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CHAPTER I 

 

BACKGROUND AND INTRODUCTION 

 

In the critical care unit, the real time monitoring of patients is an essential task. Patient 

Monitoring can be defined as: “Repeated or continuous observations or measurements of the 

patient, his or her physiological function, and the function of the life support equipment, for the 

purpose of guiding management decisions, including when to make therapeutic interventions, 

and assessment of those interventions” [1]. Thus, patient monitoring and management involve 

determining status of the patient, responding to events that may be life threatening, and taking 

actions to bring the patient to a desired state.  

New bedside medical devices provide health care professionals with unsurpassed 

amounts of information for decision-making support. In addition to information provided by 

these bedside devices, health care professionals also rely on information such as laboratory data 

or demographic information coming from the hospital information system (HIS). Data from 

patient monitoring devices and sophisticated laboratory tests generates a flood of data that can be 

difficult for individuals to process and abstract in real time. This, in turn, can lead to sub-optimal 

decisions and therapeutic actions [2].  

Interpreting this information requires the integration, correlation, and comparison of data 

acquired by a variety of sources. Patient monitoring system needs to capture data from all 

bedside devices automatically. Therefore, computer programs must be able to acquire data from 

all of these devices directly. Unfortunately, these bedside monitoring devices are often stand-

alone and use proprietary communication protocols, making their interconnection difficult. 

Although, an IEEE standards committee, IEEE 1073 [3], has been working since 1984 on a 

standard for medical device data communication in critical environments called the Medical 

Information Bus (MIB), major medical device manufacturers still do not adhere to the standard. 

Even today, the lack of interconnection remains a major obstacle to the development and 

implementation of intelligent monitoring systems. 

Thus, new solutions are needed to integrate the data from bedside devices and hospital 

information systems, manage and process the flow of information and provide efficient and 

reliable decision support tools. Ideally, a real-time patient monitoring system should be able to 
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acquire physiology data from all bedside monitoring devices as well as relevant information 

from the HIS and provide real-time and systematic integrated information for medical 

practitioners. This monitoring system should also provide ways to access the information 

remotely, and notify users when critical events are detected. 

 

Hence, from the above discussion a patient monitoring system should be able to: 

1. Acquire physiological data (from bedside devices) 

1.2.Acquire information from the HIS such as demographics or lab data.  

1.3.Store a large amount of data, organize it, and provide information to the medical 

practitioners that can be used for decision support.  

1.4.Integrate and correlate data from multiple sources. 

1.5.Automatically detect adverse events and notify care providers. 

 

Over the years, a number of systems have been developed to address problems faced by 

clinicians in critical care environments. These include, among others (see [4] for a more 

complete review), model-based event detection [5], planning and critiquing [6], or closed-loop 

control of bedside medical devices, such as ventilators [7] and infusion pumps [8].  But these 

systems were developed with specific applications in mind and are difficult to scale up. They are 

difficult to use in a wide range of patient monitoring applications. The main objective of this 

work is to develop a flexible and scalable architecture for real-time patient monitoring in 

intensive care units. 

 

SIMON 

SIMON, an acronym for Signal Interpretation and MONitoring, is a system being 

developed at Vanderbilt University, in the School of Engineering in collaboration with the 

Vanderbilt University Medical Center. SIMON is designed to acquire, integrate and process 

information acquired from bedside-devices, medical staff, and the hospital information system. 

The main goal of this project is to design, develop, implement, and test software and hardware 

architecture for intelligent patient monitoring. A requirement is that this architecture be easily 

fielded in a variety of critical care units and configured for a wide range of monitoring 

applications.  
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Prior Architecture 

An initial architecture of SIMON was designed and implemented in 1994 [9, 10, 11, 12]. 

The system had been running in the Coronary Care Unit and the data from the unit were 

published on the web near real-time [10,13] from February, 1996 to August, 1997. Development 

of the SIMON-ICU prototype comprises three parts: SIMON-RTS, SIMON-ART, and SIMON-

WEB. Each part is discussed below.  

 

SIMON-RTS 

The main component of this version of SIMON is the real-time monitoring system 

(SIMON-RTS). The functionality of the monitoring system is separated into modules. Modules 

communicate with each other through Unix Inter Process Communication (IPC) [14]. A Client-

Server architecture is used to organize the modules. The main modules are the Data Acquisition 

module [15], Feature Extraction module and the Monitoring Supervisor. The Data Acquisition  

module acquires the raw data from bedside devices through their serial port interface (RS-232). 

The second module is the Feature Extraction Module. The Feature Extraction Module 

implements all data validation, sensor fusion and feature extraction operations under the control 

of the Monitoring Supervisor. The Monitoring Supervisor controls the feature extraction module 

and is responsible for high level monitoring directives in a data abstraction strategy. 

 

SIMON-ART 

The functionality of the SIMON-ART system is to publish monitored data collected by 

SIMON-RTS on the web. The ART system acquires data from SIMON-RTS via FTP transfers 

from the bedside computer and then graphs the monitored data as GIF images at various time 

resolutions, and publishes them on the Web along with HTML pages containing laboratory data 

and physician orders. 

 

SIMON-WEB 

SIMON-WEB is a Java application that integrates data collected by SIMON –RTS and 

the hospital information system (CIS). SIMON-WEB is a first attempt at providing integrated 

information to the medical practitioners. SIMON-WEB displays graphical data transferred from 
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the SIMON-ART by way of FTP transfers as well as information from the clinical laboratory and 

physician order-entry systems. The system allows users to annotate the data using a point-and-

click or free-text interface. The nurse’s annotations help in the electronic capture of significant 

clinical events that cannot be sensed automatically; consequently, it can be used to assist in 

developing better event detection and artifact rejection algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of SIMON-RTS [10] 

 

Evaluation 

This version of the SIMON architecture was fielded in the Coronary Care Unit (CCU) of 

Vanderbilt University Medical Center (VUMC). SIMON-RTS and SIMON-WEB ran on a 

bedside workstation that exported data to SIMON-ART, which, in turn, published the data 

securely on the VUMC intranet. Figure 3 shows the architecture of the SIMON system in the 

CCU. 
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Figure 2: SIMON-WEB system architecture and relationship to the clinical information system 
(CIS) [10] 

 

In this version of the system, the modules did provide rigorous abstraction of device 
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complexity to the system. Tight coupling between the Server module and the data 
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In addition, the skills and resources available to the project and the local computing 

infrastructure at the time were not well-suited to Solaris x86. Windows NT seemed a more 

appropriate choice for these and other reasons, and a large portion of the code needed to be 
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overhaul of the system [16]. 
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Figure 3: The architecture of the SIMON system as fielded in the CCU [10] 
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Flexibility – Installation of the system should not require more than a network connection at the 

bedside. Individual components should be able to be deployed on one or more physical 

machines, and reorganized as needed according to computational resource requirements. 

Compatibility – While the core system components are designed to run on a particular platform 

(Windows NT), data interfaces should be available to external components running on a variety 

of platforms. 

 

To meet these requirements, the new version of SIMON has been organized in three 

layers: the Data Layer, the Task Layer, and the Knowledge Layer. 

 

 

 

Figure 4: The Revised SIMON multi-layer reference architecture [17] 

 

Data Layer 

The main purpose for the Data Layer is to provide the information collecting system. 

Basically, the Data Layer acquires data from bedside devices and hospital databases and store 

data to storage. The Data Layer also distributes data to other components in other layers by 

providing a central point of access to all system data for message translation and message 
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directly with components in the Task Layer. There are also three main groups of components in 
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this layer: data collection, data storage and management, and web-based user interface. More 

details on these components are provided in chapter two. 

 

Task Layer 

The Task Layer acquires and monitors raw data streams from the Data Layer and detects 

user’s configured events. When an event is detected, physicians, nurses etc. are notified. 

 

Knowledge Layer 

Components in the Knowledge Layer provide high-level reasoning capabilities for 

decision support, and configure the task layer to deliver notifications about events required for 

such processing. The Knowledge Layer is not discussed in this thesis (see [17, 18] for more 

details about the Knowledge Layer). 

 

Componentization can significantly enhance the system in many aspects. Each 

component can be developed and tested separately, so new functionality can be tested and added 

with minimal effect on the whole system. The system can be scaled up by adding additional 

modules. Also, multiple and redundant components can be used to reduce the impact of failure of 

individual component. The system can be distributed on multiple processors and/or platforms 

which allows work to be shared. It also facilitates the management of the overall system. 

This chapter has presented the requirements for an intelligent patient monitoring system 

in general; the motivation for this work has been presented as well as some lessons learned from 

our past experience. Finally, the revised architecture has been introduced. The following chapters 

provide more information about the various components of this system. The second chapter is a 

complete description of the Data Layer. It discusses the design, basic architecture, purpose and 

implementation of all modules in the layer. The third chapter presents the initial Task Layer and 

its modules. It explains the requirement for the Task Layer, its current architecture, and its 

implementation. Chapter four presents the improved Task Layer. This chapter describes a new 

architecture, the technology used, and its implementation. Chapter five concludes the thesis and 

discusses our experience with the current version of the system fielded in the trauma unit at 

VUMC, its results and evaluation, and future recommendations. 
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CHAPTER II 

 

DATA LAYER 

 

The Data Layer, as introduced in chapter one, is responsible for acquiring, organizing, 

archiving and distributing data for the entire system. Mainly, the Data Layer must be able to get 

raw data from both bedside devices and the hospital information system, store it persistently for 

future analysis, and organize it in order to distribute them to other layers. To achieve this, the 

Data Layer of the SIMON architecture has been divided into several interrelated components. 

This chapter describes the various tasks performed by the Data Layer. Next, design 

options that have been taken are discussed and detailed. Finally, each of Data Layer’s component 

is presented and discussed. 

 

Functionality in the Data Layer 

 

Data Acquisition 

The Data Layer provides methods to acquire raw data from any required source. The raw 

data for the SIMON system can be generally classified into bedside devices data, and hospital 

information system data. 

 

Data organization 

Data organization is essential because of the vast amount of data acquired continuously 

for monitoring purposes. The Data Layer has to be able to efficiently manage the flow of data 

and pass the relevant data items to the other system components in the same layer and the Task 

Layer. 

 

Data Archiving 

Even though patient monitoring and alarming systems operate mainly on real-time data, 

historical data can be useful for other purposes such as medical research or the development of 

advice giving systems.  Because the Data Layer is responsible for the acquisition and distribution 

of the data, its functionality also includes the ability to store these data to persistent storage. 
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Distributing Data 

In the revised SIMON architecture mentioned before, the Data Layer is not responsible 

for processing the data. Hence, the Data Layer has to be able to distribute data to the Task Layer 

for data processing. In other words, the entire Data Layer acts as a server distributing data to the 

Task Layer. 

 

Design Decision 

 

Distribution 

 The Data Layer’s architecture is based on distributing tasks to individual components. 

The Data Layer includes the following components:  the DataServer, the Data Collection 

modules, the Web-based User Interfaces and the Data Storage and Management modules. The 

functionality of each of these components is detailed later in this chapter. 

 

Communication 

 Most of the data handled by the Data Layer is acquired in real-time from bedside 

monitoring systems (some additional data can be originated in various databases of the hospital 

information system). To do this, the data is acquired in real-time by the Data Collection modules 

directly from the bedside devices and passed to the DataServer which stores and distributes these 

data appropriately. Because of reliability, performance, and wide acceptance, TCP/IP Socket 

[19] has been chosen to handle communication between the Data Collection modules and the 

DataServer. More details about the DataServer protocol can be found in [48]. 

 

Implementation 

 To facilitate code reusability, an Object-Oriented Programming approach has been 

chosen to implement the various components of the system. C++ existing libraries such as 

Microsoft Foundation Classes (MFC) [20, 21], Standard Template Library (STL) [22], and 

win32 API [23] have been used to code those components that need to operate in real-time. Java 

[24] has been used to implement the Web-Based User Interfaces components. Moreover, PERL 

[25] and JavaScript [26] have been used to implement other components. 
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Components 

 

1. DataServer 

The DataServer has been developed to act as a message translating and routing module 

for the data layer.  The DataServer receives data from all data collection components and 

distributes the data to the Data Storage and Management components, as well as to components 

in other layers. 

 

2. Data Collection components 

The Data Collection components are responsible for retrieving data from the bedside 

monitoring devices or from a hospital database and for sending these data to the DataServer. In 

general, there is one Data Collection component per bedside device.  

 

3. Web-based User Interfaces 

 Components in this group are those that deal with Web-based User Interfaces. Some 

components are used to create image files to be displayed on web pages while others are Java 

Applets that are embedded into various web pages. 

 

4. Data Storage and Management component 

The task of archiving data is performed by these components. These components are 

clients of the DataServer. Some of these components get the data and write them in normal text-

file format to persistent storage while others populate databases, which can be easily retrieved 

later via SQL [27] commands. 

 

DataServer 

The DataServer is the key to data distribution since it is the central component in the Data 

Layer and it is responsible for routing data and message to and from every component in both the 

Data Layer and the Task Layer. Every data item acquired by the system is sent to the DataServer 

which then distributes it to the other system components.   
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Figure 5: The Data Layer and various components (each of there components are describes in 
this chapter) 
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provides many libraries needed to develop such applications. These include data structures (STL 

vector, STL maps, CPtrList, etc.) or well-built string classes (CString or STL strings) that 
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established. All the threads communicate with each other via windows messages and 

synchronized global variables. A number of new messages have also been defined for this 

application in addition to the built-in windows messages. Multi-threading also improves 

reliability of the DataServer because failure of one component affects only an associated child 

thread in the DataServer while other child threads remain able to continue communicating with 

their component normally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The Data Layer data flow diagram 
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components send data to the DataServer via TCP/IP Socket. Currently, this is only a one-way 

communication because the Data Collection components only send messages to the DataServer. 

The second group of components is a group of client components. The components in this group 

include some components in the Data Storage and Management group and some components in 

the Task Layer. The client components also communicate with the DataServer via TCP/IP 

socket. However, both the DataServer and the clients can send and receive messages. The type of 

data that the DataServer sends to and receives from each client depends on each individual client.  

 

Publisher-Subscriber Approach 

When a connection between a new client and the DataServer has been established, the 

DataServer sends the list of data it can supply. To get the data from the DataServer, a client has 

to subscribe to the desired data streams. After that, the data to which the client subscribes are 

sent automatically every time the DataServer gets new data from the data collection components. 

Also, clients can unsubscribe if they do not require certain data any longer. When the DataServer 

receives an unsubscribe message from one of its clients, it stops sending these data items to that 

client. This approach is called Publisher-Subscriber or Observer pattern [42].  

The publisher is the DataServer, which publishes data to the clients subscribers.  This 

approach is better than a traditional request-reply approach, which is used in many client-server 

applications, because clients are not required to send message to the DataServer every time they 

need the data. However, to make this possible, the DataServer has to keep the information it 

needs to send the correct information to each individual client. 

 

Dynamic Parameter List Updating 

Because parameters from the Data Collection components may change over time (for 

instance, monitored variables can be added or removed), the DataServer must be able to keep the 

list of available data up to date. By checking the last receiving time of each data item, the 

DataServer can determine which data is valid. If the DataServer gets a new parameter from the 

Data Collection components or detects invalid data, the DataServer has to update its parameter 

list and notify every client. 

 



 15

Data Queue 

Because of system load or network delays, it is possible that some clients may not be able 

to handle all data from the DataServer. To prevent loss of data, the DataServer should be able to 

queue the data for each individual client. As mentioned above, all the threads in the DataServer 

communicate with each other using windows message queues. Because each thread has its own 

message queue, when the main thread in the DataServer passes messages to client threads, the 

data and other messages are automatically queued.  

 

Data Collection Components 

The Data Collection components acquire data both from various bedside medical devices 

and from hospital information systems such as the census. Then this information is transmitted to 

the DataServer via TCP/IP Socket. A (non-exhaustive) list of parameters the data collection 

components can acquire is shown below. 

  

HP_CPP – HP Monitor (HP) Cerebral Perfusion Pressure 
HP_HR – Heart Rate 
VL_PEEP – Ventilator Post End Expiratory Pressure, via HP VueLink (VL) module 
VL_CI – Baxter Cardiac Index 
Imed1_A_RATE – IV Pump 1, channel A Rate 
CEN_MRN – Medical Record Number from hospital census system 
Oxim_SaO2 – Ohmeda Biox 3740 Pulse Oximeter (Oxim) Oxygen Saturation 
USR_NOTE – Notes from SIMON-Note 
 
 
For example, HP_CPP is the Cerebral Perfusion Pressure acquired from an HP Monitor. 

The complete SIMON parameter list is in appendix A.  

There is one Data Collection component associated with each bedside device. Other Data 

Collection components are used for querying periodically various databases of the hospital 

information systems. 

 

Implementation 

The data from bedside devices is acquired in real-time. For this reason, the Data 

Collection components that connect to bedside monitoring devices have been implemented in 

C++ for maximum performance. Another reason to use C++ is the availability of vendor-
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provided libraries written in C which permit device interfacing (e.g., Hewlett-Packard’s MECIF 

libraries [28]). Data from the hospital information system are only acquired periodically and 

other programming languages can be used for this purpose. In the current implementation of he 

system, PERL is used to implement the modules that gather census data. 

 

Data Source Distribution 

As mentioned earlier, there is one Data Collection component associated with each 

bedside device. Other Data Collection components include the Census component that gathers 

information about bed occupancy from the hospital databases. This information is used to 

associate a bed and the data acquired from the patient monitoring devices connected to this bed 

to a patient. Every data item acquired from bedside devices is labeled with a bed ID that allows 

the DataServer to identify its source.  

 

Data Source Communication 

All bedside Data Collection components connect to bedside devices via RS-232 serial 

interfaces using an RS-232 terminal server [29], a device that can be mounted near the bedside 

device. A terminal server acts as an Ethernet bridge and allows a remote computer to 

transparently access up to eight RS-232 serial ports via an Ethernet network.  

For other components, different approaches are used. The Lab Data component acquires hospital 

laboratory information via an encrypted TCP/IP Socket. The Census component obtains bed 

information via periodic FTP file transfers. 

 

HP Monitor Data Acquisition 

This Data Collection component, called HPDA, acquires data from the HP monitors via 

RS-232 serial port. When one HPDA is started, it sends the list of parameters it wants to the 

monitor (currently, this list of parameters is hard coded in the HPDA modules). Once the 

communication is established, the HP monitor keeps sending data to the HPDA continuously 

[28]. In the current implementation of the system, HPDAs receive data from the monitors once a 

second. Moreover, by using Hewlett-Packard “VueLink” interfaces [30, 31, 32], HPDAs can get 

data from additional devices such as Servo ventilators [33] via the HP monitor. In the trauma 
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unit in which the system has been fielded, each bed is equipped with one HP monitor and there is 

one HPDA per bedside monitor. 

 

IV Pump Data Acquisition 

Like the HPDA, this Data Collection component, called ImedDA, acquires data from IV 

(intravenous) Infusing Pump via RS –232 serial ports. IV pumps can have one, two, and four 

infusing channels depending on the type of the pump. ImedDA detects the number of infusing 

channels and starts acquiring data. Unlike HPDA, ImedDA needs to send a request command to 

the IV pumps every time it needs data. ImedDA can get data from the pumps every two seconds 

(See protocol details in [34]). 

 

Oximeter Data Acquisition 

This Data Collection component, OximDA, is similar to the HPDA in that both are 

acquiring data via RS-232 serial ports and in both cases the bedside device sends the data 

periodically once the communication is established. The bedside pulse oximeter device currently 

used in the trauma unit (Ohmeda Biox 3740) can send data through its RS-232 port every two 

seconds [35]. 

Census 

The Census component acquires information about bed occupancy. Monitored data can 

be associated with individual patient by using this information. Owing to patient safety and 

confidentiality concerns, this method is used to protect patient identity; therefore only authorized 

personnel can identify patients in historical data. 

 

Web-based User Interfaces 

Since current web technology provides a means of rapidly developing distributed clients, 

the World Wide Web is used to provide user interfaces to graphs of selected parameters. 

However, direct access to SIMON DataServer is resource intensive in term of hypertext markup 

language (html) formatting and implementing http protocols.  

ART was created to handle the above tasks by graphing data and provide these graphs to 

a web server. Another web-based component of the system is the SIMON-Note applet that can 

be used at the bedside to annotate data and enter nursing notes. 
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Figure 7: Web-based User Interfaces architecture with DataServer and Web Client 

 

Implementation 

Originally, ART had been implemented in C under OS/2. This program was then ported 

to Microsoft Windows NT to run with the new SIMON implementation. The SIMON-Note 

applet has been written in Java  

 

ART 

ART is a legacy component from our previous SIMON implementation that graph data 

and provide image files to a web server via a Networked File System (NFS) link. ART accesses 

data by reading text files generated by the ArchiveClient component of SIMON (see below) 

instead of interfacing directly to the DataServer. ART provides current views of patient monitor 

data, at various levels of resolution: 24 hours or one hour per screen. The ART graph showing in 

Simon-Trauma web site is shown below. The upper plots show cardiovascular data, including 

heart rate (HR), Diastolic arterial pressure (artBP),  Mean arterial pressure (MAP), Mean 

pulmonary (PAP), and Non-invasive pressure (manBP). The middle plots show respiratory data, 

including pulse oximetry (02%Sat), cerebral perfusion pressure (CPP), and intracranial pressure 

(ICP). The lower bar plots show IV drug infusion rates, with the bar thickness corresponding to 

normalized dosage. 
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Figure 8: Simon-Trauma web site showing ART graph plotted over 24 hours. 

 
SIMON-Note 

SIMON-Note is an applet designed to facilitate the annotation of the data graphs at the 

bedside. SIMON-Note is a modification of a Java application developed by the Division of 

Biomedical Informatics in the Vanderbilt University Medical Center. It has been used by care 

providers to enter clinical notes. A right-click on the graph starts a new window that is initialized 

with the patient name, ID, and a time stamp. The users can then enter notes in free text format. 

SIMON-Note can also be used to create note templates that can be completed and filled in by the 

end user.   
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Figure 9: SIMON-Note user interface (Screen explanations are described in the next page) 

 

Figure 9 shows the SIMON-Note user interface. The upper left text area of the applet is 

initially filled with the patient name, medical record number (MRN), and time information, while 

the user name is filled in the lower area. Care providers can enter notes in the middle area. The 

right area is a list of note templates. Care providers double-click an item in the list, which is 

defined in a configuration file on the server. The SIMON-Note applet uses JFC/SWING [36], a 

set of Java2 graphical user interface (GUI) components. Because Java2 is not fully supported by 

the web browser currently in use in the trauma unit (Netscape 4.7 and IE5), the Java2 Runtime 

Environment (Java Plug-in) from Sun Microsystems has been used instead of the original 

browser's JAVA virtual machine. Moreover, LiveConnect [37] is used to enable JavaScript and 

Java Applet to exchange data. 
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Data Storage and Management components 

The components in this group are responsible for archiving and accessing data; they also 

implement the logic required to reliably associate data with patients.  

The ArchiveClient and the SQLClient are components that provide data storage for 

access by other components. Another component is Hoblyn, which performs system and data 

management tasks. 

 

Figure 10: Data Storage and Management architecture with DataServer 

 

Implementation 

The ArchiveClient is implemented in C++ for performance reasons because it has to 

retrieve every data item passing through the DataServer and store these data in real-time. 

SQLClient is implemented with Microsoft Server 7.0. Finally, PERL is used to implement 

Hoblyn. 

 

ArchiveClient 

The ArchiveClient was designed to support legacy systems, such as ART and Hoblyn. 

The ArchiveClient initiates a connection with the DataServer by first requesting the list of 

available parameters and then subscribing to all the data. When it receives data from the 

DataServer, the ArchiveClient writes these data to text files. Data from each bed are put in 

different directory and each parameter in a separate text file. The DataServer dynamically 

manages the list of available parameters and automatically informs its clients when new data are 
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available or when data becomes unavailable. When the ArchiveClient is informed that a new 

variable becomes available, the ArchiveClient immediately subscribes to it. The rate at which 

data is written to file depends on the data source and every data item is stored with a time stamp. 

Table 1 shows a fragment of the file. The first column is the time stamp. The second is the value 

of heart rate associated with the time in the left column. 

 

Table 1: ArchiveClient file 

 

 

 

 

 

 

SQLClient 

 This component is akin to the ArchiveClient as it also subscribes to all parameters, but 

instead of writing data to text files as the ArchiveClient does, it populates a relational database 

implemented with Microsoft SQL Server 7.0.  However, because the storage of every data point 

would increase the size of the database too rapidly, data points are only stored every 10 seconds. 

Also, a ten second median filter is applied to the raw data before they are down sampled. The 

SQLClient that reused some code from the ArchiveClient was implemented by Patrick Norris, a 

graduate student in the department of Biomedical Engineering, Vanderbilt University. More 

details about the SQLClient can be found in [17]. 

 

Hoblyn 

Hoblyn was implemented in PERL by Patrick Norris. Hoblyn's task is data and files 

management. It maintains demographic information, archive, and move data files to and from 

directories as patient move in and out of monitored beds. This is an essential task that needs to be 

performed to guarantee that the association between data and patient is accurate at all time. 

Information about patient movement is obtained from the hospital admission-discharge-transfer 

(ADT) system. Hoblyn's task is complex because ADT information may lead or lag the actual 

time at which a patient is put into a bed and begins to be monitored by up to an hour or more. 

957979616 79.00 
957979620 79.00 
957979621 80.00 
957979622 79.00 
957979623 80.00 
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Hoblyn has been fitted with a fair amount of logic that allows it to handle these situations 

robustly. Hoblyn also alerts project staff via e-mail and alphanumeric pager in the case of patient 

information ambiguity. Moreover, Hoblyn performs other tasks, such as verifying integrity of the 

bedside device data network and the NFS link to the web server. More details about Hoblyn can 

be found in [17]. 
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CHAPTER III 

 

CURRENT TASK LAYER 

 

In the SIMON architecture, the Task Layer is responsible for detecting events in the raw 

data streams feeding the Data Layer. In particular, one or more components in the Task Layer 

connect to the DataServer and subscribe to required parameters. Once this is done, components 

in the Task Layer continuously monitor the data and notify care providers when predefined 

events, i.e. alarms, occur. Outputs from the Task Layer are also used by the Knowledge Layer 

for higher-level decision support tasks. 

As in the Data Layer, a central point of interface for configuration of tasks and 

subscription to task outputs at the Task Layer level is a component called TaskServer. Generally, 

users supply information to the TaskServer about events that need to be detected and notification 

methods. 

 This chapter describes the design and implementation of the task layer and details its 

operation. 

 

Introduction 

Currently, the Task Layer has one component called the Alarm Detecting Client (ADC). 

In the current architecture, the ADC acts as the TaskServer. Users can supply information to the 

ADC via a configuration text file to specify events to be detected, and notification information 

(currently the email address of the care providers and the time of day).  

As did the ArchiveClient in the Data Layer, the ADC communicates with the DataServer 

via TCP/IP Socket, but, unlike the ArchiveClient, it subscribes only to required parameters—i.e., 

parameters it needs to monitor. 

From the DataServer point of view, the ADC is just a normal client. Several ADCs can 

thus run on several machines. This permits the configuration of many different events adapted to 

the needs of various end users. Each end user can define his/her own events and notification 

policy and implement these on any machine that is allowed to connect to the DataServer.  
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Workings of the ADC 

The ADC is designed to be a small and simple program that monitors a number of 

parameters and detects predefined events. In the current implementation of the system, it reads a 

configuration text file when it is started. Hence, if the definition of events needs to be modified 

or adapted, the ADC must be restarted. A fragment of a configuration text file is shown below. 

 

DS_IP 129.59.99.240 
Alarm HR < 90 10 
Alarm SvO2 < 60 15 
Alarm CI < 2.5 0 
Alarm ICP > 25 15 
Label SpO2 02%Sat 
E-mail_all suwanmk@vuse.vanderbilt.edu 
E-mail karlkim.suwanmongkol@vanderbilt.edu 
E-mail karlkim@iname.com 
MaxGap 300 
NormalGap 120 
CheckNoise 30 
SendTime 6:00 

 
 

In the file, there are several important configuration items for the ADC. DS_IP is 

followed by the ip address of the DataServer to which this ADC will connect. Required events, 

threshold condition, and temporal intervals are put after the Alarm fields. For example, Alarm 

HR < 90 10 configures the ADC to subscribe to the heart rate (HR) parameter of every patient 

and monitor the value of the heart rate to check if it falls below 90 for 10 minutes for any of the 

patients. The E-mail field contains the e-mail address of the care provider who wants to be 

notified if this event happens. Here, notification is not done in real-time, but a report is sent once 

a day with a list of detected events. The SendTime field contains the time at which the e-mail 

message should be sent (6:00 means 6 am). The MaxGap and CheckNoise are fields used to 

contain parameters needed by the event detection algorithms. For instance, MaxGap is the time 

after which the ADC will stop monitoring a parameter if the DataServer stops sending values for 

it. CheckNoise is used by the event detection algorithm to reject spurious data points. The event 

detection algorithm considers an event to be meaningful if the heart rate remains below 90 for 

duration at least equal to CheckNoise. 
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When the ADC starts, it reads all the required information from the configuration text 

file. Then it tries to subscribe to all the required parameters. If the DataServer cannot supply 

some parameters at the time the ADC starts, it puts them on its list of desired parameters. As 

soon as the DataServer receives these parameters, it sends them to the ADC that begins 

monitoring their values. 

Alarms in the ADC are categorized as current alarms and past alarms. Current alarms are 

events that are occurring and are being monitored by the ADC, while past alarms are events that 

have occurred, and those are not currently detected. Current and past alarm information are kept 

in xxx_CurrentAlarmFile.d and xxx_PastAlarmFile.d respectively (where xxx represents a bed 

ID). In addition, the ADC also keeps a log on how long each bed has been monitored in a 

duration text file. The ADC keeps monitoring and updating current alarms, past alarms, and 

duration text files. When the current time matches the notification time specified by a user, the 

ADC puts all current alarms, past alarms and the duration information separated by the bed ID in 

emails. These are then sent to the required email addresses. When this is done, the ADC starts 

monitoring the same events until the notification time is reached again.  

Both files contain event information, including parameter name, a threshold condition, 

and the beginning and end time of events. While events in a current alarm file might be updated 

every minutes, events in a past alarm file are static, but new event can be added to the past alarm 

file. A fragment of the current alarm file is shown next. 

 
 

HR < 90.00 from 04/03  6:21 to 7:25 
ICP > 25.00 from 04/03 7:01 to 7:25 

 . 
 . 

 

For example, if the ADC is still detecting an HR event at 8:00, the end time in the current 

alarm file above must be changed from 7:25 to 8:00. However, when the HR event ends, the 

event information will be moved from the current alarm file into the past alarm file. At the 

sending time, all events in current alarm files are copied into the past alarm files. After that, the 

ADC sends an email with all the events in the past alarm files. Finally, the past alarm files are 

deleted and the ADC continues monitoring data for the next day. 
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Implementation 

ADC is a single executable written in C++. Several MFC classes and STL are also used 

here. The important classes are a CADCManager, a CADCFileManager, and an AlarmObject. 

Figure 11 shows a class diagram of these classes. The CADCManager class is a main instance 

that reads configuration text files, establishes the communication with the data layer, and 

monitors data streams. The CADCFileManager class is responsible for reading and updating 

alarm files. The ADC keeps information about individual parameters in an AlarmObject 

instance, and every time the ADC receives data from the data layer, it updates the state 

(m_ObjectState) of the instance. The way alarms are generated is discussed in detail in the next 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Class diagrams of important classes in the ADC 

Alarm Object

-m _Param  : S im onNam eSpace
-m _StartTim e : CTim e
-m _StopTim e : CTim e
-m _LastValid : CTim e
-MaxGap : static unsigned int
-Norm alGap : static unsigned int
-CheckNoise : static unsigned int
-m _bThresholdValue : bool
-m _Alarm State : Alarm State
-m _ObjectState : Alarm ObjectState

CADCM anager

+UpdateAlarm Object(Param  : CString, CurrentValue : float, CurrentTim eStam p : long)
+SignalA larm Object()
+NewParam (Param  : CString) : int
+SendAlarm Em ail() : void
+ReadInfoFile() : void

+m _Param List : STL Map
+m _Param Nam e2Label : STL Map
-Alarm Info : STL m ap
-EventInfo : STL m ap
-m _SMTPSocket : CSocket
-m _iHours : int
-m _iMins : int
-m _AllEm ailList : STL Vector
-m _Alarm Em ailList : STL Vector
-m _StartTim e : CTim e
-m _FileManager : CADCFileManager

CADCFileM anager

+UpdateTim e(BedID : CString) : int
+CurrentToPastAlarm File(Param  : CString, CurrentTim eStam p : unsigned int) : void
+CurrentToPastAlarm File() : void
+UpdateCurrentAlarm File(Param  : CString, S ign : CString, Value : float, StartTim eStam p : long, CurrentTim eStam p : long) : int
+DeletePastAlarm File(BedID : CString) : int
+AllCurrentToPastAlarm File() : void



 28

Generating alarms 

As discussed previously, the ADC continuously monitors parameter values and generates 

alarms and stores those into text files whenever the pattern of data matches the event description. 

For example, the line HR < 90 10 in the configuration text file instructs the ADC to compare 

every heart rate data point from every patient with a threshold value of 90. If the data is below 90 

for a continuous interval of 10 min, an alarm is raised. But the data from the data layer may not 

arrive at constant intervals because of data dropouts due to system load, delays due to network 

traffic, or other minor glitches in the system. These gaps and data glitches must be considered 

because they can confuse the ADC, resulting in false alarms or missed events. Figures 12 and 13 

show possible scenarios, including data gaps, and the logic that has been used to handle these 

situations. 

Figure 14 shows the state diagram of the AlarmObject that explains how alarms are 

detected and written to the current and past alarm files. ThresholdValue is a threshold condition 

for each AlarmObject instance. The LastValid variable represents the last time at which the ADC 

received a data value for this parameter from the DataLayer. The Current system time is stored in 

the Now variable. The StartTime and StopTime variables are used to keep time information for 

the AlarmObject instance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 12: Possible sequence of data 

t1 t2

t0

t2

t1

Normal:
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Figure 13: Discontinuous sequence of data 

 

There are ten possible states for each AlarmObject. An initial state is a Monitor state. An 

AlarmObject instance will be in a Detected_Threshold state whenever the ThresholdValue is true 

longer than the CheckNoise time. Whenever there is a gap (now – LastValid > NormalGap) in a 

stream of data, an AlarmObject instance will change to either one of the three Gap states. To 

which state it will change depends on its current state. If the length of the gap is longer than 

MaxGap, from any Gap state, an AlarmObject instance will change to the DeleteAlarmObject 

state. In this state the instance will eventually be removed from the ADC. Those above six states 

excluding DeletedAlarmObject state can be grouped into one large Monitor state. The other three 

states which can be grouped into one large Alarm state are Detected_Alarm state, Gap_alarm, 

and Detected_Alarm_Wait state. The CADCManager checks all AlarmObject instances in the 

Detected_Alarm state and updates the corresponding current alarm files every minute. The 

current alarm files are also updated every time there are transitions among these three states. Past 

alarm files are updated whenever an AlarmObject instances’ state changes to the Monitor and 

Delete states. 
 

t1

g1 g2

t2

t1

g2g1

Gap1:
if g1 - t1 > Duration
then write CurrentAlarm
else No Alarm

if g2 - g1 > MaxGap
then write PastAlarmFile

Gap2:
if g1-t1 > Duration
then write CurrentAlarm
else No Alarm

if t2-g2 > Duration
write CurrentAlarm

if g2-g1 >= MaxGap
then write PastAlarmFile
else write PastAlarmFile at t2

time

Threshold value

parameter value
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Figure 14: State diagram that shows how alarms are generated 

Note: CheckNoise < NormalGap < MaxGap

Monitor

Threshold_Wait

ThresholdValue := true
/StartTime = now

H

ThresholdValue := false

Detected_Threshold

ThresholdValue := true AND
now - StartTime > CheckNoise

Detected_Threshold_Wait

ThresholdValue := false
/ StopTime = now

ThresholdValue := true
/ StopTime = now
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Gap_Alarm

now - LastValid
 > NormalGap
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CHAPTER IV 

 

REVISED TASK LAYER 

 

The Task Layer described in the previous chapter, with one ADC component, was 

deployed in the Trauma Unit at Vanderbilt University Medical Center. The ADC has been 

reliable and has detected many alarms since it has been fielded (see chapter five for more 

details). However, there are several issues that were not fully addressed in the initial 

development of the ADC. These issues are discussed below by evaluating the current Task 

Layer. 

 

Capability 

The ADC described earlier is able to detect only threshold condition alarms from a single 

parameter. However, in many situations, important alarms involve events detected from more 

than one parameter and also involve more than simple threshold conditions. The complexity of 

this type of events depends on the number of parameters to be monitored, the event definition for 

each parameter, and the way in which these single-channel events need to be combined to define 

a clinically significant alarm. In addition to event detection, the other equally important matter is 

the way by which users have to be notified once an event has been detected. User notification 

methods can be real-time notifications— i.e., an alarm is sent whenever alarms are detected, and 

archive notifications—for future research purposes. As mentioned above, the ADC does not 

support real-time notification methods since it keeps all the alarms in text files and does not send 

them to users via email until setup time. To handle real-time alarms, the Task Layer should be 

able to use other notification methods such as paging beepers or updating screens via Graphical 

User Interfaces (GUIs). 

  

Expandability 

The ADC has been originally designed as single component software. In every software 

development cycle, applications have to be modified to add to or improve their functionality. 

After that, they must be redistributed to give users access to the new functionality. However, the 

redistribution process itself is not easy to perform in a real-time system because the running 
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ADC must be stopped before the modifications can be deployed. Suspending the current ADC 

potentially results in losing information and missed alarms. 

In addition, modifying the applications is often error-prone since the process invariably 

introduces new bugs to the application. As such, a better design strategy is to separate monolithic 

applications into a group of distributed components with restricted interfaces, so only the 

modified components need to be redistributed and tested.  

 

Flexibility 

  To monitor parameters 24 hours a day, the ADC has to run all the time. This is 

inconvenient if the ADC has to run on the user’s machine because (s)he needs to keep it running 

all the time as well. Also, the only way to configure the ADC in the previously described 

implementation is to modify text files that are read when it starts. This has two disadvantages. 

First, the ADC cannot be reconfigured dynamically. Second, text files may not be the best 

configuration method for all users.  Clearly, the task layer should provide a more flexible 

solution for its configuration and dynamic reconfiguration. 

 

Performance 

The ADC acts as a normal client to the DataServer. Multiple ADC instances running 

simultaneously force the DataServer to create more threads to handle each ADC (see chapter 

two). This may downgrade performance of the whole system substantially because monitored 

parameters may be redundant (i.e., more than one ADC may request the monitoring of the same 

parameter). Reducing this redundancy helps to retain the real-time performance of the entire 

system. Solving this problem can be done by creating a separate task that connects to the 

DataServer from other tasks, so if users configure redundant parameters, the DataServer needs to 

send the parameters only once. The whole task layer can thus have only one instance of the part 

connecting to the DataServer.  

 

Design Decision and Architecture 

Based on the observations and requirements discussed above, the revised Task Layer is 

divided into several components. The main functionality of these components is 
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1. Acquisition of data from the DataServer 

1.2.User Interface 

1.3.Events Monitoring and Alarm Detection 

 

In addition, to cope with the complexity of notification methods and multiple-parameter 

events, the event monitoring part can be divided further into four levels. 

 

1. Single-Source Event Level (SSE Level) 

1.2.Multi-Source Event Level (MSE Level) 

1.3.Notification Level 

1.4.User Interface Client 

 

The Single-Source Event Level works as a normal client of the DataServer (i.e., an 

instance of the Single-Source Event Level connects to the DataServer and retrieves data from the 

DataServer through a TCP/IP socket), so the single-parameter event detection algorithms 

presented in the last chapter and the code required to communicate with the DataSever can be 

integrated. The Multi-Source Event Level handles multiple-parameter events by monitoring all 

related notifications of single-parameter events from the Single-Source Event Level. The 

Notification Level works with multiple clients acting directly with the users. The users specify 

required events, recipients, and notification information to the notification level via the User 

Interface Client. All three levels run concurrently as long as there are events to be monitored. 

Users can define their own events with customized clients and close the client program or turn 

off their computer if they do not want to be notified via their application. Other alarm 

notification methods, such as email or paging beepers, are kept in the Notification Level, thus the 

users do not need to stay in front of their computer to be notified. Figure 15 shows the 

architecture of the new Task Layer called the AlarmServer  

The first two levels are currently implemented in C++ as Component Object Model 

(COM) out-of-process servers. COM specifications which embody several successful 

programming concepts such as Object-Oriented Model, Client/Server Model, and Dynamic 

Linking Library, help to simplify the process of distributed application development. COM 

objects can be implemented in many programming language. Also, C++ with the Active 
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Template Library (ATL) has been selected to speed the development and eliminate unnecessary 

coding. More details about COM/DCOM and ATL can be found in [38, 39, 40, 41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: The Task Layer architecture with three separated levels and client applications 
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Single-Source Event Level (SSE Level) 

The main functionality of the Single-Source Event Level is similar to the ADC discussed 

in the last chapter. The Single-Source Event Level communicates directly with the DataServer 

via TCP/IP Socket. In other words, the Single-Source Event Level subscribes to required 

parameters, receives data, and monitors the raw data.  

 

Requirements 

The set of classes in the Single-Source Event Level provides the following functionality. 

- Connect to the DataServer via TCP/IP Socket 

- Subscribe and unsubscribe to required parameters. If more than one client needs the 

same parameter, the Single-Source Event Level subscribes to the parameter only 

once. 

- Acquire data from the DataServer in real-time. 

- Provide an interface to the Multi-Source Event Level to enable the Multi-Source 

Event Level to setup required single-parameter events. 

- Notify components when events occur through a call-back interface. 

 

The design of the first ADC was rather inflexible. As a consequence, modifying or 

adding monitoring or processing algorithms was a demanding task. The design and 

implementation of the SSE Level were influenced strongly by the need to support modification 

of low-level detection algorithms without impacting other levels in the AlarmServer. 

 

Implementation 

Communication 

Since the DataServer is able to communicate with other components through TCP/IP 

sockets, the Single-Source Event Level to DataServer communication is coded in C++ using 

Winsock2 API. Also, distributed objects method calls based on DCOM from Microsoft is the 

technique used to communicate with the Multi-Source Event Level. The Single-Source Event 

Level has public programming interfaces which DCOM clients can use to communicate.  
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DCOM  

Components in the SSE Level reside in an out-of-process COM module so that the 

components can exist independently even when there is no client running. Another important 

issue is the development method. Graphical user interface is not a critical necessity at this level, 

and Microsoft provides speedy and simple ways to create COM objects with ATL. Therefore, 

ATL has been used to develop SSE Level COM objects instead of MFC COM and generic C++. 

The Standard Template Library (STL) is also used as a substitute for MFC collection classes.  

Clients can communicate with the SSE Level only through a set of DCOM interfaces. 

The SSE Level has to be able to handle multiple clients at the same time, so the Multithreaded 

Apartment Model has been used. In addition, when events have been detected, the SSE Level 

notifies the client via COM interfaces as well. Connecting Objects techniques are used to provide 

this functionality.  

 

Inside the Single-Source Event Level 

The CSSEManager Class 

Several classes are created to handle the aforementioned functionality at this level. The 

most important one is a CSSEManager. Components in the Multi-Source Event Level can 

communicate with the SSE Level through ISSEManager interfaces implemented by the 

CSSEManager. The set of interfaces used in the SSELevel is shown below.  

 
interface ISSEManager : IUnknown 
{ 

[helpstring("method SetupThresholdEvent")] HRESULT 
SetupThresholdEvent([in] ThresholdInfo SSEInfo, [in] EventObjID 
SSE_ID); 

[helpstring("method DeleteEvent")] HRESULT DeleteEvent([in] 
EventObjID SSE_ID); 
}; 
 
interface ISSEProcess : IUnknown 
{ 

[helpstring("method ProcessParam")] HRESULT ProcessParam(); 
}; 
 
interface INotifySSE : IUnknown 
{ 

[helpstring("method NotifySSEState")] HRESULT NotifySSEState([in] 
EventObjID SSE_ID, [in] EventState State); 

[helpstring("method CheckSSEObj")] HRESULT CheckSSEObj([in] 
EventObjID SSE_ID, [out] int* Check); 
}; 
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The three IDL DCOM interfaces used in the SSE Level. Both ISSEManager and 

ISSEProcess are implemented in  CSSEManager. INotifySSE which is an event sink interface is 

actually implemented in the CMSEManager (in MSE Level). The CSSEManager is a singleton 

meaning that only one instance of the CSSEManager is created, so there is only one point of 

access to the SSE Level (See Singleton design pattern [42]). A unique instance of the 

CSSEManager is first instantiated by COM when the MSE Level module starts. Components in 

the MSE Level call the SetupThresholdEvent() method with ThresholdInfo (i.e., parameter 

name, logic type, threshold value, and duration) and a unique single-parameter event object is 

generated in the MSE Level. Then the CSSEManager creates an object if the object monitoring 

the single-parameter event does not exist.  

By assigning the task of generating the object to the CSSEManager, the duplication of 

objects that monitor the same parameter event is avoided. Also the MSE Level needs to have 

only information about pre-approved types of single-parameter events. The way the object that 

monitors the event is created (i.e., type of object, multiple objects, or redundant object) is up to 

the CSSEManager. The MSE Level can call the DeleteEvent() method with a single-parameter 

event object id to delete the object as well.  

Figure 16 shows the CSSEManager and its interfaces. The ISSEProcess interface is for 

interacting with the DataServer communication part. The ISSEProcess interface will be 

presented later. 

 

 

 

 

 

 

 

Figure 16: The CSSEManager and its interfaces 

IUnknown

CSSEManager
ISSEManager

ISSEProcess
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The SSEObj Class 

In this architecture, all objects created by the CSSEManager are instances of a class 

inherited from the SSEObj abstract class. The base class SSEObj contains some fields and 

provides some methods and void virtual functions the subclass has to implement. A Notify() 

method is used to determine if components in the MSE Level should be notified. An 

UpdateParam() method updates the value of parameters for each single-parameter event object. 

A CheckEvent() method implemented only in subclasses is  important because the behavior of  

a single-parameter event object is defined in this method. For example, GreaterObj is used to 

monitor a greater-than-threshold type of a single-parameter event.  

Figure 17 shows the SSEObj class with two subclasses currently implemented. All three 

methods are called by the CSSEManager, and the CSSEManager does not need to know the type 

of a single-parameter event object it is calling. Part of the code used to detect threshold event in 

the ADC is also reused here (see figure 14 in chapter three). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: UML class diagram of the SSEObject, GreaterObject and LessObject with some 
important data members and member functions. 

 

+Notify() : bool
+Updateparam() : void
+CheckEvent() : EventState

#m_szParam : _bstr_t
#m_fValue : float
#m_State : EventState

SSEObject

-m_SubState : ThresholdState
-m_iDuration : long
-MaxGap : int
-NormalGap : int
-CheckNoise : int

GreaterObject
-m_SubState : ThresholdState
-m_iDuration : long
-MaxGap : int
-NormalGap : int
-CheckNoise : int

LessObject
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TCP/IP Socket Communication 

Another important functionality of the SSE Level is to handle TCP/IP socket 

communication. With ATL, Winsock2 API is used here instead of the MFC CSocket that 

implements the communication part of many components in the Data layer. Avoiding MFC 

classes completely in this component removes the overhead of the large MFC runtime DLL. This 

part was designed to run in other windows threads (i.e., thread that implements windows 

message queue (for more details about windows and Winsock programming, see [23, 43, 44]).  

As mentioned in chapter two, the DataServer sends large amount of data continuously to 

its client. As a consequence, the communication task should be ready to receive data, and update 

the value of its monitored variable all the time. When the thread gets raw data from the 

DataServer, it informs the CSSEManager through the ISSEProcess which has one method, 

ProcessParam(). Subsequently, the ProcessParam() method in the CSSEManager  calls the 

three methods of the SSEObj as explained above.  

 

Multi-Source Event Level (MSE Level) 

The MSE Level receives information about multiple-parameter events from the 

Notification level and configures the single-parameter event in the SSE Level. The Notification 

Level sends an event description that is a Boolean combination of threshold condition in the 

form of a string to the MSE Level through a DCOM interface. The MSE Level then parses the 

string and creates a C++ object to monitor the multiple-parameter event which in turn properly 

creates a single-parameter event objects in the SSE Level. When the MSE Level gets notified by 

the SSE Level, the multiple-parameter event object evaluates its state and then notifies the 

Notification Level as necessary. 

 

Requirements 

While the basic requirements of the SSE Level are identical to the ADC, the requirements 

of the MSE Level are established with the necessity of providing a method to detect multiple-

parameter event. The MSE Level provides the following functionality 

 

- Provides a call-back interface for the SSE Level. 
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- Provides the interface for the Notification Level to configure multiple-parameter 

events. 

- Notifies components in the Notification Level through a call-back interface 

 

Implementation 

While the SSE Level needs to be able to communicate with the DataServer through a 

TCP/IP socket, the MSE Level can use DCOM technique for its communication. The MSE Level 

is also implemented as an out-of-process COM module. As was the case for the SSE Level, for 

simplicity and because a GUI is not needed in this level, the ATL and STL have also been used 

to implement the MSE Level.  

 

Inside the Multi-Source Event Level 

The CMSEManager Class 

As does the CSSEManager in the SSE Level, the MSE Level has a central class 

CMSEManager which implements two interfaces. The first interface is IMSEManager. This 

interface is very similar to ISSEManager since both provide two methods to add and delete an 

event at the lower level. The first method of the IMSEManager is AddMSE(). The Notification 

Level calls the method with MSEInfo (i.e., a Boolean expression in the form of a string) and a 

unique multiple-parameter event id. The Notification Level calls DeleteMSE() with the event id 

to delete the event. The two interfaces in the MSE Level are shown next.  

  
interface IMSEManager : IUnknown 
{ 

[helpstring("method AddMSE")] HRESULT AddMSE([in] MSEInfo Info, 
[in] EventObjID MSE_ID); 

[helpstring("method DeleteMSE")] HRESULT DeleteMSE([in] 
EventObjID MSE_ID); 
}; 
 
interface INotifyMSE : IUnknown 
{ 

[helpstring("method NotifyMSEState")] HRESULT NotifyMSEState([in] 
EventObjID MSE_ID, [in] EventState State); 

[helpstring("method CheckMSEObj")] HRESULT CheckMSEObj([in] 
EventObjID MSE_ID, [out] int* Check); 
}; 
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The INotifyMSE is implemented by the Notification Level and is called back by the 

CMSEManager when it wishes to give information about a multiple-parameter event. Moreover, 

the CMSEManager also implements INotifySSE (see inside the Single-Source Event Level) 

which is a call-back interface. The CSSEManager calls NotifySSEState() when it needs to notify 

the MSE Level about a single-parameter event. 

 

MSEObj, ExprObj, BoolObj, and SSETypeObj 

An object that the CMSEManager creates is an instance of the MSEObj. The instance 

parses the Boolean expression and creates a group of the BoolObj and the SSETypeObj objects. 

A group of the BoolObj and the SSETypeObj structure is a binary tree, in which every leaf in the 

tree is the SSETypeObj, and every BoolObj is an internal node. Both the BoolObj and the 

SSETypeObj are inherited from the ExprObj. Figure 18 shows the class diagram of these classes, 

and figure 15 shows some example of Boolean expression and their associated tree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: UML class diagram of the MSEObj, ExprObj, BoolObj, and SSETypeObj showing 
class structures and their relationships.   

-m_pRootObj : ExprObj
MSEObj

+UpdateEnvelopeParent() : EventObjID

-m_pParent : ExprObj
-m_szExpr : string
-m_State : EventState
-m_pRep : ExprObj

ExprObj

#m_pLeft : ExprObj 
#m_pRight : ExprObj 

BoolObj

+SetSSEState(in state : EventState) : EventObjID 
#m_State : EventState

SSETypeObj

1

1

1

1

2 

1 
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An envelope/letter class idiom is used to implement a virtual constructor technique. This 

is used to determine what type of object (i.e., BoolObj or SSETypeObj) will be constructed from 

the expression (see [45] for more details). The ExprObj is an envelope class while the BoolObj 

or the SSETypeObj is a letter class. MSEObj first creates the root of a tree that must be an 

instance of the BoolObj, then the root creates its children and the children parse the sub string. 

The process proceeds until all leaves which are instances of the SSETypeObj are created. Figure 

19 also presents the tree and the sub string each node will parse. The sub string which also has 

the same format will be processed from top to bottom. 

When an instance of the SSETypeObj is created, the MSE Level also notifies the SSE 

Level. Thus, if necessary, the SSE Level creates a single-parameter event object associated to the 

instance of the SSETypeObj.  

 

Process of Notification 

The notification process begins when any single-parameter event object detects a 

required event. When this happens, the CSSEManager informs the CMSEManager that a single-

parameter event is detected, then the CMSEManager calls a method SetSSEState() on each 

instance of the SSETypeObj that needs to change its state. The SetSSEState() method updates 

each single-parameter event state and notifies its parent by calling UpdateEnvelopeParent() on 

its parent in a tree which is an internal node (i.e., an instance of BoolObj). The parent then 

evaluates its state. For example, a state of an instance of BoolObj having type “AND” will be 

“Alarming” if its children are both in the “Alarming” state. Moreover, if the state of the instance 

of BoolObj is changed, UpdateEnvelopeParent() of its parent will be called next and so on.  

In other words, updating the state of a multiple-parameter event object starts from the 

bottoms with single-parameter event objects and progresses up to the root which is an instance of 

BoolObj. This bottom-up approach ensures that every object is updated properly and efficiently. 

Each object communicates with its neighbors in the hierarchy (tree) only. This approach is 

similar to an organization of decision processes in the Process Trellis Software Architecture [49]. 

 



 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: A sample of string and tree for multiple parameter event expression. 

((10005_VL_SpO2 < 70 for 3  minutes) 
^((10005_HP_SpO2 > 60 for 5 minutes)v(10005_HP_CPP < 50 for 5 minutes))) 
v((10005_Oxim_Pr > 60 for 5 minutes)v(10005_HP_MAP < 50 for 5 minutes))  
 

 
Notification Level 

In the AlarmServer architecture, each lower level acts as a client of the upper level. The 

Notification Level, not yet fully implemented, is a client of the MSE Level. The Notification 

Level receives event configuration data from users via client GUI interfaces. The information 

consists of multiple-parameter events and associated notification methods. Because the 

Notification Level object resides in an out-of-process COM server, after users have configured 

an event detection task, they can close their client application. 

 

OR

AND

LT
10005_VL_SpO2
70, 3

LT
10005_HP_CPP
50, 5

LT
10005_HP_MAP
50, 5

GT
10005_Oxim_PR
60, 5

GT
10005_HP_SpO2
60, 5

OR

OR

OR(AND(OR(GT(10005_HP_SpO2, 60, 5)LT(10005_HP_CPP,50,5))LT(10005_VL_SpO2,70,3))
OR(GT(10005_Oxim_PR,60,5)LT(10005_HP_MAP,50,5)))

AND(OR(GT(10005_HP_SpO2, 60, 5)LT(10005_HP_CPP,50,5))LT(10005_VL_SpO2,70,3) OR(GT(10005_Oxim_PR,60,5)LT(10005_HP_MAP,50,5))

OR(GT(10005_HP_SpO2, 60, 5)LT(10005_HP_CPP,50,5))

LT(10005_VL_SpO2,70,3)GT(10005_HP_SpO2, 60, 5) LT(10005_HP_CPP,50,5) GT(10005_Oxim_PR,60,5) LT(10005_HP_MAP,50,5)
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Multiple-parameter event 

The format of a multiple-parameter event sent from a client to the Notification Level is a 

Boolean combination of single-parameter events in a format similar to the one used to send from 

the Notification Level to the MSE Level.  

 

Notification Method 

The only notification method available from the ADC is to send email to users. Sending 

email to users, as mentioned before, is not real-time and not flexible. Other possible notification 

methods that could be implemented include: 

 

- Notify the client GUI: this can be done in real-time and users can effectively disable 

this notification method by closing the client program. 

- Notify the user via pagers: This method is similar to the first one because it is done in 

real-time. However, the advantage is that users can be notified everywhere via their 

pager.  
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CHAPTER V 

 

CONCLUSIONS 

 

Intelligent patient monitoring and management systems are complex and involve all 

aspects of information processing. These systems need to acquire physiological data as well as 

data from the hospital information system (HIS) under real-time constraints. In addition, these 

systems must provide efficient mechanisms to store, integrate, correlate, and provide a large 

amount of information to clinical users.  

The earlier version of the SIMON system was designed to achieve most of these tasks 

and it was fielded in a real intensive care unit. Shortcomings of this architecture as well as the 

rapid evolution of both hardware and software technology lead to the redesign and 

reimplementation of this system.  

The new version of the system is designed to provide a robust, expandable, and open 

architecture to support intelligent patient monitoring research. This is achieved by partitioning 

the system into multiple components and distributing data, tasks, and knowledge among these 

components. 

Monitoring and interpretation tasks also play essential roles in many important 

applications. There are ongoing researches contributed for building tools and architecture to 

enable rapid construction of such system, such as MAITA [50]. The SIMON system is different 

from the MAITA system because it is designed to provide an open architecture that can be 

fielded in a variety of critical care units and configured for a wide range of monitoring 

applications. The MAITA system, however, provides more general architecture, tools, and 

processes for constructing knowledge-based monitoring system. The MAITA system architecture 

is divided into four parts consist of Monitor Processes, Knowledge Bases, Edit/Query Tools, and 

Templates & Models while the SIMON system is divided into three layers. The Monitor 

Processes in the MAITA system can be compared to the Data Layer and the Task Layer as it 

acquires data from data sources, processes these inputs, and reports the results in accordance 

with an alerting and display model. The Knowledge Bases and Edit/Query Tools parts also have 

a concept similar to the Knowledge Layer in the SIMON system.  
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This chapter begins with the evaluation of both the Data Layer and the Task Layer. Next, 

the current status and results are presented. Finally, future research directions and 

recommendations are discussed.  

  

Data Layer 

Overall, the SIMON Data Layer provides effective distribution of data, and the 

architecture supports easy addition of data sources and clients. New individual components can 

be straightforwardly tested and added to support additional tasks by developing new components 

that follow the SIMON Data Layer protocol and name format. Also, existing components can be 

easily modified without stopping one or whole of the Data Layer’s components. For example, if 

a new data source is required, the new data source acquisition module can be developed and 

dynamically added to the system without interfering with the current system, i.e. the DataServer 

and other components do not required to stop running. This is also true when a new client is 

added to increase the functionality of the Data Layer. Using TCP/IP Socket based-interfaces 

makes it easy to develop new component communicating with the DataServer because TCP/IP 

Socket based-interface is available in many computing platform and programming languages. In 

the current implementation of the system, the DataServer written in C++ can communicate with 

the Census component implemented in PERL and SIMON-Note implemented in Java. TCP/IP 

Socket also permits the easy distribution of components onto several machines. More details 

about the protocol can be found in [48]. 

Also, if the new components are written in C++, many classes can be reused in order to 

decrease development time. For instance, communication and data structure classes, found in the 

DataServer, Data Collection and client modules can be reused. 

The centralized data server provides convenient, open access to a large amount of data. 

By making the DataServer a central point of access for the data, all the raw data sent from the 

Data Collection components to clients have to pass through the DataServer. This permits simple 

data organization and management scheme since the DataServer is the only component that has 

to be modified. For example, the DataServer was enhanced by adding noise filtering and 

parameter name filtering to remove invalid incoming data before sending it out to clients.  

 In terms of system scalability, the main limiting factor for the number of components 

that can be added to the system is the available hardware resources. In addition, the performance 
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of the whole system, i.e., how fast the system can handle the data, depends mostly on the number 

of Data Collection components running simultaneously on a system. There are two issues that 

need to be considered. The first issue is that these components, especially components acquiring 

data via RS-232 serial ports, do consume a fair amount of hardware resources. When several 

beds are monitored simultaneously, which increases the number of active Data Collection 

components, data dropout can occur because the components are not able to process data fast 

enough. This performance issues can be partially solved by distributing other resource 

consuming components, such as ART or some Data Collection components, to other machines. 

The second issue relates to the DataServer. Because the DataServer is the only route that the 

Data Collection components can use to transmit the data to other components, the DataServer 

has to create child threads to handle the communication with every Data Collection component. 

If there are too many threads that are created, data dropout can occur as well. Several DataServer 

instances can be distributed across platforms or processors to solve this performance problem. 

This method needs the Data Collection component and all client components to be properly 

configured for each DataServer.  

Distribution in the Data Layer also makes the system more reliable. Having separate Data 

Collection components for each medical device reduces the risk of complete system failure in 

case one or more medical devices fail.  

An initialization strategy for the components of a distributed system is important too, 

because this may lead to a system deadlock. In the Data Layer, the components are not required 

to start in order (see more details in [48]). For example, the Data Collection components can start 

before and keep trying to establish connections until the DataServer is starting. This ensures that 

deadlock will not occur. 

 

Task Layer 

The current Task Layer contains only instances of the Alarm Detecting Client (ADC) 

which is designed to be a small and simple program. Users have a straightforward way to 

configure the ADC with parameters and events that need to be monitored, email of care 

providers who are interested in these events, and other properties as described in chapter three 

through one configuration text file.  



 48

However, because some important properties are needed such as dynamic configuration 

methods, multiple-parameter event monitoring, real-time notification, and so on, the current Task 

Layer as initially designed is limited. Moreover, although the ADC itself is small, modifying the 

current Task Layer is not simple since it is monolithic. The revised Task Layer was designed and 

implemented using Microsoft DCOM techniques which offer a simple process to develop 

distributed applications (it should be noted, however, that DCOM techniques have a steep 

learning curve). Designing a set of components with distribution in mind from the beginning 

enhances the expandability, capability, and performance of the system. 

Three levels of DCOM servers and clients are grouped to form the revised Task Layer. 

The SSE Level is responsible for acquiring raw data from the DataServer and monitoring a 

single-parameter event. This prevents the DataServer from passing redundant data to the Task 

Layer when multiple ADCs request the same data items. The SSE Level is also designed to 

permit the easy addition of single-parameter events. The MSE Level monitors multiple-

parameter events. When the SSE Level detects a single-parameter event, it notifies the MSE 

Level. Consequently, the MSE Level checks whether the single-parameter event, with or without 

other single-parameter events, triggers a multiple-parameter event. Users setup methods to allow 

the Task Layer to notify themselves in the Notification Level. In addition to email notification, 

the revised Task Layer provides two more notification methods, GUI notification through client, 

and beeper notification. Client development is open; developers are not restricted by any 

specification such as programming language or input methods except that clients need to be able 

to call DCOM objects in the Notification Level through DCOM interface, which is still under 

development.  

About the initialization of the components in the revised Task Layer, DCOM also 

provides a simple initialization strategy. When the client is staring, DCOM will automatically 

start servers (i.e., for all three levels) as needed. The SSE Level that needs to communicate with 

the DataServer can also start before and keep trying to establish a connection like the other client 

components in the Data Layer. 

 

Result and Current Status 

The revised SIMON system was initially deployed in the VUMC trauma unit in 

September, 1998 on one bed. A second test bed was added in May, 1999. In April, 1999, 
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physicians and nurses started reviewing the data graphs on a SIMON-Trauma web site (see 

figure 8) during the course of patient care. They could view the graphs from a web browser 

running on bed side laptop computers or view them remotely from any authorized computer 

connecting to the network with appropriate security identification. As of October 29, 1999, data 

had been collected for 151 patients. Physicians and nurses began reviewing the data graphs at the 

bedside web browser in April 1999. 

In August, 1999, the ADC was deployed and began detecting events and delivering daily 

patient status summaries to an ICU physician via email. A sample summary message sent to the 

physician is shown below.  

 
Date: Tue, 28 Sept 1999 
Subject: ALARM MAIL 
 
Bed XXXXX Simon Alarms 
  from 09/27 5:00 
  to 09/28 5:00 
  Data collected for 22 hours 43 Minutes 
ICP > 25.00 from 09/27 9:45 to 10:14 
ICP > 25.00 from 09/27 10:36 to 10:52 
ICP > 25.00 from 09/27 11:32 to 11:49 
CPP < 60.00 from 09/27 22:04 to 22:41 
02%Sat < 90.00 from 09/28 4:08 to 4:35 
02%Sat < 90.00 from 09/28 4:36 to 5:00 

 

 

The status summaries are a list of detected events ordered by start time. An email 

message includes start time, end time, bed, and total time period. The total time period is the 

total duration a heart rate signal was detected since patients are always instrumented for heart 

rate monitoring. Normally, the total monitored time is less than 24 hours, as patients leave the 

bed to undergo procedures. Also, data gaps of less than 30 seconds are ignored. If no event is 

detected, a short message indicating only the monitored time is sent to verify system operation. If 

there was no monitored data over the 24-hour period, no email is sent. Table 2 shows the events 

and information that were detected over the first two-month period. The events defined over a 

temporal interval, i.e., “CPP < 60 for 15 minutes”, describe events that are defined as a 

continuous interval greater than the time threshold. Gaps in the data that are longer than 30 

seconds also occasionally divide the single event into separated events.  
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The process of expanding the system to a new bed and adding new devices was 

straightforward. After installing the new devices to the new bed, the other steps only require 

copying and setting the Data Collection components such as the HPDA, providing them with 

associated bed id, and start them. The process is dynamic because the DataServer and other 

running components in the system do not need to stop, and data from the new beds are acquired 

and monitored immediately. The more updated results and the most current status can be viewed 

in [17, 46]. 

 

Table 2: The table shows the events and information that were detected over the first two-month 
period. Number of patients shows the number of different patients that had the related parameter 
monitored for any duration of time [17]. 

 
 

Event Total 

monitored 

time 

(HH:MM:SS) 

Number 

of 

events 

detected

Number 

of 

patients 

Events per 

monitored 

hour 

Events per 

patient 

SvO2 < 60 

15 minutes 

344:48:56 13 11 0.04 1.18 

ICP > 25  

15 minutes 

768:19:29 81 13 0.11 6.23 

CPP < 60 

15 minutes 

728:20:54 39 13 0.05 3.00 

 
 

Future work and Discussion 

  Some existing components can be improved to enhance the system performance and 

extend its functionality.  

 

Data Layer 

Most of the components in this layer use CSocket to implement TCP/IP Socket 

communication. A lower level Winsock2 API can be used to improve performance and 
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reliability. UDP/IP protocol which is much faster but less reliable can be used instead TCP/IP 

protocol to improve performance. Therefore, more codes are needed to ensure reliability. 

 

DataServer 

As presented in chapter two, the DataServer constructs windows threads to handle a 

communication with its Data Collection components and data clients. Each windows thread 

communicates with other threads and its socket by using windows message. But a windows 

thread using its own message queue is substantially slower than a normal thread. An I/O 

completion port technique [43] introduced in Windows NT 3.5, together with a normal thread 

and variables synchronization, can be used instead of windows message queue to improve the 

DataServer performance.  

 

The SSE Level 

Adding a new type of a single-parameter event is a simple task. An event can be added to 

the SSE Level by constructing a new class inherited from the SSEObj. The new class needs only 

to implement algorithms to detect its type of event. The CSSEManager also needs to be modified 

to be able to construct an instance of the new type. 

 

The Notification Level 

 Currently, the Notification Level is only partially implemented. It can receive event 

expressions, pass the expression to the MSE Level and notify a user client via its own user 

interface implemented for real-time testing. The COM interface still needs to be defined and the 

other notification methods need to be added. 

 

Adding new components 

While the system is running, new types of the Data Collection components and new type 

of data clients can be implemented and added to the Data Layer without difficulty. Also, the 

revised Task Layer using DCOM techniques makes it possible to develop custom client by 

simply following DCOM interface implemented by the Notification Level.  
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The revised SIMON system was designed to be an utterly dynamic and flexible system. 

There are limitless possible ways to improve the system capability. Finally, as newer computer 

technology both in hardware and software emerges, these new solutions that might improve the 

robustness, speed, and reliability of the system will have to be explored.  
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APPENDIX A 

 

COMPLETE LIST OF SIMON PARAMETER 

 

HP_CPP – HP Monitor [HP] Cerebral Perfusion Pressure 

HP_CVP – Central Venous Pressure  

HP_DBP – Diastolic Arterial Pressure (invasive from catheter) 

HP_DPAP – Diastolic Pulmonary Arterial Pressure 

HP_HR – Heart Rate 

HP_ICP – Intracranial Pressure 

HP_MAP – Mean Arterial Pressure (invasive) 

HP_MPAP- Mean Pulmonary Arterial Pressure 

HP_NBP_d – Non-invasive (cuff) Pressure - diastolic 

HP_NBP_m – Non-invasive (cuff) Pressure - mean 

HP_NBP_s – Non-invasive (cuff) Pressure – systolic 

HP_RESP – Respiration rate determined from EKG electronic impedance measure 

HP_SBP – Systolic Blood Pressure (invasive) 

HP_SPAP – Systolic Pulmonary Arterial Pressure 

HP_SpO2 – Pulse Oximetry 

VL_AWRR – Ventilator Average Working Resp rate, via HP VueLink [VL] module 

VL_BSA – Body Surface Area from Baxter 

VL_CI – Baxter Cardiac Index 

VL_CO – Baxter Cardiac Output 

VL_EDV – Baxter End Diastolic Volume 

VL_EDVI – Baxter End Diastolic Volume Index 

VL_ESV – Baxter End Systolic Volume 

VL_ESVI – Baxter End Systolic Volume Index 

VL_FIO2 – Ventilator Fractional Inspired Oxygen 

VL_O2EI – Baxter Oxygen Extraction Index 

VL_PEEP – Ventilator Post End Expiratory Pressure 

VL_PIP – Ventilator Post Inspiratory Pressure 



 54

VL_Pmean – Ventilator Mean Airway Pressure 

VL_Ppeak – Ventilator Peak Pressure 

VL_Pplat – Ventilator Plateau Pressure 

VL_PULSE – Baxter Pulse Rate 

VL_REF – Baxter Reference 

VL_SI – Baxter Stroke Index 

VL_SpO2 – Baxter Pulse Oximetry 

VL_Sp-vO2 – Baxter Venous Oximetry 

VL_SV – Baxter Stroke Volume 

VL_SvO2 – Baxter Venous O2 Sat 

VL_Tblood – Baxter Blood Temp 

VL_TV – Ventilator Tidal Volume 

VL_VQI – Baxter Ventilation Perfusion Index 

Imed1_A_Conc – IV Pump 1, channel A Concentration 

Imed1_A_Dos – IV Pump 1, channel A Dosage 

Imed1_A_DrugName – IV Pump 1, channel A Drug Name 

Imed1_A_RATE – IV Pump 1, channel A Rate  

Imed1_A_VTBI – IV Pump 1, channel A Volume to be Infused 

[Support multiple, 1-4 channel IV pumps] 

CEN_MRN – Medical Record Number from Hospital Census System from  

Oxim_SaO2 – Ohmeda Biox 3740 Pulse Oximeter (Oxim) Oxygen Saturation 

USER_NOTE – Note from SIMON-Note 
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APPENDIX B 

 

SIMON SYNTAX 

 

 This appendix shows syntax of SIMON name and expression used in the SIMON system. 

The SIMON name in the Data Layer is used as a parameter name sent and received from the 

DataServer. The Expression Syntax in the Task Layer is syntax of a multiple-parameter event 

passed to the MSE and Notification Level. Both syntaxes are presented in Backus-Naur Form 

(BNF) [47].  

 

SIMON Name Syntax 

param -> bedid_paramname 

 

bedid -> simonstr+ 

paramname ->  ivsource_ivdata 

  | HP_hpdata 

  | VL_vldata 

  | Oxim_oximdata 

  | CEN_MRN 

  | USR_NOTE 

 

hpdata -> "based on HP monitor" 

vldata -> "based on VueLink module" 

oximdata -> "based on Oximeter model" 

 

  

ivsource ->  Imedivnum_ivchannel 

 

ivnum -> 1 | 2 | 3 | 4 

ivchannel -> A | B | C | D 
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ivdata -> Conc 

  | Dos 

  | DrugName 

  | RATE 

  | VTBI 

 

example of  paramname 

  

HP_HR 

HP_ICP 

HP_MAP 

 

VL_PEEP 

VL_PIP 

VL_Pmean 

 

Imed1_B_RATE 

Imed1_B_VTBI 

Imed1_C_Conc 

 

Oxim_SaO2 

 

CEN_MRN 

USR_NOTE 

 

 

simonstr -> a..z, A..Z, 0..9  

 

example of  param 

 

10005T_HP_CPP 
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timestamp -> "the number of seconds elapsed since midnight (00:00:00), January 1, 1970" 

 

archivefilename -> paramname.d 

archivefileformat -> timestamp arvhivevalue 

 

archivevalue ->    integer  

  | float 

  | string 

 

example of  archivefileformat 

 

HP_HR.d 

954267761 93.00  

 

 

Expression Syntax 

expr ->  logicop 

  | param 

   

logicop ->  AND(expr expr )  

  | OR(expr expr )  

 

paramob -> GT(param, thresholdvalue, duration) 

  | LT(param, thresholdvalue, duration) 

 

threasholdvalue -> float 

 

duration -> "number in minutes" 

 

example of expr 
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OR(AND(OR(GT(10005_HP_SpO2, 60, 

5)LT(10005_HP_CPP,50,5))LT(10005_VL_SpO2,100,3))    

OR(GT(10005_Oxim_PR,60,5)LT(10005_HP_MAP,50,5))) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Tree of Expression 

 

Class SimonNameSpace 

 SimonNameSpace encapsulates param string, and provides methods to retrieve any sub 

string. This class can be used in every component written in C++, especially in Data Layer 

components. STL string and STL vector are used in this class instead of MFC for a portability 

and performance purpose. The header file is shown below. 

 
class SimonNameSpace   
{ 
private: 
 

// typedef vector<string> StringList in "SimonDL.h" 
 StringList m_SubStr;  

string m_sFullName; 
 
public: 
 SimonNameSpace(){}; 
 SimonNameSpace(LPCTSTR FullName); 

10005_HP_SpO2 > 60
for 5 minutes

OR

AND Or

10005_HP_CPP < 50 for
5 minutes

10005_VL_SpO2 < 100
for 3 minutes

10005_Oxim_PR > 60 for
5 minutes

10005_HP_MAP < 50 for
5 minutes

OR
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 virtual ~SimonNameSpace(); 
 
 SimonNameSpace(const SimonNameSpace& NS); 
 SimonNameSpace& operator=(const SimonNameSpace& NS); 

 
// Greater operator 

 bool operator>(const SimonNameSpace&) const;  
 // Less than operator 

bool operator<(const SimonNameSpace&) const;   
 // equal to operator 
 bool operator==(const SimonNameSpace&) const;  
  

operator const LPCTSTR() const; 
 
 string GetFullName() const; 
 string GetBedID(); 
 string GetString(int begin, int end); 
 string GetDevice_Param(); 
 string GetDevice(); 
 string GetParamData(); 
}; 
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