by the 2D approximation system to approach 

steady-state with changes in the ratio of length of the base to diameter of the hole 

 

 

 

However, the combined effect of these two parameters is not intuitive and so we ran the 2D 

model of the device with a base length of 3cm with three different ratios. The curve takes a form 

that is almost parabolic with a steady increase in the time required to approach steady-state with 

an increase in the ratio of side to diameter. 

 We use the method of least squares once more to find the relationship between the ratio 

of side to diameter and the time taken by each model to reach the optimum concentration. Fitting 

a polynomial of degree 2 to the data points we find that it is an almost perfect fit and we get the 

equation 
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124035.4566158 2 −+−= RRToc . 

 

II.4 Results from experiments in Fluent 

 

II.4.1 3D grid with a semi-cylindrical reservoir 

 

 The validation of preliminary results in Fluent was the cue to proceed to the next step—

simulation of actual experiments in Fluent with a model that emulates the physical device in 

somewhat more detail.  

 

 

Figure 26: Mesh of the 3D model with a narrow channel and a semi-cylindrical reservoir 
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 We developed the model with the semi-cylindrical reservoir as described in section II.2.5 and 

ran 2 sets of simulations for 950400 seconds of computational time which equals eleven days. 

Figure 26 shows the meshed grid of the 3D model with the channel and the reservoir. We 

initially plotted the profiles of concentration over space in the device at time intervals of 24 

hours in Microsoft Excel. The points were extracted from the beginning of the channel to the 

middle of the base of the cylinder in Tecplot. The plot in Figure 27 shows the concentration 

profile of the diffusing substance at these points at every 24 hours of simulation time. There are 

steep drops in the concentration at two critical points of the device: 

� The beginning of the channel to the beginning of the chamber 

� The beginning of the chamber to the beginning of the cylinder 
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Figure 27: Concentration profile over space at every 24 hours in the device with the semi-

cylindrical reservoir 
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We also plotted the concentration over space in the device beginning from the chamber instead 

of the channel to observe how the concentration rises in time at the entrance to the chamber. The 

plot in Figure 28 illustrates the same and we observe that there is steady increase in the 

concentration at the entrance to the chamber with each interval of one day.  We also plotted the  
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Figure 28: Concentration profile over space in the device with the semi-cylindrical 

reservoir beginning with the entrance to the chamber 

 

 

 

 

concentration profiles over space at intervals of three days in the device. In this case, we plotted 

the logarithms of the concentration values instead of the actual concentration values which are 

very small, in the order of 10
-22

. The trend of concentration values decreases in steepness, as 

expected, with increase in time.  The plot in Figure 29 shows the graph with the logarithms of 

concentration values plotted over space at three different time-points, spaced three days apart. 
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Concentration over space in the device at 3 day intervals
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Figure 29: Logarithms of concentration values plotted against space at three time-points, 

spaced three days apart 

 

 

 

II.4.2 Concentration profiles in devices with varying channel widths 

 

 

 Our most significant objective in performing computational simulations in Fluent is to 

examine the effect of the restriction channel on the concentration levels and gradient formation 

in the device. We modified the previous 3D model, as described in section II.2.5, and ran each 

case for 950,400 seconds or 11 days and observed the concentration profiles in each model with 

a different channel width. In order to minimize numerical diffusion in each case we have used 

different initial concentrations which have been summarized in Table 3. The range of 

concentration values required for maintaining cells in the device for the duration of an 

experiment (11 days) is 15-19ng/ml which can be expressed as 6.67E-10-7.13E-10M/m
3
. The 
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maximum concentration of the substance in the reservoir cannot exceed the order of millimoles. 

Fluent takes concentration input in the form of kilomoles which implies that the value used for 

initial concentration would have been 6.67E-06 moles/l. However, due to numerical diffusion, 

which we shall explain in greater detail in Appendix D, we have scaled up the values of initial 

concentration used in the simulations by 3-5 orders of magnitude. 

 

Table 3: Initial concentration values corresponding to each device with different channel 

widths 

Channel Width (µm) Initial Concentration (M) 

20 6.67E2 

40 6.67E3 

80 6.67E1 

150 6.67E1 

200 6.67E1 

 

 

 

In these experiments we extracted data along different geometrical entities: 

� Lines, extracted along the diagonal from the chamber entrance to the beginning of the 

cylinder 

� Rakes, which are similar to lines, with the exception that we can specify the number of 

points on them 

� Planes along the surface of the chamber, at a height halfway along the z -axis  

Figure 30 displays the results from the device with the 20 micron channel. This channel is 

extremely narrow compared to the rest of the device and offers a high degree of restriction to the 
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entering fluid. We have displayed the concentration level of fluid in the device at one, three, five, 

nine and eleven days on a line running diagonally through the device.  

 

 

 

Figure 30: Logarithm of concentration values plotted over space in the model with the 20 

micron channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 30-contd. 
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Figure 30-contd. 

 

 

 

 

The points in Figure 30 have been sampled along a line which runs diagonally along the length 

of the chamber, beginning at the entrance and stopping just before the edge of the cylinder. A 

plot of the points extracted from the lines has been given beside each plot illustrating a 

concentration profile. The concentration plots start showing greater distortions after values 

greater than 1E-25 as this is the smallest value processed by Matlab. The logarithms have been 

plotted against the radial coordinates of the extracted points while the sampled points have been 

shown in terms of x  and y coordinates. In the figures, we see that the points sampled are not 

uniformly spaced as they are extracted at all cells in the grid through which our specified line 

passes. Consequently, the logarithms of the concentration values do not follow a smooth linear 

trend at the initial time-points (24 hrs). The phenomenon of numerical diffusion has been 

explained in greater detail in Appendix D. The profiles and sampling of points gets smoother 

with time as numerical diffusion decreases. Figure 31 shows contour plots of the same model 

where we have extracted all the data on a plane extending from the center of the cylinder till the 

end of the chamber. It is halfway across the height of the chamber, as shown in the mesh plot in 
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Figure 31.The contour plots show a steady increase in the concentration levels within the plane 

over time.  
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Figure 31: Concentration levels in the model with the 20 micron channel on a plane at a 

height of 1.3µm across the length of the chamber and extending radially from the center of 

the cylinder 
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Figure 31-contd. 

 

 

 

We have plotted contour levels ranging in concentration values from 6.67mM to 6.67pM as this 

is the relevant range of concentration values that will be used in actual experiments. Distortion in 

contour levels is the result of numerical diffusion as well as the contour algorithms used in all 

standard programs. These plots have been done using Tecplot 10.0. Figures 32 and 33 show 

similar results from a model with a channel of width 40 microns. We first plotted the logarithms 

of concentration values at the diagonal over space at different time-points. We also plotted the 

contours of concentration levels within the plane as in the previous model. The concentration 

levels in the model with the 40µm wide channel are only around ten times higher than those in 

the model with the 20µm wide channel. This change is most noticeable towards the corner of the 

chamber and approximately till halfway across the distance from the corner to the edge of the 

cylinder. This effect can be observed more clearly in the contour plots. 
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Figure 32: Logarithm of concentration values plotted over space in the model with the 40 

micron channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 32-contd. 
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Figure 33: Concentration levels in the model with the 40 micron channel on a plane at a 

height of 1.3µm across the length of the chamber and extending radially from the center of 

the cylinder 
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Figure 33-contd. 

 

 

We can observe in the above contour plots that the distortion in contour levels has decreased 

compared to the levels in the device with the 20µm wide channel. It continues to be seen in 

contour levels corresponding to lower values of concentration. The values for concentration 

decrease exponentially over space. Hence, we do not specify a single delta-value by which 

Tecplot can calculate the contour levels; instead we specify the number of contour levels which 

allows Tecplot to directly calculate the delta-values for each contour level. We plotted the results 

of the model with a channel of width 80 microns in a similar way. Figures 35 and 36 display the 

results from this simulation. We observe that with an increase in the channel width to 80µm there 

is a considerable increase in concentration levels within the device. The higher width of the 

channel allows a greater amount of material to flow into the chamber at any given time-point. 

This is evident from both the semilog as well as the contour plots where we observe that the 

concentration levels increase at a much faster rate and the distortion in the logarithm values has 

also decreased. The device reaches a maximum concentration 6 mM in a day unlike in the 20µm 

device where it takes at least 30 hours.  
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Figure 34: Logarithm of concentration values plotted over space in the model with the 80 

micron channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 34-contd. 
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Figure 35: Concentration levels in the model with the 80 micron channel on a plane at a 

height of 1.3µm across the length of the chamber and extending radially from the center of 

the cylinder 
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Figure 35-contd. 

 

 

 

Our next simulation used a model with a channel of width 150µm. We can observe from the 

results in figures 37 and 38 that an increase in the channel width by 70µm increases the rate at 

which the concentration increases within the chamber.  
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Figure 36: Logarithm of concentration values plotted over space in the model with the 150 

micron channel at 1, 3, 5, 7, 9 and 11 days 



 82 

 

Figure 36-contd. 
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The concentration at the entrance to the chamber rises to millimolar level in less than 18 hours. 

The distortion in values due to numerical diffusion is also considerably decreased during the 

initial time-points. Comparing the plot at 24 hours in this device to the plot for the device with 

the 20µm wide channel at 24 hours, we can see that numerical diffusion is considerably 

decreased in the former.  

 

 

 

 

Figure 37: Concentration levels in the model with the 150 micron channel on a plane at a 

height of 1.3µm across the length of the chamber and extending radially from the center of 

the cylinder 
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Figure 37-contd. 

 

 

 

Our last simulation was with a model with a channel of width 200µm and this is the highest 

channel width that we have used among all our simulations. The results in Figures 38 and 39 

show that there is not a significant difference in terms of concentration levels between the 

devices with 150µm and 200µm wide channels. However, there is a marked difference in the 

smoothness of the semilog plots. We observe that from 72 hours the logarithms of the 

concentration values form a smoother plot than in the previous models.  
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Figure 38: Logarithm of concentration values plotted over space in the model with the 200 

micron channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 38-contd. 
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Figure 39: Concentration levels in the model with the 200 micron channel on a plane at a 

height of 1.3µm across the length of the chamber and extending radially from the center of 

the cylinder 
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Figure 39-contd. 

 

II.4.3 Gradient profiles in devices with varying channel widths 

 

 

 We have also computed and studied the gradient of the diffusive material over space at 

different time points in each device with a different channel width. In extracting information 

about the gradient, we used a diagonally drawn rake in Fluent. The difference between a line and 

rake is that we can specify the number of points to be extracted on a rake. These points may not 

always be actual grid intersection points and are uniformly spaced. Therefore, the values for 

diffusion parameters on rakes are not directly from the simulation results but are interpolated by 

Fluent on the basis of the simulation results. We also obtained gradient values on a plane 

extracted in the same manner as we did for the contour plots of concentration values. The 

concentration values and gradient values for each device at each time-point have been graphed 

on the same plot. The concentration values, as described before, decrease exponentially and on 
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closer inspection, we can infer that the values extracted from Fluent are based on a linear 

interpolation scheme that Fluent uses to calculate the concentration values.  
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Figure 40: Plots showing the concentration and gradient profiles for the device with the 

20µm wide channel at 1, 3, 5, 7, 9 and 11 days. The concentration and gradient plots are in 

blue and green respectively 
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Figure 40-contd. 
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The gradient values are calculated using the discretized expression for gradient calculation 

described in section II.2.1. The gradient plots, as expected, are plots that resemble step-functions 

which again confirms the linearity of the trend of concentration values calculated by Fluent. We 

observe that once the channel width reaches 80µm the concentration and gradient plots decrease 

in steepness and this trend continues in the last simulation with a channel width of 200µm. The 

scales of the Y-axis on the left and right sides are different to account for the gradient and 

concentration value ranges. The plots have been generated using Matlab and the code can be 

obtained from Appendix D.  

 

 

Figure 41: Plots showing the concentration and gradient profiles for the device with the 

40µm wide channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 41-contd. 
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Figure 41-contd. 
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Figure 42: Plots showing the concentration and gradient profiles for the device with the 

80µm wide channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 42-contd. 
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Figure 43: Plots showing the concentration and gradient profiles for the device with the 

150µm wide channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 43-contd. 
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Figure 43-contd. 
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Figure 44: Plots showing the concentration and gradient profiles for the device with the 

200µm wide channel at 1, 3, 5, 7, 9 and 11 days 
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Figure 44-contd. 
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We also examined the gradient of the diffusive substance on the same plane that we 

defined for viewing contours of concentration levels. Figure 45 shows the contour plots of 

gradients on the same plane in devices having channels of width 20µm, 40µm, 80µm, 150µm and 

200µm. We have shown the data obtained at 3, 7 and 11 days in this section to maintain the 

uniformity of time-intervals and enable comparison of gradient levels in devices with channels of 

differing widths.  
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Figure 45: Contour plots showing the gradients in the 20µm, 40µm, 80µm, 150µm and 

200µm channel devices at 3 days 
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Figure 45-contd. 
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Figure 45-contd. 

 

 

 

The contour plots of gradients on the plane at 3, 7 and 11 days have been displayed in 

Figures 44, 45 and 46 respectively. Each subplot of these plots exhibits data from device with a 

channel of a particular width. There are five subplots in each plot, indicating that the contours are 

from devices with channels of widths 20µm, 40µm, 80µm, 150µm and 200µm respectively. The 

gradient values calculated in Fluent are from each cell in the volume grid are calculated with 

respect to the x , y  and z coordinates of the central node of each cell as these are in-built grid 

value storage variables provided by Fluent. Each subplot in figures 44, 45 and 46 contains two 

frames indicating the gradient contours in the x -direction (red frame) and in the y -direction 

(green frame). 



 106 

The color scale on these contour plots is generated using Tecplot according to the 

gradient values provided by Fluent. The maximum, minimum and delta values are decided after 

several executions of the contour plot and the combination is identified that most visibly displays 

the gradation in gradient levels in each direction. There is not a marked difference in gradient 

levels at 3 days among the different devices but the distortion in contour levels decreases as the 

width of the channels increase. This indicates that the diffusion takes place smoothly and the 

flow increases with increasing channel width. Figure 46 shows the gradient contours in devices 

with varying channel widths at 7 days.  

 

 

 

Figure 46: Contour plots showing the gradients in the 20µm, 40µm, 80µm, 150µm and 

200µm channel devices at 7 days 
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Figure 46 contd. 
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Figure 46-contd. 
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Figure 46-contd. 

 

 

 

 

In these contour plots, we can see a discernible difference between the contour levels in the 

different devices. The devices with channel widths 80µm, 150µm and 200µm show a distinct 

increase in gradient over space. The contour levels are smoother overall and in the devices with 

20µm and 40µm wide channels the gradient is greater in the x  direction compared to the 

y direction. Figure 47 shows the gradient contours in all the devices at 11 days and we observe 

the increase in gradient levels among the devices with channels of width 80µm, 150µm and 

200µm. 
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Figure 47: Contour plots showing the gradients in the 20µm, 40µm, 80µm, 150µm and 

200µm channel devices at 11 days 
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Figure 47-contd. 
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Figure 47-contd. 
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CHAPTER III 

 

CONCLUSION AND FUTURE WORK 

 

 

III.1 Discussion and conclusion 

 

 

We developed a CFD model for our microfabricated passive diffusion device with the following 

objectives, as stated in section I.4: 

� The validation of Fluent as a tool for simulating microfluidic devices and providing 

design paradigms for their fabrication 

� The study of how architectural and material parameters affect the simplest form of the 

device 

� The study of the restriction channel as an impedance structure and how it affects the 

diffusive flow, concentration levels and gradient formation in the device.  

We established through our preliminary results that Fluent is a credible tool for developing CFD 

models of microfluidic devices. The plots in Figures 13 and 14 in section II.3.1 clearly 

demonstrate that the preliminary results are in accordance with the theoretical principles of 

diffusion. The concentration is high at the entrance to the chamber, almost equal to the initial 

concentration value while at the edge of the cylinder it starts approaching extremely small values 

in the vicinity of 1E-014. Our boundary condition in this preliminary model states that the 

concentration at the top of the cylinder is clamped to zero and these results agree with this 

boundary condition. However, we also observe in the graphs that the values towards the edge of 

the cylinder are not discernible and the concentration values drop to zero when the actual values 

are close to zero but not equal to it. The range of the values that we encounter in the 
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concentration levels of the device is in the order of 1E-20 and therefore, we cannot get a 

complete picture of the concentration trends plotting the actual values. We can plot the logarithm 

of the concentration values as we have done in later models but in addition it is necessary for us 

to get a picture of the actual concentration values.  

 In the later models that emulate the actual diffusion device, we have demonstrated first 

that we can simulate the device with a finite reservoir and obtain valid results which are again in 

accordance with the theory of diffusion. We observe here that the range of concentration values 

increases to V which creates further challenges in viewing the entire range of concentration 

values on a single plot. In this simulation we also come across numerical diffusion for the first 

time that has been explained in greater detail in Appendix D. In order to address the challenge of 

viewing the complete range of concentrations obtained, in our later models we developed three 

kinds of plots 

� Concentration levels and gradient along a user-specified line drawn diagonally from the 

entrance of the chamber to the edge of the cylinder.  

� Concentration and gradient levels on a plane radiating from the center of the cylinder and 

at a height halfway through the chamber. 

� Semilog plots of concentration points along lines drawn diagonally across the grid from 

the entrance of the chamber to the edge of the cylinder. 

This collection of graphs for each case provides us with a clear picture of concentration and 

gradients along the x  and y axes as well as the planar view of these quantities in the form of 

contour plots. We find that towards the initial periods of time, from 0-24 hours, the concentration 

along the chamber reaches values ranging from 2.09E-07M to 1.47E-44M. The progression of 

these values can be clearly seen in the semilog plots where the entire range of values has been 
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plotted. The graphs illustrating the actual concentration and gradient values do not show the 

entire range of data, especially beyond 3000µm after which the concentration values start 

dropping below 1E-10M. However, these graphs are necessary for us to understand how the 

concentration levels correlate to the gradient levels in the chamber. In the contour plots, we 

observe that beyond values in the range of 1E-15 the contour lines become distorted and the 

contour levels indistinct. This occurs both due to numerical diffusion and limited control over 

contour algorithms which has been addresses in greater detail in Appendix C. In the semilog 

plots we also observe that in cases with smaller channel widths (20µm and 40µm), the graphs for 

the earlier time-points (24 and 72 hours) are not completely smooth. We have displayed the 

sampling of points in Fluent alongside each semilog plot and from these graphs, it is evident that 

the sampled points are not regularly spaced. They are actual points from the grid where the 

specified line intersects it and as every grid cell is not of the same size, the points are not 

uniformly placed along the line. We have used a line instead of a rake in these plots as the former 

provides us with data directly from the simulation while the latter uses Lagrangian interpolation 

to obtain concentration values for points that are not actually present on the grid. As our final 

tool for analysis, we also developed semilog plots for concentration levels in different devices  
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Figure 48: Concentration levels at 3 days in devices with different channel widths 
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with varying channel widths at particular time-points. The results in Figure 48 show the 

comparison of the concentration levels in devices with varying channel widths at 3 days. The 

part encircled in the first plot in red has been magnified in the second plot. We observe in the 

plots that the difference in concentration levels broadens out only towards the end when we 

approach the edge of the cylinder. The device with the channel of width 200µm shows relatively 

higher concentration levels compared to the other models. The magnified view indicates that 

with the exception of distortions due to non-uniform sampling, all the devices show their 

expected trends in concentration levels. The distortion makes it challenging to delineate clear 

trends but we an observe that while the 20µm and 40µm channel devices maintain lower 

concentrations, the devices with the three higher channel widths show a rise in concentration at 

the same point in space.  
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Figure 49: Concentration levels at 7 days in devices with different channel widths 

 

 

 

The results in figure 49 show a comparison of concentration levels again but this time at seven 

days. The distortion is considerably at this time point and it is easier to distinguish the individual 
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concentration trends from each other. In the magnified view, we observe that although there is a 

distinct difference in concentration levels among the devices with channels of width 20µm, 

40µm and 80µm, the difference is not as distinct at 150µm, where it almost overlaps with the 

80µm line over space. The 200µm channel device, however, continues to be distinct from all the 

others, showing high and discernible concentration levels which differ from the 20µm channel 

device by at least 1E-02 orders of magnitude. Our final plots in Figure 50 show similar data from 

all the models at 11 days. The distortion decreases to a minimal level at this time-point, allowing 

us to discern the trends of each model in the complete plot.  
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Figure 50: Concentration levels at 11 days in devices with different channel widths 

 

 

We can infer from the above data that the width of the restriction channel plays a significant part 

as a parameter that influences diffusive flow and gradient formation. The distinct trend of the 

device with the 200µm channel at all time-points and the rise in concentration levels between 

40µm and 80µm support this fact. In terms of the range of concentrations that we are interested 

in, it can be achieved faster through devices with higher channel widths, preferably in the 150-

200µm range. However, these are estimates from computational simulations and should be 

validated with experimental data in order to fabricate the device and refine it for use in 

experiments.   
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III.2 Future Work 

 

 

We have developed a robust computational model for our microfabricated passive 

diffusion device.  As mentioned in the previous work, it is imperative to substantiate such work 

with valid experimental or analytical data prior to the fabrication of the device which will be 

used in biological experiments. In terms of the computational model, although we have 

examined numerous basic features, we can still add certain structures to it that are part of the 

original, fabricated device. The fence whose effects we have examined in section II.3.4, is a part 

of the original device. A set of simulations can therefore be designed to study the restriction 

channel in the presence of the fence. This will give us a compounded restriction effect due to the 

effect of two restriction structures. We can also add the rectangular posts further inside the 

chamber that are present for structural support.  

 In addition to the structures that we can add to the device, we can also make further 

attempts to address some of the issues discussed in Appendix D. Numerical diffusion is largely 

dependent on the timestepping scheme used in the simulation. Our present simulations have 

already attempted to minimize numerical diffusion by using the inherent timestepping schemes. 

We can define our own timestepping scheme using an adaptive procedure in which the first few 

timesteps are run with a step size less than one second and close to the minimum value allowed 

by Fluent which is 1E-05 second. We can increase the timestep at a uniform rate following these 

first few timesteps.  

 In conclusion, the purpose of this study is to serve as a guideline for simulating not only 

this particular device but any device functioning on similar principles. The issues discussed in 

Appendix D as well as the guides provided in Appendices A and B are guidelines that are 

applicable to any passive diffusion device.  
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APPENDIX A 

Procedure for model construction in GAMBIT 

 

GAMBIT is a preprocessing component of Fluent where we set up the geometry of a 

fluidic domain and assign its boundary and fluid zones to prepare it for running a CFD 

simulation in the Fluent solver environment. GAMBIT is based on a graphical user interface and 

a hierarchical system of geometry creation. The user can develop the geometry in GAMBIT 

beginning with coordinates of points and stepping up to volumes. The first step for setting up 

geometry depends on the basic shape of the original geometry. We can use volumes or faces if 

the basic shape of the geometry corresponds to a fundamental shape such as a cylinder, sphere or 

parallelepiped. In the case of irregular geometries the best option is to start with point 

coordinates, draw the base in 2D and then extrude it to form a 3D entity. 

The basic set of commands for creating any geometrical entity (point, edge, face or volume) in 

GAMBIT is 

Operations -> Geometry -> Geometrical entity -> Create (entity) with (option) 

Figure 49 shows an example of such a sequence of commands to create a vertex by specifying 

yx,  and z coordinates. 
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Figure 51: Vertex creation panel in GAMBIT 

 

 

 

The options that can be specified with each geometrical entity allow us to create it in different 

circumstances. As an example, a volume can be created by joining together sets of existing faces 

or by applying motion to an existing face along a specified path. The choice of the option, 

therefore, depends on whether the geometry is regular or irregular, symmetric or asymmetric. 

The sweep volume option, for instance, works with shapes that are symmetrical about an axis of 

rotation; it does not work with shapes that are irregular in terms of volume. The following part of 

this appendix illustrates the exact process for creating the geometry of our passive diffusion 

microdevice in GAMBIT; it serves as a tutorial for any user beginning to create geometries in 

GAMBIT. 
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 We set up the initial set of vertices in GAMBIT by using the Geometry icon (the first below), 

clicking on vertex and finally on ‘Create new vertex’. 

 

 

 

 

 

Figure 52: Vertex creation panel in detail 

 

 

The coordinates for the square base are a function of the width of the channel and are determined 

using geometry and trigonometry. Let w  be the width of the channel and let us assume that we 

have extended a corner of the chamber to form a square with a vertex at the corner, as shown in 

Figure 53.  
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Figure 53: Schematic for determining the coordinates of the chamber vertices 

 

 

According to the above figure, the two small sides belong to a right angled triangle and are equal 

in length since they are parts of edges of a square. Therefore, we can conclude 
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and using the value of x  we can find the x and y coordinates for the vertices of the chamber. If 

the length of each side of the chamber is denoted by l  and the vertices of the chamber by a set of 

points 81.......PP , the points are specified as 
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Table 4: Symbolic measures for the x and y coordinates of the chamber vertices 
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 We use the ‘Create Straight Edge’ option to join these vertices and form the edges. 
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   �   

Figure 54:  Edge creation panel in GAMBIT 

 

 

 We copy the vertices on one corner using the ‘Move/Copy Vertices’ tool. The x and 

y coordinates for translating the vertices are determined using the following method. 

 

 

 

 

 

 

Figure 55: Schematic for determining the coordinates of the channel vertices 

 

 

According to the above figure, we can write 
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Figure 56 shows the Move/Copy Vertices panel where the parameters for copying 

vertices are filled. 
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200µm 
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Figure 56: The Move/Copy vertices panel in GAMBIT 

 

 

 

 

 We connect the copied vertices to their parent vertices to create the narrow channel.  

     We also bisect the outer edge of the narrow channel using the ‘Split Edge’ tool and  

   entering 0.5 in the U-value section as shown in Figure 57.  
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Figure 57: The Split Edge panel in GAMBIT 

 

 

 

 We know the area of the reservoir and for simplicity of both geometry creation and 

calculation we create a reservoir of semicircular shape. By fitting the area of the reservoir against 

the given value we can find the radius of the semicircle. We use the equation 

rA
r

=
2

2π
 

where r is the radius of the semicircle and rA is the given area of the reservoir. We use 

the “Create Real Edge” toolbar and select circular edge as an option. In the “Create 

Circular Edge” panel we again select the option for drawing an arc by specifying the start 

and end angles and the radius. By trial and error we can ascertain the start and end angles 

as -45° and 135° respectively.  
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Figure 58: The Circular Edge drawing panel in GAMBIT 

 

 

 

We join the end points of the arc to the end vertices of the channel with straight edges. We also 

delete the outer edge of the channel as well as the bisection vertex without including   the lower 

geometry to make it convenient for us to extrude the device to 3D. We use the ‘Create real face’ 

option to create a face, including all the remaining edges.  

 

 

Figure 59: The Create Face button in GAMBIT 

 

 

 We create the initial volume from the face created in the above step. We use the ‘Sweep 

Faces’  option from the volume toolbar to do a perpendicular sweep in the positive Z direction 

with a magnitude of 26, a draft angle of 360 degrees and the ‘mixed’ option. The result produces 

the 3D view of the chamber, channel and reservoir. 
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Figure 60:  The Sweep Faces option panel in GAMBIT 

 

 

 

 We now need to draw the boundaries separating the chamber, channel and reservoir. We 

draw in the faces that separate the reservoir, channel and chamber by joining the edges of the 

channel on both sides and using the “Create Face” and “Split Volume with Face” tools. 

 We have to draw the central sink to complete drawing the basic geometry. We know the 

radius of the central sink and can use this value to determine two points on the circumference of 

the base of the sink. These two points along with the center are required by GAMBIT to draw a 

circle. We can find the coordinates of these points by drawing an isosceles right-angled triangle 
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within the circle and bisecting the right angle. The resulting triangles are also isosceles and right-

angled and consequently, we can write 

222 Rx =  

where R is the radius of the sink. We use the “Create Circular Face” tool to create this   circle. 

To extrude the sink to its correct height we sweep this circular face using the perpendicular 

option by 4000 units along the positive Z-axis with a draft angle of 360 degrees and a ‘mixed’ 

option. 

 We need to make some adjustments in geometry for ease of meshing. As we are using 

structured and regular meshes with rectangular or hexahedral elements we should have volumes 

that are also regular. We split the reservoir in half using the “Split Edge with Vertex”, “Create 

Straight Edge”, “Create Face from Edges” and “Split Volume with Face” tools. We also split the 

cylindrical sink into 4 parts along the XZ and YZ planes for ease of meshing.  

 We need size functions for meshing all parts of the device with the exception of the narrow 

channel since that itself is the structure that creates the high aspect ratio in the device. The 

cylinder is also meshed without a sizing function as it is not connected directly to the channel. 

The size function created for each of the other parts is the same and the start size of the function 

always corresponds to the mesh density of the channel. Using the ‘Tools’ menu and the ‘Create 

Sizing Function’ submenu we enter the parameters for the sizing function as follows  

 

� Start size: 10 

� Growth rate: 1.2 

� End Size: 100 
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The source for the function can be specified as the edges, faces or volumes. Using the 

lowest denomination leads to refined meshing and therefore we specify it as edges. We 

use all the edges at the corner for the chamber and for the reservoir we use the edges that 

are common with the channel. The attachment is the volume to which we want to attach 

this sizing function and we specify it accordingly in each case. 

 

 

 

Figure 61: The panel for creating size functions in GAMBIT 

 

We can now mesh the reservoir using the “Mesh Volumes” option and unchecking the “Apply 

Sizing” option as we have already created sizing functions for these parts. The small channel is 

meshed using a mesh size of 10. We mesh the top face of the chamber before meshing the entire 

volume in order to maintain uniformity in meshing. The reason has been explained in detail in 

Appendix C. We mesh the top face of the chamber using the Pave option and Quad elements. 
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The entire volume of the chamber is then meshed using the Cooper scheme. The cylinder is then 

meshed uniformly with the Cooper scheme and a mesh size of 250. 

 The last step in GAMBIT is to specify the boundary and fluid zones for the device. Boundary 

zones are specified as the no-flux zones or the walls within which the fluid will be contained. 

The space inside the boundaries is specified as fluid zones. We specify two fluid zones—one for 

the reservoir and another for the rest of the device. This makes it convenient for us to assign an 

initial fluid concentration to the reservoir in Fluent. The mesh is exported from GAMBIT using 

the “Export” option from the “File” menu. 
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APPENDIX B 

Procedure for simulation setup in Fluent 

 

 

 Fluent is the main solver component of the package and mesh files exported from 

GAMBIT can be read into it as cases. The most fundamental and significant steps carried out in 

Fluent for simulating any fluidic process are  

� Scaling and manipulation of grid which includes conversion to unstructured grids 

� Specification of any physical model, if used and the solver model  

� Specification of materials used in the simulation 

� Setting up of boundary conditions (initial values for parameters like velocity and 

pressure) 

� Defining scalars, function or memory, if used, for the simulation 

� Specification of solution properties and under-relaxation factors 

� Initialization of the solution and setting p of display windows 

� Definition of time schemes (fixed/adaptive) and timestep size(s) 

The procedure for setting up the simulation for our microfabricated diffusion device has been 

given below, as a sample tutorial for customizing Fluent to set up a simulation for a given 

physical fluidic situation. 

 We read in the mesh in FLUENT from the GAMBIT files. 

File � Write � Case 

 We scale the grid by a factor of 1E(-06) to convert it to micrometers 

Grid � Scale 

 We check the grid for inverted or skew elements using the ‘Check Grid’ option 

Grid � Check 
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 We now define the solver model by using the ‘unsteady’ solver option and choose the 

second-order explicit time discretization scheme. 

Define � Model 

 We also define the materials for the simulation. We select ‘Fluent Database’ in the materials 

and copy ‘water-liquid’ from it on to the solver panel. 

Define � Materials � Fluent Database 

 

 

Figure 62: The Materials panel in Fluent 

 

 

 Our diffusive material is to be denoted by a scalar and so we define a single UDS (user-

defined scalar) for the experiment. 

Define � User-defined � Scalars 
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Figure 63: The user-scalar definition panel in Fluent 

 

 

 We now go back to the materials section and fill in the diffusion coefficient value in the 

‘UDS diffusivity’ section. 

 In the ‘Solve’ panel we select the ‘Monitors’ option and set the display of residuals and time 

at every timestep 

                                           Solve � Monitors � Residuals/Statistic 
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Figure 64: The residuals panel in Fluent 

 

 

 

 We can now specify the solution method for the experiment from the ‘Solution Controls’ 

panel. We de-select the ‘Flow’ option as and solve for the UDS only. As we are not solving for 

flow the default values can be used for the other parameters.  

Solve � Controls � Solution 

 Provide the initial conditions for the experiment. Using the initialize option, first initialize the 

entire flow field to zero and then using the ‘Patch’ option initialize the fluid zone in the reservoir 

to the desired initial concentration. 

Solve � Initialize � Initialize/Patch 
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Figure 65: The ‘Patch’ initialization panel in Fluent 

 

 

 

 To start running the experiment we use the ‘Iterate’ option. We define fixed timesteps with 

each timestep equal to 3600. In the ‘Autosave’ option, enable files to be written out at every 

timestep. The ‘frequency’ in this section denotes timestep frequency and not actual time.  

Solve � Iterate 
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Figure 66: The iteration and time-step definition panel in Fluent 
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APPENDIX C 

User-defined Functions and their utilization 

 

 

User-defined functions (UDFs) are an additional feature provided in Fluent that allow the 

user to add a number of enhancements to the standard features of the Fluent code. The additional 

capabilities that a user can add to a simulation by hooking a UDF to it are 

� Customization of boundary conditions, material property definitions, surface and 

volume reaction rates, source terms in Fluent transport equations, source terms in 

user-defined scalar (UDS) transport equations, diffusivity functions, etc.  

� Adjustment of computed values on a once-per-iteration basis.  

� Initialization of a solution.  

� Asynchronous (on demand) execution of a UDF  

� Execution at the end of an iteration, upon exit from Fluent, or upon loading of a 

compiled UDF library.  

� Post-processing enhancement.  

� Enhancement of existing Fluent models (e.g., discrete phase model, multiphase 

mixture model, discrete ordinates radiation model).  

There are some fundamental rules that are applicable to every UDF that can be summarized 

as follows: 

� UDFs are written in the C programming language. 

� UDFs must have an include statement for the udf.h file.  

� UDFs must be defined using DEFINE macros supplied by Fluent Inc. 
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� UDFs utilize predefined macros and functions supplied by Fluent Inc. to access 

Fluent solver data and perform other tasks.  

� UDFs are executed as interpreted or compiled functions. 

� UDFs are hooked to a Fluent solver using a graphical user interface panel.  

� UDFs use and return values specified in SI units.  

The procedure for developing a UDF and setting it to run with Fluent starts with the development 

of the UDF code in any standard text editor such as Notepad or WordPad. The written UDF is 

then compiled or interpreted in Fluent using a Windows compiling package such as Microsoft 

Visual Studio. It is recommended that UDFs be compiled rather than interpreted; UDFs 

containing inbuilt macros from Fluent have to be compiled. In order to compile a UDF we have 

to start the Visual Studio command prompt and invoke Fluent from there. Prior to this operation, 

we must also ensure that we have changed the environment setting for Fluent by using 

Start -> Programs -> Fluent -> Set Environment 

We follow a number of steps to create a shared library and compile the UDF using Microsoft 

Visual Studio after calling Fluent. The first step is to dynamically load the UDF in the Fluent 

simulation and store it in the form of a shared library that open whenever the particular case file 

is opened. This is done by using the ‘Define UDF’ panel in Fluent. 

Define -> User-defined -> Functions -> Compiled -> Build -> Load 

Figure 67 shows the ‘Define UDF’ panel in Fluent. 
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Figure 67: The 'Define UDF' panel in Fluent 

 

 

The last step executed in integrating a UDF with Fluent is hooking it to the simulation which is 

done by using the user-defined hooks panel (Figure 68). We specify the UDF to be integrated 

with Fluent and save the case so that the UDF is loaded and hooked every time we reopen the 

case. 
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Figure 68: The user-defined hooks panels in Fluent 
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APPENDIX D 

Discussion of issues encountered in GAMBIT and Fluent 

 

 

 Continuous phenomena modeled by a set of nonlinear partial differential equations 

possess a wide range of time scales. The best algorithms for approximating these continuous 

problems into discrete problems require the solution of very large sparse linear systems. This 

approximation requires us to take into account various sources of error such as under-relaxation 

factors and truncation values that are necessary to obtain convergent solutions. Software and 

hardware are also limited by the range of numbers they can compute. In a pure diffusion process 

such as in our microfabricated device it extends over extremely large time scales and results in 

values that vary over a logarithmic range. All these factors lead us to consider several issues 

while setting up a CFD simulation using GAMBIT and Fluent. These are either significant points 

that should be taken into consideration while setting up the simulation or they are enhancements 

to the process that provide greater accuracy.   

     The finite volume method provides us with the flexibility to use structured or 

unstructured meshes to perform calculations. There are distinct advantages and disadvantages to 

using both kinds of meshes. Unstructured meshes are mostly applied on complex geometries as 

they are not subject to as many rules as structured grids where each interior node has an equal 

number of adjacent elements. However, due to this relaxation of node valency, unstructured grids 

are not economical in terms of calculation time. On an average the ratio of the computational 

time required to run calculations on an unstructured grid compared to a structured one is 3:1 
[47]

. 

The most generally applicable structured meshing algorithms in GAMBIT are Map for 2D 

geometries and the Cooper scheme for 3D geometries. The Map scheme creates a regular 
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structured grid of quadrilateral or mixed quadrilateral and triangular elements. In order for a face 

to be mappable, it must form a logical rectangle 
[48] 

� It must have four end vertices and the remaining vertices should all be side vertices  

� The number of mesh intervals on opposing sides of the rectangle must be equal 

The Cooper scheme is the most flexible among the volume meshing schemes as it is associated 

with both hexahedral and wedge elements. In this scheme, GAMBIT treats the volume as a set of 

logical cylinders consisting of two end caps and a barrel. The caps act as the source faces and the 

barrels as the non-source faces. The sequence of operations in the Cooper meshing scheme is as 

follows 
[49]

: 

1. Create Map and/or Submap meshes on each of the non-source faces. 

2. Imprint the source faces onto each other. 

3. Mesh the source faces. 

4. Project the source-face mesh node patterns through the volume 

In our microfabricated passive diffusion device, we have to use a mixture of structured and 

unstructured mesh algorithms. The top surface of the chamber is a square with a circular 

boundary in the middle. The Cooper scheme treats two of the side faces as source faces and all 

other faces as non-source ones. The top surface of the chamber with a circular boundary in the 

middle is one of these non-source faces and therefore, has to be mappable or submappable. 

However, due to the circle in the middle, we cannot use the Map scheme in this case and have to 

mesh it first using an unstructured algorithm (pave) with quadrilateral elements. We can then 

mesh the rest of the volume using the Cooper scheme as it does not re-mesh the top face.  
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 In the solver environment, Fluent, there are parameters that have to be optimized at 

particular steps and issues that have to be taken into consideration. Factors like the size of each 

timestep in a time-dependent simulation and by-products of computation such as numerical 

diffusion in data are examples of some of the relevant considerations in CFD calculations. The 

remaining part of this section discusses each such factor in detail and possible ways to 

circumvent them. 

 The most important factors to consider while setting up a CFD simulation in Fluent are 

the time discretization method and the timestepping method. Temporal discretization schemes 

are broadly classified into first-order and second-order categories. The fundamental objective is 

to replace the partial differential for time in continuous equations to a difference expression. 

Fluent uses backward differences to discretize time derivatives and using this method the first 

order method for the derivative 
t

F
∂

∂
=

φ
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[50] 
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The second order temporal discretization for the same expression is 
[51]
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Once the discretization has been done, the choice remains to choose the method by which to 

evaluate the values of )(φF  , in particular the time level values of φ  that should be used. The 

explicit method takes into account the following assumptions: 
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� If 
t∂

∂φ
 is calculated at instant nt  then the derivative for diffusion according to Fick’s 

Second Law,
2

2

t∂

∂ φ
, is also calculated at the same instant. 

� The values n

iφ  at time nt  are known 

� The resulting algebraic formulation has only one unknown: 1+n
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Explicit methods are not necessarily stable which implies that the timestep t∆ cannot be chosen 

arbitrarily and has a limit up to which it can produce stable solutions. These methods are 

conditionally stable in time and their stability can be judged by two main criteria, the Courant 

Criterion and the von Neumann criterion 
[52]

.  

 Implicit methods take into account the following considerations: 

� If the derivative 
t∂

∂φ
 is calculated at the instant 1+nt  then the diffusion derivative 

2

2

t∂

∂ φ
 

must also be calculated at the same time instant 

� At 1+nt  the values 1+n

iφ  are known 

� The resulting algebraic expression now has more unknowns: 1
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Implicit methods are unconditionally stable in time and therefore, a good choice for time-

dependent problems.   Hence, although the choice of the timestep is not dependent on the user in 

the implicit method we still cannot choose it arbitrarily. A good way for judging the choice of 

t∆  is to observe the number of iterations that Fluent needs to converge at each timestep. The 

ideal number of iterations per timestep is 5-10 and if Fluent requires substantially more timesteps 

(~5) to converge, then the timestep is too large. A time-dependent problem usually has a very 

high rate of producing transient values towards the beginning—a characteristic that also delays 

rapidly. The initial size of the timestep is crucial in this regard and needs to be conservatively 

small. It can gradually be increased to the maximum stable value, generally in the order of 10-15 

seconds, as the calculation proceeds. 

 Fluent provides us with the capability to choose between two timestepping methods to 

execute our CFD simulations—fixed and adaptive. The fixed timestepping method, as suggested 

by the name, takes a single value for t∆  that is constant throughout the calculation. The adaptive 

method provides us with a method to increase the size of the timestep in the course of the 

calculation. We specify the truncation error tolerance that denotes a threshold value to which the 

truncation error is compared, the minimum timestep size, the maximum timestep size and the 

number of fixed timesteps to execute. This allows us to have more flexibility in stabilizing the 

initial stage of the simulation and then increase the timestep size. In case of our device, although 

the adaptive timestepping algorithm can be used we determined through ten trial runs the 

optimum size of the timestep as 10 seconds. Moreover, the adaptive timestepping method also 

provides for ten seconds as the maximum timestep size.  
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 Fluent, like all other software packages, has a computational limit in terms of the 

precision of numbers that it can calculate. The smallest machinable number that Fluent can 

calculate and store is in the order of 1E-35. Numbers in the range of 1E-26 are the maximum 

values around which stable solutions can be expected—beyond this range Fluent begins to enter 

the realm of numerical diffusion which has been discussed in further detail in the latter parts of 

this section. This issue of dynamic range and computational capability is common to all software 

and in this case, although we can scale up our initialization values to circumvent it, there is also a 

ceiling on the initial values; extremely high concentrations applied to a microscale device can 

cause overflow conditions in Fluent which (via software bug) results in the calculation of values 

in coordinates where there is no geometry.  

Numerical diffusion is a dominant source of errors that we encounter in all 

multidimensional CFD simulations. In Eulerian simulations, time and space are divided into 

discrete grids and continuous differential equations such as the Navier-Stokes and convection-

diffusion equations are discretized into finite-difference equations. This phenomenon is also 

referred to as false diffusion as the diffusion occurring in it is not a real phenomenon but its 

effect is analogous to that of increasing the real diffusion coefficient
 [53]

.  

Numerical diffusion is employed by numerical models to control small-scale noise in the 

model that can arise from nonlinear instability, discontinuous physical processes and external 

forcing. However, this scheme itself introduces noise in the solution and can also lead to 

overshooting or undershooting of the solution. The second order diffusion term in Fick’s Second 

Law has a Laplacian form and always involves the transfer from regions of higher values to 
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regions of lower values. Therefore, it cannot create any new extrema where there are physically 

none present. 

 

Figure 69: Numerical diffusion in a portion of the chamber of the passive diffusion device 

 

 

 

The above figure demonstrates an example of the appearance of data when numerical diffusion 

takes place.  The concentration of the diffused substance along a plane within the chamber of the 

device has been plotted as a series of contours. The initial levels beginning with red are in 

agreement with the data. Further along the plane though, we see discontinuous patches of blue 

which look as if diffusion has been forced in those regions—this has happened due to numerical 

diffusion. A portion of the discrepancies are also attributed to the contour algorithms in software 

packages—a topic we have discussed later in this section. However, we must remember that 

during discretization on regular grids, flow is aligned conventionally in along the direction of the 

coordinate axes rather than in the direction of the grid. If fluid flows along a diagonal then any 
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numerical scheme can, at best, transfer the fluid in vertical and horizontal directions. After some 

time, the fluid spreads through the grid due to this sideways transfer. The results are seen as a 

numerical effect corresponding to higher diffusion rates. Contour plots display patches of fluid in 

areas of the geometry where the fluid has not physically propagated when the range of values 

drops below the order of 1E-20m
2
/s.   

 Based on the above discussion, we know the following facts about numerical diffusion: 

� Numerical diffusion is most noticeable when the real diffusion is small, i.e., the diffusion 

coefficient is very small. 

� All practical computational schemes for solving fluid flow contain a finite amount of 

numerical diffusion as it arises from truncation errors that are a result of representing 

fluid flow equations in discrete form. 

� The second order discretization scheme can help reduce the effects of numerical diffusion 

� Numerical diffusion is minimized when the flow is aligned with the grid and this is 

determined by the choice of the grid. Triangular grids are never aligned with the flow 

while in hexahedral or quadrilateral meshes the flow is aligned to the mesh only when the 

surface or volume within which the flow is taking place is a regular shape such as a 

rectangle or hexagon.  

Contour plots are extremely useful tools in visualizing any type of flow and are a significant 

part of data processing. While there exist a number of programs to read data extracted from 

Fluent and arrange it in regularly spaced contours, all of these programs are limited in the range 

of data that they can process and plot. Firstly, all software programs are limited by the smallest 

machinable value that they can read and plot. In Matlab, this value is in the order of 1E-16 while 
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in more specialized programs such as Tecplot, this value increases to 1E-21. Our limit of control 

over the contour levels is also restricted as the number of levels that we can set to get accurate 

contour lines for a range of data is all interrelated. The fundamental method for setting contour 

levels in all software programs is to calculate the range of the data, divide it into the required 

number of levels and assign each level a number (Matlab). This method is adequate for data with 

short ranges but in order to visualize a large range of data completely, we either need to visualize 

it in parts or visualize the logarithms of the original values. In our case, we have used the original 

concentration or gradient values in Tecplot. 

In Fluent, we simulate diffusion in the entire device but our area of interest does not 

encompass the complete geometry. In such cases, we need to employ the data extraction methods 

provided in Fluent to obtain the data from the part of the geometry that is relevant to us. Fluent 

provides us with the capability to extract data from various geometrical entities from straight 

lines to iso-surfaces. The number of points in these entities can be specified or can be extracted 

along the original grid where the entity passes through it. In cases where we need visualize 

properties such as concentration contours, it is best to extract the points along the original grid. 

When we specify the number of points to extract on a plane, the values are interpolated if the 

number of points specified is greater that the number of actual grid points on that particular 

surface. This leads to loss in accuracy; we also cannot export this data as a grid to programs like 

Tecplot since these points do not actually constitute a grid. Similarly, when we plot the 

logarithmic values of concentration of diffused material along half the diagonal of the chamber, 

we use the lines along grid points rather than specifying the number of points in order to avoid 

interpolation.  
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APPENDIX E 

Matlab and C codes used in this model 

 

 

1. Matlab code for plotting concentration logarithms  

 
%Program to make logarithmic pots of concentration 
%close all; clear all; 
format long; 
fname = input('Enter the line file you want to open') 
A = dlmread(fname); 

  
%Defining the arrays 
x = A (:,6); 
con = A(:,5); 
y = A(:,3); 

  
%Getting rid of undershoots and conversion to actual concentration values 
for i = 1:length(con) 
    if con(i,:)<0 
        con(i,:)=(-1000)*con(i,:) 
    else 
        con(i,:)=1000*con(i,:) 
    end 
end 
con; 

  
% Defining the arrays for logarithmic plotting 
% Catching exceptions in the concentration values 

  
[r,c,v]=find(con) 
v; 
diff = length(con)-length(v) 
diff; 
for j=1:length(v) 
    x1(j,:)=x(diff+j,:) 
end 
x1; 
semilogy(x,con,'o','MarkerFaceColor','g'); 
xlabel('X (m)'); 
ylabel('LOG[C] (M)'); 
title('[channel-width] micron channel device-[time] hrs'); 
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2. Matlab code for creating sampling plots 
 

%Program to make logarithmic pots of concentration 
close all; clear all; 
fname = input('Enter the line file you want to open') 
A = dlmread(fname); 

  
%Defining the arrays 
X = A (:,2); 
Y = A(:,3); 

  
plot(X,Y,'*','MarkerEdgeColor','r'); 

  
xlabel('X(m)'); 
ylabel('Y(m)'); 
title('Sampling of points in the [channel-width] micron channel device at 

[time] hrs'); 

 

 

3. Matlab code for creating concentration and gradient plots 
 

%Program to make plots of linear data 
close all; clear all; 
format long; 
filename = input('Enter the file name to open') 
A = dlmread(filename) 
format long; 
%Setting the arrays 
x = A(:,2) 
c = A(:,5) 
%Getting rid of undershoots in concentration and conversion to moles 
for i=1:length(c) 
    if c(i,:)<0 
        c(i,:)=(-1000)*c(i,:) 
    else 
        c(i,:)=1000*c(i,:) 
    end 
end 
c; 
for j=2:length(c) 
    g(j,:)=c(j-1,:)-c(j,:) 
end 
g; 
for k=1:(length(g)-1) 
    cg(k,:) = g(k+1,:) 
end 
cg; 
for l=1:(length(x)-1) 
    xg(l,:)=x(l+1,:) 
end 
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xg; 

  
for m=1:length(xg) 
    cgrad(m,:)=cg(m,:)/(xg(1,1)-xg(2,1)) 
end 
cgrad; 
[AX,H1,H2]=plotyy(x,c,xg,cgrad); 
set(get(AX(1),'Ylabel'),'String','C (M)');  
set(get(AX(2),'Ylabel'),'String','Gradient (M/m)'); 
xlabel('X (m)'); 
title('20micron channel device-264hrs'); 

 

 

4. Matlab Code for creating conclusion plots 
 

%Program to make simultaneous plots 

  
f1 = input('Enter the first file'); 
A = dlmread(f1); 
f2 = input('Enter the second file'); 
B = dlmread(f2); 
f3 = input('Enter the third file'); 
C = dlmread(f3); 
f4 = input('Enter the fourth file'); 
D = dlmread(f4); 
f5 = input('Enter the fifth file'); 
E = dlmread(f5); 

  
%Defining the matrix columns 
x1 = A(:,2); 
c1 = A(:,5); 
x2 = B(:,2); 
c2 = B(:,5); 
x3 = C(:,2); 
c3 = C(:,5); 
x4 = D(:,2); 
c4 = D(:,5); 
x5 = E(:,2); 
c5 = E(:,5); 

  
%Getting rid of undershoots and conversion to actual concentration values 
for i = 1:length(c1) 
    if c1(i,:)<0 
        c1(i,:)=(-100)*c1(i,:) 
    else 
        c1(i,:)=100*c1(i,:) 
    end 
end 
for i = 1:length(c2) 
    if c2(i,:)<0 
        c2(i,:) = (-10)*c2(i,:) 
    else 
        c2(i,:) = 10*c2(i,:) 
    end 
end 
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for i = 1:length(c3) 
    if c3(i,:)<0 
        c3(i,:) = (-1000)*c3(i,:) 
    else 
        c3(i,:) = 1000*c3(i,:) 
    end 
end 
for i = 1:length(c4) 
    if c4(i,:)<0 
        c4(i,:) = (-1000)*c4(i,:) 
    else 
        c4(i,:) = 1000*c4(i,:) 
    end 
end 
for i = 1:length(c5) 
    if c5(i,:)<0 
        c5(i,:) = (-1000)*c5(i,:) 
    else 
        c5(i,:) = 1000*c5(i,:) 
    end 
end 

  
%Making the actual plots 
semilogy(x1,c1,'-',x2,c2,'--',x3,c3,'-*',x4,c4,'-o',x5,c5,'-x'); 
xlabel('X (m)'); 
ylabel('LOG[C] (M)'); 

 

 

5. UDF in C for computing cell gradients 
 

#include "udf.h" 

#include <stdio.h> 

 

DEFINE_EXECUTE_AT_END(execute_at_end) 

{ 

 

/* Declaration of variables*/ 

 

Domain *d;  

Thread *t; 

cell_t c; 

 

d = Get_Domain(1);  /* single-phase flow therefore, one domain */ 

 

/* Looping over all the cell threads in the domain */ 

thread_loop_c(t,d) 

{ 

 if(FLUID_THREAD_P(t)) 

 { 

  begin_c_loop(c, t) 

  { 
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   C_UDMI(c,t,0) = C_UDSI_G(c,t,0)[0]; 

   C_UDMI(c,t,1) = C_UDSI_G(c,t,0)[1]; 

   C_UDMI(c,t,2) = C_UDSI_G(c,t,0)[2]; 

  } 

  end_c_loop(c,t) 

 } 

} 

/*printf("Gradient of UDS: %d\n", Grad);*/ 

fflush(stdout); 

} 
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