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CHAPTER I

INTRODUCTION

This thesis deals with the asymptotic distribution of poles of meromorphic approximants

to a class of Cauchy transforms of, in general, complex measures, as the number of poles grows

large. This subject is motivated by the problems of inverse potential theory, where one wants to

recover information about a measure from the knowledge of its potential [63]. More precisely, let µ

be a compactly supported measure in the complex plane and Uµ be its logarithmic potential, i.e.

the convolution Uµ = − log |z| ∗ µ. (Recall that − log |z| is a fundamental solution of the Laplace

operator. In general, the potential of µ obtained by convoluting µ with the fundamental solution of

any elliptic operator, not necessarily the Laplace operator, can be considered.) The inverse potential

problem consists in locating the support of the measure µ, Sµ := supp(µ), from the knowledge of

Uµ outside of some neighborhood of Sµ. One of the suggested approaches is to consider an optimal

(with respect to some criteria) discretization of Uµ. In other words, to approximate Uµ by a

sequence of potentials {Uµn}∞n=1, where µn is a discrete measure with n point masses. Of course,

the asymptotic behavior of µn depends on the chosen criteria of discretization. In particular, optimal

discretization with respect to Sobolev-type norms (i.e. approximating the derivative) amounts to

best rational approximation. Indeed, ∂Uσ/∂z is the Cauchy transform of a measure σ, which is a

rational function if and only if σ is a discrete measure.

The subject of rational approximation has made substantial progress in the last several

decades [54, 120, 75, 122, 123, 126, 58, 27, 28, 129, 19]. However, in many applications the potential

of the measure is known only up to a harmonic function, which is the reason to consider meromorphic

rather than rational approximants. Let fµ be the Cauchy transform of µ, i.e.,

fµ(z) =
∫

(z − t)−1dµ(t).

A meromorphic approximant with n poles, say gn, to fµ in some fixed domain D ⊃ Sµ can be written

as gn = hn/qn, where hn is a holomorphic function in D and qn is a monic polynomial of degree n

with all its zeros in D. Thus, the asymptotic behavior of the poles of meromorphic approximants gn

is the same as the asymptotic behavior of the zeros of polynomials qn. Further, it was observed in

[24, 25] that these polynomials are, under certain conditions, orthogonal with respect to some varying

complex measures supported on Sµ. These facts link the subject of meromorphic approximation to

1



the theory of non-Hermitian orthogonal polynomials. The latter is not only an interesting field on its

own but also provides an efficient set of tools for the study of the asymptotic behavior of the poles

of meromorphic approximants and the error of the approximation. However, the non-Hermitian

character of orthogonality as well as the dependence upon varying weights constitute a substantial

difficulty for the study of these polynomials. In the following sections we give a more extensive

treatment of inverse source problems, meromorphic approximation, orthogonal polynomials, the

connection among them, as well as provide an overview of known and obtained results.

2D “Crack” Detection

As was briefly discussed above, meromorphic (rational) approximation is motivated by the

problem of locating the support of a measure from the knowledge of its potential. The following

model is the main application that we bear in mind.

We consider a class of problems in which one needs to detect, from the boundary data, the

presence and the location of cracks (fissures) in homogeneous media without destroying it. (For

example, one can think of a two-dimensional planar region that contains a “crack”, but the observer

cannot see inside the region — only the boundary of the region is visible.) Boundary data can be

obtained from either thermal, electric, acoustic, or elastic measurements. The existing methods for

locating cracks can be divided into two groups: iterative and semi-explicit methods. Methods of the

first group rely on the multiple iterative integration of the partial differential equations involved (cf.

[114]). They are highly time consuming and very sensitive to the noise in the initial data and most

importantly they are extremely sensitive to the initial guess. In other words, these methods based

on algorithms converge only if the crack is in some sense already localized. On the other hand, semi-

explicit methods provide such a localization and are computationally fast, but not fully constructive

(cf. the reciprocity gap method [6], the factorization method [66], [34], [65], etc.). Computationally

more simple constructive methods that do not depend on the initial guess would in many cases be

much preferable. In 1999, my thesis advisor, E. B. Saff, working together with a team of researchers

at the French federal research institute INRIA headed by L. Baratchart introduced a new technique

that utilizes meromorphic approximants that can be constructed from the boundary data (cf. [20]

and [23]). The meromorphic approximation technique provides a method that is cost-effective and

does not depend on an initial guess.

The approach in [20] and [23] is based on the following physical interpretation. Consider

a simply connected conductor D having oriented boundary Γ and filled with a homogeneous body

except for a one-dimensional crack modeled by an oriented Jordan arc γ with distinct endpoints γ0
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and γ1. We shall assume that Γ and γ are smooth enough to posses normals whenever necessary.

This conductor is the subject of some physical experiment governed by the Laplace operator, such

as being exposed to a heat source or to some electrical field for which the crack is acting like a

perfect insulator. A general assumption is that a flux Φ (heat or current) is applied on the outer

boundary of the conductor. When equilibrium is reached, the heat u (or the potential in the case

of the electrostatics problem) satisfies a Neumann boundary value problem, which depends on the

flux and the crack. In other words, the potential u is such that



∆u = 0 in D \ γ,
∂u

∂nΓ
= Φ on Γ,

∂u±

∂n±γ
= 0 on γ \ {γ0, γ1},

(1.1)

where ∆u is the Laplacian of u, nΓ is the inner normal on Γ, and n±γ are the one-sided inner normals

on the crack. (Observe that the orientation of γ defines positive and negative regions in D. The

positive (resp. negative) region lies on the right (resp. left) of γ while traversing γ in the positive

direction.) Assuming that the flux Φ meets the compatibility condition
∫

Γ
Φds = 0, where ds is the

differential of arclength on Γ, and the boundary Γ together with the crack γ is piecewise C1,α without

cusps, a solution to the Neumann boundary problem (1.1) exists [23]. Moreover, this solution can

be viewed as the real part of a function analytic on the conductor except across the crack. The

boundary values of that function can be computed by the formula

f(ξ) := f(u; ξ) = u(ξ) +
∫ ξ

ξ0

Φds, ξ ∈ Γ,

where ξ0 is an arbitrary point on Γ. In another connection, the Cauchy integral formula implies that

f(z) = h(z)− 1
2πi

∫
γ

(f+ − f−)(t)
z − t

dt, z ∈ D \ γ,

where h is analytic in D and f± are the nontangential boundary values of f on the positive and

negative sides of γ.

The idea behind the suggested approach is the following. The function f(u; ·) is approx-

imated on Γ by meromorphic approximants. The crack is then localized through the asymptotic

behavior of the poles of these approximants as their number increases. Unlike the semi-explicit

methods, this approach can only locate the endpoints of the crack. However, it enjoys features that
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are not shared by other methods. First of all it is fully constructive. While in semi-explicit meth-

ods, one approximates the solution u of the Neumann boundary value problem (1.1) throughout D,

the proposed approach requires knowledge of that solution only on the boundary. Second of all it

demands, in general, only one numerical experiment (unless the crack lies on the level line of the

equilibrium potential, in which case the direction of the flux has be changed). By comparison, the

application of the factorization method is based on a large number of numerical experiments. Fi-

nally, the method of meromorphic approximants allows us to consider functions with branch points

and polar singularities (modeled as a sum of a Cauchy transform and a rational function).

The latter case is of particular importance for the inverse EEG (ElectroEncephaloGraphy)

problem. This problem consists in localizing epileptic foci in the brain from electrical data measured

on the scalp. Initially, a simplified spherical model is studied. The head is assumed to be the unit

ball in three dimensions, and after a number of technical steps dealing with different conductivity

layers (for the scalp, skull, and brain) the problem is reduced to the following: given a flux and

measured potential on the surface of the unit ball, find points inside of it such that the solution to

the Laplace operator is equal to the potential on the unit sphere and its normal given by the flux.

Cutting the unit ball into the parallel two-dimensional slices one can reduce the original problem

to spotting the branch points of otherwise analytic (multi-valued) functions in the disk (cf. [21]

and [18]). Note that such functions can be represented as Cauchy transforms of complex measures

supported on the branch cuts. The latter can be an arbitrary curve or set of curves connecting the

branch points. Thus, the techniques of meromorphic approximants can be applied to recover the

endpoints of the cut, i.e. the wanted branch points.

Meromorphic Approximation

In the preceding section we described the idea of using meromorphic approximants to recover

fissures in a homogeneous media. Now, we shall put this idea into a more rigorous mathematical

framework.

Let µ be a Borel measure compactly supported in the unit disk, D, of the complex plane.

Further, let F be a function of the form

F(z) := F(µ;R; z) =
∫
dµ(t)
z − t

+R(z), (1.2)

where R is a rational function, holomorphic at infinity, and µ is a complex measure compactly and

regularly supported on the real line. Thus, F(µ;R; ·) is a sum of the Cauchy transform of the
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measure µ, which we denote by fµ, and a rational function R of type (m− 1,m), i.e. the ratio of a

polynomial of degree at most m− 1 with a polynomial of degree at most m.

The meromorphic approximants that we consider are optimal (for a fixed number of poles

in the unit disk) with respect to an Lp-norm on the unit circle, T. When studying them, we assume

that Sµ ⊂ (−1, 1) and all poles of R lie in the open unit disk, so that F is indeed p-summable, in

fact continuous, on T. The asymptotic behavior is investigated as the number of poles grows large.

In the case p = ∞, this type of approximant was introduced by V. M. Adamyan, D. Z. Arov, and

M. G. Krein in their famous paper [1]. The latter was naturally generalized to Lp, p ∈ [1,∞), by

L. Baratchart and F. Seyfert in [28] and independently by V. A. Prokhorov in [104]. It was shown

that for any n ∈ N and p ∈ [1,∞] there exists (not necessarily unique) an optimal approximant

gn = hn/qn, where hn is an analytic function in D with Lp boundary values on the unit circle

and qn is a monic polynomials whose zeros reside in D. However, here we restrict ourselves to

the case p ∈ [2,∞], since it was only for that range that the authors of [28] were able to express

the error in terms of (generalized) singular vectors of a Hankel operator and subsequently obtain

integral formulae for that error when the approximated function is represented as a Cauchy integral.

These formulae are connected with non-Hermitian orthogonality and form the basis of the present

approach. In fact, as will be shown later, the polynomials {qn} are such that

∫
tjqn(t)

q(t)wn(t)
q̃2
n(t)

dµ(t) = 0, j = 0, . . . , n−m− 1, (1.3)

where q is the denominator of R, m = deg(q), {wn} is some normal family of outer functions in D,

and q̃n(z) = znqn(1/z̄) is the reciprocal polynomial of qn.

The study of optimal meromorphic approximants in the above setting is quite recent. When

F is a Markov function, i.e. F(·) = F(µ; 0; ·) and µ is a positive measure, best meromorphic

approximants have been instrumental in [5] and [33] to construct rational approximants, and were

studied per se by L. Baratchart, V. Prokhorov, and E. B. Saff in [27]. Using results from [5] to

make connections with orthogonality, these authors prove (and give error rates for) the uniform

convergence of such approximants, locally uniformly in C \ Eµ, whenever p ∈ [1,∞] provided that

µ satisfies the Szegő condition: log dµ/dt ∈ L1(Eµ), where Eµ is the convex hull of supp(µ). When

p = 2, the uniform convergence for any Markov function follows from the work [29] by L. Baratchart,

H. Stahl, and F. Wielonsky. Apart from [28, Sec. 10], where the asymptotic behavior of the poles

is established for any p ∈ [2,∞] when F has exactly two branch points and no pole, there are no

other papers dealing with the convergence of best meromorphic approximants to functions of the

5



form (1.2) in the case where µ is a complex measure.

It is important to note that the meromorphic approximation problem also has a conformally

invariant formulation on Jordan domains with rectifiable boundary, to which the results of the present

thesis transpose with obvious modifications if Sµ is contained in a closed hyperbolic geodesic arc

rather than a segment. The procedure can be carried out with no difficulty using the construction

of [23, Sec. 5].

When dealing with meromorphic approximants we restrict our attention to the unit disk.

Since, the domain of analyticity of F(µ;R; ·), DF , includes a neighborhood of infinity, there are

other techniques of approximation that utilize this fact. So, here we shall treat one more type of

approximants, the so-called, multipoint (generalized) Padé approximants.

Padé Approximation

A multipoint Padé approximant, Πn, n ∈ N, generally speaking, is a rational interpolant of

type (n, n) where a set of 2n + 1 not necessarily distinct interpolation points has been prescribed,

at least one of which is infinity. Moreover, we assume1 that the interpolation points are conjugate-

symmetric and chosen in such a manner that, as n gets large, they have a limit distribution whose

support is contained in DF . Besides being interpolants, multipoint Padé approximants possess

one more remarkable property. They turn out to be asymptotically best rational approximants

[48, 51, 54, 55, 53, 52, 56, 57, 58, 122, 123, 59, 129, 10]. In other words,

lim
n→∞

(
dn(F ;K)
‖F −Πn‖K

)1/n

= 1,

where Πn(·) = Πn(F ;K; ·) is a multipoint Padé approximant and dn(F ;K) = infr ‖F − r‖K is the

distance from F to the set of rational functions of type (n, n) in the Chebyshev (uniform) metric

on a compact set2 K. In this sense Padé approximants are also optimal approximants to F (see

previous section).

One reason for treating jointly best meromorphic and Padé approximants is that essentially

the same techniques can be used. These techniques rest on the orthogonality relations that the de-

nominators of Πn satisfy. Indeed, if we denote by Πn = pn/qn the n-th multipoint Padé approximant

to F(µ;R; ·) with respect to some interpolation set, then it is not hard to show that

∫
tjqn(t)

q(t)
v2n(t)

dµ(t) = 0, j = 0, . . . , n−m− 1, (1.4)

1In some cases, these assumptions can be partially relaxed, as will be shown later.
2In fact, Padé approximants are optimal in rational approximation of not only analytic but also continuous functions

(see [122, 123, 129]) and functions on unbounded sets (see [10]).
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where v2n is a polynomial with its zeros at finite interpolation points and the multiplicity of each

zero is equal to the number of occurrences of that point in the interpolation set. A second reason

is that when p = 2, best meromorphic approximation to F reduces to best rational approximation

of fixed degree in L2 of the circle. Such rational approximants turn out to be multipoint Padé

approximants as well (although this time the interpolation points are not known a priori); hence

the two theories make contact for p = 2.

Unlike the meromorphic case, there exists a vast amount of literature on Padé appoximants.

To put our results into perspective, let us begin with an account of the existing results. When F is

a Markov function (µ is a positive measure and R ≡ 0), the study of diagonal Padé approximants

to F at infinity goes back to A. A. Markov who showed [76] that they converge uniformly to F on

compact subsets of C \ Eµ, where Eµ is the convex hull of Sµ. Later this work was extended to

multipoint Padé approximants with conjugate-symmetric interpolation sets by A. A. Gonchar and

G. López Lagomasino in [54]. A cornerstone of the theory is the close relationship between diagonal

Padé (resp. multipoint Padé) approximants to Markov functions and orthogonal polynomials (recall

(1.4)). Another generalization of Markov’s result was obtained by A. A. Gonchar on adding polar

singularities, i.e. including the rational function R. He proved in [50] that Padé approximants still

converge to F locally uniformly in C \ (S′ ∪Eµ), where S′ is the set of poles of R, provided that µ is

a positive measure with singular part supported on a set of logarithmic capacity zero. Subsequently,

it was shown by E. A. Rakhmanov in [106] that weaker assumptions on µ can spoil the convergence,

but at the same time, if the coefficients of R are real, then the locally uniform convergence holds for

any positive µ. Although it is not a concern to us here, let us mention that one may also relax the

assumption that Sµ be compact. In particular, Padé and multipoint Padé approximants to Cauchy

transforms of positive measures supported in [0,∞] (such functions are said to be of Stieltjes type)

were investigated by G. López Lagomasino in [68, 69].

It is an important point to emphasize that uniform convergence in [106] is spoiled by poles of

Padé approximants accumulating in DF . It is customary in the literature to call such poles spurious

(see [124, 125, 127, 16]). In particular, it was shown almost a century ago in [43] that poles of Padé

approximants at infinity to

f(z) =
√

(z − e1) · . . . · (z − e4)− z2 +
1
2

(e1 + · · ·+ e4)z

are dense in C under some conditions on e1, e2, e3, and e4. Such effects can be observed even for

F(µ;R; ·) with positive measures when Sµ is not connected. However, one type of convergence still
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holds in these cases, namely, the convergence in capacity. Exactly the same phenomenon (spurious

poles) can be observed when µ is a complex measure. Thus, in this case it is more natural to speak

of convergence in capacity than uniform convergence.

When uniform convergence of Padé approximants is obtained, it is, in fact, geometric.

Nevertheless, the rate itself is known only up to a sub-geometric factor. This opens up a new direction

of investigation in rational approximation: to determine the exact rate of convergence, in other words

to show strong asymptotics for the error of approximation. In the case of positive measures and

R ≡ 0 this question, among other things, was settled by G. López Lagomasino in [70] and [35].

Independently, H. Stahl presented in [128] an approach which was developed specially to target

strong asymptotics only. Strong convergence of multipoint Padé approximants was obtained for the

case F(µ; 0; ·) with µ having absolutely continuous part (with respect to the Lebesgue measure) in the

Szegő class and conjugate-symmetric interpolation sets. Essentially the same conditions appeared

in [35] but µ had no singular part. In the recent paper [60] A. A. Gonchar and S. P. Suetin showed

the strong convergence of Padé approximants at infinity to F(µ;R; ·) with R 6≡ 0 and the measure

µ having nonvanishing analytic derivative with respect to the normalized arcsine distribution on

[−1, 1]. One remarkable result of that paper is the following fact. Each pole of the rational function

R attracts as many poles of the Padé approximants as its multiplicity and the latter distribute

themselves asymptotically as the roots of unity. We shall show that this trait is shared not only by

multipoint Padé approximants but also by meromorphic approximants.

Meanwhile H. Stahl opened up new perspectives in his path-breaking papers [120, 126],

where he studied diagonal Padé approximants to (branches of) multi-valued functions which can

be continued analytically without restriction except over a set of capacity zero (typical examples

are functions with poles and branch points). By essentially representing the “main” singular part

of the function as a Cauchy integral over a system of cuts of minimal capacity (a system having

the S-property), and through a deep analysis of the zeros of non-Hermitian orthogonal polynomials

on such systems of cuts, he established the asymptotic distribution of poles and subsequently the

convergence in capacity of the Padé approximants on the complement of the cuts. For the future

references we record that the system of cuts, say S, possesses the S-property if

∂g(·;∞)
∂n+

(t) =
∂g(·;∞)
∂n−

(t) (1.5)

quasi everywhere on S, where g(z;∞) is the Green function with pole at infinity for the domain C\S.

In [58] this construction was generalized to certain carefully chosen multipoint Padé approximants

8



by A. A. Gonchar and E. A. Rakhmanov, who used it to prove the sharpness of O. G. Parfenov’s

theorem (formerly Gonchar’s conjecture) on the rate of approximation by rational functions over

compact subsets of the domain of holomorphy, see [90]3. Of course the true power of this method lies

with the fact that it allows one to deal with measures supported on more general systems of arcs than

a segment, which is beyond the scope of this thesis. However, since a segment is the simplest example

of an arc of minimal logarithmic capacity connecting two points, the results we just mentioned apply,

in particular, to functions of the form (1.2), where µ is a complex measure supported on a segment

which is absolutely continuous there with continuous density that does not vanish outside a set of

capacity zero. Combining the technique of minimal capacity contours and scalar Riemann-Hilbert

boundary value problems, S. P. Suetin showed that there exists a subsequence of Padé approximants

at infinity converging strongly to F(µ;R; ·), R 6≡ 0, where µ is supported on a system of disjoint

analytic arcs having the S-property, and it is assumed that its Radon-Nikodym derivative is Hölder

continuous. Observe that the derivative is taken with respect to dt/
√
p(t), where p is a polynomial

with simple zeros at the endpoints of arcs comprising Sµ. By different, operator-theoretic methods,

combined with a well-known theorem of E. A. Rakhmanov on ratio asymptotics [107, 108], A. Magnus

further showed that the diagonal Padé approximants to F converge uniformly on compact subsets

of C \ Eµ when R ≡ 0 and dµ/dt is non-zero almost everywhere and has continuous argument [75].

To conclude this section a few words of comparison between meromorphic and Padé approx-

imants are perhaps in order. On the one hand classical and multipoint Padé approximants were

historically the first to be studied, becoming of great importance both in function theory and in

number theory, and they offer linear computational schemes with remarkable properties that are

exploited, e.g. for convergence acceleration in numerical analysis [15]. On the other hand, the phe-

nomenon of spurious poles and the poor numerical stability when dealing with inaccurate data have

impeded the use of such approximants for modeling and identification in the engineering sciences.

In addition, given some criterion, the optimal or suboptimal choice of the interpolation points when

their number is fixed (a crucial issue in practice) is a difficult nonconvex optimization problem which

is still not well-understood. Indeed, most studies of the approximation rate are asymptotic in nature.

In contrast, best meromorphic approximants on the circle have a guaranteed region of holomorphy

(the complement of the closed unit disk in our case) and, by definition, they make in some sense

best possible use of the freedom to choose the poles. Moreover, their optimality has important

interpretations in control and identification of linear dynamical systems [14, 42, 92, 97, 17] and gives

3It is interesting to note that Parfenov’s proof makes decisive use of the Adamyan-Arov-Krein theory; later, the
result was carried over to multiply connected domains by V. A. Prokhorov in [103].
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rise in specific cases to near-best rational approximation schemes [47, 90]. Their main drawback

is that they are not so easy to compute, since, when p = ∞, the best approximation projection is

generically not continuous with respect to the L∞-norm, but only with respect to stronger norms

[62, 96], while for p <∞ one has to rely on a numerical search that may get trapped in local minima.

In this respect, let us point out that the results of this thesis are valid, not only for best meromorphic

approximants, but more generally for critical points of the Lp-criterion and thus also for local best

approximants.

Orthogonal Polynomials

As was earlier emphasized and suggested by formulae (1.3) and (1.4), the study of rational

and meromorphic approximants is closely linked to the theory of orthogonal polynomials. In this

section we discuss some objectives of this theory.

Let µ be a Borel, generally complex, measure compactly supported in C. A sequence of

polynomials {qn}n∈N is called orthogonal with respect to µ if

∫
tjqn(t)dµ(t) = 0, j = 0, . . . , n− 1. (1.6)

Historically, the study of polynomials satisfying (1.6) originated in the setting of positive measures

supported in R. Hereafter, we shall call this case Hermitian. It is easy to see that Hermitian

orthogonal polynomials have exact degree n and all their zeros belong to Eµ. For the non-Hermitian

setting we shall describe only two cases. The first one is the case of complex measures having

analytic Radon-Nikodym derivatives and supported on contours satisfying the S-property. The

second, which is of primary interest to us, is the case of complex measures supported in R, but

having less regular derivatives. We would like to mention that it is also possible to consider multiple

orthogonal polynomials. They are not of a concern to us here, but we shall reference some results

in this direction whenever they are directly applicable to the subject of the discussion. One needs

to realize that in the non-Hermitian setting, equations (1.6) neither define polynomials qn uniquely

nor yield the exact degree n. Further, a priori, nothing can be said about location of the zeros of

qn. There are other distinctions between Hermitian and non-Hermitian orthogonal polynomials that

account for fairly different methods of study in each case (see [121]).

While discussing orthogonal polynomials, we shall concentrate on their asymptotic behavior

in C \ Sµ. We shall distinguish so called weak (n-th root) and strong (Szegő) asymptotics of qn.

Polynomials qn possess weak asymptotics if the sequence {|qn(z)|1/n} converges locally uniformly in
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C \K, where K is the set of limit points of zeros of qn. Weak asymptotics of qn is ultimately related

to the weak convergence of zeros of qn. Indeed, let {νn} be a sequence of zero counting measures of

{qn}, i.e.

νn := νn(qn) =
1
n

∑
z: qn(z)=0

δz, (1.7)

where δz is the unit point mass distribution at z. Suppose that νn
∗→ ν, where ν is some positive

measure, then

|qn(z)|1/n = exp
{∫

log |z − t|dνn(t)
}
→ exp

{∫
log |z − t|dν(t)

}

locally uniformly in C \ K, where we assume qn to be monic.

The study of weak asymptotics of polynomials qn satisfying (1.6) goes back the to clas-

sical works of S. N. Bernstein [31, 32] and G. Szegő [132]. This theory naturally evolved to the

larger setting of orthogonal polynomials with varying measures. In other words, to the case where

polynomials qn are such that

∫
tjqn(t)dµn(t) = 0, j = 0, . . . , n− 1. (1.8)

It is customary and most useful for the applications to consider varying weights of the form

dµn(t) := exp (−2nQn(t)) dµ(t) and Qn(z)→ Q(z), as n→∞. (1.9)

It is known that in this case weak asymptotics can be described as follows:

|qn(z)|1/n → exp (−Uµw(z)) , (1.10)

where Uµw is the logarithmic potential of µw, i.e. Uµw(z) = −
∫

log |z − t|dµw(t), and µw is the

weighted equilibrium distribution in the presence of an external field Re(Q) (see [113]). Another

traditional way of writing varying weights that naturally appears in meromorphic and multipoint

Padé approximation is

dµn(t) :=
dµ(t)
v2n(t)

, (1.11)

where each v2n is a polynomial of degree at most 2n. Even though it might seem that weights

(1.9) and (1.11) are not related, it turns out that they are. Indeed, assume that the orthogonality

relations (1.8) are Hermitian with µn of type (1.11). This is true whenever µ is a positive measure,
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Sµ ⊂ R, and the polynomials v2n have real coefficients. Suppose for convenience that deg(v2n) = 2n

and v2n is positive on Eµ for each n ∈ N. Then

v2n(t) = exp(log |v2n(t)|) = exp (−2nUσ2n(t)) , t ∈ Eµ,

where σ2n is the zero counting measure of v2n. Thus, the condition on the external fields Qn in (1.9)

is satisfied if and only if σ2n
∗→ σ, where σ is some probability measure supported in C \ Eµ.

Weak asymptotics of orthogonal polynomials in the Hermitian setting of varying measures

were elaborated on in [54, 55, 109, 56, 77, 57, 78, 83, 59]. At the present moment various aspects of

the theory can be found in the monographs [84], [113], [133], and [130].

The case of complex measures appears to be more difficult or at least less developed due

to the non-Hermitian character of orthogonality. The first substantial contribution was made by J.

Nuttall (see the review in [88]). His ideas were advanced by H. Stahl in [117] who later obtained

formulae for weak asymptotics in [118, 119]. In turn, the methods used by H. Stahl were carefully

studied and generalized by A. A. Gonchar and E. A. Rakhmanov in [58] for the case of varying

weights. It was shown that relation (1.10) holds whenever dµ(t) = dt on a compact set S of positive

capacity, Qn are analytic and converge uniformly to Q in some neighborhood Ω of S, and S possesses

the S-property

∂ (Uµw + Re(Q))
∂n+

(ζ) =
∂ (Uµw + Re(Q))

∂n−
(ζ) quasi everywhere on supp(µw). (1.12)

In contrast with previous works, the approach of Baratchart et al in [19] allows for the distribution

of the complex measure µ to vanish on a large subset of Eµ, but the latter is assumed to be a

subset of the real line. Specifically, it is required that the total variation measure |µ| has compact

regular support and that it is not too thin, say, larger than a power of the radius on relative balls

of the support. Although fairly general, these conditions could be further weakened, for instance

down to the Λ-criterion introduced by H. Stahl and V. Totik in [130]4. However, the most stringent

assumption bears on the argument of µ, as it is required that the Radon-Nikodym derivative dµ/d|µ|

be of bounded variation on Sµ. This assumption, introduced in [67, 19], unlocks many difficulties

and leads to the weak convergence of the poles in the case of complex measures.

We did not stress it earlier, but it can be seen from (1.10), that weak asymptotic behavior

of orthogonal polynomials does not capture the specifics of the measure µ. In other words, two
4This depends on the corresponding generalization of the results in [19] to be found in [67].
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sequences of polynomials orthogonal with respect to different measures whose supports coincide,

have the same weak asymptotics. This is no longer true if one considers strong asymptotic behavior

of orthogonal polynomials. A sequence {qn} is said to possess strong asymptotics if it satisfies

qn(z)
Φn(z)

→ S(µ′; z) (1.13)

where Φ is a normalizing factor that depends on Sµ and S(µ′; ·) is the Szegő function of the Radon-

Nikodym derivative of µ. Strong asymptotics provides finer understanding of the behavior of or-

thogonal polynomials and we are going to concentrate on this topic hereafter.

As for weak asymptotics, the Hermitian case has been thoroughly investigated [70, 7, 74, 73,

13, 110, 12, 8, 9]. For more detailed treatment see [134] and [128]. The methods employed extensively

use minimality property5. This property no longer holds in the case of complex measures, so these

methods are of little interest for us.

The case of complex measures was taken up by G. Baxter in [30] and by J. Nuttall and S.

R. Singh in [87], who established strong asymptotics of non-Hermitian orthogonal polynomials on a

segment for measures that are absolutely continuous with respect to the (logarithmic) equilibrium

distribution of that segment, and whose density satisfies appropriate conditions expressing, in one

form or another, that it is smoothly invertible. For instance, Baxter’s condition is that log dµ/dµE ,

when extended periodically, has an absolutely summable Fourier series, where Sµ = E is an interval

and dµE is the normalized arcsine distribution on E6. Later, J. Nuttall was able to relax conditions

on the Radon-Nikodym derivative of µ in [89], where dµ/dµE was taken to be Hölder continuous on

E. This approach was extended by S. P. Suetin in [131] to the case

dµ(t) =
s(t)dt√

(t− e1) · · · (t− e2k)

∣∣∣∣∣
t∈S

,

where S = ∪kj=1Sj is a system of analytic arcs Sj with endpoints e2j−1 and e2j possessing the

S-property, and s is a nonvanishing Hölder continuous function on S. An important extension of

these results was obtained by A. I. Aptekarev in [10] (see also [11]) for the varying case (1.9). The

major assumptions were that the functions Qn satisfy

‖Qn −Q‖Ω = O

(
1
n

)
,

5Monic orthogonal polynomial qn has minimal L2(µ) norm among all monic polynomials of degree no greater than
n.

6In the case of a segment normalized arcsine distribution is the logarithmic equilibrium measure on that segment.
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Sµ is a smooth Jordan arc of minimal capacity in the sense of (1.12), and the measure µ is such

that dµ(t) = s(t)dt, where s is an analytic nonvanishing function on Sµ. Two different approaches

are used in [10]. One of them follows Nuttall-Suetin’s line of argument where a Riemann boundary-

value problem on a two-sheeted Riemann surface and a singular integral equation for the function

of second kind are utilized. The other method is the matrix Riemann-Hilbert approach pioneered

by P. Deift and his colleagues (see [64, 41, 38, 39, 37, 40, 36]).

Overview of the Results

In this thesis we deal with the convergence of meromorphic and multipoint Padé approx-

imants to functions F(µ;R; ·) defined in (1.2), where µ is a complex-valued measure compactly

supported in R and R ∈ Rm−1,m, where

Rk,n := {pk/qn : pk ∈ Pk, qn ∈ Mn}

is the set of rational functions of type (k, n) with all their poles in the unit disk D. Here Pn is the

space of algebraic polynomials of degree at most n and Mn consists of monic polynomials of degree

n with zeros in D only. Hereafter we shall denote by Q the denominator of R, assumed to be in the

irreducible form, which is a monic polynomial with zeros in D of the form

Q(z) =
∏
η∈S′

(z − η)m(η), (1.14)

where S′ is the set of poles of R and m(η) stands for the multiplicity of η ∈ S′. Thus, F is a

meromorphic function in C \ Sµ with poles at each point of S′. We note that F does not reduce

to a rational function since Sµ consists of infinitely many points, cf. [23, Sec. 5.1] for a detailed

argument.

To simplify notation, it is convenient to formally rewrite the right-hand side of (1.2) as

a single Cauchy integral. For this, we introduce for η = xη + iyη ∈ C the distribution Φη =

χ(x − xη) ⊗ δ(y − yη), where δ is the Dirac delta at 0, χ the characteristic function of the non-

negative semi-axis, and ⊗ stands for the direct product of distributions. For each k ∈ Z+ (the set

of nonnegative integers), the partial derivative ∂k+1
x Φη is an analytic functional (although Φη itself

is not), acting on any function h holomorphic in a neighborhood of η according to the rule

〈
∂k+1
x Φη, h

〉
= h(k)(η),
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where h(k) indicates the k-th derivative. Therefore, if we define ∆(k)
η to be ∂kxΦη/k!, we can formally

write ∫
d∆(k)

η (t)
z − t

=
1

(z − η)k+1
,

and on rewriting R(z) as

R(z) =
∑
η∈S′

m(η)−1∑
k=0

rη,k
(z − η)k+1

, rη,k ∈ C,

we get

R(z) =
∫
dµ′(t)
z − t

,

where µ′ is given by

µ′ :=
∑
η∈S′

m(η)−1∑
k=0

rη,k∆(k)
η , supp (µ′) = S′. (1.15)

This way F can be put in the form

F(z) =
∫
dµ̃(t)
z − t

with

µ̃ := µ+ µ′, S̃µ := supp(µ̃) = Sµ ∪ S′, (1.16)

which makes for a convenient notation.

This thesis is organized as follows. The second chapter covers necessary material in potential

theory, meromorphic and Padé approximation. In Chapter III we present results on convergence in

capacity of the considered approximants. This yields uniform convergence on each compact set in

DF , but up to a subsequence. The technique used is based on the weak convergence of orthogonal

polynomials and is applicable to a fairly large class of measures. Chapter IV is devoted to exact

rates of uniform convergence. We restrict the class of measures under consideration, but carry out

more detailed analysis of asymptotic behavior of approximants and their poles. In Chapter V we

show how developed methods can be applied in operator theory to estimating the multiplicity of

singular numbers of a certain class of Hankel operators. In the Appendix we prove several potential-

theoretic facts, that are of common knowledge, but the author was not able to ferret out appropriate

references in the literature.

As we said earlier, there are essentially two methods targeting specifically the weak con-

vergence of poles in the case of complex measures. One of them deals with measures supported on

contours of minimal capacity consisting of analytic arcs. The second one was elaborated on in [19]

15



and allows one to treat measures supported only in R, but on regular sets. Using the last technique,

we show that if the measure µ has a Radon-Nikodym derivative with an argument of bounded vari-

ation on supp(µ) and the support itself is a regular set with respect to the Dirichlet problem, the

counting measures of poles of meromorphic approximants converge to the Green equilibrium distri-

bution on Sµ. In particular, it is true that “almost all” poles of meromorphic approximants to F

converge to the support of µ. (“Almost all” means that there exists a constant M independent of

n such that for any neighborhood of Sµ only at most M poles lie outside of that neighborhood.)

Moreover we prove that each pole of R attracts at least as many poles of the approximants as its

multiplicity, and not much more. In fact, our hypotheses give rise to an explicit upper bound on

the number of poles of the approximants that may lie outside a given neighborhood of the singular

set of F . Hence, on each compact subset K of DF , every sequence of approximants contains a

subsequence that converges locally uniformly to F on K \K0, where K0 consists of boundedly many

(unknown) points. The same results are obtained for the multipoint Padé approximants associated

to conjugate-symmetric interpolation sets having an asymptotic distribution σ. The only difference

with the meromorphic case is that the counting measures of poles of the approximants converge to

the weighted equilibrium distribution on Sµ in the presence of the external field −Uσ.

The next step we take is restricting the class of measures, but obtaining qualitatively better

estimates of the convergence. In Chapter IV we assume that Sµ = Eµ =: E and dµ/dµE is nonvan-

ishing and Dini continuous on E. Under these assumptions we deduce that each pole of R attracts

exactly as many poles of approximants as its multiplicity. One fascinating feature of this conver-

gence is that attracted poles of approximants distribute themselves asymptotically as the roots of

unity. Originally this was shown in [60] only for Padé approximants at infinity and dµ/dµE being

analytic and nonvanishing on E. Moreover, the rest of the poles converges to E. This yields uniform

convergence of approximants in DF to F at a geometric rate and we provide the exact asymptotics

of this convergence. The approach we take was suggested in [30], but we extended it to the varying

case and enlarged the class of admissible measures.
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CHAPTER II

PRELIMINARIES

In this chapter we provide necessary background for the upcoming results and explain con-

sidered types of approximation.

Potential Theory

As is typical in complex approximation, some answers can be given in terms of logarithmic

potential theory, a brief account of which is sketched below for the convenience of the reader. We

refer the reader to the monographs [71, 111, 113] for an extensive treatment.

The logarithmic potential and the logarithmic energy of a finite positive measure µ, compactly

supported in C, are defined by

Uµ(z) :=
∫

log
1

|z − t|
dµ(t), z ∈ C, (2.1)

and

I[µ] :=
∫
Uµ(z)dµ(z) =

∫ ∫
log

1
|z − t|

dµ(t)dµ(z), (2.2)

respectively. Clearly Uµ is a superharmonic function with values in (−∞,+∞] which is not identi-

cally +∞. In particular Uµ is lower semicontinuous, hence it attains its lower bound on supp(µ) so

that I[µ] ∈ (−∞,+∞].

Let now E ⊂ C be compact and Λ(E) denote the set of all probability measures supported on

E. If the logarithmic energy of every measure in Λ(E) is infinite, we say that E is polar. Otherwise,

there exists a unique µE ∈ Λ(E) that minimizes the logarithmic energy over all measures in Λ(E).

This measure is called the equilibrium distribution on E. It is characterized by the property that

UµE is constant on E except perhaps on a polar subset of E. The logarithmic capacity, or simply

the capacity, of E is defined as

cap(E) = exp (−I[µE ]) .

By definition, the capacity of an arbitrary subset of C is the supremum of the capacities of its

compact subsets. We agree that the capacity of a polar set is zero.

A polar set has Lebesgue measure zero and a closed polar set is totally disconnected. A

property is said to hold quasi everywhere (abbreviated “q.e.”) if it holds everywhere except on a
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polar set.

Logarithmic potentials enjoy weak continuity and semi-continuity properties with respect

to their defining measures that are worth recording. More precisely, if µn is a sequence of positive

measures supported on a fixed compact set that converges weakly to µ, the principle of descent

([113, Thm. I.6.8]) asserts that

Uµ(z) ≤ lim inf
n→∞

Uµn(z), z ∈ C,

while the lower envelope theorem ([113, Thm. I.6.9]) says that

Uµ(z) = lim inf
n→∞

Uµn(z), for q.e. z ∈ C.

Another important concept is the regularity of a compact set. The outer boundary ∂eE of a nonpolar

compact set E is said to be regular if the equilibrium potential UµE is continuous on E, and then it

is in fact continuous on C. For Ω the unbounded connected component of the complement of E, let

gΩ(·,∞) be the Green function of Ω with pole at ∞, i.e. the unique function such that

(i) gΩ(z,∞) is a positive harmonic function in Ω, which is bounded when z stays away from ∞;

(ii) gΩ(z,∞)− log |z| is bounded near ∞;

(iii) lim
z→ξ, z∈Ω

gΩ(z,∞) = 0 for quasi every ξ ∈ ∂Ω.

It is classical fact (cf. [111, Sec. 4.4]) that

UµE (z) = log
(

1
cap(E)

)
− gΩ(z,∞), z ∈ Ω,

and if we set gΩ(z,∞) ≡ 0 in C \ Ω one can see that ∂eE is regular if and only if gΩ(z,∞) is

continuous on C. Points of continuity of gΩ(·,∞) on ∂eE are called regular, other points are called

irregular; the latter form a polar set. If a boundary point ξ ∈ ∂E is not in ∂eE but in the closure

of some bounded component Ω′ of C, it is called regular if and only if, after a conformal map Φ of

C sending some point of Ω′ to infinity, the point Φ(ξ) is regular on ∂eΦ(E). The definition does not

depend on which conformal map is used, and if all points of ∂E are regular we say that E is regular.

Suppose that ∂eE consists of a finite number of piecewise analytic Jordan curves. Then the

equilibrium distribution µE can be given explicitly in terms of the Green function of Ω (cf. [2, Thm.
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2.2]), namely

dµE =
1

2π
∂

∂n
gΩE (·,∞)ds, (2.3)

where the normal derivative is taken in the direction of the inner normal on ∂eE, and ds is the

arclength.

Throughout we use the concept of balayage of a measure ([113, Sec. II.4]). In particular,

we make extensive use of the following fact. Let D be a domain (connected open set) with compact

boundary ∂D whose complement has positive capacity, and µ be a finite Borel measure with compact

support in D. Then there exists a unique Borel measure µ̂ supported on ∂D, with total mass equal

to that of µ: ‖µ‖ = ‖µ̂‖, whose potential U bµ is bounded on ∂D and satisfies for some constant

c(µ;D)

U bµ(z) = Uµ(z) + c(µ;D) for q.e. z ∈ C \D. (2.4)

Necessarily then, we have that c(µ;D) = 0 if D is bounded and c(µ;D) =
∫
gD(t,∞)dµ(t) otherwise.

Equality in (2.4) holds for all z ∈ C\D and also at all regular points of ∂D. The measure µ̂ is called

the balayage of µ onto ∂D. It has the property that

U bµ(z) ≤ Uµ(z) + c(µ;D) for every z ∈ C, (2.5)

and also that ∫
h dµ =

∫
h dµ̂ (2.6)

for any function h which is harmonic in D and continuous in D (including at infinity if D is un-

bounded). From its defining properties µ̂ has finite energy, therefore it cannot charge polar sets.

Consequently, on solving the generalized Dirichlet problem [111, Thm. 4.1.5] for an arbitrary posi-

tive continuous function on ∂D, it follows from (2.6) that µ̂ is positive if µ is positive; in particular

the balayage of a probability measure is a probability measure. This entails a weak-continuity prin-

ciple that we record for later use: if µn is sequence of probability measures compactly supported in D

converging weak∗ to some measure µ,and if there is a compact set K ⊂ D such that µn(D \K)→ 0

as n→∞, then µ̂n converges weak∗ to µ̂. Indeed, it is easily checked that µ is a probability measure

supported on K and that any weak∗ limit point ν of µ̂n is a probability measure supported on ∂D.

Next, if we denote with superscripts 1 and 2 the restrictions to K and D \K respectively, we have

that µ1
n converges weak∗ to µ and we see by the positive linearity of balayage that ν is a weak∗ limit

point of µ̂1
n since ‖µ̂2

n‖ = ‖µ2
n‖ → 0. Then, applying (2.5) to µ1

n and using the principle of descent,
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we get that Uν is bounded on ∂D since Uµ
1
n is uniformly bounded there; moreover, by the lower

envelope theorem for µ1
n, (2.4) is satisfied with ν in place of µ̂.

The minimal energy problem can also be formulated for signed measures [113, Thm. VIII.1.4].

In particular for E1, E2 two disjoint compact sets of positive capacity, there exists a unique measure

µ∗ = µ∗1 − µ∗2, with µ∗1 ∈ Λ(E1) and µ∗2 ∈ Λ(E2), that minimizes the energy integral

I[µ1 − µ2] =
∫

log
1

|z − t|
d(µ1 − µ2)(t)d(µ1 − µ2)(z), µj ∈ Λ(Ej), j = 1, 2. (2.7)

It can be proved ([113, Lemma VIII.1.8]) that I[µ∗] is positive and finite. The value

C(E1, E2) = 1/I[µ∗] (2.8)

is called the condenser capacity of the pair (E1, E2). Further, it holds that µ1 = µ̂2 and µ2 = µ̂1

where µ̂1 (resp. µ̂2) indicates the balayage of µ1 (resp. µ2) onto ∂(C \ E2) (resp. ∂(C \ E1)); this

property in fact characterizes µ∗, see [113, Thm. VIII.2.6].

In analogy to the logarithmic case, one can define the Green potential and the Green energy

of a positive measure µ supported in a domain D with compact non-polar boundary. The only

difference is now that, in (2.1)—(2.2), the logarithmic kernel log(1/|z− t|) gets replaced by gD(z, t),

the Green function for D with pole at t ∈ D. The latter is the unique function defined on D such

that (cf. [111])

(i) gD(z, t) is a positive harmonic function in D\{t}, which is bounded outside each neighborhood

of t;

(ii) gD(z, t)− log
1

|z − t|
is bounded near t;

(iii) lim
z→ξ

gD(z, t) = 0 for quasi every ξ ∈ ∂D.

Those points at which limit (iii) exists are precisely the regular points of ∂D [111, Thm. 4.4.9]. For

example, it is easily checked that in the case of the unit disk we have

gD(z, t) = log
∣∣∣∣1− ztz − t

∣∣∣∣ .
The Green potential relative to the domain D of a finite positive measure µ compactly supported in

D is given by

UµG(z;D) =
∫
gD(z, t) dµ(t).
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It can be re-expressed in terms of the logarithmic potentials of µ and of its balayage µ̂ onto ∂D by

the formula [113, Thm. II.4.7 and Thm. II.5.1]

U bµ−µ(z) = c(µ;D)− UµG(z;D), z ∈ D (2.9)

where c(µ;D) was defined after equation (2.4). Moreover, (2.9) continues to hold at every regular

point of ∂D; in particular, it holds q.e. on ∂D.

Exactly as in the logarithmic case, if E is a compact nonpolar subset of D, there exists a

unique measure µ(E,∂D) ∈ Λ(E) which minimizes the Green energy among all measures in Λ(E).

This measure is called the Green equilibrium distribution on E relative to D. By (2.9) we have that

U
µ(E,∂D)

G (z;D) = Uµ(E,∂D)(z)− U bµ(E,∂D)(z) + c(µ(E,∂D);D), z ∈ D, and q.e. z ∈ ∂D,

where µ̂(E,∂D) is the balayage of µ(E,∂D) onto ∂D. In addition the Green equilibrium distribution

satisfies

U
µ(E,∂D)

G (z;D) =
1

C(E, ∂D)
, for q.e. z ∈ E. (2.10)

Moreover, equality in (2.10) holds at all regular points of E.

Green potentials have two important properties not shared by logarithmic potentials, namely

they are positive and they transform naturally under conformal mappings since this is true of Green

functions. In particular, one can define the Green equilibrium distribution with respect to D of a

compact set E in C, because one can use conformal mapping to bring the situation back to the case

where E is compact in C. The same is true of the condenser capacity.

From the physical viewpoint, the equilibrium measure µE can be interpreted as the equilib-

rium distribution of a unit electric charge placed on the conductor E, and finding such a measure is

called the electrostatics problem. A natural way of generalizing this problem is to add an external

field acting on the charge. Specifically, let E be a closed subset of C, and Q a lower semi-continuous

function on E which is less than infinity on a nonpolar subset; if E is unbounded, one requires in

addition that Q(z) − log |z| tends to infinity when |z| tends to infinity in E. Then there exists a

unique measure µEw ∈ Λ(E), called the weighted equilibrium distribution, that minimizes the weighted

energy integral

Iw[µ] :=
∫ ∫

log
1

|z − t|
dµ(t)dµ(z) + 2

∫
Q(t)dµ(t)
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over all µ ∈ Λ(E). Moreover, there is a constant Fw ([113, Thm. I.1.3]) such that

Uµ
E
w (z) +Q(z) ≥ Fw for q.e. z ∈ E,

Uµ
E
w (z) +Q(z) ≤ Fw for every z ∈ supp

(
µEw
)
,

Fw is called the modified Robin constant for Q and it is equal to

Fw = Iw
[
µEw
]
−
∫
Q(t)dµEw(t).

In few cases, equilibrium distributions and capacities can be derived explicitly. For instance,

if E = [a, b], the logarithmic equilibrium distribution is the arcsine distribution on E, i.e.

dµE(t) =
dt

π
√

(t− a)(b− t)
, t ∈ E, and cap(E) =

b− a
4

. (2.11)

Further, the Green equilibrium distribution for the condenser (E,T) is also known, namely

dµ(E,T)(t) =
(1− ab)dt

2T
√

(t− a)(b− t)(1− at)(1− bt)
, t ∈ E, (2.12)

where T denotes complete elliptic integral of the first kind

T := F
(π

2
; k
)

=
∫

[0,1]

dt√
(1− t2)(1− k2t2)

(2.13)

with modulus k := (b− a)/(1− ab) (cf. [82, Ch. VII]). The condenser capacity, in this case, is equal

to

C(E,T) :=
2
π

T
T ′
, T ′ := F

(π
2

; k′
)
, (2.14)

where k′ =
√

1− k2 is the conjugate modulus.

Harmonic Measures

Let, as usual, D be a domain with non-polar boundary ∂D. Further, let a > 0 and t ∈ ∂D.

We define a non-tangential region of approach to t from inside D by setting

C(a, t) := {z ∈ D : |z − t| < (1 + a)dist(z, ∂D)} ,

where dist(z, ∂D) is the Euclidean distance from z to ∂D. Let v be a complex-valued function in
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D and denote by Cj , j ∈ J , connected components of C(a, t) containing t in their closure. We say

that v has non-tangential boundary values at t if limz→t,z∈Cj v(z) exists for any j ∈ J . Moreover,

we say that v(z) has a well-defined boundary value at t if limz→t,z∈C(a,t) v(z) exists.

The harmonic measure on D from a point z ∈ D, denoted by ωD(z, ·), is the unique Borel

measure on ∂D such that the equality

u(z) =
∫
u(t)dωD(z, t)

holds for any function u harmonic in D with continuous well-defined boundary values on ∂D. Such

a measure exists from any point in D, since ∂D is non-polar (cf. [111, Thm. 4.3.2]).

In the case where ∂D consists of sufficiently smooth Jordan arcs or curves the harmonic

measure on D has a simple representation through the Green function. Recall that the modulus of

continuity of a continuous function h defined on a compact set E ⊂ C is given by

ω(h; δ) := sup
|z−w|≤δ

|h(z)− h(w)|, δ ∈ [0,diam(E)], (2.15)

where diam(E) = max{|z−w| : z, w ∈ E}. Note that any modulus of continuity is a nondecreasing

concave up function that is zero at zero. Also recall that a function h is said to be Dini continuous

on E if ∫
[0,diam(E)]

ω(h; t)
t

dt <∞. (2.16)

A Jordan arc or curve is called Dini-smooth if it has a Dini continuous parametrization with non-

vanishing derivative. In what follows we suppose that all arcs are oriented, so, we may distinguish

positive and negative “sides” of them. Namely, let D′ be a simply connected domain and Jordan arc

γ be an oriented cross-cut of D. Then D′ = D′+ ∪D′−, where D′+ (resp. D′−) is simply connected

and lies from the left (resp. right) of γ. We define γ± := D′± ∩ {γ \ {γ1, γ0}}, where {γ1, γ0} are

the endpoints of γ. Note that in this definition γ± are open arcs.

Let now D be a domain in C such that ∂D is either γ1 ∪ γ2 (γ1 ∩ γ2 = ∅) or γ0, where each

γj , j = 0, 1, 2, is a Dini-smooth Jordan arc or curve. We shall call such domain a DS2-domain, i.e.

DS2-domain is a simply or doubly connected domain with Dini-smooth boundary. Then

dωD(z, ·)|γj =


1

2π

(
∂

∂n+
gD(·, z) +

∂

∂n−
gD(·, z)

)
ds

∣∣∣∣
γj

, γj is an arc,

1
2π

∂

∂n
gD(·, z)ds

∣∣∣∣
γj

, γj is a curve,
(2.17)
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where n± denote the inner normals from the positive and negative sides of an arc, n is the inner

normal from a curve, and ds is the arclength. Unfortunately, the author could not locate an appro-

priate reference to a proof of (2.17) in the literature. Therefore, a proof is presented in Proposition

A.3 of the Appendix. Let E be a compact non-polar set. Since µE = ωΩE (∞, ·) (cf. [111, Thm.

4.3.14]), an analogous representation to (2.3) takes place whenever ΩE is DS2-domain.

We define one-sided harmonic measures on a DS2-domain D from z, denoted ω±D(z, ·), by

the rule

dω±D(z, ·)
∣∣
γj

=


1

2π
∂

∂n±
gD(·, z)ds

∣∣∣∣
γj

, γj is an arc,

1
2
dωD(z, ·)

∣∣∣∣
γj

, γj is a curve.
(2.18)

Obviously we have that ωD(z, ·) = ω+
D(z, ·) + ω−D(z, ·). Finally, we would like to mention that

Proposition A.3 also shows that ωD(z, ·) is absolutely continuous with respect to the linear measure

on ∂D.

Hardy Spaces and Meromorphic Functions

Let Lpr stand for the space of p-summable functions on Tr := {|z| = r}, r > 0, with the

norm
‖h‖pp,r :=

1
2π

∫
T
|h(rξ)|p|dξ| <∞, if p ∈ (0,∞),

‖h‖∞,r := ess. supξ∈T|h(rξ)| <∞, if p =∞.

For simplicity we shall denote T := T1, Lp := Lp1, and ‖ · ‖p := ‖ · ‖p,1. The p-norm Hardy spaces,

p ∈ [1,∞], of the open unit disk and the complement of the closed unit disk are defined as

Hp :=
{
h ∈ Hol(D) : sup

r<1
‖h‖p,r <∞

}
and H̄p :=

{
h ∈ Hol(C \ D) : sup

r>1
‖h‖p,r <∞

}
,

respectively, where Hol(D) is the space of holomorphic functions in a domain D. Denote by H̄p
0 ,

p ∈ [1,∞], a subspace of H̄p consisting of functions vanishing at infinity. Note that by the Fatou

theorem any function from Hp or H̄p, p ∈ [1,∞], has an Lp-trace (non-tangential boundary values

on T). Under this correspondence Hp (resp. H̄p) is isometrically identified with a subspace of Lp

functions whose Fourier coefficients with negative (resp. strictly positive) indices all vanish. This

allows one to regard Hardy functions either as analytic functions of a complex variable z ∈ D or as

functions on the circle of the variable ξ ∈ T. The analytic extension to D is obtained from the trace

on T through a Cauchy as well as a Poisson integral [112, Thm 17.11]. Moreover a Hardy function
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h is determined, up to a purely imaginary constant, by its real part on T, i.e.

h(z) =
∫

T

ξ + z

ξ − z
Re(h(ξ))

|dξ|
2π

+ iIm(h(0)) =: RH(Re(h); z) + iIm(h(0)), z ∈ D. (2.19)

The integral on the right-hand side of (2.19) is called Riesz-Herglotz transform of Re(h). Moreover,

RH(h; ·) is well-defined whenever h is integrable, generally complex-valued, function on T.

From Parseval’s theorem we have that L2 = H2 ⊕ H̄2
0 . Thus, we may define orthogonal

projections P+ : L2 → H2 (analytic) and P− : L2 → H̄2
0 (antianalytic). It is easy to see that

1
2πi

∫
T

h(ξ)
ξ − z

dξ =

 P+(h)(z), z ∈ D,

−P−(h)(z), z ∈ C \ D,
h ∈ L2.

The space of meromorphic functions of degree n in D is defined as

Hp
n := M−1

n Hp = B−1
n Hp, (2.20)

where Mn stands for the set of monic polynomials of degree at most n with all zeros in D and Bn is

the space of Blaschke products of degree at most n, i.e.

Bn :=

eic
k∏
j=1

z − zj
1− z̄jz

: c ∈ R, k ≤ n, zj ∈ D, j = 1, . . . , k

 .

Recall the well-known fact (cf. [46]) that any nonzero function in Hp can be uniquely

factored as h = jw, where

w(z) = exp
{

1
2π

∫
ξ + z

ξ − z
log |h(ξ)||dξ|

}

belongs to Hp and is called the outer factor of h, while j has modulus 1 a.e. on T and is called the

inner factor of h. The latter may be further decompose as j = bS, where b is a Blaschke product

that has the same zeros with the same multiplicities as h and thus assumes the form

b(z) = eiczk
∏
j

zj
|zj |

z − zj
1− z̄jz

,

while

S(z) = exp
{
−
∫
ξ + z

ξ − z
dν(ξ)

}
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is the singular inner factor associated with ν, a positive measure on T which is singular with respect

to the Lebesgue measure. For simplicity, we often say that a function is outer (resp. inner) if it is

equal to its outer (resp. inner) factor.

In another connection, it is possible to give a conformally invariant definition of Hardy

spaces. Let D ⊂ C be a domain. Then h ∈ Hol(D) belongs to Hp(D), p ∈ [1,∞), if and only if |h|p

has a harmonic majorant in D. A Hardy space H∞(D) consists of bounded analytic functions in

D. The norm on Hp(D) is defined as follows

‖h‖p =

 |uh(z0)|1/p, p ∈ [1,∞),

supz∈D |h(z)|, p =∞,

where uh is the least harmonic majorant of |h|p in D and z0 ∈ D. We remark that uh is unique and

the choice of z0 is insignificant in a sense that different points give rise to the equivalent norms (cf.

[45, Ch. 3] or [46, Ch. II]).

Let now D be a DS2-domain. Before we define an outer function in Hp(D), p ∈ [1,∞],

we shall describe boundary behavior of functions in this class. It is explained in Proposition A.3

that there exists a conformal map ϕ from D to D′, where D′ is either the unit disk or an annulus

(depending whether D is simply or doubly connected domain). Further, ϕ extends conformally to

D
±

with endpoints of arcs removed if ∂D contains arcs. Let h ∈ Hp(D), define h∗ := h ◦ ϕ−1.

It is clear that h∗ ∈ Hp(D′) by conformal invariance of Hardy spaces. It is a well-known fact

(cf, for instance, [46, 44] and [115]) that h∗ has boundary values almost everywhere on ∂D′ with

respect to the Lebesgue measure there. Thus, h has boundary values almost everywhere on ∂D

with respect to the Lebesgue measure and therefore with respect to the harmonic measure on D

(recall that harmonic measures from different points are mutually absolutely continuous [111, Cor.

4.3.5]). Quite naturally, boundary values of h need not to be well-defined. Thus, we shall distinguish

between boundary values on positive and negative sides of each arc in ∂D, h+ and h−, respectively.

To treat all the cases simultaneously, we shall speak of h± all the time, understanding that they are

equal to each other on curves in ∂D. It also known that |h∗|p, p ∈ [1,∞), and log |h∗|, p ∈ [1,∞], are

integrable with respect to the harmonic measure ωD′ (cf. [44] and [115]). It follows from Proposition

A.3 that

ωD(z, E) = ωD′(z′, E′+) + ωD′(z′, E′−),

where z′ = ϕ(z), E′± := ϕ±(E), and ϕ± are continuous extensions of ϕ on the closure of positive and

negative sides of each arc in ∂D. Thus, |h±|p and log |h±| are integrable with respect to ωD. For
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refine treatment of boundary values of functions from Hardy spaces of doubly connected domains

one may consult the Appendix of [26]. Now, we are ready to give a definition of an outer function

in Hp(D).

We say that h ∈ Hp(D), p ∈ [1,∞], is an outer function in D if h has no zeros there and

log |h(z)| =
∫
∂D

log |h+(t)|dω+
D(z, t) +

∫
∂D

log |h−(t)|dω−D(z, t), (2.21)

where ω±D are the one-sided harmonic measures on D. Clearly, equation (2.21) becomes

log |h(z)| =
∫
∂D

log |h(t)|dωD(z, t) (2.22)

if |h| has well-defined boundary values.

Meromorphic Approximation

The Best-Lp(T) meromorphic approximation problem consists in the following.

MA(p) : Given p ∈ [1,∞], f ∈ Lp, and n ∈ N, find gn ∈ Hp
n such that

‖f − gn‖p = inf
g∈Hpn

‖f − g‖p. (2.23)

This problem has a solution [28, Sec. 5]. It is known to be unique when p = ∞, provided that f

belongs to the Douglas algebra H∞ + C(T), where C(T) denotes the space of continuous functions

on T [1]. In particular the solution to MA(∞) is unique for F(µ;R; ·), since the latter is analytic

in some neighborhood of the unit circle. When p < ∞, a solution needs not be unique even if

f is very smooth [28, Sec. 5]. Therefore, when making a statement about a sequence {gn} of

solutions to MA(p), it is understood that a particular solution has been selected for each n and

that the statement holds true regardless the selection. Also we shall restrict ourselves to the range

2 ≤ p ≤ ∞ for these are the only values of p for which a concrete characterization of the solutions

is known so far [28, Sec. 8]. We should note that when p = 2 the problem reduces to rational

approximation. Indeed, since L2 = H2⊕ H̄2
0 and F is the Cauchy transform of a measure supported

in D, it belongs to H̄2
0 . Thus for any g = (h+ pn−1/qn) ∈ H2

n with h ∈ H2 and pn−1/qn a rational

function in H̄2
0 , we get by orthogonality

‖F − g‖22 = ‖h‖22 + ‖F − pn−1/qn‖22.
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Clearly then, for g to be a best approximant h must be zero, and we arrive at the following approx-

imation problem:

Given f ∈ H̄2
0 and n ∈ N, minimize ‖f − pn−1/qn‖2 over pn−1 ∈ Pn−1 and qn ∈ Mn.

Moreover, thanks to Parseval’s formula, pn−1/qn will be a best approximant to f not only from

Rn−1,n but also from Rn,n since f vanishes at infinity. Despite this, we shall not distinguish p = 2

from the other cases but rather keep a unified operator approach.

As it is the case of interest here, we shall restrict our discussion to the situation where the

approximated function is of the form (1.2), and accordingly we write F instead of f . The solution

to MA(p) turns out to be exactly the functions of the form [28, Thm. 8.2]

gn = F − HF (vn)
vn

=
TF (vn)
vn

, (2.24)

where HF and TF are Hankel and Toeplitz operators with a symbol F , respectively, i.e.

HF : Hp′ → H̄2
0 , HF (h) := P−(Fh),

TF : Hp′ → H2, TF (h) := P+(Fh),

1
p

+
1
p′

=
1
2
.

Such a gn is called a best meromorphic Lp-approximant of order n to F . A function vn is called a

singular vector associated to gn and has unit norm in Hp′ . We point out that any singular vector

can be factored as

vn(z) = bn(z)wn(z), z ∈ D, (2.25)

where bn ∈ Bn \ Bn−1 and wn is an outer function. Note that vn is just a Blaschke product when

p = 2, i.e. wn ≡ 1 in this case. Moreover, we have that ‖F − gn‖p = σn(HF ), where σn(HF ) is the

n-th singular value of Hf , i.e

σn(HF ) := inf
{
|||HF − Γ||| : Γ : Hp′ → H̄2

0 a linear operator of rank ≤ n
}

and |||·||| stands for the operator norm; when p = 2 we assume in addition that Γ is weak∗ continuous.

Note that if p =∞ then p′ = 2, hence HF operates between Hilbert spaces, and since it is

compact7 the σn(HF ) are just the singular values of HF , that is, the square-roots of the eigenvalues

of H∗FHF arranged in nonincreasing order; throughout H∗F indicates the adjoint of HF . When

2 ≤ p < ∞, the usual eigenvector equation gets replaced by a nonlinear equation of Hammerstein
7This can be deduced from the fact that F ∈ C(T), see [97, Thm. I.5.5].
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type. More precisely, to each singular value σn(HF ) there exists (at least one) singular vector

vn ∈ Hp′ of unit norm, whose inner factor is a Blaschke product of degree at most n, such that

H∗FHF (vn) = σ2
n(HF )P+

(
|vn|p

′−2vn

)
if p > 2,

H∗FHF (vn) = P+

(
|HF (vn)|2vn

)
and ‖HF (vn)‖2 = σn(HF ) if p = 2.

(2.26)

When p ∈ [2,∞) a best meromorphic approximant gn is, in general, not unique, but it has

exactly n poles; this implies that bn in (2.25) has exact degree n for any n-th singular vector vn. To

the contrary, if p =∞, then gn is unique but may have less than n poles and bn could have degree

less than n. In the latter case the span of n-th singular vectors has dimension greater than 1, so

that vn is far from being unique up to a multiplicative constant, but it is remarkable that all the

vn give rise to the same gn through formula (2.24); in fact there always exist n-th singular vectors

for which bn has exact degree n, but some of the poles may cancel with zeros of TF (vn) in (2.24).

Besides pointed peculiarities, the case p = ∞ has one more specific feature. Namely, the so-called

circularity property, i.e.

|F − gn| = ‖F − gn‖∞ = σn(HF ) a.e. on T. (2.27)

The notion of a best approximant can be further weakened to the notion of a critical point.

By definition, a function gn is a critical point of order n in MA(p) if and only if it assumes the form

gn = F − HF (vn)
vn

,

where vn is a Hp′ function of unit norm (a Blaschke product if p = 2) whose inner factor lies in

Bn \ Bn−1, which is such that

H∗FHF (vn) = σ2
nP+

(
|vn|p

′−2vn

)
, σ2

n ∈ R, if p > 2,

H∗FHF (vn) = P+

(
|HF (vn)|2vn

)
if p = 2.

(2.28)

The difference with (2.26) is that here σn or ‖HF (vn)‖2 needs not be equal to σn(HF ). With a slight

abuse of language, we will continue to say that vn is a singular vector associated to gn although σn

may no longer be a singular value. Note that, as for best meromorphic approximants,

σn = ‖F − gn‖p = ‖HF (vn)‖p, p ∈ [2,∞] (2.29)
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and vn is just a Blaschke product when p = 2. Thus it has an inner-outer factorization of type (2.25)

where bn has exact degree n and wn ≡ 1 if p = 2.

A critical point gn of order n may have less than n poles, even though we insisted in the

definition that vn has exactly n zeros. This happens when some zeros of vn (which are, of course,

zeros of bn) cancel with some zeros of TF (vn). In this case bn can be further factorized as

bn = bn1 · bn2 , (2.30)

where bn1 is the greatest common inner divisor of TF (vn) and vn. Then ([28, Prop. 9.1])

HF (vn)(ξ) = σξ
(
bn2jnw

p′/2
n

)
(ξ) = σn

(
bn2jnw

p′/2
n

)σ
(ξ), p > 2

HF (vn)(ξ) = ξ (bn2un)(ξ) = (bn2un)σ (ξ), p = 2,
(2.31)

for a.e. ξ ∈ T, where jn is some inner function, un ∈ H2, and hσ(z) := z−1h(1/z̄). Note that if

h ∈ H2 then hσ ∈ H̄2
0 and vice versa. We remark that for the casep = 2 equation (2.31) is an

interpolation condition saying that gn interpolates F with order 2 at the reflection of its poles. The

same can be said when p ∈ (2,∞], provided gn is analytic at the reflection of its poles, but this is

no longer automatic because it may no longer be rational.

Although their definition is a little technical, critical points are just those gn ∈ Hp
n for which

the derivative of ‖F − gn‖p with respect to bn ∈ Bn and h ∈ Hp in the second part of factorization

(2.20) does vanish. Beyond best approximants, the most important critical points are local best

approximant [28, Prop. 9.3.]. By definition, a local best approximant is some gn ∈ Hp
n for which

there exists δ > 0 such that

g ∈ Hp
n and ‖g − gn‖p ≤ δ imply ‖F − gn‖p ≤ ‖F − g‖p.

The reason why we introduce critical points is that all a numerical search can yield in general is

a local best approximant, and we feel it is important that our results should apply to computable

objects.

When p ∈ [2,∞), best and local best approximants have exactly n poles, counting multiplic-

ities, hence they are a fortiori critical points of order n ([28, Prop. 9.2 and 9.3]); such critical points

are called irreducible. For p = ∞ the critical points are just the best meromorphic approximants,

so the notion is nothing new, but it may happen that a best approximant out of H∞n has less than

n poles. However, each time the number of poles of gn increases with n, it jumps to the maximum
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value n, in particular there exists a subsequence of natural numbers, say N0 = N0(F), such that

for each n ∈ N0 the best approximant gn has exactly n poles in D, i.e. it is irreducible ([28, p.

114]). Since the behavior of the poles of best approximants from H∞n is entirely characterized by

this subsequence, hereafter we say “a sequence of irreducible critical points of order n” to mean if

p =∞ that we pass to a subsequence if needed. Let {gn} be such a sequence. As usual, we denote

by vn an associated singular vector to gn. According to (2.20), each gn can be decomposed as

gn = b−1
n · hn,

where hn ∈ Hp and bn = bn2 , i.e. bn1 ≡ 1 in (2.30). Moreover, we can write bn as qn/q̃n, where

qn ∈ Mn and q̃n(t) := tnqn(1/t̄) is the reciprocal polynomial of qn. Arguing like in ([28, Sec. 10]),

where R is not present, equation (2.31) implies easily the following orthogonality relations

∫
tkqn(t)

wn(t)
q̃2
n(t)

dµ̃(t) = 0, k = 0, . . . , n− 1, (2.32)

where wn is the outer factor of vn and µ̃ is given by (1.16). Upon rewriting (2.32) as

∫
Pn−1(t)qn(t)

wn(t)
q̃2
n(t)

dµ(t) +
∑
η∈S′

m(η)−1∑
k=0

rη,k
k!

(
Pn−1(t)qn(t)

wn(t)
q̃2
n(t)

)(k)
∣∣∣∣∣
t=η

= 0,

for all Pn−1 ∈ Pn−1 and taking Pn−1 to be a multiple of Q, these relations yield for n > m

∫
tkqn(t)Q(t)

wn(t)
q̃2
n(t)

dµ(t) = 0, k = 0, . . . , n−m− 1 (2.33)

where Q was defined in (1.14). When p ∈ (2,∞], the wn are a priori holomorphic in the unit disk

only, but due to the analyticity of F it is possible to say more. Since for |z| > 1

HF (vn)(z) = P−(Fvn)(z) =
1

2πi

∫
T

(Fvn)(ξ)
z − ξ

dξ

=
1

2πi

∫
T

∫
eSµ

vn(ξ)
(z − ξ)(ξ − t)

dµ̃(t)dξ =
∫

eSµ
vn(t)
z − t

dµ̃(t), (2.34)

we obtain from (2.31) that
(
bnjnw

p′/2
n

)σ
can be analytically extended to DF = C\S̃µ by the formula

σn

(
bnjnw

p′/2
n

)σ
(z) = HF (vn)(z) =

∫
vn(t)
z − t

dµ̃(t), z ∈ DF . (2.35)

Recall that σn 6= 0 since F is not rational. This, in particular, implies that bnjnw
p′/2
n can be
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extended to a holomorphic function in D∗F , where K∗ denotes, as before, the reflection of a set K

across T. This extension, in turn, implies that jn must be a finite Blaschke product, because the

zeros of an analytic function are isolated in the domain of analyticity. Multiplying (2.35) by bnjn

and applying P−, we get from the definition of “σ”, since wp
′/2
n ∈ H2 and |bnjn| = 1 on T that the

left-hand side is

σnP−
(
bnjn

(
bnjnw

p′/2
n

)σ)
= σnP−

((
wp
′/2
n

)σ)
= σn

(
wp
′/2
n

)σ
and computing the right-hand side as in (2.34) we get for |z| > 1

σn

(
jnw

p′/2
n

)σ
(z) =

∫
bn(t)vn(t)
z − t

dµ̃(t) =
∫
b2n(t)wn(t)
z − t

dµ(t)

+
∑
η∈S′

m(η)−1∑
k=0

rη,k
k!

(
b2n(t)wn(t)
z − t

)(k)
∣∣∣∣∣
t=η

. (2.36)

This shows that
(
w
p′/2
n

)σ
has a meromorphic extension to C\Sµ and may only have a pole of order

at most m(η) at each η ∈ S′, though possible cancellations may occur due to the zeros of bnjn.

Equivalently, wp
′/2
n can be meromorphically extended to D∗F and may only have poles at the points

1/η̄, of respective multiplicities at most m(η) for each η ∈ S′.

Multipoint Padé Approximation

Let a system of sets A := {Al}l∈N, Al := {aj,l}lj=1 ⊂ DF , be given. To the each set Al we

associate a polynomial

vl(t) :=
∏

aj,l 6=∞

(aj,l − t). (2.37)

The diagonal multipoint Padé approximant to F(µ;R; ·) given by (1.2) is the unique rational function

Πn = pn/qn where the polynomials pn and qn satisfy:

(i) deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;

(ii) (qn(z)F(z)− pn(z)) /v2n(z) is analytic in C \ Eµ;

(iii) (qn(z)F(z)− pn(z)) /v2n(z) = O
(
1/zn+1

)
, as z →∞,

where Eµ is the convex hull of Sµ = supp(µ). A multipoint Padé approximant always exists since

the conditions for pn and qn amount to solving a system of 2n + 1 homogeneous linear equations

with 2n+2 unknown coefficients, no solution of which can be such that qn ≡ 0 (we may thus assume
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that qn is monic); note that (iii) entails at least one interpolation condition at infinity. Polynomials

pn and qn are not necessarily unique, but Πn is. It is called normal if deg Πn = n. Diagonal Padé

approximants to Markov functions are always normal, but nothing can be said a priori when the

measure µ is complex. Clearly (ii) ensures that when Πn is normal it interpolates F at the zeros of

v2n. Thus, we shall call the system A an interpolation scheme.

Let Γn be any closed Jordan curve that separates S̃µ and An and contains S̃µ in the bounded

component of its complement, say int(Γn). Then properties (ii) and (iii) yield that

∫
Γn

zjqn(z)F(z)
dz

v2n(z)
= 0, j = 0, . . . , n− 1, z ∈ int(Γn).

This, in turn, implies

∫
tjqn(t)Q(t)

dµ(t)
v2n(t)

= 0, j = 0, . . . , n−m− 1, (2.38)

by definition (1.2) of F , the Fubini-Tonelli theorem, and the residue formula, where Q was defined

in (1.14). Hence the denominators of the multipoint Padé approximants to F are polynomials

satisfying a non-Hermitian orthogonality relation with respect to varying with n complex measures

Q(t)dµ(t)/v2n(t).

By the very definition, the behavior of multipoint Padé approximants depends on the choice

of the interpolation scheme. In what follows, we shall deal with schemes having some admissibility

properties. To describe these properties we need more notation.

We denote by ϕi(·) (resp. ϕe(·)) the conformal mapping of the complement of Eµ = [a, b]

to the interior (resp. exterior) of the unit circle such that ϕi(∞) = 0 (resp. ϕe(∞) = ∞) and

ϕ′i(∞) > 0 (resp. ϕ′e(∞) > 0). These mappings are unique and given by

ϕi(z) :=
2z − b− a
b− a

−

√(
2z − b− a
b− a

)2

− 1, ϕe(z) =
1

ϕi(z)
, z /∈ E, (2.39)

where we take a branch of the square root that is positive for positive values. It will be convenient

to use also the following notation

ψn(z) := capn(E)ϕne (z), z ∈ C \ E, (2.40)

that is analytic non-vanishing in C \ E and ψn(z) = zn +O(1), as z →∞.

Let now A = {Al}l∈N be an interpolation scheme and let Cl stand for ϕi(Al), i.e Cl =
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{cj,l}lj=1, cj,l = ϕi(aj,l). We say that A is an admissible interpolation scheme if the following holds:

for each l ∈ N there exists a one-to-one correspondence ∆l : Cl → Cl such that

sup
l∈N

l∑
j=1

|c̄j,l −∆l(cj,l)|
(1− |cj,l|)(1− |∆l(cj,l)|)

<∞ and lim
l→∞

l∑
j=1

(1− |cj,l|) =∞. (2.41)

Roughly speaking, the first part of (2.41) says that {Cl} forms a “nearly conjugate symmetric”

sequence of sets. Indeed, it is obvious that if Cl is conjugate-symmetric then ∆l can be defined as

∆(cj,l) = c̄j,l and the corresponding sum in (2.41) is equal to zero. The second condition insures

that the points {cj,l} do not approach the unit circle “too fast” (i.e points {aj,l} do not approach

interval E too fast).

Most of the time we shall place stronger conditions on the admissible interpolation schemes.

The interpolation scheme A = {Al}l∈N is said to be strongly admissible if each set Al is conjugate-

symmetric, i.e. Al = Āl, the set of limit points of A, indicated by K(A), is disjoint from S′ ∪ E,

and if the counting measures of the points in Al converge in the weak∗ topology, as n→∞, to some

probability measure with finite logarithmic energy σ = σ(A) ∈ Λ(K(A)), i.e.

σl :=
1
l

l∑
j=1

δaj,l
∗→ σ.

We call such σ an asymptotic distribution for A. Note that K(A) is not necessarily compact. If it

is not compact, the finiteness of the logarithmic energy of σ is understood as follows. Since K(A) is

closed and does not intersect S̃µ, there exists z0 ∈ C\∪nAn such that z0 /∈ K(A). Pick such a z0 and

set Mz0(z) := 1/(z − z0). Then, all Mz0(An) are contained in some compact set and their counting

measures converge weak∗ to σ] such that σ](B) := σ(M−1
z0 (B)) for any Borel set B ⊂ C. We say

that A is admissible if σ] has finite logarithmic energy. Obviously this definition does not depend

on a particular choice of z0. If all the interpolation points are assigned to infinity, i.e. v2n ≡ 1 for

all n ∈ N, then Πn is just the classical Padé approximant to F .
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CHAPTER III

WEAK ASYMPTOTICS

In this chapter we show convergence in capacity of meromorphic and multipoint Padé ap-

proximants to F(µ;R; ·), where R is an arbitrary rational function vanishing at infinity and µ is in

class BVT defined below.

Let µ be a complex Borel measure whose support S := supp(µ) ⊂ R is compact and consists

of infinitely many points. Further, denote by |µ| the total variation measure. Clearly µ is absolutely

continuous with respect to |µ|, and we shall assume that its Radon-Nikodym derivative (which is of

unit modulus |µ|-a.e.) is of bounded variation. In other words, µ is of the form

dµ(t) = eiΘ(t)d|µ|(t), (3.1)

for some real-valued argument function Θ = Θµ such that8

V (Θ, S) := sup


N∑
j=1

|Θ(xj)−Θ(xj−1)|

 <∞, (3.2)

where the supremum is taken over all finite partitions x0 < x1 < . . . < xN of S as N ranges over N.

For convenience, we extend the definition of Θ to the whole of R as follows. Let E := [a, b] be the

convex hull of S. It is easy to see that if we interpolate Θ linearly in each component of E \ S and

if we set Θ(x) := limt→a, t∈S Θ(t) for x < a and Θ(x) := limt→b, t∈S Θ(t) for x > b (the limits exist

by (3.2)), the variation of Θ will remain the same. In other words, we may arrange things so that

the extension of Θ, still denoted by Θ, satisfies V (Θ, S) = V (Θ,R) =: V (Θ).

Now we are ready to define the class of measures under consideration. We say that a complex

measure µ supported on (−1, 1) belongs to the class BVT if

(1) µ has an argument of bounded variation;

(2) supp(µ) is a regular set;

(3) there exist positive constants c and L such that, for any x ∈ supp(µ) and δ ∈ (0, 1), the total

variation of µ satisfies |µ|([x− δ, x+ δ]) ≥ cδL.

8Note that eiΘ has bounded variation if and only if Θ can be chosen of bounded variation.
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This chapter is organized as follows. In the next section we prove two theorems on zero

distribution of orthogonal polynomials. These results lay the groundwork for the investigation of

the behavior of poles of meromorphic and Padé approximants presented in the third and forth

sections. These sections also contain results on convergence in capacity of the approximants to the

approximated function.

Orthogonal Polynomials

The main results of this section are the following theorems on asymptotic behavior of zeros

of polynomials orthogonal with respect to varying measures. In the first case the varying measures

depend on the polynomials themselves, in the second case they are prescribed at the beginning.

To simplify the notation we shall denote throughout the rest of the text the support of the

measure of orthogonality µ by S, the convex hull of S by E, and S ∪ S′ by S̃.

Theorem 3.1 Let {qn}n∈N be a sequence of polynomials of exact degree n with all zeros in D

satisfying the orthogonality relations

∫
tkqn(t)

ωn(t)
q̃2
n(t)

dµ̃(t) = 0, k = 0, . . . , n− 1, (3.3)

where µ̃ = µ+µ′ is given by (1.15) and (1.16) with µ ∈ BVT and S′ ⊂ D, while W = {ωn}∞n=1 is a

family of complex measurable functions on S′∪E, whose moduli are uniformly bounded above and be-

low by positive constants, and whose arguments are smooth with uniformly bounded derivatives on E.

Then the counting measures of the zeros of qn(z) =
∏n
j=1(z − ξj,n), namely νn := (1/n)

∑n
j=1 δξj,n ,

converge in the weak∗ sense to µ(S,T), the Green equilibrium distribution on S relative to D.

The above stated theorem is a direct generalization of Theorem 5.1 and Corollary 6.2 in

[19]. The main difference is that here we add a distribution of the form (1.15) to the measure in

(3.3). In the Ph.D. thesis of R. Küstner [67], an analog of Theorem 5.1 in [19] is given when the

measure µ, instead of belonging to BVT, satisfies the so-called Λ-criterion introduced in [130, Sec.

4.2]:

cap
({

t ∈ S : lim sup
r→0

Log(1/µ[t− r, t+ r])
Log(1/r)

< +∞
})

= cap(S).

Paralleling the arguments in [67], all the results in this section could be obtained under this weaker

assumption, but the exposition would be heavier and we leave it to the interested reader to carry

out the details.
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Theorem 3.2 Let µ̃ be as in Theorem 3.1 and {qn}n∈N be a sequence of polynomials of degree at

most n satisfying the weighted orthogonality relations

∫
tjqn(t)

dµ̃(t)
v2n(t)

= 0, j = 0, . . . , n− 1, (3.4)

where {v2n}n∈N is the sequence of monic polynomials associated via (2.37) to some strongly ad-

missible interpolation scheme A with asymptotic distribution σ. Then the counting measures νn of

the zeros of qn converge in the weak∗ sense to µSw, the weighted equilibrium distribution on S with

external field given by −Uσ.

Note that, by Proposition A.2, the measure µSw is nothing but the balayage σ̂ of σ onto S out

of C \ S. Let us stress also that, in general, the polynomials qn satisfying (3.4) need not be unique

up to a multiplicative constant nor have exact degree n. In the above theorem, it is understood

that qn is any sequence of such polynomials, and that νn is normalized by 1/n so that it may no

longer be a probability measure. This is of no importance since, as will be shown later, the defect

n− deg qn is uniformly bounded.

The proofs of Theorems 3.1 and 3.2 rely on several auxiliary lemmas. To state them we

need to introduce some more notation. For any ξ 6= 0 ∈ C, we let Arg(ξ) ∈ (−π, π] be the principal

branch of the argument and for ξ = 0 we set Arg(0) = π. With this definition, Arg(·) becomes a

left continuous function on R. Now, for any interval [a, b] ⊂ R we can define the angle in which this

interval is seen at ξ ∈ C by

Angle(ξ, [a, b]) := |Arg(a− ξ)−Arg(b− ξ)|.

Note that 0 ≤ Angle(ξ, [a, b]) ≤ π and Angle(ξ, [a, b]) = π if and only if ξ ∈ [a, b]. We define additively

this angle for a system of disjoint closed intervals: if {[aj , bj ]}kj=1 is such a system, then the angle

in which it is seen at ξ is defined by

θ(ξ) :=
k∑
j=1

Angle(ξ, [aj , bj ]). (3.5)

The notation θ(ξ) does not reflect the dependency on the system of intervals, but the latter will

always be made clear.

Lemma 3.3 With the previous notation the following statements hold true:

(a) Let ν be a positive measure which has infinitely many points in its support and assume the
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latter is covered by finitely many disjoint intervals: supp(ν) ⊆ ∪kj=1[aj , bj ]. Let further ψ be a

function of bounded variation on supp(ν). If for some integer l we have

∫
Pl−1(t)eiψ(t)dν(t) = 0, ∀Pl−1 ∈ Pl−1,

then
k∑
j=1

V (ψ, [aj , bj ]) ≥ (l − k + 1)π. (3.6)

(b) Let [a, b] ⊂ (−1, 1) and ξ ∈ D. Define

g(ξ, t) := Arg(t− ξ)− 2Arg(t− 1/ξ̄), (3.7)

where the term 2Arg(t− 1/ξ̄) is omitted if ξ = 0. Then

V (g(ξ, ·), [a, b]) ≤ Angle(ξ, [a, b]). (3.8)

(c) Let ψ be a real function of bounded variation on an interval [a, b], {an(x)} a sequence of

continuously differentiable real functions with uniformly bounded derivatives on [a, b], and q a

polynomial. Then there exists a polynomial T 6= 0 and a constant β ∈ (0, π/32) such that

∣∣∣Arg
(
ei(ψ(x)+an(x))q(x)T (x)

)∣∣∣ ≤ π/2− 2β (3.9)

for all x ∈ [a, b] such that T (x)q(x) 6= 0 and all n from some infinite sequence N1 ⊂ N.

(d) Assume I ⊂ (0, 1) and {qn} is a sequence of polynomials of degree mn whose roots {ξ1,n, . . . , ξmn,n}

lie in D and satisfy
mn∑
j=1

(π −Angle(ξj,n, I)) ≤ C,

where the constant C is independent of n. Then, to every ε > 0 there exists an integer l such

that, for all n large enough, there is a polynomial Tl,n of degree at most l satisfying:

∣∣∣∣ q̃n(x)
|q̃n(x)|

− Tl,n(x)
∣∣∣∣ < ε, x ∈ I.

In particular, the argument of Tl,n(x)/q̃n(x) lies in the interval (−2ε, 2ε) when n is large

enough.
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Proof: (a) This assertion follows from the proof of Lemma 3.2 in [19] if we put dn = n there.

(b) When ξ /∈ I, the proof of this statement is contained in that of Lemma 5.2 in [19]. In

the remaining cases, one can see by inspection that (3.8) reduces to 0 ≤ π when ξ = b and to π ≤ π

when ξ ∈ [a, b).

(c) Observe that ϕ(x) = ψ(x) + Arg(q(x)) is a real function of bounded variation on I.

Therefore by Lemma 3.4 in [19], there exist a polynomial T ∗ 6= 0 and a constant β∗ ∈ (0, π/16) such

that

∣∣∣Arg
(
eiψ(x)q(x)T ∗(x)

)∣∣∣ =
∣∣∣Arg

(
eiϕ(x)T ∗(x)

)∣∣∣ ≤ π/2− 2β∗ for x ∈ I, q(x)T ∗(x) 6= 0.

For later use we also record that, by the very construction of T ∗ in the cited lemma, its zeros belong

to I and are discontinuity points of ϕ.

Let N be such that |a′n(x)| ≤ N for all n ∈ N and x ∈ I, where the superscript “prime”

indicates the derivative. By Jackson’s theorem (cf. e.g. [101]) there is a constant C > 0 and there

are polynomials {Tn,l} of degree at most l such that

∣∣∣e−ian(x) − Tn,l(x)
∣∣∣ ≤ CN

l
.

Fix l so large that CN/l ≤ β∗/3. Being bounded of bounded degree, the sequence {Tn,l} has a

subsequence converging uniformly on I to a polynomial Tl of degree at most l. Therefore, for some

subsequence N1 we obtain ∣∣∣1− eian(x)Tl(x)
∣∣∣ ≤ β∗

2
, n ∈ N1,

which implies that ∣∣∣Arg
(
eian(x)Tl(x)

)∣∣∣ ≤ β∗π

4
< β∗, n ∈ N1.

Now inequality (3.9) follows by taking T = T ∗Tl, β = β∗/2, and using that |Arg(ξ1 + ξ2)| ≤

|Arg(ξ1)|+ |Arg(ξ2)| for any ξ1, ξ2 ∈ C.

(d) This is exactly what is proved in Lemma 5.4 of [19].

Lemma 3.4 Let qn(z) =
∏n
j=1(z−ξj,n) satisfy (3.3) for |ξj,n| < 1 for j = 1, . . . , n, where µ̃ = µ+µ′

is given by (1.15) and (1.16) with S ⊂ (−1, 1) and S′ ⊂ D, while ωn is a complex-valued measurable

function on S̃. Consider a covering of S by finitely many disjoint closed intervals: S ⊆ Ek :=
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⋃k
j=1[aj , bj ]. Then9

n∑
j=1

(π − θ(ξj,n)) ≤ V (Θ) + V (arg(ωn), S) +
∑
η∈S′

m(η)θ(η) + (k +m− 1)π, (3.10)

where arg(ωn) is any argument function for ωn on S and m(η) is the multiplicity of η.

Proof: If ωn has no argument function of bounded variation on S, there is nothing to prove. Other-

wise, we pick one and extend it to the whole of R without increasing the variation, as explained in

the beginning of this section. In particular, we get

V (arg(ωn), S) =
m∑
j=1

V (arg(ωn), [aj , bj ]).

As in the case of (2.33), equation (3.3) yields

∫
Pn−m−1(t)qn(t)Q(t)

ωn(t)
q̃2
n(t)

dµ(t) = 0, (3.11)

where Pn−m−1 is any polynomial in Pn−m−1.

Denote by ψn(t) an argument function for eiΘ(t)qn(t)Q(t)ωn(t)/q̃2
n(t), say

ψn(t) = Θ(t) + arg(ωn(t)) +
∑
η∈S′

Arg(t− η) +
n∑
i=1

(
Arg(t− ξi,n)− 2Arg(t− 1/ξ̄i,n)

)
,

where it is understood that Arg(t− 1/ξ̄i,n) is omitted when ξi,n = 0. It is easy to see that ψn is of

bounded variation. Then Lemma 3.3(a) with

ψ = ψn, dν(t) =
∣∣∣∣qn(t)Q(t)ωn(t)

q̃2
n(t)

∣∣∣∣ d|µ|(t), and l = n−m

implies that
k∑
j=1

V (ψn, [aj , bj ]) ≥ (n− k −m+ 1)π.

So, we are left to show that

k∑
j=1

V (ψn, [aj , bj ]) ≤ V (Θ) +
k∑
j=1

V (arg(ωn), [aj , bj ]) +
∑
η∈S′

m(η)θ(η) +
n∑
i=1

θ(ξi,n).

9Note that the hypothesis µ ∈ BVT is not required for this lemma to hold.
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By the definition of ψn, we have

k∑
j=1

V (ψn, [aj , bj ]) ≤
k∑
j=1

V (Θ, [aj , bj ]) +
k∑
j=1

V (arg(ωn), [aj , bj ])

+
k∑
j=1

∑
η∈S′

m(η)V (Arg(· − η), [aj , bj ])

+
k∑
j=1

n∑
i=1

V (g(ξi,n, ·), [aj , bj ]),

where g(ξ, t) was defined in (3.7). The assertion of the lemma now follows from Lemma 3.3(b) and

the fact that by the monotonicity of V (Arg(· − ξ), [a, b]) = Angle(ξ, [a, b]).

Corollary 3.5 Let Θ and arg(ωn) have bounded variation on S, with V (arg(ωn), S) < C where C

is independent on n. Then, to each neighborhood U of S, there exists a constant NU ∈ N such that

each qn has at most NU zeros outside of U for n large enough.

Proof: Since U is open, its intersection with (−1, 1) is a countable union of intervals. By compact-

ness, a finite number of them will cover S, say ∪kj=1(aj , bj). Apply Lemma 3.4 to the closure of these

intervals and observe that any zero of qn which lies outside of U will contribute to the left-hand side

of (3.10) by more than some positive fixed constant which depends only on U . Since the right-hand

side of (3.10) does not depend on n and is finite we can have only finitely many such zeros.

Proof of Theorem 3.1: Hereafter we are going to use (3.11) rather than (3.3) and we set qn(z) =∏n
j=1(z − ξj,n).

We start by observing that we may suppose S ⊂ (0, 1). Indeed, if this is not the case,

take a negative number w such that −1 < w < a, where [a, b] = E denotes the convex hull of S.

Then Mw(S), the image of S under the Möbius transformation Mw(z) := (z − w)/(1 − zw), is a

subset of (0, 1). Moreover, observe that the Green equilibrium measure is invariant under Möbius

transformations, i.e., for any Borel set E ⊂Mw(S) we have that

µ(Mw(S),T)(E) = µ(S,T)(M−w(E))

(M−w is the inverse function of Mw). This implies that the weak∗ convergence of νn to µ(S,T) is

equivalent to that of νwn to µ(Mw(S),T), where νwn is the counting measure of the images of the zeros
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of qn under Mw. Now, if we let

`n(τ) = qn(M−w(τ))(1 + wτ)n,

L(τ) = Q(M−w(τ))(1 + wτ)m,

pn−m−1(τ) = Pn−m−1(M−w(τ))(1 + wτ)n−m−1,

ω∗n(τ) = ωn(M−w(τ)),

then `n is a polynomial of degree n with zeros atMw(ξj,n), j = 1, . . . , n. In addition, sinceMx(1/ξ̄) =

1/Mx(ξ), x ∈ (−1, 1), we have that

˜̀
n(τ) = q̃n(M−w(τ))(1 + wτ)n.

Analogously, L is a polynomial of degree m with zeros at Mw(η), η ∈ S′, and pn−m−1 is an arbitrary

polynomial of degree at most n−m−1. Let us show that `n satisfies orthogonality relations of type

(3.11) for a new measure, supported this time in (0, 1), that still belongs to BVT.

With the above notation equation (3.11) implies

0 =
∫
S

Pn−m−1(t)qn(t)Q(t)
ωn(t)
q̃2
n(t)

eiΘ(t)d|µ|(t)

=
∫
Mw(S)

(Pn−m−1qnQ)(M−w(τ))
ωn(M−w(τ))
q̃2
n(M−w(τ))

eiΘ(M−w(τ))d|µ|(M−w(τ))

=
∫
Mw(S)

pn−m−1(τ)L(τ)`n(τ)
ω∗n(τ)˜̀2
n(τ)

eiΘ
∗(τ)d|µ∗|(τ),

where d|µ∗|(τ) = (1 + wτ)d|µ|(M−w(τ)) is a positive measure supported on Mw(S), Θ∗(τ) =

Θ(M−w(τ)) is a function of bounded variation, and {ω∗n} is a sequence of measurable functions

whose moduli are uniformly bounded above and below, and whose arguments are smooth with uni-

formly bounded derivatives. Further, since Green functions are conformally invariant, Mw(S) is

regular so clearly µ∗ ∈ BVT. This allows us to assume that S ⊂ (0, 1).

First we will suppose that all zeros of the polynomials qn lie outside some fixed neighborhood

of zero.

For each n denote by σn the counting measure of zeros of q̃n. By the assumption that we

just made there exists a compact set K such that 0 /∈ K and supp(νn) ⊂ K. Then supp(σn) ⊂ K∗

for all n ∈ N, and K∗ is also compact. Recall that operation (·)∗, applied to a set, stands for the

reflect of this set across the unit circle. By Helly’s selection theorem (cf. [113, Thm. 0.1.3]) there
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exists a subsequence of natural numbers, N1, such that νn
∗→ ν for n ∈ N1, where ∗→ stands for

weak∗ convergence. Denote by σ the reflection of ν across the unit circle, i.e. dσ(t) = dν ◦ (1/t̄). It

is easy to check that σn
∗→ σ. Observing that the assumptions on ωn imply that the variation of its

argument on E, thus a fortiori on S, is bounded independently of n, it follows from Corollary 3.5

that ν and σ are probability measures such that supp(ν) ⊂ S ⊂ (0, 1) and supp(σ) ⊂ S∗ = S−1.

Claim: it is enough to show that the logarithmic potential of ν − σ is a constant q.e. on S.

Indeed, let Uν−σ = D1 q.e. on S, where

Uν−σ =
∫

log
1

|z − t|
d(ν − σ)(t).

Then, since Uσ is harmonic outside of S−1, we have that Uν is bounded quasi everywhere on S,

hence everywhere by lower semi-continuity of potentials. Thus, ν has finite energy and by reflection

so does σ. Moreover, for quasi every z ∈ S−1, we have

Uν−σ(z) =
∫

log
1

|z − t|
d(ν − σ)(t) =

∫
log

1
|z − 1/x|

d [(ν − σ) ◦ (1/x)]

=
∫

log
∣∣∣∣ x/z

x− 1/z

∣∣∣∣ d(σ − ν)(x) =
∫

log |x/z|d(σ − ν)(x)− Uν−σ(1/z)

=
∫

log |x|d(σ − ν)(x)−D1 =: D2, (3.12)

where we used that ν − σ has total mass zero. Now, denote by σ̂ the balayage of σ onto S. Then

Ubσ(t) = Uσ(t) + c(σ; C \ S)

for quasi every t on S. Thus, as (ν − σ̂)(C) = 0 and since ν and σ̂ have finite energy, we get

0 =
∫
D1 d(ν − σ̂)(z) =

∫
Uν−σ(z)d(ν − σ̂)(z) =

∫
Uν−bσ(z)d(ν − σ̂)(z)

=
∫

log
1

|z − t|
d(ν − σ̂)(t)d(ν − σ̂)(z).

But the energy of a signed measure is equal to zero if and only if the measure is zero ([113, Lemma

I.1.8]), provided that this measure is the difference of two positive measures with finite energy; thus,

ν = σ̂. Using (3.12), we can obtain in a similar fashion that σ = ν̂, where ν̂ is the balayage of ν

onto S−1. Hence, we proved that σ− ν is the equilibrium signed measure for the condenser (S, S−1)

([113, Thm. VIII.2.6]). Then Proposition A.1 points (b) and (e) ensures that ν = µ(S,T) is the

Green equilibrium distribution relative to both D and C \ S−1. Since {νn}n∈N1 was an arbitrary
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subsequence, the whole sequence {νn}n∈N converges to µ(S,T) in the weak∗ sense. This proves the

claim.

Being left to prove that Uν−σ is a constant q.e. on S, suppose to the contrary that this is

not true. Then there exist nonpolar Borel subsets of S, say E− and E+, and two constants d and

τ > 0 such that

Uν−σ(x) ≥ d+ τ, x ∈ E+, Uν−σ(x) ≤ d− 2τ, x ∈ E−.

In this case we claim that there exists y0 ∈ supp(ν) such that

Uν−σ(y0) > d. (3.13)

Indeed, otherwise we would have that

Uν(x) ≤ Uσ(x) + d, x ∈ supp(ν). (3.14)

Then the principle of domination ([113, Thm. II.3.2]) would yield that (3.14) is true for all z ∈ C,

but this would contradict the existence of E+.

Since all σn are supported outside of the closed unit disk, the sequence of potentials

{Uσn}n∈N1 converges to Uσ uniformly on compact subsets of D. This implies that for any given

sequence of points {yn} ⊂ D such that yn → y0 as n→∞, n ∈ N1, we have

lim
n→∞, n∈N1

Uσn(yn) = Uσ(y0). (3.15)

On the other hand all νn, n ∈ N1, have their support in D. So, by applying the principle of descent

for the above sequence {yn}, we obtain

lim inf
n→∞, n∈N1

Uνn(yn) ≥ Uν(y0). (3.16)

Combining (3.13), (3.15), and (3.16) we get

lim inf
n→∞ n∈N1

Uνn−σn(yn) ≥ Uν−σ(y0) > d. (3.17)

Since {yn} was an arbitrary sequence in D converging to y0, we deduce from (3.17) that there exists

ρ > 0 such that, for any y ∈ [y0 − 2ρ, y0 + 2ρ] and n ∈ N1 large enough, the following inequality
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holds

Uνn−σn(y) ≥ d. (3.18)

Since

Uνn−σn(y) =
1
n

log
∣∣∣∣ 1
αn

q̃n(y)
qn(y)

∣∣∣∣ ,
where αn :=

∏n
j=1 |ξj,n|, inequality (3.18) can be rewritten as

∣∣∣∣αn qn(y)
q̃n(y)

∣∣∣∣ ≤ e−nd (3.19)

for any y ∈ [y0 − 2ρ, y0 + 2ρ] and n ∈ N1 large enough.

Here we notice for later use that the above reasoning does not really require the polynomials

to have exact degree n. Specifically, let {pn} be a sequence of monic polynomials of degree dn =

n + o(n) where o denotes the Landau symbol “little oh”. Moreover, suppose that the counting

measures of their zeros normalized by 1/n rather than 1/dn (so it may no longer be a probability

measure) are supported on a fixed compact set of the complex plane. Call µn these measures and

assume that they converge to ν in the weak∗ topology. In this case (3.16) and (3.17) still hold with

νn replaced by µn, at the cost perhaps of dropping finitely many terms of N1 and making ρ smaller.

Thus, we obtain that ∣∣∣∣αn pn(y)
q̃n(y)

∣∣∣∣ ≤ e−nd (3.20)

for any y ∈ [y0 − 2ρ, y0 + 2ρ] and n ∈ N1 large enough.

In another connection, since Uν−σ(x) ≤ d− 2τ on E−, applying the lower envelope theorem

gives us

lim inf
n→∞, n∈N1

Uνn−σn(x) = Uν−σ(x) ≤ d− 2τ, for q.e. x ∈ E−. (3.21)

Let Z be a finite system of points from (−1, 1), to be specified later. Then by [3, 4] there exists S0 ⊂ S

such that S0 is regular, cap(E−∩S0) > 0 and dist(Z, S0) > 0, where dist(Z, S0) := minz∈Z dist(z, S0).

Put for simplicity bn(x) = qn(x)/q̃n(x), which is a finite Blaschke product. Then

Uνn−σn(x) = − 1
n

log |αnbn(x)|

and by (3.21), as |αn| < 1, there exist N2 ⊂ N1 and x ∈ E− ∩ S0 such that

|bn(x)| ≥ |αnbn(x)| ≥ e−n(d−τ)
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for any n ∈ N2. Let xn be a point where |bn| reaches its maximum on S0. Then

Mn := max
x∈S0

|bn(x)| = |bn(xn)| ≥ |αn|Mn = |αnbn(xn)| ≥ e−n(d−τ). (3.22)

Note that Mn < 1 and therefore d− τ is necessarily positive. For simplicity, we shall denote D \ S0

by D. Since the modulus of a Blaschke product is bounded by 1 in the unit disk and log |bn| is a

subharmonic function, the two-constant theorem ([111, Thm. 4.3.7]) yields the following pointwise

estimate

log |bn(z)| ≤ ωD(z, S0) log |Mn| (3.23)

for any z ∈ D, where ωD(z, S0) is the harmonic measure on D (cf. [111, Sec. 4.3]). Combining the

last two inequalities we get

|bn(z)| ≤ (Mn)ωD(z,S0) = Mn

(
1
Mn

)1−ωD(z,S0)

≤Mne
n(d−τ)(1−ωD(z,S0)) (3.24)

for z ∈ D, and obviously also when z ∈ S0, where ωD(·, S0) = 1 for S0 is regular. Moreover, by the

regularity of S0 again, it is known ([111, Thm. 4.3.4]) that for any x ∈ S0

lim
z→x

ωD(z, S0) = 1

uniformly with respect to x ∈ S0. Thus, for any δ > 0 there exists r(δ) < dist(S0,T) such that for

z satisfying dist(z, S0) ≤ r(δ) we have

1− ωD(z, S0) ≤ δ

d− τ
.

This, together with (3.24), implies that for fixed δ, to be adjusted later, we have

|bn(z)| ≤Mne
nδ, |xn − z| ≤ r(δ).

Note that bn is analytic in D, which, in particular, yields for |z − xn| < r(δ)

b′n(z) =
1

2πi

∫
|ξ−xn|=r(δ)

bn(ξ)
(ξ − z)2

dξ.

46



Thus, for any z such that |z − xn| ≤ r(δ)/2 we get

|b′n(z)| ≤ 1
2π
· 4Mne

nδ

r2(δ)
· 2πr(δ) =

4Mne
nδ

r(δ)
.

Now, for any x such that

|x− xn| ≤
r(δ)
8enδ

(3.25)

the mean value theorem yields

|bn(x)− bn(xn)| ≤ 4Mne
nδ

r(δ)
|x− xn| =

Mn

2
.

Thus, for x satisfying (3.25) we have

|bn(x)| ≥ |bn(xn)| − |bn(x)− bn(xn)| ≥Mn −
Mn

2
=
Mn

2

and by (3.22)

|αnbn(x)| ≥ |αn|Mn

2
≥ 1

2
e−n(d−τ). (3.26)

The estimates (3.20), (3.26), together with the relation (3.11) are the main ingredients in proving

the claim that Uν−σ is constant q.e. on S. To combine them we shall use a specific choice of Pn−m−1

in (3.11).

First, we pick a polynomial T such that Lemma 3.3-(c) holds with ψ = Θ, an = Arg(ωn),

q = Q, and [a, b] = E for n ∈ N3 ⊂ N2. We denote by k the degree of T . Second, for each n ∈ N3,

we choose Tl,n as in Lemma 3.3-(d) with ε = δ/9. Note that the use of Lemma 3.3-(d) is legitimate

by Lemma 3.4 and our assumptions on S, ϕ and ωn. Since all Tl,k are bounded and have degree at

most l, which does not depend on n, there exists N4 ⊂ N3 such that sequence {Tl,n}n∈N4 converges

uniformly to some polynomial Tl on E. In particular, we have that deg(Tl) ≤ l and the argument

of Tl(x)/q̃n(x) lies in (−δ/4, δ/4) for n ∈ N4 large enough. Denote by 2α the smallest even integer

strictly greater than 2l + k + m. As soon as n is large enough, since y0 ∈ supp(ν), there exist

β1,n, . . . , β2α,n, zeros of qn, lying in

Oγ ([y0 − ρ, y0 + ρ]) := {z ∈ C : dist (z, [y0 − ρ, y0 + ρ]) ≤ γ/2} ,
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where γ, 0 < γ < ρ/2, will be specified later. Define

P ∗n(z) =
qn(z)T (z)T 2

l (z)∏2α
j=1(z − βj,n)

.

The polynomial P ∗n has degree n−m− 1 or n−m− 2, depending on the parity of k +m.

Denote by In ⊂ (0, 1) the interval defined by (3.25). By comparing (3.19) with (3.26) and

(3.22), it is clear that In and [y0 − 2ρ, y0 + 2ρ] are disjoint when n ∈ N4 is large enough.

Now, we choose γ = γ(ρ) so small that

∣∣∣∣∣∣
2α∑
j=1

Arg

(
1

x− βj,n

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
2α∑
j=1

Arg
(
x− βj,n

)∣∣∣∣∣∣ ≤ δ/2, x ∈ R \ [y0 − 2ρ, y0 + 2ρ].

Letting δ be such that δ < β, the choices of T , Tl, and P ∗n together imply

∣∣∣∣Arg
(
P ∗n(x)qn(x)Q(x)

ωn(x)
q̃2
n(x)

eiΘ(x)

)∣∣∣∣
=

∣∣∣∣∣∣Arg

|qn(x)|2 ·
2α∏
j=1

1
(x− βj,n)

· T
2
l (x)
q̃2
n(x)

· T (x)Q(x)ωn(x)eiΘ(x)

∣∣∣∣∣∣
≤ δ

2
+
δ

2
+
π

2
− 2β ≤ π/2− δ,

for x ∈ E \ [y0 − 2ρ, y0 + 2ρ] except at points where T or q are equal to zero. This means that for

such x

Re
(
|αn|2P ∗n(x)qn(x)Q(x)

ωn(x)
q̃2
n(x)

eiΘ(x)

)
≥ sin δ

∣∣∣∣α2
nP
∗
n(x)qn(x)Q(x)

ωn(x)
q̃2
n(x)

eiΘ(x)

∣∣∣∣
≥ sin δ

∣∣∣∣∣α2
nb

2
n(x)Q(x)T (x)T 2

l (x)ωn(x)∏2α
j=1(x− βj,n)

∣∣∣∣∣ ≥ 0.

Moreover, if x ∈ S \ [y0 − 2ρ, y0 + 2ρ] satisfies (3.25), then by (3.22) and (3.26) the above quantity

is bounded from below by

|T (x)Q(x)|
sin δ minx∈[a,b] |Tl(x)|2 infn∈N minx∈[a,b] |ωn(x)|

(diam(S) + 2ρ)2α
e−2nd+2nτ = c1|T (x)Q(x)|e−2nd+2nτ ,

where diam(S) := maxx,y∈S |x− y| and

c1 :=
sin δ minx∈[a,b] |Tl(x)|2 infn∈N minx∈[a,b] |ωn(x)|

(diam(S) + 2ρ)2α
> 0
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by construction of Tl and the uniform boundedness of {|ωn|} from below. Thus

Re

(∫
S\[y0−2ρ,y0+2ρ]

|αn|2P ∗n(t)qn(t)Q(t)
ωn(t)
q̃2
n(t)

eiΘ(t)d|µ|(t)

)

≥ sin δ
∫
S\[y0−2ρ,y0+2ρ]

∣∣∣∣α2
nP
∗
n(t)qn(t)Q(t)

ωn(t)
q̃2
n(t)

eiΘ(t)

∣∣∣∣ d|µ|(t)
≥ c1e

−2nd+2nτ

∫
S∩In

|T (t)Q(t)|d|µ|(t) ≥ c2e−2nd+n(2τ−Lδ). (3.27)

The last inequality is true by the following argument. Recall that xn, the middle point of In, belongs

to S0, where dist(S0, Z) > 0 and Z is a finite system of points that we now choose to be the zeros of

TQ in (−1, 1). Then TQ, which is independent of n, is uniformly bounded below on In and (3.27)

follows from this and hypothesis BVT point (2). On the other hand (3.19) and (3.20), applied with

pn = P ∗n , yield that

∣∣∣∣∣
∫

[y0−2ρ,y0+2ρ]

|αn|2P ∗n(t)qn(t)Q(t)
ωn(t)
q̃2
n(t)

eiΘ(t)d|µ|(t)

∣∣∣∣∣ ≤ c3e−2nd, (3.28)

where we used uniform boundedness of {|ωn|} from above. Choosing δ so small that 2τ − Lδ > 0,

which is possible, the bound in (3.27) becomes bigger than the bound in (3.28) for n large enough.

But this is impossible, since by (3.11) the sum of these two integrals must be zero.

We just completed the case when all the zeros of polynomials qn stay away from the point

zero. Now we shall consider the general situation. Let ε > 0 be such that U := D \ {z : |z| ≤ ε}

is a neighborhood of S. Corollary 3.5 says that there exists a constant NU ∈ N such that each qn

has at most NU zeros outside of U , or equivalently, zeros which have modulus less than ε. In this

case, from any sequence of natural numbers, we can extract a subsequence, say N0, such that for

some number N ≤ NU , qn has exactly N zeros outside of U for each n ∈ N0. Denote these zeros

ξ1,n, . . . , ξN,n, and consider the polynomials

q∗n(z) :=
q̃n(z)∏N

j=1(1− zξj,n)
, n ∈ N0.

Then the sequence {qn}n∈N0 will satisfy the following weighted orthogonality relation:

∫
Pn−m−1(t)qn(t)Q(t)

ω∗n(t)
(q∗n(t))2

dµ(t) = 0, Pn−m−1 ∈ Pn−m−1,
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where

ω∗n(t) := ωn(t)
N∏
j=1

(1− tξj,n)−2, t ∈ E.

In what follows we are going to stress the modifications needed to adapt the previous proof

to the present case. Let, as before, N1 ⊂ N0 be a subsequence of natural numbers such that νn
∗→ ν,

n ∈ N1. Because we only discarded a fixed number of zeros from q̃n to obtain q∗n, the counting

measures σ∗n of the zeros of q∗n (normalized by 1/n), again converge weak∗ to σ. Since Uσ
∗
n enjoys all

the relevant properties of Uσn , inequalities (3.19) and (3.20) remain valid with q̃n replaced by q∗n.

Further, define bn(x) as qn(x)/q∗n(x). In this case, bn is no longer a Blaschke product, but

rather a Blaschke product multiplied by the polynomial
∏N
j=1(z − ξj,n). Then we get instead of

(3.23) that

log |bn(z)| ≤ ωD(z, S0) log |Mn|+ (1− ωD(z, S0))N log 2,

and (3.24) can be replaced by

|bn(z)| ≤Mne
n(d−τ+N log 2/n)(1−ωD(z,S0)) ≤Mne

n(d−τ+1)(1−ωD(z,S0)),

for n large enough. This yields an insignificant modification of r(δ) (we should make 1− ωD(z, S0)

less than δ/(d− τ + 1) rather than just δ/(d− τ)). Lemma 3.3(d) can be applied to polynomials q∗n

without change.

Therefore we are left to show that {ω∗n} is uniformly bounded above and below on E, and

that its arguments are smooth with uniformly bounded derivatives on E with respect to n. The

uniform boundedness of {ω∗n} easily follows from the estimates

(
1
2

)2N

≤
N∏
j=1

∣∣∣∣∣ 1
(1− tξj,n)

∣∣∣∣∣
2

≤
(

1
1− ε

)2N

.

Since none of the ξj,n, j = 1, . . . , N can come close to E−1, Arg(1 − tξj,n) is a smooth

function on E whose derivative Im
(
ξj,n/(1− tξj,n)

)
is uniformly bounded there independently of j

and n. Then the rest of the assumptions on {ω∗n} follows from the representation

arg(ω∗n(t)) = arg(ωn(t))− 2
N∑
j=1

Arg(1− tξj,n).

This completes the proof of the theorem.

The proof of Theorem 3.2 runs parallel to the proof of Theorem 3.1. It relies on the following
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lemma.

Lemma 3.6 Let qn(z) =
∏dn
j=1(z−ξj,n) be a n-th orthogonal polynomial in the sense of (3.4). Then

dn∑
j=1

(π − θ(ξj,n)) + (n− dn)π ≤ V (Θ) +
∑
η∈S′

m(η)θ(η) + (k +m− 1)π,

where θ(·) is the angle function defined in (3.5) for a system of intervals Ek = ∪kj=1[aj , bj ] which

covers S, with E = [a1, bm] the convex hull of S.

Proof: The proof is the same as that of Lemma 3.4, observing that

V (Arg(v2n), Ek) = 0,

since v2n is real on S.

Note that Lemma 3.6, applied e.g. with k = 1 and E1 = E, implies that the defect n− dn

is bounded above independently of n.

Corollary 3.7 Let U be a neighborhood of S. Then there exists a constant NU ∈ N such that each

qn has at most NU zeros outside of U for n large enough.

Proof of Theorem 3.2: Recall the notation A = {A2n} for the strongly admissible interpolation

scheme, and let σn be the counting measure of the points in A2n. Set qn(z) =
∏dn
j=1(z − ξj,n) and

recall (see (2.38)) that it satisfies

∫
S

Pn−m−1(t)qn(t)Q(t)
dµ(t)
v2n(t)

= 0, Pn−m−1 ∈ Pn−m−1 (3.29)

(the more general relation (3.4) is not used in this proof).

We claim that we may suppose A is contained in a compact set. Indeed, if this is not

the case, we can pick a real number x0 /∈ K(A) ∪ S′ ∪ E, where K(A) is, as usual, the set of

limit points of A. Consider the analytic automorphism of C given by Mx0(z) := 1/(z − x0), with

inverse M−1
x0

(τ) = x0 + 1/τ . If we put A]2n := Mx0(A2n), then A] = {A]2n} is a strongly admissible

interpolation scheme having asymptotic distribution σ], with σ](B) = σ(M−1
x0

(B)) for any Borel set

B ⊂ C. Moreover, the choice of x0 yields that K(A]) is compact. Now, if we let

`n(τ) = τnqn
(
M−1
x0

(τ)
)
,

L(τ) = τmQ
(
M−1
x0

(τ)
)
,
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P ]n−m−1(τ) = τn−m−1Pn−m−1

(
M−1
x0

(τ)
)
,

v]2n(τ) = τ2nv2n

(
M−1
x0

(τ)
)
,

then `n is a polynomial of degree n with zeros at Mx0(ξj,n), j = 1, . . . , dn, and a zero at the

origin with multiplicity n − dn. In addition, v]2n is a polynomial with a zero at each point of A]2n,

counting multiplicity. Thus, up to a multiplicative constant, v]2n is the polynomial associated with

A]2n via (2.37). Analogously, L is a polynomial of degree m with a zero of multiplicity m(η) at

Mx0(η), η ∈ S′, and P ]n−m−1 is an arbitrary polynomial of degree at most n −m − 1. Making the

substitution t = M−1
x0

(τ) in (3.29), we get

∫
Mx0 (S)

P ]n−m−1(τ)L(τ)`n(τ)
dµ](τ)

v]2n(τ)
= 0, P ]n−m−1 ∈ Pn−m−1,

where dµ](τ) = τdµ
(
M−1
x0

(τ)
)

is a complex measure with compact support Mx0(S) ⊂ R, having an

argument of bounded variation and total variation measure |µ]| ∈ BVT. Note that τ is bounded

away from zero on supp(µ]), since S is compact and therefore bounded away from infinity. Now,

since Lemma 3.6 implies that n − dn is uniformly bounded above, the asymptotic distribution of

the counting measures of zeros of `n is the same as the asymptotic distribution of the images of the

counting measures of zeros of qn under the map Mx0 . As the counting measures of the points in A]n

converge weak] to σ], the claim follows from the fact that µMx0 (S)
w = σ̂] since µSw = σ̂ by Proposition

A.2 and since balayage is preserved under Mx0 (e.g. because harmonic functions are, cf. equation

(2.6)). Hence we assume in the rest of the proof that A is contained in a compact set, say K0, which

is disjoint from S̃ by the definition of strong admissibility.

Let Γ be a closed Jordan arc such that the bounded component of C \ Γ, say D, contains S̃

while the unbounded component, say D′, contains K0. Then qn = qn,1 · qn,2, where

qn,1(z) =
∏

ξj,n∈D

(z − ξj,n)

and

qn,2(z) =
∏

ξj,n /∈D

(z − ξj,n).

Corollary 3.7 assures that degrees of polynomials qn,2 are uniformly bounded with respect to n,

therefore the asymptotic distribution of the zeros of qn,1 coincides with that of qn. Denote by νn,1

the zero counting measure of qn,1 normalized with 1/n. Since all νn,1 are supported on a fixed
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compact set, Helly’s selection theorem and Lemma 3.6 yield the existence of a subsequence N1 such

that νn,1
∗→ ν for n ∈ N1 and some measure ν ∈ Λ(S); remember the defect is bounded which is

why ν is a probability measure in spite of the normalization of qn,1 with 1/n.

Next, we observe it is enough to show that the logarithmic potential of ν−σ is constant q.e.

on S. Indeed, the same argument as in the proof of Theorem 3.1 shows in this case that ν has finite

logarithmic energy, and then we get from the characterization (2.4) of balayage that ν = σ̂ (= µSw),

as desired.

Now, suppose that Uν−σ is not a constant q.e. on S. Then there exist nonpolar Borel

subsets of S, say E− and E+, and two constants d and τ > 0 such that

Uν−σ(x) ≥ d+ τ, x ∈ E+, Uν−σ(x) ≤ d− 2τ, x ∈ E−.

Exactly as in Theorem 3.1, this leads to the existence of y0 ∈ supp(ν) and ρ > 0 such that

∣∣∣∣∣q2
n,1(y)
v2n(y)

∣∣∣∣∣ ≤ e−2nd,

for any y ∈ [y0−2ρ, y0 + 2ρ] and n ∈ N1 large enough. We also remark that the same bound holds if

{qn} is replaced by a sequence of monic polynomials, say {un}, of degree n+ o(n), whose counting

measures normalized with 1/n have asymptotic distribution ν. Moreover, in this case

∣∣∣∣qn,1(y)un(y)
v2n(y)

∣∣∣∣ ≤ e−2nd (3.30)

for any y ∈ [y0 − 2ρ, y0 + 2ρ] and n ∈ N1 large enough.

In another connection, arguing still as in the proof of Theorem 3.1, there exists x ∈ E−∩S0

(where we will choose S0 in exactly the same way as in that proof) such that

∣∣∣∣∣q2
n,1(x)
v2n(x)

∣∣∣∣∣ ≥ e−2n(d−τ) (3.31)

for n ∈ N2 ⊂ N1. Let xn be a maximum place for |q2
n,1/v2n| on S0:

Mn := max
x∈S0

∣∣∣∣∣q2
n,1(x)
v2n(x)

∣∣∣∣∣ =

∣∣∣∣∣q2
n,1(xn)
v2n(xn)

∣∣∣∣∣ .
Since v2n has no zeros on D, the function log |q2

n,1/v2n| is subharmonic there. Thus, by (3.31) and
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an obvious majorization, the two-constants theorem on D \ S0 (compare (3.24)) yields

∣∣∣∣∣q2
n,1(z)
v2n(z)

∣∣∣∣∣ ≤Mn exp
{

2n
(
d− τ + log

diam(D)
dist(Γ,K0)

)
(1− ωD\S0(z, S0))

}
, z ∈ D,

where ωD\S0(·, S0) is the harmonic measure on D \ S0. Note that d− τ + log(diam(D)/dist(Γ,K0))

is necessarily positive otherwise q2
n,1/v2n would be constant in D by the maximum principle, which

is absurd. Then, following the arguments after (3.24), we get from the regularity of S0 that for any

δ > 0 there is r(δ) < dist(S0,Γ) such that

∣∣∣∣∣q2
n,1(x)
v2n(x)

∣∣∣∣∣ ≥ 1
2
e−2n(d−τ) (3.32)

for x ∈ In, where

In :=
[
xn −

r(δ)
8enδ

, xn +
r(δ)
8enδ

]
.

Now, Lemma 3.3(c) guarantees that there exist a polynomial T of degree, say, k, and a

number β ∈ (0, π/32) such that

∣∣∣Arg
(
eiΘ(t)Q(t)T (t)

)∣∣∣ ≤ π

2
− 2β,

for all t ∈ E such that (TQ)(t) 6= 0, where Θ is as in (3.1). Denote by 2α the smallest even integer

strictly greater than k + m + 1. Then, as in the proof of Theorem 3.1, there exist β1,n, . . . , β2α,n,

zeros of qn,1, so close to [y0 − ρ, y0 + ρ] that

∣∣∣∣∣∣
2α∑
j=1

Arg
(

1
x− β̄j,n

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
2α∑
j=1

Arg
(
x− β̄j,n

)∣∣∣∣∣∣ ≤ β, x ∈ R \ [y0 − 2ρ, y0 + 2ρ].

Define for n ∈ N2 sufficiently large

P ∗n(z) =
qn(z̄)T (z)(z − ζ∗)∏2α

j=1(z − β̄j,n)
,

where the factor (z − ζ∗) is present only if Arg(v2n(t)) ≡ π on E in which case ζ∗ is a real zero

of v2n lying to the right of E (such a ζ∗ exists for v2n is positive at infinity and real on R by the

conjugate-symmetry of An, while it does not vanish on E when n is large enough since K(A)∩E = ∅
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by assumption). Then

∣∣∣∣Arg
(

(P ∗nqnQ)(x)
eiΘ(x)

v2n(x)

)∣∣∣∣ =

∣∣∣∣∣∣Arg

|qn(x)|2 ·
2α∏
j=1

1
(x− β̄j,n)

· (x− ζ∗)(TQ)(x)eiΘ(x)

v2n(x)

∣∣∣∣∣∣
≤ π/2− δ, (3.33)

for all x ∈ I \ [y0 − 2ρ, y0 + 2ρ] except if (TQ)(x) = 0, where δ was chosen so small that δ < β and

where n ∈ N2 is sufficiently large. Just like in the proof of Theorem 3.1, we fix S0 to be at positive

distance from the zeros of TQ, which is a polynomial independent of n.

Denote by mn,1 the number of zeros of qn,2 of modulus at least 2 maxx∈S |x|, and put αn

for the inverse of their product. Let mn,2 := deg qn,2 −mn,1. Then, for t ∈ S, we have

(dist(S,Γ))mn,2 (1/2)mn,1 ≤ |αnqn,2(t)| ≤
(

3 max
x∈S
|x|
)mn,2

(3/2)mn,2 ,

and since mn,1 + mn,2 = deg qn,2 is uniformly bounded with n so is {|αnqn,2|} bounded above and

below on S. Therefore, using (3.33), (3.32), (3.30) with un(z) = P ∗n(z)/qn,2(z̄), and reasoning as in

the proof of Theorem 3.1, we obtain

Re

(∫
S\[y0−2ρ,y0+2ρ]

|αn|2P ∗n(t)qn(t)Q(t)
eiΘ(t)

w2n(t)
d|µ|(t)

)
≥ c1e−2nd+n(2τ−Lδ) (3.34)

and ∣∣∣∣∣
∫

[y0−2ρ,y0+2ρ]

|αn|2P ∗n(t)qn(t)Q(t)
eiΘ(t)

v2n(t)
d|µ|(t)

∣∣∣∣∣ ≤ c2e−2nd. (3.35)

This completes the proof, since δ can be taken such that 2τ − Lδ > 0 which would contradict the

orthogonality relation (3.29) because, for n large enough, the integral in (3.34) is much bigger than

in (3.35).

Meromorphic Approximation

This section is devoted to the investigation of the asymptotic behavior of meromorphic

approximants. We provide answers to the following three questions:

(a) What is the asymptotic distribution of the poles of best-Lp(T) meromorphic approximants to

F as n tends to ∞?

(b) Do some of these poles converge to the polar singularities of F?

(c) What can be said about the convergence of such approximants to F?
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Answers to these questions are given by Theorems 3.8, 3.10, and 3.9, respectively.

Theorem 3.8 Let p ∈ [2,∞], p′ the conjugate exponent modulo 2, and {gn}n∈N be a sequence

of irreducible critical points of order n of MA(p) for F(µ;R; ·), where F is given by (1.2) with

µ ∈ BVT and S′ ⊂ D. Then the counting measures of the poles of gn converge to µ(S,T) in the

weak∗ sense.

The previous theorem gives one answer to question (a) raised above. The next one addresses

question (c) by stating that approximants behave rather nicely toward the approximated function,

namely they converge in capacity to F on D\S and locally uniformly on C\D. Moreover, n-th root

estimates for the error are provided. Recall that a sequence of functions {gn} converges in capacity

to a function g on a compact set K ⊂ C if, for any ε > 0,

cap ({z ∈ K : |gn(z)− g(z)| ≥ ε})→ 0, as n→∞.

We say that {gn} converges in capacity to g on a domain D if {gn} converges in capacity on compact

subsets of D. Hereafter we denote by ‖.‖K the sup norm on a set K.

Theorem 3.9 Let {gn}n∈N and F(µ;R; ·) be as in Theorem 3.8. Then {gn} converges to F in

capacity on D \ S; more precisely, for any compact K ⊂ D \ S there exist positive constants β and γ

such that, for n large enough, one has

cap
{
z ∈ K : |(F − gn)(z)| ≥ e−βn

}
≤ e−γn.

In addition, in the case of rational approximation (i.e. when p = 2)

lim sup
n→∞

|(F − gn)(z)|1/2n ≤ exp
{
− 1

C(S,T)
− Uµ(S,T)

G (1/z̄; D)
}

holds uniformly in C \ D. In particular, {gn} converges uniformly in C \ D.

The forthcoming theorem implies that each pole of F attracts at least as many poles of

meromorphic approximants as its multiplicity and not much more. This is one possible answer to

question (b).

Theorem 3.10 Let {gn}n∈N, F(µ;R; ·), and µ be as in Theorem 3.8. Then for each η ∈ S′ \ S
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there exist constants δη > 0 and Cη = Cη(F) such that

m(η) ≤ #{Sn ∩Bδ(η)} ≤ m(η) + Cη, 0 < δ ≤ δη, (3.36)

for any n ≥ N(η, δ), where m(η) is the multiplicity of η, Sn is the set of poles of gn, and Bδ(η) :=

{|z − η| < δ}.

In fact, the proof of the above theorem is constructive in the sense that we obtain an upper

bound for Cη. Namely, let Ek := {[aj , bj ]}kj=1 be any finite system of intervals covering S and let

wn be the outer function in the inner-outer factorization of the singular vector vn associated to gn

for each n ∈ N. Then

Cη ≤
V (Θ) + VW + (k − 1)π + 2

∑
ζ∈S′ m(ζ)θ(ζ)

π − θ(η)
,

where

VW := sup
n∈N

V (Arg(wn), S) (3.37)

and θ(·) is the angle function defined in (3.5) applied to Ek. We shall prove in due course that

indeed VW < +∞.

The next lemma is needed for the proof of Theorem 3.8. Recall that H, a family of functions

analytic in some fixed domain of the complex plane, is called normal if each sequence of functions

from H contains a locally uniformly convergent subsequence.

Lemma 3.11 Let p ∈ (2,∞] and {gn}n∈N be a sequence of irreducible critical points of order n

of MA(p) for F(µ;R; ·) given by (1.2), (1.15), and (1.16) with S̃ ⊂ D and µ satisfying10 (3.1),

(3.2). Further, let vn be an associated singular vector to gn with inner-outer factorization given by

vn = bn · wn for some Blaschke product bn and wn an outer function in Hp′ . Then the families

W := {wn} and Wp′ :=
{
w
p′/2
n

}
are normal in D and D∗F respectively, where D∗F is the reflection

of DF across T. Moreover, any limit point of W is zero free in D.

Proof: The main idea of the proof was given in [28, Thm. 10.1]. The necessary modification for the

case of complex measures with argument of bounded variation were given in [23, Prop. 6.3]. Only

a simple adjustment is needed in the present case where the approximated function may have polar

singularities inside D. Nevertheless, we present the whole proof for the ease of the reader.
10Note that we do not require the hypothesis µ ∈ BVT to hold. It is sufficient to have a measure merely with an

argument of bounded variation and infinitely many points in the support.
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First we establish the normality of Wp′ . By a classical theorem of Montel it suffices to show

that Wp′ is locally uniformly bounded in D∗F . We claim it is enough to prove that

H :=
{(
jnw

p′/2
n

)
(z)(Q2T ) (1/z̄)

}

is locally uniformly bounded in D∗F \ D, where jn is the finite Blaschke product from (2.31) and T

is a fixed polynomial with all zeros in S such that

∣∣∣Arg
(
eiΘ(x)T (x)

)∣∣∣ ≤ π

2
− β, x ∈ E, (3.38)

for some β ∈ (0, π/16), where Θ is given by (3.1). The existence of such a polynomial is guaranteed

by Lemma 3.3-(c) (with ψ = Θ and an = 0) where it should be observed that, in the proof, the

polynomial Tl is not needed since an = 0. Hence, as mentioned in that proof, the zeros of T belong

to E and are discontinuity points of Θ; but since the latter was extended linearly on each component

of R \ S, the zeros of T actually belong to S, as announced. The family H is well defined, since

jnw
p′/2
n extends analytically to D∗F (see the discussion after equation (2.35)).

Now, the normality of H in D∗F \D is sufficient to establish the lemma, because |(Q2T )(1/z̄)|

is bounded away from zero on compact subsets of D∗F , since all zeros of Q2T lie in S̃, hence the

sequence {(
jnw

p′/2
n

)
(z)
}

will be locally uniformly bounded in D∗F \ D. Moreover, since jn is a finite Blaschke product, we

have

|jn(z)| > 1, z ∈ C \ D,

and thereforeWp′ will be locally uniformly bounded in D∗F \D. But since each wp
′/2
n is holomorphic

in D∗F ⊃ D, the maximum principle yields that this family is, in fact, normal in D∗F . This establishes

the claim.

So, it only remains to prove that H is locally uniformly bounded in D∗F \ D. This can be

established in the following way.

Consider the family of traces of functions from H on T:

HT :=
{(
jnw

p′/2
n

)
(ξ)(Q2T )(ξ)

}
⊂ L2(T).
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Each function of HT is a sum of its analytic and antianalytic parts hn,1(ξ) and hn,2(ξ), where

hn,1(ξ) = P+

((
jnw

p′/2
n

)
(ξ)(Q2T )(ξ)

)
,

hn,2(ξ) = P−
((
jnw

p′/2
n

)
(ξ)(Q2T )(ξ)

)
.

We can regard hn,2 as an analytic function in C \ D that vanishes at infinity. Thus, upon writing

hn,2(z) =
1

2πi

∫
T

(
jnw

p′/2
n

)
(ξ)(Q2T )(ξ)

z − ξ
dξ, |z| > 1, (3.39)

we see that {hn,2} is locally uniformly bounded in C \D, since Q and T are fixed, |jn| ≡ 1 on T, and∥∥∥wp′/2n

∥∥∥
2

= 1.

Now, multiplying the first line of (2.31) by bn2Q
2T = bnQ

2T and applying P− yields

HF (bnvnQ2T )(ξ) = γ1/2
n P−

(
ξ̄
(
jnw

p′/2
n

)
(ξ)
(
Q2T

)
(ξ)
)

= γ1/2
n ξP+

((
jnw

p′/2
n

)
(ξ)(Q2T )(ξ)

)
= γ1/2

n ξhn,1(ξ), ξ ∈ T, (3.40)

where we used that

P−(h(ξ)) = ξP+

(
ξh(ξ)

)
, h ∈ L2(T),

and

P− (P−(h)g) = P−(hg), h ∈ L2(T), g ∈ H2.

Following the computations preceding (2.35) we obtain

HF (bnvnQ2T )(ξ) =
∫

(bnvnQ2T )(t)
ξ − t

dµ̃(t) =
∫

(bnvnQ2T )(t)
ξ − t

dµ(t), ξ ∈ T,

where the second equality is valid since Q2 has a zero at each η ∈ S′ of multiplicity greater than or

equal to m(η)+1. Thus, using (3.40), we get an analytic extension of hn,1 to C\S−1 by the formula

hn,1(z) = γ−1/2
n

∫
(bnvnQ2T )(t)

1− tz
dµ(t). (3.41)
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Combining (3.39) and (3.41) we see that

(
jnw

p′/2
n

)
(z)(Q2T )(1/z̄) = hn,1(z) + hn,2(z), z ∈ D∗F \ D.

So, for H to be normal, it remains to show that {hn,1} is uniformly bounded on compact subsets of

D∗F \D. Due to formula (3.41) this is actually true in C \S−1. Indeed, let K ⊂ C \S−1 be compact.

Then for any z ∈ K equation (3.41) yields the estimate

|hn,1(z)| ≤ γ−1/2
n

∫ ∣∣bnvnQ2T
∣∣ (t)

|1− tz|
d|µ|(t)

≤ γ
−1/2
n

inft∈S,z∈K |1− tz|

∫ ∣∣bnvnQ2T
∣∣ (t)d|µ|(t)

≤ γ
−1/2
n (sinβ)−1

inft∈S,z∈K |1− tz|

∣∣∣∣∫ ∣∣b2nwnQ2T
∣∣ (t)ei(Θ(t)+Arg T (t))d|µ|(t)

∣∣∣∣
=

γ
−1/2
n (sinβ)−1

inft∈S,z∈K |1− tz|

∣∣∣∣∫ (bnw1/2
n Q

)
(t)
(
bnw

1/2
n QT

)
(t)dµ(t)

∣∣∣∣ ,
where we used (3.38). Note that w1/2

n is well-defined in D since wn has no zeros there. For simplicity

we shall denote

γ(K) :=
(sinβ)−1

inft∈S,z∈K |1− tz|
.

We remark that this quantity is finite and depends solely on K and the measure µ.

Define Gn(z) :=
(
bnQw

1/2
n (z̄)

)
, z ∈ D. Then Gn ∈ H2p′ , its trace has the same L2p′(T)

norm as
(
Qw

1/2
n

)
and Gn coincides with

(
bnQw

1/2
n

)
on (−1, 1). Further, let r < 1, dependent on

n, be such that Dr contains S̃ and all zeros of bnjn. Then by the estimates above, the fact that Q

vanishes on S′, the Cauchy formula, equation (2.35), and Fubini-Tonelli’s theorem we get for every

z ∈ K

|hn,1(z)| ≤ γ(K)
∣∣∣∣γ−1/2
n

∫ (
GnQTw

−1/2
n

)
(t) vn(t) dµ̃(t)

∣∣∣∣
= γ(K)

∣∣∣∣∣∣γ
−1/2
n

2πi

∫
eS
∫

Tr

(
GnQTw

−1/2
n

)
(ξ)vn(t)

ξ − t
dξ

 dµ̃(t)

∣∣∣∣∣∣
= γ(K)

∣∣∣∣ 1
2πi

∫
Tr

(
GnQTw

−1/2
n

)
(ξ)
(
bnjnw

p′/2
n

) (
1/ξ̄
) dξ
ξ

∣∣∣∣
= γ(K)

∣∣∣∣∣∣ 1
2πi

∫
Tr

(GnQT )(ξ) (bnjn)
(
1/ξ̄
) wp′/2n

(
1/ξ̄
)

w
1/2
n (ξ)

dξ

ξ

∣∣∣∣∣∣ . (3.42)
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The integrand

(GnQT )(ξ) (bnjn)
(
1/ξ̄
) wp′/2n

(
1/ξ̄
)

w
1/2
n (ξ)

1
ξ

is meromorphic in D\S. Moreover all of its poles, that are necessarily zeros of bnjn, are encapsulated

both by Tr and T. Despite possible zeros of wn on the unit circle, the function

w
p′/2
n

(
1/ξ̄
)

w
1/2
n (ξ)

extends continuously there, since p′ ≥ 2 and w
p′/2
n is analytic on T. Therefore, the integration

contour Tr in the last integral of (3.42) can be replaced by T without changing the value of that

integral. Thus, for any z ∈ K, we get by a straightforward majorization and Hölder’s inequality

that

|hn,1(z)| ≤ γ(K)

∣∣∣∣∣∣∣
1

2π

∫
T
(QT )(ξ)Gn(ξ)

(
bnjnw

p′/2
n

)
(ξ)

w
1/2
n (ξ)

d|ξ|

∣∣∣∣∣∣∣
≤ γ(K) ‖Q‖∞ ‖T‖∞ ‖Gn‖2 ‖w(p′−1)/2

n ‖2

≤ γ(K) ‖Q‖∞ ‖T‖∞ ‖Qw1/2
n ‖2 ‖wn‖

(p′−1)/2
p′−1 ≤ γ(K) ‖Q‖2∞ ‖T‖∞.

This finishes the proof of the local uniform boundedness of Wp′ , since the above estimate does not

depend on n, but only on the set K itself and the measure µ̃.

A classical result of Hurwitz states that each limit point of a normal family consisting of

zero free function in the domain of the normality is zero free unless it is identically zero. Now, Wp′

has no zero function as a limit point because these functions have unit L2(T) norm. Since each wp
′/2
n

is outer in D, no limit point of Wp′ can have zeros in D. The corresponding result for W is then

obvious.

Note that in the previous theorem the normality of W in D was clear beforehand by the

Cauchy formula, since ‖wn‖p′ = 1, but the nonzeroing of every limit point was not.

Proof of Theorem 3.8: Let vn be a singular vector associated to gn with inner-outer factoriza-

tion given by vn = bn ·wn for some Blaschke product bn = qn/q̃n and some outer function wn ∈ Hp′ ,

‖wn‖p′ = 1, where wn ≡ 1 when p = 2. The poles of gn are exactly the zeros of qn. Moreover, {qn}

is a sequence of polynomials satisfying the non-Hermitian weighted orthogonality relations (2.32).

Thus, the assertion of the theorem will follow from Theorem 3.1 if W = {wn} is uniformly bounded
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above and below on E, the convex hull of S, and if it is a family of functions whose arguments

are smooth with uniformly bounded derivatives on E. In the case p = 2 this is trivial since each

wn ≡ 1. In the case p ∈ (2,∞] Lemma 3.11 says that W is a normal family. Thus, it is uniformly

bounded above on E. Moreover, since all limit points ofW are zero free in D, this family is uniformly

bounded below on E (in fact on any compact subset of D). Further, the derivatives again form a

normal family and so does the logarithmic derivative w′n/wn in D. Since the imaginary part of the

latter is equal to darg(wn)/dt on E, we see that the rest of conditions on W is satisfied.

Before we prove Theorem 3.9 we need a simple observation that will be of further use later

on.

Lemma 3.12 Let A be a compact set such that A ∩ S = ∅. Further, let {µn} and {λn} be two

sequences of positive measures such that supp(µn) ⊂ A, µn
∗→ µ, Ŝ =

⋂∞
n=1

⋃∞
k=n supp(λk) is

bounded, and λn
∗→ µ̂, where µ ∈ Λ(A) and µ̂ is the balayage of µ onto S relative to C \ S. Then

lim sup
n→∞

∥∥exp
{
Uµn−λn

}∥∥
S
≤ exp{−c(µ; C \ S)}

and for any K ⊂ C \ (Ŝ ∪A) holds

lim
n→∞

∥∥exp
{
Uλn−µn

}∥∥
K

= ‖exp {c(µ; C \ S)− UµG(·; C \ S)}‖K .

Proof: Since S is regular, U bµ is continuous in C. Thus, by the principle of descent ([113, Thm.

I.6.8])

lim inf
n→∞

Uλn(z) ≥ U bµ(z),

uniformly on compact subsets of C. Further, it is readily verified that

lim
n→∞

Uµn(z) = Uµ(z) and lim
n→∞

Uλn(z) = U bµ(z)

uniformly on compact subsets of C\A and C\ Ŝ, respectively. Therefore, since A∩S = ∅, we derive

lim sup
n→∞

Uµn−λn(x) ≤ Uµ−bµ(x) = −c(µ; C \ S),

uniformly on S, where the last equality holds by the regularity of S. Analogously, we see that for
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K as defined the limit

lim
n→∞

Uλn−µn(z) = U bµ−µ(z) = c(µ; C \ S)− UµG(z; C \ S)

holds uniformly on K. The assertions follow immediately from this.

Proof of Theorem 3.9: To prove the convergence in capacity we first establish an integral represen-

tation for the error en = (F − gn). As usual we denote by vn = bn · wn a singular vector associated

to gn, where bn is a Blaschke product of degree n and wn is an outer function. Since any critical

point satisfies (see discussion before (2.28))

F − gn =
HF (vn)
vn

,

equation (2.35) allows us to write for z ∈ D \ S̃

en(z) =
1

vn(z)

∫
vn(t)
z − t

dµ̃(t) =
q̃n(z)

qn(z)wn(z)

∫
qn(t)
z − t

wn(t)
q̃n(t)

dµ̃(t). (3.43)

In another connection, the orthogonality relations (2.32) yield

∫
q̃n(z)− q̃n(t)

z − t
qn(t)

wn(t)
q̃2
n(t)

dµ̃(t) = 0.

This, in turn, implies that (3.43) can be rewritten as

en(z) =
q̃2
n(z)

qn(z)wn(z)

∫
qn(t)
z − t

wn(t)
q̃2
n(t)

dµ̃(t), z ∈ D \ S̃. (3.44)

Let K be a compact subset of D \ S and let U an open neighborhood of K such that U ⊂ D and

U ∩ S = ∅. Denote by ξ1,n, . . . , ξn,n the zeros of qn and define

qn,1(z) =
∏

ξj,n∈U

(z − ξj,n).

Corollary 3.5 implies that there exists N ∈ N such that deg qn,1 ≤ N for all n ∈ N. Let a < 1 be

such that S ⊂ Da. Then by Lemma 3.4 the number of zeros of qn in Da \U tends to infinity with n.

Thus, for n large enough and in any case bigger than m, we can pick m of them, say ξ1,n, . . . , ξm,n

and define

lm,n(z) :=
m∏
j=1

(z − ξj,n).
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Since the polynomial qn,1lm,n has bounded degree, the asymptotic zero distribution of polynomials

q]n := qn/(qn,1lm,n) is the same as that of qn. Thus, by Theorem 3.1 and Proposition A.1, points

(b)-(e), the counting measures ν]n of q]n converge weak∗ to µ(S,T), the Green equilibrium distribution

on S relative to both D and C \ S−1. Using the orthogonality relations (2.32) and the fact that Q

vanishes at the η with multiplicity m(η), we can rewrite (3.44) as

en(z) =
q̃2
n(z)

(q]n)2(z)(qn,1Q)(z)(lm,nwn)(z)

∫
(q]n)2(t)(qn,1Q)(t)(lm,nwn)(t)

q̃2
n(t)

dµ(t)
z − t

, z ∈ D \ S̃. (3.45)

Lemma 3.11 says that {wn} is bounded above and below on compact subsets of D. This and the

choice of lm,n yield that

|en(z)| ≤ c1
|qn,1(z)Q(z)|

∣∣∣∣∣ q̃n(z)

q]n(z)

∣∣∣∣∣
2 ∥∥∥∥q]nq̃n

∥∥∥∥2

S

(3.46)

for any z ∈ K and some positive c1 <∞ which does not depend on n. We shall apply Lemma 3.12

with A = T, λn = ν]n, and µn = ν̃n, where ν̃n is the balayage of νn onto the unit circle and νn

is the counting measures of zeros of qn. Because νn(D \ S) → 0 by Corollary 3.5 the weak∗ limit

of the balayage is the balayage of the weak∗ limit, hence Theorem 3.1 implies that µ = µ̃(S,T) and

Proposition A.1-(c) shows that µ̂ = µ(S,T). Also notice that in this case

Uλn−µn(z) = Uν
]
n−eνn(z) = Uν

]
n(z)− Uνn(z) + UνnG (z; D)

=
1
n

log

∣∣∣∣∣ 1

q]n(z)

∣∣∣∣∣− 1
n

log
∣∣∣∣ 1
qn(z)

∣∣∣∣+
∫

log
∣∣∣∣1− zt̄z − t

∣∣∣∣ dνn(t) =
1
n

log

∣∣∣∣∣ q̃n(z)

q]n(z)

∣∣∣∣∣ , z ∈ D \ S,

since c(νn; D) = 0 by the boundedness of D. As U µ̃(S,T)

G (z; C\S) is a non-constant positive harmonic

function in D \ S, it is strictly positive there so there exists β > 0 such that

0 < 2β ≤ inf
z∈K

U
µ̃(S,T)

G (z; C \ S).

Then Lemma 3.12, in particular, implies that for all n large enough

∥∥∥∥q]nq̃n
∥∥∥∥
S

≤ exp
{
−n · c

(
µ̃(S,T); C \ S

)
+ nβ/2

}
,

and ∣∣∣∣∣ q̃n(z)

q]n(z)

∣∣∣∣∣ ≤ exp
{
n · c

(
µ̃(S,T); C \ S

)
− 3nβ/2

}
, z ∈ K.
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Combining the last two estimates and (3.46) we obtain that

|en(z)| ≤ c1e
−2nβ

|qn,1(z)Q(z)|

for any z ∈ K and n large enough. Denote by Kn the following sets

Kn :=
{
z ∈ K : |qn,1(z)Q(z)| ≤ e−nβ

}
.

Since each Kn is the lemniscate of a monic polynomial of degree at most m+N we get that ([111,

Thm. 5.2.5])

cap(Kn) ≤ exp
{
−n β

m+N

}
.

But for z ∈ K \Kn we get

|en(z)| ≤ c1e−nβ .

This establishes the main assertion of the theorem upon letting γ := β/(m+ k).

Let us finally fix p = 2. In this case wn ≡ 1 for any n ∈ N, rn(z) is defined everywhere

outside of S, and has the representation

rn(z) =
q̃2
n(z)

(q]n)2(z)Qs(z)ls,n(z)

∫
(q]n)2(t)Qs(t)ls,n(t)

q̃2
n(t)

dµ(t)
z − t

, z ∈ C \ S,

where q]n = qn/ls,n and we fixed s arbitrary zeros of qn in Da in order to define ls,n. Let bn,a be

the normalized Blaschke product with zeros at the zeros of q]n that are contained in Da. Then by

Corollary 3.5 the counting measures of the zeros of bn,a, νn,a, converge in the weak∗ topology to

µ(S,T). Further, for any z ∈ K, the reasoning that led us to (3.46) now gives

|rn(z)| ≤ c2

∣∣∣∣∣ q̃n(z)

q]n(z)

∣∣∣∣∣
2 ∥∥∥∥q]nq̃n

∥∥∥∥2

S

≤ c3
|bn,a(z)|2

∥∥∥∥q]nq̃n
∥∥∥∥2

S

(3.47)

for some c2 and c3 independent of n.

In another connection, the principle of descent and continuity of Uµ(S,T) in C imply that

lim sup
n→∞

∫
log |z − t|dνn,a(t) ≤

∫
log |z − t|dµ(S,T)(t) (3.48)
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holds uniformly in D. Further, continuity of log |1− t̄z| for z ∈ D and t ∈ Da yields

lim
n→∞

∫
log |1− t̄z|dνn,a(t) =

∫
log |1− t̄z|dµ(S,T)(t), z ∈ D. (3.49)

Clearly, the limit in (3.49) is uniform in D. Now, since for z ∈ C \ D we have

|bn,a(z)|−1/n = exp
{
−Uνn,aG (1/z̄; D)

}
= exp

{∫
log
∣∣∣∣ t− 1/z̄
1− t̄/z̄

∣∣∣∣ dνn,a(t)
}
,

equations (3.47), (3.48), (3.49) and Lemma 3.12 yield

lim sup
n→∞

|rn(z)|1/2n ≤ exp
{
−c(µ̃(S,T); C \ S)− Uµ(S,T)

G (1/z̄; D)
}

uniformly in C \ D. Using Proposition A.1-(e), we complete the proof of the theorem.

Proof of Theorem 3.10: It was proved in Theorem 3.9 that {gn} converges in capacity on com-

pact subsets of D \ S to F . Then the lower bound in (3.36) follows from the classical Gonchar’s

lemma ([49, Lemma 1]). Indeed, suppose to the contrary that there exist δ∗ > 0 and a subsequence

N1 ⊂ N such that

#{Sn ∩Bδ∗(η)} < m(η), Bδ∗(η) ∩ S̃ = {η},

for n ∈ N1 and some fixed η ∈ S′ \ S. Thus, {gn}n∈N1 is a sequence of meromorphic functions in

Bδ∗(η) with at most m(η) poles, which converges in capacity on Bδ∗(η) to the meromorphic function

F |Bδ∗ (η) with exactly one pole of multiplicity m(η) there. Then by Gonchar’s lemma each gn has

exactly m(η) poles in Bδ(η) and these poles converge to η. This contradiction proves the lower

bound in (3.36).

Now, for each η ∈ S′ define Dη := Bδ(η), δ = δ(η) to be chosen later. Moreover, assume

that Dη ∩S′ = {η} and for each η ∈ S′ \S assume further that Dη ∩S = ∅, which is always possible

by the appropriate choice of δ.

Fix any η ∈ S′ \ S. In general, the existence of Cη in (3.36) follows from Corollary 3.5

applied to D \Dη, but it is possible to say more. Let Ek = ∪kj=1[aj , bj ] cover S and let Sn stand for

the set of all poles of gn, Sn = {ξ1,n, . . . , ξn,n}. Then by Lemma 3.4 we have

n∑
j=1

(π − θ(ξj,n)) ≤ V (Θ) + VW + (k +m− 1)π +
∑
ζ∈S′

m(ζ)θ(ζ), (3.50)
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where θ(·) is the angle function defined in (3.5) for the system of intervals Ek and VW was defined

in (3.37). The finiteness of VW was obtained in the proof of Theorem 3.8. Then for n large enough

(3.50) yields

#{Sn ∩Dη} −m(η) ≤
V (Θ) + VW + (k − 1)π +

∑
ζ∈S′ m(ζ)(θ(ζ) + maxξ∈Dζ θ(ξ))

π −maxξ∈Dη θ(ξ)
.

Denote by C the right hand-side of the previous inequality. By a suitable choice of δ(η) and the

continuity of θ(·) in D \ [−1, 1] we can make C such that

bCc ≤
V (Θ) + VW + (k − 1)π + 2

∑
ζ∈S′ m(ζ)θ(ζ)

π − θ(η)
< C,

where bCc is the greatest integer smaller than C. Since C is a bound for an integer, we get that

#{Sn ∩Dη} ≤ m(η) +
V (Θ) + VW + (m− 1)π + 2

∑
ζ∈S′ m(ζ)θ(ζ)

π − θ(η)
.

Padé Approximation

In this section we describe the asymptotic behavior of diagonal multipoint Padé approxi-

mants to functions of type (1.2). We follow the same exposition as in the preceding section.

Theorem 3.13 Let {Πn}n∈N be a sequence of diagonal multipoint Padé approximants, correspond-

ing to some strongly admissible interpolation scheme A, to F(µ;R; ·) given by (1.2) with µ ∈ BVT.

Then, the counting measures of the poles of Πn converge to µSw in the weak∗ sense.

For classical Padé approximants, this theorem reduces to the following result.

Corollary 3.14 Let {Πn}n∈N be a sequence of classical diagonal Padé approximants to F(µ;R; ·)

given by (1.2) with µ ∈ BVT. Then the counting measures of the poles of Πn converge in the weak∗

sense to µS, the equilibrium distribution on S.

The forthcoming theorem is of classical scope and stands as an analog to Theorem 3.9 for

multipoint Padé approximants. It deals with their convergence in capacity to F and, in a way, it

generalizes Theorem 6.1.6(a) in [130].

Theorem 3.15 Let {Πn}n∈N and F(µ;R; ·) be as in Theorem 3.13. Further, let σ stand for the

asymptotic distribution of A. Then {Πn} converges to F in capacity on C \S, and for any compact
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set K ⊂ C \ S there exist positive constants β and γ such that

cap
{
z ∈ K : |(F −Πn)(z)| ≥ e−βn

}
≤ e−γn.

Further, any z ∈ C \ (S̃ ∪ K) we have

lim sup
n→∞

|(F −Πn)(z)|1/2n ≤ exp{−UσG(z; C \ S)}

and this inequality is uniform on compact subsets of C \ (S̃ ∪ K ∪ K(A)), where UσG(z; C \ S) is the

Green potential of σ relative to C \ S, K is the set of limit points of the poles of Πn, and K(A) is

the set of limit points of A.

Our last theorem asserts the convergence of some of the poles of the multipoint Padé ap-

proximants of F to its polar singularities. It parallels Theorem 3.10.

Theorem 3.16 Let {Πn}n∈N and F(µ;R; ·) be as in Theorem 3.13. Then for each η ∈ S′ \ S there

exist constants δη > 0 and Cη = Cη(F) such that

m(η) ≤ #{Sn ∩Bδ(η)} ≤ m(η) + Cη, 0 < δ ≤ δη,

for any n ≥ N(η, δ), where m(η) is the multiplicity of η, Sn is the set of poles of Πn, and Bδ(η) :=

{|z − η| < δ}.

As in Theorem 3.10, we shall obtain in the course of the proof of the above result an upper

bound for Cη. Namely if Ek := {[aj , bj ]}kj=1 is a system of intervals covering S, then

Cη ≤
V (Θ) + (k − 1)π + 2

∑
ζ∈S′ m(ζ)θ(ζ)

π − θ(η)
,

where θ(·) is the angle function, defined in (3.5), applied to Ek.

Proof of Theorem 3.13: Denote by qn the denominator of Πn. As was explained in the prelimi-

nary chapter, qn satisfies orthogonality relaions (2.38). Thus, we may apply Theorem 3.2, which

yields the result.

Proof of Theorem 3.15: Exactly as in the proof of Theorem 3.2 we can suppose that all the interpo-

lation points are contained in some compact set K0 disjoint from S̃. By the Hermite interpolation
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formula, (cf. [130, Lemma 6.1.2, (1.23)]) the error en := F −Πn has the following representation

en(z) =
v2n(z)
qn(z)

∫
qn(t)
v2n(t)

dµ̃(t)
z − t

. (3.51)

Let K ⊂ C \ S be compact and let U be a bounded open neighborhood of K not intersecting S.

Further, let D be an open disk around the origin such that (S ∪ U) ⊂ D. Denote by ξ1,n, . . . , ξdn,n

zeros of qn and define

qn,1(z) =
∏

ξj,n∈U

(z − ξj,n)

qn,2(z) =
∏

ξj,n∈C\D

(z − ξj,n).

Corollary 3.7 implies that there exist m1,m2 ∈ N independent of n such that deg qn,j ≤ mj for any

n ∈ N and j = 1, 2. Since at least dn −m1 −m2 zeros lie in D \ U we can fix m of them there, say

ξ1,n, . . . , ξm,n, for n large enough. Denote by

lm,n(z) :=
m∏
j=1

(z − ξj,n).

By Theorem 3.2, the counting measures of q]n := qn/(qn,1qn,2lm,n), denoted by ν]n, converge weak∗

to σ̂, the balayage of σ onto S. Using the orthogonality relations (3.4) in the same way as we did to

obtain (3.45), we can rewrite (3.51) as

en(z) =
v2n

(q]n)2(qn,1Q)(|αn|qn,2)lm,n
(z)
∫

(q]n)2(qn,1Q)(|αn|qn,2)lm,n
v2n

(t)
dµ(t)
z − t

,

where αn is the inverse of the product of the zeros of qn,2. Then, the choice of lm,n and αn yields

that

|en(z)| ≤ c1
|qn,1(z)Q(z)|

∣∣∣∣∣ v2n(z)

(q]n)2(z)

∣∣∣∣∣
∥∥∥∥ (q]n)2

v2n

∥∥∥∥
S

(3.52)

for all z ∈ K and some c1 <∞ which does not depend on n. Now we may apply Lemma 3.12 with

A = K0, λn = ν]n, and µn = σn, where σn is the counting measure of the zeros of v2n. Notice that

in this case

Uλn−µn(z) =
1

2n
log

∣∣∣∣∣ v2n(z)

(q]n)2(z)

∣∣∣∣∣ .
By the regularity of S, the Green potential UσG(z; C \ S) tends to zero whenever z tends to ξ ∈ S.

Moreover, it is strictly positive and superharmonic in C \ S. Thus, by the generalized minimum
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principle ([113, Thm. I.2.4]), there exists β > 0 such that

0 < 5β/2 ≤ inf
z∈K

UσG(z; C \ S).

Then, Lemma 3.12 implies that for all n large enough

∥∥∥∥ (q]n)2

v2n

∥∥∥∥
S

≤ exp {−2n · c(σ; C \ S) + 2nβ}

and ∣∣∣∣∣ v2n(z)

(q]n)2(z)

∣∣∣∣∣ ≤ exp {2n · c(σ; C \ S)− 4nβ} , z ∈ K.

Combining the last two estimates and (3.52) we obtain for any z ∈ K and n large that

|en(z)| ≤ c1e
−2nβ

|qn,1(z)Q(z)|
.

This yields the first assertion of the theorem exactly as in the proof of Theorem 3.9.

Now, let K ⊂ C \ (S̃ ∪ K) be a compact set. Then for any z ∈ K

|en(z)| ≤ c3

∣∣∣∣∣ v2n(z)

(q]n)2(z)

∣∣∣∣∣
∥∥∥∥ (q]n)2

v2n

∥∥∥∥
S

for some constant c3 which is independent of n. The second assertion then follows upon applying

Lemma 3.12.

Proof of Theorem 3.16: The proof is exactly the same as the proof of Theorem 3.10. The only

difference is that Lemma 3.6 states that

dn∑
j=1

(π − θ(ξj,n)) + (n− dn)π ≤ V (Θ) + (k +m− 1)π +
∑
ζ∈S′

m(ζ)θ(ζ),

and therefore

Cη ≤
V (Θ) + (k − 1)π + 2

∑
ζ∈S′ m(ζ)θ(ζ)

π − θ(η)
.

Numerical Experiments

The Hankel operator HF with symbol F ∈ H∞ + C(T) is of finite rank if and only if F is

a rational function [91, Thm. 3.11]. In practice one can only compute with finite rank operators,

due to the necessity of ordering the singular values, so a preliminary rational approximation to F is
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needed when the latter is not rational. One way to handle this problem is to truncate the Fourier

series of F at some high order N . This provides us with a rational function FN that approximates

F in the Wiener norm which, in particular, dominates any Lp norm on the unit circle, p ∈ [1,∞]. It

was proved in [62] that the best approximation operator from H∞n (mapping F to gn according to

(2.24)) is continuous in the Wiener norm provided (n+ 1)-st singular value of the Hankel operator

is simple. It was shown in [22, Cor. 2] that the last assertion is satisfied for Hankel operators with

symbols in some open dense subset of H∞ + C(T), and the same technique can be used to prove

that it is also the case for the particular subclass (1.2). Thus, even though the simplicity of singular

values cannot be asserted beforehand, it is generically true. When it prevails, one can approximates

FN instead of F and get a close approximation to gn when N is large enough. This amounts to

perform the singular value decomposition of HFN (see [135, Ch. 16]). When 2 ≤ p <∞ there is no

difficulty with continuity issues, but the computation of gn has to rely on a numerical search. To

numerically construct rational approximants when p = 2, we used the above truncation technique

together with the Hyperion software described in [61].

As to Padé approximants, we restricted ourselves to the classical case and we constructed

their denominators by solving the orthogonality relations (3.4) with v2n ≡ 1. Thus, finding these

denominators amounts to solving a system of linear equations whose coefficients are obtained from

the moments of the measure µ.

In the numerical experiments below we approximate function F given by the formula

F(z) = 7
∫

[−6/7,−1/8]

eitdt

z − t
− (3 + i)

∫
[2/5,1/2]

1
t− 2i

dt

z − t
+ (2− 4i)

∫
[2/3,7/8]

ln(t)dt
z − t

+
2

(z + 3/7− 4i/7)2
+

6
(z − 5/9− 3i/4)3

+
24

(z + 1/5 + 6i/7)4
.

On the figures the solid lines stand for the support of the measure, diamonds depict the

polar singularities of F , and circles denote the poles of the corresponding approximants. Note that

the poles of F seem to attract the singularities first.
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Figure 1: Padé approximants to F of degree 8 and 13
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Figure 2: AAK (left) and rational (right) approximants to F of degree 8
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Figure 3: Padé (left) and AAK (right) approximants to F of degree 30
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CHAPTER IV

STRONG ASYMPTOTICS

In this chapter we establish the uniform convergence and provide rates of this convergence

of meromorphic and multipoint Padé approximants to functions of type F(µ;R; ·) given by (1.2),

where R is a rational function vanishing at infinity and µ has some special properties described

below.

Let µ be a measure supported on an interval E = [a, b]. Denote by µ̇ the Radon-Nikodym

derivative of µ with respect to µE , the logarithmic equilibrium distribution on E, i.e.,

dµ(t) = µ̇(t)dµE(t), t ∈ E. (4.1)

We shall consider measures such that µ̇ = ŝs, where ŝ is a nonnegative functions on E that vanishes

in a controllable manner and s is a Dini-continuous non-vanishing function on E possibly having an

argument of bounded variation.

This chapter is organized as follows. In the next section we discuss a representation of

continuous complex-valued functions on a segment as a product of traces of outer functions. This is

needed to define the so-called Szegő function of a complex measure. The second section is devoted to

the strong asymptotics for orthogonal symmetric trigonometric polynomials on the unit circle. This

is the core of the method we use to analyze strong asymptotic behavior of polynomials orthogonal

with varying measures on a segment. The main theorems on orthogonal polynomials are presented

in the third section. In the last two sections we apply these results to meromorphic and Padé

approximation of complex Cauchy transforms.

Szegő Functions

It was shown by G. Szegő (cf. [132, Ch. X]) that polynomials orthogonal on the unit cir-

cle with respect to a positive measure converge to a certain transformation of the Radon-Nikodym

derivative of that measure, assuming that the latter is log-integrable. This convergence is a key

ingredient in proving the exact rates of the uniform convergence of meromorphic and Padé approx-

imants. The transformation of the measure of orthogonality is called now the Szegő function of this

measure. Later, with the help of a conformal mapping, similar results were obtained on a segment.

Initially, the Szegő function was defined only for positive measures, but recently it was shown (cf.
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[60], [10], [131]) that it is also well-defined for complex analytic measures, where the boundary value

problem approach was used. In this section we show that the Szegő function can be defined for more

general classes of complex measures using harmonic analysis.

Szegő Function for the Unit Disk

Let S be a complex-valued Dini-continuous non-vanishing function on T having zero winding

number11 there. Recall that Dini-continuity means integrability of ω(S;x)/x around zero, where

ω(S; ·) is the modulus of continuity of S. We define interior and exterior Szegő functions of S as

exp
(∫

T

logS(ξ)
ξ − ζ

dξ

2πi

)
=:

 Gi(S; ζ), ζ ∈ D,

Ge(S; ζ), ζ ∈ C \ D,
(4.2)

with any continuous branch of logS. The latter exists since S has zero winding number on T. It

follows immediately from [81, Sec. 35] and [46, Thm. III.1.3] that Gi(S; ·) and Ge(S; ·) are well-

defined outer functions in D and C \ D, respectively, have continuous boundary values on T, and

S(ξ) = Gi(S; ξ)G−1
e (S; ξ), ξ ∈ T. (4.3)

Moreover, it is easy to see that

Ge(S;∞) = 1 and Gi(S; 0) = G(S), (4.4)

where

G(S) := exp
(∫

T
logS(ξ)

|dξ|
2π

)
(4.5)

is the geometric mean of S. We remark that it is a direct consequence of [81, Sec. 26] that if Gi and

Ge are outer functions in D and C \ D, respectively, have continuous traces on T, and satisfy (4.3)

and (4.4), then necessarily Gi(·) = Gi(S; ·) and Ge(·) = Ge(S; ·).

Now, let S be a symmetric function on the unit circle, i.e. S(ξ) = S(1/ξ) for all ξ ∈ T. If

S is non-vanishing and Dini-continuous, it necessarily has zero winding number. Then Gi(S; ·) and

Ge(S; ·) are well-defined,

Gi(S; ζ) = G(S)G−1
e (S; 1/ζ), ζ ∈ D, (4.6)

11The winding number of S is equal to (2iπ)−1
R

T T
′(ξ)/T (ξ)dξ where T is any trigonometric polynomial sufficiently

close to S in the uniform norm.
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and

G(S)S(ξ) = Gi(S; ξ)Gi(S; 1/ξ), ξ ∈ T. (4.7)

It is also well known that if S ∈ L1 is a nonnegative function such that logS ∈ L1, then the

Szegő functions Gi(S; ·) and G−1
e (S; ·) are outer in H2 and H̄2, respectively,

Gi(S; ζ) = G(S)G−1
e (S; 1/ζ̄), ζ ∈ D,

and

S(ξ) =
|Gi(S; ξ)|2

G(S)
=

G(S)
|Ge(S; ξ)|2

, a.e. on T.

It will be useful later on to examine one special case, namely, S(ξ) = |(ξ − ζ)(ξ − ζ̄)|2τ(ζ),

ζ ∈ T. It is easy to verify (see [81, Section 85]) that

Gi(S; ξ) =
(
(ξ − ζ)(ξ − ζ̄)

)τ(ζ)
.

Now, let arg(ξ− ζ) (resp. arg(ξ− ζ̄)) be any continuous on T \ {ζ} (resp. T \ {ζ̄}) determination of

the argument of (ξ − ζ) (resp. (ξ − ζ̄)). It is then clear that

Gi(S; ξ)G−1
i (S; 1/ξ) = exp

(
iτ(ζ) arg((ξ − ζ)(ξ − ζ̄))

)
is a piecewise continuous function with jumps of magnitude 2| sin(τ(ζ)π)| at ζ and ζ̄ if ζ 6= ±1 and

2| sin(2τ(±1)π)| otherwise, where arg((ξ − ζ)(ξ − ζ̄)) = arg(ξ − ζ) + arg(ξ − ζ̄).

In another connection, continuity is merely sufficient for complex-valued S to have well-

defined Szegő functions. Indeed, let S be a complex-valued function on T and θS be an argument for

S, i.e., a measurable real-valued function on the unit circle such that S(ξ) = |S(ξ)| exp (iθS(ξ)) for

a.e. ξ ∈ T. We say that θS is conjugate exp-L2 if both θS ∈ L1 and exp
(
|θ̃S |

)
∈ L2, where θ̃S is the

conjugate function to θS (see Lemma 4.7). Not every S has a conjugate exp-L2 argument, but if there

is one it is unique up to the addition of an integral multiple of 2π. Indeed, if θ1 and θ2 are two such

arguments and we put θ = θ1−θ2, then θ ∈ L1 assumes values in the multiples of 2π, and exp
(
|θ̃|
)
∈

L1. In particular θ̃ ∈ L1, thus if we let m :=
∫

T θ(ξ)|dξ|/2π then θ̃ − i(θ − m) is the boundary

function of RH(θ̃; ·), the Riesz-Herglotz transform of θ̃ defined in (2.19). As exp
(
RH(θ̃; ·)

)
is an

outer function with modulus exp
(
θ̃
)

on T, we deduce since it lies in L1 that exp
(
RH(θ̃; ·)

)
∈ H1.

Because it is real-valued a.e. on T, exp
(
RH(θ̃; ·)

)
is constant by the classical reflection principle

[46, Ex. II.13] and consequently θ is also constant, as desired.
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Now, if S ∈ L1 has conjugate exp-L2 argument θS and if moreover log |S| ∈ L1 then (4.5)

with logS = log |S| + iθS is uniquely determined and defines the geometric mean of S. Moreover,

for such S the interior and exterior Szegö functions given by (4.2) are also well-defined. It is easy

to see that Gi(S; ·) does not depend on a particular choice of θS and

G2
i (S; ζ)G−1(S) = exp

(
RH(log |S| − θ̃S ; ζ)

)
, ζ ∈ D.

Thus, it is an outer function in H2. Observe also that

Ge(S; ζ)Gi(S(1/·); 1/ζ) = G(S), ζ ∈ C \ D, (4.8)

so that G−1
e (S; ·) is outer in H̄2. Now it is straightforward from (4.2) and the jump theorem [46,

Ex. III.10] that (4.3) holds for such S, Gi(S; ·), Ge(S; ·) almost everywhere on T.

When S > 0, we may choose θS ≡ 0 and we recover the standard definition of Szegő

functions. More important to us is the case where S is continuous and does not vanish on T.

Such a function has a well-defined winding number and if the winding number is zero then S has a

continuous argument and therefore continuous logarithm.

Proposition 4.1 Let S be a continuous non-vanishing complex-valued function on T having zero

winding number. Then Gi(S; ·) and Ge(S; ·) given by (4.2) with continuous argument of S, are

invertible in Hp and H̄p respectively for all p ∈ [1,∞), and up to a multiplicative constant they are

the only such functions for which (4.3) holds.

Proof: Since θS is continuous, exp
(
|θ̃S |

)
lies in Lp for p ∈ [1,∞) [46, Cor. 2.6]. In particular,

θS is conjugate exp-L2 and the previous considerations apply. Since Gi(S; ·) is outer with mod-

ulus
√
|G(S)S| exp

(
−θ̃S/2

)
on T, and the latter function together with its inverse lies in Lp for

p ∈ [1,∞), we get that Gi(S; ·) is invertible in Hp for such p. Because S(1/·) satisfies the same

assumptions as S, we see from (4.8) that Ge(S; ·) is also invertible in every H̄p for p ∈ [1,∞). Be-

sides, if F1/F2 = F3/F4 for invertible F1, F3 ∈ H2 and invertible F2, F4 ∈ H̄2, then F1/F3 ∈ H1

must be equal to F2/F4 ∈ H̄1 and therefore is a constant. This establishes the uniqueness of (4.3).

Remarks: Beyond the case of non-vanishing continuous functions handled in Proposition 4.1, we

can similarly address the factorization of invertible functions in H∞ +C(T); indeed, such functions

assume the form [46, Ex. IX.4] ξng exp(i(u+ ṽ)), where n is the winding number, g is invertible in

H∞, and u, v ∈ C(T). If the winding number is zero, we may put S = exp(i(u + ṽ)) which has a
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conjugate exp-Lp argument for all p such that p ∈ [1,∞) by [46, Cor. 2.6], and write the function

as the product of gGi(S; ·) that is outer in Hp and 1/Ge(S; .) that is outer in H̄p.

Szegő Function for a Slit Plane

Let E = [a, b] ⊂ R be an interval and J be the Joukowski transformation mapping D (and

C \ D) conformally into C \ E, i.e.,

J (ζ) := J (E; ζ) =
b− a

4

(
ζ +

1
ζ

)
+
b+ a

2
. (4.9)

Recall that ϕi and ϕe, defined in (2.39), are the inverse function of J mapping C \ E onto D and

C \ D, respectively. Since J (T) = E and J (ξ) = J (1/ξ), ξ ∈ T, ϕi, which is equal to 1/ϕe, has

well-defined continuous extension on both sides of E and ϕ+
i = 1/ϕ−i on E with Im(ϕ+

i ) ≥ 0.

Now, let s be a non-vanishing Dini-continuous function on E. Then S := s◦J is symmetric

non-vanishing Dini-continuous function on T and therefore with well-defined geometric mean and

exterior Szegő function. Thus, we define the geometric mean and Szegő function of s as

S(s) := G(S) and S(s; z) := G−1
e (S;ϕe(z)), z ∈ C \ E.

Furthermore, let h be a measurable function on E. Then h is summable with respect to µE

if and only if h ◦ J is summable on the circle, in which case it holds that

√
(z − a)(z − b)

∫
h(t)
z − t

dµE(t) = RH(h ◦ J ;ϕi(z)) z ∈ C \ E, (4.10)

where the branch of the square root is chosen in such a way that
√

(z − a)(z − b) = z + O(1) as

z →∞. Indeed, it is a straightforward computation using the symmetry of h ◦ J on T and (4.9) to

obtain that

√
(z − a)(z − b)

∫
h(t)
z − t

dµE(t) =
(

1
ϕi(z)

− ϕi(z)
)∫

T

(h ◦ J )(ξ)
(ϕi(z)− 1/ϕi(z))− (ξ − 1/ξ)

|dξ|
2π

=
∫

T
(h ◦ J )(ξ)

(
ξ

ξ − ϕi(z)
− ξ

ξ − 1/ϕi(z)

)
|dξ|
2π

= RH(h ◦ J ;ϕi(z)), z ∈ C \ E.
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Thus, we obtain the following representations:

S(s) = exp
(∫

log s(t)dµE(t)
)

(4.11)

and

S(s; z) = exp
(

1
2

√
(z − a)(z − b)

∫
log (s(t)/S(s))

z − t
dµE(t)

)
, (4.12)

where we take any continuous determination of log s.

Recall that the conformal map ϕe extends continuously to both sides of E. Therefore,

it follows from the corresponding properties of Ge(S; ·) that S(s; ·) is an outer function in C \ E,

boundary values S±(s; ·) are continuous on E, and

s(t) = S(s)S+(s; t)S−(s; t), t ∈ E. (4.13)

As in the case of the circle, if S is a non-vanishing analytic function in C\E with continuous

boundary values on both sides of E satisfying (4.13) and such that S(∞) = 1, then S(·) = S(s; ·). It

is also well-known that if s is nonnegative and log-integrable on E, then S(s; ·) is an outer function

in H2(C \ E), (4.13) holds almost everywhere on E, and

S±(s; t) = S∓(s; t) a.e. on E.

We conclude this subsection by showing the squared Szegő function of an algebraic polyno-

mial v of degree at most k. Let Zk(v) consist of the zeros of v, repeated up to their multiplicities,

and the point infinity with multiplicity k − deg(v); thus, Zk(v) has cardinality k. We assume that

v has no zero on E, so that ϕi(ζ) ∈ D for ζ ∈ Zk(v). Define a function Ψk(v; ·) on C \E by the rule

Ψk(v; z) :=
∏

ζ∈Zk(v)

ϕi(z)− ϕi(ζ)
1− ϕi(z)ϕi(ζ)

. (4.14)

Clearly, Ψk extends continuously on E from above and below, and Ψ+
k (v; t)Ψ−k (v; t) = 1 for t ∈ E

because ϕ−i = 1/ϕ+
i . Note that Ψk(1; z) = ϕki (z). Then it follows from the uniqueness of the Szegő

function that

S2(v; z) = S(v2; z) =
1
S(v)

v(z)ϕki (z)
Ψk(v; z)

, z ∈ C \ E, (4.15)

80



and

S(v) = v0(cap(E))deg(v)
∏

ζ∈Zk(v)
ζ 6=∞

ϕ−1
i (ζ), (4.16)

where v0 is the leading coefficient of v. As we shall see, the use of k instead of deg(v) in (4.15) is

convenient when dealing with polynomials associated with interpolation schemes that may contain

points at infinity.

Finally, we deduce from Proposition 4.1 the corresponding result on a segment.

Proposition 4.2 Let s be a continuous non-vanishing function on E. Then the Szegő function of

s, given by (4.12) for any continuous argument of s on E, is outer and invertible in Hp(C \ E)

for p ∈ [1,∞). In particular, S(s; ·) has non-tangential boundary values S±(s; t) from above and

below E for almost every t ∈ E and the boundary functions S±(s; ·) lie in Lp(E,µE) for all such p.

Moreover, the factorization (4.13) takes place almost everywhere on E.

Szegő Function for an Annulus and a Doubly Slit Plane

An analogue of the Szegő function for an annulus was introduced in [72] in the course

of the investigation of the strong asymptotics for minimal Blaschke products. More precisely, let

Ar = {z ∈ C : r < |z| < 1/r}, r < 1, then it was shown [72, Thm. 1.6] that for any function S

that is continuous and strictly positive on T there exists a unique (up to a unimodular constant)

function Dr(S; ·) such that

(i) Dr(S; ·) is an outer function in Ar and its winding number on T is equal to zero;

(ii) Dr(S; z)Dr(S; 1/z̄) = 1, z ∈ Ar;

(iii) GS |Dr(S; rξ)|2 = S(ξ), ξ ∈ T, where GS is the geometric mean of S.

We remark that (i) is not explicitly stated in [72, Thm. 1.6], but can be deduced easily. Indeed,

Dr(S; z) = exp{u(z) + iv(z)}, where u is the solution of the Dirichlet boundary value problem with

data (logS(·/r) − log G(S))/2 on Tr and zero on T. This, in fact, implies that u has well-defined

conjugate harmonic function v in Ar (Dr(S; ·) has the winding number zero on any curve separating

Tr and T1/r) and is an integral of its boundary values against the harmonic measure on Ar (Dr(S; ·)

is an outer function).
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The existence of a Szegő function for any DS2-domain follows by the conformal equivalence

of that domain to some annulus. In what follows we shall concentrate only on the case of a doubly

slit plane, since this is our main interest.

Let E = [a, b] ⊂ (−1, 1) be an interval and E−1 be its reflection across the unit circle. Define

ϕ by the rule

ϕ(z) := exp

(
2πτ2

∫ z

1

dt√
(t− a)(t− b)(1− at)(1− bt)

)
(4.17)

with the integration along any path in C \ (E ∪ E−1), where

τ :=

√
1− ab
T

(4.18)

and T was defined in (2.13). Using (2.12) and [113, Thm. VIII.6.1] one can check that ϕ is the

conformal map of C \ (E ∪ E−1) onto the annulus Aρ, where

ρ = ρ(E) = ϕ(b). (4.19)

It can be readily verified that ϕ(T) = T, ϕ(z̄) = ϕ(z), and ϕ(1/z) = 1/ϕ(z), z ∈ C \ (E ∪ E−1).

Thus, ϕ(D \ E) = Aρ,1 := {z : ρ < |z| < 1} and the number 1/ρ is also known as a modulus of the

ring domain D \ E. Moreover, as it is shown in the Appendix, ϕ extends continuously on each side

of E (resp. E−1) and ϕ±(E) = T±ρ (resp. ϕ±(E−1) = T±1/ρ), where T+
1/ρ and T−1/ρ are the upper

and lower semicircles of T1/ρ.

Now, let s+ and s− be two continuous positive functions on E such that s+(a) = s−(a) and

s+(b) = s−(b). We define a geometric mean of the pair (s+, s−) with respect to the condenser (E,T)

as

D(s+, s−) := exp
(

1
2

∫
log(s+s−)(t)dµ(E,T)(t)

)
. (4.20)

It can be checked that D(s+, s−) = GS , where S(ξ) = s±(ϕ−1(rξ)), ξ ∈ T±, respectively. For

simplicity, we write D(s) if s+ = s− = s. Furthermore, the Szegő function of the pair (s+, s−) for

the condenser C \ (E ∪ E−1) is defined by

D(s+, s−; z) = Dρ(S;ϕ(z)). (4.21)

It is an immediate consequence of the corresponding properties of the Szegő function for an annulus

that D(s+, s−; ·) is an outer function in Hp(C \ (E ∪E−1)), p <∞, (H∞(C \ (E ∪E−1)) if s± is a
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Dini-continuous pair, i.e. S is Dini-continuous), has non-tangential boundary values on both sides

of E and E−1 such that

|D±(s+, s−; t)|2 =

 s±(t)/D(s+, s−), t ∈ E,

D(s+, s−)/s±(1/t), t ∈ E−1,
(4.22)

satisfies D(s+, s−; z)D(s+, s−; 1/z̄) = 1, and has winding number zero on any curve separating

E from E−1. We emphasize that D(s+, s−; ·) is unique up to a unimodular constant. It will be

convenient for us to choose the normalization on each particular occasion.

Orthogonal Symmetric Trigonometric Polynomials on the Unit Circle

The approach that we take follows the path deliberated by G. Baxter in [30], where or-

thogonality relations for polynomials on a segment are translated into orthogonality relations for

symmetric trigonometric polynomials (STP) on the unit circle. A monic STP of degree n is a function

of the form

Q(ξ) = (ξn + ξ−n) +
n−1∑
j=0

rj(ξj + ξ−j), rj ∈ C.

Before we state the results of this section, we need some preparation to describe the varying weights

that we shall use in the orthogonality relations for such trigonometric polynomials. Let {Sn}n∈N be

a sequence of functions on T such that

0 < m ≤ |Sn(ξ)| ≤M <∞, ξ ∈ T, and ω(Sn;x) ≤ ω(x), x ∈ [0, 2], (4.23)

for all n ∈ N, where ω(Sn; ·) is a modulus of continuity of Sn and ω is a Dini-continuous function

of the modulus continuity type. It follows immediately from the discussion in the preceding section

that

Fn(ξ) := Gi(Sn; ξ)G−1
i (Sn; 1/ξ) (4.24)

is a continuous function on T and Fn(±1) = 1. Further, let {Cl}, Cl = {cj,l}lj=1 ⊂ D, be a sequence

of sets of points satisfying (2.41). We associate to each set Cl a polynomial Vl and two rational

functions Bl and Rl given by

Vl(ξ) :=
l∏

j=1

(1− cj,lξ), Bl :=
l∏

j=1

ξ − cj,l
1− cj,lξ

, and Rl(z) :=
l∏

j=1

1− c̄j,lξ
1− cj,lξ

. (4.25)

Notice that |Bl(ξ)| = |Rl(ξ)| and Bl(1/ξ) = 1/Bl(ξ) for ξ ∈ T. If Cl is a conjugate-symmetric set,
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then Bl is a Blaschke product and Rl ≡ 1. We also define a nonnegative function Ŝ on T by setting

Ŝ(ξ) :=
∏
ζ∈T

|(ξ − ζ)(ξ − ζ̄)|τ(ζ), (4.26)

where T is a conjugate-symmetric finite subset of T and the exponents τ(ζ) ∈ [0, 1/2), ζ ∈ T, are

such that

τ(ζ) = τ(ζ̄) and γ := max
ζ∈T

max
n∈N

{sin(τ(ζ)π)|Fn(ζ)R2n+N (ζ)|} < 1, (4.27)

where N ∈ Z+ is fixed throughout the rest of the section. Finally, we set

Wn(ξ) := Ŝ(ξ)Sn(ξ)V −1
2n+N (ξ)V −1

2n+N (1/ξ). (4.28)

The following theorem is instrumental for the proofs of the results stated in the next section.

Theorem 4.3 Let {Qn}n∈N be a sequence of STPs of degree at most n such that

∫
T
ξjQn(ξ)Wn(ξ)

|dξ|
2π

= 0, j = 0, . . . , n− 1, (4.29)

where Wn are given by (4.23)–(4.28). Then Qn has exact degree n for all n large enough. Thus, Qn

can be normalized to be monic and under such a normalization possesses the following asymptotic

behavior:

ζ−nQn(ζ) = (1 + o(1))Ge(Wn; ζ), (4.30)

where o(1) holds locally uniformly in C\D. Further, there exist functions Hn, analytic in D, satisfying

lim supn→∞ ‖Hn‖2 ≤ γ/(1− γ) and Hn = o(1) locally uniformly in D such that

Qn(ξ) = (1 +Hn(ξ))ξnGe(Wn; ξ) + (1 +Hn(1/ξ))ξ−nGe(Wn; 1/ξ), ξ ∈ T. (4.31)

Apart from the asymptotic behavior of Qn we are interested in the asymptotic properties of

the Riesz-Herglotz transform of Q2
nWn, defined (2.19), and, in particular, in its value at zero, i.e.,

αn := RH(QnWn; 0) =
∫

T
Q2
n(ξ)Wn(ξ)

|dξ|
2π

. (4.32)

The following theorem takes place.
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Theorem 4.4 Let Wn, Qn, and Hn be as in Theorem 4.3 with Qn monic. Then

αn = (2 + o(1))G(Wn). (4.33)

and

α−1
n RH(Q2

nWn; ζ) = (1 + o(1))(1 +Hn(ζ))ζnQn(ζ)G−1
e (Wn; 1/ζ), ζ ∈ D, (4.34)

where o(1) holds uniformly on D.

Observe that by (4.30) we immediately get that α−1
n RH(Q2

nWn; ·) = 1 + o(1), where o(1)

holds locally uniformly in D.

In the case of non-vanishing weights one more important result can be obtained.

Proposition 4.5 Let Qn and Wn be as in Theorem 4.3 with Ŝ ≡ 1 and Qn monic. Then

α−1
n Q2

n(ξ)Wn(ξ)|dξ| ∗→ |dξ|. (4.35)

Additional analyticity assumptions on the sequence {Sn}n∈N allow one to improve asymp-

totic estimates of {Hn}.

Proposition 4.6 Let {Sn}n∈N be a sequence of symmetric functions on T that extend analytically

to Ar, r < 1. Assume further that logSn form a normal family in Ar and let V2n+N be as in

Theorem 4.3. For {Qn}n∈N a sequence of STPs of degree at most n satisfying (4.29) with Wn(ξ) =

Sn(ξ)V −1
2n+N (ξ)V −1

2n+N (1/ξ), we have in addition to the conclusions of Theorems 4.3 and 4.4 that

‖Hn‖∞ = o(1).

Before we proceed with proofs of the theorems above, we shall need several auxiliary lemmas.

Lemma 4.7 Let {Sn}n∈N be as in Theorem 4.3. Then the interior Szegő functions Gi(Sn; ·) form a

uniformly equicontinuous family on D and their moduli are uniformly bounded away from zero and

infinity there.

Proof: As ω(Sn; ·) ≤ ω, the family {Sn} is uniformly equicontinuous on T. Then by the Ascoli-Arzelà

theorem any sequence of functions from this family contains a convergence subsequence. This, in

particular, implies the existence of a constant M∗, independent of n, such that

| arg(Sn; ξ)− arg(Sn; 0)| ≤ πM∗
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for any ξ ∈ T, where arg(Sn; ·) is any continuous determination of the argument of Sn. The latter

is well-defined since Sn has zero winding number. Now, let t0 ∈ (0, 2] be such that ω(t0) ≤ m/2.

Then for an arbitrary fixed ξ1 ∈ T and all n ∈ N we have that

|Sn(ξ1)− Sn(ξ)| ≤ m/2 (4.36)

for all ξ ∈ T such that |ξ1 − ξ| ≤ t0. Since |Sn(ξ1)| ≥ m for all n ∈ N, we deduce from (4.36) that

| arg(Sn; ξ1)− arg(Sn; ξ2)| ≤ π/3

whenever |ξ1 − ξ2| ≤ t0. This justifies the following equality:

logSn(ξ1)− logSn(ξ2) = Log
(

1 +
Sn(ξ1)− Sn(ξ2)

Sn(ξ2)

)
,

where Log indicates the principal branch of the logarithm. Therefore, using the inequality |Log(1 +

z)| < 2|z| for |z| < 1/2, we have that

ω(logSn; t) := sup
|ξ1−ξ2|≤t

| logSn(ξ1)− logSn(ξ2)| ≤

 2ω(t)/m, t ∈ (0, t0),

2(πM∗ + logM), t ∈ [t0, 2].
(4.37)

By the assumptions on ω, this entails that {logSn} is a uniformly equicontinuous family of Dini-

continuous functions on T. Let Un be the harmonic extension of logSn to the unit disk and let

Ũn be its conjugate function normalized at zero to be zero. By the Carleson-Jacobs theorem Ũn is

continuous on T and for δ < 1 we get (see [46, Thm. III.1.3])

ω(Ũn; δ) ≤ C1

(∫
[0,δ]

ω(logSn; t)
t

dt+ δ

∫
[δ,2]

ω(logSn; t)
t2

dt

)

≤ C1

(∫
[0,
√
δ]

ω(logSn; t)
t

dt+
√
δ

∫
[
√
δ,2]

ω(logSn; t)
t

dt

)
, (4.38)

where C1 is an absolute constant. Since Un = logSn on T, we get from (4.37) and (4.38) that there

exist positive continuous functions ω∗ and ω̃ on [0, 2] with ω∗(0) = ω̃(0) = 0 such that

ω(Un; t) ≤ ω∗(t),

ω(Ũn; t) ≤ ω̃(t),
t ∈ [0, 2], n ∈ N.
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This implies uniform equicontinuity of {Ũn} on T. Moreover, by (4.37), we obtain

‖Ũn‖∞ ≤ max
t∈[0,2]

ω(Ũn; t) ≤ max
t∈[0,2]

ω̃(t) := M̃ <∞, n ∈ N,

where the first inequality is true because Ũn vanishes on [−1, 1]. Indeed, by the symmetry of logSn,

we get that Un(ζ) = Un(ζ̄), ζ ∈ D. Thus, Ũn(ζ) = −Ũn(ζ̄) there since Ũn(0) = 0.

It is an easy calculation to check that

G2
i (Sn; ζ) = G(Sn) exp

{
(Un + iŨn)(ζ)

}
=: G(Sn)Yn(ζ), ζ ∈ D.

Since the trace on T of Yn equals to exp(Un+iŨn), we deduce that {Yn} is a family of outer functions

in H∞, continuous in D, satisfying

m exp
(
−M̃

)
≤ exp

(
−‖Ũn‖∞

)
min
ς∈T
|Sn(ς)| ≤ |Yn(ξ)| ≤ exp

(
‖Ũn‖∞

)
‖Sn‖∞ ≤M exp

(
M̃
)
,

for each ξ ∈ T. Since Yn(0) = G(Sn), the traces on T of the functions Gi(Sn; ·) form a uniformly

equicontinuous family of functions whose moduli are uniformly bounded away from zero and infinity.

The assertions of the lemma now follow from the maximum principle and the fact that, for uniformly

bounded analytic functions on D with continuous boundary values, the equicontinuity of the latter

on T implies the relative compactness in the uniform norm and therefore the equicontinuity on D.

Lemma 4.8 Let {Rl}l∈N be given by (4.25) and associated to a sequence of sets {Cl}l∈N ⊂ D

satisfying (2.41). Then functions Rl form a uniformly equicontinuous sequence on T and their

moduli are uniformly bounded away from zero and infinity there.

Proof: By the first condition of (2.41), we get

log |Rl(ξ)| =
l∑

j=1

log
∣∣∣∣1 +

∆l(cj,l)− c̄j,l
1−∆l(cj,l)ξ

∣∣∣∣ ≤ l∑
j=1

|∆l(cj,l)− c̄j,l|
1− |∆l(cj,l)|

≤M1, ξ ∈ T.

Thus, we have

exp(−M1) ≤ |R−1
l (1/ξ)| = |Rl(ξ)| ≤ exp(M1), ξ ∈ T, (4.39)

which establishes the uniform boundedness of |Rl| on T. Now, let δ > 0 be given and ξ1, ξ2 ∈ T be
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such that |ξ1 − ξ2| ≤ δ. Then

∣∣∣∣Rl(ξ2)
Rl(ξ1)

∣∣∣∣ ≤ exp

 l∑
j=1

log
∣∣∣∣1 +

(ξ1 − ξ2)(c̄j,l −∆l(cj,l))
(1− c̄j,lξ1)(1−∆l(cj,l)ξ2)

∣∣∣∣


≤ exp

|ξ1 − ξ2| l∑
j=1

|c̄j,l −∆l(cj,l)|
(1− |cj,l|)(1− |∆l(cj,l)|)

 ≤ exp(M2δ) (4.40)

by (2.41). Moreover, denoting by Arg(ζ) ∈ (−π, π] the principal argument of ζ ∈ C \ {0}, we get

since |Arg(1 + z)| ≤ |z| for |z| < 1 that

∣∣∣∣Arg
(
Rl(ξ2)
Rl(ξ1)

)∣∣∣∣ ≤ l∑
j=1

∣∣∣∣Arg
(

1 +
(ξ1 − ξ2)(c̄j,l −∆l(cj,l))

(1− c̄j,lξ1)(1−∆l(cj,l)ξ2)

)∣∣∣∣
≤ M3|ξ1 − ξ2|

l∑
j=1

|c̄j,l −∆l(cj,l)|
(1− |cj,l|)(1− |∆l(cj,l)|)

≤M4δ, (4.41)

where M4 is some absolute constant. Combining (4.39), (4.40), and (4.41), we derive that

|Rl(ξ1)−Rl(ξ2)| ≤ exp(M1)
∣∣∣∣1− Rl(ξ2)

Rl(ξ1)

∣∣∣∣ ≤M5δ,

where M5 is an absolute constant. This finishes the proof of this lemma.

The following lemma is a technical step needed in the course of the proof of Theorem 4.3.

Lemma 4.9 Let {Fn}n∈N and {Bl}l∈N be given by (4.24) and (4.25), respectively, where the se-

quence of sets {Cn}n∈N ⊂ D satisfies (2.41). Let further F̂ (ξ) := ξ−NGi(Ŝ; ξ)G−1
i (Ŝ; 1/ξ), ξ ∈ T,

with N ∈ Z+ fixed and Ŝ defined in (4.26) and (4.27). If {Ln}n∈N is a sequence of functions of unit

norm in H2 satisfying

Ln(0)− Ln(1/ξ) = P−
(
LnB2n+NFnF̂

)
(ξ), ξ ∈ T , n ∈ N, (4.42)

then Ln = Ln(0) + o(1), where o(1) holds locally uniformly in D, and

0 < 1− γ ≤ lim inf
n→∞

|Ln(0)| ≤ lim sup
n→∞

|Ln(0)| ≤ 1 + γ <∞. (4.43)

Proof: Let B∗l := Bl/Rl be a Blaschke product with zeros Cl, where Rl was defined in (4.25). Then
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equations (4.42) can be written in the following form

Ln(0)− Ln(1/ξ) = Hn
(
LnB

∗
2n+N

)
(ξ) ξ ∈ T, n ∈ N, (4.44)

where Hn : H2 → H̄2
0 is the Hankel operator with a symbol FnR2n+N F̂ .

First, we shall verify that the sequence {LnB∗2n+N} weakly converges to zero in H2. This is

tantamount to show that functions LnB∗2n+N converge to zero locally uniformly in D. Notice that

the second condition of (2.41) is necessary and sufficient for such a convergence of Blaschke products

B∗2n+N ([46, Thm. II.2.1]). Thus, the claim follows by the Cauchy integral formula and boundedness

the L2 norms of Ln.

Second, we claim that

lim sup
n→∞

‖Hn(LnB∗2n+N )‖2 ≤ γ. (4.45)

Indeed, it is enough to show that from any subsequence of N one can extract another subsequence

along which (4.45) holds. By Lemmas 4.7 and 4.8, the families {Fn} and {R2n+N} are bounded and

uniformly equicontinuous; so, by the Ascoli-Arzelà theorem, we may assume that Fn and R2n+N

converge uniformly on T to some continuous functions F and R, respectively. Since

‖Hn −HFRF̂ ‖ = ‖H(FnR2n+N F̂−FRF̂ )‖ ≤ ‖FnR2n+N F̂ − FRF̂‖∞,

it is enough to prove (4.45) for HFRF̂ instead of Hn. We recall that F̂ is a piecewise continuous

function on T with the jump-type discontinuities at each point ζ ∈ T of magnitude 2 sin(τ(ζ)π).

Thus, by Power’s theorem (cf. [86, Thm. 5.4.2]), the essential norm of the Hankel operator with

piecewise continuous symbol FRF̂ (i.e. its norm modulo compact operators) is equal to half the

magnitude of the largest jump of the symbol, which does not exceed γ by (4.27). In other words, for

any δ > 0 there exists a compact operator C such that the norm of (HFRF̂ − C) is less than γ + δ.

Then

lim sup
n→∞

‖HFRF̂ (LnB∗2n+N )‖2 ≤ lim sup
n→∞

(‖(HFRF̂ − C)(LnB
∗
2n+N )‖2 + ‖C(LnB∗2n+N )‖2) ≤ γ + δ,

(4.46)

where the last inequality uses that ‖C(LnB∗2n+N )‖2 → 0 by the compactness of C. This proves (4.45)

on letting δ → 0.

Finally, since any bounded operator preserves weak convergence, the described compactness
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argument implies that Hn(LnB∗2n+N ) = o(1), where o(1) holds locally uniformly in C \ D. This

together with (4.44) yields locally uniform convergence to zero in D of Ln − Ln(0). Further, com-

bining (4.44) and (4.45), we see that lim supn→∞ ‖Ln − Ln(0)‖2 ≤ γ, and since ‖Ln‖2 = 1 we get

lim supn→∞ |1− |Ln(0)|| ≤ γ, which yields (4.43).

Lemma 4.10 Let {Bl}l∈N be given by (4.25) and associated to a sequence of sets {Cl}l∈N ⊂ D

satisfying (2.41). Further, let {Xl}l∈N ⊂ L∞ be a compact family and {Ll}l∈N be a sequence of

functions of unit norm in H2. Then for any fixed N ∈ Z+ the following limit holds locally uniformly

in C \ D

lim
n→∞

ζP− ((1/·)(B2n+NLnXn)(1/·)) (ζ) = 0. (4.47)

Proof: Let, as before, B∗l := Bl/Rl be a Blaschke product with zeros Cl (see (4.25)). Then functions

B2n+NLn have uniformly bounded norms in H2 and converge to zero locally uniformly in D, i.e.,

weakly converge to zero in L2 (see Lemmas 4.8 and 4.9). Further, one can easily check that

ζP− ((1/·)(B2n+NLnAn)(1/·)) (ζ) = P+(B2n+NLnXn)(ζ) = TXn(B2n+NLn)(1/ζ), 1/ζ ∈ D,

where TXn is a Toeplitz operator with symbol Xn. By a standard compactness argument, it is

enough to show that functions TX(B2n+NLn) converge to zero locally uniformly in D, where X is

any limit point of {Xn}. Since any bounded operator (the norm of TX is dominated by ‖X‖∞)

preserves weak convergence, the latter follows.

Proof of Theorem 4.3: The orthogonality relations (4.29) and the symmetry of QnWn yield that all

the Fourier coefficients of this product whose indices range from −(n− 1) to n− 1 are equal to zero.

In other words,

Qn(ξ)Wn(ξ) = Gn(ξ)ξn +Gn(1/ξ)ξ−n (4.48)

for some functions Gn ∈ H∞. In fact, Gn is a continuous function on T. For simplicity, denote

Gn(ξ) := Gi(Sn; ξ)Gi(Ŝ; ξ). Recall that the latter two Szegő functions are well-defined by the sym-

metry and Dini-continuity of Sn and log-integrability of Ŝ. Then with the help of (4.7), we can

write

Wn(ξ) = Gi(Wn; ξ)G−1
e (Wn; ξ) = Gn(ξ)V −1

2n+N (ξ)G−1
e (Wn; ξ).
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This, together with (4.48), implies

ξ−nQn(ξ)G−1
e (Wn; ξ) = (GnV2n+NG−1

n )(ξ) + ξN (GnV2n+NG−1
n B2n+N )(1/ξ)Gn(1/ξ)G−1

n (ξ), (4.49)

where B2n+N is associated to C2n+N via (4.25). Since τ(ζ) ∈ [0, 1/2) for any ζ ∈ T and GnV2n+N

is continuous on T, κn := ‖GnV2n+NG−1
n ‖2 is finite for every n ∈ N. Thus,

Ln(ξ) := κ−1
n (GnV2n+NG−1

n )(ξ) = κ−1
n Gn(ξ)G−1

i (Wn; ξ)

is a sequence of functions of unit norm in H2. Set F̂ (ξ) := ξ−NGi(Ŝ; ξ)G−1
i (Ŝ; 1/ξ), ξ ∈ T. Then

(4.49) can be rewritten as

κ−1
n ξ−nQn(ξ)G−1

e (Wn; ξ) = Ln(ξ) + (LnB2n+NFnF̂ )(1/ξ), (4.50)

where Fn was defined in (4.24). It is not hard to see that the left-hand side of (4.50) is an H̄2

function and the first summand on the right-hand side belongs to H2. Thus

−P−(Ln(1/ξ)) = P−((LnB2n+NFnF̂ )(ξ)).

So, we can applying Lemma 4.9 to get

0 < 1− γ ≤ lim inf
n→∞

|λn|
κn
≤ lim sup

n→∞

|λn|
κn
≤ 1 + γ <∞, (4.51)

lim sup
n→∞

∥∥GnG−1
i (Wn; ·)− λn

∥∥
2
≤ γ

1− γ
lim sup
n→∞

1
|λn|

, (4.52)

and

GnG−1
i (Wn; ·)− λn = o(1), (4.53)

where o(1) holds locally uniformly in D and

λn := Gn(0)G−1
i (Wn; 0) = Gn(0)G−1(Wn). (4.54)

Again, since the left-hand side of (4.50) belongs to H̄2, we can write it as

λ−1
n ξ−nQn(ξ)G−1

e (Wn; ξ) = 1 +
κn
λn

ξ P−
(

(1/·)(LnB2n+NFnF̂ )(1/·)
)

(ξ). (4.55)
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Thus, we obtain from (4.51), (4.55), and Lemma 4.10, applied with Xn = FnF̂ , that

G(Wn)
Gn(0)

ζ−nQn(ζ)
Ge(Wn; ζ)

= 1 + o(1) (4.56)

locally uniformly in C \ D. By taking ζ = ∞ in (4.56), we see that Qn has necessarily the exact

degree n for all n large enough. So, we may assume Qn to be monic and again, by taking ζ =∞ in

(4.56), we get
1
λn

=
G(Wn)
Gn(0)

= 1 + o(1). (4.57)

Thus, it remains to show formula (4.31). Define Hn(ζ) := Gn(ζ)G−1
i (Wn; ζ) − 1, ζ ∈ D. Then

lim supn→∞ ‖Hn‖2 ≤ γ/(1 − γ) and Hn = o(1) locally uniformly in D by (4.52) and (4.57). From

(4.48) and the symmetry of Wn, we obtain

Qn(ξ) = ξnGn(ξ)W−1
n (ξ) + ξ−nGn(1/ξ)W−1

n (1/ξ)

= ξnGe(Wn; ξ)
Gn(ξ)
Gi(Wn; ξ)

+ ξ−nGe(Wn; 1/ξ)
Gn(1/ξ)
Gi(Wn; 1/ξ)

= ξnGe(Wn; ξ)(1 +Hn(ξ)) + ξ−nGe(Wn; 1/ξ)(1 +Hn(1/ξ)),

where we used (4.6) and the definition of Hn. This finishes the proof of the theorem.

Proof of Theorem 4.4: The limit in (4.33) follows from (4.57) and the following computation:

αn = 2
∫
ξnQn(ξ)Wn(ξ)

|dξ|
2π

= 2
∫ (

ξ2nGn(ξ) +Gn(1/ξ)
) |dξ|

2π
= 2Gn(0), (4.58)

where we used (4.48). To prove (4.34) observe that

1
αn
RH(Q2

nWn; ζ) =
2
αn

∫
T

Q2
n(ξ)Wn(ξ)
ξ − ζ

dξ

2πi
− 1
αn

∫
T

Q2
n(ξ)Wn(ξ)

ξ

dξ

2πi

=
2
αn
P+

(
Q2
nWn

)
(ζ)− 1. (4.59)

Now, it is a direct consequence of (4.48) that

Q2
n(ξ)Wn(ξ) = ξnQn(ξ)Gn(ξ) + ξ−nQn(ξ)Gn(1/ξ).

As the first summand on the right-hand side of the equation above is analytic and the second one is
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anti-analytic, it follows that

P+(QnWn)(ζ) = ζnQn(ζ)Gn(ζ) +Gn(0), ζ ∈ D. (4.60)

Thus, combining (4.58), (4.59), and (4.60) we obtain

α−1
n RH(Q2

nWn; ζ) = G−1
n (0)ζnQn(ζ)Gn(ζ) = G−1

n (0)(1 +Hn(ζ))ζnQn(ζ)Gi(Wn; ζ)

= (1 + o(1))(1 +Hn(ζ))ζnQn(ζ)G−1
e (Wn; 1/ζ)

locally uniformly in D, where we used (4.6). Since (1 + Hn)Ge(Wn; 1/·) extends continuously onto

T, the theorem follows.

Proof of Proposition 4.5: By the classical Weierstrass theorem it suffices to prove that

dj,n :=
1
αn

∫
T
ξjQ2

n(ξ)Wn(ξ)
|dξ|
2π
→
∫

T
ξj
|dξ|
2π

= δ0j , as n→∞, (4.61)

for any j ∈ N, where δkj is the usual Kronecker symbol. With the use of (4.48) it is an easy

computation to get

dj,n =
1
αn

∫
T
ξj
(
Gn(ξ)ξn +Gn(1/ξ)ξ−n

)2
W−1
n (ξ)

|dξ|
2π

=
G(Wn)
Gn(0)

∫
T
ξj(1 +Hn(ξ) +Hn(1/ξ) +Hn(ξ)Hn(1/ξ))

|dξ|
2π

+
G(Wn)
Gn(0)

∫
T
(ξj + ξ−j)(1 +Hn(ξ))2B2n+N (ξ)Fn(ξ)

|dξ|
2π

.

Since ‖Hn‖2 → 0 and G(Wn)/Gn(0) → 1 as n → ∞, and ‖B2n+NFn‖T are uniformly bounded

above, we derive that

dj,n = (1 + o(1))
(∫

T
ξj
|dξ|
2π

+
∫

T

1
ξ

(ξj−1 + ξ−j−1)B2n+N (ξ)Fn(ξ)
|dξ|
2π

)
+ o(1).

As {(ξj−1 + ξ−j−1)Fn(ξ)} is still a compact family, equations (4.61) and respectively (4.35) follow

from Lemma 4.10.

Proof of Proposition 4.6: Clearly, {Sn} satisfies all the condition of Theorem 4.3. Thus, we can

use all the results and notation of that theorem. As actual value of r does not matter, the boundary

93



smoothness of analytic functions discussed below can always be achieved by increasing r but keeping

it smaller than one.

Symmetry of logSn and the decomposition of functions from Hardy spaces on multiply

connected domains [44, Thm. 10.12] yield

logSn(ζ) = Tn(ζ) + Tn(1/ζ), ζ ∈ Ar, (4.62)

where Tn ∈ H∞(D1/r). Formula (4.62) immediately implies

Sn(ζ) = exp(Tn(ζ)) exp(Tn(1/ζ)), ζ ∈ Ar.

Thus, exp(Tn) is an analytic extension of Gn to D1/r and consequently {Fn} is a normal family in

Ar. Moreover, since F̂ ≡ 1, {Ln} is, in fact, sequence of H∞ functions. Now, observe that the use

of the L2 norm in Lemma 4.9 is induced by the L2 character of {Ln} and the following fact: any

Hankel operator with continuous symbols is a compact operator from H2 to H̄2
0 . Let F ∈ H∞(Ar)

and consider Hankel operator HF . As explained above, F ∗ := P−(F ) ∈ H∞(C \ Dr). Then for any

h ∈ H∞ we get

(HFh)(ζ) = P−(Fh)(ζ) = P−(P−(F )h)(ζ) =
1

2πi

∫
T

(F ∗h)(ξ)
ζ − ξ

dξ

=
1

2πi

∫
T

(
1

2πi

∫
Tr

F ∗(η)
ξ − η

dη

)
h(ξ)
ζ − ξ

dξ =
1

2πi

∫
Tr

(F ∗h)(η)
ζ − η

dη, ζ ∈ C \ D.

In fact, HFh is well-defined in C \ Dr and ‖HF (h)‖∞ ≤ (1 − r)−1‖F ∗‖∞,r‖h‖∞. Thus, a Hankel

operator with a symbol analytic in Ar is a continuous operator from H∞ to H̄∞. As clear now, we

can use L∞ norm in Lemma 4.9 and the assertion of this proposition follows.

Orthogonal Polynomials

The main result of this section provides asymptotic behavior of polynomials orthogonal with

varying measures. In particular, it yields that all the zeros of orthogonal polynomials tend to the

support. We start by describing the class of varying weights under consideration.

Fix E = [a, b] ⊂ (−1, 1) and let {sn}n∈N be a sequence of complex-valued functions on E.

We shall assume that

0 < m ≤ |sn(t)| ≤M <∞, t ∈ E, and ω(sn;x) < ω(x), x ∈ [0, b− a], (4.63)
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for all n ∈ N, where ω is a Dini-continuous function of the modulus continuity type on [0, b −

a]. In other words, ω is a positive nondecreasing subadditive functions such that ω(0) = 0 and∫
[0,b−a]

(ω(t)/t)dt <∞. Let now E ⊂ E be a finite set containing the endpoints a, b. We put

ŝ(t) := |t− a|τ(a)|t− b|τ(b)
∏

x∈E\{a,b}

|t− x|2τ(x), τ(x) ∈ [0, 1/2), x ∈ E, (4.64)

Further, we shall assume that

γ := max
x∈E

max
n∈N

{
sin(τ(x)π) max

{∣∣∣∣∣Ψ+
2n+N (x)S+(sn;x)
S−(sn;x)

∣∣∣∣∣ ,
∣∣∣∣∣Ψ−2n+N (x)S−(sn;x)

S+(sn;x)

∣∣∣∣∣
}}

< 1, (4.65)

where Ψ2n+N = Ψ2n(v2n+N ; ·), polynomials vl are associated to an admissible sequence of sets

{Al}l∈N via (2.37), and N ∈ Z+ is fixed. Finally, we define a sequence of complex measures on E,

{νn}n∈N, by setting

ν̇n(t) := ŝ(t)sn(t)/v2n+N (t), t ∈ E, (4.66)

where ν̇n is Radon-Nikodym derivative of νn with respect to µE .

It will be convenient for us to introduce a notion of Nδ-sequence for δ ∈ [0, 1). A sequence

of functions {hn}n∈N is called Nδ-sequence if the following properties hold:

(i) {hn} ⊂ Hol(C \ E) and hn = o(1), where o(1) holds locally uniformly in C \ E;

(ii)
∫
|h±n |2dµE ≤ cδ/(1− δ) + o(1), where constant c is independent of n.

Recall that h±n stand for the boundary values of hn from above and below on E.

In what follows we pick a branch of the square root such that
√

(z − a)(z − b) = z + O(1)

as z →∞.

The forthcoming theorem generalizes the results in [30] and [89] (see also [121, Thm. 3]) to

a class of less smooth and varying measures. It provides an analog to [128, Thm. 1] for complex

measures, and should be compared to [10, Thm. 2] where a sequence of convergent analytic weights

was considered with prescribed convergence rate on the contours of minimal capacity.

Theorem 4.11 Let {un}n∈N be a sequence of polynomials of degree at most n satisfying

∫
tjun(t)dνn(t) = 0, j = 0, . . . , n− 1, (4.67)

where {νn} is given by (4.63)–(4.66). Then each polynomial un has exact degree n for all n large
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enough and therefore can be normalized to be monic. Under such a normalization we have

un(z)
ψn(z)

=
1 + o(1)
S(ν̇n; z)

, (4.68)

where ψn is given by (2.40), o(1) holds locally uniformly in C \ E, and

un(t) =
([

1 + h−n (t)
] ψ+

n (t)
S+(ν̇n; t)

+
[
1 + h+

n (t)
] ψ−n (t)
S−(ν̇n; t)

)
, t ∈ E, (4.69)

where {hn} is Nγ-sequence.

Before we proceed recall that function of second kind associated to un is defined by

Rn(z) :=
∫
un(t)

dνn(t)
z − t

, z ∈ C \ E.

Moreover, we shall denote

γn :=
∫
u2
n(t)dνn(t).

Then the next theorem takes place.

Theorem 4.12 Let νn, un, and hn be as in Theorem 4.11 with un monic. Then

γn = (2 + o(1))cap2n(E)S(ν̇n) (4.70)

and √
(z − a)(z − b)ψn(z)Rn(z) = γn(1 + o(1))(1 + hn(z))S(ν̇n; z), z ∈ C \ E, (4.71)

where o(1) holds uniformly in C.

As both sides of (4.71) are analytic in C \ E and o(1) holds uniformly in C, (4.71) can be

extended to both sides of E.

In the case of non-vanishing weights we derive one more result that generalizes (4.71).

Proposition 4.13 Let νn and un be as in Theorem 4.11 with un monic and ŝ ≡ 1. Then

γ−1
n u2

n(t)dνn(t) ∗→ dµE(t). (4.72)

As one can see, asymptotic behavior of un and Rn on E depends on hn. These functions

form a normal family in C\E, but under additional smoothness assumptions on sn we can say more.
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Proposition 4.14 Let {sn}n∈N be a sequence of analytic functions in some fixed neighborhood of

E. Assume that {log sn} is a normal family in that neighborhood and let νn be as in Theorem 4.11

with ŝ ≡ 1 and sn as described. If {un}n∈N is a sequence polynomials of degree at most n satisfying

(4.67), then all the conclusions of Theorems 4.11 and 4.12 hold and ‖h±n ‖E = o(1).

Proof of Theorem 4.11: Let J be the Joukowski transformation defined in (4.9) and ϕi and ϕe be

defined in (2.39). Set

Qn(ξ) := un (J (ξ)) /capn(E), ξ ∈ T,

then Qn is a symmetric trigonometric polynomial of degree at most n. Further, denote

V2n+N (ξ) :=
2n+N∏
j=1

(1− ϕi(aj,2n+N )ξ) .

So that

v2n+N (J (ξ)) = S(v2n+N )V2n+N (ξ)V2n+N (1/ξ) and S(v2n+N ) =
∏

aj,2n+N 6=∞

−cap(E)
ϕi(aj,2n+N )

.

Let now T be a conjugate-symmetric subset of T such that J (T) = E. We set

Ŝ0 Ŝ(·) := (ŝ ◦ J )(·), Ŝ0 := (cap(E))
P
ζ∈T τ(ζ), (4.73)

then

τ(ζ) = τ(ζ̄) and Ŝ(ξ) =
∏
ζ∈T

|(ξ − ζ)(ξ − ζ̄)|τ(ζ),

where τ(ζ) := τ(J (ζ)). Finally, define Sn(ξ) := sn(J (ξ)), then

ω(Sn; δ) ≤ ω(sn; cap(E)δ) ≤ ω (cap(E)δ) , δ ∈ [0, 2].

Upon the substitution t = J (ξ) consecutively with ξ ∈ T, Im(ξ) ≥ 0, and ξ ∈ T, Im(ξ) ≤ 0, in

(4.67), we see that (4.29) is satisfied with Qn, Ŝ, Sn, and V2n+N as above. It is readily verified that

S±(sn;x)
S∓(sn;x)

= Fn(ϕ±i (x)) and |Ψ±2n+N (x)| = |R2n+N (ϕ±i (x))|,

where Fn(ξ) = Gi(Sn; ξ)G−1
i (Sn; 1/ξ) and R2n+N (ξ) = V2n+N (1/ξ)/V2n+N (ξ). Thus, all the require-
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ments of Theorem 4.3 are fulfilled and (4.30) and (4.31) take place. Since

Ge(Wn; ζ) = S−1(ν̇n; z), ζ = ϕe(z), z ∈ C \ E,

(4.68) follows. Set now

hn(z) := Hn(ζ), ζ = ϕi(z), z ∈ C \ E,

where Hn was defined in Theorem 4.3. Then hn(z) = Hn(ϕi(z)) = o(1) locally uniformly in C \ E

and
1
2

∫ (
|h+
n (t)|2 + |h−n (t)|2

)
dµE(t) =

∫
T
|Hn(ξ)|2 |dξ|

2π

and therefore

lim sup
n→∞

‖h±n ‖L2(dµE) ≤
√

2
γ

1− γ
.

So, {hn} is Nγ-sequence and asymptotic formula (4.69) follows from (4.31), which finishes the proof

of the theorem.

Proof of Theorem 4.12: It is easy to check that

γn =
∫
u2
n(t)dνn(t) =

cap2n(E)
Ŝ0S(v2n+N )

∫
T
Q2
n(ξ)Wn(ξ)

|dξ|
2π

=
cap2n(E)
Ŝ0S(v2n+N )

αn,

where Ŝ0 was defined in (4.73). Thus, the limit in (4.70) follows from the corresponding limit in

(4.33). Now, observe that orthogonality relations (4.67) yield that

Rn(z) =
∫
un(t)

dνn(t)
z − t

=
1

un(z)

∫
u2
n(t)

dνn(t)
z − t

, z ∈ C \ E.

Therefore, we obtain from (4.10) that

√
(z − a)(z − b)ψn(z)Rn(z) = γn

α−1
n RH(Q2

nWn; ζ)
ζnQn(ζ)

,

where ζ = ϕi(z), z ∈ C \ E. Thus, it follows from (4.31) that

√
(z − a)(z − b)ψn(z)Rn(z) = γn(1 + o(1))(1 +Hn(ζ))G−1

e (Wn; 1/ζ)

= γn(1 + o(1))(1 + hn(z))S(ν̇n; z),
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where ζ = ϕi(z), z ∈ C \E, o(1) holds uniformly in C and (1 +h±n )S±(ν̇n; ·) are continuous on E as

apparent from the proof of Theorem 4.3.

Proof of Proposition 4.13: Equations (4.72) can be easily deduced from the corresponding equa-

tions (4.35).

Proof of Proposition 4.14: Proceeding as in Theorem 4.11 we see that {logSn} is a normal family in

some fixed neighborhood of T, where Sn(ζ) = sn(J (ζ)). Thus, we may apply Proposition 4.6 and

the result follows.

Meromorphic Approximation

In the previous chapter we were able to deduce convergence in capacity of meromorphic

approximants to approximated functions of the form F(µ;R; ·). Moreover, on any compact set

asymptotically free of poles of the approximants the convergence was, in fact, uniform. In this

section we show locally uniform convergence everywhere in C \S under assumption that the Radon-

Nikodym derivative of µ is Dini-continuous and vanishes in a controllable manner. Furthermore, we

provide the rate of this convergence.

Recall that any irreducible critical point gn (best meromorphic approximant is a particu-

lar case of an irreducible critical point) in meromorphic approximation problem to F is given by

TF (vn)/vn, where TF is the Toeplitz operator with symbol F and vn is some singular vector of the

Hankel operator HF . In what follows we assume that singular vectors vn = bnwn are normalized in

such a way that wn(0) > 0. As we shall show, outer factors wn form not merely a normal family, but

a convergent sequence. For that, it will be of convenience to define for each p ∈ (2,∞] a function w

by the rule

w(z) :=
τ2/p′

[(1− az)(1− bz)]1/p
′ , w(0) > 0, z ∈ C \ E−1, (4.74)

where 1/p+ 1/p′ = 1/2 and τ was defined in (4.18). Observe that

wp
′/2(z) =

τ√
(1− az)(1− bz)

and ‖w‖p′ = 1.

The normalization of singular vectors that was just introduced implies (it will be shown in

the course of the proof of Theorem 4.15) that

S
(
µ̇wnq

2
n,m/q̃

2
n

)
= (1 + o(1))

∣∣S (µ̇wnq2
n,m/q̃

2
n

)∣∣ ,
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where qn,m ∈ Pm is a divisor of qn (bn = qn/q̃n) and limn→∞ qn,m(z) = Q(z) locally uniformly in

C. Such polynomials exist whenever µ ∈ BVT by Theorem 3.10. Then we can define Sn in such a

way that S2
n = S(µ̇wn) and

Sn/S(q̃n/qn,m) = (1 + o(1))|Sn/S(q̃n/qn,m)|.

Due to the dependence of the varying weights in (2.33) on polynomials qn themselves, we

shall describe asymptotic behavior of the critical points in meromorphic approximation problem for

F(µ;R; ·) using Szegő functions for the condenser C \ (E ∪ E−1) (cf. (4.20)-(4.21)). Put

Dn(z) := D
(
|Snb

Ψ+
n

Ψ+
S+(µ̇wn; ·)|2, |Snb

Ψ−n
Ψ−
S−(µ̇wn; ·)|2; z

)
, z ∈ C \ E,

where Ψn(·) := Ψn(q̃n; ·), Ψ(·) := Ψm(Q; ·), and b := Q/Q̃. Since

Ψ+(t)Ψ−(t) = 1, Ψ+
n (t)Ψ−n (t) = 1 and µ̇(t)wn(t) = S2

nS+(µ̇wn; t)S−(µ̇wn; t), t ∈ E,

it is easy to see that

D
(
|Snb

Ψ+
n

Ψ+
S+(µ̇wn; ·)|2, |Snb

Ψ−n
Ψ−
S−(µ̇wn; ·)|2

)
= D(|b2µ̇wn|).

Therefore, it holds that

√
D(|b2µ̇wn|)|D±n (t)| = |Snb(t)

Ψ±n (t)
Ψ±(t)

S±(µ̇wn; t)|, t ∈ E.

Further, it follows from the definition of a Szegő function for a condenser, Lemma 3.11, and properties

of Ψn that the sequence {Dn} is a normal family in C \ (E ∪E−1) and no limit point of this family

has zeros.

Recall that the Szegő functions for a condenser are defined up to a multiplicative unitary

constant only. Thus, we shall specify a choice of the face for Dn. Fix an arbitrarily t0 ∈ (b, 1), we

normalize Dn are normalized so that the ratios

Sn
b(t0)Ψn(t0)S(µ̇wn; t0)

Ψ(t0)Dn(t0)

are positive for each n ∈ N. As apparent from the next theorem, the particular choice of t0 is

irrelevant.
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Theorem 4.15 Let p ∈ (2,∞] and {gn} be a sequence of irreducible critical points in meromorphic

approximation problem for F(µ;R; ·), given by (1.2), from Hp
n, where R = P/Q has no poles on

E and µ̇ is a product of a non-vanishing Dini-continuous function having an argument of bounded

variation on E and ŝ, defined in (4.64) and associated with E = {a, b}. Then

bn(z)
ϕn(z)

=
1 + o(1)
Dn(z)

b(z)
ϕm(z)

, (4.75)

where o(1) holds locally uniformly in DF ∩D∗F and ϕ was defined in (4.17). Further,

√
(1− az)(1− bz) wp

′/2
n (z) = τ + o(1), (4.76)

where o(1) holds locally uniformly in D∗F and τ was defined in (4.18). Moreover, the following error

estimates take place

σn = ‖F − gn‖p =
(

2D(|b2µ̇w|)
τ

+ o(1)
)
ρ2n, (4.77)

where σn is the critical value associated to gn via (2.29) and ρ was defined in (4.19), and

(F − gn)(z) =
2D(|b2µ̇w|) + o(1)
w(z)

√
(z − a)(z − b)

(
ρ

ϕ(z)

)2n D2
n(z)
b2(z)

, (4.78)

where o(1) holds locally uniformly in D ∩DF .

We wish to remind that wp
′/2
n may have a pole at each 1/η̄, η ∈ S′, of multiplicity at most m(η) as

evident from (2.36). This is the reason why asymptotic behavior in (4.76) is stated to hold in D∗F ,

but not in C \ E−1.

We also remind the reader that in the case of rational approximation outer functions wn are

not present. This allows us to consider a slightly larger class of measures as in Theorem 4.15.

Theorem 4.16 Let {gn} be a sequence of irreducible critical points in rational approximation prob-

lem (p = 2) for F(µ;R; ·), given by (1.2), where R = P/Q has no poles on E and µ̇ is a product

of a non-vanishing Dini-continuous function having an argument of bounded variation on E and ŝ,

defined in (4.64) and such that

max
x∈E\{a,b}

max
n∈N

{
sin(τ(x)π) exp

(
4r2

1− r1
V (arg(s), E)

)
max

{∣∣∣∣S+(s;x)
S−(s;x)

∣∣∣∣ , ∣∣∣∣S−(s;x)
S+(s;x)

∣∣∣∣}} < 1 (4.79)
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and τ(a), τ(b) ∈ [0, 1/2), where V (arg(s), E) is the total variation of the argument of s on E,

r1 := max
ξ∈T
|ϕi(ξ)|, and r2 := max

z∈Dr

∣∣∣∣ϕ′i(1/z)z2

∣∣∣∣ .
Then (4.75), (4.77), and (4.78) hold with w ≡ 1.

It follows from (4.75) that each qn can be written as un−mqn,m, where qn,m = (1+o(1))Q in

C\S′ and un−m have no zeros on compact subsets of C\E for all n large enough. Let η1,n, . . . ηm(η),n

be the zeros of bn approaching η ∈ S′. Then the following holds.

Corollary 4.17 For each η ∈ S′ and all n large enough there exists an arrangement of η1,n, . . . ηm(η),n

such that

ηk,n = η + (hn,η + o(1))
(

ρ

ϕ(η)

)2n/m(η)

exp
(

2πk
m(η)

i

)
, k = 1, . . . ,m(η), (4.80)

where {|hn,η|} is a bounded above sequence.

We remark that the proof of Corollary 4.17 is an adaptation of arguments in [60, Thm. 3] to the

present case.

Taking measures with non-vanishing derivatives we deduce addition information on the

critical points gn.

Proposition 4.18 Let {gn} be as in Theorem 4.15 with ŝ ≡ 1. Then the following weak∗ conver-

gence takes place

σ−1
n b2nwndµ

∗→ τ dµE . (4.81)

The next two lemmas are needed for the proofs of Theorems 4.15 and 4.16.

Lemma 4.19 Let {gn} be as in Theorem 4.15. Further, let An be the set of zeros of q̃2
n. Then

{An}n∈N is an admissible sequence of sets.

Proof: Since E ∩ T = ∅, r1 := maxξ∈T |ϕi(ξ)| < 1. Thus, An ⊂ Dr for any n ∈ N and the second

admissibility condition for {An} follows.

To show the first admissibility condition we shall define ∆n : ϕi(An) → ϕi(An) as the

identity map. Notice that ϕi(1/z) is an analytic function in C \ E−1 ⊃ Dr1 . Thus, |ϕi(1/z1) −

ϕi(1/z2)| ≤ r2|z1 − z2| for any z1, z2 ∈ Dr1 , where r2 := maxz∈Dr1 |ϕ
′
i(1/z)/z

2|. This, in particular,
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implies that

2
n∑
j=1

|ϕi(1/ξ̄j,n)− ϕi(1/ξ̄j,n)|
(1− |ϕi(1/ξ̄j,n)|)2

≤ 2
(1− r1)2

n∑
j=1

∣∣ϕi(1/ξ̄j,n)− ϕi(1/ξj,n)
∣∣

≤ 4r2

(1− r1)2

n∑
j=1

|Im(ξj,n)| ≤ 4r2

(1− r1)2

n∑
j=1

(π −Angle(ξj,n)) .

It was shown in Lemma 3.4, under assumptions µ ∈ BVT, which are clearly satisfied, that the sums

on the right-hand side of the equations above are bounded by V (arg(wnµ̇)). As {wn} is a normal

family in D, the sequence of sets {An} is, indeed, admissible.

Lemma 4.20 Let {gn} be as in Theorem 4.15. Then there exist constants m̂, M̂ , and a Dini-

continuous function of the modulus continuity type, ω̂, such that

ω(wn;x) ≤ ω̂(x), x ∈ [0, b− a], 0 < m̂ ≤ |wn(t)| ≤ M̂ <∞, t ∈ E, n ∈ N.

Proof: Recall that the sequence of outer functions {wn} forms a normal family in D. Moreover

any limit point of this family is zero free (cf. Lemma 3.11). By the classical theorem of Montel,

normality is equivalent to the uniform boundedness on compact subsets. This shows the existence

of m̂ and M̂ . Moreover, there exists M# such that ‖wn‖∞,ρ ≤ M# for all n ∈ N, where r < 1 and

E ⊂ Dr. Then by the Cauchy integral formula, we get

ω(wn;x) = sup
|t1−t2|≤x

|wn(t1)− wn(t2)| =
∣∣∣∣ 1
2πri

∫
wn(ξ)(t1 − t2)
(ξ − t1)(ξ − t2)

dξ

∣∣∣∣ ≤ M#x

dist2(Tr, E)
=: ω̂(x).

Obviously ω∗(t) is Dini-continuous on [0, b− a] and is of modulus continuity type.

Proof of Theorem 4.15: Recall that the sequence {qn} satisfies orthogonality relations (2.33). More-

over, Lemma 4.19 shows that the zeros of q̃2
n form an admissible sequence of set. This enables us to

apply Theorem 4.11 with ν̇n := qn+m,mQµ̇wn+m/q̃
2
n+m. Indeed, let µ̇ = ŝs. Since

m := m̂ inf
E
|s| > 0 M := M̂ sup

E
|s| <∞, and ω(wns;x) ≤ M̂ω(s;x) + ‖s‖Eω̂(x),

all the conditions of this theorem are fulfilled.

We start by proving (4.76). Denote then

βn :=
∫
b2n(t)

Q(t)
qn,m(t)

wn(t)dµ(t).
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As explained in the introduction (see (2.36)), there exists a sequence of Blaschke products {jn}n∈N

such that

σn

(
jnw

p′/2
n

)σ
(z) =

∫
b2n(t)wn(t)
z − t

dµ(t) +
∑
η∈S′

m(η)−1∑
k=0

rη,k
k!

(
b2n(t)wn(t)
z − t

)(k)
∣∣∣∣∣
t=η

. (4.82)

Denote the rational function on the right-hand side of (4.82) by En. We show that β−1
n En = o(1)

in C \ S′. To simplify the forthcoming argument, we shall adopt the following notation:

1
βn
En(z) :=

∑
η∈S′

m(η)−1∑
k=0

rη,k
k!

(
1
βn

b2n(t)wn(t)
z − t

)(k)
∣∣∣∣∣
t=η

=:
∑
η∈S′

m(η)−1∑
k=0

Ek,ηn (z).

Fixed η ∈ S′ and k ∈ {0, . . . ,m(η)− 1}, then

Ek,ηn (z) =
k∑
j=0

rη,k
j!

1
(z − η)k−j+1

(
1
βn

u2
n−m(t)qn,m(t)wn(t)P (t)

q̃2
n(t)

qn,m(t)
P (t)

)(j)
∣∣∣∣∣
t=η

.

Recall that P is a polynomial that does not vanish at η. Thus, by the definition of qn,m, we obtain

lim
n→∞

(
qn,m(t)
P (t)

)(j)
∣∣∣∣∣
t=η

= 0 (4.83)

for any j = 0, . . . ,m(η) − 1. In another connection, error formula (3.45), applied with qn,1 ≡ 1,

lm,n = qn,m, and q]n = un−m, yields

(F − gn)(z) =
qn,m(z)

b2n(z)wn(z)Q(z)

∫
b2n(t)wn(t)Q(t)

qn,m(t)
dµ(t)
z − t

, (4.84)

z ∈ D ∩DF . Proceeding as in the proof of Theorem 4.12, we derive that

√
(z − a)(z − b)

∫
b2n(t)wn(t)Q(t)

qn,m(t)
dµ(t)
z − t

= βn(1 + o(1)), (4.85)

where o(1) holds locally uniformly in C \E. Denote by en the error F − gn and observe that (4.84)

and (4.85) imply
1
βn

u2
n−m(z)qn,m(z)(Qen)(z)

q̃2
n(z)

= in(z), z ∈ D \ E, (4.86)

where

in(z) :=
1

wn(z)
1
βn

∫
b2n(t)wn(t)Q(t)

qn,m(t)
dµ(t)
z − t

, z ∈ D \ E,
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is such that √
(z − a)(z − b)wn(z)in(z) = 1 + o(1) (4.87)

locally uniformly in D \ E. In particular, it means that {in} is a normal family in D \ E, as well as{
i
(k)
n

}
for k ∈ N. Now, since (enQ)(j)(η) = P (j)(η) for any j = 0, . . . ,m(η) − 1, we deduce from

(4.86) that (
1
βn

u2
n−m(t)qn,m(t)wn(t)P (t)

q̃2
n(t)

)(j)
∣∣∣∣∣
t=η

=
∣∣∣(wn(z)in(z))(j)

∣∣∣
z=η

for any j = 0, . . . ,m(η)−1. Then by the normality of
{

(wnin)(j)
}

, j = 0, . . . ,m(η)−1, in D\E and

(4.83) we see that Ek,ηn is indeed o(1) locally uniformly in C \ S′. Hence, (4.82) can be rewritten as

σn
β̄n

√
(1− az)(1− bz)

(
jnw

p′/2
n

)
(z) = 1 + o(1), (4.88)

where o(1) holds locally uniformly in D∗F and we used (4.85). Recall that by definition w
p′/2
n has

unit L2-norm. Therefore

σn
|βn|

=
(∫

T

|1 + o(1)|2

|(1− aξ)(1− bξ)|
|dξ|
2π

)1/2

=
1
τ

+ o(1) (4.89)

by the definition of τ (see 4.18). Upon noticing that the right-hand side of (4.88) does not vanish for

all n large enough, we deduce that necessarily jn ≡ 1 for all such n. Moreover, since wp
′/2
n (0) > 0

by the adopted normalization, we deduct from (4.88) that

βn/|βn| = 1 + o(1), (4.90)

and (4.76) follows.

As we established (4.76), we turn our attention to (4.75). Using (4.68) and (4.15) we get

1 + o(1) =
un−m(z)S(ν̇n−m; z)

ψn−m(z)
, (4.91)

where o(1) holds locally uniformly in C \ E and qn = un−mqn,m. Clearly, (4.91) yields

1 + o(1) =
un−m(z)

capn−m(E)
S(wnµ̇; z)S(q̃n/qn,m)

qn,m(z)
Ψm(qn,m; z)

Ψn(z)
q̃n(z)

and successively

1 + o(1) =
bn(z)

capn−m(E)
S(wnµ̇; z)S(q̃n/qn,m)

Ψn(z)
Ψ(z)

, (4.92)

105



where o(1) takes place locally uniformly in DF and we used that qn,m = (1 + o(1))Q on E and

Ψ/Ψm(qn,m; ·) = 1 + o(1) in DF . This, in particular, implies that

λnyn(z)
bn(z)Dn(z)
b(z)ϕn−m(z)

= 1 + o(1),

where o(1) holds locally uniformly in DF ,

λn := ρn−m
√
D(|b2µ̇wn|)

capn−m(E)
S(q̃n/qn,m)
Sn

, and yn(z) :=
SnS(µ̇wn; z)Ψn(z)√
D(|b2µ̇wn|) Dn(z)

b(z)
Ψ(z)

(
ϕ(z)
ρ

)n−m
.

Now, we shall show that λn = 1 + o(1) and yn(z) = 1 + o(1), where o(1) holds locally uniformly in

D. Observe, that |y±n (t)| = 1, t ∈ E, by the very definition of yn. Moreover, log yn is an analytic

function in some neighborhood of T. Indeed, by (4.91), all the zeros of Ψn approach E−1 and the

ratio b/Ψ is zero free; therefore yn is a zero free function in some neighborhood of T (at least for n

large enough). In fact, |yn| is zero free in some neighborhood of D. Further, the winding number of

S(µ̇wn; ·)Ψn(·) on T is equal to −n, since this function is analytic in C \ D and has n zeros there.

The ratio b/Ψ is meromorphic in C\D with m poles there; thus, its winding number on T is equal to

m. The winding number of Dn(·) on T is equal to zero by the very definition of a Szegő function for

a condenser. It follows from [82, Ch. VI] that ϕ has winding number one on T. Thus, the increment

of the argument of yn on T is zero and log yn is well-defined. In turn, this means that log |gn| has

well-defined harmonic conjugate in some neighborhood of T. Now, since the inner normal derivative

times arclength is the differential of the conjugate function, we get that

∫
T

∂

∂n
log |yn|ds = 0.

Then by the virtue of [29, Lemma 4.7] we obtain

inf
T
|yn| ≤ sup

E
|y±n | = 1 = inf

E
|y±n | ≤ sup

T
|yn|. (4.93)

In another connection, (4.92) and the definition of a Szegő function for a condenser yield

|yn| = |λn|−1(1 + o(1)) (4.94)

uniformly on T. Combining (4.93) and (4.94), we get |λn| = 1 + o(1) and |yn| = 1 + o(1), where

o(1) holds uniformly in D (the latter asymptotic formula follows from the maximum principle for
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harmonic functions applied to log |yn|). This shows that {yn} is a normal family in D \E, and since

yn(t0) > 0 for any n ∈ N by the normalization of Szegő functions Dn(·), we derive yn(z) = 1 + o(1)

uniformly in D. Now, it follows from (4.70) that

βn = (2 + o(1))cap2(n−m)(E)S(ν̇n−m). (4.95)

Thus, by (4.90) we get

S(ν̇n−m)|S(ν̇n−m)|−1 = 1 + o(1).

Since S(qn,mQ) = (1 + o(1))S(q2
n,m), the asymptotic formula above yields by the choice of Sn that

SnS(qn,m/q̃n)/|SnS(qn,m/q̃n)| = 1 + o(1).

Therefore, we obtain

λn = (1 + o(1))|λn| = 1 + o(1). (4.96)

So, we deduce that
bn(z)Dn(z)
b(z)ϕn−m(z)

= 1 + o(1),

where o(1) holds uniformly in D ∩ DF . Now, recall that Dn(1/z̄) = 1/D(z). Moreover, the same

property holds for bn, b, and ϕ. Thus,

bn(z)Dn(z)
b(z)ϕn−m(z)

=
(
b(1/z̄)ϕn−m(1/z̄)
bn(1/z̄)Dn(1/z̄)

)
= 1 + o(1),

where o(1) holds locally uniformly in D∗F \D. Since bnDn/bϕn−m is analytic across T, (4.75) holds.

It only remains to prove (4.77) and (4.78). Combining asymptotic formulae (4.95) and (4.96)

with the definition of λn, we get

βn = (2 + o(1))cap2(n−m)(E)S(ν̇n−m) = (2 + o(1))
D(|b2µ̇w|)ρ2(n−m)

λ2
n

= (2 + o(1))D(|b2µ̇w|)ρ2(n−m). (4.97)

Hence, (4.77) follows. Further, (4.78) is deduced from (4.84), (4.85), (4.97), and (4.75).

Proof of Theorem 4.16: The conclusions of this theorem will follow upon showing that (4.65) holds
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with v2n = q̃2
n. As observed in the proof of Theorem 4.11, we have that

|Ψ±n (x)|2 = |R2n(ϕ±i (x))|, x ∈ E,

where Ψn = Ψn(q̃n) and R2n(ζ) =
∏n
j=1

(
(1− ϕi(1/ξj,n)ζ)/(1− ϕi(1/ξ̄j,n)ζ)

)2. Thus, we need to

show that

max
n
‖R2n‖T ≤ exp

(
4r2

1− r1
V (arg(s);E)

)
.

The latter follows from Lemmas 4.8, 4.19 and positivity of ŝ.

Before we prove Corollary 4.17, we need one auxiliary lemma.

Lemma 4.21 Let r = p/q be a rational function of degree d, ζ ∈ C, and δ > 0. Assume further that

p and q have no zeros in {z : |z − ζ| ≤ δ}. Then for any k < d, k ∈ N, there exists ck independent

of r such that ∣∣∣r(k)(ζ)/r(ζ)
∣∣∣ ≤ Ckdk. (4.98)

Proof: Clearly, if T is a polynomial of degree at most d with no zeros in {z : |z − ζ| ≤ δ}, then

∣∣∣∣T (j)(ζ)
T (ζ)

∣∣∣∣ ≤ d · . . . · (d− j − 1)
δj

≤
(
d

δ

)j
, (4.99)

j = 1, . . . , k. Moreover, it is easy to verify that

∣∣∣∣∣T (ζ)
(

1
T (ζ)

)(j)
∣∣∣∣∣ =

∣∣∣∣∣∣
j∑
l=1

∑
P
di=l

∏
P
sidi=j

cl,{di},{si}

(
T (si)(ζ)
T (ζ)

)di∣∣∣∣∣∣ ≤ c∗jdj , (4.100)

j = 1, . . . , k, where coefficients cl,{di},{si} do not depend on T and we used (4.99). Then

∣∣∣∣r(k)(ζ)
r(ζ)

∣∣∣∣ =

∣∣∣∣∣∣∣
k∑
j=1

 k

j

 p(j)(ζ)
p(ζ)

q(ζ)
(

1
q(ζ)

)(k−j)
∣∣∣∣∣∣∣ ≤

k∑
j=1

 k

j

 c∗k−j
δj

dk = ckd
k,

where we used (4.100).

Proof of Corollary 4.17: For each η ∈ S′ we decompose qn,m as

qn,m(z) = un,η(z)qn,η(z), qn,η(z) :=
m(η)∏
j=1

(z − ηj,n).
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Recall that ηj,n are such that limn→∞ ηj,n = η for all j = 1, . . . ,m(η). Then we derive from (4.86)

for each η ∈ S′ the following:

En,η(z)qn,η(z) = in(z), z ∈ D \ E, (4.101)

where

En,η(z) :=
1
βn

u2
n−m(z)un,η(z)(Qen)(z)

q̃2
n(z)

, z ∈ D \ E.

It is easy to check that

E(k)
n,η(η) =

(
1
βn

u2
n−m(z)un,η(z)P (z)

q̃2
n(z)

)(k)
∣∣∣∣∣
z=η

(4.102)

for all k = 0, . . . ,mn(η)− 1, where R = P/Q and

En,η(η) =
(

1
2

+ o(1)
)

1
D (|b2µ̇w|)

(
ϕ(η)
ρ

)2(n−m)
un,η(η)P (η)
Dn(η)q̃2

n,m(η)
(4.103)

by (4.75) and (4.97). Since En,η(η)qn,η(η) 6= 0 for all n large enough by (4.103), (4.76), (4.87), and

(4.101), we derive for any k = 0, . . . ,m(η)− 1 that

(En,η(z)qn,η(z))(k)
∣∣∣
z=η

= i(k)
n (η). (4.104)

Thus, we get for k = 0 that

χm(η)
n qn,η(η) = −1, χn :=

(
−En,η(η)

in(η)

)1/m(η)

. (4.105)

Observe that χn tends to infinity geometrically fast as follows from (4.103) and the normality of

{in}. Putting k = 1 we obtain

χm(η)−1
n q′n,η(η) =

1
χn

(
i′n(η)
in(η)

−
E′n,η(η)
En,η(η)

)
= o(1) (4.106)

since E(j)
n,η(η), j = 0, 1, coincides with the value at η of a rational function (see (4.102)) and therefore

the second term on the right-hand side of (4.106) has polynomial order of growth by Lemma 4.21
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while 1/χn decays exponentially. Continuing by induction we get

χm(η)−k
n q(k)

n,η(η) =
1
χkn

i
(k)
n (η)
in(η)

−
k∑
j=1

 k

j

 E
(j)
n,η(η)

En,η(η)
χ
m(η)−k+j
n q

(k−j)
n,m (η)

χjn
= o(1), (4.107)

for any k = 2, . . . ,m(η)− 1. Equations (4.105) and (4.107) immediately imply

m(η)∏
j=1

(z + χn(η − ηj,n)) = zm(η) +
m(η)−1∑
k=0

χm(η)−j
n q(j)

n,η(η)zj = zm(η) − 1 + o(1). (4.108)

In particular, this means that

ηk,n = η +
1 + o(1)
χn

exp
(

2πk
m(η)

i

)
. (4.109)

By setting

hn,η :=
(
ϕ(η)
ρ

)2n/m(η) 1
χn
,

we see that equations (4.80) follow. The boundedness of {|hn,η|} is a consequence of (4.103) and

(4.105).

Proof of Proposition 4.18: Formula (4.81) is a straightforward consequence of (4.72).

Padé Approximation

In this section, we turn our attention to multipoint Padé approximation. As before, we

shall denote diagonal multipoint diagonal Padé approximant of order n by Πn = pn/qn. We are

interested in answers to the same questions that were raised in the preceding section for meromorphic

approximants.

Theorem 4.22 Let A = {A2n}n∈N be a strongly admissible interpolation scheme and F(µ;R; ·) be

given by (1.2), where R = P/Q has no poles on E and µ̇ is a product of a non-vanishing Dini-

continuous function on E and ŝ, defined by (4.64) and (4.65) with v2n associated to An via (2.37).

Let further {Πn}n∈N, Πn = pn/qn, be a sequence of diagonal multipoint Padé approximants to F

associated with A. Then

q2
n(z)

Ψ2n(z)
v2n(z)

=
αn
S(µ̇)

(
1
2

+ o(1)
)

Ψ2(z)
S2(µ̇; z)

(4.110)
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locally uniformly in DF , where Ψ2n(·) = Ψ2n(v2n; ·) and Ψ(·) = Ψm(Q; ·). Moreover, we have that

αn = (2 + o(1))cap2(n−m)(E)S(µ̇)S
(
Q2

v2n

)
. (4.111)

Further, the following error estimate holds locally uniformly in DF :

(F −Πn)(z) = S2(µ̇; z)
2S(µ̇) + o(1)√
(z − a)(z − b)

Ψ2n(z)
Ψ2(z)

, (4.112)

where the sign of the square root is chosen such that
√

(z − a)(z − b) = z +O(1) as z →∞.

It follows from the preceding theorem that polynomials qn can be written as un−mqn,m,

where un−m has no zeros on any compact K ⊂ D \ E and qn,m = (1 + o(1))Q in C \ S′. Let

η1,n, . . . ηm(η),n be the zeros of qn approaching η ∈ S′. Then the following holds.

Corollary 4.23 For each η ∈ S′ and all n large enough there exists an arrangement of η1,n, . . . ηm(η),n

such that

ηk,n = η + (hn,η + o(1)) (Ψ2n(η))1/m(η) exp
(

2πk
m(η)

i

)
, k = 1, . . . ,m(η), (4.113)

where {|hn,η|} is a bounded above sequence.

Proof of Theorem 4.22: Recall (cf. (2.38)) that the denominators of Πn satisfy the following non-

Hermitian orthogonality relations

∫
tjqn(t)Q(t)

dµ(t)
v2n(t)

= 0, j = 0, . . . , n−m− 1.

As shown in Theorem 3.16, polynomials qn can be written as un−mqn,m, where qn,m = (1 + o(1))Q

locally uniformly in C\S′. Thus, we may apply Theorems 4.11 and 4.12 with ν̇n−m := qn,mQµ̇/v2n.

Define

αn :=
∫
q2
n(t)

dµ(t)
v2n(t)

.

Since Q has no poles on E, we get from Theorem 4.12 that

αn = (1 + o(1))
∫
u2
n−m(t)dνn−m(t) = (2 + o(1))cap2(n−m)(E)S(µ̇)S

(
Q2

v2n

)
.
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Further, from Theorem 4.11 and equation (4.15) we derive that

u2
n−m(z)

ψ2(n−m)(z)
=

1 + o(1)
S2(ν̇n−m; z)

=
1 + o(1)
S2(µ̇; z)

S2

(
v2n

qn,mQ
; z
)

=
1 + o(1)
S2(µ̇; z)

S
(
Q2

v2n

)
v2n(z)
Ψ2n(z)

Ψ(z)Ψm(qn,m; z)
Q(z)qn,m(z)

ϕ
2(n−m)
i (z), (4.114)

where o(1) holds locally uniformly in C \E. Since qn,m/Q = 1 + o(1) and Ψm(qn,m; ·)/Ψ = 1 + o(1)

locally uniformly in DF , (4.110) and (4.111) follow.

Proceeding as in the proof of Theorem 3.15, we see that

(F −Πn)(z) =
v2n(z)
q2
n(z)

qn,m(z)
Q(z)

∫
u2
n−m(t)

dνn−m(t)
z − t

, z ∈ DF . (4.115)

Using the arguments from the proof of Theorem 4.12, we obtain

(F −Πn)(z) = αn
v2n(z)
q2
n(z)

1 + o(1)√
(z − a)(z − b)

,

where o(1) holds locally uniformly in DF . Now, (4.112) follows from (4.110), which finishes the

proof of the theorem.

Proof of Corollary 4.23: Denote by en the error F −Πn and observe that (4.115) implies

1
αn

u2
n−m(z)qn,m(z)(Qen)(z)

v2n(z)
= in(z), z ∈ C \ E, (4.116)

where

in(z) :=
1
αn

∫
q2
n(t)

v2n(t)
Q(t)
qn,m(t)

dµ(t)
z − t

, z ∈ D \ E,

is such that √
(z − a)(z − b)in(z) = 1 + o(1) (4.117)

locally uniformly in C \ E. In particular, it means that {in} is a normal family in C \ E, as well as{
i
(k)
n

}
for k ∈ N.

Now, for each η ∈ S′ we decompose qn,m as

qn,m(z) = un,η(z)qn,η(z), qn,η(z) :=
m(η)∏
j=1

(z − ηj,n).
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Recall that ηj,n are such that limn→∞ ηj,n = η for all j = 1, . . . ,m(η). Then we derive from (4.116)

for each η ∈ S′ the following:

En,η(z)qn,η(z) = in(z), z ∈ C \ E, (4.118)

where

En,η(z) :=
1
αn

u2
n−m(z)un,η(z)(Qen)(z)

v2n(z)
, z ∈ C \ E.

It is easy to check that

E(k)
n,η(η) =

(
1
αn

u2
n−m(z)un,η(z)P (z)

v2n(z)

)(k)
∣∣∣∣∣
z=η

(4.119)

for all k = 0, . . . ,m(η)− 1, where R = P/Q and

En,η(η) =
(

1
2

+ o(1)
)(

Ψ
Q

)2

(η)
un,η(η)P (η)
S(µ̇)S(µ̇; η)

1
Ψ2n(η)

(4.120)

by (4.114) and (4.111). Since En,η(η)qn,η(η) 6= 0 by (4.118) and (4.120), we derive for any k =

0, . . . ,m(η)− 1 that

(En,η(z)qn,η(z))(k)
∣∣∣
z=η

= i(k)
n (η). (4.121)

Thus, we get for k = 0 that

χm(η)
n qn,η(η) = −1, χn :=

(
−En,η(η)

in(η)

)1/mn(η)

. (4.122)

Observe that χn tends to infinity geometrically fast as follows from (4.120) and the normality of

{in}. Putting k = 1 we obtain

χm(η)−1
n q′n,η(η) =

1
χn

(
i′n(η)
in(η)

−
E′n,η(η)
En,η(η)

)
= o(1) (4.123)

since E(j)
n,η(η), j = 0, 1, coincides with the value at η of a rational function (see (4.119)) and therefore

the second term on the right-hand side of (4.123) has polynomial order of growth by Lemma 4.21

while 1/χn decays exponentially. Continuing by induction we get

χm(η)−k
n q(k)

n,η(η) =
1
χkn

i
(k)
n (η)
in(η)

−
k∑
j=1

 k

j

 E
(j)
n,η(η)

En,η(η)
χ
m(η)−k+j
n q

(k−j)
n,m (η)

χjn
= o(1), (4.124)
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for any k = 2, . . . ,m(η)− 1. Equations (4.122) and (4.124) immediately imply

m(η)∏
j=1

(z + χn(η − ηj,n)) = zm(η) +
m(η)−1∑
k=0

χm(η)−j
n q(j)

n,η(η)zj = zm(η) − 1 + o(1). (4.125)

In particular, this means that

ηk,n = η +
1 + o(1)
χn

exp
(

2πk
m(η)

i

)
. (4.126)

By setting

hn,η := (Ψ2n(η))1/m(η) 1
χn
,

we see that equations (4.113) follow. The boundedness of {|hn,η|} is a consequence of (4.126) and

(4.120).

Numerical Experiments

The Hankel operator Hf with symbol f ∈ H∞ + C(T) is of finite rank if and only if f is

a rational function [91, Thm. 3.11]. In practice one can only compute with finite rank operators,

due to the necessity of ordering the singular values, so a preliminary rational approximation to f is

needed when the latter is not rational. One way to handle this problem is to truncate the Fourier

series of f at some high order N . This provides us with a rational function fN that approximates f

in the Wiener norm which, in particular, dominates any Lp norm on the unit circle, p ∈ [1,∞]. It

was proved in [62] that the best approximation operator from H∞n (mapping f to gn according to

(2.24)) is continuous in the Wiener norm provided (n+ 1)-st singular value of the Hankel operator

is simple. It was shown in [22, Cor. 2] that the last assertion is satisfied for Hankel operators with

symbols in some open dense subset of H∞ + C(T), and the same technique can be used to prove

that it is also the case for the particular subclass (1.2). Thus, even though the simplicity of singular

values cannot be asserted beforehand, it is generically true. When it prevails, one can approximates

fN instead of f and get a close approximation to gn when N is large enough. This amounts to

perform the singular value decomposition of HfN (see [135, Ch. 16]).

As to Padé approximants, we restricted ourselves to the classical case and we constructed

their denominators by solving the orthogonality relations (2.38) with w2n ≡ 1. Thus, finding these

denominators amounts to solving a system of linear equations whose coefficients are obtained from

the moments of the measure µ.
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In the numerical experiments below we approximate function f given by the formula

F(z) = 7
∫

[−0.7,0]

eit

z − t
dt√

(t+ 0.7)(0.4− t)
+
∫

[0,0.4]

it+ 1
z − t

dt√
(t+ 0.7)(0.4− t)

+
1

5!(z − 0.7− 0.2i)6
.

On the figures the solid line stands for the support of the measure and circles denote the

poles of the corresponding approximants.
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Figure 4: Poles of Padé (left) and AAK (right) approximants of degree 10 to F .
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Figure 5: Poles of Padé (left) and AAK (right) approximants of degree 20 to F .
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Figure 6: Poles of Padé (left) and AAK (right) approximants of degrees 21-33 to F lying in an
neighborhood of the polar singularity.
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CHAPTER V

ON MULTIPLICITY OF SINGULAR VALUES OF CERTAIN
HANKEL OPERATORS

The modest objective of the present chapter is to prove that the multiplicities of the sin-

gular values of Hankel operators whose symbol is the Cauchy transform of a complex measure with

argument of bounded variation is bounded in terms of that variation. If moreover the measure is

sufficiently nonvanishing, the singular values are asymptotically simple. This also entails results

on the conjugate Hankel operator as an anti-linear operator. The methods employed rely on the

techniques developed in Chapter III, which is the reason to present forthcoming results in this thesis.

In the most general setting a Hankel operator is an operator acting on `2 given in the canon-

ical basis by a matrix of the form {αj+k}j,k≥0 with αj ∈ C. Such a definition admits numerous

realizations which, in turn, imply a wide range of applications of Hankel operators. In particular,

they appeared to be an extremely important class of operators in approximation theory. The elab-

oration of the properties of Hankel operators from the approximation view point initiated with the

celebrated AAK-Theory that showed the link between meromorphic approximation of L∞ functions

and singular numbers of the corresponding Hankel operators ([1], see also [97, Ch. 4]). Later, this

theory was generalized to Lp functions on the unit circle, 2 ≤ p ≤ ∞ ([28], [104], and [80]), and

to more general domains of approximation (see [102]). Moreover, these methods turned out to be

instrumental for investigating the degree of rational approximation of analytic functions (see [98],

[90], and [105]) and helped to describe classes of analytic functions in the disk (Besov spaces) in

terms of the rate of rational approximation (see [94], [95], [93], and [116]). In another connection,

Hankel operators also play a significant role in operator theory. In particular, G. Pisier [99] (see also

[97, Thm. 15.3.1]) showed that there are polynomially bounded operators on a Hilbert space that

are not similar to a contraction by using Hankel operators techniques. Further, it was shown that

geometric problems in the theory of stationary Gaussian processes can be reduced to the question of

describing those bounded linear operators on a Hilbert space that are unitary equivalent to Hankel

operators. A program of N. K. Nikolskii to characterize such bounded linear operators in spectral

terms (see [85]) was successfully completed in the self-adjoint case (see [79]). In the course of the

proof it was shown that the absolute value of difference of the multiplicities of symmetric eigenval-

ues of a Hankel operator (self-adjoint or not) is bounded by one. Nevertheless the question of the

boundedness of the multiplicities themselves remained open.
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Statements of the Results

Throughout this section the capital letters H and K shall be reserved for the notation of

Hilbert spaces. Further, L(H;K) will stand for the space of linear operators from H to K.

It will be convenient for us to use the following formal definition of Hankel operators acting

on the Hardy class H2. Let f ∈ L∞(T). The Hankel operator with symbol f , denoted by Hf ∈

L(H2; H̄2
0 ), is defined by the rule

Hf (h) := P−(fh),

where P− is the antianalytic projection, i.e. the projection of L2(T) onto H̄2
0 .

For n ∈ Z+, the n-th singular number of the operator Hf is defined as

sn(Hf ) := inf
{
‖Hf −O‖ : O : H2 → H̄2

0 a linear operator of rank ≤ n
}
,

where ‖ · ‖ stands for the operator norm between two Hilbert spaces. Clearly {sn(Hf )}n∈N is

nonincreasing sequence. By s∞(Hf ) we shall denote the distance from Hf to compact operators,

i.e.

s∞(Hf ) = lim
n→∞

sn(Hf ).

By the well-known theory of E. Schmidt (cf. [86, Vol. I, Thm. 7.1.1]), s is a singular number of a

compact operator O ∈ L(H;K) if and only if s2 is an eigenvalue of the operator O∗O, where O∗ is

the adjoint operator to O.

Although {sn(Hf )} is nonincreasing, it is not necessarily strictly decreasing. Let µn(Hf )

stand for the multiplicity of sn(Hf ), i.e. µn(Hf ) is an integer such that there exist constants

k, j ∈ Z+ for which µn(Hf ) = j − k − 1 and

sk(Hf ) > sk+1(Hf ) = . . . = sn(Hf ) = . . . = sj−1(Hf ) > sj(Hf ).

The main goal of this chapter is to investigate the behavior of the sequence {µn(Hf )} for Hankel

operators whose symbol assumes some special form.

Theorem 5.1 Let F(µ;R; ·) be of the form (1.2), where the measure µ satisfies (3.1) and (3.2)

with S = supp(µ) ⊂ (−1, 1), while R = P/Q is a rational function with no poles on T. Then the

sequence of multiplicities of singular values of the Hankel operator HF , {µn(HF )}n∈Z+ , is uniformly
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bounded. More precisely, the following upper bound holds for any n ∈ Z+:

µn(HF ) ≤ 2
π

(V (Θ) + V (arg(Q; ·); [a, b]) + πm+ VW) +NW + 1, (5.1)

where [a, b] is the convex hull of S, m = degQ,

NW := max
n∈Z+

#{ξ ∈ T : wn(ξ) = 0}, (5.2)

VW := sup
n∈Z+

V (arg(wn; ·); [a, b]), (5.3)

and wn is the outer factor of a singular vector vn with exactly n zeros in D associated to gn, the best

meromorphic approximant to F of order n given by the AAK-Theory12.

The finiteness of the constants NW and VW will be shown during the proof the theorem.

It is worth noting that in the case where F is just a Markov function, i.e. the Cauchy

transform of a positive measure supported on the real line, all the singular values of the corresponding

Hankel operator are simple (see [27]). This phenomenon is due to the positivity of the measure and

cannot be expected to hold in the complex case. Nevertheless, in the case where F is the Cauchy

transform of a complex measure supported on an interval that has a Dini continuous nonvanishing

Radon-Nykodim derivative with respect to the logarithmic equilibrium distribution on this interval, it

is possible to deduce more detailed information on the sequence of outer factors {wn}, which, in turn,

can be used to show that singular values of the corresponding Hankel operator are asymptotically

simple.

Theorem 5.2 Let F(µ;R; ·) be given by (1.2), where the measure µ ∈ BND0 and R = P/Q is a

rational function with no poles on T. Then µn(HF ) = 1 for all n large enough.

Proofs

The proofs of the theorems rely on one known result that is significant on its own. For the

ease of the reader we present it below. However, before we state this theorem we need to introduce

several additional concepts. Let, as before, f ∈ L∞(T). Recall that the Toeplitz operator with symbol

f , Tf ∈ L(H2), is defined as

Tf (h) := P+(fh).

It is easy to see that

Tf +Hf =Mf ,

12Solution of the meromorphic approximation problem for p = ∞.
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where Mf : H2 → L2(T) is the operator of multiplication by f . Recall also that an operator

O ∈ L(H) is called Fredholm if it is invertible modulo compact operators. The index of a Fredholm

operator O is defined by

ind(O) := dim ker(O)− dim ker(O∗).

The essential spectrum, σe(O), of a bounded operator O is, by definition,

σe(O) := {z ∈ C : O − zI is not Fredholm} .

The next notion that we need is the notion of the winding number with respect to the origin

of a continuous function on T. Let u ∈ C(T) and let arg(u; ·) be any branch of the argument of u.

Assume further that u does not vanish on T. Then the winding number of u with respect to the

origin is defined by

wind(u) :=
1

2π
[arg(u; 2π)− arg(u; 0)] .

Clearly wind(u) does not depend on the choice of the branch of the argument of u.

In general, let u be an invertible function in H∞ + C(T), i.e. 1/u ∈ H∞ + C(T). Denote

also by u the harmonic extension of u into D. Then it is known (see [97, Thm. 3.3.5]) that there

exists r0 ∈ (0, 1) such that |u| is bounded away from zero on the annulus {z : r0 < |z| < 1} and

functions ur(ξ) := u(rξ), ξ ∈ T, have the same winding number for any r ∈ (r0, 1). Thus, for any

invertible function u in H∞ + C(T) we define the winding number as

wind(u) := wind(ur), r ∈ (r0, 1).

Now we can describe the essential spectrum of a Toeplitz operator (see [97, Thm. 3.3.8]).

Theorem P Let u ∈ H∞ + C(T). Then for any z0 /∈ σe(Tu)

ind(Tu − z0I) = −wind(u− z0). (5.4)

Moreover, if u is a continuous function then σe(Tu) = u(T).

For the upcoming proofs lets recall one more concept, namely, the angle in which an interval

is seen at a point. For any ξ 6= 0 ∈ C, we let Arg(ξ) ∈ (−π, π] be the principal branch of the argument

and for ξ = 0 we set Arg(0) = π. Under such a definition, Arg(·) becomes a left continuous function

122



on R. Now, for any interval [a, b] ⊂ R we define the angle in which this interval is seen at ξ ∈ C by

Angle(ξ, [a, b]) := |Arg(a− ξ)−Arg(b− ξ)|.

It is easy to see that for any ξ /∈ D and any [a, b] ⊂ (−1, 1) there holds

Angle(ξ, [a, b]) ≤ π/2.

Proof of Theorem 5.1: Fix an arbitrary n ∈ Z+. Without loss of generality we may assume that

sn−1(HF ) > sn(HF ). Denote by gn the best meromorphic approximant to F on T out of H∞n (recall

that gn is unique by the compactness of HF ). Then, the by circularity property (2.27), the function

un := sn(HF )−1(F − gn)

is unimodular almost everywhere on the unit circle. It is known [97, Thm. 4.1.7] that in this case

dim ker(Tun) = 2n+ µn(HF ).

It is also known [97, Thm. 3.1.4] that either ker(Tu) = {0} or ker(T ∗u ) = {0} for any nonzero function

from L∞(T). Thus,

ind(Tun) = dim ker(Tun) = 2n+ µn(HF ). (5.5)

Therefore, upon showing that un is a continuous and nonvanishing function on T, we will obtain

from (5.5) and (5.4) that

µn(HF ) = −2n− wind(un). (5.6)

Indeed, in this case zero does not belong to σe(Tun) = u(T) and we may apply Theorem P. To show

continuity of un recall that by the AAK Theorem there exists a singular vector vn ∈ H2 with the

inner-outer factorization

vn = bnwn, (5.7)

where bn is a Blaschke product of exact degree n and wn is an outer function, such that

un =
HF (vn)
vn

. (5.8)
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Moreover, it is known (see e.g. [28, Sec. 8 and 9]) that HF (vn) has the following representation

HF (vn)(z) =
sn(HF )

z
(jnbnwn)

(
1
z̄

)
, z ∈ C \ D, (5.9)

where jn is some inner function.

In another connection, by the definition of Hankel operators and (1.2) we have that

HF (vn)(z) = P−(Fvn)(z) =
1

2πi

∫
T

F(ξ)vn(ξ)
z − ξ

dξ

=
1

2πi

∫
T

∫
vn(ξ)

(z − ξ)(ξ − x)
dµ(x)dξ +

1
2πi

∫
T

R(ξ)vn(ξ)
z − ξ

dξ

=
∫
vn(x)
z − x

dµ(x) +
1

2πi

∫
T

P (ξ)vn(ξ)
z − ξ

dξ

Q(ξ)
, z ∈ C \ D, (5.10)

where R = P/Q. Note that the second integral in (5.10) is, in fact, a rational function with

denominator Q by the Cauchy integral formula. Combining (5.9) and (5.10) we get that

(jnbnwn)(z) = sn(HF )−1

(∫
vn(x)
1− xz

dµ(x) +
1

2πi

∫
T

P (ξ)vn(ξ)
1− ξz̄

dξ

Q(ξ)

)
, z ∈ D. (5.11)

Observe that the right-hand side of (5.11) is well-defined for z ∈ D∗F , where D∗F is the reflection

across the unit circle of DF , the domain of analyticity of F . In other words, equation (5.11) provides

an analytic continuation of the product jnbnwn outside of the unit disk. In particular, this means

that jn is a finite Blaschke product and the number of zeros of wn on T is finite. Let {ζj,n} be the

set of zeros of wn on T. Then wn can be written as

wn(z) = w#
n (z)Pn(z), Pn(z) :=

∏
j

(z − ζj,n), (5.12)

where w#
n is an analytic and zero-free function in some neighborhood of D. Then (5.8) with the help

of (5.7), (5.9), and (5.12) yields

un(ξ) =
sn(HF )

ξ

(jnbnw
#
n )(ξ)

(bnw
#
n )(ξ)

∏
j

(
− 1
ζj,nξ

)

=
sn(HF )
ξ(jnb2n)(ξ)

w#
n (ξ)

w#
n (ξ)

∏
j

(
− 1
ζj,nξ

)
, ξ ∈ T. (5.13)

Equation (5.13) shows that un is a continuous nonvanishing function on T which, in turn, validates

equation (5.6).
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Denote by Qn the numerator of the Blaschke product jn. Then we obtain from (5.13) that

wind(un) = −1− deg(Pn)− deg(Qn)− 2n, (5.14)

since w#
n is zero-free and analytic in some neighborhood of D. Combining (5.14) and (5.6) we get

that

µn(HF ) = deg(Qn) + deg(Pn) + 1 ≤ deg(Qn) +NW + 1, (5.15)

where NW was defined in (5.2). Thus, to prove (5.1) it remains to show that

kn := deg(Qn) ≤ 2
π

(V (Θ) + V (arg(Q; ·); [a, b]) +mπ + VW) (5.16)

and that the constants NW and VW are finite. Recall that VW was defined in (5.3).

It was shown in Lemma 3.11 that the sequence {wm}m∈Z+ forms a normal family in D∗F .

Moreover, the zero function is not a limit point of this family, since ‖wm‖2 = 1 for each m ∈ Z+.

This proves the finiteness of NW .

Now, recall that jn can be represented as jn = Qn/Q̃n, where p̃(z) = zkp(1/z̄), k = deg(p),

for any polynomial p. Similarly we can write bn = qn/q̃n, where qn is a monic polynomial with all

zeros in D and of exact degree n. Let z0 ∈ D be such that (qnQn)(z0) = 0. Then we deduce from

(5.11) that ∫
vn(x)

1− xz̄0
dµ(x) +

1
2πi

∫
T

P (ξ)vn(ξ)
1− ξz̄0

dξ

Q(ξ)
= 0. (5.17)

By taking linear combinations of equation (5.17) with different roots of qn and Qn we obtain that

∫
p(x)vn(x)

q̃n(x)Q̃n(x)
dµ(x) +

1
2πi

∫
T

p(ξ)P (ξ)vn(ξ)

q̃n(ξ)Q̃n(ξ)

dξ

Q(ξ)
= 0 (5.18)

for any polynomial p of degree at most n + kn − 1. It can be readily verified that equation (5.18)

and the Cauchy integral theorem imply the following orthogonality relations

∫
xjQ(x)vn(x)

q̃n(x)Q̃n(x)
dµ(x) = 0, j = 0, . . . , n+ kn −m− 1. (5.19)

By using the inner-outer factorization (5.7) we can rewrite (5.19) in the form

∫
xjqn(x)

Q(x)wn(x)

q̃2
n(x)Q̃n(x)

dµ(x) = 0, j = 0, . . . , n+ kn −m− 1. (5.20)
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Then the bound (3.6) of Lemma 3.3-(a) applied with k = 1 together with orthogonality relations

(5.20) yields

(n+ kn −m)π ≤ V

(
arg

(
qn(x)Q(x)wn(x)

q̃2
n(x)Q̃n(x)

; ·

)
+ Θ; [a, b]

)
, (5.21)

where [a, b] is the convex hull of the measure µ. It follows from the normality of the family {wm}m∈Z+

in D∗F that the sequence {V (wm; [a, b])}m∈Z+ is uniformly bounded, i.e. VW is finite. Therefore by

(5.21) and the sublinearity of V (·; [a, b]) we obtain

(n+ kn)π ≤ V (Θ) + V (arg(Q; ·); [a, b]) +mπ + VW

+V
(

arg
(
qn
q̃2
n

; ·
)

; [a, b]
)

+ V
(

arg
(
Q̃n; ·

)
; [a, b]

)
. (5.22)

Write qn(z) =
∏n
j=1(z − ξj,n). It was shown in [19, Lemma 5.2] that

V

(
arg
(
qn
q̃2
n

; ·
)
, [a, b]

)
≤

n∑
j=1

Angle(ξj,n, [a, b]). (5.23)

By writing the polynomial Qn in the form Qn(z) =
∏kn
j=1(z−ηj,n) we obtain from the monotonicity

of Angle(·, [a, b]) that

V
(

arg
(
Q̃n; ·

)
; [a, b]

)
≤

kn∑
j=1

V (arg(· − 1/η̄j,n), [a, b])

=
kn∑
j=1

Angle(1/η̄j,n, [a, b]) ≤
knπ

2
, (5.24)

since ηj,n ∈ D for all j = 1, . . . , kn. Combining (5.22), (5.23), and (5.24) we get that

n∑
j=1

(π −Angle(ξj,n, [a, b])) +
knπ

2
≤ V (Θ) + V (arg(Q; ·); [a, b]) +mπ + VW . (5.25)

The last inequality proves (5.16) and therefore the assertion of the theorem.

Proof of Theorem 5.2: Let Λ be a subsequence of natural numbers defined by the rule

Λ := {n ∈ N : sn−1(HF ) > sn(HF )} ,

where sn(HF ) stands, as before, for the n-th singular value of the Hankel operator with symbol F .

It is obvious that we may apply the preceding theorem for a measure of the form (??). Namely, it
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can be deduced from equations (5.12) and (5.15) that

µn(HF ) ≤ deg(Qn) + # {ξ ∈ T : wn(ξ) = 0}+ 1, n ∈ Λ, (5.26)

where jn = Qn/Q̃n and wn were defined in (5.7)-(5.9), with vn being a singular vector with exactly

n poles associated to the best meromorphic approximant to F of order n.

As shown in Theorem 4.15 that in the case where the measure µ belongs to BND0 the

sequence {jnwn} is not only a normal family in D∗F , where S′ is the set of poles of R, but also is

locally uniformly convergent to the function

w(z) =
τ√

(1− az)(1− bz)
,

where τ is some positive constant defined in (4.18). This, in particular, means that

lim
n→∞

# {ξ ∈ T : wn(ξ) = 0} = 0

and for n large enough jn ≡ 1. Combining equation (5.26) with these two observations the theorem

follows.
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APPENDIX

For the reader’s convenience, we formulate three propositions that are of particular use to

us. The first two are potential-theoretic in nature and the third one deals with representation of

harmonic functions.

On Balayage of Equilibrium Measures

These two propositions are of common knowledge for the potential-theoretic community but

the author encountered some difficulties in his attempts to location appropriate references in the

literature.

Proposition A.1 Let E ⊂ D be a compact set of positive capacity not containing 0 with connected

complement, and E∗ stand for its reflection across the unit circle, i.e. E∗ := {z ∈ C : 1/z̄ ∈ E}.

Further, let µ ∈ Λ(E) and σ ∈ Λ(E∗) solve the signed energy problem for the condenser (E,E∗).

Then, we have that

(a) σ is reflected from µ across the unit circle, i.e. σ(B) = µ(B∗) for any Borel set B, and likewise

µ is reflected from σ;

(b) µ is the Green equilibrium distribution on E relative to C \E∗ and σ is the Green equilibrium

distribution on E∗ relative to C \ E;

(c) µ̃ = σ̃, where λ̃ denotes the balayage of the measure λ onto the unit circle. Moreover, the

balayage of µ̃ onto E is µ and the balayage of µ̃ onto E∗ is σ;

(d) µ̃ is the Green equilibrium distribution on T relative to both C \ E and C \ E∗;

(e) µ is the Green equilibrium distribution on E relative to D and σ is the Green equilibrium

distribution on E∗ relative to C \ D. Further,

U eµ
G(z; C \ E) =

1
C(E,T)

, z ∈ C \ D, and U eµ
G(z; C \ E∗) =

1
C(E∗,T)

, z ∈ D,

where in fact

C(E,T) = C(E∗,T).

Proof: (a) First of all we observe that E∗ is compact since E does not contain 0. Then, if we denote

by µ′ and σ′ respectively the reflections of µ and σ across T, and likewise by z′ the reflection of the
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point z ∈ C, we get on changing variables in (2.7)

I[µ− σ] =
∫

log
|z′t′|
|t′ − z′|

d(µ′ − σ′)(t′)d(µ′ − σ′)(z′)

= I[σ′ − µ′] +
∫

log |z′|d(σ′ − µ′)(t′)d(σ′ − µ′)(z′) +
∫

log |t′|d(σ′ − µ′)(t′)d(σ′ − µ′)(z′)

= I[σ′ − µ′], (A.1)

where the last equality uses that log |z| is bounded on E ∪ E∗ together with Fubini’s theorem and

the fact that σ′ − µ′ has total mass zero. Since σ′ ∈ Λ(E) and µ′ ∈ Λ(E∗) we get that µ = σ′ and

σ = µ′ by uniqueness of the solution to the signed energy problem on (E,E∗).

(b) This follows immediately from [113, Cor. VIII.2.7] as applied to both µ− σ and σ − µ.

(c) Let z0 ∈ D and δz0 be the Dirac measure with a unit mass at z0. Then, by the properties of

balayage (see 2.4), we get for each z ∈ T since the latter is regular

U
eδz0 (z) = − log |z − z0| = − log |z − 1/z̄0| − log |z0| = U

eδ1/z̄0 (z)− gC\D(1/z̄0,∞)− log |z0|.

Therefore the potentials of δ̃z0 and δ̃1/z̄0 differ by a constant on their common support T, and since

these two measures have equal mass and finite energy we get from the unicity theorem [113, Thm.

II.4.6] that δ̃z0 = δ̃1/z̄0 . Using the linearity of balayage [113, Eq. II.4.13] and the definition of σ, we

now obtain

µ̃ =
∫
δ̃tdµ(t) =

∫
δ̃1/t̄dµ(t) =

∫
δ̃tdσ(t) = σ̃.

Since balayage onto ∂E from outside D can be done in two steps (we first balayage onto T and then

onto ∂E), we get on denoting this balayage with a “ ˆ ” that

̂̃µ = ̂̃σ = σ̂ = µ,

where the last equality follows from the properties of equilibrium signed measures mentioned after

(2.7). The equality ̂̃σ = σ is obtained by the same argument.

(d) By (c) the pairs (µ̃, µ) and (µ̃, σ) satisfy the mutual balayage property and therefore solve the

signed energy problem for the condensers (T, E) and (T, E∗), respectively. The assertion now follows

from [113, Cor. VIII.2.7].

(e) We have that

UµG(z; D) = Uµ(z)− U eµ(z) =
∫
gC\E(t,∞)dµ̃(t), q.e. z ∈ E,
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where the first equality is a general property of balayage onto the boundary of a bounded domain

(in our case D since we balayage out µ onto T) [113, Thm. II.5.1] and the second equality follows

from (c) and (2.4) applied with D = C \E and µ̃ in place of µ. Then, since µ has finite energy and

UµG(z; D) is constant q.e. on E, we deduce that µ is the Green equilibrium measure on E relative to

D [113, Thm. II.5.12] and moreover that

1
C(E,T)

=
∫
gC\E(t,∞)dµ̃(t). (A.2)

Now, using again (c) and the general relation between Green potentials and balayage [113, Thm.

II.5.1], this time for the measure µ̃ over the unbounded domain C \ E, we get for any z ∈ C \ D

U bµ
G(z; C \ E) = U eµ(z)− Uµ(z) +

∫
gC\E(t,∞)dµ̃(t) =

1
C(E,T)

where the last equality comes from (A.2) and the fact that U eµ and Uµ coincide on C \ D by the

regularity of T. The assertions on σ and on U bµ
G(z; C \ E∗) are proved in the same manner. Finally,

it follows from the proof of (d) that

1
C(E,T)

= I[µ− µ̃],
1

C(E∗,T)
= I[σ − µ̃],

and since µ̃ is its own reflection across T we get from (a) and a computation similar to (A.1) that

these two quantities indeed coincide.

Proposition A.2 Let E be a compact set of positive capacity and Ω be the unbounded component

of C \ E. Let further σ be a probability measure such that supp(σ) ⊂ Ω. Then, if σ̂ denotes the

balayage of σ onto ∂Ω, it holds that

µEw = σ̂ and Fw =
∫
gC\E(z,∞)dσ(t),

where µEw is the weighted equilibrium distribution on E for the external field −Uσ and Fw is the

modified Robin constant. Moreover, if E is regular, then supp(µEw) = ∂Ω = ∂eE, the so-called

exterior boundary of E.

Proof: This is a consequence of [113, Thm IV.1.10(g)].

130



On Harmonic Measures on DS2-Domains

Harmonic measures are the widely studied subject and representation of the form (2.17)

are well-known. However, it is usual to assume that the boundary consists of a finite number of

Jordan analytic curves (cf. [45, Thm. 1.6.4]). In the following proposition we show validness of

representation (2.17) with more relax assumptions on the smoothness of the boundary and allow

arcs to be part of it.

Proposition A.3 Let D be DS2-domain such that ∂D = γ1 ∪ γ2, where γ1 and γ2 are disjoint

oriented Dini-smooth Jordan arcs. Then

dωD(z, ·) =
1

2π

(
∂

∂n+
gD(·, z) +

∂

∂n−
gD(·, z)

)
ds, (A.3)

where n± are inward normals on both γ1 and γ2 determined by their orientation and ds is the arc

length on ∂D.

Remark: Representation (2.17) is stated to hold for any DS2-domain. It will be clear from the

forthcoming proof that the rest of the cases follow by obvious simplifications.

Proof: Since γ1 is Dini-smooth, it is rectifiable. This, in turn, means that every point of γ1 is

accessible. Thus, every prime end of γ1 is a single point and consequently the set of prime ends

consists of the endpoints of γ1, say γ0
1 and γ1

1 , and positive and negative sides γ+
1 and γ−1 .

Let ϕ1 be a conformal map of D1 := C \ γ1 into D. Then by the Continuity and Prime End

Theorems ([100, Sec 2.1]) ϕ1 extends to a homeomorphism of D1
±

(recall that D1
±

:= D1 ∪ γ+
1 ∪

γ−1 ∪ {γ0
1 , γ

1
1}) into D. Moreover, by [100, Thm. 3.9]

w → (ϕ−1
1 )′(w)

(w − ϕ1(γ0
1))(w − ϕ1(γ1

1))
(A.4)

extends continuously to D→ C \ {0}. It is clear that γ3 := ϕ1(γ2) ⊂ D is a Dini-smooth arc. It was

shown in [23, Prop. 4.2] that there exists a conformal map ϕ2 from D2 := D \ γ3 into A1,r, for some

r > 1 such that T is mapped into Tr and γ+
3 ∪ γ

−
3 ∪ {γ0

3 , γ
1
3} is mapped into T. Further, this map

extends to a homeomorphism of D2
±

into A1,r and

z′ → (ϕ−1
2 )′(z′)

(z′ − ϕ2(γ0
3))(z′ − ϕ2(γ1

3))
(A.5)

extends continuously to A1,r → D.
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Denote ϕ := ϕ2 ◦ ϕ1. By what proceeds, ϕ is a conformal map of D into A1,r such that

γ+
1 ∪γ

−
1 ∪{γ0

1 , γ
1
1} is mapped into Tr and γ+

2 ∪γ
−
2 ∪{γ0

2 , γ
1
2} is mapped into T. Moreover, it extends

to a homeomorphism of D
±

into A1,r and by (A.4) and (A.5) we have that

z′ → (ϕ−1)′(z′)
(z′ − ϕ(γ0

1))(z′ − ϕ(γ1
1))(z′ − ϕ(γ0

2))(z′ − ϕ(γ1
2))

z → ϕ′(z)(ϕ(z)− ϕ(γ0
1))(ϕ(z)− ϕ(γ1

1))(ϕ(z)− ϕ(γ0
2))(ϕ(z)− ϕ(γ0

2))

(A.6)

extend continuously to A1,r → C \ {0} and D
± → C \ {0}, respectively. Thus, (ϕ+)′ (resp. (ϕ−)′)

is well-defined on γ+
1 ∪ γ

+
2 , (resp. γ−1 ∪ γ

−
2 ), where ϕ+ (resp. ϕ−) is a continuous extensions of ϕ to

γ+
1 ∪ γ

+
2 (resp. γ−1 ∪ γ

−
2 ).

Let t ∈ γj\{γ0
j , γ

1
j }, j = 1, 2. Since ϕ−1 is conformal up to {T∪Tr}\{ϕ(γ0

1), ϕ(γ1
1), ϕ(γ0

2), ϕ(γ1
2)}

by (A.6) and since the inner normal relative to A1,r at ξ ∈ T is ξ and at ξ ∈ Tr is −ξ/|ξ|, we have

that

n±(t) = (−1)j−1 (ϕ−1)′ ◦ ϕ±(t)
|(ϕ−1)′ ◦ ϕ±(t)|

ϕ±(t)
|ϕ±(t)|

= (−1)j−1 |(ϕ±)′(t)|
(ϕ±)′(t)

ξ

|ξ|
,

where t = ϕ−1(ξ). Let gD and g be the Green functions for D and A1,r, respectively. It is readily

verified that

gD(z, w) = g(z′, w′),

where z′ = ϕ(z) and w′ = ϕ(w), z, w ∈ D. Therefore we obtain that

∇gD(z, w) · n±(t) = (−2)j−1Re
(
|(ϕ±)′(t)|
(ϕ±)′(t)

ξ

|ξ|
∂gD(z, w)

∂z

)
(A.7)

= (−2)j−1Re
(
|(ϕ±)′(t)|
(ϕ±)′(t)

ξ

|ξ|
∂g(z′, w′)

∂z′
ϕ′(z)

)
= |(ϕ±)′(t)| (∇g(z′, w′) · n(ξ)+

+(−2)j−1Re
(
ξ

|ξ|
∂g(z′, w′)

∂z′
(ϕ)′(z)− (ϕ±)′(t)

(ϕ±)′(t)

))
,

where n(ξ) is the inner normal at ξ and ∂u/∂z := (∂u/∂x−i∂u/∂y)/2, z = x+iy. It is easily checked

that h = ∂u/∂z is analytic when u is harmonic. Let now z → t from either positive or negative side

of γj depending on which inner normal we consider. Since ∂D and ∂A1,r are regular sets with respect

to the Dirichlet problem, gD(·, w) ≡ 0 and g(·, w′) ≡ 0 on ∂D and ∂A1,r respectively. Thus, they can

be continued across by the reflection principle for harmonic functions. This, in particular, implies

that ∂gD(z, w)/∂z and ∂g(z′, w′)/∂z′ have well-defined limits when z → t and z′ → ξ, respectively.
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This, continuous extensions (A.6), and (A.7) yield that

1
|(ϕ±)′(t)|

∂

∂n±
gD(t, w) =

∂

∂n
g(ξ, w′). (A.8)

Now, let u be a harmonic function in D with continuous well-defined boundary values on

∂D, then u∗ := u ◦ ϕ−1 is continuous in A1,r and harmonic in A1,r. Since the boundary of A1,r

consists of disjoint analytic Jordan curves, we may use [45, Thm. 1.6.4] and (A.8) to obtain

u(w) = u∗(w′) =
1

2π

∫
T∪Tr

u∗(ξ)
∂

∂n
g(ξ, w′)d|ξ|

=
1

2π

∫
ϕ+(γ1∪γ2)

u∗(ϕ+(t))
|(ϕ+)′(t)|

∂

∂n+
gD(t, w) |dϕ+(t)|

+
1

2π

∫
ϕ−(γ1∪γ2)

u∗(ϕ−(t))
|(ϕ−)′(t)|

∂

∂n−
gD(t, w) |dϕ−(t)|

=
1

2π

∫
∂D

u(t)
(

∂

∂n+
gD(t, w) +

∂

∂n−
gD(t, w)

)
ds. (A.9)

Since the equalities above hold for any such u and do not depend on the choice of w, (A.3) follows.
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61(1):37–52, 2000. In Proceedings of the International Conference on Rational Approximation,
ICRA99 (Antwerp).

[17] L. Baratchart. Rational and meromorphic approximation in Lp of the circle: system-theoretic
motivations, critical points and error rates. In N. Papamichael, St. Ruscheweyh, and E. B.
Saff, editors, Computational Methods and Function Theory, volume 11 of Approximations and
Decompositions, pages 45–78, World Scientific Publish. Co, River Edge, N.J., 1999.

134



[18] L. Baratchart, A. Ben Abda, F. Ben Hassen, and J. Leblond. Recovery of pointwise sources
or small inclusions in 2D domains and rational approximation. Inverse Problems, 21:51–74,
2005.
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Constr. Approx., 3:43–50, 1987.
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for systems of functions of Markov type. Trudy Mat. Inst. Steklov, 157:31–48, 1981. English
transl. in Proc. Steklov Inst. Math. 157, 1983.

[56] A. A. Gonchar and E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of
extremal polynomials. Mat. Sb., 125(167)(1):117–127, 1984. English transl. in Math. USSR
Sb. 53, 1986.

[57] A. A. Gonchar and E. A. Rakhmanov. On the equilibrium problem for vector potentials.
Uspekhi Mat. Nauk, 40:4, 1985. English transl. in Russian Math. Surveys 40:4, 1985.

[58] A. A. Gonchar and E. A. Rakhmanov. Equilibrium distributions and the degree of rational
approximation of analytic functions. Mat. Sb., 134(176)(3):306–352, 1987. English transl. in
Math. USSR Sbornik 62(2):305–348, 1989.

[59] A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin. Hermite-Padé approximants for systems
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1977. English transl. in Math. USSR Sb. 33:243–260, 1977.

[107] E. A. Rakhmanov. On the asymptotics of the ratio of orthogonal polynomials. Mat. Sb.,
103(145):237–252, 1977. English transl. in Math. USSR Sb. 32:199–213, 1977.

[108] E. A. Rakhmanov. On the asymptotics of the ratio of orthogonal polynomials, II. Mat. Sb.,
118(160):104–117, 1982. English transl. in Math. USSR Sb. 46:104–117, 1983.

[109] E. A. Rakhmanov. On the asymptotics properties of polynomials orthogonal on the real axis.
Mat. Sb., 119(161)(2):163–203, 1982. English transl. in Math. USSR Sb. 47, 1984.

139



[110] E. A. Rakhmanov. Strong asymptotics for orthogonal polynomials. In A. A. Gonchar and
E. B. Saff, editors, Methods of approximation theory in complex analysis and mathematical
physics, volume 1550 of Lecture Notes in Mathematics, pages 71–97, Springer-Verlag, Berlin,
1993.

[111] T. Ransford. Potential Theory in the Complex Plane, volume 28 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 1995.

[112] W. Rudin. Real and Complex Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-
Hill Book Company, Inc., New York, 1987.

[113] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields, volume 316 of
Grundlehren der Math. Wissenschaften. Springer-Verlag, Berlin, 1997.

[114] F. Santosa and M. Vogelius. A computational algorithm to determine cracks from electrostatic
boundary measurements. Internat. J. Engrg. Sci., 29(8):917–937, 1991.

[115] D. Sarason. The Hp spaces of an annulus. Mem. Amer. Math. Soc., 56, 1965.

[116] S. Semmes. Trace ideal criteria for Hankel operators and application to Besov spaces. Integral
Equations Operator Theory, 7:241–281, 1984.

[117] H. Stahl. Structure of extremal domains associated with an analytic function. Complex
Variables Theory Appl., 4:339–356, 1985.

[118] H. Stahl. Orthogonal polynomials with complex valued weight function. I. Constr. Approx.,
2(3):225–240, 1986.

[119] H. Stahl. Orthogonal polynomials with complex valued weight function. II. Constr. Approx.,
2(3):241–251, 1986.

[120] H. Stahl. On the convergence of generalized Padé approximants. Constr. Approx., 5(2):221–
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