
USER-SPECIFIED VIRTUAL FIXTURES

FOR AUGMENTING HUMAN-ROBOT INTERACTION

By

Aditya Bhowmick

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

August 2014

Nashville, Tennessee

Approved:

Nabil Simaan, Ph.D.
Richard Alan Peters, Ph.D.



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Nabil Simaan for

his support and guidance in finishing this thesis. His perseverance and dedication to

research has been a source of inspiration and guideline for me to follow.

I would like to thank all my lab-mates and especially Jason Pile, Long Wang

and Haoran Yu for helping me out with debugging the PUMA electronics when it

inevitably started giving problems. Without their help, I would have never been able

to finish this thesis in time. I would also like to thank my family whose support and

encouragement kept me going at all times.

Lastly, I would like to thank the Department of Electrical Engineering and Com-

puter Science and the Department of Mechanical Engineering at Vanderbilt University

for the generous financial aid.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.1. Virtual Fixtures in Surgical Robotics . . . . . . . . . . . . . 1

I.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.3. Literature Review . . . . . . . . . . . . . . . . . . . . . . . 6

I.4. Outline of this work . . . . . . . . . . . . . . . . . . . . . . 11

II. THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . 12

II.1. Human-Robot Interaction Modes . . . . . . . . . . . . . . . 12

II.2. Inverse Kinematics Resolved rates control of serial robots . . 14

II.3. Projections as a tool for virtual fixture specification . . . . . 19

Orthogonal Projection Matrices . . . . . . . . . . . . . . . 20

Oblique Projection Matrices . . . . . . . . . . . . . . . . . 25

II.4. Kinematic filtering for Virtual Fixtures . . . . . . . . . . . . 26

III. USER INTERFACE FOR
REAL-TIME CONTROL OF THE PUMA 560 ROBOT . . . . . . . 37

iii



III.1. PUMA Kinematic model . . . . . . . . . . . . . . . . . . . . 37

III.2. Real-time Control using MATLABr xPC . . . . . . . . . . 40

PD + Inverse Dynamics Controller . . . . . . . . . . . . . 41

Robot Controller Interface . . . . . . . . . . . . . . . . . . 42

Trajectory Planner . . . . . . . . . . . . . . . . . . . . . . 43

Application Specific Code . . . . . . . . . . . . . . . . . . 44

III.3. Graphical User interface . . . . . . . . . . . . . . . . . . . . 47

IV. EXPERIMENTAL VALIDATION . . . . . . . . . . . . . . . . . . . 50

IV.1. Virtual Fixtures on PUMA560 . . . . . . . . . . . . . . . . 50

Virtual Fixture constraining movement to a plane . . . . . 53

Virtual Fixture constraining movement along a curve . . . 69

Virtual Fixture constraining movement within a curve . . . 85

IV.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

V. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A. PUMA SPECIFICATION SHEET . . . . . . . . . . . . . . . . . . . 105

B. VIRTUAL FIXTURE CODE . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

iv



LIST OF TABLES

Page

III.1. DH parameters for the Puma robot assuming the operational point
is at the center of the end effector flange . . . . . . . . . . . . . . . 39

IV.1. Admittance gains used for virtual fixture evaluation . . . . . . . . . 50

IV.2. Paired t-test Results for Follow Plane Task . . . . . . . . . . . . . 66

IV.3. Paired t-test Results for Follow Curve Task . . . . . . . . . . . . . 83

IV.4. Paired t-test Results for Stay Within Curve Task . . . . . . . . . . 99

v



LIST OF FIGURES

Page

I.1. Robodoc® Surgical System for Hip and Knee Replacement Surgery(Active
Surgical System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.2. Acrobot® Surgical System for TKR Surgery(Semi-Active Surgical
System)[1, 2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II.1. Interaction modes for manipulation . . . . . . . . . . . . . . . . . . 12

II.2. An example of resolved rates algorithm for following a straight line 16

II.3. Flowchart for the Resolved Rates Algorithm . . . . . . . . . . . . . 18

II.4. The orthogonal projection of vector y onto vector u . . . . . . . . . 19

II.5. The orthogonal projection of vector y onto a 2-dimensional subspace S 21

II.6. Virtual Fixtures constraining movement to a Plane . . . . . . . . . 28

II.7. Vector u closing error to the Plane π . . . . . . . . . . . . . . . . . 30

II.8. Virtual fixture constraining movement along a curve c . . . . . . . 32

II.9. Vectors u and v closing errors to the Plane π and curve c . . . . . 33

II.10. Virtual Fixtures constraining movement within a curve c . . . . . . 34

II.11. Plots of Kτcomputed
for different proportional gains . . . . . . . . . . 35

vi



III.1. PUMA 560 frame assignments . . . . . . . . . . . . . . . . . . . . . 38

III.2. xPC model of the PUMA Controller . . . . . . . . . . . . . . . . . 41

III.3. PD + Inverse Dynamics subsystem . . . . . . . . . . . . . . . . . . 42

III.4. Robot Controller Interface . . . . . . . . . . . . . . . . . . . . . . . 43

III.5. Trajectory Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III.6. Subsystem of Task Space block . . . . . . . . . . . . . . . . . . . . 45

III.7. Hybrid Admittance block . . . . . . . . . . . . . . . . . . . . . . . 45

III.8. Virtual Fixture block . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III.9. User Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . 47

III.10. Modes of Operation in GUI . . . . . . . . . . . . . . . . . . . . . . 48

III.11. Virtual Fixture Panel in GUI . . . . . . . . . . . . . . . . . . . . . 49

IV.1. Experimental setup for virtual fixture evaluation . . . . . . . . . . 52

IV.2. Virtual Fixture Task, Follow Plane . . . . . . . . . . . . . . . . . . 54

IV.3. Virtual Fixture Task, Follow Curve . . . . . . . . . . . . . . . . . . 71

IV.4. Virtual Fixture Task, Stay Within Curve . . . . . . . . . . . . . . . 87

V.1. Experimental Setup for validating user-specified VF based on vision 103

vii



CHAPTER I

INTRODUCTION

I.1 Virtual Fixtures in Surgical Robotics

Surgical robots have have had a major role in augmenting surgeon capabilities

in the past two decades. They allow for safer execution of a surgical path by filtering

out the hand tremors of the surgeon and also allow for enhanced kinematic mapping

by allowing haptic feedback to the surgeon. One of the areas where surgical robots

have had a major impact is minimally invasive surgery(MIS)[3]. MIS is preferable

for the patient as it allows for reduced scarring, reduced pain, faster recovery and

reduced infection. Traditional MIS tools do not have enough dexterity to perform

complex procedures in small confined spaces [4] and result in reduced dexterity and

precision, lack of sensory perception and greater cognitive load on the surgeon. This

led to the development of robot-assisted surgical systems such as Intuitive Surgical’s

DaVinci®[5] and Titans SPORT® (Single Port Orifice Robotic Technology) which

enhanced the surgeon’s dexterity in confined spaces. However, this still places the

entire responsibility of carrying out the procedure on the surgeon.

One of the key advantages of Robotic assistance is the accurate execution of

surgical plans. Figure I.1 shows a typical surgical workflow with an illustrative ex-

ample from total hip replacement [6]. The surgical workflow starts with preoperative

imaging (Figure I.1-b) followed by surgical planning and then followed by surgical

execution (Figure I.1-c). Depending on the type of robot used, the surgical execution

1



may use user input at varying levels of autonomy. As an example, Figure I.1-d shows

robotic milling using the Robodoc® compared to manual broaching of the femur.

There are two approaches in reducing the cognitive load and dependence on the

surgeon in following a pre-planned surgical path. One approach involves keeping

the surgeon as a supervisor and letting the robot carry out the entire procedure

autonomously. These surgical robots are termed as active robots. One of the earliest

examples of an autonomous surgical robot was the Robodoc® used in Hip and Knee

Replacement Surgery [6]. The robot and the bone surface are registered precisely to

each other and then the surgeon specifies a path based on preoperative CT scans.

The robot then mills out the surface intraoperatively with the surgeon present as a

supervisor.

Preoperative Planning

Surgical Planning

Autonomous Surgical Execution

Results

Robotic Milling Manual Broach

(a)

(b)

(c)

(d)

Figure I.1: Robodoc® Surgical System for Hip and Knee Replacement Surgery(Active
Surgical System)

2



The other approach would be to let the surgeon perform the incisions/cuts and

let the robot assist the surgeon in guiding the tool. These surgical robots are termed

as semi-active robots. This offers the surgeon a greater degree of control in the sur-

gical procedure. The assistance provided by the robot to the surgeon is termed as

“virtual fixture”. One of the earliest implementations of virtual fixtures in surgical

robotics was the Acrobot® Surgical System used in Total Knee Replacement(TKR)

Surgery [7]. Virtual fixtures were implemented as active constraints that prevented

the surgeon from straying into forbidden surgical zones. These constraints were de-

fined by by the surgeon using preoperative CT scans of the patient’s leg, Figure I.2.

This allowed the surgeon to shape the surface of the knee bones with high precision,

which resulted in a highly accurate placement of the knee prosthesis.

Preoperative Planning Phase
Semi-active Surgical Execution

Figure I.2: Acrobot® Surgical System for TKR Surgery(Semi-Active Surgical
System)[1, 2]

There has also been research focusing on virtual fixtures in MIS with applications

in endoscopic sinus surgery [8] and skull base surgery [9]. The application of virtual

3



fixtures in such constrained areas would be of great assistance to the surgeon in

avoiding contact with sensitive anatomy and following a complex surgical path at the

same time.

The concept of virtual fixtures can be implemented in many ways. For coop-

erative control surgical robots (such as the Acrobot® and the JHU Steady Hand

Robot), virtual fixtures are implemented using kinematic filtering of the surgeon’s

hand movement guiding the robot.

In the case of telemanipulated surgical robots (such as the Intuitive Da-Vinci®),

there are broadly four telemanipulation controller architectures [10]:

1. Position Forward (PF): where the master is not actuated and the slave just

tracks the position of the master

2. Position Exchange (PE): where the slave tracks the position of the master and

the master tracks the position of the slave. This scheme of control results in a

viscous drag on the master if it tries to lead the slave.

3. Position Forward/Force Feedback (PFFF): where the slave tracks the position

of the master, and the forces felt by the slave during its interaction with the

environment is fed back to the master

4. Position Exchange/Force Feedback : a combination of Position Forward/Force

Feedback and Position Exchange.

In this research we broadly classify telemanipulated virtual fixture implementations

into three categories:

4



1. Using virtual fixture force feedback on the master side only

2. Using kinematic filtering of the master commands to the slave robot

3. A combination of both of the above

I.2 Motivation

The challenge with implementing assistive virtual fixtures is the exact coupling

of surgical execution to preplanning. This can happen if and only if the anatomy and

robot are registered or the preoperative plan is intraoperatively updated to match

the anatomy. The task of registering the robot and preoperative data to the area of

surgical intervention is a formidable challenge when operating on flexible anatomy.

In orthopaedic surgical applications, the bone surface is rigid which allows for ac-

curate registration for defining surgical paths. However, we rarely deal with rigid

anatomy when dealing with minimally invasive procedures. For example, in the case

of transurethal resection (TUR) of the bladder the anatomy is highly deformable.

Registration of the preoperative data with the flexible intraoperative environment is

a challenging task which could yield inaccurate results. Most of the previous works

have dealt with virtual fixture geometry extracted from preoperative images such as

Magnetic Resonant Imaging(MRI) and Computed Tomography(CT) scans [7, 11, 12].

We proposition that most of the previous approaches would not be applicable to

highly deformable anatomy such as the bladder. Instead of trying to solve the com-

plex problem of deformable registration, we aim to simplify the problem by proposing

an approach which would allow the surgeon to specify motion constraints intraoper-

atively.

The basic premise is that surgeons are able to visualize the area they want

5



to resect during operation. Therefore, we let the surgeon specify a closed contour

depicting the area encompassing the allowable surgical intervention intraoperatively

using a visible spectrum laser. These “user-specified virtual fixtures” would let the

surgeon “draw” the area of interest intraoperatively. We envision that this approach

would be more preferable and intuitive to the surgeon.

I.3 Literature Review

Initially the main focus when developing telemanipulated robotic systems for

surgery and also in the case of telemanipulated industrial robots, was improving

“telepresence” [13]. Telepresence as defined by Sheridan [13] is the “visual, kines-

thetic, tactile or other sensory feedback from the teleoperator to the human operator

such that the human feels that he is present at the remote site, and that the tele-

operator is an extension of his own body” [13]. However Rosenberg [14] proposed

that sometimes rather than improving the “fidelity” of the telepresence, corrupting

it is also beneficial. The concept of virtual fixtures was thus defined as the “abstract

sensory information overlaid on top of reflected sensory feedback from a remote en-

vironment”. Rosenberg stated that implementing virtual fixtures improved operator

performance by up to 70% [14].

Virtual fixtures can broadly be classified as “barrier virtual fixtures” or “guidance

virtual fixtures”. The objective with barrier virtual fixtures is to prevent the erroneous

tool excursions by the user. In the case of guidance virtual fixtures, the objective is

to assist the surgeon in following a curve or a plane and reorient the tool so that the

surgeon is able to satisfy both anatomical and geometric constraints.

The development of Acrobot used in TKR surgery was the first implementation

6



of active constraints(barrier virtual fixtures) on a cooperative manipulation robot

[7]. The work focused on the advantages of using a semi-active and cooperatively

controlled robot in surgery which gave better control over the surgical procedure and

enabled the surgeon to shape the bones with greater accuracy and precision . The

basic idea behind implementing virtual fixtures as active constraints was to gradually

increase the stiffness of the robot as it reached the workspace boundary. During

cadaveric studies, registration between the bone surface the preoperative CT scans

was done using fiducial markers. Using fiducial markers was unacceptable during

clinical trials and therefore the authors came up with a registration method based

on the Iterative Closest Point (ICP) algorithm. The bone surface was held fixed

in place with respect to the robot by using clamps which was used to register the

robot to the anatomy. The surgeon then selected multiple landmark points on the

anatomy which was used to generate the initial estimate of the registration between

the preoperative images and the bone surface. After that multiple points were selected

on the bone surface and registered to the CT scan which was verified by the surgeon.

This registration approach would not translate well to other surgical procedures as

we would not always have a rigid bone surface easily accessible to the surgeon.

One of the earliest works involving the use of virtual fixtures in MIS was in

cardiac surgery [15]. Preoperative CT scans were taken to determine the location of

the internal mammary artery (IMA). During the surgery the patient’s anatomy was

registered to the imaging data and then virtual fixtures was implemented to constrain

the motions along adjacent paths to the artery. Hein et. al. [16] also implemented

virtual fixtures in the form of workspace restrictions in shaping of the spinal vertebrae.

7



Abbott et.al. [10] analysed various virtual fixture architectures for telemanipula-

tion. The goal was to determine the best combination of master and slave forbidden

region virtual fixtures (FRVF) on different telemanipulator controllers. The conclu-

sion was that the performance is more similar across all telemanipulator architectures

however different requirements (“tracking, safety and submittance”) called for differ-

ent implementations of FRVF. The only definitive conclusion was that implementing

a strong FRVF at the slave side coupled with no FRVF at the master led to poor

telepresence.

Bettini et.al. [11] implemented a system where vision was used to follow a refer-

ence trajectory. The type of virtual fixture implemented was termed as “guidance”

virtual fixtures as the user was guided to follow a reference trajectory or guided to a

reference point. Vision was used to determine the location of the robot with respect

to its environment. The effect of varying compliances to get “soft” virtual fixtures

was also studied. It was found that soft virtual fixtures provided the user with suffi-

cient guidance to follow a path or move to a point with accuracy and yet have enough

control to pull away from the guided path to avoid obstacles.

Kragic et.al. [17] implemented guidance virtual fixtures with the JHU Steady

Hand Robot which is a cooperative manipulator i.e. an admittance controlled robot.

They also implemented an on-line task recognition system based on Hidden Markov

Models(HMM). This approach resembled the work of Rosen [18, 19] on intent identifi-

cation using HMM’s. The system developed was able to recognize if the user intended

to avoid the curve and switch off virtual fixtures automatically. The recognition algo-

rithm was trained on different sine curves and was found to be robust with an average

8



accuracy greater than 90%. The implementation of virtual fixtures with HMM al-

lowed the user to avoid a curve with greater ease and was found to lower the total

task execution time.

Most of the previous works dealt with implementing virtual fixtures on admit-

tance control robots. Abbott et.al. [20] implemented virtual fixtures on impedance

type devices using admittance control. The system implemented did not utilize a

force sensor to generate the reference velocities. The methodology was to read in the

position error from a predefined set-point and then approximate the position error

to a force reading. This force reading was then used to define a reference velocity

which was integrated to update the set position. The importance of this work lies

in its application to existing impedance type teleoperation systems such as Intuitive

Surgical’s DaVinci [5].

Marayong et.al. [21] discussed the concept of using virtual fixtures to implement

spatial motion constraints. This paper gave a rigorous theoretical definition of virtual

fixtures as geometric constraints. Basically, a basis of preferred directions are created

off-line to constrain the user along a path. Additionally, the concept of closed loop

virtual fixture was also explored which in addition to guiding the user along preferred

directions also gets the user back to the constrained curve. It was experimentally

verified that closed loop virtual fixtures did not deviate from the required path in

both rotational and translational virtual fixtures.

A clinical application for ENT surgery based on spatial motion constraints was

developed in [22, 12, 8]. In ENT surgery, especially sinus surgery the operating space

for the surgeon is limited. The challenge in these surgeries is to be able to follow

a preplanned surgical path in a confined area (“tool tip motion constraints”) while

9



ensuring that the tool shaft boundary does not come in contact with the nasal and

sinus bones (“anatomic constraints”). The anatomic constraints are generated by the

3D model of the anatomy and the tool tip trajectory is pre-specified. The approach

is to map the tool tip motion and boundary information to joint displacements. A

constrained optimization algorithm is then used to determine the optimal joint dis-

placements which satisfy the tip motion and anatomic constraints. The 3D model

of the skull was generated using a software called 3D-slicer. The skull model was

registered to the CT images and the robot using fiducials embedded in the skull.

These fiducials were sampled using an Optotrak pointer(which is a 3D point tracking

system). The target path was specified with respect to the CT images by tracing a

wire embedded in the skull phantom using the Optotrak system. The sampled points

were then interpolated using B-splines to get the 3D curve. They also compared the

performances between “free-hand mode”, “SHR guided hands-on cooperative mode”

and “SHR guided remote teleoperation mode”[8]. The results indicated that both the

robot guided modes were better than the free-hand mode. The hands-on cooperative

mode resulted in a slightly reduced error compared to the teleoperated mode. How-

ever, there was no significant difference between the two modes as indicated by the

paired t-test. The execution time in the case of the hands-on cooperative mode was

however significantly less than the teleoperated mode.

The contribution of this thesis would be in the implementation of a library of

virtual fixture primitives that could be expanded to include more complex definitions.

We also propose the concept of user specified virtual fixtures which would allow the

surgeon to specify the allowable area of surgical intervention intraoperatively using a

visible spectrum laser.

10



I.4 Outline of this work

The primary contributions of this work would be in laying out the framework and

foundations behind assistive manipulation algorithms suitable for both cooperative

manipulation and telemanipulation controller architectures. The task would be to

define a library of virtual fixture primitives, which would allow definitions of new vir-

tual fixtures. This work would also analyse the operator performance improvements

by using virtual fixtures. A framework and setup for specifying user-specified virtual

fixtures would also be proposed which would also take care of visual registration of

the area of surgical intervention to the robot.

First, chapter II presents the theoretical background behind projections which

are used as a tool for virtual fixture specification which would be used to derive control

equations for virtual fixtures in three cases. Chapter III details the experimental setup

used in the experiments conducted. Chapter IV explains the user-control interface

which integrates various control modes of the PUMA robot and also detail the safe

transition logic between the different operating modes. Finally, chapter V illustrates

our experimental results and validates the approach used.

11



CHAPTER II

THEORETICAL BACKGROUND

II.1 Human-Robot Interaction Modes

Before we move on to the mathematical background behind virtual fixtures, we

should first discuss the different manipulation architectures. Essentially, there are two

modes of user-controlled manipulation that are used in robotics; telemanipulation and

cooperative manipulation.

Tele-manipulation Cooperative/Hands-on manipulation

Figure II.1: Interaction modes for manipulation

However, before we define these terms we should talk about impedance and admit-

tance type devices. Basically, impedance type devices are back-drivable with current

12



(torque) low-level control and accurate dynamics whereas admittance type devices

are non back-drivable with voltage (speed) low-level control where the dynamics are

usually attenuated by high gear ratios.

Generally we tend to use impedance masters in the case of telemanipulation.

Admittance masters are generally encountered in cooperative/hands-on manipula-

tion where the user directly manipulates the robot by applying force to the tool.

Impedance slaves are used in surgical systems such as the Da-Vinci. The advan-

tage with using impedance slaves over admittance slaves is the ability to sense forces

through motor currents(torque) or joint errors whereas admittance slaves require the

use of a force sensor in order to sense forces.

A “telemanipulation” system generally consists of an impedance master device,

impedance/admittance slave device and a communication network as shown in the

figure. The surgeon controls the master device which generates electrical signals from

the low level controller. This data is then fed into a high level controller which com-

putes the position and orientation of the master device and sends it to the slave device

where this data is processed by its own high level controller. The high-level controller

on the slave side then sends the required signal to the low-level controller which moves

the slave robot. Intuitive Surgical’s DaVinci® is an example of a telemanipulated

surgical system.

As mentioned before there are broadly four telemanipulation controller archi-

tectures; Position Forward(PF) where the slave tracks the master, Position Ex-

change(PE) where the slave tracks the master and the master tracks the slave, Posi-

tion Forward/Force Feedback(PFFF) where the slave tracks the position of the master

13



and the forces felt by the slave are fed back to the master, Position Exchange/Force

Feedback which is a combination of PFFF and PE.

In contrast, in the case of a “cooperative/hands-on manipulation” system the

user applies force directly to a tool attached to an admittance master. The forces are

sent to the high-level controller which generates the low-level signals which is fed to

the low-level controller which moves the tool in the direction of applied force. The

Acrobot® Surgical System is an example of a cooperative/hands-on manipulation

system.

II.2 Inverse Kinematics Resolved rates control of serial robots

For serial robots, the inverse kinematics problem (finding the joint values given

the end effector position and orientation) is nonlinear and difficult to solve in closed-

form. We solve this problem in real-time with the use of the “resolved rates” algo-

rithm. Basically, if the robot has a current pose xc and we have a desired pose xd,

then the resolved rates algorithm would generate a sequence of joint values q that

would let us reach the desired pose xd from the current pose xc in a smooth motion.

Assume that the robot has a home configuration, with known joint values qh.

We can easily compute the position and orientation of the end effector xh from the

direct kinematics. At each time step t, the robot has a current pose xc which is

different from the desired pose xd. The difference between the desired pose and the

current pose defines the position and orientation error. As the pose x is defined using

the Cartesian position p = [px, py, pz] and a vector of Euler angles ξ = [φ, θ, ϕ] ∈ R3,

it is better to compute the position and orientation errors separately.

14



The position error δp is computed as,

δp =
√
(pd − pc)T (pd − pc) (II.1)

To compute the orientation error, we first need to compute the Rotation Re that

would fix the orientation error. We have the desired orientation of the end effector in

world frame as Rd and the current orientation of the end effector as Rc. The rotation

Re to bring Rc to Rd is computed as (assuming a fixed frame rotation sequence),

Rd = Re(θe, m̂e) ∗Rc

Re = Rd ∗Rc
T (II.2)

Once we have the rotation Re, we can compute the axis m̂e and angle θe for the

axis-angle notation using the following equations,

θe = cos−1 trace(Re)− 1

2

m̂e =
1

2 sin(θe)


Re(3, 2)−Re(2, 3)

Re(1, 3)−Re(3, 1)

Re(2, 1)−Re(1, 2)

 (II.3)

Using the axis-angle representation, we can compute the orientation error δξ as

follows,

δξ =
√

(ξd − ξc)T (ξd − ξc) (II.4)

Using the position δp and orientation error δξ, we can compute the desired twist

15



(linear and angular velocity) ẋd = [ṗd, ξ̇d]. If we use this twist to compute the joint

velocities q̇, we would move towards the desired pose xd.

=

Figure II.2: An example of resolved rates algorithm for following a straight line

To ensure that the robot smoothly converges to the desired pose xd, we make

use of a scaling term λ which is used to compute the radius of position error ηp = λεp

and the radius of orientation error ηξ = λεξ beyond which the robot moves at the

maximum linear and angular speed respectively. In Figure II.2, the robot would move

with a maximum speed towards the desired point and then start slowing down when

it is within the radius ηp. The desired linear speed ṗd and desired vector of euler

angles’ rates ξ̇d can be computed as follows,

ṗd = ∥ṽ∥n̂ (II.5)

where, n̂ =
pd − pc

∥pd − pd∥
,

∥ṽ∥ =


vmax, if δp

εp
> λ, λ > 1

vmax−vmin

εp(λ−1)
(δp − εp) + vmin, if δp

εp
≤ λ, λ > 1

16



ξ̇d = ∥ξ̇∥m̂e (II.6)

∥ξ̇∥ =


ξ̇max, if

δξ
εξ

> λ, λ > 1

ξ̇max−ξ̇min

εξ(λ−1)
(δξ − εξ) + ξ̇min, if

δξ
εξ

≤ λ, λ > 1

where m̂e is given by Eq. II.3. To compute the joint velocities q̇d from the desired

twist ẋd we make use of the generalized pseudo-inverse J† of the Jacobian matrix.

The generalized pseudo-inverse is exactly the inverse of J if the number of joints m

is equal to the degree of freedom n. Otherwise, in the neighbourhood of singularity,

J† is computed based on the singularity-robust inverse as,

q̇d = J†ẋd (II.7)

where J† = JT (JJT + ρI)−1 and ρ is a small number and I is the identity matrix.

Once the desired joint speeds q̇d are computed, we compute the new joint values

for the next iteration by assuming that the desired joint speed was applied for an

increment of time ∆t using the following equation.

qi = qi−1 + q̇d∆t (II.8)

Using the updated joint values, the position δp and orientation errors δξ are

computed again, using which the desired twist (linear and angular velocity) ẋd =

[ṗd, ξ̇d] is computed and finally the joint values at the next time step is computed.

We continue these steps until we converge to the desired position xd.

17



Start

Start configuration
q = qstart

Choose εp, εξ, λ,
maximal and mini-
mal angular veloci-
ties

Notation:

1. pc= current position of end effector at
time t

2. pd=desired goal position of end
effector,

3. ηp = λεp= radius of position error
beyond which robot moves at
maximum linear speed vmax,

4. ηξ = λεξ= radius of orientation error
beyond which robot moves at
maximum angular speed ξ̇max

Compute current pose:
xc = DirKin(q)

δp =
√

(pd − pc)T (pd − pc)

δξ =
√

(ξd − ξc)T (ξd − ξc)

δp > εp
or

δξ > εξ

Compute desired linear
and angular velocities:

ẋ6×1

d = [ṗT
d , ξ̇

T

d ]
T

Stop

Compute desired
joint velocities:
q̇d = J†ẋd

Update joint values:
qi = qi−1 + q̇d.∆t

yes

no

1Figure II.3: Flowchart for the Resolved Rates Algorithm

18



II.3 Projections as a tool for virtual fixture specification

This section introduces the theory and mathematical background behind pro-

jections. A more rigorous definition of these concepts can be found in Basilevsky

[23].

S

Figure II.4: The orthogonal projection of vector y onto vector u

Whenever we define an n-dimensional vector y ∈ Rn, the coordinates of the vec-

tor represents the lengths of the orthogonal projection vectors of y onto n-coordinate

basis vectors. Let S be defined as a r-dimensional subspace of vector space V where

(x1,x2,x3, . . . ,xr) forms the basis for S.

Consider the problem of projecting y onto subspace S. In particular, if we

consider r = 1, then this is a problem of projecting one vector y ∈ R on another

vector say u ∈ Rn. We have to decompose y into the sum of two components, one a

multiple of non-zero vector u and the other orthogonal to u as shown in Figure II.4.

Therefore, we can express vector y as:

y = y∥u + y⊥u (II.9)

19



We can express the component along vector u as βu and the component perpen-

dicular to u as e which would give the following,

y = βu+ e

where β is any scalar and e is orthogonal to u. Therefore, we can write the following

equation:

0 = e.u = (y− βu).u = y.u− β(u.u) (II.10)

From equation II.10 we can obtain the scalar β as,

β =
y.u

u.u

We can finally define the projection of y on u as,

y∥u =
y.u

u.u
.u (II.11)

Orthogonal Projection Matrices

In the earlier section, we considered a 1-dimensional subspace which was the

simple case of projecting one vector on another. Now, we extend our approach to an

r-dimensional subspace S given an n-dimensional vector y where r < n. The task

would be to project the vector y onto the subspace S using a Projection Matrix PA.

Considering the case of an orthogonal projection as shown in Figure II.5 where

we have have a subspace S defined by two basis vectors (a1, a2) and a 3-dimensional

20



S

= =

=

Figure II.5: The orthogonal projection of vector y onto a 2-dimensional subspace S

vector y ∈ R3. The vector y∥S can defined as,

y∥S = ŷ = PAy (II.12)

where PA is the orthogonal projection matrix that projects a 3-dimensional vec-

tor y onto the 2-dimensional subspace S. The vector y⊥S can be defined as,

y⊥S = y− ŷ (II.13)

Since this is an orthogonal projection, the vector (y − ŷ) is normal to the 2-

dimensional subspace S which means that it is also orthogonal to its basis vectors

(a1, a2). This gives us the following equations,

a1
T (y− ŷ) = a1

T (y− ŷ) = a1
T (y− [a1x1 + a2x2]) = 0 (II.14)

a2
T (y− ŷ) = a2

T (y− ŷ) = a2
T (y− [a1x1 + a2x2]) = 0 (II.15)

21



Considering,

A = [a1, a2]

and

x = [x1, x2]
T

where (x1, x2) are the coordinates of the projected vector ŷ in subspace S. We can

rewrite Equations II.14 and II.15 as,

AT(y−Ax) = 0

or,

ATAx = ATy

which gives us,

x = (ATA)−1ATy

Therefore, the projection ŷ of vector y on the 2-dimensional subspace S is given as,

ŷ = Ax = A(ATA)−1ATy = PAy

where PA is an orthogonal projection matrix that projects any 3-dimensional vector

onto the 2-dimensional subspace S defined by the columns of matrix A.

Generalizing, if we have an n-dimensional vector y and an r-dimensional subspace

S where r < n and X = [x1,x2,x3, . . . ,xr] where (x1,x2,x3, . . . ,xr) form the basis

for S, then the Projection matrix can be derived as,

PX = X(XTX)−1XT (II.16)

22



If P is a Projection matrix, then the following theorems must be satisfied as well

[23],

Theorem 1. P must be idempotent i.e. P = P2

Theorem 2. P must be symmetric to obtain an orthogonal projection.

Proof. Referring Figure II.5, we know that vectors (y − ŷ) and ŷ are orthogonal to

each other. Therefore, we can write:

(y − ŷ)T ŷ = (y −Py)TPy

= [(I−P)y]TPy

= yT (I−P)TPy = 0 (II.17)

Since we want II.17 to hold for every y, we have

(I−P)TP = 0

PTP = P (II.18)

Taking the transpose of II.18 gives:

PPT = PT (II.19)

Equations II.18 and II.19 give us:

PT = P (II.20)

Therefore, this proves Theorems 1 and 2.

23



Theorem 3. If X is an n×k matrix with rank k×n, where the columns of X define

the subspace S, then PX = X(XTX)−1XT is idempotent and symmetric i.e. it is an

orthogonal projection matrix.

Proof of symmetry.

PX
T = [X(XTX)−1XT ]T

= X[(XTX)−1]TXT

= X[(XTX)T ]−1XT

= X(XTX)−1XT = PX

Since PX
T = PX, PX is symmetric.

Proof of idempotency.

PX
2 = X(XTX)−1XTX(XTX)−1XT

= X(XTX)−1XT = PX

Theorem 4. I−PX spans the nullspace of X

Proof. To prove that I−PX spans the nullspace of X, we have to show that I − PX

projects a vector in range(X) to the null vector 0.

(I−PX)Xy = Xy −X(XTX)−1XTXy

= 0

24



Oblique Projection Matrices

We know that the Projection matrix P is orthogonal iff the matrix is idempotent

and symmetric. We can generalize the projection matrix P by transforming a vector

y onto a different projection vector ŷ such that the vector y− ŷ is not normal to the

subspace S (refer Figure II.5)

Let Φ be a positive definite n × n matrix. It can be proven that there exists a

non-singular n × n matrix C such that CΦCT = I and CTC = Φ−1, so that Φ is

symmetric [23].

If we have an r-dimensional subspace S where r < n and X = [x1,x2,x3, . . . ,xr]

where (x1,x2,x3, . . . ,xr) form the basis for S, we can transform the matrix X as

X∗ = CX [23]. Substituting this in the equation for a Projection matrix, we would

get,

PX∗ = X∗(X∗TX∗)−1X∗T

= CX(XTCTCX)−1XTCT

= CX(XTΦ−1X)−1XTCT

Now, if we consider y∗ = Cy, then the projection ŷ∗ = PX∗y∗ would give us the

following,

ŷ∗ = (CX(XTΦ−1X)−1XTCT )y∗

C−1ŷ∗ = (X(XTΦ−1X)−1XTΦ−1)y

ŷ = PXy

25



Therefore, the oblique projection matrix in terms of the original axes is given by,

PX = X(XTΦ−1X)−1XTΦ−1 (II.21)

II.4 Kinematic filtering for Virtual Fixtures

As discussed before in the literature review section, there are two basic ap-

proaches to implementing virtual fixtures. We can implement them as “barrier vir-

tual fixtures” which prevents erroneous tool excursions by the user. They can also be

implemented as assistive tools which guide the user in following a curve or a plane.

This approach is termed as “guidance virtual fixtures”. In this section, we would

discuss the implementation of “guidance virtual fixtures” using projections, where

virtual fixtures are treated as geometrical constraints [21, 24].

In our case, we have an admittance type robot which is either controlled cooper-

atively through the use of a force sensor attached to the robot end effector or telema-

nipulated through a master device. In the case with cooperative manipulation, the

user directs the tool attached to the force sensor. The detected forces f = (fx, fy, fz)
T

are expressed in the robot base frame of reference. These forces are multiplied with

a gain term to get the commanded master velocity ẋm. In telemanipulation, we com-

pute the commanded master velocity ẋm through the relative motion of the master

device with respect to a set anchor point.

Our task is to filter the commanded velocity ẋm into allowable and constrained

directions such that we can constrain the robot to move along specified geometric

features. We would derive the virtual fixture equations for three cases,

26



1. Movement along a plane

2. Movement along a Curve

3. Staying within a Curve and on a Plane

Using Projections to implement VF

The basic idea behind virtual fixtures is that we have to decompose the com-

manded velocity ẋm along the allowable ẋmdes
and constrained ẋmτ directions. We

then use these components to get an equation for the desired slave velocity ẋd.

So, if we have a k-dimensional subspace S of allowable directions defined by

its basis vectors [x1,x2, . . . ,xk], we can derive the Projection matrix P using the

following equation,

P = X(XTX)−1XT

where X = [x1,x2,x3, . . . ,xr] (II.22)

We know that the Projection matrix P projects a vector y ∈ R orthogonally into its

subspace iff P is idempotent and symmetric (refer to Theorem 3). Also, we know

that (I−P) spans the nullspace of X. Therefore, if we want to decompose the vector

ẋm into its allowable and forbidden components, we use the following equations,

Allowable component = ẋmdes
= Pxm

Forbidden component = ẋmτ = (I−P︸ ︷︷ ︸
P̃

)ẋm = P̃ẋm (II.23)

where P and X ∈ R6×n (n < 6), contain columns of allowable(preferred) movement

27



directions. Next, we derive the kinematic filtering equations for implementing virtual

fixtures for each of the three cases.

Virtual Fixtures constraining movement to a plane

We know that a plane can be described by two vectors that lie on the plane.

As shown in Figure II.6, the plane is described by two vectors (x1,x2). The plane

is considered as a 2-dimensional subspace S with its allowable directions defined by

matrixX = [x1,x2]. The Projection matrix for the plane Pπ is defined using Equation

II.16 as,

Pπ = X(XTX)−1XT (II.24)

PUMA Arm

Robot Tool

VF Plane

World Frame

End Effector Frame

Figure II.6: Virtual Fixtures constraining movement to a Plane

Using Pπ, we can decompose the commanded twist into its allowable ẋmdes
and

28



forbidden ẋmτ components (refer Equation II.23) such that,

ẋm = Pπẋm︸ ︷︷ ︸
ẋmdes

+ P̃πẋm︸ ︷︷ ︸
ẋmτ

(II.25)

We can use a simple admittance law to to admit motions in the allowable directions

as follows,

ẋdes = Ka1ẋmdes

= Ka1Pπẋm

where Ka1 is the admittance gain (II.26)

Equation II.26 provides a hard constraint against moving in forbidden directions. The

issue with implementing a hard constraint is that it requires perfect knowledge of the

task geometry and allows no deviation from the task. It also provides a sudden “hard

stop” when the user reaches the constraint boundary. This equation would result in a

jerky feeling close to the boundary unless the admittance gain is adaptively adjusted.

If we want to let the user deviate a little bit in the forbidden directions, we need a

soft constraint admittance law using ẋmτ as an additional input,

ẋdes = Ka2ẋmτ

= Ka2P̃πẋm, Ka2 << Ka1

where Ka2 is the admittance gain (II.27)

29



Combining Equations II.26 and II.27, we get the following equation:

ẋdes = Ka1Pπẋm +Ka2P̃πẋm (II.28)

where Ka1 and Ka2 are the two admittance gains that adjust the motion responsive-

ness. We can also write Equation II.28 as:

ẋd = Ka(ẋmdes
+Kτ ẋmτ )

= Ka(Pπ +Kτ P̃π)ẋm (II.29)

Now, Equation II.29 would still cause errors if we want to constrain the motion to

a plane. The reason is that integration errors cause a drift of the robot end effector

from the intended motion plane. The end effector still moves parallel to the constraint

plane, however the controller has no ability to overcome this drift. We need a term

that closes this error when the commanded velocity ẋm is zero. To compensate for the

1
x

2
x

1
x

2
x

u

Robot Tool

VF Plane

EE Plane|| VF Plane

m
x

D
m
x

m
x

Figure II.7: Vector u closing error to the Plane π

drift, we consider a unit vector û that points from the current end effector position

30



to the closest point on the constraint plane which is the normal. Using vector û, we

add a corrective term that brings the end effector back to the Plane π to get the final

control equation as follows,

ẋd = Ka(Pπ +Kτ P̃π)ẋm +Kpπ û (II.30)

Equation II.30 always brings the end effector back to the plane. In the current

implementation, we trust the robot kinematics to be accurate. However, if we have

visual feedback, then vector û can be computed using vision which could improve

accuracy.

Virtual Fixtures constraining movement along a curve

The approach for deriving the VF control equation to follow a curve is very

similar to the previous case. As shown in Figure II.8, the task is to follow a curve c

on a plane π. To constrain the movement of the end effector along a curve, we would

need to make sure that the computed slave twist ẋd lies along the curve tangent and

on the plane. Therefore, we would need to derive the projection matrix for the curve

as well as the plane. The projection matrix for the plane Pπ can be computed using

equation II.24. The allowable directions of motion on the plane π are defined by the

matrix X = [x1,x2] where (x1,x2) define the plane.

Pπ = X(XTX)−1XT

To compute the projection matrix for the curve, we need to compute the local tangent

t̂ to the closest point on the curve c. When the curve is given as a set of points, we

31



Robot Tool

PUMA Arm

VF Plane

World Frame

End Effector Frame

VF Curve

Figure II.8: Virtual fixture constraining movement along a curve c

can compute the numerical approximation of the local tangent. Once we have the

local tangent at the closest point on the curve, we can compute the projection matrix

for the curve as follows,

Pc = t̂(t̂T t̂)−1t̂T

Just like the previous case, we have to project the commanded twist on plane π

and curve c. The allowable projection, has to be along the curve and on the plane.

Therefore, we have to make sure that the allowable velocity component lies along the

curve and on the plane. However, projecting along the curve would ensure that we

are on the plane as well. Therefore, we just need the projection matrix for curve c.

For the constrained direction, we can move away from the curve but we would

still like to move along the plane π. Therefore, we can use the nullspace of projection

matrix Pc to compute the twist in forbidden directions. However, to make sure that

32



we still lie on the plane, we have to project this twist along the plane as well using

Pπ. Therefore, we can write the equations as follows,

Allowable component = ẋmdes
= PcPπxm = Pcxm

Forbidden component = ẋmτ = (I−Pc)︸ ︷︷ ︸
P̃c

Pπẋm = P̃cPπẋm (II.31)

Again, Equation II.31 does not account for integration errors. In this case we

have to compensate for the drift from the plane as well as the curve.

EE Plane|| VF Plane

1
x

2
x

1
x

2
x

u

Robot Tool

VF Plane

v

m
x

D
m
x

m
x

Figure II.9: Vectors u and v closing errors to the Plane π and curve c

To compensate for the drift, we would again have a unit vector û pointing to the

closest point on the constraint plane which is the normal to the plane. Also, we would

have a unit vector v̂ pointing to the closest point on the curve as shown in Figure

II.9. Using vectors u and v, we add corrective terms that brings the end effector back

33



to the Plane π and curve c.

ẋd = Ka(Pc +Kτ P̃cPπ)ẋm +Kpπ û+Kpcv̂ (II.32)

Equation II.32 would compensate for the drift from the plane and curve using

the proportional gains Kpπ and Kpc along û and v̂ respectively.

Virtual Fixtures constraining movement within a curve

As shown in Figure II.10, the task is to stay within a curve c on a plane π. To

constrain the movement within the curve, we would just need to modify Equation

II.32. We know that if we set the proportional constraint gainKτ to 1, we get isotropic

admittance whereas if it is set to 0 we get a hard constraint. We would just need to

Robot Tool

PUMA Arm

VF Plane

World Frame

End Effector Frame

VF Curve

Figure II.10: Virtual Fixtures constraining movement within a curve c

modify the proportional constraint gain Kτ such that we have isotropic admittance

34



when the end effector of the robot is within the curve. However, as we start moving

towards the boundary of the curve the gain Kτ should start decreasing until it reaches

0 close to the curve boundary. We call this varying Kτ as Kτcomputed
in our modified

equation

ẋd = Ka(Pc +Kτcomputed
P̃cPπ)ẋm +Kpπ û+Kpcv̂ (II.33)

To make Kτcomputed
vary smoothly, we make use of the hyperbolic tangent function as

follows,

Kτcomputed
=

1

2
[1 + tanh(p(x− a))] (II.34)

where p is the proportional gain and a is the offset from origin where the transition

between 0 and 1 occurs. This equation gives us a smooth varying value of Kτcomputed

as shown in Figure II.11

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signed distance d to curve c (in m)

Plot of K=computed
vs. signed distance d from curve c

K
=
c
o
m

p
u
t
e
d

p = 50

p = 100

p = 500

p = 1000

p = 5000

Figure II.11: Plots of Kτcomputed
for different proportional gains

As we can see from Figure II.11, the gain Kτcomputed
is equal to 1, when we are

35



inside the curve, but as we start moving towards the curve Kτcomputed
starts reducing

gradually until it reaches 0, close to the boundary of the curve. We observe that

varying the proportional gain term p in equation II.34 varies the slope of the transition

at the curve boundary. A higher value causes a sharp transition between 1 and 0.

The value of a in equation II.34 is chosen to be 1/10th the radius of the curve. This

ensures that as we reach the curve boundary the value of Kτcomputed
is close to 0.

During experimental validation, we have to choose a value of p that gives us the

necessary transition characteristic.

36



CHAPTER III

USER INTERFACE FOR
REAL-TIME CONTROL OF THE PUMA 560 ROBOT

This chapter presents the implementation of the user interface developed for the

real time control of the PUMA robot. The real-time control framework for indepen-

dently operable control modes was developed by ARMA members Andrea Bajo, Long

Wang and Jason Pile. This work focused on generating a control code that integrates

all these operation modes while offering seamless transition between the modes. The

user interface developed integrates the various modes of operation of the PUMA robot

ensuring safe transition between the modes.

III.1 PUMA Kinematic model

Before we discuss the robot control code, let us first discuss the kinematic model

of the PUMA robot. Figure III.1 shows the definitions of the frames using the modified

Denavit-Hartenberg convention [25].

The frames are assigned according to the DH convention which is described in

detail in [25, 26]. Briefly, the z-axis for each joint is placed along its axis of motion,

and then the x-axes are placed along the common normals between these z-axes. The

y-axes are chosen to satisfy the right-handed coordinate system.

1. Staring from the base frame, the z0 axis is chosen along the first joint axis and

x0 selected to be parallel to the second link.

37



PUMA Frame Assignments

Figure III.1: PUMA 560 frame assignments

2. The z1 axis is along the second joint axis, the origin being at the point of

intersection between z0 and z1. x1 is free for us to choose in this case and it is

chosen along the second link.

3. The z2 axis is chosen along the third joint axis and is parallel to z1. The x2 axis

is chosen along the common normal of z1 and z2.

4. The origin of Frame 3 is chosen to be above Frame 2. The z3 axis points along

the fourth joint axis and x3 along the common normal of z2 and z3.

5. The z4 axis is chosen along the fifth joint axis and x4 is free for us to choose

and is chosen along x3

6. The z5 axis is chosen along the sixth joint axis and x5 is again free for us to

choose and is chosen along x3.

38



7. Frame 6 is the end effector frame to complete the DH table, where all three

axes are coincident with the fifth frame

LINK θi di (m) ai (m) αi(radians)

1 q1 0.6718 0 π/2
2 q2 0.1501 0.4318 0
3 q3 0 -0.0203 π/2
4 q4 0.4331 0 π/2
5 q5 0 0 −π/2
6 q6 0.0558 0 0

Table III.1: DH parameters for the Puma robot assuming the operational point is at
the center of the end effector flange

Let us define the DH parameters briefly,

1. θi is the angle by which xi−1 rotates about zi−1 axis to come into alignment

with xi according to the right-hand rule. It is a variable for a revolute joint and

a constant for a prismatic joint.

2. di is the distance between xi−1 axis and xi axis measured along zi−1. It is a

constant for a revolute joint and a variable for a prismatic joint.

3. ai is the distance between zi−1 and zi measured along xi. ai is a constant.

4. αi is the angle required to rotate the zi−1 axis into alignment with the zi axis

according to the right-hand rule.

The homogeneous transform from frame i− 1 to frame i is given by the following

39



equation:

Ti−1
i =



cθi −cαi
sθi sαi

sθi aicθi

sθi cαi
cθi −sαi

cθi aisθi

0 sαi
cαi

di

0 0 0 1


(III.1)

where cx = cos(x) and sx = sin(x)

Thus, the direct kinematics of the PUMA robot can be computed as:

T = T0
6 =

6∏
i=1

Ti−1
i (III.2)

III.2 Real-time Control using MATLABr xPC

The PUMA robot control code was implemented using xPC Target which is a

real-time software environment provided with MATLABr. The advantage with using

xPC target is that we can use Simulink and stateflow models to build up the control

system which allows for rapid testing of control algorithms on the physical hardware.

The xPC Target operating system executes on a target machine which runs the

control system for the robot in real-time and is interfaced with the robot through D/A

converters and servo amplifiers. The robot encoders and potentiometers are connected

to DAC Cards which read in the signals and sends analog signals computed by the

controller to the servo amplifiers which drive the robot motors. The target machine

also communicates with a host system through a Local Area Network or through a

40



direct serial connection. We can observe and vary the controller parameters through

the host system by communicating with the target machine.

The PUMA Controller comprises of three major subsystems as shown in Figure

III.2,

1. Trajectory Planner

2. PD + Inverse Dynamics

3. Robot Controller Interface

Trajectory Planner

PD + Inverse Dynamics

Robot Controller

Interface

Figure III.2: xPC model of the PUMA Controller

The implementation of the PUMA controller was done by ARMA members (A.

Bajo, Long Wang, Jason Pile). We briefly describe each subsystem in the following

sections.

PD + Inverse Dynamics Controller

The PD + Inverse Dynamics subsystem implements the control equation of

the robot (Figure III.3). The code for this subsystem was written by Andrea Bajo.

41



(a)PD Control Signal

(b)System Dynamics

(c) Torque ( ) to 

Control Signal ( )

Figure III.3: PD + Inverse Dynamics subsystem

The desired values of joint positions qd and velocities q̇d (along with the desired

joint acceleration q̇d) are compared with the current values of joint positions qc and

velocities q̇c to generate the error vector e and its derivative ė. These error vectors are

multiplied by the gain matrices KP and KD. The output signal is then fed into the

non-linear inner loop of the controller which comprises of the Gravity compensator,

and the Inertial, Centrifugal and Coriolis matrices. The output signal of the non-

linear controller is a vector of desired joint torques τ d which is expressed in Nm.

This signal is then converted into a voltage signal which is fed to the D/A converter

as an input. The D/A converter then sends the analog voltage signal to the servo

amplifiers powering the robot motors.

Robot Controller Interface

The PUMA560 subsystem implements the robot controller interface as shown in

Figure III.4. The code for this subsystem was written by Long Wang and Jason Pile.

This subsystem controls the D/A converters which give the required control voltages

to the servo amplifiers. There are four main components labelled in the figure. Figure

42



a) Motor Signals (Output) and Encoder Input

b) Potentiometer Readings (Input)

c) Filtered Joint Velocities

d) Force Sensor

Figure III.4: Robot Controller Interface

III.4-a refers to the section which sends the motor signals to the D/A converters and

also reads from the joint encoders. Figure III.4-b refers to the section which reads in

the potentiometer values from the robot. Figure III.4-c refers to the section which

filters the current joint velocities ẋc. Figure III.4-d refers to the block which reads

the force sensor attached to the PUMA end effector.

Trajectory Planner

The trajectory planner block consists of three main subsystems, the Initializa-

tion subsystem(Figure III.5-a), the Joint Space subsystem(Figure III.5-b), and the

Task Space subsystem(Figure III.5-c). The code for this subsystem was written by

Long Wang and Jason Pile. The Initialization subsystem is used for starting up the

robot controller and takes care of initializing the joint values from the potentiometer

readings. The Joint Space subsystem is used for joint space control which uses a

43



a)Initialization

b) Joint Space

c) Task Space

d) Joint Velocities (Output)

Figure III.5: Trajectory Planner

fifth order polynomial planner to ensure smooth operation of the PUMA robot. The

Task Space subsystem is used for telemanipulation and cooperative manipulation of

the PUMA robot. This subsystem contains the implementation of virtual fixtures

presented in this thesis.

Application Specific Code

This subsystem is contained in the Task Space block of the Trajectory Planner

and has the implementation of the hybrid admittance controller and the Virtual

Fixtures subsystem. The first block computes the desired velocity of the PUMA

robot. This desired velocity is represented as ẋm in our derivation of the kinematic

filtering equations for virtual fixtures. The Hybrid Admittance block (Figure III.6-

a) contains the implementation of the hybrid admittance controller which is used in

cooperative manipulation. The Virtual Fixture block (Figure III.6-b) contains the

44



b) Virtual Fixtures

a) Hybrid Admittance

Figure III.6: Subsystem of Task Space block

implementation of virtual fixture laws. It filters the input velocity coming in from

the Hybrid Admittance block and computes the desired velocity ẋd which is given to

the resolved rates subsystem of the Task Space block.

a) Enabling subsystem b) Compute based on 

force sensor readings

b) Update current 

Figure III.7: Hybrid Admittance block

45



The Hybrid Admittance block is used for cooperative manipulation of the PUMA

using the force sensor attached to the end effector. The initial version of this model

was provided by Jason Pile. It consists of three main sections. The first section

(Figure III.7-a) is used for enabling the hybrid admittance. The block only updates

the desired velocity from the force sensor if the subsystem is enabled. The second

section (Figure III.7-b) is responsible for updating the desired velocity using the force

sensor readings f = (fx, fy, fz)
T expressed in the robot base frame of reference. These

forces are multiplied with a gain term to update the desired velocity ẋd (Figure III.7-

c).

b) Computing Closest 

Point to curve and Plane c) Apply VF Law

d) Adjust VF 

Parameters

a) User Specified 

Curve and Plane

Figure III.8: Virtual Fixture block

The Virtual Fixture block (Figure III.8) is used for applying the virtual fixture

46



laws to get the desired velocity ẋd which is geometrically constrained according to the

selected virtual fixture law. The constant blocks in Figure III.8-a are used to specify

the curve c and the plane π for applying virtual fixtures. The curve is represented

by a set of points and the plane is represented by its two basis vectors. The function

block in Figure III.8-b is used to compute the closest point to the curve and the

plane. This data is fed into the next block Figure III.8-c which applies the virtual

fixture laws. We can adjust the various parameters of the virtual fixture laws using

the constant blocks in Figure III.8-d. These constant blocks can be modified in real-

time from the graphical user interface. The graphical user interface was developed

to integrate all the modes of operation of the PUMA robot and control the virtual

fixture parameters of the robot in real-time.

III.3 Graphical User interface

Figure III.9: User Control Interface

The user control interface was implemented to allow access to all the control

47



modes of the PUMA and allow safe transition between all the modes. The interface

allows us to switch between the different modes of operation of the PUMA and also

allows us to tune the virtual fixture parameters of the controller in real time. Figure

III.10 shows the different modes of operation of the PUMA controller. The Task

Task Select Joint Space Motor Enable Gravity Compensation

Display Window

Figure III.10: Modes of Operation in GUI

Select panel is used to select the mode of operation of the PUMA. The Load Model

button loads the model to the xPC target and then we can start the system. The

pop-up menu allows to to select between the joint space and task space modes. The

Joint Space panel is used to control the joint values when in the joint space mode.

The Motor Enable panel allows us to disable individual motors. As a safety measure,

whenever the motors are disabled, we switch to the joint space mode and update the

desired joint values qd before enabling the motors.

We can also switch to the gravity compensation mode using the GUI. The gravity

compensation mode sets the proportional and derivative gains in the PD + Inverse

Dynamics subsystem to zero. As soon as the gravity compensation mode is enabled,

the trajectory planner is switched to the joint space mode. When we disable the

48



gravity compensation mode, we wait till the joint space controller catches up with

the current joint values and then enable the proportional and derivative gains.

VF Task Select

VF Control Equation 

Parameters

Tuning 

for VF within curve 

Figure III.11: Virtual Fixture Panel in GUI

The user interface also allows us to control the virtual fixture parameters (Figure

III.11). The Virtual Fixture panel allows us to select between the three types of virtual

fixture laws (follow plane, follow curve, stay within curve). The parameters used in

virtual fixture laws can also be easily modified during operation. Virtual fixtures can

only be enabled when we are in the task space mode and we can either telemanipulate

the PUMA robot with a master device or cooperatively manipulate the robot using

the force sensor.

49



CHAPTER IV

EXPERIMENTAL VALIDATION

IV.1 Virtual Fixtures on PUMA560

The proposed virtual fixtures defined in chapter II were successfully implemented

on a PUMA560 robotic arm. The goal of implementing virtual fixtures on the PUMA

was to verify the derived VF equations and also show the performance improvement

in carrying out specified tasks.

Prior to commencing with experiments, the admittance gains for the virtual

fixture laws were tuned to provide seamless and natural telemanipulation behavior.

The values of all the impedance gains used in the experiments are reported in table

IV.1.

Table IV.1: Admittance gains used for virtual fixture evaluation

VF Type Ka Kτ Kpπ Kpc VF Equation

On Plane 1 0.1 0.01 − II.30
On Curve 1 0.1 0.01 0.01 II.32

Within Curve 1 − 0.01 0.01 II.33

The Virtual fixture equation for the within curve case has a Kτ value that is

computed from Equation II.34. The proportional gain p in Equation II.34 is chosen

to be 100 and the offset from origin a is chosen to be 1/10th the radius of the curve.

Six users were asked to perform the experiments. Each of the users had to

perform three tasks:

50



1. Follow a Plane

2. Follow a Curve

3. Stay within a curve

The users had to perform each task 10 times, five times with no assistance pro-

vided and the other five with virtual fixtures. This gave us a total of 60 data sets for

each task and 180 data sets overall. In the experiments conducted, the users had to

telemanipulate the PUMA arm using a haptic master device (Omega 7). The users

were given enough time to get accustomed to telemanipulating the PUMA arm using

the master device. They were then asked to perform each task five times without

assistance and then five times with assistance. A passive optical marker was mounted

to the tool attached to the PUMA end effector and a 3D-Optical Tracker(NDI Vicra)

was used to track the movement of the marker. The tracker has an accuracy of 0.2mm

in working volume. In addition to collecting the data from the tracker, every fifth

trial (with and without VF) was recorded on video as well.

A statistical test was used to compare the performance between the trials with-

out VF assistance and trials with VF assistance. Whenever two populations are

compared, either the z-test or the t-test can be used. The choice of the test depends

on the number of samples and whether the samples are independent or dependent.

Independent samples means that the two populations comprise of different people

e.g. testing the effect of an anti-depressant on two groups of users where one group

is given the medicine and the other a placebo. In this case, two completely different

sets of people are being tested and therefore the samples are considered independent.

With independent samples, when the population sizes (n1, n2) are greater than 30,

51



Experimental Set-up

NDI Vicra

PUMA Robot
NDI Tracker

Omega 7

Target Display

Host Display

Plane 

Close up of EE

Figure IV.1: Experimental setup for virtual fixture evaluation

the z-test is used; otherwise, if the sample size is small i.e. (n1, n2) < 30, the p-test

is used [27].

Dependent samples means that corresponding values in the two populations are

paired/dependent e.g. testing the performance of users in tasks with VF assistance

and without VF assistance. With dependent samples, the paired t-test is used irre-

spective of the sample size. The null hypothesis being tested would be that the trials

with and without virtual fixtures belong to the same distribution group.

52



Virtual Fixture constraining movement to a plane

Methodology

The first task was to follow a plane which is fixed with respect to the PUMA

robot base. The metric used for the paired t-test was the mean deviations from the

plane. For each user there are two vectors (x,y) containing five corresponding values

of mean deviations from the plane where,

x : mean deviation from the plane without VF

y : mean deviation from the plane with VF

The paired t-test tests the null hypothesis that the data in the vectors (x,y) are inde-

pendent random samples from normal distributions with equal means and equal but

unknown variances, against the alternative that the means are not equal. However,

the data-sets are not expected to have equal variances. Therefore, the paired t-test is

used without assuming equal variances. The right-tailed test is also performed along

with the paired t-test which tests the alternative hypothesis whether the mean of x is

greater than the mean of y. Therefore, if the null hypothesis is rejected, we can say

that the case with VF is not only different from the case without VF but also yields

a better result. A p-value < 0.05 would indicate a rejection of the null hypothesis at

the 5% significance level.

Figures IV.2 (a)-(e) present the analysed data collected during the experiments.

The figures show the deviation of the robot end effector and the RMS tracking error

from the plane π with and without virtual fixtures, for each user. The deviations and

errors reduce by a large margin with virtual fixture assistance.

53



(a)User 1 (No VF)

 

Follow Plane: No VF

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 1

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 1

Figure IV.2: Virtual Fixture Task, Follow Plane

54



(a)User 1 (With VF)

 

Follow Plane: With VF

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 1

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 1

Virtual Fixture Task, Follow Plane

55



(b)User 2 (No VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 2

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 2

Follow Plane: No VF

Virtual Fixture Task, Follow Plane

56



(b)User 2 (With VF)

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 2

            

             

             

             

             

             

             

             

             

             

             

             

             

             

             

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 2

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Follow Plane: With VF

Virtual Fixture Task, Follow Plane

57



(c)User 3 (No VF)

            

             

             

             

    

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 3

Follow Plane: No VF FoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFoFollllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowowow P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P Plalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalalanenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenenene: : : : : : : : : : : : : : : : : : : : : : : : : : : : NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V VFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 3

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Follow Plane: No VF

Virtual Fixture Task, Follow Plane

58



(c)User 3 (With VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 3

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 3

Follow Plane: With VF 

Virtual Fixture Task, Follow Plane

59



(d)User 4 (No VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 4

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 4

Follow Plane: No VF 

Virtual Fixture Task, Follow Plane

60



(d)User 4 (With VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 4

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 4

Follow Plane: With VF 

Virtual Fixture Task, Follow Plane

61



(e)User 5 (No VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 5

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Follow Plane: No VF 

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 5

Virtual Fixture Task, Follow Plane

62



(e)User 5 (With VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 5

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 5

Follow Plane: With VF 

Virtual Fixture Task, Follow Plane

63



(f)User 6 (No VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (No VF) User 6

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 6

Follow Plane: No VF 

Virtual Fixture Task, Follow Plane

64



(f)User 6 (With VF)

 

0 100 200 300 400 500 600
-60

-40

-20

0

20

40

60

Samples

D
e
v
ia

ti
o
n

(i
n

m
m

)

Deviation from Plane : (With VF) User 6

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 6

Follow Plane: With VF 

Virtual Fixture Task, Follow Plane

65



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 1 

2.286286 0.899639   

2.770792 0.541385

3.777216 0.38799 0.000743 < 0.05 Rejected

2.811424 0.161702

1.87956 1.650919

User 2

3.321986 0.520559

3.570267 1.305667

3.526338 0.316155 0.000482 < 0.05 Rejected

4.689462 0.561243

2.120143 0.299053

User 3

4.344325 0.297085

4.558456 0.178431

4.887396 0.167147 0.000051 < 0.05 Rejected

6.803751 0.288162

6.394346 1.734519

Table IV.2: Paired t-test Results for Follow Plane Task

66



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 4

2.188765 0.947103

3.301404 1.524002

4.102778 1.723187 0.014044< 0.05 Rejected

6.053291 1.339793

2.638096 1.460541

User 5

3.320317 0.404319

3.911539 0.332163

3.803184 0.533755 0.000031< 0.05 Rejected

2.820691 0.299538

3.747581 0.449781

User 6

3.658596 1.353678

2.837999 1.387769

3.352513 0.253855 0.000018< 0.05 Rejected

3.458562 1.215268

3.929255 1.293254

Paired t-test Results for Follow Plane Task

67



Experimental Results

Figures IV.2 (a)-(e) show that the deviations from the plane is much less when

the user has virtual fixture assistance and the user is able to follow the plane with

much greater accuracy. In the paired t-test results (Table IV.2), the null hypothesis

is rejected in each case. Therefore, there are two conclusions that can be drawn:

1. The strong rejection of the null hypothesis at p = 0.05 indicates that the two

cases (with and without VF) are different.

2. The null hypothesis was rejected in the right tailed paired t-test indicating that

the alternative hypothesis is accepted. In our case the alternative hypothesis is

that the mean deviations in the case with no VF is greater than the case with

VF. This means that the case with VF is able to follow the plane with much

greater accuracy.

68



Virtual Fixture constraining movement along a curve

Methodology

The second task was to follow a curve on a plane which is fixed with respect to

the PUMA robot base. We measure the accuracy of tracking the curve and the plane.

Therefore, the two metrics considered are:

1. Mean deviation from the curve.

2. Mean deviation from the plane.

The combined metric considered for the paired t-test is:

Weighed Deviation = mean deviation from the curve +

(0.75 ∗mean deviation from the plane)

For each user there are two vectors (x,y) containing five corresponding values of

weighed deviations from the plane where,

x : weighed deviation from the plane without VF

y : weighed deviation from the plane with VF

As before, the test is conducted without assuming equal variances and with the right

tailed test. Therefore, the rejection of the null hypothesis would indicate a perfor-

mance improvement with VF.

Figures IV.3 (a)-(e) present the results collected during the experiments for this

task. The figures show the deviation of the robot end effector and the RMS tracking

69



errors from the plane π and the curve c with and without virtual fixtures, for each

user.

Experimental Results

Figures IV.3 (a)-(e) show that the users deviated significantly less from the curve

when virtual fixture assistance was provided. In the paired t-test results (Table IV.3),

the null hypothesis is rejected in each case. As before, there are two conclusions that

can be drawn from the results:

1. The strong rejection at p = 0.05 of the null hypothesis tells us the that the two

cases (with and without VF) are different.

2. The null hypothesis was rejected in the right tailed paired t-test indicating that

the alternative hypothesis is accepted. In our case the alternative hypothesis is

that the mean deviations in the case with no VF is greater than the case with

VF. This means that the case with VF is able to follow the curve with much

greater accuracy.

70



(a)User 1 (No VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 1

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 1

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 1

Follow Curve: No VF 

Figure IV.3: Virtual Fixture Task, Follow Curve

71



(a)User 1 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 1

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 1

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 1

Follow Curve: With VF 

Virtual Fixture Task, Follow Curve

72



(b)User 2 (No VF)

 

Follow Curve: No VF

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 2

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 2

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 2

Virtual Fixture Task, Follow Curve

73



(b)User 2 (With VF)

 

Follow Curve: With VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 2

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 2

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 2

Virtual Fixture Task, Follow Curve

74



(c)User 3 (No VF)

 

Follow Curve: No VF

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 3

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 3

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 3

Virtual Fixture Task, Follow Curve

75



(c)User 3 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 3

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 3

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 3

Follow Curve: With VF 

Virtual Fixture Task, Follow Curve

76



(d)User 4 (No VF)

 

Follow Curve: No VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 4

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 4

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 4

Virtual Fixture Task, Follow Curve

77



(d)User 4 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 4

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 4

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 4

Follow Curve: With VF 

Virtual Fixture Task, Follow Curve

78



(e)User 5 (No VF)

 

Follow Curve: No VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 5

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 5

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 5

Virtual Fixture Task, Follow Curve

79



(e)User 5 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 5

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 5

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 5

Follow Curve: With VF 

Virtual Fixture Task, Follow Curve

80



(f)User 6 (No VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (No VF) User 6

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 6

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (No VF) User 6

Follow Curve: No VF 

Virtual Fixture Task, Follow Curve

81



(f)User 6 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Deviation from Curve ~c (With VF) User 6

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 6

1 2 3 4 5
-5

0

5

10

15

20

25

30

35

40

Trial

R
M

S
T
ra

ck
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Curve ~c (With VF) User 6

Follow Curve: With VF 

Virtual Fixture Task, Follow Curve

82



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 1

3.479033 2.200798

7.143314 3.997630

5.170353 2.713022 0.014527< 0.05 Rejected

4.853227 4.855025

6.715693 2.243710

User 2

6.136941 5.241154

9.465244 2.566900

7.909974 2.024381 0.000292< 0.05 Rejected

10.12944 2.653845

10.81166 2.020394

User 3

37.98141 3.608272

14.80955 5.027399

33.96190 3.672182 0.002706< 0.05 Rejected

47.75791 5.408982

33.69161 4.679667

Table IV.3: Paired t-test Results for Follow Curve Task

83



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 4

24.17575 2.768395

8.879770 3.310666

10.11928 3.165263 0.011057< 0.05 Rejected

14.75557 3.926037

10.55345 4.956641

User 5

6.621142 1.631479

8.232294 2.899722

9.355883 1.730830 0.002092< 0.05 Rejected

12.68337 1.921520

14.55754 1.674700

User 6

6.457845 5.194530

7.704197 3.666168

13.16797 3.514628 0.008434< 0.05 Rejected

7.469063 5.755594

8.676597 3.565781

Paired t-test Results for Follow Curve Task

84



Virtual Fixture constraining movement within a curve

Methodology

The third task was to stay within a curve on a plane which is fixed with respect

to the PUMA robot base.We measure the accuracy of the user in being able to stay

within the curve and on the plane. Therefore, the two metrics considered are:

1. Mean deviation from the curve(only considering deviations outside the curve).

2. Mean deviation from the plane.

The combined metric considered for the paired t-test is,

Weighed Deviation = mean deviation from the curve +

(0.75 ∗mean deviation from the plane)

For each user there are two vectors (x,y) containing five corresponding values of

weighed deviations from the plane where,

x : weighed deviation from the plane without VF

y : weighed deviation from the plane with VF

As in the previous two cases, the paired t-test is performed without assuming equal

variances and considering the right tailed test. Therefore, the rejection of the null

hypothesis would indicate a performance improvement with VF.

85



Figures IV.4 (a)-(e) present the results collected during the experiments for this

task. The figures show the deviation of the robot end effector and the RMS tracking

error from the plane π.

Experimental Results

Figures IV.4 (a)-(e) show that without virtual fixture assistance, it is difficult

for the user to perform the task. The user is able to keep the tool within the curve

but not on the plane. However, with virtual fixture assistance it is fairly easy for the

user to stay within the curve and on the plane. The paired t-test results (Table IV.4)

also validate our observations, as the null hypothesis is rejected in every case. We

can draw the same two conclusions as before:

1. The strong rejection of the null hypothesis at p = 0.05 tells us the that the two

cases (with and without VF) are very different.

2. The null hypothesis was rejected in the right tailed paired t-test indicating that

the alternative hypothesis is accepted. In our case the alternative hypothesis is

that the mean deviations in the case with no VF is greater than the case with

VF. This means that the case with VF is able to stay within the curve with

much greater accuracy.

86



(a)User 1 (No VF)

 

Stay Within Curve: No VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 1

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 1

Figure IV.4: Virtual Fixture Task, Stay Within Curve

87



(a)User 1 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 1

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 1

Stay Within Curve: With VF 

Virtual Fixture Task, Stay Within Curve

88



(b)User 2 (No VF)

 

Stay Within Curve: No VF

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 2

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 2

Virtual Fixture Task, Stay Within Curve

89



(b)User 2 (With VF)

 

Stay Within Curve: With VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 2

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 2

Virtual Fixture Task, Stay Within Curve

90



(c)User 3 (No VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 3

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 3

Stay Within Curve: No VF 

Virtual Fixture Task, Stay Within Curve

91



(c)User 3 (With VF)

 

Stay Within Curve: With VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 3

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 3

Stay Within Curve: With VF 

Virtual Fixture Task, Stay Within Curve

92



(d)User 4 (No VF)

 

Stay Within Curve: No VF 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 4

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 4

Virtual Fixture Task, Stay Within Curve

93



(d)User 4 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 4

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 4

Stay Within Curve: With VF 

Virtual Fixture Task, Stay Within Curve

94



(e)User 5 (No VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 5

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 5

Stay Within Curve: No VF 

Virtual Fixture Task, Stay Within Curve

95



(e)User 5 (With VF)

 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 5

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 5

Stay Within Curve: With VF 

Virtual Fixture Task, Stay Within Curve

96



(f)User 6 (No VF)

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (No VF) User 6

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (No VF) User 6

Stay Within Curve: No VF 

Virtual Fixture Task, Stay Within Curve

97



(f)User 6 (With VF)

            

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

         

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

û(mm)

v̂
(m

m
)

Staying within Curve ~c (With VF) User 6

Circle

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

1 2 3 4 5
-5

0

5

10

15

Trial

R
M

S
T
ra

c
k
in

g
E
rr

o
r

(i
n

m
m

)

RMS Tracking error from Plane : (With VF) User 6

Stay Within Curve: With VF

Virtual Fixture Task, Stay Within Curve

98



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 1

3.862043 0.759550

4.373461 0.176768

3.648918 0.632341 0.000039< 0.05 Rejected

3.780079 0.258398

3.052170 1.883143

User 2

6.922211 1.796048

4.536255 1.476640

3.111896 1.299741 0.008999< 0.05 Rejected

4.416088 0.816085

2.578517 2.279871

User 3

4.241693 2.527077

4.355774 3.217793

4.477029 2.658185 0.000056 < 0.05 Rejected

4.986963 2.377743

3.859368 2.689639

Table IV.4: Paired t-test Results for Stay Within Curve Task

99



Paired t-test Results

 Without VF With VF Paired t-test

User :   :   p-value Null-Hypothesis 

User 4

2.914674 1.230420

3.093142 1.084375

4.412812 1.370613 0.000524< 0.05 Rejected

3.143789 1.175740

3.289693 1.190544

User 5

2.200119 0.767832

2.494787 0.493995

2.178701 0.776349 0.000681< 0.05 Rejected

3.483535 0.449716

2.051492 0.541929

User 6

4.126676 1.237784

3.230082 0.408064

3.991948 0.622815 0.000021< 0.05 Rejected

3.329132 0.287757

2.728243 1.045577

Paired t-test Results for Stay Within Curve Task

100



IV.2 Conclusion

The experiments conducted validated the derivation of the virtual fixture laws.

An important point to note is that the performance with virtual fixture assistance is

dependent on the tuning of the gains for the virtual fixture laws. An accurate tuning

of the parameters affects the results of the experiments.

In the task where the user had to follow a plane, both the plots and the paired

t-test results clearly indicate the performance improvement with virtual fixture as-

sistance. Another important point to consider is the reduction of cognitive load for

the user. Therefore, the user is able to perform the task with greater accuracy and

reduced cognitive load with virtual fixture assistance. In the second task, the user

had to follow a curve on a plane. Again, the plots and the paired t-test results indi-

cate a visible improvement with VF assistance. This task required the user to satisfy

the constraints of keeping the tool on the plane as well as the curve. This resulted

in an even greater cognitive load than the previous case. However, we observed that

with VF assistance the user was not only able to complete the task with ease but

also complete the task multiple times in the assigned time. The third task required

the user to stay within a curve on the plane. The plots indicate that the user is able

to stay within the curve with ease even without virtual fixture assistance. However,

the deviations from the plane indicate that the user was able to keep the tool on the

plane with greater ease in the case with virtual fixture assistance.

The strong rejection of the null hypothesis in all three tasks implies that virtual

fixture assistance definitely improves the performance of the user.

101



CHAPTER V

CONCLUSIONS

In this thesis, assistive manipulation algorithms suitable for both cooperative

manipulation and telemanipulation were presented. We derived our virtual fixture

laws based on the theory of projections and extended the approach to derive a VF

law which constrains the motion of the robot end effector within a curve. A library

of virtual fixture primitives was implemented which would allow definitions of new

virtual fixtures. Experiments were conducted to validate the derived virtual fixture

laws and the results show that VF assistance significantly improves the performance

of the users. We also proposed the concept of user-specified virtual fixtures which

would allow the specification of motion constraints intraoperatively. Most of the

previous approaches are not applicable to highly deformable anatomy such as the

bladder. We can simplify this problem by letting the surgeon specify the region of

operation intraoperatively by tracing a closed path with a visible spectrum laser.

The utility of the virtual fixture approaches presented in this thesis would truly

be realized once we integrate our algorithms with a setup that would let us specify

the constraint curve in real-time. Future work includes design and implementation

of a setup that would allow visual registration of surfaces using laser structured light

(Figure V.1). The laser structured light would be used to generate a grid of points

on the surface where we want to define the constraint curve. Once the surface is

registered, the user would be able to guide a visible spectrum laser in the camera

view. We would segment out the path of the laser using optical flow algorithms

102



Dragonfly® Camera

Laser Attachment

Pen Attachment

Force Sensor

Projected Laser Grid

PUMA wrist

Figure V.1: Experimental Setup for validating user-specified VF based on vision

and generate the point-cloud representing the curve on the surface. Once we have

the representation of the curve, we can easily implement the virtual fixture laws

implemented in this thesis.

103



Appendices

104



APPENDIX A

PUMA SPECIFICATION SHEET

105



106



107



APPENDIX B

VIRTUAL FIXTURE CODE

Listing B.1: Function to compute the closest point to the curve

1

2 %% Function Description

3 % Date Created: 02/25/2014

4 % Created By: Aditya Bhowmick

5 %---------------------------------------------------------------

6 % Description: Function to compute distance to curve and plane

7 %---------------------------------------------------------------

8 % Last Edited: Aditya Bhowmick

9 % Edited on: 03/17/2014

10

11 function [u, v, local curve tangent, inside curve, min distance, d1, d2]...

12 = Compute closest point(a,p,target curve,...

13 X pi, r curve)

14 % Defining variables

15 %% Getting index of minimum point

16 % Getting the number of points in the curve

17 num points=length(target curve);

18

19 % Making sure that points are given in columns

20 if size(target curve,1)>size(target curve,2) % points are given in rows

21 target curve=target curve';

22 end;

108



23

24 % Getting vectors from p to points on the target curve

25 matrix p to curve vecs=(target curve-p(:)*ones(1,num points));

26

27 % Getting distanceˆ2 of each of the points on the curve from p

28 distance row vec=sum(matrix p to curve vecs.*matrix p to curve vecs,1);

29

30 % Minimal distance to the curve

31 [min distance,index] = min(distance row vec);

32

33

34 %% Computing the local tangent

35 % local curve tangent = zeros(size(target curve,1),1);

36 if (index>1) && (index<num points)

37 local curve tangent=(target curve(:,index+1)-...

38 target curve(:,index-1))/...

39 norm(target curve(:,index+1)...

40 -target curve(:,index-1));

41 elseif index==1

42 local curve tangent=(target curve(:,index+1)-...

43 target curve(:,num points))/...

44 norm(target curve(:,index+1)...

45 -target curve(:,num points));

46 else

47 local curve tangent=(target curve(:,1)-...

48 target curve(:,num points-1))...

49 /norm(target curve(:,1)...

50 -target curve(:,num points-1));

51 end;

52

109



53 % Saving the closest point on the curve to point p

54 closest point=target curve(:,index);

55

56 %% Computing vector pointing to the closest point on the curve

57 v=(closest point-p(:));

58

59 %% Computing minimum distance to plane

60 % Compute projection matrix

61 P pi = X pi*pinv(X pi'*X pi)*X pi';

62

63 % Getting null space projection of this matrix

64 null P pi = eye(3,3) - P pi;

65

66 % Computing the closest distance to the plane

67 u = null P pi * (a(:) - p(:));

68

69 %% Computing if end effector is inside the curve

70

71 % Computing distance d1 between closest point on curve to current start

72 % position and the origin(= p slave start = a)

73 d1 = r curve;

74

75 % Computing distance d2 between current position of end effector and the

76 % origin (= p slave start = a)

77 d2 = norm(p-a);

78

79 if d1 >= d2

80 inside curve = 1;

81 else

82 inside curve = 0;

110



83 end

84 %% Computing minimum distance to the curve

85 min distance = d1 - d2;

111



Listing B.2: Function to apply the VF laws

1 %% Function Description

2 % Date Created: 03/11/2014

3 % Created By: Aditya Bhowmick

4

5 %---------------------------------------------------------------

6 % Description: Function applying virtual fixture on the end effector of the

7 % PUMA560. There are three VF modes which are:-

8 % 1) Mode 1:- Virtual fixture on a plane

9 % 2) Mode 2:- Virtual fixture on a curve in a plane.

10 % 3) Mode 3:- Virtual fixture to stay inside a curve on a plane

11 % Edited from original function given by Nabil

12

13 % Force Feedback

14 % The force feedback is computed on the basis of u or v depending on the

15 % mode that we are in.

16 %---------------------------------------------------------------

17

18 % Last Edited: Aditya Bhowmick

19 % Edited on: 04/17/2014

20

21 function [computed twist, computed force,...

22 k comp,k tau computed, distance from plane] = ...

23 apply VF(VF mode, enable FF, ...

24 twist, enable motion,u, v, curve tangent,...

25 min distance,...

26 X pi, r curve, scale r, tanh gain,...

27 ka, k tau, kp pi, kp c,...

28 epsilon pi, epsilon c,...

29 K stiffness, B damping, R rob2omni)

112



30

31 %---------------------------------------------------------------

32 % We want to find the projection of the pose twist along the curve tangent

33 % and the plane

34 t = curve tangent;

35

36 % Extracting just the pose twist because we do not want to change the

37 % orientation twist

38 pose twist = twist(1:3);

39

40 % Setting distance threshold for applying the VF law

41 epsilon plane = 0.01;

42

43 % Setting parameter to allow faster movement away from the plane

44 k tau out in ratio=2;

45

46 % Defining hard coded plane normal

47 plane normal = [0 0 1];

48

49 % Computing distance from plane for applying VF. We need to make sure that

50 % this is a signed distance.

51 distance from plane = -dot(u,plane normal);

52

53 % Defining k comp so we can send it to scope

54 k comp = 0;

55

56 % Computing k tau in terms of distance from plane

57 p tau =500;

58 a tau = -0.002;

59 k tau computed = k tau/2 * (1+tanh(p tau*(distance from plane-a tau)));

113



60

61 % Defining applyVF to see if VF law is active

62 applyVF = 0;

63 %---------------------------------------------------------------

64

65 % Check if we are getting pose twist

66 if (max(isnan(pose twist))~=1) && (enable motion == 1)

67 % We are moving the master if the twist is a valid number (if master is

68 % not engaged then twist is NaN). We also check if enable motion is set

69 % to 1

70

71 % Check if we are within the threshold of applying the VF

72 if distance from plane <= epsilon plane

73 % VF law is active

74 applyVF = 1;

75 %------------------------------------------

76 % Updating gains to close distances to curve and plane

77 if norm(u) < epsilon pi

78 kp pi = 0;

79 end

80

81 if norm(v) < epsilon c

82 kp c = 0;

83 end

84 %------------------------------------------

85 % Computing Projection matrices and their null space components

86 P pi = X pi*pinv(X pi'*X pi)*X pi';

87 null P pi = eye(3,3) - P pi;

88

89 P c = t*pinv(t'*t)*t';

114



90 null P c = eye(3,3) - P c;

91

92 twist in normal = null P pi * pose twist;

93

94 if norm(u) < 0.001

95 u hat = zeros(3,1);

96 else

97 % Getting correction vector back to plane

98 u hat = u/norm(u);

99 end

100

101 if norm(v) < 0.001

102 v hat = zeros(3,1);

103 else

104 % Getting correction vector back to plane

105 v hat = v/norm(v);

106 end

107

108 if norm(twist in normal) < 0.001

109 twist in normal hat = zeros(3,1);

110 else

111 % Signed normal based on current projection of commanded vel.

112 twist in normal hat = twist in normal/norm(twist in normal);

113 end

114 %------------------------------------------

115 % Computing universal gain for moving away from plane

116 if dot(twist in normal hat,plane normal) > 0

117 % Pulling away from plane

118 k tau computed=k tau out in ratio*k tau;

119 else

115



120 % Pushing into plane

121 k comp = 0.1;

122 end

123

124 %------------------------------------------

125 % Control Equation

126 switch VF mode

127 case 1

128 % VF on a plane

129 % Applying the virtual fixture law (in plane)

130 computed twist = [[ka*((P pi+k tau computed...

131 *null P pi)*pose twist) + ...

132 (kp pi * u hat)]; twist(4:6,1)];

133

134 % Computing force feedback

135 if enable FF == 1 && distance from plane <= 0

136 computed force = K stiffness * ...

137 distance from plane * u hat;

138 else

139 computed force = zeros(3,1);

140 end

141 case 2

142 % VF on a curve

143 % Applying the virtual fixture law (on curve)

144 computed twist = [[ka*((P c + k tau*null P c)...

145 *pose twist)+ ...

146 (kp pi * u hat) + ...

147 (kp c * v hat)];twist(4:6,1)];

148

149 % Computing force feedback

116



150 if enable FF == 1 && distance from plane <= 0

151 computed force = K stiffness * ...

152 distance from plane * u hat;

153 else

154 computed force = zeros(3,1);

155 end

156 case 3

157 % VF within a curve

158 % Determining gain k comp in forbidden directions

159 p = tanh gain;

160 a = r curve/scale r;

161 x from c = min distance;

162 k comp = 0.5*(1+tanh(p*(x from c - a)));

163

164 % Applying the fixture law

165 computed twist = [[ka*((P c + k comp*null P c*P pi + ...

166 k tau computed * null P pi)...

167 *pose twist)+ ...

168 (kp pi * u hat) + ...

169 (kp c * v hat)];twist(4:6,1)];

170

171 % Computing force feedback

172 if enable FF == 1 && distance from plane <= 0

173 computed force = K stiffness * ...

174 distance from plane * u hat;

175 else

176 computed force = zeros(3,1);

177 end

178 otherwise

179 % Error mode

117



180 computed twist = zeros(6,1);

181 computed force = zeros(3,1);

182 end

183 %------------------------------------------

184 % Converting computed in omni frame

185 computed force = R rob2omni * computed force;

186

187 %------------------------------------------

188 else

189 % Condition where we are at some distance > specified threshold

190 % from plane

191 applyVF = 0;

192 computed twist = twist;

193 computed force = zeros(3,1);

194 end

195

196 %------------------------------------------

197 else

198 % The master is not moving

199 computed twist = zeros(6,1);

200 computed force = zeros(3,1);

201 end

118



REFERENCES

[1] Brian Davies. The acrobot technology: a model for robotic surgery.

[2] Matjaz Jakopec, Simon J Harris, Ferdinando Rodriguez y Baena, Paula Gomes,
and Brian L Davies. The acrobot system for total knee replacement. Industrial
Robot: An International Journal, 30(1):61–66, 2003.

[3] KH Fuchs. Minimally invasive surgery. Endoscopy, 34(02):154–159, 2002.

[4] Paolo Dario, Blake Hannaford, and Arianna Menciassi. Smart surgical tools
and augmenting devices. Robotics and Automation, IEEE Transactions on,
19(5):782–792, 2003.

[5] Gary Guthart and John Kenneth Salisbury Jr. The intuitivetm telesurgery sys-
tem: Overview and application. In ICRA, pages 618–621, 2000.

[6] William L Bargar, André Bauer, and Martin Börner. Primary and revision total
hip replacement using the robodoc (r) system. Clinical orthopaedics and related
research, 354:82–91, 1998.

[7] Matjaz Jakopec, Ferdinando Rodriguez y Baena, Simon J Harris, Paula Gomes,
Justin Cobb, and Brian L Davies. The hands-on orthopaedic robot” acrobot”:
Early clinical trials of total knee replacement surgery. Robotics and Automation,
IEEE Transactions on, 19(5):902–911, 2003.

[8] Ming Li, Masaru Ishii, and Russell H Taylor. Spatial motion constraints using
virtual fixtures generated by anatomy. Robotics, IEEE Transactions on, 23(1):4–
19, 2007.

[9] Peter Kazanzides, Tian Xia, Clint Baird, George Jallo, Kathryn Hayes, Nobuyuki
Nakajima, and Nobuhiko Hata. A cooperatively-controlled image guided robot
system for skull base surgery. Studies in health technology and informatics,
132:198–203, 2007.

[10] Jake J Abbott and Allison M Okamura. Virtual fixture architectures for tele-
manipulation. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, volume 2, pages 2798–2805. IEEE, 2003.

[11] Alessandro Bettini, Panadda Marayong, Samuel Lang, Allison M Okamura, and
Gregory D Hager. Vision-assisted control for manipulation using virtual fixtures.
Robotics, IEEE Transactions on, 20(6):953–966, 2004.

119



[12] Ming Li and Russell H Taylor. Spatial motion constraints in medical robot
using virtual fixtures generated by anatomy. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 2, pages
1270–1275. IEEE, 2004.

[13] Thomas B Sheridan. Human supervisory control of robot systems. In Robotics
and Automation. Proceedings. 1986 IEEE International Conference on, volume 3,
pages 808–812. IEEE, 1986.

[14] Louis B Rosenberg. Virtual fixtures: Perceptual tools for telerobotic manipu-
lation. In Virtual Reality Annual International Symposium, 1993., 1993 IEEE,
pages 76–82. IEEE, 1993.

[15] Shinsuk Park, Robert D Howe, and David F Torchiana. Virtual fixtures for
robotic cardiac surgery. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2001, pages 1419–1420. Springer, 2001.

[16] Andreas Hein and Tim C Lueth. Control algorithms for interactive shaping
[surgical robots]. In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 2, pages 2025–2030. IEEE, 2001.

[17] Daniel Aarno, Staffan Ekvall, and Danica Kragic. Adaptive virtual fixtures for
machine-assisted teleoperation tasks. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pages 1139–
1144. IEEE, 2005.

[18] Jacob Rosen, Blake Hannaford, Christina G Richards, and Mika N Sinanan.
Markov modeling of minimally invasive surgery based on tool/tissue interaction
and force/torque signatures for evaluating surgical skills. Biomedical Engineer-
ing, IEEE Transactions on, 48(5):579–591, 2001.

[19] Jacob Rosen, Jeffrey D Brown, Lily Chang, Mika N Sinanan, and Blake Han-
naford. Generalized approach for modeling minimally invasive surgery as a
stochastic process using a discrete markov model. Biomedical Engineering, IEEE
Transactions on, 53(3):399–413, 2006.

[20] Jake J Abbott, Gregory D Hager, and Allison M Okamura. Steady-hand teleop-
eration with virtual fixtures. In Robot and Human Interactive Communication,
2003. Proceedings. ROMAN 2003. The 12th IEEE International Workshop on,
pages 145–151. IEEE, 2003.

[21] Panadda Marayong, Ming Li, Allison M Okamura, and Gregory D Hager. Spatial
motion constraints: Theory and demonstrations for robot guidance using virtual
fixtures. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Inter-
national Conference on, volume 2, pages 1954–1959. IEEE, 2003.

120



[22] Ming Li and Russell H Taylor. Optimum robot control for 3d virtual fixture in
constrained ent surgery. In Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2003, pages 165–172. Springer, 2003.

[23] Alexander Basilevsky. Applied matrix algebra in the statistical sciences. Courier
Dover Publications, 2013.

[24] Danica Kragic, Panadda Marayong, Ming Li, Allison M Okamura, and Gregory D
Hager. Human-machine collaborative systems for microsurgical applications. The
International Journal of Robotics Research, 24(9):731–741, 2005.

[25] Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot mod-
eling and control. John Wiley & Sons, Hoboken (N.J.), 2006.

[26] Lorenzo Sciavicco and Bruno Siciliano. Modelling and control of robot manipu-
lators. Springer, 2000.

[27] William G. Zikmund. Exploring marketing research. Dryden Press, Fort Worth,
Tex. [u.a.], 4. ed edition, 1991.

121


